drm/i915: fold the hpd_irq_setup call into intel_hpd_irq_handler
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if ((dev_priv->irq_mask & mask) != 0) {
89 dev_priv->irq_mask &= ~mask;
90 I915_WRITE(DEIMR, dev_priv->irq_mask);
91 POSTING_READ(DEIMR);
92 }
93 }
94
95 static void
96 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 assert_spin_locked(&dev_priv->irq_lock);
99
100 if ((dev_priv->irq_mask & mask) != mask) {
101 dev_priv->irq_mask |= mask;
102 I915_WRITE(DEIMR, dev_priv->irq_mask);
103 POSTING_READ(DEIMR);
104 }
105 }
106
107 static bool ivb_can_enable_err_int(struct drm_device *dev)
108 {
109 struct drm_i915_private *dev_priv = dev->dev_private;
110 struct intel_crtc *crtc;
111 enum pipe pipe;
112
113 assert_spin_locked(&dev_priv->irq_lock);
114
115 for_each_pipe(pipe) {
116 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
117
118 if (crtc->cpu_fifo_underrun_disabled)
119 return false;
120 }
121
122 return true;
123 }
124
125 static bool cpt_can_enable_serr_int(struct drm_device *dev)
126 {
127 struct drm_i915_private *dev_priv = dev->dev_private;
128 enum pipe pipe;
129 struct intel_crtc *crtc;
130
131 for_each_pipe(pipe) {
132 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
133
134 if (crtc->pch_fifo_underrun_disabled)
135 return false;
136 }
137
138 return true;
139 }
140
141 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
142 enum pipe pipe, bool enable)
143 {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
146 DE_PIPEB_FIFO_UNDERRUN;
147
148 if (enable)
149 ironlake_enable_display_irq(dev_priv, bit);
150 else
151 ironlake_disable_display_irq(dev_priv, bit);
152 }
153
154 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
155 bool enable)
156 {
157 struct drm_i915_private *dev_priv = dev->dev_private;
158
159 if (enable) {
160 if (!ivb_can_enable_err_int(dev))
161 return;
162
163 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN_A |
164 ERR_INT_FIFO_UNDERRUN_B |
165 ERR_INT_FIFO_UNDERRUN_C);
166
167 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
168 } else {
169 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
170 }
171 }
172
173 static void ibx_set_fifo_underrun_reporting(struct intel_crtc *crtc,
174 bool enable)
175 {
176 struct drm_device *dev = crtc->base.dev;
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 uint32_t bit = (crtc->pipe == PIPE_A) ? SDE_TRANSA_FIFO_UNDER :
179 SDE_TRANSB_FIFO_UNDER;
180
181 if (enable)
182 I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~bit);
183 else
184 I915_WRITE(SDEIMR, I915_READ(SDEIMR) | bit);
185
186 POSTING_READ(SDEIMR);
187 }
188
189 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
190 enum transcoder pch_transcoder,
191 bool enable)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194
195 if (enable) {
196 if (!cpt_can_enable_serr_int(dev))
197 return;
198
199 I915_WRITE(SERR_INT, SERR_INT_TRANS_A_FIFO_UNDERRUN |
200 SERR_INT_TRANS_B_FIFO_UNDERRUN |
201 SERR_INT_TRANS_C_FIFO_UNDERRUN);
202
203 I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~SDE_ERROR_CPT);
204 } else {
205 I915_WRITE(SDEIMR, I915_READ(SDEIMR) | SDE_ERROR_CPT);
206 }
207
208 POSTING_READ(SDEIMR);
209 }
210
211 /**
212 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
213 * @dev: drm device
214 * @pipe: pipe
215 * @enable: true if we want to report FIFO underrun errors, false otherwise
216 *
217 * This function makes us disable or enable CPU fifo underruns for a specific
218 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
219 * reporting for one pipe may also disable all the other CPU error interruts for
220 * the other pipes, due to the fact that there's just one interrupt mask/enable
221 * bit for all the pipes.
222 *
223 * Returns the previous state of underrun reporting.
224 */
225 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
226 enum pipe pipe, bool enable)
227 {
228 struct drm_i915_private *dev_priv = dev->dev_private;
229 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
230 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
231 unsigned long flags;
232 bool ret;
233
234 spin_lock_irqsave(&dev_priv->irq_lock, flags);
235
236 ret = !intel_crtc->cpu_fifo_underrun_disabled;
237
238 if (enable == ret)
239 goto done;
240
241 intel_crtc->cpu_fifo_underrun_disabled = !enable;
242
243 if (IS_GEN5(dev) || IS_GEN6(dev))
244 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
245 else if (IS_GEN7(dev))
246 ivybridge_set_fifo_underrun_reporting(dev, enable);
247
248 done:
249 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
250 return ret;
251 }
252
253 /**
254 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
255 * @dev: drm device
256 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
257 * @enable: true if we want to report FIFO underrun errors, false otherwise
258 *
259 * This function makes us disable or enable PCH fifo underruns for a specific
260 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
261 * underrun reporting for one transcoder may also disable all the other PCH
262 * error interruts for the other transcoders, due to the fact that there's just
263 * one interrupt mask/enable bit for all the transcoders.
264 *
265 * Returns the previous state of underrun reporting.
266 */
267 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
268 enum transcoder pch_transcoder,
269 bool enable)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 enum pipe p;
273 struct drm_crtc *crtc;
274 struct intel_crtc *intel_crtc;
275 unsigned long flags;
276 bool ret;
277
278 if (HAS_PCH_LPT(dev)) {
279 crtc = NULL;
280 for_each_pipe(p) {
281 struct drm_crtc *c = dev_priv->pipe_to_crtc_mapping[p];
282 if (intel_pipe_has_type(c, INTEL_OUTPUT_ANALOG)) {
283 crtc = c;
284 break;
285 }
286 }
287 if (!crtc) {
288 DRM_ERROR("PCH FIFO underrun, but no CRTC using the PCH found\n");
289 return false;
290 }
291 } else {
292 crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
293 }
294 intel_crtc = to_intel_crtc(crtc);
295
296 spin_lock_irqsave(&dev_priv->irq_lock, flags);
297
298 ret = !intel_crtc->pch_fifo_underrun_disabled;
299
300 if (enable == ret)
301 goto done;
302
303 intel_crtc->pch_fifo_underrun_disabled = !enable;
304
305 if (HAS_PCH_IBX(dev))
306 ibx_set_fifo_underrun_reporting(intel_crtc, enable);
307 else
308 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
309
310 done:
311 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
312 return ret;
313 }
314
315
316 void
317 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
318 {
319 u32 reg = PIPESTAT(pipe);
320 u32 pipestat = I915_READ(reg) & 0x7fff0000;
321
322 if ((pipestat & mask) == mask)
323 return;
324
325 /* Enable the interrupt, clear any pending status */
326 pipestat |= mask | (mask >> 16);
327 I915_WRITE(reg, pipestat);
328 POSTING_READ(reg);
329 }
330
331 void
332 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
333 {
334 u32 reg = PIPESTAT(pipe);
335 u32 pipestat = I915_READ(reg) & 0x7fff0000;
336
337 if ((pipestat & mask) == 0)
338 return;
339
340 pipestat &= ~mask;
341 I915_WRITE(reg, pipestat);
342 POSTING_READ(reg);
343 }
344
345 /**
346 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
347 */
348 static void i915_enable_asle_pipestat(struct drm_device *dev)
349 {
350 drm_i915_private_t *dev_priv = dev->dev_private;
351 unsigned long irqflags;
352
353 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
354 return;
355
356 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
357
358 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
359 if (INTEL_INFO(dev)->gen >= 4)
360 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
361
362 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
363 }
364
365 /**
366 * i915_pipe_enabled - check if a pipe is enabled
367 * @dev: DRM device
368 * @pipe: pipe to check
369 *
370 * Reading certain registers when the pipe is disabled can hang the chip.
371 * Use this routine to make sure the PLL is running and the pipe is active
372 * before reading such registers if unsure.
373 */
374 static int
375 i915_pipe_enabled(struct drm_device *dev, int pipe)
376 {
377 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
378
379 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
380 /* Locking is horribly broken here, but whatever. */
381 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
383
384 return intel_crtc->active;
385 } else {
386 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
387 }
388 }
389
390 /* Called from drm generic code, passed a 'crtc', which
391 * we use as a pipe index
392 */
393 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
394 {
395 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
396 unsigned long high_frame;
397 unsigned long low_frame;
398 u32 high1, high2, low;
399
400 if (!i915_pipe_enabled(dev, pipe)) {
401 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
402 "pipe %c\n", pipe_name(pipe));
403 return 0;
404 }
405
406 high_frame = PIPEFRAME(pipe);
407 low_frame = PIPEFRAMEPIXEL(pipe);
408
409 /*
410 * High & low register fields aren't synchronized, so make sure
411 * we get a low value that's stable across two reads of the high
412 * register.
413 */
414 do {
415 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
416 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
417 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
418 } while (high1 != high2);
419
420 high1 >>= PIPE_FRAME_HIGH_SHIFT;
421 low >>= PIPE_FRAME_LOW_SHIFT;
422 return (high1 << 8) | low;
423 }
424
425 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
426 {
427 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
428 int reg = PIPE_FRMCOUNT_GM45(pipe);
429
430 if (!i915_pipe_enabled(dev, pipe)) {
431 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
432 "pipe %c\n", pipe_name(pipe));
433 return 0;
434 }
435
436 return I915_READ(reg);
437 }
438
439 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
440 int *vpos, int *hpos)
441 {
442 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
443 u32 vbl = 0, position = 0;
444 int vbl_start, vbl_end, htotal, vtotal;
445 bool in_vbl = true;
446 int ret = 0;
447 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
448 pipe);
449
450 if (!i915_pipe_enabled(dev, pipe)) {
451 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
452 "pipe %c\n", pipe_name(pipe));
453 return 0;
454 }
455
456 /* Get vtotal. */
457 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
458
459 if (INTEL_INFO(dev)->gen >= 4) {
460 /* No obvious pixelcount register. Only query vertical
461 * scanout position from Display scan line register.
462 */
463 position = I915_READ(PIPEDSL(pipe));
464
465 /* Decode into vertical scanout position. Don't have
466 * horizontal scanout position.
467 */
468 *vpos = position & 0x1fff;
469 *hpos = 0;
470 } else {
471 /* Have access to pixelcount since start of frame.
472 * We can split this into vertical and horizontal
473 * scanout position.
474 */
475 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
476
477 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
478 *vpos = position / htotal;
479 *hpos = position - (*vpos * htotal);
480 }
481
482 /* Query vblank area. */
483 vbl = I915_READ(VBLANK(cpu_transcoder));
484
485 /* Test position against vblank region. */
486 vbl_start = vbl & 0x1fff;
487 vbl_end = (vbl >> 16) & 0x1fff;
488
489 if ((*vpos < vbl_start) || (*vpos > vbl_end))
490 in_vbl = false;
491
492 /* Inside "upper part" of vblank area? Apply corrective offset: */
493 if (in_vbl && (*vpos >= vbl_start))
494 *vpos = *vpos - vtotal;
495
496 /* Readouts valid? */
497 if (vbl > 0)
498 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
499
500 /* In vblank? */
501 if (in_vbl)
502 ret |= DRM_SCANOUTPOS_INVBL;
503
504 return ret;
505 }
506
507 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
508 int *max_error,
509 struct timeval *vblank_time,
510 unsigned flags)
511 {
512 struct drm_crtc *crtc;
513
514 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
515 DRM_ERROR("Invalid crtc %d\n", pipe);
516 return -EINVAL;
517 }
518
519 /* Get drm_crtc to timestamp: */
520 crtc = intel_get_crtc_for_pipe(dev, pipe);
521 if (crtc == NULL) {
522 DRM_ERROR("Invalid crtc %d\n", pipe);
523 return -EINVAL;
524 }
525
526 if (!crtc->enabled) {
527 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
528 return -EBUSY;
529 }
530
531 /* Helper routine in DRM core does all the work: */
532 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
533 vblank_time, flags,
534 crtc);
535 }
536
537 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
538 {
539 enum drm_connector_status old_status;
540
541 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
542 old_status = connector->status;
543
544 connector->status = connector->funcs->detect(connector, false);
545 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
546 connector->base.id,
547 drm_get_connector_name(connector),
548 old_status, connector->status);
549 return (old_status != connector->status);
550 }
551
552 /*
553 * Handle hotplug events outside the interrupt handler proper.
