drm/i915: Add support for mapping an object page by page
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36
37 #include <linux/io-mapping.h>
38
39 struct drm_i915_file_private;
40
41 typedef uint32_t gen6_pte_t;
42 typedef uint64_t gen8_pte_t;
43 typedef uint64_t gen8_pde_t;
44 typedef uint64_t gen8_ppgtt_pdpe_t;
45 typedef uint64_t gen8_ppgtt_pml4e_t;
46
47 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
48
49 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
50 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
51 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
52 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
53 #define GEN6_PTE_CACHE_LLC (2 << 1)
54 #define GEN6_PTE_UNCACHED (1 << 1)
55 #define GEN6_PTE_VALID (1 << 0)
56
57 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
58 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
59 #define I915_PDES 512
60 #define I915_PDE_MASK (I915_PDES - 1)
61 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
62
63 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
64 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
65 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
66 #define GEN6_PDE_SHIFT 22
67 #define GEN6_PDE_VALID (1 << 0)
68
69 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
70
71 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
72 #define BYT_PTE_WRITEABLE (1 << 1)
73
74 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
75 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
76 */
77 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
78 (((bits) & 0x8) << (11 - 3)))
79 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
80 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
81 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
82 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
83 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
84 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
85 #define HSW_PTE_UNCACHED (0)
86 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
87 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
88
89 /* GEN8 legacy style address is defined as a 3 level page table:
90 * 31:30 | 29:21 | 20:12 | 11:0
91 * PDPE | PDE | PTE | offset
92 * The difference as compared to normal x86 3 level page table is the PDPEs are
93 * programmed via register.
94 *
95 * GEN8 48b legacy style address is defined as a 4 level page table:
96 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
97 * PML4E | PDPE | PDE | PTE | offset
98 */
99 #define GEN8_PML4ES_PER_PML4 512
100 #define GEN8_PML4E_SHIFT 39
101 #define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
102 #define GEN8_PDPE_SHIFT 30
103 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
104 * tables */
105 #define GEN8_PDPE_MASK 0x1ff
106 #define GEN8_PDE_SHIFT 21
107 #define GEN8_PDE_MASK 0x1ff
108 #define GEN8_PTE_SHIFT 12
109 #define GEN8_PTE_MASK 0x1ff
110 #define GEN8_LEGACY_PDPES 4
111 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
112
113 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
114 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
115
116 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
117 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
118 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
119 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
120
121 #define CHV_PPAT_SNOOP (1<<6)
122 #define GEN8_PPAT_AGE(x) (x<<4)
123 #define GEN8_PPAT_LLCeLLC (3<<2)
124 #define GEN8_PPAT_LLCELLC (2<<2)
125 #define GEN8_PPAT_LLC (1<<2)
126 #define GEN8_PPAT_WB (3<<0)
127 #define GEN8_PPAT_WT (2<<0)
128 #define GEN8_PPAT_WC (1<<0)
129 #define GEN8_PPAT_UC (0<<0)
130 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
131 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
132
133 enum i915_ggtt_view_type {
134 I915_GGTT_VIEW_NORMAL = 0,
135 I915_GGTT_VIEW_ROTATED,
136 I915_GGTT_VIEW_PARTIAL,
137 };
138
139 struct intel_rotation_info {
140 unsigned int uv_offset;
141 uint32_t pixel_format;
142 unsigned int uv_start_page;
143 struct {
144 /* tiles */
145 unsigned int width, height;
146 } plane[2];
147 };
148
149 struct i915_ggtt_view {
150 enum i915_ggtt_view_type type;
151
152 union {
153 struct {
154 u64 offset;
155 unsigned int size;
156 } partial;
157 struct intel_rotation_info rotated;
158 } params;
159
160 struct sg_table *pages;
161 };
162
163 extern const struct i915_ggtt_view i915_ggtt_view_normal;
164 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
165
166 enum i915_cache_level;
167
168 /**
169 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
170 * VMA's presence cannot be guaranteed before binding, or after unbinding the
171 * object into/from the address space.
172 *
173 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
174 * will always be <= an objects lifetime. So object refcounting should cover us.
