drm/i915: export error state ref handling
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if ((dev_priv->irq_mask & mask) != 0) {
89 dev_priv->irq_mask &= ~mask;
90 I915_WRITE(DEIMR, dev_priv->irq_mask);
91 POSTING_READ(DEIMR);
92 }
93 }
94
95 static void
96 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 assert_spin_locked(&dev_priv->irq_lock);
99
100 if ((dev_priv->irq_mask & mask) != mask) {
101 dev_priv->irq_mask |= mask;
102 I915_WRITE(DEIMR, dev_priv->irq_mask);
103 POSTING_READ(DEIMR);
104 }
105 }
106
107 static bool ivb_can_enable_err_int(struct drm_device *dev)
108 {
109 struct drm_i915_private *dev_priv = dev->dev_private;
110 struct intel_crtc *crtc;
111 enum pipe pipe;
112
113 assert_spin_locked(&dev_priv->irq_lock);
114
115 for_each_pipe(pipe) {
116 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
117
118 if (crtc->cpu_fifo_underrun_disabled)
119 return false;
120 }
121
122 return true;
123 }
124
125 static bool cpt_can_enable_serr_int(struct drm_device *dev)
126 {
127 struct drm_i915_private *dev_priv = dev->dev_private;
128 enum pipe pipe;
129 struct intel_crtc *crtc;
130
131 for_each_pipe(pipe) {
132 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
133
134 if (crtc->pch_fifo_underrun_disabled)
135 return false;
136 }
137
138 return true;
139 }
140
141 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
142 enum pipe pipe, bool enable)
143 {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
146 DE_PIPEB_FIFO_UNDERRUN;
147
148 if (enable)
149 ironlake_enable_display_irq(dev_priv, bit);
150 else
151 ironlake_disable_display_irq(dev_priv, bit);
152 }
153
154 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
155 bool enable)
156 {
157 struct drm_i915_private *dev_priv = dev->dev_private;
158
159 if (enable) {
160 if (!ivb_can_enable_err_int(dev))
161 return;
162
163 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN_A |
164 ERR_INT_FIFO_UNDERRUN_B |
165 ERR_INT_FIFO_UNDERRUN_C);
166
167 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
168 } else {
169 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
170 }
171 }
172
173 static void ibx_set_fifo_underrun_reporting(struct intel_crtc *crtc,
174 bool enable)
175 {
176 struct drm_device *dev = crtc->base.dev;
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 uint32_t bit = (crtc->pipe == PIPE_A) ? SDE_TRANSA_FIFO_UNDER :
179 SDE_TRANSB_FIFO_UNDER;
180
181 if (enable)
182 I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~bit);
183 else
184 I915_WRITE(SDEIMR, I915_READ(SDEIMR) | bit);
185
186 POSTING_READ(SDEIMR);
187 }
188
189 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
190 enum transcoder pch_transcoder,
191 bool enable)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194
195 if (enable) {
196 if (!cpt_can_enable_serr_int(dev))
197 return;
198
199 I915_WRITE(SERR_INT, SERR_INT_TRANS_A_FIFO_UNDERRUN |
200 SERR_INT_TRANS_B_FIFO_UNDERRUN |
201 SERR_INT_TRANS_C_FIFO_UNDERRUN);
202
203 I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~SDE_ERROR_CPT);
204 } else {
205 I915_WRITE(SDEIMR, I915_READ(SDEIMR) | SDE_ERROR_CPT);
206 }
207
208 POSTING_READ(SDEIMR);
209 }
210
211 /**
212 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
213 * @dev: drm device
214 * @pipe: pipe
215 * @enable: true if we want to report FIFO underrun errors, false otherwise
216 *
217 * This function makes us disable or enable CPU fifo underruns for a specific
218 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
219 * reporting for one pipe may also disable all the other CPU error interruts for
220 * the other pipes, due to the fact that there's just one interrupt mask/enable
221 * bit for all the pipes.
222 *
223 * Returns the previous state of underrun reporting.
224 */
225 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
226 enum pipe pipe, bool enable)
227 {
228 struct drm_i915_private *dev_priv = dev->dev_private;
229 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
230 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
231 unsigned long flags;
232 bool ret;
233
234 spin_lock_irqsave(&dev_priv->irq_lock, flags);
235
236 ret = !intel_crtc->cpu_fifo_underrun_disabled;
237
238 if (enable == ret)
239 goto done;
240
241 intel_crtc->cpu_fifo_underrun_disabled = !enable;
242
243 if (IS_GEN5(dev) || IS_GEN6(dev))
244 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
245 else if (IS_GEN7(dev))
246 ivybridge_set_fifo_underrun_reporting(dev, enable);
247
248 done:
249 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
250 return ret;
251 }
252
253 /**
254 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
255 * @dev: drm device
256 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
257 * @enable: true if we want to report FIFO underrun errors, false otherwise
258 *
259 * This function makes us disable or enable PCH fifo underruns for a specific
260 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
261 * underrun reporting for one transcoder may also disable all the other PCH
262 * error interruts for the other transcoders, due to the fact that there's just
263 * one interrupt mask/enable bit for all the transcoders.
264 *
265 * Returns the previous state of underrun reporting.
266 */
267 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
268 enum transcoder pch_transcoder,
269 bool enable)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 enum pipe p;
273 struct drm_crtc *crtc;
274 struct intel_crtc *intel_crtc;
275 unsigned long flags;
276 bool ret;
277
278 if (HAS_PCH_LPT(dev)) {
279 crtc = NULL;
280 for_each_pipe(p) {
281 struct drm_crtc *c = dev_priv->pipe_to_crtc_mapping[p];
282 if (intel_pipe_has_type(c, INTEL_OUTPUT_ANALOG)) {
283 crtc = c;
284 break;
285 }
286 }
287 if (!crtc) {
288 DRM_ERROR("PCH FIFO underrun, but no CRTC using the PCH found\n");
289 return false;
290 }
291 } else {
292 crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
293 }
294 intel_crtc = to_intel_crtc(crtc);
295
296 spin_lock_irqsave(&dev_priv->irq_lock, flags);
297
298 ret = !intel_crtc->pch_fifo_underrun_disabled;
299
300 if (enable == ret)
301 goto done;
302
303 intel_crtc->pch_fifo_underrun_disabled = !enable;
304
305 if (HAS_PCH_IBX(dev))
306 ibx_set_fifo_underrun_reporting(intel_crtc, enable);
307 else
308 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
309
310 done:
311 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
312 return ret;
313 }
314
315
316 void
317 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
318 {
319 u32 reg = PIPESTAT(pipe);
320 u32 pipestat = I915_READ(reg) & 0x7fff0000;
321
322 if ((pipestat & mask) == mask)
323 return;
324
325 /* Enable the interrupt, clear any pending status */
326 pipestat |= mask | (mask >> 16);
327 I915_WRITE(reg, pipestat);
328 POSTING_READ(reg);
329 }
330
331 void
332 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
333 {
334 u32 reg = PIPESTAT(pipe);
335 u32 pipestat = I915_READ(reg) & 0x7fff0000;
336
337 if ((pipestat & mask) == 0)
338 return;
339
340 pipestat &= ~mask;
341 I915_WRITE(reg, pipestat);
342 POSTING_READ(reg);
343 }
344
345 /**
346 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
347 */
348 static void i915_enable_asle_pipestat(struct drm_device *dev)
349 {
350 drm_i915_private_t *dev_priv = dev->dev_private;
351 unsigned long irqflags;
352
353 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
354 return;
355
356 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
357
358 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
359 if (INTEL_INFO(dev)->gen >= 4)
360 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
361
362 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
363 }
364
365 /**
366 * i915_pipe_enabled - check if a pipe is enabled
367 * @dev: DRM device
368 * @pipe: pipe to check
369 *
370 * Reading certain registers when the pipe is disabled can hang the chip.
371 * Use this routine to make sure the PLL is running and the pipe is active
372 * before reading such registers if unsure.
373 */
374 static int
375 i915_pipe_enabled(struct drm_device *dev, int pipe)
376 {
377 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
378
379 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
380 /* Locking is horribly broken here, but whatever. */
381 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
383
384 return intel_crtc->active;
385 } else {
386 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
387 }
388 }
389
390 /* Called from drm generic code, passed a 'crtc', which
391 * we use as a pipe index
392 */
393 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
394 {
395 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
396 unsigned long high_frame;
397 unsigned long low_frame;
398 u32 high1, high2, low;
399
400 if (!i915_pipe_enabled(dev, pipe)) {
401 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
402 "pipe %c\n", pipe_name(pipe));
403 return 0;
404 }
405
406 high_frame = PIPEFRAME(pipe);
407 low_frame = PIPEFRAMEPIXEL(pipe);
408
409 /*
410 * High & low register fields aren't synchronized, so make sure
411 * we get a low value that's stable across two reads of the high
412 * register.
413 */
414 do {
415 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
416 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
417 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
418 } while (high1 != high2);
419
420 high1 >>= PIPE_FRAME_HIGH_SHIFT;
421 low >>= PIPE_FRAME_LOW_SHIFT;
422 return (high1 << 8) | low;
423 }
424
425 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
426 {
427 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
428 int reg = PIPE_FRMCOUNT_GM45(pipe);
429
430 if (!i915_pipe_enabled(dev, pipe)) {
431 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
432 "pipe %c\n", pipe_name(pipe));
433 return 0;
434 }
435
436 return I915_READ(reg);
437 }
438
439 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
440 int *vpos, int *hpos)
441 {
442 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
443 u32 vbl = 0, position = 0;
444 int vbl_start, vbl_end, htotal, vtotal;
445 bool in_vbl = true;
446 int ret = 0;
447 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
448 pipe);
449
450 if (!i915_pipe_enabled(dev, pipe)) {
451 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
452 "pipe %c\n", pipe_name(pipe));
453 return 0;
454 }
455
456 /* Get vtotal. */
457 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
458
459 if (INTEL_INFO(dev)->gen >= 4) {
460 /* No obvious pixelcount register. Only query vertical
461 * scanout position from Display scan line register.
462 */
463 position = I915_READ(PIPEDSL(pipe));
464
465 /* Decode into vertical scanout position. Don't have
466 * horizontal scanout position.
467 */
468 *vpos = position & 0x1fff;
469 *hpos = 0;
470 } else {
471 /* Have access to pixelcount since start of frame.
472 * We can split this into vertical and horizontal
473 * scanout position.
474 */
475 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
476
477 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
478 *vpos = position / htotal;
479 *hpos = position - (*vpos * htotal);
480 }
481
482 /* Query vblank area. */
483 vbl = I915_READ(VBLANK(cpu_transcoder));
484
485 /* Test position against vblank region. */
486 vbl_start = vbl & 0x1fff;
487 vbl_end = (vbl >> 16) & 0x1fff;
488
489 if ((*vpos < vbl_start) || (*vpos > vbl_end))
490 in_vbl = false;
491
492 /* Inside "upper part" of vblank area? Apply corrective offset: */
493 if (in_vbl && (*vpos >= vbl_start))
494 *vpos = *vpos - vtotal;
495
496 /* Readouts valid? */
497 if (vbl > 0)
498 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
499
500 /* In vblank? */
501 if (in_vbl)
502 ret |= DRM_SCANOUTPOS_INVBL;
503
504 return ret;
505 }
506
507 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
508 int *max_error,
509 struct timeval *vblank_time,
510 unsigned flags)
511 {
512 struct drm_crtc *crtc;
513
514 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
515 DRM_ERROR("Invalid crtc %d\n", pipe);
516 return -EINVAL;
517 }
518
519 /* Get drm_crtc to timestamp: */
520 crtc = intel_get_crtc_for_pipe(dev, pipe);
521 if (crtc == NULL) {
522 DRM_ERROR("Invalid crtc %d\n", pipe);
523 return -EINVAL;
524 }
525
526 if (!crtc->enabled) {
527 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
528 return -EBUSY;
529 }
530
531 /* Helper routine in DRM core does all the work: */
532 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
533 vblank_time, flags,
534 crtc);
535 }
536
537 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
538 {
539 enum drm_connector_status old_status;
540
541 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
542 old_status = connector->status;
543
544 connector->status = connector->funcs->detect(connector, false);
545 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
546 connector->base.id,
547 drm_get_connector_name(connector),
548 old_status, connector->status);
549 return (old_status != connector->status);
550 }
551
552 /*
553 * Handle hotplug events outside the interrupt handler proper.
