Merge remote-tracking branches 'regulator/fix/anatop', 'regulator/fix/gpio', 'regulat...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_spt[HPD_NUM_PINS] = {
65 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
66 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
67 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
68 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
69 };
70
71 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
72 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
73 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
74 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
75 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
76 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
77 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
78 };
79
80 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
81 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
82 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
83 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
84 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
85 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
86 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
87 };
88
89 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
90 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
91 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
92 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
93 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
94 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
95 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
96 };
97
98 /* BXT hpd list */
99 static const u32 hpd_bxt[HPD_NUM_PINS] = {
100 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
101 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
102 };
103
104 /* IIR can theoretically queue up two events. Be paranoid. */
105 #define GEN8_IRQ_RESET_NDX(type, which) do { \
106 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
107 POSTING_READ(GEN8_##type##_IMR(which)); \
108 I915_WRITE(GEN8_##type##_IER(which), 0); \
109 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
110 POSTING_READ(GEN8_##type##_IIR(which)); \
111 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
112 POSTING_READ(GEN8_##type##_IIR(which)); \
113 } while (0)
114
115 #define GEN5_IRQ_RESET(type) do { \
116 I915_WRITE(type##IMR, 0xffffffff); \
117 POSTING_READ(type##IMR); \
118 I915_WRITE(type##IER, 0); \
119 I915_WRITE(type##IIR, 0xffffffff); \
120 POSTING_READ(type##IIR); \
121 I915_WRITE(type##IIR, 0xffffffff); \
122 POSTING_READ(type##IIR); \
123 } while (0)
124
125 /*
126 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
127 */
128 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
129 u32 val = I915_READ(reg); \
130 if (val) { \
131 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
132 (reg), val); \
133 I915_WRITE((reg), 0xffffffff); \
134 POSTING_READ(reg); \
135 I915_WRITE((reg), 0xffffffff); \
136 POSTING_READ(reg); \
137 } \
138 } while (0)
139
140 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
141 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
142 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
143 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
144 POSTING_READ(GEN8_##type##_IMR(which)); \
145 } while (0)
146
147 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
148 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
149 I915_WRITE(type##IER, (ier_val)); \
150 I915_WRITE(type##IMR, (imr_val)); \
151 POSTING_READ(type##IMR); \
152 } while (0)
153
154 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
155
156 /* For display hotplug interrupt */
157 void
158 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
159 {
160 assert_spin_locked(&dev_priv->irq_lock);
161
162 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
163 return;
164
165 if ((dev_priv->irq_mask & mask) != 0) {
166 dev_priv->irq_mask &= ~mask;
167 I915_WRITE(DEIMR, dev_priv->irq_mask);
168 POSTING_READ(DEIMR);
169 }
170 }
171
172 void
173 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
174 {
175 assert_spin_locked(&dev_priv->irq_lock);
176
177 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
178 return;
179
180 if ((dev_priv->irq_mask & mask) != mask) {
181 dev_priv->irq_mask |= mask;
182 I915_WRITE(DEIMR, dev_priv->irq_mask);
183 POSTING_READ(DEIMR);
184 }
185 }
186
187 /**
188 * ilk_update_gt_irq - update GTIMR
189 * @dev_priv: driver private
190 * @interrupt_mask: mask of interrupt bits to update
191 * @enabled_irq_mask: mask of interrupt bits to enable
192 */
193 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
194 uint32_t interrupt_mask,
195 uint32_t enabled_irq_mask)
196 {
197 assert_spin_locked(&dev_priv->irq_lock);
198
199 WARN_ON(enabled_irq_mask & ~interrupt_mask);
200
201 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
202 return;
203
204 dev_priv->gt_irq_mask &= ~interrupt_mask;
205 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
206 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
207 POSTING_READ(GTIMR);
208 }
209
210 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
211 {
212 ilk_update_gt_irq(dev_priv, mask, mask);
213 }
214
215 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
216 {
217 ilk_update_gt_irq(dev_priv, mask, 0);
218 }
219
220 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
221 {
222 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
223 }
224
225 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
226 {
227 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
228 }
229
230 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
231 {
232 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
233 }
234
235 /**
236 * snb_update_pm_irq - update GEN6_PMIMR
237 * @dev_priv: driver private
238 * @interrupt_mask: mask of interrupt bits to update
239 * @enabled_irq_mask: mask of interrupt bits to enable
240 */
241 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
242 uint32_t interrupt_mask,
243 uint32_t enabled_irq_mask)
244 {
245 uint32_t new_val;
246
247 WARN_ON(enabled_irq_mask & ~interrupt_mask);
248
249 assert_spin_locked(&dev_priv->irq_lock);
250
251 new_val = dev_priv->pm_irq_mask;
252 new_val &= ~interrupt_mask;
253 new_val |= (~enabled_irq_mask & interrupt_mask);
254
255 if (new_val != dev_priv->pm_irq_mask) {
256 dev_priv->pm_irq_mask = new_val;
257 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
258 POSTING_READ(gen6_pm_imr(dev_priv));
259 }
260 }
261
262 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
263 {
264 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
265 return;
266
267 snb_update_pm_irq(dev_priv, mask, mask);
268 }
269
270 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
271 uint32_t mask)
272 {
273 snb_update_pm_irq(dev_priv, mask, 0);
274 }
275
276 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
279 return;
280
281 __gen6_disable_pm_irq(dev_priv, mask);
282 }
283
284 void gen6_reset_rps_interrupts(struct drm_device *dev)
285 {
286 struct drm_i915_private *dev_priv = dev->dev_private;
287 uint32_t reg = gen6_pm_iir(dev_priv);
288
289 spin_lock_irq(&dev_priv->irq_lock);
290 I915_WRITE(reg, dev_priv->pm_rps_events);
291 I915_WRITE(reg, dev_priv->pm_rps_events);
292 POSTING_READ(reg);
293 dev_priv->rps.pm_iir = 0;
294 spin_unlock_irq(&dev_priv->irq_lock);
295 }
296
297 void gen6_enable_rps_interrupts(struct drm_device *dev)
298 {
299 struct drm_i915_private *dev_priv = dev->dev_private;
300
301 spin_lock_irq(&dev_priv->irq_lock);
302
303 WARN_ON(dev_priv->rps.pm_iir);
304 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
305 dev_priv->rps.interrupts_enabled = true;
306 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
307 dev_priv->pm_rps_events);
308 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
309
310 spin_unlock_irq(&dev_priv->irq_lock);
311 }
312
313 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
314 {
315 /*
316 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
317 * if GEN6_PM_UP_EI_EXPIRED is masked.
318 *
319 * TODO: verify if this can be reproduced on VLV,CHV.
320 */
321 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
322 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
323
324 if (INTEL_INFO(dev_priv)->gen >= 8)
325 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
326
327 return mask;
328 }
329
330 void gen6_disable_rps_interrupts(struct drm_device *dev)
331 {
332 struct drm_i915_private *dev_priv = dev->dev_private;
333
334 spin_lock_irq(&dev_priv->irq_lock);
335 dev_priv->rps.interrupts_enabled = false;
336 spin_unlock_irq(&dev_priv->irq_lock);
337
338 cancel_work_sync(&dev_priv->rps.work);
339
340 spin_lock_irq(&dev_priv->irq_lock);
341
342 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
343
344 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
345 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
346 ~dev_priv->pm_rps_events);
347
348 spin_unlock_irq(&dev_priv->irq_lock);
349
350 synchronize_irq(dev->irq);
351 }
352
353 /**
354 * ibx_display_interrupt_update - update SDEIMR
355 * @dev_priv: driver private
356 * @interrupt_mask: mask of interrupt bits to update
357 * @enabled_irq_mask: mask of interrupt bits to enable
358 */
359 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
360 uint32_t interrupt_mask,
361 uint32_t enabled_irq_mask)
362 {
363 uint32_t sdeimr = I915_READ(SDEIMR);
364 sdeimr &= ~interrupt_mask;
365 sdeimr |= (~enabled_irq_mask & interrupt_mask);
366
367 WARN_ON(enabled_irq_mask & ~interrupt_mask);
368
369 assert_spin_locked(&dev_priv->irq_lock);
370
371 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
372 return;
373
374 I915_WRITE(SDEIMR, sdeimr);
375 POSTING_READ(SDEIMR);
376 }
377
378 static void
379 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
380 u32 enable_mask, u32 status_mask)
381 {
382 u32 reg = PIPESTAT(pipe);
383 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
384
385 assert_spin_locked(&dev_priv->irq_lock);
386 WARN_ON(!intel_irqs_enabled(dev_priv));
387
388 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
389 status_mask & ~PIPESTAT_INT_STATUS_MASK,
390 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
391 pipe_name(pipe), enable_mask, status_mask))
392 return;
393
394 if ((pipestat & enable_mask) == enable_mask)
395 return;
396
397 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
398
399 /* Enable the interrupt, clear any pending status */
400 pipestat |= enable_mask | status_mask;
401 I915_WRITE(reg, pipestat);
402 POSTING_READ(reg);
403 }
404
405 static void
406 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
407 u32 enable_mask, u32 status_mask)
408 {
409 u32 reg = PIPESTAT(pipe);
410 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
411
412 assert_spin_locked(&dev_priv->irq_lock);
413 WARN_ON(!intel_irqs_enabled(dev_priv));
414
415 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
416 status_mask & ~PIPESTAT_INT_STATUS_MASK,
417 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
418 pipe_name(pipe), enable_mask, status_mask))
419 return;
420
421 if ((pipestat & enable_mask) == 0)
422 return;
423
424 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
425
426 pipestat &= ~enable_mask;
427 I915_WRITE(reg, pipestat);
428 POSTING_READ(reg);
429 }
430
431 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
432 {
433 u32 enable_mask = status_mask << 16;
434
435 /*
436 * On pipe A we don't support the PSR interrupt yet,
437 * on pipe B and C the same bit MBZ.
