drm/i915: check that we are in an RPM atomic section in GGTT PTE updaters
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36
37 struct drm_i915_file_private;
38
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42 typedef uint64_t gen8_ppgtt_pdpe_t;
43 typedef uint64_t gen8_ppgtt_pml4e_t;
44
45 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
46
47
48 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
49 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
50 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
51 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
52 #define GEN6_PTE_CACHE_LLC (2 << 1)
53 #define GEN6_PTE_UNCACHED (1 << 1)
54 #define GEN6_PTE_VALID (1 << 0)
55
56 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
57 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
58 #define I915_PDES 512
59 #define I915_PDE_MASK (I915_PDES - 1)
60 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
61
62 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
63 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
64 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
65 #define GEN6_PDE_SHIFT 22
66 #define GEN6_PDE_VALID (1 << 0)
67
68 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
69
70 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
71 #define BYT_PTE_WRITEABLE (1 << 1)
72
73 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
74 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
75 */
76 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
77 (((bits) & 0x8) << (11 - 3)))
78 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
79 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
80 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
81 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
82 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
83 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
84 #define HSW_PTE_UNCACHED (0)
85 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
86 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
87
88 /* GEN8 legacy style address is defined as a 3 level page table:
89 * 31:30 | 29:21 | 20:12 | 11:0
90 * PDPE | PDE | PTE | offset
91 * The difference as compared to normal x86 3 level page table is the PDPEs are
92 * programmed via register.
93 *
94 * GEN8 48b legacy style address is defined as a 4 level page table:
95 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
96 * PML4E | PDPE | PDE | PTE | offset
97 */
98 #define GEN8_PML4ES_PER_PML4 512
99 #define GEN8_PML4E_SHIFT 39
100 #define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
101 #define GEN8_PDPE_SHIFT 30
102 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
103 * tables */
104 #define GEN8_PDPE_MASK 0x1ff
105 #define GEN8_PDE_SHIFT 21
106 #define GEN8_PDE_MASK 0x1ff
107 #define GEN8_PTE_SHIFT 12
108 #define GEN8_PTE_MASK 0x1ff
109 #define GEN8_LEGACY_PDPES 4
110 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
111
112 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
113 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
114
115 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
116 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
117 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
118 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
119
120 #define CHV_PPAT_SNOOP (1<<6)
121 #define GEN8_PPAT_AGE(x) (x<<4)
122 #define GEN8_PPAT_LLCeLLC (3<<2)
123 #define GEN8_PPAT_LLCELLC (2<<2)
124 #define GEN8_PPAT_LLC (1<<2)
125 #define GEN8_PPAT_WB (3<<0)
126 #define GEN8_PPAT_WT (2<<0)
127 #define GEN8_PPAT_WC (1<<0)
128 #define GEN8_PPAT_UC (0<<0)
129 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
130 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
131
132 enum i915_ggtt_view_type {
133 I915_GGTT_VIEW_NORMAL = 0,
134 I915_GGTT_VIEW_ROTATED,
135 I915_GGTT_VIEW_PARTIAL,
136 };
137
138 struct intel_rotation_info {
139 unsigned int height;
140 unsigned int pitch;
141 unsigned int uv_offset;
142 uint32_t pixel_format;
143 uint64_t fb_modifier;
144 unsigned int width_pages, height_pages;
145 uint64_t size;
146 unsigned int width_pages_uv, height_pages_uv;
147 uint64_t size_uv;
148 unsigned int uv_start_page;
149 };
150
151 struct i915_ggtt_view {
152 enum i915_ggtt_view_type type;
153
154 union {
155 struct {
156 u64 offset;
157 unsigned int size;
158 } partial;
159 struct intel_rotation_info rotation_info;
160 } params;
161
162 struct sg_table *pages;
163 };
164
165 extern const struct i915_ggtt_view i915_ggtt_view_normal;
166 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
167
168 enum i915_cache_level;
169
170 /**
171 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
172 * VMA's presence cannot be guaranteed before binding, or after unbinding the
173 * object into/from the address space.