554 */
555 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
556
557 static void i915_hotplug_work_func(struct work_struct *work)
558 {
559 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
560 hotplug_work);
561 struct drm_device *dev = dev_priv->dev;
562 struct drm_mode_config *mode_config = &dev->mode_config;
563 struct intel_connector *intel_connector;
564 struct intel_encoder *intel_encoder;
565 struct drm_connector *connector;
566 unsigned long irqflags;
567 bool hpd_disabled = false;
568 bool changed = false;
569 u32 hpd_event_bits;
570
571 /* HPD irq before everything is fully set up. */
572 if (!dev_priv->enable_hotplug_processing)
573 return;
574
575 mutex_lock(&mode_config->mutex);
576 DRM_DEBUG_KMS("running encoder hotplug functions\n");
577
578 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
579
580 hpd_event_bits = dev_priv->hpd_event_bits;
581 dev_priv->hpd_event_bits = 0;
582 list_for_each_entry(connector, &mode_config->connector_list, head) {
583 intel_connector = to_intel_connector(connector);
584 intel_encoder = intel_connector->encoder;
585 if (intel_encoder->hpd_pin > HPD_NONE &&
586 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
587 connector->polled == DRM_CONNECTOR_POLL_HPD) {
588 DRM_INFO("HPD interrupt storm detected on connector %s: "
589 "switching from hotplug detection to polling\n",
590 drm_get_connector_name(connector));
591 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
592 connector->polled = DRM_CONNECTOR_POLL_CONNECT
593 | DRM_CONNECTOR_POLL_DISCONNECT;
594 hpd_disabled = true;
595 }
596 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
597 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
598 drm_get_connector_name(connector), intel_encoder->hpd_pin);
599 }
600 }
601 /* if there were no outputs to poll, poll was disabled,
602 * therefore make sure it's enabled when disabling HPD on
603 * some connectors */
604 if (hpd_disabled) {
605 drm_kms_helper_poll_enable(dev);
606 mod_timer(&dev_priv->hotplug_reenable_timer,
607 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
608 }
609
610 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
611
612 list_for_each_entry(connector, &mode_config->connector_list, head) {
613 intel_connector = to_intel_connector(connector);
614 intel_encoder = intel_connector->encoder;
615 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
616 if (intel_encoder->hot_plug)
617 intel_encoder->hot_plug(intel_encoder);
618 if (intel_hpd_irq_event(dev, connector))
619 changed = true;
620 }
621 }
622 mutex_unlock(&mode_config->mutex);
623
624 if (changed)
625 drm_kms_helper_hotplug_event(dev);
626 }
627
628 static void ironlake_handle_rps_change(struct drm_device *dev)
629 {
630 drm_i915_private_t *dev_priv = dev->dev_private;
631 u32 busy_up, busy_down, max_avg, min_avg;
632 u8 new_delay;
633 unsigned long flags;
634
635 spin_lock_irqsave(&mchdev_lock, flags);
636
637 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
638
639 new_delay = dev_priv->ips.cur_delay;
640
641 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
642 busy_up = I915_READ(RCPREVBSYTUPAVG);
643 busy_down = I915_READ(RCPREVBSYTDNAVG);
644 max_avg = I915_READ(RCBMAXAVG);
645 min_avg = I915_READ(RCBMINAVG);
646
647 /* Handle RCS change request from hw */
648 if (busy_up > max_avg) {
649 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
650 new_delay = dev_priv->ips.cur_delay - 1;
651 if (new_delay < dev_priv->ips.max_delay)
652 new_delay = dev_priv->ips.max_delay;
653 } else if (busy_down < min_avg) {
654 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
655 new_delay = dev_priv->ips.cur_delay + 1;
656 if (new_delay > dev_priv->ips.min_delay)
657 new_delay = dev_priv->ips.min_delay;
658 }
659
660 if (ironlake_set_drps(dev, new_delay))
661 dev_priv->ips.cur_delay = new_delay;
662
663 spin_unlock_irqrestore(&mchdev_lock, flags);
664
665 return;
666 }
667
668 static void notify_ring(struct drm_device *dev,
669 struct intel_ring_buffer *ring)
670 {
671 struct drm_i915_private *dev_priv = dev->dev_private;
672
673 if (ring->obj == NULL)
674 return;
675
676 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
677
678 wake_up_all(&ring->irq_queue);
679 if (i915_enable_hangcheck) {
680 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
681 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
682 }
683 }
684
685 static void gen6_pm_rps_work(struct work_struct *work)
686 {
687 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
688 rps.work);
689 u32 pm_iir, pm_imr;
690 u8 new_delay;
691
692 spin_lock_irq(&dev_priv->rps.lock);
693 pm_iir = dev_priv->rps.pm_iir;
694 dev_priv->rps.pm_iir = 0;
695 pm_imr = I915_READ(GEN6_PMIMR);
696 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
697 I915_WRITE(GEN6_PMIMR, pm_imr & ~GEN6_PM_RPS_EVENTS);
698 spin_unlock_irq(&dev_priv->rps.lock);
699
700 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
701 return;
702
703 mutex_lock(&dev_priv->rps.hw_lock);
704
705 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
706 new_delay = dev_priv->rps.cur_delay + 1;
707
708 /*
709 * For better performance, jump directly
710 * to RPe if we're below it.
711 */
712 if (IS_VALLEYVIEW(dev_priv->dev) &&
713 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
714 new_delay = dev_priv->rps.rpe_delay;
715 } else
716 new_delay = dev_priv->rps.cur_delay - 1;
717
718 /* sysfs frequency interfaces may have snuck in while servicing the
719 * interrupt
720 */
721 if (new_delay >= dev_priv->rps.min_delay &&
722 new_delay <= dev_priv->rps.max_delay) {
723 if (IS_VALLEYVIEW(dev_priv->dev))
724 valleyview_set_rps(dev_priv->dev, new_delay);
725 else
726 gen6_set_rps(dev_priv->dev, new_delay);
727 }
728
729 if (IS_VALLEYVIEW(dev_priv->dev)) {
730 /*
731 * On VLV, when we enter RC6 we may not be at the minimum
732 * voltage level, so arm a timer to check. It should only
733 * fire when there's activity or once after we've entered
734 * RC6, and then won't be re-armed until the next RPS interrupt.
735 */
736 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
737 msecs_to_jiffies(100));
738 }
739
740 mutex_unlock(&dev_priv->rps.hw_lock);
741 }
742
743
744 /**
745 * ivybridge_parity_work - Workqueue called when a parity error interrupt
746 * occurred.
747 * @work: workqueue struct
748 *
749 * Doesn't actually do anything except notify userspace. As a consequence of
750 * this event, userspace should try to remap the bad rows since statistically
751 * it is likely the same row is more likely to go bad again.
752 */
753 static void ivybridge_parity_work(struct work_struct *work)
754 {
755 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
756 l3_parity.error_work);
757 u32 error_status, row, bank, subbank;
758 char *parity_event[5];
759 uint32_t misccpctl;
760 unsigned long flags;
761
762 /* We must turn off DOP level clock gating to access the L3 registers.
763 * In order to prevent a get/put style interface, acquire struct mutex
764 * any time we access those registers.
765 */
766 mutex_lock(&dev_priv->dev->struct_mutex);
767
768 misccpctl = I915_READ(GEN7_MISCCPCTL);
769 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
770 POSTING_READ(GEN7_MISCCPCTL);
771
772 error_status = I915_READ(GEN7_L3CDERRST1);
773 row = GEN7_PARITY_ERROR_ROW(error_status);
774 bank = GEN7_PARITY_ERROR_BANK(error_status);
775 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
776
777 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
778 GEN7_L3CDERRST1_ENABLE);
779 POSTING_READ(GEN7_L3CDERRST1);
780
781 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
782
783 spin_lock_irqsave(&dev_priv->irq_lock, flags);
784 dev_priv->gt_irq_mask &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
785 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
786 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
787
788 mutex_unlock(&dev_priv->dev->struct_mutex);
789
790 parity_event[0] = "L3_PARITY_ERROR=1";
791 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
792 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
793 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
794 parity_event[4] = NULL;
795
796 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
797 KOBJ_CHANGE, parity_event);
798
799 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
800 row, bank, subbank);
801
802 kfree(parity_event[3]);
803 kfree(parity_event[2]);
804 kfree(parity_event[1]);
805 }
806
807 static void ivybridge_handle_parity_error(struct drm_device *dev)
808 {
809 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
810 unsigned long flags;
811
812 if (!HAS_L3_GPU_CACHE(dev))
813 return;
814
815 spin_lock_irqsave(&dev_priv->irq_lock, flags);
816 dev_priv->gt_irq_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
817 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
818 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
819
820 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
821 }
822
823 static void snb_gt_irq_handler(struct drm_device *dev,
824 struct drm_i915_private *dev_priv,
825 u32 gt_iir)
826 {
827
828 if (gt_iir &
829 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
830 notify_ring(dev, &dev_priv->ring[RCS]);
831 if (gt_iir & GT_BSD_USER_INTERRUPT)
832 notify_ring(dev, &dev_priv->ring[VCS]);
833 if (gt_iir & GT_BLT_USER_INTERRUPT)
834 notify_ring(dev, &dev_priv->ring[BCS]);
835
836 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
837 GT_BSD_CS_ERROR_INTERRUPT |
838 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
839 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
840 i915_handle_error(dev, false);
841 }
842
843 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
844 ivybridge_handle_parity_error(dev);
845 }
846
847 /* Legacy way of handling PM interrupts */
848 static void gen6_queue_rps_work(struct drm_i915_private *dev_priv,
849 u32 pm_iir)
850 {
851 unsigned long flags;
852
853 /*
854 * IIR bits should never already be set because IMR should
855 * prevent an interrupt from being shown in IIR. The warning
856 * displays a case where we've unsafely cleared
857 * dev_priv->rps.pm_iir. Although missing an interrupt of the same
858 * type is not a problem, it displays a problem in the logic.
859 *
860 * The mask bit in IMR is cleared by dev_priv->rps.work.
861 */
862
863 spin_lock_irqsave(&dev_priv->rps.lock, flags);
864 dev_priv->rps.pm_iir |= pm_iir;
865 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
866 POSTING_READ(GEN6_PMIMR);
867 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
868
869 queue_work(dev_priv->wq, &dev_priv->rps.work);
870 }
871
872 #define HPD_STORM_DETECT_PERIOD 1000
873 #define HPD_STORM_THRESHOLD 5
874
875 static inline void intel_hpd_irq_handler(struct drm_device *dev,
876 u32 hotplug_trigger,
877 const u32 *hpd)
878 {
879 drm_i915_private_t *dev_priv = dev->dev_private;
880 int i;
881 bool storm_detected = false;
882
883 if (!hotplug_trigger)
884 return;
885
886 spin_lock(&dev_priv->irq_lock);
887 for (i = 1; i < HPD_NUM_PINS; i++) {
888
889 if (!(hpd[i] & hotplug_trigger) ||
890 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
891 continue;
892
893 dev_priv->hpd_event_bits |= (1 << i);
894 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
895 dev_priv->hpd_stats[i].hpd_last_jiffies
896 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
897 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
898 dev_priv->hpd_stats[i].hpd_cnt = 0;
899 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
900 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
901 dev_priv->hpd_event_bits &= ~(1 << i);
902 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
903 storm_detected = true;
904 } else {
905 dev_priv->hpd_stats[i].hpd_cnt++;
906 }
907 }
908
909 if (storm_detected)
910 dev_priv->display.hpd_irq_setup(dev);
911 spin_unlock(&dev_priv->irq_lock);
912
913 queue_work(dev_priv->wq,
914 &dev_priv->hotplug_work);
915 }
916
917 static void gmbus_irq_handler(struct drm_device *dev)
918 {
919 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
920
921 wake_up_all(&dev_priv->gmbus_wait_queue);
922 }
923
924 static void dp_aux_irq_handler(struct drm_device *dev)
925 {
926 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
927
928 wake_up_all(&dev_priv->gmbus_wait_queue);
929 }
930
931 /* Unlike gen6_queue_rps_work() from which this function is originally derived,
932 * we must be able to deal with other PM interrupts. This is complicated because
933 * of the way in which we use the masks to defer the RPS work (which for
934 * posterity is necessary because of forcewake).