554 */
555 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
556
557 static void i915_hotplug_work_func(struct work_struct *work)
558 {
559 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
560 hotplug_work);
561 struct drm_device *dev = dev_priv->dev;
562 struct drm_mode_config *mode_config = &dev->mode_config;
563 struct intel_connector *intel_connector;
564 struct intel_encoder *intel_encoder;
565 struct drm_connector *connector;
566 unsigned long irqflags;
567 bool hpd_disabled = false;
568 bool changed = false;
569 u32 hpd_event_bits;
570
571 /* HPD irq before everything is fully set up. */
572 if (!dev_priv->enable_hotplug_processing)
573 return;
574
575 mutex_lock(&mode_config->mutex);
576 DRM_DEBUG_KMS("running encoder hotplug functions\n");
577
578 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
579
580 hpd_event_bits = dev_priv->hpd_event_bits;
581 dev_priv->hpd_event_bits = 0;
582 list_for_each_entry(connector, &mode_config->connector_list, head) {
583 intel_connector = to_intel_connector(connector);
584 intel_encoder = intel_connector->encoder;
585 if (intel_encoder->hpd_pin > HPD_NONE &&
586 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
587 connector->polled == DRM_CONNECTOR_POLL_HPD) {
588 DRM_INFO("HPD interrupt storm detected on connector %s: "
589 "switching from hotplug detection to polling\n",
590 drm_get_connector_name(connector));
591 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
592 connector->polled = DRM_CONNECTOR_POLL_CONNECT
593 | DRM_CONNECTOR_POLL_DISCONNECT;
594 hpd_disabled = true;
595 }
596 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
597 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
598 drm_get_connector_name(connector), intel_encoder->hpd_pin);
599 }
600 }
601 /* if there were no outputs to poll, poll was disabled,
602 * therefore make sure it's enabled when disabling HPD on
603 * some connectors */
604 if (hpd_disabled) {
605 drm_kms_helper_poll_enable(dev);
606 mod_timer(&dev_priv->hotplug_reenable_timer,
607 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
608 }
609
610 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
611
612 list_for_each_entry(connector, &mode_config->connector_list, head) {
613 intel_connector = to_intel_connector(connector);
614 intel_encoder = intel_connector->encoder;
615 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
616 if (intel_encoder->hot_plug)
617 intel_encoder->hot_plug(intel_encoder);
618 if (intel_hpd_irq_event(dev, connector))
619 changed = true;
620 }
621 }
622 mutex_unlock(&mode_config->mutex);
623
624 if (changed)
625 drm_kms_helper_hotplug_event(dev);
626 }
627
628 static void ironlake_handle_rps_change(struct drm_device *dev)
629 {
630 drm_i915_private_t *dev_priv = dev->dev_private;
631 u32 busy_up, busy_down, max_avg, min_avg;
632 u8 new_delay;
633 unsigned long flags;
634
635 spin_lock_irqsave(&mchdev_lock, flags);
636
637 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
638
639 new_delay = dev_priv->ips.cur_delay;
640
641 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
642 busy_up = I915_READ(RCPREVBSYTUPAVG);
643 busy_down = I915_READ(RCPREVBSYTDNAVG);
644 max_avg = I915_READ(RCBMAXAVG);
645 min_avg = I915_READ(RCBMINAVG);
646
647 /* Handle RCS change request from hw */
648 if (busy_up > max_avg) {
649 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
650 new_delay = dev_priv->ips.cur_delay - 1;
651 if (new_delay < dev_priv->ips.max_delay)
652 new_delay = dev_priv->ips.max_delay;
653 } else if (busy_down < min_avg) {
654 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
655 new_delay = dev_priv->ips.cur_delay + 1;
656 if (new_delay > dev_priv->ips.min_delay)
657 new_delay = dev_priv->ips.min_delay;
658 }
659
660 if (ironlake_set_drps(dev, new_delay))
661 dev_priv->ips.cur_delay = new_delay;
662
663 spin_unlock_irqrestore(&mchdev_lock, flags);
664
665 return;
666 }
667
668 static void notify_ring(struct drm_device *dev,
669 struct intel_ring_buffer *ring)
670 {
671 struct drm_i915_private *dev_priv = dev->dev_private;
672
673 if (ring->obj == NULL)
674 return;
675
676 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
677
678 wake_up_all(&ring->irq_queue);
679 if (i915_enable_hangcheck) {
680 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
681 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
682 }
683 }
684
685 static void gen6_pm_rps_work(struct work_struct *work)
686 {
687 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
688 rps.work);
689 u32 pm_iir, pm_imr;
690 u8 new_delay;
691
692 spin_lock_irq(&dev_priv->rps.lock);
693 pm_iir = dev_priv->rps.pm_iir;
694 dev_priv->rps.pm_iir = 0;
695 pm_imr = I915_READ(GEN6_PMIMR);
696 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
697 I915_WRITE(GEN6_PMIMR, pm_imr & ~GEN6_PM_RPS_EVENTS);
698 spin_unlock_irq(&dev_priv->rps.lock);
699
700 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
701 return;
702
703 mutex_lock(&dev_priv->rps.hw_lock);
704
705 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
706 new_delay = dev_priv->rps.cur_delay + 1;
707
708 /*
709 * For better performance, jump directly
710 * to RPe if we're below it.
711 */
712 if (IS_VALLEYVIEW(dev_priv->dev) &&
713 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
714 new_delay = dev_priv->rps.rpe_delay;
715 } else
716 new_delay = dev_priv->rps.cur_delay - 1;
717
718 /* sysfs frequency interfaces may have snuck in while servicing the
719 * interrupt
720 */
721 if (new_delay >= dev_priv->rps.min_delay &&
722 new_delay <= dev_priv->rps.max_delay) {
723 if (IS_VALLEYVIEW(dev_priv->dev))
724 valleyview_set_rps(dev_priv->dev, new_delay);
725 else
726 gen6_set_rps(dev_priv->dev, new_delay);
727 }
728
729 if (IS_VALLEYVIEW(dev_priv->dev)) {
730 /*
731 * On VLV, when we enter RC6 we may not be at the minimum
732 * voltage level, so arm a timer to check. It should only
733 * fire when there's activity or once after we've entered
734 * RC6, and then won't be re-armed until the next RPS interrupt.
735 */
736 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
737 msecs_to_jiffies(100));
738 }
739
740 mutex_unlock(&dev_priv->rps.hw_lock);
741 }
742
743
744 /**
745 * ivybridge_parity_work - Workqueue called when a parity error interrupt
746 * occurred.
747 * @work: workqueue struct
748 *
749 * Doesn't actually do anything except notify userspace. As a consequence of
750 * this event, userspace should try to remap the bad rows since statistically
751 * it is likely the same row is more likely to go bad again.
752 */
753 static void ivybridge_parity_work(struct work_struct *work)
754 {
755 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
756 l3_parity.error_work);
757 u32 error_status, row, bank, subbank;
758 char *parity_event[5];
759 uint32_t misccpctl;
760 unsigned long flags;
761
762 /* We must turn off DOP level clock gating to access the L3 registers.
763 * In order to prevent a get/put style interface, acquire struct mutex
764 * any time we access those registers.
765 */
766 mutex_lock(&dev_priv->dev->struct_mutex);
767
768 misccpctl = I915_READ(GEN7_MISCCPCTL);
769 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
770 POSTING_READ(GEN7_MISCCPCTL);
771
772 error_status = I915_READ(GEN7_L3CDERRST1);
773 row = GEN7_PARITY_ERROR_ROW(error_status);
774 bank = GEN7_PARITY_ERROR_BANK(error_status);
775 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
776
777 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
778 GEN7_L3CDERRST1_ENABLE);
779 POSTING_READ(GEN7_L3CDERRST1);
780
781 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
782
783 spin_lock_irqsave(&dev_priv->irq_lock, flags);
784 dev_priv->gt_irq_mask &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
785 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
786 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
787
788 mutex_unlock(&dev_priv->dev->struct_mutex);
789
790 parity_event[0] = "L3_PARITY_ERROR=1";
791 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
792 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
793 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
794 parity_event[4] = NULL;
795
796 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
797 KOBJ_CHANGE, parity_event);
798
799 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
800 row, bank, subbank);
801
802 kfree(parity_event[3]);
803 kfree(parity_event[2]);
804 kfree(parity_event[1]);
805 }
806
807 static void ivybridge_handle_parity_error(struct drm_device *dev)
808 {
809 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
810 unsigned long flags;
811
812 if (!HAS_L3_GPU_CACHE(dev))
813 return;
814
815 spin_lock_irqsave(&dev_priv->irq_lock, flags);
816 dev_priv->gt_irq_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
817 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
818 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
819
820 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
821 }
822
823 static void snb_gt_irq_handler(struct drm_device *dev,
824 struct drm_i915_private *dev_priv,
825 u32 gt_iir)
826 {
827
828 if (gt_iir &
829 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
830 notify_ring(dev, &dev_priv->ring[RCS]);
831 if (gt_iir & GT_BSD_USER_INTERRUPT)
832 notify_ring(dev, &dev_priv->ring[VCS]);
833 if (gt_iir & GT_BLT_USER_INTERRUPT)
834 notify_ring(dev, &dev_priv->ring[BCS]);
835
836 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
837 GT_BSD_CS_ERROR_INTERRUPT |
838 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
839 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
840 i915_handle_error(dev, false);
841 }
842
843 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
844 ivybridge_handle_parity_error(dev);
845 }
846
847 /* Legacy way of handling PM interrupts */
848 static void gen6_queue_rps_work(struct drm_i915_private *dev_priv,
849 u32 pm_iir)
850 {
851 unsigned long flags;
852
853 /*
854 * IIR bits should never already be set because IMR should
855 * prevent an interrupt from being shown in IIR. The warning
856 * displays a case where we've unsafely cleared
857 * dev_priv->rps.pm_iir. Although missing an interrupt of the same
858 * type is not a problem, it displays a problem in the logic.
859 *
860 * The mask bit in IMR is cleared by dev_priv->rps.work.
861 */
862
863 spin_lock_irqsave(&dev_priv->rps.lock, flags);
864 dev_priv->rps.pm_iir |= pm_iir;
865 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
866 POSTING_READ(GEN6_PMIMR);
867 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
868
869 queue_work(dev_priv->wq, &dev_priv->rps.work);
870 }
871
872 #define HPD_STORM_DETECT_PERIOD 1000
873 #define HPD_STORM_THRESHOLD 5
874
875 static inline void intel_hpd_irq_handler(struct drm_device *dev,
876 u32 hotplug_trigger,
877 const u32 *hpd)
878 {
879 drm_i915_private_t *dev_priv = dev->dev_private;
880 unsigned long irqflags;
881 int i;
882 bool storm_detected = false;
883
884 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
885
886 for (i = 1; i < HPD_NUM_PINS; i++) {
887
888 if (!(hpd[i] & hotplug_trigger) ||
889 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
890 continue;
891
892 dev_priv->hpd_event_bits |= (1 << i);
893 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
894 dev_priv->hpd_stats[i].hpd_last_jiffies
895 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
896 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
897 dev_priv->hpd_stats[i].hpd_cnt = 0;
898 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
899 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
900 dev_priv->hpd_event_bits &= ~(1 << i);
901 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
902 storm_detected = true;
903 } else {
904 dev_priv->hpd_stats[i].hpd_cnt++;
905 }
906 }
907
908 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
909
910 if (storm_detected)
911 dev_priv->display.hpd_irq_setup(dev);
912 }
913
914 static void gmbus_irq_handler(struct drm_device *dev)
915 {
916 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
917
918 wake_up_all(&dev_priv->gmbus_wait_queue);
919 }
920
921 static void dp_aux_irq_handler(struct drm_device *dev)
922 {
923 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
924
925 wake_up_all(&dev_priv->gmbus_wait_queue);
926 }
927
928 /* Unlike gen6_queue_rps_work() from which this function is originally derived,
929 * we must be able to deal with other PM interrupts. This is complicated because
930 * of the way in which we use the masks to defer the RPS work (which for
931 * posterity is necessary because of forcewake).