438 */
439 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
440 return 0;
441 /*
442 * On pipe B and C we don't support the PSR interrupt yet, on pipe
443 * A the same bit is for perf counters which we don't use either.
444 */
445 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
446 return 0;
447
448 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
449 SPRITE0_FLIP_DONE_INT_EN_VLV |
450 SPRITE1_FLIP_DONE_INT_EN_VLV);
451 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
452 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
453 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
454 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
455
456 return enable_mask;
457 }
458
459 void
460 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
461 u32 status_mask)
462 {
463 u32 enable_mask;
464
465 if (IS_VALLEYVIEW(dev_priv->dev))
466 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
467 status_mask);
468 else
469 enable_mask = status_mask << 16;
470 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
471 }
472
473 void
474 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
475 u32 status_mask)
476 {
477 u32 enable_mask;
478
479 if (IS_VALLEYVIEW(dev_priv->dev))
480 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
481 status_mask);
482 else
483 enable_mask = status_mask << 16;
484 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
485 }
486
487 /**
488 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
489 */
490 static void i915_enable_asle_pipestat(struct drm_device *dev)
491 {
492 struct drm_i915_private *dev_priv = dev->dev_private;
493
494 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
495 return;
496
497 spin_lock_irq(&dev_priv->irq_lock);
498
499 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
500 if (INTEL_INFO(dev)->gen >= 4)
501 i915_enable_pipestat(dev_priv, PIPE_A,
502 PIPE_LEGACY_BLC_EVENT_STATUS);
503
504 spin_unlock_irq(&dev_priv->irq_lock);
505 }
506
507 /*
508 * This timing diagram depicts the video signal in and
509 * around the vertical blanking period.
510 *
511 * Assumptions about the fictitious mode used in this example:
512 * vblank_start >= 3
513 * vsync_start = vblank_start + 1
514 * vsync_end = vblank_start + 2
515 * vtotal = vblank_start + 3
516 *
517 * start of vblank:
518 * latch double buffered registers
519 * increment frame counter (ctg+)
520 * generate start of vblank interrupt (gen4+)
521 * |
522 * | frame start:
523 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
524 * | may be shifted forward 1-3 extra lines via PIPECONF
525 * | |
526 * | | start of vsync:
527 * | | generate vsync interrupt
528 * | | |
529 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
530 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
531 * ----va---> <-----------------vb--------------------> <--------va-------------
532 * | | <----vs-----> |
533 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
534 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
535 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
536 * | | |
537 * last visible pixel first visible pixel
538 * | increment frame counter (gen3/4)
539 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
540 *
541 * x = horizontal active
542 * _ = horizontal blanking
543 * hs = horizontal sync
544 * va = vertical active
545 * vb = vertical blanking
546 * vs = vertical sync
547 * vbs = vblank_start (number)
548 *
549 * Summary:
550 * - most events happen at the start of horizontal sync
551 * - frame start happens at the start of horizontal blank, 1-4 lines
552 * (depending on PIPECONF settings) after the start of vblank
553 * - gen3/4 pixel and frame counter are synchronized with the start
554 * of horizontal active on the first line of vertical active
555 */
556
557 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
558 {
559 /* Gen2 doesn't have a hardware frame counter */
560 return 0;
561 }
562
563 /* Called from drm generic code, passed a 'crtc', which
564 * we use as a pipe index
565 */
566 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
567 {
568 struct drm_i915_private *dev_priv = dev->dev_private;
569 unsigned long high_frame;
570 unsigned long low_frame;
571 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
572 struct intel_crtc *intel_crtc =
573 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
574 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
575
576 htotal = mode->crtc_htotal;
577 hsync_start = mode->crtc_hsync_start;
578 vbl_start = mode->crtc_vblank_start;
579 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
580 vbl_start = DIV_ROUND_UP(vbl_start, 2);
581
582 /* Convert to pixel count */
583 vbl_start *= htotal;
584
585 /* Start of vblank event occurs at start of hsync */
586 vbl_start -= htotal - hsync_start;
587
588 high_frame = PIPEFRAME(pipe);
589 low_frame = PIPEFRAMEPIXEL(pipe);
590
591 /*
592 * High & low register fields aren't synchronized, so make sure
593 * we get a low value that's stable across two reads of the high
594 * register.
595 */
596 do {
597 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
598 low = I915_READ(low_frame);
599 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
600 } while (high1 != high2);
601
602 high1 >>= PIPE_FRAME_HIGH_SHIFT;
603 pixel = low & PIPE_PIXEL_MASK;
604 low >>= PIPE_FRAME_LOW_SHIFT;
605
606 /*
607 * The frame counter increments at beginning of active.
608 * Cook up a vblank counter by also checking the pixel
609 * counter against vblank start.
610 */
611 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
612 }
613
614 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
615 {
616 struct drm_i915_private *dev_priv = dev->dev_private;
617 int reg = PIPE_FRMCOUNT_GM45(pipe);
618
619 return I915_READ(reg);
620 }
621
622 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
623 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
624
625 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
626 {
627 struct drm_device *dev = crtc->base.dev;
628 struct drm_i915_private *dev_priv = dev->dev_private;
629 const struct drm_display_mode *mode = &crtc->base.hwmode;
630 enum pipe pipe = crtc->pipe;
631 int position, vtotal;
632
633 vtotal = mode->crtc_vtotal;
634 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
635 vtotal /= 2;
636
637 if (IS_GEN2(dev))
638 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
639 else
640 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
641
642 /*
643 * See update_scanline_offset() for the details on the
644 * scanline_offset adjustment.
645 */
646 return (position + crtc->scanline_offset) % vtotal;
647 }
648
649 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
650 unsigned int flags, int *vpos, int *hpos,
651 ktime_t *stime, ktime_t *etime)
652 {
653 struct drm_i915_private *dev_priv = dev->dev_private;
654 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
656 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
657 int position;
658 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
659 bool in_vbl = true;
660 int ret = 0;
661 unsigned long irqflags;
662
663 if (WARN_ON(!mode->crtc_clock)) {
664 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
665 "pipe %c\n", pipe_name(pipe));
666 return 0;
667 }
668
669 htotal = mode->crtc_htotal;
670 hsync_start = mode->crtc_hsync_start;
671 vtotal = mode->crtc_vtotal;
672 vbl_start = mode->crtc_vblank_start;
673 vbl_end = mode->crtc_vblank_end;
674
675 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
676 vbl_start = DIV_ROUND_UP(vbl_start, 2);
677 vbl_end /= 2;
678 vtotal /= 2;
679 }
680
681 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
682
683 /*
684 * Lock uncore.lock, as we will do multiple timing critical raw
685 * register reads, potentially with preemption disabled, so the
686 * following code must not block on uncore.lock.
687 */
688 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
689
690 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
691
692 /* Get optional system timestamp before query. */
693 if (stime)
694 *stime = ktime_get();
695
696 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
697 /* No obvious pixelcount register. Only query vertical
698 * scanout position from Display scan line register.
699 */
700 position = __intel_get_crtc_scanline(intel_crtc);
701 } else {
702 /* Have access to pixelcount since start of frame.
703 * We can split this into vertical and horizontal
704 * scanout position.
705 */
706 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
707
708 /* convert to pixel counts */
709 vbl_start *= htotal;
710 vbl_end *= htotal;
711 vtotal *= htotal;
712
713 /*
714 * In interlaced modes, the pixel counter counts all pixels,
715 * so one field will have htotal more pixels. In order to avoid
716 * the reported position from jumping backwards when the pixel
717 * counter is beyond the length of the shorter field, just
718 * clamp the position the length of the shorter field. This
719 * matches how the scanline counter based position works since
720 * the scanline counter doesn't count the two half lines.
721 */
722 if (position >= vtotal)
723 position = vtotal - 1;
724
725 /*
726 * Start of vblank interrupt is triggered at start of hsync,
727 * just prior to the first active line of vblank. However we
728 * consider lines to start at the leading edge of horizontal
729 * active. So, should we get here before we've crossed into
730 * the horizontal active of the first line in vblank, we would
731 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
732 * always add htotal-hsync_start to the current pixel position.
733 */
734 position = (position + htotal - hsync_start) % vtotal;
735 }
736
737 /* Get optional system timestamp after query. */
738 if (etime)
739 *etime = ktime_get();
740
741 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
742
743 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
744
745 in_vbl = position >= vbl_start && position < vbl_end;
746
747 /*
748 * While in vblank, position will be negative
749 * counting up towards 0 at vbl_end. And outside
750 * vblank, position will be positive counting
751 * up since vbl_end.