935 */
936 static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
937 u32 pm_iir)
938 {
939 unsigned long flags;
940
941 spin_lock_irqsave(&dev_priv->rps.lock, flags);
942 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
943 if (dev_priv->rps.pm_iir) {
944 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
945 /* never want to mask useful interrupts. (also posting read) */
946 WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
947 /* TODO: if queue_work is slow, move it out of the spinlock */
948 queue_work(dev_priv->wq, &dev_priv->rps.work);
949 }
950 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
951
952 if (pm_iir & ~GEN6_PM_RPS_EVENTS) {
953 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
954 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
955
956 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
957 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
958 i915_handle_error(dev_priv->dev, false);
959 }
960 }
961 }
962
963 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
964 {
965 struct drm_device *dev = (struct drm_device *) arg;
966 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
967 u32 iir, gt_iir, pm_iir;
968 irqreturn_t ret = IRQ_NONE;
969 unsigned long irqflags;
970 int pipe;
971 u32 pipe_stats[I915_MAX_PIPES];
972
973 atomic_inc(&dev_priv->irq_received);
974
975 while (true) {
976 iir = I915_READ(VLV_IIR);
977 gt_iir = I915_READ(GTIIR);
978 pm_iir = I915_READ(GEN6_PMIIR);
979
980 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
981 goto out;
982
983 ret = IRQ_HANDLED;
984
985 snb_gt_irq_handler(dev, dev_priv, gt_iir);
986
987 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
988 for_each_pipe(pipe) {
989 int reg = PIPESTAT(pipe);
990 pipe_stats[pipe] = I915_READ(reg);
991
992 /*
993 * Clear the PIPE*STAT regs before the IIR
994 */
995 if (pipe_stats[pipe] & 0x8000ffff) {
996 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
997 DRM_DEBUG_DRIVER("pipe %c underrun\n",
998 pipe_name(pipe));
999 I915_WRITE(reg, pipe_stats[pipe]);
1000 }
1001 }
1002 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1003
1004 for_each_pipe(pipe) {
1005 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1006 drm_handle_vblank(dev, pipe);
1007
1008 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1009 intel_prepare_page_flip(dev, pipe);
1010 intel_finish_page_flip(dev, pipe);
1011 }
1012 }
1013
1014 /* Consume port. Then clear IIR or we'll miss events */
1015 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1016 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1017 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1018
1019 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1020 hotplug_status);
1021
1022 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1023
1024 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1025 I915_READ(PORT_HOTPLUG_STAT);
1026 }
1027
1028 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1029 gmbus_irq_handler(dev);
1030
1031 if (pm_iir & GEN6_PM_RPS_EVENTS)
1032 gen6_queue_rps_work(dev_priv, pm_iir);
1033
1034 I915_WRITE(GTIIR, gt_iir);
1035 I915_WRITE(GEN6_PMIIR, pm_iir);
1036 I915_WRITE(VLV_IIR, iir);
1037 }
1038
1039 out:
1040 return ret;
1041 }
1042
1043 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1044 {
1045 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1046 int pipe;
1047 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1048
1049 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1050
1051 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1052 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1053 SDE_AUDIO_POWER_SHIFT);
1054 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1055 port_name(port));
1056 }
1057
1058 if (pch_iir & SDE_AUX_MASK)
1059 dp_aux_irq_handler(dev);
1060
1061 if (pch_iir & SDE_GMBUS)
1062 gmbus_irq_handler(dev);
1063
1064 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1065 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1066
1067 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1068 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1069
1070 if (pch_iir & SDE_POISON)
1071 DRM_ERROR("PCH poison interrupt\n");
1072
1073 if (pch_iir & SDE_FDI_MASK)
1074 for_each_pipe(pipe)
1075 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1076 pipe_name(pipe),
1077 I915_READ(FDI_RX_IIR(pipe)));
1078
1079 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1080 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1081
1082 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1083 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1084
1085 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1086 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1087 false))
1088 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1089
1090 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1091 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1092 false))
1093 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1094 }
1095
1096 static void ivb_err_int_handler(struct drm_device *dev)
1097 {
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 u32 err_int = I915_READ(GEN7_ERR_INT);
1100
1101 if (err_int & ERR_INT_POISON)
1102 DRM_ERROR("Poison interrupt\n");
1103
1104 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1105 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1106 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1107
1108 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1109 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1110 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1111
1112 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1113 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1114 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1115
1116 I915_WRITE(GEN7_ERR_INT, err_int);
1117 }
1118
1119 static void cpt_serr_int_handler(struct drm_device *dev)
1120 {
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122 u32 serr_int = I915_READ(SERR_INT);
1123
1124 if (serr_int & SERR_INT_POISON)
1125 DRM_ERROR("PCH poison interrupt\n");
1126
1127 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1128 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1129 false))
1130 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1131
1132 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1133 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1134 false))
1135 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1136
1137 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1138 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1139 false))
1140 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1141
1142 I915_WRITE(SERR_INT, serr_int);
1143 }
1144
1145 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1146 {
1147 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1148 int pipe;
1149 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1150
1151 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1152
1153 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1154 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1155 SDE_AUDIO_POWER_SHIFT_CPT);
1156 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1157 port_name(port));
1158 }
1159
1160 if (pch_iir & SDE_AUX_MASK_CPT)
1161 dp_aux_irq_handler(dev);
1162
1163 if (pch_iir & SDE_GMBUS_CPT)
1164 gmbus_irq_handler(dev);
1165
1166 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1167 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1168
1169 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1170 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1171
1172 if (pch_iir & SDE_FDI_MASK_CPT)
1173 for_each_pipe(pipe)
1174 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1175 pipe_name(pipe),
1176 I915_READ(FDI_RX_IIR(pipe)));
1177
1178 if (pch_iir & SDE_ERROR_CPT)
1179 cpt_serr_int_handler(dev);
1180 }
1181
1182 static irqreturn_t ivybridge_irq_handler(int irq, void *arg)
1183 {
1184 struct drm_device *dev = (struct drm_device *) arg;
1185 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1186 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0;
1187 irqreturn_t ret = IRQ_NONE;
1188 int i;
1189
1190 atomic_inc(&dev_priv->irq_received);
1191
1192 /* We get interrupts on unclaimed registers, so check for this before we
1193 * do any I915_{READ,WRITE}. */
1194 if (IS_HASWELL(dev) &&
1195 (I915_READ_NOTRACE(FPGA_DBG) & FPGA_DBG_RM_NOCLAIM)) {
1196 DRM_ERROR("Unclaimed register before interrupt\n");
1197 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
1198 }
1199
1200 /* disable master interrupt before clearing iir */
1201 de_ier = I915_READ(DEIER);
1202 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1203
1204 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1205 * interrupts will will be stored on its back queue, and then we'll be
1206 * able to process them after we restore SDEIER (as soon as we restore
1207 * it, we'll get an interrupt if SDEIIR still has something to process
1208 * due to its back queue). */
1209 if (!HAS_PCH_NOP(dev)) {
1210 sde_ier = I915_READ(SDEIER);
1211 I915_WRITE(SDEIER, 0);
1212 POSTING_READ(SDEIER);
1213 }
1214
1215 /* On Haswell, also mask ERR_INT because we don't want to risk
1216 * generating "unclaimed register" interrupts from inside the interrupt
1217 * handler. */
1218 if (IS_HASWELL(dev)) {
1219 spin_lock(&dev_priv->irq_lock);
1220 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1221 spin_unlock(&dev_priv->irq_lock);
1222 }
1223
1224 gt_iir = I915_READ(GTIIR);
1225 if (gt_iir) {
1226 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1227 I915_WRITE(GTIIR, gt_iir);
1228 ret = IRQ_HANDLED;
1229 }
1230
1231 de_iir = I915_READ(DEIIR);
1232 if (de_iir) {
1233 if (de_iir & DE_ERR_INT_IVB)
1234 ivb_err_int_handler(dev);
1235
1236 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1237 dp_aux_irq_handler(dev);
1238
1239 if (de_iir & DE_GSE_IVB)
1240 intel_opregion_asle_intr(dev);
1241
1242 for (i = 0; i < 3; i++) {
1243 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1244 drm_handle_vblank(dev, i);
1245 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1246 intel_prepare_page_flip(dev, i);
1247 intel_finish_page_flip_plane(dev, i);
1248 }
1249 }
1250
1251 /* check event from PCH */
1252 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1253 u32 pch_iir = I915_READ(SDEIIR);
1254
1255 cpt_irq_handler(dev, pch_iir);
1256
1257 /* clear PCH hotplug event before clear CPU irq */
1258 I915_WRITE(SDEIIR, pch_iir);
1259 }
1260
1261 I915_WRITE(DEIIR, de_iir);
1262 ret = IRQ_HANDLED;
1263 }
1264
1265 pm_iir = I915_READ(GEN6_PMIIR);
1266 if (pm_iir) {
1267 if (IS_HASWELL(dev))
1268 hsw_pm_irq_handler(dev_priv, pm_iir);
1269 else if (pm_iir & GEN6_PM_RPS_EVENTS)
1270 gen6_queue_rps_work(dev_priv, pm_iir);
1271 I915_WRITE(GEN6_PMIIR, pm_iir);
1272 ret = IRQ_HANDLED;
1273 }
1274
1275 if (IS_HASWELL(dev)) {
1276 spin_lock(&dev_priv->irq_lock);
1277 if (ivb_can_enable_err_int(dev))
1278 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1279 spin_unlock(&dev_priv->irq_lock);
1280 }
1281
1282 I915_WRITE(DEIER, de_ier);
1283 POSTING_READ(DEIER);
1284 if (!HAS_PCH_NOP(dev)) {
1285 I915_WRITE(SDEIER, sde_ier);
1286 POSTING_READ(SDEIER);
1287 }
1288
1289 return ret;
1290 }
1291
1292 static void ilk_gt_irq_handler(struct drm_device *dev,
1293 struct drm_i915_private *dev_priv,
1294 u32 gt_iir)
1295 {
1296 if (gt_iir &
1297 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1298 notify_ring(dev, &dev_priv->ring[RCS]);
1299 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1300 notify_ring(dev, &dev_priv->ring[VCS]);
1301 }
1302
1303 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1304 {
1305 struct drm_device *dev = (struct drm_device *) arg;
1306 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1307 int ret = IRQ_NONE;
1308 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier;
1309
1310 atomic_inc(&dev_priv->irq_received);
1311
1312 /* disable master interrupt before clearing iir */
1313 de_ier = I915_READ(DEIER);
1314 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1315 POSTING_READ(DEIER);
1316
1317 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1318 * interrupts will will be stored on its back queue, and then we'll be
1319 * able to process them after we restore SDEIER (as soon as we restore
1320 * it, we'll get an interrupt if SDEIIR still has something to process
1321 * due to its back queue). */
1322 sde_ier = I915_READ(SDEIER);
1323 I915_WRITE(SDEIER, 0);
1324 POSTING_READ(SDEIER);
1325
1326 de_iir = I915_READ(DEIIR);
1327 gt_iir = I915_READ(GTIIR);
1328 pm_iir = I915_READ(GEN6_PMIIR);
1329
1330 if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0))
1331 goto done;
1332
1333 ret = IRQ_HANDLED;
1334
1335 if (IS_GEN5(dev))
1336 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1337 else
1338 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1339
1340 if (de_iir & DE_AUX_CHANNEL_A)
1341 dp_aux_irq_handler(dev);
1342
1343 if (de_iir & DE_GSE)
1344 intel_opregion_asle_intr(dev);
1345
1346 if (de_iir & DE_PIPEA_VBLANK)
1347 drm_handle_vblank(dev, 0);
1348
1349 if (de_iir & DE_PIPEB_VBLANK)
1350 drm_handle_vblank(dev, 1);
1351
1352 if (de_iir & DE_POISON)
1353 DRM_ERROR("Poison interrupt\n");
1354
1355 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1356 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1357 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1358
1359 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1360 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1361 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1362
1363 if (de_iir & DE_PLANEA_FLIP_DONE) {
1364 intel_prepare_page_flip(dev, 0);
1365 intel_finish_page_flip_plane(dev, 0);
1366 }
1367
1368 if (de_iir & DE_PLANEB_FLIP_DONE) {
1369 intel_prepare_page_flip(dev, 1);
1370 intel_finish_page_flip_plane(dev, 1);
1371 }
1372
1373 /* check event from PCH */
1374 if (de_iir & DE_PCH_EVENT) {
1375 u32 pch_iir = I915_READ(SDEIIR);
1376
1377 if (HAS_PCH_CPT(dev))
1378 cpt_irq_handler(dev, pch_iir);
1379 else
1380 ibx_irq_handler(dev, pch_iir);
1381
1382 /* should clear PCH hotplug event before clear CPU irq */
1383 I915_WRITE(SDEIIR, pch_iir);
1384 }
1385
1386 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1387 ironlake_handle_rps_change(dev);
1388
1389 if (IS_GEN6(dev) && pm_iir & GEN6_PM_RPS_EVENTS)
1390 gen6_queue_rps_work(dev_priv, pm_iir);
1391
1392 I915_WRITE(GTIIR, gt_iir);
1393 I915_WRITE(DEIIR, de_iir);
1394 I915_WRITE(GEN6_PMIIR, pm_iir);
1395
1396 done:
1397 I915_WRITE(DEIER, de_ier);
1398 POSTING_READ(DEIER);
1399 I915_WRITE(SDEIER, sde_ier);
1400 POSTING_READ(SDEIER);
1401
1402 return ret;
1403 }
1404
1405 /**
1406 * i915_error_work_func - do process context error handling work
1407 * @work: work struct
1408 *
1409 * Fire an error uevent so userspace can see that a hang or error
1410 * was detected.
1411 */
1412 static void i915_error_work_func(struct work_struct *work)
1413 {
1414 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1415 work);
1416 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1417 gpu_error);
1418 struct drm_device *dev = dev_priv->dev;
1419 struct intel_ring_buffer *ring;
1420 char *error_event[] = { "ERROR=1", NULL };
1421 char *reset_event[] = { "RESET=1", NULL };
1422 char *reset_done_event[] = { "ERROR=0", NULL };
1423 int i, ret;
1424
1425 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1426
1427 /*
1428 * Note that there's only one work item which does gpu resets, so we
1429 * need not worry about concurrent gpu resets potentially incrementing
1430 * error->reset_counter twice. We only need to take care of another
1431 * racing irq/hangcheck declaring the gpu dead for a second time. A
1432 * quick check for that is good enough: schedule_work ensures the
1433 * correct ordering between hang detection and this work item, and since
1434 * the reset in-progress bit is only ever set by code outside of this
1435 * work we don't need to worry about any other races.
1436 */
1437 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1438 DRM_DEBUG_DRIVER("resetting chip\n");
1439 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1440 reset_event);
1441
1442 ret = i915_reset(dev);
1443
1444 if (ret == 0) {
1445 /*
1446 * After all the gem state is reset, increment the reset
1447 * counter and wake up everyone waiting for the reset to
1448 * complete.
1449 *
1450 * Since unlock operations are a one-sided barrier only,
1451 * we need to insert a barrier here to order any seqno
1452 * updates before
1453 * the counter increment.
