drm/i915: Keep the CRC values into a circular buffer
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_gen4[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
86 {
87 assert_spin_locked(&dev_priv->irq_lock);
88
89 if (dev_priv->pc8.irqs_disabled) {
90 WARN(1, "IRQs disabled\n");
91 dev_priv->pc8.regsave.deimr &= ~mask;
92 return;
93 }
94
95 if ((dev_priv->irq_mask & mask) != 0) {
96 dev_priv->irq_mask &= ~mask;
97 I915_WRITE(DEIMR, dev_priv->irq_mask);
98 POSTING_READ(DEIMR);
99 }
100 }
101
102 static void
103 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
104 {
105 assert_spin_locked(&dev_priv->irq_lock);
106
107 if (dev_priv->pc8.irqs_disabled) {
108 WARN(1, "IRQs disabled\n");
109 dev_priv->pc8.regsave.deimr |= mask;
110 return;
111 }
112
113 if ((dev_priv->irq_mask & mask) != mask) {
114 dev_priv->irq_mask |= mask;
115 I915_WRITE(DEIMR, dev_priv->irq_mask);
116 POSTING_READ(DEIMR);
117 }
118 }
119
120 /**
121 * ilk_update_gt_irq - update GTIMR
122 * @dev_priv: driver private
123 * @interrupt_mask: mask of interrupt bits to update
124 * @enabled_irq_mask: mask of interrupt bits to enable
125 */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 uint32_t interrupt_mask,
128 uint32_t enabled_irq_mask)
129 {
130 assert_spin_locked(&dev_priv->irq_lock);
131
132 if (dev_priv->pc8.irqs_disabled) {
133 WARN(1, "IRQs disabled\n");
134 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
135 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
136 interrupt_mask);
137 return;
138 }
139
140 dev_priv->gt_irq_mask &= ~interrupt_mask;
141 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 POSTING_READ(GTIMR);
144 }
145
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155
156 /**
157 * snb_update_pm_irq - update GEN6_PMIMR
158 * @dev_priv: driver private
159 * @interrupt_mask: mask of interrupt bits to update
160 * @enabled_irq_mask: mask of interrupt bits to enable
161 */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 uint32_t interrupt_mask,
164 uint32_t enabled_irq_mask)
165 {
166 uint32_t new_val;
167
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (dev_priv->pc8.irqs_disabled) {
171 WARN(1, "IRQs disabled\n");
172 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
173 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 interrupt_mask);
175 return;
176 }
177
178 new_val = dev_priv->pm_irq_mask;
179 new_val &= ~interrupt_mask;
180 new_val |= (~enabled_irq_mask & interrupt_mask);
181
182 if (new_val != dev_priv->pm_irq_mask) {
183 dev_priv->pm_irq_mask = new_val;
184 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 POSTING_READ(GEN6_PMIMR);
186 }
187 }
188
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 snb_update_pm_irq(dev_priv, mask, mask);
192 }
193
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 snb_update_pm_irq(dev_priv, mask, 0);
197 }
198
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 struct drm_i915_private *dev_priv = dev->dev_private;
202 struct intel_crtc *crtc;
203 enum pipe pipe;
204
205 assert_spin_locked(&dev_priv->irq_lock);
206
207 for_each_pipe(pipe) {
208 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210 if (crtc->cpu_fifo_underrun_disabled)
211 return false;
212 }
213
214 return true;
215 }
216
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 enum pipe pipe;
221 struct intel_crtc *crtc;
222
223 assert_spin_locked(&dev_priv->irq_lock);
224
225 for_each_pipe(pipe) {
226 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228 if (crtc->pch_fifo_underrun_disabled)
229 return false;
230 }
231
232 return true;
233 }
234
235 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
236 enum pipe pipe, bool enable)
237 {
238 struct drm_i915_private *dev_priv = dev->dev_private;
239 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
240 DE_PIPEB_FIFO_UNDERRUN;
241
242 if (enable)
243 ironlake_enable_display_irq(dev_priv, bit);
244 else
245 ironlake_disable_display_irq(dev_priv, bit);
246 }
247
248 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
249 enum pipe pipe, bool enable)
250 {
251 struct drm_i915_private *dev_priv = dev->dev_private;
252 if (enable) {
253 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
254
255 if (!ivb_can_enable_err_int(dev))
256 return;
257
258 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
259 } else {
260 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
261
262 /* Change the state _after_ we've read out the current one. */
263 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
264
265 if (!was_enabled &&
266 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
267 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
268 pipe_name(pipe));
269 }
270 }
271 }
272
273 /**
274 * ibx_display_interrupt_update - update SDEIMR
275 * @dev_priv: driver private
276 * @interrupt_mask: mask of interrupt bits to update
277 * @enabled_irq_mask: mask of interrupt bits to enable
278 */
279 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
280 uint32_t interrupt_mask,
281 uint32_t enabled_irq_mask)
282 {
283 uint32_t sdeimr = I915_READ(SDEIMR);
284 sdeimr &= ~interrupt_mask;
285 sdeimr |= (~enabled_irq_mask & interrupt_mask);
286
287 assert_spin_locked(&dev_priv->irq_lock);
288
289 if (dev_priv->pc8.irqs_disabled &&
290 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
291 WARN(1, "IRQs disabled\n");
292 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
293 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
294 interrupt_mask);
295 return;
296 }
297
298 I915_WRITE(SDEIMR, sdeimr);
299 POSTING_READ(SDEIMR);
300 }
301 #define ibx_enable_display_interrupt(dev_priv, bits) \
302 ibx_display_interrupt_update((dev_priv), (bits), (bits))
303 #define ibx_disable_display_interrupt(dev_priv, bits) \
304 ibx_display_interrupt_update((dev_priv), (bits), 0)
305
306 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
307 enum transcoder pch_transcoder,
308 bool enable)
309 {
310 struct drm_i915_private *dev_priv = dev->dev_private;
311 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
312 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
313
314 if (enable)
315 ibx_enable_display_interrupt(dev_priv, bit);
316 else
317 ibx_disable_display_interrupt(dev_priv, bit);
318 }
319
320 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
321 enum transcoder pch_transcoder,
322 bool enable)
323 {
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 if (enable) {
327 I915_WRITE(SERR_INT,
328 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
329
330 if (!cpt_can_enable_serr_int(dev))
331 return;
332
333 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
334 } else {
335 uint32_t tmp = I915_READ(SERR_INT);
336 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
337
338 /* Change the state _after_ we've read out the current one. */
339 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
340
341 if (!was_enabled &&
342 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
343 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
344 transcoder_name(pch_transcoder));
345 }
346 }
347 }
348
349 /**
350 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
351 * @dev: drm device
352 * @pipe: pipe
353 * @enable: true if we want to report FIFO underrun errors, false otherwise
354 *
355 * This function makes us disable or enable CPU fifo underruns for a specific
356 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
357 * reporting for one pipe may also disable all the other CPU error interruts for
358 * the other pipes, due to the fact that there's just one interrupt mask/enable
359 * bit for all the pipes.
360 *
361 * Returns the previous state of underrun reporting.
362 */
363 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
364 enum pipe pipe, bool enable)
365 {
366 struct drm_i915_private *dev_priv = dev->dev_private;
367 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
369 unsigned long flags;
370 bool ret;
371
372 spin_lock_irqsave(&dev_priv->irq_lock, flags);
373
374 ret = !intel_crtc->cpu_fifo_underrun_disabled;
375
376 if (enable == ret)
377 goto done;
378
379 intel_crtc->cpu_fifo_underrun_disabled = !enable;
380
381 if (IS_GEN5(dev) || IS_GEN6(dev))
382 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
383 else if (IS_GEN7(dev))
384 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
385
386 done:
387 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
388 return ret;
389 }
390
391 /**
392 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
393 * @dev: drm device
394 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
395 * @enable: true if we want to report FIFO underrun errors, false otherwise
396 *
397 * This function makes us disable or enable PCH fifo underruns for a specific
398 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
399 * underrun reporting for one transcoder may also disable all the other PCH
400 * error interruts for the other transcoders, due to the fact that there's just
401 * one interrupt mask/enable bit for all the transcoders.
402 *
403 * Returns the previous state of underrun reporting.
404 */
405 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
406 enum transcoder pch_transcoder,
407 bool enable)
408 {
409 struct drm_i915_private *dev_priv = dev->dev_private;
410 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
412 unsigned long flags;
413 bool ret;
414
415 /*
416 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
417 * has only one pch transcoder A that all pipes can use. To avoid racy
418 * pch transcoder -> pipe lookups from interrupt code simply store the
419 * underrun statistics in crtc A. Since we never expose this anywhere
420 * nor use it outside of the fifo underrun code here using the "wrong"
421 * crtc on LPT won't cause issues.
422 */
423
424 spin_lock_irqsave(&dev_priv->irq_lock, flags);
425
426 ret = !intel_crtc->pch_fifo_underrun_disabled;
427
428 if (enable == ret)
429 goto done;
430
431 intel_crtc->pch_fifo_underrun_disabled = !enable;
432
433 if (HAS_PCH_IBX(dev))
434 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
435 else
436 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
437
438 done:
439 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
440 return ret;
441 }
442
443
444 void
445 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
446 {
447 u32 reg = PIPESTAT(pipe);
448 u32 pipestat = I915_READ(reg) & 0x7fff0000;
449
450 assert_spin_locked(&dev_priv->irq_lock);
451
452 if ((pipestat & mask) == mask)
453 return;
454
455 /* Enable the interrupt, clear any pending status */
456 pipestat |= mask | (mask >> 16);
457 I915_WRITE(reg, pipestat);
458 POSTING_READ(reg);
459 }
460
461 void
462 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
463 {
464 u32 reg = PIPESTAT(pipe);
465 u32 pipestat = I915_READ(reg) & 0x7fff0000;
466
467 assert_spin_locked(&dev_priv->irq_lock);
468
469 if ((pipestat & mask) == 0)
470 return;
471
472 pipestat &= ~mask;
473 I915_WRITE(reg, pipestat);
474 POSTING_READ(reg);
475 }
476
477 /**
478 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
479 */
480 static void i915_enable_asle_pipestat(struct drm_device *dev)
481 {
482 drm_i915_private_t *dev_priv = dev->dev_private;
483 unsigned long irqflags;
484
485 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
486 return;
487
488 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
489
490 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
491 if (INTEL_INFO(dev)->gen >= 4)
492 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
493
494 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
495 }
496
497 /**
498 * i915_pipe_enabled - check if a pipe is enabled
499 * @dev: DRM device
500 * @pipe: pipe to check
501 *
502 * Reading certain registers when the pipe is disabled can hang the chip.
503 * Use this routine to make sure the PLL is running and the pipe is active
504 * before reading such registers if unsure.
505 */
506 static int
507 i915_pipe_enabled(struct drm_device *dev, int pipe)
508 {
509 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
510
511 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
512 /* Locking is horribly broken here, but whatever. */
513 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
515
516 return intel_crtc->active;
517 } else {
518 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
519 }
520 }
521
522 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
523 {
524 /* Gen2 doesn't have a hardware frame counter */
525 return 0;
526 }
527
528 /* Called from drm generic code, passed a 'crtc', which
529 * we use as a pipe index
530 */
531 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
532 {
533 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
534 unsigned long high_frame;
535 unsigned long low_frame;
536 u32 high1, high2, low, pixel, vbl_start;
537
538 if (!i915_pipe_enabled(dev, pipe)) {
539 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
540 "pipe %c\n", pipe_name(pipe));
541 return 0;
542 }
543
544 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
545 struct intel_crtc *intel_crtc =
546 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
547 const struct drm_display_mode *mode =
548 &intel_crtc->config.adjusted_mode;
549
550 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
551 } else {
552 enum transcoder cpu_transcoder =
553 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
554 u32 htotal;
555
556 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
557 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
558
559 vbl_start *= htotal;
560 }
561
562 high_frame = PIPEFRAME(pipe);
563 low_frame = PIPEFRAMEPIXEL(pipe);
564
565 /*
566 * High & low register fields aren't synchronized, so make sure
567 * we get a low value that's stable across two reads of the high
568 * register.