175 */
176 struct i915_vma {
177 struct drm_mm_node node;
178 struct drm_i915_gem_object *obj;
179 struct i915_address_space *vm;
180 void __iomem *iomap;
181
182 /** Flags and address space this VMA is bound to */
183 #define GLOBAL_BIND (1<<0)
184 #define LOCAL_BIND (1<<1)
185 unsigned int bound : 4;
186 bool is_ggtt : 1;
187
188 /**
189 * Support different GGTT views into the same object.
190 * This means there can be multiple VMA mappings per object and per VM.
191 * i915_ggtt_view_type is used to distinguish between those entries.
192 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
193 * assumed in GEM functions which take no ggtt view parameter.
194 */
195 struct i915_ggtt_view ggtt_view;
196
197 /** This object's place on the active/inactive lists */
198 struct list_head vm_link;
199
200 struct list_head obj_link; /* Link in the object's VMA list */
201
202 /** This vma's place in the batchbuffer or on the eviction list */
203 struct list_head exec_list;
204
205 /**
206 * Used for performing relocations during execbuffer insertion.
207 */
208 struct hlist_node exec_node;
209 unsigned long exec_handle;
210 struct drm_i915_gem_exec_object2 *exec_entry;
211
212 /**
213 * How many users have pinned this object in GTT space. The following
214 * users can each hold at most one reference: pwrite/pread, execbuffer
215 * (objects are not allowed multiple times for the same batchbuffer),
216 * and the framebuffer code. When switching/pageflipping, the
217 * framebuffer code has at most two buffers pinned per crtc.
218 *
219 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
220 * bits with absolutely no headroom. So use 4 bits. */
221 unsigned int pin_count:4;
222 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
223 };
224
225 struct i915_page_dma {
226 struct page *page;
227 union {
228 dma_addr_t daddr;
229
230 /* For gen6/gen7 only. This is the offset in the GGTT
231 * where the page directory entries for PPGTT begin
232 */
233 uint32_t ggtt_offset;
234 };
235 };
236
237 #define px_base(px) (&(px)->base)
238 #define px_page(px) (px_base(px)->page)
239 #define px_dma(px) (px_base(px)->daddr)
240
241 struct i915_page_scratch {
242 struct i915_page_dma base;
243 };
244
245 struct i915_page_table {
246 struct i915_page_dma base;
247
248 unsigned long *used_ptes;
249 };
250
251 struct i915_page_directory {
252 struct i915_page_dma base;
253
254 unsigned long *used_pdes;
255 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
256 };
257
258 struct i915_page_directory_pointer {
259 struct i915_page_dma base;
260
261 unsigned long *used_pdpes;
262 struct i915_page_directory **page_directory;
263 };
264
265 struct i915_pml4 {
266 struct i915_page_dma base;
267
268 DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
269 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
270 };
271
272 struct i915_address_space {
273 struct drm_mm mm;
274 struct drm_device *dev;
275 struct list_head global_link;
276 u64 start; /* Start offset always 0 for dri2 */
277 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
278
279 bool is_ggtt;
280
281 struct i915_page_scratch *scratch_page;
282 struct i915_page_table *scratch_pt;
283 struct i915_page_directory *scratch_pd;
284 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
285
286 /**
287 * List of objects currently involved in rendering.
288 *
289 * Includes buffers having the contents of their GPU caches
290 * flushed, not necessarily primitives. last_read_req
291 * represents when the rendering involved will be completed.
292 *
293 * A reference is held on the buffer while on this list.
294 */
295 struct list_head active_list;
296
297 /**
298 * LRU list of objects which are not in the ringbuffer and
299 * are ready to unbind, but are still in the GTT.
300 *
301 * last_read_req is NULL while an object is in this list.
302 *
303 * A reference is not held on the buffer while on this list,
304 * as merely being GTT-bound shouldn't prevent its being
305 * freed, and we'll pull it off the list in the free path.
