drm/i915: Add functions to emit register offsets to the ring
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
143 {
144 u32 val = I915_READ(reg);
145
146 if (val == 0)
147 return;
148
149 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
150 reg, val);
151 I915_WRITE(reg, 0xffffffff);
152 POSTING_READ(reg);
153 I915_WRITE(reg, 0xffffffff);
154 POSTING_READ(reg);
155 }
156
157 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
158 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
159 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
160 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
161 POSTING_READ(GEN8_##type##_IMR(which)); \
162 } while (0)
163
164 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
165 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
166 I915_WRITE(type##IER, (ier_val)); \
167 I915_WRITE(type##IMR, (imr_val)); \
168 POSTING_READ(type##IMR); \
169 } while (0)
170
171 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
172
173 /* For display hotplug interrupt */
174 static inline void
175 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
176 uint32_t mask,
177 uint32_t bits)
178 {
179 uint32_t val;
180
181 assert_spin_locked(&dev_priv->irq_lock);
182 WARN_ON(bits & ~mask);
183
184 val = I915_READ(PORT_HOTPLUG_EN);
185 val &= ~mask;
186 val |= bits;
187 I915_WRITE(PORT_HOTPLUG_EN, val);
188 }
189
190 /**
191 * i915_hotplug_interrupt_update - update hotplug interrupt enable
192 * @dev_priv: driver private
193 * @mask: bits to update
194 * @bits: bits to enable
195 * NOTE: the HPD enable bits are modified both inside and outside
196 * of an interrupt context. To avoid that read-modify-write cycles
197 * interfer, these bits are protected by a spinlock. Since this
198 * function is usually not called from a context where the lock is
199 * held already, this function acquires the lock itself. A non-locking
200 * version is also available.
201 */
202 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
203 uint32_t mask,
204 uint32_t bits)
205 {
206 spin_lock_irq(&dev_priv->irq_lock);
207 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
208 spin_unlock_irq(&dev_priv->irq_lock);
209 }
210
211 /**
212 * ilk_update_display_irq - update DEIMR
213 * @dev_priv: driver private
214 * @interrupt_mask: mask of interrupt bits to update
215 * @enabled_irq_mask: mask of interrupt bits to enable
216 */
217 static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
218 uint32_t interrupt_mask,
219 uint32_t enabled_irq_mask)
220 {
221 uint32_t new_val;
222
223 assert_spin_locked(&dev_priv->irq_lock);
224
225 WARN_ON(enabled_irq_mask & ~interrupt_mask);
226
227 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
228 return;
229
230 new_val = dev_priv->irq_mask;
231 new_val &= ~interrupt_mask;
232 new_val |= (~enabled_irq_mask & interrupt_mask);
233
234 if (new_val != dev_priv->irq_mask) {
235 dev_priv->irq_mask = new_val;
236 I915_WRITE(DEIMR, dev_priv->irq_mask);
237 POSTING_READ(DEIMR);
238 }
239 }
240
241 void
242 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
243 {
244 ilk_update_display_irq(dev_priv, mask, mask);
245 }
246
247 void
248 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
249 {
250 ilk_update_display_irq(dev_priv, mask, 0);
251 }
252
253 /**
254 * ilk_update_gt_irq - update GTIMR
255 * @dev_priv: driver private
256 * @interrupt_mask: mask of interrupt bits to update
257 * @enabled_irq_mask: mask of interrupt bits to enable
258 */
259 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
260 uint32_t interrupt_mask,
261 uint32_t enabled_irq_mask)
262 {
263 assert_spin_locked(&dev_priv->irq_lock);
264
265 WARN_ON(enabled_irq_mask & ~interrupt_mask);
266
267 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 return;
269
270 dev_priv->gt_irq_mask &= ~interrupt_mask;
271 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
272 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
273 POSTING_READ(GTIMR);
274 }
275
276 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 ilk_update_gt_irq(dev_priv, mask, mask);
279 }
280
281 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 ilk_update_gt_irq(dev_priv, mask, 0);
284 }
285
286 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
287 {
288 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
289 }
290
291 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
292 {
293 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
294 }
295
296 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
297 {
298 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
299 }
300
301 /**
302 * snb_update_pm_irq - update GEN6_PMIMR
303 * @dev_priv: driver private
304 * @interrupt_mask: mask of interrupt bits to update
305 * @enabled_irq_mask: mask of interrupt bits to enable
306 */
307 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
308 uint32_t interrupt_mask,
309 uint32_t enabled_irq_mask)
310 {
311 uint32_t new_val;
312
313 WARN_ON(enabled_irq_mask & ~interrupt_mask);
314
315 assert_spin_locked(&dev_priv->irq_lock);
316
317 new_val = dev_priv->pm_irq_mask;
318 new_val &= ~interrupt_mask;
319 new_val |= (~enabled_irq_mask & interrupt_mask);
320
321 if (new_val != dev_priv->pm_irq_mask) {
322 dev_priv->pm_irq_mask = new_val;
323 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
324 POSTING_READ(gen6_pm_imr(dev_priv));
325 }
326 }
327
328 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
329 {
330 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
331 return;
332
333 snb_update_pm_irq(dev_priv, mask, mask);
334 }
335
336 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
337 uint32_t mask)
338 {
339 snb_update_pm_irq(dev_priv, mask, 0);
340 }
341
342 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
343 {
344 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
345 return;
346
347 __gen6_disable_pm_irq(dev_priv, mask);
348 }
349
350 void gen6_reset_rps_interrupts(struct drm_device *dev)
351 {
352 struct drm_i915_private *dev_priv = dev->dev_private;
353 uint32_t reg = gen6_pm_iir(dev_priv);
354
355 spin_lock_irq(&dev_priv->irq_lock);
356 I915_WRITE(reg, dev_priv->pm_rps_events);
357 I915_WRITE(reg, dev_priv->pm_rps_events);
358 POSTING_READ(reg);
359 dev_priv->rps.pm_iir = 0;
360 spin_unlock_irq(&dev_priv->irq_lock);
361 }
362
363 void gen6_enable_rps_interrupts(struct drm_device *dev)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366
367 spin_lock_irq(&dev_priv->irq_lock);
368
369 WARN_ON(dev_priv->rps.pm_iir);
370 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
371 dev_priv->rps.interrupts_enabled = true;
372 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
373 dev_priv->pm_rps_events);
374 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
375
376 spin_unlock_irq(&dev_priv->irq_lock);
377 }
378
379 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
380 {
381 /*
382 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
383 * if GEN6_PM_UP_EI_EXPIRED is masked.
384 *
385 * TODO: verify if this can be reproduced on VLV,CHV.
386 */
387 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
388 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
389
390 if (INTEL_INFO(dev_priv)->gen >= 8)
391 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
392
393 return mask;
394 }
395
396 void gen6_disable_rps_interrupts(struct drm_device *dev)
397 {
398 struct drm_i915_private *dev_priv = dev->dev_private;
399
400 spin_lock_irq(&dev_priv->irq_lock);
401 dev_priv->rps.interrupts_enabled = false;
402 spin_unlock_irq(&dev_priv->irq_lock);
403
404 cancel_work_sync(&dev_priv->rps.work);
405
406 spin_lock_irq(&dev_priv->irq_lock);
407
408 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
409
410 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
411 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
412 ~dev_priv->pm_rps_events);
413
414 spin_unlock_irq(&dev_priv->irq_lock);
415
416 synchronize_irq(dev->irq);
417 }
418
419 /**
420 * bdw_update_port_irq - update DE port interrupt
421 * @dev_priv: driver private
422 * @interrupt_mask: mask of interrupt bits to update
423 * @enabled_irq_mask: mask of interrupt bits to enable
424 */
425 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
426 uint32_t interrupt_mask,
427 uint32_t enabled_irq_mask)
428 {
429 uint32_t new_val;
430 uint32_t old_val;
431
432 assert_spin_locked(&dev_priv->irq_lock);
433
434 WARN_ON(enabled_irq_mask & ~interrupt_mask);
435
436 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
437 return;
438
439 old_val = I915_READ(GEN8_DE_PORT_IMR);
440
441 new_val = old_val;
442 new_val &= ~interrupt_mask;
443 new_val |= (~enabled_irq_mask & interrupt_mask);
444
445 if (new_val != old_val) {
446 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
447 POSTING_READ(GEN8_DE_PORT_IMR);
448 }
449 }
450
451 /**
452 * ibx_display_interrupt_update - update SDEIMR
453 * @dev_priv: driver private
454 * @interrupt_mask: mask of interrupt bits to update
455 * @enabled_irq_mask: mask of interrupt bits to enable
456 */
457 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
458 uint32_t interrupt_mask,
459 uint32_t enabled_irq_mask)
460 {
461 uint32_t sdeimr = I915_READ(SDEIMR);
462 sdeimr &= ~interrupt_mask;
463 sdeimr |= (~enabled_irq_mask & interrupt_mask);
464
465 WARN_ON(enabled_irq_mask & ~interrupt_mask);
466
467 assert_spin_locked(&dev_priv->irq_lock);
468
469 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
470 return;
471
472 I915_WRITE(SDEIMR, sdeimr);
473 POSTING_READ(SDEIMR);
474 }
475
476 static void
477 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
478 u32 enable_mask, u32 status_mask)
479 {
480 u32 reg = PIPESTAT(pipe);
481 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
482
483 assert_spin_locked(&dev_priv->irq_lock);
484 WARN_ON(!intel_irqs_enabled(dev_priv));
485
486 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
487 status_mask & ~PIPESTAT_INT_STATUS_MASK,
488 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
489 pipe_name(pipe), enable_mask, status_mask))
490 return;
491
492 if ((pipestat & enable_mask) == enable_mask)
493 return;
494
495 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
496
497 /* Enable the interrupt, clear any pending status */
498 pipestat |= enable_mask | status_mask;
499 I915_WRITE(reg, pipestat);
500 POSTING_READ(reg);
501 }
502
503 static void
504 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
505 u32 enable_mask, u32 status_mask)
506 {
507 u32 reg = PIPESTAT(pipe);
508 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
509
510 assert_spin_locked(&dev_priv->irq_lock);
511 WARN_ON(!intel_irqs_enabled(dev_priv));
512
513 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
514 status_mask & ~PIPESTAT_INT_STATUS_MASK,
515 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
516 pipe_name(pipe), enable_mask, status_mask))
517 return;
518
519 if ((pipestat & enable_mask) == 0)
520 return;
521
522 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
523
524 pipestat &= ~enable_mask;
525 I915_WRITE(reg, pipestat);
526 POSTING_READ(reg);
527 }
528
529 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
530 {
531 u32 enable_mask = status_mask << 16;
532
533 /*
534 * On pipe A we don't support the PSR interrupt yet,
535 * on pipe B and C the same bit MBZ.
536 */
537 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
538 return 0;
539 /*
540 * On pipe B and C we don't support the PSR interrupt yet, on pipe
541 * A the same bit is for perf counters which we don't use either.
542 */
543 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
544 return 0;
545
546 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
547 SPRITE0_FLIP_DONE_INT_EN_VLV |
548 SPRITE1_FLIP_DONE_INT_EN_VLV);
549 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
550 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
551 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
552 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
553
554 return enable_mask;
555 }
556
557 void
558 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
559 u32 status_mask)
560 {
561 u32 enable_mask;
562
563 if (IS_VALLEYVIEW(dev_priv->dev))
564 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
565 status_mask);
566 else
567 enable_mask = status_mask << 16;
568 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
569 }
570
571 void
572 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
573 u32 status_mask)
574 {
575 u32 enable_mask;
576
577 if (IS_VALLEYVIEW(dev_priv->dev))
578 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
579 status_mask);
580 else
581 enable_mask = status_mask << 16;
582 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
583 }
584
585 /**
586 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
587 * @dev: drm device
588 */
589 static void i915_enable_asle_pipestat(struct drm_device *dev)
590 {
591 struct drm_i915_private *dev_priv = dev->dev_private;
592
593 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
594 return;
595
596 spin_lock_irq(&dev_priv->irq_lock);
597
598 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
599 if (INTEL_INFO(dev)->gen >= 4)
600 i915_enable_pipestat(dev_priv, PIPE_A,
601 PIPE_LEGACY_BLC_EVENT_STATUS);
602
603 spin_unlock_irq(&dev_priv->irq_lock);
604 }
605
606 /*
607 * This timing diagram depicts the video signal in and
608 * around the vertical blanking period.
609 *
610 * Assumptions about the fictitious mode used in this example:
611 * vblank_start >= 3
612 * vsync_start = vblank_start + 1
613 * vsync_end = vblank_start + 2
614 * vtotal = vblank_start + 3
615 *
616 * start of vblank:
617 * latch double buffered registers
618 * increment frame counter (ctg+)
619 * generate start of vblank interrupt (gen4+)
620 * |
621 * | frame start:
622 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
623 * | may be shifted forward 1-3 extra lines via PIPECONF
624 * | |
625 * | | start of vsync:
626 * | | generate vsync interrupt
627 * | | |
628 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
629 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
630 * ----va---> <-----------------vb--------------------> <--------va-------------
631 * | | <----vs-----> |
632 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
633 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
634 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
635 * | | |
636 * last visible pixel first visible pixel
637 * | increment frame counter (gen3/4)
638 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
639 *
640 * x = horizontal active
641 * _ = horizontal blanking
642 * hs = horizontal sync
643 * va = vertical active
644 * vb = vertical blanking
645 * vs = vertical sync
646 * vbs = vblank_start (number)
647 *
648 * Summary:
649 * - most events happen at the start of horizontal sync
650 * - frame start happens at the start of horizontal blank, 1-4 lines
651 * (depending on PIPECONF settings) after the start of vblank
652 * - gen3/4 pixel and frame counter are synchronized with the start
653 * of horizontal active on the first line of vertical active
654 */
655
656 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
657 {
658 /* Gen2 doesn't have a hardware frame counter */
659 return 0;
660 }
661
662 /* Called from drm generic code, passed a 'crtc', which
663 * we use as a pipe index
664 */
665 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
666 {
667 struct drm_i915_private *dev_priv = dev->dev_private;
668 unsigned long high_frame;
669 unsigned long low_frame;
670 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
671 struct intel_crtc *intel_crtc =
672 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
673 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
674
675 htotal = mode->crtc_htotal;
676 hsync_start = mode->crtc_hsync_start;
677 vbl_start = mode->crtc_vblank_start;
678 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
679 vbl_start = DIV_ROUND_UP(vbl_start, 2);
680
681 /* Convert to pixel count */
682 vbl_start *= htotal;
683
684 /* Start of vblank event occurs at start of hsync */
685 vbl_start -= htotal - hsync_start;
686
687 high_frame = PIPEFRAME(pipe);
688 low_frame = PIPEFRAMEPIXEL(pipe);
689
690 /*
691 * High & low register fields aren't synchronized, so make sure
692 * we get a low value that's stable across two reads of the high
693 * register.
694 */
695 do {
696 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
697 low = I915_READ(low_frame);
698 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699 } while (high1 != high2);
700
701 high1 >>= PIPE_FRAME_HIGH_SHIFT;
702 pixel = low & PIPE_PIXEL_MASK;
703 low >>= PIPE_FRAME_LOW_SHIFT;
704
705 /*
706 * The frame counter increments at beginning of active.
707 * Cook up a vblank counter by also checking the pixel
708 * counter against vblank start.
709 */
710 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
711 }
712
713 static u32 g4x_get_vblank_counter(struct drm_device *dev, int pipe)
714 {
715 struct drm_i915_private *dev_priv = dev->dev_private;
716
717 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
718 }
719
720 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
721 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
722 {
723 struct drm_device *dev = crtc->base.dev;
724 struct drm_i915_private *dev_priv = dev->dev_private;
725 const struct drm_display_mode *mode = &crtc->base.hwmode;
726 enum pipe pipe = crtc->pipe;
727 int position, vtotal;
728
729 vtotal = mode->crtc_vtotal;
730 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
731 vtotal /= 2;
732
733 if (IS_GEN2(dev))
734 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
735 else
736 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
737
738 /*
739 * On HSW, the DSL reg (0x70000) appears to return 0 if we
740 * read it just before the start of vblank. So try it again
741 * so we don't accidentally end up spanning a vblank frame
742 * increment, causing the pipe_update_end() code to squak at us.
