drm/i915: add support for checking if we hold an RPM reference
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *ring)
998 {
999 if (!intel_ring_initialized(ring))
1000 return;
1001
1002 trace_i915_gem_request_notify(ring);
1003
1004 wake_up_all(&ring->irq_queue);
1005 }
1006
1007 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008 struct intel_rps_ei *ei)
1009 {
1010 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013 }
1014
1015 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016 const struct intel_rps_ei *old,
1017 const struct intel_rps_ei *now,
1018 int threshold)
1019 {
1020 u64 time, c0;
1021 unsigned int mul = 100;
1022
1023 if (old->cz_clock == 0)
1024 return false;
1025
1026 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027 mul <<= 8;
1028
1029 time = now->cz_clock - old->cz_clock;
1030 time *= threshold * dev_priv->czclk_freq;
1031
1032 /* Workload can be split between render + media, e.g. SwapBuffers
1033 * being blitted in X after being rendered in mesa. To account for
1034 * this we need to combine both engines into our activity counter.
1035 */
1036 c0 = now->render_c0 - old->render_c0;
1037 c0 += now->media_c0 - old->media_c0;
1038 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040 return c0 >= time;
1041 }
1042
1043 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044 {
1045 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047 }
1048
1049 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050 {
1051 struct intel_rps_ei now;
1052 u32 events = 0;
1053
1054 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055 return 0;
1056
1057 vlv_c0_read(dev_priv, &now);
1058 if (now.cz_clock == 0)
1059 return 0;
1060
1061 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062 if (!vlv_c0_above(dev_priv,
1063 &dev_priv->rps.down_ei, &now,
1064 dev_priv->rps.down_threshold))
1065 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066 dev_priv->rps.down_ei = now;
1067 }
1068
1069 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070 if (vlv_c0_above(dev_priv,
1071 &dev_priv->rps.up_ei, &now,
1072 dev_priv->rps.up_threshold))
1073 events |= GEN6_PM_RP_UP_THRESHOLD;
1074 dev_priv->rps.up_ei = now;
1075 }
1076
1077 return events;
1078 }
1079
1080 static bool any_waiters(struct drm_i915_private *dev_priv)
1081 {
1082 struct intel_engine_cs *ring;
1083 int i;
1084
1085 for_each_ring(ring, dev_priv, i)
1086 if (ring->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->ring[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->ring[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->ring[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->ring[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->ring[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(ring);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 intel_lrc_irq_handler(ring);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv->dev)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->ring[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 u32 pipe_stats[I915_MAX_PIPES] = { };
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654 for_each_pipe(dev_priv, pipe) {
1655 i915_reg_t reg;
1656 u32 mask, iir_bit = 0;
1657
1658 /*
1659 * PIPESTAT bits get signalled even when the interrupt is
1660 * disabled with the mask bits, and some of the status bits do
1661 * not generate interrupts at all (like the underrun bit). Hence
1662 * we need to be careful that we only handle what we want to
1663 * handle.
1664 */
1665
1666 /* fifo underruns are filterered in the underrun handler. */
1667 mask = PIPE_FIFO_UNDERRUN_STATUS;
1668
1669 switch (pipe) {
1670 case PIPE_A:
1671 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1672 break;
1673 case PIPE_B:
1674 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1675 break;
1676 case PIPE_C:
1677 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1678 break;
1679 }
1680 if (iir & iir_bit)
1681 mask |= dev_priv->pipestat_irq_mask[pipe];
1682
1683 if (!mask)
1684 continue;
1685
1686 reg = PIPESTAT(pipe);
1687 mask |= PIPESTAT_INT_ENABLE_MASK;
1688 pipe_stats[pipe] = I915_READ(reg) & mask;
1689
1690 /*
1691 * Clear the PIPE*STAT regs before the IIR
1692 */
1693 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1694 PIPESTAT_INT_STATUS_MASK))
1695 I915_WRITE(reg, pipe_stats[pipe]);
1696 }
1697 spin_unlock(&dev_priv->irq_lock);
1698
1699 for_each_pipe(dev_priv, pipe) {
1700 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1701 intel_pipe_handle_vblank(dev, pipe))
1702 intel_check_page_flip(dev, pipe);
1703
1704 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1705 intel_prepare_page_flip(dev, pipe);
1706 intel_finish_page_flip(dev, pipe);
1707 }
1708
1709 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1710 i9xx_pipe_crc_irq_handler(dev, pipe);
1711
1712 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1713 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1714 }
1715
1716 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1717 gmbus_irq_handler(dev);
1718 }
1719
1720 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1721 {
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1724 u32 pin_mask = 0, long_mask = 0;
1725
1726 if (!hotplug_status)
1727 return;
1728
1729 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1730 /*
1731 * Make sure hotplug status is cleared before we clear IIR, or else we
1732 * may miss hotplug events.
1733 */
1734 POSTING_READ(PORT_HOTPLUG_STAT);
1735
1736 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1737 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1738
1739 if (hotplug_trigger) {
1740 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1741 hotplug_trigger, hpd_status_g4x,
1742 i9xx_port_hotplug_long_detect);
1743
1744 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1745 }
1746
1747 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1748 dp_aux_irq_handler(dev);
1749 } else {
1750 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1751
1752 if (hotplug_trigger) {
1753 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1754 hotplug_trigger, hpd_status_i915,
1755 i9xx_port_hotplug_long_detect);
1756 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1757 }
1758 }
1759 }
1760
1761 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1762 {
1763 struct drm_device *dev = arg;
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 u32 iir, gt_iir, pm_iir;
1766 irqreturn_t ret = IRQ_NONE;
1767
1768 if (!intel_irqs_enabled(dev_priv))
1769 return IRQ_NONE;
1770
1771 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1772 disable_rpm_wakeref_asserts(dev_priv);
1773
1774 while (true) {
1775 /* Find, clear, then process each source of interrupt */
1776
1777 gt_iir = I915_READ(GTIIR);
1778 if (gt_iir)
1779 I915_WRITE(GTIIR, gt_iir);
1780
1781 pm_iir = I915_READ(GEN6_PMIIR);
1782 if (pm_iir)
1783 I915_WRITE(GEN6_PMIIR, pm_iir);
1784
1785 iir = I915_READ(VLV_IIR);
1786 if (iir) {
1787 /* Consume port before clearing IIR or we'll miss events */
1788 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1789 i9xx_hpd_irq_handler(dev);
1790 I915_WRITE(VLV_IIR, iir);
1791 }
1792
1793 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1794 goto out;
1795
1796 ret = IRQ_HANDLED;
1797
1798 if (gt_iir)
1799 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1800 if (pm_iir)
1801 gen6_rps_irq_handler(dev_priv, pm_iir);
1802 /* Call regardless, as some status bits might not be
1803 * signalled in iir */
1804 valleyview_pipestat_irq_handler(dev, iir);
1805 }
1806
1807 out:
1808 enable_rpm_wakeref_asserts(dev_priv);
1809
1810 return ret;
1811 }
1812
1813 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1814 {
1815 struct drm_device *dev = arg;
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 u32 master_ctl, iir;
1818 irqreturn_t ret = IRQ_NONE;
1819
1820 if (!intel_irqs_enabled(dev_priv))
1821 return IRQ_NONE;
1822
1823 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1824 disable_rpm_wakeref_asserts(dev_priv);
1825
1826 for (;;) {
1827 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1828 iir = I915_READ(VLV_IIR);
1829
1830 if (master_ctl == 0 && iir == 0)
1831 break;
1832
1833 ret = IRQ_HANDLED;
1834
1835 I915_WRITE(GEN8_MASTER_IRQ, 0);
1836
1837 /* Find, clear, then process each source of interrupt */
1838
1839 if (iir) {
1840 /* Consume port before clearing IIR or we'll miss events */
1841 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1842 i9xx_hpd_irq_handler(dev);
1843 I915_WRITE(VLV_IIR, iir);
1844 }
1845
1846 gen8_gt_irq_handler(dev_priv, master_ctl);
1847
1848 /* Call regardless, as some status bits might not be
1849 * signalled in iir */
1850 valleyview_pipestat_irq_handler(dev, iir);
1851
1852 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1853 POSTING_READ(GEN8_MASTER_IRQ);
1854 }
1855
1856 enable_rpm_wakeref_asserts(dev_priv);
1857
1858 return ret;
1859 }
1860
1861 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1862 const u32 hpd[HPD_NUM_PINS])
1863 {
1864 struct drm_i915_private *dev_priv = to_i915(dev);
1865 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1866
1867 /*
1868 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1869 * unless we touch the hotplug register, even if hotplug_trigger is
1870 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1871 * errors.
