drm/i915: Force clean compilation with -Werror
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_userptr.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34
35 struct i915_mm_struct {
36 struct mm_struct *mm;
37 struct drm_i915_private *i915;
38 struct i915_mmu_notifier *mn;
39 struct hlist_node node;
40 struct kref kref;
41 struct work_struct work;
42 };
43
44 #if defined(CONFIG_MMU_NOTIFIER)
45 #include <linux/interval_tree.h>
46
47 struct i915_mmu_notifier {
48 spinlock_t lock;
49 struct hlist_node node;
50 struct mmu_notifier mn;
51 struct rb_root objects;
52 struct workqueue_struct *wq;
53 };
54
55 struct i915_mmu_object {
56 struct i915_mmu_notifier *mn;
57 struct drm_i915_gem_object *obj;
58 struct interval_tree_node it;
59 struct list_head link;
60 struct work_struct work;
61 bool attached;
62 };
63
64 static void wait_rendering(struct drm_i915_gem_object *obj)
65 {
66 struct drm_device *dev = obj->base.dev;
67 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
68 unsigned reset_counter;
69 int i, n;
70
71 if (!obj->active)
72 return;
73
74 n = 0;
75 for (i = 0; i < I915_NUM_ENGINES; i++) {
76 struct drm_i915_gem_request *req;
77
78 req = obj->last_read_req[i];
79 if (req == NULL)
80 continue;
81
82 requests[n++] = i915_gem_request_reference(req);
83 }
84
85 reset_counter = atomic_read(&to_i915(dev)->gpu_error.reset_counter);
86 mutex_unlock(&dev->struct_mutex);
87
88 for (i = 0; i < n; i++)
89 __i915_wait_request(requests[i], reset_counter, false,
90 NULL, NULL);
91
92 mutex_lock(&dev->struct_mutex);
93
94 for (i = 0; i < n; i++)
95 i915_gem_request_unreference(requests[i]);
96 }
97
98 static void cancel_userptr(struct work_struct *work)
99 {
100 struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
101 struct drm_i915_gem_object *obj = mo->obj;
102 struct drm_device *dev = obj->base.dev;
103
104 mutex_lock(&dev->struct_mutex);
105 /* Cancel any active worker and force us to re-evaluate gup */
106 obj->userptr.work = NULL;
107
108 if (obj->pages != NULL) {
109 struct drm_i915_private *dev_priv = to_i915(dev);
110 struct i915_vma *vma, *tmp;
111 bool was_interruptible;
112
113 wait_rendering(obj);
114
115 was_interruptible = dev_priv->mm.interruptible;
116 dev_priv->mm.interruptible = false;
117
118 list_for_each_entry_safe(vma, tmp, &obj->vma_list, obj_link) {
119 int ret = i915_vma_unbind(vma);
120 WARN_ON(ret && ret != -EIO);
121 }
122 WARN_ON(i915_gem_object_put_pages(obj));
123
124 dev_priv->mm.interruptible = was_interruptible;
125 }
126
127 drm_gem_object_unreference(&obj->base);
128 mutex_unlock(&dev->struct_mutex);
129 }
130
131 static void add_object(struct i915_mmu_object *mo)
132 {
133 if (mo->attached)
134 return;
135
136 interval_tree_insert(&mo->it, &mo->mn->objects);
137 mo->attached = true;
138 }
139
140 static void del_object(struct i915_mmu_object *mo)
141 {
142 if (!mo->attached)
143 return;
144
145 interval_tree_remove(&mo->it, &mo->mn->objects);
146 mo->attached = false;
147 }
148
149 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
150 struct mm_struct *mm,
151 unsigned long start,
152 unsigned long end)
153 {
154 struct i915_mmu_notifier *mn =
155 container_of(_mn, struct i915_mmu_notifier, mn);
156 struct i915_mmu_object *mo;
157 struct interval_tree_node *it;
158 LIST_HEAD(cancelled);
159
160 if (RB_EMPTY_ROOT(&mn->objects))
161 return;
162
163 /* interval ranges are inclusive, but invalidate range is exclusive */
164 end--;
165
166 spin_lock(&mn->lock);
167 it = interval_tree_iter_first(&mn->objects, start, end);
168 while (it) {
169 /* The mmu_object is released late when destroying the
170 * GEM object so it is entirely possible to gain a
171 * reference on an object in the process of being freed
172 * since our serialisation is via the spinlock and not
173 * the struct_mutex - and consequently use it after it
174 * is freed and then double free it. To prevent that
175 * use-after-free we only acquire a reference on the
176 * object if it is not in the process of being destroyed.