306 */
307 struct list_head inactive_list;
308
309 /* FIXME: Need a more generic return type */
310 gen6_pte_t (*pte_encode)(dma_addr_t addr,
311 enum i915_cache_level level,
312 bool valid, u32 flags); /* Create a valid PTE */
313 /* flags for pte_encode */
314 #define PTE_READ_ONLY (1<<0)
315 int (*allocate_va_range)(struct i915_address_space *vm,
316 uint64_t start,
317 uint64_t length);
318 void (*clear_range)(struct i915_address_space *vm,
319 uint64_t start,
320 uint64_t length,
321 bool use_scratch);
322 void (*insert_page)(struct i915_address_space *vm,
323 dma_addr_t addr,
324 uint64_t offset,
325 enum i915_cache_level cache_level,
326 u32 flags);
327 void (*insert_entries)(struct i915_address_space *vm,
328 struct sg_table *st,
329 uint64_t start,
330 enum i915_cache_level cache_level, u32 flags);
331 void (*cleanup)(struct i915_address_space *vm);
332 /** Unmap an object from an address space. This usually consists of
333 * setting the valid PTE entries to a reserved scratch page. */
334 void (*unbind_vma)(struct i915_vma *vma);
335 /* Map an object into an address space with the given cache flags. */
336 int (*bind_vma)(struct i915_vma *vma,
337 enum i915_cache_level cache_level,
338 u32 flags);
339 };
340
341 #define i915_is_ggtt(V) ((V)->is_ggtt)
342
343 /* The Graphics Translation Table is the way in which GEN hardware translates a
344 * Graphics Virtual Address into a Physical Address. In addition to the normal
345 * collateral associated with any va->pa translations GEN hardware also has a
346 * portion of the GTT which can be mapped by the CPU and remain both coherent
347 * and correct (in cases like swizzling). That region is referred to as GMADR in
348 * the spec.
349 */
350 struct i915_ggtt {
351 struct i915_address_space base;
352
353 size_t stolen_size; /* Total size of stolen memory */
354 size_t stolen_usable_size; /* Total size minus BIOS reserved */
355 size_t stolen_reserved_base;
356 size_t stolen_reserved_size;
357 size_t size; /* Total size of Global GTT */
358 u64 mappable_end; /* End offset that we can CPU map */
359 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
360 phys_addr_t mappable_base; /* PA of our GMADR */
361
362 /** "Graphics Stolen Memory" holds the global PTEs */
363 void __iomem *gsm;
364
365 bool do_idle_maps;
366
367 int mtrr;
368
369 int (*probe)(struct i915_ggtt *ggtt);
370 };
371
372 struct i915_hw_ppgtt {
373 struct i915_address_space base;
374 struct kref ref;
375 struct drm_mm_node node;
376 unsigned long pd_dirty_rings;
377 union {
378 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
379 struct i915_page_directory_pointer pdp; /* GEN8+ */
380 struct i915_page_directory pd; /* GEN6-7 */
381 };
382
383 struct drm_i915_file_private *file_priv;
384
385 gen6_pte_t __iomem *pd_addr;
386
387 int (*enable)(struct i915_hw_ppgtt *ppgtt);
388 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
389 struct drm_i915_gem_request *req);
390 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
391 };
392
393 /* For each pde iterates over every pde between from start until start + length.
394 * If start, and start+length are not perfectly divisible, the macro will round
395 * down, and up as needed. The macro modifies pde, start, and length. Dev is
396 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
397 * and length = 2G effectively iterates over every PDE in the system.
398 *
399 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
400 */
401 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
402 for (iter = gen6_pde_index(start); \
403 length > 0 && iter < I915_PDES ? \
404 (pt = (pd)->page_table[iter]), 1 : 0; \
405 iter++, \
406 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
407 temp = min_t(unsigned, temp, length), \
408 start += temp, length -= temp)
409
410 #define gen6_for_all_pdes(pt, ppgtt, iter) \
411 for (iter = 0; \
412 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
413 iter++)
414
415 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
416 {
417 const uint32_t mask = NUM_PTE(pde_shift) - 1;
418
419 return (address >> PAGE_SHIFT) & mask;
420 }
421
422 /* Helper to counts the number of PTEs within the given length. This count
423 * does not cross a page table boundary, so the max value would be
424 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
425 */
426 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
427 uint32_t pde_shift)
428 {
429 const uint64_t mask = ~((1ULL << pde_shift) - 1);
430 uint64_t end;
431
432 WARN_ON(length == 0);
433 WARN_ON(offset_in_page(addr|length));
434
435 end = addr + length;
436
437 if ((addr & mask) != (end & mask))
438 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
439
440 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
441 }
442
443 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
444 {
445 return (addr >> shift) & I915_PDE_MASK;
446 }
447
448 static inline uint32_t gen6_pte_index(uint32_t addr)
449 {
450 return i915_pte_index(addr, GEN6_PDE_SHIFT);
451 }
452
453 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
454 {
455 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
456 }
457
458 static inline uint32_t gen6_pde_index(uint32_t addr)
459 {
460 return i915_pde_index(addr, GEN6_PDE_SHIFT);
461 }
462
463 /* Equivalent to the gen6 version, For each pde iterates over every pde
464 * between from start until start + length. On gen8+ it simply iterates
465 * over every page directory entry in a page directory.