1872 */
1873 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1874 if (!hotplug_trigger) {
1875 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1876 PORTD_HOTPLUG_STATUS_MASK |
1877 PORTC_HOTPLUG_STATUS_MASK |
1878 PORTB_HOTPLUG_STATUS_MASK;
1879 dig_hotplug_reg &= ~mask;
1880 }
1881
1882 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1883 if (!hotplug_trigger)
1884 return;
1885
1886 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1887 dig_hotplug_reg, hpd,
1888 pch_port_hotplug_long_detect);
1889
1890 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1891 }
1892
1893 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1894 {
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 int pipe;
1897 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1898
1899 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1900
1901 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1902 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1903 SDE_AUDIO_POWER_SHIFT);
1904 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1905 port_name(port));
1906 }
1907
1908 if (pch_iir & SDE_AUX_MASK)
1909 dp_aux_irq_handler(dev);
1910
1911 if (pch_iir & SDE_GMBUS)
1912 gmbus_irq_handler(dev);
1913
1914 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1915 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1916
1917 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1918 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1919
1920 if (pch_iir & SDE_POISON)
1921 DRM_ERROR("PCH poison interrupt\n");
1922
1923 if (pch_iir & SDE_FDI_MASK)
1924 for_each_pipe(dev_priv, pipe)
1925 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1926 pipe_name(pipe),
1927 I915_READ(FDI_RX_IIR(pipe)));
1928
1929 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1930 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1931
1932 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1933 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1934
1935 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1936 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1937
1938 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1939 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1940 }
1941
1942 static void ivb_err_int_handler(struct drm_device *dev)
1943 {
1944 struct drm_i915_private *dev_priv = dev->dev_private;
1945 u32 err_int = I915_READ(GEN7_ERR_INT);
1946 enum pipe pipe;
1947
1948 if (err_int & ERR_INT_POISON)
1949 DRM_ERROR("Poison interrupt\n");
1950
1951 for_each_pipe(dev_priv, pipe) {
1952 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1953 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1954
1955 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1956 if (IS_IVYBRIDGE(dev))
1957 ivb_pipe_crc_irq_handler(dev, pipe);
1958 else
1959 hsw_pipe_crc_irq_handler(dev, pipe);
1960 }
1961 }
1962
1963 I915_WRITE(GEN7_ERR_INT, err_int);
1964 }
1965
1966 static void cpt_serr_int_handler(struct drm_device *dev)
1967 {
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 u32 serr_int = I915_READ(SERR_INT);
1970
1971 if (serr_int & SERR_INT_POISON)
1972 DRM_ERROR("PCH poison interrupt\n");
1973
1974 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1975 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1976
1977 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1978 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1979
1980 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1981 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1982
1983 I915_WRITE(SERR_INT, serr_int);
1984 }
1985
1986 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1987 {
1988 struct drm_i915_private *dev_priv = dev->dev_private;
1989 int pipe;
1990 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1991
1992 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1993
1994 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1995 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1996 SDE_AUDIO_POWER_SHIFT_CPT);
1997 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1998 port_name(port));
1999 }
2000
2001 if (pch_iir & SDE_AUX_MASK_CPT)
2002 dp_aux_irq_handler(dev);
2003
2004 if (pch_iir & SDE_GMBUS_CPT)
2005 gmbus_irq_handler(dev);
2006
2007 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2008 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2009
2010 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2011 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2012
2013 if (pch_iir & SDE_FDI_MASK_CPT)
2014 for_each_pipe(dev_priv, pipe)
2015 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2016 pipe_name(pipe),
2017 I915_READ(FDI_RX_IIR(pipe)));
2018
2019 if (pch_iir & SDE_ERROR_CPT)
2020 cpt_serr_int_handler(dev);
2021 }
2022
2023 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2027 ~SDE_PORTE_HOTPLUG_SPT;
2028 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2029 u32 pin_mask = 0, long_mask = 0;
2030
2031 if (hotplug_trigger) {
2032 u32 dig_hotplug_reg;
2033
2034 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2035 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2036
2037 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2038 dig_hotplug_reg, hpd_spt,
2039 spt_port_hotplug_long_detect);
2040 }
2041
2042 if (hotplug2_trigger) {
2043 u32 dig_hotplug_reg;
2044
2045 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2046 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2047
2048 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2049 dig_hotplug_reg, hpd_spt,
2050 spt_port_hotplug2_long_detect);
2051 }
2052
2053 if (pin_mask)
2054 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2055
2056 if (pch_iir & SDE_GMBUS_CPT)
2057 gmbus_irq_handler(dev);
2058 }
2059
2060 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2061 const u32 hpd[HPD_NUM_PINS])
2062 {
2063 struct drm_i915_private *dev_priv = to_i915(dev);
2064 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2065
2066 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2067 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2068
2069 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2070 dig_hotplug_reg, hpd,
2071 ilk_port_hotplug_long_detect);
2072
2073 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2074 }
2075
2076 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2077 {
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079 enum pipe pipe;
2080 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2081
2082 if (hotplug_trigger)
2083 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2084
2085 if (de_iir & DE_AUX_CHANNEL_A)
2086 dp_aux_irq_handler(dev);
2087
2088 if (de_iir & DE_GSE)
2089 intel_opregion_asle_intr(dev);
2090
2091 if (de_iir & DE_POISON)
2092 DRM_ERROR("Poison interrupt\n");
2093
2094 for_each_pipe(dev_priv, pipe) {
2095 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2096 intel_pipe_handle_vblank(dev, pipe))
2097 intel_check_page_flip(dev, pipe);
2098
2099 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2100 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2101
2102 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2103 i9xx_pipe_crc_irq_handler(dev, pipe);
2104
2105 /* plane/pipes map 1:1 on ilk+ */
2106 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2107 intel_prepare_page_flip(dev, pipe);
2108 intel_finish_page_flip_plane(dev, pipe);
2109 }
2110 }
2111
2112 /* check event from PCH */
2113 if (de_iir & DE_PCH_EVENT) {
2114 u32 pch_iir = I915_READ(SDEIIR);
2115
2116 if (HAS_PCH_CPT(dev))
2117 cpt_irq_handler(dev, pch_iir);
2118 else
2119 ibx_irq_handler(dev, pch_iir);
2120
2121 /* should clear PCH hotplug event before clear CPU irq */
2122 I915_WRITE(SDEIIR, pch_iir);
2123 }
2124
2125 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2126 ironlake_rps_change_irq_handler(dev);
2127 }
2128
2129 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2130 {
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 enum pipe pipe;
2133 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2134
2135 if (hotplug_trigger)
2136 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2137
2138 if (de_iir & DE_ERR_INT_IVB)
2139 ivb_err_int_handler(dev);
2140
2141 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2142 dp_aux_irq_handler(dev);
2143
2144 if (de_iir & DE_GSE_IVB)
2145 intel_opregion_asle_intr(dev);
2146
2147 for_each_pipe(dev_priv, pipe) {
2148 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2149 intel_pipe_handle_vblank(dev, pipe))
2150 intel_check_page_flip(dev, pipe);
2151
2152 /* plane/pipes map 1:1 on ilk+ */
2153 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2154 intel_prepare_page_flip(dev, pipe);
2155 intel_finish_page_flip_plane(dev, pipe);
2156 }
2157 }
2158
2159 /* check event from PCH */
2160 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2161 u32 pch_iir = I915_READ(SDEIIR);
2162
2163 cpt_irq_handler(dev, pch_iir);
2164
2165 /* clear PCH hotplug event before clear CPU irq */
2166 I915_WRITE(SDEIIR, pch_iir);
2167 }
2168 }
2169
2170 /*
2171 * To handle irqs with the minimum potential races with fresh interrupts, we:
2172 * 1 - Disable Master Interrupt Control.
2173 * 2 - Find the source(s) of the interrupt.
2174 * 3 - Clear the Interrupt Identity bits (IIR).
2175 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2176 * 5 - Re-enable Master Interrupt Control.
2177 */
2178 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2179 {
2180 struct drm_device *dev = arg;
2181 struct drm_i915_private *dev_priv = dev->dev_private;
2182 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2183 irqreturn_t ret = IRQ_NONE;
2184
2185 if (!intel_irqs_enabled(dev_priv))
2186 return IRQ_NONE;
2187
2188 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2189 disable_rpm_wakeref_asserts(dev_priv);
2190
2191 /* We get interrupts on unclaimed registers, so check for this before we
2192 * do any I915_{READ,WRITE}. */
2193 intel_uncore_check_errors(dev);
2194
2195 /* disable master interrupt before clearing iir */
2196 de_ier = I915_READ(DEIER);
2197 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2198 POSTING_READ(DEIER);
2199
2200 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2201 * interrupts will will be stored on its back queue, and then we'll be
2202 * able to process them after we restore SDEIER (as soon as we restore
2203 * it, we'll get an interrupt if SDEIIR still has something to process
2204 * due to its back queue). */
2205 if (!HAS_PCH_NOP(dev)) {
2206 sde_ier = I915_READ(SDEIER);
2207 I915_WRITE(SDEIER, 0);
2208 POSTING_READ(SDEIER);
2209 }
2210
2211 /* Find, clear, then process each source of interrupt */
2212
2213 gt_iir = I915_READ(GTIIR);
2214 if (gt_iir) {
2215 I915_WRITE(GTIIR, gt_iir);
2216 ret = IRQ_HANDLED;
2217 if (INTEL_INFO(dev)->gen >= 6)
2218 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2219 else
2220 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2221 }
2222
2223 de_iir = I915_READ(DEIIR);
2224 if (de_iir) {
2225 I915_WRITE(DEIIR, de_iir);
2226 ret = IRQ_HANDLED;
2227 if (INTEL_INFO(dev)->gen >= 7)
2228 ivb_display_irq_handler(dev, de_iir);
2229 else
2230 ilk_display_irq_handler(dev, de_iir);
2231 }
2232
2233 if (INTEL_INFO(dev)->gen >= 6) {
2234 u32 pm_iir = I915_READ(GEN6_PMIIR);
2235 if (pm_iir) {
2236 I915_WRITE(GEN6_PMIIR, pm_iir);
2237 ret = IRQ_HANDLED;
2238 gen6_rps_irq_handler(dev_priv, pm_iir);
2239 }
2240 }
2241
2242 I915_WRITE(DEIER, de_ier);
2243 POSTING_READ(DEIER);
2244 if (!HAS_PCH_NOP(dev)) {
2245 I915_WRITE(SDEIER, sde_ier);
2246 POSTING_READ(SDEIER);
2247 }
2248
2249 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2250 enable_rpm_wakeref_asserts(dev_priv);
2251
2252 return ret;
2253 }
2254
2255 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2256 const u32 hpd[HPD_NUM_PINS])
2257 {
2258 struct drm_i915_private *dev_priv = to_i915(dev);
2259 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2260
2261 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2262 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2263
2264 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2265 dig_hotplug_reg, hpd,
2266 bxt_port_hotplug_long_detect);
2267
2268 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2269 }
2270
2271 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2272 {
2273 struct drm_device *dev = arg;
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 u32 master_ctl;
2276 irqreturn_t ret = IRQ_NONE;
2277 uint32_t tmp = 0;
2278 enum pipe pipe;
2279 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2280
2281 if (!intel_irqs_enabled(dev_priv))
2282 return IRQ_NONE;
2283
2284 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2285 disable_rpm_wakeref_asserts(dev_priv);
2286
2287 if (INTEL_INFO(dev_priv)->gen >= 9)
2288 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2289 GEN9_AUX_CHANNEL_D;
2290
2291 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2292 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2293 if (!master_ctl)
2294 goto out;
2295
2296 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2297
2298 /* Find, clear, then process each source of interrupt */
2299
2300 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2301
2302 if (master_ctl & GEN8_DE_MISC_IRQ) {
2303 tmp = I915_READ(GEN8_DE_MISC_IIR);
2304 if (tmp) {
2305 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2306 ret = IRQ_HANDLED;
2307 if (tmp & GEN8_DE_MISC_GSE)
2308 intel_opregion_asle_intr(dev);
2309 else
2310 DRM_ERROR("Unexpected DE Misc interrupt\n");
2311 }
2312 else
2313 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2314 }
2315
2316 if (master_ctl & GEN8_DE_PORT_IRQ) {
2317 tmp = I915_READ(GEN8_DE_PORT_IIR);
2318 if (tmp) {
2319 bool found = false;
2320 u32 hotplug_trigger = 0;
2321
2322 if (IS_BROXTON(dev_priv))
2323 hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2324 else if (IS_BROADWELL(dev_priv))
2325 hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2326
2327 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2328 ret = IRQ_HANDLED;
2329
2330 if (tmp & aux_mask) {
2331 dp_aux_irq_handler(dev);
2332 found = true;
2333 }
2334
2335 if (hotplug_trigger) {
2336 if (IS_BROXTON(dev))
2337 bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2338 else
2339 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2340 found = true;
2341 }
2342
2343 if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2344 gmbus_irq_handler(dev);
2345 found = true;
2346 }
2347
2348 if (!found)
2349 DRM_ERROR("Unexpected DE Port interrupt\n");
2350 }
2351 else
2352 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2353 }
2354
2355 for_each_pipe(dev_priv, pipe) {
2356 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2357
2358 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2359 continue;
2360
2361 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2362 if (pipe_iir) {
2363 ret = IRQ_HANDLED;
2364 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2365
2366 if (pipe_iir & GEN8_PIPE_VBLANK &&
2367 intel_pipe_handle_vblank(dev, pipe))
2368 intel_check_page_flip(dev, pipe);
2369
2370 if (INTEL_INFO(dev_priv)->gen >= 9)
2371 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2372 else
2373 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2374
2375 if (flip_done) {
2376 intel_prepare_page_flip(dev, pipe);
2377 intel_finish_page_flip_plane(dev, pipe);
2378 }
2379
2380 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2381 hsw_pipe_crc_irq_handler(dev, pipe);
2382
2383 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2384 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2385 pipe);
2386
2387
2388 if (INTEL_INFO(dev_priv)->gen >= 9)
2389 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2390 else
2391 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2392
2393 if (fault_errors)
2394 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2395 pipe_name(pipe),
2396 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2397 } else
2398 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2399 }
2400
2401 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2402 master_ctl & GEN8_DE_PCH_IRQ) {
2403 /*
2404 * FIXME(BDW): Assume for now that the new interrupt handling
2405 * scheme also closed the SDE interrupt handling race we've seen
2406 * on older pch-split platforms. But this needs testing.