743 *
744 * The nature of this problem means we can't simply check the ISR
745 * bit and return the vblank start value; nor can we use the scanline
746 * debug register in the transcoder as it appears to have the same
747 * problem. We may need to extend this to include other platforms,
748 * but so far testing only shows the problem on HSW.
749 */
750 if (IS_HASWELL(dev) && !position) {
751 int i, temp;
752
753 for (i = 0; i < 100; i++) {
754 udelay(1);
755 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
756 DSL_LINEMASK_GEN3;
757 if (temp != position) {
758 position = temp;
759 break;
760 }
761 }
762 }
763
764 /*
765 * See update_scanline_offset() for the details on the
766 * scanline_offset adjustment.
767 */
768 return (position + crtc->scanline_offset) % vtotal;
769 }
770
771 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
772 unsigned int flags, int *vpos, int *hpos,
773 ktime_t *stime, ktime_t *etime,
774 const struct drm_display_mode *mode)
775 {
776 struct drm_i915_private *dev_priv = dev->dev_private;
777 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
779 int position;
780 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
781 bool in_vbl = true;
782 int ret = 0;
783 unsigned long irqflags;
784
785 if (WARN_ON(!mode->crtc_clock)) {
786 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
787 "pipe %c\n", pipe_name(pipe));
788 return 0;
789 }
790
791 htotal = mode->crtc_htotal;
792 hsync_start = mode->crtc_hsync_start;
793 vtotal = mode->crtc_vtotal;
794 vbl_start = mode->crtc_vblank_start;
795 vbl_end = mode->crtc_vblank_end;
796
797 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
798 vbl_start = DIV_ROUND_UP(vbl_start, 2);
799 vbl_end /= 2;
800 vtotal /= 2;
801 }
802
803 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
804
805 /*
806 * Lock uncore.lock, as we will do multiple timing critical raw
807 * register reads, potentially with preemption disabled, so the
808 * following code must not block on uncore.lock.
809 */
810 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
811
812 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
813
814 /* Get optional system timestamp before query. */
815 if (stime)
816 *stime = ktime_get();
817
818 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
819 /* No obvious pixelcount register. Only query vertical
820 * scanout position from Display scan line register.
821 */
822 position = __intel_get_crtc_scanline(intel_crtc);
823 } else {
824 /* Have access to pixelcount since start of frame.
825 * We can split this into vertical and horizontal
826 * scanout position.
827 */
828 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
829
830 /* convert to pixel counts */
831 vbl_start *= htotal;
832 vbl_end *= htotal;
833 vtotal *= htotal;
834
835 /*
836 * In interlaced modes, the pixel counter counts all pixels,
837 * so one field will have htotal more pixels. In order to avoid
838 * the reported position from jumping backwards when the pixel
839 * counter is beyond the length of the shorter field, just
840 * clamp the position the length of the shorter field. This
841 * matches how the scanline counter based position works since
842 * the scanline counter doesn't count the two half lines.
843 */
844 if (position >= vtotal)
845 position = vtotal - 1;
846
847 /*
848 * Start of vblank interrupt is triggered at start of hsync,
849 * just prior to the first active line of vblank. However we
850 * consider lines to start at the leading edge of horizontal
851 * active. So, should we get here before we've crossed into
852 * the horizontal active of the first line in vblank, we would
853 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
854 * always add htotal-hsync_start to the current pixel position.
855 */
856 position = (position + htotal - hsync_start) % vtotal;
857 }
858
859 /* Get optional system timestamp after query. */
860 if (etime)
861 *etime = ktime_get();
862
863 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
864
865 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
866
867 in_vbl = position >= vbl_start && position < vbl_end;
868
869 /*
870 * While in vblank, position will be negative
871 * counting up towards 0 at vbl_end. And outside
872 * vblank, position will be positive counting
873 * up since vbl_end.
874 */
875 if (position >= vbl_start)
876 position -= vbl_end;
877 else
878 position += vtotal - vbl_end;
879
880 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
881 *vpos = position;
882 *hpos = 0;
883 } else {
884 *vpos = position / htotal;
885 *hpos = position - (*vpos * htotal);
886 }
887
888 /* In vblank? */
889 if (in_vbl)
890 ret |= DRM_SCANOUTPOS_IN_VBLANK;
891
892 return ret;
893 }
894
895 int intel_get_crtc_scanline(struct intel_crtc *crtc)
896 {
897 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
898 unsigned long irqflags;
899 int position;
900
901 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
902 position = __intel_get_crtc_scanline(crtc);
903 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
904
905 return position;
906 }
907
908 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
909 int *max_error,
910 struct timeval *vblank_time,
911 unsigned flags)
912 {
913 struct drm_crtc *crtc;
914
915 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
916 DRM_ERROR("Invalid crtc %d\n", pipe);
917 return -EINVAL;
918 }
919
920 /* Get drm_crtc to timestamp: */
921 crtc = intel_get_crtc_for_pipe(dev, pipe);
922 if (crtc == NULL) {
923 DRM_ERROR("Invalid crtc %d\n", pipe);
924 return -EINVAL;
925 }
926
927 if (!crtc->hwmode.crtc_clock) {
928 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
929 return -EBUSY;
930 }
931
932 /* Helper routine in DRM core does all the work: */
933 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
934 vblank_time, flags,
935 &crtc->hwmode);
936 }
937
938 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
939 {
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 busy_up, busy_down, max_avg, min_avg;
942 u8 new_delay;
943
944 spin_lock(&mchdev_lock);
945
946 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
947
948 new_delay = dev_priv->ips.cur_delay;
949
950 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
951 busy_up = I915_READ(RCPREVBSYTUPAVG);
952 busy_down = I915_READ(RCPREVBSYTDNAVG);
953 max_avg = I915_READ(RCBMAXAVG);
954 min_avg = I915_READ(RCBMINAVG);
955
956 /* Handle RCS change request from hw */
957 if (busy_up > max_avg) {
958 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
959 new_delay = dev_priv->ips.cur_delay - 1;
960 if (new_delay < dev_priv->ips.max_delay)
961 new_delay = dev_priv->ips.max_delay;
962 } else if (busy_down < min_avg) {
963 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
964 new_delay = dev_priv->ips.cur_delay + 1;
965 if (new_delay > dev_priv->ips.min_delay)
966 new_delay = dev_priv->ips.min_delay;
967 }
968
969 if (ironlake_set_drps(dev, new_delay))
970 dev_priv->ips.cur_delay = new_delay;
971
972 spin_unlock(&mchdev_lock);
973
974 return;
975 }
976
977 static void notify_ring(struct intel_engine_cs *ring)
978 {
979 if (!intel_ring_initialized(ring))
980 return;
981
982 trace_i915_gem_request_notify(ring);
983
984 wake_up_all(&ring->irq_queue);
985 }
986
987 static void vlv_c0_read(struct drm_i915_private *dev_priv,
988 struct intel_rps_ei *ei)
989 {
990 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
991 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
992 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
993 }
994
995 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
996 const struct intel_rps_ei *old,
997 const struct intel_rps_ei *now,
998 int threshold)
999 {
1000 u64 time, c0;
1001 unsigned int mul = 100;
1002
1003 if (old->cz_clock == 0)
1004 return false;
1005
1006 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1007 mul <<= 8;
1008
1009 time = now->cz_clock - old->cz_clock;
1010 time *= threshold * dev_priv->czclk_freq;
1011
1012 /* Workload can be split between render + media, e.g. SwapBuffers
1013 * being blitted in X after being rendered in mesa. To account for
1014 * this we need to combine both engines into our activity counter.
1015 */
1016 c0 = now->render_c0 - old->render_c0;
1017 c0 += now->media_c0 - old->media_c0;
1018 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1019
1020 return c0 >= time;
1021 }
1022
1023 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1024 {
1025 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1026 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1027 }
1028
1029 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1030 {
1031 struct intel_rps_ei now;
1032 u32 events = 0;
1033
1034 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1035 return 0;
1036
1037 vlv_c0_read(dev_priv, &now);
1038 if (now.cz_clock == 0)
1039 return 0;
1040
1041 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1042 if (!vlv_c0_above(dev_priv,
1043 &dev_priv->rps.down_ei, &now,
1044 dev_priv->rps.down_threshold))
1045 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1046 dev_priv->rps.down_ei = now;
1047 }
1048
1049 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1050 if (vlv_c0_above(dev_priv,
1051 &dev_priv->rps.up_ei, &now,
1052 dev_priv->rps.up_threshold))
1053 events |= GEN6_PM_RP_UP_THRESHOLD;
1054 dev_priv->rps.up_ei = now;
1055 }
1056
1057 return events;
1058 }
1059
1060 static bool any_waiters(struct drm_i915_private *dev_priv)
1061 {
1062 struct intel_engine_cs *ring;
1063 int i;
1064
1065 for_each_ring(ring, dev_priv, i)
1066 if (ring->irq_refcount)
1067 return true;
1068
1069 return false;
1070 }
1071
1072 static void gen6_pm_rps_work(struct work_struct *work)
1073 {
1074 struct drm_i915_private *dev_priv =
1075 container_of(work, struct drm_i915_private, rps.work);
1076 bool client_boost;
1077 int new_delay, adj, min, max;
1078 u32 pm_iir;
1079
1080 spin_lock_irq(&dev_priv->irq_lock);
1081 /* Speed up work cancelation during disabling rps interrupts. */
1082 if (!dev_priv->rps.interrupts_enabled) {
1083 spin_unlock_irq(&dev_priv->irq_lock);
1084 return;
1085 }
1086 pm_iir = dev_priv->rps.pm_iir;
1087 dev_priv->rps.pm_iir = 0;
1088 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1089 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1090 client_boost = dev_priv->rps.client_boost;
1091 dev_priv->rps.client_boost = false;
1092 spin_unlock_irq(&dev_priv->irq_lock);
1093
1094 /* Make sure we didn't queue anything we're not going to process. */
1095 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1096
1097 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1098 return;
1099
1100 mutex_lock(&dev_priv->rps.hw_lock);
1101
1102 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1103
1104 adj = dev_priv->rps.last_adj;
1105 new_delay = dev_priv->rps.cur_freq;
1106 min = dev_priv->rps.min_freq_softlimit;
1107 max = dev_priv->rps.max_freq_softlimit;
1108
1109 if (client_boost) {
1110 new_delay = dev_priv->rps.max_freq_softlimit;
1111 adj = 0;
1112 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1113 if (adj > 0)
1114 adj *= 2;
1115 else /* CHV needs even encode values */
1116 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1117 /*
1118 * For better performance, jump directly
1119 * to RPe if we're below it.
1120 */
1121 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1122 new_delay = dev_priv->rps.efficient_freq;
1123 adj = 0;
1124 }
1125 } else if (any_waiters(dev_priv)) {
1126 adj = 0;
1127 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1128 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1129 new_delay = dev_priv->rps.efficient_freq;
1130 else
1131 new_delay = dev_priv->rps.min_freq_softlimit;
1132 adj = 0;
1133 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1134 if (adj < 0)
1135 adj *= 2;
1136 else /* CHV needs even encode values */
1137 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1138 } else { /* unknown event */
1139 adj = 0;
1140 }
1141
1142 dev_priv->rps.last_adj = adj;
1143
1144 /* sysfs frequency interfaces may have snuck in while servicing the
1145 * interrupt
1146 */
1147 new_delay += adj;
1148 new_delay = clamp_t(int, new_delay, min, max);
1149
1150 intel_set_rps(dev_priv->dev, new_delay);
1151
1152 mutex_unlock(&dev_priv->rps.hw_lock);
1153 }
1154
1155
1156 /**
1157 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1158 * occurred.
1159 * @work: workqueue struct
1160 *
1161 * Doesn't actually do anything except notify userspace. As a consequence of
1162 * this event, userspace should try to remap the bad rows since statistically
1163 * it is likely the same row is more likely to go bad again.
1164 */
1165 static void ivybridge_parity_work(struct work_struct *work)
1166 {
1167 struct drm_i915_private *dev_priv =
1168 container_of(work, struct drm_i915_private, l3_parity.error_work);
1169 u32 error_status, row, bank, subbank;
1170 char *parity_event[6];
1171 uint32_t misccpctl;
1172 uint8_t slice = 0;
1173
1174 /* We must turn off DOP level clock gating to access the L3 registers.
1175 * In order to prevent a get/put style interface, acquire struct mutex
1176 * any time we access those registers.
