976113af18595cc32ddcd82c76c718c311cdca5f
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if ((dev_priv->irq_mask & mask) != 0) {
89 dev_priv->irq_mask &= ~mask;
90 I915_WRITE(DEIMR, dev_priv->irq_mask);
91 POSTING_READ(DEIMR);
92 }
93 }
94
95 static void
96 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 assert_spin_locked(&dev_priv->irq_lock);
99
100 if ((dev_priv->irq_mask & mask) != mask) {
101 dev_priv->irq_mask |= mask;
102 I915_WRITE(DEIMR, dev_priv->irq_mask);
103 POSTING_READ(DEIMR);
104 }
105 }
106
107 /**
108 * ilk_update_gt_irq - update GTIMR
109 * @dev_priv: driver private
110 * @interrupt_mask: mask of interrupt bits to update
111 * @enabled_irq_mask: mask of interrupt bits to enable
112 */
113 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
114 uint32_t interrupt_mask,
115 uint32_t enabled_irq_mask)
116 {
117 assert_spin_locked(&dev_priv->irq_lock);
118
119 dev_priv->gt_irq_mask &= ~interrupt_mask;
120 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
121 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
122 POSTING_READ(GTIMR);
123 }
124
125 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
126 {
127 ilk_update_gt_irq(dev_priv, mask, mask);
128 }
129
130 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
131 {
132 ilk_update_gt_irq(dev_priv, mask, 0);
133 }
134
135 /**
136 * snb_update_pm_irq - update GEN6_PMIMR
137 * @dev_priv: driver private
138 * @interrupt_mask: mask of interrupt bits to update
139 * @enabled_irq_mask: mask of interrupt bits to enable
140 */
141 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
142 uint32_t interrupt_mask,
143 uint32_t enabled_irq_mask)
144 {
145 uint32_t new_val;
146
147 assert_spin_locked(&dev_priv->irq_lock);
148
149 new_val = dev_priv->pm_irq_mask;
150 new_val &= ~interrupt_mask;
151 new_val |= (~enabled_irq_mask & interrupt_mask);
152
153 if (new_val != dev_priv->pm_irq_mask) {
154 dev_priv->pm_irq_mask = new_val;
155 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
156 POSTING_READ(GEN6_PMIMR);
157 }
158 }
159
160 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
161 {
162 snb_update_pm_irq(dev_priv, mask, mask);
163 }
164
165 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
166 {
167 snb_update_pm_irq(dev_priv, mask, 0);
168 }
169
170 static void snb_set_pm_irq(struct drm_i915_private *dev_priv, uint32_t val)
171 {
172 snb_update_pm_irq(dev_priv, 0xffffffff, ~val);
173 }
174
175 static bool ivb_can_enable_err_int(struct drm_device *dev)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct intel_crtc *crtc;
179 enum pipe pipe;
180
181 assert_spin_locked(&dev_priv->irq_lock);
182
183 for_each_pipe(pipe) {
184 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
185
186 if (crtc->cpu_fifo_underrun_disabled)
187 return false;
188 }
189
190 return true;
191 }
192
193 static bool cpt_can_enable_serr_int(struct drm_device *dev)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 enum pipe pipe;
197 struct intel_crtc *crtc;
198
199 assert_spin_locked(&dev_priv->irq_lock);
200
201 for_each_pipe(pipe) {
202 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
203
204 if (crtc->pch_fifo_underrun_disabled)
205 return false;
206 }
207
208 return true;
209 }
210
211 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
212 enum pipe pipe, bool enable)
213 {
214 struct drm_i915_private *dev_priv = dev->dev_private;
215 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
216 DE_PIPEB_FIFO_UNDERRUN;
217
218 if (enable)
219 ironlake_enable_display_irq(dev_priv, bit);
220 else
221 ironlake_disable_display_irq(dev_priv, bit);
222 }
223
224 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
225 enum pipe pipe, bool enable)
226 {
227 struct drm_i915_private *dev_priv = dev->dev_private;
228 if (enable) {
229 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
230
231 if (!ivb_can_enable_err_int(dev))
232 return;
233
234 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
235 } else {
236 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
237
238 /* Change the state _after_ we've read out the current one. */
239 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
240
241 if (!was_enabled &&
242 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
243 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
244 pipe_name(pipe));
245 }
246 }
247 }
248
249 /**
250 * ibx_display_interrupt_update - update SDEIMR
251 * @dev_priv: driver private
252 * @interrupt_mask: mask of interrupt bits to update
253 * @enabled_irq_mask: mask of interrupt bits to enable
254 */
255 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
256 uint32_t interrupt_mask,
257 uint32_t enabled_irq_mask)
258 {
259 uint32_t sdeimr = I915_READ(SDEIMR);
260 sdeimr &= ~interrupt_mask;
261 sdeimr |= (~enabled_irq_mask & interrupt_mask);
262
263 assert_spin_locked(&dev_priv->irq_lock);
264
265 I915_WRITE(SDEIMR, sdeimr);
266 POSTING_READ(SDEIMR);
267 }
268 #define ibx_enable_display_interrupt(dev_priv, bits) \
269 ibx_display_interrupt_update((dev_priv), (bits), (bits))
270 #define ibx_disable_display_interrupt(dev_priv, bits) \
271 ibx_display_interrupt_update((dev_priv), (bits), 0)
272
273 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
274 enum transcoder pch_transcoder,
275 bool enable)
276 {
277 struct drm_i915_private *dev_priv = dev->dev_private;
278 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
279 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
280
281 if (enable)
282 ibx_enable_display_interrupt(dev_priv, bit);
283 else
284 ibx_disable_display_interrupt(dev_priv, bit);
285 }
286
287 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
288 enum transcoder pch_transcoder,
289 bool enable)
290 {
291 struct drm_i915_private *dev_priv = dev->dev_private;
292
293 if (enable) {
294 I915_WRITE(SERR_INT,
295 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
296
297 if (!cpt_can_enable_serr_int(dev))
298 return;
299
300 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
301 } else {
302 uint32_t tmp = I915_READ(SERR_INT);
303 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
304
305 /* Change the state _after_ we've read out the current one. */
306 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
307
308 if (!was_enabled &&
309 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
310 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
311 transcoder_name(pch_transcoder));
312 }
313 }
314 }
315
316 /**
317 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
318 * @dev: drm device
319 * @pipe: pipe
320 * @enable: true if we want to report FIFO underrun errors, false otherwise
321 *
322 * This function makes us disable or enable CPU fifo underruns for a specific
323 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
324 * reporting for one pipe may also disable all the other CPU error interruts for
325 * the other pipes, due to the fact that there's just one interrupt mask/enable
326 * bit for all the pipes.
327 *
328 * Returns the previous state of underrun reporting.
329 */
330 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
331 enum pipe pipe, bool enable)
332 {
333 struct drm_i915_private *dev_priv = dev->dev_private;
334 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
336 unsigned long flags;
337 bool ret;
338
339 spin_lock_irqsave(&dev_priv->irq_lock, flags);
340
341 ret = !intel_crtc->cpu_fifo_underrun_disabled;
342
343 if (enable == ret)
344 goto done;
345
346 intel_crtc->cpu_fifo_underrun_disabled = !enable;
347
348 if (IS_GEN5(dev) || IS_GEN6(dev))
349 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
350 else if (IS_GEN7(dev))
351 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
352
353 done:
354 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
355 return ret;
356 }
357
358 /**
359 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
360 * @dev: drm device
361 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
362 * @enable: true if we want to report FIFO underrun errors, false otherwise
363 *
364 * This function makes us disable or enable PCH fifo underruns for a specific
365 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
366 * underrun reporting for one transcoder may also disable all the other PCH
367 * error interruts for the other transcoders, due to the fact that there's just
368 * one interrupt mask/enable bit for all the transcoders.
369 *
370 * Returns the previous state of underrun reporting.
371 */
372 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
373 enum transcoder pch_transcoder,
374 bool enable)
375 {
376 struct drm_i915_private *dev_priv = dev->dev_private;
377 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
379 unsigned long flags;
380 bool ret;
381
382 /*
383 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
384 * has only one pch transcoder A that all pipes can use. To avoid racy
385 * pch transcoder -> pipe lookups from interrupt code simply store the
386 * underrun statistics in crtc A. Since we never expose this anywhere
387 * nor use it outside of the fifo underrun code here using the "wrong"
388 * crtc on LPT won't cause issues.
389 */
390
391 spin_lock_irqsave(&dev_priv->irq_lock, flags);
392
393 ret = !intel_crtc->pch_fifo_underrun_disabled;
394
395 if (enable == ret)
396 goto done;
397
398 intel_crtc->pch_fifo_underrun_disabled = !enable;
399
400 if (HAS_PCH_IBX(dev))
401 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
402 else
403 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
404
405 done:
406 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
407 return ret;
408 }
409
410
411 void
412 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
413 {
414 u32 reg = PIPESTAT(pipe);
415 u32 pipestat = I915_READ(reg) & 0x7fff0000;
416
417 assert_spin_locked(&dev_priv->irq_lock);
418
419 if ((pipestat & mask) == mask)
420 return;
421
422 /* Enable the interrupt, clear any pending status */
423 pipestat |= mask | (mask >> 16);
424 I915_WRITE(reg, pipestat);
425 POSTING_READ(reg);
426 }
427
428 void
429 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
430 {
431 u32 reg = PIPESTAT(pipe);
432 u32 pipestat = I915_READ(reg) & 0x7fff0000;
433
434 assert_spin_locked(&dev_priv->irq_lock);
435
436 if ((pipestat & mask) == 0)
437 return;
438
439 pipestat &= ~mask;
440 I915_WRITE(reg, pipestat);
441 POSTING_READ(reg);
442 }
443
444 /**
445 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
446 */
447 static void i915_enable_asle_pipestat(struct drm_device *dev)
448 {
449 drm_i915_private_t *dev_priv = dev->dev_private;
450 unsigned long irqflags;
451
452 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
453 return;
454
455 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
456
457 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
458 if (INTEL_INFO(dev)->gen >= 4)
459 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
460
461 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
462 }
463
464 /**
465 * i915_pipe_enabled - check if a pipe is enabled
466 * @dev: DRM device
467 * @pipe: pipe to check
468 *
469 * Reading certain registers when the pipe is disabled can hang the chip.
470 * Use this routine to make sure the PLL is running and the pipe is active
471 * before reading such registers if unsure.
472 */
473 static int
474 i915_pipe_enabled(struct drm_device *dev, int pipe)
475 {
476 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
477
478 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
479 /* Locking is horribly broken here, but whatever. */
480 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
482
483 return intel_crtc->active;
484 } else {
485 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
486 }
487 }
488
489 /* Called from drm generic code, passed a 'crtc', which
490 * we use as a pipe index
491 */
492 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
493 {
494 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
495 unsigned long high_frame;
496 unsigned long low_frame;
497 u32 high1, high2, low;
498
499 if (!i915_pipe_enabled(dev, pipe)) {
500 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
501 "pipe %c\n", pipe_name(pipe));
502 return 0;
503 }
504
505 high_frame = PIPEFRAME(pipe);
506 low_frame = PIPEFRAMEPIXEL(pipe);
507
508 /*
509 * High & low register fields aren't synchronized, so make sure
510 * we get a low value that's stable across two reads of the high
511 * register.