932 */
933 static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
934 u32 pm_iir)
935 {
936 unsigned long flags;
937
938 spin_lock_irqsave(&dev_priv->rps.lock, flags);
939 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
940 if (dev_priv->rps.pm_iir) {
941 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
942 /* never want to mask useful interrupts. (also posting read) */
943 WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
944 /* TODO: if queue_work is slow, move it out of the spinlock */
945 queue_work(dev_priv->wq, &dev_priv->rps.work);
946 }
947 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
948
949 if (pm_iir & ~GEN6_PM_RPS_EVENTS) {
950 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
951 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
952
953 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
954 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
955 i915_handle_error(dev_priv->dev, false);
956 }
957 }
958 }
959
960 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
961 {
962 struct drm_device *dev = (struct drm_device *) arg;
963 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
964 u32 iir, gt_iir, pm_iir;
965 irqreturn_t ret = IRQ_NONE;
966 unsigned long irqflags;
967 int pipe;
968 u32 pipe_stats[I915_MAX_PIPES];
969
970 atomic_inc(&dev_priv->irq_received);
971
972 while (true) {
973 iir = I915_READ(VLV_IIR);
974 gt_iir = I915_READ(GTIIR);
975 pm_iir = I915_READ(GEN6_PMIIR);
976
977 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
978 goto out;
979
980 ret = IRQ_HANDLED;
981
982 snb_gt_irq_handler(dev, dev_priv, gt_iir);
983
984 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
985 for_each_pipe(pipe) {
986 int reg = PIPESTAT(pipe);
987 pipe_stats[pipe] = I915_READ(reg);
988
989 /*
990 * Clear the PIPE*STAT regs before the IIR
991 */
992 if (pipe_stats[pipe] & 0x8000ffff) {
993 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
994 DRM_DEBUG_DRIVER("pipe %c underrun\n",
995 pipe_name(pipe));
996 I915_WRITE(reg, pipe_stats[pipe]);
997 }
998 }
999 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1000
1001 for_each_pipe(pipe) {
1002 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1003 drm_handle_vblank(dev, pipe);
1004
1005 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1006 intel_prepare_page_flip(dev, pipe);
1007 intel_finish_page_flip(dev, pipe);
1008 }
1009 }
1010
1011 /* Consume port. Then clear IIR or we'll miss events */
1012 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1013 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1014 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1015
1016 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1017 hotplug_status);
1018 if (hotplug_trigger) {
1019 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1020 queue_work(dev_priv->wq,
1021 &dev_priv->hotplug_work);
1022 }
1023 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1024 I915_READ(PORT_HOTPLUG_STAT);
1025 }
1026
1027 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1028 gmbus_irq_handler(dev);
1029
1030 if (pm_iir & GEN6_PM_RPS_EVENTS)
1031 gen6_queue_rps_work(dev_priv, pm_iir);
1032
1033 I915_WRITE(GTIIR, gt_iir);
1034 I915_WRITE(GEN6_PMIIR, pm_iir);
1035 I915_WRITE(VLV_IIR, iir);
1036 }
1037
1038 out:
1039 return ret;
1040 }
1041
1042 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1043 {
1044 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1045 int pipe;
1046 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1047
1048 if (hotplug_trigger) {
1049 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1050 queue_work(dev_priv->wq, &dev_priv->hotplug_work);
1051 }
1052 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1053 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1054 SDE_AUDIO_POWER_SHIFT);
1055 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1056 port_name(port));
1057 }
1058
1059 if (pch_iir & SDE_AUX_MASK)
1060 dp_aux_irq_handler(dev);
1061
1062 if (pch_iir & SDE_GMBUS)
1063 gmbus_irq_handler(dev);
1064
1065 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1066 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1067
1068 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1069 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1070
1071 if (pch_iir & SDE_POISON)
1072 DRM_ERROR("PCH poison interrupt\n");
1073
1074 if (pch_iir & SDE_FDI_MASK)
1075 for_each_pipe(pipe)
1076 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1077 pipe_name(pipe),
1078 I915_READ(FDI_RX_IIR(pipe)));
1079
1080 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1081 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1082
1083 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1084 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1085
1086 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1087 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1088 false))
1089 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1090
1091 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1092 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1093 false))
1094 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1095 }
1096
1097 static void ivb_err_int_handler(struct drm_device *dev)
1098 {
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 u32 err_int = I915_READ(GEN7_ERR_INT);
1101
1102 if (err_int & ERR_INT_POISON)
1103 DRM_ERROR("Poison interrupt\n");
1104
1105 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1106 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1107 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1108
1109 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1110 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1111 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1112
1113 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1114 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1115 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1116
1117 I915_WRITE(GEN7_ERR_INT, err_int);
1118 }
1119
1120 static void cpt_serr_int_handler(struct drm_device *dev)
1121 {
1122 struct drm_i915_private *dev_priv = dev->dev_private;
1123 u32 serr_int = I915_READ(SERR_INT);
1124
1125 if (serr_int & SERR_INT_POISON)
1126 DRM_ERROR("PCH poison interrupt\n");
1127
1128 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1129 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1130 false))
1131 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1132
1133 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1134 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1135 false))
1136 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1137
1138 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1139 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1140 false))
1141 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1142
1143 I915_WRITE(SERR_INT, serr_int);
1144 }
1145
1146 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1147 {
1148 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1149 int pipe;
1150 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1151
1152 if (hotplug_trigger) {
1153 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1154 queue_work(dev_priv->wq, &dev_priv->hotplug_work);
1155 }
1156 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1157 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1158 SDE_AUDIO_POWER_SHIFT_CPT);
1159 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1160 port_name(port));
1161 }
1162
1163 if (pch_iir & SDE_AUX_MASK_CPT)
1164 dp_aux_irq_handler(dev);
1165
1166 if (pch_iir & SDE_GMBUS_CPT)
1167 gmbus_irq_handler(dev);
1168
1169 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1170 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1171
1172 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1173 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1174
1175 if (pch_iir & SDE_FDI_MASK_CPT)
1176 for_each_pipe(pipe)
1177 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1178 pipe_name(pipe),
1179 I915_READ(FDI_RX_IIR(pipe)));
1180
1181 if (pch_iir & SDE_ERROR_CPT)
1182 cpt_serr_int_handler(dev);
1183 }
1184
1185 static irqreturn_t ivybridge_irq_handler(int irq, void *arg)
1186 {
1187 struct drm_device *dev = (struct drm_device *) arg;
1188 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1189 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0;
1190 irqreturn_t ret = IRQ_NONE;
1191 int i;
1192
1193 atomic_inc(&dev_priv->irq_received);
1194
1195 /* We get interrupts on unclaimed registers, so check for this before we
1196 * do any I915_{READ,WRITE}. */
1197 if (IS_HASWELL(dev) &&
1198 (I915_READ_NOTRACE(FPGA_DBG) & FPGA_DBG_RM_NOCLAIM)) {
1199 DRM_ERROR("Unclaimed register before interrupt\n");
1200 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
1201 }
1202
1203 /* disable master interrupt before clearing iir */
1204 de_ier = I915_READ(DEIER);
1205 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1206
1207 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1208 * interrupts will will be stored on its back queue, and then we'll be
1209 * able to process them after we restore SDEIER (as soon as we restore
1210 * it, we'll get an interrupt if SDEIIR still has something to process
1211 * due to its back queue). */
1212 if (!HAS_PCH_NOP(dev)) {
1213 sde_ier = I915_READ(SDEIER);
1214 I915_WRITE(SDEIER, 0);
1215 POSTING_READ(SDEIER);
1216 }
1217
1218 /* On Haswell, also mask ERR_INT because we don't want to risk
1219 * generating "unclaimed register" interrupts from inside the interrupt
1220 * handler. */
1221 if (IS_HASWELL(dev)) {
1222 spin_lock(&dev_priv->irq_lock);
1223 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1224 spin_unlock(&dev_priv->irq_lock);
1225 }
1226
1227 gt_iir = I915_READ(GTIIR);
1228 if (gt_iir) {
1229 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1230 I915_WRITE(GTIIR, gt_iir);
1231 ret = IRQ_HANDLED;
1232 }
1233
1234 de_iir = I915_READ(DEIIR);
1235 if (de_iir) {
1236 if (de_iir & DE_ERR_INT_IVB)
1237 ivb_err_int_handler(dev);
1238
1239 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1240 dp_aux_irq_handler(dev);
1241
1242 if (de_iir & DE_GSE_IVB)
1243 intel_opregion_asle_intr(dev);
1244
1245 for (i = 0; i < 3; i++) {
1246 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1247 drm_handle_vblank(dev, i);
1248 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1249 intel_prepare_page_flip(dev, i);
1250 intel_finish_page_flip_plane(dev, i);
1251 }
1252 }
1253
1254 /* check event from PCH */
1255 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1256 u32 pch_iir = I915_READ(SDEIIR);
1257
1258 cpt_irq_handler(dev, pch_iir);
1259
1260 /* clear PCH hotplug event before clear CPU irq */
1261 I915_WRITE(SDEIIR, pch_iir);
1262 }
1263
1264 I915_WRITE(DEIIR, de_iir);
1265 ret = IRQ_HANDLED;
1266 }
1267
1268 pm_iir = I915_READ(GEN6_PMIIR);
1269 if (pm_iir) {
1270 if (IS_HASWELL(dev))
1271 hsw_pm_irq_handler(dev_priv, pm_iir);
1272 else if (pm_iir & GEN6_PM_RPS_EVENTS)
1273 gen6_queue_rps_work(dev_priv, pm_iir);
1274 I915_WRITE(GEN6_PMIIR, pm_iir);
1275 ret = IRQ_HANDLED;
1276 }
1277
1278 if (IS_HASWELL(dev)) {
1279 spin_lock(&dev_priv->irq_lock);
1280 if (ivb_can_enable_err_int(dev))
1281 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1282 spin_unlock(&dev_priv->irq_lock);
1283 }
1284
1285 I915_WRITE(DEIER, de_ier);
1286 POSTING_READ(DEIER);
1287 if (!HAS_PCH_NOP(dev)) {
1288 I915_WRITE(SDEIER, sde_ier);
1289 POSTING_READ(SDEIER);
1290 }
1291
1292 return ret;
1293 }
1294
1295 static void ilk_gt_irq_handler(struct drm_device *dev,
1296 struct drm_i915_private *dev_priv,
1297 u32 gt_iir)
1298 {
1299 if (gt_iir &
1300 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1301 notify_ring(dev, &dev_priv->ring[RCS]);
1302 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1303 notify_ring(dev, &dev_priv->ring[VCS]);
1304 }
1305
1306 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1307 {
1308 struct drm_device *dev = (struct drm_device *) arg;
1309 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1310 int ret = IRQ_NONE;
1311 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier;
1312
1313 atomic_inc(&dev_priv->irq_received);
1314
1315 /* disable master interrupt before clearing iir */
1316 de_ier = I915_READ(DEIER);
1317 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1318 POSTING_READ(DEIER);
1319
1320 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1321 * interrupts will will be stored on its back queue, and then we'll be
1322 * able to process them after we restore SDEIER (as soon as we restore
1323 * it, we'll get an interrupt if SDEIIR still has something to process
1324 * due to its back queue). */
1325 sde_ier = I915_READ(SDEIER);
1326 I915_WRITE(SDEIER, 0);
1327 POSTING_READ(SDEIER);
1328
1329 de_iir = I915_READ(DEIIR);
1330 gt_iir = I915_READ(GTIIR);
1331 pm_iir = I915_READ(GEN6_PMIIR);
1332
1333 if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0))
1334 goto done;
1335
1336 ret = IRQ_HANDLED;
1337
1338 if (IS_GEN5(dev))
1339 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1340 else
1341 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1342
1343 if (de_iir & DE_AUX_CHANNEL_A)
1344 dp_aux_irq_handler(dev);
1345
1346 if (de_iir & DE_GSE)
1347 intel_opregion_asle_intr(dev);
1348
1349 if (de_iir & DE_PIPEA_VBLANK)
1350 drm_handle_vblank(dev, 0);
1351
1352 if (de_iir & DE_PIPEB_VBLANK)
1353 drm_handle_vblank(dev, 1);
1354
1355 if (de_iir & DE_POISON)
1356 DRM_ERROR("Poison interrupt\n");
1357
1358 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1359 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1360 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1361
1362 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1363 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1364 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1365
1366 if (de_iir & DE_PLANEA_FLIP_DONE) {
1367 intel_prepare_page_flip(dev, 0);
1368 intel_finish_page_flip_plane(dev, 0);
1369 }
1370
1371 if (de_iir & DE_PLANEB_FLIP_DONE) {
1372 intel_prepare_page_flip(dev, 1);
1373 intel_finish_page_flip_plane(dev, 1);
1374 }
1375
1376 /* check event from PCH */
1377 if (de_iir & DE_PCH_EVENT) {
1378 u32 pch_iir = I915_READ(SDEIIR);
1379
1380 if (HAS_PCH_CPT(dev))
1381 cpt_irq_handler(dev, pch_iir);
1382 else
1383 ibx_irq_handler(dev, pch_iir);
1384
1385 /* should clear PCH hotplug event before clear CPU irq */
1386 I915_WRITE(SDEIIR, pch_iir);
1387 }
1388
1389 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1390 ironlake_handle_rps_change(dev);
1391
1392 if (IS_GEN6(dev) && pm_iir & GEN6_PM_RPS_EVENTS)
1393 gen6_queue_rps_work(dev_priv, pm_iir);
1394
1395 I915_WRITE(GTIIR, gt_iir);
1396 I915_WRITE(DEIIR, de_iir);
1397 I915_WRITE(GEN6_PMIIR, pm_iir);
1398
1399 done:
1400 I915_WRITE(DEIER, de_ier);
1401 POSTING_READ(DEIER);
1402 I915_WRITE(SDEIER, sde_ier);
1403 POSTING_READ(SDEIER);
1404
1405 return ret;
1406 }
1407
1408 /**
1409 * i915_error_work_func - do process context error handling work
1410 * @work: work struct
1411 *
1412 * Fire an error uevent so userspace can see that a hang or error
1413 * was detected.
1414 */
1415 static void i915_error_work_func(struct work_struct *work)
1416 {
1417 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1418 work);
1419 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1420 gpu_error);
1421 struct drm_device *dev = dev_priv->dev;
1422 struct intel_ring_buffer *ring;
1423 char *error_event[] = { "ERROR=1", NULL };
1424 char *reset_event[] = { "RESET=1", NULL };
1425 char *reset_done_event[] = { "ERROR=0", NULL };
1426 int i, ret;
1427
1428 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1429
1430 /*
1431 * Note that there's only one work item which does gpu resets, so we
1432 * need not worry about concurrent gpu resets potentially incrementing
1433 * error->reset_counter twice. We only need to take care of another
1434 * racing irq/hangcheck declaring the gpu dead for a second time. A
1435 * quick check for that is good enough: schedule_work ensures the
1436 * correct ordering between hang detection and this work item, and since
1437 * the reset in-progress bit is only ever set by code outside of this
1438 * work we don't need to worry about any other races.
1439 */
1440 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1441 DRM_DEBUG_DRIVER("resetting chip\n");
1442 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1443 reset_event);
1444
1445 ret = i915_reset(dev);
1446
1447 if (ret == 0) {
1448 /*
1449 * After all the gem state is reset, increment the reset
1450 * counter and wake up everyone waiting for the reset to
1451 * complete.
1452 *
1453 * Since unlock operations are a one-sided barrier only,
1454 * we need to insert a barrier here to order any seqno
1455 * updates before
1456 * the counter increment.
