drm/i915: Capture the initial error-state when kicking stuck rings
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if (dev_priv->pc8.irqs_disabled) {
89 WARN(1, "IRQs disabled\n");
90 dev_priv->pc8.regsave.deimr &= ~mask;
91 return;
92 }
93
94 if ((dev_priv->irq_mask & mask) != 0) {
95 dev_priv->irq_mask &= ~mask;
96 I915_WRITE(DEIMR, dev_priv->irq_mask);
97 POSTING_READ(DEIMR);
98 }
99 }
100
101 static void
102 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
103 {
104 assert_spin_locked(&dev_priv->irq_lock);
105
106 if (dev_priv->pc8.irqs_disabled) {
107 WARN(1, "IRQs disabled\n");
108 dev_priv->pc8.regsave.deimr |= mask;
109 return;
110 }
111
112 if ((dev_priv->irq_mask & mask) != mask) {
113 dev_priv->irq_mask |= mask;
114 I915_WRITE(DEIMR, dev_priv->irq_mask);
115 POSTING_READ(DEIMR);
116 }
117 }
118
119 /**
120 * ilk_update_gt_irq - update GTIMR
121 * @dev_priv: driver private
122 * @interrupt_mask: mask of interrupt bits to update
123 * @enabled_irq_mask: mask of interrupt bits to enable
124 */
125 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
126 uint32_t interrupt_mask,
127 uint32_t enabled_irq_mask)
128 {
129 assert_spin_locked(&dev_priv->irq_lock);
130
131 if (dev_priv->pc8.irqs_disabled) {
132 WARN(1, "IRQs disabled\n");
133 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
134 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
135 interrupt_mask);
136 return;
137 }
138
139 dev_priv->gt_irq_mask &= ~interrupt_mask;
140 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
141 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
142 POSTING_READ(GTIMR);
143 }
144
145 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
146 {
147 ilk_update_gt_irq(dev_priv, mask, mask);
148 }
149
150 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
151 {
152 ilk_update_gt_irq(dev_priv, mask, 0);
153 }
154
155 /**
156 * snb_update_pm_irq - update GEN6_PMIMR
157 * @dev_priv: driver private
158 * @interrupt_mask: mask of interrupt bits to update
159 * @enabled_irq_mask: mask of interrupt bits to enable
160 */
161 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
162 uint32_t interrupt_mask,
163 uint32_t enabled_irq_mask)
164 {
165 uint32_t new_val;
166
167 assert_spin_locked(&dev_priv->irq_lock);
168
169 if (dev_priv->pc8.irqs_disabled) {
170 WARN(1, "IRQs disabled\n");
171 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
172 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
173 interrupt_mask);
174 return;
175 }
176
177 new_val = dev_priv->pm_irq_mask;
178 new_val &= ~interrupt_mask;
179 new_val |= (~enabled_irq_mask & interrupt_mask);
180
181 if (new_val != dev_priv->pm_irq_mask) {
182 dev_priv->pm_irq_mask = new_val;
183 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
184 POSTING_READ(GEN6_PMIMR);
185 }
186 }
187
188 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
189 {
190 snb_update_pm_irq(dev_priv, mask, mask);
191 }
192
193 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
194 {
195 snb_update_pm_irq(dev_priv, mask, 0);
196 }
197
198 static bool ivb_can_enable_err_int(struct drm_device *dev)
199 {
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 struct intel_crtc *crtc;
202 enum pipe pipe;
203
204 assert_spin_locked(&dev_priv->irq_lock);
205
206 for_each_pipe(pipe) {
207 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
208
209 if (crtc->cpu_fifo_underrun_disabled)
210 return false;
211 }
212
213 return true;
214 }
215
216 static bool cpt_can_enable_serr_int(struct drm_device *dev)
217 {
218 struct drm_i915_private *dev_priv = dev->dev_private;
219 enum pipe pipe;
220 struct intel_crtc *crtc;
221
222 assert_spin_locked(&dev_priv->irq_lock);
223
224 for_each_pipe(pipe) {
225 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
226
227 if (crtc->pch_fifo_underrun_disabled)
228 return false;
229 }
230
231 return true;
232 }
233
234 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
235 enum pipe pipe, bool enable)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
239 DE_PIPEB_FIFO_UNDERRUN;
240
241 if (enable)
242 ironlake_enable_display_irq(dev_priv, bit);
243 else
244 ironlake_disable_display_irq(dev_priv, bit);
245 }
246
247 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249 {
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 if (enable) {
252 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
253
254 if (!ivb_can_enable_err_int(dev))
255 return;
256
257 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
258 } else {
259 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
260
261 /* Change the state _after_ we've read out the current one. */
262 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
263
264 if (!was_enabled &&
265 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
266 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
267 pipe_name(pipe));
268 }
269 }
270 }
271
272 /**
273 * ibx_display_interrupt_update - update SDEIMR
274 * @dev_priv: driver private
275 * @interrupt_mask: mask of interrupt bits to update
276 * @enabled_irq_mask: mask of interrupt bits to enable
277 */
278 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
279 uint32_t interrupt_mask,
280 uint32_t enabled_irq_mask)
281 {
282 uint32_t sdeimr = I915_READ(SDEIMR);
283 sdeimr &= ~interrupt_mask;
284 sdeimr |= (~enabled_irq_mask & interrupt_mask);
285
286 assert_spin_locked(&dev_priv->irq_lock);
287
288 if (dev_priv->pc8.irqs_disabled &&
289 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
290 WARN(1, "IRQs disabled\n");
291 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
292 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
293 interrupt_mask);
294 return;
295 }
296
297 I915_WRITE(SDEIMR, sdeimr);
298 POSTING_READ(SDEIMR);
299 }
300 #define ibx_enable_display_interrupt(dev_priv, bits) \
301 ibx_display_interrupt_update((dev_priv), (bits), (bits))
302 #define ibx_disable_display_interrupt(dev_priv, bits) \
303 ibx_display_interrupt_update((dev_priv), (bits), 0)
304
305 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
306 enum transcoder pch_transcoder,
307 bool enable)
308 {
309 struct drm_i915_private *dev_priv = dev->dev_private;
310 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
311 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
312
313 if (enable)
314 ibx_enable_display_interrupt(dev_priv, bit);
315 else
316 ibx_disable_display_interrupt(dev_priv, bit);
317 }
318
319 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum transcoder pch_transcoder,
321 bool enable)
322 {
323 struct drm_i915_private *dev_priv = dev->dev_private;
324
325 if (enable) {
326 I915_WRITE(SERR_INT,
327 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
328
329 if (!cpt_can_enable_serr_int(dev))
330 return;
331
332 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
333 } else {
334 uint32_t tmp = I915_READ(SERR_INT);
335 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
336
337 /* Change the state _after_ we've read out the current one. */
338 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
339
340 if (!was_enabled &&
341 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
342 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
343 transcoder_name(pch_transcoder));
344 }
345 }
346 }
347
348 /**
349 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
350 * @dev: drm device
351 * @pipe: pipe
352 * @enable: true if we want to report FIFO underrun errors, false otherwise
353 *
354 * This function makes us disable or enable CPU fifo underruns for a specific
355 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
356 * reporting for one pipe may also disable all the other CPU error interruts for
357 * the other pipes, due to the fact that there's just one interrupt mask/enable
358 * bit for all the pipes.
359 *
360 * Returns the previous state of underrun reporting.
361 */
362 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
363 enum pipe pipe, bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368 unsigned long flags;
369 bool ret;
370
371 spin_lock_irqsave(&dev_priv->irq_lock, flags);
372
373 ret = !intel_crtc->cpu_fifo_underrun_disabled;
374
375 if (enable == ret)
376 goto done;
377
378 intel_crtc->cpu_fifo_underrun_disabled = !enable;
379
380 if (IS_GEN5(dev) || IS_GEN6(dev))
381 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
382 else if (IS_GEN7(dev))
383 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
384
385 done:
386 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
387 return ret;
388 }
389
390 /**
391 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
392 * @dev: drm device
393 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
394 * @enable: true if we want to report FIFO underrun errors, false otherwise
395 *
396 * This function makes us disable or enable PCH fifo underruns for a specific
397 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
398 * underrun reporting for one transcoder may also disable all the other PCH
399 * error interruts for the other transcoders, due to the fact that there's just
400 * one interrupt mask/enable bit for all the transcoders.
401 *
402 * Returns the previous state of underrun reporting.
403 */
404 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
405 enum transcoder pch_transcoder,
406 bool enable)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
411 unsigned long flags;
412 bool ret;
413
414 /*
415 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
416 * has only one pch transcoder A that all pipes can use. To avoid racy
417 * pch transcoder -> pipe lookups from interrupt code simply store the
418 * underrun statistics in crtc A. Since we never expose this anywhere
419 * nor use it outside of the fifo underrun code here using the "wrong"
420 * crtc on LPT won't cause issues.
421 */
422
423 spin_lock_irqsave(&dev_priv->irq_lock, flags);
424
425 ret = !intel_crtc->pch_fifo_underrun_disabled;
426
427 if (enable == ret)
428 goto done;
429
430 intel_crtc->pch_fifo_underrun_disabled = !enable;
431
432 if (HAS_PCH_IBX(dev))
433 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
434 else
435 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
436
437 done:
438 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
439 return ret;
440 }
441
442
443 void
444 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
445 {
446 u32 reg = PIPESTAT(pipe);
447 u32 pipestat = I915_READ(reg) & 0x7fff0000;
448
449 assert_spin_locked(&dev_priv->irq_lock);
450
451 if ((pipestat & mask) == mask)
452 return;
453
454 /* Enable the interrupt, clear any pending status */
455 pipestat |= mask | (mask >> 16);
456 I915_WRITE(reg, pipestat);
457 POSTING_READ(reg);
458 }
459
460 void
461 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
462 {
463 u32 reg = PIPESTAT(pipe);
464 u32 pipestat = I915_READ(reg) & 0x7fff0000;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 if ((pipestat & mask) == 0)
469 return;
470
471 pipestat &= ~mask;
472 I915_WRITE(reg, pipestat);
473 POSTING_READ(reg);
474 }
475
476 /**
477 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
478 */
479 static void i915_enable_asle_pipestat(struct drm_device *dev)
480 {
481 drm_i915_private_t *dev_priv = dev->dev_private;
482 unsigned long irqflags;
483
484 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
485 return;
486
487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
488
489 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
490 if (INTEL_INFO(dev)->gen >= 4)
491 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
492
493 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
494 }
495
496 /**
497 * i915_pipe_enabled - check if a pipe is enabled
498 * @dev: DRM device
499 * @pipe: pipe to check
500 *
501 * Reading certain registers when the pipe is disabled can hang the chip.
502 * Use this routine to make sure the PLL is running and the pipe is active
503 * before reading such registers if unsure.
504 */
505 static int
506 i915_pipe_enabled(struct drm_device *dev, int pipe)
507 {
508 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
509
510 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
511 /* Locking is horribly broken here, but whatever. */
512 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
514
515 return intel_crtc->active;
516 } else {
517 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
518 }
519 }
520
521 /* Called from drm generic code, passed a 'crtc', which
522 * we use as a pipe index
523 */
524 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 unsigned long high_frame;
528 unsigned long low_frame;
529 u32 high1, high2, low;
530
531 if (!i915_pipe_enabled(dev, pipe)) {
532 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
533 "pipe %c\n", pipe_name(pipe));
534 return 0;
535 }
536
537 high_frame = PIPEFRAME(pipe);
538 low_frame = PIPEFRAMEPIXEL(pipe);
539
540 /*
541 * High & low register fields aren't synchronized, so make sure
542 * we get a low value that's stable across two reads of the high
543 * register.
