c10d2f1af0be67f43527496bec1ecccced116c82
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if ((dev_priv->irq_mask & mask) != 0) {
89 dev_priv->irq_mask &= ~mask;
90 I915_WRITE(DEIMR, dev_priv->irq_mask);
91 POSTING_READ(DEIMR);
92 }
93 }
94
95 static void
96 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 assert_spin_locked(&dev_priv->irq_lock);
99
100 if ((dev_priv->irq_mask & mask) != mask) {
101 dev_priv->irq_mask |= mask;
102 I915_WRITE(DEIMR, dev_priv->irq_mask);
103 POSTING_READ(DEIMR);
104 }
105 }
106
107 /**
108 * ilk_update_gt_irq - update GTIMR
109 * @dev_priv: driver private
110 * @interrupt_mask: mask of interrupt bits to update
111 * @enabled_irq_mask: mask of interrupt bits to enable
112 */
113 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
114 uint32_t interrupt_mask,
115 uint32_t enabled_irq_mask)
116 {
117 assert_spin_locked(&dev_priv->irq_lock);
118
119 dev_priv->gt_irq_mask &= ~interrupt_mask;
120 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
121 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
122 POSTING_READ(GTIMR);
123 }
124
125 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
126 {
127 ilk_update_gt_irq(dev_priv, mask, mask);
128 }
129
130 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
131 {
132 ilk_update_gt_irq(dev_priv, mask, 0);
133 }
134
135 /**
136 * snb_update_pm_irq - update GEN6_PMIMR
137 * @dev_priv: driver private
138 * @interrupt_mask: mask of interrupt bits to update
139 * @enabled_irq_mask: mask of interrupt bits to enable
140 */
141 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
142 uint32_t interrupt_mask,
143 uint32_t enabled_irq_mask)
144 {
145 uint32_t new_val;
146
147 assert_spin_locked(&dev_priv->irq_lock);
148
149 new_val = dev_priv->pm_irq_mask;
150 new_val &= ~interrupt_mask;
151 new_val |= (~enabled_irq_mask & interrupt_mask);
152
153 if (new_val != dev_priv->pm_irq_mask) {
154 dev_priv->pm_irq_mask = new_val;
155 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
156 POSTING_READ(GEN6_PMIMR);
157 }
158 }
159
160 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
161 {
162 snb_update_pm_irq(dev_priv, mask, mask);
163 }
164
165 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
166 {
167 snb_update_pm_irq(dev_priv, mask, 0);
168 }
169
170 static void snb_set_pm_irq(struct drm_i915_private *dev_priv, uint32_t val)
171 {
172 snb_update_pm_irq(dev_priv, 0xffffffff, ~val);
173 }
174
175 static bool ivb_can_enable_err_int(struct drm_device *dev)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct intel_crtc *crtc;
179 enum pipe pipe;
180
181 assert_spin_locked(&dev_priv->irq_lock);
182
183 for_each_pipe(pipe) {
184 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
185
186 if (crtc->cpu_fifo_underrun_disabled)
187 return false;
188 }
189
190 return true;
191 }
192
193 static bool cpt_can_enable_serr_int(struct drm_device *dev)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 enum pipe pipe;
197 struct intel_crtc *crtc;
198
199 assert_spin_locked(&dev_priv->irq_lock);
200
201 for_each_pipe(pipe) {
202 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
203
204 if (crtc->pch_fifo_underrun_disabled)
205 return false;
206 }
207
208 return true;
209 }
210
211 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
212 enum pipe pipe, bool enable)
213 {
214 struct drm_i915_private *dev_priv = dev->dev_private;
215 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
216 DE_PIPEB_FIFO_UNDERRUN;
217
218 if (enable)
219 ironlake_enable_display_irq(dev_priv, bit);
220 else
221 ironlake_disable_display_irq(dev_priv, bit);
222 }
223
224 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
225 enum pipe pipe, bool enable)
226 {
227 struct drm_i915_private *dev_priv = dev->dev_private;
228 if (enable) {
229 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
230
231 if (!ivb_can_enable_err_int(dev))
232 return;
233
234 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
235 } else {
236 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
237
238 /* Change the state _after_ we've read out the current one. */
239 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
240
241 if (!was_enabled &&
242 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
243 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
244 pipe_name(pipe));
245 }
246 }
247 }
248
249 /**
250 * ibx_display_interrupt_update - update SDEIMR
251 * @dev_priv: driver private
252 * @interrupt_mask: mask of interrupt bits to update
253 * @enabled_irq_mask: mask of interrupt bits to enable
254 */
255 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
256 uint32_t interrupt_mask,
257 uint32_t enabled_irq_mask)
258 {
259 uint32_t sdeimr = I915_READ(SDEIMR);
260 sdeimr &= ~interrupt_mask;
261 sdeimr |= (~enabled_irq_mask & interrupt_mask);
262
263 assert_spin_locked(&dev_priv->irq_lock);
264
265 I915_WRITE(SDEIMR, sdeimr);
266 POSTING_READ(SDEIMR);
267 }
268 #define ibx_enable_display_interrupt(dev_priv, bits) \
269 ibx_display_interrupt_update((dev_priv), (bits), (bits))
270 #define ibx_disable_display_interrupt(dev_priv, bits) \
271 ibx_display_interrupt_update((dev_priv), (bits), 0)
272
273 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
274 enum transcoder pch_transcoder,
275 bool enable)
276 {
277 struct drm_i915_private *dev_priv = dev->dev_private;
278 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
279 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
280
281 if (enable)
282 ibx_enable_display_interrupt(dev_priv, bit);
283 else
284 ibx_disable_display_interrupt(dev_priv, bit);
285 }
286
287 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
288 enum transcoder pch_transcoder,
289 bool enable)
290 {
291 struct drm_i915_private *dev_priv = dev->dev_private;
292
293 if (enable) {
294 I915_WRITE(SERR_INT,
295 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
296
297 if (!cpt_can_enable_serr_int(dev))
298 return;
299
300 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
301 } else {
302 uint32_t tmp = I915_READ(SERR_INT);
303 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
304
305 /* Change the state _after_ we've read out the current one. */
306 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
307
308 if (!was_enabled &&
309 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
310 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
311 transcoder_name(pch_transcoder));
312 }
313 }
314 }
315
316 /**
317 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
318 * @dev: drm device
319 * @pipe: pipe
320 * @enable: true if we want to report FIFO underrun errors, false otherwise
321 *
322 * This function makes us disable or enable CPU fifo underruns for a specific
323 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
324 * reporting for one pipe may also disable all the other CPU error interruts for
325 * the other pipes, due to the fact that there's just one interrupt mask/enable
326 * bit for all the pipes.
327 *
328 * Returns the previous state of underrun reporting.
329 */
330 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
331 enum pipe pipe, bool enable)
332 {
333 struct drm_i915_private *dev_priv = dev->dev_private;
334 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
336 unsigned long flags;
337 bool ret;
338
339 spin_lock_irqsave(&dev_priv->irq_lock, flags);
340
341 ret = !intel_crtc->cpu_fifo_underrun_disabled;
342
343 if (enable == ret)
344 goto done;
345
346 intel_crtc->cpu_fifo_underrun_disabled = !enable;
347
348 if (IS_GEN5(dev) || IS_GEN6(dev))
349 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
350 else if (IS_GEN7(dev))
351 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
352
353 done:
354 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
355 return ret;
356 }
357
358 /**
359 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
360 * @dev: drm device
361 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
362 * @enable: true if we want to report FIFO underrun errors, false otherwise
363 *
364 * This function makes us disable or enable PCH fifo underruns for a specific
365 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
366 * underrun reporting for one transcoder may also disable all the other PCH
367 * error interruts for the other transcoders, due to the fact that there's just
368 * one interrupt mask/enable bit for all the transcoders.
369 *
370 * Returns the previous state of underrun reporting.
371 */
372 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
373 enum transcoder pch_transcoder,
374 bool enable)
375 {
376 struct drm_i915_private *dev_priv = dev->dev_private;
377 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
379 unsigned long flags;
380 bool ret;
381
382 /*
383 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
384 * has only one pch transcoder A that all pipes can use. To avoid racy
385 * pch transcoder -> pipe lookups from interrupt code simply store the
386 * underrun statistics in crtc A. Since we never expose this anywhere
387 * nor use it outside of the fifo underrun code here using the "wrong"
388 * crtc on LPT won't cause issues.
389 */
390
391 spin_lock_irqsave(&dev_priv->irq_lock, flags);
392
393 ret = !intel_crtc->pch_fifo_underrun_disabled;
394
395 if (enable == ret)
396 goto done;
397
398 intel_crtc->pch_fifo_underrun_disabled = !enable;
399
400 if (HAS_PCH_IBX(dev))
401 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
402 else
403 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
404
405 done:
406 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
407 return ret;
408 }
409
410
411 void
412 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
413 {
414 u32 reg = PIPESTAT(pipe);
415 u32 pipestat = I915_READ(reg) & 0x7fff0000;
416
417 assert_spin_locked(&dev_priv->irq_lock);
418
419 if ((pipestat & mask) == mask)
420 return;
421
422 /* Enable the interrupt, clear any pending status */
423 pipestat |= mask | (mask >> 16);
424 I915_WRITE(reg, pipestat);
425 POSTING_READ(reg);
426 }
427
428 void
429 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
430 {
431 u32 reg = PIPESTAT(pipe);
432 u32 pipestat = I915_READ(reg) & 0x7fff0000;
433
434 assert_spin_locked(&dev_priv->irq_lock);
435
436 if ((pipestat & mask) == 0)
437 return;
438
439 pipestat &= ~mask;
440 I915_WRITE(reg, pipestat);
441 POSTING_READ(reg);
442 }
443
444 /**
445 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
446 */
447 static void i915_enable_asle_pipestat(struct drm_device *dev)
448 {
449 drm_i915_private_t *dev_priv = dev->dev_private;
450 unsigned long irqflags;
451
452 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
453 return;
454
455 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
456
457 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
458 if (INTEL_INFO(dev)->gen >= 4)
459 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
460
461 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
462 }
463
464 /**
465 * i915_pipe_enabled - check if a pipe is enabled
466 * @dev: DRM device
467 * @pipe: pipe to check
468 *
469 * Reading certain registers when the pipe is disabled can hang the chip.
470 * Use this routine to make sure the PLL is running and the pipe is active
471 * before reading such registers if unsure.
472 */
473 static int
474 i915_pipe_enabled(struct drm_device *dev, int pipe)
475 {
476 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
477
478 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
479 /* Locking is horribly broken here, but whatever. */
480 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
482
483 return intel_crtc->active;
484 } else {
485 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
486 }
487 }
488
489 /* Called from drm generic code, passed a 'crtc', which
490 * we use as a pipe index
491 */
492 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
493 {
494 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
495 unsigned long high_frame;
496 unsigned long low_frame;
497 u32 high1, high2, low;
498
499 if (!i915_pipe_enabled(dev, pipe)) {
500 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
501 "pipe %c\n", pipe_name(pipe));
502 return 0;
503 }
504
505 high_frame = PIPEFRAME(pipe);
506 low_frame = PIPEFRAMEPIXEL(pipe);
507
508 /*
509 * High & low register fields aren't synchronized, so make sure
510 * we get a low value that's stable across two reads of the high
511 * register.