569 */
570 do {
571 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
572 low = I915_READ(low_frame);
573 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
574 } while (high1 != high2);
575
576 high1 >>= PIPE_FRAME_HIGH_SHIFT;
577 pixel = low & PIPE_PIXEL_MASK;
578 low >>= PIPE_FRAME_LOW_SHIFT;
579
580 /*
581 * The frame counter increments at beginning of active.
582 * Cook up a vblank counter by also checking the pixel
583 * counter against vblank start.
584 */
585 return ((high1 << 8) | low) + (pixel >= vbl_start);
586 }
587
588 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
589 {
590 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
591 int reg = PIPE_FRMCOUNT_GM45(pipe);
592
593 if (!i915_pipe_enabled(dev, pipe)) {
594 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
595 "pipe %c\n", pipe_name(pipe));
596 return 0;
597 }
598
599 return I915_READ(reg);
600 }
601
602 static bool intel_pipe_in_vblank(struct drm_device *dev, enum pipe pipe)
603 {
604 struct drm_i915_private *dev_priv = dev->dev_private;
605 uint32_t status;
606
607 if (IS_VALLEYVIEW(dev)) {
608 status = pipe == PIPE_A ?
609 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
610 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
611
612 return I915_READ(VLV_ISR) & status;
613 } else if (IS_GEN2(dev)) {
614 status = pipe == PIPE_A ?
615 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
616 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
617
618 return I915_READ16(ISR) & status;
619 } else if (INTEL_INFO(dev)->gen < 5) {
620 status = pipe == PIPE_A ?
621 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
622 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
623
624 return I915_READ(ISR) & status;
625 } else if (INTEL_INFO(dev)->gen < 7) {
626 status = pipe == PIPE_A ?
627 DE_PIPEA_VBLANK :
628 DE_PIPEB_VBLANK;
629
630 return I915_READ(DEISR) & status;
631 } else {
632 switch (pipe) {
633 default:
634 case PIPE_A:
635 status = DE_PIPEA_VBLANK_IVB;
636 break;
637 case PIPE_B:
638 status = DE_PIPEB_VBLANK_IVB;
639 break;
640 case PIPE_C:
641 status = DE_PIPEC_VBLANK_IVB;
642 break;
643 }
644
645 return I915_READ(DEISR) & status;
646 }
647 }
648
649 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
650 int *vpos, int *hpos)
651 {
652 struct drm_i915_private *dev_priv = dev->dev_private;
653 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
655 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
656 int position;
657 int vbl_start, vbl_end, htotal, vtotal;
658 bool in_vbl = true;
659 int ret = 0;
660
661 if (!intel_crtc->active) {
662 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
663 "pipe %c\n", pipe_name(pipe));
664 return 0;
665 }
666
667 htotal = mode->crtc_htotal;
668 vtotal = mode->crtc_vtotal;
669 vbl_start = mode->crtc_vblank_start;
670 vbl_end = mode->crtc_vblank_end;
671
672 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
673
674 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
675 /* No obvious pixelcount register. Only query vertical
676 * scanout position from Display scan line register.
677 */
678 if (IS_GEN2(dev))
679 position = I915_READ(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
680 else
681 position = I915_READ(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
682
683 /*
684 * The scanline counter increments at the leading edge
685 * of hsync, ie. it completely misses the active portion
686 * of the line. Fix up the counter at both edges of vblank
687 * to get a more accurate picture whether we're in vblank
688 * or not.
689 */
690 in_vbl = intel_pipe_in_vblank(dev, pipe);
691 if ((in_vbl && position == vbl_start - 1) ||
692 (!in_vbl && position == vbl_end - 1))
693 position = (position + 1) % vtotal;
694 } else {
695 /* Have access to pixelcount since start of frame.
696 * We can split this into vertical and horizontal
697 * scanout position.
698 */
699 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
700
701 /* convert to pixel counts */
702 vbl_start *= htotal;
703 vbl_end *= htotal;
704 vtotal *= htotal;
705 }
706
707 in_vbl = position >= vbl_start && position < vbl_end;
708
709 /*
710 * While in vblank, position will be negative
711 * counting up towards 0 at vbl_end. And outside
712 * vblank, position will be positive counting
713 * up since vbl_end.
714 */
715 if (position >= vbl_start)
716 position -= vbl_end;
717 else
718 position += vtotal - vbl_end;
719
720 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
721 *vpos = position;
722 *hpos = 0;
723 } else {
724 *vpos = position / htotal;
725 *hpos = position - (*vpos * htotal);
726 }
727
728 /* In vblank? */
729 if (in_vbl)
730 ret |= DRM_SCANOUTPOS_INVBL;
731
732 return ret;
733 }
734
735 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
736 int *max_error,
737 struct timeval *vblank_time,
738 unsigned flags)
739 {
740 struct drm_crtc *crtc;
741
742 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
743 DRM_ERROR("Invalid crtc %d\n", pipe);
744 return -EINVAL;
745 }
746
747 /* Get drm_crtc to timestamp: */
748 crtc = intel_get_crtc_for_pipe(dev, pipe);
749 if (crtc == NULL) {
750 DRM_ERROR("Invalid crtc %d\n", pipe);
751 return -EINVAL;
752 }
753
754 if (!crtc->enabled) {
755 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
756 return -EBUSY;
757 }
758
759 /* Helper routine in DRM core does all the work: */
760 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
761 vblank_time, flags,
762 crtc);
763 }
764
765 static bool intel_hpd_irq_event(struct drm_device *dev,
766 struct drm_connector *connector)
767 {
768 enum drm_connector_status old_status;
769
770 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
771 old_status = connector->status;
772
773 connector->status = connector->funcs->detect(connector, false);
774 if (old_status == connector->status)
775 return false;
776
777 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
778 connector->base.id,
779 drm_get_connector_name(connector),
780 drm_get_connector_status_name(old_status),
781 drm_get_connector_status_name(connector->status));
782
783 return true;
784 }
785
786 /*
787 * Handle hotplug events outside the interrupt handler proper.
788 */
789 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
790
791 static void i915_hotplug_work_func(struct work_struct *work)
792 {
793 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
794 hotplug_work);
795 struct drm_device *dev = dev_priv->dev;
796 struct drm_mode_config *mode_config = &dev->mode_config;
797 struct intel_connector *intel_connector;
798 struct intel_encoder *intel_encoder;
799 struct drm_connector *connector;
800 unsigned long irqflags;
801 bool hpd_disabled = false;
802 bool changed = false;
803 u32 hpd_event_bits;
804
805 /* HPD irq before everything is fully set up. */
806 if (!dev_priv->enable_hotplug_processing)
807 return;
808
809 mutex_lock(&mode_config->mutex);
810 DRM_DEBUG_KMS("running encoder hotplug functions\n");
811
812 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
813
814 hpd_event_bits = dev_priv->hpd_event_bits;
815 dev_priv->hpd_event_bits = 0;
816 list_for_each_entry(connector, &mode_config->connector_list, head) {
817 intel_connector = to_intel_connector(connector);
818 intel_encoder = intel_connector->encoder;
819 if (intel_encoder->hpd_pin > HPD_NONE &&
820 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
821 connector->polled == DRM_CONNECTOR_POLL_HPD) {
822 DRM_INFO("HPD interrupt storm detected on connector %s: "
823 "switching from hotplug detection to polling\n",
824 drm_get_connector_name(connector));
825 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
826 connector->polled = DRM_CONNECTOR_POLL_CONNECT
827 | DRM_CONNECTOR_POLL_DISCONNECT;
828 hpd_disabled = true;
829 }
830 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
831 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
832 drm_get_connector_name(connector), intel_encoder->hpd_pin);
833 }
834 }
835 /* if there were no outputs to poll, poll was disabled,
836 * therefore make sure it's enabled when disabling HPD on
837 * some connectors */
838 if (hpd_disabled) {
839 drm_kms_helper_poll_enable(dev);
840 mod_timer(&dev_priv->hotplug_reenable_timer,
841 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
842 }
843
844 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
845
846 list_for_each_entry(connector, &mode_config->connector_list, head) {
847 intel_connector = to_intel_connector(connector);
848 intel_encoder = intel_connector->encoder;
849 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
850 if (intel_encoder->hot_plug)
851 intel_encoder->hot_plug(intel_encoder);
852 if (intel_hpd_irq_event(dev, connector))
853 changed = true;
854 }
855 }
856 mutex_unlock(&mode_config->mutex);
857
858 if (changed)
859 drm_kms_helper_hotplug_event(dev);
860 }
861
862 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
863 {
864 drm_i915_private_t *dev_priv = dev->dev_private;
865 u32 busy_up, busy_down, max_avg, min_avg;
866 u8 new_delay;
867
868 spin_lock(&mchdev_lock);
869
870 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
871
872 new_delay = dev_priv->ips.cur_delay;
873
874 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
875 busy_up = I915_READ(RCPREVBSYTUPAVG);
876 busy_down = I915_READ(RCPREVBSYTDNAVG);
877 max_avg = I915_READ(RCBMAXAVG);
878 min_avg = I915_READ(RCBMINAVG);
879
880 /* Handle RCS change request from hw */
881 if (busy_up > max_avg) {
882 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
883 new_delay = dev_priv->ips.cur_delay - 1;
884 if (new_delay < dev_priv->ips.max_delay)
885 new_delay = dev_priv->ips.max_delay;
886 } else if (busy_down < min_avg) {
887 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
888 new_delay = dev_priv->ips.cur_delay + 1;
889 if (new_delay > dev_priv->ips.min_delay)
890 new_delay = dev_priv->ips.min_delay;
891 }
892
893 if (ironlake_set_drps(dev, new_delay))
894 dev_priv->ips.cur_delay = new_delay;
895
896 spin_unlock(&mchdev_lock);
897
898 return;
899 }
900
901 static void notify_ring(struct drm_device *dev,
902 struct intel_ring_buffer *ring)
903 {
904 if (ring->obj == NULL)
905 return;
906
907 trace_i915_gem_request_complete(ring);
908
909 wake_up_all(&ring->irq_queue);
910 i915_queue_hangcheck(dev);
911 }
912
913 static void gen6_pm_rps_work(struct work_struct *work)
914 {
915 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
916 rps.work);
917 u32 pm_iir;
918 int new_delay, adj;
919
920 spin_lock_irq(&dev_priv->irq_lock);
921 pm_iir = dev_priv->rps.pm_iir;
922 dev_priv->rps.pm_iir = 0;
923 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
924 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
925 spin_unlock_irq(&dev_priv->irq_lock);
926
927 /* Make sure we didn't queue anything we're not going to process. */
928 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
929
930 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
931 return;
932
933 mutex_lock(&dev_priv->rps.hw_lock);
934
935 adj = dev_priv->rps.last_adj;
936 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
937 if (adj > 0)
938 adj *= 2;
939 else
940 adj = 1;
941 new_delay = dev_priv->rps.cur_delay + adj;
942
943 /*
944 * For better performance, jump directly
945 * to RPe if we're below it.
946 */
947 if (new_delay < dev_priv->rps.rpe_delay)
948 new_delay = dev_priv->rps.rpe_delay;
949 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
950 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
951 new_delay = dev_priv->rps.rpe_delay;
952 else
953 new_delay = dev_priv->rps.min_delay;
954 adj = 0;
955 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
956 if (adj < 0)
957 adj *= 2;
958 else
959 adj = -1;
960 new_delay = dev_priv->rps.cur_delay + adj;
961 } else { /* unknown event */
962 new_delay = dev_priv->rps.cur_delay;
963 }
964
965 /* sysfs frequency interfaces may have snuck in while servicing the
966 * interrupt
967 */
968 if (new_delay < (int)dev_priv->rps.min_delay)
969 new_delay = dev_priv->rps.min_delay;
970 if (new_delay > (int)dev_priv->rps.max_delay)
971 new_delay = dev_priv->rps.max_delay;
972 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
973
974 if (IS_VALLEYVIEW(dev_priv->dev))
975 valleyview_set_rps(dev_priv->dev, new_delay);
976 else
977 gen6_set_rps(dev_priv->dev, new_delay);
978
979 mutex_unlock(&dev_priv->rps.hw_lock);
980 }
981
982
983 /**
984 * ivybridge_parity_work - Workqueue called when a parity error interrupt
985 * occurred.