544 */
545 do {
546 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
547 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
548 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
549 } while (high1 != high2);
550
551 high1 >>= PIPE_FRAME_HIGH_SHIFT;
552 low >>= PIPE_FRAME_LOW_SHIFT;
553 return (high1 << 8) | low;
554 }
555
556 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
557 {
558 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
559 int reg = PIPE_FRMCOUNT_GM45(pipe);
560
561 if (!i915_pipe_enabled(dev, pipe)) {
562 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
563 "pipe %c\n", pipe_name(pipe));
564 return 0;
565 }
566
567 return I915_READ(reg);
568 }
569
570 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
571 int *vpos, int *hpos)
572 {
573 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
574 u32 vbl = 0, position = 0;
575 int vbl_start, vbl_end, htotal, vtotal;
576 bool in_vbl = true;
577 int ret = 0;
578 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
579 pipe);
580
581 if (!i915_pipe_enabled(dev, pipe)) {
582 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
583 "pipe %c\n", pipe_name(pipe));
584 return 0;
585 }
586
587 /* Get vtotal. */
588 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
589
590 if (INTEL_INFO(dev)->gen >= 4) {
591 /* No obvious pixelcount register. Only query vertical
592 * scanout position from Display scan line register.
593 */
594 position = I915_READ(PIPEDSL(pipe));
595
596 /* Decode into vertical scanout position. Don't have
597 * horizontal scanout position.
598 */
599 *vpos = position & 0x1fff;
600 *hpos = 0;
601 } else {
602 /* Have access to pixelcount since start of frame.
603 * We can split this into vertical and horizontal
604 * scanout position.
605 */
606 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
607
608 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
609 *vpos = position / htotal;
610 *hpos = position - (*vpos * htotal);
611 }
612
613 /* Query vblank area. */
614 vbl = I915_READ(VBLANK(cpu_transcoder));
615
616 /* Test position against vblank region. */
617 vbl_start = vbl & 0x1fff;
618 vbl_end = (vbl >> 16) & 0x1fff;
619
620 if ((*vpos < vbl_start) || (*vpos > vbl_end))
621 in_vbl = false;
622
623 /* Inside "upper part" of vblank area? Apply corrective offset: */
624 if (in_vbl && (*vpos >= vbl_start))
625 *vpos = *vpos - vtotal;
626
627 /* Readouts valid? */
628 if (vbl > 0)
629 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
630
631 /* In vblank? */
632 if (in_vbl)
633 ret |= DRM_SCANOUTPOS_INVBL;
634
635 return ret;
636 }
637
638 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
639 int *max_error,
640 struct timeval *vblank_time,
641 unsigned flags)
642 {
643 struct drm_crtc *crtc;
644
645 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
646 DRM_ERROR("Invalid crtc %d\n", pipe);
647 return -EINVAL;
648 }
649
650 /* Get drm_crtc to timestamp: */
651 crtc = intel_get_crtc_for_pipe(dev, pipe);
652 if (crtc == NULL) {
653 DRM_ERROR("Invalid crtc %d\n", pipe);
654 return -EINVAL;
655 }
656
657 if (!crtc->enabled) {
658 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
659 return -EBUSY;
660 }
661
662 /* Helper routine in DRM core does all the work: */
663 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
664 vblank_time, flags,
665 crtc);
666 }
667
668 static bool intel_hpd_irq_event(struct drm_device *dev,
669 struct drm_connector *connector)
670 {
671 enum drm_connector_status old_status;
672
673 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
674 old_status = connector->status;
675
676 connector->status = connector->funcs->detect(connector, false);
677 if (old_status == connector->status)
678 return false;
679
680 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
681 connector->base.id,
682 drm_get_connector_name(connector),
683 drm_get_connector_status_name(old_status),
684 drm_get_connector_status_name(connector->status));
685
686 return true;
687 }
688
689 /*
690 * Handle hotplug events outside the interrupt handler proper.
691 */
692 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
693
694 static void i915_hotplug_work_func(struct work_struct *work)
695 {
696 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
697 hotplug_work);
698 struct drm_device *dev = dev_priv->dev;
699 struct drm_mode_config *mode_config = &dev->mode_config;
700 struct intel_connector *intel_connector;
701 struct intel_encoder *intel_encoder;
702 struct drm_connector *connector;
703 unsigned long irqflags;
704 bool hpd_disabled = false;
705 bool changed = false;
706 u32 hpd_event_bits;
707
708 /* HPD irq before everything is fully set up. */
709 if (!dev_priv->enable_hotplug_processing)
710 return;
711
712 mutex_lock(&mode_config->mutex);
713 DRM_DEBUG_KMS("running encoder hotplug functions\n");
714
715 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
716
717 hpd_event_bits = dev_priv->hpd_event_bits;
718 dev_priv->hpd_event_bits = 0;
719 list_for_each_entry(connector, &mode_config->connector_list, head) {
720 intel_connector = to_intel_connector(connector);
721 intel_encoder = intel_connector->encoder;
722 if (intel_encoder->hpd_pin > HPD_NONE &&
723 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
724 connector->polled == DRM_CONNECTOR_POLL_HPD) {
725 DRM_INFO("HPD interrupt storm detected on connector %s: "
726 "switching from hotplug detection to polling\n",
727 drm_get_connector_name(connector));
728 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
729 connector->polled = DRM_CONNECTOR_POLL_CONNECT
730 | DRM_CONNECTOR_POLL_DISCONNECT;
731 hpd_disabled = true;
732 }
733 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
734 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
735 drm_get_connector_name(connector), intel_encoder->hpd_pin);
736 }
737 }
738 /* if there were no outputs to poll, poll was disabled,
739 * therefore make sure it's enabled when disabling HPD on
740 * some connectors */
741 if (hpd_disabled) {
742 drm_kms_helper_poll_enable(dev);
743 mod_timer(&dev_priv->hotplug_reenable_timer,
744 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
745 }
746
747 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
748
749 list_for_each_entry(connector, &mode_config->connector_list, head) {
750 intel_connector = to_intel_connector(connector);
751 intel_encoder = intel_connector->encoder;
752 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
753 if (intel_encoder->hot_plug)
754 intel_encoder->hot_plug(intel_encoder);
755 if (intel_hpd_irq_event(dev, connector))
756 changed = true;
757 }
758 }
759 mutex_unlock(&mode_config->mutex);
760
761 if (changed)
762 drm_kms_helper_hotplug_event(dev);
763 }
764
765 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
766 {
767 drm_i915_private_t *dev_priv = dev->dev_private;
768 u32 busy_up, busy_down, max_avg, min_avg;
769 u8 new_delay;
770
771 spin_lock(&mchdev_lock);
772
773 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
774
775 new_delay = dev_priv->ips.cur_delay;
776
777 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
778 busy_up = I915_READ(RCPREVBSYTUPAVG);
779 busy_down = I915_READ(RCPREVBSYTDNAVG);
780 max_avg = I915_READ(RCBMAXAVG);
781 min_avg = I915_READ(RCBMINAVG);
782
783 /* Handle RCS change request from hw */
784 if (busy_up > max_avg) {
785 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
786 new_delay = dev_priv->ips.cur_delay - 1;
787 if (new_delay < dev_priv->ips.max_delay)
788 new_delay = dev_priv->ips.max_delay;
789 } else if (busy_down < min_avg) {
790 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
791 new_delay = dev_priv->ips.cur_delay + 1;
792 if (new_delay > dev_priv->ips.min_delay)
793 new_delay = dev_priv->ips.min_delay;
794 }
795
796 if (ironlake_set_drps(dev, new_delay))
797 dev_priv->ips.cur_delay = new_delay;
798
799 spin_unlock(&mchdev_lock);
800
801 return;
802 }
803
804 static void notify_ring(struct drm_device *dev,
805 struct intel_ring_buffer *ring)
806 {
807 if (ring->obj == NULL)
808 return;
809
810 trace_i915_gem_request_complete(ring);
811
812 wake_up_all(&ring->irq_queue);
813 i915_queue_hangcheck(dev);
814 }
815
816 static void gen6_pm_rps_work(struct work_struct *work)
817 {
818 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
819 rps.work);
820 u32 pm_iir;
821 int new_delay, adj;
822
823 spin_lock_irq(&dev_priv->irq_lock);
824 pm_iir = dev_priv->rps.pm_iir;
825 dev_priv->rps.pm_iir = 0;
826 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
827 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
828 spin_unlock_irq(&dev_priv->irq_lock);
829
830 /* Make sure we didn't queue anything we're not going to process. */
831 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
832
833 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
834 return;
835
836 mutex_lock(&dev_priv->rps.hw_lock);
837
838 adj = dev_priv->rps.last_adj;
839 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
840 if (adj > 0)
841 adj *= 2;
842 else
843 adj = 1;
844 new_delay = dev_priv->rps.cur_delay + adj;
845
846 /*
847 * For better performance, jump directly
848 * to RPe if we're below it.
849 */
850 if (new_delay < dev_priv->rps.rpe_delay)
851 new_delay = dev_priv->rps.rpe_delay;
852 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
853 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
854 new_delay = dev_priv->rps.rpe_delay;
855 else
856 new_delay = dev_priv->rps.min_delay;
857 adj = 0;
858 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
859 if (adj < 0)
860 adj *= 2;
861 else
862 adj = -1;
863 new_delay = dev_priv->rps.cur_delay + adj;
864 } else { /* unknown event */
865 new_delay = dev_priv->rps.cur_delay;
866 }
867
868 /* sysfs frequency interfaces may have snuck in while servicing the
869 * interrupt
870 */
871 if (new_delay < (int)dev_priv->rps.min_delay)
872 new_delay = dev_priv->rps.min_delay;
873 if (new_delay > (int)dev_priv->rps.max_delay)
874 new_delay = dev_priv->rps.max_delay;
875 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
876
877 if (IS_VALLEYVIEW(dev_priv->dev))
878 valleyview_set_rps(dev_priv->dev, new_delay);
879 else
880 gen6_set_rps(dev_priv->dev, new_delay);
881
882 mutex_unlock(&dev_priv->rps.hw_lock);
883 }
884
885
886 /**
887 * ivybridge_parity_work - Workqueue called when a parity error interrupt
888 * occurred.
889 * @work: workqueue struct
890 *
891 * Doesn't actually do anything except notify userspace. As a consequence of
892 * this event, userspace should try to remap the bad rows since statistically
893 * it is likely the same row is more likely to go bad again.
894 */
895 static void ivybridge_parity_work(struct work_struct *work)
896 {
897 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
898 l3_parity.error_work);
899 u32 error_status, row, bank, subbank;
900 char *parity_event[6];
901 uint32_t misccpctl;
902 unsigned long flags;
903 uint8_t slice = 0;
904
905 /* We must turn off DOP level clock gating to access the L3 registers.
906 * In order to prevent a get/put style interface, acquire struct mutex
907 * any time we access those registers.