512 */
513 do {
514 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
515 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
516 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
517 } while (high1 != high2);
518
519 high1 >>= PIPE_FRAME_HIGH_SHIFT;
520 low >>= PIPE_FRAME_LOW_SHIFT;
521 return (high1 << 8) | low;
522 }
523
524 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 int reg = PIPE_FRMCOUNT_GM45(pipe);
528
529 if (!i915_pipe_enabled(dev, pipe)) {
530 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
531 "pipe %c\n", pipe_name(pipe));
532 return 0;
533 }
534
535 return I915_READ(reg);
536 }
537
538 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
539 int *vpos, int *hpos)
540 {
541 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
542 u32 vbl = 0, position = 0;
543 int vbl_start, vbl_end, htotal, vtotal;
544 bool in_vbl = true;
545 int ret = 0;
546 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
547 pipe);
548
549 if (!i915_pipe_enabled(dev, pipe)) {
550 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
551 "pipe %c\n", pipe_name(pipe));
552 return 0;
553 }
554
555 /* Get vtotal. */
556 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
557
558 if (INTEL_INFO(dev)->gen >= 4) {
559 /* No obvious pixelcount register. Only query vertical
560 * scanout position from Display scan line register.
561 */
562 position = I915_READ(PIPEDSL(pipe));
563
564 /* Decode into vertical scanout position. Don't have
565 * horizontal scanout position.
566 */
567 *vpos = position & 0x1fff;
568 *hpos = 0;
569 } else {
570 /* Have access to pixelcount since start of frame.
571 * We can split this into vertical and horizontal
572 * scanout position.
573 */
574 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
575
576 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
577 *vpos = position / htotal;
578 *hpos = position - (*vpos * htotal);
579 }
580
581 /* Query vblank area. */
582 vbl = I915_READ(VBLANK(cpu_transcoder));
583
584 /* Test position against vblank region. */
585 vbl_start = vbl & 0x1fff;
586 vbl_end = (vbl >> 16) & 0x1fff;
587
588 if ((*vpos < vbl_start) || (*vpos > vbl_end))
589 in_vbl = false;
590
591 /* Inside "upper part" of vblank area? Apply corrective offset: */
592 if (in_vbl && (*vpos >= vbl_start))
593 *vpos = *vpos - vtotal;
594
595 /* Readouts valid? */
596 if (vbl > 0)
597 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
598
599 /* In vblank? */
600 if (in_vbl)
601 ret |= DRM_SCANOUTPOS_INVBL;
602
603 return ret;
604 }
605
606 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
607 int *max_error,
608 struct timeval *vblank_time,
609 unsigned flags)
610 {
611 struct drm_crtc *crtc;
612
613 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
614 DRM_ERROR("Invalid crtc %d\n", pipe);
615 return -EINVAL;
616 }
617
618 /* Get drm_crtc to timestamp: */
619 crtc = intel_get_crtc_for_pipe(dev, pipe);
620 if (crtc == NULL) {
621 DRM_ERROR("Invalid crtc %d\n", pipe);
622 return -EINVAL;
623 }
624
625 if (!crtc->enabled) {
626 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
627 return -EBUSY;
628 }
629
630 /* Helper routine in DRM core does all the work: */
631 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
632 vblank_time, flags,
633 crtc);
634 }
635
636 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
637 {
638 enum drm_connector_status old_status;
639
640 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
641 old_status = connector->status;
642
643 connector->status = connector->funcs->detect(connector, false);
644 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
645 connector->base.id,
646 drm_get_connector_name(connector),
647 old_status, connector->status);
648 return (old_status != connector->status);
649 }
650
651 /*
652 * Handle hotplug events outside the interrupt handler proper.
653 */
654 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
655
656 static void i915_hotplug_work_func(struct work_struct *work)
657 {
658 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
659 hotplug_work);
660 struct drm_device *dev = dev_priv->dev;
661 struct drm_mode_config *mode_config = &dev->mode_config;
662 struct intel_connector *intel_connector;
663 struct intel_encoder *intel_encoder;
664 struct drm_connector *connector;
665 unsigned long irqflags;
666 bool hpd_disabled = false;
667 bool changed = false;
668 u32 hpd_event_bits;
669
670 /* HPD irq before everything is fully set up. */
671 if (!dev_priv->enable_hotplug_processing)
672 return;
673
674 mutex_lock(&mode_config->mutex);
675 DRM_DEBUG_KMS("running encoder hotplug functions\n");
676
677 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
678
679 hpd_event_bits = dev_priv->hpd_event_bits;
680 dev_priv->hpd_event_bits = 0;
681 list_for_each_entry(connector, &mode_config->connector_list, head) {
682 intel_connector = to_intel_connector(connector);
683 intel_encoder = intel_connector->encoder;
684 if (intel_encoder->hpd_pin > HPD_NONE &&
685 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
686 connector->polled == DRM_CONNECTOR_POLL_HPD) {
687 DRM_INFO("HPD interrupt storm detected on connector %s: "
688 "switching from hotplug detection to polling\n",
689 drm_get_connector_name(connector));
690 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
691 connector->polled = DRM_CONNECTOR_POLL_CONNECT
692 | DRM_CONNECTOR_POLL_DISCONNECT;
693 hpd_disabled = true;
694 }
695 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
696 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
697 drm_get_connector_name(connector), intel_encoder->hpd_pin);
698 }
699 }
700 /* if there were no outputs to poll, poll was disabled,
701 * therefore make sure it's enabled when disabling HPD on
702 * some connectors */
703 if (hpd_disabled) {
704 drm_kms_helper_poll_enable(dev);
705 mod_timer(&dev_priv->hotplug_reenable_timer,
706 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
707 }
708
709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710
711 list_for_each_entry(connector, &mode_config->connector_list, head) {
712 intel_connector = to_intel_connector(connector);
713 intel_encoder = intel_connector->encoder;
714 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
715 if (intel_encoder->hot_plug)
716 intel_encoder->hot_plug(intel_encoder);
717 if (intel_hpd_irq_event(dev, connector))
718 changed = true;
719 }
720 }
721 mutex_unlock(&mode_config->mutex);
722
723 if (changed)
724 drm_kms_helper_hotplug_event(dev);
725 }
726
727 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
728 {
729 drm_i915_private_t *dev_priv = dev->dev_private;
730 u32 busy_up, busy_down, max_avg, min_avg;
731 u8 new_delay;
732
733 spin_lock(&mchdev_lock);
734
735 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
736
737 new_delay = dev_priv->ips.cur_delay;
738
739 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
740 busy_up = I915_READ(RCPREVBSYTUPAVG);
741 busy_down = I915_READ(RCPREVBSYTDNAVG);
742 max_avg = I915_READ(RCBMAXAVG);
743 min_avg = I915_READ(RCBMINAVG);
744
745 /* Handle RCS change request from hw */
746 if (busy_up > max_avg) {
747 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
748 new_delay = dev_priv->ips.cur_delay - 1;
749 if (new_delay < dev_priv->ips.max_delay)
750 new_delay = dev_priv->ips.max_delay;
751 } else if (busy_down < min_avg) {
752 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
753 new_delay = dev_priv->ips.cur_delay + 1;
754 if (new_delay > dev_priv->ips.min_delay)
755 new_delay = dev_priv->ips.min_delay;
756 }
757
758 if (ironlake_set_drps(dev, new_delay))
759 dev_priv->ips.cur_delay = new_delay;
760
761 spin_unlock(&mchdev_lock);
762
763 return;
764 }
765
766 static void notify_ring(struct drm_device *dev,
767 struct intel_ring_buffer *ring)
768 {
769 if (ring->obj == NULL)
770 return;
771
772 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
773
774 wake_up_all(&ring->irq_queue);
775 i915_queue_hangcheck(dev);
776 }
777
778 static void gen6_pm_rps_work(struct work_struct *work)
779 {
780 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
781 rps.work);
782 u32 pm_iir;
783 u8 new_delay;
784
785 spin_lock_irq(&dev_priv->irq_lock);
786 pm_iir = dev_priv->rps.pm_iir;
787 dev_priv->rps.pm_iir = 0;
788 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
789 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
790 spin_unlock_irq(&dev_priv->irq_lock);
791
792 /* Make sure we didn't queue anything we're not going to process. */
793 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
794
795 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
796 return;
797
798 mutex_lock(&dev_priv->rps.hw_lock);
799
800 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
801 new_delay = dev_priv->rps.cur_delay + 1;
802
803 /*
804 * For better performance, jump directly
805 * to RPe if we're below it.
806 */
807 if (IS_VALLEYVIEW(dev_priv->dev) &&
808 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
809 new_delay = dev_priv->rps.rpe_delay;
810 } else
811 new_delay = dev_priv->rps.cur_delay - 1;
812
813 /* sysfs frequency interfaces may have snuck in while servicing the
814 * interrupt
815 */
816 if (new_delay >= dev_priv->rps.min_delay &&
817 new_delay <= dev_priv->rps.max_delay) {
818 if (IS_VALLEYVIEW(dev_priv->dev))
819 valleyview_set_rps(dev_priv->dev, new_delay);
820 else
821 gen6_set_rps(dev_priv->dev, new_delay);
822 }
823
824 if (IS_VALLEYVIEW(dev_priv->dev)) {
825 /*
826 * On VLV, when we enter RC6 we may not be at the minimum
827 * voltage level, so arm a timer to check. It should only
828 * fire when there's activity or once after we've entered
829 * RC6, and then won't be re-armed until the next RPS interrupt.
830 */
831 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
832 msecs_to_jiffies(100));
833 }
834
835 mutex_unlock(&dev_priv->rps.hw_lock);
836 }
837
838
839 /**
840 * ivybridge_parity_work - Workqueue called when a parity error interrupt
841 * occurred.
842 * @work: workqueue struct
843 *
844 * Doesn't actually do anything except notify userspace. As a consequence of
845 * this event, userspace should try to remap the bad rows since statistically
846 * it is likely the same row is more likely to go bad again.
847 */
848 static void ivybridge_parity_work(struct work_struct *work)
849 {
850 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
851 l3_parity.error_work);
852 u32 error_status, row, bank, subbank;
853 char *parity_event[5];
854 uint32_t misccpctl;
855 unsigned long flags;
856
857 /* We must turn off DOP level clock gating to access the L3 registers.
858 * In order to prevent a get/put style interface, acquire struct mutex
859 * any time we access those registers.