1177 */
1178 mutex_lock(&dev_priv->dev->struct_mutex);
1179
1180 /* If we've screwed up tracking, just let the interrupt fire again */
1181 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1182 goto out;
1183
1184 misccpctl = I915_READ(GEN7_MISCCPCTL);
1185 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1186 POSTING_READ(GEN7_MISCCPCTL);
1187
1188 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1189 u32 reg;
1190
1191 slice--;
1192 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1193 break;
1194
1195 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1196
1197 reg = GEN7_L3CDERRST1(slice);
1198
1199 error_status = I915_READ(reg);
1200 row = GEN7_PARITY_ERROR_ROW(error_status);
1201 bank = GEN7_PARITY_ERROR_BANK(error_status);
1202 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1203
1204 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1205 POSTING_READ(reg);
1206
1207 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1208 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1209 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1210 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1211 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1212 parity_event[5] = NULL;
1213
1214 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1215 KOBJ_CHANGE, parity_event);
1216
1217 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1218 slice, row, bank, subbank);
1219
1220 kfree(parity_event[4]);
1221 kfree(parity_event[3]);
1222 kfree(parity_event[2]);
1223 kfree(parity_event[1]);
1224 }
1225
1226 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1227
1228 out:
1229 WARN_ON(dev_priv->l3_parity.which_slice);
1230 spin_lock_irq(&dev_priv->irq_lock);
1231 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1232 spin_unlock_irq(&dev_priv->irq_lock);
1233
1234 mutex_unlock(&dev_priv->dev->struct_mutex);
1235 }
1236
1237 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1238 {
1239 struct drm_i915_private *dev_priv = dev->dev_private;
1240
1241 if (!HAS_L3_DPF(dev))
1242 return;
1243
1244 spin_lock(&dev_priv->irq_lock);
1245 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1246 spin_unlock(&dev_priv->irq_lock);
1247
1248 iir &= GT_PARITY_ERROR(dev);
1249 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1250 dev_priv->l3_parity.which_slice |= 1 << 1;
1251
1252 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1253 dev_priv->l3_parity.which_slice |= 1 << 0;
1254
1255 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1256 }
1257
1258 static void ilk_gt_irq_handler(struct drm_device *dev,
1259 struct drm_i915_private *dev_priv,
1260 u32 gt_iir)
1261 {
1262 if (gt_iir &
1263 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1264 notify_ring(&dev_priv->ring[RCS]);
1265 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1266 notify_ring(&dev_priv->ring[VCS]);
1267 }
1268
1269 static void snb_gt_irq_handler(struct drm_device *dev,
1270 struct drm_i915_private *dev_priv,
1271 u32 gt_iir)
1272 {
1273
1274 if (gt_iir &
1275 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1276 notify_ring(&dev_priv->ring[RCS]);
1277 if (gt_iir & GT_BSD_USER_INTERRUPT)
1278 notify_ring(&dev_priv->ring[VCS]);
1279 if (gt_iir & GT_BLT_USER_INTERRUPT)
1280 notify_ring(&dev_priv->ring[BCS]);
1281
1282 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1283 GT_BSD_CS_ERROR_INTERRUPT |
1284 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1285 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1286
1287 if (gt_iir & GT_PARITY_ERROR(dev))
1288 ivybridge_parity_error_irq_handler(dev, gt_iir);
1289 }
1290
1291 static __always_inline void
1292 gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1293 {
1294 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1295 notify_ring(ring);
1296 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1297 intel_lrc_irq_handler(ring);
1298 }
1299
1300 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1301 u32 master_ctl)
1302 {
1303 irqreturn_t ret = IRQ_NONE;
1304
1305 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1306 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1307 if (iir) {
1308 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1309 ret = IRQ_HANDLED;
1310
1311 gen8_cs_irq_handler(&dev_priv->ring[RCS],
1312 iir, GEN8_RCS_IRQ_SHIFT);
1313
1314 gen8_cs_irq_handler(&dev_priv->ring[BCS],
1315 iir, GEN8_BCS_IRQ_SHIFT);
1316 } else
1317 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1318 }
1319
1320 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1321 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1322 if (iir) {
1323 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1324 ret = IRQ_HANDLED;
1325
1326 gen8_cs_irq_handler(&dev_priv->ring[VCS],
1327 iir, GEN8_VCS1_IRQ_SHIFT);
1328
1329 gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1330 iir, GEN8_VCS2_IRQ_SHIFT);
1331 } else
1332 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1333 }
1334
1335 if (master_ctl & GEN8_GT_VECS_IRQ) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->ring[VECS],
1342 iir, GEN8_VECS_IRQ_SHIFT);
1343 } else
1344 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1345 }
1346
1347 if (master_ctl & GEN8_GT_PM_IRQ) {
1348 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1349 if (iir & dev_priv->pm_rps_events) {
1350 I915_WRITE_FW(GEN8_GT_IIR(2),
1351 iir & dev_priv->pm_rps_events);
1352 ret = IRQ_HANDLED;
1353 gen6_rps_irq_handler(dev_priv, iir);
1354 } else
1355 DRM_ERROR("The master control interrupt lied (PM)!\n");
1356 }
1357
1358 return ret;
1359 }
1360
1361 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1362 {
1363 switch (port) {
1364 case PORT_A:
1365 return val & PORTA_HOTPLUG_LONG_DETECT;
1366 case PORT_B:
1367 return val & PORTB_HOTPLUG_LONG_DETECT;
1368 case PORT_C:
1369 return val & PORTC_HOTPLUG_LONG_DETECT;
1370 default:
1371 return false;
1372 }
1373 }
1374
1375 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1376 {
1377 switch (port) {
1378 case PORT_E:
1379 return val & PORTE_HOTPLUG_LONG_DETECT;
1380 default:
1381 return false;
1382 }
1383 }
1384
1385 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1386 {
1387 switch (port) {
1388 case PORT_A:
1389 return val & PORTA_HOTPLUG_LONG_DETECT;
1390 case PORT_B:
1391 return val & PORTB_HOTPLUG_LONG_DETECT;
1392 case PORT_C:
1393 return val & PORTC_HOTPLUG_LONG_DETECT;
1394 case PORT_D:
1395 return val & PORTD_HOTPLUG_LONG_DETECT;
1396 default:
1397 return false;
1398 }
1399 }
1400
1401 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1402 {
1403 switch (port) {
1404 case PORT_A:
1405 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1406 default:
1407 return false;
1408 }
1409 }
1410
1411 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1412 {
1413 switch (port) {
1414 case PORT_B:
1415 return val & PORTB_HOTPLUG_LONG_DETECT;
1416 case PORT_C:
1417 return val & PORTC_HOTPLUG_LONG_DETECT;
1418 case PORT_D:
1419 return val & PORTD_HOTPLUG_LONG_DETECT;
1420 default:
1421 return false;
1422 }
1423 }
1424
1425 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1426 {
1427 switch (port) {
1428 case PORT_B:
1429 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1430 case PORT_C:
1431 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1432 case PORT_D:
1433 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1434 default:
1435 return false;
1436 }
1437 }
1438
1439 /*
1440 * Get a bit mask of pins that have triggered, and which ones may be long.
1441 * This can be called multiple times with the same masks to accumulate
1442 * hotplug detection results from several registers.
1443 *
1444 * Note that the caller is expected to zero out the masks initially.
1445 */
1446 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1447 u32 hotplug_trigger, u32 dig_hotplug_reg,
1448 const u32 hpd[HPD_NUM_PINS],
1449 bool long_pulse_detect(enum port port, u32 val))
1450 {
1451 enum port port;
1452 int i;
1453
1454 for_each_hpd_pin(i) {
1455 if ((hpd[i] & hotplug_trigger) == 0)
1456 continue;
1457
1458 *pin_mask |= BIT(i);
1459
1460 if (!intel_hpd_pin_to_port(i, &port))
1461 continue;
1462
1463 if (long_pulse_detect(port, dig_hotplug_reg))
1464 *long_mask |= BIT(i);
1465 }
1466
1467 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1468 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1469
1470 }
1471
1472 static void gmbus_irq_handler(struct drm_device *dev)
1473 {
1474 struct drm_i915_private *dev_priv = dev->dev_private;
1475
1476 wake_up_all(&dev_priv->gmbus_wait_queue);
1477 }
1478
1479 static void dp_aux_irq_handler(struct drm_device *dev)
1480 {
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482
1483 wake_up_all(&dev_priv->gmbus_wait_queue);
1484 }
1485
1486 #if defined(CONFIG_DEBUG_FS)
1487 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1488 uint32_t crc0, uint32_t crc1,
1489 uint32_t crc2, uint32_t crc3,
1490 uint32_t crc4)
1491 {
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1494 struct intel_pipe_crc_entry *entry;
1495 int head, tail;
1496
1497 spin_lock(&pipe_crc->lock);
1498
1499 if (!pipe_crc->entries) {
1500 spin_unlock(&pipe_crc->lock);
1501 DRM_DEBUG_KMS("spurious interrupt\n");
1502 return;
1503 }
1504
1505 head = pipe_crc->head;
1506 tail = pipe_crc->tail;
1507
1508 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1509 spin_unlock(&pipe_crc->lock);
1510 DRM_ERROR("CRC buffer overflowing\n");
1511 return;
1512 }
1513
1514 entry = &pipe_crc->entries[head];
1515
1516 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1517 entry->crc[0] = crc0;
1518 entry->crc[1] = crc1;
1519 entry->crc[2] = crc2;
1520 entry->crc[3] = crc3;
1521 entry->crc[4] = crc4;
1522
1523 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1524 pipe_crc->head = head;
1525
1526 spin_unlock(&pipe_crc->lock);
1527
1528 wake_up_interruptible(&pipe_crc->wq);
1529 }
1530 #else
1531 static inline void
1532 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1533 uint32_t crc0, uint32_t crc1,
1534 uint32_t crc2, uint32_t crc3,
1535 uint32_t crc4) {}
1536 #endif
1537
1538
1539 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1540 {
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542
1543 display_pipe_crc_irq_handler(dev, pipe,
1544 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1545 0, 0, 0, 0);
1546 }
1547
1548 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1549 {
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551
1552 display_pipe_crc_irq_handler(dev, pipe,
1553 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1554 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1555 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1556 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1557 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1558 }
1559
1560 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1561 {
1562 struct drm_i915_private *dev_priv = dev->dev_private;
1563 uint32_t res1, res2;
1564
1565 if (INTEL_INFO(dev)->gen >= 3)
1566 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1567 else
1568 res1 = 0;
1569
1570 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1571 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1572 else
1573 res2 = 0;
1574
1575 display_pipe_crc_irq_handler(dev, pipe,
1576 I915_READ(PIPE_CRC_RES_RED(pipe)),
1577 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1578 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1579 res1, res2);
1580 }
1581
1582 /* The RPS events need forcewake, so we add them to a work queue and mask their
1583 * IMR bits until the work is done. Other interrupts can be processed without
1584 * the work queue. */
1585 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1586 {
1587 if (pm_iir & dev_priv->pm_rps_events) {
1588 spin_lock(&dev_priv->irq_lock);
1589 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1590 if (dev_priv->rps.interrupts_enabled) {
1591 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1592 queue_work(dev_priv->wq, &dev_priv->rps.work);
1593 }
1594 spin_unlock(&dev_priv->irq_lock);
1595 }
1596
1597 if (INTEL_INFO(dev_priv)->gen >= 8)
1598 return;
1599
1600 if (HAS_VEBOX(dev_priv->dev)) {
1601 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1602 notify_ring(&dev_priv->ring[VECS]);
1603
1604 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1605 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1606 }
1607 }
1608
1609 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1610 {
1611 if (!drm_handle_vblank(dev, pipe))
1612 return false;
1613
1614 return true;
1615 }
1616
1617 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1618 {
1619 struct drm_i915_private *dev_priv = dev->dev_private;
1620 u32 pipe_stats[I915_MAX_PIPES] = { };
1621 int pipe;
1622
1623 spin_lock(&dev_priv->irq_lock);
1624 for_each_pipe(dev_priv, pipe) {
1625 int reg;
1626 u32 mask, iir_bit = 0;
1627
1628 /*
1629 * PIPESTAT bits get signalled even when the interrupt is
1630 * disabled with the mask bits, and some of the status bits do
1631 * not generate interrupts at all (like the underrun bit). Hence
1632 * we need to be careful that we only handle what we want to
1633 * handle.
1634 */
1635
1636 /* fifo underruns are filterered in the underrun handler. */
1637 mask = PIPE_FIFO_UNDERRUN_STATUS;
1638
1639 switch (pipe) {
1640 case PIPE_A:
1641 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1642 break;
1643 case PIPE_B:
1644 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1645 break;
1646 case PIPE_C:
1647 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1648 break;
1649 }
1650 if (iir & iir_bit)
1651 mask |= dev_priv->pipestat_irq_mask[pipe];
1652
1653 if (!mask)
1654 continue;
1655
1656 reg = PIPESTAT(pipe);
1657 mask |= PIPESTAT_INT_ENABLE_MASK;
1658 pipe_stats[pipe] = I915_READ(reg) & mask;
1659
1660 /*
1661 * Clear the PIPE*STAT regs before the IIR
1662 */
1663 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1664 PIPESTAT_INT_STATUS_MASK))
1665 I915_WRITE(reg, pipe_stats[pipe]);
1666 }
1667 spin_unlock(&dev_priv->irq_lock);
1668
1669 for_each_pipe(dev_priv, pipe) {
1670 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1671 intel_pipe_handle_vblank(dev, pipe))
1672 intel_check_page_flip(dev, pipe);
1673
1674 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1675 intel_prepare_page_flip(dev, pipe);
1676 intel_finish_page_flip(dev, pipe);
1677 }
1678
1679 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1680 i9xx_pipe_crc_irq_handler(dev, pipe);
1681
1682 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1683 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1684 }
1685
1686 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1687 gmbus_irq_handler(dev);
1688 }
1689
1690 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1691 {
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1694 u32 pin_mask = 0, long_mask = 0;
1695
1696 if (!hotplug_status)
1697 return;
1698
1699 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1700 /*
1701 * Make sure hotplug status is cleared before we clear IIR, or else we
1702 * may miss hotplug events.
1703 */
1704 POSTING_READ(PORT_HOTPLUG_STAT);
1705
1706 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1707 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1708
1709 if (hotplug_trigger) {
1710 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1711 hotplug_trigger, hpd_status_g4x,
1712 i9xx_port_hotplug_long_detect);
1713
1714 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1715 }
1716
1717 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1718 dp_aux_irq_handler(dev);
1719 } else {
1720 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1721
1722 if (hotplug_trigger) {
1723 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1724 hotplug_trigger, hpd_status_i915,
1725 i9xx_port_hotplug_long_detect);
1726 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1727 }
1728 }
1729 }
1730
1731 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1732 {
1733 struct drm_device *dev = arg;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 u32 iir, gt_iir, pm_iir;
1736 irqreturn_t ret = IRQ_NONE;
1737
1738 if (!intel_irqs_enabled(dev_priv))
1739 return IRQ_NONE;
1740
1741 while (true) {
1742 /* Find, clear, then process each source of interrupt */
1743
1744 gt_iir = I915_READ(GTIIR);
1745 if (gt_iir)
1746 I915_WRITE(GTIIR, gt_iir);
1747
1748 pm_iir = I915_READ(GEN6_PMIIR);
1749 if (pm_iir)
1750 I915_WRITE(GEN6_PMIIR, pm_iir);
1751
1752 iir = I915_READ(VLV_IIR);
1753 if (iir) {
1754 /* Consume port before clearing IIR or we'll miss events */
1755 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1756 i9xx_hpd_irq_handler(dev);
1757 I915_WRITE(VLV_IIR, iir);
1758 }
1759
1760 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1761 goto out;
1762
1763 ret = IRQ_HANDLED;
1764
1765 if (gt_iir)
1766 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1767 if (pm_iir)
1768 gen6_rps_irq_handler(dev_priv, pm_iir);
1769 /* Call regardless, as some status bits might not be
1770 * signalled in iir */
1771 valleyview_pipestat_irq_handler(dev, iir);
1772 }
1773
1774 out:
1775 return ret;
1776 }
1777
1778 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1779 {
1780 struct drm_device *dev = arg;
1781 struct drm_i915_private *dev_priv = dev->dev_private;
1782 u32 master_ctl, iir;
1783 irqreturn_t ret = IRQ_NONE;
1784
1785 if (!intel_irqs_enabled(dev_priv))
1786 return IRQ_NONE;
1787
1788 for (;;) {
1789 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1790 iir = I915_READ(VLV_IIR);
1791
1792 if (master_ctl == 0 && iir == 0)
1793 break;
1794
1795 ret = IRQ_HANDLED;
1796
1797 I915_WRITE(GEN8_MASTER_IRQ, 0);
1798
1799 /* Find, clear, then process each source of interrupt */
1800
1801 if (iir) {
1802 /* Consume port before clearing IIR or we'll miss events */
1803 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1804 i9xx_hpd_irq_handler(dev);
1805 I915_WRITE(VLV_IIR, iir);
1806 }
1807
1808 gen8_gt_irq_handler(dev_priv, master_ctl);
1809
1810 /* Call regardless, as some status bits might not be
1811 * signalled in iir */
1812 valleyview_pipestat_irq_handler(dev, iir);
1813
1814 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1815 POSTING_READ(GEN8_MASTER_IRQ);
1816 }
1817
1818 return ret;
1819 }
1820
1821 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1822 const u32 hpd[HPD_NUM_PINS])
1823 {
1824 struct drm_i915_private *dev_priv = to_i915(dev);
1825 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1826
1827 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1828 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1829
1830 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1831 dig_hotplug_reg, hpd,
1832 pch_port_hotplug_long_detect);
1833
1834 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1835 }
1836