177 */
178 mo = container_of(it, struct i915_mmu_object, it);
179 if (kref_get_unless_zero(&mo->obj->base.refcount))
180 queue_work(mn->wq, &mo->work);
181
182 list_add(&mo->link, &cancelled);
183 it = interval_tree_iter_next(it, start, end);
184 }
185 list_for_each_entry(mo, &cancelled, link)
186 del_object(mo);
187 spin_unlock(&mn->lock);
188
189 flush_workqueue(mn->wq);
190 }
191
192 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
193 .invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
194 };
195
196 static struct i915_mmu_notifier *
197 i915_mmu_notifier_create(struct mm_struct *mm)
198 {
199 struct i915_mmu_notifier *mn;
200 int ret;
201
202 mn = kmalloc(sizeof(*mn), GFP_KERNEL);
203 if (mn == NULL)
204 return ERR_PTR(-ENOMEM);
205
206 spin_lock_init(&mn->lock);
207 mn->mn.ops = &i915_gem_userptr_notifier;
208 mn->objects = RB_ROOT;
209 mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
210 if (mn->wq == NULL) {
211 kfree(mn);
212 return ERR_PTR(-ENOMEM);
213 }
214
215 /* Protected by mmap_sem (write-lock) */
216 ret = __mmu_notifier_register(&mn->mn, mm);
217 if (ret) {
218 destroy_workqueue(mn->wq);
219 kfree(mn);
220 return ERR_PTR(ret);
221 }
222
223 return mn;
224 }
225
226 static void
227 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
228 {
229 struct i915_mmu_object *mo;
230
231 mo = obj->userptr.mmu_object;
232 if (mo == NULL)
233 return;
234
235 spin_lock(&mo->mn->lock);
236 del_object(mo);
237 spin_unlock(&mo->mn->lock);
238 kfree(mo);
239
240 obj->userptr.mmu_object = NULL;
241 }
242
243 static struct i915_mmu_notifier *
244 i915_mmu_notifier_find(struct i915_mm_struct *mm)
245 {
246 struct i915_mmu_notifier *mn = mm->mn;
247
248 mn = mm->mn;
249 if (mn)
250 return mn;
251
252 down_write(&mm->mm->mmap_sem);
253 mutex_lock(&mm->i915->mm_lock);
254 if ((mn = mm->mn) == NULL) {
255 mn = i915_mmu_notifier_create(mm->mm);
256 if (!IS_ERR(mn))
257 mm->mn = mn;
258 }
259 mutex_unlock(&mm->i915->mm_lock);
260 up_write(&mm->mm->mmap_sem);
261
262 return mn;
263 }
264
265 static int
266 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
267 unsigned flags)
268 {
269 struct i915_mmu_notifier *mn;
270 struct i915_mmu_object *mo;
271
272 if (flags & I915_USERPTR_UNSYNCHRONIZED)
273 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
274
275 if (WARN_ON(obj->userptr.mm == NULL))
276 return -EINVAL;
277
278 mn = i915_mmu_notifier_find(obj->userptr.mm);
279 if (IS_ERR(mn))
280 return PTR_ERR(mn);
281
282 mo = kzalloc(sizeof(*mo), GFP_KERNEL);
283 if (mo == NULL)
284 return -ENOMEM;
285
286 mo->mn = mn;
287 mo->obj = obj;
288 mo->it.start = obj->userptr.ptr;
289 mo->it.last = obj->userptr.ptr + obj->base.size - 1;
290 INIT_WORK(&mo->work, cancel_userptr);
291
292 obj->userptr.mmu_object = mo;
293 return 0;
294 }
295
296 static void
297 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
298 struct mm_struct *mm)
299 {
300 if (mn == NULL)
301 return;
302
303 mmu_notifier_unregister(&mn->mn, mm);
304 destroy_workqueue(mn->wq);
305 kfree(mn);
306 }
307
308 #else
309
310 static void
311 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
312 {
313 }
314
315 static int
316 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
317 unsigned flags)
318 {
319 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
320 return -ENODEV;
321
322 if (!capable(CAP_SYS_ADMIN))
323 return -EPERM;
324
325 return 0;
326 }
327
328 static void
329 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
330 struct mm_struct *mm)
331 {
332 }
333
334 #endif
335
336 static struct i915_mm_struct *
337 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
338 {
339 struct i915_mm_struct *mm;
340
341 /* Protected by dev_priv->mm_lock */
342 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
343 if (mm->mm == real)
344 return mm;
345
346 return NULL;
347 }
348
349 static int
350 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
351 {
352 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
353 struct i915_mm_struct *mm;
354 int ret = 0;
355
356 /* During release of the GEM object we hold the struct_mutex. This
357 * precludes us from calling mmput() at that time as that may be
358 * the last reference and so call exit_mmap(). exit_mmap() will
359 * attempt to reap the vma, and if we were holding a GTT mmap
360 * would then call drm_gem_vm_close() and attempt to reacquire
361 * the struct mutex. So in order to avoid that recursion, we have
362 * to defer releasing the mm reference until after we drop the
363 * struct_mutex, i.e. we need to schedule a worker to do the clean
364 * up.