2407 */
2408 u32 pch_iir = I915_READ(SDEIIR);
2409 if (pch_iir) {
2410 I915_WRITE(SDEIIR, pch_iir);
2411 ret = IRQ_HANDLED;
2412
2413 if (HAS_PCH_SPT(dev_priv))
2414 spt_irq_handler(dev, pch_iir);
2415 else
2416 cpt_irq_handler(dev, pch_iir);
2417 } else
2418 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2419
2420 }
2421
2422 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2423 POSTING_READ_FW(GEN8_MASTER_IRQ);
2424
2425 out:
2426 enable_rpm_wakeref_asserts(dev_priv);
2427
2428 return ret;
2429 }
2430
2431 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2432 bool reset_completed)
2433 {
2434 struct intel_engine_cs *ring;
2435 int i;
2436
2437 /*
2438 * Notify all waiters for GPU completion events that reset state has
2439 * been changed, and that they need to restart their wait after
2440 * checking for potential errors (and bail out to drop locks if there is
2441 * a gpu reset pending so that i915_error_work_func can acquire them).
2442 */
2443
2444 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2445 for_each_ring(ring, dev_priv, i)
2446 wake_up_all(&ring->irq_queue);
2447
2448 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2449 wake_up_all(&dev_priv->pending_flip_queue);
2450
2451 /*
2452 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2453 * reset state is cleared.
2454 */
2455 if (reset_completed)
2456 wake_up_all(&dev_priv->gpu_error.reset_queue);
2457 }
2458
2459 /**
2460 * i915_reset_and_wakeup - do process context error handling work
2461 * @dev: drm device
2462 *
2463 * Fire an error uevent so userspace can see that a hang or error
2464 * was detected.
2465 */
2466 static void i915_reset_and_wakeup(struct drm_device *dev)
2467 {
2468 struct drm_i915_private *dev_priv = to_i915(dev);
2469 struct i915_gpu_error *error = &dev_priv->gpu_error;
2470 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2471 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2472 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2473 int ret;
2474
2475 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2476
2477 /*
2478 * Note that there's only one work item which does gpu resets, so we
2479 * need not worry about concurrent gpu resets potentially incrementing
2480 * error->reset_counter twice. We only need to take care of another
2481 * racing irq/hangcheck declaring the gpu dead for a second time. A
2482 * quick check for that is good enough: schedule_work ensures the
2483 * correct ordering between hang detection and this work item, and since
2484 * the reset in-progress bit is only ever set by code outside of this
2485 * work we don't need to worry about any other races.
2486 */
2487 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2488 DRM_DEBUG_DRIVER("resetting chip\n");
2489 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2490 reset_event);
2491
2492 /*
2493 * In most cases it's guaranteed that we get here with an RPM
2494 * reference held, for example because there is a pending GPU
2495 * request that won't finish until the reset is done. This
2496 * isn't the case at least when we get here by doing a
2497 * simulated reset via debugs, so get an RPM reference.
2498 */
2499 intel_runtime_pm_get(dev_priv);
2500
2501 intel_prepare_reset(dev);
2502
2503 /*
2504 * All state reset _must_ be completed before we update the
2505 * reset counter, for otherwise waiters might miss the reset
2506 * pending state and not properly drop locks, resulting in
2507 * deadlocks with the reset work.
2508 */
2509 ret = i915_reset(dev);
2510
2511 intel_finish_reset(dev);
2512
2513 intel_runtime_pm_put(dev_priv);
2514
2515 if (ret == 0) {
2516 /*
2517 * After all the gem state is reset, increment the reset
2518 * counter and wake up everyone waiting for the reset to
2519 * complete.
2520 *
2521 * Since unlock operations are a one-sided barrier only,
2522 * we need to insert a barrier here to order any seqno
2523 * updates before
2524 * the counter increment.
2525 */
2526 smp_mb__before_atomic();
2527 atomic_inc(&dev_priv->gpu_error.reset_counter);
2528
2529 kobject_uevent_env(&dev->primary->kdev->kobj,
2530 KOBJ_CHANGE, reset_done_event);
2531 } else {
2532 atomic_or(I915_WEDGED, &error->reset_counter);
2533 }
2534
2535 /*
2536 * Note: The wake_up also serves as a memory barrier so that
2537 * waiters see the update value of the reset counter atomic_t.
2538 */
2539 i915_error_wake_up(dev_priv, true);
2540 }
2541 }
2542
2543 static void i915_report_and_clear_eir(struct drm_device *dev)
2544 {
2545 struct drm_i915_private *dev_priv = dev->dev_private;
2546 uint32_t instdone[I915_NUM_INSTDONE_REG];
2547 u32 eir = I915_READ(EIR);
2548 int pipe, i;
2549
2550 if (!eir)
2551 return;
2552
2553 pr_err("render error detected, EIR: 0x%08x\n", eir);
2554
2555 i915_get_extra_instdone(dev, instdone);
2556
2557 if (IS_G4X(dev)) {
2558 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2559 u32 ipeir = I915_READ(IPEIR_I965);
2560
2561 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2562 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2563 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2564 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2565 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2566 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2567 I915_WRITE(IPEIR_I965, ipeir);
2568 POSTING_READ(IPEIR_I965);
2569 }
2570 if (eir & GM45_ERROR_PAGE_TABLE) {
2571 u32 pgtbl_err = I915_READ(PGTBL_ER);
2572 pr_err("page table error\n");
2573 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2574 I915_WRITE(PGTBL_ER, pgtbl_err);
2575 POSTING_READ(PGTBL_ER);
2576 }
2577 }
2578
2579 if (!IS_GEN2(dev)) {
2580 if (eir & I915_ERROR_PAGE_TABLE) {
2581 u32 pgtbl_err = I915_READ(PGTBL_ER);
2582 pr_err("page table error\n");
2583 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2584 I915_WRITE(PGTBL_ER, pgtbl_err);
2585 POSTING_READ(PGTBL_ER);
2586 }
2587 }
2588
2589 if (eir & I915_ERROR_MEMORY_REFRESH) {
2590 pr_err("memory refresh error:\n");
2591 for_each_pipe(dev_priv, pipe)
2592 pr_err("pipe %c stat: 0x%08x\n",
2593 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2594 /* pipestat has already been acked */
2595 }
2596 if (eir & I915_ERROR_INSTRUCTION) {
2597 pr_err("instruction error\n");
2598 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2599 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2600 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2601 if (INTEL_INFO(dev)->gen < 4) {
2602 u32 ipeir = I915_READ(IPEIR);
2603
2604 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2605 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2606 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2607 I915_WRITE(IPEIR, ipeir);
2608 POSTING_READ(IPEIR);
2609 } else {
2610 u32 ipeir = I915_READ(IPEIR_I965);
2611
2612 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2613 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2614 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2615 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2616 I915_WRITE(IPEIR_I965, ipeir);
2617 POSTING_READ(IPEIR_I965);
2618 }
2619 }
2620
2621 I915_WRITE(EIR, eir);
2622 POSTING_READ(EIR);
2623 eir = I915_READ(EIR);
2624 if (eir) {
2625 /*
2626 * some errors might have become stuck,
2627 * mask them.
2628 */
2629 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2630 I915_WRITE(EMR, I915_READ(EMR) | eir);
2631 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2632 }
2633 }
2634
2635 /**
2636 * i915_handle_error - handle a gpu error
2637 * @dev: drm device
2638 *
2639 * Do some basic checking of register state at error time and
2640 * dump it to the syslog. Also call i915_capture_error_state() to make
2641 * sure we get a record and make it available in debugfs. Fire a uevent
2642 * so userspace knows something bad happened (should trigger collection
2643 * of a ring dump etc.).
2644 */
2645 void i915_handle_error(struct drm_device *dev, bool wedged,
2646 const char *fmt, ...)
2647 {
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 va_list args;
2650 char error_msg[80];
2651
2652 va_start(args, fmt);
2653 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2654 va_end(args);
2655
2656 i915_capture_error_state(dev, wedged, error_msg);
2657 i915_report_and_clear_eir(dev);
2658
2659 if (wedged) {
2660 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2661 &dev_priv->gpu_error.reset_counter);
2662
2663 /*
2664 * Wakeup waiting processes so that the reset function
2665 * i915_reset_and_wakeup doesn't deadlock trying to grab
2666 * various locks. By bumping the reset counter first, the woken
2667 * processes will see a reset in progress and back off,
2668 * releasing their locks and then wait for the reset completion.
2669 * We must do this for _all_ gpu waiters that might hold locks
2670 * that the reset work needs to acquire.
2671 *
2672 * Note: The wake_up serves as the required memory barrier to
2673 * ensure that the waiters see the updated value of the reset
2674 * counter atomic_t.
2675 */
2676 i915_error_wake_up(dev_priv, false);
2677 }
2678
2679 i915_reset_and_wakeup(dev);
2680 }
2681
2682 /* Called from drm generic code, passed 'crtc' which
2683 * we use as a pipe index
2684 */
2685 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2686 {
2687 struct drm_i915_private *dev_priv = dev->dev_private;
2688 unsigned long irqflags;
2689
2690 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2691 if (INTEL_INFO(dev)->gen >= 4)
2692 i915_enable_pipestat(dev_priv, pipe,
2693 PIPE_START_VBLANK_INTERRUPT_STATUS);
2694 else
2695 i915_enable_pipestat(dev_priv, pipe,
2696 PIPE_VBLANK_INTERRUPT_STATUS);
2697 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2698
2699 return 0;
2700 }
2701
2702 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2703 {
2704 struct drm_i915_private *dev_priv = dev->dev_private;
2705 unsigned long irqflags;
2706 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2707 DE_PIPE_VBLANK(pipe);
2708
2709 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2710 ilk_enable_display_irq(dev_priv, bit);
2711 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2712
2713 return 0;
2714 }
2715
2716 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2717 {
2718 struct drm_i915_private *dev_priv = dev->dev_private;
2719 unsigned long irqflags;
2720
2721 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722 i915_enable_pipestat(dev_priv, pipe,
2723 PIPE_START_VBLANK_INTERRUPT_STATUS);
2724 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2725
2726 return 0;
2727 }
2728
2729 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2730 {
2731 struct drm_i915_private *dev_priv = dev->dev_private;
2732 unsigned long irqflags;
2733
2734 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2735 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2736 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2737
2738 return 0;
2739 }
2740
2741 /* Called from drm generic code, passed 'crtc' which
2742 * we use as a pipe index
2743 */
2744 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2745 {
2746 struct drm_i915_private *dev_priv = dev->dev_private;
2747 unsigned long irqflags;
2748
2749 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2750 i915_disable_pipestat(dev_priv, pipe,
2751 PIPE_VBLANK_INTERRUPT_STATUS |
2752 PIPE_START_VBLANK_INTERRUPT_STATUS);
2753 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 }
2755
2756 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 unsigned long irqflags;
2760 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2761 DE_PIPE_VBLANK(pipe);
2762
2763 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2764 ilk_disable_display_irq(dev_priv, bit);
2765 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2766 }
2767
2768 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2769 {
2770 struct drm_i915_private *dev_priv = dev->dev_private;
2771 unsigned long irqflags;
2772
2773 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2774 i915_disable_pipestat(dev_priv, pipe,
2775 PIPE_START_VBLANK_INTERRUPT_STATUS);
2776 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2777 }
2778
2779 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2780 {
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782 unsigned long irqflags;
2783
2784 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2785 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2786 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2787 }
2788
2789 static bool
2790 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2791 {
2792 return (list_empty(&ring->request_list) ||
2793 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2794 }
2795
2796 static bool
2797 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2798 {
2799 if (INTEL_INFO(dev)->gen >= 8) {
2800 return (ipehr >> 23) == 0x1c;
2801 } else {
2802 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2803 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2804 MI_SEMAPHORE_REGISTER);
2805 }
2806 }
2807
2808 static struct intel_engine_cs *
2809 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2810 {
2811 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2812 struct intel_engine_cs *signaller;
2813 int i;
2814
2815 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2816 for_each_ring(signaller, dev_priv, i) {
2817 if (ring == signaller)
2818 continue;
2819
2820 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2821 return signaller;
2822 }
2823 } else {
2824 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2825
2826 for_each_ring(signaller, dev_priv, i) {
2827 if(ring == signaller)
2828 continue;
2829
2830 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2831 return signaller;
2832 }
2833 }
2834
2835 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2836 ring->id, ipehr, offset);
2837
2838 return NULL;
2839 }
2840
2841 static struct intel_engine_cs *
2842 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2843 {
2844 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2845 u32 cmd, ipehr, head;
2846 u64 offset = 0;
2847 int i, backwards;
2848
2849 /*
2850 * This function does not support execlist mode - any attempt to
2851 * proceed further into this function will result in a kernel panic
2852 * when dereferencing ring->buffer, which is not set up in execlist
2853 * mode.