860 */
861 mutex_lock(&dev_priv->dev->struct_mutex);
862
863 misccpctl = I915_READ(GEN7_MISCCPCTL);
864 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
865 POSTING_READ(GEN7_MISCCPCTL);
866
867 error_status = I915_READ(GEN7_L3CDERRST1);
868 row = GEN7_PARITY_ERROR_ROW(error_status);
869 bank = GEN7_PARITY_ERROR_BANK(error_status);
870 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
871
872 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
873 GEN7_L3CDERRST1_ENABLE);
874 POSTING_READ(GEN7_L3CDERRST1);
875
876 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
877
878 spin_lock_irqsave(&dev_priv->irq_lock, flags);
879 ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
880 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
881
882 mutex_unlock(&dev_priv->dev->struct_mutex);
883
884 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
885 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
886 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
887 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
888 parity_event[4] = NULL;
889
890 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
891 KOBJ_CHANGE, parity_event);
892
893 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
894 row, bank, subbank);
895
896 kfree(parity_event[3]);
897 kfree(parity_event[2]);
898 kfree(parity_event[1]);
899 }
900
901 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
902 {
903 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
904
905 if (!HAS_L3_GPU_CACHE(dev))
906 return;
907
908 spin_lock(&dev_priv->irq_lock);
909 ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
910 spin_unlock(&dev_priv->irq_lock);
911
912 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
913 }
914
915 static void ilk_gt_irq_handler(struct drm_device *dev,
916 struct drm_i915_private *dev_priv,
917 u32 gt_iir)
918 {
919 if (gt_iir &
920 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
921 notify_ring(dev, &dev_priv->ring[RCS]);
922 if (gt_iir & ILK_BSD_USER_INTERRUPT)
923 notify_ring(dev, &dev_priv->ring[VCS]);
924 }
925
926 static void snb_gt_irq_handler(struct drm_device *dev,
927 struct drm_i915_private *dev_priv,
928 u32 gt_iir)
929 {
930
931 if (gt_iir &
932 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
933 notify_ring(dev, &dev_priv->ring[RCS]);
934 if (gt_iir & GT_BSD_USER_INTERRUPT)
935 notify_ring(dev, &dev_priv->ring[VCS]);
936 if (gt_iir & GT_BLT_USER_INTERRUPT)
937 notify_ring(dev, &dev_priv->ring[BCS]);
938
939 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
940 GT_BSD_CS_ERROR_INTERRUPT |
941 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
942 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
943 i915_handle_error(dev, false);
944 }
945
946 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
947 ivybridge_parity_error_irq_handler(dev);
948 }
949
950 /* Legacy way of handling PM interrupts */
951 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv,
952 u32 pm_iir)
953 {
954 /*
955 * IIR bits should never already be set because IMR should
956 * prevent an interrupt from being shown in IIR. The warning
957 * displays a case where we've unsafely cleared
958 * dev_priv->rps.pm_iir. Although missing an interrupt of the same
959 * type is not a problem, it displays a problem in the logic.
960 *
961 * The mask bit in IMR is cleared by dev_priv->rps.work.
962 */
963
964 spin_lock(&dev_priv->irq_lock);
965 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
966 snb_set_pm_irq(dev_priv, dev_priv->rps.pm_iir);
967 spin_unlock(&dev_priv->irq_lock);
968
969 queue_work(dev_priv->wq, &dev_priv->rps.work);
970 }
971
972 #define HPD_STORM_DETECT_PERIOD 1000
973 #define HPD_STORM_THRESHOLD 5
974
975 static inline void intel_hpd_irq_handler(struct drm_device *dev,
976 u32 hotplug_trigger,
977 const u32 *hpd)
978 {
979 drm_i915_private_t *dev_priv = dev->dev_private;
980 int i;
981 bool storm_detected = false;
982
983 if (!hotplug_trigger)
984 return;
985
986 spin_lock(&dev_priv->irq_lock);
987 for (i = 1; i < HPD_NUM_PINS; i++) {
988
989 WARN(((hpd[i] & hotplug_trigger) &&
990 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
991 "Received HPD interrupt although disabled\n");
992
993 if (!(hpd[i] & hotplug_trigger) ||
994 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
995 continue;
996
997 dev_priv->hpd_event_bits |= (1 << i);
998 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
999 dev_priv->hpd_stats[i].hpd_last_jiffies
1000 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1001 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1002 dev_priv->hpd_stats[i].hpd_cnt = 0;
1003 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1004 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1005 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1006 dev_priv->hpd_event_bits &= ~(1 << i);
1007 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1008 storm_detected = true;
1009 } else {
1010 dev_priv->hpd_stats[i].hpd_cnt++;
1011 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1012 dev_priv->hpd_stats[i].hpd_cnt);
1013 }
1014 }
1015
1016 if (storm_detected)
1017 dev_priv->display.hpd_irq_setup(dev);
1018 spin_unlock(&dev_priv->irq_lock);
1019
1020 queue_work(dev_priv->wq,
1021 &dev_priv->hotplug_work);
1022 }
1023
1024 static void gmbus_irq_handler(struct drm_device *dev)
1025 {
1026 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1027
1028 wake_up_all(&dev_priv->gmbus_wait_queue);
1029 }
1030
1031 static void dp_aux_irq_handler(struct drm_device *dev)
1032 {
1033 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1034
1035 wake_up_all(&dev_priv->gmbus_wait_queue);
1036 }
1037
1038 /* Unlike gen6_rps_irq_handler() from which this function is originally derived,
1039 * we must be able to deal with other PM interrupts. This is complicated because
1040 * of the way in which we use the masks to defer the RPS work (which for
1041 * posterity is necessary because of forcewake).
1042 */
1043 static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
1044 u32 pm_iir)
1045 {
1046 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1047 spin_lock(&dev_priv->irq_lock);
1048 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1049 snb_set_pm_irq(dev_priv, dev_priv->rps.pm_iir);
1050 /* never want to mask useful interrupts. */
1051 WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
1052 spin_unlock(&dev_priv->irq_lock);
1053
1054 queue_work(dev_priv->wq, &dev_priv->rps.work);
1055 }
1056
1057 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1058 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1059
1060 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1061 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1062 i915_handle_error(dev_priv->dev, false);
1063 }
1064 }
1065
1066 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1067 {
1068 struct drm_device *dev = (struct drm_device *) arg;
1069 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1070 u32 iir, gt_iir, pm_iir;
1071 irqreturn_t ret = IRQ_NONE;
1072 unsigned long irqflags;
1073 int pipe;
1074 u32 pipe_stats[I915_MAX_PIPES];
1075
1076 atomic_inc(&dev_priv->irq_received);
1077
1078 while (true) {
1079 iir = I915_READ(VLV_IIR);
1080 gt_iir = I915_READ(GTIIR);
1081 pm_iir = I915_READ(GEN6_PMIIR);
1082
1083 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1084 goto out;
1085
1086 ret = IRQ_HANDLED;
1087
1088 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1089
1090 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1091 for_each_pipe(pipe) {
1092 int reg = PIPESTAT(pipe);
1093 pipe_stats[pipe] = I915_READ(reg);
1094
1095 /*
1096 * Clear the PIPE*STAT regs before the IIR
1097 */
1098 if (pipe_stats[pipe] & 0x8000ffff) {
1099 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1100 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1101 pipe_name(pipe));
1102 I915_WRITE(reg, pipe_stats[pipe]);
1103 }
1104 }
1105 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1106
1107 for_each_pipe(pipe) {
1108 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1109 drm_handle_vblank(dev, pipe);
1110
1111 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1112 intel_prepare_page_flip(dev, pipe);
1113 intel_finish_page_flip(dev, pipe);
1114 }
1115 }
1116
1117 /* Consume port. Then clear IIR or we'll miss events */
1118 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1119 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1120 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1121
1122 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1123 hotplug_status);
1124
1125 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1126
1127 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1128 I915_READ(PORT_HOTPLUG_STAT);
1129 }
1130
1131 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1132 gmbus_irq_handler(dev);
1133
1134 if (pm_iir)
1135 gen6_rps_irq_handler(dev_priv, pm_iir);
1136
1137 I915_WRITE(GTIIR, gt_iir);
1138 I915_WRITE(GEN6_PMIIR, pm_iir);
1139 I915_WRITE(VLV_IIR, iir);
1140 }
1141
1142 out:
1143 return ret;
1144 }
1145
1146 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1147 {
1148 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1149 int pipe;
1150 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1151
1152 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1153
1154 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1155 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1156 SDE_AUDIO_POWER_SHIFT);
1157 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1158 port_name(port));
1159 }
1160
1161 if (pch_iir & SDE_AUX_MASK)
1162 dp_aux_irq_handler(dev);
1163
1164 if (pch_iir & SDE_GMBUS)
1165 gmbus_irq_handler(dev);
1166
1167 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1168 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1169
1170 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1171 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1172
1173 if (pch_iir & SDE_POISON)
1174 DRM_ERROR("PCH poison interrupt\n");
1175
1176 if (pch_iir & SDE_FDI_MASK)
1177 for_each_pipe(pipe)
1178 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1179 pipe_name(pipe),
1180 I915_READ(FDI_RX_IIR(pipe)));
1181
1182 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1183 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1184
1185 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1186 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1187
1188 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1189 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1190 false))
1191 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1192
1193 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1194 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1195 false))
1196 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1197 }
1198
1199 static void ivb_err_int_handler(struct drm_device *dev)
1200 {
1201 struct drm_i915_private *dev_priv = dev->dev_private;
1202 u32 err_int = I915_READ(GEN7_ERR_INT);
1203
1204 if (err_int & ERR_INT_POISON)
1205 DRM_ERROR("Poison interrupt\n");
1206
1207 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1208 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1209 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1210
1211 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1212 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1213 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1214
1215 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1216 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1217 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1218
1219 I915_WRITE(GEN7_ERR_INT, err_int);
1220 }
1221
1222 static void cpt_serr_int_handler(struct drm_device *dev)
1223 {
1224 struct drm_i915_private *dev_priv = dev->dev_private;
1225 u32 serr_int = I915_READ(SERR_INT);
1226
1227 if (serr_int & SERR_INT_POISON)
1228 DRM_ERROR("PCH poison interrupt\n");
1229
1230 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1231 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1232 false))
1233 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1234
1235 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1236 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1237 false))
1238 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1239
1240 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1241 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1242 false))
1243 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1244
1245 I915_WRITE(SERR_INT, serr_int);
1246 }
1247
1248 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1249 {
1250 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1251 int pipe;