512 */
513 do {
514 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
515 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
516 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
517 } while (high1 != high2);
518
519 high1 >>= PIPE_FRAME_HIGH_SHIFT;
520 low >>= PIPE_FRAME_LOW_SHIFT;
521 return (high1 << 8) | low;
522 }
523
524 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 int reg = PIPE_FRMCOUNT_GM45(pipe);
528
529 if (!i915_pipe_enabled(dev, pipe)) {
530 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
531 "pipe %c\n", pipe_name(pipe));
532 return 0;
533 }
534
535 return I915_READ(reg);
536 }
537
538 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
539 int *vpos, int *hpos)
540 {
541 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
542 u32 vbl = 0, position = 0;
543 int vbl_start, vbl_end, htotal, vtotal;
544 bool in_vbl = true;
545 int ret = 0;
546 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
547 pipe);
548
549 if (!i915_pipe_enabled(dev, pipe)) {
550 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
551 "pipe %c\n", pipe_name(pipe));
552 return 0;
553 }
554
555 /* Get vtotal. */
556 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
557
558 if (INTEL_INFO(dev)->gen >= 4) {
559 /* No obvious pixelcount register. Only query vertical
560 * scanout position from Display scan line register.
561 */
562 position = I915_READ(PIPEDSL(pipe));
563
564 /* Decode into vertical scanout position. Don't have
565 * horizontal scanout position.
566 */
567 *vpos = position & 0x1fff;
568 *hpos = 0;
569 } else {
570 /* Have access to pixelcount since start of frame.
571 * We can split this into vertical and horizontal
572 * scanout position.
573 */
574 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
575
576 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
577 *vpos = position / htotal;
578 *hpos = position - (*vpos * htotal);
579 }
580
581 /* Query vblank area. */
582 vbl = I915_READ(VBLANK(cpu_transcoder));
583
584 /* Test position against vblank region. */
585 vbl_start = vbl & 0x1fff;
586 vbl_end = (vbl >> 16) & 0x1fff;
587
588 if ((*vpos < vbl_start) || (*vpos > vbl_end))
589 in_vbl = false;
590
591 /* Inside "upper part" of vblank area? Apply corrective offset: */
592 if (in_vbl && (*vpos >= vbl_start))
593 *vpos = *vpos - vtotal;
594
595 /* Readouts valid? */
596 if (vbl > 0)
597 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
598
599 /* In vblank? */
600 if (in_vbl)
601 ret |= DRM_SCANOUTPOS_INVBL;
602
603 return ret;
604 }
605
606 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
607 int *max_error,
608 struct timeval *vblank_time,
609 unsigned flags)
610 {
611 struct drm_crtc *crtc;
612
613 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
614 DRM_ERROR("Invalid crtc %d\n", pipe);
615 return -EINVAL;
616 }
617
618 /* Get drm_crtc to timestamp: */
619 crtc = intel_get_crtc_for_pipe(dev, pipe);
620 if (crtc == NULL) {
621 DRM_ERROR("Invalid crtc %d\n", pipe);
622 return -EINVAL;
623 }
624
625 if (!crtc->enabled) {
626 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
627 return -EBUSY;
628 }
629
630 /* Helper routine in DRM core does all the work: */
631 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
632 vblank_time, flags,
633 crtc);
634 }
635
636 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
637 {
638 enum drm_connector_status old_status;
639
640 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
641 old_status = connector->status;
642
643 connector->status = connector->funcs->detect(connector, false);
644 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
645 connector->base.id,
646 drm_get_connector_name(connector),
647 old_status, connector->status);
648 return (old_status != connector->status);
649 }
650
651 /*
652 * Handle hotplug events outside the interrupt handler proper.
653 */
654 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
655
656 static void i915_hotplug_work_func(struct work_struct *work)
657 {
658 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
659 hotplug_work);
660 struct drm_device *dev = dev_priv->dev;
661 struct drm_mode_config *mode_config = &dev->mode_config;
662 struct intel_connector *intel_connector;
663 struct intel_encoder *intel_encoder;
664 struct drm_connector *connector;
665 unsigned long irqflags;
666 bool hpd_disabled = false;
667 bool changed = false;
668 u32 hpd_event_bits;
669
670 /* HPD irq before everything is fully set up. */
671 if (!dev_priv->enable_hotplug_processing)
672 return;
673
674 mutex_lock(&mode_config->mutex);
675 DRM_DEBUG_KMS("running encoder hotplug functions\n");
676
677 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
678
679 hpd_event_bits = dev_priv->hpd_event_bits;
680 dev_priv->hpd_event_bits = 0;
681 list_for_each_entry(connector, &mode_config->connector_list, head) {
682 intel_connector = to_intel_connector(connector);
683 intel_encoder = intel_connector->encoder;
684 if (intel_encoder->hpd_pin > HPD_NONE &&
685 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
686 connector->polled == DRM_CONNECTOR_POLL_HPD) {
687 DRM_INFO("HPD interrupt storm detected on connector %s: "
688 "switching from hotplug detection to polling\n",
689 drm_get_connector_name(connector));
690 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
691 connector->polled = DRM_CONNECTOR_POLL_CONNECT
692 | DRM_CONNECTOR_POLL_DISCONNECT;
693 hpd_disabled = true;
694 }
695 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
696 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
697 drm_get_connector_name(connector), intel_encoder->hpd_pin);
698 }
699 }
700 /* if there were no outputs to poll, poll was disabled,
701 * therefore make sure it's enabled when disabling HPD on
702 * some connectors */
703 if (hpd_disabled) {
704 drm_kms_helper_poll_enable(dev);
705 mod_timer(&dev_priv->hotplug_reenable_timer,
706 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
707 }
708
709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710
711 list_for_each_entry(connector, &mode_config->connector_list, head) {
712 intel_connector = to_intel_connector(connector);
713 intel_encoder = intel_connector->encoder;
714 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
715 if (intel_encoder->hot_plug)
716 intel_encoder->hot_plug(intel_encoder);
717 if (intel_hpd_irq_event(dev, connector))
718 changed = true;
719 }
720 }
721 mutex_unlock(&mode_config->mutex);
722
723 if (changed)
724 drm_kms_helper_hotplug_event(dev);
725 }
726
727 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
728 {
729 drm_i915_private_t *dev_priv = dev->dev_private;
730 u32 busy_up, busy_down, max_avg, min_avg;
731 u8 new_delay;
732
733 spin_lock(&mchdev_lock);
734
735 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
736
737 new_delay = dev_priv->ips.cur_delay;
738
739 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
740 busy_up = I915_READ(RCPREVBSYTUPAVG);
741 busy_down = I915_READ(RCPREVBSYTDNAVG);
742 max_avg = I915_READ(RCBMAXAVG);
743 min_avg = I915_READ(RCBMINAVG);
744
745 /* Handle RCS change request from hw */
746 if (busy_up > max_avg) {
747 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
748 new_delay = dev_priv->ips.cur_delay - 1;
749 if (new_delay < dev_priv->ips.max_delay)
750 new_delay = dev_priv->ips.max_delay;
751 } else if (busy_down < min_avg) {
752 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
753 new_delay = dev_priv->ips.cur_delay + 1;
754 if (new_delay > dev_priv->ips.min_delay)
755 new_delay = dev_priv->ips.min_delay;
756 }
757
758 if (ironlake_set_drps(dev, new_delay))
759 dev_priv->ips.cur_delay = new_delay;
760
761 spin_unlock(&mchdev_lock);
762
763 return;
764 }
765
766 static void notify_ring(struct drm_device *dev,
767 struct intel_ring_buffer *ring)
768 {
769 if (ring->obj == NULL)
770 return;
771
772 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
773
774 wake_up_all(&ring->irq_queue);
775 i915_queue_hangcheck(dev);
776 }
777
778 static void gen6_pm_rps_work(struct work_struct *work)
779 {
780 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
781 rps.work);
782 u32 pm_iir;
783 u8 new_delay;
784
785 spin_lock_irq(&dev_priv->irq_lock);
786 pm_iir = dev_priv->rps.pm_iir;
787 dev_priv->rps.pm_iir = 0;
788 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
789 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
790 spin_unlock_irq(&dev_priv->irq_lock);
791
792 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
793 return;
794
795 mutex_lock(&dev_priv->rps.hw_lock);
796
797 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
798 new_delay = dev_priv->rps.cur_delay + 1;
799
800 /*
801 * For better performance, jump directly
802 * to RPe if we're below it.
803 */
804 if (IS_VALLEYVIEW(dev_priv->dev) &&
805 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
806 new_delay = dev_priv->rps.rpe_delay;
807 } else
808 new_delay = dev_priv->rps.cur_delay - 1;
809
810 /* sysfs frequency interfaces may have snuck in while servicing the
811 * interrupt
812 */
813 if (new_delay >= dev_priv->rps.min_delay &&
814 new_delay <= dev_priv->rps.max_delay) {
815 if (IS_VALLEYVIEW(dev_priv->dev))
816 valleyview_set_rps(dev_priv->dev, new_delay);
817 else
818 gen6_set_rps(dev_priv->dev, new_delay);
819 }
820
821 if (IS_VALLEYVIEW(dev_priv->dev)) {
822 /*
823 * On VLV, when we enter RC6 we may not be at the minimum
824 * voltage level, so arm a timer to check. It should only
825 * fire when there's activity or once after we've entered
826 * RC6, and then won't be re-armed until the next RPS interrupt.
827 */
828 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
829 msecs_to_jiffies(100));
830 }
831
832 mutex_unlock(&dev_priv->rps.hw_lock);
833 }
834
835
836 /**
837 * ivybridge_parity_work - Workqueue called when a parity error interrupt
838 * occurred.
839 * @work: workqueue struct
840 *
841 * Doesn't actually do anything except notify userspace. As a consequence of
842 * this event, userspace should try to remap the bad rows since statistically
843 * it is likely the same row is more likely to go bad again.
844 */
845 static void ivybridge_parity_work(struct work_struct *work)
846 {
847 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
848 l3_parity.error_work);
849 u32 error_status, row, bank, subbank;
850 char *parity_event[5];
851 uint32_t misccpctl;
852 unsigned long flags;
853
854 /* We must turn off DOP level clock gating to access the L3 registers.
855 * In order to prevent a get/put style interface, acquire struct mutex
856 * any time we access those registers.