908 */
909 mutex_lock(&dev_priv->dev->struct_mutex);
910
911 /* If we've screwed up tracking, just let the interrupt fire again */
912 if (WARN_ON(!dev_priv->l3_parity.which_slice))
913 goto out;
914
915 misccpctl = I915_READ(GEN7_MISCCPCTL);
916 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
917 POSTING_READ(GEN7_MISCCPCTL);
918
919 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
920 u32 reg;
921
922 slice--;
923 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
924 break;
925
926 dev_priv->l3_parity.which_slice &= ~(1<<slice);
927
928 reg = GEN7_L3CDERRST1 + (slice * 0x200);
929
930 error_status = I915_READ(reg);
931 row = GEN7_PARITY_ERROR_ROW(error_status);
932 bank = GEN7_PARITY_ERROR_BANK(error_status);
933 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
934
935 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
936 POSTING_READ(reg);
937
938 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
939 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
940 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
941 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
942 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
943 parity_event[5] = NULL;
944
945 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
946 KOBJ_CHANGE, parity_event);
947
948 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
949 slice, row, bank, subbank);
950
951 kfree(parity_event[4]);
952 kfree(parity_event[3]);
953 kfree(parity_event[2]);
954 kfree(parity_event[1]);
955 }
956
957 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
958
959 out:
960 WARN_ON(dev_priv->l3_parity.which_slice);
961 spin_lock_irqsave(&dev_priv->irq_lock, flags);
962 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
963 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
964
965 mutex_unlock(&dev_priv->dev->struct_mutex);
966 }
967
968 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
969 {
970 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
971
972 if (!HAS_L3_DPF(dev))
973 return;
974
975 spin_lock(&dev_priv->irq_lock);
976 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
977 spin_unlock(&dev_priv->irq_lock);
978
979 iir &= GT_PARITY_ERROR(dev);
980 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
981 dev_priv->l3_parity.which_slice |= 1 << 1;
982
983 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
984 dev_priv->l3_parity.which_slice |= 1 << 0;
985
986 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
987 }
988
989 static void ilk_gt_irq_handler(struct drm_device *dev,
990 struct drm_i915_private *dev_priv,
991 u32 gt_iir)
992 {
993 if (gt_iir &
994 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
995 notify_ring(dev, &dev_priv->ring[RCS]);
996 if (gt_iir & ILK_BSD_USER_INTERRUPT)
997 notify_ring(dev, &dev_priv->ring[VCS]);
998 }
999
1000 static void snb_gt_irq_handler(struct drm_device *dev,
1001 struct drm_i915_private *dev_priv,
1002 u32 gt_iir)
1003 {
1004
1005 if (gt_iir &
1006 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1007 notify_ring(dev, &dev_priv->ring[RCS]);
1008 if (gt_iir & GT_BSD_USER_INTERRUPT)
1009 notify_ring(dev, &dev_priv->ring[VCS]);
1010 if (gt_iir & GT_BLT_USER_INTERRUPT)
1011 notify_ring(dev, &dev_priv->ring[BCS]);
1012
1013 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1014 GT_BSD_CS_ERROR_INTERRUPT |
1015 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1016 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1017 i915_handle_error(dev, false);
1018 }
1019
1020 if (gt_iir & GT_PARITY_ERROR(dev))
1021 ivybridge_parity_error_irq_handler(dev, gt_iir);
1022 }
1023
1024 #define HPD_STORM_DETECT_PERIOD 1000
1025 #define HPD_STORM_THRESHOLD 5
1026
1027 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1028 u32 hotplug_trigger,
1029 const u32 *hpd)
1030 {
1031 drm_i915_private_t *dev_priv = dev->dev_private;
1032 int i;
1033 bool storm_detected = false;
1034
1035 if (!hotplug_trigger)
1036 return;
1037
1038 spin_lock(&dev_priv->irq_lock);
1039 for (i = 1; i < HPD_NUM_PINS; i++) {
1040
1041 WARN(((hpd[i] & hotplug_trigger) &&
1042 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1043 "Received HPD interrupt although disabled\n");
1044
1045 if (!(hpd[i] & hotplug_trigger) ||
1046 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1047 continue;
1048
1049 dev_priv->hpd_event_bits |= (1 << i);
1050 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1051 dev_priv->hpd_stats[i].hpd_last_jiffies
1052 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1053 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1054 dev_priv->hpd_stats[i].hpd_cnt = 0;
1055 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1056 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1057 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1058 dev_priv->hpd_event_bits &= ~(1 << i);
1059 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1060 storm_detected = true;
1061 } else {
1062 dev_priv->hpd_stats[i].hpd_cnt++;
1063 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1064 dev_priv->hpd_stats[i].hpd_cnt);
1065 }
1066 }
1067
1068 if (storm_detected)
1069 dev_priv->display.hpd_irq_setup(dev);
1070 spin_unlock(&dev_priv->irq_lock);
1071
1072 /*
1073 * Our hotplug handler can grab modeset locks (by calling down into the
1074 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1075 * queue for otherwise the flush_work in the pageflip code will
1076 * deadlock.
1077 */
1078 schedule_work(&dev_priv->hotplug_work);
1079 }
1080
1081 static void gmbus_irq_handler(struct drm_device *dev)
1082 {
1083 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1084
1085 wake_up_all(&dev_priv->gmbus_wait_queue);
1086 }
1087
1088 static void dp_aux_irq_handler(struct drm_device *dev)
1089 {
1090 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1091
1092 wake_up_all(&dev_priv->gmbus_wait_queue);
1093 }
1094
1095 /* The RPS events need forcewake, so we add them to a work queue and mask their
1096 * IMR bits until the work is done. Other interrupts can be processed without
1097 * the work queue. */
1098 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1099 {
1100 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1101 spin_lock(&dev_priv->irq_lock);
1102 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1103 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1104 spin_unlock(&dev_priv->irq_lock);
1105
1106 queue_work(dev_priv->wq, &dev_priv->rps.work);
1107 }
1108
1109 if (HAS_VEBOX(dev_priv->dev)) {
1110 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1111 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1112
1113 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1114 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1115 i915_handle_error(dev_priv->dev, false);
1116 }
1117 }
1118 }
1119
1120 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1121 {
1122 struct drm_device *dev = (struct drm_device *) arg;
1123 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1124 u32 iir, gt_iir, pm_iir;
1125 irqreturn_t ret = IRQ_NONE;
1126 unsigned long irqflags;
1127 int pipe;
1128 u32 pipe_stats[I915_MAX_PIPES];
1129
1130 atomic_inc(&dev_priv->irq_received);
1131
1132 while (true) {
1133 iir = I915_READ(VLV_IIR);
1134 gt_iir = I915_READ(GTIIR);
1135 pm_iir = I915_READ(GEN6_PMIIR);
1136
1137 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1138 goto out;
1139
1140 ret = IRQ_HANDLED;
1141
1142 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1143
1144 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1145 for_each_pipe(pipe) {
1146 int reg = PIPESTAT(pipe);
1147 pipe_stats[pipe] = I915_READ(reg);
1148
1149 /*
1150 * Clear the PIPE*STAT regs before the IIR
1151 */
1152 if (pipe_stats[pipe] & 0x8000ffff) {
1153 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1154 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1155 pipe_name(pipe));
1156 I915_WRITE(reg, pipe_stats[pipe]);
1157 }
1158 }
1159 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1160
1161 for_each_pipe(pipe) {
1162 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1163 drm_handle_vblank(dev, pipe);
1164
1165 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1166 intel_prepare_page_flip(dev, pipe);
1167 intel_finish_page_flip(dev, pipe);
1168 }
1169 }
1170
1171 /* Consume port. Then clear IIR or we'll miss events */
1172 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1173 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1174 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1175
1176 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1177 hotplug_status);
1178
1179 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1180
1181 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1182 I915_READ(PORT_HOTPLUG_STAT);
1183 }
1184
1185 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1186 gmbus_irq_handler(dev);
1187
1188 if (pm_iir)
1189 gen6_rps_irq_handler(dev_priv, pm_iir);
1190
1191 I915_WRITE(GTIIR, gt_iir);
1192 I915_WRITE(GEN6_PMIIR, pm_iir);
1193 I915_WRITE(VLV_IIR, iir);
1194 }
1195
1196 out:
1197 return ret;
1198 }
1199
1200 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1201 {
1202 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1203 int pipe;
1204 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1205
1206 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1207
1208 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1209 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1210 SDE_AUDIO_POWER_SHIFT);
1211 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1212 port_name(port));
1213 }
1214
1215 if (pch_iir & SDE_AUX_MASK)
1216 dp_aux_irq_handler(dev);
1217
1218 if (pch_iir & SDE_GMBUS)
1219 gmbus_irq_handler(dev);
1220
1221 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1222 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1223
1224 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1225 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1226
1227 if (pch_iir & SDE_POISON)
1228 DRM_ERROR("PCH poison interrupt\n");
1229
1230 if (pch_iir & SDE_FDI_MASK)
1231 for_each_pipe(pipe)
1232 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1233 pipe_name(pipe),
1234 I915_READ(FDI_RX_IIR(pipe)));
1235
1236 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1237 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1238
1239 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1240 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1241
1242 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1243 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1244 false))
1245 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1246
1247 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1248 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1249 false))
1250 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1251 }
1252
1253 static void ivb_err_int_handler(struct drm_device *dev)
1254 {
1255 struct drm_i915_private *dev_priv = dev->dev_private;
1256 u32 err_int = I915_READ(GEN7_ERR_INT);
1257
1258 if (err_int & ERR_INT_POISON)
1259 DRM_ERROR("Poison interrupt\n");
1260
1261 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1262 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1263 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1264
1265 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1266 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1267 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1268
1269 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1270 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1271 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1272
1273 I915_WRITE(GEN7_ERR_INT, err_int);
1274 }
1275
1276 static void cpt_serr_int_handler(struct drm_device *dev)
1277 {
1278 struct drm_i915_private *dev_priv = dev->dev_private;
1279 u32 serr_int = I915_READ(SERR_INT);
1280
1281 if (serr_int & SERR_INT_POISON)
1282 DRM_ERROR("PCH poison interrupt\n");
1283
1284 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1285 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1286 false))
1287 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1288
1289 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1290 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1291 false))
1292 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1293
1294 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1295 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1296 false))
1297 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1298
1299 I915_WRITE(SERR_INT, serr_int);
1300 }
1301
1302 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1303 {
1304 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1305 int pipe;
1306 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1307
1308 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1309
1310 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1311 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1312 SDE_AUDIO_POWER_SHIFT_CPT);
1313 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1314 port_name(port));
1315 }
1316
1317 if (pch_iir & SDE_AUX_MASK_CPT)
1318 dp_aux_irq_handler(dev);
1319
1320 if (pch_iir & SDE_GMBUS_CPT)
1321 gmbus_irq_handler(dev);
1322