1837 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1838 {
1839 struct drm_i915_private *dev_priv = dev->dev_private;
1840 int pipe;
1841 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1842
1843 if (hotplug_trigger)
1844 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1845
1846 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1847 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1848 SDE_AUDIO_POWER_SHIFT);
1849 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1850 port_name(port));
1851 }
1852
1853 if (pch_iir & SDE_AUX_MASK)
1854 dp_aux_irq_handler(dev);
1855
1856 if (pch_iir & SDE_GMBUS)
1857 gmbus_irq_handler(dev);
1858
1859 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1860 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1861
1862 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1863 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1864
1865 if (pch_iir & SDE_POISON)
1866 DRM_ERROR("PCH poison interrupt\n");
1867
1868 if (pch_iir & SDE_FDI_MASK)
1869 for_each_pipe(dev_priv, pipe)
1870 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1871 pipe_name(pipe),
1872 I915_READ(FDI_RX_IIR(pipe)));
1873
1874 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1875 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1876
1877 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1878 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1879
1880 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1881 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1882
1883 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1884 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1885 }
1886
1887 static void ivb_err_int_handler(struct drm_device *dev)
1888 {
1889 struct drm_i915_private *dev_priv = dev->dev_private;
1890 u32 err_int = I915_READ(GEN7_ERR_INT);
1891 enum pipe pipe;
1892
1893 if (err_int & ERR_INT_POISON)
1894 DRM_ERROR("Poison interrupt\n");
1895
1896 for_each_pipe(dev_priv, pipe) {
1897 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1898 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1899
1900 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1901 if (IS_IVYBRIDGE(dev))
1902 ivb_pipe_crc_irq_handler(dev, pipe);
1903 else
1904 hsw_pipe_crc_irq_handler(dev, pipe);
1905 }
1906 }
1907
1908 I915_WRITE(GEN7_ERR_INT, err_int);
1909 }
1910
1911 static void cpt_serr_int_handler(struct drm_device *dev)
1912 {
1913 struct drm_i915_private *dev_priv = dev->dev_private;
1914 u32 serr_int = I915_READ(SERR_INT);
1915
1916 if (serr_int & SERR_INT_POISON)
1917 DRM_ERROR("PCH poison interrupt\n");
1918
1919 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1920 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1921
1922 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1923 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1924
1925 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1926 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1927
1928 I915_WRITE(SERR_INT, serr_int);
1929 }
1930
1931 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1932 {
1933 struct drm_i915_private *dev_priv = dev->dev_private;
1934 int pipe;
1935 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1936
1937 if (hotplug_trigger)
1938 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1939
1940 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1941 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1942 SDE_AUDIO_POWER_SHIFT_CPT);
1943 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1944 port_name(port));
1945 }
1946
1947 if (pch_iir & SDE_AUX_MASK_CPT)
1948 dp_aux_irq_handler(dev);
1949
1950 if (pch_iir & SDE_GMBUS_CPT)
1951 gmbus_irq_handler(dev);
1952
1953 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1954 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1955
1956 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1957 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1958
1959 if (pch_iir & SDE_FDI_MASK_CPT)
1960 for_each_pipe(dev_priv, pipe)
1961 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1962 pipe_name(pipe),
1963 I915_READ(FDI_RX_IIR(pipe)));
1964
1965 if (pch_iir & SDE_ERROR_CPT)
1966 cpt_serr_int_handler(dev);
1967 }
1968
1969 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1970 {
1971 struct drm_i915_private *dev_priv = dev->dev_private;
1972 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1973 ~SDE_PORTE_HOTPLUG_SPT;
1974 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1975 u32 pin_mask = 0, long_mask = 0;
1976
1977 if (hotplug_trigger) {
1978 u32 dig_hotplug_reg;
1979
1980 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1981 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1982
1983 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1984 dig_hotplug_reg, hpd_spt,
1985 spt_port_hotplug_long_detect);
1986 }
1987
1988 if (hotplug2_trigger) {
1989 u32 dig_hotplug_reg;
1990
1991 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1992 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1993
1994 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1995 dig_hotplug_reg, hpd_spt,
1996 spt_port_hotplug2_long_detect);
1997 }
1998
1999 if (pin_mask)
2000 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2001
2002 if (pch_iir & SDE_GMBUS_CPT)
2003 gmbus_irq_handler(dev);
2004 }
2005
2006 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2007 const u32 hpd[HPD_NUM_PINS])
2008 {
2009 struct drm_i915_private *dev_priv = to_i915(dev);
2010 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2011
2012 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2013 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2014
2015 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2016 dig_hotplug_reg, hpd,
2017 ilk_port_hotplug_long_detect);
2018
2019 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2020 }
2021
2022 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2023 {
2024 struct drm_i915_private *dev_priv = dev->dev_private;
2025 enum pipe pipe;
2026 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2027
2028 if (hotplug_trigger)
2029 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2030
2031 if (de_iir & DE_AUX_CHANNEL_A)
2032 dp_aux_irq_handler(dev);
2033
2034 if (de_iir & DE_GSE)
2035 intel_opregion_asle_intr(dev);
2036
2037 if (de_iir & DE_POISON)
2038 DRM_ERROR("Poison interrupt\n");
2039
2040 for_each_pipe(dev_priv, pipe) {
2041 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2042 intel_pipe_handle_vblank(dev, pipe))
2043 intel_check_page_flip(dev, pipe);
2044
2045 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2046 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2047
2048 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2049 i9xx_pipe_crc_irq_handler(dev, pipe);
2050
2051 /* plane/pipes map 1:1 on ilk+ */
2052 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2053 intel_prepare_page_flip(dev, pipe);
2054 intel_finish_page_flip_plane(dev, pipe);
2055 }
2056 }
2057
2058 /* check event from PCH */
2059 if (de_iir & DE_PCH_EVENT) {
2060 u32 pch_iir = I915_READ(SDEIIR);
2061
2062 if (HAS_PCH_CPT(dev))
2063 cpt_irq_handler(dev, pch_iir);
2064 else
2065 ibx_irq_handler(dev, pch_iir);
2066
2067 /* should clear PCH hotplug event before clear CPU irq */
2068 I915_WRITE(SDEIIR, pch_iir);
2069 }
2070
2071 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2072 ironlake_rps_change_irq_handler(dev);
2073 }
2074
2075 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2076 {
2077 struct drm_i915_private *dev_priv = dev->dev_private;
2078 enum pipe pipe;
2079 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2080
2081 if (hotplug_trigger)
2082 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2083
2084 if (de_iir & DE_ERR_INT_IVB)
2085 ivb_err_int_handler(dev);
2086
2087 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2088 dp_aux_irq_handler(dev);
2089
2090 if (de_iir & DE_GSE_IVB)
2091 intel_opregion_asle_intr(dev);
2092
2093 for_each_pipe(dev_priv, pipe) {
2094 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2095 intel_pipe_handle_vblank(dev, pipe))
2096 intel_check_page_flip(dev, pipe);
2097
2098 /* plane/pipes map 1:1 on ilk+ */
2099 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2100 intel_prepare_page_flip(dev, pipe);
2101 intel_finish_page_flip_plane(dev, pipe);
2102 }
2103 }
2104
2105 /* check event from PCH */
2106 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2107 u32 pch_iir = I915_READ(SDEIIR);
2108
2109 cpt_irq_handler(dev, pch_iir);
2110
2111 /* clear PCH hotplug event before clear CPU irq */
2112 I915_WRITE(SDEIIR, pch_iir);
2113 }
2114 }
2115
2116 /*
2117 * To handle irqs with the minimum potential races with fresh interrupts, we:
2118 * 1 - Disable Master Interrupt Control.
2119 * 2 - Find the source(s) of the interrupt.
2120 * 3 - Clear the Interrupt Identity bits (IIR).
2121 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2122 * 5 - Re-enable Master Interrupt Control.
2123 */
2124 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2125 {
2126 struct drm_device *dev = arg;
2127 struct drm_i915_private *dev_priv = dev->dev_private;
2128 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2129 irqreturn_t ret = IRQ_NONE;
2130
2131 if (!intel_irqs_enabled(dev_priv))
2132 return IRQ_NONE;
2133
2134 /* We get interrupts on unclaimed registers, so check for this before we
2135 * do any I915_{READ,WRITE}. */
2136 intel_uncore_check_errors(dev);
2137
2138 /* disable master interrupt before clearing iir */
2139 de_ier = I915_READ(DEIER);
2140 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2141 POSTING_READ(DEIER);
2142
2143 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2144 * interrupts will will be stored on its back queue, and then we'll be
2145 * able to process them after we restore SDEIER (as soon as we restore
2146 * it, we'll get an interrupt if SDEIIR still has something to process
2147 * due to its back queue). */
2148 if (!HAS_PCH_NOP(dev)) {
2149 sde_ier = I915_READ(SDEIER);
2150 I915_WRITE(SDEIER, 0);
2151 POSTING_READ(SDEIER);
2152 }
2153
2154 /* Find, clear, then process each source of interrupt */
2155
2156 gt_iir = I915_READ(GTIIR);
2157 if (gt_iir) {
2158 I915_WRITE(GTIIR, gt_iir);
2159 ret = IRQ_HANDLED;
2160 if (INTEL_INFO(dev)->gen >= 6)
2161 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2162 else
2163 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2164 }
2165
2166 de_iir = I915_READ(DEIIR);
2167 if (de_iir) {
2168 I915_WRITE(DEIIR, de_iir);
2169 ret = IRQ_HANDLED;
2170 if (INTEL_INFO(dev)->gen >= 7)
2171 ivb_display_irq_handler(dev, de_iir);
2172 else
2173 ilk_display_irq_handler(dev, de_iir);
2174 }
2175
2176 if (INTEL_INFO(dev)->gen >= 6) {
2177 u32 pm_iir = I915_READ(GEN6_PMIIR);
2178 if (pm_iir) {
2179 I915_WRITE(GEN6_PMIIR, pm_iir);
2180 ret = IRQ_HANDLED;
2181 gen6_rps_irq_handler(dev_priv, pm_iir);
2182 }
2183 }
2184
2185 I915_WRITE(DEIER, de_ier);
2186 POSTING_READ(DEIER);
2187 if (!HAS_PCH_NOP(dev)) {
2188 I915_WRITE(SDEIER, sde_ier);
2189 POSTING_READ(SDEIER);
2190 }
2191
2192 return ret;
2193 }
2194
2195 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2196 const u32 hpd[HPD_NUM_PINS])
2197 {
2198 struct drm_i915_private *dev_priv = to_i915(dev);
2199 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2200
2201 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2202 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2203
2204 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2205 dig_hotplug_reg, hpd,
2206 bxt_port_hotplug_long_detect);
2207
2208 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2209 }
2210
2211 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2212 {
2213 struct drm_device *dev = arg;
2214 struct drm_i915_private *dev_priv = dev->dev_private;
2215 u32 master_ctl;
2216 irqreturn_t ret = IRQ_NONE;
2217 uint32_t tmp = 0;
2218 enum pipe pipe;
2219 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2220
2221 if (!intel_irqs_enabled(dev_priv))
2222 return IRQ_NONE;
2223
2224 if (INTEL_INFO(dev_priv)->gen >= 9)
2225 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2226 GEN9_AUX_CHANNEL_D;
2227
2228 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2229 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2230 if (!master_ctl)
2231 return IRQ_NONE;
2232
2233 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2234
2235 /* Find, clear, then process each source of interrupt */
2236
2237 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2238
2239 if (master_ctl & GEN8_DE_MISC_IRQ) {
2240 tmp = I915_READ(GEN8_DE_MISC_IIR);
2241 if (tmp) {
2242 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2243 ret = IRQ_HANDLED;
2244 if (tmp & GEN8_DE_MISC_GSE)
2245 intel_opregion_asle_intr(dev);
2246 else
2247 DRM_ERROR("Unexpected DE Misc interrupt\n");
2248 }
2249 else
2250 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2251 }
2252
2253 if (master_ctl & GEN8_DE_PORT_IRQ) {
2254 tmp = I915_READ(GEN8_DE_PORT_IIR);
2255 if (tmp) {
2256 bool found = false;
2257 u32 hotplug_trigger = 0;
2258
2259 if (IS_BROXTON(dev_priv))
2260 hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2261 else if (IS_BROADWELL(dev_priv))
2262 hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2263
2264 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2265 ret = IRQ_HANDLED;
2266
2267 if (tmp & aux_mask) {
2268 dp_aux_irq_handler(dev);
2269 found = true;
2270 }
2271
2272 if (hotplug_trigger) {
2273 if (IS_BROXTON(dev))
2274 bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2275 else
2276 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2277 found = true;
2278 }
2279
2280 if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2281 gmbus_irq_handler(dev);
2282 found = true;
2283 }
2284
2285 if (!found)
2286 DRM_ERROR("Unexpected DE Port interrupt\n");
2287 }
2288 else
2289 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2290 }
2291
2292 for_each_pipe(dev_priv, pipe) {
2293 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2294
2295 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2296 continue;
2297
2298 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2299 if (pipe_iir) {
2300 ret = IRQ_HANDLED;
2301 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2302
2303 if (pipe_iir & GEN8_PIPE_VBLANK &&
2304 intel_pipe_handle_vblank(dev, pipe))
2305 intel_check_page_flip(dev, pipe);
2306
2307 if (INTEL_INFO(dev_priv)->gen >= 9)
2308 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2309 else
2310 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2311
2312 if (flip_done) {
2313 intel_prepare_page_flip(dev, pipe);
2314 intel_finish_page_flip_plane(dev, pipe);
2315 }
2316
2317 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2318 hsw_pipe_crc_irq_handler(dev, pipe);
2319
2320 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2321 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2322 pipe);
2323
2324
2325 if (INTEL_INFO(dev_priv)->gen >= 9)
2326 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2327 else
2328 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2329
2330 if (fault_errors)
2331 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2332 pipe_name(pipe),
2333 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2334 } else
2335 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2336 }
2337
2338 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2339 master_ctl & GEN8_DE_PCH_IRQ) {
2340 /*
2341 * FIXME(BDW): Assume for now that the new interrupt handling
2342 * scheme also closed the SDE interrupt handling race we've seen
2343 * on older pch-split platforms. But this needs testing.
2344 */
2345 u32 pch_iir = I915_READ(SDEIIR);
2346 if (pch_iir) {
2347 I915_WRITE(SDEIIR, pch_iir);
2348 ret = IRQ_HANDLED;
2349
2350 if (HAS_PCH_SPT(dev_priv))
2351 spt_irq_handler(dev, pch_iir);
2352 else
2353 cpt_irq_handler(dev, pch_iir);
2354 } else {
2355 /*
2356 * Like on previous PCH there seems to be something
2357 * fishy going on with forwarding PCH interrupts.
2358 */
2359 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2360 }
2361 }
2362
2363 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2364 POSTING_READ_FW(GEN8_MASTER_IRQ);
2365
2366 return ret;
2367 }
2368
2369 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2370 bool reset_completed)
2371 {
2372 struct intel_engine_cs *ring;
2373 int i;
2374
2375 /*
2376 * Notify all waiters for GPU completion events that reset state has
2377 * been changed, and that they need to restart their wait after
2378 * checking for potential errors (and bail out to drop locks if there is
2379 * a gpu reset pending so that i915_error_work_func can acquire them).
2380 */
2381
2382 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2383 for_each_ring(ring, dev_priv, i)
2384 wake_up_all(&ring->irq_queue);
2385
2386 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2387 wake_up_all(&dev_priv->pending_flip_queue);
2388
2389 /*
2390 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2391 * reset state is cleared.
2392 */
2393 if (reset_completed)
2394 wake_up_all(&dev_priv->gpu_error.reset_queue);
2395 }
2396
2397 /**
2398 * i915_reset_and_wakeup - do process context error handling work
2399 * @dev: drm device
2400 *
2401 * Fire an error uevent so userspace can see that a hang or error
2402 * was detected.
2403 */
2404 static void i915_reset_and_wakeup(struct drm_device *dev)
2405 {
2406 struct drm_i915_private *dev_priv = to_i915(dev);
2407 struct i915_gpu_error *error = &dev_priv->gpu_error;
2408 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2409 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2410 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2411 int ret;
2412
2413 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2414
2415 /*
2416 * Note that there's only one work item which does gpu resets, so we
2417 * need not worry about concurrent gpu resets potentially incrementing
2418 * error->reset_counter twice. We only need to take care of another
2419 * racing irq/hangcheck declaring the gpu dead for a second time. A
2420 * quick check for that is good enough: schedule_work ensures the
2421 * correct ordering between hang detection and this work item, and since
2422 * the reset in-progress bit is only ever set by code outside of this
2423 * work we don't need to worry about any other races.
2424 */
2425 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2426 DRM_DEBUG_DRIVER("resetting chip\n");
2427 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2428 reset_event);
2429
2430 /*
2431 * In most cases it's guaranteed that we get here with an RPM
2432 * reference held, for example because there is a pending GPU
2433 * request that won't finish until the reset is done. This
2434 * isn't the case at least when we get here by doing a
2435 * simulated reset via debugs, so get an RPM reference.