1252 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1253
1254 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1255
1256 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1257 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1258 SDE_AUDIO_POWER_SHIFT_CPT);
1259 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1260 port_name(port));
1261 }
1262
1263 if (pch_iir & SDE_AUX_MASK_CPT)
1264 dp_aux_irq_handler(dev);
1265
1266 if (pch_iir & SDE_GMBUS_CPT)
1267 gmbus_irq_handler(dev);
1268
1269 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1270 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1271
1272 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1273 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1274
1275 if (pch_iir & SDE_FDI_MASK_CPT)
1276 for_each_pipe(pipe)
1277 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1278 pipe_name(pipe),
1279 I915_READ(FDI_RX_IIR(pipe)));
1280
1281 if (pch_iir & SDE_ERROR_CPT)
1282 cpt_serr_int_handler(dev);
1283 }
1284
1285 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1286 {
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1288
1289 if (de_iir & DE_AUX_CHANNEL_A)
1290 dp_aux_irq_handler(dev);
1291
1292 if (de_iir & DE_GSE)
1293 intel_opregion_asle_intr(dev);
1294
1295 if (de_iir & DE_PIPEA_VBLANK)
1296 drm_handle_vblank(dev, 0);
1297
1298 if (de_iir & DE_PIPEB_VBLANK)
1299 drm_handle_vblank(dev, 1);
1300
1301 if (de_iir & DE_POISON)
1302 DRM_ERROR("Poison interrupt\n");
1303
1304 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1305 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1306 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1307
1308 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1309 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1310 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1311
1312 if (de_iir & DE_PLANEA_FLIP_DONE) {
1313 intel_prepare_page_flip(dev, 0);
1314 intel_finish_page_flip_plane(dev, 0);
1315 }
1316
1317 if (de_iir & DE_PLANEB_FLIP_DONE) {
1318 intel_prepare_page_flip(dev, 1);
1319 intel_finish_page_flip_plane(dev, 1);
1320 }
1321
1322 /* check event from PCH */
1323 if (de_iir & DE_PCH_EVENT) {
1324 u32 pch_iir = I915_READ(SDEIIR);
1325
1326 if (HAS_PCH_CPT(dev))
1327 cpt_irq_handler(dev, pch_iir);
1328 else
1329 ibx_irq_handler(dev, pch_iir);
1330
1331 /* should clear PCH hotplug event before clear CPU irq */
1332 I915_WRITE(SDEIIR, pch_iir);
1333 }
1334
1335 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1336 ironlake_rps_change_irq_handler(dev);
1337 }
1338
1339 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1340 {
1341 struct drm_i915_private *dev_priv = dev->dev_private;
1342 int i;
1343
1344 if (de_iir & DE_ERR_INT_IVB)
1345 ivb_err_int_handler(dev);
1346
1347 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1348 dp_aux_irq_handler(dev);
1349
1350 if (de_iir & DE_GSE_IVB)
1351 intel_opregion_asle_intr(dev);
1352
1353 for (i = 0; i < 3; i++) {
1354 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1355 drm_handle_vblank(dev, i);
1356 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1357 intel_prepare_page_flip(dev, i);
1358 intel_finish_page_flip_plane(dev, i);
1359 }
1360 }
1361
1362 /* check event from PCH */
1363 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1364 u32 pch_iir = I915_READ(SDEIIR);
1365
1366 cpt_irq_handler(dev, pch_iir);
1367
1368 /* clear PCH hotplug event before clear CPU irq */
1369 I915_WRITE(SDEIIR, pch_iir);
1370 }
1371 }
1372
1373 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1374 {
1375 struct drm_device *dev = (struct drm_device *) arg;
1376 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1377 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1378 irqreturn_t ret = IRQ_NONE;
1379 bool err_int_reenable = false;
1380
1381 atomic_inc(&dev_priv->irq_received);
1382
1383 /* We get interrupts on unclaimed registers, so check for this before we
1384 * do any I915_{READ,WRITE}. */
1385 intel_uncore_check_errors(dev);
1386
1387 /* disable master interrupt before clearing iir */
1388 de_ier = I915_READ(DEIER);
1389 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1390 POSTING_READ(DEIER);
1391
1392 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1393 * interrupts will will be stored on its back queue, and then we'll be
1394 * able to process them after we restore SDEIER (as soon as we restore
1395 * it, we'll get an interrupt if SDEIIR still has something to process
1396 * due to its back queue). */
1397 if (!HAS_PCH_NOP(dev)) {
1398 sde_ier = I915_READ(SDEIER);
1399 I915_WRITE(SDEIER, 0);
1400 POSTING_READ(SDEIER);
1401 }
1402
1403 /* On Haswell, also mask ERR_INT because we don't want to risk
1404 * generating "unclaimed register" interrupts from inside the interrupt
1405 * handler. */
1406 if (IS_HASWELL(dev)) {
1407 spin_lock(&dev_priv->irq_lock);
1408 err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
1409 if (err_int_reenable)
1410 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1411 spin_unlock(&dev_priv->irq_lock);
1412 }
1413
1414 gt_iir = I915_READ(GTIIR);
1415 if (gt_iir) {
1416 if (INTEL_INFO(dev)->gen >= 6)
1417 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1418 else
1419 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1420 I915_WRITE(GTIIR, gt_iir);
1421 ret = IRQ_HANDLED;
1422 }
1423
1424 de_iir = I915_READ(DEIIR);
1425 if (de_iir) {
1426 if (INTEL_INFO(dev)->gen >= 7)
1427 ivb_display_irq_handler(dev, de_iir);
1428 else
1429 ilk_display_irq_handler(dev, de_iir);
1430 I915_WRITE(DEIIR, de_iir);
1431 ret = IRQ_HANDLED;
1432 }
1433
1434 if (INTEL_INFO(dev)->gen >= 6) {
1435 u32 pm_iir = I915_READ(GEN6_PMIIR);
1436 if (pm_iir) {
1437 if (IS_HASWELL(dev))
1438 hsw_pm_irq_handler(dev_priv, pm_iir);
1439 else
1440 gen6_rps_irq_handler(dev_priv, pm_iir);
1441 I915_WRITE(GEN6_PMIIR, pm_iir);
1442 ret = IRQ_HANDLED;
1443 }
1444 }
1445
1446 if (err_int_reenable) {
1447 spin_lock(&dev_priv->irq_lock);
1448 if (ivb_can_enable_err_int(dev))
1449 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1450 spin_unlock(&dev_priv->irq_lock);
1451 }
1452
1453 I915_WRITE(DEIER, de_ier);
1454 POSTING_READ(DEIER);
1455 if (!HAS_PCH_NOP(dev)) {
1456 I915_WRITE(SDEIER, sde_ier);
1457 POSTING_READ(SDEIER);
1458 }
1459
1460 return ret;
1461 }
1462
1463 /**
1464 * i915_error_work_func - do process context error handling work
1465 * @work: work struct
1466 *
1467 * Fire an error uevent so userspace can see that a hang or error
1468 * was detected.
1469 */
1470 static void i915_error_work_func(struct work_struct *work)
1471 {
1472 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1473 work);
1474 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1475 gpu_error);
1476 struct drm_device *dev = dev_priv->dev;
1477 struct intel_ring_buffer *ring;
1478 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1479 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1480 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1481 int i, ret;
1482
1483 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1484
1485 /*
1486 * Note that there's only one work item which does gpu resets, so we
1487 * need not worry about concurrent gpu resets potentially incrementing
1488 * error->reset_counter twice. We only need to take care of another
1489 * racing irq/hangcheck declaring the gpu dead for a second time. A
1490 * quick check for that is good enough: schedule_work ensures the
1491 * correct ordering between hang detection and this work item, and since
1492 * the reset in-progress bit is only ever set by code outside of this
1493 * work we don't need to worry about any other races.
1494 */
1495 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1496 DRM_DEBUG_DRIVER("resetting chip\n");
1497 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1498 reset_event);
1499
1500 ret = i915_reset(dev);
1501
1502 if (ret == 0) {
1503 /*
1504 * After all the gem state is reset, increment the reset
1505 * counter and wake up everyone waiting for the reset to
1506 * complete.
1507 *
1508 * Since unlock operations are a one-sided barrier only,
1509 * we need to insert a barrier here to order any seqno
1510 * updates before
1511 * the counter increment.
1512 */
1513 smp_mb__before_atomic_inc();
1514 atomic_inc(&dev_priv->gpu_error.reset_counter);
1515
1516 kobject_uevent_env(&dev->primary->kdev.kobj,
1517 KOBJ_CHANGE, reset_done_event);
1518 } else {
1519 atomic_set(&error->reset_counter, I915_WEDGED);
1520 }
1521
1522 for_each_ring(ring, dev_priv, i)
1523 wake_up_all(&ring->irq_queue);
1524
1525 intel_display_handle_reset(dev);
1526
1527 wake_up_all(&dev_priv->gpu_error.reset_queue);
1528 }
1529 }
1530
1531 static void i915_report_and_clear_eir(struct drm_device *dev)
1532 {
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 uint32_t instdone[I915_NUM_INSTDONE_REG];
1535 u32 eir = I915_READ(EIR);
1536 int pipe, i;
1537
1538 if (!eir)
1539 return;
1540
1541 pr_err("render error detected, EIR: 0x%08x\n", eir);
1542
1543 i915_get_extra_instdone(dev, instdone);
1544
1545 if (IS_G4X(dev)) {
1546 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1547 u32 ipeir = I915_READ(IPEIR_I965);
1548
1549 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1550 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1551 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1552 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1553 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1554 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1555 I915_WRITE(IPEIR_I965, ipeir);
1556 POSTING_READ(IPEIR_I965);
1557 }
1558 if (eir & GM45_ERROR_PAGE_TABLE) {
1559 u32 pgtbl_err = I915_READ(PGTBL_ER);
1560 pr_err("page table error\n");
1561 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1562 I915_WRITE(PGTBL_ER, pgtbl_err);
1563 POSTING_READ(PGTBL_ER);
1564 }
1565 }
1566
1567 if (!IS_GEN2(dev)) {
1568 if (eir & I915_ERROR_PAGE_TABLE) {
1569 u32 pgtbl_err = I915_READ(PGTBL_ER);
1570 pr_err("page table error\n");
1571 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1572 I915_WRITE(PGTBL_ER, pgtbl_err);
1573 POSTING_READ(PGTBL_ER);
1574 }
1575 }
1576
1577 if (eir & I915_ERROR_MEMORY_REFRESH) {
1578 pr_err("memory refresh error:\n");
1579 for_each_pipe(pipe)
1580 pr_err("pipe %c stat: 0x%08x\n",
1581 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1582 /* pipestat has already been acked */
1583 }
1584 if (eir & I915_ERROR_INSTRUCTION) {
1585 pr_err("instruction error\n");
1586 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1587 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1588 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1589 if (INTEL_INFO(dev)->gen < 4) {
1590 u32 ipeir = I915_READ(IPEIR);
1591
1592 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1593 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1594 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1595 I915_WRITE(IPEIR, ipeir);
1596 POSTING_READ(IPEIR);
1597 } else {
1598 u32 ipeir = I915_READ(IPEIR_I965);
1599
1600 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1601 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1602 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1603 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1604 I915_WRITE(IPEIR_I965, ipeir);
1605 POSTING_READ(IPEIR_I965);
1606 }
1607 }
1608
1609 I915_WRITE(EIR, eir);
1610 POSTING_READ(EIR);
1611 eir = I915_READ(EIR);
1612 if (eir) {
1613 /*
1614 * some errors might have become stuck,
1615 * mask them.
1616 */
1617 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1618 I915_WRITE(EMR, I915_READ(EMR) | eir);
1619 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1620 }
1621 }
1622
1623 /**
1624 * i915_handle_error - handle an error interrupt
1625 * @dev: drm device
1626 *
1627 * Do some basic checking of regsiter state at error interrupt time and
1628 * dump it to the syslog. Also call i915_capture_error_state() to make
1629 * sure we get a record and make it available in debugfs. Fire a uevent
1630 * so userspace knows something bad happened (should trigger collection
1631 * of a ring dump etc.).
1632 */
1633 void i915_handle_error(struct drm_device *dev, bool wedged)
1634 {
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 struct intel_ring_buffer *ring;
1637 int i;
1638
1639 i915_capture_error_state(dev);
1640 i915_report_and_clear_eir(dev);
1641
1642 if (wedged) {
1643 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1644 &dev_priv->gpu_error.reset_counter);
1645
1646 /*
1647 * Wakeup waiting processes so that the reset work item
1648 * doesn't deadlock trying to grab various locks.