1323 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1324 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1325
1326 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1327 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1328
1329 if (pch_iir & SDE_FDI_MASK_CPT)
1330 for_each_pipe(pipe)
1331 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1332 pipe_name(pipe),
1333 I915_READ(FDI_RX_IIR(pipe)));
1334
1335 if (pch_iir & SDE_ERROR_CPT)
1336 cpt_serr_int_handler(dev);
1337 }
1338
1339 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1340 {
1341 struct drm_i915_private *dev_priv = dev->dev_private;
1342
1343 if (de_iir & DE_AUX_CHANNEL_A)
1344 dp_aux_irq_handler(dev);
1345
1346 if (de_iir & DE_GSE)
1347 intel_opregion_asle_intr(dev);
1348
1349 if (de_iir & DE_PIPEA_VBLANK)
1350 drm_handle_vblank(dev, 0);
1351
1352 if (de_iir & DE_PIPEB_VBLANK)
1353 drm_handle_vblank(dev, 1);
1354
1355 if (de_iir & DE_POISON)
1356 DRM_ERROR("Poison interrupt\n");
1357
1358 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1359 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1360 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1361
1362 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1363 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1364 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1365
1366 if (de_iir & DE_PLANEA_FLIP_DONE) {
1367 intel_prepare_page_flip(dev, 0);
1368 intel_finish_page_flip_plane(dev, 0);
1369 }
1370
1371 if (de_iir & DE_PLANEB_FLIP_DONE) {
1372 intel_prepare_page_flip(dev, 1);
1373 intel_finish_page_flip_plane(dev, 1);
1374 }
1375
1376 /* check event from PCH */
1377 if (de_iir & DE_PCH_EVENT) {
1378 u32 pch_iir = I915_READ(SDEIIR);
1379
1380 if (HAS_PCH_CPT(dev))
1381 cpt_irq_handler(dev, pch_iir);
1382 else
1383 ibx_irq_handler(dev, pch_iir);
1384
1385 /* should clear PCH hotplug event before clear CPU irq */
1386 I915_WRITE(SDEIIR, pch_iir);
1387 }
1388
1389 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1390 ironlake_rps_change_irq_handler(dev);
1391 }
1392
1393 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1394 {
1395 struct drm_i915_private *dev_priv = dev->dev_private;
1396 int i;
1397
1398 if (de_iir & DE_ERR_INT_IVB)
1399 ivb_err_int_handler(dev);
1400
1401 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1402 dp_aux_irq_handler(dev);
1403
1404 if (de_iir & DE_GSE_IVB)
1405 intel_opregion_asle_intr(dev);
1406
1407 for (i = 0; i < 3; i++) {
1408 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1409 drm_handle_vblank(dev, i);
1410 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1411 intel_prepare_page_flip(dev, i);
1412 intel_finish_page_flip_plane(dev, i);
1413 }
1414 }
1415
1416 /* check event from PCH */
1417 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1418 u32 pch_iir = I915_READ(SDEIIR);
1419
1420 cpt_irq_handler(dev, pch_iir);
1421
1422 /* clear PCH hotplug event before clear CPU irq */
1423 I915_WRITE(SDEIIR, pch_iir);
1424 }
1425 }
1426
1427 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1428 {
1429 struct drm_device *dev = (struct drm_device *) arg;
1430 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1431 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1432 irqreturn_t ret = IRQ_NONE;
1433
1434 atomic_inc(&dev_priv->irq_received);
1435
1436 /* We get interrupts on unclaimed registers, so check for this before we
1437 * do any I915_{READ,WRITE}. */
1438 intel_uncore_check_errors(dev);
1439
1440 /* disable master interrupt before clearing iir */
1441 de_ier = I915_READ(DEIER);
1442 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1443 POSTING_READ(DEIER);
1444
1445 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1446 * interrupts will will be stored on its back queue, and then we'll be
1447 * able to process them after we restore SDEIER (as soon as we restore
1448 * it, we'll get an interrupt if SDEIIR still has something to process
1449 * due to its back queue). */
1450 if (!HAS_PCH_NOP(dev)) {
1451 sde_ier = I915_READ(SDEIER);
1452 I915_WRITE(SDEIER, 0);
1453 POSTING_READ(SDEIER);
1454 }
1455
1456 gt_iir = I915_READ(GTIIR);
1457 if (gt_iir) {
1458 if (INTEL_INFO(dev)->gen >= 6)
1459 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1460 else
1461 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1462 I915_WRITE(GTIIR, gt_iir);
1463 ret = IRQ_HANDLED;
1464 }
1465
1466 de_iir = I915_READ(DEIIR);
1467 if (de_iir) {
1468 if (INTEL_INFO(dev)->gen >= 7)
1469 ivb_display_irq_handler(dev, de_iir);
1470 else
1471 ilk_display_irq_handler(dev, de_iir);
1472 I915_WRITE(DEIIR, de_iir);
1473 ret = IRQ_HANDLED;
1474 }
1475
1476 if (INTEL_INFO(dev)->gen >= 6) {
1477 u32 pm_iir = I915_READ(GEN6_PMIIR);
1478 if (pm_iir) {
1479 gen6_rps_irq_handler(dev_priv, pm_iir);
1480 I915_WRITE(GEN6_PMIIR, pm_iir);
1481 ret = IRQ_HANDLED;
1482 }
1483 }
1484
1485 I915_WRITE(DEIER, de_ier);
1486 POSTING_READ(DEIER);
1487 if (!HAS_PCH_NOP(dev)) {
1488 I915_WRITE(SDEIER, sde_ier);
1489 POSTING_READ(SDEIER);
1490 }
1491
1492 return ret;
1493 }
1494
1495 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1496 bool reset_completed)
1497 {
1498 struct intel_ring_buffer *ring;
1499 int i;
1500
1501 /*
1502 * Notify all waiters for GPU completion events that reset state has
1503 * been changed, and that they need to restart their wait after
1504 * checking for potential errors (and bail out to drop locks if there is
1505 * a gpu reset pending so that i915_error_work_func can acquire them).
1506 */
1507
1508 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1509 for_each_ring(ring, dev_priv, i)
1510 wake_up_all(&ring->irq_queue);
1511
1512 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1513 wake_up_all(&dev_priv->pending_flip_queue);
1514
1515 /*
1516 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1517 * reset state is cleared.
1518 */
1519 if (reset_completed)
1520 wake_up_all(&dev_priv->gpu_error.reset_queue);
1521 }
1522
1523 /**
1524 * i915_error_work_func - do process context error handling work
1525 * @work: work struct
1526 *
1527 * Fire an error uevent so userspace can see that a hang or error
1528 * was detected.
1529 */
1530 static void i915_error_work_func(struct work_struct *work)
1531 {
1532 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1533 work);
1534 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1535 gpu_error);
1536 struct drm_device *dev = dev_priv->dev;
1537 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1538 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1539 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1540 int ret;
1541
1542 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1543
1544 /*
1545 * Note that there's only one work item which does gpu resets, so we
1546 * need not worry about concurrent gpu resets potentially incrementing
1547 * error->reset_counter twice. We only need to take care of another
1548 * racing irq/hangcheck declaring the gpu dead for a second time. A
1549 * quick check for that is good enough: schedule_work ensures the
1550 * correct ordering between hang detection and this work item, and since
1551 * the reset in-progress bit is only ever set by code outside of this
1552 * work we don't need to worry about any other races.
1553 */
1554 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1555 DRM_DEBUG_DRIVER("resetting chip\n");
1556 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1557 reset_event);
1558
1559 /*
1560 * All state reset _must_ be completed before we update the
1561 * reset counter, for otherwise waiters might miss the reset
1562 * pending state and not properly drop locks, resulting in
1563 * deadlocks with the reset work.
1564 */
1565 ret = i915_reset(dev);
1566
1567 intel_display_handle_reset(dev);
1568
1569 if (ret == 0) {
1570 /*
1571 * After all the gem state is reset, increment the reset
1572 * counter and wake up everyone waiting for the reset to
1573 * complete.
1574 *
1575 * Since unlock operations are a one-sided barrier only,
1576 * we need to insert a barrier here to order any seqno
1577 * updates before
1578 * the counter increment.
1579 */
1580 smp_mb__before_atomic_inc();
1581 atomic_inc(&dev_priv->gpu_error.reset_counter);
1582
1583 kobject_uevent_env(&dev->primary->kdev.kobj,
1584 KOBJ_CHANGE, reset_done_event);
1585 } else {
1586 atomic_set(&error->reset_counter, I915_WEDGED);
1587 }
1588
1589 /*
1590 * Note: The wake_up also serves as a memory barrier so that
1591 * waiters see the update value of the reset counter atomic_t.
1592 */
1593 i915_error_wake_up(dev_priv, true);
1594 }
1595 }
1596
1597 static void i915_report_and_clear_eir(struct drm_device *dev)
1598 {
1599 struct drm_i915_private *dev_priv = dev->dev_private;
1600 uint32_t instdone[I915_NUM_INSTDONE_REG];
1601 u32 eir = I915_READ(EIR);
1602 int pipe, i;
1603
1604 if (!eir)
1605 return;
1606
1607 pr_err("render error detected, EIR: 0x%08x\n", eir);
1608
1609 i915_get_extra_instdone(dev, instdone);
1610
1611 if (IS_G4X(dev)) {
1612 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1613 u32 ipeir = I915_READ(IPEIR_I965);
1614
1615 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1616 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1617 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1618 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1619 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1620 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1621 I915_WRITE(IPEIR_I965, ipeir);
1622 POSTING_READ(IPEIR_I965);
1623 }
1624 if (eir & GM45_ERROR_PAGE_TABLE) {
1625 u32 pgtbl_err = I915_READ(PGTBL_ER);
1626 pr_err("page table error\n");
1627 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1628 I915_WRITE(PGTBL_ER, pgtbl_err);
1629 POSTING_READ(PGTBL_ER);
1630 }
1631 }
1632
1633 if (!IS_GEN2(dev)) {
1634 if (eir & I915_ERROR_PAGE_TABLE) {
1635 u32 pgtbl_err = I915_READ(PGTBL_ER);
1636 pr_err("page table error\n");
1637 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1638 I915_WRITE(PGTBL_ER, pgtbl_err);
1639 POSTING_READ(PGTBL_ER);
1640 }
1641 }
1642
1643 if (eir & I915_ERROR_MEMORY_REFRESH) {
1644 pr_err("memory refresh error:\n");
1645 for_each_pipe(pipe)
1646 pr_err("pipe %c stat: 0x%08x\n",
1647 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1648 /* pipestat has already been acked */
1649 }
1650 if (eir & I915_ERROR_INSTRUCTION) {
1651 pr_err("instruction error\n");
1652 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1653 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1654 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1655 if (INTEL_INFO(dev)->gen < 4) {
1656 u32 ipeir = I915_READ(IPEIR);
1657
1658 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1659 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1660 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1661 I915_WRITE(IPEIR, ipeir);
1662 POSTING_READ(IPEIR);
1663 } else {
1664 u32 ipeir = I915_READ(IPEIR_I965);
1665
1666 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1667 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1668 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1669 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1670 I915_WRITE(IPEIR_I965, ipeir);
1671 POSTING_READ(IPEIR_I965);
1672 }
1673 }
1674
1675 I915_WRITE(EIR, eir);
1676 POSTING_READ(EIR);
1677 eir = I915_READ(EIR);
1678 if (eir) {
1679 /*
1680 * some errors might have become stuck,
1681 * mask them.
1682 */
1683 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1684 I915_WRITE(EMR, I915_READ(EMR) | eir);
1685 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1686 }
1687 }
1688
1689 /**
1690 * i915_handle_error - handle an error interrupt
1691 * @dev: drm device
1692 *
1693 * Do some basic checking of regsiter state at error interrupt time and
1694 * dump it to the syslog. Also call i915_capture_error_state() to make
1695 * sure we get a record and make it available in debugfs. Fire a uevent
1696 * so userspace knows something bad happened (should trigger collection
1697 * of a ring dump etc.).
1698 */
1699 void i915_handle_error(struct drm_device *dev, bool wedged)
1700 {
1701 struct drm_i915_private *dev_priv = dev->dev_private;
1702
1703 i915_capture_error_state(dev);
1704 i915_report_and_clear_eir(dev);
1705
1706 if (wedged) {
1707 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1708 &dev_priv->gpu_error.reset_counter);
1709
1710 /*
1711 * Wakeup waiting processes so that the reset work function
1712 * i915_error_work_func doesn't deadlock trying to grab various
1713 * locks. By bumping the reset counter first, the woken
1714 * processes will see a reset in progress and back off,
1715 * releasing their locks and then wait for the reset completion.
1716 * We must do this for _all_ gpu waiters that might hold locks
1717 * that the reset work needs to acquire.
1718 *
1719 * Note: The wake_up serves as the required memory barrier to
1720 * ensure that the waiters see the updated value of the reset
1721 * counter atomic_t.
1722 */
1723 i915_error_wake_up(dev_priv, false);
1724 }
1725
1726 /*
1727 * Our reset work can grab modeset locks (since it needs to reset the
1728 * state of outstanding pagelips). Hence it must not be run on our own
1729 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1730 * code will deadlock.