1457 */
1458 smp_mb__before_atomic_inc();
1459 atomic_inc(&dev_priv->gpu_error.reset_counter);
1460
1461 kobject_uevent_env(&dev->primary->kdev.kobj,
1462 KOBJ_CHANGE, reset_done_event);
1463 } else {
1464 atomic_set(&error->reset_counter, I915_WEDGED);
1465 }
1466
1467 for_each_ring(ring, dev_priv, i)
1468 wake_up_all(&ring->irq_queue);
1469
1470 intel_display_handle_reset(dev);
1471
1472 wake_up_all(&dev_priv->gpu_error.reset_queue);
1473 }
1474 }
1475
1476 /* NB: please notice the memset */
1477 static void i915_get_extra_instdone(struct drm_device *dev,
1478 uint32_t *instdone)
1479 {
1480 struct drm_i915_private *dev_priv = dev->dev_private;
1481 memset(instdone, 0, sizeof(*instdone) * I915_NUM_INSTDONE_REG);
1482
1483 switch(INTEL_INFO(dev)->gen) {
1484 case 2:
1485 case 3:
1486 instdone[0] = I915_READ(INSTDONE);
1487 break;
1488 case 4:
1489 case 5:
1490 case 6:
1491 instdone[0] = I915_READ(INSTDONE_I965);
1492 instdone[1] = I915_READ(INSTDONE1);
1493 break;
1494 default:
1495 WARN_ONCE(1, "Unsupported platform\n");
1496 case 7:
1497 instdone[0] = I915_READ(GEN7_INSTDONE_1);
1498 instdone[1] = I915_READ(GEN7_SC_INSTDONE);
1499 instdone[2] = I915_READ(GEN7_SAMPLER_INSTDONE);
1500 instdone[3] = I915_READ(GEN7_ROW_INSTDONE);
1501 break;
1502 }
1503 }
1504
1505 #ifdef CONFIG_DEBUG_FS
1506 static struct drm_i915_error_object *
1507 i915_error_object_create_sized(struct drm_i915_private *dev_priv,
1508 struct drm_i915_gem_object *src,
1509 const int num_pages)
1510 {
1511 struct drm_i915_error_object *dst;
1512 int i;
1513 u32 reloc_offset;
1514
1515 if (src == NULL || src->pages == NULL)
1516 return NULL;
1517
1518 dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), GFP_ATOMIC);
1519 if (dst == NULL)
1520 return NULL;
1521
1522 reloc_offset = src->gtt_offset;
1523 for (i = 0; i < num_pages; i++) {
1524 unsigned long flags;
1525 void *d;
1526
1527 d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
1528 if (d == NULL)
1529 goto unwind;
1530
1531 local_irq_save(flags);
1532 if (reloc_offset < dev_priv->gtt.mappable_end &&
1533 src->has_global_gtt_mapping) {
1534 void __iomem *s;
1535
1536 /* Simply ignore tiling or any overlapping fence.
1537 * It's part of the error state, and this hopefully
1538 * captures what the GPU read.
1539 */
1540
1541 s = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
1542 reloc_offset);
1543 memcpy_fromio(d, s, PAGE_SIZE);
1544 io_mapping_unmap_atomic(s);
1545 } else if (src->stolen) {
1546 unsigned long offset;
1547
1548 offset = dev_priv->mm.stolen_base;
1549 offset += src->stolen->start;
1550 offset += i << PAGE_SHIFT;
1551
1552 memcpy_fromio(d, (void __iomem *) offset, PAGE_SIZE);
1553 } else {
1554 struct page *page;
1555 void *s;
1556
1557 page = i915_gem_object_get_page(src, i);
1558
1559 drm_clflush_pages(&page, 1);
1560
1561 s = kmap_atomic(page);
1562 memcpy(d, s, PAGE_SIZE);
1563 kunmap_atomic(s);
1564
1565 drm_clflush_pages(&page, 1);
1566 }
1567 local_irq_restore(flags);
1568
1569 dst->pages[i] = d;
1570
1571 reloc_offset += PAGE_SIZE;
1572 }
1573 dst->page_count = num_pages;
1574 dst->gtt_offset = src->gtt_offset;
1575
1576 return dst;
1577
1578 unwind:
1579 while (i--)
1580 kfree(dst->pages[i]);
1581 kfree(dst);
1582 return NULL;
1583 }
1584 #define i915_error_object_create(dev_priv, src) \
1585 i915_error_object_create_sized((dev_priv), (src), \
1586 (src)->base.size>>PAGE_SHIFT)
1587
1588 static void
1589 i915_error_object_free(struct drm_i915_error_object *obj)
1590 {
1591 int page;
1592
1593 if (obj == NULL)
1594 return;
1595
1596 for (page = 0; page < obj->page_count; page++)
1597 kfree(obj->pages[page]);
1598
1599 kfree(obj);
1600 }
1601
1602 void
1603 i915_error_state_free(struct kref *error_ref)
1604 {
1605 struct drm_i915_error_state *error = container_of(error_ref,
1606 typeof(*error), ref);
1607 int i;
1608
1609 for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
1610 i915_error_object_free(error->ring[i].batchbuffer);
1611 i915_error_object_free(error->ring[i].ringbuffer);
1612 i915_error_object_free(error->ring[i].ctx);
1613 kfree(error->ring[i].requests);
1614 }
1615
1616 kfree(error->active_bo);
1617 kfree(error->overlay);
1618 kfree(error->display);
1619 kfree(error);
1620 }
1621 static void capture_bo(struct drm_i915_error_buffer *err,
1622 struct drm_i915_gem_object *obj)
1623 {
1624 err->size = obj->base.size;
1625 err->name = obj->base.name;
1626 err->rseqno = obj->last_read_seqno;
1627 err->wseqno = obj->last_write_seqno;
1628 err->gtt_offset = obj->gtt_offset;
1629 err->read_domains = obj->base.read_domains;
1630 err->write_domain = obj->base.write_domain;
1631 err->fence_reg = obj->fence_reg;
1632 err->pinned = 0;
1633 if (obj->pin_count > 0)
1634 err->pinned = 1;
1635 if (obj->user_pin_count > 0)
1636 err->pinned = -1;
1637 err->tiling = obj->tiling_mode;
1638 err->dirty = obj->dirty;
1639 err->purgeable = obj->madv != I915_MADV_WILLNEED;
1640 err->ring = obj->ring ? obj->ring->id : -1;
1641 err->cache_level = obj->cache_level;
1642 }
1643
1644 static u32 capture_active_bo(struct drm_i915_error_buffer *err,
1645 int count, struct list_head *head)
1646 {
1647 struct drm_i915_gem_object *obj;
1648 int i = 0;
1649
1650 list_for_each_entry(obj, head, mm_list) {
1651 capture_bo(err++, obj);
1652 if (++i == count)
1653 break;
1654 }
1655
1656 return i;
1657 }
1658
1659 static u32 capture_pinned_bo(struct drm_i915_error_buffer *err,
1660 int count, struct list_head *head)
1661 {
1662 struct drm_i915_gem_object *obj;
1663 int i = 0;
1664
1665 list_for_each_entry(obj, head, global_list) {
1666 if (obj->pin_count == 0)
1667 continue;
1668
1669 capture_bo(err++, obj);
1670 if (++i == count)
1671 break;
1672 }
1673
1674 return i;
1675 }
1676
1677 static void i915_gem_record_fences(struct drm_device *dev,
1678 struct drm_i915_error_state *error)
1679 {
1680 struct drm_i915_private *dev_priv = dev->dev_private;
1681 int i;
1682
1683 /* Fences */
1684 switch (INTEL_INFO(dev)->gen) {
1685 case 7:
1686 case 6:
1687 for (i = 0; i < dev_priv->num_fence_regs; i++)
1688 error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
1689 break;
1690 case 5:
1691 case 4:
1692 for (i = 0; i < 16; i++)
1693 error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
1694 break;
1695 case 3:
1696 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
1697 for (i = 0; i < 8; i++)
1698 error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
1699 case 2:
1700 for (i = 0; i < 8; i++)
1701 error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
1702 break;
1703
1704 default:
1705 BUG();
1706 }
1707 }
1708
1709 static struct drm_i915_error_object *
1710 i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
1711 struct intel_ring_buffer *ring)
1712 {
1713 struct drm_i915_gem_object *obj;
1714 u32 seqno;
1715
1716 if (!ring->get_seqno)
1717 return NULL;
1718
1719 if (HAS_BROKEN_CS_TLB(dev_priv->dev)) {
1720 u32 acthd = I915_READ(ACTHD);
1721
1722 if (WARN_ON(ring->id != RCS))
1723 return NULL;
1724
1725 obj = ring->private;
1726 if (acthd >= obj->gtt_offset &&
1727 acthd < obj->gtt_offset + obj->base.size)
1728 return i915_error_object_create(dev_priv, obj);
1729 }
1730
1731 seqno = ring->get_seqno(ring, false);
1732 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
1733 if (obj->ring != ring)
1734 continue;
1735
1736 if (i915_seqno_passed(seqno, obj->last_read_seqno))
1737 continue;
1738
1739 if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
1740 continue;
1741
1742 /* We need to copy these to an anonymous buffer as the simplest
1743 * method to avoid being overwritten by userspace.
1744 */
1745 return i915_error_object_create(dev_priv, obj);
1746 }
1747
1748 return NULL;
1749 }
1750
1751 static void i915_record_ring_state(struct drm_device *dev,
1752 struct drm_i915_error_state *error,
1753 struct intel_ring_buffer *ring)
1754 {
1755 struct drm_i915_private *dev_priv = dev->dev_private;
1756
1757 if (INTEL_INFO(dev)->gen >= 6) {
1758 error->rc_psmi[ring->id] = I915_READ(ring->mmio_base + 0x50);
1759 error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring));
1760 error->semaphore_mboxes[ring->id][0]
1761 = I915_READ(RING_SYNC_0(ring->mmio_base));
1762 error->semaphore_mboxes[ring->id][1]
1763 = I915_READ(RING_SYNC_1(ring->mmio_base));
1764 error->semaphore_seqno[ring->id][0] = ring->sync_seqno[0];
1765 error->semaphore_seqno[ring->id][1] = ring->sync_seqno[1];
1766 }
1767
1768 if (INTEL_INFO(dev)->gen >= 4) {
1769 error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base));
1770 error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base));
1771 error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base));
1772 error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base));
1773 error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base));
1774 if (ring->id == RCS)
1775 error->bbaddr = I915_READ64(BB_ADDR);
1776 } else {
1777 error->faddr[ring->id] = I915_READ(DMA_FADD_I8XX);
1778 error->ipeir[ring->id] = I915_READ(IPEIR);
1779 error->ipehr[ring->id] = I915_READ(IPEHR);
1780 error->instdone[ring->id] = I915_READ(INSTDONE);
1781 }
1782
1783 error->waiting[ring->id] = waitqueue_active(&ring->irq_queue);
1784 error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base));
1785 error->seqno[ring->id] = ring->get_seqno(ring, false);
1786 error->acthd[ring->id] = intel_ring_get_active_head(ring);
1787 error->head[ring->id] = I915_READ_HEAD(ring);
1788 error->tail[ring->id] = I915_READ_TAIL(ring);
1789 error->ctl[ring->id] = I915_READ_CTL(ring);
1790
1791 error->cpu_ring_head[ring->id] = ring->head;
1792 error->cpu_ring_tail[ring->id] = ring->tail;
1793 }
1794
1795
1796 static void i915_gem_record_active_context(struct intel_ring_buffer *ring,
1797 struct drm_i915_error_state *error,
1798 struct drm_i915_error_ring *ering)
1799 {
1800 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1801 struct drm_i915_gem_object *obj;
1802
1803 /* Currently render ring is the only HW context user */
1804 if (ring->id != RCS || !error->ccid)
1805 return;
1806
1807 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1808 if ((error->ccid & PAGE_MASK) == obj->gtt_offset) {
1809 ering->ctx = i915_error_object_create_sized(dev_priv,
1810 obj, 1);
1811 }
1812 }
1813 }
1814
1815 static void i915_gem_record_rings(struct drm_device *dev,
1816 struct drm_i915_error_state *error)
1817 {
1818 struct drm_i915_private *dev_priv = dev->dev_private;
1819 struct intel_ring_buffer *ring;
1820 struct drm_i915_gem_request *request;
1821 int i, count;
1822
1823 for_each_ring(ring, dev_priv, i) {
1824 i915_record_ring_state(dev, error, ring);
1825
1826 error->ring[i].batchbuffer =
1827 i915_error_first_batchbuffer(dev_priv, ring);
1828
1829 error->ring[i].ringbuffer =
1830 i915_error_object_create(dev_priv, ring->obj);
1831
1832
1833 i915_gem_record_active_context(ring, error, &error->ring[i]);
1834
1835 count = 0;
1836 list_for_each_entry(request, &ring->request_list, list)
1837 count++;
1838
1839 error->ring[i].num_requests = count;
1840 error->ring[i].requests =
1841 kmalloc(count*sizeof(struct drm_i915_error_request),
1842 GFP_ATOMIC);
1843 if (error->ring[i].requests == NULL) {
1844 error->ring[i].num_requests = 0;
1845 continue;
1846 }
1847
1848 count = 0;
1849 list_for_each_entry(request, &ring->request_list, list) {
1850 struct drm_i915_error_request *erq;
1851
1852 erq = &error->ring[i].requests[count++];
1853 erq->seqno = request->seqno;
1854 erq->jiffies = request->emitted_jiffies;
1855 erq->tail = request->tail;
1856 }
1857 }
1858 }
1859
1860 /**
1861 * i915_capture_error_state - capture an error record for later analysis
1862 * @dev: drm device
1863 *
1864 * Should be called when an error is detected (either a hang or an error
1865 * interrupt) to capture error state from the time of the error. Fills
1866 * out a structure which becomes available in debugfs for user level tools
1867 * to pick up.