365 */
366 mutex_lock(&dev_priv->mm_lock);
367 mm = __i915_mm_struct_find(dev_priv, current->mm);
368 if (mm == NULL) {
369 mm = kmalloc(sizeof(*mm), GFP_KERNEL);
370 if (mm == NULL) {
371 ret = -ENOMEM;
372 goto out;
373 }
374
375 kref_init(&mm->kref);
376 mm->i915 = to_i915(obj->base.dev);
377
378 mm->mm = current->mm;
379 atomic_inc(&current->mm->mm_count);
380
381 mm->mn = NULL;
382
383 /* Protected by dev_priv->mm_lock */
384 hash_add(dev_priv->mm_structs,
385 &mm->node, (unsigned long)mm->mm);
386 } else
387 kref_get(&mm->kref);
388
389 obj->userptr.mm = mm;
390 out:
391 mutex_unlock(&dev_priv->mm_lock);
392 return ret;
393 }
394
395 static void
396 __i915_mm_struct_free__worker(struct work_struct *work)
397 {
398 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
399 i915_mmu_notifier_free(mm->mn, mm->mm);
400 mmdrop(mm->mm);
401 kfree(mm);
402 }
403
404 static void
405 __i915_mm_struct_free(struct kref *kref)
406 {
407 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
408
409 /* Protected by dev_priv->mm_lock */
410 hash_del(&mm->node);
411 mutex_unlock(&mm->i915->mm_lock);
412
413 INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
414 schedule_work(&mm->work);
415 }
416
417 static void
418 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
419 {
420 if (obj->userptr.mm == NULL)
421 return;
422
423 kref_put_mutex(&obj->userptr.mm->kref,
424 __i915_mm_struct_free,
425 &to_i915(obj->base.dev)->mm_lock);
426 obj->userptr.mm = NULL;
427 }
428
429 struct get_pages_work {
430 struct work_struct work;
431 struct drm_i915_gem_object *obj;
432 struct task_struct *task;
433 };
434
435 #if IS_ENABLED(CONFIG_SWIOTLB)
436 #define swiotlb_active() swiotlb_nr_tbl()
437 #else
438 #define swiotlb_active() 0
439 #endif
440
441 static int
442 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
443 {
444 struct scatterlist *sg;
445 int ret, n;
446
447 *st = kmalloc(sizeof(**st), GFP_KERNEL);
448 if (*st == NULL)
449 return -ENOMEM;
450
451 if (swiotlb_active()) {
452 ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
453 if (ret)
454 goto err;
455
456 for_each_sg((*st)->sgl, sg, num_pages, n)
457 sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
458 } else {
459 ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
460 0, num_pages << PAGE_SHIFT,
461 GFP_KERNEL);
462 if (ret)
463 goto err;
464 }
465
466 return 0;
467
468 err:
469 kfree(*st);
470 *st = NULL;
471 return ret;
472 }
473
474 static int
475 __i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
476 struct page **pvec, int num_pages)
477 {
478 int ret;
479
480 ret = st_set_pages(&obj->pages, pvec, num_pages);
481 if (ret)
482 return ret;
483
484 ret = i915_gem_gtt_prepare_object(obj);
485 if (ret) {
486 sg_free_table(obj->pages);
487 kfree(obj->pages);
488 obj->pages = NULL;
489 }
490
491 return ret;
492 }
493
494 static int
495 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
496 bool value)
497 {
498 int ret = 0;
499
500 /* During mm_invalidate_range we need to cancel any userptr that
501 * overlaps the range being invalidated. Doing so requires the
502 * struct_mutex, and that risks recursion. In order to cause
503 * recursion, the user must alias the userptr address space with
504 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
505 * to invalidate that mmaping, mm_invalidate_range is called with
506 * the userptr address *and* the struct_mutex held. To prevent that
507 * we set a flag under the i915_mmu_notifier spinlock to indicate
508 * whether this object is valid.