986 * @work: workqueue struct
987 *
988 * Doesn't actually do anything except notify userspace. As a consequence of
989 * this event, userspace should try to remap the bad rows since statistically
990 * it is likely the same row is more likely to go bad again.
991 */
992 static void ivybridge_parity_work(struct work_struct *work)
993 {
994 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
995 l3_parity.error_work);
996 u32 error_status, row, bank, subbank;
997 char *parity_event[6];
998 uint32_t misccpctl;
999 unsigned long flags;
1000 uint8_t slice = 0;
1001
1002 /* We must turn off DOP level clock gating to access the L3 registers.
1003 * In order to prevent a get/put style interface, acquire struct mutex
1004 * any time we access those registers.
1005 */
1006 mutex_lock(&dev_priv->dev->struct_mutex);
1007
1008 /* If we've screwed up tracking, just let the interrupt fire again */
1009 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1010 goto out;
1011
1012 misccpctl = I915_READ(GEN7_MISCCPCTL);
1013 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1014 POSTING_READ(GEN7_MISCCPCTL);
1015
1016 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1017 u32 reg;
1018
1019 slice--;
1020 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1021 break;
1022
1023 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1024
1025 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1026
1027 error_status = I915_READ(reg);
1028 row = GEN7_PARITY_ERROR_ROW(error_status);
1029 bank = GEN7_PARITY_ERROR_BANK(error_status);
1030 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1031
1032 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1033 POSTING_READ(reg);
1034
1035 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1036 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1037 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1038 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1039 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1040 parity_event[5] = NULL;
1041
1042 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
1043 KOBJ_CHANGE, parity_event);
1044
1045 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1046 slice, row, bank, subbank);
1047
1048 kfree(parity_event[4]);
1049 kfree(parity_event[3]);
1050 kfree(parity_event[2]);
1051 kfree(parity_event[1]);
1052 }
1053
1054 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1055
1056 out:
1057 WARN_ON(dev_priv->l3_parity.which_slice);
1058 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1059 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1060 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1061
1062 mutex_unlock(&dev_priv->dev->struct_mutex);
1063 }
1064
1065 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1066 {
1067 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1068
1069 if (!HAS_L3_DPF(dev))
1070 return;
1071
1072 spin_lock(&dev_priv->irq_lock);
1073 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1074 spin_unlock(&dev_priv->irq_lock);
1075
1076 iir &= GT_PARITY_ERROR(dev);
1077 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1078 dev_priv->l3_parity.which_slice |= 1 << 1;
1079
1080 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1081 dev_priv->l3_parity.which_slice |= 1 << 0;
1082
1083 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1084 }
1085
1086 static void ilk_gt_irq_handler(struct drm_device *dev,
1087 struct drm_i915_private *dev_priv,
1088 u32 gt_iir)
1089 {
1090 if (gt_iir &
1091 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1092 notify_ring(dev, &dev_priv->ring[RCS]);
1093 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1094 notify_ring(dev, &dev_priv->ring[VCS]);
1095 }
1096
1097 static void snb_gt_irq_handler(struct drm_device *dev,
1098 struct drm_i915_private *dev_priv,
1099 u32 gt_iir)
1100 {
1101
1102 if (gt_iir &
1103 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1104 notify_ring(dev, &dev_priv->ring[RCS]);
1105 if (gt_iir & GT_BSD_USER_INTERRUPT)
1106 notify_ring(dev, &dev_priv->ring[VCS]);
1107 if (gt_iir & GT_BLT_USER_INTERRUPT)
1108 notify_ring(dev, &dev_priv->ring[BCS]);
1109
1110 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1111 GT_BSD_CS_ERROR_INTERRUPT |
1112 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1113 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1114 i915_handle_error(dev, false);
1115 }
1116
1117 if (gt_iir & GT_PARITY_ERROR(dev))
1118 ivybridge_parity_error_irq_handler(dev, gt_iir);
1119 }
1120
1121 #define HPD_STORM_DETECT_PERIOD 1000
1122 #define HPD_STORM_THRESHOLD 5
1123
1124 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1125 u32 hotplug_trigger,
1126 const u32 *hpd)
1127 {
1128 drm_i915_private_t *dev_priv = dev->dev_private;
1129 int i;
1130 bool storm_detected = false;
1131
1132 if (!hotplug_trigger)
1133 return;
1134
1135 spin_lock(&dev_priv->irq_lock);
1136 for (i = 1; i < HPD_NUM_PINS; i++) {
1137
1138 WARN(((hpd[i] & hotplug_trigger) &&
1139 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1140 "Received HPD interrupt although disabled\n");
1141
1142 if (!(hpd[i] & hotplug_trigger) ||
1143 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1144 continue;
1145
1146 dev_priv->hpd_event_bits |= (1 << i);
1147 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1148 dev_priv->hpd_stats[i].hpd_last_jiffies
1149 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1150 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1151 dev_priv->hpd_stats[i].hpd_cnt = 0;
1152 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1153 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1154 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1155 dev_priv->hpd_event_bits &= ~(1 << i);
1156 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1157 storm_detected = true;
1158 } else {
1159 dev_priv->hpd_stats[i].hpd_cnt++;
1160 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1161 dev_priv->hpd_stats[i].hpd_cnt);
1162 }
1163 }
1164
1165 if (storm_detected)
1166 dev_priv->display.hpd_irq_setup(dev);
1167 spin_unlock(&dev_priv->irq_lock);
1168
1169 /*
1170 * Our hotplug handler can grab modeset locks (by calling down into the
1171 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1172 * queue for otherwise the flush_work in the pageflip code will
1173 * deadlock.
1174 */
1175 schedule_work(&dev_priv->hotplug_work);
1176 }
1177
1178 static void gmbus_irq_handler(struct drm_device *dev)
1179 {
1180 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1181
1182 wake_up_all(&dev_priv->gmbus_wait_queue);
1183 }
1184
1185 static void dp_aux_irq_handler(struct drm_device *dev)
1186 {
1187 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1188
1189 wake_up_all(&dev_priv->gmbus_wait_queue);
1190 }
1191
1192 #if defined(CONFIG_DEBUG_FS)
1193 static void ivb_pipe_crc_update(struct drm_device *dev, enum pipe pipe)
1194 {
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1197 struct intel_pipe_crc_entry *entry;
1198 ktime_t now;
1199 int ts, head, tail;
1200
1201 head = atomic_read(&pipe_crc->head);
1202 tail = atomic_read(&pipe_crc->tail);
1203
1204 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1205 DRM_ERROR("CRC buffer overflowing\n");
1206 return;
1207 }
1208
1209 entry = &pipe_crc->entries[head];
1210
1211 now = ktime_get();
1212 ts = ktime_to_us(now);
1213
1214 entry->timestamp = ts;
1215 entry->crc[0] = I915_READ(PIPE_CRC_RES_1_IVB(pipe));
1216 entry->crc[1] = I915_READ(PIPE_CRC_RES_2_IVB(pipe));
1217 entry->crc[2] = I915_READ(PIPE_CRC_RES_3_IVB(pipe));
1218 entry->crc[3] = I915_READ(PIPE_CRC_RES_4_IVB(pipe));
1219 entry->crc[4] = I915_READ(PIPE_CRC_RES_5_IVB(pipe));
1220
1221 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1222 atomic_set(&pipe_crc->head, head);
1223 }
1224 #else
1225 static void ivb_pipe_crc_update(struct drm_device *dev, int pipe) {}
1226 #endif
1227
1228 /* The RPS events need forcewake, so we add them to a work queue and mask their
1229 * IMR bits until the work is done. Other interrupts can be processed without
1230 * the work queue. */
1231 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1232 {
1233 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1234 spin_lock(&dev_priv->irq_lock);
1235 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1236 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1237 spin_unlock(&dev_priv->irq_lock);
1238
1239 queue_work(dev_priv->wq, &dev_priv->rps.work);
1240 }
1241
1242 if (HAS_VEBOX(dev_priv->dev)) {
1243 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1244 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1245
1246 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1247 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1248 i915_handle_error(dev_priv->dev, false);
1249 }
1250 }
1251 }
1252
1253 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1254 {
1255 struct drm_device *dev = (struct drm_device *) arg;
1256 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1257 u32 iir, gt_iir, pm_iir;
1258 irqreturn_t ret = IRQ_NONE;
1259 unsigned long irqflags;
1260 int pipe;
1261 u32 pipe_stats[I915_MAX_PIPES];
1262
1263 atomic_inc(&dev_priv->irq_received);
1264
1265 while (true) {
1266 iir = I915_READ(VLV_IIR);
1267 gt_iir = I915_READ(GTIIR);
1268 pm_iir = I915_READ(GEN6_PMIIR);
1269
1270 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1271 goto out;
1272
1273 ret = IRQ_HANDLED;
1274
1275 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1276
1277 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1278 for_each_pipe(pipe) {
1279 int reg = PIPESTAT(pipe);
1280 pipe_stats[pipe] = I915_READ(reg);
1281
1282 /*
1283 * Clear the PIPE*STAT regs before the IIR
1284 */
1285 if (pipe_stats[pipe] & 0x8000ffff) {
1286 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1287 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1288 pipe_name(pipe));
1289 I915_WRITE(reg, pipe_stats[pipe]);
1290 }
1291 }
1292 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1293
1294 for_each_pipe(pipe) {
1295 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1296 drm_handle_vblank(dev, pipe);
1297
1298 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1299 intel_prepare_page_flip(dev, pipe);
1300 intel_finish_page_flip(dev, pipe);
1301 }
1302 }
1303
1304 /* Consume port. Then clear IIR or we'll miss events */
1305 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1306 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1307 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1308
1309 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1310 hotplug_status);
1311
1312 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1313
1314 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1315 I915_READ(PORT_HOTPLUG_STAT);
1316 }
1317
1318 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1319 gmbus_irq_handler(dev);
1320
1321 if (pm_iir)
1322 gen6_rps_irq_handler(dev_priv, pm_iir);
1323
1324 I915_WRITE(GTIIR, gt_iir);
1325 I915_WRITE(GEN6_PMIIR, pm_iir);
1326 I915_WRITE(VLV_IIR, iir);
1327 }
1328
1329 out:
1330 return ret;
1331 }
1332
1333 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1334 {
1335 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1336 int pipe;
1337 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1338
1339 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1340
1341 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1342 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1343 SDE_AUDIO_POWER_SHIFT);
1344 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1345 port_name(port));
1346 }
1347
1348 if (pch_iir & SDE_AUX_MASK)
1349 dp_aux_irq_handler(dev);
1350
1351 if (pch_iir & SDE_GMBUS)
1352 gmbus_irq_handler(dev);
1353
1354 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1355 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1356
1357 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1358 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1359
1360 if (pch_iir & SDE_POISON)
1361 DRM_ERROR("PCH poison interrupt\n");
1362
1363 if (pch_iir & SDE_FDI_MASK)
1364 for_each_pipe(pipe)
1365 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1366 pipe_name(pipe),
1367 I915_READ(FDI_RX_IIR(pipe)));
1368
1369 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1370 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1371
1372 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1373 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1374
1375 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1376 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1377 false))
1378 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1379
1380 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1381 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1382 false))
1383 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1384 }
1385
1386 static void ivb_err_int_handler(struct drm_device *dev)
1387 {
1388 struct drm_i915_private *dev_priv = dev->dev_private;
1389 u32 err_int = I915_READ(GEN7_ERR_INT);
1390
1391 if (err_int & ERR_INT_POISON)
1392 DRM_ERROR("Poison interrupt\n");
1393
1394 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1395 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1396 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1397
1398 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1399 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1400 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1401