1731 */
1732 schedule_work(&dev_priv->gpu_error.work);
1733 }
1734
1735 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1736 {
1737 drm_i915_private_t *dev_priv = dev->dev_private;
1738 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1740 struct drm_i915_gem_object *obj;
1741 struct intel_unpin_work *work;
1742 unsigned long flags;
1743 bool stall_detected;
1744
1745 /* Ignore early vblank irqs */
1746 if (intel_crtc == NULL)
1747 return;
1748
1749 spin_lock_irqsave(&dev->event_lock, flags);
1750 work = intel_crtc->unpin_work;
1751
1752 if (work == NULL ||
1753 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1754 !work->enable_stall_check) {
1755 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1756 spin_unlock_irqrestore(&dev->event_lock, flags);
1757 return;
1758 }
1759
1760 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1761 obj = work->pending_flip_obj;
1762 if (INTEL_INFO(dev)->gen >= 4) {
1763 int dspsurf = DSPSURF(intel_crtc->plane);
1764 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1765 i915_gem_obj_ggtt_offset(obj);
1766 } else {
1767 int dspaddr = DSPADDR(intel_crtc->plane);
1768 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1769 crtc->y * crtc->fb->pitches[0] +
1770 crtc->x * crtc->fb->bits_per_pixel/8);
1771 }
1772
1773 spin_unlock_irqrestore(&dev->event_lock, flags);
1774
1775 if (stall_detected) {
1776 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1777 intel_prepare_page_flip(dev, intel_crtc->plane);
1778 }
1779 }
1780
1781 /* Called from drm generic code, passed 'crtc' which
1782 * we use as a pipe index
1783 */
1784 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1785 {
1786 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1787 unsigned long irqflags;
1788
1789 if (!i915_pipe_enabled(dev, pipe))
1790 return -EINVAL;
1791
1792 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1793 if (INTEL_INFO(dev)->gen >= 4)
1794 i915_enable_pipestat(dev_priv, pipe,
1795 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1796 else
1797 i915_enable_pipestat(dev_priv, pipe,
1798 PIPE_VBLANK_INTERRUPT_ENABLE);
1799
1800 /* maintain vblank delivery even in deep C-states */
1801 if (dev_priv->info->gen == 3)
1802 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1803 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1804
1805 return 0;
1806 }
1807
1808 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1809 {
1810 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1811 unsigned long irqflags;
1812 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1813 DE_PIPE_VBLANK_ILK(pipe);
1814
1815 if (!i915_pipe_enabled(dev, pipe))
1816 return -EINVAL;
1817
1818 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1819 ironlake_enable_display_irq(dev_priv, bit);
1820 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1821
1822 return 0;
1823 }
1824
1825 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1826 {
1827 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1828 unsigned long irqflags;
1829 u32 imr;
1830
1831 if (!i915_pipe_enabled(dev, pipe))
1832 return -EINVAL;
1833
1834 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1835 imr = I915_READ(VLV_IMR);
1836 if (pipe == 0)
1837 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1838 else
1839 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1840 I915_WRITE(VLV_IMR, imr);
1841 i915_enable_pipestat(dev_priv, pipe,
1842 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1843 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1844
1845 return 0;
1846 }
1847
1848 /* Called from drm generic code, passed 'crtc' which
1849 * we use as a pipe index
1850 */
1851 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1852 {
1853 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1854 unsigned long irqflags;
1855
1856 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1857 if (dev_priv->info->gen == 3)
1858 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1859
1860 i915_disable_pipestat(dev_priv, pipe,
1861 PIPE_VBLANK_INTERRUPT_ENABLE |
1862 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1863 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1864 }
1865
1866 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1867 {
1868 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1869 unsigned long irqflags;
1870 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1871 DE_PIPE_VBLANK_ILK(pipe);
1872
1873 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1874 ironlake_disable_display_irq(dev_priv, bit);
1875 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1876 }
1877
1878 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1879 {
1880 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1881 unsigned long irqflags;
1882 u32 imr;
1883
1884 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1885 i915_disable_pipestat(dev_priv, pipe,
1886 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1887 imr = I915_READ(VLV_IMR);
1888 if (pipe == 0)
1889 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1890 else
1891 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1892 I915_WRITE(VLV_IMR, imr);
1893 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1894 }
1895
1896 static u32
1897 ring_last_seqno(struct intel_ring_buffer *ring)
1898 {
1899 return list_entry(ring->request_list.prev,
1900 struct drm_i915_gem_request, list)->seqno;
1901 }
1902
1903 static bool
1904 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1905 {
1906 return (list_empty(&ring->request_list) ||
1907 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1908 }
1909
1910 static struct intel_ring_buffer *
1911 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1912 {
1913 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1914 u32 cmd, ipehr, acthd, acthd_min;
1915
1916 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1917 if ((ipehr & ~(0x3 << 16)) !=
1918 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1919 return NULL;
1920
1921 /* ACTHD is likely pointing to the dword after the actual command,
1922 * so scan backwards until we find the MBOX.
1923 */
1924 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1925 acthd_min = max((int)acthd - 3 * 4, 0);
1926 do {
1927 cmd = ioread32(ring->virtual_start + acthd);
1928 if (cmd == ipehr)
1929 break;
1930
1931 acthd -= 4;
1932 if (acthd < acthd_min)
1933 return NULL;
1934 } while (1);
1935
1936 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1937 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1938 }
1939
1940 static int semaphore_passed(struct intel_ring_buffer *ring)
1941 {
1942 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1943 struct intel_ring_buffer *signaller;
1944 u32 seqno, ctl;
1945
1946 ring->hangcheck.deadlock = true;
1947
1948 signaller = semaphore_waits_for(ring, &seqno);
1949 if (signaller == NULL || signaller->hangcheck.deadlock)
1950 return -1;
1951
1952 /* cursory check for an unkickable deadlock */
1953 ctl = I915_READ_CTL(signaller);
1954 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1955 return -1;
1956
1957 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1958 }
1959
1960 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1961 {
1962 struct intel_ring_buffer *ring;
1963 int i;
1964
1965 for_each_ring(ring, dev_priv, i)
1966 ring->hangcheck.deadlock = false;
1967 }
1968
1969 static enum intel_ring_hangcheck_action
1970 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1971 {
1972 struct drm_device *dev = ring->dev;
1973 struct drm_i915_private *dev_priv = dev->dev_private;
1974 u32 tmp;
1975
1976 if (ring->hangcheck.acthd != acthd)
1977 return HANGCHECK_ACTIVE;
1978
1979 if (IS_GEN2(dev))
1980 return HANGCHECK_HUNG;
1981
1982 /* Is the chip hanging on a WAIT_FOR_EVENT?
1983 * If so we can simply poke the RB_WAIT bit
1984 * and break the hang. This should work on
1985 * all but the second generation chipsets.
1986 */
1987 tmp = I915_READ_CTL(ring);
1988 if (tmp & RING_WAIT) {
1989 DRM_ERROR("Kicking stuck wait on %s\n",
1990 ring->name);
1991 i915_handle_error(dev, false);
1992 I915_WRITE_CTL(ring, tmp);
1993 return HANGCHECK_KICK;
1994 }
1995
1996 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1997 switch (semaphore_passed(ring)) {
1998 default:
1999 return HANGCHECK_HUNG;
2000 case 1:
2001 DRM_ERROR("Kicking stuck semaphore on %s\n",
2002 ring->name);
2003 i915_handle_error(dev, false);
2004 I915_WRITE_CTL(ring, tmp);
2005 return HANGCHECK_KICK;
2006 case 0:
2007 return HANGCHECK_WAIT;
2008 }
2009 }
2010
2011 return HANGCHECK_HUNG;
2012 }
2013
2014 /**
2015 * This is called when the chip hasn't reported back with completed
2016 * batchbuffers in a long time. We keep track per ring seqno progress and
2017 * if there are no progress, hangcheck score for that ring is increased.
2018 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2019 * we kick the ring. If we see no progress on three subsequent calls
2020 * we assume chip is wedged and try to fix it by resetting the chip.
2021 */
2022 static void i915_hangcheck_elapsed(unsigned long data)
2023 {
2024 struct drm_device *dev = (struct drm_device *)data;
2025 drm_i915_private_t *dev_priv = dev->dev_private;
2026 struct intel_ring_buffer *ring;
2027 int i;
2028 int busy_count = 0, rings_hung = 0;
2029 bool stuck[I915_NUM_RINGS] = { 0 };
2030 #define BUSY 1
2031 #define KICK 5
2032 #define HUNG 20
2033 #define FIRE 30
2034
2035 if (!i915_enable_hangcheck)
2036 return;
2037
2038 for_each_ring(ring, dev_priv, i) {
2039 u32 seqno, acthd;
2040 bool busy = true;
2041
2042 semaphore_clear_deadlocks(dev_priv);
2043
2044 seqno = ring->get_seqno(ring, false);
2045 acthd = intel_ring_get_active_head(ring);
2046
2047 if (ring->hangcheck.seqno == seqno) {
2048 if (ring_idle(ring, seqno)) {
2049 ring->hangcheck.action = HANGCHECK_IDLE;
2050
2051 if (waitqueue_active(&ring->irq_queue)) {
2052 /* Issue a wake-up to catch stuck h/w. */
2053 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2054 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2055 ring->name);
2056 wake_up_all(&ring->irq_queue);
2057 }
2058 /* Safeguard against driver failure */
2059 ring->hangcheck.score += BUSY;
2060 } else
2061 busy = false;
2062 } else {
2063 /* We always increment the hangcheck score
2064 * if the ring is busy and still processing
2065 * the same request, so that no single request
2066 * can run indefinitely (such as a chain of
2067 * batches). The only time we do not increment
2068 * the hangcheck score on this ring, if this
2069 * ring is in a legitimate wait for another
2070 * ring. In that case the waiting ring is a
2071 * victim and we want to be sure we catch the
2072 * right culprit. Then every time we do kick
2073 * the ring, add a small increment to the
2074 * score so that we can catch a batch that is
2075 * being repeatedly kicked and so responsible
2076 * for stalling the machine.
2077 */
2078 ring->hangcheck.action = ring_stuck(ring,
2079 acthd);
2080
2081 switch (ring->hangcheck.action) {
2082 case HANGCHECK_IDLE:
2083 case HANGCHECK_WAIT:
2084 break;
2085 case HANGCHECK_ACTIVE:
2086 ring->hangcheck.score += BUSY;
2087 break;
2088 case HANGCHECK_KICK:
2089 ring->hangcheck.score += KICK;
2090 break;
2091 case HANGCHECK_HUNG:
2092 ring->hangcheck.score += HUNG;
2093 stuck[i] = true;
2094 break;
2095 }
2096 }
2097 } else {
2098 ring->hangcheck.action = HANGCHECK_ACTIVE;
2099
2100 /* Gradually reduce the count so that we catch DoS
2101 * attempts across multiple batches.