857 */
858 mutex_lock(&dev_priv->dev->struct_mutex);
859
860 misccpctl = I915_READ(GEN7_MISCCPCTL);
861 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
862 POSTING_READ(GEN7_MISCCPCTL);
863
864 error_status = I915_READ(GEN7_L3CDERRST1);
865 row = GEN7_PARITY_ERROR_ROW(error_status);
866 bank = GEN7_PARITY_ERROR_BANK(error_status);
867 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
868
869 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
870 GEN7_L3CDERRST1_ENABLE);
871 POSTING_READ(GEN7_L3CDERRST1);
872
873 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
874
875 spin_lock_irqsave(&dev_priv->irq_lock, flags);
876 ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
877 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
878
879 mutex_unlock(&dev_priv->dev->struct_mutex);
880
881 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
882 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
883 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
884 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
885 parity_event[4] = NULL;
886
887 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
888 KOBJ_CHANGE, parity_event);
889
890 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
891 row, bank, subbank);
892
893 kfree(parity_event[3]);
894 kfree(parity_event[2]);
895 kfree(parity_event[1]);
896 }
897
898 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
899 {
900 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
901
902 if (!HAS_L3_GPU_CACHE(dev))
903 return;
904
905 spin_lock(&dev_priv->irq_lock);
906 ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
907 spin_unlock(&dev_priv->irq_lock);
908
909 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
910 }
911
912 static void ilk_gt_irq_handler(struct drm_device *dev,
913 struct drm_i915_private *dev_priv,
914 u32 gt_iir)
915 {
916 if (gt_iir &
917 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
918 notify_ring(dev, &dev_priv->ring[RCS]);
919 if (gt_iir & ILK_BSD_USER_INTERRUPT)
920 notify_ring(dev, &dev_priv->ring[VCS]);
921 }
922
923 static void snb_gt_irq_handler(struct drm_device *dev,
924 struct drm_i915_private *dev_priv,
925 u32 gt_iir)
926 {
927
928 if (gt_iir &
929 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
930 notify_ring(dev, &dev_priv->ring[RCS]);
931 if (gt_iir & GT_BSD_USER_INTERRUPT)
932 notify_ring(dev, &dev_priv->ring[VCS]);
933 if (gt_iir & GT_BLT_USER_INTERRUPT)
934 notify_ring(dev, &dev_priv->ring[BCS]);
935
936 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
937 GT_BSD_CS_ERROR_INTERRUPT |
938 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
939 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
940 i915_handle_error(dev, false);
941 }
942
943 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
944 ivybridge_parity_error_irq_handler(dev);
945 }
946
947 /* Legacy way of handling PM interrupts */
948 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv,
949 u32 pm_iir)
950 {
951 /*
952 * IIR bits should never already be set because IMR should
953 * prevent an interrupt from being shown in IIR. The warning
954 * displays a case where we've unsafely cleared
955 * dev_priv->rps.pm_iir. Although missing an interrupt of the same
956 * type is not a problem, it displays a problem in the logic.
957 *
958 * The mask bit in IMR is cleared by dev_priv->rps.work.
959 */
960
961 spin_lock(&dev_priv->irq_lock);
962 dev_priv->rps.pm_iir |= pm_iir;
963 snb_set_pm_irq(dev_priv, dev_priv->rps.pm_iir);
964 spin_unlock(&dev_priv->irq_lock);
965
966 queue_work(dev_priv->wq, &dev_priv->rps.work);
967 }
968
969 #define HPD_STORM_DETECT_PERIOD 1000
970 #define HPD_STORM_THRESHOLD 5
971
972 static inline void intel_hpd_irq_handler(struct drm_device *dev,
973 u32 hotplug_trigger,
974 const u32 *hpd)
975 {
976 drm_i915_private_t *dev_priv = dev->dev_private;
977 int i;
978 bool storm_detected = false;
979
980 if (!hotplug_trigger)
981 return;
982
983 spin_lock(&dev_priv->irq_lock);
984 for (i = 1; i < HPD_NUM_PINS; i++) {
985
986 WARN(((hpd[i] & hotplug_trigger) &&
987 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
988 "Received HPD interrupt although disabled\n");
989
990 if (!(hpd[i] & hotplug_trigger) ||
991 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
992 continue;
993
994 dev_priv->hpd_event_bits |= (1 << i);
995 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
996 dev_priv->hpd_stats[i].hpd_last_jiffies
997 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
998 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
999 dev_priv->hpd_stats[i].hpd_cnt = 0;
1000 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1001 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1002 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1003 dev_priv->hpd_event_bits &= ~(1 << i);
1004 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1005 storm_detected = true;
1006 } else {
1007 dev_priv->hpd_stats[i].hpd_cnt++;
1008 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1009 dev_priv->hpd_stats[i].hpd_cnt);
1010 }
1011 }
1012
1013 if (storm_detected)
1014 dev_priv->display.hpd_irq_setup(dev);
1015 spin_unlock(&dev_priv->irq_lock);
1016
1017 queue_work(dev_priv->wq,
1018 &dev_priv->hotplug_work);
1019 }
1020
1021 static void gmbus_irq_handler(struct drm_device *dev)
1022 {
1023 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1024
1025 wake_up_all(&dev_priv->gmbus_wait_queue);
1026 }
1027
1028 static void dp_aux_irq_handler(struct drm_device *dev)
1029 {
1030 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1031
1032 wake_up_all(&dev_priv->gmbus_wait_queue);
1033 }
1034
1035 /* Unlike gen6_rps_irq_handler() from which this function is originally derived,
1036 * we must be able to deal with other PM interrupts. This is complicated because
1037 * of the way in which we use the masks to defer the RPS work (which for
1038 * posterity is necessary because of forcewake).
1039 */
1040 static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
1041 u32 pm_iir)
1042 {
1043 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1044 spin_lock(&dev_priv->irq_lock);
1045 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1046 snb_set_pm_irq(dev_priv, dev_priv->rps.pm_iir);
1047 /* never want to mask useful interrupts. */
1048 WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
1049 spin_unlock(&dev_priv->irq_lock);
1050
1051 queue_work(dev_priv->wq, &dev_priv->rps.work);
1052 }
1053
1054 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1055 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1056
1057 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1058 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1059 i915_handle_error(dev_priv->dev, false);
1060 }
1061 }
1062
1063 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1064 {
1065 struct drm_device *dev = (struct drm_device *) arg;
1066 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1067 u32 iir, gt_iir, pm_iir;
1068 irqreturn_t ret = IRQ_NONE;
1069 unsigned long irqflags;
1070 int pipe;
1071 u32 pipe_stats[I915_MAX_PIPES];
1072
1073 atomic_inc(&dev_priv->irq_received);
1074
1075 while (true) {
1076 iir = I915_READ(VLV_IIR);
1077 gt_iir = I915_READ(GTIIR);
1078 pm_iir = I915_READ(GEN6_PMIIR);
1079
1080 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1081 goto out;
1082
1083 ret = IRQ_HANDLED;
1084
1085 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1086
1087 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1088 for_each_pipe(pipe) {
1089 int reg = PIPESTAT(pipe);
1090 pipe_stats[pipe] = I915_READ(reg);
1091
1092 /*
1093 * Clear the PIPE*STAT regs before the IIR
1094 */
1095 if (pipe_stats[pipe] & 0x8000ffff) {
1096 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1097 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1098 pipe_name(pipe));
1099 I915_WRITE(reg, pipe_stats[pipe]);
1100 }
1101 }
1102 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1103
1104 for_each_pipe(pipe) {
1105 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1106 drm_handle_vblank(dev, pipe);
1107
1108 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1109 intel_prepare_page_flip(dev, pipe);
1110 intel_finish_page_flip(dev, pipe);
1111 }
1112 }
1113
1114 /* Consume port. Then clear IIR or we'll miss events */
1115 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1116 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1117 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1118
1119 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1120 hotplug_status);
1121
1122 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1123
1124 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1125 I915_READ(PORT_HOTPLUG_STAT);
1126 }
1127
1128 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1129 gmbus_irq_handler(dev);
1130
1131 if (pm_iir & GEN6_PM_RPS_EVENTS)
1132 gen6_rps_irq_handler(dev_priv, pm_iir);
1133
1134 I915_WRITE(GTIIR, gt_iir);
1135 I915_WRITE(GEN6_PMIIR, pm_iir);
1136 I915_WRITE(VLV_IIR, iir);
1137 }
1138
1139 out:
1140 return ret;
1141 }
1142
1143 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1144 {
1145 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1146 int pipe;
1147 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1148
1149 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1150
1151 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1152 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1153 SDE_AUDIO_POWER_SHIFT);
1154 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1155 port_name(port));
1156 }
1157
1158 if (pch_iir & SDE_AUX_MASK)
1159 dp_aux_irq_handler(dev);
1160
1161 if (pch_iir & SDE_GMBUS)
1162 gmbus_irq_handler(dev);
1163
1164 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1165 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1166
1167 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1168 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1169
1170 if (pch_iir & SDE_POISON)
1171 DRM_ERROR("PCH poison interrupt\n");
1172
1173 if (pch_iir & SDE_FDI_MASK)
1174 for_each_pipe(pipe)
1175 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1176 pipe_name(pipe),
1177 I915_READ(FDI_RX_IIR(pipe)));
1178
1179 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1180 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1181
1182 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1183 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1184
1185 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1186 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1187 false))
1188 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1189
1190 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1191 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1192 false))
1193 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1194 }
1195
1196 static void ivb_err_int_handler(struct drm_device *dev)
1197 {
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199 u32 err_int = I915_READ(GEN7_ERR_INT);
1200
1201 if (err_int & ERR_INT_POISON)
1202 DRM_ERROR("Poison interrupt\n");
1203
1204 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1205 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1206 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1207
1208 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1209 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1210 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1211
1212 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1213 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1214 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1215
1216 I915_WRITE(GEN7_ERR_INT, err_int);
1217 }
1218
1219 static void cpt_serr_int_handler(struct drm_device *dev)
1220 {
1221 struct drm_i915_private *dev_priv = dev->dev_private;
1222 u32 serr_int = I915_READ(SERR_INT);
1223
1224 if (serr_int & SERR_INT_POISON)
1225 DRM_ERROR("PCH poison interrupt\n");
1226
1227 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1228 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1229 false))
1230 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1231
1232 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1233 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1234 false))
1235 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1236
1237 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1238 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1239 false))
1240 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1241
1242 I915_WRITE(SERR_INT, serr_int);
1243 }
1244
1245 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1246 {
1247 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1248 int pipe;