2854 *
2855 * The correct way of doing it would be to derive the currently
2856 * executing ring buffer from the current context, which is derived
2857 * from the currently running request. Unfortunately, to get the
2858 * current request we would have to grab the struct_mutex before doing
2859 * anything else, which would be ill-advised since some other thread
2860 * might have grabbed it already and managed to hang itself, causing
2861 * the hang checker to deadlock.
2862 *
2863 * Therefore, this function does not support execlist mode in its
2864 * current form. Just return NULL and move on.
2865 */
2866 if (ring->buffer == NULL)
2867 return NULL;
2868
2869 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2870 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2871 return NULL;
2872
2873 /*
2874 * HEAD is likely pointing to the dword after the actual command,
2875 * so scan backwards until we find the MBOX. But limit it to just 3
2876 * or 4 dwords depending on the semaphore wait command size.
2877 * Note that we don't care about ACTHD here since that might
2878 * point at at batch, and semaphores are always emitted into the
2879 * ringbuffer itself.
2880 */
2881 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2882 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2883
2884 for (i = backwards; i; --i) {
2885 /*
2886 * Be paranoid and presume the hw has gone off into the wild -
2887 * our ring is smaller than what the hardware (and hence
2888 * HEAD_ADDR) allows. Also handles wrap-around.
2889 */
2890 head &= ring->buffer->size - 1;
2891
2892 /* This here seems to blow up */
2893 cmd = ioread32(ring->buffer->virtual_start + head);
2894 if (cmd == ipehr)
2895 break;
2896
2897 head -= 4;
2898 }
2899
2900 if (!i)
2901 return NULL;
2902
2903 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2904 if (INTEL_INFO(ring->dev)->gen >= 8) {
2905 offset = ioread32(ring->buffer->virtual_start + head + 12);
2906 offset <<= 32;
2907 offset = ioread32(ring->buffer->virtual_start + head + 8);
2908 }
2909 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2910 }
2911
2912 static int semaphore_passed(struct intel_engine_cs *ring)
2913 {
2914 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2915 struct intel_engine_cs *signaller;
2916 u32 seqno;
2917
2918 ring->hangcheck.deadlock++;
2919
2920 signaller = semaphore_waits_for(ring, &seqno);
2921 if (signaller == NULL)
2922 return -1;
2923
2924 /* Prevent pathological recursion due to driver bugs */
2925 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2926 return -1;
2927
2928 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2929 return 1;
2930
2931 /* cursory check for an unkickable deadlock */
2932 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2933 semaphore_passed(signaller) < 0)
2934 return -1;
2935
2936 return 0;
2937 }
2938
2939 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2940 {
2941 struct intel_engine_cs *ring;
2942 int i;
2943
2944 for_each_ring(ring, dev_priv, i)
2945 ring->hangcheck.deadlock = 0;
2946 }
2947
2948 static enum intel_ring_hangcheck_action
2949 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2950 {
2951 struct drm_device *dev = ring->dev;
2952 struct drm_i915_private *dev_priv = dev->dev_private;
2953 u32 tmp;
2954
2955 if (acthd != ring->hangcheck.acthd) {
2956 if (acthd > ring->hangcheck.max_acthd) {
2957 ring->hangcheck.max_acthd = acthd;
2958 return HANGCHECK_ACTIVE;
2959 }
2960
2961 return HANGCHECK_ACTIVE_LOOP;
2962 }
2963
2964 if (IS_GEN2(dev))
2965 return HANGCHECK_HUNG;
2966
2967 /* Is the chip hanging on a WAIT_FOR_EVENT?
2968 * If so we can simply poke the RB_WAIT bit
2969 * and break the hang. This should work on
2970 * all but the second generation chipsets.
2971 */
2972 tmp = I915_READ_CTL(ring);
2973 if (tmp & RING_WAIT) {
2974 i915_handle_error(dev, false,
2975 "Kicking stuck wait on %s",
2976 ring->name);
2977 I915_WRITE_CTL(ring, tmp);
2978 return HANGCHECK_KICK;
2979 }
2980
2981 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2982 switch (semaphore_passed(ring)) {
2983 default:
2984 return HANGCHECK_HUNG;
2985 case 1:
2986 i915_handle_error(dev, false,
2987 "Kicking stuck semaphore on %s",
2988 ring->name);
2989 I915_WRITE_CTL(ring, tmp);
2990 return HANGCHECK_KICK;
2991 case 0:
2992 return HANGCHECK_WAIT;
2993 }
2994 }
2995
2996 return HANGCHECK_HUNG;
2997 }
2998
2999 /*
3000 * This is called when the chip hasn't reported back with completed
3001 * batchbuffers in a long time. We keep track per ring seqno progress and
3002 * if there are no progress, hangcheck score for that ring is increased.
3003 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3004 * we kick the ring. If we see no progress on three subsequent calls
3005 * we assume chip is wedged and try to fix it by resetting the chip.
3006 */
3007 static void i915_hangcheck_elapsed(struct work_struct *work)
3008 {
3009 struct drm_i915_private *dev_priv =
3010 container_of(work, typeof(*dev_priv),
3011 gpu_error.hangcheck_work.work);
3012 struct drm_device *dev = dev_priv->dev;
3013 struct intel_engine_cs *ring;
3014 int i;
3015 int busy_count = 0, rings_hung = 0;
3016 bool stuck[I915_NUM_RINGS] = { 0 };
3017 #define BUSY 1
3018 #define KICK 5
3019 #define HUNG 20
3020
3021 if (!i915.enable_hangcheck)
3022 return;
3023
3024 /*
3025 * The hangcheck work is synced during runtime suspend, we don't
3026 * require a wakeref. TODO: instead of disabling the asserts make
3027 * sure that we hold a reference when this work is running.
3028 */
3029 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3030
3031 for_each_ring(ring, dev_priv, i) {
3032 u64 acthd;
3033 u32 seqno;
3034 bool busy = true;
3035
3036 semaphore_clear_deadlocks(dev_priv);
3037
3038 seqno = ring->get_seqno(ring, false);
3039 acthd = intel_ring_get_active_head(ring);
3040
3041 if (ring->hangcheck.seqno == seqno) {
3042 if (ring_idle(ring, seqno)) {
3043 ring->hangcheck.action = HANGCHECK_IDLE;
3044
3045 if (waitqueue_active(&ring->irq_queue)) {
3046 /* Issue a wake-up to catch stuck h/w. */
3047 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3048 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3049 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3050 ring->name);
3051 else
3052 DRM_INFO("Fake missed irq on %s\n",
3053 ring->name);
3054 wake_up_all(&ring->irq_queue);
3055 }
3056 /* Safeguard against driver failure */
3057 ring->hangcheck.score += BUSY;
3058 } else
3059 busy = false;
3060 } else {
3061 /* We always increment the hangcheck score
3062 * if the ring is busy and still processing
3063 * the same request, so that no single request
3064 * can run indefinitely (such as a chain of
3065 * batches). The only time we do not increment
3066 * the hangcheck score on this ring, if this
3067 * ring is in a legitimate wait for another
3068 * ring. In that case the waiting ring is a
3069 * victim and we want to be sure we catch the
3070 * right culprit. Then every time we do kick
3071 * the ring, add a small increment to the
3072 * score so that we can catch a batch that is
3073 * being repeatedly kicked and so responsible
3074 * for stalling the machine.
3075 */
3076 ring->hangcheck.action = ring_stuck(ring,
3077 acthd);
3078
3079 switch (ring->hangcheck.action) {
3080 case HANGCHECK_IDLE:
3081 case HANGCHECK_WAIT:
3082 case HANGCHECK_ACTIVE:
3083 break;
3084 case HANGCHECK_ACTIVE_LOOP:
3085 ring->hangcheck.score += BUSY;
3086 break;
3087 case HANGCHECK_KICK:
3088 ring->hangcheck.score += KICK;
3089 break;
3090 case HANGCHECK_HUNG:
3091 ring->hangcheck.score += HUNG;
3092 stuck[i] = true;
3093 break;
3094 }
3095 }
3096 } else {
3097 ring->hangcheck.action = HANGCHECK_ACTIVE;
3098
3099 /* Gradually reduce the count so that we catch DoS
3100 * attempts across multiple batches.
3101 */
3102 if (ring->hangcheck.score > 0)
3103 ring->hangcheck.score--;
3104
3105 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3106 }
3107
3108 ring->hangcheck.seqno = seqno;
3109 ring->hangcheck.acthd = acthd;
3110 busy_count += busy;
3111 }
3112
3113 for_each_ring(ring, dev_priv, i) {
3114 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3115 DRM_INFO("%s on %s\n",
3116 stuck[i] ? "stuck" : "no progress",
3117 ring->name);
3118 rings_hung++;
3119 }
3120 }
3121
3122 if (rings_hung) {
3123 i915_handle_error(dev, true, "Ring hung");
3124 goto out;
3125 }
3126
3127 if (busy_count)
3128 /* Reset timer case chip hangs without another request
3129 * being added */
3130 i915_queue_hangcheck(dev);
3131
3132 out:
3133 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3134 }
3135
3136 void i915_queue_hangcheck(struct drm_device *dev)
3137 {
3138 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3139
3140 if (!i915.enable_hangcheck)
3141 return;
3142
3143 /* Don't continually defer the hangcheck so that it is always run at
3144 * least once after work has been scheduled on any ring. Otherwise,
3145 * we will ignore a hung ring if a second ring is kept busy.