509 */
510 #if defined(CONFIG_MMU_NOTIFIER)
511 if (obj->userptr.mmu_object == NULL)
512 return 0;
513
514 spin_lock(&obj->userptr.mmu_object->mn->lock);
515 /* In order to serialise get_pages with an outstanding
516 * cancel_userptr, we must drop the struct_mutex and try again.
517 */
518 if (!value)
519 del_object(obj->userptr.mmu_object);
520 else if (!work_pending(&obj->userptr.mmu_object->work))
521 add_object(obj->userptr.mmu_object);
522 else
523 ret = -EAGAIN;
524 spin_unlock(&obj->userptr.mmu_object->mn->lock);
525 #endif
526
527 return ret;
528 }
529
530 static void
531 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
532 {
533 struct get_pages_work *work = container_of(_work, typeof(*work), work);
534 struct drm_i915_gem_object *obj = work->obj;
535 struct drm_device *dev = obj->base.dev;
536 const int npages = obj->base.size >> PAGE_SHIFT;
537 struct page **pvec;
538 int pinned, ret;
539
540 ret = -ENOMEM;
541 pinned = 0;
542
543 pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
544 if (pvec != NULL) {
545 struct mm_struct *mm = obj->userptr.mm->mm;
546
547 ret = -EFAULT;
548 if (atomic_inc_not_zero(&mm->mm_users)) {
549 down_read(&mm->mmap_sem);
550 while (pinned < npages) {
551 ret = get_user_pages_remote
552 (work->task, mm,
553 obj->userptr.ptr + pinned * PAGE_SIZE,
554 npages - pinned,
555 !obj->userptr.read_only, 0,
556 pvec + pinned, NULL);
557 if (ret < 0)
558 break;
559
560 pinned += ret;
561 }
562 up_read(&mm->mmap_sem);
563 mmput(mm);
564 }
565 }
566
567 mutex_lock(&dev->struct_mutex);
568 if (obj->userptr.work == &work->work) {
569 if (pinned == npages) {
570 ret = __i915_gem_userptr_set_pages(obj, pvec, npages);
571 if (ret == 0) {
572 list_add_tail(&obj->global_list,
573 &to_i915(dev)->mm.unbound_list);
574 obj->get_page.sg = obj->pages->sgl;
575 obj->get_page.last = 0;
576 pinned = 0;
577 }
578 }
579 obj->userptr.work = ERR_PTR(ret);
580 if (ret)
581 __i915_gem_userptr_set_active(obj, false);
582 }
583
584 obj->userptr.workers--;
585 drm_gem_object_unreference(&obj->base);
586 mutex_unlock(&dev->struct_mutex);
587
588 release_pages(pvec, pinned, 0);
589 drm_free_large(pvec);
590
591 put_task_struct(work->task);
592 kfree(work);
593 }
594
595 static int
596 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
597 bool *active)
598 {
599 struct get_pages_work *work;
600
601 /* Spawn a worker so that we can acquire the
602 * user pages without holding our mutex. Access
603 * to the user pages requires mmap_sem, and we have
604 * a strict lock ordering of mmap_sem, struct_mutex -
605 * we already hold struct_mutex here and so cannot
606 * call gup without encountering a lock inversion.
607 *
608 * Userspace will keep on repeating the operation
609 * (thanks to EAGAIN) until either we hit the fast
610 * path or the worker completes. If the worker is
611 * cancelled or superseded, the task is still run
612 * but the results ignored. (This leads to
613 * complications that we may have a stray object
614 * refcount that we need to be wary of when
615 * checking for existing objects during creation.)