1249 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1250
1251 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1252
1253 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1254 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1255 SDE_AUDIO_POWER_SHIFT_CPT);
1256 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1257 port_name(port));
1258 }
1259
1260 if (pch_iir & SDE_AUX_MASK_CPT)
1261 dp_aux_irq_handler(dev);
1262
1263 if (pch_iir & SDE_GMBUS_CPT)
1264 gmbus_irq_handler(dev);
1265
1266 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1267 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1268
1269 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1270 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1271
1272 if (pch_iir & SDE_FDI_MASK_CPT)
1273 for_each_pipe(pipe)
1274 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1275 pipe_name(pipe),
1276 I915_READ(FDI_RX_IIR(pipe)));
1277
1278 if (pch_iir & SDE_ERROR_CPT)
1279 cpt_serr_int_handler(dev);
1280 }
1281
1282 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1283 {
1284 struct drm_i915_private *dev_priv = dev->dev_private;
1285
1286 if (de_iir & DE_AUX_CHANNEL_A)
1287 dp_aux_irq_handler(dev);
1288
1289 if (de_iir & DE_GSE)
1290 intel_opregion_asle_intr(dev);
1291
1292 if (de_iir & DE_PIPEA_VBLANK)
1293 drm_handle_vblank(dev, 0);
1294
1295 if (de_iir & DE_PIPEB_VBLANK)
1296 drm_handle_vblank(dev, 1);
1297
1298 if (de_iir & DE_POISON)
1299 DRM_ERROR("Poison interrupt\n");
1300
1301 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1302 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1303 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1304
1305 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1306 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1307 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1308
1309 if (de_iir & DE_PLANEA_FLIP_DONE) {
1310 intel_prepare_page_flip(dev, 0);
1311 intel_finish_page_flip_plane(dev, 0);
1312 }
1313
1314 if (de_iir & DE_PLANEB_FLIP_DONE) {
1315 intel_prepare_page_flip(dev, 1);
1316 intel_finish_page_flip_plane(dev, 1);
1317 }
1318
1319 /* check event from PCH */
1320 if (de_iir & DE_PCH_EVENT) {
1321 u32 pch_iir = I915_READ(SDEIIR);
1322
1323 if (HAS_PCH_CPT(dev))
1324 cpt_irq_handler(dev, pch_iir);
1325 else
1326 ibx_irq_handler(dev, pch_iir);
1327
1328 /* should clear PCH hotplug event before clear CPU irq */
1329 I915_WRITE(SDEIIR, pch_iir);
1330 }
1331
1332 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1333 ironlake_rps_change_irq_handler(dev);
1334 }
1335
1336 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1337 {
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 int i;
1340
1341 if (de_iir & DE_ERR_INT_IVB)
1342 ivb_err_int_handler(dev);
1343
1344 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1345 dp_aux_irq_handler(dev);
1346
1347 if (de_iir & DE_GSE_IVB)
1348 intel_opregion_asle_intr(dev);
1349
1350 for (i = 0; i < 3; i++) {
1351 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1352 drm_handle_vblank(dev, i);
1353 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1354 intel_prepare_page_flip(dev, i);
1355 intel_finish_page_flip_plane(dev, i);
1356 }
1357 }
1358
1359 /* check event from PCH */
1360 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1361 u32 pch_iir = I915_READ(SDEIIR);
1362
1363 cpt_irq_handler(dev, pch_iir);
1364
1365 /* clear PCH hotplug event before clear CPU irq */
1366 I915_WRITE(SDEIIR, pch_iir);
1367 }
1368 }
1369
1370 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1371 {
1372 struct drm_device *dev = (struct drm_device *) arg;
1373 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1374 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1375 irqreturn_t ret = IRQ_NONE;
1376 bool err_int_reenable = false;
1377
1378 atomic_inc(&dev_priv->irq_received);
1379
1380 /* We get interrupts on unclaimed registers, so check for this before we
1381 * do any I915_{READ,WRITE}. */
1382 intel_uncore_check_errors(dev);
1383
1384 /* disable master interrupt before clearing iir */
1385 de_ier = I915_READ(DEIER);
1386 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1387 POSTING_READ(DEIER);
1388
1389 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1390 * interrupts will will be stored on its back queue, and then we'll be
1391 * able to process them after we restore SDEIER (as soon as we restore
1392 * it, we'll get an interrupt if SDEIIR still has something to process
1393 * due to its back queue). */
1394 if (!HAS_PCH_NOP(dev)) {
1395 sde_ier = I915_READ(SDEIER);
1396 I915_WRITE(SDEIER, 0);
1397 POSTING_READ(SDEIER);
1398 }
1399
1400 /* On Haswell, also mask ERR_INT because we don't want to risk
1401 * generating "unclaimed register" interrupts from inside the interrupt
1402 * handler. */
1403 if (IS_HASWELL(dev)) {
1404 spin_lock(&dev_priv->irq_lock);
1405 err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
1406 if (err_int_reenable)
1407 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1408 spin_unlock(&dev_priv->irq_lock);
1409 }
1410
1411 gt_iir = I915_READ(GTIIR);
1412 if (gt_iir) {
1413 if (INTEL_INFO(dev)->gen >= 6)
1414 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1415 else
1416 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1417 I915_WRITE(GTIIR, gt_iir);
1418 ret = IRQ_HANDLED;
1419 }
1420
1421 de_iir = I915_READ(DEIIR);
1422 if (de_iir) {
1423 if (INTEL_INFO(dev)->gen >= 7)
1424 ivb_display_irq_handler(dev, de_iir);
1425 else
1426 ilk_display_irq_handler(dev, de_iir);
1427 I915_WRITE(DEIIR, de_iir);
1428 ret = IRQ_HANDLED;
1429 }
1430
1431 if (INTEL_INFO(dev)->gen >= 6) {
1432 u32 pm_iir = I915_READ(GEN6_PMIIR);
1433 if (pm_iir) {
1434 if (IS_HASWELL(dev))
1435 hsw_pm_irq_handler(dev_priv, pm_iir);
1436 else if (pm_iir & GEN6_PM_RPS_EVENTS)
1437 gen6_rps_irq_handler(dev_priv, pm_iir);
1438 I915_WRITE(GEN6_PMIIR, pm_iir);
1439 ret = IRQ_HANDLED;
1440 }
1441 }
1442
1443 if (err_int_reenable) {
1444 spin_lock(&dev_priv->irq_lock);
1445 if (ivb_can_enable_err_int(dev))
1446 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1447 spin_unlock(&dev_priv->irq_lock);
1448 }
1449
1450 I915_WRITE(DEIER, de_ier);
1451 POSTING_READ(DEIER);
1452 if (!HAS_PCH_NOP(dev)) {
1453 I915_WRITE(SDEIER, sde_ier);
1454 POSTING_READ(SDEIER);
1455 }
1456
1457 return ret;
1458 }
1459
1460 /**
1461 * i915_error_work_func - do process context error handling work
1462 * @work: work struct
1463 *
1464 * Fire an error uevent so userspace can see that a hang or error
1465 * was detected.
1466 */
1467 static void i915_error_work_func(struct work_struct *work)
1468 {
1469 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1470 work);
1471 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1472 gpu_error);
1473 struct drm_device *dev = dev_priv->dev;
1474 struct intel_ring_buffer *ring;
1475 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1476 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1477 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1478 int i, ret;
1479
1480 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1481
1482 /*
1483 * Note that there's only one work item which does gpu resets, so we
1484 * need not worry about concurrent gpu resets potentially incrementing
1485 * error->reset_counter twice. We only need to take care of another
1486 * racing irq/hangcheck declaring the gpu dead for a second time. A
1487 * quick check for that is good enough: schedule_work ensures the
1488 * correct ordering between hang detection and this work item, and since
1489 * the reset in-progress bit is only ever set by code outside of this
1490 * work we don't need to worry about any other races.
1491 */
1492 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1493 DRM_DEBUG_DRIVER("resetting chip\n");
1494 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1495 reset_event);
1496
1497 ret = i915_reset(dev);
1498
1499 if (ret == 0) {
1500 /*
1501 * After all the gem state is reset, increment the reset
1502 * counter and wake up everyone waiting for the reset to
1503 * complete.
1504 *
1505 * Since unlock operations are a one-sided barrier only,
1506 * we need to insert a barrier here to order any seqno
1507 * updates before
1508 * the counter increment.
1509 */
1510 smp_mb__before_atomic_inc();
1511 atomic_inc(&dev_priv->gpu_error.reset_counter);
1512
1513 kobject_uevent_env(&dev->primary->kdev.kobj,
1514 KOBJ_CHANGE, reset_done_event);
1515 } else {
1516 atomic_set(&error->reset_counter, I915_WEDGED);
1517 }
1518
1519 for_each_ring(ring, dev_priv, i)
1520 wake_up_all(&ring->irq_queue);
1521
1522 intel_display_handle_reset(dev);
1523
1524 wake_up_all(&dev_priv->gpu_error.reset_queue);
1525 }
1526 }
1527
1528 static void i915_report_and_clear_eir(struct drm_device *dev)
1529 {
1530 struct drm_i915_private *dev_priv = dev->dev_private;
1531 uint32_t instdone[I915_NUM_INSTDONE_REG];
1532 u32 eir = I915_READ(EIR);
1533 int pipe, i;
1534
1535 if (!eir)
1536 return;
1537
1538 pr_err("render error detected, EIR: 0x%08x\n", eir);
1539
1540 i915_get_extra_instdone(dev, instdone);
1541
1542 if (IS_G4X(dev)) {
1543 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1544 u32 ipeir = I915_READ(IPEIR_I965);
1545
1546 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1547 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1548 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1549 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1550 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1551 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1552 I915_WRITE(IPEIR_I965, ipeir);
1553 POSTING_READ(IPEIR_I965);
1554 }
1555 if (eir & GM45_ERROR_PAGE_TABLE) {
1556 u32 pgtbl_err = I915_READ(PGTBL_ER);
1557 pr_err("page table error\n");
1558 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1559 I915_WRITE(PGTBL_ER, pgtbl_err);
1560 POSTING_READ(PGTBL_ER);
1561 }
1562 }
1563
1564 if (!IS_GEN2(dev)) {
1565 if (eir & I915_ERROR_PAGE_TABLE) {
1566 u32 pgtbl_err = I915_READ(PGTBL_ER);
1567 pr_err("page table error\n");
1568 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1569 I915_WRITE(PGTBL_ER, pgtbl_err);
1570 POSTING_READ(PGTBL_ER);
1571 }
1572 }
1573
1574 if (eir & I915_ERROR_MEMORY_REFRESH) {
1575 pr_err("memory refresh error:\n");
1576 for_each_pipe(pipe)
1577 pr_err("pipe %c stat: 0x%08x\n",
1578 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1579 /* pipestat has already been acked */
1580 }
1581 if (eir & I915_ERROR_INSTRUCTION) {
1582 pr_err("instruction error\n");
1583 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1584 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1585 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1586 if (INTEL_INFO(dev)->gen < 4) {
1587 u32 ipeir = I915_READ(IPEIR);
1588
1589 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1590 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1591 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1592 I915_WRITE(IPEIR, ipeir);
1593 POSTING_READ(IPEIR);
1594 } else {
1595 u32 ipeir = I915_READ(IPEIR_I965);
1596
1597 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1598 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1599 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1600 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1601 I915_WRITE(IPEIR_I965, ipeir);
1602 POSTING_READ(IPEIR_I965);
1603 }
1604 }
1605
1606 I915_WRITE(EIR, eir);
1607 POSTING_READ(EIR);
1608 eir = I915_READ(EIR);
1609 if (eir) {
1610 /*
1611 * some errors might have become stuck,
1612 * mask them.
1613 */
1614 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1615 I915_WRITE(EMR, I915_READ(EMR) | eir);
1616 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1617 }
1618 }
1619
1620 /**
1621 * i915_handle_error - handle an error interrupt
1622 * @dev: drm device
1623 *
1624 * Do some basic checking of regsiter state at error interrupt time and
1625 * dump it to the syslog. Also call i915_capture_error_state() to make
1626 * sure we get a record and make it available in debugfs. Fire a uevent
1627 * so userspace knows something bad happened (should trigger collection
1628 * of a ring dump etc.).
1629 */
1630 void i915_handle_error(struct drm_device *dev, bool wedged)
1631 {
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633 struct intel_ring_buffer *ring;
1634 int i;
1635
1636 i915_capture_error_state(dev);
1637 i915_report_and_clear_eir(dev);
1638
1639 if (wedged) {
1640 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1641 &dev_priv->gpu_error.reset_counter);
1642
1643 /*
1644 * Wakeup waiting processes so that the reset work item
1645 * doesn't deadlock trying to grab various locks.