174 *
175 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
176 * will always be <= an objects lifetime. So object refcounting should cover us.
177 */
178 struct i915_vma {
179 struct drm_mm_node node;
180 struct drm_i915_gem_object *obj;
181 struct i915_address_space *vm;
182
183 /** Flags and address space this VMA is bound to */
184 #define GLOBAL_BIND (1<<0)
185 #define LOCAL_BIND (1<<1)
186 unsigned int bound : 4;
187
188 /**
189 * Support different GGTT views into the same object.
190 * This means there can be multiple VMA mappings per object and per VM.
191 * i915_ggtt_view_type is used to distinguish between those entries.
192 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
193 * assumed in GEM functions which take no ggtt view parameter.
194 */
195 struct i915_ggtt_view ggtt_view;
196
197 /** This object's place on the active/inactive lists */
198 struct list_head mm_list;
199
200 struct list_head vma_link; /* Link in the object's VMA list */
201
202 /** This vma's place in the batchbuffer or on the eviction list */
203 struct list_head exec_list;
204
205 /**
206 * Used for performing relocations during execbuffer insertion.
207 */
208 struct hlist_node exec_node;
209 unsigned long exec_handle;
210 struct drm_i915_gem_exec_object2 *exec_entry;
211
212 /**
213 * How many users have pinned this object in GTT space. The following
214 * users can each hold at most one reference: pwrite/pread, execbuffer
215 * (objects are not allowed multiple times for the same batchbuffer),
216 * and the framebuffer code. When switching/pageflipping, the
217 * framebuffer code has at most two buffers pinned per crtc.
218 *
219 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
220 * bits with absolutely no headroom. So use 4 bits. */
221 unsigned int pin_count:4;
222 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
223 };
224
225 struct i915_page_dma {
226 struct page *page;
227 union {
228 dma_addr_t daddr;
229
230 /* For gen6/gen7 only. This is the offset in the GGTT
231 * where the page directory entries for PPGTT begin
232 */
233 uint32_t ggtt_offset;
234 };
235 };
236
237 #define px_base(px) (&(px)->base)
238 #define px_page(px) (px_base(px)->page)
239 #define px_dma(px) (px_base(px)->daddr)
240
241 struct i915_page_scratch {
242 struct i915_page_dma base;
243 };
244
245 struct i915_page_table {
246 struct i915_page_dma base;
247
248 unsigned long *used_ptes;
249 };
250
251 struct i915_page_directory {
252 struct i915_page_dma base;
253
254 unsigned long *used_pdes;
255 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
256 };
257
258 struct i915_page_directory_pointer {
259 struct i915_page_dma base;
260
261 unsigned long *used_pdpes;
262 struct i915_page_directory **page_directory;
263 };
264
265 struct i915_pml4 {
266 struct i915_page_dma base;
267
268 DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
269 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
270 };
271
272 struct i915_address_space {
273 struct drm_mm mm;
274 struct drm_device *dev;
275 struct list_head global_link;
276 u64 start; /* Start offset always 0 for dri2 */
277 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
278
279 struct i915_page_scratch *scratch_page;
280 struct i915_page_table *scratch_pt;
281 struct i915_page_directory *scratch_pd;
282 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
283
284 /**
285 * List of objects currently involved in rendering.
286 *
287 * Includes buffers having the contents of their GPU caches
288 * flushed, not necessarily primitives. last_read_req
289 * represents when the rendering involved will be completed.
290 *
291 * A reference is held on the buffer while on this list.
292 */
293 struct list_head active_list;
294
295 /**
296 * LRU list of objects which are not in the ringbuffer and
297 * are ready to unbind, but are still in the GTT.
298 *
299 * last_read_req is NULL while an object is in this list.
300 *
301 * A reference is not held on the buffer while on this list,
302 * as merely being GTT-bound shouldn't prevent its being
303 * freed, and we'll pull it off the list in the free path.