1649 */
1650 for_each_ring(ring, dev_priv, i)
1651 wake_up_all(&ring->irq_queue);
1652 }
1653
1654 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
1655 }
1656
1657 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1658 {
1659 drm_i915_private_t *dev_priv = dev->dev_private;
1660 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1662 struct drm_i915_gem_object *obj;
1663 struct intel_unpin_work *work;
1664 unsigned long flags;
1665 bool stall_detected;
1666
1667 /* Ignore early vblank irqs */
1668 if (intel_crtc == NULL)
1669 return;
1670
1671 spin_lock_irqsave(&dev->event_lock, flags);
1672 work = intel_crtc->unpin_work;
1673
1674 if (work == NULL ||
1675 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1676 !work->enable_stall_check) {
1677 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1678 spin_unlock_irqrestore(&dev->event_lock, flags);
1679 return;
1680 }
1681
1682 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1683 obj = work->pending_flip_obj;
1684 if (INTEL_INFO(dev)->gen >= 4) {
1685 int dspsurf = DSPSURF(intel_crtc->plane);
1686 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1687 i915_gem_obj_ggtt_offset(obj);
1688 } else {
1689 int dspaddr = DSPADDR(intel_crtc->plane);
1690 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1691 crtc->y * crtc->fb->pitches[0] +
1692 crtc->x * crtc->fb->bits_per_pixel/8);
1693 }
1694
1695 spin_unlock_irqrestore(&dev->event_lock, flags);
1696
1697 if (stall_detected) {
1698 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1699 intel_prepare_page_flip(dev, intel_crtc->plane);
1700 }
1701 }
1702
1703 /* Called from drm generic code, passed 'crtc' which
1704 * we use as a pipe index
1705 */
1706 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1707 {
1708 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1709 unsigned long irqflags;
1710
1711 if (!i915_pipe_enabled(dev, pipe))
1712 return -EINVAL;
1713
1714 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1715 if (INTEL_INFO(dev)->gen >= 4)
1716 i915_enable_pipestat(dev_priv, pipe,
1717 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1718 else
1719 i915_enable_pipestat(dev_priv, pipe,
1720 PIPE_VBLANK_INTERRUPT_ENABLE);
1721
1722 /* maintain vblank delivery even in deep C-states */
1723 if (dev_priv->info->gen == 3)
1724 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1725 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1726
1727 return 0;
1728 }
1729
1730 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1731 {
1732 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1733 unsigned long irqflags;
1734 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1735 DE_PIPE_VBLANK_ILK(pipe);
1736
1737 if (!i915_pipe_enabled(dev, pipe))
1738 return -EINVAL;
1739
1740 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1741 ironlake_enable_display_irq(dev_priv, bit);
1742 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1743
1744 return 0;
1745 }
1746
1747 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1748 {
1749 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1750 unsigned long irqflags;
1751 u32 imr;
1752
1753 if (!i915_pipe_enabled(dev, pipe))
1754 return -EINVAL;
1755
1756 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1757 imr = I915_READ(VLV_IMR);
1758 if (pipe == 0)
1759 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1760 else
1761 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1762 I915_WRITE(VLV_IMR, imr);
1763 i915_enable_pipestat(dev_priv, pipe,
1764 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1765 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1766
1767 return 0;
1768 }
1769
1770 /* Called from drm generic code, passed 'crtc' which
1771 * we use as a pipe index
1772 */
1773 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1774 {
1775 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1776 unsigned long irqflags;
1777
1778 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1779 if (dev_priv->info->gen == 3)
1780 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1781
1782 i915_disable_pipestat(dev_priv, pipe,
1783 PIPE_VBLANK_INTERRUPT_ENABLE |
1784 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1785 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1786 }
1787
1788 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1789 {
1790 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1791 unsigned long irqflags;
1792 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1793 DE_PIPE_VBLANK_ILK(pipe);
1794
1795 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1796 ironlake_disable_display_irq(dev_priv, bit);
1797 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1798 }
1799
1800 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1801 {
1802 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1803 unsigned long irqflags;
1804 u32 imr;
1805
1806 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1807 i915_disable_pipestat(dev_priv, pipe,
1808 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1809 imr = I915_READ(VLV_IMR);
1810 if (pipe == 0)
1811 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1812 else
1813 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1814 I915_WRITE(VLV_IMR, imr);
1815 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1816 }
1817
1818 static u32
1819 ring_last_seqno(struct intel_ring_buffer *ring)
1820 {
1821 return list_entry(ring->request_list.prev,
1822 struct drm_i915_gem_request, list)->seqno;
1823 }
1824
1825 static bool
1826 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1827 {
1828 return (list_empty(&ring->request_list) ||
1829 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1830 }
1831
1832 static struct intel_ring_buffer *
1833 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1834 {
1835 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1836 u32 cmd, ipehr, acthd, acthd_min;
1837
1838 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1839 if ((ipehr & ~(0x3 << 16)) !=
1840 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1841 return NULL;
1842
1843 /* ACTHD is likely pointing to the dword after the actual command,
1844 * so scan backwards until we find the MBOX.
1845 */
1846 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1847 acthd_min = max((int)acthd - 3 * 4, 0);
1848 do {
1849 cmd = ioread32(ring->virtual_start + acthd);
1850 if (cmd == ipehr)
1851 break;
1852
1853 acthd -= 4;
1854 if (acthd < acthd_min)
1855 return NULL;
1856 } while (1);
1857
1858 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1859 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1860 }
1861
1862 static int semaphore_passed(struct intel_ring_buffer *ring)
1863 {
1864 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1865 struct intel_ring_buffer *signaller;
1866 u32 seqno, ctl;
1867
1868 ring->hangcheck.deadlock = true;
1869
1870 signaller = semaphore_waits_for(ring, &seqno);
1871 if (signaller == NULL || signaller->hangcheck.deadlock)
1872 return -1;
1873
1874 /* cursory check for an unkickable deadlock */
1875 ctl = I915_READ_CTL(signaller);
1876 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1877 return -1;
1878
1879 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1880 }
1881
1882 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1883 {
1884 struct intel_ring_buffer *ring;
1885 int i;
1886
1887 for_each_ring(ring, dev_priv, i)
1888 ring->hangcheck.deadlock = false;
1889 }
1890
1891 static enum intel_ring_hangcheck_action
1892 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1893 {
1894 struct drm_device *dev = ring->dev;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 u32 tmp;
1897
1898 if (ring->hangcheck.acthd != acthd)
1899 return HANGCHECK_ACTIVE;
1900
1901 if (IS_GEN2(dev))
1902 return HANGCHECK_HUNG;
1903
1904 /* Is the chip hanging on a WAIT_FOR_EVENT?
1905 * If so we can simply poke the RB_WAIT bit
1906 * and break the hang. This should work on
1907 * all but the second generation chipsets.
1908 */
1909 tmp = I915_READ_CTL(ring);
1910 if (tmp & RING_WAIT) {
1911 DRM_ERROR("Kicking stuck wait on %s\n",
1912 ring->name);
1913 I915_WRITE_CTL(ring, tmp);
1914 return HANGCHECK_KICK;
1915 }
1916
1917 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1918 switch (semaphore_passed(ring)) {
1919 default:
1920 return HANGCHECK_HUNG;
1921 case 1:
1922 DRM_ERROR("Kicking stuck semaphore on %s\n",
1923 ring->name);
1924 I915_WRITE_CTL(ring, tmp);
1925 return HANGCHECK_KICK;
1926 case 0:
1927 return HANGCHECK_WAIT;
1928 }
1929 }
1930
1931 return HANGCHECK_HUNG;
1932 }
1933
1934 /**
1935 * This is called when the chip hasn't reported back with completed
1936 * batchbuffers in a long time. We keep track per ring seqno progress and
1937 * if there are no progress, hangcheck score for that ring is increased.
1938 * Further, acthd is inspected to see if the ring is stuck. On stuck case
1939 * we kick the ring. If we see no progress on three subsequent calls
1940 * we assume chip is wedged and try to fix it by resetting the chip.
1941 */
1942 static void i915_hangcheck_elapsed(unsigned long data)
1943 {
1944 struct drm_device *dev = (struct drm_device *)data;
1945 drm_i915_private_t *dev_priv = dev->dev_private;
1946 struct intel_ring_buffer *ring;
1947 int i;
1948 int busy_count = 0, rings_hung = 0;
1949 bool stuck[I915_NUM_RINGS] = { 0 };
1950 #define BUSY 1
1951 #define KICK 5
1952 #define HUNG 20
1953 #define FIRE 30
1954
1955 if (!i915_enable_hangcheck)
1956 return;
1957
1958 for_each_ring(ring, dev_priv, i) {
1959 u32 seqno, acthd;
1960 bool busy = true;
1961
1962 semaphore_clear_deadlocks(dev_priv);
1963
1964 seqno = ring->get_seqno(ring, false);
1965 acthd = intel_ring_get_active_head(ring);
1966
1967 if (ring->hangcheck.seqno == seqno) {
1968 if (ring_idle(ring, seqno)) {
1969 if (waitqueue_active(&ring->irq_queue)) {
1970 /* Issue a wake-up to catch stuck h/w. */
1971 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1972 ring->name);
1973 wake_up_all(&ring->irq_queue);
1974 ring->hangcheck.score += HUNG;
1975 } else
1976 busy = false;
1977 } else {
1978 /* We always increment the hangcheck score
1979 * if the ring is busy and still processing
1980 * the same request, so that no single request
1981 * can run indefinitely (such as a chain of
1982 * batches). The only time we do not increment
1983 * the hangcheck score on this ring, if this
1984 * ring is in a legitimate wait for another
1985 * ring. In that case the waiting ring is a
1986 * victim and we want to be sure we catch the
1987 * right culprit. Then every time we do kick
1988 * the ring, add a small increment to the
1989 * score so that we can catch a batch that is
1990 * being repeatedly kicked and so responsible
1991 * for stalling the machine.
1992 */
1993 ring->hangcheck.action = ring_stuck(ring,
1994 acthd);
1995
1996 switch (ring->hangcheck.action) {
1997 case HANGCHECK_WAIT:
1998 break;
1999 case HANGCHECK_ACTIVE:
2000 ring->hangcheck.score += BUSY;
2001 break;
2002 case HANGCHECK_KICK:
2003 ring->hangcheck.score += KICK;
2004 break;
2005 case HANGCHECK_HUNG:
2006 ring->hangcheck.score += HUNG;
2007 stuck[i] = true;
2008 break;
2009 }
2010 }
2011 } else {
2012 /* Gradually reduce the count so that we catch DoS
2013 * attempts across multiple batches.