1646 */
1647 for_each_ring(ring, dev_priv, i)
1648 wake_up_all(&ring->irq_queue);
1649 }
1650
1651 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
1652 }
1653
1654 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1655 {
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1659 struct drm_i915_gem_object *obj;
1660 struct intel_unpin_work *work;
1661 unsigned long flags;
1662 bool stall_detected;
1663
1664 /* Ignore early vblank irqs */
1665 if (intel_crtc == NULL)
1666 return;
1667
1668 spin_lock_irqsave(&dev->event_lock, flags);
1669 work = intel_crtc->unpin_work;
1670
1671 if (work == NULL ||
1672 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1673 !work->enable_stall_check) {
1674 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1675 spin_unlock_irqrestore(&dev->event_lock, flags);
1676 return;
1677 }
1678
1679 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1680 obj = work->pending_flip_obj;
1681 if (INTEL_INFO(dev)->gen >= 4) {
1682 int dspsurf = DSPSURF(intel_crtc->plane);
1683 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1684 i915_gem_obj_ggtt_offset(obj);
1685 } else {
1686 int dspaddr = DSPADDR(intel_crtc->plane);
1687 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1688 crtc->y * crtc->fb->pitches[0] +
1689 crtc->x * crtc->fb->bits_per_pixel/8);
1690 }
1691
1692 spin_unlock_irqrestore(&dev->event_lock, flags);
1693
1694 if (stall_detected) {
1695 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1696 intel_prepare_page_flip(dev, intel_crtc->plane);
1697 }
1698 }
1699
1700 /* Called from drm generic code, passed 'crtc' which
1701 * we use as a pipe index
1702 */
1703 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1704 {
1705 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1706 unsigned long irqflags;
1707
1708 if (!i915_pipe_enabled(dev, pipe))
1709 return -EINVAL;
1710
1711 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1712 if (INTEL_INFO(dev)->gen >= 4)
1713 i915_enable_pipestat(dev_priv, pipe,
1714 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1715 else
1716 i915_enable_pipestat(dev_priv, pipe,
1717 PIPE_VBLANK_INTERRUPT_ENABLE);
1718
1719 /* maintain vblank delivery even in deep C-states */
1720 if (dev_priv->info->gen == 3)
1721 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1722 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1723
1724 return 0;
1725 }
1726
1727 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1728 {
1729 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1730 unsigned long irqflags;
1731 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1732 DE_PIPE_VBLANK_ILK(pipe);
1733
1734 if (!i915_pipe_enabled(dev, pipe))
1735 return -EINVAL;
1736
1737 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1738 ironlake_enable_display_irq(dev_priv, bit);
1739 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1740
1741 return 0;
1742 }
1743
1744 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1745 {
1746 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1747 unsigned long irqflags;
1748 u32 imr;
1749
1750 if (!i915_pipe_enabled(dev, pipe))
1751 return -EINVAL;
1752
1753 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1754 imr = I915_READ(VLV_IMR);
1755 if (pipe == 0)
1756 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1757 else
1758 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1759 I915_WRITE(VLV_IMR, imr);
1760 i915_enable_pipestat(dev_priv, pipe,
1761 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1762 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1763
1764 return 0;
1765 }
1766
1767 /* Called from drm generic code, passed 'crtc' which
1768 * we use as a pipe index
1769 */
1770 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1771 {
1772 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1773 unsigned long irqflags;
1774
1775 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1776 if (dev_priv->info->gen == 3)
1777 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1778
1779 i915_disable_pipestat(dev_priv, pipe,
1780 PIPE_VBLANK_INTERRUPT_ENABLE |
1781 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1782 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1783 }
1784
1785 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1786 {
1787 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1788 unsigned long irqflags;
1789 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1790 DE_PIPE_VBLANK_ILK(pipe);
1791
1792 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1793 ironlake_disable_display_irq(dev_priv, bit);
1794 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1795 }
1796
1797 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1798 {
1799 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1800 unsigned long irqflags;
1801 u32 imr;
1802
1803 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1804 i915_disable_pipestat(dev_priv, pipe,
1805 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1806 imr = I915_READ(VLV_IMR);
1807 if (pipe == 0)
1808 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1809 else
1810 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1811 I915_WRITE(VLV_IMR, imr);
1812 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1813 }
1814
1815 static u32
1816 ring_last_seqno(struct intel_ring_buffer *ring)
1817 {
1818 return list_entry(ring->request_list.prev,
1819 struct drm_i915_gem_request, list)->seqno;
1820 }
1821
1822 static bool
1823 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1824 {
1825 return (list_empty(&ring->request_list) ||
1826 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1827 }
1828
1829 static struct intel_ring_buffer *
1830 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1831 {
1832 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1833 u32 cmd, ipehr, acthd, acthd_min;
1834
1835 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1836 if ((ipehr & ~(0x3 << 16)) !=
1837 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1838 return NULL;
1839
1840 /* ACTHD is likely pointing to the dword after the actual command,
1841 * so scan backwards until we find the MBOX.
1842 */
1843 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1844 acthd_min = max((int)acthd - 3 * 4, 0);
1845 do {
1846 cmd = ioread32(ring->virtual_start + acthd);
1847 if (cmd == ipehr)
1848 break;
1849
1850 acthd -= 4;
1851 if (acthd < acthd_min)
1852 return NULL;
1853 } while (1);
1854
1855 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1856 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1857 }
1858
1859 static int semaphore_passed(struct intel_ring_buffer *ring)
1860 {
1861 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1862 struct intel_ring_buffer *signaller;
1863 u32 seqno, ctl;
1864
1865 ring->hangcheck.deadlock = true;
1866
1867 signaller = semaphore_waits_for(ring, &seqno);
1868 if (signaller == NULL || signaller->hangcheck.deadlock)
1869 return -1;
1870
1871 /* cursory check for an unkickable deadlock */
1872 ctl = I915_READ_CTL(signaller);
1873 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1874 return -1;
1875
1876 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1877 }
1878
1879 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1880 {
1881 struct intel_ring_buffer *ring;
1882 int i;
1883
1884 for_each_ring(ring, dev_priv, i)
1885 ring->hangcheck.deadlock = false;
1886 }
1887
1888 static enum intel_ring_hangcheck_action
1889 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1890 {
1891 struct drm_device *dev = ring->dev;
1892 struct drm_i915_private *dev_priv = dev->dev_private;
1893 u32 tmp;
1894
1895 if (ring->hangcheck.acthd != acthd)
1896 return HANGCHECK_ACTIVE;
1897
1898 if (IS_GEN2(dev))
1899 return HANGCHECK_HUNG;
1900
1901 /* Is the chip hanging on a WAIT_FOR_EVENT?
1902 * If so we can simply poke the RB_WAIT bit
1903 * and break the hang. This should work on
1904 * all but the second generation chipsets.
1905 */
1906 tmp = I915_READ_CTL(ring);
1907 if (tmp & RING_WAIT) {
1908 DRM_ERROR("Kicking stuck wait on %s\n",
1909 ring->name);
1910 I915_WRITE_CTL(ring, tmp);
1911 return HANGCHECK_KICK;
1912 }
1913
1914 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1915 switch (semaphore_passed(ring)) {
1916 default:
1917 return HANGCHECK_HUNG;
1918 case 1:
1919 DRM_ERROR("Kicking stuck semaphore on %s\n",
1920 ring->name);
1921 I915_WRITE_CTL(ring, tmp);
1922 return HANGCHECK_KICK;
1923 case 0:
1924 return HANGCHECK_WAIT;
1925 }
1926 }
1927
1928 return HANGCHECK_HUNG;
1929 }
1930
1931 /**
1932 * This is called when the chip hasn't reported back with completed
1933 * batchbuffers in a long time. We keep track per ring seqno progress and
1934 * if there are no progress, hangcheck score for that ring is increased.
1935 * Further, acthd is inspected to see if the ring is stuck. On stuck case
1936 * we kick the ring. If we see no progress on three subsequent calls
1937 * we assume chip is wedged and try to fix it by resetting the chip.
1938 */
1939 static void i915_hangcheck_elapsed(unsigned long data)
1940 {
1941 struct drm_device *dev = (struct drm_device *)data;
1942 drm_i915_private_t *dev_priv = dev->dev_private;
1943 struct intel_ring_buffer *ring;
1944 int i;
1945 int busy_count = 0, rings_hung = 0;
1946 bool stuck[I915_NUM_RINGS] = { 0 };
1947 #define BUSY 1
1948 #define KICK 5
1949 #define HUNG 20
1950 #define FIRE 30
1951
1952 if (!i915_enable_hangcheck)
1953 return;
1954
1955 for_each_ring(ring, dev_priv, i) {
1956 u32 seqno, acthd;
1957 bool busy = true;
1958
1959 semaphore_clear_deadlocks(dev_priv);
1960
1961 seqno = ring->get_seqno(ring, false);
1962 acthd = intel_ring_get_active_head(ring);
1963
1964 if (ring->hangcheck.seqno == seqno) {
1965 if (ring_idle(ring, seqno)) {
1966 if (waitqueue_active(&ring->irq_queue)) {
1967 /* Issue a wake-up to catch stuck h/w. */
1968 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1969 ring->name);
1970 wake_up_all(&ring->irq_queue);
1971 ring->hangcheck.score += HUNG;
1972 } else
1973 busy = false;
1974 } else {
1975 /* We always increment the hangcheck score
1976 * if the ring is busy and still processing
1977 * the same request, so that no single request
1978 * can run indefinitely (such as a chain of
1979 * batches). The only time we do not increment
1980 * the hangcheck score on this ring, if this
1981 * ring is in a legitimate wait for another
1982 * ring. In that case the waiting ring is a
1983 * victim and we want to be sure we catch the
1984 * right culprit. Then every time we do kick
1985 * the ring, add a small increment to the
1986 * score so that we can catch a batch that is
1987 * being repeatedly kicked and so responsible
1988 * for stalling the machine.
1989 */
1990 ring->hangcheck.action = ring_stuck(ring,
1991 acthd);
1992
1993 switch (ring->hangcheck.action) {
1994 case HANGCHECK_WAIT:
1995 break;
1996 case HANGCHECK_ACTIVE:
1997 ring->hangcheck.score += BUSY;
1998 break;
1999 case HANGCHECK_KICK:
2000 ring->hangcheck.score += KICK;
2001 break;
2002 case HANGCHECK_HUNG:
2003 ring->hangcheck.score += HUNG;
2004 stuck[i] = true;
2005 break;
2006 }
2007 }
2008 } else {
2009 /* Gradually reduce the count so that we catch DoS
2010 * attempts across multiple batches.