1454 */
1455 smp_mb__before_atomic_inc();
1456 atomic_inc(&dev_priv->gpu_error.reset_counter);
1457
1458 kobject_uevent_env(&dev->primary->kdev.kobj,
1459 KOBJ_CHANGE, reset_done_event);
1460 } else {
1461 atomic_set(&error->reset_counter, I915_WEDGED);
1462 }
1463
1464 for_each_ring(ring, dev_priv, i)
1465 wake_up_all(&ring->irq_queue);
1466
1467 intel_display_handle_reset(dev);
1468
1469 wake_up_all(&dev_priv->gpu_error.reset_queue);
1470 }
1471 }
1472
1473 /* NB: please notice the memset */
1474 static void i915_get_extra_instdone(struct drm_device *dev,
1475 uint32_t *instdone)
1476 {
1477 struct drm_i915_private *dev_priv = dev->dev_private;
1478 memset(instdone, 0, sizeof(*instdone) * I915_NUM_INSTDONE_REG);
1479
1480 switch(INTEL_INFO(dev)->gen) {
1481 case 2:
1482 case 3:
1483 instdone[0] = I915_READ(INSTDONE);
1484 break;
1485 case 4:
1486 case 5:
1487 case 6:
1488 instdone[0] = I915_READ(INSTDONE_I965);
1489 instdone[1] = I915_READ(INSTDONE1);
1490 break;
1491 default:
1492 WARN_ONCE(1, "Unsupported platform\n");
1493 case 7:
1494 instdone[0] = I915_READ(GEN7_INSTDONE_1);
1495 instdone[1] = I915_READ(GEN7_SC_INSTDONE);
1496 instdone[2] = I915_READ(GEN7_SAMPLER_INSTDONE);
1497 instdone[3] = I915_READ(GEN7_ROW_INSTDONE);
1498 break;
1499 }
1500 }
1501
1502 #ifdef CONFIG_DEBUG_FS
1503 static struct drm_i915_error_object *
1504 i915_error_object_create_sized(struct drm_i915_private *dev_priv,
1505 struct drm_i915_gem_object *src,
1506 const int num_pages)
1507 {
1508 struct drm_i915_error_object *dst;
1509 int i;
1510 u32 reloc_offset;
1511
1512 if (src == NULL || src->pages == NULL)
1513 return NULL;
1514
1515 dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), GFP_ATOMIC);
1516 if (dst == NULL)
1517 return NULL;
1518
1519 reloc_offset = src->gtt_offset;
1520 for (i = 0; i < num_pages; i++) {
1521 unsigned long flags;
1522 void *d;
1523
1524 d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
1525 if (d == NULL)
1526 goto unwind;
1527
1528 local_irq_save(flags);
1529 if (reloc_offset < dev_priv->gtt.mappable_end &&
1530 src->has_global_gtt_mapping) {
1531 void __iomem *s;
1532
1533 /* Simply ignore tiling or any overlapping fence.
1534 * It's part of the error state, and this hopefully
1535 * captures what the GPU read.
1536 */
1537
1538 s = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
1539 reloc_offset);
1540 memcpy_fromio(d, s, PAGE_SIZE);
1541 io_mapping_unmap_atomic(s);
1542 } else if (src->stolen) {
1543 unsigned long offset;
1544
1545 offset = dev_priv->mm.stolen_base;
1546 offset += src->stolen->start;
1547 offset += i << PAGE_SHIFT;
1548
1549 memcpy_fromio(d, (void __iomem *) offset, PAGE_SIZE);
1550 } else {
1551 struct page *page;
1552 void *s;
1553
1554 page = i915_gem_object_get_page(src, i);
1555
1556 drm_clflush_pages(&page, 1);
1557
1558 s = kmap_atomic(page);
1559 memcpy(d, s, PAGE_SIZE);
1560 kunmap_atomic(s);
1561
1562 drm_clflush_pages(&page, 1);
1563 }
1564 local_irq_restore(flags);
1565
1566 dst->pages[i] = d;
1567
1568 reloc_offset += PAGE_SIZE;
1569 }
1570 dst->page_count = num_pages;
1571 dst->gtt_offset = src->gtt_offset;
1572
1573 return dst;
1574
1575 unwind:
1576 while (i--)
1577 kfree(dst->pages[i]);
1578 kfree(dst);
1579 return NULL;
1580 }
1581 #define i915_error_object_create(dev_priv, src) \
1582 i915_error_object_create_sized((dev_priv), (src), \
1583 (src)->base.size>>PAGE_SHIFT)
1584
1585 static void
1586 i915_error_object_free(struct drm_i915_error_object *obj)
1587 {
1588 int page;
1589
1590 if (obj == NULL)
1591 return;
1592
1593 for (page = 0; page < obj->page_count; page++)
1594 kfree(obj->pages[page]);
1595
1596 kfree(obj);
1597 }
1598
1599 void
1600 i915_error_state_free(struct kref *error_ref)
1601 {
1602 struct drm_i915_error_state *error = container_of(error_ref,
1603 typeof(*error), ref);
1604 int i;
1605
1606 for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
1607 i915_error_object_free(error->ring[i].batchbuffer);
1608 i915_error_object_free(error->ring[i].ringbuffer);
1609 i915_error_object_free(error->ring[i].ctx);
1610 kfree(error->ring[i].requests);
1611 }
1612
1613 kfree(error->active_bo);
1614 kfree(error->overlay);
1615 kfree(error->display);
1616 kfree(error);
1617 }
1618 static void capture_bo(struct drm_i915_error_buffer *err,
1619 struct drm_i915_gem_object *obj)
1620 {
1621 err->size = obj->base.size;
1622 err->name = obj->base.name;
1623 err->rseqno = obj->last_read_seqno;
1624 err->wseqno = obj->last_write_seqno;
1625 err->gtt_offset = obj->gtt_offset;
1626 err->read_domains = obj->base.read_domains;
1627 err->write_domain = obj->base.write_domain;
1628 err->fence_reg = obj->fence_reg;
1629 err->pinned = 0;
1630 if (obj->pin_count > 0)
1631 err->pinned = 1;
1632 if (obj->user_pin_count > 0)
1633 err->pinned = -1;
1634 err->tiling = obj->tiling_mode;
1635 err->dirty = obj->dirty;
1636 err->purgeable = obj->madv != I915_MADV_WILLNEED;
1637 err->ring = obj->ring ? obj->ring->id : -1;
1638 err->cache_level = obj->cache_level;
1639 }
1640
1641 static u32 capture_active_bo(struct drm_i915_error_buffer *err,
1642 int count, struct list_head *head)
1643 {
1644 struct drm_i915_gem_object *obj;
1645 int i = 0;
1646
1647 list_for_each_entry(obj, head, mm_list) {
1648 capture_bo(err++, obj);
1649 if (++i == count)
1650 break;
1651 }
1652
1653 return i;
1654 }
1655
1656 static u32 capture_pinned_bo(struct drm_i915_error_buffer *err,
1657 int count, struct list_head *head)
1658 {
1659 struct drm_i915_gem_object *obj;
1660 int i = 0;
1661
1662 list_for_each_entry(obj, head, global_list) {
1663 if (obj->pin_count == 0)
1664 continue;
1665
1666 capture_bo(err++, obj);
1667 if (++i == count)
1668 break;
1669 }
1670
1671 return i;
1672 }
1673
1674 static void i915_gem_record_fences(struct drm_device *dev,
1675 struct drm_i915_error_state *error)
1676 {
1677 struct drm_i915_private *dev_priv = dev->dev_private;
1678 int i;
1679
1680 /* Fences */
1681 switch (INTEL_INFO(dev)->gen) {
1682 case 7:
1683 case 6:
1684 for (i = 0; i < dev_priv->num_fence_regs; i++)
1685 error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
1686 break;
1687 case 5:
1688 case 4:
1689 for (i = 0; i < 16; i++)
1690 error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
1691 break;
1692 case 3:
1693 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
1694 for (i = 0; i < 8; i++)
1695 error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
1696 case 2:
1697 for (i = 0; i < 8; i++)
1698 error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
1699 break;
1700
1701 default:
1702 BUG();
1703 }
1704 }
1705
1706 static struct drm_i915_error_object *
1707 i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
1708 struct intel_ring_buffer *ring)
1709 {
1710 struct drm_i915_gem_object *obj;
1711 u32 seqno;
1712
1713 if (!ring->get_seqno)
1714 return NULL;
1715
1716 if (HAS_BROKEN_CS_TLB(dev_priv->dev)) {
1717 u32 acthd = I915_READ(ACTHD);
1718
1719 if (WARN_ON(ring->id != RCS))
1720 return NULL;
1721
1722 obj = ring->private;
1723 if (acthd >= obj->gtt_offset &&
1724 acthd < obj->gtt_offset + obj->base.size)
1725 return i915_error_object_create(dev_priv, obj);
1726 }
1727
1728 seqno = ring->get_seqno(ring, false);
1729 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
1730 if (obj->ring != ring)
1731 continue;
1732
1733 if (i915_seqno_passed(seqno, obj->last_read_seqno))
1734 continue;
1735
1736 if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
1737 continue;
1738
1739 /* We need to copy these to an anonymous buffer as the simplest
1740 * method to avoid being overwritten by userspace.
1741 */
1742 return i915_error_object_create(dev_priv, obj);
1743 }
1744
1745 return NULL;
1746 }
1747
1748 static void i915_record_ring_state(struct drm_device *dev,
1749 struct drm_i915_error_state *error,
1750 struct intel_ring_buffer *ring)
1751 {
1752 struct drm_i915_private *dev_priv = dev->dev_private;
1753
1754 if (INTEL_INFO(dev)->gen >= 6) {
1755 error->rc_psmi[ring->id] = I915_READ(ring->mmio_base + 0x50);
1756 error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring));
1757 error->semaphore_mboxes[ring->id][0]
1758 = I915_READ(RING_SYNC_0(ring->mmio_base));
1759 error->semaphore_mboxes[ring->id][1]
1760 = I915_READ(RING_SYNC_1(ring->mmio_base));
1761 error->semaphore_seqno[ring->id][0] = ring->sync_seqno[0];
1762 error->semaphore_seqno[ring->id][1] = ring->sync_seqno[1];
1763 }
1764
1765 if (INTEL_INFO(dev)->gen >= 4) {
1766 error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base));
1767 error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base));
1768 error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base));
1769 error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base));
1770 error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base));
1771 if (ring->id == RCS)
1772 error->bbaddr = I915_READ64(BB_ADDR);
1773 } else {
1774 error->faddr[ring->id] = I915_READ(DMA_FADD_I8XX);
1775 error->ipeir[ring->id] = I915_READ(IPEIR);
1776 error->ipehr[ring->id] = I915_READ(IPEHR);
1777 error->instdone[ring->id] = I915_READ(INSTDONE);
1778 }
1779
1780 error->waiting[ring->id] = waitqueue_active(&ring->irq_queue);
1781 error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base));
1782 error->seqno[ring->id] = ring->get_seqno(ring, false);
1783 error->acthd[ring->id] = intel_ring_get_active_head(ring);
1784 error->head[ring->id] = I915_READ_HEAD(ring);
1785 error->tail[ring->id] = I915_READ_TAIL(ring);
1786 error->ctl[ring->id] = I915_READ_CTL(ring);
1787
1788 error->cpu_ring_head[ring->id] = ring->head;
1789 error->cpu_ring_tail[ring->id] = ring->tail;
1790 }
1791
1792
1793 static void i915_gem_record_active_context(struct intel_ring_buffer *ring,
1794 struct drm_i915_error_state *error,
1795 struct drm_i915_error_ring *ering)
1796 {
1797 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1798 struct drm_i915_gem_object *obj;
1799
1800 /* Currently render ring is the only HW context user */
1801 if (ring->id != RCS || !error->ccid)
1802 return;
1803
1804 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1805 if ((error->ccid & PAGE_MASK) == obj->gtt_offset) {
1806 ering->ctx = i915_error_object_create_sized(dev_priv,
1807 obj, 1);
1808 break;
1809 }
1810 }
1811 }
1812
1813 static void i915_gem_record_rings(struct drm_device *dev,
1814 struct drm_i915_error_state *error)
1815 {
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 struct intel_ring_buffer *ring;
1818 struct drm_i915_gem_request *request;
1819 int i, count;
1820
1821 for_each_ring(ring, dev_priv, i) {
1822 i915_record_ring_state(dev, error, ring);
1823
1824 error->ring[i].batchbuffer =
1825 i915_error_first_batchbuffer(dev_priv, ring);
1826
1827 error->ring[i].ringbuffer =
1828 i915_error_object_create(dev_priv, ring->obj);
1829
1830
1831 i915_gem_record_active_context(ring, error, &error->ring[i]);
1832
1833 count = 0;
1834 list_for_each_entry(request, &ring->request_list, list)
1835 count++;
1836
1837 error->ring[i].num_requests = count;
1838 error->ring[i].requests =
1839 kmalloc(count*sizeof(struct drm_i915_error_request),
1840 GFP_ATOMIC);
1841 if (error->ring[i].requests == NULL) {
1842 error->ring[i].num_requests = 0;
1843 continue;
1844 }
1845
1846 count = 0;
1847 list_for_each_entry(request, &ring->request_list, list) {
1848 struct drm_i915_error_request *erq;
1849
1850 erq = &error->ring[i].requests[count++];
1851 erq->seqno = request->seqno;
1852 erq->jiffies = request->emitted_jiffies;
1853 erq->tail = request->tail;
1854 }
1855 }
1856 }
1857
1858 static void i915_gem_capture_buffers(struct drm_i915_private *dev_priv,
1859 struct drm_i915_error_state *error)
1860 {
1861 struct drm_i915_gem_object *obj;
1862 int i;
1863
1864 i = 0;
1865 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
1866 i++;
1867 error->active_bo_count = i;
1868 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1869 if (obj->pin_count)
1870 i++;
1871 error->pinned_bo_count = i - error->active_bo_count;
1872
1873 if (i) {
1874 error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
1875 GFP_ATOMIC);
1876 if (error->active_bo)
1877 error->pinned_bo =
1878 error->active_bo + error->active_bo_count;
1879 }
1880
1881 if (error->active_bo)
1882 error->active_bo_count =
1883 capture_active_bo(error->active_bo,
1884 error->active_bo_count,
1885 &dev_priv->mm.active_list);
1886
1887 if (error->pinned_bo)
1888 error->pinned_bo_count =
1889 capture_pinned_bo(error->pinned_bo,
1890 error->pinned_bo_count,
1891 &dev_priv->mm.bound_list);
1892 }
1893
1894 /**
1895 * i915_capture_error_state - capture an error record for later analysis
1896 * @dev: drm device
1897 *
1898 * Should be called when an error is detected (either a hang or an error
1899 * interrupt) to capture error state from the time of the error. Fills
1900 * out a structure which becomes available in debugfs for user level tools
1901 * to pick up.