2102 */
2103 if (ring->hangcheck.score > 0)
2104 ring->hangcheck.score--;
2105 }
2106
2107 ring->hangcheck.seqno = seqno;
2108 ring->hangcheck.acthd = acthd;
2109 busy_count += busy;
2110 }
2111
2112 for_each_ring(ring, dev_priv, i) {
2113 if (ring->hangcheck.score > FIRE) {
2114 DRM_INFO("%s on %s\n",
2115 stuck[i] ? "stuck" : "no progress",
2116 ring->name);
2117 rings_hung++;
2118 }
2119 }
2120
2121 if (rings_hung)
2122 return i915_handle_error(dev, true);
2123
2124 if (busy_count)
2125 /* Reset timer case chip hangs without another request
2126 * being added */
2127 i915_queue_hangcheck(dev);
2128 }
2129
2130 void i915_queue_hangcheck(struct drm_device *dev)
2131 {
2132 struct drm_i915_private *dev_priv = dev->dev_private;
2133 if (!i915_enable_hangcheck)
2134 return;
2135
2136 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2137 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2138 }
2139
2140 static void ibx_irq_preinstall(struct drm_device *dev)
2141 {
2142 struct drm_i915_private *dev_priv = dev->dev_private;
2143
2144 if (HAS_PCH_NOP(dev))
2145 return;
2146
2147 /* south display irq */
2148 I915_WRITE(SDEIMR, 0xffffffff);
2149 /*
2150 * SDEIER is also touched by the interrupt handler to work around missed
2151 * PCH interrupts. Hence we can't update it after the interrupt handler
2152 * is enabled - instead we unconditionally enable all PCH interrupt
2153 * sources here, but then only unmask them as needed with SDEIMR.
2154 */
2155 I915_WRITE(SDEIER, 0xffffffff);
2156 POSTING_READ(SDEIER);
2157 }
2158
2159 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2160 {
2161 struct drm_i915_private *dev_priv = dev->dev_private;
2162
2163 /* and GT */
2164 I915_WRITE(GTIMR, 0xffffffff);
2165 I915_WRITE(GTIER, 0x0);
2166 POSTING_READ(GTIER);
2167
2168 if (INTEL_INFO(dev)->gen >= 6) {
2169 /* and PM */
2170 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2171 I915_WRITE(GEN6_PMIER, 0x0);
2172 POSTING_READ(GEN6_PMIER);
2173 }
2174 }
2175
2176 /* drm_dma.h hooks
2177 */
2178 static void ironlake_irq_preinstall(struct drm_device *dev)
2179 {
2180 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2181
2182 atomic_set(&dev_priv->irq_received, 0);
2183
2184 I915_WRITE(HWSTAM, 0xeffe);
2185
2186 I915_WRITE(DEIMR, 0xffffffff);
2187 I915_WRITE(DEIER, 0x0);
2188 POSTING_READ(DEIER);
2189
2190 gen5_gt_irq_preinstall(dev);
2191
2192 ibx_irq_preinstall(dev);
2193 }
2194
2195 static void valleyview_irq_preinstall(struct drm_device *dev)
2196 {
2197 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2198 int pipe;
2199
2200 atomic_set(&dev_priv->irq_received, 0);
2201
2202 /* VLV magic */
2203 I915_WRITE(VLV_IMR, 0);
2204 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2205 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2206 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2207
2208 /* and GT */
2209 I915_WRITE(GTIIR, I915_READ(GTIIR));
2210 I915_WRITE(GTIIR, I915_READ(GTIIR));
2211
2212 gen5_gt_irq_preinstall(dev);
2213
2214 I915_WRITE(DPINVGTT, 0xff);
2215
2216 I915_WRITE(PORT_HOTPLUG_EN, 0);
2217 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2218 for_each_pipe(pipe)
2219 I915_WRITE(PIPESTAT(pipe), 0xffff);
2220 I915_WRITE(VLV_IIR, 0xffffffff);
2221 I915_WRITE(VLV_IMR, 0xffffffff);
2222 I915_WRITE(VLV_IER, 0x0);
2223 POSTING_READ(VLV_IER);
2224 }
2225
2226 static void ibx_hpd_irq_setup(struct drm_device *dev)
2227 {
2228 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2229 struct drm_mode_config *mode_config = &dev->mode_config;
2230 struct intel_encoder *intel_encoder;
2231 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2232
2233 if (HAS_PCH_IBX(dev)) {
2234 hotplug_irqs = SDE_HOTPLUG_MASK;
2235 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2236 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2237 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2238 } else {
2239 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2240 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2241 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2242 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2243 }
2244
2245 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2246
2247 /*
2248 * Enable digital hotplug on the PCH, and configure the DP short pulse
2249 * duration to 2ms (which is the minimum in the Display Port spec)
2250 *
2251 * This register is the same on all known PCH chips.
2252 */
2253 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2254 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2255 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2256 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2257 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2258 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2259 }
2260
2261 static void ibx_irq_postinstall(struct drm_device *dev)
2262 {
2263 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2264 u32 mask;
2265
2266 if (HAS_PCH_NOP(dev))
2267 return;
2268
2269 if (HAS_PCH_IBX(dev)) {
2270 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2271 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2272 } else {
2273 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2274
2275 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2276 }
2277
2278 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2279 I915_WRITE(SDEIMR, ~mask);
2280 }
2281
2282 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2283 {
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 u32 pm_irqs, gt_irqs;
2286
2287 pm_irqs = gt_irqs = 0;
2288
2289 dev_priv->gt_irq_mask = ~0;
2290 if (HAS_L3_DPF(dev)) {
2291 /* L3 parity interrupt is always unmasked. */
2292 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2293 gt_irqs |= GT_PARITY_ERROR(dev);
2294 }
2295
2296 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2297 if (IS_GEN5(dev)) {
2298 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2299 ILK_BSD_USER_INTERRUPT;
2300 } else {
2301 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2302 }
2303
2304 I915_WRITE(GTIIR, I915_READ(GTIIR));
2305 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2306 I915_WRITE(GTIER, gt_irqs);
2307 POSTING_READ(GTIER);
2308
2309 if (INTEL_INFO(dev)->gen >= 6) {
2310 pm_irqs |= GEN6_PM_RPS_EVENTS;
2311
2312 if (HAS_VEBOX(dev))
2313 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2314
2315 dev_priv->pm_irq_mask = 0xffffffff;
2316 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2317 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2318 I915_WRITE(GEN6_PMIER, pm_irqs);
2319 POSTING_READ(GEN6_PMIER);
2320 }
2321 }
2322
2323 static int ironlake_irq_postinstall(struct drm_device *dev)
2324 {
2325 unsigned long irqflags;
2326 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2327 u32 display_mask, extra_mask;
2328
2329 if (INTEL_INFO(dev)->gen >= 7) {
2330 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2331 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2332 DE_PLANEB_FLIP_DONE_IVB |
2333 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2334 DE_ERR_INT_IVB);
2335 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2336 DE_PIPEA_VBLANK_IVB);
2337
2338 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2339 } else {
2340 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2341 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2342 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2343 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2344 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2345 }
2346
2347 dev_priv->irq_mask = ~display_mask;
2348
2349 /* should always can generate irq */
2350 I915_WRITE(DEIIR, I915_READ(DEIIR));
2351 I915_WRITE(DEIMR, dev_priv->irq_mask);
2352 I915_WRITE(DEIER, display_mask | extra_mask);
2353 POSTING_READ(DEIER);
2354
2355 gen5_gt_irq_postinstall(dev);
2356
2357 ibx_irq_postinstall(dev);
2358
2359 if (IS_IRONLAKE_M(dev)) {
2360 /* Enable PCU event interrupts
2361 *
2362 * spinlocking not required here for correctness since interrupt
2363 * setup is guaranteed to run in single-threaded context. But we
2364 * need it to make the assert_spin_locked happy. */
2365 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2366 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2367 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2368 }
2369
2370 return 0;
2371 }
2372
2373 static int valleyview_irq_postinstall(struct drm_device *dev)
2374 {
2375 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2376 u32 enable_mask;
2377 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2378 unsigned long irqflags;
2379
2380 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2381 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2382 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2383 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2384 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2385
2386 /*
2387 *Leave vblank interrupts masked initially. enable/disable will
2388 * toggle them based on usage.
2389 */
2390 dev_priv->irq_mask = (~enable_mask) |
2391 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2392 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2393
2394 I915_WRITE(PORT_HOTPLUG_EN, 0);
2395 POSTING_READ(PORT_HOTPLUG_EN);
2396
2397 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2398 I915_WRITE(VLV_IER, enable_mask);
2399 I915_WRITE(VLV_IIR, 0xffffffff);
2400 I915_WRITE(PIPESTAT(0), 0xffff);
2401 I915_WRITE(PIPESTAT(1), 0xffff);
2402 POSTING_READ(VLV_IER);
2403
2404 /* Interrupt setup is already guaranteed to be single-threaded, this is
2405 * just to make the assert_spin_locked check happy. */
2406 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2407 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2408 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2409 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2410 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2411
2412 I915_WRITE(VLV_IIR, 0xffffffff);
2413 I915_WRITE(VLV_IIR, 0xffffffff);
2414
2415 gen5_gt_irq_postinstall(dev);
2416
2417 /* ack & enable invalid PTE error interrupts */
2418 #if 0 /* FIXME: add support to irq handler for checking these bits */
2419 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2420 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2421 #endif
2422
2423 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2424
2425 return 0;
2426 }
2427
2428 static void valleyview_irq_uninstall(struct drm_device *dev)
2429 {
2430 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2431 int pipe;
2432
2433 if (!dev_priv)
2434 return;
2435
2436 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2437
2438 for_each_pipe(pipe)
2439 I915_WRITE(PIPESTAT(pipe), 0xffff);
2440
2441 I915_WRITE(HWSTAM, 0xffffffff);
2442 I915_WRITE(PORT_HOTPLUG_EN, 0);
2443 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2444 for_each_pipe(pipe)
2445 I915_WRITE(PIPESTAT(pipe), 0xffff);
2446 I915_WRITE(VLV_IIR, 0xffffffff);
2447 I915_WRITE(VLV_IMR, 0xffffffff);
2448 I915_WRITE(VLV_IER, 0x0);
2449 POSTING_READ(VLV_IER);
2450 }
2451
2452 static void ironlake_irq_uninstall(struct drm_device *dev)
2453 {
2454 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2455
2456 if (!dev_priv)
2457 return;
2458
2459 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2460
2461 I915_WRITE(HWSTAM, 0xffffffff);
2462
2463 I915_WRITE(DEIMR, 0xffffffff);
2464 I915_WRITE(DEIER, 0x0);
2465 I915_WRITE(DEIIR, I915_READ(DEIIR));
2466 if (IS_GEN7(dev))
2467 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2468
2469 I915_WRITE(GTIMR, 0xffffffff);
2470 I915_WRITE(GTIER, 0x0);
2471 I915_WRITE(GTIIR, I915_READ(GTIIR));
2472
2473 if (HAS_PCH_NOP(dev))
2474 return;
2475
2476 I915_WRITE(SDEIMR, 0xffffffff);
2477 I915_WRITE(SDEIER, 0x0);
2478 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2479 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2480 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2481 }
2482
2483 static void i8xx_irq_preinstall(struct drm_device * dev)
2484 {
2485 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2486 int pipe;
2487
2488 atomic_set(&dev_priv->irq_received, 0);
2489
2490 for_each_pipe(pipe)
2491 I915_WRITE(PIPESTAT(pipe), 0);
2492 I915_WRITE16(IMR, 0xffff);
2493 I915_WRITE16(IER, 0x0);
2494 POSTING_READ16(IER);
2495 }
2496
2497 static int i8xx_irq_postinstall(struct drm_device *dev)
2498 {
2499 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2500
2501 I915_WRITE16(EMR,
2502 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2503
2504 /* Unmask the interrupts that we always want on. */
2505 dev_priv->irq_mask =
2506 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2507 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2508 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2509 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2510 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2511 I915_WRITE16(IMR, dev_priv->irq_mask);
2512
2513 I915_WRITE16(IER,
2514 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2515 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2516 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2517 I915_USER_INTERRUPT);
2518 POSTING_READ16(IER);
2519
2520 return 0;
2521 }
2522
2523 /*
2524 * Returns true when a page flip has completed.