2011 */
2012 if (ring->hangcheck.score > 0)
2013 ring->hangcheck.score--;
2014 }
2015
2016 ring->hangcheck.seqno = seqno;
2017 ring->hangcheck.acthd = acthd;
2018 busy_count += busy;
2019 }
2020
2021 for_each_ring(ring, dev_priv, i) {
2022 if (ring->hangcheck.score > FIRE) {
2023 DRM_ERROR("%s on %s\n",
2024 stuck[i] ? "stuck" : "no progress",
2025 ring->name);
2026 rings_hung++;
2027 }
2028 }
2029
2030 if (rings_hung)
2031 return i915_handle_error(dev, true);
2032
2033 if (busy_count)
2034 /* Reset timer case chip hangs without another request
2035 * being added */
2036 i915_queue_hangcheck(dev);
2037 }
2038
2039 void i915_queue_hangcheck(struct drm_device *dev)
2040 {
2041 struct drm_i915_private *dev_priv = dev->dev_private;
2042 if (!i915_enable_hangcheck)
2043 return;
2044
2045 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2046 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2047 }
2048
2049 static void ibx_irq_preinstall(struct drm_device *dev)
2050 {
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053 if (HAS_PCH_NOP(dev))
2054 return;
2055
2056 /* south display irq */
2057 I915_WRITE(SDEIMR, 0xffffffff);
2058 /*
2059 * SDEIER is also touched by the interrupt handler to work around missed
2060 * PCH interrupts. Hence we can't update it after the interrupt handler
2061 * is enabled - instead we unconditionally enable all PCH interrupt
2062 * sources here, but then only unmask them as needed with SDEIMR.
2063 */
2064 I915_WRITE(SDEIER, 0xffffffff);
2065 POSTING_READ(SDEIER);
2066 }
2067
2068 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2069 {
2070 struct drm_i915_private *dev_priv = dev->dev_private;
2071
2072 /* and GT */
2073 I915_WRITE(GTIMR, 0xffffffff);
2074 I915_WRITE(GTIER, 0x0);
2075 POSTING_READ(GTIER);
2076
2077 if (INTEL_INFO(dev)->gen >= 6) {
2078 /* and PM */
2079 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2080 I915_WRITE(GEN6_PMIER, 0x0);
2081 POSTING_READ(GEN6_PMIER);
2082 }
2083 }
2084
2085 /* drm_dma.h hooks
2086 */
2087 static void ironlake_irq_preinstall(struct drm_device *dev)
2088 {
2089 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2090
2091 atomic_set(&dev_priv->irq_received, 0);
2092
2093 I915_WRITE(HWSTAM, 0xeffe);
2094
2095 I915_WRITE(DEIMR, 0xffffffff);
2096 I915_WRITE(DEIER, 0x0);
2097 POSTING_READ(DEIER);
2098
2099 gen5_gt_irq_preinstall(dev);
2100
2101 ibx_irq_preinstall(dev);
2102 }
2103
2104 static void valleyview_irq_preinstall(struct drm_device *dev)
2105 {
2106 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2107 int pipe;
2108
2109 atomic_set(&dev_priv->irq_received, 0);
2110
2111 /* VLV magic */
2112 I915_WRITE(VLV_IMR, 0);
2113 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2114 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2115 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2116
2117 /* and GT */
2118 I915_WRITE(GTIIR, I915_READ(GTIIR));
2119 I915_WRITE(GTIIR, I915_READ(GTIIR));
2120
2121 gen5_gt_irq_preinstall(dev);
2122
2123 I915_WRITE(DPINVGTT, 0xff);
2124
2125 I915_WRITE(PORT_HOTPLUG_EN, 0);
2126 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2127 for_each_pipe(pipe)
2128 I915_WRITE(PIPESTAT(pipe), 0xffff);
2129 I915_WRITE(VLV_IIR, 0xffffffff);
2130 I915_WRITE(VLV_IMR, 0xffffffff);
2131 I915_WRITE(VLV_IER, 0x0);
2132 POSTING_READ(VLV_IER);
2133 }
2134
2135 static void ibx_hpd_irq_setup(struct drm_device *dev)
2136 {
2137 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2138 struct drm_mode_config *mode_config = &dev->mode_config;
2139 struct intel_encoder *intel_encoder;
2140 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2141
2142 if (HAS_PCH_IBX(dev)) {
2143 hotplug_irqs = SDE_HOTPLUG_MASK;
2144 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2145 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2146 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2147 } else {
2148 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2149 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2150 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2151 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2152 }
2153
2154 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2155
2156 /*
2157 * Enable digital hotplug on the PCH, and configure the DP short pulse
2158 * duration to 2ms (which is the minimum in the Display Port spec)
2159 *
2160 * This register is the same on all known PCH chips.
2161 */
2162 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2163 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2164 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2165 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2166 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2167 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2168 }
2169
2170 static void ibx_irq_postinstall(struct drm_device *dev)
2171 {
2172 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2173 u32 mask;
2174
2175 if (HAS_PCH_NOP(dev))
2176 return;
2177
2178 if (HAS_PCH_IBX(dev)) {
2179 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2180 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2181 } else {
2182 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2183
2184 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2185 }
2186
2187 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2188 I915_WRITE(SDEIMR, ~mask);
2189 }
2190
2191 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2192 {
2193 struct drm_i915_private *dev_priv = dev->dev_private;
2194 u32 pm_irqs, gt_irqs;
2195
2196 pm_irqs = gt_irqs = 0;
2197
2198 dev_priv->gt_irq_mask = ~0;
2199 if (HAS_L3_GPU_CACHE(dev)) {
2200 /* L3 parity interrupt is always unmasked. */
2201 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2202 gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2203 }
2204
2205 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2206 if (IS_GEN5(dev)) {
2207 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2208 ILK_BSD_USER_INTERRUPT;
2209 } else {
2210 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2211 }
2212
2213 I915_WRITE(GTIIR, I915_READ(GTIIR));
2214 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2215 I915_WRITE(GTIER, gt_irqs);
2216 POSTING_READ(GTIER);
2217
2218 if (INTEL_INFO(dev)->gen >= 6) {
2219 pm_irqs |= GEN6_PM_RPS_EVENTS;
2220
2221 if (HAS_VEBOX(dev))
2222 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2223
2224 dev_priv->pm_irq_mask = 0xffffffff;
2225 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2226 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2227 I915_WRITE(GEN6_PMIER, pm_irqs);
2228 POSTING_READ(GEN6_PMIER);
2229 }
2230 }
2231
2232 static int ironlake_irq_postinstall(struct drm_device *dev)
2233 {
2234 unsigned long irqflags;
2235 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2236 u32 display_mask, extra_mask;
2237
2238 if (INTEL_INFO(dev)->gen >= 7) {
2239 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2240 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2241 DE_PLANEB_FLIP_DONE_IVB |
2242 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2243 DE_ERR_INT_IVB);
2244 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2245 DE_PIPEA_VBLANK_IVB);
2246
2247 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2248 } else {
2249 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2250 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2251 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2252 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2253 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2254 }
2255
2256 dev_priv->irq_mask = ~display_mask;
2257
2258 /* should always can generate irq */
2259 I915_WRITE(DEIIR, I915_READ(DEIIR));
2260 I915_WRITE(DEIMR, dev_priv->irq_mask);
2261 I915_WRITE(DEIER, display_mask | extra_mask);
2262 POSTING_READ(DEIER);
2263
2264 gen5_gt_irq_postinstall(dev);
2265
2266 ibx_irq_postinstall(dev);
2267
2268 if (IS_IRONLAKE_M(dev)) {
2269 /* Enable PCU event interrupts
2270 *
2271 * spinlocking not required here for correctness since interrupt
2272 * setup is guaranteed to run in single-threaded context. But we
2273 * need it to make the assert_spin_locked happy. */
2274 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2275 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2276 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2277 }
2278
2279 return 0;
2280 }
2281
2282 static int valleyview_irq_postinstall(struct drm_device *dev)
2283 {
2284 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2285 u32 enable_mask;
2286 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2287 unsigned long irqflags;
2288
2289 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2290 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2291 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2292 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2293 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2294
2295 /*
2296 *Leave vblank interrupts masked initially. enable/disable will
2297 * toggle them based on usage.
2298 */
2299 dev_priv->irq_mask = (~enable_mask) |
2300 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2301 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2302
2303 I915_WRITE(PORT_HOTPLUG_EN, 0);
2304 POSTING_READ(PORT_HOTPLUG_EN);
2305
2306 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2307 I915_WRITE(VLV_IER, enable_mask);
2308 I915_WRITE(VLV_IIR, 0xffffffff);
2309 I915_WRITE(PIPESTAT(0), 0xffff);
2310 I915_WRITE(PIPESTAT(1), 0xffff);
2311 POSTING_READ(VLV_IER);
2312
2313 /* Interrupt setup is already guaranteed to be single-threaded, this is
2314 * just to make the assert_spin_locked check happy. */
2315 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2316 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2317 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2318 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2319 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2320
2321 I915_WRITE(VLV_IIR, 0xffffffff);
2322 I915_WRITE(VLV_IIR, 0xffffffff);
2323
2324 gen5_gt_irq_postinstall(dev);
2325
2326 /* ack & enable invalid PTE error interrupts */
2327 #if 0 /* FIXME: add support to irq handler for checking these bits */
2328 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2329 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2330 #endif
2331
2332 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2333
2334 return 0;
2335 }
2336
2337 static void valleyview_irq_uninstall(struct drm_device *dev)
2338 {
2339 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2340 int pipe;
2341
2342 if (!dev_priv)
2343 return;
2344
2345 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2346
2347 for_each_pipe(pipe)
2348 I915_WRITE(PIPESTAT(pipe), 0xffff);
2349
2350 I915_WRITE(HWSTAM, 0xffffffff);
2351 I915_WRITE(PORT_HOTPLUG_EN, 0);
2352 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2353 for_each_pipe(pipe)
2354 I915_WRITE(PIPESTAT(pipe), 0xffff);
2355 I915_WRITE(VLV_IIR, 0xffffffff);
2356 I915_WRITE(VLV_IMR, 0xffffffff);
2357 I915_WRITE(VLV_IER, 0x0);
2358 POSTING_READ(VLV_IER);
2359 }
2360
2361 static void ironlake_irq_uninstall(struct drm_device *dev)
2362 {
2363 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2364
2365 if (!dev_priv)
2366 return;
2367
2368 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2369
2370 I915_WRITE(HWSTAM, 0xffffffff);
2371
2372 I915_WRITE(DEIMR, 0xffffffff);
2373 I915_WRITE(DEIER, 0x0);
2374 I915_WRITE(DEIIR, I915_READ(DEIIR));
2375 if (IS_GEN7(dev))
2376 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2377
2378 I915_WRITE(GTIMR, 0xffffffff);
2379 I915_WRITE(GTIER, 0x0);
2380 I915_WRITE(GTIIR, I915_READ(GTIIR));
2381
2382 if (HAS_PCH_NOP(dev))
2383 return;
2384
2385 I915_WRITE(SDEIMR, 0xffffffff);
2386 I915_WRITE(SDEIER, 0x0);
2387 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2388 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2389 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2390 }
2391
2392 static void i8xx_irq_preinstall(struct drm_device * dev)
2393 {
2394 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2395 int pipe;
2396
2397 atomic_set(&dev_priv->irq_received, 0);
2398
2399 for_each_pipe(pipe)
2400 I915_WRITE(PIPESTAT(pipe), 0);
2401 I915_WRITE16(IMR, 0xffff);
2402 I915_WRITE16(IER, 0x0);
2403 POSTING_READ16(IER);
2404 }
2405
2406 static int i8xx_irq_postinstall(struct drm_device *dev)
2407 {
2408 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2409
2410 I915_WRITE16(EMR,
2411 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2412
2413 /* Unmask the interrupts that we always want on. */
2414 dev_priv->irq_mask =
2415 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2416 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2417 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2418 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2419 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2420 I915_WRITE16(IMR, dev_priv->irq_mask);
2421
2422 I915_WRITE16(IER,
2423 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2424 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2425 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2426 I915_USER_INTERRUPT);
2427 POSTING_READ16(IER);
2428
2429 return 0;
2430 }
2431
2432 /*
2433 * Returns true when a page flip has completed.