304 */
305 struct list_head inactive_list;
306
307 /* FIXME: Need a more generic return type */
308 gen6_pte_t (*pte_encode)(dma_addr_t addr,
309 enum i915_cache_level level,
310 bool valid, u32 flags); /* Create a valid PTE */
311 /* flags for pte_encode */
312 #define PTE_READ_ONLY (1<<0)
313 int (*allocate_va_range)(struct i915_address_space *vm,
314 uint64_t start,
315 uint64_t length);
316 void (*clear_range)(struct i915_address_space *vm,
317 uint64_t start,
318 uint64_t length,
319 bool use_scratch);
320 void (*insert_entries)(struct i915_address_space *vm,
321 struct sg_table *st,
322 uint64_t start,
323 enum i915_cache_level cache_level, u32 flags);
324 void (*cleanup)(struct i915_address_space *vm);
325 /** Unmap an object from an address space. This usually consists of
326 * setting the valid PTE entries to a reserved scratch page. */
327 void (*unbind_vma)(struct i915_vma *vma);
328 /* Map an object into an address space with the given cache flags. */
329 int (*bind_vma)(struct i915_vma *vma,
330 enum i915_cache_level cache_level,
331 u32 flags);
332 };
333
334 /* The Graphics Translation Table is the way in which GEN hardware translates a
335 * Graphics Virtual Address into a Physical Address. In addition to the normal
336 * collateral associated with any va->pa translations GEN hardware also has a
337 * portion of the GTT which can be mapped by the CPU and remain both coherent
338 * and correct (in cases like swizzling). That region is referred to as GMADR in
339 * the spec.
340 */
341 struct i915_gtt {
342 struct i915_address_space base;
343
344 size_t stolen_size; /* Total size of stolen memory */
345 size_t stolen_usable_size; /* Total size minus BIOS reserved */
346 u64 mappable_end; /* End offset that we can CPU map */
347 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
348 phys_addr_t mappable_base; /* PA of our GMADR */
349
350 /** "Graphics Stolen Memory" holds the global PTEs */
351 void __iomem *gsm;
352
353 bool do_idle_maps;
354
355 int mtrr;
356
357 /* global gtt ops */
358 int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
359 size_t *stolen, phys_addr_t *mappable_base,
360 u64 *mappable_end);
361 };
362
363 struct i915_hw_ppgtt {
364 struct i915_address_space base;
365 struct kref ref;
366 struct drm_mm_node node;
367 unsigned long pd_dirty_rings;
368 union {
369 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
370 struct i915_page_directory_pointer pdp; /* GEN8+ */
371 struct i915_page_directory pd; /* GEN6-7 */
372 };
373
374 struct drm_i915_file_private *file_priv;
375
376 gen6_pte_t __iomem *pd_addr;
377
378 int (*enable)(struct i915_hw_ppgtt *ppgtt);
379 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
380 struct drm_i915_gem_request *req);
381 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
382 };
383
384 /* For each pde iterates over every pde between from start until start + length.
385 * If start, and start+length are not perfectly divisible, the macro will round
386 * down, and up as needed. The macro modifies pde, start, and length. Dev is
387 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
388 * and length = 2G effectively iterates over every PDE in the system.