1868 */
1869 static void i915_capture_error_state(struct drm_device *dev)
1870 {
1871 struct drm_i915_private *dev_priv = dev->dev_private;
1872 struct drm_i915_gem_object *obj;
1873 struct drm_i915_error_state *error;
1874 unsigned long flags;
1875 int i, pipe;
1876
1877 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1878 error = dev_priv->gpu_error.first_error;
1879 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1880 if (error)
1881 return;
1882
1883 /* Account for pipe specific data like PIPE*STAT */
1884 error = kzalloc(sizeof(*error), GFP_ATOMIC);
1885 if (!error) {
1886 DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
1887 return;
1888 }
1889
1890 DRM_INFO("capturing error event; look for more information in "
1891 "/sys/kernel/debug/dri/%d/i915_error_state\n",
1892 dev->primary->index);
1893
1894 kref_init(&error->ref);
1895 error->eir = I915_READ(EIR);
1896 error->pgtbl_er = I915_READ(PGTBL_ER);
1897 if (HAS_HW_CONTEXTS(dev))
1898 error->ccid = I915_READ(CCID);
1899
1900 if (HAS_PCH_SPLIT(dev))
1901 error->ier = I915_READ(DEIER) | I915_READ(GTIER);
1902 else if (IS_VALLEYVIEW(dev))
1903 error->ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1904 else if (IS_GEN2(dev))
1905 error->ier = I915_READ16(IER);
1906 else
1907 error->ier = I915_READ(IER);
1908
1909 if (INTEL_INFO(dev)->gen >= 6)
1910 error->derrmr = I915_READ(DERRMR);
1911
1912 if (IS_VALLEYVIEW(dev))
1913 error->forcewake = I915_READ(FORCEWAKE_VLV);
1914 else if (INTEL_INFO(dev)->gen >= 7)
1915 error->forcewake = I915_READ(FORCEWAKE_MT);
1916 else if (INTEL_INFO(dev)->gen == 6)
1917 error->forcewake = I915_READ(FORCEWAKE);
1918
1919 if (!HAS_PCH_SPLIT(dev))
1920 for_each_pipe(pipe)
1921 error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
1922
1923 if (INTEL_INFO(dev)->gen >= 6) {
1924 error->error = I915_READ(ERROR_GEN6);
1925 error->done_reg = I915_READ(DONE_REG);
1926 }
1927
1928 if (INTEL_INFO(dev)->gen == 7)
1929 error->err_int = I915_READ(GEN7_ERR_INT);
1930
1931 i915_get_extra_instdone(dev, error->extra_instdone);
1932
1933 i915_gem_record_fences(dev, error);
1934 i915_gem_record_rings(dev, error);
1935
1936 /* Record buffers on the active and pinned lists. */
1937 error->active_bo = NULL;
1938 error->pinned_bo = NULL;
1939
1940 i = 0;
1941 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
1942 i++;
1943 error->active_bo_count = i;
1944 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1945 if (obj->pin_count)
1946 i++;
1947 error->pinned_bo_count = i - error->active_bo_count;
1948
1949 error->active_bo = NULL;
1950 error->pinned_bo = NULL;
1951 if (i) {
1952 error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
1953 GFP_ATOMIC);
1954 if (error->active_bo)
1955 error->pinned_bo =
1956 error->active_bo + error->active_bo_count;
1957 }
1958
1959 if (error->active_bo)
1960 error->active_bo_count =
1961 capture_active_bo(error->active_bo,
1962 error->active_bo_count,
1963 &dev_priv->mm.active_list);
1964
1965 if (error->pinned_bo)
1966 error->pinned_bo_count =
1967 capture_pinned_bo(error->pinned_bo,
1968 error->pinned_bo_count,
1969 &dev_priv->mm.bound_list);
1970
1971 do_gettimeofday(&error->time);
1972
1973 error->overlay = intel_overlay_capture_error_state(dev);
1974 error->display = intel_display_capture_error_state(dev);
1975
1976 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1977 if (dev_priv->gpu_error.first_error == NULL) {
1978 dev_priv->gpu_error.first_error = error;
1979 error = NULL;
1980 }
1981 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1982
1983 if (error)
1984 i915_error_state_free(&error->ref);
1985 }
1986
1987 void i915_destroy_error_state(struct drm_device *dev)
1988 {
1989 struct drm_i915_private *dev_priv = dev->dev_private;
1990 struct drm_i915_error_state *error;
1991 unsigned long flags;
1992
1993 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1994 error = dev_priv->gpu_error.first_error;
1995 dev_priv->gpu_error.first_error = NULL;
1996 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1997
1998 if (error)
1999 kref_put(&error->ref, i915_error_state_free);
2000 }
2001 #else
2002 #define i915_capture_error_state(x)
2003 #endif
2004
2005 static void i915_report_and_clear_eir(struct drm_device *dev)
2006 {
2007 struct drm_i915_private *dev_priv = dev->dev_private;
2008 uint32_t instdone[I915_NUM_INSTDONE_REG];
2009 u32 eir = I915_READ(EIR);
2010 int pipe, i;
2011
2012 if (!eir)
2013 return;
2014
2015 pr_err("render error detected, EIR: 0x%08x\n", eir);
2016
2017 i915_get_extra_instdone(dev, instdone);
2018
2019 if (IS_G4X(dev)) {
2020 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2021 u32 ipeir = I915_READ(IPEIR_I965);
2022
2023 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2024 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2025 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2026 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2027 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2028 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2029 I915_WRITE(IPEIR_I965, ipeir);
2030 POSTING_READ(IPEIR_I965);
2031 }
2032 if (eir & GM45_ERROR_PAGE_TABLE) {
2033 u32 pgtbl_err = I915_READ(PGTBL_ER);
2034 pr_err("page table error\n");
2035 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2036 I915_WRITE(PGTBL_ER, pgtbl_err);
2037 POSTING_READ(PGTBL_ER);
2038 }
2039 }
2040
2041 if (!IS_GEN2(dev)) {
2042 if (eir & I915_ERROR_PAGE_TABLE) {
2043 u32 pgtbl_err = I915_READ(PGTBL_ER);
2044 pr_err("page table error\n");
2045 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2046 I915_WRITE(PGTBL_ER, pgtbl_err);
2047 POSTING_READ(PGTBL_ER);
2048 }
2049 }
2050
2051 if (eir & I915_ERROR_MEMORY_REFRESH) {
2052 pr_err("memory refresh error:\n");
2053 for_each_pipe(pipe)
2054 pr_err("pipe %c stat: 0x%08x\n",
2055 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2056 /* pipestat has already been acked */
2057 }
2058 if (eir & I915_ERROR_INSTRUCTION) {
2059 pr_err("instruction error\n");
2060 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2061 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2062 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2063 if (INTEL_INFO(dev)->gen < 4) {
2064 u32 ipeir = I915_READ(IPEIR);
2065
2066 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2067 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2068 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2069 I915_WRITE(IPEIR, ipeir);
2070 POSTING_READ(IPEIR);
2071 } else {
2072 u32 ipeir = I915_READ(IPEIR_I965);
2073
2074 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2075 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2076 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2077 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2078 I915_WRITE(IPEIR_I965, ipeir);
2079 POSTING_READ(IPEIR_I965);
2080 }
2081 }
2082
2083 I915_WRITE(EIR, eir);
2084 POSTING_READ(EIR);
2085 eir = I915_READ(EIR);
2086 if (eir) {
2087 /*
2088 * some errors might have become stuck,
2089 * mask them.
2090 */
2091 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2092 I915_WRITE(EMR, I915_READ(EMR) | eir);
2093 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2094 }
2095 }
2096
2097 /**
2098 * i915_handle_error - handle an error interrupt
2099 * @dev: drm device
2100 *
2101 * Do some basic checking of regsiter state at error interrupt time and
2102 * dump it to the syslog. Also call i915_capture_error_state() to make
2103 * sure we get a record and make it available in debugfs. Fire a uevent
2104 * so userspace knows something bad happened (should trigger collection
2105 * of a ring dump etc.).
2106 */
2107 void i915_handle_error(struct drm_device *dev, bool wedged)
2108 {
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 struct intel_ring_buffer *ring;
2111 int i;
2112
2113 i915_capture_error_state(dev);
2114 i915_report_and_clear_eir(dev);
2115
2116 if (wedged) {
2117 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2118 &dev_priv->gpu_error.reset_counter);
2119
2120 /*
2121 * Wakeup waiting processes so that the reset work item
2122 * doesn't deadlock trying to grab various locks.
2123 */
2124 for_each_ring(ring, dev_priv, i)
2125 wake_up_all(&ring->irq_queue);
2126 }
2127
2128 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
2129 }
2130
2131 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2132 {
2133 drm_i915_private_t *dev_priv = dev->dev_private;
2134 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136 struct drm_i915_gem_object *obj;
2137 struct intel_unpin_work *work;
2138 unsigned long flags;
2139 bool stall_detected;
2140
2141 /* Ignore early vblank irqs */
2142 if (intel_crtc == NULL)
2143 return;
2144
2145 spin_lock_irqsave(&dev->event_lock, flags);
2146 work = intel_crtc->unpin_work;
2147
2148 if (work == NULL ||
2149 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2150 !work->enable_stall_check) {
2151 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2152 spin_unlock_irqrestore(&dev->event_lock, flags);
2153 return;
2154 }
2155
2156 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2157 obj = work->pending_flip_obj;
2158 if (INTEL_INFO(dev)->gen >= 4) {
2159 int dspsurf = DSPSURF(intel_crtc->plane);
2160 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2161 obj->gtt_offset;
2162 } else {
2163 int dspaddr = DSPADDR(intel_crtc->plane);
2164 stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
2165 crtc->y * crtc->fb->pitches[0] +
2166 crtc->x * crtc->fb->bits_per_pixel/8);
2167 }
2168
2169 spin_unlock_irqrestore(&dev->event_lock, flags);
2170
2171 if (stall_detected) {
2172 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2173 intel_prepare_page_flip(dev, intel_crtc->plane);
2174 }
2175 }
2176
2177 /* Called from drm generic code, passed 'crtc' which
2178 * we use as a pipe index
2179 */
2180 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2181 {
2182 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2183 unsigned long irqflags;
2184
2185 if (!i915_pipe_enabled(dev, pipe))
2186 return -EINVAL;
2187
2188 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2189 if (INTEL_INFO(dev)->gen >= 4)
2190 i915_enable_pipestat(dev_priv, pipe,
2191 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2192 else
2193 i915_enable_pipestat(dev_priv, pipe,
2194 PIPE_VBLANK_INTERRUPT_ENABLE);
2195
2196 /* maintain vblank delivery even in deep C-states */
2197 if (dev_priv->info->gen == 3)
2198 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2199 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2200
2201 return 0;
2202 }
2203
2204 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2205 {
2206 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2207 unsigned long irqflags;
2208
2209 if (!i915_pipe_enabled(dev, pipe))
2210 return -EINVAL;
2211
2212 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2213 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
2214 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
2215 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2216
2217 return 0;
2218 }
2219
2220 static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
2221 {
2222 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2223 unsigned long irqflags;
2224
2225 if (!i915_pipe_enabled(dev, pipe))
2226 return -EINVAL;
2227
2228 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2229 ironlake_enable_display_irq(dev_priv,
2230 DE_PIPEA_VBLANK_IVB << (5 * pipe));
2231 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2232
2233 return 0;
2234 }
2235
2236 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2237 {
2238 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2239 unsigned long irqflags;
2240 u32 imr;
2241
2242 if (!i915_pipe_enabled(dev, pipe))
2243 return -EINVAL;
2244
2245 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2246 imr = I915_READ(VLV_IMR);
2247 if (pipe == 0)
2248 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2249 else
2250 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2251 I915_WRITE(VLV_IMR, imr);
2252 i915_enable_pipestat(dev_priv, pipe,
2253 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2254 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2255
2256 return 0;
2257 }
2258
2259 /* Called from drm generic code, passed 'crtc' which
2260 * we use as a pipe index
2261 */
2262 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2263 {
2264 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2265 unsigned long irqflags;
2266
2267 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2268 if (dev_priv->info->gen == 3)
2269 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2270
2271 i915_disable_pipestat(dev_priv, pipe,
2272 PIPE_VBLANK_INTERRUPT_ENABLE |
2273 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2274 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2275 }
2276
2277 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2278 {
2279 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2280 unsigned long irqflags;
2281
2282 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2283 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
2284 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
2285 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2286 }
2287
2288 static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
2289 {
2290 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2291 unsigned long irqflags;
2292
2293 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2294 ironlake_disable_display_irq(dev_priv,
2295 DE_PIPEA_VBLANK_IVB << (pipe * 5));
2296 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2297 }
2298
2299 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2300 {
2301 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2302 unsigned long irqflags;
2303 u32 imr;
2304
2305 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2306 i915_disable_pipestat(dev_priv, pipe,
2307 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2308 imr = I915_READ(VLV_IMR);
2309 if (pipe == 0)
2310 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2311 else
2312 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2313 I915_WRITE(VLV_IMR, imr);
2314 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2315 }
2316
2317 static u32
2318 ring_last_seqno(struct intel_ring_buffer *ring)
2319 {
2320 return list_entry(ring->request_list.prev,
2321 struct drm_i915_gem_request, list)->seqno;
2322 }
2323
2324 static bool
2325 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2326 {
2327 return (list_empty(&ring->request_list) ||
2328 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2329 }
2330
2331 static struct intel_ring_buffer *
2332 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2333 {
2334 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2335 u32 cmd, ipehr, acthd, acthd_min;
2336
2337 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2338 if ((ipehr & ~(0x3 << 16)) !=
2339 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2340 return NULL;
2341
2342 /* ACTHD is likely pointing to the dword after the actual command,
2343 * so scan backwards until we find the MBOX.