3146 */
3147
3148 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3149 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3150 }
3151
3152 static void ibx_irq_reset(struct drm_device *dev)
3153 {
3154 struct drm_i915_private *dev_priv = dev->dev_private;
3155
3156 if (HAS_PCH_NOP(dev))
3157 return;
3158
3159 GEN5_IRQ_RESET(SDE);
3160
3161 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3162 I915_WRITE(SERR_INT, 0xffffffff);
3163 }
3164
3165 /*
3166 * SDEIER is also touched by the interrupt handler to work around missed PCH
3167 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3168 * instead we unconditionally enable all PCH interrupt sources here, but then
3169 * only unmask them as needed with SDEIMR.
3170 *
3171 * This function needs to be called before interrupts are enabled.
3172 */
3173 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3174 {
3175 struct drm_i915_private *dev_priv = dev->dev_private;
3176
3177 if (HAS_PCH_NOP(dev))
3178 return;
3179
3180 WARN_ON(I915_READ(SDEIER) != 0);
3181 I915_WRITE(SDEIER, 0xffffffff);
3182 POSTING_READ(SDEIER);
3183 }
3184
3185 static void gen5_gt_irq_reset(struct drm_device *dev)
3186 {
3187 struct drm_i915_private *dev_priv = dev->dev_private;
3188
3189 GEN5_IRQ_RESET(GT);
3190 if (INTEL_INFO(dev)->gen >= 6)
3191 GEN5_IRQ_RESET(GEN6_PM);
3192 }
3193
3194 /* drm_dma.h hooks
3195 */
3196 static void ironlake_irq_reset(struct drm_device *dev)
3197 {
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199
3200 I915_WRITE(HWSTAM, 0xffffffff);
3201
3202 GEN5_IRQ_RESET(DE);
3203 if (IS_GEN7(dev))
3204 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3205
3206 gen5_gt_irq_reset(dev);
3207
3208 ibx_irq_reset(dev);
3209 }
3210
3211 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3212 {
3213 enum pipe pipe;
3214
3215 i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3216 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3217
3218 for_each_pipe(dev_priv, pipe)
3219 I915_WRITE(PIPESTAT(pipe), 0xffff);
3220
3221 GEN5_IRQ_RESET(VLV_);
3222 }
3223
3224 static void valleyview_irq_preinstall(struct drm_device *dev)
3225 {
3226 struct drm_i915_private *dev_priv = dev->dev_private;
3227
3228 /* VLV magic */
3229 I915_WRITE(VLV_IMR, 0);
3230 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3231 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3232 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3233
3234 gen5_gt_irq_reset(dev);
3235
3236 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3237
3238 vlv_display_irq_reset(dev_priv);
3239 }
3240
3241 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3242 {
3243 GEN8_IRQ_RESET_NDX(GT, 0);
3244 GEN8_IRQ_RESET_NDX(GT, 1);
3245 GEN8_IRQ_RESET_NDX(GT, 2);
3246 GEN8_IRQ_RESET_NDX(GT, 3);
3247 }
3248
3249 static void gen8_irq_reset(struct drm_device *dev)
3250 {
3251 struct drm_i915_private *dev_priv = dev->dev_private;
3252 int pipe;
3253
3254 I915_WRITE(GEN8_MASTER_IRQ, 0);
3255 POSTING_READ(GEN8_MASTER_IRQ);
3256
3257 gen8_gt_irq_reset(dev_priv);
3258
3259 for_each_pipe(dev_priv, pipe)
3260 if (intel_display_power_is_enabled(dev_priv,
3261 POWER_DOMAIN_PIPE(pipe)))
3262 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3263
3264 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3265 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3266 GEN5_IRQ_RESET(GEN8_PCU_);
3267
3268 if (HAS_PCH_SPLIT(dev))
3269 ibx_irq_reset(dev);
3270 }
3271
3272 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3273 unsigned int pipe_mask)
3274 {
3275 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3276
3277 spin_lock_irq(&dev_priv->irq_lock);
3278 if (pipe_mask & 1 << PIPE_A)
3279 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3280 dev_priv->de_irq_mask[PIPE_A],
3281 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3282 if (pipe_mask & 1 << PIPE_B)
3283 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3284 dev_priv->de_irq_mask[PIPE_B],
3285 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3286 if (pipe_mask & 1 << PIPE_C)
3287 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3288 dev_priv->de_irq_mask[PIPE_C],
3289 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3290 spin_unlock_irq(&dev_priv->irq_lock);
3291 }
3292
3293 static void cherryview_irq_preinstall(struct drm_device *dev)
3294 {
3295 struct drm_i915_private *dev_priv = dev->dev_private;
3296
3297 I915_WRITE(GEN8_MASTER_IRQ, 0);
3298 POSTING_READ(GEN8_MASTER_IRQ);
3299
3300 gen8_gt_irq_reset(dev_priv);
3301
3302 GEN5_IRQ_RESET(GEN8_PCU_);
3303
3304 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3305
3306 vlv_display_irq_reset(dev_priv);
3307 }
3308
3309 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3310 const u32 hpd[HPD_NUM_PINS])
3311 {
3312 struct drm_i915_private *dev_priv = to_i915(dev);
3313 struct intel_encoder *encoder;
3314 u32 enabled_irqs = 0;
3315
3316 for_each_intel_encoder(dev, encoder)
3317 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3318 enabled_irqs |= hpd[encoder->hpd_pin];
3319
3320 return enabled_irqs;
3321 }
3322
3323 static void ibx_hpd_irq_setup(struct drm_device *dev)
3324 {
3325 struct drm_i915_private *dev_priv = dev->dev_private;
3326 u32 hotplug_irqs, hotplug, enabled_irqs;
3327
3328 if (HAS_PCH_IBX(dev)) {
3329 hotplug_irqs = SDE_HOTPLUG_MASK;
3330 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3331 } else {
3332 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3333 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3334 }
3335
3336 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3337
3338 /*
3339 * Enable digital hotplug on the PCH, and configure the DP short pulse
3340 * duration to 2ms (which is the minimum in the Display Port spec).
3341 * The pulse duration bits are reserved on LPT+.
3342 */
3343 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3344 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3345 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3346 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3347 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3348 /*
3349 * When CPU and PCH are on the same package, port A
3350 * HPD must be enabled in both north and south.
3351 */
3352 if (HAS_PCH_LPT_LP(dev))
3353 hotplug |= PORTA_HOTPLUG_ENABLE;
3354 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3355 }
3356
3357 static void spt_hpd_irq_setup(struct drm_device *dev)
3358 {
3359 struct drm_i915_private *dev_priv = dev->dev_private;
3360 u32 hotplug_irqs, hotplug, enabled_irqs;
3361
3362 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3363 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3364
3365 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3366
3367 /* Enable digital hotplug on the PCH */
3368 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3369 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3370 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3371 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3372
3373 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3374 hotplug |= PORTE_HOTPLUG_ENABLE;
3375 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3376 }
3377
3378 static void ilk_hpd_irq_setup(struct drm_device *dev)
3379 {
3380 struct drm_i915_private *dev_priv = dev->dev_private;
3381 u32 hotplug_irqs, hotplug, enabled_irqs;
3382
3383 if (INTEL_INFO(dev)->gen >= 8) {
3384 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3385 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3386
3387 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3388 } else if (INTEL_INFO(dev)->gen >= 7) {
3389 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3390 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3391
3392 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3393 } else {
3394 hotplug_irqs = DE_DP_A_HOTPLUG;
3395 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3396
3397 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3398 }
3399
3400 /*
3401 * Enable digital hotplug on the CPU, and configure the DP short pulse
3402 * duration to 2ms (which is the minimum in the Display Port spec)
3403 * The pulse duration bits are reserved on HSW+.
3404 */
3405 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3406 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3407 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3408 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3409
3410 ibx_hpd_irq_setup(dev);
3411 }
3412
3413 static void bxt_hpd_irq_setup(struct drm_device *dev)
3414 {
3415 struct drm_i915_private *dev_priv = dev->dev_private;
3416 u32 hotplug_irqs, hotplug, enabled_irqs;
3417
3418 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3419 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3420
3421 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3422
3423 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3424 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3425 PORTA_HOTPLUG_ENABLE;
3426 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3427 }
3428
3429 static void ibx_irq_postinstall(struct drm_device *dev)
3430 {
3431 struct drm_i915_private *dev_priv = dev->dev_private;
3432 u32 mask;
3433
3434 if (HAS_PCH_NOP(dev))
3435 return;
3436
3437 if (HAS_PCH_IBX(dev))
3438 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3439 else
3440 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3441
3442 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3443 I915_WRITE(SDEIMR, ~mask);
3444 }
3445
3446 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3447 {
3448 struct drm_i915_private *dev_priv = dev->dev_private;
3449 u32 pm_irqs, gt_irqs;
3450
3451 pm_irqs = gt_irqs = 0;
3452
3453 dev_priv->gt_irq_mask = ~0;
3454 if (HAS_L3_DPF(dev)) {
3455 /* L3 parity interrupt is always unmasked. */
3456 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3457 gt_irqs |= GT_PARITY_ERROR(dev);
3458 }
3459
3460 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3461 if (IS_GEN5(dev)) {
3462 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3463 ILK_BSD_USER_INTERRUPT;
3464 } else {
3465 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3466 }
3467
3468 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3469
3470 if (INTEL_INFO(dev)->gen >= 6) {
3471 /*
3472 * RPS interrupts will get enabled/disabled on demand when RPS
3473 * itself is enabled/disabled.