1902 */
1903 static void i915_capture_error_state(struct drm_device *dev)
1904 {
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 struct drm_i915_error_state *error;
1907 unsigned long flags;
1908 int pipe;
1909
1910 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1911 error = dev_priv->gpu_error.first_error;
1912 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1913 if (error)
1914 return;
1915
1916 /* Account for pipe specific data like PIPE*STAT */
1917 error = kzalloc(sizeof(*error), GFP_ATOMIC);
1918 if (!error) {
1919 DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
1920 return;
1921 }
1922
1923 DRM_INFO("capturing error event; look for more information in "
1924 "/sys/kernel/debug/dri/%d/i915_error_state\n",
1925 dev->primary->index);
1926
1927 kref_init(&error->ref);
1928 error->eir = I915_READ(EIR);
1929 error->pgtbl_er = I915_READ(PGTBL_ER);
1930 if (HAS_HW_CONTEXTS(dev))
1931 error->ccid = I915_READ(CCID);
1932
1933 if (HAS_PCH_SPLIT(dev))
1934 error->ier = I915_READ(DEIER) | I915_READ(GTIER);
1935 else if (IS_VALLEYVIEW(dev))
1936 error->ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1937 else if (IS_GEN2(dev))
1938 error->ier = I915_READ16(IER);
1939 else
1940 error->ier = I915_READ(IER);
1941
1942 if (INTEL_INFO(dev)->gen >= 6)
1943 error->derrmr = I915_READ(DERRMR);
1944
1945 if (IS_VALLEYVIEW(dev))
1946 error->forcewake = I915_READ(FORCEWAKE_VLV);
1947 else if (INTEL_INFO(dev)->gen >= 7)
1948 error->forcewake = I915_READ(FORCEWAKE_MT);
1949 else if (INTEL_INFO(dev)->gen == 6)
1950 error->forcewake = I915_READ(FORCEWAKE);
1951
1952 if (!HAS_PCH_SPLIT(dev))
1953 for_each_pipe(pipe)
1954 error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
1955
1956 if (INTEL_INFO(dev)->gen >= 6) {
1957 error->error = I915_READ(ERROR_GEN6);
1958 error->done_reg = I915_READ(DONE_REG);
1959 }
1960
1961 if (INTEL_INFO(dev)->gen == 7)
1962 error->err_int = I915_READ(GEN7_ERR_INT);
1963
1964 i915_get_extra_instdone(dev, error->extra_instdone);
1965
1966 i915_gem_capture_buffers(dev_priv, error);
1967 i915_gem_record_fences(dev, error);
1968 i915_gem_record_rings(dev, error);
1969
1970 do_gettimeofday(&error->time);
1971
1972 error->overlay = intel_overlay_capture_error_state(dev);
1973 error->display = intel_display_capture_error_state(dev);
1974
1975 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1976 if (dev_priv->gpu_error.first_error == NULL) {
1977 dev_priv->gpu_error.first_error = error;
1978 error = NULL;
1979 }
1980 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1981
1982 if (error)
1983 i915_error_state_free(&error->ref);
1984 }
1985
1986 void i915_destroy_error_state(struct drm_device *dev)
1987 {
1988 struct drm_i915_private *dev_priv = dev->dev_private;
1989 struct drm_i915_error_state *error;
1990 unsigned long flags;
1991
1992 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1993 error = dev_priv->gpu_error.first_error;
1994 dev_priv->gpu_error.first_error = NULL;
1995 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1996
1997 if (error)
1998 kref_put(&error->ref, i915_error_state_free);
1999 }
2000 #else
2001 #define i915_capture_error_state(x)
2002 #endif
2003
2004 static void i915_report_and_clear_eir(struct drm_device *dev)
2005 {
2006 struct drm_i915_private *dev_priv = dev->dev_private;
2007 uint32_t instdone[I915_NUM_INSTDONE_REG];
2008 u32 eir = I915_READ(EIR);
2009 int pipe, i;
2010
2011 if (!eir)
2012 return;
2013
2014 pr_err("render error detected, EIR: 0x%08x\n", eir);
2015
2016 i915_get_extra_instdone(dev, instdone);
2017
2018 if (IS_G4X(dev)) {
2019 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2020 u32 ipeir = I915_READ(IPEIR_I965);
2021
2022 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2023 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2024 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2025 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2026 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2027 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2028 I915_WRITE(IPEIR_I965, ipeir);
2029 POSTING_READ(IPEIR_I965);
2030 }
2031 if (eir & GM45_ERROR_PAGE_TABLE) {
2032 u32 pgtbl_err = I915_READ(PGTBL_ER);
2033 pr_err("page table error\n");
2034 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2035 I915_WRITE(PGTBL_ER, pgtbl_err);
2036 POSTING_READ(PGTBL_ER);
2037 }
2038 }
2039
2040 if (!IS_GEN2(dev)) {
2041 if (eir & I915_ERROR_PAGE_TABLE) {
2042 u32 pgtbl_err = I915_READ(PGTBL_ER);
2043 pr_err("page table error\n");
2044 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2045 I915_WRITE(PGTBL_ER, pgtbl_err);
2046 POSTING_READ(PGTBL_ER);
2047 }
2048 }
2049
2050 if (eir & I915_ERROR_MEMORY_REFRESH) {
2051 pr_err("memory refresh error:\n");
2052 for_each_pipe(pipe)
2053 pr_err("pipe %c stat: 0x%08x\n",
2054 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2055 /* pipestat has already been acked */
2056 }
2057 if (eir & I915_ERROR_INSTRUCTION) {
2058 pr_err("instruction error\n");
2059 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2060 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2061 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2062 if (INTEL_INFO(dev)->gen < 4) {
2063 u32 ipeir = I915_READ(IPEIR);
2064
2065 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2066 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2067 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2068 I915_WRITE(IPEIR, ipeir);
2069 POSTING_READ(IPEIR);
2070 } else {
2071 u32 ipeir = I915_READ(IPEIR_I965);
2072
2073 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2074 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2075 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2076 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2077 I915_WRITE(IPEIR_I965, ipeir);
2078 POSTING_READ(IPEIR_I965);
2079 }
2080 }
2081
2082 I915_WRITE(EIR, eir);
2083 POSTING_READ(EIR);
2084 eir = I915_READ(EIR);
2085 if (eir) {
2086 /*
2087 * some errors might have become stuck,
2088 * mask them.
2089 */
2090 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2091 I915_WRITE(EMR, I915_READ(EMR) | eir);
2092 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2093 }
2094 }
2095
2096 /**
2097 * i915_handle_error - handle an error interrupt
2098 * @dev: drm device
2099 *
2100 * Do some basic checking of regsiter state at error interrupt time and
2101 * dump it to the syslog. Also call i915_capture_error_state() to make
2102 * sure we get a record and make it available in debugfs. Fire a uevent
2103 * so userspace knows something bad happened (should trigger collection
2104 * of a ring dump etc.).
2105 */
2106 void i915_handle_error(struct drm_device *dev, bool wedged)
2107 {
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 struct intel_ring_buffer *ring;
2110 int i;
2111
2112 i915_capture_error_state(dev);
2113 i915_report_and_clear_eir(dev);
2114
2115 if (wedged) {
2116 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2117 &dev_priv->gpu_error.reset_counter);
2118
2119 /*
2120 * Wakeup waiting processes so that the reset work item
2121 * doesn't deadlock trying to grab various locks.
2122 */
2123 for_each_ring(ring, dev_priv, i)
2124 wake_up_all(&ring->irq_queue);
2125 }
2126
2127 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
2128 }
2129
2130 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2131 {
2132 drm_i915_private_t *dev_priv = dev->dev_private;
2133 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2135 struct drm_i915_gem_object *obj;
2136 struct intel_unpin_work *work;
2137 unsigned long flags;
2138 bool stall_detected;
2139
2140 /* Ignore early vblank irqs */
2141 if (intel_crtc == NULL)
2142 return;
2143
2144 spin_lock_irqsave(&dev->event_lock, flags);
2145 work = intel_crtc->unpin_work;
2146
2147 if (work == NULL ||
2148 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2149 !work->enable_stall_check) {
2150 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2151 spin_unlock_irqrestore(&dev->event_lock, flags);
2152 return;
2153 }
2154
2155 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2156 obj = work->pending_flip_obj;
2157 if (INTEL_INFO(dev)->gen >= 4) {
2158 int dspsurf = DSPSURF(intel_crtc->plane);
2159 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2160 obj->gtt_offset;
2161 } else {
2162 int dspaddr = DSPADDR(intel_crtc->plane);
2163 stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
2164 crtc->y * crtc->fb->pitches[0] +
2165 crtc->x * crtc->fb->bits_per_pixel/8);
2166 }
2167
2168 spin_unlock_irqrestore(&dev->event_lock, flags);
2169
2170 if (stall_detected) {
2171 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2172 intel_prepare_page_flip(dev, intel_crtc->plane);
2173 }
2174 }
2175
2176 /* Called from drm generic code, passed 'crtc' which
2177 * we use as a pipe index
2178 */
2179 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2180 {
2181 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2182 unsigned long irqflags;
2183
2184 if (!i915_pipe_enabled(dev, pipe))
2185 return -EINVAL;
2186
2187 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2188 if (INTEL_INFO(dev)->gen >= 4)
2189 i915_enable_pipestat(dev_priv, pipe,
2190 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2191 else
2192 i915_enable_pipestat(dev_priv, pipe,
2193 PIPE_VBLANK_INTERRUPT_ENABLE);
2194
2195 /* maintain vblank delivery even in deep C-states */
2196 if (dev_priv->info->gen == 3)
2197 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2198 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2199
2200 return 0;
2201 }
2202
2203 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2204 {
2205 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2206 unsigned long irqflags;
2207
2208 if (!i915_pipe_enabled(dev, pipe))
2209 return -EINVAL;
2210
2211 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2212 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
2213 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
2214 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2215
2216 return 0;
2217 }
2218
2219 static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
2220 {
2221 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2222 unsigned long irqflags;
2223
2224 if (!i915_pipe_enabled(dev, pipe))
2225 return -EINVAL;
2226
2227 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2228 ironlake_enable_display_irq(dev_priv,
2229 DE_PIPEA_VBLANK_IVB << (5 * pipe));
2230 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2231
2232 return 0;
2233 }
2234
2235 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2236 {
2237 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2238 unsigned long irqflags;
2239 u32 imr;
2240
2241 if (!i915_pipe_enabled(dev, pipe))
2242 return -EINVAL;
2243
2244 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2245 imr = I915_READ(VLV_IMR);
2246 if (pipe == 0)
2247 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2248 else
2249 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2250 I915_WRITE(VLV_IMR, imr);
2251 i915_enable_pipestat(dev_priv, pipe,
2252 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2253 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2254
2255 return 0;
2256 }
2257
2258 /* Called from drm generic code, passed 'crtc' which
2259 * we use as a pipe index
2260 */
2261 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2262 {
2263 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2264 unsigned long irqflags;
2265
2266 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2267 if (dev_priv->info->gen == 3)
2268 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2269
2270 i915_disable_pipestat(dev_priv, pipe,
2271 PIPE_VBLANK_INTERRUPT_ENABLE |
2272 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2273 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2274 }
2275
2276 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2277 {
2278 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2279 unsigned long irqflags;
2280
2281 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2282 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
2283 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
2284 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2285 }
2286
2287 static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
2288 {
2289 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2290 unsigned long irqflags;
2291
2292 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2293 ironlake_disable_display_irq(dev_priv,
2294 DE_PIPEA_VBLANK_IVB << (pipe * 5));
2295 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2296 }
2297
2298 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2299 {
2300 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2301 unsigned long irqflags;
2302 u32 imr;
2303
2304 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2305 i915_disable_pipestat(dev_priv, pipe,
2306 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2307 imr = I915_READ(VLV_IMR);
2308 if (pipe == 0)
2309 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2310 else
2311 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2312 I915_WRITE(VLV_IMR, imr);
2313 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2314 }
2315
2316 static u32
2317 ring_last_seqno(struct intel_ring_buffer *ring)
2318 {
2319 return list_entry(ring->request_list.prev,
2320 struct drm_i915_gem_request, list)->seqno;
2321 }
2322
2323 static bool
2324 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2325 {
2326 return (list_empty(&ring->request_list) ||
2327 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2328 }
2329
2330 static struct intel_ring_buffer *
2331 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2332 {
2333 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2334 u32 cmd, ipehr, acthd, acthd_min;
2335
2336 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2337 if ((ipehr & ~(0x3 << 16)) !=
2338 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2339 return NULL;
2340
2341 /* ACTHD is likely pointing to the dword after the actual command,
2342 * so scan backwards until we find the MBOX.
2343 */
2344 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2345 acthd_min = max((int)acthd - 3 * 4, 0);
2346 do {
2347 cmd = ioread32(ring->virtual_start + acthd);
2348 if (cmd == ipehr)
2349 break;
2350
2351 acthd -= 4;
2352 if (acthd < acthd_min)
2353 return NULL;
2354 } while (1);
2355
2356 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2357 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2358 }
2359
2360 static int semaphore_passed(struct intel_ring_buffer *ring)
2361 {
2362 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2363 struct intel_ring_buffer *signaller;
2364 u32 seqno, ctl;
2365
2366 ring->hangcheck.deadlock = true;
2367
2368 signaller = semaphore_waits_for(ring, &seqno);
2369 if (signaller == NULL || signaller->hangcheck.deadlock)
2370 return -1;
2371
2372 /* cursory check for an unkickable deadlock */
2373 ctl = I915_READ_CTL(signaller);
2374 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2375 return -1;
2376
2377 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2378 }
2379
2380 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2381 {
2382 struct intel_ring_buffer *ring;
2383 int i;
2384
2385 for_each_ring(ring, dev_priv, i)
2386 ring->hangcheck.deadlock = false;
2387 }
2388
2389 static enum intel_ring_hangcheck_action
2390 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2391 {
2392 struct drm_device *dev = ring->dev;
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394 u32 tmp;
2395
2396 if (ring->hangcheck.acthd != acthd)
2397 return active;
2398
2399 if (IS_GEN2(dev))
2400 return hung;
2401
2402 /* Is the chip hanging on a WAIT_FOR_EVENT?