2436 */
2437 intel_runtime_pm_get(dev_priv);
2438
2439 intel_prepare_reset(dev);
2440
2441 /*
2442 * All state reset _must_ be completed before we update the
2443 * reset counter, for otherwise waiters might miss the reset
2444 * pending state and not properly drop locks, resulting in
2445 * deadlocks with the reset work.
2446 */
2447 ret = i915_reset(dev);
2448
2449 intel_finish_reset(dev);
2450
2451 intel_runtime_pm_put(dev_priv);
2452
2453 if (ret == 0) {
2454 /*
2455 * After all the gem state is reset, increment the reset
2456 * counter and wake up everyone waiting for the reset to
2457 * complete.
2458 *
2459 * Since unlock operations are a one-sided barrier only,
2460 * we need to insert a barrier here to order any seqno
2461 * updates before
2462 * the counter increment.
2463 */
2464 smp_mb__before_atomic();
2465 atomic_inc(&dev_priv->gpu_error.reset_counter);
2466
2467 kobject_uevent_env(&dev->primary->kdev->kobj,
2468 KOBJ_CHANGE, reset_done_event);
2469 } else {
2470 atomic_or(I915_WEDGED, &error->reset_counter);
2471 }
2472
2473 /*
2474 * Note: The wake_up also serves as a memory barrier so that
2475 * waiters see the update value of the reset counter atomic_t.
2476 */
2477 i915_error_wake_up(dev_priv, true);
2478 }
2479 }
2480
2481 static void i915_report_and_clear_eir(struct drm_device *dev)
2482 {
2483 struct drm_i915_private *dev_priv = dev->dev_private;
2484 uint32_t instdone[I915_NUM_INSTDONE_REG];
2485 u32 eir = I915_READ(EIR);
2486 int pipe, i;
2487
2488 if (!eir)
2489 return;
2490
2491 pr_err("render error detected, EIR: 0x%08x\n", eir);
2492
2493 i915_get_extra_instdone(dev, instdone);
2494
2495 if (IS_G4X(dev)) {
2496 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2497 u32 ipeir = I915_READ(IPEIR_I965);
2498
2499 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2500 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2501 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2502 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2503 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2504 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2505 I915_WRITE(IPEIR_I965, ipeir);
2506 POSTING_READ(IPEIR_I965);
2507 }
2508 if (eir & GM45_ERROR_PAGE_TABLE) {
2509 u32 pgtbl_err = I915_READ(PGTBL_ER);
2510 pr_err("page table error\n");
2511 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2512 I915_WRITE(PGTBL_ER, pgtbl_err);
2513 POSTING_READ(PGTBL_ER);
2514 }
2515 }
2516
2517 if (!IS_GEN2(dev)) {
2518 if (eir & I915_ERROR_PAGE_TABLE) {
2519 u32 pgtbl_err = I915_READ(PGTBL_ER);
2520 pr_err("page table error\n");
2521 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2522 I915_WRITE(PGTBL_ER, pgtbl_err);
2523 POSTING_READ(PGTBL_ER);
2524 }
2525 }
2526
2527 if (eir & I915_ERROR_MEMORY_REFRESH) {
2528 pr_err("memory refresh error:\n");
2529 for_each_pipe(dev_priv, pipe)
2530 pr_err("pipe %c stat: 0x%08x\n",
2531 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2532 /* pipestat has already been acked */
2533 }
2534 if (eir & I915_ERROR_INSTRUCTION) {
2535 pr_err("instruction error\n");
2536 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2537 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2538 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2539 if (INTEL_INFO(dev)->gen < 4) {
2540 u32 ipeir = I915_READ(IPEIR);
2541
2542 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2543 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2544 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2545 I915_WRITE(IPEIR, ipeir);
2546 POSTING_READ(IPEIR);
2547 } else {
2548 u32 ipeir = I915_READ(IPEIR_I965);
2549
2550 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2551 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2552 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2553 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2554 I915_WRITE(IPEIR_I965, ipeir);
2555 POSTING_READ(IPEIR_I965);
2556 }
2557 }
2558
2559 I915_WRITE(EIR, eir);
2560 POSTING_READ(EIR);
2561 eir = I915_READ(EIR);
2562 if (eir) {
2563 /*
2564 * some errors might have become stuck,
2565 * mask them.
2566 */
2567 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2568 I915_WRITE(EMR, I915_READ(EMR) | eir);
2569 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2570 }
2571 }
2572
2573 /**
2574 * i915_handle_error - handle a gpu error
2575 * @dev: drm device
2576 *
2577 * Do some basic checking of register state at error time and
2578 * dump it to the syslog. Also call i915_capture_error_state() to make
2579 * sure we get a record and make it available in debugfs. Fire a uevent
2580 * so userspace knows something bad happened (should trigger collection
2581 * of a ring dump etc.).
2582 */
2583 void i915_handle_error(struct drm_device *dev, bool wedged,
2584 const char *fmt, ...)
2585 {
2586 struct drm_i915_private *dev_priv = dev->dev_private;
2587 va_list args;
2588 char error_msg[80];
2589
2590 va_start(args, fmt);
2591 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2592 va_end(args);
2593
2594 i915_capture_error_state(dev, wedged, error_msg);
2595 i915_report_and_clear_eir(dev);
2596
2597 if (wedged) {
2598 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2599 &dev_priv->gpu_error.reset_counter);
2600
2601 /*
2602 * Wakeup waiting processes so that the reset function
2603 * i915_reset_and_wakeup doesn't deadlock trying to grab
2604 * various locks. By bumping the reset counter first, the woken
2605 * processes will see a reset in progress and back off,
2606 * releasing their locks and then wait for the reset completion.
2607 * We must do this for _all_ gpu waiters that might hold locks
2608 * that the reset work needs to acquire.
2609 *
2610 * Note: The wake_up serves as the required memory barrier to
2611 * ensure that the waiters see the updated value of the reset
2612 * counter atomic_t.
2613 */
2614 i915_error_wake_up(dev_priv, false);
2615 }
2616
2617 i915_reset_and_wakeup(dev);
2618 }
2619
2620 /* Called from drm generic code, passed 'crtc' which
2621 * we use as a pipe index
2622 */
2623 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2624 {
2625 struct drm_i915_private *dev_priv = dev->dev_private;
2626 unsigned long irqflags;
2627
2628 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2629 if (INTEL_INFO(dev)->gen >= 4)
2630 i915_enable_pipestat(dev_priv, pipe,
2631 PIPE_START_VBLANK_INTERRUPT_STATUS);
2632 else
2633 i915_enable_pipestat(dev_priv, pipe,
2634 PIPE_VBLANK_INTERRUPT_STATUS);
2635 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2636
2637 return 0;
2638 }
2639
2640 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2641 {
2642 struct drm_i915_private *dev_priv = dev->dev_private;
2643 unsigned long irqflags;
2644 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2645 DE_PIPE_VBLANK(pipe);
2646
2647 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2648 ironlake_enable_display_irq(dev_priv, bit);
2649 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2650
2651 return 0;
2652 }
2653
2654 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2655 {
2656 struct drm_i915_private *dev_priv = dev->dev_private;
2657 unsigned long irqflags;
2658
2659 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2660 i915_enable_pipestat(dev_priv, pipe,
2661 PIPE_START_VBLANK_INTERRUPT_STATUS);
2662 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2663
2664 return 0;
2665 }
2666
2667 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2668 {
2669 struct drm_i915_private *dev_priv = dev->dev_private;
2670 unsigned long irqflags;
2671
2672 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2673 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2674 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2675 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2676 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2677 return 0;
2678 }
2679
2680 /* Called from drm generic code, passed 'crtc' which
2681 * we use as a pipe index
2682 */
2683 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2684 {
2685 struct drm_i915_private *dev_priv = dev->dev_private;
2686 unsigned long irqflags;
2687
2688 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2689 i915_disable_pipestat(dev_priv, pipe,
2690 PIPE_VBLANK_INTERRUPT_STATUS |
2691 PIPE_START_VBLANK_INTERRUPT_STATUS);
2692 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2693 }
2694
2695 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2696 {
2697 struct drm_i915_private *dev_priv = dev->dev_private;
2698 unsigned long irqflags;
2699 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2700 DE_PIPE_VBLANK(pipe);
2701
2702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2703 ironlake_disable_display_irq(dev_priv, bit);
2704 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2705 }
2706
2707 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2708 {
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 unsigned long irqflags;
2711
2712 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2713 i915_disable_pipestat(dev_priv, pipe,
2714 PIPE_START_VBLANK_INTERRUPT_STATUS);
2715 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716 }
2717
2718 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2719 {
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 unsigned long irqflags;
2722
2723 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2724 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2725 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2726 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2727 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2728 }
2729
2730 static bool
2731 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2732 {
2733 return (list_empty(&ring->request_list) ||
2734 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2735 }
2736
2737 static bool
2738 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2739 {
2740 if (INTEL_INFO(dev)->gen >= 8) {
2741 return (ipehr >> 23) == 0x1c;
2742 } else {
2743 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2744 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2745 MI_SEMAPHORE_REGISTER);
2746 }
2747 }
2748
2749 static struct intel_engine_cs *
2750 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2751 {
2752 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2753 struct intel_engine_cs *signaller;
2754 int i;
2755
2756 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2757 for_each_ring(signaller, dev_priv, i) {
2758 if (ring == signaller)
2759 continue;
2760
2761 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2762 return signaller;
2763 }
2764 } else {
2765 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2766
2767 for_each_ring(signaller, dev_priv, i) {
2768 if(ring == signaller)
2769 continue;
2770
2771 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2772 return signaller;
2773 }
2774 }
2775
2776 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2777 ring->id, ipehr, offset);
2778
2779 return NULL;
2780 }
2781
2782 static struct intel_engine_cs *
2783 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2784 {
2785 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2786 u32 cmd, ipehr, head;
2787 u64 offset = 0;
2788 int i, backwards;
2789
2790 /*
2791 * This function does not support execlist mode - any attempt to
2792 * proceed further into this function will result in a kernel panic
2793 * when dereferencing ring->buffer, which is not set up in execlist
2794 * mode.
2795 *
2796 * The correct way of doing it would be to derive the currently
2797 * executing ring buffer from the current context, which is derived
2798 * from the currently running request. Unfortunately, to get the
2799 * current request we would have to grab the struct_mutex before doing
2800 * anything else, which would be ill-advised since some other thread
2801 * might have grabbed it already and managed to hang itself, causing
2802 * the hang checker to deadlock.
2803 *
2804 * Therefore, this function does not support execlist mode in its
2805 * current form. Just return NULL and move on.
2806 */
2807 if (ring->buffer == NULL)
2808 return NULL;
2809
2810 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2811 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2812 return NULL;
2813
2814 /*
2815 * HEAD is likely pointing to the dword after the actual command,
2816 * so scan backwards until we find the MBOX. But limit it to just 3
2817 * or 4 dwords depending on the semaphore wait command size.
2818 * Note that we don't care about ACTHD here since that might
2819 * point at at batch, and semaphores are always emitted into the
2820 * ringbuffer itself.
2821 */
2822 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2823 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2824
2825 for (i = backwards; i; --i) {
2826 /*
2827 * Be paranoid and presume the hw has gone off into the wild -
2828 * our ring is smaller than what the hardware (and hence
2829 * HEAD_ADDR) allows. Also handles wrap-around.
2830 */
2831 head &= ring->buffer->size - 1;
2832
2833 /* This here seems to blow up */
2834 cmd = ioread32(ring->buffer->virtual_start + head);
2835 if (cmd == ipehr)
2836 break;
2837
2838 head -= 4;
2839 }
2840
2841 if (!i)
2842 return NULL;
2843
2844 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2845 if (INTEL_INFO(ring->dev)->gen >= 8) {
2846 offset = ioread32(ring->buffer->virtual_start + head + 12);
2847 offset <<= 32;
2848 offset = ioread32(ring->buffer->virtual_start + head + 8);
2849 }
2850 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2851 }
2852
2853 static int semaphore_passed(struct intel_engine_cs *ring)
2854 {
2855 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2856 struct intel_engine_cs *signaller;
2857 u32 seqno;
2858
2859 ring->hangcheck.deadlock++;
2860
2861 signaller = semaphore_waits_for(ring, &seqno);
2862 if (signaller == NULL)
2863 return -1;
2864
2865 /* Prevent pathological recursion due to driver bugs */
2866 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2867 return -1;
2868
2869 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2870 return 1;
2871
2872 /* cursory check for an unkickable deadlock */
2873 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2874 semaphore_passed(signaller) < 0)
2875 return -1;
2876
2877 return 0;
2878 }
2879
2880 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2881 {
2882 struct intel_engine_cs *ring;
2883 int i;
2884
2885 for_each_ring(ring, dev_priv, i)
2886 ring->hangcheck.deadlock = 0;
2887 }
2888
2889 static enum intel_ring_hangcheck_action
2890 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2891 {
2892 struct drm_device *dev = ring->dev;
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 u32 tmp;
2895
2896 if (acthd != ring->hangcheck.acthd) {
2897 if (acthd > ring->hangcheck.max_acthd) {
2898 ring->hangcheck.max_acthd = acthd;
2899 return HANGCHECK_ACTIVE;
2900 }
2901
2902 return HANGCHECK_ACTIVE_LOOP;
2903 }
2904
2905 if (IS_GEN2(dev))
2906 return HANGCHECK_HUNG;
2907
2908 /* Is the chip hanging on a WAIT_FOR_EVENT?
2909 * If so we can simply poke the RB_WAIT bit
2910 * and break the hang. This should work on
2911 * all but the second generation chipsets.
2912 */
2913 tmp = I915_READ_CTL(ring);
2914 if (tmp & RING_WAIT) {
2915 i915_handle_error(dev, false,
2916 "Kicking stuck wait on %s",
2917 ring->name);
2918 I915_WRITE_CTL(ring, tmp);
2919 return HANGCHECK_KICK;
2920 }
2921
2922 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2923 switch (semaphore_passed(ring)) {
2924 default:
2925 return HANGCHECK_HUNG;
2926 case 1:
2927 i915_handle_error(dev, false,
2928 "Kicking stuck semaphore on %s",
2929 ring->name);
2930 I915_WRITE_CTL(ring, tmp);
2931 return HANGCHECK_KICK;
2932 case 0:
2933 return HANGCHECK_WAIT;
2934 }
2935 }
2936
2937 return HANGCHECK_HUNG;
2938 }
2939
2940 /*
2941 * This is called when the chip hasn't reported back with completed
2942 * batchbuffers in a long time. We keep track per ring seqno progress and
2943 * if there are no progress, hangcheck score for that ring is increased.
2944 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2945 * we kick the ring. If we see no progress on three subsequent calls
2946 * we assume chip is wedged and try to fix it by resetting the chip.
2947 */
2948 static void i915_hangcheck_elapsed(struct work_struct *work)
2949 {
2950 struct drm_i915_private *dev_priv =
2951 container_of(work, typeof(*dev_priv),
2952 gpu_error.hangcheck_work.work);
2953 struct drm_device *dev = dev_priv->dev;
2954 struct intel_engine_cs *ring;
2955 int i;
2956 int busy_count = 0, rings_hung = 0;
2957 bool stuck[I915_NUM_RINGS] = { 0 };
2958 #define BUSY 1
2959 #define KICK 5
2960 #define HUNG 20
2961
2962 if (!i915.enable_hangcheck)
2963 return;
2964
2965 for_each_ring(ring, dev_priv, i) {
2966 u64 acthd;
2967 u32 seqno;
2968 bool busy = true;
2969
2970 semaphore_clear_deadlocks(dev_priv);
2971
2972 seqno = ring->get_seqno(ring, false);
2973 acthd = intel_ring_get_active_head(ring);
2974
2975 if (ring->hangcheck.seqno == seqno) {
2976 if (ring_idle(ring, seqno)) {
2977 ring->hangcheck.action = HANGCHECK_IDLE;
2978
2979 if (waitqueue_active(&ring->irq_queue)) {
2980 /* Issue a wake-up to catch stuck h/w. */
2981 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2982 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2983 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2984 ring->name);
2985 else
2986 DRM_INFO("Fake missed irq on %s\n",
2987 ring->name);
2988 wake_up_all(&ring->irq_queue);
2989 }
2990 /* Safeguard against driver failure */
2991 ring->hangcheck.score += BUSY;
2992 } else
2993 busy = false;
2994 } else {
2995 /* We always increment the hangcheck score
2996 * if the ring is busy and still processing
2997 * the same request, so that no single request
2998 * can run indefinitely (such as a chain of
2999 * batches). The only time we do not increment
3000 * the hangcheck score on this ring, if this
3001 * ring is in a legitimate wait for another
3002 * ring. In that case the waiting ring is a
3003 * victim and we want to be sure we catch the
3004 * right culprit. Then every time we do kick
3005 * the ring, add a small increment to the
3006 * score so that we can catch a batch that is
3007 * being repeatedly kicked and so responsible
3008 * for stalling the machine.