1402 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1403 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1404 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1405
1406 if (err_int & ERR_INT_PIPE_CRC_DONE_A)
1407 ivb_pipe_crc_update(dev, PIPE_A);
1408
1409 if (err_int & ERR_INT_PIPE_CRC_DONE_B)
1410 ivb_pipe_crc_update(dev, PIPE_B);
1411
1412 if (err_int & ERR_INT_PIPE_CRC_DONE_C)
1413 ivb_pipe_crc_update(dev, PIPE_C);
1414
1415 I915_WRITE(GEN7_ERR_INT, err_int);
1416 }
1417
1418 static void cpt_serr_int_handler(struct drm_device *dev)
1419 {
1420 struct drm_i915_private *dev_priv = dev->dev_private;
1421 u32 serr_int = I915_READ(SERR_INT);
1422
1423 if (serr_int & SERR_INT_POISON)
1424 DRM_ERROR("PCH poison interrupt\n");
1425
1426 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1427 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1428 false))
1429 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1430
1431 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1432 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1433 false))
1434 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1435
1436 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1437 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1438 false))
1439 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1440
1441 I915_WRITE(SERR_INT, serr_int);
1442 }
1443
1444 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1445 {
1446 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1447 int pipe;
1448 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1449
1450 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1451
1452 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1453 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1454 SDE_AUDIO_POWER_SHIFT_CPT);
1455 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1456 port_name(port));
1457 }
1458
1459 if (pch_iir & SDE_AUX_MASK_CPT)
1460 dp_aux_irq_handler(dev);
1461
1462 if (pch_iir & SDE_GMBUS_CPT)
1463 gmbus_irq_handler(dev);
1464
1465 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1466 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1467
1468 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1469 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1470
1471 if (pch_iir & SDE_FDI_MASK_CPT)
1472 for_each_pipe(pipe)
1473 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1474 pipe_name(pipe),
1475 I915_READ(FDI_RX_IIR(pipe)));
1476
1477 if (pch_iir & SDE_ERROR_CPT)
1478 cpt_serr_int_handler(dev);
1479 }
1480
1481 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1482 {
1483 struct drm_i915_private *dev_priv = dev->dev_private;
1484
1485 if (de_iir & DE_AUX_CHANNEL_A)
1486 dp_aux_irq_handler(dev);
1487
1488 if (de_iir & DE_GSE)
1489 intel_opregion_asle_intr(dev);
1490
1491 if (de_iir & DE_PIPEA_VBLANK)
1492 drm_handle_vblank(dev, 0);
1493
1494 if (de_iir & DE_PIPEB_VBLANK)
1495 drm_handle_vblank(dev, 1);
1496
1497 if (de_iir & DE_POISON)
1498 DRM_ERROR("Poison interrupt\n");
1499
1500 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1501 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1502 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1503
1504 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1505 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1506 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1507
1508 if (de_iir & DE_PLANEA_FLIP_DONE) {
1509 intel_prepare_page_flip(dev, 0);
1510 intel_finish_page_flip_plane(dev, 0);
1511 }
1512
1513 if (de_iir & DE_PLANEB_FLIP_DONE) {
1514 intel_prepare_page_flip(dev, 1);
1515 intel_finish_page_flip_plane(dev, 1);
1516 }
1517
1518 /* check event from PCH */
1519 if (de_iir & DE_PCH_EVENT) {
1520 u32 pch_iir = I915_READ(SDEIIR);
1521
1522 if (HAS_PCH_CPT(dev))
1523 cpt_irq_handler(dev, pch_iir);
1524 else
1525 ibx_irq_handler(dev, pch_iir);
1526
1527 /* should clear PCH hotplug event before clear CPU irq */
1528 I915_WRITE(SDEIIR, pch_iir);
1529 }
1530
1531 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1532 ironlake_rps_change_irq_handler(dev);
1533 }
1534
1535 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1536 {
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538 int i;
1539
1540 if (de_iir & DE_ERR_INT_IVB)
1541 ivb_err_int_handler(dev);
1542
1543 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1544 dp_aux_irq_handler(dev);
1545
1546 if (de_iir & DE_GSE_IVB)
1547 intel_opregion_asle_intr(dev);
1548
1549 for (i = 0; i < 3; i++) {
1550 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1551 drm_handle_vblank(dev, i);
1552 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1553 intel_prepare_page_flip(dev, i);
1554 intel_finish_page_flip_plane(dev, i);
1555 }
1556 }
1557
1558 /* check event from PCH */
1559 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1560 u32 pch_iir = I915_READ(SDEIIR);
1561
1562 cpt_irq_handler(dev, pch_iir);
1563
1564 /* clear PCH hotplug event before clear CPU irq */
1565 I915_WRITE(SDEIIR, pch_iir);
1566 }
1567 }
1568
1569 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1570 {
1571 struct drm_device *dev = (struct drm_device *) arg;
1572 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1573 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1574 irqreturn_t ret = IRQ_NONE;
1575
1576 atomic_inc(&dev_priv->irq_received);
1577
1578 /* We get interrupts on unclaimed registers, so check for this before we
1579 * do any I915_{READ,WRITE}. */
1580 intel_uncore_check_errors(dev);
1581
1582 /* disable master interrupt before clearing iir */
1583 de_ier = I915_READ(DEIER);
1584 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1585 POSTING_READ(DEIER);
1586
1587 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1588 * interrupts will will be stored on its back queue, and then we'll be
1589 * able to process them after we restore SDEIER (as soon as we restore
1590 * it, we'll get an interrupt if SDEIIR still has something to process
1591 * due to its back queue). */
1592 if (!HAS_PCH_NOP(dev)) {
1593 sde_ier = I915_READ(SDEIER);
1594 I915_WRITE(SDEIER, 0);
1595 POSTING_READ(SDEIER);
1596 }
1597
1598 gt_iir = I915_READ(GTIIR);
1599 if (gt_iir) {
1600 if (INTEL_INFO(dev)->gen >= 6)
1601 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1602 else
1603 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1604 I915_WRITE(GTIIR, gt_iir);
1605 ret = IRQ_HANDLED;
1606 }
1607
1608 de_iir = I915_READ(DEIIR);
1609 if (de_iir) {
1610 if (INTEL_INFO(dev)->gen >= 7)
1611 ivb_display_irq_handler(dev, de_iir);
1612 else
1613 ilk_display_irq_handler(dev, de_iir);
1614 I915_WRITE(DEIIR, de_iir);
1615 ret = IRQ_HANDLED;
1616 }
1617
1618 if (INTEL_INFO(dev)->gen >= 6) {
1619 u32 pm_iir = I915_READ(GEN6_PMIIR);
1620 if (pm_iir) {
1621 gen6_rps_irq_handler(dev_priv, pm_iir);
1622 I915_WRITE(GEN6_PMIIR, pm_iir);
1623 ret = IRQ_HANDLED;
1624 }
1625 }
1626
1627 I915_WRITE(DEIER, de_ier);
1628 POSTING_READ(DEIER);
1629 if (!HAS_PCH_NOP(dev)) {
1630 I915_WRITE(SDEIER, sde_ier);
1631 POSTING_READ(SDEIER);
1632 }
1633
1634 return ret;
1635 }
1636
1637 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1638 bool reset_completed)
1639 {
1640 struct intel_ring_buffer *ring;
1641 int i;
1642
1643 /*
1644 * Notify all waiters for GPU completion events that reset state has
1645 * been changed, and that they need to restart their wait after
1646 * checking for potential errors (and bail out to drop locks if there is
1647 * a gpu reset pending so that i915_error_work_func can acquire them).
1648 */
1649
1650 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1651 for_each_ring(ring, dev_priv, i)
1652 wake_up_all(&ring->irq_queue);
1653
1654 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1655 wake_up_all(&dev_priv->pending_flip_queue);
1656
1657 /*
1658 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1659 * reset state is cleared.
1660 */
1661 if (reset_completed)
1662 wake_up_all(&dev_priv->gpu_error.reset_queue);
1663 }
1664
1665 /**
1666 * i915_error_work_func - do process context error handling work
1667 * @work: work struct
1668 *
1669 * Fire an error uevent so userspace can see that a hang or error
1670 * was detected.
1671 */
1672 static void i915_error_work_func(struct work_struct *work)
1673 {
1674 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1675 work);
1676 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1677 gpu_error);
1678 struct drm_device *dev = dev_priv->dev;
1679 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1680 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1681 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1682 int ret;
1683
1684 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1685
1686 /*
1687 * Note that there's only one work item which does gpu resets, so we
1688 * need not worry about concurrent gpu resets potentially incrementing
1689 * error->reset_counter twice. We only need to take care of another
1690 * racing irq/hangcheck declaring the gpu dead for a second time. A
1691 * quick check for that is good enough: schedule_work ensures the
1692 * correct ordering between hang detection and this work item, and since
1693 * the reset in-progress bit is only ever set by code outside of this
1694 * work we don't need to worry about any other races.
1695 */
1696 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1697 DRM_DEBUG_DRIVER("resetting chip\n");
1698 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1699 reset_event);
1700
1701 /*
1702 * All state reset _must_ be completed before we update the
1703 * reset counter, for otherwise waiters might miss the reset
1704 * pending state and not properly drop locks, resulting in
1705 * deadlocks with the reset work.
1706 */
1707 ret = i915_reset(dev);
1708
1709 intel_display_handle_reset(dev);
1710
1711 if (ret == 0) {
1712 /*
1713 * After all the gem state is reset, increment the reset
1714 * counter and wake up everyone waiting for the reset to
1715 * complete.
1716 *
1717 * Since unlock operations are a one-sided barrier only,
1718 * we need to insert a barrier here to order any seqno
1719 * updates before
1720 * the counter increment.
1721 */
1722 smp_mb__before_atomic_inc();
1723 atomic_inc(&dev_priv->gpu_error.reset_counter);
1724
1725 kobject_uevent_env(&dev->primary->kdev.kobj,
1726 KOBJ_CHANGE, reset_done_event);
1727 } else {
1728 atomic_set(&error->reset_counter, I915_WEDGED);
1729 }
1730
1731 /*
1732 * Note: The wake_up also serves as a memory barrier so that
1733 * waiters see the update value of the reset counter atomic_t.
1734 */
1735 i915_error_wake_up(dev_priv, true);
1736 }
1737 }
1738
1739 static void i915_report_and_clear_eir(struct drm_device *dev)
1740 {
1741 struct drm_i915_private *dev_priv = dev->dev_private;
1742 uint32_t instdone[I915_NUM_INSTDONE_REG];
1743 u32 eir = I915_READ(EIR);
1744 int pipe, i;
1745
1746 if (!eir)
1747 return;
1748
1749 pr_err("render error detected, EIR: 0x%08x\n", eir);
1750
1751 i915_get_extra_instdone(dev, instdone);
1752
1753 if (IS_G4X(dev)) {
1754 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1755 u32 ipeir = I915_READ(IPEIR_I965);
1756
1757 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1758 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1759 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1760 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1761 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1762 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1763 I915_WRITE(IPEIR_I965, ipeir);
1764 POSTING_READ(IPEIR_I965);
1765 }
1766 if (eir & GM45_ERROR_PAGE_TABLE) {
1767 u32 pgtbl_err = I915_READ(PGTBL_ER);
1768 pr_err("page table error\n");
1769 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1770 I915_WRITE(PGTBL_ER, pgtbl_err);
1771 POSTING_READ(PGTBL_ER);
1772 }
1773 }
1774
1775 if (!IS_GEN2(dev)) {
1776 if (eir & I915_ERROR_PAGE_TABLE) {
1777 u32 pgtbl_err = I915_READ(PGTBL_ER);
1778 pr_err("page table error\n");
1779 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1780 I915_WRITE(PGTBL_ER, pgtbl_err);
1781 POSTING_READ(PGTBL_ER);
1782 }
1783 }
1784
1785 if (eir & I915_ERROR_MEMORY_REFRESH) {
1786 pr_err("memory refresh error:\n");
1787 for_each_pipe(pipe)
1788 pr_err("pipe %c stat: 0x%08x\n",
1789 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1790 /* pipestat has already been acked */
1791 }
1792 if (eir & I915_ERROR_INSTRUCTION) {
1793 pr_err("instruction error\n");
1794 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1795 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1796 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1797 if (INTEL_INFO(dev)->gen < 4) {
1798 u32 ipeir = I915_READ(IPEIR);
1799
1800 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1801 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1802 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1803 I915_WRITE(IPEIR, ipeir);
1804 POSTING_READ(IPEIR);
1805 } else {
1806 u32 ipeir = I915_READ(IPEIR_I965);
1807
1808 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1809 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1810 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1811 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1812 I915_WRITE(IPEIR_I965, ipeir);
1813 POSTING_READ(IPEIR_I965);
1814 }
1815 }
1816
1817 I915_WRITE(EIR, eir);
1818 POSTING_READ(EIR);
1819 eir = I915_READ(EIR);
1820 if (eir) {
1821 /*
1822 * some errors might have become stuck,
1823 * mask them.