752 */
753 if (position >= vbl_start)
754 position -= vbl_end;
755 else
756 position += vtotal - vbl_end;
757
758 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
759 *vpos = position;
760 *hpos = 0;
761 } else {
762 *vpos = position / htotal;
763 *hpos = position - (*vpos * htotal);
764 }
765
766 /* In vblank? */
767 if (in_vbl)
768 ret |= DRM_SCANOUTPOS_IN_VBLANK;
769
770 return ret;
771 }
772
773 int intel_get_crtc_scanline(struct intel_crtc *crtc)
774 {
775 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
776 unsigned long irqflags;
777 int position;
778
779 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
780 position = __intel_get_crtc_scanline(crtc);
781 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782
783 return position;
784 }
785
786 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
787 int *max_error,
788 struct timeval *vblank_time,
789 unsigned flags)
790 {
791 struct drm_crtc *crtc;
792
793 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
794 DRM_ERROR("Invalid crtc %d\n", pipe);
795 return -EINVAL;
796 }
797
798 /* Get drm_crtc to timestamp: */
799 crtc = intel_get_crtc_for_pipe(dev, pipe);
800 if (crtc == NULL) {
801 DRM_ERROR("Invalid crtc %d\n", pipe);
802 return -EINVAL;
803 }
804
805 if (!crtc->hwmode.crtc_clock) {
806 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
807 return -EBUSY;
808 }
809
810 /* Helper routine in DRM core does all the work: */
811 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
812 vblank_time, flags,
813 crtc,
814 &crtc->hwmode);
815 }
816
817 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
818 {
819 struct drm_i915_private *dev_priv = dev->dev_private;
820 u32 busy_up, busy_down, max_avg, min_avg;
821 u8 new_delay;
822
823 spin_lock(&mchdev_lock);
824
825 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
826
827 new_delay = dev_priv->ips.cur_delay;
828
829 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
830 busy_up = I915_READ(RCPREVBSYTUPAVG);
831 busy_down = I915_READ(RCPREVBSYTDNAVG);
832 max_avg = I915_READ(RCBMAXAVG);
833 min_avg = I915_READ(RCBMINAVG);
834
835 /* Handle RCS change request from hw */
836 if (busy_up > max_avg) {
837 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
838 new_delay = dev_priv->ips.cur_delay - 1;
839 if (new_delay < dev_priv->ips.max_delay)
840 new_delay = dev_priv->ips.max_delay;
841 } else if (busy_down < min_avg) {
842 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
843 new_delay = dev_priv->ips.cur_delay + 1;
844 if (new_delay > dev_priv->ips.min_delay)
845 new_delay = dev_priv->ips.min_delay;
846 }
847
848 if (ironlake_set_drps(dev, new_delay))
849 dev_priv->ips.cur_delay = new_delay;
850
851 spin_unlock(&mchdev_lock);
852
853 return;
854 }
855
856 static void notify_ring(struct intel_engine_cs *ring)
857 {
858 if (!intel_ring_initialized(ring))
859 return;
860
861 trace_i915_gem_request_notify(ring);
862
863 wake_up_all(&ring->irq_queue);
864 }
865
866 static void vlv_c0_read(struct drm_i915_private *dev_priv,
867 struct intel_rps_ei *ei)
868 {
869 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
870 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
871 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
872 }
873
874 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
875 const struct intel_rps_ei *old,
876 const struct intel_rps_ei *now,
877 int threshold)
878 {
879 u64 time, c0;
880
881 if (old->cz_clock == 0)
882 return false;
883
884 time = now->cz_clock - old->cz_clock;
885 time *= threshold * dev_priv->mem_freq;
886
887 /* Workload can be split between render + media, e.g. SwapBuffers
888 * being blitted in X after being rendered in mesa. To account for
889 * this we need to combine both engines into our activity counter.
890 */
891 c0 = now->render_c0 - old->render_c0;
892 c0 += now->media_c0 - old->media_c0;
893 c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
894
895 return c0 >= time;
896 }
897
898 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
899 {
900 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
901 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
902 }
903
904 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
905 {
906 struct intel_rps_ei now;
907 u32 events = 0;
908
909 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
910 return 0;
911
912 vlv_c0_read(dev_priv, &now);
913 if (now.cz_clock == 0)
914 return 0;
915
916 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
917 if (!vlv_c0_above(dev_priv,
918 &dev_priv->rps.down_ei, &now,
919 dev_priv->rps.down_threshold))
920 events |= GEN6_PM_RP_DOWN_THRESHOLD;
921 dev_priv->rps.down_ei = now;
922 }
923
924 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
925 if (vlv_c0_above(dev_priv,
926 &dev_priv->rps.up_ei, &now,
927 dev_priv->rps.up_threshold))
928 events |= GEN6_PM_RP_UP_THRESHOLD;
929 dev_priv->rps.up_ei = now;
930 }
931
932 return events;
933 }
934
935 static bool any_waiters(struct drm_i915_private *dev_priv)
936 {
937 struct intel_engine_cs *ring;
938 int i;
939
940 for_each_ring(ring, dev_priv, i)
941 if (ring->irq_refcount)
942 return true;
943
944 return false;
945 }
946
947 static void gen6_pm_rps_work(struct work_struct *work)
948 {
949 struct drm_i915_private *dev_priv =
950 container_of(work, struct drm_i915_private, rps.work);
951 bool client_boost;
952 int new_delay, adj, min, max;
953 u32 pm_iir;
954
955 spin_lock_irq(&dev_priv->irq_lock);
956 /* Speed up work cancelation during disabling rps interrupts. */
957 if (!dev_priv->rps.interrupts_enabled) {
958 spin_unlock_irq(&dev_priv->irq_lock);
959 return;
960 }
961 pm_iir = dev_priv->rps.pm_iir;
962 dev_priv->rps.pm_iir = 0;
963 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
964 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
965 client_boost = dev_priv->rps.client_boost;
966 dev_priv->rps.client_boost = false;
967 spin_unlock_irq(&dev_priv->irq_lock);
968
969 /* Make sure we didn't queue anything we're not going to process. */
970 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
971
972 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
973 return;
974
975 mutex_lock(&dev_priv->rps.hw_lock);
976
977 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
978
979 adj = dev_priv->rps.last_adj;
980 new_delay = dev_priv->rps.cur_freq;
981 min = dev_priv->rps.min_freq_softlimit;
982 max = dev_priv->rps.max_freq_softlimit;
983
984 if (client_boost) {
985 new_delay = dev_priv->rps.max_freq_softlimit;
986 adj = 0;
987 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
988 if (adj > 0)
989 adj *= 2;
990 else /* CHV needs even encode values */
991 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
992 /*
993 * For better performance, jump directly
994 * to RPe if we're below it.
995 */
996 if (new_delay < dev_priv->rps.efficient_freq - adj) {
997 new_delay = dev_priv->rps.efficient_freq;
998 adj = 0;
999 }
1000 } else if (any_waiters(dev_priv)) {
1001 adj = 0;
1002 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1003 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1004 new_delay = dev_priv->rps.efficient_freq;
1005 else
1006 new_delay = dev_priv->rps.min_freq_softlimit;
1007 adj = 0;
1008 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1009 if (adj < 0)
1010 adj *= 2;
1011 else /* CHV needs even encode values */
1012 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1013 } else { /* unknown event */
1014 adj = 0;
1015 }
1016
1017 dev_priv->rps.last_adj = adj;
1018
1019 /* sysfs frequency interfaces may have snuck in while servicing the
1020 * interrupt
1021 */
1022 new_delay += adj;
1023 new_delay = clamp_t(int, new_delay, min, max);
1024
1025 intel_set_rps(dev_priv->dev, new_delay);
1026
1027 mutex_unlock(&dev_priv->rps.hw_lock);
1028 }
1029
1030
1031 /**
1032 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1033 * occurred.
1034 * @work: workqueue struct
1035 *
1036 * Doesn't actually do anything except notify userspace. As a consequence of
1037 * this event, userspace should try to remap the bad rows since statistically
1038 * it is likely the same row is more likely to go bad again.
1039 */
1040 static void ivybridge_parity_work(struct work_struct *work)
1041 {
1042 struct drm_i915_private *dev_priv =
1043 container_of(work, struct drm_i915_private, l3_parity.error_work);
1044 u32 error_status, row, bank, subbank;
1045 char *parity_event[6];
1046 uint32_t misccpctl;
1047 uint8_t slice = 0;
1048
1049 /* We must turn off DOP level clock gating to access the L3 registers.
1050 * In order to prevent a get/put style interface, acquire struct mutex
1051 * any time we access those registers.