2403 * If so we can simply poke the RB_WAIT bit
2404 * and break the hang. This should work on
2405 * all but the second generation chipsets.
2406 */
2407 tmp = I915_READ_CTL(ring);
2408 if (tmp & RING_WAIT) {
2409 DRM_ERROR("Kicking stuck wait on %s\n",
2410 ring->name);
2411 I915_WRITE_CTL(ring, tmp);
2412 return kick;
2413 }
2414
2415 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2416 switch (semaphore_passed(ring)) {
2417 default:
2418 return hung;
2419 case 1:
2420 DRM_ERROR("Kicking stuck semaphore on %s\n",
2421 ring->name);
2422 I915_WRITE_CTL(ring, tmp);
2423 return kick;
2424 case 0:
2425 return wait;
2426 }
2427 }
2428
2429 return hung;
2430 }
2431
2432 /**
2433 * This is called when the chip hasn't reported back with completed
2434 * batchbuffers in a long time. We keep track per ring seqno progress and
2435 * if there are no progress, hangcheck score for that ring is increased.
2436 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2437 * we kick the ring. If we see no progress on three subsequent calls
2438 * we assume chip is wedged and try to fix it by resetting the chip.
2439 */
2440 void i915_hangcheck_elapsed(unsigned long data)
2441 {
2442 struct drm_device *dev = (struct drm_device *)data;
2443 drm_i915_private_t *dev_priv = dev->dev_private;
2444 struct intel_ring_buffer *ring;
2445 int i;
2446 int busy_count = 0, rings_hung = 0;
2447 bool stuck[I915_NUM_RINGS] = { 0 };
2448 #define BUSY 1
2449 #define KICK 5
2450 #define HUNG 20
2451 #define FIRE 30
2452
2453 if (!i915_enable_hangcheck)
2454 return;
2455
2456 for_each_ring(ring, dev_priv, i) {
2457 u32 seqno, acthd;
2458 bool busy = true;
2459
2460 semaphore_clear_deadlocks(dev_priv);
2461
2462 seqno = ring->get_seqno(ring, false);
2463 acthd = intel_ring_get_active_head(ring);
2464
2465 if (ring->hangcheck.seqno == seqno) {
2466 if (ring_idle(ring, seqno)) {
2467 if (waitqueue_active(&ring->irq_queue)) {
2468 /* Issue a wake-up to catch stuck h/w. */
2469 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2470 ring->name);
2471 wake_up_all(&ring->irq_queue);
2472 ring->hangcheck.score += HUNG;
2473 } else
2474 busy = false;
2475 } else {
2476 int score;
2477
2478 /* We always increment the hangcheck score
2479 * if the ring is busy and still processing
2480 * the same request, so that no single request
2481 * can run indefinitely (such as a chain of
2482 * batches). The only time we do not increment
2483 * the hangcheck score on this ring, if this
2484 * ring is in a legitimate wait for another
2485 * ring. In that case the waiting ring is a
2486 * victim and we want to be sure we catch the
2487 * right culprit. Then every time we do kick
2488 * the ring, add a small increment to the
2489 * score so that we can catch a batch that is
2490 * being repeatedly kicked and so responsible
2491 * for stalling the machine.
2492 */
2493 ring->hangcheck.action = ring_stuck(ring,
2494 acthd);
2495
2496 switch (ring->hangcheck.action) {
2497 case wait:
2498 score = 0;
2499 break;
2500 case active:
2501 score = BUSY;
2502 break;
2503 case kick:
2504 score = KICK;
2505 break;
2506 case hung:
2507 score = HUNG;
2508 stuck[i] = true;
2509 break;
2510 }
2511 ring->hangcheck.score += score;
2512 }
2513 } else {
2514 /* Gradually reduce the count so that we catch DoS
2515 * attempts across multiple batches.
2516 */
2517 if (ring->hangcheck.score > 0)
2518 ring->hangcheck.score--;
2519 }
2520
2521 ring->hangcheck.seqno = seqno;
2522 ring->hangcheck.acthd = acthd;
2523 busy_count += busy;
2524 }
2525
2526 for_each_ring(ring, dev_priv, i) {
2527 if (ring->hangcheck.score > FIRE) {
2528 DRM_ERROR("%s on %s\n",
2529 stuck[i] ? "stuck" : "no progress",
2530 ring->name);
2531 rings_hung++;
2532 }
2533 }
2534
2535 if (rings_hung)
2536 return i915_handle_error(dev, true);
2537
2538 if (busy_count)
2539 /* Reset timer case chip hangs without another request
2540 * being added */
2541 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2542 round_jiffies_up(jiffies +
2543 DRM_I915_HANGCHECK_JIFFIES));
2544 }
2545
2546 static void ibx_irq_preinstall(struct drm_device *dev)
2547 {
2548 struct drm_i915_private *dev_priv = dev->dev_private;
2549
2550 if (HAS_PCH_NOP(dev))
2551 return;
2552
2553 /* south display irq */
2554 I915_WRITE(SDEIMR, 0xffffffff);
2555 /*
2556 * SDEIER is also touched by the interrupt handler to work around missed
2557 * PCH interrupts. Hence we can't update it after the interrupt handler
2558 * is enabled - instead we unconditionally enable all PCH interrupt
2559 * sources here, but then only unmask them as needed with SDEIMR.
2560 */
2561 I915_WRITE(SDEIER, 0xffffffff);
2562 POSTING_READ(SDEIER);
2563 }
2564
2565 /* drm_dma.h hooks
2566 */
2567 static void ironlake_irq_preinstall(struct drm_device *dev)
2568 {
2569 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2570
2571 atomic_set(&dev_priv->irq_received, 0);
2572
2573 I915_WRITE(HWSTAM, 0xeffe);
2574
2575 /* XXX hotplug from PCH */
2576
2577 I915_WRITE(DEIMR, 0xffffffff);
2578 I915_WRITE(DEIER, 0x0);
2579 POSTING_READ(DEIER);
2580
2581 /* and GT */
2582 I915_WRITE(GTIMR, 0xffffffff);
2583 I915_WRITE(GTIER, 0x0);
2584 POSTING_READ(GTIER);
2585
2586 ibx_irq_preinstall(dev);
2587 }
2588
2589 static void ivybridge_irq_preinstall(struct drm_device *dev)
2590 {
2591 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2592
2593 atomic_set(&dev_priv->irq_received, 0);
2594
2595 I915_WRITE(HWSTAM, 0xeffe);
2596
2597 /* XXX hotplug from PCH */
2598
2599 I915_WRITE(DEIMR, 0xffffffff);
2600 I915_WRITE(DEIER, 0x0);
2601 POSTING_READ(DEIER);
2602
2603 /* and GT */
2604 I915_WRITE(GTIMR, 0xffffffff);
2605 I915_WRITE(GTIER, 0x0);
2606 POSTING_READ(GTIER);
2607
2608 /* Power management */
2609 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2610 I915_WRITE(GEN6_PMIER, 0x0);
2611 POSTING_READ(GEN6_PMIER);
2612
2613 ibx_irq_preinstall(dev);
2614 }
2615
2616 static void valleyview_irq_preinstall(struct drm_device *dev)
2617 {
2618 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2619 int pipe;
2620
2621 atomic_set(&dev_priv->irq_received, 0);
2622
2623 /* VLV magic */
2624 I915_WRITE(VLV_IMR, 0);
2625 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2626 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2627 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2628
2629 /* and GT */
2630 I915_WRITE(GTIIR, I915_READ(GTIIR));
2631 I915_WRITE(GTIIR, I915_READ(GTIIR));
2632 I915_WRITE(GTIMR, 0xffffffff);
2633 I915_WRITE(GTIER, 0x0);
2634 POSTING_READ(GTIER);
2635
2636 I915_WRITE(DPINVGTT, 0xff);
2637
2638 I915_WRITE(PORT_HOTPLUG_EN, 0);
2639 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2640 for_each_pipe(pipe)
2641 I915_WRITE(PIPESTAT(pipe), 0xffff);
2642 I915_WRITE(VLV_IIR, 0xffffffff);
2643 I915_WRITE(VLV_IMR, 0xffffffff);
2644 I915_WRITE(VLV_IER, 0x0);
2645 POSTING_READ(VLV_IER);
2646 }
2647
2648 static void ibx_hpd_irq_setup(struct drm_device *dev)
2649 {
2650 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2651 struct drm_mode_config *mode_config = &dev->mode_config;
2652 struct intel_encoder *intel_encoder;
2653 u32 mask = ~I915_READ(SDEIMR);
2654 u32 hotplug;
2655
2656 if (HAS_PCH_IBX(dev)) {
2657 mask &= ~SDE_HOTPLUG_MASK;
2658 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2659 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2660 mask |= hpd_ibx[intel_encoder->hpd_pin];
2661 } else {
2662 mask &= ~SDE_HOTPLUG_MASK_CPT;
2663 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2664 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2665 mask |= hpd_cpt[intel_encoder->hpd_pin];
2666 }
2667
2668 I915_WRITE(SDEIMR, ~mask);
2669
2670 /*
2671 * Enable digital hotplug on the PCH, and configure the DP short pulse
2672 * duration to 2ms (which is the minimum in the Display Port spec)
2673 *
2674 * This register is the same on all known PCH chips.
2675 */
2676 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2677 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2678 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2679 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2680 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2681 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2682 }
2683
2684 static void ibx_irq_postinstall(struct drm_device *dev)
2685 {
2686 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2687 u32 mask;
2688
2689 if (HAS_PCH_NOP(dev))
2690 return;
2691
2692 if (HAS_PCH_IBX(dev)) {
2693 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2694 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2695 } else {
2696 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2697
2698 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2699 }
2700
2701 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2702 I915_WRITE(SDEIMR, ~mask);
2703 }
2704
2705 static int ironlake_irq_postinstall(struct drm_device *dev)
2706 {
2707 unsigned long irqflags;
2708
2709 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2710 /* enable kind of interrupts always enabled */
2711 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2712 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2713 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2714 DE_PIPEA_FIFO_UNDERRUN | DE_POISON;
2715 u32 gt_irqs;
2716
2717 dev_priv->irq_mask = ~display_mask;
2718
2719 /* should always can generate irq */
2720 I915_WRITE(DEIIR, I915_READ(DEIIR));
2721 I915_WRITE(DEIMR, dev_priv->irq_mask);
2722 I915_WRITE(DEIER, display_mask |
2723 DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT);
2724 POSTING_READ(DEIER);
2725
2726 dev_priv->gt_irq_mask = ~0;
2727
2728 I915_WRITE(GTIIR, I915_READ(GTIIR));
2729 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2730
2731 gt_irqs = GT_RENDER_USER_INTERRUPT;
2732
2733 if (IS_GEN6(dev))
2734 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2735 else
2736 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2737 ILK_BSD_USER_INTERRUPT;
2738
2739 I915_WRITE(GTIER, gt_irqs);
2740 POSTING_READ(GTIER);
2741
2742 ibx_irq_postinstall(dev);
2743
2744 if (IS_IRONLAKE_M(dev)) {
2745 /* Enable PCU event interrupts
2746 *
2747 * spinlocking not required here for correctness since interrupt
2748 * setup is guaranteed to run in single-threaded context. But we
2749 * need it to make the assert_spin_locked happy. */
2750 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2751 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2752 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2753 }
2754
2755 return 0;
2756 }
2757
2758 static int ivybridge_irq_postinstall(struct drm_device *dev)
2759 {
2760 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2761 /* enable kind of interrupts always enabled */
2762 u32 display_mask =
2763 DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
2764 DE_PLANEC_FLIP_DONE_IVB |
2765 DE_PLANEB_FLIP_DONE_IVB |
2766 DE_PLANEA_FLIP_DONE_IVB |
2767 DE_AUX_CHANNEL_A_IVB |
2768 DE_ERR_INT_IVB;
2769 u32 pm_irqs = GEN6_PM_RPS_EVENTS;
2770 u32 gt_irqs;
2771
2772 dev_priv->irq_mask = ~display_mask;
2773
2774 /* should always can generate irq */
2775 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2776 I915_WRITE(DEIIR, I915_READ(DEIIR));
2777 I915_WRITE(DEIMR, dev_priv->irq_mask);
2778 I915_WRITE(DEIER,
2779 display_mask |
2780 DE_PIPEC_VBLANK_IVB |
2781 DE_PIPEB_VBLANK_IVB |
2782 DE_PIPEA_VBLANK_IVB);
2783 POSTING_READ(DEIER);
2784
2785 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2786
2787 I915_WRITE(GTIIR, I915_READ(GTIIR));
2788 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2789
2790 gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2791 GT_BLT_USER_INTERRUPT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2792 I915_WRITE(GTIER, gt_irqs);
2793 POSTING_READ(GTIER);
2794
2795 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2796 if (HAS_VEBOX(dev))
2797 pm_irqs |= PM_VEBOX_USER_INTERRUPT |
2798 PM_VEBOX_CS_ERROR_INTERRUPT;
2799
2800 /* Our enable/disable rps functions may touch these registers so
2801 * make sure to set a known state for only the non-RPS bits.