3474 */
3475 if (HAS_VEBOX(dev))
3476 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3477
3478 dev_priv->pm_irq_mask = 0xffffffff;
3479 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3480 }
3481 }
3482
3483 static int ironlake_irq_postinstall(struct drm_device *dev)
3484 {
3485 struct drm_i915_private *dev_priv = dev->dev_private;
3486 u32 display_mask, extra_mask;
3487
3488 if (INTEL_INFO(dev)->gen >= 7) {
3489 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3490 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3491 DE_PLANEB_FLIP_DONE_IVB |
3492 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3493 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3494 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3495 DE_DP_A_HOTPLUG_IVB);
3496 } else {
3497 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3498 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3499 DE_AUX_CHANNEL_A |
3500 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3501 DE_POISON);
3502 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3503 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3504 DE_DP_A_HOTPLUG);
3505 }
3506
3507 dev_priv->irq_mask = ~display_mask;
3508
3509 I915_WRITE(HWSTAM, 0xeffe);
3510
3511 ibx_irq_pre_postinstall(dev);
3512
3513 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3514
3515 gen5_gt_irq_postinstall(dev);
3516
3517 ibx_irq_postinstall(dev);
3518
3519 if (IS_IRONLAKE_M(dev)) {
3520 /* Enable PCU event interrupts
3521 *
3522 * spinlocking not required here for correctness since interrupt
3523 * setup is guaranteed to run in single-threaded context. But we
3524 * need it to make the assert_spin_locked happy. */
3525 spin_lock_irq(&dev_priv->irq_lock);
3526 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3527 spin_unlock_irq(&dev_priv->irq_lock);
3528 }
3529
3530 return 0;
3531 }
3532
3533 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3534 {
3535 u32 pipestat_mask;
3536 u32 iir_mask;
3537 enum pipe pipe;
3538
3539 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3540 PIPE_FIFO_UNDERRUN_STATUS;
3541
3542 for_each_pipe(dev_priv, pipe)
3543 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3544 POSTING_READ(PIPESTAT(PIPE_A));
3545
3546 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3547 PIPE_CRC_DONE_INTERRUPT_STATUS;
3548
3549 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3550 for_each_pipe(dev_priv, pipe)
3551 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3552
3553 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3554 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3555 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3556 if (IS_CHERRYVIEW(dev_priv))
3557 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3558 dev_priv->irq_mask &= ~iir_mask;
3559
3560 I915_WRITE(VLV_IIR, iir_mask);
3561 I915_WRITE(VLV_IIR, iir_mask);
3562 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3563 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3564 POSTING_READ(VLV_IMR);
3565 }
3566
3567 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3568 {
3569 u32 pipestat_mask;
3570 u32 iir_mask;
3571 enum pipe pipe;
3572
3573 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3574 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3575 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3576 if (IS_CHERRYVIEW(dev_priv))
3577 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3578
3579 dev_priv->irq_mask |= iir_mask;
3580 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3581 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3582 I915_WRITE(VLV_IIR, iir_mask);
3583 I915_WRITE(VLV_IIR, iir_mask);
3584 POSTING_READ(VLV_IIR);
3585
3586 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3587 PIPE_CRC_DONE_INTERRUPT_STATUS;
3588
3589 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3590 for_each_pipe(dev_priv, pipe)
3591 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3592
3593 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3594 PIPE_FIFO_UNDERRUN_STATUS;
3595
3596 for_each_pipe(dev_priv, pipe)
3597 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3598 POSTING_READ(PIPESTAT(PIPE_A));
3599 }
3600
3601 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3602 {
3603 assert_spin_locked(&dev_priv->irq_lock);
3604
3605 if (dev_priv->display_irqs_enabled)
3606 return;
3607
3608 dev_priv->display_irqs_enabled = true;
3609
3610 if (intel_irqs_enabled(dev_priv))
3611 valleyview_display_irqs_install(dev_priv);
3612 }
3613
3614 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3615 {
3616 assert_spin_locked(&dev_priv->irq_lock);
3617
3618 if (!dev_priv->display_irqs_enabled)
3619 return;
3620
3621 dev_priv->display_irqs_enabled = false;
3622
3623 if (intel_irqs_enabled(dev_priv))
3624 valleyview_display_irqs_uninstall(dev_priv);
3625 }
3626
3627 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3628 {
3629 dev_priv->irq_mask = ~0;
3630
3631 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3632 POSTING_READ(PORT_HOTPLUG_EN);
3633
3634 I915_WRITE(VLV_IIR, 0xffffffff);
3635 I915_WRITE(VLV_IIR, 0xffffffff);
3636 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3637 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3638 POSTING_READ(VLV_IMR);
3639
3640 /* Interrupt setup is already guaranteed to be single-threaded, this is
3641 * just to make the assert_spin_locked check happy. */
3642 spin_lock_irq(&dev_priv->irq_lock);
3643 if (dev_priv->display_irqs_enabled)
3644 valleyview_display_irqs_install(dev_priv);
3645 spin_unlock_irq(&dev_priv->irq_lock);
3646 }
3647
3648 static int valleyview_irq_postinstall(struct drm_device *dev)
3649 {
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652 vlv_display_irq_postinstall(dev_priv);
3653
3654 gen5_gt_irq_postinstall(dev);
3655
3656 /* ack & enable invalid PTE error interrupts */
3657 #if 0 /* FIXME: add support to irq handler for checking these bits */
3658 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3659 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3660 #endif
3661
3662 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3663
3664 return 0;
3665 }
3666
3667 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3668 {
3669 /* These are interrupts we'll toggle with the ring mask register */
3670 uint32_t gt_interrupts[] = {
3671 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3672 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3673 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3674 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3675 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3676 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3677 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3678 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3679 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3680 0,
3681 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3682 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3683 };
3684
3685 dev_priv->pm_irq_mask = 0xffffffff;
3686 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3687 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3688 /*
3689 * RPS interrupts will get enabled/disabled on demand when RPS itself
3690 * is enabled/disabled.
3691 */
3692 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3693 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3694 }
3695
3696 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3697 {
3698 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3699 uint32_t de_pipe_enables;
3700 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3701 u32 de_port_enables;
3702 enum pipe pipe;
3703
3704 if (INTEL_INFO(dev_priv)->gen >= 9) {
3705 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3706 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3707 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3708 GEN9_AUX_CHANNEL_D;
3709 if (IS_BROXTON(dev_priv))
3710 de_port_masked |= BXT_DE_PORT_GMBUS;
3711 } else {
3712 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3713 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3714 }
3715
3716 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3717 GEN8_PIPE_FIFO_UNDERRUN;
3718
3719 de_port_enables = de_port_masked;
3720 if (IS_BROXTON(dev_priv))
3721 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3722 else if (IS_BROADWELL(dev_priv))
3723 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3724
3725 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3726 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3727 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3728
3729 for_each_pipe(dev_priv, pipe)
3730 if (intel_display_power_is_enabled(dev_priv,
3731 POWER_DOMAIN_PIPE(pipe)))
3732 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3733 dev_priv->de_irq_mask[pipe],
3734 de_pipe_enables);
3735
3736 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3737 }
3738
3739 static int gen8_irq_postinstall(struct drm_device *dev)
3740 {
3741 struct drm_i915_private *dev_priv = dev->dev_private;
3742
3743 if (HAS_PCH_SPLIT(dev))
3744 ibx_irq_pre_postinstall(dev);
3745
3746 gen8_gt_irq_postinstall(dev_priv);
3747 gen8_de_irq_postinstall(dev_priv);
3748
3749 if (HAS_PCH_SPLIT(dev))
3750 ibx_irq_postinstall(dev);
3751
3752 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3753 POSTING_READ(GEN8_MASTER_IRQ);
3754
3755 return 0;
3756 }
3757
3758 static int cherryview_irq_postinstall(struct drm_device *dev)
3759 {
3760 struct drm_i915_private *dev_priv = dev->dev_private;
3761
3762 vlv_display_irq_postinstall(dev_priv);
3763
3764 gen8_gt_irq_postinstall(dev_priv);
3765
3766 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3767 POSTING_READ(GEN8_MASTER_IRQ);
3768
3769 return 0;
3770 }
3771
3772 static void gen8_irq_uninstall(struct drm_device *dev)
3773 {
3774 struct drm_i915_private *dev_priv = dev->dev_private;
3775
3776 if (!dev_priv)
3777 return;
3778
3779 gen8_irq_reset(dev);
3780 }
3781
3782 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3783 {
3784 /* Interrupt setup is already guaranteed to be single-threaded, this is
3785 * just to make the assert_spin_locked check happy. */
3786 spin_lock_irq(&dev_priv->irq_lock);
3787 if (dev_priv->display_irqs_enabled)
3788 valleyview_display_irqs_uninstall(dev_priv);
3789 spin_unlock_irq(&dev_priv->irq_lock);
3790
3791 vlv_display_irq_reset(dev_priv);
3792
3793 dev_priv->irq_mask = ~0;
3794 }
3795
3796 static void valleyview_irq_uninstall(struct drm_device *dev)
3797 {
3798 struct drm_i915_private *dev_priv = dev->dev_private;
3799
3800 if (!dev_priv)
3801 return;
3802
3803 I915_WRITE(VLV_MASTER_IER, 0);
3804
3805 gen5_gt_irq_reset(dev);
3806
3807 I915_WRITE(HWSTAM, 0xffffffff);
3808
3809 vlv_display_irq_uninstall(dev_priv);
3810 }
3811
3812 static void cherryview_irq_uninstall(struct drm_device *dev)
3813 {
3814 struct drm_i915_private *dev_priv = dev->dev_private;
3815
3816 if (!dev_priv)
3817 return;
3818
3819 I915_WRITE(GEN8_MASTER_IRQ, 0);
3820 POSTING_READ(GEN8_MASTER_IRQ);
3821
3822 gen8_gt_irq_reset(dev_priv);
3823
3824 GEN5_IRQ_RESET(GEN8_PCU_);
3825
3826 vlv_display_irq_uninstall(dev_priv);
3827 }
3828
3829 static void ironlake_irq_uninstall(struct drm_device *dev)
3830 {
3831 struct drm_i915_private *dev_priv = dev->dev_private;
3832
3833 if (!dev_priv)
3834 return;
3835
3836 ironlake_irq_reset(dev);
3837 }
3838
3839 static void i8xx_irq_preinstall(struct drm_device * dev)
3840 {
3841 struct drm_i915_private *dev_priv = dev->dev_private;
3842 int pipe;
3843
3844 for_each_pipe(dev_priv, pipe)
3845 I915_WRITE(PIPESTAT(pipe), 0);
3846 I915_WRITE16(IMR, 0xffff);
3847 I915_WRITE16(IER, 0x0);
3848 POSTING_READ16(IER);
3849 }
3850
3851 static int i8xx_irq_postinstall(struct drm_device *dev)
3852 {
3853 struct drm_i915_private *dev_priv = dev->dev_private;
3854
3855 I915_WRITE16(EMR,
3856 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3857
3858 /* Unmask the interrupts that we always want on. */
3859 dev_priv->irq_mask =
3860 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3861 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3862 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3863 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3864 I915_WRITE16(IMR, dev_priv->irq_mask);
3865
3866 I915_WRITE16(IER,
3867 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3868 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3869 I915_USER_INTERRUPT);
3870 POSTING_READ16(IER);
3871
3872 /* Interrupt setup is already guaranteed to be single-threaded, this is
3873 * just to make the assert_spin_locked check happy. */
3874 spin_lock_irq(&dev_priv->irq_lock);
3875 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3876 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3877 spin_unlock_irq(&dev_priv->irq_lock);
3878
3879 return 0;
3880 }
3881
3882 /*
3883 * Returns true when a page flip has completed.
3884 */
3885 static bool i8xx_handle_vblank(struct drm_device *dev,
3886 int plane, int pipe, u32 iir)
3887 {
3888 struct drm_i915_private *dev_priv = dev->dev_private;
3889 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3890
3891 if (!intel_pipe_handle_vblank(dev, pipe))
3892 return false;
3893
3894 if ((iir & flip_pending) == 0)
3895 goto check_page_flip;
3896
3897 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3898 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3899 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3900 * the flip is completed (no longer pending). Since this doesn't raise
3901 * an interrupt per se, we watch for the change at vblank.
3902 */
3903 if (I915_READ16(ISR) & flip_pending)
3904 goto check_page_flip;
3905
3906 intel_prepare_page_flip(dev, plane);
3907 intel_finish_page_flip(dev, pipe);
3908 return true;
3909
3910 check_page_flip:
3911 intel_check_page_flip(dev, pipe);
3912 return false;
3913 }
3914
3915 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3916 {
3917 struct drm_device *dev = arg;
3918 struct drm_i915_private *dev_priv = dev->dev_private;
3919 u16 iir, new_iir;
3920 u32 pipe_stats[2];
3921 int pipe;
3922 u16 flip_mask =
3923 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3924 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3925 irqreturn_t ret;
3926
3927 if (!intel_irqs_enabled(dev_priv))
3928 return IRQ_NONE;
3929
3930 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3931 disable_rpm_wakeref_asserts(dev_priv);
3932
3933 ret = IRQ_NONE;
3934 iir = I915_READ16(IIR);
3935 if (iir == 0)
3936 goto out;
3937
3938 while (iir & ~flip_mask) {
3939 /* Can't rely on pipestat interrupt bit in iir as it might
3940 * have been cleared after the pipestat interrupt was received.