1052 */
1053 mutex_lock(&dev_priv->dev->struct_mutex);
1054
1055 /* If we've screwed up tracking, just let the interrupt fire again */
1056 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1057 goto out;
1058
1059 misccpctl = I915_READ(GEN7_MISCCPCTL);
1060 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1061 POSTING_READ(GEN7_MISCCPCTL);
1062
1063 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1064 u32 reg;
1065
1066 slice--;
1067 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1068 break;
1069
1070 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1071
1072 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1073
1074 error_status = I915_READ(reg);
1075 row = GEN7_PARITY_ERROR_ROW(error_status);
1076 bank = GEN7_PARITY_ERROR_BANK(error_status);
1077 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1078
1079 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1080 POSTING_READ(reg);
1081
1082 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1083 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1084 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1085 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1086 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1087 parity_event[5] = NULL;
1088
1089 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1090 KOBJ_CHANGE, parity_event);
1091
1092 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1093 slice, row, bank, subbank);
1094
1095 kfree(parity_event[4]);
1096 kfree(parity_event[3]);
1097 kfree(parity_event[2]);
1098 kfree(parity_event[1]);
1099 }
1100
1101 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1102
1103 out:
1104 WARN_ON(dev_priv->l3_parity.which_slice);
1105 spin_lock_irq(&dev_priv->irq_lock);
1106 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1107 spin_unlock_irq(&dev_priv->irq_lock);
1108
1109 mutex_unlock(&dev_priv->dev->struct_mutex);
1110 }
1111
1112 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1113 {
1114 struct drm_i915_private *dev_priv = dev->dev_private;
1115
1116 if (!HAS_L3_DPF(dev))
1117 return;
1118
1119 spin_lock(&dev_priv->irq_lock);
1120 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1121 spin_unlock(&dev_priv->irq_lock);
1122
1123 iir &= GT_PARITY_ERROR(dev);
1124 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1125 dev_priv->l3_parity.which_slice |= 1 << 1;
1126
1127 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1128 dev_priv->l3_parity.which_slice |= 1 << 0;
1129
1130 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1131 }
1132
1133 static void ilk_gt_irq_handler(struct drm_device *dev,
1134 struct drm_i915_private *dev_priv,
1135 u32 gt_iir)
1136 {
1137 if (gt_iir &
1138 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1139 notify_ring(&dev_priv->ring[RCS]);
1140 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1141 notify_ring(&dev_priv->ring[VCS]);
1142 }
1143
1144 static void snb_gt_irq_handler(struct drm_device *dev,
1145 struct drm_i915_private *dev_priv,
1146 u32 gt_iir)
1147 {
1148
1149 if (gt_iir &
1150 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1151 notify_ring(&dev_priv->ring[RCS]);
1152 if (gt_iir & GT_BSD_USER_INTERRUPT)
1153 notify_ring(&dev_priv->ring[VCS]);
1154 if (gt_iir & GT_BLT_USER_INTERRUPT)
1155 notify_ring(&dev_priv->ring[BCS]);
1156
1157 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1158 GT_BSD_CS_ERROR_INTERRUPT |
1159 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1160 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1161
1162 if (gt_iir & GT_PARITY_ERROR(dev))
1163 ivybridge_parity_error_irq_handler(dev, gt_iir);
1164 }
1165
1166 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1167 u32 master_ctl)
1168 {
1169 irqreturn_t ret = IRQ_NONE;
1170
1171 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1172 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1173 if (tmp) {
1174 I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1175 ret = IRQ_HANDLED;
1176
1177 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1178 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1179 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1180 notify_ring(&dev_priv->ring[RCS]);
1181
1182 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1183 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1184 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1185 notify_ring(&dev_priv->ring[BCS]);
1186 } else
1187 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1188 }
1189
1190 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1191 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1192 if (tmp) {
1193 I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1194 ret = IRQ_HANDLED;
1195
1196 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1197 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1198 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1199 notify_ring(&dev_priv->ring[VCS]);
1200
1201 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1202 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1203 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1204 notify_ring(&dev_priv->ring[VCS2]);
1205 } else
1206 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1207 }
1208
1209 if (master_ctl & GEN8_GT_VECS_IRQ) {
1210 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1211 if (tmp) {
1212 I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1213 ret = IRQ_HANDLED;
1214
1215 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1216 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1217 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1218 notify_ring(&dev_priv->ring[VECS]);
1219 } else
1220 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1221 }
1222
1223 if (master_ctl & GEN8_GT_PM_IRQ) {
1224 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1225 if (tmp & dev_priv->pm_rps_events) {
1226 I915_WRITE_FW(GEN8_GT_IIR(2),
1227 tmp & dev_priv->pm_rps_events);
1228 ret = IRQ_HANDLED;
1229 gen6_rps_irq_handler(dev_priv, tmp);
1230 } else
1231 DRM_ERROR("The master control interrupt lied (PM)!\n");
1232 }
1233
1234 return ret;
1235 }
1236
1237 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1238 {
1239 switch (port) {
1240 case PORT_A:
1241 return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
1242 case PORT_B:
1243 return val & PORTB_HOTPLUG_LONG_DETECT;
1244 case PORT_C:
1245 return val & PORTC_HOTPLUG_LONG_DETECT;
1246 case PORT_D:
1247 return val & PORTD_HOTPLUG_LONG_DETECT;
1248 default:
1249 return false;
1250 }
1251 }
1252
1253 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1254 {
1255 switch (port) {
1256 case PORT_B:
1257 return val & PORTB_HOTPLUG_LONG_DETECT;
1258 case PORT_C:
1259 return val & PORTC_HOTPLUG_LONG_DETECT;
1260 case PORT_D:
1261 return val & PORTD_HOTPLUG_LONG_DETECT;
1262 case PORT_E:
1263 return val & PORTE_HOTPLUG_LONG_DETECT;
1264 default:
1265 return false;
1266 }
1267 }
1268
1269 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1270 {
1271 switch (port) {
1272 case PORT_B:
1273 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1274 case PORT_C:
1275 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1276 case PORT_D:
1277 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1278 default:
1279 return false;
1280 }
1281 }
1282
1283 /* Get a bit mask of pins that have triggered, and which ones may be long. */
1284 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1285 u32 hotplug_trigger, u32 dig_hotplug_reg,
1286 const u32 hpd[HPD_NUM_PINS],
1287 bool long_pulse_detect(enum port port, u32 val))
1288 {
1289 enum port port;
1290 int i;
1291
1292 *pin_mask = 0;
1293 *long_mask = 0;
1294
1295 for_each_hpd_pin(i) {
1296 if ((hpd[i] & hotplug_trigger) == 0)
1297 continue;
1298
1299 *pin_mask |= BIT(i);
1300
1301 if (!intel_hpd_pin_to_port(i, &port))
1302 continue;
1303
1304 if (long_pulse_detect(port, dig_hotplug_reg))
1305 *long_mask |= BIT(i);
1306 }
1307
1308 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1309 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1310
1311 }
1312
1313 static void gmbus_irq_handler(struct drm_device *dev)
1314 {
1315 struct drm_i915_private *dev_priv = dev->dev_private;
1316
1317 wake_up_all(&dev_priv->gmbus_wait_queue);
1318 }
1319
1320 static void dp_aux_irq_handler(struct drm_device *dev)
1321 {
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323
1324 wake_up_all(&dev_priv->gmbus_wait_queue);
1325 }
1326
1327 #if defined(CONFIG_DEBUG_FS)
1328 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1329 uint32_t crc0, uint32_t crc1,
1330 uint32_t crc2, uint32_t crc3,
1331 uint32_t crc4)
1332 {
1333 struct drm_i915_private *dev_priv = dev->dev_private;
1334 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1335 struct intel_pipe_crc_entry *entry;
1336 int head, tail;
1337
1338 spin_lock(&pipe_crc->lock);
1339
1340 if (!pipe_crc->entries) {
1341 spin_unlock(&pipe_crc->lock);
1342 DRM_DEBUG_KMS("spurious interrupt\n");
1343 return;
1344 }
1345
1346 head = pipe_crc->head;
1347 tail = pipe_crc->tail;
1348
1349 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1350 spin_unlock(&pipe_crc->lock);
1351 DRM_ERROR("CRC buffer overflowing\n");
1352 return;
1353 }
1354
1355 entry = &pipe_crc->entries[head];
1356
1357 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1358 entry->crc[0] = crc0;
1359 entry->crc[1] = crc1;
1360 entry->crc[2] = crc2;
1361 entry->crc[3] = crc3;
1362 entry->crc[4] = crc4;
1363
1364 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1365 pipe_crc->head = head;
1366
1367 spin_unlock(&pipe_crc->lock);
1368
1369 wake_up_interruptible(&pipe_crc->wq);
1370 }
1371 #else
1372 static inline void
1373 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1374 uint32_t crc0, uint32_t crc1,
1375 uint32_t crc2, uint32_t crc3,
1376 uint32_t crc4) {}
1377 #endif
1378
1379
1380 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1381 {
1382 struct drm_i915_private *dev_priv = dev->dev_private;
1383
1384 display_pipe_crc_irq_handler(dev, pipe,
1385 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1386 0, 0, 0, 0);
1387 }
1388
1389 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1390 {
1391 struct drm_i915_private *dev_priv = dev->dev_private;
1392
1393 display_pipe_crc_irq_handler(dev, pipe,
1394 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1395 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1396 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1397 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1398 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1399 }
1400
1401 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1402 {
1403 struct drm_i915_private *dev_priv = dev->dev_private;
1404 uint32_t res1, res2;
1405
1406 if (INTEL_INFO(dev)->gen >= 3)
1407 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1408 else
1409 res1 = 0;
1410
1411 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1412 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1413 else
1414 res2 = 0;
1415
1416 display_pipe_crc_irq_handler(dev, pipe,
1417 I915_READ(PIPE_CRC_RES_RED(pipe)),
1418 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1419 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1420 res1, res2);
1421 }
1422
1423 /* The RPS events need forcewake, so we add them to a work queue and mask their
1424 * IMR bits until the work is done. Other interrupts can be processed without
1425 * the work queue. */
1426 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1427 {
1428 if (pm_iir & dev_priv->pm_rps_events) {
1429 spin_lock(&dev_priv->irq_lock);
1430 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1431 if (dev_priv->rps.interrupts_enabled) {
1432 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1433 queue_work(dev_priv->wq, &dev_priv->rps.work);
1434 }
1435 spin_unlock(&dev_priv->irq_lock);
1436 }
1437
1438 if (INTEL_INFO(dev_priv)->gen >= 8)
1439 return;
1440
1441 if (HAS_VEBOX(dev_priv->dev)) {
1442 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1443 notify_ring(&dev_priv->ring[VECS]);
1444
1445 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1446 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1447 }
1448 }
1449
1450 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1451 {
1452 if (!drm_handle_vblank(dev, pipe))
1453 return false;
1454
1455 return true;
1456 }
1457
1458 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1459 {
1460 struct drm_i915_private *dev_priv = dev->dev_private;
1461 u32 pipe_stats[I915_MAX_PIPES] = { };
1462 int pipe;
1463
1464 spin_lock(&dev_priv->irq_lock);
1465 for_each_pipe(dev_priv, pipe) {
1466 int reg;
1467 u32 mask, iir_bit = 0;
1468
1469 /*
1470 * PIPESTAT bits get signalled even when the interrupt is
1471 * disabled with the mask bits, and some of the status bits do
1472 * not generate interrupts at all (like the underrun bit). Hence
1473 * we need to be careful that we only handle what we want to
1474 * handle.