2014 */
2015 if (ring->hangcheck.score > 0)
2016 ring->hangcheck.score--;
2017 }
2018
2019 ring->hangcheck.seqno = seqno;
2020 ring->hangcheck.acthd = acthd;
2021 busy_count += busy;
2022 }
2023
2024 for_each_ring(ring, dev_priv, i) {
2025 if (ring->hangcheck.score > FIRE) {
2026 DRM_ERROR("%s on %s\n",
2027 stuck[i] ? "stuck" : "no progress",
2028 ring->name);
2029 rings_hung++;
2030 }
2031 }
2032
2033 if (rings_hung)
2034 return i915_handle_error(dev, true);
2035
2036 if (busy_count)
2037 /* Reset timer case chip hangs without another request
2038 * being added */
2039 i915_queue_hangcheck(dev);
2040 }
2041
2042 void i915_queue_hangcheck(struct drm_device *dev)
2043 {
2044 struct drm_i915_private *dev_priv = dev->dev_private;
2045 if (!i915_enable_hangcheck)
2046 return;
2047
2048 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2049 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2050 }
2051
2052 static void ibx_irq_preinstall(struct drm_device *dev)
2053 {
2054 struct drm_i915_private *dev_priv = dev->dev_private;
2055
2056 if (HAS_PCH_NOP(dev))
2057 return;
2058
2059 /* south display irq */
2060 I915_WRITE(SDEIMR, 0xffffffff);
2061 /*
2062 * SDEIER is also touched by the interrupt handler to work around missed
2063 * PCH interrupts. Hence we can't update it after the interrupt handler
2064 * is enabled - instead we unconditionally enable all PCH interrupt
2065 * sources here, but then only unmask them as needed with SDEIMR.
2066 */
2067 I915_WRITE(SDEIER, 0xffffffff);
2068 POSTING_READ(SDEIER);
2069 }
2070
2071 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2072 {
2073 struct drm_i915_private *dev_priv = dev->dev_private;
2074
2075 /* and GT */
2076 I915_WRITE(GTIMR, 0xffffffff);
2077 I915_WRITE(GTIER, 0x0);
2078 POSTING_READ(GTIER);
2079
2080 if (INTEL_INFO(dev)->gen >= 6) {
2081 /* and PM */
2082 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2083 I915_WRITE(GEN6_PMIER, 0x0);
2084 POSTING_READ(GEN6_PMIER);
2085 }
2086 }
2087
2088 /* drm_dma.h hooks
2089 */
2090 static void ironlake_irq_preinstall(struct drm_device *dev)
2091 {
2092 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2093
2094 atomic_set(&dev_priv->irq_received, 0);
2095
2096 I915_WRITE(HWSTAM, 0xeffe);
2097
2098 I915_WRITE(DEIMR, 0xffffffff);
2099 I915_WRITE(DEIER, 0x0);
2100 POSTING_READ(DEIER);
2101
2102 gen5_gt_irq_preinstall(dev);
2103
2104 ibx_irq_preinstall(dev);
2105 }
2106
2107 static void valleyview_irq_preinstall(struct drm_device *dev)
2108 {
2109 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2110 int pipe;
2111
2112 atomic_set(&dev_priv->irq_received, 0);
2113
2114 /* VLV magic */
2115 I915_WRITE(VLV_IMR, 0);
2116 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2117 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2118 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2119
2120 /* and GT */
2121 I915_WRITE(GTIIR, I915_READ(GTIIR));
2122 I915_WRITE(GTIIR, I915_READ(GTIIR));
2123
2124 gen5_gt_irq_preinstall(dev);
2125
2126 I915_WRITE(DPINVGTT, 0xff);
2127
2128 I915_WRITE(PORT_HOTPLUG_EN, 0);
2129 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2130 for_each_pipe(pipe)
2131 I915_WRITE(PIPESTAT(pipe), 0xffff);
2132 I915_WRITE(VLV_IIR, 0xffffffff);
2133 I915_WRITE(VLV_IMR, 0xffffffff);
2134 I915_WRITE(VLV_IER, 0x0);
2135 POSTING_READ(VLV_IER);
2136 }
2137
2138 static void ibx_hpd_irq_setup(struct drm_device *dev)
2139 {
2140 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2141 struct drm_mode_config *mode_config = &dev->mode_config;
2142 struct intel_encoder *intel_encoder;
2143 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2144
2145 if (HAS_PCH_IBX(dev)) {
2146 hotplug_irqs = SDE_HOTPLUG_MASK;
2147 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2148 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2149 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2150 } else {
2151 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2152 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2153 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2154 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2155 }
2156
2157 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2158
2159 /*
2160 * Enable digital hotplug on the PCH, and configure the DP short pulse
2161 * duration to 2ms (which is the minimum in the Display Port spec)
2162 *
2163 * This register is the same on all known PCH chips.
2164 */
2165 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2166 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2167 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2168 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2169 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2170 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2171 }
2172
2173 static void ibx_irq_postinstall(struct drm_device *dev)
2174 {
2175 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2176 u32 mask;
2177
2178 if (HAS_PCH_NOP(dev))
2179 return;
2180
2181 if (HAS_PCH_IBX(dev)) {
2182 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2183 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2184 } else {
2185 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2186
2187 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2188 }
2189
2190 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2191 I915_WRITE(SDEIMR, ~mask);
2192 }
2193
2194 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2195 {
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197 u32 pm_irqs, gt_irqs;
2198
2199 pm_irqs = gt_irqs = 0;
2200
2201 dev_priv->gt_irq_mask = ~0;
2202 if (HAS_L3_GPU_CACHE(dev)) {
2203 /* L3 parity interrupt is always unmasked. */
2204 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2205 gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2206 }
2207
2208 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2209 if (IS_GEN5(dev)) {
2210 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2211 ILK_BSD_USER_INTERRUPT;
2212 } else {
2213 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2214 }
2215
2216 I915_WRITE(GTIIR, I915_READ(GTIIR));
2217 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2218 I915_WRITE(GTIER, gt_irqs);
2219 POSTING_READ(GTIER);
2220
2221 if (INTEL_INFO(dev)->gen >= 6) {
2222 pm_irqs |= GEN6_PM_RPS_EVENTS;
2223
2224 if (HAS_VEBOX(dev))
2225 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2226
2227 dev_priv->pm_irq_mask = 0xffffffff;
2228 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2229 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2230 I915_WRITE(GEN6_PMIER, pm_irqs);
2231 POSTING_READ(GEN6_PMIER);
2232 }
2233 }
2234
2235 static int ironlake_irq_postinstall(struct drm_device *dev)
2236 {
2237 unsigned long irqflags;
2238 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2239 u32 display_mask, extra_mask;
2240
2241 if (INTEL_INFO(dev)->gen >= 7) {
2242 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2243 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2244 DE_PLANEB_FLIP_DONE_IVB |
2245 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2246 DE_ERR_INT_IVB);
2247 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2248 DE_PIPEA_VBLANK_IVB);
2249
2250 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2251 } else {
2252 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2253 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2254 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2255 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2256 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2257 }
2258
2259 dev_priv->irq_mask = ~display_mask;
2260
2261 /* should always can generate irq */
2262 I915_WRITE(DEIIR, I915_READ(DEIIR));
2263 I915_WRITE(DEIMR, dev_priv->irq_mask);
2264 I915_WRITE(DEIER, display_mask | extra_mask);
2265 POSTING_READ(DEIER);
2266
2267 gen5_gt_irq_postinstall(dev);
2268
2269 ibx_irq_postinstall(dev);
2270
2271 if (IS_IRONLAKE_M(dev)) {
2272 /* Enable PCU event interrupts
2273 *
2274 * spinlocking not required here for correctness since interrupt
2275 * setup is guaranteed to run in single-threaded context. But we
2276 * need it to make the assert_spin_locked happy. */
2277 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2278 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2279 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2280 }
2281
2282 return 0;
2283 }
2284
2285 static int valleyview_irq_postinstall(struct drm_device *dev)
2286 {
2287 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2288 u32 enable_mask;
2289 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2290 unsigned long irqflags;
2291
2292 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2293 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2294 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2295 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2296 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2297
2298 /*
2299 *Leave vblank interrupts masked initially. enable/disable will
2300 * toggle them based on usage.
2301 */
2302 dev_priv->irq_mask = (~enable_mask) |
2303 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2304 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2305
2306 I915_WRITE(PORT_HOTPLUG_EN, 0);
2307 POSTING_READ(PORT_HOTPLUG_EN);
2308
2309 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2310 I915_WRITE(VLV_IER, enable_mask);
2311 I915_WRITE(VLV_IIR, 0xffffffff);
2312 I915_WRITE(PIPESTAT(0), 0xffff);
2313 I915_WRITE(PIPESTAT(1), 0xffff);
2314 POSTING_READ(VLV_IER);
2315
2316 /* Interrupt setup is already guaranteed to be single-threaded, this is
2317 * just to make the assert_spin_locked check happy. */
2318 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2319 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2320 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2321 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2322 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2323
2324 I915_WRITE(VLV_IIR, 0xffffffff);
2325 I915_WRITE(VLV_IIR, 0xffffffff);
2326
2327 gen5_gt_irq_postinstall(dev);
2328
2329 /* ack & enable invalid PTE error interrupts */
2330 #if 0 /* FIXME: add support to irq handler for checking these bits */
2331 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2332 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2333 #endif
2334
2335 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2336
2337 return 0;
2338 }
2339
2340 static void valleyview_irq_uninstall(struct drm_device *dev)
2341 {
2342 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2343 int pipe;
2344
2345 if (!dev_priv)
2346 return;
2347
2348 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2349
2350 for_each_pipe(pipe)
2351 I915_WRITE(PIPESTAT(pipe), 0xffff);
2352
2353 I915_WRITE(HWSTAM, 0xffffffff);
2354 I915_WRITE(PORT_HOTPLUG_EN, 0);
2355 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2356 for_each_pipe(pipe)
2357 I915_WRITE(PIPESTAT(pipe), 0xffff);
2358 I915_WRITE(VLV_IIR, 0xffffffff);
2359 I915_WRITE(VLV_IMR, 0xffffffff);
2360 I915_WRITE(VLV_IER, 0x0);
2361 POSTING_READ(VLV_IER);
2362 }
2363
2364 static void ironlake_irq_uninstall(struct drm_device *dev)
2365 {
2366 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2367
2368 if (!dev_priv)
2369 return;
2370
2371 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2372
2373 I915_WRITE(HWSTAM, 0xffffffff);
2374
2375 I915_WRITE(DEIMR, 0xffffffff);
2376 I915_WRITE(DEIER, 0x0);
2377 I915_WRITE(DEIIR, I915_READ(DEIIR));
2378 if (IS_GEN7(dev))
2379 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2380
2381 I915_WRITE(GTIMR, 0xffffffff);
2382 I915_WRITE(GTIER, 0x0);
2383 I915_WRITE(GTIIR, I915_READ(GTIIR));
2384
2385 if (HAS_PCH_NOP(dev))
2386 return;
2387
2388 I915_WRITE(SDEIMR, 0xffffffff);
2389 I915_WRITE(SDEIER, 0x0);
2390 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2391 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2392 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2393 }
2394
2395 static void i8xx_irq_preinstall(struct drm_device * dev)
2396 {
2397 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2398 int pipe;
2399
2400 atomic_set(&dev_priv->irq_received, 0);
2401
2402 for_each_pipe(pipe)
2403 I915_WRITE(PIPESTAT(pipe), 0);
2404 I915_WRITE16(IMR, 0xffff);
2405 I915_WRITE16(IER, 0x0);
2406 POSTING_READ16(IER);
2407 }
2408
2409 static int i8xx_irq_postinstall(struct drm_device *dev)
2410 {
2411 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2412
2413 I915_WRITE16(EMR,
2414 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2415
2416 /* Unmask the interrupts that we always want on. */
2417 dev_priv->irq_mask =
2418 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2419 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2420 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2421 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2422 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2423 I915_WRITE16(IMR, dev_priv->irq_mask);
2424
2425 I915_WRITE16(IER,
2426 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2427 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2428 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2429 I915_USER_INTERRUPT);
2430 POSTING_READ16(IER);
2431
2432 return 0;
2433 }
2434
2435 /*
2436 * Returns true when a page flip has completed.