616 * If the worker encounters an error, it reports
617 * that error back to this function through
618 * obj->userptr.work = ERR_PTR.
619 */
620 if (obj->userptr.workers >= I915_GEM_USERPTR_MAX_WORKERS)
621 return -EAGAIN;
622
623 work = kmalloc(sizeof(*work), GFP_KERNEL);
624 if (work == NULL)
625 return -ENOMEM;
626
627 obj->userptr.work = &work->work;
628 obj->userptr.workers++;
629
630 work->obj = obj;
631 drm_gem_object_reference(&obj->base);
632
633 work->task = current;
634 get_task_struct(work->task);
635
636 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
637 schedule_work(&work->work);
638
639 *active = true;
640 return -EAGAIN;
641 }
642
643 static int
644 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
645 {
646 const int num_pages = obj->base.size >> PAGE_SHIFT;
647 struct page **pvec;
648 int pinned, ret;
649 bool active;
650
651 /* If userspace should engineer that these pages are replaced in
652 * the vma between us binding this page into the GTT and completion
653 * of rendering... Their loss. If they change the mapping of their
654 * pages they need to create a new bo to point to the new vma.
655 *
656 * However, that still leaves open the possibility of the vma
657 * being copied upon fork. Which falls under the same userspace
658 * synchronisation issue as a regular bo, except that this time
659 * the process may not be expecting that a particular piece of
660 * memory is tied to the GPU.
661 *
662 * Fortunately, we can hook into the mmu_notifier in order to
663 * discard the page references prior to anything nasty happening
664 * to the vma (discard or cloning) which should prevent the more
665 * egregious cases from causing harm.
666 */
667 if (IS_ERR(obj->userptr.work)) {
668 /* active flag will have been dropped already by the worker */
669 ret = PTR_ERR(obj->userptr.work);
670 obj->userptr.work = NULL;
671 return ret;
672 }
673 if (obj->userptr.work)
674 /* active flag should still be held for the pending work */
675 return -EAGAIN;
676
677 /* Let the mmu-notifier know that we have begun and need cancellation */
678 ret = __i915_gem_userptr_set_active(obj, true);
679 if (ret)
680 return ret;
681
682 pvec = NULL;
683 pinned = 0;
684 if (obj->userptr.mm->mm == current->mm) {
685 pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
686 GFP_TEMPORARY);
687 if (pvec == NULL) {
688 __i915_gem_userptr_set_active(obj, false);
689 return -ENOMEM;
690 }
691
692 pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
693 !obj->userptr.read_only, pvec);
694 }
695
696 active = false;
697 if (pinned < 0)
698 ret = pinned, pinned = 0;
699 else if (pinned < num_pages)
700 ret = __i915_gem_userptr_get_pages_schedule(obj, &active);
701 else
702 ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
703 if (ret) {
704 __i915_gem_userptr_set_active(obj, active);
705 release_pages(pvec, pinned, 0);
706 }
707 drm_free_large(pvec);
708 return ret;
709 }
710
711 static void
712 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
713 {
714 struct sg_page_iter sg_iter;
715
716 BUG_ON(obj->userptr.work != NULL);
717 __i915_gem_userptr_set_active(obj, false);
718
719 if (obj->madv != I915_MADV_WILLNEED)
720 obj->dirty = 0;
721
722 i915_gem_gtt_finish_object(obj);
723
724 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
725 struct page *page = sg_page_iter_page(&sg_iter);
726
727 if (obj->dirty)
728 set_page_dirty(page);
729
730 mark_page_accessed(page);
731 put_page(page);
732 }
733 obj->dirty = 0;
734
735 sg_free_table(obj->pages);
736 kfree(obj->pages);
737 }
738
739 static void
740 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
741 {
742 i915_gem_userptr_release__mmu_notifier(obj);
743 i915_gem_userptr_release__mm_struct(obj);
744 }
745
746 static int
747 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
748 {
749 if (obj->userptr.mmu_object)
750 return 0;
751
752 return i915_gem_userptr_init__mmu_notifier(obj, 0);
753 }
754
755 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
756 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
757 .get_pages = i915_gem_userptr_get_pages,
758 .put_pages = i915_gem_userptr_put_pages,
759 .dmabuf_export = i915_gem_userptr_dmabuf_export,
760 .release = i915_gem_userptr_release,
761 };
762
763 /**
764 * Creates a new mm object that wraps some normal memory from the process
765 * context - user memory.