2344 */
2345 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2346 acthd_min = max((int)acthd - 3 * 4, 0);
2347 do {
2348 cmd = ioread32(ring->virtual_start + acthd);
2349 if (cmd == ipehr)
2350 break;
2351
2352 acthd -= 4;
2353 if (acthd < acthd_min)
2354 return NULL;
2355 } while (1);
2356
2357 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2358 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2359 }
2360
2361 static int semaphore_passed(struct intel_ring_buffer *ring)
2362 {
2363 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2364 struct intel_ring_buffer *signaller;
2365 u32 seqno, ctl;
2366
2367 ring->hangcheck.deadlock = true;
2368
2369 signaller = semaphore_waits_for(ring, &seqno);
2370 if (signaller == NULL || signaller->hangcheck.deadlock)
2371 return -1;
2372
2373 /* cursory check for an unkickable deadlock */
2374 ctl = I915_READ_CTL(signaller);
2375 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2376 return -1;
2377
2378 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2379 }
2380
2381 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2382 {
2383 struct intel_ring_buffer *ring;
2384 int i;
2385
2386 for_each_ring(ring, dev_priv, i)
2387 ring->hangcheck.deadlock = false;
2388 }
2389
2390 static enum intel_ring_hangcheck_action
2391 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2392 {
2393 struct drm_device *dev = ring->dev;
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395 u32 tmp;
2396
2397 if (ring->hangcheck.acthd != acthd)
2398 return active;
2399
2400 if (IS_GEN2(dev))
2401 return hung;
2402
2403 /* Is the chip hanging on a WAIT_FOR_EVENT?
2404 * If so we can simply poke the RB_WAIT bit
2405 * and break the hang. This should work on
2406 * all but the second generation chipsets.
2407 */
2408 tmp = I915_READ_CTL(ring);
2409 if (tmp & RING_WAIT) {
2410 DRM_ERROR("Kicking stuck wait on %s\n",
2411 ring->name);
2412 I915_WRITE_CTL(ring, tmp);
2413 return kick;
2414 }
2415
2416 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2417 switch (semaphore_passed(ring)) {
2418 default:
2419 return hung;
2420 case 1:
2421 DRM_ERROR("Kicking stuck semaphore on %s\n",
2422 ring->name);
2423 I915_WRITE_CTL(ring, tmp);
2424 return kick;
2425 case 0:
2426 return wait;
2427 }
2428 }
2429
2430 return hung;
2431 }
2432
2433 /**
2434 * This is called when the chip hasn't reported back with completed
2435 * batchbuffers in a long time. We keep track per ring seqno progress and
2436 * if there are no progress, hangcheck score for that ring is increased.
2437 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2438 * we kick the ring. If we see no progress on three subsequent calls
2439 * we assume chip is wedged and try to fix it by resetting the chip.
2440 */
2441 void i915_hangcheck_elapsed(unsigned long data)
2442 {
2443 struct drm_device *dev = (struct drm_device *)data;
2444 drm_i915_private_t *dev_priv = dev->dev_private;
2445 struct intel_ring_buffer *ring;
2446 int i;
2447 int busy_count = 0, rings_hung = 0;
2448 bool stuck[I915_NUM_RINGS] = { 0 };
2449 #define BUSY 1
2450 #define KICK 5
2451 #define HUNG 20
2452 #define FIRE 30
2453
2454 if (!i915_enable_hangcheck)
2455 return;
2456
2457 for_each_ring(ring, dev_priv, i) {
2458 u32 seqno, acthd;
2459 bool busy = true;
2460
2461 semaphore_clear_deadlocks(dev_priv);
2462
2463 seqno = ring->get_seqno(ring, false);
2464 acthd = intel_ring_get_active_head(ring);
2465
2466 if (ring->hangcheck.seqno == seqno) {
2467 if (ring_idle(ring, seqno)) {
2468 if (waitqueue_active(&ring->irq_queue)) {
2469 /* Issue a wake-up to catch stuck h/w. */
2470 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2471 ring->name);
2472 wake_up_all(&ring->irq_queue);
2473 ring->hangcheck.score += HUNG;
2474 } else
2475 busy = false;
2476 } else {
2477 int score;
2478
2479 /* We always increment the hangcheck score
2480 * if the ring is busy and still processing
2481 * the same request, so that no single request
2482 * can run indefinitely (such as a chain of
2483 * batches). The only time we do not increment
2484 * the hangcheck score on this ring, if this
2485 * ring is in a legitimate wait for another
2486 * ring. In that case the waiting ring is a
2487 * victim and we want to be sure we catch the
2488 * right culprit. Then every time we do kick
2489 * the ring, add a small increment to the
2490 * score so that we can catch a batch that is
2491 * being repeatedly kicked and so responsible
2492 * for stalling the machine.
2493 */
2494 ring->hangcheck.action = ring_stuck(ring,
2495 acthd);
2496
2497 switch (ring->hangcheck.action) {
2498 case wait:
2499 score = 0;
2500 break;
2501 case active:
2502 score = BUSY;
2503 break;
2504 case kick:
2505 score = KICK;
2506 break;
2507 case hung:
2508 score = HUNG;
2509 stuck[i] = true;
2510 break;
2511 }
2512 ring->hangcheck.score += score;
2513 }
2514 } else {
2515 /* Gradually reduce the count so that we catch DoS
2516 * attempts across multiple batches.
2517 */
2518 if (ring->hangcheck.score > 0)
2519 ring->hangcheck.score--;
2520 }
2521
2522 ring->hangcheck.seqno = seqno;
2523 ring->hangcheck.acthd = acthd;
2524 busy_count += busy;
2525 }
2526
2527 for_each_ring(ring, dev_priv, i) {
2528 if (ring->hangcheck.score > FIRE) {
2529 DRM_ERROR("%s on %s\n",
2530 stuck[i] ? "stuck" : "no progress",
2531 ring->name);
2532 rings_hung++;
2533 }
2534 }
2535
2536 if (rings_hung)
2537 return i915_handle_error(dev, true);
2538
2539 if (busy_count)
2540 /* Reset timer case chip hangs without another request
2541 * being added */
2542 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2543 round_jiffies_up(jiffies +
2544 DRM_I915_HANGCHECK_JIFFIES));
2545 }
2546
2547 static void ibx_irq_preinstall(struct drm_device *dev)
2548 {
2549 struct drm_i915_private *dev_priv = dev->dev_private;
2550
2551 if (HAS_PCH_NOP(dev))
2552 return;
2553
2554 /* south display irq */
2555 I915_WRITE(SDEIMR, 0xffffffff);
2556 /*
2557 * SDEIER is also touched by the interrupt handler to work around missed
2558 * PCH interrupts. Hence we can't update it after the interrupt handler
2559 * is enabled - instead we unconditionally enable all PCH interrupt
2560 * sources here, but then only unmask them as needed with SDEIMR.
2561 */
2562 I915_WRITE(SDEIER, 0xffffffff);
2563 POSTING_READ(SDEIER);
2564 }
2565
2566 /* drm_dma.h hooks
2567 */
2568 static void ironlake_irq_preinstall(struct drm_device *dev)
2569 {
2570 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2571
2572 atomic_set(&dev_priv->irq_received, 0);
2573
2574 I915_WRITE(HWSTAM, 0xeffe);
2575
2576 /* XXX hotplug from PCH */
2577
2578 I915_WRITE(DEIMR, 0xffffffff);
2579 I915_WRITE(DEIER, 0x0);
2580 POSTING_READ(DEIER);
2581
2582 /* and GT */
2583 I915_WRITE(GTIMR, 0xffffffff);
2584 I915_WRITE(GTIER, 0x0);
2585 POSTING_READ(GTIER);
2586
2587 ibx_irq_preinstall(dev);
2588 }
2589
2590 static void ivybridge_irq_preinstall(struct drm_device *dev)
2591 {
2592 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2593
2594 atomic_set(&dev_priv->irq_received, 0);
2595
2596 I915_WRITE(HWSTAM, 0xeffe);
2597
2598 /* XXX hotplug from PCH */
2599
2600 I915_WRITE(DEIMR, 0xffffffff);
2601 I915_WRITE(DEIER, 0x0);
2602 POSTING_READ(DEIER);
2603
2604 /* and GT */
2605 I915_WRITE(GTIMR, 0xffffffff);
2606 I915_WRITE(GTIER, 0x0);
2607 POSTING_READ(GTIER);
2608
2609 /* Power management */
2610 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2611 I915_WRITE(GEN6_PMIER, 0x0);
2612 POSTING_READ(GEN6_PMIER);
2613
2614 ibx_irq_preinstall(dev);
2615 }
2616
2617 static void valleyview_irq_preinstall(struct drm_device *dev)
2618 {
2619 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2620 int pipe;
2621
2622 atomic_set(&dev_priv->irq_received, 0);
2623
2624 /* VLV magic */
2625 I915_WRITE(VLV_IMR, 0);
2626 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2627 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2628 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2629
2630 /* and GT */
2631 I915_WRITE(GTIIR, I915_READ(GTIIR));
2632 I915_WRITE(GTIIR, I915_READ(GTIIR));
2633 I915_WRITE(GTIMR, 0xffffffff);
2634 I915_WRITE(GTIER, 0x0);
2635 POSTING_READ(GTIER);
2636
2637 I915_WRITE(DPINVGTT, 0xff);
2638
2639 I915_WRITE(PORT_HOTPLUG_EN, 0);
2640 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2641 for_each_pipe(pipe)
2642 I915_WRITE(PIPESTAT(pipe), 0xffff);
2643 I915_WRITE(VLV_IIR, 0xffffffff);
2644 I915_WRITE(VLV_IMR, 0xffffffff);
2645 I915_WRITE(VLV_IER, 0x0);
2646 POSTING_READ(VLV_IER);
2647 }
2648
2649 static void ibx_hpd_irq_setup(struct drm_device *dev)
2650 {
2651 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2652 struct drm_mode_config *mode_config = &dev->mode_config;
2653 struct intel_encoder *intel_encoder;
2654 u32 mask = ~I915_READ(SDEIMR);
2655 u32 hotplug;
2656
2657 if (HAS_PCH_IBX(dev)) {
2658 mask &= ~SDE_HOTPLUG_MASK;
2659 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2660 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2661 mask |= hpd_ibx[intel_encoder->hpd_pin];
2662 } else {
2663 mask &= ~SDE_HOTPLUG_MASK_CPT;
2664 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2665 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2666 mask |= hpd_cpt[intel_encoder->hpd_pin];
2667 }
2668
2669 I915_WRITE(SDEIMR, ~mask);
2670
2671 /*
2672 * Enable digital hotplug on the PCH, and configure the DP short pulse
2673 * duration to 2ms (which is the minimum in the Display Port spec)
2674 *
2675 * This register is the same on all known PCH chips.
2676 */
2677 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2678 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2679 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2680 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2681 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2682 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2683 }
2684
2685 static void ibx_irq_postinstall(struct drm_device *dev)
2686 {
2687 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2688 u32 mask;
2689
2690 if (HAS_PCH_NOP(dev))
2691 return;
2692
2693 if (HAS_PCH_IBX(dev)) {
2694 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2695 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2696 } else {
2697 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2698
2699 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2700 }
2701
2702 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2703 I915_WRITE(SDEIMR, ~mask);
2704 }
2705
2706 static int ironlake_irq_postinstall(struct drm_device *dev)
2707 {
2708 unsigned long irqflags;
2709
2710 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2711 /* enable kind of interrupts always enabled */
2712 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2713 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2714 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2715 DE_PIPEA_FIFO_UNDERRUN | DE_POISON;
2716 u32 gt_irqs;
2717
2718 dev_priv->irq_mask = ~display_mask;
2719
2720 /* should always can generate irq */
2721 I915_WRITE(DEIIR, I915_READ(DEIIR));
2722 I915_WRITE(DEIMR, dev_priv->irq_mask);
2723 I915_WRITE(DEIER, display_mask |
2724 DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT);
2725 POSTING_READ(DEIER);
2726
2727 dev_priv->gt_irq_mask = ~0;
2728
2729 I915_WRITE(GTIIR, I915_READ(GTIIR));
2730 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2731
2732 gt_irqs = GT_RENDER_USER_INTERRUPT;
2733
2734 if (IS_GEN6(dev))
2735 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2736 else
2737 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2738 ILK_BSD_USER_INTERRUPT;
2739
2740 I915_WRITE(GTIER, gt_irqs);
2741 POSTING_READ(GTIER);
2742
2743 ibx_irq_postinstall(dev);
2744
2745 if (IS_IRONLAKE_M(dev)) {
2746 /* Enable PCU event interrupts
2747 *
2748 * spinlocking not required here for correctness since interrupt
2749 * setup is guaranteed to run in single-threaded context. But we
2750 * need it to make the assert_spin_locked happy. */
2751 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2753 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 }
2755
2756 return 0;
2757 }
2758
2759 static int ivybridge_irq_postinstall(struct drm_device *dev)
2760 {
2761 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2762 /* enable kind of interrupts always enabled */
2763 u32 display_mask =
2764 DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
2765 DE_PLANEC_FLIP_DONE_IVB |
2766 DE_PLANEB_FLIP_DONE_IVB |
2767 DE_PLANEA_FLIP_DONE_IVB |
2768 DE_AUX_CHANNEL_A_IVB |
2769 DE_ERR_INT_IVB;
2770 u32 pm_irqs = GEN6_PM_RPS_EVENTS;
2771 u32 gt_irqs;
2772
2773 dev_priv->irq_mask = ~display_mask;
2774
2775 /* should always can generate irq */
2776 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2777 I915_WRITE(DEIIR, I915_READ(DEIIR));
2778 I915_WRITE(DEIMR, dev_priv->irq_mask);
2779 I915_WRITE(DEIER,
2780 display_mask |
2781 DE_PIPEC_VBLANK_IVB |
2782 DE_PIPEB_VBLANK_IVB |
2783 DE_PIPEA_VBLANK_IVB);
2784 POSTING_READ(DEIER);
2785
2786 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2787
2788 I915_WRITE(GTIIR, I915_READ(GTIIR));
2789 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2790
2791 gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2792 GT_BLT_USER_INTERRUPT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2793 I915_WRITE(GTIER, gt_irqs);
2794 POSTING_READ(GTIER);
2795
2796 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2797 if (HAS_VEBOX(dev))
2798 pm_irqs |= PM_VEBOX_USER_INTERRUPT |
2799 PM_VEBOX_CS_ERROR_INTERRUPT;
2800
2801 /* Our enable/disable rps functions may touch these registers so
2802 * make sure to set a known state for only the non-RPS bits.