389 *
390 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
391 */
392 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
393 for (iter = gen6_pde_index(start); \
394 length > 0 && iter < I915_PDES ? \
395 (pt = (pd)->page_table[iter]), 1 : 0; \
396 iter++, \
397 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
398 temp = min_t(unsigned, temp, length), \
399 start += temp, length -= temp)
400
401 #define gen6_for_all_pdes(pt, ppgtt, iter) \
402 for (iter = 0; \
403 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
404 iter++)
405
406 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
407 {
408 const uint32_t mask = NUM_PTE(pde_shift) - 1;
409
410 return (address >> PAGE_SHIFT) & mask;
411 }
412
413 /* Helper to counts the number of PTEs within the given length. This count
414 * does not cross a page table boundary, so the max value would be
415 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
416 */
417 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
418 uint32_t pde_shift)
419 {
420 const uint64_t mask = ~((1 << pde_shift) - 1);
421 uint64_t end;
422
423 WARN_ON(length == 0);
424 WARN_ON(offset_in_page(addr|length));
425
426 end = addr + length;
427
428 if ((addr & mask) != (end & mask))
429 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
430
431 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
432 }
433
434 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
435 {
436 return (addr >> shift) & I915_PDE_MASK;
437 }
438
439 static inline uint32_t gen6_pte_index(uint32_t addr)
440 {
441 return i915_pte_index(addr, GEN6_PDE_SHIFT);
442 }
443
444 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
445 {
446 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
447 }
448
449 static inline uint32_t gen6_pde_index(uint32_t addr)
450 {
451 return i915_pde_index(addr, GEN6_PDE_SHIFT);
452 }
453
454 /* Equivalent to the gen6 version, For each pde iterates over every pde
455 * between from start until start + length. On gen8+ it simply iterates
456 * over every page directory entry in a page directory.
457 */
458 #define gen8_for_each_pde(pt, pd, start, length, iter) \
459 for (iter = gen8_pde_index(start); \
460 length > 0 && iter < I915_PDES && \
461 (pt = (pd)->page_table[iter], true); \
462 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
463 temp = min(temp - start, length); \
464 start += temp, length -= temp; }), ++iter)
465
466 #define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
467 for (iter = gen8_pdpe_index(start); \
468 length > 0 && iter < I915_PDPES_PER_PDP(dev) && \
469 (pd = (pdp)->page_directory[iter], true); \
470 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
471 temp = min(temp - start, length); \
472 start += temp, length -= temp; }), ++iter)
473
474 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
475 for (iter = gen8_pml4e_index(start); \
476 length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
477 (pdp = (pml4)->pdps[iter], true); \
478 ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
479 temp = min(temp - start, length); \
480 start += temp, length -= temp; }), ++iter)
481
482 static inline uint32_t gen8_pte_index(uint64_t address)
483 {
484 return i915_pte_index(address, GEN8_PDE_SHIFT);
485 }
486
487 static inline uint32_t gen8_pde_index(uint64_t address)
488 {
489 return i915_pde_index(address, GEN8_PDE_SHIFT);
490 }
491
492 static inline uint32_t gen8_pdpe_index(uint64_t address)
493 {
494 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
495 }
496
497 static inline uint32_t gen8_pml4e_index(uint64_t address)
498 {
499 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
500 }
501
502 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
503 {
504 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
505 }
506
507 static inline dma_addr_t
508 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
509 {
510 return test_bit(n, ppgtt->pdp.used_pdpes) ?
511 px_dma(ppgtt->pdp.page_directory[n]) :
512 px_dma(ppgtt->base.scratch_pd);
513 }
514
515 int i915_gem_gtt_init(struct drm_device *dev);
516 void i915_gem_init_global_gtt(struct drm_device *dev);
517 void i915_global_gtt_cleanup(struct drm_device *dev);
518
519
520 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
521 int i915_ppgtt_init_hw(struct drm_device *dev);
522 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
523 void i915_ppgtt_release(struct kref *kref);
524 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
525 struct drm_i915_file_private *fpriv);
526 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
527 {
528 if (ppgtt)
529 kref_get(&ppgtt->ref);
530 }
531 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
532 {
533 if (ppgtt)
534 kref_put(&ppgtt->ref, i915_ppgtt_release);
535 }
536
537 void i915_check_and_clear_faults(struct drm_device *dev);
538 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
539 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
540
541 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
542 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
543
544 static inline bool
545 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
546 const struct i915_ggtt_view *b)
547 {
548 if (WARN_ON(!a || !b))
549 return false;
550
551 if (a->type != b->type)
552 return false;
553 if (a->type != I915_GGTT_VIEW_NORMAL)
554 return !memcmp(&a->params, &b->params, sizeof(a->params));
555 return true;
556 }
557
558 size_t
559 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
560 const struct i915_ggtt_view *view);
561
562 #endif
This page took 0.13511 seconds and 5 git commands to generate.