2525 */
2526 static bool i8xx_handle_vblank(struct drm_device *dev,
2527 int pipe, u16 iir)
2528 {
2529 drm_i915_private_t *dev_priv = dev->dev_private;
2530 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2531
2532 if (!drm_handle_vblank(dev, pipe))
2533 return false;
2534
2535 if ((iir & flip_pending) == 0)
2536 return false;
2537
2538 intel_prepare_page_flip(dev, pipe);
2539
2540 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2541 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2542 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2543 * the flip is completed (no longer pending). Since this doesn't raise
2544 * an interrupt per se, we watch for the change at vblank.
2545 */
2546 if (I915_READ16(ISR) & flip_pending)
2547 return false;
2548
2549 intel_finish_page_flip(dev, pipe);
2550
2551 return true;
2552 }
2553
2554 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2555 {
2556 struct drm_device *dev = (struct drm_device *) arg;
2557 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2558 u16 iir, new_iir;
2559 u32 pipe_stats[2];
2560 unsigned long irqflags;
2561 int pipe;
2562 u16 flip_mask =
2563 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2564 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2565
2566 atomic_inc(&dev_priv->irq_received);
2567
2568 iir = I915_READ16(IIR);
2569 if (iir == 0)
2570 return IRQ_NONE;
2571
2572 while (iir & ~flip_mask) {
2573 /* Can't rely on pipestat interrupt bit in iir as it might
2574 * have been cleared after the pipestat interrupt was received.
2575 * It doesn't set the bit in iir again, but it still produces
2576 * interrupts (for non-MSI).
2577 */
2578 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2579 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2580 i915_handle_error(dev, false);
2581
2582 for_each_pipe(pipe) {
2583 int reg = PIPESTAT(pipe);
2584 pipe_stats[pipe] = I915_READ(reg);
2585
2586 /*
2587 * Clear the PIPE*STAT regs before the IIR
2588 */
2589 if (pipe_stats[pipe] & 0x8000ffff) {
2590 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2591 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2592 pipe_name(pipe));
2593 I915_WRITE(reg, pipe_stats[pipe]);
2594 }
2595 }
2596 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2597
2598 I915_WRITE16(IIR, iir & ~flip_mask);
2599 new_iir = I915_READ16(IIR); /* Flush posted writes */
2600
2601 i915_update_dri1_breadcrumb(dev);
2602
2603 if (iir & I915_USER_INTERRUPT)
2604 notify_ring(dev, &dev_priv->ring[RCS]);
2605
2606 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2607 i8xx_handle_vblank(dev, 0, iir))
2608 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2609
2610 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2611 i8xx_handle_vblank(dev, 1, iir))
2612 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2613
2614 iir = new_iir;
2615 }
2616
2617 return IRQ_HANDLED;
2618 }
2619
2620 static void i8xx_irq_uninstall(struct drm_device * dev)
2621 {
2622 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2623 int pipe;
2624
2625 for_each_pipe(pipe) {
2626 /* Clear enable bits; then clear status bits */
2627 I915_WRITE(PIPESTAT(pipe), 0);
2628 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2629 }
2630 I915_WRITE16(IMR, 0xffff);
2631 I915_WRITE16(IER, 0x0);
2632 I915_WRITE16(IIR, I915_READ16(IIR));
2633 }
2634
2635 static void i915_irq_preinstall(struct drm_device * dev)
2636 {
2637 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2638 int pipe;
2639
2640 atomic_set(&dev_priv->irq_received, 0);
2641
2642 if (I915_HAS_HOTPLUG(dev)) {
2643 I915_WRITE(PORT_HOTPLUG_EN, 0);
2644 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2645 }
2646
2647 I915_WRITE16(HWSTAM, 0xeffe);
2648 for_each_pipe(pipe)
2649 I915_WRITE(PIPESTAT(pipe), 0);
2650 I915_WRITE(IMR, 0xffffffff);
2651 I915_WRITE(IER, 0x0);
2652 POSTING_READ(IER);
2653 }
2654
2655 static int i915_irq_postinstall(struct drm_device *dev)
2656 {
2657 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2658 u32 enable_mask;
2659
2660 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2661
2662 /* Unmask the interrupts that we always want on. */
2663 dev_priv->irq_mask =
2664 ~(I915_ASLE_INTERRUPT |
2665 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2666 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2667 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2668 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2669 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2670
2671 enable_mask =
2672 I915_ASLE_INTERRUPT |
2673 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2674 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2675 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2676 I915_USER_INTERRUPT;
2677
2678 if (I915_HAS_HOTPLUG(dev)) {
2679 I915_WRITE(PORT_HOTPLUG_EN, 0);
2680 POSTING_READ(PORT_HOTPLUG_EN);
2681
2682 /* Enable in IER... */
2683 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2684 /* and unmask in IMR */
2685 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2686 }
2687
2688 I915_WRITE(IMR, dev_priv->irq_mask);
2689 I915_WRITE(IER, enable_mask);
2690 POSTING_READ(IER);
2691
2692 i915_enable_asle_pipestat(dev);
2693
2694 return 0;
2695 }
2696
2697 /*
2698 * Returns true when a page flip has completed.
2699 */
2700 static bool i915_handle_vblank(struct drm_device *dev,
2701 int plane, int pipe, u32 iir)
2702 {
2703 drm_i915_private_t *dev_priv = dev->dev_private;
2704 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2705
2706 if (!drm_handle_vblank(dev, pipe))
2707 return false;
2708
2709 if ((iir & flip_pending) == 0)
2710 return false;
2711
2712 intel_prepare_page_flip(dev, plane);
2713
2714 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2715 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2716 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2717 * the flip is completed (no longer pending). Since this doesn't raise
2718 * an interrupt per se, we watch for the change at vblank.
2719 */
2720 if (I915_READ(ISR) & flip_pending)
2721 return false;
2722
2723 intel_finish_page_flip(dev, pipe);
2724
2725 return true;
2726 }
2727
2728 static irqreturn_t i915_irq_handler(int irq, void *arg)
2729 {
2730 struct drm_device *dev = (struct drm_device *) arg;
2731 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2732 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2733 unsigned long irqflags;
2734 u32 flip_mask =
2735 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2736 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2737 int pipe, ret = IRQ_NONE;
2738
2739 atomic_inc(&dev_priv->irq_received);
2740
2741 iir = I915_READ(IIR);
2742 do {
2743 bool irq_received = (iir & ~flip_mask) != 0;
2744 bool blc_event = false;
2745
2746 /* Can't rely on pipestat interrupt bit in iir as it might
2747 * have been cleared after the pipestat interrupt was received.
2748 * It doesn't set the bit in iir again, but it still produces
2749 * interrupts (for non-MSI).
2750 */
2751 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2753 i915_handle_error(dev, false);
2754
2755 for_each_pipe(pipe) {
2756 int reg = PIPESTAT(pipe);
2757 pipe_stats[pipe] = I915_READ(reg);
2758
2759 /* Clear the PIPE*STAT regs before the IIR */
2760 if (pipe_stats[pipe] & 0x8000ffff) {
2761 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2762 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2763 pipe_name(pipe));
2764 I915_WRITE(reg, pipe_stats[pipe]);
2765 irq_received = true;
2766 }
2767 }
2768 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2769
2770 if (!irq_received)
2771 break;
2772
2773 /* Consume port. Then clear IIR or we'll miss events */
2774 if ((I915_HAS_HOTPLUG(dev)) &&
2775 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2776 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2777 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2778
2779 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2780 hotplug_status);
2781
2782 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2783
2784 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2785 POSTING_READ(PORT_HOTPLUG_STAT);
2786 }
2787
2788 I915_WRITE(IIR, iir & ~flip_mask);
2789 new_iir = I915_READ(IIR); /* Flush posted writes */
2790
2791 if (iir & I915_USER_INTERRUPT)
2792 notify_ring(dev, &dev_priv->ring[RCS]);
2793
2794 for_each_pipe(pipe) {
2795 int plane = pipe;
2796 if (IS_MOBILE(dev))
2797 plane = !plane;
2798
2799 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2800 i915_handle_vblank(dev, plane, pipe, iir))
2801 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2802
2803 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2804 blc_event = true;
2805 }
2806
2807 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2808 intel_opregion_asle_intr(dev);
2809
2810 /* With MSI, interrupts are only generated when iir
2811 * transitions from zero to nonzero. If another bit got
2812 * set while we were handling the existing iir bits, then
2813 * we would never get another interrupt.
2814 *
2815 * This is fine on non-MSI as well, as if we hit this path
2816 * we avoid exiting the interrupt handler only to generate
2817 * another one.
2818 *
2819 * Note that for MSI this could cause a stray interrupt report
2820 * if an interrupt landed in the time between writing IIR and
2821 * the posting read. This should be rare enough to never
2822 * trigger the 99% of 100,000 interrupts test for disabling
2823 * stray interrupts.
2824 */
2825 ret = IRQ_HANDLED;
2826 iir = new_iir;
2827 } while (iir & ~flip_mask);
2828
2829 i915_update_dri1_breadcrumb(dev);
2830
2831 return ret;
2832 }
2833
2834 static void i915_irq_uninstall(struct drm_device * dev)
2835 {
2836 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2837 int pipe;
2838
2839 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2840
2841 if (I915_HAS_HOTPLUG(dev)) {
2842 I915_WRITE(PORT_HOTPLUG_EN, 0);
2843 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2844 }
2845
2846 I915_WRITE16(HWSTAM, 0xffff);
2847 for_each_pipe(pipe) {
2848 /* Clear enable bits; then clear status bits */
2849 I915_WRITE(PIPESTAT(pipe), 0);
2850 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2851 }
2852 I915_WRITE(IMR, 0xffffffff);
2853 I915_WRITE(IER, 0x0);
2854
2855 I915_WRITE(IIR, I915_READ(IIR));
2856 }
2857
2858 static void i965_irq_preinstall(struct drm_device * dev)
2859 {
2860 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2861 int pipe;
2862
2863 atomic_set(&dev_priv->irq_received, 0);
2864
2865 I915_WRITE(PORT_HOTPLUG_EN, 0);
2866 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2867
2868 I915_WRITE(HWSTAM, 0xeffe);
2869 for_each_pipe(pipe)
2870 I915_WRITE(PIPESTAT(pipe), 0);
2871 I915_WRITE(IMR, 0xffffffff);
2872 I915_WRITE(IER, 0x0);
2873 POSTING_READ(IER);
2874 }
2875
2876 static int i965_irq_postinstall(struct drm_device *dev)
2877 {
2878 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2879 u32 enable_mask;
2880 u32 error_mask;
2881 unsigned long irqflags;
2882
2883 /* Unmask the interrupts that we always want on. */
2884 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2885 I915_DISPLAY_PORT_INTERRUPT |
2886 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2887 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2888 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2889 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2890 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2891
2892 enable_mask = ~dev_priv->irq_mask;
2893 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2894 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2895 enable_mask |= I915_USER_INTERRUPT;
2896
2897 if (IS_G4X(dev))
2898 enable_mask |= I915_BSD_USER_INTERRUPT;
2899
2900 /* Interrupt setup is already guaranteed to be single-threaded, this is
2901 * just to make the assert_spin_locked check happy. */
2902 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2903 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2904 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2905
2906 /*
2907 * Enable some error detection, note the instruction error mask
2908 * bit is reserved, so we leave it masked.
