Merge branch 'component-for-drm' of git://ftp.arm.linux.org.uk/~rmk/linux-arm into...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36
37 typedef uint32_t gen6_gtt_pte_t;
38 typedef uint64_t gen8_gtt_pte_t;
39 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
40
41 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
42
43 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
44 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
45 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
46 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
47 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
48 #define GEN6_PTE_CACHE_LLC (2 << 1)
49 #define GEN6_PTE_UNCACHED (1 << 1)
50 #define GEN6_PTE_VALID (1 << 0)
51
52 #define GEN6_PPGTT_PD_ENTRIES 512
53 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
54 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
55 #define GEN6_PDE_VALID (1 << 0)
56
57 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
58
59 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
60 #define BYT_PTE_WRITEABLE (1 << 1)
61
62 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
63 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
64 */
65 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
66 (((bits) & 0x8) << (11 - 3)))
67 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
68 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
69 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
70 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
71 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
72 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
73 #define HSW_PTE_UNCACHED (0)
74 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
75 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
76
77 /* GEN8 legacy style address is defined as a 3 level page table:
78 * 31:30 | 29:21 | 20:12 | 11:0
79 * PDPE | PDE | PTE | offset
80 * The difference as compared to normal x86 3 level page table is the PDPEs are
81 * programmed via register.
82 */
83 #define GEN8_PDPE_SHIFT 30
84 #define GEN8_PDPE_MASK 0x3
85 #define GEN8_PDE_SHIFT 21
86 #define GEN8_PDE_MASK 0x1ff
87 #define GEN8_PTE_SHIFT 12
88 #define GEN8_PTE_MASK 0x1ff
89 #define GEN8_LEGACY_PDPS 4
90 #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
91 #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
92
93 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
94 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
95 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
96 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
97
98 #define CHV_PPAT_SNOOP (1<<6)
99 #define GEN8_PPAT_AGE(x) (x<<4)
100 #define GEN8_PPAT_LLCeLLC (3<<2)
101 #define GEN8_PPAT_LLCELLC (2<<2)
102 #define GEN8_PPAT_LLC (1<<2)
103 #define GEN8_PPAT_WB (3<<0)
104 #define GEN8_PPAT_WT (2<<0)
105 #define GEN8_PPAT_WC (1<<0)
106 #define GEN8_PPAT_UC (0<<0)
107 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
108 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
109
110 enum i915_cache_level;
111 /**
112 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
113 * VMA's presence cannot be guaranteed before binding, or after unbinding the
114 * object into/from the address space.
115 *
116 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
117 * will always be <= an objects lifetime. So object refcounting should cover us.
118 */
119 struct i915_vma {
120 struct drm_mm_node node;
121 struct drm_i915_gem_object *obj;
122 struct i915_address_space *vm;
123
124 /** This object's place on the active/inactive lists */
125 struct list_head mm_list;
126
127 struct list_head vma_link; /* Link in the object's VMA list */
128
129 /** This vma's place in the batchbuffer or on the eviction list */
130 struct list_head exec_list;
131
132 /**
133 * Used for performing relocations during execbuffer insertion.
134 */
135 struct hlist_node exec_node;
136 unsigned long exec_handle;
137 struct drm_i915_gem_exec_object2 *exec_entry;
138
139 /**
140 * How many users have pinned this object in GTT space. The following
141 * users can each hold at most one reference: pwrite/pread, pin_ioctl
142 * (via user_pin_count), execbuffer (objects are not allowed multiple
143 * times for the same batchbuffer), and the framebuffer code. When
144 * switching/pageflipping, the framebuffer code has at most two buffers
145 * pinned per crtc.
146 *
147 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
148 * bits with absolutely no headroom. So use 4 bits. */
149 unsigned int pin_count:4;
150 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
151
152 /** Unmap an object from an address space. This usually consists of
153 * setting the valid PTE entries to a reserved scratch page. */
154 void (*unbind_vma)(struct i915_vma *vma);
155 /* Map an object into an address space with the given cache flags. */
156 #define GLOBAL_BIND (1<<0)
157 #define PTE_READ_ONLY (1<<1)
158 void (*bind_vma)(struct i915_vma *vma,
159 enum i915_cache_level cache_level,
160 u32 flags);
161 };
162
163 struct i915_address_space {
164 struct drm_mm mm;
165 struct drm_device *dev;
166 struct list_head global_link;
167 unsigned long start; /* Start offset always 0 for dri2 */
168 size_t total; /* size addr space maps (ex. 2GB for ggtt) */
169
170 struct {
171 dma_addr_t addr;
172 struct page *page;
173 } scratch;
174
175 /**
176 * List of objects currently involved in rendering.