3941 * It doesn't set the bit in iir again, but it still produces
3942 * interrupts (for non-MSI).
3943 */
3944 spin_lock(&dev_priv->irq_lock);
3945 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3946 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3947
3948 for_each_pipe(dev_priv, pipe) {
3949 i915_reg_t reg = PIPESTAT(pipe);
3950 pipe_stats[pipe] = I915_READ(reg);
3951
3952 /*
3953 * Clear the PIPE*STAT regs before the IIR
3954 */
3955 if (pipe_stats[pipe] & 0x8000ffff)
3956 I915_WRITE(reg, pipe_stats[pipe]);
3957 }
3958 spin_unlock(&dev_priv->irq_lock);
3959
3960 I915_WRITE16(IIR, iir & ~flip_mask);
3961 new_iir = I915_READ16(IIR); /* Flush posted writes */
3962
3963 if (iir & I915_USER_INTERRUPT)
3964 notify_ring(&dev_priv->ring[RCS]);
3965
3966 for_each_pipe(dev_priv, pipe) {
3967 int plane = pipe;
3968 if (HAS_FBC(dev))
3969 plane = !plane;
3970
3971 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3972 i8xx_handle_vblank(dev, plane, pipe, iir))
3973 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3974
3975 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3976 i9xx_pipe_crc_irq_handler(dev, pipe);
3977
3978 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3979 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3980 pipe);
3981 }
3982
3983 iir = new_iir;
3984 }
3985 ret = IRQ_HANDLED;
3986
3987 out:
3988 enable_rpm_wakeref_asserts(dev_priv);
3989
3990 return ret;
3991 }
3992
3993 static void i8xx_irq_uninstall(struct drm_device * dev)
3994 {
3995 struct drm_i915_private *dev_priv = dev->dev_private;
3996 int pipe;
3997
3998 for_each_pipe(dev_priv, pipe) {
3999 /* Clear enable bits; then clear status bits */
4000 I915_WRITE(PIPESTAT(pipe), 0);
4001 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4002 }
4003 I915_WRITE16(IMR, 0xffff);
4004 I915_WRITE16(IER, 0x0);
4005 I915_WRITE16(IIR, I915_READ16(IIR));
4006 }
4007
4008 static void i915_irq_preinstall(struct drm_device * dev)
4009 {
4010 struct drm_i915_private *dev_priv = dev->dev_private;
4011 int pipe;
4012
4013 if (I915_HAS_HOTPLUG(dev)) {
4014 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4015 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4016 }
4017
4018 I915_WRITE16(HWSTAM, 0xeffe);
4019 for_each_pipe(dev_priv, pipe)
4020 I915_WRITE(PIPESTAT(pipe), 0);
4021 I915_WRITE(IMR, 0xffffffff);
4022 I915_WRITE(IER, 0x0);
4023 POSTING_READ(IER);
4024 }
4025
4026 static int i915_irq_postinstall(struct drm_device *dev)
4027 {
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029 u32 enable_mask;
4030
4031 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4032
4033 /* Unmask the interrupts that we always want on. */
4034 dev_priv->irq_mask =
4035 ~(I915_ASLE_INTERRUPT |
4036 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4037 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4038 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4039 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4040
4041 enable_mask =
4042 I915_ASLE_INTERRUPT |
4043 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4044 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4045 I915_USER_INTERRUPT;
4046
4047 if (I915_HAS_HOTPLUG(dev)) {
4048 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4049 POSTING_READ(PORT_HOTPLUG_EN);
4050
4051 /* Enable in IER... */
4052 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4053 /* and unmask in IMR */
4054 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4055 }
4056
4057 I915_WRITE(IMR, dev_priv->irq_mask);
4058 I915_WRITE(IER, enable_mask);
4059 POSTING_READ(IER);
4060
4061 i915_enable_asle_pipestat(dev);
4062
4063 /* Interrupt setup is already guaranteed to be single-threaded, this is
4064 * just to make the assert_spin_locked check happy. */
4065 spin_lock_irq(&dev_priv->irq_lock);
4066 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4067 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4068 spin_unlock_irq(&dev_priv->irq_lock);
4069
4070 return 0;
4071 }
4072
4073 /*
4074 * Returns true when a page flip has completed.
4075 */
4076 static bool i915_handle_vblank(struct drm_device *dev,
4077 int plane, int pipe, u32 iir)
4078 {
4079 struct drm_i915_private *dev_priv = dev->dev_private;
4080 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4081
4082 if (!intel_pipe_handle_vblank(dev, pipe))
4083 return false;
4084
4085 if ((iir & flip_pending) == 0)
4086 goto check_page_flip;
4087
4088 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4089 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4090 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4091 * the flip is completed (no longer pending). Since this doesn't raise
4092 * an interrupt per se, we watch for the change at vblank.
4093 */
4094 if (I915_READ(ISR) & flip_pending)
4095 goto check_page_flip;
4096
4097 intel_prepare_page_flip(dev, plane);
4098 intel_finish_page_flip(dev, pipe);
4099 return true;
4100
4101 check_page_flip:
4102 intel_check_page_flip(dev, pipe);
4103 return false;
4104 }
4105
4106 static irqreturn_t i915_irq_handler(int irq, void *arg)
4107 {
4108 struct drm_device *dev = arg;
4109 struct drm_i915_private *dev_priv = dev->dev_private;
4110 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4111 u32 flip_mask =
4112 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4113 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4114 int pipe, ret = IRQ_NONE;
4115
4116 if (!intel_irqs_enabled(dev_priv))
4117 return IRQ_NONE;
4118
4119 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4120 disable_rpm_wakeref_asserts(dev_priv);
4121
4122 iir = I915_READ(IIR);
4123 do {
4124 bool irq_received = (iir & ~flip_mask) != 0;
4125 bool blc_event = false;
4126
4127 /* Can't rely on pipestat interrupt bit in iir as it might
4128 * have been cleared after the pipestat interrupt was received.
4129 * It doesn't set the bit in iir again, but it still produces
4130 * interrupts (for non-MSI).
4131 */
4132 spin_lock(&dev_priv->irq_lock);
4133 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4134 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4135
4136 for_each_pipe(dev_priv, pipe) {
4137 i915_reg_t reg = PIPESTAT(pipe);
4138 pipe_stats[pipe] = I915_READ(reg);
4139
4140 /* Clear the PIPE*STAT regs before the IIR */
4141 if (pipe_stats[pipe] & 0x8000ffff) {
4142 I915_WRITE(reg, pipe_stats[pipe]);
4143 irq_received = true;
4144 }
4145 }
4146 spin_unlock(&dev_priv->irq_lock);
4147
4148 if (!irq_received)
4149 break;
4150
4151 /* Consume port. Then clear IIR or we'll miss events */
4152 if (I915_HAS_HOTPLUG(dev) &&
4153 iir & I915_DISPLAY_PORT_INTERRUPT)
4154 i9xx_hpd_irq_handler(dev);
4155
4156 I915_WRITE(IIR, iir & ~flip_mask);
4157 new_iir = I915_READ(IIR); /* Flush posted writes */
4158
4159 if (iir & I915_USER_INTERRUPT)
4160 notify_ring(&dev_priv->ring[RCS]);
4161
4162 for_each_pipe(dev_priv, pipe) {
4163 int plane = pipe;
4164 if (HAS_FBC(dev))
4165 plane = !plane;
4166
4167 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4168 i915_handle_vblank(dev, plane, pipe, iir))
4169 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4170
4171 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4172 blc_event = true;
4173
4174 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4175 i9xx_pipe_crc_irq_handler(dev, pipe);
4176
4177 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4178 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4179 pipe);
4180 }
4181
4182 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4183 intel_opregion_asle_intr(dev);
4184
4185 /* With MSI, interrupts are only generated when iir
4186 * transitions from zero to nonzero. If another bit got
4187 * set while we were handling the existing iir bits, then
4188 * we would never get another interrupt.
4189 *
4190 * This is fine on non-MSI as well, as if we hit this path
4191 * we avoid exiting the interrupt handler only to generate
4192 * another one.
4193 *
4194 * Note that for MSI this could cause a stray interrupt report
4195 * if an interrupt landed in the time between writing IIR and
4196 * the posting read. This should be rare enough to never
4197 * trigger the 99% of 100,000 interrupts test for disabling
4198 * stray interrupts.
4199 */
4200 ret = IRQ_HANDLED;
4201 iir = new_iir;
4202 } while (iir & ~flip_mask);
4203
4204 enable_rpm_wakeref_asserts(dev_priv);
4205
4206 return ret;
4207 }
4208
4209 static void i915_irq_uninstall(struct drm_device * dev)
4210 {
4211 struct drm_i915_private *dev_priv = dev->dev_private;
4212 int pipe;
4213
4214 if (I915_HAS_HOTPLUG(dev)) {
4215 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4216 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4217 }
4218
4219 I915_WRITE16(HWSTAM, 0xffff);
4220 for_each_pipe(dev_priv, pipe) {
4221 /* Clear enable bits; then clear status bits */
4222 I915_WRITE(PIPESTAT(pipe), 0);
4223 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4224 }
4225 I915_WRITE(IMR, 0xffffffff);
4226 I915_WRITE(IER, 0x0);
4227
4228 I915_WRITE(IIR, I915_READ(IIR));
4229 }
4230
4231 static void i965_irq_preinstall(struct drm_device * dev)
4232 {
4233 struct drm_i915_private *dev_priv = dev->dev_private;
4234 int pipe;
4235
4236 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4237 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4238
4239 I915_WRITE(HWSTAM, 0xeffe);
4240 for_each_pipe(dev_priv, pipe)
4241 I915_WRITE(PIPESTAT(pipe), 0);
4242 I915_WRITE(IMR, 0xffffffff);
4243 I915_WRITE(IER, 0x0);
4244 POSTING_READ(IER);
4245 }
4246
4247 static int i965_irq_postinstall(struct drm_device *dev)
4248 {
4249 struct drm_i915_private *dev_priv = dev->dev_private;
4250 u32 enable_mask;
4251 u32 error_mask;
4252
4253 /* Unmask the interrupts that we always want on. */
4254 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4255 I915_DISPLAY_PORT_INTERRUPT |
4256 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4257 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4258 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4259 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4260 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4261
4262 enable_mask = ~dev_priv->irq_mask;
4263 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4264 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4265 enable_mask |= I915_USER_INTERRUPT;
4266
4267 if (IS_G4X(dev))
4268 enable_mask |= I915_BSD_USER_INTERRUPT;
4269
4270 /* Interrupt setup is already guaranteed to be single-threaded, this is
4271 * just to make the assert_spin_locked check happy. */
4272 spin_lock_irq(&dev_priv->irq_lock);
4273 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4274 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4275 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4276 spin_unlock_irq(&dev_priv->irq_lock);
4277
4278 /*
4279 * Enable some error detection, note the instruction error mask
4280 * bit is reserved, so we leave it masked.