3009 */
3010 ring->hangcheck.action = ring_stuck(ring,
3011 acthd);
3012
3013 switch (ring->hangcheck.action) {
3014 case HANGCHECK_IDLE:
3015 case HANGCHECK_WAIT:
3016 case HANGCHECK_ACTIVE:
3017 break;
3018 case HANGCHECK_ACTIVE_LOOP:
3019 ring->hangcheck.score += BUSY;
3020 break;
3021 case HANGCHECK_KICK:
3022 ring->hangcheck.score += KICK;
3023 break;
3024 case HANGCHECK_HUNG:
3025 ring->hangcheck.score += HUNG;
3026 stuck[i] = true;
3027 break;
3028 }
3029 }
3030 } else {
3031 ring->hangcheck.action = HANGCHECK_ACTIVE;
3032
3033 /* Gradually reduce the count so that we catch DoS
3034 * attempts across multiple batches.
3035 */
3036 if (ring->hangcheck.score > 0)
3037 ring->hangcheck.score--;
3038
3039 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3040 }
3041
3042 ring->hangcheck.seqno = seqno;
3043 ring->hangcheck.acthd = acthd;
3044 busy_count += busy;
3045 }
3046
3047 for_each_ring(ring, dev_priv, i) {
3048 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3049 DRM_INFO("%s on %s\n",
3050 stuck[i] ? "stuck" : "no progress",
3051 ring->name);
3052 rings_hung++;
3053 }
3054 }
3055
3056 if (rings_hung)
3057 return i915_handle_error(dev, true, "Ring hung");
3058
3059 if (busy_count)
3060 /* Reset timer case chip hangs without another request
3061 * being added */
3062 i915_queue_hangcheck(dev);
3063 }
3064
3065 void i915_queue_hangcheck(struct drm_device *dev)
3066 {
3067 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3068
3069 if (!i915.enable_hangcheck)
3070 return;
3071
3072 /* Don't continually defer the hangcheck so that it is always run at
3073 * least once after work has been scheduled on any ring. Otherwise,
3074 * we will ignore a hung ring if a second ring is kept busy.
3075 */
3076
3077 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3078 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3079 }
3080
3081 static void ibx_irq_reset(struct drm_device *dev)
3082 {
3083 struct drm_i915_private *dev_priv = dev->dev_private;
3084
3085 if (HAS_PCH_NOP(dev))
3086 return;
3087
3088 GEN5_IRQ_RESET(SDE);
3089
3090 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3091 I915_WRITE(SERR_INT, 0xffffffff);
3092 }
3093
3094 /*
3095 * SDEIER is also touched by the interrupt handler to work around missed PCH
3096 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3097 * instead we unconditionally enable all PCH interrupt sources here, but then
3098 * only unmask them as needed with SDEIMR.
3099 *
3100 * This function needs to be called before interrupts are enabled.
3101 */
3102 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3103 {
3104 struct drm_i915_private *dev_priv = dev->dev_private;
3105
3106 if (HAS_PCH_NOP(dev))
3107 return;
3108
3109 WARN_ON(I915_READ(SDEIER) != 0);
3110 I915_WRITE(SDEIER, 0xffffffff);
3111 POSTING_READ(SDEIER);
3112 }
3113
3114 static void gen5_gt_irq_reset(struct drm_device *dev)
3115 {
3116 struct drm_i915_private *dev_priv = dev->dev_private;
3117
3118 GEN5_IRQ_RESET(GT);
3119 if (INTEL_INFO(dev)->gen >= 6)
3120 GEN5_IRQ_RESET(GEN6_PM);
3121 }
3122
3123 /* drm_dma.h hooks
3124 */
3125 static void ironlake_irq_reset(struct drm_device *dev)
3126 {
3127 struct drm_i915_private *dev_priv = dev->dev_private;
3128
3129 I915_WRITE(HWSTAM, 0xffffffff);
3130
3131 GEN5_IRQ_RESET(DE);
3132 if (IS_GEN7(dev))
3133 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3134
3135 gen5_gt_irq_reset(dev);
3136
3137 ibx_irq_reset(dev);
3138 }
3139
3140 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3141 {
3142 enum pipe pipe;
3143
3144 i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3145 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3146
3147 for_each_pipe(dev_priv, pipe)
3148 I915_WRITE(PIPESTAT(pipe), 0xffff);
3149
3150 GEN5_IRQ_RESET(VLV_);
3151 }
3152
3153 static void valleyview_irq_preinstall(struct drm_device *dev)
3154 {
3155 struct drm_i915_private *dev_priv = dev->dev_private;
3156
3157 /* VLV magic */
3158 I915_WRITE(VLV_IMR, 0);
3159 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3160 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3161 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3162
3163 gen5_gt_irq_reset(dev);
3164
3165 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3166
3167 vlv_display_irq_reset(dev_priv);
3168 }
3169
3170 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3171 {
3172 GEN8_IRQ_RESET_NDX(GT, 0);
3173 GEN8_IRQ_RESET_NDX(GT, 1);
3174 GEN8_IRQ_RESET_NDX(GT, 2);
3175 GEN8_IRQ_RESET_NDX(GT, 3);
3176 }
3177
3178 static void gen8_irq_reset(struct drm_device *dev)
3179 {
3180 struct drm_i915_private *dev_priv = dev->dev_private;
3181 int pipe;
3182
3183 I915_WRITE(GEN8_MASTER_IRQ, 0);
3184 POSTING_READ(GEN8_MASTER_IRQ);
3185
3186 gen8_gt_irq_reset(dev_priv);
3187
3188 for_each_pipe(dev_priv, pipe)
3189 if (intel_display_power_is_enabled(dev_priv,
3190 POWER_DOMAIN_PIPE(pipe)))
3191 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3192
3193 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3194 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3195 GEN5_IRQ_RESET(GEN8_PCU_);
3196
3197 if (HAS_PCH_SPLIT(dev))
3198 ibx_irq_reset(dev);
3199 }
3200
3201 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3202 unsigned int pipe_mask)
3203 {
3204 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3205
3206 spin_lock_irq(&dev_priv->irq_lock);
3207 if (pipe_mask & 1 << PIPE_A)
3208 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3209 dev_priv->de_irq_mask[PIPE_A],
3210 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3211 if (pipe_mask & 1 << PIPE_B)
3212 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3213 dev_priv->de_irq_mask[PIPE_B],
3214 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3215 if (pipe_mask & 1 << PIPE_C)
3216 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3217 dev_priv->de_irq_mask[PIPE_C],
3218 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3219 spin_unlock_irq(&dev_priv->irq_lock);
3220 }
3221
3222 static void cherryview_irq_preinstall(struct drm_device *dev)
3223 {
3224 struct drm_i915_private *dev_priv = dev->dev_private;
3225
3226 I915_WRITE(GEN8_MASTER_IRQ, 0);
3227 POSTING_READ(GEN8_MASTER_IRQ);
3228
3229 gen8_gt_irq_reset(dev_priv);
3230
3231 GEN5_IRQ_RESET(GEN8_PCU_);
3232
3233 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3234
3235 vlv_display_irq_reset(dev_priv);
3236 }
3237
3238 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3239 const u32 hpd[HPD_NUM_PINS])
3240 {
3241 struct drm_i915_private *dev_priv = to_i915(dev);
3242 struct intel_encoder *encoder;
3243 u32 enabled_irqs = 0;
3244
3245 for_each_intel_encoder(dev, encoder)
3246 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3247 enabled_irqs |= hpd[encoder->hpd_pin];
3248
3249 return enabled_irqs;
3250 }
3251
3252 static void ibx_hpd_irq_setup(struct drm_device *dev)
3253 {
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255 u32 hotplug_irqs, hotplug, enabled_irqs;
3256
3257 if (HAS_PCH_IBX(dev)) {
3258 hotplug_irqs = SDE_HOTPLUG_MASK;
3259 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3260 } else {
3261 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3262 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3263 }
3264
3265 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3266
3267 /*
3268 * Enable digital hotplug on the PCH, and configure the DP short pulse
3269 * duration to 2ms (which is the minimum in the Display Port spec).
3270 * The pulse duration bits are reserved on LPT+.
3271 */
3272 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3273 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3274 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3275 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3276 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3277 /*
3278 * When CPU and PCH are on the same package, port A
3279 * HPD must be enabled in both north and south.
3280 */
3281 if (HAS_PCH_LPT_LP(dev))
3282 hotplug |= PORTA_HOTPLUG_ENABLE;
3283 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3284 }
3285
3286 static void spt_hpd_irq_setup(struct drm_device *dev)
3287 {
3288 struct drm_i915_private *dev_priv = dev->dev_private;
3289 u32 hotplug_irqs, hotplug, enabled_irqs;
3290
3291 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3292 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3293
3294 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3295
3296 /* Enable digital hotplug on the PCH */
3297 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3298 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3299 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3300 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3301
3302 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3303 hotplug |= PORTE_HOTPLUG_ENABLE;
3304 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3305 }
3306
3307 static void ilk_hpd_irq_setup(struct drm_device *dev)
3308 {
3309 struct drm_i915_private *dev_priv = dev->dev_private;
3310 u32 hotplug_irqs, hotplug, enabled_irqs;
3311
3312 if (INTEL_INFO(dev)->gen >= 8) {
3313 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3314 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3315
3316 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3317 } else if (INTEL_INFO(dev)->gen >= 7) {
3318 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3319 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3320
3321 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3322 } else {
3323 hotplug_irqs = DE_DP_A_HOTPLUG;
3324 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3325
3326 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3327 }
3328
3329 /*
3330 * Enable digital hotplug on the CPU, and configure the DP short pulse
3331 * duration to 2ms (which is the minimum in the Display Port spec)
3332 * The pulse duration bits are reserved on HSW+.
3333 */
3334 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3335 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3336 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3337 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3338
3339 ibx_hpd_irq_setup(dev);
3340 }
3341
3342 static void bxt_hpd_irq_setup(struct drm_device *dev)
3343 {
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 u32 hotplug_irqs, hotplug, enabled_irqs;
3346
3347 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3348 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3349
3350 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3351
3352 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3353 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3354 PORTA_HOTPLUG_ENABLE;
3355 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3356 }
3357
3358 static void ibx_irq_postinstall(struct drm_device *dev)
3359 {
3360 struct drm_i915_private *dev_priv = dev->dev_private;
3361 u32 mask;
3362
3363 if (HAS_PCH_NOP(dev))
3364 return;
3365
3366 if (HAS_PCH_IBX(dev))
3367 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3368 else
3369 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3370
3371 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3372 I915_WRITE(SDEIMR, ~mask);
3373 }
3374
3375 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3376 {
3377 struct drm_i915_private *dev_priv = dev->dev_private;
3378 u32 pm_irqs, gt_irqs;
3379
3380 pm_irqs = gt_irqs = 0;
3381
3382 dev_priv->gt_irq_mask = ~0;
3383 if (HAS_L3_DPF(dev)) {
3384 /* L3 parity interrupt is always unmasked. */
3385 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3386 gt_irqs |= GT_PARITY_ERROR(dev);
3387 }
3388
3389 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3390 if (IS_GEN5(dev)) {
3391 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3392 ILK_BSD_USER_INTERRUPT;
3393 } else {
3394 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3395 }
3396
3397 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3398
3399 if (INTEL_INFO(dev)->gen >= 6) {
3400 /*
3401 * RPS interrupts will get enabled/disabled on demand when RPS
3402 * itself is enabled/disabled.
3403 */
3404 if (HAS_VEBOX(dev))
3405 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3406
3407 dev_priv->pm_irq_mask = 0xffffffff;
3408 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3409 }
3410 }
3411
3412 static int ironlake_irq_postinstall(struct drm_device *dev)
3413 {
3414 struct drm_i915_private *dev_priv = dev->dev_private;
3415 u32 display_mask, extra_mask;
3416
3417 if (INTEL_INFO(dev)->gen >= 7) {
3418 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3419 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3420 DE_PLANEB_FLIP_DONE_IVB |
3421 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3422 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3423 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3424 DE_DP_A_HOTPLUG_IVB);
3425 } else {
3426 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3427 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3428 DE_AUX_CHANNEL_A |
3429 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3430 DE_POISON);
3431 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3432 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3433 DE_DP_A_HOTPLUG);
3434 }
3435
3436 dev_priv->irq_mask = ~display_mask;
3437
3438 I915_WRITE(HWSTAM, 0xeffe);
3439
3440 ibx_irq_pre_postinstall(dev);
3441
3442 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3443
3444 gen5_gt_irq_postinstall(dev);
3445
3446 ibx_irq_postinstall(dev);
3447
3448 if (IS_IRONLAKE_M(dev)) {
3449 /* Enable PCU event interrupts
3450 *
3451 * spinlocking not required here for correctness since interrupt
3452 * setup is guaranteed to run in single-threaded context. But we
3453 * need it to make the assert_spin_locked happy. */
3454 spin_lock_irq(&dev_priv->irq_lock);
3455 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3456 spin_unlock_irq(&dev_priv->irq_lock);
3457 }
3458
3459 return 0;
3460 }
3461
3462 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3463 {
3464 u32 pipestat_mask;
3465 u32 iir_mask;
3466 enum pipe pipe;
3467
3468 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3469 PIPE_FIFO_UNDERRUN_STATUS;
3470
3471 for_each_pipe(dev_priv, pipe)
3472 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3473 POSTING_READ(PIPESTAT(PIPE_A));
3474
3475 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3476 PIPE_CRC_DONE_INTERRUPT_STATUS;
3477
3478 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3479 for_each_pipe(dev_priv, pipe)
3480 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3481
3482 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3483 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3484 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3485 if (IS_CHERRYVIEW(dev_priv))
3486 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3487 dev_priv->irq_mask &= ~iir_mask;
3488
3489 I915_WRITE(VLV_IIR, iir_mask);
3490 I915_WRITE(VLV_IIR, iir_mask);
3491 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3492 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3493 POSTING_READ(VLV_IMR);
3494 }
3495
3496 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3497 {
3498 u32 pipestat_mask;
3499 u32 iir_mask;
3500 enum pipe pipe;
3501
3502 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3503 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3504 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3505 if (IS_CHERRYVIEW(dev_priv))
3506 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3507
3508 dev_priv->irq_mask |= iir_mask;
3509 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3510 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3511 I915_WRITE(VLV_IIR, iir_mask);
3512 I915_WRITE(VLV_IIR, iir_mask);
3513 POSTING_READ(VLV_IIR);
3514
3515 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3516 PIPE_CRC_DONE_INTERRUPT_STATUS;
3517
3518 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3519 for_each_pipe(dev_priv, pipe)
3520 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3521
3522 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3523 PIPE_FIFO_UNDERRUN_STATUS;
3524
3525 for_each_pipe(dev_priv, pipe)
3526 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3527 POSTING_READ(PIPESTAT(PIPE_A));
3528 }
3529
3530 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3531 {
3532 assert_spin_locked(&dev_priv->irq_lock);
3533
3534 if (dev_priv->display_irqs_enabled)
3535 return;
3536
3537 dev_priv->display_irqs_enabled = true;
3538
3539 if (intel_irqs_enabled(dev_priv))
3540 valleyview_display_irqs_install(dev_priv);
3541 }
3542
3543 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3544 {
3545 assert_spin_locked(&dev_priv->irq_lock);
3546
3547 if (!dev_priv->display_irqs_enabled)
3548 return;
3549
3550 dev_priv->display_irqs_enabled = false;
3551
3552 if (intel_irqs_enabled(dev_priv))
3553 valleyview_display_irqs_uninstall(dev_priv);
3554 }
3555
3556 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3557 {
3558 dev_priv->irq_mask = ~0;
3559
3560 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3561 POSTING_READ(PORT_HOTPLUG_EN);
3562
3563 I915_WRITE(VLV_IIR, 0xffffffff);
3564 I915_WRITE(VLV_IIR, 0xffffffff);
3565 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3566 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3567 POSTING_READ(VLV_IMR);
3568
3569 /* Interrupt setup is already guaranteed to be single-threaded, this is
3570 * just to make the assert_spin_locked check happy. */
3571 spin_lock_irq(&dev_priv->irq_lock);
3572 if (dev_priv->display_irqs_enabled)
3573 valleyview_display_irqs_install(dev_priv);
3574 spin_unlock_irq(&dev_priv->irq_lock);
3575 }
3576
3577 static int valleyview_irq_postinstall(struct drm_device *dev)
3578 {
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580
3581 vlv_display_irq_postinstall(dev_priv);
3582
3583 gen5_gt_irq_postinstall(dev);
3584
3585 /* ack & enable invalid PTE error interrupts */
3586 #if 0 /* FIXME: add support to irq handler for checking these bits */
3587 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3588 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3589 #endif
3590
3591 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3592
3593 return 0;
3594 }
3595
3596 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3597 {
3598 /* These are interrupts we'll toggle with the ring mask register */
3599 uint32_t gt_interrupts[] = {
3600 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3601 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3602 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3603 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3604 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3605 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3606 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3607 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3608 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3609 0,
3610 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3611 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3612 };
3613
3614 dev_priv->pm_irq_mask = 0xffffffff;
3615 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3616 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3617 /*
3618 * RPS interrupts will get enabled/disabled on demand when RPS itself
3619 * is enabled/disabled.