1475 */
1476
1477 /* fifo underruns are filterered in the underrun handler. */
1478 mask = PIPE_FIFO_UNDERRUN_STATUS;
1479
1480 switch (pipe) {
1481 case PIPE_A:
1482 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1483 break;
1484 case PIPE_B:
1485 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1486 break;
1487 case PIPE_C:
1488 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1489 break;
1490 }
1491 if (iir & iir_bit)
1492 mask |= dev_priv->pipestat_irq_mask[pipe];
1493
1494 if (!mask)
1495 continue;
1496
1497 reg = PIPESTAT(pipe);
1498 mask |= PIPESTAT_INT_ENABLE_MASK;
1499 pipe_stats[pipe] = I915_READ(reg) & mask;
1500
1501 /*
1502 * Clear the PIPE*STAT regs before the IIR
1503 */
1504 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1505 PIPESTAT_INT_STATUS_MASK))
1506 I915_WRITE(reg, pipe_stats[pipe]);
1507 }
1508 spin_unlock(&dev_priv->irq_lock);
1509
1510 for_each_pipe(dev_priv, pipe) {
1511 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1512 intel_pipe_handle_vblank(dev, pipe))
1513 intel_check_page_flip(dev, pipe);
1514
1515 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1516 intel_prepare_page_flip(dev, pipe);
1517 intel_finish_page_flip(dev, pipe);
1518 }
1519
1520 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1521 i9xx_pipe_crc_irq_handler(dev, pipe);
1522
1523 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1524 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1525 }
1526
1527 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1528 gmbus_irq_handler(dev);
1529 }
1530
1531 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1532 {
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1535 u32 pin_mask, long_mask;
1536
1537 if (!hotplug_status)
1538 return;
1539
1540 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1541 /*
1542 * Make sure hotplug status is cleared before we clear IIR, or else we
1543 * may miss hotplug events.
1544 */
1545 POSTING_READ(PORT_HOTPLUG_STAT);
1546
1547 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1548 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1549
1550 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1551 hotplug_trigger, hpd_status_g4x,
1552 i9xx_port_hotplug_long_detect);
1553 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1554
1555 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1556 dp_aux_irq_handler(dev);
1557 } else {
1558 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1559
1560 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1561 hotplug_trigger, hpd_status_i915,
1562 i9xx_port_hotplug_long_detect);
1563 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1564 }
1565 }
1566
1567 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1568 {
1569 struct drm_device *dev = arg;
1570 struct drm_i915_private *dev_priv = dev->dev_private;
1571 u32 iir, gt_iir, pm_iir;
1572 irqreturn_t ret = IRQ_NONE;
1573
1574 if (!intel_irqs_enabled(dev_priv))
1575 return IRQ_NONE;
1576
1577 while (true) {
1578 /* Find, clear, then process each source of interrupt */
1579
1580 gt_iir = I915_READ(GTIIR);
1581 if (gt_iir)
1582 I915_WRITE(GTIIR, gt_iir);
1583
1584 pm_iir = I915_READ(GEN6_PMIIR);
1585 if (pm_iir)
1586 I915_WRITE(GEN6_PMIIR, pm_iir);
1587
1588 iir = I915_READ(VLV_IIR);
1589 if (iir) {
1590 /* Consume port before clearing IIR or we'll miss events */
1591 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1592 i9xx_hpd_irq_handler(dev);
1593 I915_WRITE(VLV_IIR, iir);
1594 }
1595
1596 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1597 goto out;
1598
1599 ret = IRQ_HANDLED;
1600
1601 if (gt_iir)
1602 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1603 if (pm_iir)
1604 gen6_rps_irq_handler(dev_priv, pm_iir);
1605 /* Call regardless, as some status bits might not be
1606 * signalled in iir */
1607 valleyview_pipestat_irq_handler(dev, iir);
1608 }
1609
1610 out:
1611 return ret;
1612 }
1613
1614 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1615 {
1616 struct drm_device *dev = arg;
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 u32 master_ctl, iir;
1619 irqreturn_t ret = IRQ_NONE;
1620
1621 if (!intel_irqs_enabled(dev_priv))
1622 return IRQ_NONE;
1623
1624 for (;;) {
1625 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1626 iir = I915_READ(VLV_IIR);
1627
1628 if (master_ctl == 0 && iir == 0)
1629 break;
1630
1631 ret = IRQ_HANDLED;
1632
1633 I915_WRITE(GEN8_MASTER_IRQ, 0);
1634
1635 /* Find, clear, then process each source of interrupt */
1636
1637 if (iir) {
1638 /* Consume port before clearing IIR or we'll miss events */
1639 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1640 i9xx_hpd_irq_handler(dev);
1641 I915_WRITE(VLV_IIR, iir);
1642 }
1643
1644 gen8_gt_irq_handler(dev_priv, master_ctl);
1645
1646 /* Call regardless, as some status bits might not be
1647 * signalled in iir */
1648 valleyview_pipestat_irq_handler(dev, iir);
1649
1650 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1651 POSTING_READ(GEN8_MASTER_IRQ);
1652 }
1653
1654 return ret;
1655 }
1656
1657 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1658 {
1659 struct drm_i915_private *dev_priv = dev->dev_private;
1660 int pipe;
1661 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1662
1663 if (hotplug_trigger) {
1664 u32 dig_hotplug_reg, pin_mask, long_mask;
1665
1666 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1667 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1668
1669 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1670 dig_hotplug_reg, hpd_ibx,
1671 pch_port_hotplug_long_detect);
1672 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1673 }
1674
1675 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1676 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1677 SDE_AUDIO_POWER_SHIFT);
1678 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1679 port_name(port));
1680 }
1681
1682 if (pch_iir & SDE_AUX_MASK)
1683 dp_aux_irq_handler(dev);
1684
1685 if (pch_iir & SDE_GMBUS)
1686 gmbus_irq_handler(dev);
1687
1688 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1689 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1690
1691 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1692 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1693
1694 if (pch_iir & SDE_POISON)
1695 DRM_ERROR("PCH poison interrupt\n");
1696
1697 if (pch_iir & SDE_FDI_MASK)
1698 for_each_pipe(dev_priv, pipe)
1699 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1700 pipe_name(pipe),
1701 I915_READ(FDI_RX_IIR(pipe)));
1702
1703 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1704 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1705
1706 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1707 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1708
1709 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1710 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1711
1712 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1713 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1714 }
1715
1716 static void ivb_err_int_handler(struct drm_device *dev)
1717 {
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 u32 err_int = I915_READ(GEN7_ERR_INT);
1720 enum pipe pipe;
1721
1722 if (err_int & ERR_INT_POISON)
1723 DRM_ERROR("Poison interrupt\n");
1724
1725 for_each_pipe(dev_priv, pipe) {
1726 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1727 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1728
1729 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1730 if (IS_IVYBRIDGE(dev))
1731 ivb_pipe_crc_irq_handler(dev, pipe);
1732 else
1733 hsw_pipe_crc_irq_handler(dev, pipe);
1734 }
1735 }
1736
1737 I915_WRITE(GEN7_ERR_INT, err_int);
1738 }
1739
1740 static void cpt_serr_int_handler(struct drm_device *dev)
1741 {
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 u32 serr_int = I915_READ(SERR_INT);
1744
1745 if (serr_int & SERR_INT_POISON)
1746 DRM_ERROR("PCH poison interrupt\n");
1747
1748 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1749 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1750
1751 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1752 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1753
1754 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1755 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1756
1757 I915_WRITE(SERR_INT, serr_int);
1758 }
1759
1760 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1761 {
1762 struct drm_i915_private *dev_priv = dev->dev_private;
1763 int pipe;
1764 u32 hotplug_trigger;
1765
1766 if (HAS_PCH_SPT(dev))
1767 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT;
1768 else
1769 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1770
1771 if (hotplug_trigger) {
1772 u32 dig_hotplug_reg, pin_mask, long_mask;
1773
1774 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1775 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1776
1777 if (HAS_PCH_SPT(dev)) {
1778 intel_get_hpd_pins(&pin_mask, &long_mask,