466 */
467 #define gen8_for_each_pde(pt, pd, start, length, iter) \
468 for (iter = gen8_pde_index(start); \
469 length > 0 && iter < I915_PDES && \
470 (pt = (pd)->page_table[iter], true); \
471 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
472 temp = min(temp - start, length); \
473 start += temp, length -= temp; }), ++iter)
474
475 #define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
476 for (iter = gen8_pdpe_index(start); \
477 length > 0 && iter < I915_PDPES_PER_PDP(dev) && \
478 (pd = (pdp)->page_directory[iter], true); \
479 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
480 temp = min(temp - start, length); \
481 start += temp, length -= temp; }), ++iter)
482
483 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
484 for (iter = gen8_pml4e_index(start); \
485 length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
486 (pdp = (pml4)->pdps[iter], true); \
487 ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
488 temp = min(temp - start, length); \
489 start += temp, length -= temp; }), ++iter)
490
491 static inline uint32_t gen8_pte_index(uint64_t address)
492 {
493 return i915_pte_index(address, GEN8_PDE_SHIFT);
494 }
495
496 static inline uint32_t gen8_pde_index(uint64_t address)
497 {
498 return i915_pde_index(address, GEN8_PDE_SHIFT);
499 }
500
501 static inline uint32_t gen8_pdpe_index(uint64_t address)
502 {
503 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
504 }
505
506 static inline uint32_t gen8_pml4e_index(uint64_t address)
507 {
508 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
509 }
510
511 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
512 {
513 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
514 }
515
516 static inline dma_addr_t
517 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
518 {
519 return test_bit(n, ppgtt->pdp.used_pdpes) ?
520 px_dma(ppgtt->pdp.page_directory[n]) :
521 px_dma(ppgtt->base.scratch_pd);
522 }
523
524 int i915_ggtt_init_hw(struct drm_device *dev);
525 int i915_ggtt_enable_hw(struct drm_device *dev);
526 void i915_gem_init_ggtt(struct drm_device *dev);
527 void i915_ggtt_cleanup_hw(struct drm_device *dev);
528
529 int i915_ppgtt_init_hw(struct drm_device *dev);
530 void i915_ppgtt_release(struct kref *kref);
531 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
532 struct drm_i915_file_private *fpriv);
533 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
534 {
535 if (ppgtt)
536 kref_get(&ppgtt->ref);
537 }
538 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
539 {
540 if (ppgtt)
541 kref_put(&ppgtt->ref, i915_ppgtt_release);
542 }
543
544 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
545 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
546 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
547
548 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
549 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
550
551 static inline bool
552 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
553 const struct i915_ggtt_view *b)
554 {
555 if (WARN_ON(!a || !b))
556 return false;
557
558 if (a->type != b->type)
559 return false;
560 if (a->type != I915_GGTT_VIEW_NORMAL)
561 return !memcmp(&a->params, &b->params, sizeof(a->params));
562 return true;
563 }
564
565 size_t
566 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
567 const struct i915_ggtt_view *view);
568
569 /**
570 * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
571 * @vma: VMA to iomap
572 *
573 * The passed in VMA has to be pinned in the global GTT mappable region.
574 * An extra pinning of the VMA is acquired for the return iomapping,
575 * the caller must call i915_vma_unpin_iomap to relinquish the pinning
576 * after the iomapping is no longer required.
577 *
578 * Callers must hold the struct_mutex.
579 *
580 * Returns a valid iomapped pointer or ERR_PTR.
581 */
582 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
583
584 /**
585 * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
586 * @vma: VMA to unpin
587 *
588 * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
589 *
590 * Callers must hold the struct_mutex. This function is only valid to be
591 * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
592 */
593 static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
594 {
595 lockdep_assert_held(&vma->vm->dev->struct_mutex);
596 GEM_BUG_ON(vma->pin_count == 0);
597 GEM_BUG_ON(vma->iomap == NULL);
598 vma->pin_count--;
599 }
600
601 #endif
This page took 0.042539 seconds and 6 git commands to generate.