3620 */
3621 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3622 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3623 }
3624
3625 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3626 {
3627 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3628 uint32_t de_pipe_enables;
3629 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3630 u32 de_port_enables;
3631 enum pipe pipe;
3632
3633 if (INTEL_INFO(dev_priv)->gen >= 9) {
3634 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3635 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3636 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3637 GEN9_AUX_CHANNEL_D;
3638 if (IS_BROXTON(dev_priv))
3639 de_port_masked |= BXT_DE_PORT_GMBUS;
3640 } else {
3641 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3642 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3643 }
3644
3645 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3646 GEN8_PIPE_FIFO_UNDERRUN;
3647
3648 de_port_enables = de_port_masked;
3649 if (IS_BROXTON(dev_priv))
3650 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3651 else if (IS_BROADWELL(dev_priv))
3652 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3653
3654 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3655 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3656 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3657
3658 for_each_pipe(dev_priv, pipe)
3659 if (intel_display_power_is_enabled(dev_priv,
3660 POWER_DOMAIN_PIPE(pipe)))
3661 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3662 dev_priv->de_irq_mask[pipe],
3663 de_pipe_enables);
3664
3665 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3666 }
3667
3668 static int gen8_irq_postinstall(struct drm_device *dev)
3669 {
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671
3672 if (HAS_PCH_SPLIT(dev))
3673 ibx_irq_pre_postinstall(dev);
3674
3675 gen8_gt_irq_postinstall(dev_priv);
3676 gen8_de_irq_postinstall(dev_priv);
3677
3678 if (HAS_PCH_SPLIT(dev))
3679 ibx_irq_postinstall(dev);
3680
3681 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3682 POSTING_READ(GEN8_MASTER_IRQ);
3683
3684 return 0;
3685 }
3686
3687 static int cherryview_irq_postinstall(struct drm_device *dev)
3688 {
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690
3691 vlv_display_irq_postinstall(dev_priv);
3692
3693 gen8_gt_irq_postinstall(dev_priv);
3694
3695 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3696 POSTING_READ(GEN8_MASTER_IRQ);
3697
3698 return 0;
3699 }
3700
3701 static void gen8_irq_uninstall(struct drm_device *dev)
3702 {
3703 struct drm_i915_private *dev_priv = dev->dev_private;
3704
3705 if (!dev_priv)
3706 return;
3707
3708 gen8_irq_reset(dev);
3709 }
3710
3711 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3712 {
3713 /* Interrupt setup is already guaranteed to be single-threaded, this is
3714 * just to make the assert_spin_locked check happy. */
3715 spin_lock_irq(&dev_priv->irq_lock);
3716 if (dev_priv->display_irqs_enabled)
3717 valleyview_display_irqs_uninstall(dev_priv);
3718 spin_unlock_irq(&dev_priv->irq_lock);
3719
3720 vlv_display_irq_reset(dev_priv);
3721
3722 dev_priv->irq_mask = ~0;
3723 }
3724
3725 static void valleyview_irq_uninstall(struct drm_device *dev)
3726 {
3727 struct drm_i915_private *dev_priv = dev->dev_private;
3728
3729 if (!dev_priv)
3730 return;
3731
3732 I915_WRITE(VLV_MASTER_IER, 0);
3733
3734 gen5_gt_irq_reset(dev);
3735
3736 I915_WRITE(HWSTAM, 0xffffffff);
3737
3738 vlv_display_irq_uninstall(dev_priv);
3739 }
3740
3741 static void cherryview_irq_uninstall(struct drm_device *dev)
3742 {
3743 struct drm_i915_private *dev_priv = dev->dev_private;
3744
3745 if (!dev_priv)
3746 return;
3747
3748 I915_WRITE(GEN8_MASTER_IRQ, 0);
3749 POSTING_READ(GEN8_MASTER_IRQ);
3750
3751 gen8_gt_irq_reset(dev_priv);
3752
3753 GEN5_IRQ_RESET(GEN8_PCU_);
3754
3755 vlv_display_irq_uninstall(dev_priv);
3756 }
3757
3758 static void ironlake_irq_uninstall(struct drm_device *dev)
3759 {
3760 struct drm_i915_private *dev_priv = dev->dev_private;
3761
3762 if (!dev_priv)
3763 return;
3764
3765 ironlake_irq_reset(dev);
3766 }
3767
3768 static void i8xx_irq_preinstall(struct drm_device * dev)
3769 {
3770 struct drm_i915_private *dev_priv = dev->dev_private;
3771 int pipe;
3772
3773 for_each_pipe(dev_priv, pipe)
3774 I915_WRITE(PIPESTAT(pipe), 0);
3775 I915_WRITE16(IMR, 0xffff);
3776 I915_WRITE16(IER, 0x0);
3777 POSTING_READ16(IER);
3778 }
3779
3780 static int i8xx_irq_postinstall(struct drm_device *dev)
3781 {
3782 struct drm_i915_private *dev_priv = dev->dev_private;
3783
3784 I915_WRITE16(EMR,
3785 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3786
3787 /* Unmask the interrupts that we always want on. */
3788 dev_priv->irq_mask =
3789 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3790 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3791 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3792 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3793 I915_WRITE16(IMR, dev_priv->irq_mask);
3794
3795 I915_WRITE16(IER,
3796 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3797 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3798 I915_USER_INTERRUPT);
3799 POSTING_READ16(IER);
3800
3801 /* Interrupt setup is already guaranteed to be single-threaded, this is
3802 * just to make the assert_spin_locked check happy. */
3803 spin_lock_irq(&dev_priv->irq_lock);
3804 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3805 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3806 spin_unlock_irq(&dev_priv->irq_lock);
3807
3808 return 0;
3809 }
3810
3811 /*
3812 * Returns true when a page flip has completed.
3813 */
3814 static bool i8xx_handle_vblank(struct drm_device *dev,
3815 int plane, int pipe, u32 iir)
3816 {
3817 struct drm_i915_private *dev_priv = dev->dev_private;
3818 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3819
3820 if (!intel_pipe_handle_vblank(dev, pipe))
3821 return false;
3822
3823 if ((iir & flip_pending) == 0)
3824 goto check_page_flip;
3825
3826 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3827 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3828 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3829 * the flip is completed (no longer pending). Since this doesn't raise
3830 * an interrupt per se, we watch for the change at vblank.
3831 */
3832 if (I915_READ16(ISR) & flip_pending)
3833 goto check_page_flip;
3834
3835 intel_prepare_page_flip(dev, plane);
3836 intel_finish_page_flip(dev, pipe);
3837 return true;
3838
3839 check_page_flip:
3840 intel_check_page_flip(dev, pipe);
3841 return false;
3842 }
3843
3844 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3845 {
3846 struct drm_device *dev = arg;
3847 struct drm_i915_private *dev_priv = dev->dev_private;
3848 u16 iir, new_iir;
3849 u32 pipe_stats[2];
3850 int pipe;
3851 u16 flip_mask =
3852 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3853 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3854
3855 if (!intel_irqs_enabled(dev_priv))
3856 return IRQ_NONE;
3857
3858 iir = I915_READ16(IIR);
3859 if (iir == 0)
3860 return IRQ_NONE;
3861
3862 while (iir & ~flip_mask) {
3863 /* Can't rely on pipestat interrupt bit in iir as it might
3864 * have been cleared after the pipestat interrupt was received.
3865 * It doesn't set the bit in iir again, but it still produces
3866 * interrupts (for non-MSI).
3867 */
3868 spin_lock(&dev_priv->irq_lock);
3869 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3870 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3871
3872 for_each_pipe(dev_priv, pipe) {
3873 int reg = PIPESTAT(pipe);
3874 pipe_stats[pipe] = I915_READ(reg);
3875
3876 /*
3877 * Clear the PIPE*STAT regs before the IIR
3878 */
3879 if (pipe_stats[pipe] & 0x8000ffff)
3880 I915_WRITE(reg, pipe_stats[pipe]);
3881 }
3882 spin_unlock(&dev_priv->irq_lock);
3883
3884 I915_WRITE16(IIR, iir & ~flip_mask);
3885 new_iir = I915_READ16(IIR); /* Flush posted writes */
3886
3887 if (iir & I915_USER_INTERRUPT)
3888 notify_ring(&dev_priv->ring[RCS]);
3889
3890 for_each_pipe(dev_priv, pipe) {
3891 int plane = pipe;
3892 if (HAS_FBC(dev))
3893 plane = !plane;
3894
3895 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3896 i8xx_handle_vblank(dev, plane, pipe, iir))
3897 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3898
3899 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3900 i9xx_pipe_crc_irq_handler(dev, pipe);
3901
3902 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3903 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3904 pipe);
3905 }
3906
3907 iir = new_iir;
3908 }
3909
3910 return IRQ_HANDLED;
3911 }
3912
3913 static void i8xx_irq_uninstall(struct drm_device * dev)
3914 {
3915 struct drm_i915_private *dev_priv = dev->dev_private;
3916 int pipe;
3917
3918 for_each_pipe(dev_priv, pipe) {
3919 /* Clear enable bits; then clear status bits */
3920 I915_WRITE(PIPESTAT(pipe), 0);
3921 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3922 }
3923 I915_WRITE16(IMR, 0xffff);
3924 I915_WRITE16(IER, 0x0);
3925 I915_WRITE16(IIR, I915_READ16(IIR));
3926 }
3927
3928 static void i915_irq_preinstall(struct drm_device * dev)
3929 {
3930 struct drm_i915_private *dev_priv = dev->dev_private;
3931 int pipe;
3932
3933 if (I915_HAS_HOTPLUG(dev)) {
3934 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3935 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3936 }
3937
3938 I915_WRITE16(HWSTAM, 0xeffe);
3939 for_each_pipe(dev_priv, pipe)
3940 I915_WRITE(PIPESTAT(pipe), 0);
3941 I915_WRITE(IMR, 0xffffffff);
3942 I915_WRITE(IER, 0x0);
3943 POSTING_READ(IER);
3944 }
3945
3946 static int i915_irq_postinstall(struct drm_device *dev)
3947 {
3948 struct drm_i915_private *dev_priv = dev->dev_private;
3949 u32 enable_mask;
3950
3951 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3952
3953 /* Unmask the interrupts that we always want on. */
3954 dev_priv->irq_mask =
3955 ~(I915_ASLE_INTERRUPT |
3956 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3957 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3958 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3959 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3960
3961 enable_mask =
3962 I915_ASLE_INTERRUPT |
3963 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3964 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3965 I915_USER_INTERRUPT;
3966
3967 if (I915_HAS_HOTPLUG(dev)) {
3968 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3969 POSTING_READ(PORT_HOTPLUG_EN);
3970
3971 /* Enable in IER... */
3972 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3973 /* and unmask in IMR */
3974 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3975 }
3976
3977 I915_WRITE(IMR, dev_priv->irq_mask);
3978 I915_WRITE(IER, enable_mask);
3979 POSTING_READ(IER);
3980
3981 i915_enable_asle_pipestat(dev);
3982
3983 /* Interrupt setup is already guaranteed to be single-threaded, this is
3984 * just to make the assert_spin_locked check happy. */
3985 spin_lock_irq(&dev_priv->irq_lock);
3986 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3987 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3988 spin_unlock_irq(&dev_priv->irq_lock);
3989
3990 return 0;
3991 }
3992
3993 /*
3994 * Returns true when a page flip has completed.
3995 */
3996 static bool i915_handle_vblank(struct drm_device *dev,
3997 int plane, int pipe, u32 iir)
3998 {
3999 struct drm_i915_private *dev_priv = dev->dev_private;
4000 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4001
4002 if (!intel_pipe_handle_vblank(dev, pipe))
4003 return false;
4004
4005 if ((iir & flip_pending) == 0)
4006 goto check_page_flip;
4007
4008 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4009 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4010 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4011 * the flip is completed (no longer pending). Since this doesn't raise
4012 * an interrupt per se, we watch for the change at vblank.
4013 */
4014 if (I915_READ(ISR) & flip_pending)
4015 goto check_page_flip;
4016
4017 intel_prepare_page_flip(dev, plane);
4018 intel_finish_page_flip(dev, pipe);
4019 return true;
4020
4021 check_page_flip:
4022 intel_check_page_flip(dev, pipe);
4023 return false;
4024 }
4025
4026 static irqreturn_t i915_irq_handler(int irq, void *arg)
4027 {
4028 struct drm_device *dev = arg;
4029 struct drm_i915_private *dev_priv = dev->dev_private;
4030 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4031 u32 flip_mask =
4032 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4033 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4034 int pipe, ret = IRQ_NONE;
4035
4036 if (!intel_irqs_enabled(dev_priv))
4037 return IRQ_NONE;
4038
4039 iir = I915_READ(IIR);
4040 do {
4041 bool irq_received = (iir & ~flip_mask) != 0;
4042 bool blc_event = false;
4043
4044 /* Can't rely on pipestat interrupt bit in iir as it might
4045 * have been cleared after the pipestat interrupt was received.
4046 * It doesn't set the bit in iir again, but it still produces
4047 * interrupts (for non-MSI).