1779 hotplug_trigger,
1780 dig_hotplug_reg, hpd_spt,
1781 pch_port_hotplug_long_detect);
1782
1783 /* detect PORTE HP event */
1784 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1785 if (pch_port_hotplug_long_detect(PORT_E,
1786 dig_hotplug_reg))
1787 long_mask |= 1 << HPD_PORT_E;
1788 } else
1789 intel_get_hpd_pins(&pin_mask, &long_mask,
1790 hotplug_trigger,
1791 dig_hotplug_reg, hpd_cpt,
1792 pch_port_hotplug_long_detect);
1793
1794 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1795 }
1796
1797 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1798 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1799 SDE_AUDIO_POWER_SHIFT_CPT);
1800 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1801 port_name(port));
1802 }
1803
1804 if (pch_iir & SDE_AUX_MASK_CPT)
1805 dp_aux_irq_handler(dev);
1806
1807 if (pch_iir & SDE_GMBUS_CPT)
1808 gmbus_irq_handler(dev);
1809
1810 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1811 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1812
1813 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1814 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1815
1816 if (pch_iir & SDE_FDI_MASK_CPT)
1817 for_each_pipe(dev_priv, pipe)
1818 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1819 pipe_name(pipe),
1820 I915_READ(FDI_RX_IIR(pipe)));
1821
1822 if (pch_iir & SDE_ERROR_CPT)
1823 cpt_serr_int_handler(dev);
1824 }
1825
1826 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1827 {
1828 struct drm_i915_private *dev_priv = dev->dev_private;
1829 enum pipe pipe;
1830
1831 if (de_iir & DE_AUX_CHANNEL_A)
1832 dp_aux_irq_handler(dev);
1833
1834 if (de_iir & DE_GSE)
1835 intel_opregion_asle_intr(dev);
1836
1837 if (de_iir & DE_POISON)
1838 DRM_ERROR("Poison interrupt\n");
1839
1840 for_each_pipe(dev_priv, pipe) {
1841 if (de_iir & DE_PIPE_VBLANK(pipe) &&
1842 intel_pipe_handle_vblank(dev, pipe))
1843 intel_check_page_flip(dev, pipe);
1844
1845 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1846 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1847
1848 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1849 i9xx_pipe_crc_irq_handler(dev, pipe);
1850
1851 /* plane/pipes map 1:1 on ilk+ */
1852 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1853 intel_prepare_page_flip(dev, pipe);
1854 intel_finish_page_flip_plane(dev, pipe);
1855 }
1856 }
1857
1858 /* check event from PCH */
1859 if (de_iir & DE_PCH_EVENT) {
1860 u32 pch_iir = I915_READ(SDEIIR);
1861
1862 if (HAS_PCH_CPT(dev))
1863 cpt_irq_handler(dev, pch_iir);
1864 else
1865 ibx_irq_handler(dev, pch_iir);
1866
1867 /* should clear PCH hotplug event before clear CPU irq */
1868 I915_WRITE(SDEIIR, pch_iir);
1869 }
1870
1871 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1872 ironlake_rps_change_irq_handler(dev);
1873 }
1874
1875 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1876 {
1877 struct drm_i915_private *dev_priv = dev->dev_private;
1878 enum pipe pipe;
1879
1880 if (de_iir & DE_ERR_INT_IVB)
1881 ivb_err_int_handler(dev);
1882
1883 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1884 dp_aux_irq_handler(dev);
1885
1886 if (de_iir & DE_GSE_IVB)
1887 intel_opregion_asle_intr(dev);
1888
1889 for_each_pipe(dev_priv, pipe) {
1890 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
1891 intel_pipe_handle_vblank(dev, pipe))
1892 intel_check_page_flip(dev, pipe);
1893
1894 /* plane/pipes map 1:1 on ilk+ */
1895 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1896 intel_prepare_page_flip(dev, pipe);
1897 intel_finish_page_flip_plane(dev, pipe);
1898 }
1899 }
1900
1901 /* check event from PCH */
1902 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1903 u32 pch_iir = I915_READ(SDEIIR);
1904
1905 cpt_irq_handler(dev, pch_iir);
1906
1907 /* clear PCH hotplug event before clear CPU irq */
1908 I915_WRITE(SDEIIR, pch_iir);
1909 }
1910 }
1911
1912 /*
1913 * To handle irqs with the minimum potential races with fresh interrupts, we:
1914 * 1 - Disable Master Interrupt Control.
1915 * 2 - Find the source(s) of the interrupt.
1916 * 3 - Clear the Interrupt Identity bits (IIR).
1917 * 4 - Process the interrupt(s) that had bits set in the IIRs.
1918 * 5 - Re-enable Master Interrupt Control.
1919 */
1920 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1921 {
1922 struct drm_device *dev = arg;
1923 struct drm_i915_private *dev_priv = dev->dev_private;
1924 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1925 irqreturn_t ret = IRQ_NONE;
1926
1927 if (!intel_irqs_enabled(dev_priv))
1928 return IRQ_NONE;
1929
1930 /* We get interrupts on unclaimed registers, so check for this before we
1931 * do any I915_{READ,WRITE}. */
1932 intel_uncore_check_errors(dev);
1933
1934 /* disable master interrupt before clearing iir */
1935 de_ier = I915_READ(DEIER);
1936 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1937 POSTING_READ(DEIER);
1938
1939 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1940 * interrupts will will be stored on its back queue, and then we'll be
1941 * able to process them after we restore SDEIER (as soon as we restore
1942 * it, we'll get an interrupt if SDEIIR still has something to process
1943 * due to its back queue). */
1944 if (!HAS_PCH_NOP(dev)) {
1945 sde_ier = I915_READ(SDEIER);
1946 I915_WRITE(SDEIER, 0);
1947 POSTING_READ(SDEIER);
1948 }
1949
1950 /* Find, clear, then process each source of interrupt */
1951
1952 gt_iir = I915_READ(GTIIR);
1953 if (gt_iir) {
1954 I915_WRITE(GTIIR, gt_iir);
1955 ret = IRQ_HANDLED;
1956 if (INTEL_INFO(dev)->gen >= 6)
1957 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1958 else
1959 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1960 }
1961
1962 de_iir = I915_READ(DEIIR);
1963 if (de_iir) {
1964 I915_WRITE(DEIIR, de_iir);
1965 ret = IRQ_HANDLED;
1966 if (INTEL_INFO(dev)->gen >= 7)
1967 ivb_display_irq_handler(dev, de_iir);
1968 else
1969 ilk_display_irq_handler(dev, de_iir);
1970 }
1971
1972 if (INTEL_INFO(dev)->gen >= 6) {
1973 u32 pm_iir = I915_READ(GEN6_PMIIR);
1974 if (pm_iir) {
1975 I915_WRITE(GEN6_PMIIR, pm_iir);
1976 ret = IRQ_HANDLED;
1977 gen6_rps_irq_handler(dev_priv, pm_iir);
1978 }
1979 }
1980
1981 I915_WRITE(DEIER, de_ier);
1982 POSTING_READ(DEIER);
1983 if (!HAS_PCH_NOP(dev)) {
1984 I915_WRITE(SDEIER, sde_ier);
1985 POSTING_READ(SDEIER);
1986 }
1987
1988 return ret;
1989 }
1990
1991 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
1992 {
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994 u32 hp_control, hp_trigger;
1995 u32 pin_mask, long_mask;
1996
1997 /* Get the status */
1998 hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
1999 hp_control = I915_READ(BXT_HOTPLUG_CTL);
2000
2001 /* Hotplug not enabled ? */
2002 if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2003 DRM_ERROR("Interrupt when HPD disabled\n");
2004 return;
2005 }
2006
2007 /* Clear sticky bits in hpd status */
2008 I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2009
2010 intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
2011 hpd_bxt, bxt_port_hotplug_long_detect);
2012 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2013 }
2014
2015 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2016 {
2017 struct drm_device *dev = arg;
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019 u32 master_ctl;
2020 irqreturn_t ret = IRQ_NONE;
2021 uint32_t tmp = 0;
2022 enum pipe pipe;
2023 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2024
2025 if (!intel_irqs_enabled(dev_priv))
2026 return IRQ_NONE;
2027
2028 if (IS_GEN9(dev))
2029 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2030 GEN9_AUX_CHANNEL_D;
2031
2032 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2033 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2034 if (!master_ctl)
2035 return IRQ_NONE;
2036
2037 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2038
2039 /* Find, clear, then process each source of interrupt */
2040
2041 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2042
2043 if (master_ctl & GEN8_DE_MISC_IRQ) {
2044 tmp = I915_READ(GEN8_DE_MISC_IIR);
2045 if (tmp) {
2046 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2047 ret = IRQ_HANDLED;
2048 if (tmp & GEN8_DE_MISC_GSE)
2049 intel_opregion_asle_intr(dev);
2050 else
2051 DRM_ERROR("Unexpected DE Misc interrupt\n");
2052 }
2053 else
2054 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2055 }
2056
2057 if (master_ctl & GEN8_DE_PORT_IRQ) {
2058 tmp = I915_READ(GEN8_DE_PORT_IIR);
2059 if (tmp) {
2060 bool found = false;
2061
2062 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2063 ret = IRQ_HANDLED;
2064
2065 if (tmp & aux_mask) {
2066 dp_aux_irq_handler(dev);
2067 found = true;
2068 }
2069
2070 if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2071 bxt_hpd_handler(dev, tmp);
2072 found = true;
2073 }
2074
2075 if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2076 gmbus_irq_handler(dev);
2077 found = true;
2078 }
2079
2080 if (!found)