2802 * The RMW is extra paranoia since this should be called after being set
2803 * to a known state in preinstall.
2804 * */
2805 I915_WRITE(GEN6_PMIMR,
2806 (I915_READ(GEN6_PMIMR) | ~GEN6_PM_RPS_EVENTS) & ~pm_irqs);
2807 I915_WRITE(GEN6_PMIER,
2808 (I915_READ(GEN6_PMIER) & GEN6_PM_RPS_EVENTS) | pm_irqs);
2809 POSTING_READ(GEN6_PMIER);
2810
2811 ibx_irq_postinstall(dev);
2812
2813 return 0;
2814 }
2815
2816 static int valleyview_irq_postinstall(struct drm_device *dev)
2817 {
2818 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2819 u32 gt_irqs;
2820 u32 enable_mask;
2821 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2822
2823 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2824 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2825 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2826 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2827 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2828
2829 /*
2830 *Leave vblank interrupts masked initially. enable/disable will
2831 * toggle them based on usage.
2832 */
2833 dev_priv->irq_mask = (~enable_mask) |
2834 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2835 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2836
2837 I915_WRITE(PORT_HOTPLUG_EN, 0);
2838 POSTING_READ(PORT_HOTPLUG_EN);
2839
2840 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2841 I915_WRITE(VLV_IER, enable_mask);
2842 I915_WRITE(VLV_IIR, 0xffffffff);
2843 I915_WRITE(PIPESTAT(0), 0xffff);
2844 I915_WRITE(PIPESTAT(1), 0xffff);
2845 POSTING_READ(VLV_IER);
2846
2847 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2848 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2849 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2850
2851 I915_WRITE(VLV_IIR, 0xffffffff);
2852 I915_WRITE(VLV_IIR, 0xffffffff);
2853
2854 I915_WRITE(GTIIR, I915_READ(GTIIR));
2855 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2856
2857 gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2858 GT_BLT_USER_INTERRUPT;
2859 I915_WRITE(GTIER, gt_irqs);
2860 POSTING_READ(GTIER);
2861
2862 /* ack & enable invalid PTE error interrupts */
2863 #if 0 /* FIXME: add support to irq handler for checking these bits */
2864 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2865 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2866 #endif
2867
2868 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2869
2870 return 0;
2871 }
2872
2873 static void valleyview_irq_uninstall(struct drm_device *dev)
2874 {
2875 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2876 int pipe;
2877
2878 if (!dev_priv)
2879 return;
2880
2881 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2882
2883 for_each_pipe(pipe)
2884 I915_WRITE(PIPESTAT(pipe), 0xffff);
2885
2886 I915_WRITE(HWSTAM, 0xffffffff);
2887 I915_WRITE(PORT_HOTPLUG_EN, 0);
2888 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2889 for_each_pipe(pipe)
2890 I915_WRITE(PIPESTAT(pipe), 0xffff);
2891 I915_WRITE(VLV_IIR, 0xffffffff);
2892 I915_WRITE(VLV_IMR, 0xffffffff);
2893 I915_WRITE(VLV_IER, 0x0);
2894 POSTING_READ(VLV_IER);
2895 }
2896
2897 static void ironlake_irq_uninstall(struct drm_device *dev)
2898 {
2899 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2900
2901 if (!dev_priv)
2902 return;
2903
2904 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2905
2906 I915_WRITE(HWSTAM, 0xffffffff);
2907
2908 I915_WRITE(DEIMR, 0xffffffff);
2909 I915_WRITE(DEIER, 0x0);
2910 I915_WRITE(DEIIR, I915_READ(DEIIR));
2911 if (IS_GEN7(dev))
2912 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2913
2914 I915_WRITE(GTIMR, 0xffffffff);
2915 I915_WRITE(GTIER, 0x0);
2916 I915_WRITE(GTIIR, I915_READ(GTIIR));
2917
2918 if (HAS_PCH_NOP(dev))
2919 return;
2920
2921 I915_WRITE(SDEIMR, 0xffffffff);
2922 I915_WRITE(SDEIER, 0x0);
2923 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2924 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2925 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2926 }
2927
2928 static void i8xx_irq_preinstall(struct drm_device * dev)
2929 {
2930 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2931 int pipe;
2932
2933 atomic_set(&dev_priv->irq_received, 0);
2934
2935 for_each_pipe(pipe)
2936 I915_WRITE(PIPESTAT(pipe), 0);
2937 I915_WRITE16(IMR, 0xffff);
2938 I915_WRITE16(IER, 0x0);
2939 POSTING_READ16(IER);
2940 }
2941
2942 static int i8xx_irq_postinstall(struct drm_device *dev)
2943 {
2944 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2945
2946 I915_WRITE16(EMR,
2947 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2948
2949 /* Unmask the interrupts that we always want on. */
2950 dev_priv->irq_mask =
2951 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2952 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2953 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2954 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2955 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2956 I915_WRITE16(IMR, dev_priv->irq_mask);
2957
2958 I915_WRITE16(IER,
2959 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2960 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2961 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2962 I915_USER_INTERRUPT);
2963 POSTING_READ16(IER);
2964
2965 return 0;
2966 }
2967
2968 /*
2969 * Returns true when a page flip has completed.
2970 */
2971 static bool i8xx_handle_vblank(struct drm_device *dev,
2972 int pipe, u16 iir)
2973 {
2974 drm_i915_private_t *dev_priv = dev->dev_private;
2975 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2976
2977 if (!drm_handle_vblank(dev, pipe))
2978 return false;
2979
2980 if ((iir & flip_pending) == 0)
2981 return false;
2982
2983 intel_prepare_page_flip(dev, pipe);
2984
2985 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2986 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2987 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2988 * the flip is completed (no longer pending). Since this doesn't raise
2989 * an interrupt per se, we watch for the change at vblank.
2990 */
2991 if (I915_READ16(ISR) & flip_pending)
2992 return false;
2993
2994 intel_finish_page_flip(dev, pipe);
2995
2996 return true;
2997 }
2998
2999 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3000 {
3001 struct drm_device *dev = (struct drm_device *) arg;
3002 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3003 u16 iir, new_iir;
3004 u32 pipe_stats[2];
3005 unsigned long irqflags;
3006 int irq_received;
3007 int pipe;
3008 u16 flip_mask =
3009 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3010 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3011
3012 atomic_inc(&dev_priv->irq_received);
3013
3014 iir = I915_READ16(IIR);
3015 if (iir == 0)
3016 return IRQ_NONE;
3017
3018 while (iir & ~flip_mask) {
3019 /* Can't rely on pipestat interrupt bit in iir as it might
3020 * have been cleared after the pipestat interrupt was received.
3021 * It doesn't set the bit in iir again, but it still produces
3022 * interrupts (for non-MSI).
3023 */
3024 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3025 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3026 i915_handle_error(dev, false);
3027
3028 for_each_pipe(pipe) {
3029 int reg = PIPESTAT(pipe);
3030 pipe_stats[pipe] = I915_READ(reg);
3031
3032 /*
3033 * Clear the PIPE*STAT regs before the IIR
3034 */
3035 if (pipe_stats[pipe] & 0x8000ffff) {
3036 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3037 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3038 pipe_name(pipe));
3039 I915_WRITE(reg, pipe_stats[pipe]);
3040 irq_received = 1;
3041 }
3042 }
3043 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3044
3045 I915_WRITE16(IIR, iir & ~flip_mask);
3046 new_iir = I915_READ16(IIR); /* Flush posted writes */
3047
3048 i915_update_dri1_breadcrumb(dev);
3049
3050 if (iir & I915_USER_INTERRUPT)
3051 notify_ring(dev, &dev_priv->ring[RCS]);
3052
3053 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
3054 i8xx_handle_vblank(dev, 0, iir))
3055 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
3056
3057 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
3058 i8xx_handle_vblank(dev, 1, iir))
3059 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
3060
3061 iir = new_iir;
3062 }
3063
3064 return IRQ_HANDLED;
3065 }
3066
3067 static void i8xx_irq_uninstall(struct drm_device * dev)
3068 {
3069 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3070 int pipe;
3071
3072 for_each_pipe(pipe) {
3073 /* Clear enable bits; then clear status bits */
3074 I915_WRITE(PIPESTAT(pipe), 0);
3075 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3076 }
3077 I915_WRITE16(IMR, 0xffff);
3078 I915_WRITE16(IER, 0x0);
3079 I915_WRITE16(IIR, I915_READ16(IIR));
3080 }
3081
3082 static void i915_irq_preinstall(struct drm_device * dev)
3083 {
3084 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3085 int pipe;
3086
3087 atomic_set(&dev_priv->irq_received, 0);
3088
3089 if (I915_HAS_HOTPLUG(dev)) {
3090 I915_WRITE(PORT_HOTPLUG_EN, 0);
3091 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3092 }
3093
3094 I915_WRITE16(HWSTAM, 0xeffe);
3095 for_each_pipe(pipe)
3096 I915_WRITE(PIPESTAT(pipe), 0);
3097 I915_WRITE(IMR, 0xffffffff);
3098 I915_WRITE(IER, 0x0);
3099 POSTING_READ(IER);
3100 }
3101
3102 static int i915_irq_postinstall(struct drm_device *dev)
3103 {
3104 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3105 u32 enable_mask;
3106
3107 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3108
3109 /* Unmask the interrupts that we always want on. */
3110 dev_priv->irq_mask =
3111 ~(I915_ASLE_INTERRUPT |
3112 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3113 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3114 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3115 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3116 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3117
3118 enable_mask =
3119 I915_ASLE_INTERRUPT |
3120 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3121 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3122 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3123 I915_USER_INTERRUPT;
3124
3125 if (I915_HAS_HOTPLUG(dev)) {
3126 I915_WRITE(PORT_HOTPLUG_EN, 0);
3127 POSTING_READ(PORT_HOTPLUG_EN);
3128
3129 /* Enable in IER... */
3130 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3131 /* and unmask in IMR */
3132 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3133 }
3134
3135 I915_WRITE(IMR, dev_priv->irq_mask);
3136 I915_WRITE(IER, enable_mask);
3137 POSTING_READ(IER);
3138
3139 i915_enable_asle_pipestat(dev);
3140
3141 return 0;
3142 }
3143
3144 /*
3145 * Returns true when a page flip has completed.
3146 */
3147 static bool i915_handle_vblank(struct drm_device *dev,
3148 int plane, int pipe, u32 iir)
3149 {
3150 drm_i915_private_t *dev_priv = dev->dev_private;
3151 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3152
3153 if (!drm_handle_vblank(dev, pipe))
3154 return false;
3155
3156 if ((iir & flip_pending) == 0)
3157 return false;
3158
3159 intel_prepare_page_flip(dev, plane);
3160
3161 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3162 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3163 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3164 * the flip is completed (no longer pending). Since this doesn't raise
3165 * an interrupt per se, we watch for the change at vblank.
3166 */
3167 if (I915_READ(ISR) & flip_pending)
3168 return false;
3169
3170 intel_finish_page_flip(dev, pipe);
3171
3172 return true;
3173 }
3174
3175 static irqreturn_t i915_irq_handler(int irq, void *arg)
3176 {
3177 struct drm_device *dev = (struct drm_device *) arg;
3178 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3179 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3180 unsigned long irqflags;
3181 u32 flip_mask =
3182 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3183 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3184 int pipe, ret = IRQ_NONE;
3185
3186 atomic_inc(&dev_priv->irq_received);
3187
3188 iir = I915_READ(IIR);
3189 do {
3190 bool irq_received = (iir & ~flip_mask) != 0;
3191 bool blc_event = false;
3192
3193 /* Can't rely on pipestat interrupt bit in iir as it might
3194 * have been cleared after the pipestat interrupt was received.
3195 * It doesn't set the bit in iir again, but it still produces
3196 * interrupts (for non-MSI).
3197 */
3198 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3199 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3200 i915_handle_error(dev, false);
3201
3202 for_each_pipe(pipe) {
3203 int reg = PIPESTAT(pipe);
3204 pipe_stats[pipe] = I915_READ(reg);
3205
3206 /* Clear the PIPE*STAT regs before the IIR */
3207 if (pipe_stats[pipe] & 0x8000ffff) {
3208 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3209 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3210 pipe_name(pipe));
3211 I915_WRITE(reg, pipe_stats[pipe]);
3212 irq_received = true;
3213 }
3214 }
3215 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3216
3217 if (!irq_received)
3218 break;
3219
3220 /* Consume port. Then clear IIR or we'll miss events */
3221 if ((I915_HAS_HOTPLUG(dev)) &&
3222 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3223 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3224 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3225
3226 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3227 hotplug_status);
3228
3229 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3230
3231 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3232 POSTING_READ(PORT_HOTPLUG_STAT);
3233 }
3234
3235 I915_WRITE(IIR, iir & ~flip_mask);
3236 new_iir = I915_READ(IIR); /* Flush posted writes */
3237
3238 if (iir & I915_USER_INTERRUPT)
3239 notify_ring(dev, &dev_priv->ring[RCS]);
3240
3241 for_each_pipe(pipe) {
3242 int plane = pipe;
3243 if (IS_MOBILE(dev))
3244 plane = !plane;
3245
3246 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3247 i915_handle_vblank(dev, plane, pipe, iir))
3248 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3249
3250 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3251 blc_event = true;
3252 }
3253
3254 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3255 intel_opregion_asle_intr(dev);
3256
3257 /* With MSI, interrupts are only generated when iir
3258 * transitions from zero to nonzero. If another bit got
3259 * set while we were handling the existing iir bits, then
3260 * we would never get another interrupt.