177 *
178 * Includes buffers having the contents of their GPU caches
179 * flushed, not necessarily primitives. last_rendering_seqno
180 * represents when the rendering involved will be completed.
181 *
182 * A reference is held on the buffer while on this list.
183 */
184 struct list_head active_list;
185
186 /**
187 * LRU list of objects which are not in the ringbuffer and
188 * are ready to unbind, but are still in the GTT.
189 *
190 * last_rendering_seqno is 0 while an object is in this list.
191 *
192 * A reference is not held on the buffer while on this list,
193 * as merely being GTT-bound shouldn't prevent its being
194 * freed, and we'll pull it off the list in the free path.
195 */
196 struct list_head inactive_list;
197
198 /* FIXME: Need a more generic return type */
199 gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
200 enum i915_cache_level level,
201 bool valid, u32 flags); /* Create a valid PTE */
202 void (*clear_range)(struct i915_address_space *vm,
203 uint64_t start,
204 uint64_t length,
205 bool use_scratch);
206 void (*insert_entries)(struct i915_address_space *vm,
207 struct sg_table *st,
208 uint64_t start,
209 enum i915_cache_level cache_level, u32 flags);
210 void (*cleanup)(struct i915_address_space *vm);
211 };
212
213 /* The Graphics Translation Table is the way in which GEN hardware translates a
214 * Graphics Virtual Address into a Physical Address. In addition to the normal
215 * collateral associated with any va->pa translations GEN hardware also has a
216 * portion of the GTT which can be mapped by the CPU and remain both coherent
217 * and correct (in cases like swizzling). That region is referred to as GMADR in
218 * the spec.
219 */
220 struct i915_gtt {
221 struct i915_address_space base;
222 size_t stolen_size; /* Total size of stolen memory */
223
224 unsigned long mappable_end; /* End offset that we can CPU map */
225 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
226 phys_addr_t mappable_base; /* PA of our GMADR */
227
228 /** "Graphics Stolen Memory" holds the global PTEs */
229 void __iomem *gsm;
230
231 bool do_idle_maps;
232
233 int mtrr;
234
235 /* global gtt ops */
236 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
237 size_t *stolen, phys_addr_t *mappable_base,
238 unsigned long *mappable_end);
239 };
240
241 struct i915_hw_ppgtt {
242 struct i915_address_space base;
243 struct kref ref;
244 struct drm_mm_node node;
245 unsigned num_pd_entries;
246 unsigned num_pd_pages; /* gen8+ */
247 union {
248 struct page **pt_pages;
249 struct page **gen8_pt_pages[GEN8_LEGACY_PDPS];
250 };
251 struct page *pd_pages;
252 union {
253 uint32_t pd_offset;
254 dma_addr_t pd_dma_addr[GEN8_LEGACY_PDPS];
255 };
256 union {
257 dma_addr_t *pt_dma_addr;
258 dma_addr_t *gen8_pt_dma_addr[4];
259 };
260
261 struct intel_context *ctx;
262
263 int (*enable)(struct i915_hw_ppgtt *ppgtt);
264 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
265 struct intel_engine_cs *ring,
266 bool synchronous);
267 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
268 };
269
270 int i915_gem_gtt_init(struct drm_device *dev);
271 void i915_gem_init_global_gtt(struct drm_device *dev);
272 void i915_gem_setup_global_gtt(struct drm_device *dev, unsigned long start,
273 unsigned long mappable_end, unsigned long end);
274
275 bool intel_enable_ppgtt(struct drm_device *dev, bool full);
276 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
277
278 void i915_check_and_clear_faults(struct drm_device *dev);
279 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
280 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
281
282 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
283 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
284
285 #endif
This page took 0.037432 seconds and 6 git commands to generate.