2434 */
2435 static bool i8xx_handle_vblank(struct drm_device *dev,
2436 int pipe, u16 iir)
2437 {
2438 drm_i915_private_t *dev_priv = dev->dev_private;
2439 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2440
2441 if (!drm_handle_vblank(dev, pipe))
2442 return false;
2443
2444 if ((iir & flip_pending) == 0)
2445 return false;
2446
2447 intel_prepare_page_flip(dev, pipe);
2448
2449 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2450 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2451 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2452 * the flip is completed (no longer pending). Since this doesn't raise
2453 * an interrupt per se, we watch for the change at vblank.
2454 */
2455 if (I915_READ16(ISR) & flip_pending)
2456 return false;
2457
2458 intel_finish_page_flip(dev, pipe);
2459
2460 return true;
2461 }
2462
2463 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2464 {
2465 struct drm_device *dev = (struct drm_device *) arg;
2466 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2467 u16 iir, new_iir;
2468 u32 pipe_stats[2];
2469 unsigned long irqflags;
2470 int pipe;
2471 u16 flip_mask =
2472 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2473 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2474
2475 atomic_inc(&dev_priv->irq_received);
2476
2477 iir = I915_READ16(IIR);
2478 if (iir == 0)
2479 return IRQ_NONE;
2480
2481 while (iir & ~flip_mask) {
2482 /* Can't rely on pipestat interrupt bit in iir as it might
2483 * have been cleared after the pipestat interrupt was received.
2484 * It doesn't set the bit in iir again, but it still produces
2485 * interrupts (for non-MSI).
2486 */
2487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2488 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2489 i915_handle_error(dev, false);
2490
2491 for_each_pipe(pipe) {
2492 int reg = PIPESTAT(pipe);
2493 pipe_stats[pipe] = I915_READ(reg);
2494
2495 /*
2496 * Clear the PIPE*STAT regs before the IIR
2497 */
2498 if (pipe_stats[pipe] & 0x8000ffff) {
2499 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2500 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2501 pipe_name(pipe));
2502 I915_WRITE(reg, pipe_stats[pipe]);
2503 }
2504 }
2505 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2506
2507 I915_WRITE16(IIR, iir & ~flip_mask);
2508 new_iir = I915_READ16(IIR); /* Flush posted writes */
2509
2510 i915_update_dri1_breadcrumb(dev);
2511
2512 if (iir & I915_USER_INTERRUPT)
2513 notify_ring(dev, &dev_priv->ring[RCS]);
2514
2515 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2516 i8xx_handle_vblank(dev, 0, iir))
2517 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2518
2519 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2520 i8xx_handle_vblank(dev, 1, iir))
2521 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2522
2523 iir = new_iir;
2524 }
2525
2526 return IRQ_HANDLED;
2527 }
2528
2529 static void i8xx_irq_uninstall(struct drm_device * dev)
2530 {
2531 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2532 int pipe;
2533
2534 for_each_pipe(pipe) {
2535 /* Clear enable bits; then clear status bits */
2536 I915_WRITE(PIPESTAT(pipe), 0);
2537 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2538 }
2539 I915_WRITE16(IMR, 0xffff);
2540 I915_WRITE16(IER, 0x0);
2541 I915_WRITE16(IIR, I915_READ16(IIR));
2542 }
2543
2544 static void i915_irq_preinstall(struct drm_device * dev)
2545 {
2546 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2547 int pipe;
2548
2549 atomic_set(&dev_priv->irq_received, 0);
2550
2551 if (I915_HAS_HOTPLUG(dev)) {
2552 I915_WRITE(PORT_HOTPLUG_EN, 0);
2553 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2554 }
2555
2556 I915_WRITE16(HWSTAM, 0xeffe);
2557 for_each_pipe(pipe)
2558 I915_WRITE(PIPESTAT(pipe), 0);
2559 I915_WRITE(IMR, 0xffffffff);
2560 I915_WRITE(IER, 0x0);
2561 POSTING_READ(IER);
2562 }
2563
2564 static int i915_irq_postinstall(struct drm_device *dev)
2565 {
2566 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2567 u32 enable_mask;
2568
2569 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2570
2571 /* Unmask the interrupts that we always want on. */
2572 dev_priv->irq_mask =
2573 ~(I915_ASLE_INTERRUPT |
2574 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2575 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2576 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2577 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2578 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2579
2580 enable_mask =
2581 I915_ASLE_INTERRUPT |
2582 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2583 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2584 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2585 I915_USER_INTERRUPT;
2586
2587 if (I915_HAS_HOTPLUG(dev)) {
2588 I915_WRITE(PORT_HOTPLUG_EN, 0);
2589 POSTING_READ(PORT_HOTPLUG_EN);
2590
2591 /* Enable in IER... */
2592 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2593 /* and unmask in IMR */
2594 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2595 }
2596
2597 I915_WRITE(IMR, dev_priv->irq_mask);
2598 I915_WRITE(IER, enable_mask);
2599 POSTING_READ(IER);
2600
2601 i915_enable_asle_pipestat(dev);
2602
2603 return 0;
2604 }
2605
2606 /*
2607 * Returns true when a page flip has completed.
2608 */
2609 static bool i915_handle_vblank(struct drm_device *dev,
2610 int plane, int pipe, u32 iir)
2611 {
2612 drm_i915_private_t *dev_priv = dev->dev_private;
2613 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2614
2615 if (!drm_handle_vblank(dev, pipe))
2616 return false;
2617
2618 if ((iir & flip_pending) == 0)
2619 return false;
2620
2621 intel_prepare_page_flip(dev, plane);
2622
2623 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2624 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2625 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2626 * the flip is completed (no longer pending). Since this doesn't raise
2627 * an interrupt per se, we watch for the change at vblank.
2628 */
2629 if (I915_READ(ISR) & flip_pending)
2630 return false;
2631
2632 intel_finish_page_flip(dev, pipe);
2633
2634 return true;
2635 }
2636
2637 static irqreturn_t i915_irq_handler(int irq, void *arg)
2638 {
2639 struct drm_device *dev = (struct drm_device *) arg;
2640 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2641 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2642 unsigned long irqflags;
2643 u32 flip_mask =
2644 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2645 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2646 int pipe, ret = IRQ_NONE;
2647
2648 atomic_inc(&dev_priv->irq_received);
2649
2650 iir = I915_READ(IIR);
2651 do {
2652 bool irq_received = (iir & ~flip_mask) != 0;
2653 bool blc_event = false;
2654
2655 /* Can't rely on pipestat interrupt bit in iir as it might
2656 * have been cleared after the pipestat interrupt was received.
2657 * It doesn't set the bit in iir again, but it still produces
2658 * interrupts (for non-MSI).
2659 */
2660 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2661 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2662 i915_handle_error(dev, false);
2663
2664 for_each_pipe(pipe) {
2665 int reg = PIPESTAT(pipe);
2666 pipe_stats[pipe] = I915_READ(reg);
2667
2668 /* Clear the PIPE*STAT regs before the IIR */
2669 if (pipe_stats[pipe] & 0x8000ffff) {
2670 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2671 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2672 pipe_name(pipe));
2673 I915_WRITE(reg, pipe_stats[pipe]);
2674 irq_received = true;
2675 }
2676 }
2677 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2678
2679 if (!irq_received)
2680 break;
2681
2682 /* Consume port. Then clear IIR or we'll miss events */
2683 if ((I915_HAS_HOTPLUG(dev)) &&
2684 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2685 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2686 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2687
2688 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2689 hotplug_status);
2690
2691 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2692
2693 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2694 POSTING_READ(PORT_HOTPLUG_STAT);
2695 }
2696
2697 I915_WRITE(IIR, iir & ~flip_mask);
2698 new_iir = I915_READ(IIR); /* Flush posted writes */
2699
2700 if (iir & I915_USER_INTERRUPT)
2701 notify_ring(dev, &dev_priv->ring[RCS]);
2702
2703 for_each_pipe(pipe) {
2704 int plane = pipe;
2705 if (IS_MOBILE(dev))
2706 plane = !plane;
2707
2708 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2709 i915_handle_vblank(dev, plane, pipe, iir))
2710 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2711
2712 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2713 blc_event = true;
2714 }
2715
2716 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2717 intel_opregion_asle_intr(dev);
2718
2719 /* With MSI, interrupts are only generated when iir
2720 * transitions from zero to nonzero. If another bit got
2721 * set while we were handling the existing iir bits, then
2722 * we would never get another interrupt.
2723 *
2724 * This is fine on non-MSI as well, as if we hit this path
2725 * we avoid exiting the interrupt handler only to generate
2726 * another one.
2727 *
2728 * Note that for MSI this could cause a stray interrupt report
2729 * if an interrupt landed in the time between writing IIR and
2730 * the posting read. This should be rare enough to never
2731 * trigger the 99% of 100,000 interrupts test for disabling
2732 * stray interrupts.
2733 */
2734 ret = IRQ_HANDLED;
2735 iir = new_iir;
2736 } while (iir & ~flip_mask);
2737
2738 i915_update_dri1_breadcrumb(dev);
2739
2740 return ret;
2741 }
2742
2743 static void i915_irq_uninstall(struct drm_device * dev)
2744 {
2745 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2746 int pipe;
2747
2748 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2749
2750 if (I915_HAS_HOTPLUG(dev)) {
2751 I915_WRITE(PORT_HOTPLUG_EN, 0);
2752 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2753 }
2754
2755 I915_WRITE16(HWSTAM, 0xffff);
2756 for_each_pipe(pipe) {
2757 /* Clear enable bits; then clear status bits */
2758 I915_WRITE(PIPESTAT(pipe), 0);
2759 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2760 }
2761 I915_WRITE(IMR, 0xffffffff);
2762 I915_WRITE(IER, 0x0);
2763
2764 I915_WRITE(IIR, I915_READ(IIR));
2765 }
2766
2767 static void i965_irq_preinstall(struct drm_device * dev)
2768 {
2769 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2770 int pipe;
2771
2772 atomic_set(&dev_priv->irq_received, 0);
2773
2774 I915_WRITE(PORT_HOTPLUG_EN, 0);
2775 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2776
2777 I915_WRITE(HWSTAM, 0xeffe);
2778 for_each_pipe(pipe)
2779 I915_WRITE(PIPESTAT(pipe), 0);
2780 I915_WRITE(IMR, 0xffffffff);
2781 I915_WRITE(IER, 0x0);
2782 POSTING_READ(IER);
2783 }
2784
2785 static int i965_irq_postinstall(struct drm_device *dev)
2786 {
2787 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2788 u32 enable_mask;
2789 u32 error_mask;
2790 unsigned long irqflags;
2791
2792 /* Unmask the interrupts that we always want on. */
2793 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2794 I915_DISPLAY_PORT_INTERRUPT |
2795 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2796 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2797 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2798 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2799 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2800
2801 enable_mask = ~dev_priv->irq_mask;
2802 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2803 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2804 enable_mask |= I915_USER_INTERRUPT;
2805
2806 if (IS_G4X(dev))
2807 enable_mask |= I915_BSD_USER_INTERRUPT;
2808
2809 /* Interrupt setup is already guaranteed to be single-threaded, this is
2810 * just to make the assert_spin_locked check happy. */
2811 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2812 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2813 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2814
2815 /*
2816 * Enable some error detection, note the instruction error mask
2817 * bit is reserved, so we leave it masked.