2081 DRM_ERROR("Unexpected DE Port interrupt\n");
2082 }
2083 else
2084 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2085 }
2086
2087 for_each_pipe(dev_priv, pipe) {
2088 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2089
2090 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2091 continue;
2092
2093 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2094 if (pipe_iir) {
2095 ret = IRQ_HANDLED;
2096 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2097
2098 if (pipe_iir & GEN8_PIPE_VBLANK &&
2099 intel_pipe_handle_vblank(dev, pipe))
2100 intel_check_page_flip(dev, pipe);
2101
2102 if (IS_GEN9(dev))
2103 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2104 else
2105 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2106
2107 if (flip_done) {
2108 intel_prepare_page_flip(dev, pipe);
2109 intel_finish_page_flip_plane(dev, pipe);
2110 }
2111
2112 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2113 hsw_pipe_crc_irq_handler(dev, pipe);
2114
2115 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2116 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2117 pipe);
2118
2119
2120 if (IS_GEN9(dev))
2121 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2122 else
2123 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2124
2125 if (fault_errors)
2126 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2127 pipe_name(pipe),
2128 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2129 } else
2130 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2131 }
2132
2133 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2134 master_ctl & GEN8_DE_PCH_IRQ) {
2135 /*
2136 * FIXME(BDW): Assume for now that the new interrupt handling
2137 * scheme also closed the SDE interrupt handling race we've seen
2138 * on older pch-split platforms. But this needs testing.
2139 */
2140 u32 pch_iir = I915_READ(SDEIIR);
2141 if (pch_iir) {
2142 I915_WRITE(SDEIIR, pch_iir);
2143 ret = IRQ_HANDLED;
2144 cpt_irq_handler(dev, pch_iir);
2145 } else
2146 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2147
2148 }
2149
2150 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2151 POSTING_READ_FW(GEN8_MASTER_IRQ);
2152
2153 return ret;
2154 }
2155
2156 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2157 bool reset_completed)
2158 {
2159 struct intel_engine_cs *ring;
2160 int i;
2161
2162 /*
2163 * Notify all waiters for GPU completion events that reset state has
2164 * been changed, and that they need to restart their wait after
2165 * checking for potential errors (and bail out to drop locks if there is
2166 * a gpu reset pending so that i915_error_work_func can acquire them).
2167 */
2168
2169 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2170 for_each_ring(ring, dev_priv, i)
2171 wake_up_all(&ring->irq_queue);
2172
2173 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2174 wake_up_all(&dev_priv->pending_flip_queue);
2175
2176 /*
2177 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2178 * reset state is cleared.
2179 */
2180 if (reset_completed)
2181 wake_up_all(&dev_priv->gpu_error.reset_queue);
2182 }
2183
2184 /**
2185 * i915_reset_and_wakeup - do process context error handling work
2186 *
2187 * Fire an error uevent so userspace can see that a hang or error
2188 * was detected.
2189 */
2190 static void i915_reset_and_wakeup(struct drm_device *dev)
2191 {
2192 struct drm_i915_private *dev_priv = to_i915(dev);
2193 struct i915_gpu_error *error = &dev_priv->gpu_error;
2194 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2195 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2196 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2197 int ret;
2198
2199 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2200
2201 /*
2202 * Note that there's only one work item which does gpu resets, so we
2203 * need not worry about concurrent gpu resets potentially incrementing
2204 * error->reset_counter twice. We only need to take care of another
2205 * racing irq/hangcheck declaring the gpu dead for a second time. A
2206 * quick check for that is good enough: schedule_work ensures the
2207 * correct ordering between hang detection and this work item, and since
2208 * the reset in-progress bit is only ever set by code outside of this
2209 * work we don't need to worry about any other races.
2210 */
2211 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2212 DRM_DEBUG_DRIVER("resetting chip\n");
2213 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2214 reset_event);
2215
2216 /*
2217 * In most cases it's guaranteed that we get here with an RPM
2218 * reference held, for example because there is a pending GPU
2219 * request that won't finish until the reset is done. This
2220 * isn't the case at least when we get here by doing a
2221 * simulated reset via debugs, so get an RPM reference.
2222 */
2223 intel_runtime_pm_get(dev_priv);
2224
2225 intel_prepare_reset(dev);
2226
2227 /*
2228 * All state reset _must_ be completed before we update the
2229 * reset counter, for otherwise waiters might miss the reset
2230 * pending state and not properly drop locks, resulting in
2231 * deadlocks with the reset work.
2232 */
2233 ret = i915_reset(dev);
2234
2235 intel_finish_reset(dev);
2236
2237 intel_runtime_pm_put(dev_priv);
2238
2239 if (ret == 0) {
2240 /*
2241 * After all the gem state is reset, increment the reset
2242 * counter and wake up everyone waiting for the reset to
2243 * complete.
2244 *
2245 * Since unlock operations are a one-sided barrier only,
2246 * we need to insert a barrier here to order any seqno
2247 * updates before
2248 * the counter increment.
2249 */
2250 smp_mb__before_atomic();
2251 atomic_inc(&dev_priv->gpu_error.reset_counter);
2252
2253 kobject_uevent_env(&dev->primary->kdev->kobj,
2254 KOBJ_CHANGE, reset_done_event);
2255 } else {
2256 atomic_or(I915_WEDGED, &error->reset_counter);
2257 }
2258
2259 /*
2260 * Note: The wake_up also serves as a memory barrier so that
2261 * waiters see the update value of the reset counter atomic_t.
2262 */
2263 i915_error_wake_up(dev_priv, true);
2264 }
2265 }
2266
2267 static void i915_report_and_clear_eir(struct drm_device *dev)
2268 {
2269 struct drm_i915_private *dev_priv = dev->dev_private;
2270 uint32_t instdone[I915_NUM_INSTDONE_REG];
2271 u32 eir = I915_READ(EIR);
2272 int pipe, i;
2273
2274 if (!eir)
2275 return;
2276
2277 pr_err("render error detected, EIR: 0x%08x\n", eir);
2278
2279 i915_get_extra_instdone(dev, instdone);
2280
2281 if (IS_G4X(dev)) {
2282 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2283 u32 ipeir = I915_READ(IPEIR_I965);
2284
2285 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2286 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2287 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2288 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2289 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2290 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2291 I915_WRITE(IPEIR_I965, ipeir);
2292 POSTING_READ(IPEIR_I965);
2293 }
2294 if (eir & GM45_ERROR_PAGE_TABLE) {
2295 u32 pgtbl_err = I915_READ(PGTBL_ER);
2296 pr_err("page table error\n");
2297 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2298 I915_WRITE(PGTBL_ER, pgtbl_err);
2299 POSTING_READ(PGTBL_ER);
2300 }
2301 }
2302
2303 if (!IS_GEN2(dev)) {
2304 if (eir & I915_ERROR_PAGE_TABLE) {
2305 u32 pgtbl_err = I915_READ(PGTBL_ER);
2306 pr_err("page table error\n");
2307 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2308 I915_WRITE(PGTBL_ER, pgtbl_err);
2309 POSTING_READ(PGTBL_ER);
2310 }
2311 }
2312
2313 if (eir & I915_ERROR_MEMORY_REFRESH) {
2314 pr_err("memory refresh error:\n");
2315 for_each_pipe(dev_priv, pipe)
2316 pr_err("pipe %c stat: 0x%08x\n",
2317 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2318 /* pipestat has already been acked */
2319 }
2320 if (eir & I915_ERROR_INSTRUCTION) {
2321 pr_err("instruction error\n");
2322 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2323 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2324 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2325 if (INTEL_INFO(dev)->gen < 4) {
2326 u32 ipeir = I915_READ(IPEIR);
2327
2328 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2329 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2330 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2331 I915_WRITE(IPEIR, ipeir);
2332 POSTING_READ(IPEIR);
2333 } else {
2334 u32 ipeir = I915_READ(IPEIR_I965);
2335
2336 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2337 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2338 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2339 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2340 I915_WRITE(IPEIR_I965, ipeir);
2341 POSTING_READ(IPEIR_I965);
2342 }
2343 }
2344
2345 I915_WRITE(EIR, eir);
2346 POSTING_READ(EIR);
2347 eir = I915_READ(EIR);
2348 if (eir) {
2349 /*
2350 * some errors might have become stuck,
2351 * mask them.