1824 */
1825 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1826 I915_WRITE(EMR, I915_READ(EMR) | eir);
1827 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1828 }
1829 }
1830
1831 /**
1832 * i915_handle_error - handle an error interrupt
1833 * @dev: drm device
1834 *
1835 * Do some basic checking of regsiter state at error interrupt time and
1836 * dump it to the syslog. Also call i915_capture_error_state() to make
1837 * sure we get a record and make it available in debugfs. Fire a uevent
1838 * so userspace knows something bad happened (should trigger collection
1839 * of a ring dump etc.).
1840 */
1841 void i915_handle_error(struct drm_device *dev, bool wedged)
1842 {
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844
1845 i915_capture_error_state(dev);
1846 i915_report_and_clear_eir(dev);
1847
1848 if (wedged) {
1849 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1850 &dev_priv->gpu_error.reset_counter);
1851
1852 /*
1853 * Wakeup waiting processes so that the reset work function
1854 * i915_error_work_func doesn't deadlock trying to grab various
1855 * locks. By bumping the reset counter first, the woken
1856 * processes will see a reset in progress and back off,
1857 * releasing their locks and then wait for the reset completion.
1858 * We must do this for _all_ gpu waiters that might hold locks
1859 * that the reset work needs to acquire.
1860 *
1861 * Note: The wake_up serves as the required memory barrier to
1862 * ensure that the waiters see the updated value of the reset
1863 * counter atomic_t.
1864 */
1865 i915_error_wake_up(dev_priv, false);
1866 }
1867
1868 /*
1869 * Our reset work can grab modeset locks (since it needs to reset the
1870 * state of outstanding pagelips). Hence it must not be run on our own
1871 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1872 * code will deadlock.
1873 */
1874 schedule_work(&dev_priv->gpu_error.work);
1875 }
1876
1877 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1878 {
1879 drm_i915_private_t *dev_priv = dev->dev_private;
1880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1882 struct drm_i915_gem_object *obj;
1883 struct intel_unpin_work *work;
1884 unsigned long flags;
1885 bool stall_detected;
1886
1887 /* Ignore early vblank irqs */
1888 if (intel_crtc == NULL)
1889 return;
1890
1891 spin_lock_irqsave(&dev->event_lock, flags);
1892 work = intel_crtc->unpin_work;
1893
1894 if (work == NULL ||
1895 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1896 !work->enable_stall_check) {
1897 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1898 spin_unlock_irqrestore(&dev->event_lock, flags);
1899 return;
1900 }
1901
1902 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1903 obj = work->pending_flip_obj;
1904 if (INTEL_INFO(dev)->gen >= 4) {
1905 int dspsurf = DSPSURF(intel_crtc->plane);
1906 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1907 i915_gem_obj_ggtt_offset(obj);
1908 } else {
1909 int dspaddr = DSPADDR(intel_crtc->plane);
1910 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1911 crtc->y * crtc->fb->pitches[0] +
1912 crtc->x * crtc->fb->bits_per_pixel/8);
1913 }
1914
1915 spin_unlock_irqrestore(&dev->event_lock, flags);
1916
1917 if (stall_detected) {
1918 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1919 intel_prepare_page_flip(dev, intel_crtc->plane);
1920 }
1921 }
1922
1923 /* Called from drm generic code, passed 'crtc' which
1924 * we use as a pipe index
1925 */
1926 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1927 {
1928 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1929 unsigned long irqflags;
1930
1931 if (!i915_pipe_enabled(dev, pipe))
1932 return -EINVAL;
1933
1934 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1935 if (INTEL_INFO(dev)->gen >= 4)
1936 i915_enable_pipestat(dev_priv, pipe,
1937 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1938 else
1939 i915_enable_pipestat(dev_priv, pipe,
1940 PIPE_VBLANK_INTERRUPT_ENABLE);
1941
1942 /* maintain vblank delivery even in deep C-states */
1943 if (dev_priv->info->gen == 3)
1944 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1945 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1946
1947 return 0;
1948 }
1949
1950 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1951 {
1952 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1953 unsigned long irqflags;
1954 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1955 DE_PIPE_VBLANK_ILK(pipe);
1956
1957 if (!i915_pipe_enabled(dev, pipe))
1958 return -EINVAL;
1959
1960 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1961 ironlake_enable_display_irq(dev_priv, bit);
1962 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1963
1964 return 0;
1965 }
1966
1967 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1968 {
1969 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1970 unsigned long irqflags;
1971 u32 imr;
1972
1973 if (!i915_pipe_enabled(dev, pipe))
1974 return -EINVAL;
1975
1976 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1977 imr = I915_READ(VLV_IMR);
1978 if (pipe == 0)
1979 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1980 else
1981 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1982 I915_WRITE(VLV_IMR, imr);
1983 i915_enable_pipestat(dev_priv, pipe,
1984 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1985 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1986
1987 return 0;
1988 }
1989
1990 /* Called from drm generic code, passed 'crtc' which
1991 * we use as a pipe index
1992 */
1993 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1994 {
1995 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1996 unsigned long irqflags;
1997
1998 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1999 if (dev_priv->info->gen == 3)
2000 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2001
2002 i915_disable_pipestat(dev_priv, pipe,
2003 PIPE_VBLANK_INTERRUPT_ENABLE |
2004 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2005 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2006 }
2007
2008 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2009 {
2010 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2011 unsigned long irqflags;
2012 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2013 DE_PIPE_VBLANK_ILK(pipe);
2014
2015 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2016 ironlake_disable_display_irq(dev_priv, bit);
2017 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2018 }
2019
2020 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2021 {
2022 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2023 unsigned long irqflags;
2024 u32 imr;
2025
2026 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2027 i915_disable_pipestat(dev_priv, pipe,
2028 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2029 imr = I915_READ(VLV_IMR);
2030 if (pipe == 0)
2031 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2032 else
2033 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2034 I915_WRITE(VLV_IMR, imr);
2035 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2036 }
2037
2038 static u32
2039 ring_last_seqno(struct intel_ring_buffer *ring)
2040 {
2041 return list_entry(ring->request_list.prev,
2042 struct drm_i915_gem_request, list)->seqno;
2043 }
2044
2045 static bool
2046 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2047 {
2048 return (list_empty(&ring->request_list) ||
2049 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2050 }
2051
2052 static struct intel_ring_buffer *
2053 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2054 {
2055 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2056 u32 cmd, ipehr, acthd, acthd_min;
2057
2058 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2059 if ((ipehr & ~(0x3 << 16)) !=
2060 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2061 return NULL;
2062
2063 /* ACTHD is likely pointing to the dword after the actual command,
2064 * so scan backwards until we find the MBOX.
2065 */
2066 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2067 acthd_min = max((int)acthd - 3 * 4, 0);
2068 do {
2069 cmd = ioread32(ring->virtual_start + acthd);
2070 if (cmd == ipehr)
2071 break;
2072
2073 acthd -= 4;
2074 if (acthd < acthd_min)
2075 return NULL;
2076 } while (1);
2077
2078 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2079 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2080 }
2081
2082 static int semaphore_passed(struct intel_ring_buffer *ring)
2083 {
2084 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2085 struct intel_ring_buffer *signaller;
2086 u32 seqno, ctl;
2087
2088 ring->hangcheck.deadlock = true;
2089
2090 signaller = semaphore_waits_for(ring, &seqno);
2091 if (signaller == NULL || signaller->hangcheck.deadlock)
2092 return -1;
2093
2094 /* cursory check for an unkickable deadlock */
2095 ctl = I915_READ_CTL(signaller);
2096 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2097 return -1;
2098
2099 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2100 }
2101
2102 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2103 {
2104 struct intel_ring_buffer *ring;
2105 int i;
2106
2107 for_each_ring(ring, dev_priv, i)
2108 ring->hangcheck.deadlock = false;
2109 }
2110
2111 static enum intel_ring_hangcheck_action
2112 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2113 {
2114 struct drm_device *dev = ring->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 u32 tmp;
2117
2118 if (ring->hangcheck.acthd != acthd)
2119 return HANGCHECK_ACTIVE;
2120
2121 if (IS_GEN2(dev))
2122 return HANGCHECK_HUNG;
2123
2124 /* Is the chip hanging on a WAIT_FOR_EVENT?
2125 * If so we can simply poke the RB_WAIT bit
2126 * and break the hang. This should work on
2127 * all but the second generation chipsets.
2128 */
2129 tmp = I915_READ_CTL(ring);
2130 if (tmp & RING_WAIT) {
2131 DRM_ERROR("Kicking stuck wait on %s\n",
2132 ring->name);
2133 i915_handle_error(dev, false);
2134 I915_WRITE_CTL(ring, tmp);
2135 return HANGCHECK_KICK;
2136 }
2137
2138 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2139 switch (semaphore_passed(ring)) {
2140 default:
2141 return HANGCHECK_HUNG;
2142 case 1:
2143 DRM_ERROR("Kicking stuck semaphore on %s\n",
2144 ring->name);
2145 i915_handle_error(dev, false);
2146 I915_WRITE_CTL(ring, tmp);
2147 return HANGCHECK_KICK;
2148 case 0:
2149 return HANGCHECK_WAIT;
2150 }
2151 }
2152
2153 return HANGCHECK_HUNG;
2154 }
2155
2156 /**
2157 * This is called when the chip hasn't reported back with completed
2158 * batchbuffers in a long time. We keep track per ring seqno progress and
2159 * if there are no progress, hangcheck score for that ring is increased.
2160 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2161 * we kick the ring. If we see no progress on three subsequent calls
2162 * we assume chip is wedged and try to fix it by resetting the chip.
2163 */
2164 static void i915_hangcheck_elapsed(unsigned long data)
2165 {
2166 struct drm_device *dev = (struct drm_device *)data;
2167 drm_i915_private_t *dev_priv = dev->dev_private;
2168 struct intel_ring_buffer *ring;
2169 int i;
2170 int busy_count = 0, rings_hung = 0;
2171 bool stuck[I915_NUM_RINGS] = { 0 };
2172 #define BUSY 1
2173 #define KICK 5
2174 #define HUNG 20
2175 #define FIRE 30
2176
2177 if (!i915_enable_hangcheck)
2178 return;
2179
2180 for_each_ring(ring, dev_priv, i) {
2181 u32 seqno, acthd;
2182 bool busy = true;
2183
2184 semaphore_clear_deadlocks(dev_priv);
2185
2186 seqno = ring->get_seqno(ring, false);
2187 acthd = intel_ring_get_active_head(ring);
2188
2189 if (ring->hangcheck.seqno == seqno) {
2190 if (ring_idle(ring, seqno)) {
2191 ring->hangcheck.action = HANGCHECK_IDLE;
2192
2193 if (waitqueue_active(&ring->irq_queue)) {
2194 /* Issue a wake-up to catch stuck h/w. */
2195 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2196 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2197 ring->name);
2198 wake_up_all(&ring->irq_queue);
2199 }
2200 /* Safeguard against driver failure */
2201 ring->hangcheck.score += BUSY;
2202 } else
2203 busy = false;
2204 } else {
2205 /* We always increment the hangcheck score
2206 * if the ring is busy and still processing
2207 * the same request, so that no single request
2208 * can run indefinitely (such as a chain of
2209 * batches). The only time we do not increment
2210 * the hangcheck score on this ring, if this
2211 * ring is in a legitimate wait for another
2212 * ring. In that case the waiting ring is a
2213 * victim and we want to be sure we catch the
2214 * right culprit. Then every time we do kick
2215 * the ring, add a small increment to the
2216 * score so that we can catch a batch that is
2217 * being repeatedly kicked and so responsible
2218 * for stalling the machine.