2437 */
2438 static bool i8xx_handle_vblank(struct drm_device *dev,
2439 int pipe, u16 iir)
2440 {
2441 drm_i915_private_t *dev_priv = dev->dev_private;
2442 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2443
2444 if (!drm_handle_vblank(dev, pipe))
2445 return false;
2446
2447 if ((iir & flip_pending) == 0)
2448 return false;
2449
2450 intel_prepare_page_flip(dev, pipe);
2451
2452 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2453 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2454 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2455 * the flip is completed (no longer pending). Since this doesn't raise
2456 * an interrupt per se, we watch for the change at vblank.
2457 */
2458 if (I915_READ16(ISR) & flip_pending)
2459 return false;
2460
2461 intel_finish_page_flip(dev, pipe);
2462
2463 return true;
2464 }
2465
2466 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2467 {
2468 struct drm_device *dev = (struct drm_device *) arg;
2469 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2470 u16 iir, new_iir;
2471 u32 pipe_stats[2];
2472 unsigned long irqflags;
2473 int pipe;
2474 u16 flip_mask =
2475 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2476 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2477
2478 atomic_inc(&dev_priv->irq_received);
2479
2480 iir = I915_READ16(IIR);
2481 if (iir == 0)
2482 return IRQ_NONE;
2483
2484 while (iir & ~flip_mask) {
2485 /* Can't rely on pipestat interrupt bit in iir as it might
2486 * have been cleared after the pipestat interrupt was received.
2487 * It doesn't set the bit in iir again, but it still produces
2488 * interrupts (for non-MSI).
2489 */
2490 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2491 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2492 i915_handle_error(dev, false);
2493
2494 for_each_pipe(pipe) {
2495 int reg = PIPESTAT(pipe);
2496 pipe_stats[pipe] = I915_READ(reg);
2497
2498 /*
2499 * Clear the PIPE*STAT regs before the IIR
2500 */
2501 if (pipe_stats[pipe] & 0x8000ffff) {
2502 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2503 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2504 pipe_name(pipe));
2505 I915_WRITE(reg, pipe_stats[pipe]);
2506 }
2507 }
2508 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2509
2510 I915_WRITE16(IIR, iir & ~flip_mask);
2511 new_iir = I915_READ16(IIR); /* Flush posted writes */
2512
2513 i915_update_dri1_breadcrumb(dev);
2514
2515 if (iir & I915_USER_INTERRUPT)
2516 notify_ring(dev, &dev_priv->ring[RCS]);
2517
2518 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2519 i8xx_handle_vblank(dev, 0, iir))
2520 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2521
2522 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2523 i8xx_handle_vblank(dev, 1, iir))
2524 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2525
2526 iir = new_iir;
2527 }
2528
2529 return IRQ_HANDLED;
2530 }
2531
2532 static void i8xx_irq_uninstall(struct drm_device * dev)
2533 {
2534 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2535 int pipe;
2536
2537 for_each_pipe(pipe) {
2538 /* Clear enable bits; then clear status bits */
2539 I915_WRITE(PIPESTAT(pipe), 0);
2540 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2541 }
2542 I915_WRITE16(IMR, 0xffff);
2543 I915_WRITE16(IER, 0x0);
2544 I915_WRITE16(IIR, I915_READ16(IIR));
2545 }
2546
2547 static void i915_irq_preinstall(struct drm_device * dev)
2548 {
2549 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2550 int pipe;
2551
2552 atomic_set(&dev_priv->irq_received, 0);
2553
2554 if (I915_HAS_HOTPLUG(dev)) {
2555 I915_WRITE(PORT_HOTPLUG_EN, 0);
2556 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2557 }
2558
2559 I915_WRITE16(HWSTAM, 0xeffe);
2560 for_each_pipe(pipe)
2561 I915_WRITE(PIPESTAT(pipe), 0);
2562 I915_WRITE(IMR, 0xffffffff);
2563 I915_WRITE(IER, 0x0);
2564 POSTING_READ(IER);
2565 }
2566
2567 static int i915_irq_postinstall(struct drm_device *dev)
2568 {
2569 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2570 u32 enable_mask;
2571
2572 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2573
2574 /* Unmask the interrupts that we always want on. */
2575 dev_priv->irq_mask =
2576 ~(I915_ASLE_INTERRUPT |
2577 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2578 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2579 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2580 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2581 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2582
2583 enable_mask =
2584 I915_ASLE_INTERRUPT |
2585 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2586 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2587 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2588 I915_USER_INTERRUPT;
2589
2590 if (I915_HAS_HOTPLUG(dev)) {
2591 I915_WRITE(PORT_HOTPLUG_EN, 0);
2592 POSTING_READ(PORT_HOTPLUG_EN);
2593
2594 /* Enable in IER... */
2595 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2596 /* and unmask in IMR */
2597 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2598 }
2599
2600 I915_WRITE(IMR, dev_priv->irq_mask);
2601 I915_WRITE(IER, enable_mask);
2602 POSTING_READ(IER);
2603
2604 i915_enable_asle_pipestat(dev);
2605
2606 return 0;
2607 }
2608
2609 /*
2610 * Returns true when a page flip has completed.
2611 */
2612 static bool i915_handle_vblank(struct drm_device *dev,
2613 int plane, int pipe, u32 iir)
2614 {
2615 drm_i915_private_t *dev_priv = dev->dev_private;
2616 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2617
2618 if (!drm_handle_vblank(dev, pipe))
2619 return false;
2620
2621 if ((iir & flip_pending) == 0)
2622 return false;
2623
2624 intel_prepare_page_flip(dev, plane);
2625
2626 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2627 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2628 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2629 * the flip is completed (no longer pending). Since this doesn't raise
2630 * an interrupt per se, we watch for the change at vblank.
2631 */
2632 if (I915_READ(ISR) & flip_pending)
2633 return false;
2634
2635 intel_finish_page_flip(dev, pipe);
2636
2637 return true;
2638 }
2639
2640 static irqreturn_t i915_irq_handler(int irq, void *arg)
2641 {
2642 struct drm_device *dev = (struct drm_device *) arg;
2643 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2644 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2645 unsigned long irqflags;
2646 u32 flip_mask =
2647 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2648 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2649 int pipe, ret = IRQ_NONE;
2650
2651 atomic_inc(&dev_priv->irq_received);
2652
2653 iir = I915_READ(IIR);
2654 do {
2655 bool irq_received = (iir & ~flip_mask) != 0;
2656 bool blc_event = false;
2657
2658 /* Can't rely on pipestat interrupt bit in iir as it might
2659 * have been cleared after the pipestat interrupt was received.
2660 * It doesn't set the bit in iir again, but it still produces
2661 * interrupts (for non-MSI).
2662 */
2663 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2664 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2665 i915_handle_error(dev, false);
2666
2667 for_each_pipe(pipe) {
2668 int reg = PIPESTAT(pipe);
2669 pipe_stats[pipe] = I915_READ(reg);
2670
2671 /* Clear the PIPE*STAT regs before the IIR */
2672 if (pipe_stats[pipe] & 0x8000ffff) {
2673 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2674 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2675 pipe_name(pipe));
2676 I915_WRITE(reg, pipe_stats[pipe]);
2677 irq_received = true;
2678 }
2679 }
2680 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2681
2682 if (!irq_received)
2683 break;
2684
2685 /* Consume port. Then clear IIR or we'll miss events */
2686 if ((I915_HAS_HOTPLUG(dev)) &&
2687 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2688 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2689 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2690
2691 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2692 hotplug_status);
2693
2694 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2695
2696 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2697 POSTING_READ(PORT_HOTPLUG_STAT);
2698 }
2699
2700 I915_WRITE(IIR, iir & ~flip_mask);
2701 new_iir = I915_READ(IIR); /* Flush posted writes */
2702
2703 if (iir & I915_USER_INTERRUPT)
2704 notify_ring(dev, &dev_priv->ring[RCS]);
2705
2706 for_each_pipe(pipe) {
2707 int plane = pipe;
2708 if (IS_MOBILE(dev))
2709 plane = !plane;
2710
2711 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2712 i915_handle_vblank(dev, plane, pipe, iir))
2713 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2714
2715 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2716 blc_event = true;
2717 }
2718
2719 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2720 intel_opregion_asle_intr(dev);
2721
2722 /* With MSI, interrupts are only generated when iir
2723 * transitions from zero to nonzero. If another bit got
2724 * set while we were handling the existing iir bits, then
2725 * we would never get another interrupt.
2726 *
2727 * This is fine on non-MSI as well, as if we hit this path
2728 * we avoid exiting the interrupt handler only to generate
2729 * another one.
2730 *
2731 * Note that for MSI this could cause a stray interrupt report
2732 * if an interrupt landed in the time between writing IIR and
2733 * the posting read. This should be rare enough to never
2734 * trigger the 99% of 100,000 interrupts test for disabling
2735 * stray interrupts.
2736 */
2737 ret = IRQ_HANDLED;
2738 iir = new_iir;
2739 } while (iir & ~flip_mask);
2740
2741 i915_update_dri1_breadcrumb(dev);
2742
2743 return ret;
2744 }
2745
2746 static void i915_irq_uninstall(struct drm_device * dev)
2747 {
2748 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2749 int pipe;
2750
2751 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2752
2753 if (I915_HAS_HOTPLUG(dev)) {
2754 I915_WRITE(PORT_HOTPLUG_EN, 0);
2755 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2756 }
2757
2758 I915_WRITE16(HWSTAM, 0xffff);
2759 for_each_pipe(pipe) {
2760 /* Clear enable bits; then clear status bits */
2761 I915_WRITE(PIPESTAT(pipe), 0);
2762 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2763 }
2764 I915_WRITE(IMR, 0xffffffff);
2765 I915_WRITE(IER, 0x0);
2766
2767 I915_WRITE(IIR, I915_READ(IIR));
2768 }
2769
2770 static void i965_irq_preinstall(struct drm_device * dev)
2771 {
2772 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2773 int pipe;
2774
2775 atomic_set(&dev_priv->irq_received, 0);
2776
2777 I915_WRITE(PORT_HOTPLUG_EN, 0);
2778 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2779
2780 I915_WRITE(HWSTAM, 0xeffe);
2781 for_each_pipe(pipe)
2782 I915_WRITE(PIPESTAT(pipe), 0);
2783 I915_WRITE(IMR, 0xffffffff);
2784 I915_WRITE(IER, 0x0);
2785 POSTING_READ(IER);
2786 }
2787
2788 static int i965_irq_postinstall(struct drm_device *dev)
2789 {
2790 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2791 u32 enable_mask;
2792 u32 error_mask;
2793 unsigned long irqflags;
2794
2795 /* Unmask the interrupts that we always want on. */
2796 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2797 I915_DISPLAY_PORT_INTERRUPT |
2798 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2799 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2800 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2801 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2802 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2803
2804 enable_mask = ~dev_priv->irq_mask;
2805 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2806 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2807 enable_mask |= I915_USER_INTERRUPT;
2808
2809 if (IS_G4X(dev))
2810 enable_mask |= I915_BSD_USER_INTERRUPT;
2811
2812 /* Interrupt setup is already guaranteed to be single-threaded, this is
2813 * just to make the assert_spin_locked check happy. */
2814 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2815 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2816 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2817
2818 /*
2819 * Enable some error detection, note the instruction error mask
2820 * bit is reserved, so we leave it masked.