2803 * The RMW is extra paranoia since this should be called after being set
2804 * to a known state in preinstall.
2805 * */
2806 I915_WRITE(GEN6_PMIMR,
2807 (I915_READ(GEN6_PMIMR) | ~GEN6_PM_RPS_EVENTS) & ~pm_irqs);
2808 I915_WRITE(GEN6_PMIER,
2809 (I915_READ(GEN6_PMIER) & GEN6_PM_RPS_EVENTS) | pm_irqs);
2810 POSTING_READ(GEN6_PMIER);
2811
2812 ibx_irq_postinstall(dev);
2813
2814 return 0;
2815 }
2816
2817 static int valleyview_irq_postinstall(struct drm_device *dev)
2818 {
2819 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2820 u32 gt_irqs;
2821 u32 enable_mask;
2822 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2823
2824 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2825 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2826 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2827 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2828 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2829
2830 /*
2831 *Leave vblank interrupts masked initially. enable/disable will
2832 * toggle them based on usage.
2833 */
2834 dev_priv->irq_mask = (~enable_mask) |
2835 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2836 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2837
2838 I915_WRITE(PORT_HOTPLUG_EN, 0);
2839 POSTING_READ(PORT_HOTPLUG_EN);
2840
2841 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2842 I915_WRITE(VLV_IER, enable_mask);
2843 I915_WRITE(VLV_IIR, 0xffffffff);
2844 I915_WRITE(PIPESTAT(0), 0xffff);
2845 I915_WRITE(PIPESTAT(1), 0xffff);
2846 POSTING_READ(VLV_IER);
2847
2848 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2849 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2850 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2851
2852 I915_WRITE(VLV_IIR, 0xffffffff);
2853 I915_WRITE(VLV_IIR, 0xffffffff);
2854
2855 I915_WRITE(GTIIR, I915_READ(GTIIR));
2856 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2857
2858 gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2859 GT_BLT_USER_INTERRUPT;
2860 I915_WRITE(GTIER, gt_irqs);
2861 POSTING_READ(GTIER);
2862
2863 /* ack & enable invalid PTE error interrupts */
2864 #if 0 /* FIXME: add support to irq handler for checking these bits */
2865 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2866 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2867 #endif
2868
2869 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2870
2871 return 0;
2872 }
2873
2874 static void valleyview_irq_uninstall(struct drm_device *dev)
2875 {
2876 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2877 int pipe;
2878
2879 if (!dev_priv)
2880 return;
2881
2882 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2883
2884 for_each_pipe(pipe)
2885 I915_WRITE(PIPESTAT(pipe), 0xffff);
2886
2887 I915_WRITE(HWSTAM, 0xffffffff);
2888 I915_WRITE(PORT_HOTPLUG_EN, 0);
2889 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2890 for_each_pipe(pipe)
2891 I915_WRITE(PIPESTAT(pipe), 0xffff);
2892 I915_WRITE(VLV_IIR, 0xffffffff);
2893 I915_WRITE(VLV_IMR, 0xffffffff);
2894 I915_WRITE(VLV_IER, 0x0);
2895 POSTING_READ(VLV_IER);
2896 }
2897
2898 static void ironlake_irq_uninstall(struct drm_device *dev)
2899 {
2900 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2901
2902 if (!dev_priv)
2903 return;
2904
2905 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2906
2907 I915_WRITE(HWSTAM, 0xffffffff);
2908
2909 I915_WRITE(DEIMR, 0xffffffff);
2910 I915_WRITE(DEIER, 0x0);
2911 I915_WRITE(DEIIR, I915_READ(DEIIR));
2912 if (IS_GEN7(dev))
2913 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2914
2915 I915_WRITE(GTIMR, 0xffffffff);
2916 I915_WRITE(GTIER, 0x0);
2917 I915_WRITE(GTIIR, I915_READ(GTIIR));
2918
2919 if (HAS_PCH_NOP(dev))
2920 return;
2921
2922 I915_WRITE(SDEIMR, 0xffffffff);
2923 I915_WRITE(SDEIER, 0x0);
2924 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2925 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2926 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2927 }
2928
2929 static void i8xx_irq_preinstall(struct drm_device * dev)
2930 {
2931 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2932 int pipe;
2933
2934 atomic_set(&dev_priv->irq_received, 0);
2935
2936 for_each_pipe(pipe)
2937 I915_WRITE(PIPESTAT(pipe), 0);
2938 I915_WRITE16(IMR, 0xffff);
2939 I915_WRITE16(IER, 0x0);
2940 POSTING_READ16(IER);
2941 }
2942
2943 static int i8xx_irq_postinstall(struct drm_device *dev)
2944 {
2945 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2946
2947 I915_WRITE16(EMR,
2948 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2949
2950 /* Unmask the interrupts that we always want on. */
2951 dev_priv->irq_mask =
2952 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2953 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2954 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2955 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2956 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2957 I915_WRITE16(IMR, dev_priv->irq_mask);
2958
2959 I915_WRITE16(IER,
2960 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2961 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2962 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2963 I915_USER_INTERRUPT);
2964 POSTING_READ16(IER);
2965
2966 return 0;
2967 }
2968
2969 /*
2970 * Returns true when a page flip has completed.
2971 */
2972 static bool i8xx_handle_vblank(struct drm_device *dev,
2973 int pipe, u16 iir)
2974 {
2975 drm_i915_private_t *dev_priv = dev->dev_private;
2976 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2977
2978 if (!drm_handle_vblank(dev, pipe))
2979 return false;
2980
2981 if ((iir & flip_pending) == 0)
2982 return false;
2983
2984 intel_prepare_page_flip(dev, pipe);
2985
2986 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2987 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2988 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2989 * the flip is completed (no longer pending). Since this doesn't raise
2990 * an interrupt per se, we watch for the change at vblank.
2991 */
2992 if (I915_READ16(ISR) & flip_pending)
2993 return false;
2994
2995 intel_finish_page_flip(dev, pipe);
2996
2997 return true;
2998 }
2999
3000 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3001 {
3002 struct drm_device *dev = (struct drm_device *) arg;
3003 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3004 u16 iir, new_iir;
3005 u32 pipe_stats[2];
3006 unsigned long irqflags;
3007 int irq_received;
3008 int pipe;
3009 u16 flip_mask =
3010 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3011 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3012
3013 atomic_inc(&dev_priv->irq_received);
3014
3015 iir = I915_READ16(IIR);
3016 if (iir == 0)
3017 return IRQ_NONE;
3018
3019 while (iir & ~flip_mask) {
3020 /* Can't rely on pipestat interrupt bit in iir as it might
3021 * have been cleared after the pipestat interrupt was received.
3022 * It doesn't set the bit in iir again, but it still produces
3023 * interrupts (for non-MSI).
3024 */
3025 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3026 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3027 i915_handle_error(dev, false);
3028
3029 for_each_pipe(pipe) {
3030 int reg = PIPESTAT(pipe);
3031 pipe_stats[pipe] = I915_READ(reg);
3032
3033 /*
3034 * Clear the PIPE*STAT regs before the IIR
3035 */
3036 if (pipe_stats[pipe] & 0x8000ffff) {
3037 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3038 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3039 pipe_name(pipe));
3040 I915_WRITE(reg, pipe_stats[pipe]);
3041 irq_received = 1;
3042 }
3043 }
3044 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3045
3046 I915_WRITE16(IIR, iir & ~flip_mask);
3047 new_iir = I915_READ16(IIR); /* Flush posted writes */
3048
3049 i915_update_dri1_breadcrumb(dev);
3050
3051 if (iir & I915_USER_INTERRUPT)
3052 notify_ring(dev, &dev_priv->ring[RCS]);
3053
3054 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
3055 i8xx_handle_vblank(dev, 0, iir))
3056 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
3057
3058 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
3059 i8xx_handle_vblank(dev, 1, iir))
3060 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
3061
3062 iir = new_iir;
3063 }
3064
3065 return IRQ_HANDLED;
3066 }
3067
3068 static void i8xx_irq_uninstall(struct drm_device * dev)
3069 {
3070 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3071 int pipe;
3072
3073 for_each_pipe(pipe) {
3074 /* Clear enable bits; then clear status bits */
3075 I915_WRITE(PIPESTAT(pipe), 0);
3076 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3077 }
3078 I915_WRITE16(IMR, 0xffff);
3079 I915_WRITE16(IER, 0x0);
3080 I915_WRITE16(IIR, I915_READ16(IIR));
3081 }
3082
3083 static void i915_irq_preinstall(struct drm_device * dev)
3084 {
3085 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3086 int pipe;
3087
3088 atomic_set(&dev_priv->irq_received, 0);
3089
3090 if (I915_HAS_HOTPLUG(dev)) {
3091 I915_WRITE(PORT_HOTPLUG_EN, 0);
3092 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3093 }
3094
3095 I915_WRITE16(HWSTAM, 0xeffe);
3096 for_each_pipe(pipe)
3097 I915_WRITE(PIPESTAT(pipe), 0);
3098 I915_WRITE(IMR, 0xffffffff);
3099 I915_WRITE(IER, 0x0);
3100 POSTING_READ(IER);
3101 }
3102
3103 static int i915_irq_postinstall(struct drm_device *dev)
3104 {
3105 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3106 u32 enable_mask;
3107
3108 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3109
3110 /* Unmask the interrupts that we always want on. */
3111 dev_priv->irq_mask =
3112 ~(I915_ASLE_INTERRUPT |
3113 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3114 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3115 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3116 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3117 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3118
3119 enable_mask =
3120 I915_ASLE_INTERRUPT |
3121 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3122 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3123 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3124 I915_USER_INTERRUPT;
3125
3126 if (I915_HAS_HOTPLUG(dev)) {
3127 I915_WRITE(PORT_HOTPLUG_EN, 0);
3128 POSTING_READ(PORT_HOTPLUG_EN);
3129
3130 /* Enable in IER... */
3131 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3132 /* and unmask in IMR */
3133 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3134 }
3135
3136 I915_WRITE(IMR, dev_priv->irq_mask);
3137 I915_WRITE(IER, enable_mask);
3138 POSTING_READ(IER);
3139
3140 i915_enable_asle_pipestat(dev);
3141
3142 return 0;
3143 }
3144
3145 /*
3146 * Returns true when a page flip has completed.
3147 */
3148 static bool i915_handle_vblank(struct drm_device *dev,
3149 int plane, int pipe, u32 iir)
3150 {
3151 drm_i915_private_t *dev_priv = dev->dev_private;
3152 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3153
3154 if (!drm_handle_vblank(dev, pipe))
3155 return false;
3156
3157 if ((iir & flip_pending) == 0)
3158 return false;
3159
3160 intel_prepare_page_flip(dev, plane);
3161
3162 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3163 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3164 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3165 * the flip is completed (no longer pending). Since this doesn't raise
3166 * an interrupt per se, we watch for the change at vblank.
3167 */
3168 if (I915_READ(ISR) & flip_pending)
3169 return false;
3170
3171 intel_finish_page_flip(dev, pipe);
3172
3173 return true;
3174 }
3175
3176 static irqreturn_t i915_irq_handler(int irq, void *arg)
3177 {
3178 struct drm_device *dev = (struct drm_device *) arg;
3179 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3180 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3181 unsigned long irqflags;
3182 u32 flip_mask =
3183 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3184 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3185 int pipe, ret = IRQ_NONE;
3186
3187 atomic_inc(&dev_priv->irq_received);
3188
3189 iir = I915_READ(IIR);
3190 do {
3191 bool irq_received = (iir & ~flip_mask) != 0;
3192 bool blc_event = false;
3193
3194 /* Can't rely on pipestat interrupt bit in iir as it might
3195 * have been cleared after the pipestat interrupt was received.
3196 * It doesn't set the bit in iir again, but it still produces
3197 * interrupts (for non-MSI).
3198 */
3199 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3200 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3201 i915_handle_error(dev, false);
3202
3203 for_each_pipe(pipe) {
3204 int reg = PIPESTAT(pipe);
3205 pipe_stats[pipe] = I915_READ(reg);
3206
3207 /* Clear the PIPE*STAT regs before the IIR */
3208 if (pipe_stats[pipe] & 0x8000ffff) {
3209 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3210 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3211 pipe_name(pipe));
3212 I915_WRITE(reg, pipe_stats[pipe]);
3213 irq_received = true;
3214 }
3215 }
3216 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3217
3218 if (!irq_received)
3219 break;
3220
3221 /* Consume port. Then clear IIR or we'll miss events */
3222 if ((I915_HAS_HOTPLUG(dev)) &&
3223 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3224 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3225 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3226
3227 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3228 hotplug_status);
3229 if (hotplug_trigger) {
3230 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3231 queue_work(dev_priv->wq,
3232 &dev_priv->hotplug_work);
3233 }
3234 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3235 POSTING_READ(PORT_HOTPLUG_STAT);
3236 }
3237
3238 I915_WRITE(IIR, iir & ~flip_mask);
3239 new_iir = I915_READ(IIR); /* Flush posted writes */
3240
3241 if (iir & I915_USER_INTERRUPT)
3242 notify_ring(dev, &dev_priv->ring[RCS]);
3243
3244 for_each_pipe(pipe) {
3245 int plane = pipe;
3246 if (IS_MOBILE(dev))
3247 plane = !plane;
3248
3249 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3250 i915_handle_vblank(dev, plane, pipe, iir))
3251 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3252
3253 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3254 blc_event = true;
3255 }
3256
3257 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3258 intel_opregion_asle_intr(dev);
3259
3260 /* With MSI, interrupts are only generated when iir
3261 * transitions from zero to nonzero. If another bit got
3262 * set while we were handling the existing iir bits, then
3263 * we would never get another interrupt.