2219 */
2220 ring->hangcheck.action = ring_stuck(ring,
2221 acthd);
2222
2223 switch (ring->hangcheck.action) {
2224 case HANGCHECK_IDLE:
2225 case HANGCHECK_WAIT:
2226 break;
2227 case HANGCHECK_ACTIVE:
2228 ring->hangcheck.score += BUSY;
2229 break;
2230 case HANGCHECK_KICK:
2231 ring->hangcheck.score += KICK;
2232 break;
2233 case HANGCHECK_HUNG:
2234 ring->hangcheck.score += HUNG;
2235 stuck[i] = true;
2236 break;
2237 }
2238 }
2239 } else {
2240 ring->hangcheck.action = HANGCHECK_ACTIVE;
2241
2242 /* Gradually reduce the count so that we catch DoS
2243 * attempts across multiple batches.
2244 */
2245 if (ring->hangcheck.score > 0)
2246 ring->hangcheck.score--;
2247 }
2248
2249 ring->hangcheck.seqno = seqno;
2250 ring->hangcheck.acthd = acthd;
2251 busy_count += busy;
2252 }
2253
2254 for_each_ring(ring, dev_priv, i) {
2255 if (ring->hangcheck.score > FIRE) {
2256 DRM_INFO("%s on %s\n",
2257 stuck[i] ? "stuck" : "no progress",
2258 ring->name);
2259 rings_hung++;
2260 }
2261 }
2262
2263 if (rings_hung)
2264 return i915_handle_error(dev, true);
2265
2266 if (busy_count)
2267 /* Reset timer case chip hangs without another request
2268 * being added */
2269 i915_queue_hangcheck(dev);
2270 }
2271
2272 void i915_queue_hangcheck(struct drm_device *dev)
2273 {
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 if (!i915_enable_hangcheck)
2276 return;
2277
2278 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2279 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2280 }
2281
2282 static void ibx_irq_preinstall(struct drm_device *dev)
2283 {
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285
2286 if (HAS_PCH_NOP(dev))
2287 return;
2288
2289 /* south display irq */
2290 I915_WRITE(SDEIMR, 0xffffffff);
2291 /*
2292 * SDEIER is also touched by the interrupt handler to work around missed
2293 * PCH interrupts. Hence we can't update it after the interrupt handler
2294 * is enabled - instead we unconditionally enable all PCH interrupt
2295 * sources here, but then only unmask them as needed with SDEIMR.
2296 */
2297 I915_WRITE(SDEIER, 0xffffffff);
2298 POSTING_READ(SDEIER);
2299 }
2300
2301 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2302 {
2303 struct drm_i915_private *dev_priv = dev->dev_private;
2304
2305 /* and GT */
2306 I915_WRITE(GTIMR, 0xffffffff);
2307 I915_WRITE(GTIER, 0x0);
2308 POSTING_READ(GTIER);
2309
2310 if (INTEL_INFO(dev)->gen >= 6) {
2311 /* and PM */
2312 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2313 I915_WRITE(GEN6_PMIER, 0x0);
2314 POSTING_READ(GEN6_PMIER);
2315 }
2316 }
2317
2318 /* drm_dma.h hooks
2319 */
2320 static void ironlake_irq_preinstall(struct drm_device *dev)
2321 {
2322 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2323
2324 atomic_set(&dev_priv->irq_received, 0);
2325
2326 I915_WRITE(HWSTAM, 0xeffe);
2327
2328 I915_WRITE(DEIMR, 0xffffffff);
2329 I915_WRITE(DEIER, 0x0);
2330 POSTING_READ(DEIER);
2331
2332 gen5_gt_irq_preinstall(dev);
2333
2334 ibx_irq_preinstall(dev);
2335 }
2336
2337 static void valleyview_irq_preinstall(struct drm_device *dev)
2338 {
2339 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2340 int pipe;
2341
2342 atomic_set(&dev_priv->irq_received, 0);
2343
2344 /* VLV magic */
2345 I915_WRITE(VLV_IMR, 0);
2346 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2347 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2348 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2349
2350 /* and GT */
2351 I915_WRITE(GTIIR, I915_READ(GTIIR));
2352 I915_WRITE(GTIIR, I915_READ(GTIIR));
2353
2354 gen5_gt_irq_preinstall(dev);
2355
2356 I915_WRITE(DPINVGTT, 0xff);
2357
2358 I915_WRITE(PORT_HOTPLUG_EN, 0);
2359 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2360 for_each_pipe(pipe)
2361 I915_WRITE(PIPESTAT(pipe), 0xffff);
2362 I915_WRITE(VLV_IIR, 0xffffffff);
2363 I915_WRITE(VLV_IMR, 0xffffffff);
2364 I915_WRITE(VLV_IER, 0x0);
2365 POSTING_READ(VLV_IER);
2366 }
2367
2368 static void ibx_hpd_irq_setup(struct drm_device *dev)
2369 {
2370 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2371 struct drm_mode_config *mode_config = &dev->mode_config;
2372 struct intel_encoder *intel_encoder;
2373 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2374
2375 if (HAS_PCH_IBX(dev)) {
2376 hotplug_irqs = SDE_HOTPLUG_MASK;
2377 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2378 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2379 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2380 } else {
2381 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2382 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2383 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2384 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2385 }
2386
2387 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2388
2389 /*
2390 * Enable digital hotplug on the PCH, and configure the DP short pulse
2391 * duration to 2ms (which is the minimum in the Display Port spec)
2392 *
2393 * This register is the same on all known PCH chips.
2394 */
2395 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2396 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2397 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2398 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2399 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2400 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2401 }
2402
2403 static void ibx_irq_postinstall(struct drm_device *dev)
2404 {
2405 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2406 u32 mask;
2407
2408 if (HAS_PCH_NOP(dev))
2409 return;
2410
2411 if (HAS_PCH_IBX(dev)) {
2412 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2413 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2414 } else {
2415 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2416
2417 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2418 }
2419
2420 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2421 I915_WRITE(SDEIMR, ~mask);
2422 }
2423
2424 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2425 {
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 u32 pm_irqs, gt_irqs;
2428
2429 pm_irqs = gt_irqs = 0;
2430
2431 dev_priv->gt_irq_mask = ~0;
2432 if (HAS_L3_DPF(dev)) {
2433 /* L3 parity interrupt is always unmasked. */
2434 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2435 gt_irqs |= GT_PARITY_ERROR(dev);
2436 }
2437
2438 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2439 if (IS_GEN5(dev)) {
2440 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2441 ILK_BSD_USER_INTERRUPT;
2442 } else {
2443 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2444 }
2445
2446 I915_WRITE(GTIIR, I915_READ(GTIIR));
2447 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2448 I915_WRITE(GTIER, gt_irqs);
2449 POSTING_READ(GTIER);
2450
2451 if (INTEL_INFO(dev)->gen >= 6) {
2452 pm_irqs |= GEN6_PM_RPS_EVENTS;
2453
2454 if (HAS_VEBOX(dev))
2455 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2456
2457 dev_priv->pm_irq_mask = 0xffffffff;
2458 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2459 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2460 I915_WRITE(GEN6_PMIER, pm_irqs);
2461 POSTING_READ(GEN6_PMIER);
2462 }
2463 }
2464
2465 static int ironlake_irq_postinstall(struct drm_device *dev)
2466 {
2467 unsigned long irqflags;
2468 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2469 u32 display_mask, extra_mask;
2470
2471 if (INTEL_INFO(dev)->gen >= 7) {
2472 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2473 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2474 DE_PLANEB_FLIP_DONE_IVB |
2475 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2476 DE_ERR_INT_IVB);
2477 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2478 DE_PIPEA_VBLANK_IVB);
2479
2480 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2481 } else {
2482 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2483 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2484 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2485 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2486 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2487 }
2488
2489 dev_priv->irq_mask = ~display_mask;
2490
2491 /* should always can generate irq */
2492 I915_WRITE(DEIIR, I915_READ(DEIIR));
2493 I915_WRITE(DEIMR, dev_priv->irq_mask);
2494 I915_WRITE(DEIER, display_mask | extra_mask);
2495 POSTING_READ(DEIER);
2496
2497 gen5_gt_irq_postinstall(dev);
2498
2499 ibx_irq_postinstall(dev);
2500
2501 if (IS_IRONLAKE_M(dev)) {
2502 /* Enable PCU event interrupts
2503 *
2504 * spinlocking not required here for correctness since interrupt
2505 * setup is guaranteed to run in single-threaded context. But we
2506 * need it to make the assert_spin_locked happy. */
2507 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2508 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2509 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2510 }
2511
2512 return 0;
2513 }
2514
2515 static int valleyview_irq_postinstall(struct drm_device *dev)
2516 {
2517 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2518 u32 enable_mask;
2519 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2520 unsigned long irqflags;
2521
2522 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2523 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2524 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2525 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2526 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2527
2528 /*
2529 *Leave vblank interrupts masked initially. enable/disable will
2530 * toggle them based on usage.
2531 */
2532 dev_priv->irq_mask = (~enable_mask) |
2533 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2534 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2535
2536 I915_WRITE(PORT_HOTPLUG_EN, 0);
2537 POSTING_READ(PORT_HOTPLUG_EN);
2538
2539 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2540 I915_WRITE(VLV_IER, enable_mask);
2541 I915_WRITE(VLV_IIR, 0xffffffff);
2542 I915_WRITE(PIPESTAT(0), 0xffff);
2543 I915_WRITE(PIPESTAT(1), 0xffff);
2544 POSTING_READ(VLV_IER);
2545
2546 /* Interrupt setup is already guaranteed to be single-threaded, this is
2547 * just to make the assert_spin_locked check happy. */
2548 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2549 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2550 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2551 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2552 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2553
2554 I915_WRITE(VLV_IIR, 0xffffffff);
2555 I915_WRITE(VLV_IIR, 0xffffffff);
2556
2557 gen5_gt_irq_postinstall(dev);
2558
2559 /* ack & enable invalid PTE error interrupts */
2560 #if 0 /* FIXME: add support to irq handler for checking these bits */
2561 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2562 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2563 #endif
2564
2565 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2566
2567 return 0;
2568 }
2569
2570 static void valleyview_irq_uninstall(struct drm_device *dev)
2571 {
2572 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2573 int pipe;
2574
2575 if (!dev_priv)
2576 return;
2577
2578 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2579
2580 for_each_pipe(pipe)
2581 I915_WRITE(PIPESTAT(pipe), 0xffff);
2582
2583 I915_WRITE(HWSTAM, 0xffffffff);
2584 I915_WRITE(PORT_HOTPLUG_EN, 0);
2585 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2586 for_each_pipe(pipe)
2587 I915_WRITE(PIPESTAT(pipe), 0xffff);
2588 I915_WRITE(VLV_IIR, 0xffffffff);
2589 I915_WRITE(VLV_IMR, 0xffffffff);
2590 I915_WRITE(VLV_IER, 0x0);
2591 POSTING_READ(VLV_IER);
2592 }
2593
2594 static void ironlake_irq_uninstall(struct drm_device *dev)
2595 {
2596 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2597
2598 if (!dev_priv)
2599 return;
2600
2601 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2602
2603 I915_WRITE(HWSTAM, 0xffffffff);
2604
2605 I915_WRITE(DEIMR, 0xffffffff);
2606 I915_WRITE(DEIER, 0x0);
2607 I915_WRITE(DEIIR, I915_READ(DEIIR));
2608 if (IS_GEN7(dev))
2609 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2610
2611 I915_WRITE(GTIMR, 0xffffffff);
2612 I915_WRITE(GTIER, 0x0);
2613 I915_WRITE(GTIIR, I915_READ(GTIIR));
2614
2615 if (HAS_PCH_NOP(dev))
2616 return;
2617
2618 I915_WRITE(SDEIMR, 0xffffffff);
2619 I915_WRITE(SDEIER, 0x0);
2620 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2621 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2622 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2623 }
2624
2625 static void i8xx_irq_preinstall(struct drm_device * dev)
2626 {
2627 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2628 int pipe;
2629
2630 atomic_set(&dev_priv->irq_received, 0);
2631
2632 for_each_pipe(pipe)
2633 I915_WRITE(PIPESTAT(pipe), 0);
2634 I915_WRITE16(IMR, 0xffff);
2635 I915_WRITE16(IER, 0x0);
2636 POSTING_READ16(IER);
2637 }
2638
2639 static int i8xx_irq_postinstall(struct drm_device *dev)
2640 {
2641 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2642
2643 I915_WRITE16(EMR,
2644 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2645
2646 /* Unmask the interrupts that we always want on. */
2647 dev_priv->irq_mask =
2648 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2649 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2650 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2651 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2652 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2653 I915_WRITE16(IMR, dev_priv->irq_mask);
2654
2655 I915_WRITE16(IER,
2656 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2657 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2658 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2659 I915_USER_INTERRUPT);
2660 POSTING_READ16(IER);
2661
2662 return 0;
2663 }
2664
2665 /*
2666 * Returns true when a page flip has completed.