2818 */
2819 if (IS_G4X(dev)) {
2820 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2821 GM45_ERROR_MEM_PRIV |
2822 GM45_ERROR_CP_PRIV |
2823 I915_ERROR_MEMORY_REFRESH);
2824 } else {
2825 error_mask = ~(I915_ERROR_PAGE_TABLE |
2826 I915_ERROR_MEMORY_REFRESH);
2827 }
2828 I915_WRITE(EMR, error_mask);
2829
2830 I915_WRITE(IMR, dev_priv->irq_mask);
2831 I915_WRITE(IER, enable_mask);
2832 POSTING_READ(IER);
2833
2834 I915_WRITE(PORT_HOTPLUG_EN, 0);
2835 POSTING_READ(PORT_HOTPLUG_EN);
2836
2837 i915_enable_asle_pipestat(dev);
2838
2839 return 0;
2840 }
2841
2842 static void i915_hpd_irq_setup(struct drm_device *dev)
2843 {
2844 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2845 struct drm_mode_config *mode_config = &dev->mode_config;
2846 struct intel_encoder *intel_encoder;
2847 u32 hotplug_en;
2848
2849 assert_spin_locked(&dev_priv->irq_lock);
2850
2851 if (I915_HAS_HOTPLUG(dev)) {
2852 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2853 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2854 /* Note HDMI and DP share hotplug bits */
2855 /* enable bits are the same for all generations */
2856 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2857 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2858 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2859 /* Programming the CRT detection parameters tends
2860 to generate a spurious hotplug event about three
2861 seconds later. So just do it once.
2862 */
2863 if (IS_G4X(dev))
2864 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2865 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2866 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2867
2868 /* Ignore TV since it's buggy */
2869 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2870 }
2871 }
2872
2873 static irqreturn_t i965_irq_handler(int irq, void *arg)
2874 {
2875 struct drm_device *dev = (struct drm_device *) arg;
2876 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2877 u32 iir, new_iir;
2878 u32 pipe_stats[I915_MAX_PIPES];
2879 unsigned long irqflags;
2880 int irq_received;
2881 int ret = IRQ_NONE, pipe;
2882 u32 flip_mask =
2883 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2884 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2885
2886 atomic_inc(&dev_priv->irq_received);
2887
2888 iir = I915_READ(IIR);
2889
2890 for (;;) {
2891 bool blc_event = false;
2892
2893 irq_received = (iir & ~flip_mask) != 0;
2894
2895 /* Can't rely on pipestat interrupt bit in iir as it might
2896 * have been cleared after the pipestat interrupt was received.
2897 * It doesn't set the bit in iir again, but it still produces
2898 * interrupts (for non-MSI).
2899 */
2900 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2901 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2902 i915_handle_error(dev, false);
2903
2904 for_each_pipe(pipe) {
2905 int reg = PIPESTAT(pipe);
2906 pipe_stats[pipe] = I915_READ(reg);
2907
2908 /*
2909 * Clear the PIPE*STAT regs before the IIR
2910 */
2911 if (pipe_stats[pipe] & 0x8000ffff) {
2912 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2913 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2914 pipe_name(pipe));
2915 I915_WRITE(reg, pipe_stats[pipe]);
2916 irq_received = 1;
2917 }
2918 }
2919 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2920
2921 if (!irq_received)
2922 break;
2923
2924 ret = IRQ_HANDLED;
2925
2926 /* Consume port. Then clear IIR or we'll miss events */
2927 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2928 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2929 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2930 HOTPLUG_INT_STATUS_G4X :
2931 HOTPLUG_INT_STATUS_I915);
2932
2933 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2934 hotplug_status);
2935
2936 intel_hpd_irq_handler(dev, hotplug_trigger,
2937 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2938
2939 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2940 I915_READ(PORT_HOTPLUG_STAT);
2941 }
2942
2943 I915_WRITE(IIR, iir & ~flip_mask);
2944 new_iir = I915_READ(IIR); /* Flush posted writes */
2945
2946 if (iir & I915_USER_INTERRUPT)
2947 notify_ring(dev, &dev_priv->ring[RCS]);
2948 if (iir & I915_BSD_USER_INTERRUPT)
2949 notify_ring(dev, &dev_priv->ring[VCS]);
2950
2951 for_each_pipe(pipe) {
2952 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2953 i915_handle_vblank(dev, pipe, pipe, iir))
2954 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
2955
2956 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2957 blc_event = true;
2958 }
2959
2960
2961 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2962 intel_opregion_asle_intr(dev);
2963
2964 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2965 gmbus_irq_handler(dev);
2966
2967 /* With MSI, interrupts are only generated when iir
2968 * transitions from zero to nonzero. If another bit got
2969 * set while we were handling the existing iir bits, then
2970 * we would never get another interrupt.
2971 *
2972 * This is fine on non-MSI as well, as if we hit this path
2973 * we avoid exiting the interrupt handler only to generate
2974 * another one.
2975 *
2976 * Note that for MSI this could cause a stray interrupt report
2977 * if an interrupt landed in the time between writing IIR and
2978 * the posting read. This should be rare enough to never
2979 * trigger the 99% of 100,000 interrupts test for disabling
2980 * stray interrupts.
2981 */
2982 iir = new_iir;
2983 }
2984
2985 i915_update_dri1_breadcrumb(dev);
2986
2987 return ret;
2988 }
2989
2990 static void i965_irq_uninstall(struct drm_device * dev)
2991 {
2992 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2993 int pipe;
2994
2995 if (!dev_priv)
2996 return;
2997
2998 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2999
3000 I915_WRITE(PORT_HOTPLUG_EN, 0);
3001 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3002
3003 I915_WRITE(HWSTAM, 0xffffffff);
3004 for_each_pipe(pipe)
3005 I915_WRITE(PIPESTAT(pipe), 0);
3006 I915_WRITE(IMR, 0xffffffff);
3007 I915_WRITE(IER, 0x0);
3008
3009 for_each_pipe(pipe)
3010 I915_WRITE(PIPESTAT(pipe),
3011 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3012 I915_WRITE(IIR, I915_READ(IIR));
3013 }
3014
3015 static void i915_reenable_hotplug_timer_func(unsigned long data)
3016 {
3017 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3018 struct drm_device *dev = dev_priv->dev;
3019 struct drm_mode_config *mode_config = &dev->mode_config;
3020 unsigned long irqflags;
3021 int i;
3022
3023 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3024 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3025 struct drm_connector *connector;
3026
3027 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3028 continue;
3029
3030 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3031
3032 list_for_each_entry(connector, &mode_config->connector_list, head) {
3033 struct intel_connector *intel_connector = to_intel_connector(connector);
3034
3035 if (intel_connector->encoder->hpd_pin == i) {
3036 if (connector->polled != intel_connector->polled)
3037 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3038 drm_get_connector_name(connector));
3039 connector->polled = intel_connector->polled;
3040 if (!connector->polled)
3041 connector->polled = DRM_CONNECTOR_POLL_HPD;
3042 }
3043 }
3044 }
3045 if (dev_priv->display.hpd_irq_setup)
3046 dev_priv->display.hpd_irq_setup(dev);
3047 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3048 }
3049
3050 void intel_irq_init(struct drm_device *dev)
3051 {
3052 struct drm_i915_private *dev_priv = dev->dev_private;
3053
3054 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3055 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3056 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3057 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3058
3059 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3060 i915_hangcheck_elapsed,
3061 (unsigned long) dev);
3062 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3063 (unsigned long) dev_priv);
3064
3065 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3066
3067 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3068 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3069 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3070 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3071 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3072 }
3073
3074 if (drm_core_check_feature(dev, DRIVER_MODESET))
3075 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3076 else
3077 dev->driver->get_vblank_timestamp = NULL;
3078 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3079
3080 if (IS_VALLEYVIEW(dev)) {
3081 dev->driver->irq_handler = valleyview_irq_handler;
3082 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3083 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3084 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3085 dev->driver->enable_vblank = valleyview_enable_vblank;
3086 dev->driver->disable_vblank = valleyview_disable_vblank;
3087 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3088 } else if (HAS_PCH_SPLIT(dev)) {
3089 dev->driver->irq_handler = ironlake_irq_handler;
3090 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3091 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3092 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3093 dev->driver->enable_vblank = ironlake_enable_vblank;
3094 dev->driver->disable_vblank = ironlake_disable_vblank;
3095 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3096 } else {
3097 if (INTEL_INFO(dev)->gen == 2) {
3098 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3099 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3100 dev->driver->irq_handler = i8xx_irq_handler;
3101 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3102 } else if (INTEL_INFO(dev)->gen == 3) {
3103 dev->driver->irq_preinstall = i915_irq_preinstall;
3104 dev->driver->irq_postinstall = i915_irq_postinstall;
3105 dev->driver->irq_uninstall = i915_irq_uninstall;
3106 dev->driver->irq_handler = i915_irq_handler;
3107 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3108 } else {
3109 dev->driver->irq_preinstall = i965_irq_preinstall;
3110 dev->driver->irq_postinstall = i965_irq_postinstall;
3111 dev->driver->irq_uninstall = i965_irq_uninstall;
3112 dev->driver->irq_handler = i965_irq_handler;
3113 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3114 }
3115 dev->driver->enable_vblank = i915_enable_vblank;
3116 dev->driver->disable_vblank = i915_disable_vblank;
3117 }
3118 }
3119
3120 void intel_hpd_init(struct drm_device *dev)
3121 {
3122 struct drm_i915_private *dev_priv = dev->dev_private;
3123 struct drm_mode_config *mode_config = &dev->mode_config;
3124 struct drm_connector *connector;
3125 unsigned long irqflags;
3126 int i;
3127
3128 for (i = 1; i < HPD_NUM_PINS; i++) {
3129 dev_priv->hpd_stats[i].hpd_cnt = 0;
3130 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3131 }
3132 list_for_each_entry(connector, &mode_config->connector_list, head) {
3133 struct intel_connector *intel_connector = to_intel_connector(connector);
3134 connector->polled = intel_connector->polled;
3135 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3136 connector->polled = DRM_CONNECTOR_POLL_HPD;
3137 }
3138
3139 /* Interrupt setup is already guaranteed to be single-threaded, this is
3140 * just to make the assert_spin_locked checks happy. */
3141 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3142 if (dev_priv->display.hpd_irq_setup)
3143 dev_priv->display.hpd_irq_setup(dev);
3144 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3145 }
This page took 0.147525 seconds and 5 git commands to generate.