4048 */
4049 spin_lock(&dev_priv->irq_lock);
4050 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4051 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4052
4053 for_each_pipe(dev_priv, pipe) {
4054 int reg = PIPESTAT(pipe);
4055 pipe_stats[pipe] = I915_READ(reg);
4056
4057 /* Clear the PIPE*STAT regs before the IIR */
4058 if (pipe_stats[pipe] & 0x8000ffff) {
4059 I915_WRITE(reg, pipe_stats[pipe]);
4060 irq_received = true;
4061 }
4062 }
4063 spin_unlock(&dev_priv->irq_lock);
4064
4065 if (!irq_received)
4066 break;
4067
4068 /* Consume port. Then clear IIR or we'll miss events */
4069 if (I915_HAS_HOTPLUG(dev) &&
4070 iir & I915_DISPLAY_PORT_INTERRUPT)
4071 i9xx_hpd_irq_handler(dev);
4072
4073 I915_WRITE(IIR, iir & ~flip_mask);
4074 new_iir = I915_READ(IIR); /* Flush posted writes */
4075
4076 if (iir & I915_USER_INTERRUPT)
4077 notify_ring(&dev_priv->ring[RCS]);
4078
4079 for_each_pipe(dev_priv, pipe) {
4080 int plane = pipe;
4081 if (HAS_FBC(dev))
4082 plane = !plane;
4083
4084 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4085 i915_handle_vblank(dev, plane, pipe, iir))
4086 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4087
4088 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4089 blc_event = true;
4090
4091 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4092 i9xx_pipe_crc_irq_handler(dev, pipe);
4093
4094 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4095 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4096 pipe);
4097 }
4098
4099 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4100 intel_opregion_asle_intr(dev);
4101
4102 /* With MSI, interrupts are only generated when iir
4103 * transitions from zero to nonzero. If another bit got
4104 * set while we were handling the existing iir bits, then
4105 * we would never get another interrupt.
4106 *
4107 * This is fine on non-MSI as well, as if we hit this path
4108 * we avoid exiting the interrupt handler only to generate
4109 * another one.
4110 *
4111 * Note that for MSI this could cause a stray interrupt report
4112 * if an interrupt landed in the time between writing IIR and
4113 * the posting read. This should be rare enough to never
4114 * trigger the 99% of 100,000 interrupts test for disabling
4115 * stray interrupts.
4116 */
4117 ret = IRQ_HANDLED;
4118 iir = new_iir;
4119 } while (iir & ~flip_mask);
4120
4121 return ret;
4122 }
4123
4124 static void i915_irq_uninstall(struct drm_device * dev)
4125 {
4126 struct drm_i915_private *dev_priv = dev->dev_private;
4127 int pipe;
4128
4129 if (I915_HAS_HOTPLUG(dev)) {
4130 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4131 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4132 }
4133
4134 I915_WRITE16(HWSTAM, 0xffff);
4135 for_each_pipe(dev_priv, pipe) {
4136 /* Clear enable bits; then clear status bits */
4137 I915_WRITE(PIPESTAT(pipe), 0);
4138 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4139 }
4140 I915_WRITE(IMR, 0xffffffff);
4141 I915_WRITE(IER, 0x0);
4142
4143 I915_WRITE(IIR, I915_READ(IIR));
4144 }
4145
4146 static void i965_irq_preinstall(struct drm_device * dev)
4147 {
4148 struct drm_i915_private *dev_priv = dev->dev_private;
4149 int pipe;
4150
4151 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4152 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4153
4154 I915_WRITE(HWSTAM, 0xeffe);
4155 for_each_pipe(dev_priv, pipe)
4156 I915_WRITE(PIPESTAT(pipe), 0);
4157 I915_WRITE(IMR, 0xffffffff);
4158 I915_WRITE(IER, 0x0);
4159 POSTING_READ(IER);
4160 }
4161
4162 static int i965_irq_postinstall(struct drm_device *dev)
4163 {
4164 struct drm_i915_private *dev_priv = dev->dev_private;
4165 u32 enable_mask;
4166 u32 error_mask;
4167
4168 /* Unmask the interrupts that we always want on. */
4169 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4170 I915_DISPLAY_PORT_INTERRUPT |
4171 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4172 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4173 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4174 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4175 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4176
4177 enable_mask = ~dev_priv->irq_mask;
4178 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4179 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4180 enable_mask |= I915_USER_INTERRUPT;
4181
4182 if (IS_G4X(dev))
4183 enable_mask |= I915_BSD_USER_INTERRUPT;
4184
4185 /* Interrupt setup is already guaranteed to be single-threaded, this is
4186 * just to make the assert_spin_locked check happy. */
4187 spin_lock_irq(&dev_priv->irq_lock);
4188 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4189 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4190 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4191 spin_unlock_irq(&dev_priv->irq_lock);
4192
4193 /*
4194 * Enable some error detection, note the instruction error mask
4195 * bit is reserved, so we leave it masked.
4196 */
4197 if (IS_G4X(dev)) {
4198 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4199 GM45_ERROR_MEM_PRIV |
4200 GM45_ERROR_CP_PRIV |
4201 I915_ERROR_MEMORY_REFRESH);
4202 } else {
4203 error_mask = ~(I915_ERROR_PAGE_TABLE |
4204 I915_ERROR_MEMORY_REFRESH);
4205 }
4206 I915_WRITE(EMR, error_mask);
4207
4208 I915_WRITE(IMR, dev_priv->irq_mask);
4209 I915_WRITE(IER, enable_mask);
4210 POSTING_READ(IER);
4211
4212 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4213 POSTING_READ(PORT_HOTPLUG_EN);
4214
4215 i915_enable_asle_pipestat(dev);
4216
4217 return 0;
4218 }
4219
4220 static void i915_hpd_irq_setup(struct drm_device *dev)
4221 {
4222 struct drm_i915_private *dev_priv = dev->dev_private;
4223 u32 hotplug_en;
4224
4225 assert_spin_locked(&dev_priv->irq_lock);
4226
4227 /* Note HDMI and DP share hotplug bits */
4228 /* enable bits are the same for all generations */
4229 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4230 /* Programming the CRT detection parameters tends
4231 to generate a spurious hotplug event about three
4232 seconds later. So just do it once.
4233 */
4234 if (IS_G4X(dev))
4235 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4236 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4237
4238 /* Ignore TV since it's buggy */
4239 i915_hotplug_interrupt_update_locked(dev_priv,
4240 (HOTPLUG_INT_EN_MASK
4241 | CRT_HOTPLUG_VOLTAGE_COMPARE_MASK),
4242 hotplug_en);
4243 }
4244
4245 static irqreturn_t i965_irq_handler(int irq, void *arg)
4246 {
4247 struct drm_device *dev = arg;
4248 struct drm_i915_private *dev_priv = dev->dev_private;
4249 u32 iir, new_iir;
4250 u32 pipe_stats[I915_MAX_PIPES];
4251 int ret = IRQ_NONE, pipe;
4252 u32 flip_mask =
4253 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4254 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4255
4256 if (!intel_irqs_enabled(dev_priv))
4257 return IRQ_NONE;
4258
4259 iir = I915_READ(IIR);
4260
4261 for (;;) {
4262 bool irq_received = (iir & ~flip_mask) != 0;
4263 bool blc_event = false;
4264
4265 /* Can't rely on pipestat interrupt bit in iir as it might
4266 * have been cleared after the pipestat interrupt was received.
4267 * It doesn't set the bit in iir again, but it still produces
4268 * interrupts (for non-MSI).
4269 */
4270 spin_lock(&dev_priv->irq_lock);
4271 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4272 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4273
4274 for_each_pipe(dev_priv, pipe) {
4275 int reg = PIPESTAT(pipe);
4276 pipe_stats[pipe] = I915_READ(reg);
4277
4278 /*
4279 * Clear the PIPE*STAT regs before the IIR
4280 */
4281 if (pipe_stats[pipe] & 0x8000ffff) {
4282 I915_WRITE(reg, pipe_stats[pipe]);
4283 irq_received = true;
4284 }
4285 }
4286 spin_unlock(&dev_priv->irq_lock);
4287
4288 if (!irq_received)
4289 break;
4290
4291 ret = IRQ_HANDLED;
4292
4293 /* Consume port. Then clear IIR or we'll miss events */
4294 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4295 i9xx_hpd_irq_handler(dev);
4296
4297 I915_WRITE(IIR, iir & ~flip_mask);
4298 new_iir = I915_READ(IIR); /* Flush posted writes */
4299
4300 if (iir & I915_USER_INTERRUPT)
4301 notify_ring(&dev_priv->ring[RCS]);
4302 if (iir & I915_BSD_USER_INTERRUPT)
4303 notify_ring(&dev_priv->ring[VCS]);
4304
4305 for_each_pipe(dev_priv, pipe) {
4306 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4307 i915_handle_vblank(dev, pipe, pipe, iir))
4308 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4309
4310 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4311 blc_event = true;
4312
4313 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4314 i9xx_pipe_crc_irq_handler(dev, pipe);
4315
4316 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4317 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4318 }
4319
4320 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4321 intel_opregion_asle_intr(dev);
4322
4323 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4324 gmbus_irq_handler(dev);
4325
4326 /* With MSI, interrupts are only generated when iir
4327 * transitions from zero to nonzero. If another bit got
4328 * set while we were handling the existing iir bits, then
4329 * we would never get another interrupt.
4330 *
4331 * This is fine on non-MSI as well, as if we hit this path
4332 * we avoid exiting the interrupt handler only to generate
4333 * another one.
4334 *
4335 * Note that for MSI this could cause a stray interrupt report
4336 * if an interrupt landed in the time between writing IIR and
4337 * the posting read. This should be rare enough to never
4338 * trigger the 99% of 100,000 interrupts test for disabling
4339 * stray interrupts.
4340 */
4341 iir = new_iir;
4342 }
4343
4344 return ret;
4345 }
4346
4347 static void i965_irq_uninstall(struct drm_device * dev)
4348 {
4349 struct drm_i915_private *dev_priv = dev->dev_private;
4350 int pipe;
4351
4352 if (!dev_priv)
4353 return;
4354
4355 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4356 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4357
4358 I915_WRITE(HWSTAM, 0xffffffff);
4359 for_each_pipe(dev_priv, pipe)
4360 I915_WRITE(PIPESTAT(pipe), 0);
4361 I915_WRITE(IMR, 0xffffffff);
4362 I915_WRITE(IER, 0x0);
4363
4364 for_each_pipe(dev_priv, pipe)
4365 I915_WRITE(PIPESTAT(pipe),
4366 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4367 I915_WRITE(IIR, I915_READ(IIR));
4368 }
4369
4370 /**
4371 * intel_irq_init - initializes irq support
4372 * @dev_priv: i915 device instance
4373 *
4374 * This function initializes all the irq support including work items, timers
4375 * and all the vtables. It does not setup the interrupt itself though.
4376 */
4377 void intel_irq_init(struct drm_i915_private *dev_priv)
4378 {
4379 struct drm_device *dev = dev_priv->dev;
4380
4381 intel_hpd_init_work(dev_priv);
4382
4383 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4384 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4385
4386 /* Let's track the enabled rps events */
4387 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4388 /* WaGsvRC0ResidencyMethod:vlv */
4389 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4390 else
4391 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4392
4393 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4394 i915_hangcheck_elapsed);
4395
4396 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4397
4398 if (IS_GEN2(dev_priv)) {
4399 dev->max_vblank_count = 0;
4400 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4401 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4402 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4403 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4404 } else {
4405 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4406 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4407 }
4408
4409 /*
4410 * Opt out of the vblank disable timer on everything except gen2.
4411 * Gen2 doesn't have a hardware frame counter and so depends on
4412 * vblank interrupts to produce sane vblank seuquence numbers.
4413 */
4414 if (!IS_GEN2(dev_priv))
4415 dev->vblank_disable_immediate = true;
4416
4417 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4418 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4419
4420 if (IS_CHERRYVIEW(dev_priv)) {
4421 dev->driver->irq_handler = cherryview_irq_handler;
4422 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4423 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4424 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4425 dev->driver->enable_vblank = valleyview_enable_vblank;
4426 dev->driver->disable_vblank = valleyview_disable_vblank;
4427 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4428 } else if (IS_VALLEYVIEW(dev_priv)) {
4429 dev->driver->irq_handler = valleyview_irq_handler;
4430 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4431 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4432 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4433 dev->driver->enable_vblank = valleyview_enable_vblank;
4434 dev->driver->disable_vblank = valleyview_disable_vblank;
4435 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4436 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4437 dev->driver->irq_handler = gen8_irq_handler;
4438 dev->driver->irq_preinstall = gen8_irq_reset;
4439 dev->driver->irq_postinstall = gen8_irq_postinstall;
4440 dev->driver->irq_uninstall = gen8_irq_uninstall;
4441 dev->driver->enable_vblank = gen8_enable_vblank;
4442 dev->driver->disable_vblank = gen8_disable_vblank;
4443 if (IS_BROXTON(dev))
4444 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4445 else if (HAS_PCH_SPT(dev))
4446 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4447 else
4448 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4449 } else if (HAS_PCH_SPLIT(dev)) {
4450 dev->driver->irq_handler = ironlake_irq_handler;
4451 dev->driver->irq_preinstall = ironlake_irq_reset;
4452 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4453 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4454 dev->driver->enable_vblank = ironlake_enable_vblank;
4455 dev->driver->disable_vblank = ironlake_disable_vblank;
4456 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4457 } else {
4458 if (INTEL_INFO(dev_priv)->gen == 2) {
4459 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4460 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4461 dev->driver->irq_handler = i8xx_irq_handler;
4462 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4463 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4464 dev->driver->irq_preinstall = i915_irq_preinstall;
4465 dev->driver->irq_postinstall = i915_irq_postinstall;
4466 dev->driver->irq_uninstall = i915_irq_uninstall;
4467 dev->driver->irq_handler = i915_irq_handler;
4468 } else {
4469 dev->driver->irq_preinstall = i965_irq_preinstall;
4470 dev->driver->irq_postinstall = i965_irq_postinstall;
4471 dev->driver->irq_uninstall = i965_irq_uninstall;
4472 dev->driver->irq_handler = i965_irq_handler;
4473 }
4474 if (I915_HAS_HOTPLUG(dev_priv))
4475 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4476 dev->driver->enable_vblank = i915_enable_vblank;
4477 dev->driver->disable_vblank = i915_disable_vblank;
4478 }
4479 }
4480
4481 /**
4482 * intel_irq_install - enables the hardware interrupt
4483 * @dev_priv: i915 device instance
4484 *
4485 * This function enables the hardware interrupt handling, but leaves the hotplug
4486 * handling still disabled. It is called after intel_irq_init().
4487 *
4488 * In the driver load and resume code we need working interrupts in a few places
4489 * but don't want to deal with the hassle of concurrent probe and hotplug
4490 * workers. Hence the split into this two-stage approach.
4491 */
4492 int intel_irq_install(struct drm_i915_private *dev_priv)
4493 {
4494 /*
4495 * We enable some interrupt sources in our postinstall hooks, so mark
4496 * interrupts as enabled _before_ actually enabling them to avoid
4497 * special cases in our ordering checks.
4498 */
4499 dev_priv->pm.irqs_enabled = true;
4500
4501 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4502 }
4503
4504 /**
4505 * intel_irq_uninstall - finilizes all irq handling
4506 * @dev_priv: i915 device instance
4507 *
4508 * This stops interrupt and hotplug handling and unregisters and frees all
4509 * resources acquired in the init functions.
4510 */
4511 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4512 {
4513 drm_irq_uninstall(dev_priv->dev);
4514 intel_hpd_cancel_work(dev_priv);
4515 dev_priv->pm.irqs_enabled = false;
4516 }
4517
4518 /**
4519 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4520 * @dev_priv: i915 device instance
4521 *
4522 * This function is used to disable interrupts at runtime, both in the runtime
4523 * pm and the system suspend/resume code.
4524 */
4525 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4526 {
4527 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4528 dev_priv->pm.irqs_enabled = false;
4529 synchronize_irq(dev_priv->dev->irq);
4530 }
4531
4532 /**
4533 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4534 * @dev_priv: i915 device instance
4535 *
4536 * This function is used to enable interrupts at runtime, both in the runtime
4537 * pm and the system suspend/resume code.
4538 */
4539 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4540 {
4541 dev_priv->pm.irqs_enabled = true;
4542 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4543 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4544 }
This page took 0.446028 seconds and 5 git commands to generate.