2667 */
2668 static bool i8xx_handle_vblank(struct drm_device *dev,
2669 int pipe, u16 iir)
2670 {
2671 drm_i915_private_t *dev_priv = dev->dev_private;
2672 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2673
2674 if (!drm_handle_vblank(dev, pipe))
2675 return false;
2676
2677 if ((iir & flip_pending) == 0)
2678 return false;
2679
2680 intel_prepare_page_flip(dev, pipe);
2681
2682 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2683 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2684 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2685 * the flip is completed (no longer pending). Since this doesn't raise
2686 * an interrupt per se, we watch for the change at vblank.
2687 */
2688 if (I915_READ16(ISR) & flip_pending)
2689 return false;
2690
2691 intel_finish_page_flip(dev, pipe);
2692
2693 return true;
2694 }
2695
2696 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2697 {
2698 struct drm_device *dev = (struct drm_device *) arg;
2699 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2700 u16 iir, new_iir;
2701 u32 pipe_stats[2];
2702 unsigned long irqflags;
2703 int pipe;
2704 u16 flip_mask =
2705 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2706 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2707
2708 atomic_inc(&dev_priv->irq_received);
2709
2710 iir = I915_READ16(IIR);
2711 if (iir == 0)
2712 return IRQ_NONE;
2713
2714 while (iir & ~flip_mask) {
2715 /* Can't rely on pipestat interrupt bit in iir as it might
2716 * have been cleared after the pipestat interrupt was received.
2717 * It doesn't set the bit in iir again, but it still produces
2718 * interrupts (for non-MSI).
2719 */
2720 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2721 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2722 i915_handle_error(dev, false);
2723
2724 for_each_pipe(pipe) {
2725 int reg = PIPESTAT(pipe);
2726 pipe_stats[pipe] = I915_READ(reg);
2727
2728 /*
2729 * Clear the PIPE*STAT regs before the IIR
2730 */
2731 if (pipe_stats[pipe] & 0x8000ffff) {
2732 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2733 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2734 pipe_name(pipe));
2735 I915_WRITE(reg, pipe_stats[pipe]);
2736 }
2737 }
2738 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2739
2740 I915_WRITE16(IIR, iir & ~flip_mask);
2741 new_iir = I915_READ16(IIR); /* Flush posted writes */
2742
2743 i915_update_dri1_breadcrumb(dev);
2744
2745 if (iir & I915_USER_INTERRUPT)
2746 notify_ring(dev, &dev_priv->ring[RCS]);
2747
2748 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2749 i8xx_handle_vblank(dev, 0, iir))
2750 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2751
2752 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2753 i8xx_handle_vblank(dev, 1, iir))
2754 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2755
2756 iir = new_iir;
2757 }
2758
2759 return IRQ_HANDLED;
2760 }
2761
2762 static void i8xx_irq_uninstall(struct drm_device * dev)
2763 {
2764 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2765 int pipe;
2766
2767 for_each_pipe(pipe) {
2768 /* Clear enable bits; then clear status bits */
2769 I915_WRITE(PIPESTAT(pipe), 0);
2770 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2771 }
2772 I915_WRITE16(IMR, 0xffff);
2773 I915_WRITE16(IER, 0x0);
2774 I915_WRITE16(IIR, I915_READ16(IIR));
2775 }
2776
2777 static void i915_irq_preinstall(struct drm_device * dev)
2778 {
2779 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2780 int pipe;
2781
2782 atomic_set(&dev_priv->irq_received, 0);
2783
2784 if (I915_HAS_HOTPLUG(dev)) {
2785 I915_WRITE(PORT_HOTPLUG_EN, 0);
2786 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2787 }
2788
2789 I915_WRITE16(HWSTAM, 0xeffe);
2790 for_each_pipe(pipe)
2791 I915_WRITE(PIPESTAT(pipe), 0);
2792 I915_WRITE(IMR, 0xffffffff);
2793 I915_WRITE(IER, 0x0);
2794 POSTING_READ(IER);
2795 }
2796
2797 static int i915_irq_postinstall(struct drm_device *dev)
2798 {
2799 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2800 u32 enable_mask;
2801
2802 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2803
2804 /* Unmask the interrupts that we always want on. */
2805 dev_priv->irq_mask =
2806 ~(I915_ASLE_INTERRUPT |
2807 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2808 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2809 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2810 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2811 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2812
2813 enable_mask =
2814 I915_ASLE_INTERRUPT |
2815 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2816 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2817 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2818 I915_USER_INTERRUPT;
2819
2820 if (I915_HAS_HOTPLUG(dev)) {
2821 I915_WRITE(PORT_HOTPLUG_EN, 0);
2822 POSTING_READ(PORT_HOTPLUG_EN);
2823
2824 /* Enable in IER... */
2825 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2826 /* and unmask in IMR */
2827 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2828 }
2829
2830 I915_WRITE(IMR, dev_priv->irq_mask);
2831 I915_WRITE(IER, enable_mask);
2832 POSTING_READ(IER);
2833
2834 i915_enable_asle_pipestat(dev);
2835
2836 return 0;
2837 }
2838
2839 /*
2840 * Returns true when a page flip has completed.
2841 */
2842 static bool i915_handle_vblank(struct drm_device *dev,
2843 int plane, int pipe, u32 iir)
2844 {
2845 drm_i915_private_t *dev_priv = dev->dev_private;
2846 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2847
2848 if (!drm_handle_vblank(dev, pipe))
2849 return false;
2850
2851 if ((iir & flip_pending) == 0)
2852 return false;
2853
2854 intel_prepare_page_flip(dev, plane);
2855
2856 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2857 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2858 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2859 * the flip is completed (no longer pending). Since this doesn't raise
2860 * an interrupt per se, we watch for the change at vblank.
2861 */
2862 if (I915_READ(ISR) & flip_pending)
2863 return false;
2864
2865 intel_finish_page_flip(dev, pipe);
2866
2867 return true;
2868 }
2869
2870 static irqreturn_t i915_irq_handler(int irq, void *arg)
2871 {
2872 struct drm_device *dev = (struct drm_device *) arg;
2873 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2874 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2875 unsigned long irqflags;
2876 u32 flip_mask =
2877 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2878 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2879 int pipe, ret = IRQ_NONE;
2880
2881 atomic_inc(&dev_priv->irq_received);
2882
2883 iir = I915_READ(IIR);
2884 do {
2885 bool irq_received = (iir & ~flip_mask) != 0;
2886 bool blc_event = false;
2887
2888 /* Can't rely on pipestat interrupt bit in iir as it might
2889 * have been cleared after the pipestat interrupt was received.
2890 * It doesn't set the bit in iir again, but it still produces
2891 * interrupts (for non-MSI).
2892 */
2893 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2894 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2895 i915_handle_error(dev, false);
2896
2897 for_each_pipe(pipe) {
2898 int reg = PIPESTAT(pipe);
2899 pipe_stats[pipe] = I915_READ(reg);
2900
2901 /* Clear the PIPE*STAT regs before the IIR */
2902 if (pipe_stats[pipe] & 0x8000ffff) {
2903 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2904 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2905 pipe_name(pipe));
2906 I915_WRITE(reg, pipe_stats[pipe]);
2907 irq_received = true;
2908 }
2909 }
2910 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2911
2912 if (!irq_received)
2913 break;
2914
2915 /* Consume port. Then clear IIR or we'll miss events */
2916 if ((I915_HAS_HOTPLUG(dev)) &&
2917 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2918 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2919 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2920
2921 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2922 hotplug_status);
2923
2924 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2925
2926 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2927 POSTING_READ(PORT_HOTPLUG_STAT);
2928 }
2929
2930 I915_WRITE(IIR, iir & ~flip_mask);
2931 new_iir = I915_READ(IIR); /* Flush posted writes */
2932
2933 if (iir & I915_USER_INTERRUPT)
2934 notify_ring(dev, &dev_priv->ring[RCS]);
2935
2936 for_each_pipe(pipe) {
2937 int plane = pipe;
2938 if (IS_MOBILE(dev))
2939 plane = !plane;
2940
2941 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2942 i915_handle_vblank(dev, plane, pipe, iir))
2943 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2944
2945 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2946 blc_event = true;
2947 }
2948
2949 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2950 intel_opregion_asle_intr(dev);
2951
2952 /* With MSI, interrupts are only generated when iir
2953 * transitions from zero to nonzero. If another bit got
2954 * set while we were handling the existing iir bits, then
2955 * we would never get another interrupt.
2956 *
2957 * This is fine on non-MSI as well, as if we hit this path
2958 * we avoid exiting the interrupt handler only to generate
2959 * another one.
2960 *
2961 * Note that for MSI this could cause a stray interrupt report
2962 * if an interrupt landed in the time between writing IIR and
2963 * the posting read. This should be rare enough to never
2964 * trigger the 99% of 100,000 interrupts test for disabling
2965 * stray interrupts.
2966 */
2967 ret = IRQ_HANDLED;
2968 iir = new_iir;
2969 } while (iir & ~flip_mask);
2970
2971 i915_update_dri1_breadcrumb(dev);
2972
2973 return ret;
2974 }
2975
2976 static void i915_irq_uninstall(struct drm_device * dev)
2977 {
2978 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2979 int pipe;
2980
2981 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2982
2983 if (I915_HAS_HOTPLUG(dev)) {
2984 I915_WRITE(PORT_HOTPLUG_EN, 0);
2985 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2986 }
2987
2988 I915_WRITE16(HWSTAM, 0xffff);
2989 for_each_pipe(pipe) {
2990 /* Clear enable bits; then clear status bits */
2991 I915_WRITE(PIPESTAT(pipe), 0);
2992 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2993 }
2994 I915_WRITE(IMR, 0xffffffff);
2995 I915_WRITE(IER, 0x0);
2996
2997 I915_WRITE(IIR, I915_READ(IIR));
2998 }
2999
3000 static void i965_irq_preinstall(struct drm_device * dev)
3001 {
3002 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3003 int pipe;
3004
3005 atomic_set(&dev_priv->irq_received, 0);
3006
3007 I915_WRITE(PORT_HOTPLUG_EN, 0);
3008 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3009
3010 I915_WRITE(HWSTAM, 0xeffe);
3011 for_each_pipe(pipe)
3012 I915_WRITE(PIPESTAT(pipe), 0);
3013 I915_WRITE(IMR, 0xffffffff);
3014 I915_WRITE(IER, 0x0);
3015 POSTING_READ(IER);
3016 }
3017
3018 static int i965_irq_postinstall(struct drm_device *dev)
3019 {
3020 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3021 u32 enable_mask;
3022 u32 error_mask;
3023 unsigned long irqflags;
3024
3025 /* Unmask the interrupts that we always want on. */
3026 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3027 I915_DISPLAY_PORT_INTERRUPT |
3028 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3029 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3030 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3031 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3032 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3033
3034 enable_mask = ~dev_priv->irq_mask;
3035 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3036 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3037 enable_mask |= I915_USER_INTERRUPT;
3038
3039 if (IS_G4X(dev))
3040 enable_mask |= I915_BSD_USER_INTERRUPT;
3041
3042 /* Interrupt setup is already guaranteed to be single-threaded, this is
3043 * just to make the assert_spin_locked check happy. */
3044 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3045 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
3046 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3047
3048 /*
3049 * Enable some error detection, note the instruction error mask
3050 * bit is reserved, so we leave it masked.