2909 */
2910 if (IS_G4X(dev)) {
2911 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2912 GM45_ERROR_MEM_PRIV |
2913 GM45_ERROR_CP_PRIV |
2914 I915_ERROR_MEMORY_REFRESH);
2915 } else {
2916 error_mask = ~(I915_ERROR_PAGE_TABLE |
2917 I915_ERROR_MEMORY_REFRESH);
2918 }
2919 I915_WRITE(EMR, error_mask);
2920
2921 I915_WRITE(IMR, dev_priv->irq_mask);
2922 I915_WRITE(IER, enable_mask);
2923 POSTING_READ(IER);
2924
2925 I915_WRITE(PORT_HOTPLUG_EN, 0);
2926 POSTING_READ(PORT_HOTPLUG_EN);
2927
2928 i915_enable_asle_pipestat(dev);
2929
2930 return 0;
2931 }
2932
2933 static void i915_hpd_irq_setup(struct drm_device *dev)
2934 {
2935 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2936 struct drm_mode_config *mode_config = &dev->mode_config;
2937 struct intel_encoder *intel_encoder;
2938 u32 hotplug_en;
2939
2940 assert_spin_locked(&dev_priv->irq_lock);
2941
2942 if (I915_HAS_HOTPLUG(dev)) {
2943 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2944 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2945 /* Note HDMI and DP share hotplug bits */
2946 /* enable bits are the same for all generations */
2947 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2948 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2949 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2950 /* Programming the CRT detection parameters tends
2951 to generate a spurious hotplug event about three
2952 seconds later. So just do it once.
2953 */
2954 if (IS_G4X(dev))
2955 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2956 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2957 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2958
2959 /* Ignore TV since it's buggy */
2960 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2961 }
2962 }
2963
2964 static irqreturn_t i965_irq_handler(int irq, void *arg)
2965 {
2966 struct drm_device *dev = (struct drm_device *) arg;
2967 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2968 u32 iir, new_iir;
2969 u32 pipe_stats[I915_MAX_PIPES];
2970 unsigned long irqflags;
2971 int irq_received;
2972 int ret = IRQ_NONE, pipe;
2973 u32 flip_mask =
2974 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2975 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2976
2977 atomic_inc(&dev_priv->irq_received);
2978
2979 iir = I915_READ(IIR);
2980
2981 for (;;) {
2982 bool blc_event = false;
2983
2984 irq_received = (iir & ~flip_mask) != 0;
2985
2986 /* Can't rely on pipestat interrupt bit in iir as it might
2987 * have been cleared after the pipestat interrupt was received.
2988 * It doesn't set the bit in iir again, but it still produces
2989 * interrupts (for non-MSI).
2990 */
2991 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2992 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2993 i915_handle_error(dev, false);
2994
2995 for_each_pipe(pipe) {
2996 int reg = PIPESTAT(pipe);
2997 pipe_stats[pipe] = I915_READ(reg);
2998
2999 /*
3000 * Clear the PIPE*STAT regs before the IIR
3001 */
3002 if (pipe_stats[pipe] & 0x8000ffff) {
3003 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3004 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3005 pipe_name(pipe));
3006 I915_WRITE(reg, pipe_stats[pipe]);
3007 irq_received = 1;
3008 }
3009 }
3010 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3011
3012 if (!irq_received)
3013 break;
3014
3015 ret = IRQ_HANDLED;
3016
3017 /* Consume port. Then clear IIR or we'll miss events */
3018 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3019 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3020 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3021 HOTPLUG_INT_STATUS_G4X :
3022 HOTPLUG_INT_STATUS_I915);
3023
3024 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3025 hotplug_status);
3026
3027 intel_hpd_irq_handler(dev, hotplug_trigger,
3028 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3029
3030 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3031 I915_READ(PORT_HOTPLUG_STAT);
3032 }
3033
3034 I915_WRITE(IIR, iir & ~flip_mask);
3035 new_iir = I915_READ(IIR); /* Flush posted writes */
3036
3037 if (iir & I915_USER_INTERRUPT)
3038 notify_ring(dev, &dev_priv->ring[RCS]);
3039 if (iir & I915_BSD_USER_INTERRUPT)
3040 notify_ring(dev, &dev_priv->ring[VCS]);
3041
3042 for_each_pipe(pipe) {
3043 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3044 i915_handle_vblank(dev, pipe, pipe, iir))
3045 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3046
3047 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3048 blc_event = true;
3049 }
3050
3051
3052 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3053 intel_opregion_asle_intr(dev);
3054
3055 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3056 gmbus_irq_handler(dev);
3057
3058 /* With MSI, interrupts are only generated when iir
3059 * transitions from zero to nonzero. If another bit got
3060 * set while we were handling the existing iir bits, then
3061 * we would never get another interrupt.
3062 *
3063 * This is fine on non-MSI as well, as if we hit this path
3064 * we avoid exiting the interrupt handler only to generate
3065 * another one.
3066 *
3067 * Note that for MSI this could cause a stray interrupt report
3068 * if an interrupt landed in the time between writing IIR and
3069 * the posting read. This should be rare enough to never
3070 * trigger the 99% of 100,000 interrupts test for disabling
3071 * stray interrupts.
3072 */
3073 iir = new_iir;
3074 }
3075
3076 i915_update_dri1_breadcrumb(dev);
3077
3078 return ret;
3079 }
3080
3081 static void i965_irq_uninstall(struct drm_device * dev)
3082 {
3083 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3084 int pipe;
3085
3086 if (!dev_priv)
3087 return;
3088
3089 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3090
3091 I915_WRITE(PORT_HOTPLUG_EN, 0);
3092 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3093
3094 I915_WRITE(HWSTAM, 0xffffffff);
3095 for_each_pipe(pipe)
3096 I915_WRITE(PIPESTAT(pipe), 0);
3097 I915_WRITE(IMR, 0xffffffff);
3098 I915_WRITE(IER, 0x0);
3099
3100 for_each_pipe(pipe)
3101 I915_WRITE(PIPESTAT(pipe),
3102 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3103 I915_WRITE(IIR, I915_READ(IIR));
3104 }
3105
3106 static void i915_reenable_hotplug_timer_func(unsigned long data)
3107 {
3108 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3109 struct drm_device *dev = dev_priv->dev;
3110 struct drm_mode_config *mode_config = &dev->mode_config;
3111 unsigned long irqflags;
3112 int i;
3113
3114 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3115 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3116 struct drm_connector *connector;
3117
3118 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3119 continue;
3120
3121 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3122
3123 list_for_each_entry(connector, &mode_config->connector_list, head) {
3124 struct intel_connector *intel_connector = to_intel_connector(connector);
3125
3126 if (intel_connector->encoder->hpd_pin == i) {
3127 if (connector->polled != intel_connector->polled)
3128 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3129 drm_get_connector_name(connector));
3130 connector->polled = intel_connector->polled;
3131 if (!connector->polled)
3132 connector->polled = DRM_CONNECTOR_POLL_HPD;
3133 }
3134 }
3135 }
3136 if (dev_priv->display.hpd_irq_setup)
3137 dev_priv->display.hpd_irq_setup(dev);
3138 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3139 }
3140
3141 void intel_irq_init(struct drm_device *dev)
3142 {
3143 struct drm_i915_private *dev_priv = dev->dev_private;
3144
3145 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3146 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3147 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3148 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3149
3150 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3151 i915_hangcheck_elapsed,
3152 (unsigned long) dev);
3153 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3154 (unsigned long) dev_priv);
3155
3156 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3157
3158 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3159 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3160 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3161 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3162 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3163 }
3164
3165 if (drm_core_check_feature(dev, DRIVER_MODESET))
3166 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3167 else
3168 dev->driver->get_vblank_timestamp = NULL;
3169 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3170
3171 if (IS_VALLEYVIEW(dev)) {
3172 dev->driver->irq_handler = valleyview_irq_handler;
3173 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3174 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3175 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3176 dev->driver->enable_vblank = valleyview_enable_vblank;
3177 dev->driver->disable_vblank = valleyview_disable_vblank;
3178 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3179 } else if (HAS_PCH_SPLIT(dev)) {
3180 dev->driver->irq_handler = ironlake_irq_handler;
3181 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3182 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3183 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3184 dev->driver->enable_vblank = ironlake_enable_vblank;
3185 dev->driver->disable_vblank = ironlake_disable_vblank;
3186 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3187 } else {
3188 if (INTEL_INFO(dev)->gen == 2) {
3189 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3190 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3191 dev->driver->irq_handler = i8xx_irq_handler;
3192 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3193 } else if (INTEL_INFO(dev)->gen == 3) {
3194 dev->driver->irq_preinstall = i915_irq_preinstall;
3195 dev->driver->irq_postinstall = i915_irq_postinstall;
3196 dev->driver->irq_uninstall = i915_irq_uninstall;
3197 dev->driver->irq_handler = i915_irq_handler;
3198 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3199 } else {
3200 dev->driver->irq_preinstall = i965_irq_preinstall;
3201 dev->driver->irq_postinstall = i965_irq_postinstall;
3202 dev->driver->irq_uninstall = i965_irq_uninstall;
3203 dev->driver->irq_handler = i965_irq_handler;
3204 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3205 }
3206 dev->driver->enable_vblank = i915_enable_vblank;
3207 dev->driver->disable_vblank = i915_disable_vblank;
3208 }
3209 }
3210
3211 void intel_hpd_init(struct drm_device *dev)
3212 {
3213 struct drm_i915_private *dev_priv = dev->dev_private;
3214 struct drm_mode_config *mode_config = &dev->mode_config;
3215 struct drm_connector *connector;
3216 unsigned long irqflags;
3217 int i;
3218
3219 for (i = 1; i < HPD_NUM_PINS; i++) {
3220 dev_priv->hpd_stats[i].hpd_cnt = 0;
3221 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3222 }
3223 list_for_each_entry(connector, &mode_config->connector_list, head) {
3224 struct intel_connector *intel_connector = to_intel_connector(connector);
3225 connector->polled = intel_connector->polled;
3226 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3227 connector->polled = DRM_CONNECTOR_POLL_HPD;
3228 }
3229
3230 /* Interrupt setup is already guaranteed to be single-threaded, this is
3231 * just to make the assert_spin_locked checks happy. */
3232 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3233 if (dev_priv->display.hpd_irq_setup)
3234 dev_priv->display.hpd_irq_setup(dev);
3235 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3236 }
3237
3238 /* Disable interrupts so we can allow Package C8+. */
3239 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3240 {
3241 struct drm_i915_private *dev_priv = dev->dev_private;
3242 unsigned long irqflags;
3243
3244 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3245
3246 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3247 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3248 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3249 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3250 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3251
3252 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3253 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3254 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3255 snb_disable_pm_irq(dev_priv, 0xffffffff);
3256
3257 dev_priv->pc8.irqs_disabled = true;
3258
3259 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3260 }
3261
3262 /* Restore interrupts so we can recover from Package C8+. */
3263 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3264 {
3265 struct drm_i915_private *dev_priv = dev->dev_private;
3266 unsigned long irqflags;
3267 uint32_t val, expected;
3268
3269 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3270
3271 val = I915_READ(DEIMR);
3272 expected = ~DE_PCH_EVENT_IVB;
3273 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3274
3275 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3276 expected = ~SDE_HOTPLUG_MASK_CPT;
3277 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3278 val, expected);
3279
3280 val = I915_READ(GTIMR);
3281 expected = 0xffffffff;
3282 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3283
3284 val = I915_READ(GEN6_PMIMR);
3285 expected = 0xffffffff;
3286 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3287 expected);
3288
3289 dev_priv->pc8.irqs_disabled = false;
3290
3291 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3292 ibx_enable_display_interrupt(dev_priv,
3293 ~dev_priv->pc8.regsave.sdeimr &
3294 ~SDE_HOTPLUG_MASK_CPT);
3295 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3296 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3297 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3298
3299 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3300 }
This page took 0.136937 seconds and 6 git commands to generate.