4281 */
4282 if (IS_G4X(dev)) {
4283 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4284 GM45_ERROR_MEM_PRIV |
4285 GM45_ERROR_CP_PRIV |
4286 I915_ERROR_MEMORY_REFRESH);
4287 } else {
4288 error_mask = ~(I915_ERROR_PAGE_TABLE |
4289 I915_ERROR_MEMORY_REFRESH);
4290 }
4291 I915_WRITE(EMR, error_mask);
4292
4293 I915_WRITE(IMR, dev_priv->irq_mask);
4294 I915_WRITE(IER, enable_mask);
4295 POSTING_READ(IER);
4296
4297 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4298 POSTING_READ(PORT_HOTPLUG_EN);
4299
4300 i915_enable_asle_pipestat(dev);
4301
4302 return 0;
4303 }
4304
4305 static void i915_hpd_irq_setup(struct drm_device *dev)
4306 {
4307 struct drm_i915_private *dev_priv = dev->dev_private;
4308 u32 hotplug_en;
4309
4310 assert_spin_locked(&dev_priv->irq_lock);
4311
4312 /* Note HDMI and DP share hotplug bits */
4313 /* enable bits are the same for all generations */
4314 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4315 /* Programming the CRT detection parameters tends
4316 to generate a spurious hotplug event about three
4317 seconds later. So just do it once.
4318 */
4319 if (IS_G4X(dev))
4320 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4321 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4322
4323 /* Ignore TV since it's buggy */
4324 i915_hotplug_interrupt_update_locked(dev_priv,
4325 HOTPLUG_INT_EN_MASK |
4326 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4327 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4328 hotplug_en);
4329 }
4330
4331 static irqreturn_t i965_irq_handler(int irq, void *arg)
4332 {
4333 struct drm_device *dev = arg;
4334 struct drm_i915_private *dev_priv = dev->dev_private;
4335 u32 iir, new_iir;
4336 u32 pipe_stats[I915_MAX_PIPES];
4337 int ret = IRQ_NONE, pipe;
4338 u32 flip_mask =
4339 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4340 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4341
4342 if (!intel_irqs_enabled(dev_priv))
4343 return IRQ_NONE;
4344
4345 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4346 disable_rpm_wakeref_asserts(dev_priv);
4347
4348 iir = I915_READ(IIR);
4349
4350 for (;;) {
4351 bool irq_received = (iir & ~flip_mask) != 0;
4352 bool blc_event = false;
4353
4354 /* Can't rely on pipestat interrupt bit in iir as it might
4355 * have been cleared after the pipestat interrupt was received.
4356 * It doesn't set the bit in iir again, but it still produces
4357 * interrupts (for non-MSI).
4358 */
4359 spin_lock(&dev_priv->irq_lock);
4360 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4361 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4362
4363 for_each_pipe(dev_priv, pipe) {
4364 i915_reg_t reg = PIPESTAT(pipe);
4365 pipe_stats[pipe] = I915_READ(reg);
4366
4367 /*
4368 * Clear the PIPE*STAT regs before the IIR
4369 */
4370 if (pipe_stats[pipe] & 0x8000ffff) {
4371 I915_WRITE(reg, pipe_stats[pipe]);
4372 irq_received = true;
4373 }
4374 }
4375 spin_unlock(&dev_priv->irq_lock);
4376
4377 if (!irq_received)
4378 break;
4379
4380 ret = IRQ_HANDLED;
4381
4382 /* Consume port. Then clear IIR or we'll miss events */
4383 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4384 i9xx_hpd_irq_handler(dev);
4385
4386 I915_WRITE(IIR, iir & ~flip_mask);
4387 new_iir = I915_READ(IIR); /* Flush posted writes */
4388
4389 if (iir & I915_USER_INTERRUPT)
4390 notify_ring(&dev_priv->ring[RCS]);
4391 if (iir & I915_BSD_USER_INTERRUPT)
4392 notify_ring(&dev_priv->ring[VCS]);
4393
4394 for_each_pipe(dev_priv, pipe) {
4395 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4396 i915_handle_vblank(dev, pipe, pipe, iir))
4397 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4398
4399 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4400 blc_event = true;
4401
4402 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4403 i9xx_pipe_crc_irq_handler(dev, pipe);
4404
4405 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4406 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4407 }
4408
4409 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4410 intel_opregion_asle_intr(dev);
4411
4412 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4413 gmbus_irq_handler(dev);
4414
4415 /* With MSI, interrupts are only generated when iir
4416 * transitions from zero to nonzero. If another bit got
4417 * set while we were handling the existing iir bits, then
4418 * we would never get another interrupt.
4419 *
4420 * This is fine on non-MSI as well, as if we hit this path
4421 * we avoid exiting the interrupt handler only to generate
4422 * another one.
4423 *
4424 * Note that for MSI this could cause a stray interrupt report
4425 * if an interrupt landed in the time between writing IIR and
4426 * the posting read. This should be rare enough to never
4427 * trigger the 99% of 100,000 interrupts test for disabling
4428 * stray interrupts.
4429 */
4430 iir = new_iir;
4431 }
4432
4433 enable_rpm_wakeref_asserts(dev_priv);
4434
4435 return ret;
4436 }
4437
4438 static void i965_irq_uninstall(struct drm_device * dev)
4439 {
4440 struct drm_i915_private *dev_priv = dev->dev_private;
4441 int pipe;
4442
4443 if (!dev_priv)
4444 return;
4445
4446 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4447 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4448
4449 I915_WRITE(HWSTAM, 0xffffffff);
4450 for_each_pipe(dev_priv, pipe)
4451 I915_WRITE(PIPESTAT(pipe), 0);
4452 I915_WRITE(IMR, 0xffffffff);
4453 I915_WRITE(IER, 0x0);
4454
4455 for_each_pipe(dev_priv, pipe)
4456 I915_WRITE(PIPESTAT(pipe),
4457 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4458 I915_WRITE(IIR, I915_READ(IIR));
4459 }
4460
4461 /**
4462 * intel_irq_init - initializes irq support
4463 * @dev_priv: i915 device instance
4464 *
4465 * This function initializes all the irq support including work items, timers
4466 * and all the vtables. It does not setup the interrupt itself though.
4467 */
4468 void intel_irq_init(struct drm_i915_private *dev_priv)
4469 {
4470 struct drm_device *dev = dev_priv->dev;
4471
4472 intel_hpd_init_work(dev_priv);
4473
4474 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4475 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4476
4477 /* Let's track the enabled rps events */
4478 if (IS_VALLEYVIEW(dev_priv))
4479 /* WaGsvRC0ResidencyMethod:vlv */
4480 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4481 else
4482 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4483
4484 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4485 i915_hangcheck_elapsed);
4486
4487 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4488
4489 if (IS_GEN2(dev_priv)) {
4490 dev->max_vblank_count = 0;
4491 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4492 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4493 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4494 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4495 } else {
4496 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4497 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4498 }
4499
4500 /*
4501 * Opt out of the vblank disable timer on everything except gen2.
4502 * Gen2 doesn't have a hardware frame counter and so depends on
4503 * vblank interrupts to produce sane vblank seuquence numbers.
4504 */
4505 if (!IS_GEN2(dev_priv))
4506 dev->vblank_disable_immediate = true;
4507
4508 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4509 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4510
4511 if (IS_CHERRYVIEW(dev_priv)) {
4512 dev->driver->irq_handler = cherryview_irq_handler;
4513 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4514 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4515 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4516 dev->driver->enable_vblank = valleyview_enable_vblank;
4517 dev->driver->disable_vblank = valleyview_disable_vblank;
4518 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4519 } else if (IS_VALLEYVIEW(dev_priv)) {
4520 dev->driver->irq_handler = valleyview_irq_handler;
4521 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4522 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4523 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4524 dev->driver->enable_vblank = valleyview_enable_vblank;
4525 dev->driver->disable_vblank = valleyview_disable_vblank;
4526 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4527 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4528 dev->driver->irq_handler = gen8_irq_handler;
4529 dev->driver->irq_preinstall = gen8_irq_reset;
4530 dev->driver->irq_postinstall = gen8_irq_postinstall;
4531 dev->driver->irq_uninstall = gen8_irq_uninstall;
4532 dev->driver->enable_vblank = gen8_enable_vblank;
4533 dev->driver->disable_vblank = gen8_disable_vblank;
4534 if (IS_BROXTON(dev))
4535 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4536 else if (HAS_PCH_SPT(dev))
4537 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4538 else
4539 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4540 } else if (HAS_PCH_SPLIT(dev)) {
4541 dev->driver->irq_handler = ironlake_irq_handler;
4542 dev->driver->irq_preinstall = ironlake_irq_reset;
4543 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4544 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4545 dev->driver->enable_vblank = ironlake_enable_vblank;
4546 dev->driver->disable_vblank = ironlake_disable_vblank;
4547 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4548 } else {
4549 if (INTEL_INFO(dev_priv)->gen == 2) {
4550 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4551 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4552 dev->driver->irq_handler = i8xx_irq_handler;
4553 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4554 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4555 dev->driver->irq_preinstall = i915_irq_preinstall;
4556 dev->driver->irq_postinstall = i915_irq_postinstall;
4557 dev->driver->irq_uninstall = i915_irq_uninstall;
4558 dev->driver->irq_handler = i915_irq_handler;
4559 } else {
4560 dev->driver->irq_preinstall = i965_irq_preinstall;
4561 dev->driver->irq_postinstall = i965_irq_postinstall;
4562 dev->driver->irq_uninstall = i965_irq_uninstall;
4563 dev->driver->irq_handler = i965_irq_handler;
4564 }
4565 if (I915_HAS_HOTPLUG(dev_priv))
4566 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4567 dev->driver->enable_vblank = i915_enable_vblank;
4568 dev->driver->disable_vblank = i915_disable_vblank;
4569 }
4570 }
4571
4572 /**
4573 * intel_irq_install - enables the hardware interrupt
4574 * @dev_priv: i915 device instance
4575 *
4576 * This function enables the hardware interrupt handling, but leaves the hotplug
4577 * handling still disabled. It is called after intel_irq_init().
4578 *
4579 * In the driver load and resume code we need working interrupts in a few places
4580 * but don't want to deal with the hassle of concurrent probe and hotplug
4581 * workers. Hence the split into this two-stage approach.
4582 */
4583 int intel_irq_install(struct drm_i915_private *dev_priv)
4584 {
4585 /*
4586 * We enable some interrupt sources in our postinstall hooks, so mark
4587 * interrupts as enabled _before_ actually enabling them to avoid
4588 * special cases in our ordering checks.
4589 */
4590 dev_priv->pm.irqs_enabled = true;
4591
4592 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4593 }
4594
4595 /**
4596 * intel_irq_uninstall - finilizes all irq handling
4597 * @dev_priv: i915 device instance
4598 *
4599 * This stops interrupt and hotplug handling and unregisters and frees all
4600 * resources acquired in the init functions.
4601 */
4602 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4603 {
4604 drm_irq_uninstall(dev_priv->dev);
4605 intel_hpd_cancel_work(dev_priv);
4606 dev_priv->pm.irqs_enabled = false;
4607 }
4608
4609 /**
4610 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4611 * @dev_priv: i915 device instance
4612 *
4613 * This function is used to disable interrupts at runtime, both in the runtime
4614 * pm and the system suspend/resume code.
4615 */
4616 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4617 {
4618 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4619 dev_priv->pm.irqs_enabled = false;
4620 synchronize_irq(dev_priv->dev->irq);
4621 }
4622
4623 /**
4624 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4625 * @dev_priv: i915 device instance
4626 *
4627 * This function is used to enable interrupts at runtime, both in the runtime
4628 * pm and the system suspend/resume code.
4629 */
4630 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4631 {
4632 dev_priv->pm.irqs_enabled = true;
4633 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4634 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4635 }
This page took 0.136217 seconds and 5 git commands to generate.