3051 */
3052 if (IS_G4X(dev)) {
3053 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3054 GM45_ERROR_MEM_PRIV |
3055 GM45_ERROR_CP_PRIV |
3056 I915_ERROR_MEMORY_REFRESH);
3057 } else {
3058 error_mask = ~(I915_ERROR_PAGE_TABLE |
3059 I915_ERROR_MEMORY_REFRESH);
3060 }
3061 I915_WRITE(EMR, error_mask);
3062
3063 I915_WRITE(IMR, dev_priv->irq_mask);
3064 I915_WRITE(IER, enable_mask);
3065 POSTING_READ(IER);
3066
3067 I915_WRITE(PORT_HOTPLUG_EN, 0);
3068 POSTING_READ(PORT_HOTPLUG_EN);
3069
3070 i915_enable_asle_pipestat(dev);
3071
3072 return 0;
3073 }
3074
3075 static void i915_hpd_irq_setup(struct drm_device *dev)
3076 {
3077 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3078 struct drm_mode_config *mode_config = &dev->mode_config;
3079 struct intel_encoder *intel_encoder;
3080 u32 hotplug_en;
3081
3082 assert_spin_locked(&dev_priv->irq_lock);
3083
3084 if (I915_HAS_HOTPLUG(dev)) {
3085 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3086 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3087 /* Note HDMI and DP share hotplug bits */
3088 /* enable bits are the same for all generations */
3089 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3090 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3091 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3092 /* Programming the CRT detection parameters tends
3093 to generate a spurious hotplug event about three
3094 seconds later. So just do it once.
3095 */
3096 if (IS_G4X(dev))
3097 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3098 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3099 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3100
3101 /* Ignore TV since it's buggy */
3102 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3103 }
3104 }
3105
3106 static irqreturn_t i965_irq_handler(int irq, void *arg)
3107 {
3108 struct drm_device *dev = (struct drm_device *) arg;
3109 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3110 u32 iir, new_iir;
3111 u32 pipe_stats[I915_MAX_PIPES];
3112 unsigned long irqflags;
3113 int irq_received;
3114 int ret = IRQ_NONE, pipe;
3115 u32 flip_mask =
3116 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3117 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3118
3119 atomic_inc(&dev_priv->irq_received);
3120
3121 iir = I915_READ(IIR);
3122
3123 for (;;) {
3124 bool blc_event = false;
3125
3126 irq_received = (iir & ~flip_mask) != 0;
3127
3128 /* Can't rely on pipestat interrupt bit in iir as it might
3129 * have been cleared after the pipestat interrupt was received.
3130 * It doesn't set the bit in iir again, but it still produces
3131 * interrupts (for non-MSI).
3132 */
3133 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3134 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3135 i915_handle_error(dev, false);
3136
3137 for_each_pipe(pipe) {
3138 int reg = PIPESTAT(pipe);
3139 pipe_stats[pipe] = I915_READ(reg);
3140
3141 /*
3142 * Clear the PIPE*STAT regs before the IIR
3143 */
3144 if (pipe_stats[pipe] & 0x8000ffff) {
3145 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3146 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3147 pipe_name(pipe));
3148 I915_WRITE(reg, pipe_stats[pipe]);
3149 irq_received = 1;
3150 }
3151 }
3152 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3153
3154 if (!irq_received)
3155 break;
3156
3157 ret = IRQ_HANDLED;
3158
3159 /* Consume port. Then clear IIR or we'll miss events */
3160 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3161 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3162 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3163 HOTPLUG_INT_STATUS_G4X :
3164 HOTPLUG_INT_STATUS_I915);
3165
3166 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3167 hotplug_status);
3168
3169 intel_hpd_irq_handler(dev, hotplug_trigger,
3170 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3171
3172 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3173 I915_READ(PORT_HOTPLUG_STAT);
3174 }
3175
3176 I915_WRITE(IIR, iir & ~flip_mask);
3177 new_iir = I915_READ(IIR); /* Flush posted writes */
3178
3179 if (iir & I915_USER_INTERRUPT)
3180 notify_ring(dev, &dev_priv->ring[RCS]);
3181 if (iir & I915_BSD_USER_INTERRUPT)
3182 notify_ring(dev, &dev_priv->ring[VCS]);
3183
3184 for_each_pipe(pipe) {
3185 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3186 i915_handle_vblank(dev, pipe, pipe, iir))
3187 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3188
3189 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3190 blc_event = true;
3191 }
3192
3193
3194 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3195 intel_opregion_asle_intr(dev);
3196
3197 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3198 gmbus_irq_handler(dev);
3199
3200 /* With MSI, interrupts are only generated when iir
3201 * transitions from zero to nonzero. If another bit got
3202 * set while we were handling the existing iir bits, then
3203 * we would never get another interrupt.
3204 *
3205 * This is fine on non-MSI as well, as if we hit this path
3206 * we avoid exiting the interrupt handler only to generate
3207 * another one.
3208 *
3209 * Note that for MSI this could cause a stray interrupt report
3210 * if an interrupt landed in the time between writing IIR and
3211 * the posting read. This should be rare enough to never
3212 * trigger the 99% of 100,000 interrupts test for disabling
3213 * stray interrupts.
3214 */
3215 iir = new_iir;
3216 }
3217
3218 i915_update_dri1_breadcrumb(dev);
3219
3220 return ret;
3221 }
3222
3223 static void i965_irq_uninstall(struct drm_device * dev)
3224 {
3225 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3226 int pipe;
3227
3228 if (!dev_priv)
3229 return;
3230
3231 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3232
3233 I915_WRITE(PORT_HOTPLUG_EN, 0);
3234 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3235
3236 I915_WRITE(HWSTAM, 0xffffffff);
3237 for_each_pipe(pipe)
3238 I915_WRITE(PIPESTAT(pipe), 0);
3239 I915_WRITE(IMR, 0xffffffff);
3240 I915_WRITE(IER, 0x0);
3241
3242 for_each_pipe(pipe)
3243 I915_WRITE(PIPESTAT(pipe),
3244 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3245 I915_WRITE(IIR, I915_READ(IIR));
3246 }
3247
3248 static void i915_reenable_hotplug_timer_func(unsigned long data)
3249 {
3250 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3251 struct drm_device *dev = dev_priv->dev;
3252 struct drm_mode_config *mode_config = &dev->mode_config;
3253 unsigned long irqflags;
3254 int i;
3255
3256 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3257 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3258 struct drm_connector *connector;
3259
3260 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3261 continue;
3262
3263 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3264
3265 list_for_each_entry(connector, &mode_config->connector_list, head) {
3266 struct intel_connector *intel_connector = to_intel_connector(connector);
3267
3268 if (intel_connector->encoder->hpd_pin == i) {
3269 if (connector->polled != intel_connector->polled)
3270 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3271 drm_get_connector_name(connector));
3272 connector->polled = intel_connector->polled;
3273 if (!connector->polled)
3274 connector->polled = DRM_CONNECTOR_POLL_HPD;
3275 }
3276 }
3277 }
3278 if (dev_priv->display.hpd_irq_setup)
3279 dev_priv->display.hpd_irq_setup(dev);
3280 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3281 }
3282
3283 void intel_irq_init(struct drm_device *dev)
3284 {
3285 struct drm_i915_private *dev_priv = dev->dev_private;
3286
3287 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3288 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3289 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3290 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3291
3292 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3293 i915_hangcheck_elapsed,
3294 (unsigned long) dev);
3295 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3296 (unsigned long) dev_priv);
3297
3298 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3299
3300 if (IS_GEN2(dev)) {
3301 dev->max_vblank_count = 0;
3302 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
3303 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3304 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3305 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3306 } else {
3307 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3308 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3309 }
3310
3311 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
3312 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3313 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3314 }
3315
3316 if (IS_VALLEYVIEW(dev)) {
3317 dev->driver->irq_handler = valleyview_irq_handler;
3318 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3319 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3320 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3321 dev->driver->enable_vblank = valleyview_enable_vblank;
3322 dev->driver->disable_vblank = valleyview_disable_vblank;
3323 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3324 } else if (HAS_PCH_SPLIT(dev)) {
3325 dev->driver->irq_handler = ironlake_irq_handler;
3326 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3327 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3328 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3329 dev->driver->enable_vblank = ironlake_enable_vblank;
3330 dev->driver->disable_vblank = ironlake_disable_vblank;
3331 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3332 } else {
3333 if (INTEL_INFO(dev)->gen == 2) {
3334 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3335 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3336 dev->driver->irq_handler = i8xx_irq_handler;
3337 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3338 } else if (INTEL_INFO(dev)->gen == 3) {
3339 dev->driver->irq_preinstall = i915_irq_preinstall;
3340 dev->driver->irq_postinstall = i915_irq_postinstall;
3341 dev->driver->irq_uninstall = i915_irq_uninstall;
3342 dev->driver->irq_handler = i915_irq_handler;
3343 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3344 } else {
3345 dev->driver->irq_preinstall = i965_irq_preinstall;
3346 dev->driver->irq_postinstall = i965_irq_postinstall;
3347 dev->driver->irq_uninstall = i965_irq_uninstall;
3348 dev->driver->irq_handler = i965_irq_handler;
3349 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3350 }
3351 dev->driver->enable_vblank = i915_enable_vblank;
3352 dev->driver->disable_vblank = i915_disable_vblank;
3353 }
3354 }
3355
3356 void intel_hpd_init(struct drm_device *dev)
3357 {
3358 struct drm_i915_private *dev_priv = dev->dev_private;
3359 struct drm_mode_config *mode_config = &dev->mode_config;
3360 struct drm_connector *connector;
3361 unsigned long irqflags;
3362 int i;
3363
3364 for (i = 1; i < HPD_NUM_PINS; i++) {
3365 dev_priv->hpd_stats[i].hpd_cnt = 0;
3366 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3367 }
3368 list_for_each_entry(connector, &mode_config->connector_list, head) {
3369 struct intel_connector *intel_connector = to_intel_connector(connector);
3370 connector->polled = intel_connector->polled;
3371 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3372 connector->polled = DRM_CONNECTOR_POLL_HPD;
3373 }
3374
3375 /* Interrupt setup is already guaranteed to be single-threaded, this is
3376 * just to make the assert_spin_locked checks happy. */
3377 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3378 if (dev_priv->display.hpd_irq_setup)
3379 dev_priv->display.hpd_irq_setup(dev);
3380 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3381 }
3382
3383 /* Disable interrupts so we can allow Package C8+. */
3384 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3385 {
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 unsigned long irqflags;
3388
3389 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3390
3391 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3392 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3393 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3394 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3395 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3396
3397 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3398 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3399 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3400 snb_disable_pm_irq(dev_priv, 0xffffffff);
3401
3402 dev_priv->pc8.irqs_disabled = true;
3403
3404 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3405 }
3406
3407 /* Restore interrupts so we can recover from Package C8+. */
3408 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3409 {
3410 struct drm_i915_private *dev_priv = dev->dev_private;
3411 unsigned long irqflags;
3412 uint32_t val, expected;
3413
3414 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3415
3416 val = I915_READ(DEIMR);
3417 expected = ~DE_PCH_EVENT_IVB;
3418 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3419
3420 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3421 expected = ~SDE_HOTPLUG_MASK_CPT;
3422 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3423 val, expected);
3424
3425 val = I915_READ(GTIMR);
3426 expected = 0xffffffff;
3427 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3428
3429 val = I915_READ(GEN6_PMIMR);
3430 expected = 0xffffffff;
3431 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3432 expected);
3433
3434 dev_priv->pc8.irqs_disabled = false;
3435
3436 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3437 ibx_enable_display_interrupt(dev_priv,
3438 ~dev_priv->pc8.regsave.sdeimr &
3439 ~SDE_HOTPLUG_MASK_CPT);
3440 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3441 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3442 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3443
3444 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3445 }
This page took 0.101587 seconds and 5 git commands to generate.