2821 */
2822 if (IS_G4X(dev)) {
2823 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2824 GM45_ERROR_MEM_PRIV |
2825 GM45_ERROR_CP_PRIV |
2826 I915_ERROR_MEMORY_REFRESH);
2827 } else {
2828 error_mask = ~(I915_ERROR_PAGE_TABLE |
2829 I915_ERROR_MEMORY_REFRESH);
2830 }
2831 I915_WRITE(EMR, error_mask);
2832
2833 I915_WRITE(IMR, dev_priv->irq_mask);
2834 I915_WRITE(IER, enable_mask);
2835 POSTING_READ(IER);
2836
2837 I915_WRITE(PORT_HOTPLUG_EN, 0);
2838 POSTING_READ(PORT_HOTPLUG_EN);
2839
2840 i915_enable_asle_pipestat(dev);
2841
2842 return 0;
2843 }
2844
2845 static void i915_hpd_irq_setup(struct drm_device *dev)
2846 {
2847 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2848 struct drm_mode_config *mode_config = &dev->mode_config;
2849 struct intel_encoder *intel_encoder;
2850 u32 hotplug_en;
2851
2852 assert_spin_locked(&dev_priv->irq_lock);
2853
2854 if (I915_HAS_HOTPLUG(dev)) {
2855 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2856 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2857 /* Note HDMI and DP share hotplug bits */
2858 /* enable bits are the same for all generations */
2859 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2860 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2861 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2862 /* Programming the CRT detection parameters tends
2863 to generate a spurious hotplug event about three
2864 seconds later. So just do it once.
2865 */
2866 if (IS_G4X(dev))
2867 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2868 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2869 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2870
2871 /* Ignore TV since it's buggy */
2872 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2873 }
2874 }
2875
2876 static irqreturn_t i965_irq_handler(int irq, void *arg)
2877 {
2878 struct drm_device *dev = (struct drm_device *) arg;
2879 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2880 u32 iir, new_iir;
2881 u32 pipe_stats[I915_MAX_PIPES];
2882 unsigned long irqflags;
2883 int irq_received;
2884 int ret = IRQ_NONE, pipe;
2885 u32 flip_mask =
2886 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2887 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2888
2889 atomic_inc(&dev_priv->irq_received);
2890
2891 iir = I915_READ(IIR);
2892
2893 for (;;) {
2894 bool blc_event = false;
2895
2896 irq_received = (iir & ~flip_mask) != 0;
2897
2898 /* Can't rely on pipestat interrupt bit in iir as it might
2899 * have been cleared after the pipestat interrupt was received.
2900 * It doesn't set the bit in iir again, but it still produces
2901 * interrupts (for non-MSI).
2902 */
2903 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2904 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2905 i915_handle_error(dev, false);
2906
2907 for_each_pipe(pipe) {
2908 int reg = PIPESTAT(pipe);
2909 pipe_stats[pipe] = I915_READ(reg);
2910
2911 /*
2912 * Clear the PIPE*STAT regs before the IIR
2913 */
2914 if (pipe_stats[pipe] & 0x8000ffff) {
2915 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2916 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2917 pipe_name(pipe));
2918 I915_WRITE(reg, pipe_stats[pipe]);
2919 irq_received = 1;
2920 }
2921 }
2922 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2923
2924 if (!irq_received)
2925 break;
2926
2927 ret = IRQ_HANDLED;
2928
2929 /* Consume port. Then clear IIR or we'll miss events */
2930 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2931 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2932 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2933 HOTPLUG_INT_STATUS_G4X :
2934 HOTPLUG_INT_STATUS_I915);
2935
2936 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2937 hotplug_status);
2938
2939 intel_hpd_irq_handler(dev, hotplug_trigger,
2940 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2941
2942 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2943 I915_READ(PORT_HOTPLUG_STAT);
2944 }
2945
2946 I915_WRITE(IIR, iir & ~flip_mask);
2947 new_iir = I915_READ(IIR); /* Flush posted writes */
2948
2949 if (iir & I915_USER_INTERRUPT)
2950 notify_ring(dev, &dev_priv->ring[RCS]);
2951 if (iir & I915_BSD_USER_INTERRUPT)
2952 notify_ring(dev, &dev_priv->ring[VCS]);
2953
2954 for_each_pipe(pipe) {
2955 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2956 i915_handle_vblank(dev, pipe, pipe, iir))
2957 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
2958
2959 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2960 blc_event = true;
2961 }
2962
2963
2964 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2965 intel_opregion_asle_intr(dev);
2966
2967 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2968 gmbus_irq_handler(dev);
2969
2970 /* With MSI, interrupts are only generated when iir
2971 * transitions from zero to nonzero. If another bit got
2972 * set while we were handling the existing iir bits, then
2973 * we would never get another interrupt.
2974 *
2975 * This is fine on non-MSI as well, as if we hit this path
2976 * we avoid exiting the interrupt handler only to generate
2977 * another one.
2978 *
2979 * Note that for MSI this could cause a stray interrupt report
2980 * if an interrupt landed in the time between writing IIR and
2981 * the posting read. This should be rare enough to never
2982 * trigger the 99% of 100,000 interrupts test for disabling
2983 * stray interrupts.
2984 */
2985 iir = new_iir;
2986 }
2987
2988 i915_update_dri1_breadcrumb(dev);
2989
2990 return ret;
2991 }
2992
2993 static void i965_irq_uninstall(struct drm_device * dev)
2994 {
2995 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2996 int pipe;
2997
2998 if (!dev_priv)
2999 return;
3000
3001 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3002
3003 I915_WRITE(PORT_HOTPLUG_EN, 0);
3004 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3005
3006 I915_WRITE(HWSTAM, 0xffffffff);
3007 for_each_pipe(pipe)
3008 I915_WRITE(PIPESTAT(pipe), 0);
3009 I915_WRITE(IMR, 0xffffffff);
3010 I915_WRITE(IER, 0x0);
3011
3012 for_each_pipe(pipe)
3013 I915_WRITE(PIPESTAT(pipe),
3014 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3015 I915_WRITE(IIR, I915_READ(IIR));
3016 }
3017
3018 static void i915_reenable_hotplug_timer_func(unsigned long data)
3019 {
3020 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3021 struct drm_device *dev = dev_priv->dev;
3022 struct drm_mode_config *mode_config = &dev->mode_config;
3023 unsigned long irqflags;
3024 int i;
3025
3026 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3027 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3028 struct drm_connector *connector;
3029
3030 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3031 continue;
3032
3033 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3034
3035 list_for_each_entry(connector, &mode_config->connector_list, head) {
3036 struct intel_connector *intel_connector = to_intel_connector(connector);
3037
3038 if (intel_connector->encoder->hpd_pin == i) {
3039 if (connector->polled != intel_connector->polled)
3040 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3041 drm_get_connector_name(connector));
3042 connector->polled = intel_connector->polled;
3043 if (!connector->polled)
3044 connector->polled = DRM_CONNECTOR_POLL_HPD;
3045 }
3046 }
3047 }
3048 if (dev_priv->display.hpd_irq_setup)
3049 dev_priv->display.hpd_irq_setup(dev);
3050 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3051 }
3052
3053 void intel_irq_init(struct drm_device *dev)
3054 {
3055 struct drm_i915_private *dev_priv = dev->dev_private;
3056
3057 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3058 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3059 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3060 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3061
3062 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3063 i915_hangcheck_elapsed,
3064 (unsigned long) dev);
3065 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3066 (unsigned long) dev_priv);
3067
3068 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3069
3070 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3071 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3072 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3073 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3074 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3075 }
3076
3077 if (drm_core_check_feature(dev, DRIVER_MODESET))
3078 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3079 else
3080 dev->driver->get_vblank_timestamp = NULL;
3081 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3082
3083 if (IS_VALLEYVIEW(dev)) {
3084 dev->driver->irq_handler = valleyview_irq_handler;
3085 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3086 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3087 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3088 dev->driver->enable_vblank = valleyview_enable_vblank;
3089 dev->driver->disable_vblank = valleyview_disable_vblank;
3090 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3091 } else if (HAS_PCH_SPLIT(dev)) {
3092 dev->driver->irq_handler = ironlake_irq_handler;
3093 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3094 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3095 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3096 dev->driver->enable_vblank = ironlake_enable_vblank;
3097 dev->driver->disable_vblank = ironlake_disable_vblank;
3098 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3099 } else {
3100 if (INTEL_INFO(dev)->gen == 2) {
3101 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3102 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3103 dev->driver->irq_handler = i8xx_irq_handler;
3104 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3105 } else if (INTEL_INFO(dev)->gen == 3) {
3106 dev->driver->irq_preinstall = i915_irq_preinstall;
3107 dev->driver->irq_postinstall = i915_irq_postinstall;
3108 dev->driver->irq_uninstall = i915_irq_uninstall;
3109 dev->driver->irq_handler = i915_irq_handler;
3110 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3111 } else {
3112 dev->driver->irq_preinstall = i965_irq_preinstall;
3113 dev->driver->irq_postinstall = i965_irq_postinstall;
3114 dev->driver->irq_uninstall = i965_irq_uninstall;
3115 dev->driver->irq_handler = i965_irq_handler;
3116 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3117 }
3118 dev->driver->enable_vblank = i915_enable_vblank;
3119 dev->driver->disable_vblank = i915_disable_vblank;
3120 }
3121 }
3122
3123 void intel_hpd_init(struct drm_device *dev)
3124 {
3125 struct drm_i915_private *dev_priv = dev->dev_private;
3126 struct drm_mode_config *mode_config = &dev->mode_config;
3127 struct drm_connector *connector;
3128 unsigned long irqflags;
3129 int i;
3130
3131 for (i = 1; i < HPD_NUM_PINS; i++) {
3132 dev_priv->hpd_stats[i].hpd_cnt = 0;
3133 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3134 }
3135 list_for_each_entry(connector, &mode_config->connector_list, head) {
3136 struct intel_connector *intel_connector = to_intel_connector(connector);
3137 connector->polled = intel_connector->polled;
3138 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3139 connector->polled = DRM_CONNECTOR_POLL_HPD;
3140 }
3141
3142 /* Interrupt setup is already guaranteed to be single-threaded, this is
3143 * just to make the assert_spin_locked checks happy. */
3144 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3145 if (dev_priv->display.hpd_irq_setup)
3146 dev_priv->display.hpd_irq_setup(dev);
3147 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3148 }
This page took 0.146182 seconds and 5 git commands to generate.