3264 *
3265 * This is fine on non-MSI as well, as if we hit this path
3266 * we avoid exiting the interrupt handler only to generate
3267 * another one.
3268 *
3269 * Note that for MSI this could cause a stray interrupt report
3270 * if an interrupt landed in the time between writing IIR and
3271 * the posting read. This should be rare enough to never
3272 * trigger the 99% of 100,000 interrupts test for disabling
3273 * stray interrupts.
3274 */
3275 ret = IRQ_HANDLED;
3276 iir = new_iir;
3277 } while (iir & ~flip_mask);
3278
3279 i915_update_dri1_breadcrumb(dev);
3280
3281 return ret;
3282 }
3283
3284 static void i915_irq_uninstall(struct drm_device * dev)
3285 {
3286 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3287 int pipe;
3288
3289 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3290
3291 if (I915_HAS_HOTPLUG(dev)) {
3292 I915_WRITE(PORT_HOTPLUG_EN, 0);
3293 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3294 }
3295
3296 I915_WRITE16(HWSTAM, 0xffff);
3297 for_each_pipe(pipe) {
3298 /* Clear enable bits; then clear status bits */
3299 I915_WRITE(PIPESTAT(pipe), 0);
3300 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3301 }
3302 I915_WRITE(IMR, 0xffffffff);
3303 I915_WRITE(IER, 0x0);
3304
3305 I915_WRITE(IIR, I915_READ(IIR));
3306 }
3307
3308 static void i965_irq_preinstall(struct drm_device * dev)
3309 {
3310 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3311 int pipe;
3312
3313 atomic_set(&dev_priv->irq_received, 0);
3314
3315 I915_WRITE(PORT_HOTPLUG_EN, 0);
3316 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3317
3318 I915_WRITE(HWSTAM, 0xeffe);
3319 for_each_pipe(pipe)
3320 I915_WRITE(PIPESTAT(pipe), 0);
3321 I915_WRITE(IMR, 0xffffffff);
3322 I915_WRITE(IER, 0x0);
3323 POSTING_READ(IER);
3324 }
3325
3326 static int i965_irq_postinstall(struct drm_device *dev)
3327 {
3328 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3329 u32 enable_mask;
3330 u32 error_mask;
3331
3332 /* Unmask the interrupts that we always want on. */
3333 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3334 I915_DISPLAY_PORT_INTERRUPT |
3335 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3336 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3337 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3338 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3339 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3340
3341 enable_mask = ~dev_priv->irq_mask;
3342 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3343 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3344 enable_mask |= I915_USER_INTERRUPT;
3345
3346 if (IS_G4X(dev))
3347 enable_mask |= I915_BSD_USER_INTERRUPT;
3348
3349 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
3350
3351 /*
3352 * Enable some error detection, note the instruction error mask
3353 * bit is reserved, so we leave it masked.
3354 */
3355 if (IS_G4X(dev)) {
3356 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3357 GM45_ERROR_MEM_PRIV |
3358 GM45_ERROR_CP_PRIV |
3359 I915_ERROR_MEMORY_REFRESH);
3360 } else {
3361 error_mask = ~(I915_ERROR_PAGE_TABLE |
3362 I915_ERROR_MEMORY_REFRESH);
3363 }
3364 I915_WRITE(EMR, error_mask);
3365
3366 I915_WRITE(IMR, dev_priv->irq_mask);
3367 I915_WRITE(IER, enable_mask);
3368 POSTING_READ(IER);
3369
3370 I915_WRITE(PORT_HOTPLUG_EN, 0);
3371 POSTING_READ(PORT_HOTPLUG_EN);
3372
3373 i915_enable_asle_pipestat(dev);
3374
3375 return 0;
3376 }
3377
3378 static void i915_hpd_irq_setup(struct drm_device *dev)
3379 {
3380 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3381 struct drm_mode_config *mode_config = &dev->mode_config;
3382 struct intel_encoder *intel_encoder;
3383 u32 hotplug_en;
3384
3385 if (I915_HAS_HOTPLUG(dev)) {
3386 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3387 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3388 /* Note HDMI and DP share hotplug bits */
3389 /* enable bits are the same for all generations */
3390 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3391 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3392 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3393 /* Programming the CRT detection parameters tends
3394 to generate a spurious hotplug event about three
3395 seconds later. So just do it once.
3396 */
3397 if (IS_G4X(dev))
3398 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3399 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3400 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3401
3402 /* Ignore TV since it's buggy */
3403 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3404 }
3405 }
3406
3407 static irqreturn_t i965_irq_handler(int irq, void *arg)
3408 {
3409 struct drm_device *dev = (struct drm_device *) arg;
3410 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3411 u32 iir, new_iir;
3412 u32 pipe_stats[I915_MAX_PIPES];
3413 unsigned long irqflags;
3414 int irq_received;
3415 int ret = IRQ_NONE, pipe;
3416 u32 flip_mask =
3417 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3418 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3419
3420 atomic_inc(&dev_priv->irq_received);
3421
3422 iir = I915_READ(IIR);
3423
3424 for (;;) {
3425 bool blc_event = false;
3426
3427 irq_received = (iir & ~flip_mask) != 0;
3428
3429 /* Can't rely on pipestat interrupt bit in iir as it might
3430 * have been cleared after the pipestat interrupt was received.
3431 * It doesn't set the bit in iir again, but it still produces
3432 * interrupts (for non-MSI).
3433 */
3434 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3435 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3436 i915_handle_error(dev, false);
3437
3438 for_each_pipe(pipe) {
3439 int reg = PIPESTAT(pipe);
3440 pipe_stats[pipe] = I915_READ(reg);
3441
3442 /*
3443 * Clear the PIPE*STAT regs before the IIR
3444 */
3445 if (pipe_stats[pipe] & 0x8000ffff) {
3446 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3447 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3448 pipe_name(pipe));
3449 I915_WRITE(reg, pipe_stats[pipe]);
3450 irq_received = 1;
3451 }
3452 }
3453 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3454
3455 if (!irq_received)
3456 break;
3457
3458 ret = IRQ_HANDLED;
3459
3460 /* Consume port. Then clear IIR or we'll miss events */
3461 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3462 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3463 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3464 HOTPLUG_INT_STATUS_G4X :
3465 HOTPLUG_INT_STATUS_I915);
3466
3467 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3468 hotplug_status);
3469 if (hotplug_trigger) {
3470 intel_hpd_irq_handler(dev, hotplug_trigger,
3471 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3472 queue_work(dev_priv->wq,
3473 &dev_priv->hotplug_work);
3474 }
3475 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3476 I915_READ(PORT_HOTPLUG_STAT);
3477 }
3478
3479 I915_WRITE(IIR, iir & ~flip_mask);
3480 new_iir = I915_READ(IIR); /* Flush posted writes */
3481
3482 if (iir & I915_USER_INTERRUPT)
3483 notify_ring(dev, &dev_priv->ring[RCS]);
3484 if (iir & I915_BSD_USER_INTERRUPT)
3485 notify_ring(dev, &dev_priv->ring[VCS]);
3486
3487 for_each_pipe(pipe) {
3488 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3489 i915_handle_vblank(dev, pipe, pipe, iir))
3490 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3491
3492 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3493 blc_event = true;
3494 }
3495
3496
3497 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3498 intel_opregion_asle_intr(dev);
3499
3500 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3501 gmbus_irq_handler(dev);
3502
3503 /* With MSI, interrupts are only generated when iir
3504 * transitions from zero to nonzero. If another bit got
3505 * set while we were handling the existing iir bits, then
3506 * we would never get another interrupt.
3507 *
3508 * This is fine on non-MSI as well, as if we hit this path
3509 * we avoid exiting the interrupt handler only to generate
3510 * another one.
3511 *
3512 * Note that for MSI this could cause a stray interrupt report
3513 * if an interrupt landed in the time between writing IIR and
3514 * the posting read. This should be rare enough to never
3515 * trigger the 99% of 100,000 interrupts test for disabling
3516 * stray interrupts.
3517 */
3518 iir = new_iir;
3519 }
3520
3521 i915_update_dri1_breadcrumb(dev);
3522
3523 return ret;
3524 }
3525
3526 static void i965_irq_uninstall(struct drm_device * dev)
3527 {
3528 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3529 int pipe;
3530
3531 if (!dev_priv)
3532 return;
3533
3534 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3535
3536 I915_WRITE(PORT_HOTPLUG_EN, 0);
3537 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3538
3539 I915_WRITE(HWSTAM, 0xffffffff);
3540 for_each_pipe(pipe)
3541 I915_WRITE(PIPESTAT(pipe), 0);
3542 I915_WRITE(IMR, 0xffffffff);
3543 I915_WRITE(IER, 0x0);
3544
3545 for_each_pipe(pipe)
3546 I915_WRITE(PIPESTAT(pipe),
3547 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3548 I915_WRITE(IIR, I915_READ(IIR));
3549 }
3550
3551 static void i915_reenable_hotplug_timer_func(unsigned long data)
3552 {
3553 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3554 struct drm_device *dev = dev_priv->dev;
3555 struct drm_mode_config *mode_config = &dev->mode_config;
3556 unsigned long irqflags;
3557 int i;
3558
3559 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3560 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3561 struct drm_connector *connector;
3562
3563 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3564 continue;
3565
3566 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3567
3568 list_for_each_entry(connector, &mode_config->connector_list, head) {
3569 struct intel_connector *intel_connector = to_intel_connector(connector);
3570
3571 if (intel_connector->encoder->hpd_pin == i) {
3572 if (connector->polled != intel_connector->polled)
3573 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3574 drm_get_connector_name(connector));
3575 connector->polled = intel_connector->polled;
3576 if (!connector->polled)
3577 connector->polled = DRM_CONNECTOR_POLL_HPD;
3578 }
3579 }
3580 }
3581 if (dev_priv->display.hpd_irq_setup)
3582 dev_priv->display.hpd_irq_setup(dev);
3583 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3584 }
3585
3586 void intel_irq_init(struct drm_device *dev)
3587 {
3588 struct drm_i915_private *dev_priv = dev->dev_private;
3589
3590 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3591 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3592 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3593 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3594
3595 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3596 i915_hangcheck_elapsed,
3597 (unsigned long) dev);
3598 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3599 (unsigned long) dev_priv);
3600
3601 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3602
3603 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3604 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3605 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3606 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3607 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3608 }
3609
3610 if (drm_core_check_feature(dev, DRIVER_MODESET))
3611 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3612 else
3613 dev->driver->get_vblank_timestamp = NULL;
3614 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3615
3616 if (IS_VALLEYVIEW(dev)) {
3617 dev->driver->irq_handler = valleyview_irq_handler;
3618 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3619 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3620 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3621 dev->driver->enable_vblank = valleyview_enable_vblank;
3622 dev->driver->disable_vblank = valleyview_disable_vblank;
3623 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3624 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3625 /* Share uninstall handlers with ILK/SNB */
3626 dev->driver->irq_handler = ivybridge_irq_handler;
3627 dev->driver->irq_preinstall = ivybridge_irq_preinstall;
3628 dev->driver->irq_postinstall = ivybridge_irq_postinstall;
3629 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3630 dev->driver->enable_vblank = ivybridge_enable_vblank;
3631 dev->driver->disable_vblank = ivybridge_disable_vblank;
3632 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3633 } else if (HAS_PCH_SPLIT(dev)) {
3634 dev->driver->irq_handler = ironlake_irq_handler;
3635 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3636 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3637 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3638 dev->driver->enable_vblank = ironlake_enable_vblank;
3639 dev->driver->disable_vblank = ironlake_disable_vblank;
3640 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3641 } else {
3642 if (INTEL_INFO(dev)->gen == 2) {
3643 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3644 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3645 dev->driver->irq_handler = i8xx_irq_handler;
3646 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3647 } else if (INTEL_INFO(dev)->gen == 3) {
3648 dev->driver->irq_preinstall = i915_irq_preinstall;
3649 dev->driver->irq_postinstall = i915_irq_postinstall;
3650 dev->driver->irq_uninstall = i915_irq_uninstall;
3651 dev->driver->irq_handler = i915_irq_handler;
3652 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3653 } else {
3654 dev->driver->irq_preinstall = i965_irq_preinstall;
3655 dev->driver->irq_postinstall = i965_irq_postinstall;
3656 dev->driver->irq_uninstall = i965_irq_uninstall;
3657 dev->driver->irq_handler = i965_irq_handler;
3658 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3659 }
3660 dev->driver->enable_vblank = i915_enable_vblank;
3661 dev->driver->disable_vblank = i915_disable_vblank;
3662 }
3663 }
3664
3665 void intel_hpd_init(struct drm_device *dev)
3666 {
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 struct drm_mode_config *mode_config = &dev->mode_config;
3669 struct drm_connector *connector;
3670 int i;
3671
3672 for (i = 1; i < HPD_NUM_PINS; i++) {
3673 dev_priv->hpd_stats[i].hpd_cnt = 0;
3674 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3675 }
3676 list_for_each_entry(connector, &mode_config->connector_list, head) {
3677 struct intel_connector *intel_connector = to_intel_connector(connector);
3678 connector->polled = intel_connector->polled;
3679 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3680 connector->polled = DRM_CONNECTOR_POLL_HPD;
3681 }
3682 if (dev_priv->display.hpd_irq_setup)
3683 dev_priv->display.hpd_irq_setup(dev);
3684 }
This page took 0.1513 seconds and 6 git commands to generate.