766 *
767 * We impose several restrictions upon the memory being mapped
768 * into the GPU.
769 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
770 * 2. It must be normal system memory, not a pointer into another map of IO
771 * space (e.g. it must not be a GTT mmapping of another object).
772 * 3. We only allow a bo as large as we could in theory map into the GTT,
773 * that is we limit the size to the total size of the GTT.
774 * 4. The bo is marked as being snoopable. The backing pages are left
775 * accessible directly by the CPU, but reads and writes by the GPU may
776 * incur the cost of a snoop (unless you have an LLC architecture).
777 *
778 * Synchronisation between multiple users and the GPU is left to userspace
779 * through the normal set-domain-ioctl. The kernel will enforce that the
780 * GPU relinquishes the VMA before it is returned back to the system
781 * i.e. upon free(), munmap() or process termination. However, the userspace
782 * malloc() library may not immediately relinquish the VMA after free() and
783 * instead reuse it whilst the GPU is still reading and writing to the VMA.
784 * Caveat emptor.
785 *
786 * Also note, that the object created here is not currently a "first class"
787 * object, in that several ioctls are banned. These are the CPU access
788 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
789 * direct access via your pointer rather than use those ioctls. Another
790 * restriction is that we do not allow userptr surfaces to be pinned to the
791 * hardware and so we reject any attempt to create a framebuffer out of a
792 * userptr.
793 *
794 * If you think this is a good interface to use to pass GPU memory between
795 * drivers, please use dma-buf instead. In fact, wherever possible use
796 * dma-buf instead.
797 */
798 int
799 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
800 {
801 struct drm_i915_gem_userptr *args = data;
802 struct drm_i915_gem_object *obj;
803 int ret;
804 u32 handle;
805
806 if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) {
807 /* We cannot support coherent userptr objects on hw without
808 * LLC and broken snooping.
809 */
810 return -ENODEV;
811 }
812
813 if (args->flags & ~(I915_USERPTR_READ_ONLY |
814 I915_USERPTR_UNSYNCHRONIZED))
815 return -EINVAL;
816
817 if (offset_in_page(args->user_ptr | args->user_size))
818 return -EINVAL;
819
820 if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
821 (char __user *)(unsigned long)args->user_ptr, args->user_size))
822 return -EFAULT;
823
824 if (args->flags & I915_USERPTR_READ_ONLY) {
825 /* On almost all of the current hw, we cannot tell the GPU that a
826 * page is readonly, so this is just a placeholder in the uAPI.
827 */
828 return -ENODEV;
829 }
830
831 obj = i915_gem_object_alloc(dev);
832 if (obj == NULL)
833 return -ENOMEM;
834
835 drm_gem_private_object_init(dev, &obj->base, args->user_size);
836 i915_gem_object_init(obj, &i915_gem_userptr_ops);
837 obj->cache_level = I915_CACHE_LLC;
838 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
839 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
840
841 obj->userptr.ptr = args->user_ptr;
842 obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
843
844 /* And keep a pointer to the current->mm for resolving the user pages
845 * at binding. This means that we need to hook into the mmu_notifier
846 * in order to detect if the mmu is destroyed.
847 */
848 ret = i915_gem_userptr_init__mm_struct(obj);
849 if (ret == 0)
850 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
851 if (ret == 0)
852 ret = drm_gem_handle_create(file, &obj->base, &handle);
853
854 /* drop reference from allocate - handle holds it now */
855 drm_gem_object_unreference_unlocked(&obj->base);
856 if (ret)
857 return ret;
858
859 args->handle = handle;
860 return 0;
861 }
862
863 int
864 i915_gem_init_userptr(struct drm_device *dev)
865 {
866 struct drm_i915_private *dev_priv = to_i915(dev);
867 mutex_init(&dev_priv->mm_lock);
868 hash_init(dev_priv->mm_structs);
869 return 0;
870 }
This page took 0.089141 seconds and 5 git commands to generate.