3261 *
3262 * This is fine on non-MSI as well, as if we hit this path
3263 * we avoid exiting the interrupt handler only to generate
3264 * another one.
3265 *
3266 * Note that for MSI this could cause a stray interrupt report
3267 * if an interrupt landed in the time between writing IIR and
3268 * the posting read. This should be rare enough to never
3269 * trigger the 99% of 100,000 interrupts test for disabling
3270 * stray interrupts.
3271 */
3272 ret = IRQ_HANDLED;
3273 iir = new_iir;
3274 } while (iir & ~flip_mask);
3275
3276 i915_update_dri1_breadcrumb(dev);
3277
3278 return ret;
3279 }
3280
3281 static void i915_irq_uninstall(struct drm_device * dev)
3282 {
3283 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3284 int pipe;
3285
3286 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3287
3288 if (I915_HAS_HOTPLUG(dev)) {
3289 I915_WRITE(PORT_HOTPLUG_EN, 0);
3290 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3291 }
3292
3293 I915_WRITE16(HWSTAM, 0xffff);
3294 for_each_pipe(pipe) {
3295 /* Clear enable bits; then clear status bits */
3296 I915_WRITE(PIPESTAT(pipe), 0);
3297 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3298 }
3299 I915_WRITE(IMR, 0xffffffff);
3300 I915_WRITE(IER, 0x0);
3301
3302 I915_WRITE(IIR, I915_READ(IIR));
3303 }
3304
3305 static void i965_irq_preinstall(struct drm_device * dev)
3306 {
3307 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3308 int pipe;
3309
3310 atomic_set(&dev_priv->irq_received, 0);
3311
3312 I915_WRITE(PORT_HOTPLUG_EN, 0);
3313 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3314
3315 I915_WRITE(HWSTAM, 0xeffe);
3316 for_each_pipe(pipe)
3317 I915_WRITE(PIPESTAT(pipe), 0);
3318 I915_WRITE(IMR, 0xffffffff);
3319 I915_WRITE(IER, 0x0);
3320 POSTING_READ(IER);
3321 }
3322
3323 static int i965_irq_postinstall(struct drm_device *dev)
3324 {
3325 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3326 u32 enable_mask;
3327 u32 error_mask;
3328
3329 /* Unmask the interrupts that we always want on. */
3330 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3331 I915_DISPLAY_PORT_INTERRUPT |
3332 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3333 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3334 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3335 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3336 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3337
3338 enable_mask = ~dev_priv->irq_mask;
3339 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3340 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3341 enable_mask |= I915_USER_INTERRUPT;
3342
3343 if (IS_G4X(dev))
3344 enable_mask |= I915_BSD_USER_INTERRUPT;
3345
3346 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
3347
3348 /*
3349 * Enable some error detection, note the instruction error mask
3350 * bit is reserved, so we leave it masked.
3351 */
3352 if (IS_G4X(dev)) {
3353 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3354 GM45_ERROR_MEM_PRIV |
3355 GM45_ERROR_CP_PRIV |
3356 I915_ERROR_MEMORY_REFRESH);
3357 } else {
3358 error_mask = ~(I915_ERROR_PAGE_TABLE |
3359 I915_ERROR_MEMORY_REFRESH);
3360 }
3361 I915_WRITE(EMR, error_mask);
3362
3363 I915_WRITE(IMR, dev_priv->irq_mask);
3364 I915_WRITE(IER, enable_mask);
3365 POSTING_READ(IER);
3366
3367 I915_WRITE(PORT_HOTPLUG_EN, 0);
3368 POSTING_READ(PORT_HOTPLUG_EN);
3369
3370 i915_enable_asle_pipestat(dev);
3371
3372 return 0;
3373 }
3374
3375 static void i915_hpd_irq_setup(struct drm_device *dev)
3376 {
3377 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3378 struct drm_mode_config *mode_config = &dev->mode_config;
3379 struct intel_encoder *intel_encoder;
3380 u32 hotplug_en;
3381
3382 assert_spin_locked(&dev_priv->irq_lock);
3383
3384 if (I915_HAS_HOTPLUG(dev)) {
3385 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3386 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3387 /* Note HDMI and DP share hotplug bits */
3388 /* enable bits are the same for all generations */
3389 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3390 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3391 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3392 /* Programming the CRT detection parameters tends
3393 to generate a spurious hotplug event about three
3394 seconds later. So just do it once.
3395 */
3396 if (IS_G4X(dev))
3397 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3398 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3399 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3400
3401 /* Ignore TV since it's buggy */
3402 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3403 }
3404 }
3405
3406 static irqreturn_t i965_irq_handler(int irq, void *arg)
3407 {
3408 struct drm_device *dev = (struct drm_device *) arg;
3409 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3410 u32 iir, new_iir;
3411 u32 pipe_stats[I915_MAX_PIPES];
3412 unsigned long irqflags;
3413 int irq_received;
3414 int ret = IRQ_NONE, pipe;
3415 u32 flip_mask =
3416 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3417 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3418
3419 atomic_inc(&dev_priv->irq_received);
3420
3421 iir = I915_READ(IIR);
3422
3423 for (;;) {
3424 bool blc_event = false;
3425
3426 irq_received = (iir & ~flip_mask) != 0;
3427
3428 /* Can't rely on pipestat interrupt bit in iir as it might
3429 * have been cleared after the pipestat interrupt was received.
3430 * It doesn't set the bit in iir again, but it still produces
3431 * interrupts (for non-MSI).
3432 */
3433 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3434 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3435 i915_handle_error(dev, false);
3436
3437 for_each_pipe(pipe) {
3438 int reg = PIPESTAT(pipe);
3439 pipe_stats[pipe] = I915_READ(reg);
3440
3441 /*
3442 * Clear the PIPE*STAT regs before the IIR
3443 */
3444 if (pipe_stats[pipe] & 0x8000ffff) {
3445 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3446 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3447 pipe_name(pipe));
3448 I915_WRITE(reg, pipe_stats[pipe]);
3449 irq_received = 1;
3450 }
3451 }
3452 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3453
3454 if (!irq_received)
3455 break;
3456
3457 ret = IRQ_HANDLED;
3458
3459 /* Consume port. Then clear IIR or we'll miss events */
3460 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3461 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3462 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3463 HOTPLUG_INT_STATUS_G4X :
3464 HOTPLUG_INT_STATUS_I915);
3465
3466 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3467 hotplug_status);
3468
3469 intel_hpd_irq_handler(dev, hotplug_trigger,
3470 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3471
3472 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3473 I915_READ(PORT_HOTPLUG_STAT);
3474 }
3475
3476 I915_WRITE(IIR, iir & ~flip_mask);
3477 new_iir = I915_READ(IIR); /* Flush posted writes */
3478
3479 if (iir & I915_USER_INTERRUPT)
3480 notify_ring(dev, &dev_priv->ring[RCS]);
3481 if (iir & I915_BSD_USER_INTERRUPT)
3482 notify_ring(dev, &dev_priv->ring[VCS]);
3483
3484 for_each_pipe(pipe) {
3485 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3486 i915_handle_vblank(dev, pipe, pipe, iir))
3487 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3488
3489 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3490 blc_event = true;
3491 }
3492
3493
3494 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3495 intel_opregion_asle_intr(dev);
3496
3497 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3498 gmbus_irq_handler(dev);
3499
3500 /* With MSI, interrupts are only generated when iir
3501 * transitions from zero to nonzero. If another bit got
3502 * set while we were handling the existing iir bits, then
3503 * we would never get another interrupt.
3504 *
3505 * This is fine on non-MSI as well, as if we hit this path
3506 * we avoid exiting the interrupt handler only to generate
3507 * another one.
3508 *
3509 * Note that for MSI this could cause a stray interrupt report
3510 * if an interrupt landed in the time between writing IIR and
3511 * the posting read. This should be rare enough to never
3512 * trigger the 99% of 100,000 interrupts test for disabling
3513 * stray interrupts.
3514 */
3515 iir = new_iir;
3516 }
3517
3518 i915_update_dri1_breadcrumb(dev);
3519
3520 return ret;
3521 }
3522
3523 static void i965_irq_uninstall(struct drm_device * dev)
3524 {
3525 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3526 int pipe;
3527
3528 if (!dev_priv)
3529 return;
3530
3531 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3532
3533 I915_WRITE(PORT_HOTPLUG_EN, 0);
3534 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3535
3536 I915_WRITE(HWSTAM, 0xffffffff);
3537 for_each_pipe(pipe)
3538 I915_WRITE(PIPESTAT(pipe), 0);
3539 I915_WRITE(IMR, 0xffffffff);
3540 I915_WRITE(IER, 0x0);
3541
3542 for_each_pipe(pipe)
3543 I915_WRITE(PIPESTAT(pipe),
3544 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3545 I915_WRITE(IIR, I915_READ(IIR));
3546 }
3547
3548 static void i915_reenable_hotplug_timer_func(unsigned long data)
3549 {
3550 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3551 struct drm_device *dev = dev_priv->dev;
3552 struct drm_mode_config *mode_config = &dev->mode_config;
3553 unsigned long irqflags;
3554 int i;
3555
3556 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3557 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3558 struct drm_connector *connector;
3559
3560 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3561 continue;
3562
3563 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3564
3565 list_for_each_entry(connector, &mode_config->connector_list, head) {
3566 struct intel_connector *intel_connector = to_intel_connector(connector);
3567
3568 if (intel_connector->encoder->hpd_pin == i) {
3569 if (connector->polled != intel_connector->polled)
3570 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3571 drm_get_connector_name(connector));
3572 connector->polled = intel_connector->polled;
3573 if (!connector->polled)
3574 connector->polled = DRM_CONNECTOR_POLL_HPD;
3575 }
3576 }
3577 }
3578 if (dev_priv->display.hpd_irq_setup)
3579 dev_priv->display.hpd_irq_setup(dev);
3580 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3581 }
3582
3583 void intel_irq_init(struct drm_device *dev)
3584 {
3585 struct drm_i915_private *dev_priv = dev->dev_private;
3586
3587 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3588 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3589 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3590 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3591
3592 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3593 i915_hangcheck_elapsed,
3594 (unsigned long) dev);
3595 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3596 (unsigned long) dev_priv);
3597
3598 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3599
3600 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3601 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3602 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3603 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3604 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3605 }
3606
3607 if (drm_core_check_feature(dev, DRIVER_MODESET))
3608 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3609 else
3610 dev->driver->get_vblank_timestamp = NULL;
3611 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3612
3613 if (IS_VALLEYVIEW(dev)) {
3614 dev->driver->irq_handler = valleyview_irq_handler;
3615 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3616 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3617 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3618 dev->driver->enable_vblank = valleyview_enable_vblank;
3619 dev->driver->disable_vblank = valleyview_disable_vblank;
3620 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3621 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3622 /* Share uninstall handlers with ILK/SNB */
3623 dev->driver->irq_handler = ivybridge_irq_handler;
3624 dev->driver->irq_preinstall = ivybridge_irq_preinstall;
3625 dev->driver->irq_postinstall = ivybridge_irq_postinstall;
3626 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3627 dev->driver->enable_vblank = ivybridge_enable_vblank;
3628 dev->driver->disable_vblank = ivybridge_disable_vblank;
3629 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3630 } else if (HAS_PCH_SPLIT(dev)) {
3631 dev->driver->irq_handler = ironlake_irq_handler;
3632 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3633 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3634 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3635 dev->driver->enable_vblank = ironlake_enable_vblank;
3636 dev->driver->disable_vblank = ironlake_disable_vblank;
3637 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3638 } else {
3639 if (INTEL_INFO(dev)->gen == 2) {
3640 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3641 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3642 dev->driver->irq_handler = i8xx_irq_handler;
3643 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3644 } else if (INTEL_INFO(dev)->gen == 3) {
3645 dev->driver->irq_preinstall = i915_irq_preinstall;
3646 dev->driver->irq_postinstall = i915_irq_postinstall;
3647 dev->driver->irq_uninstall = i915_irq_uninstall;
3648 dev->driver->irq_handler = i915_irq_handler;
3649 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3650 } else {
3651 dev->driver->irq_preinstall = i965_irq_preinstall;
3652 dev->driver->irq_postinstall = i965_irq_postinstall;
3653 dev->driver->irq_uninstall = i965_irq_uninstall;
3654 dev->driver->irq_handler = i965_irq_handler;
3655 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3656 }
3657 dev->driver->enable_vblank = i915_enable_vblank;
3658 dev->driver->disable_vblank = i915_disable_vblank;
3659 }
3660 }
3661
3662 void intel_hpd_init(struct drm_device *dev)
3663 {
3664 struct drm_i915_private *dev_priv = dev->dev_private;
3665 struct drm_mode_config *mode_config = &dev->mode_config;
3666 struct drm_connector *connector;
3667 unsigned long irqflags;
3668 int i;
3669
3670 for (i = 1; i < HPD_NUM_PINS; i++) {
3671 dev_priv->hpd_stats[i].hpd_cnt = 0;
3672 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3673 }
3674 list_for_each_entry(connector, &mode_config->connector_list, head) {
3675 struct intel_connector *intel_connector = to_intel_connector(connector);
3676 connector->polled = intel_connector->polled;
3677 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3678 connector->polled = DRM_CONNECTOR_POLL_HPD;
3679 }
3680
3681 /* Interrupt setup is already guaranteed to be single-threaded, this is
3682 * just to make the assert_spin_locked checks happy. */
3683 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3684 if (dev_priv->display.hpd_irq_setup)
3685 dev_priv->display.hpd_irq_setup(dev);
3686 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3687 }
This page took 0.111647 seconds and 5 git commands to generate.