2352 */
2353 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2354 I915_WRITE(EMR, I915_READ(EMR) | eir);
2355 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2356 }
2357 }
2358
2359 /**
2360 * i915_handle_error - handle a gpu error
2361 * @dev: drm device
2362 *
2363 * Do some basic checking of regsiter state at error time and
2364 * dump it to the syslog. Also call i915_capture_error_state() to make
2365 * sure we get a record and make it available in debugfs. Fire a uevent
2366 * so userspace knows something bad happened (should trigger collection
2367 * of a ring dump etc.).
2368 */
2369 void i915_handle_error(struct drm_device *dev, bool wedged,
2370 const char *fmt, ...)
2371 {
2372 struct drm_i915_private *dev_priv = dev->dev_private;
2373 va_list args;
2374 char error_msg[80];
2375
2376 va_start(args, fmt);
2377 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2378 va_end(args);
2379
2380 i915_capture_error_state(dev, wedged, error_msg);
2381 i915_report_and_clear_eir(dev);
2382
2383 if (wedged) {
2384 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2385 &dev_priv->gpu_error.reset_counter);
2386
2387 /*
2388 * Wakeup waiting processes so that the reset function
2389 * i915_reset_and_wakeup doesn't deadlock trying to grab
2390 * various locks. By bumping the reset counter first, the woken
2391 * processes will see a reset in progress and back off,
2392 * releasing their locks and then wait for the reset completion.
2393 * We must do this for _all_ gpu waiters that might hold locks
2394 * that the reset work needs to acquire.
2395 *
2396 * Note: The wake_up serves as the required memory barrier to
2397 * ensure that the waiters see the updated value of the reset
2398 * counter atomic_t.
2399 */
2400 i915_error_wake_up(dev_priv, false);
2401 }
2402
2403 i915_reset_and_wakeup(dev);
2404 }
2405
2406 /* Called from drm generic code, passed 'crtc' which
2407 * we use as a pipe index
2408 */
2409 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2410 {
2411 struct drm_i915_private *dev_priv = dev->dev_private;
2412 unsigned long irqflags;
2413
2414 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2415 if (INTEL_INFO(dev)->gen >= 4)
2416 i915_enable_pipestat(dev_priv, pipe,
2417 PIPE_START_VBLANK_INTERRUPT_STATUS);
2418 else
2419 i915_enable_pipestat(dev_priv, pipe,
2420 PIPE_VBLANK_INTERRUPT_STATUS);
2421 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2422
2423 return 0;
2424 }
2425
2426 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2427 {
2428 struct drm_i915_private *dev_priv = dev->dev_private;
2429 unsigned long irqflags;
2430 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2431 DE_PIPE_VBLANK(pipe);
2432
2433 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2434 ironlake_enable_display_irq(dev_priv, bit);
2435 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2436
2437 return 0;
2438 }
2439
2440 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2441 {
2442 struct drm_i915_private *dev_priv = dev->dev_private;
2443 unsigned long irqflags;
2444
2445 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2446 i915_enable_pipestat(dev_priv, pipe,
2447 PIPE_START_VBLANK_INTERRUPT_STATUS);
2448 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2449
2450 return 0;
2451 }
2452
2453 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2454 {
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456 unsigned long irqflags;
2457
2458 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2459 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2460 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2461 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2462 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2463 return 0;
2464 }
2465
2466 /* Called from drm generic code, passed 'crtc' which
2467 * we use as a pipe index
2468 */
2469 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2470 {
2471 struct drm_i915_private *dev_priv = dev->dev_private;
2472 unsigned long irqflags;
2473
2474 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2475 i915_disable_pipestat(dev_priv, pipe,
2476 PIPE_VBLANK_INTERRUPT_STATUS |
2477 PIPE_START_VBLANK_INTERRUPT_STATUS);
2478 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2479 }
2480
2481 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2482 {
2483 struct drm_i915_private *dev_priv = dev->dev_private;
2484 unsigned long irqflags;
2485 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2486 DE_PIPE_VBLANK(pipe);
2487
2488 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2489 ironlake_disable_display_irq(dev_priv, bit);
2490 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2491 }
2492
2493 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2494 {
2495 struct drm_i915_private *dev_priv = dev->dev_private;
2496 unsigned long irqflags;
2497
2498 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2499 i915_disable_pipestat(dev_priv, pipe,
2500 PIPE_START_VBLANK_INTERRUPT_STATUS);
2501 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2502 }
2503
2504 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2505 {
2506 struct drm_i915_private *dev_priv = dev->dev_private;
2507 unsigned long irqflags;
2508
2509 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2510 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2511 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2512 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2513 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2514 }
2515
2516 static bool
2517 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2518 {
2519 return (list_empty(&ring->request_list) ||
2520 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2521 }
2522
2523 static bool
2524 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2525 {
2526 if (INTEL_INFO(dev)->gen >= 8) {
2527 return (ipehr >> 23) == 0x1c;
2528 } else {
2529 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2530 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2531 MI_SEMAPHORE_REGISTER);
2532 }
2533 }
2534
2535 static struct intel_engine_cs *
2536 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2537 {
2538 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2539 struct intel_engine_cs *signaller;
2540 int i;
2541
2542 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2543 for_each_ring(signaller, dev_priv, i) {
2544 if (ring == signaller)
2545 continue;
2546
2547 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2548 return signaller;
2549 }
2550 } else {
2551 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2552
2553 for_each_ring(signaller, dev_priv, i) {
2554 if(ring == signaller)
2555 continue;
2556
2557 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2558 return signaller;
2559 }
2560 }
2561
2562 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2563 ring->id, ipehr, offset);
2564
2565 return NULL;
2566 }
2567
2568 static struct intel_engine_cs *
2569 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2570 {
2571 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2572 u32 cmd, ipehr, head;
2573 u64 offset = 0;
2574 int i, backwards;
2575
2576 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2577 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2578 return NULL;
2579
2580 /*
2581 * HEAD is likely pointing to the dword after the actual command,
2582 * so scan backwards until we find the MBOX. But limit it to just 3
2583 * or 4 dwords depending on the semaphore wait command size.
2584 * Note that we don't care about ACTHD here since that might
2585 * point at at batch, and semaphores are always emitted into the
2586 * ringbuffer itself.
2587 */
2588 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2589 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2590
2591 for (i = backwards; i; --i) {
2592 /*
2593 * Be paranoid and presume the hw has gone off into the wild -
2594 * our ring is smaller than what the hardware (and hence
2595 * HEAD_ADDR) allows. Also handles wrap-around.
2596 */
2597 head &= ring->buffer->size - 1;
2598
2599 /* This here seems to blow up */
2600 cmd = ioread32(ring->buffer->virtual_start + head);
2601 if (cmd == ipehr)
2602 break;
2603
2604 head -= 4;
2605 }
2606
2607 if (!i)
2608 return NULL;
2609
2610 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2611 if (INTEL_INFO(ring->dev)->gen >= 8) {
2612 offset = ioread32(ring->buffer->virtual_start + head + 12);
2613 offset <<= 32;
2614 offset = ioread32(ring->buffer->virtual_start + head + 8);
2615 }
2616 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2617 }
2618
2619 static int semaphore_passed(struct intel_engine_cs *ring)
2620 {
2621 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2622 struct intel_engine_cs *signaller;
2623 u32 seqno;
2624
2625 ring->hangcheck.deadlock++;
2626
2627 signaller = semaphore_waits_for(ring, &seqno);
2628 if (signaller == NULL)
2629 return -1;
2630
2631 /* Prevent pathological recursion due to driver bugs */
2632 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2633 return -1;
2634
2635 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2636 return 1;
2637
2638 /* cursory check for an unkickable deadlock */
2639 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2640 semaphore_passed(signaller) < 0)
2641 return -1;
2642
2643 return 0;
2644 }
2645
2646 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2647 {
2648 struct intel_engine_cs *ring;
2649 int i;
2650
2651 for_each_ring(ring, dev_priv, i)
2652 ring->hangcheck.deadlock = 0;
2653 }
2654
2655 static enum intel_ring_hangcheck_action
2656 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2657 {
2658 struct drm_device *dev = ring->dev;
2659 struct drm_i915_private *dev_priv = dev->dev_private;
2660 u32 tmp;
2661
2662 if (acthd != ring->hangcheck.acthd) {
2663 if (acthd > ring->hangcheck.max_acthd) {
2664 ring->hangcheck.max_acthd = acthd;
2665 return HANGCHECK_ACTIVE;
2666 }
2667
2668 return HANGCHECK_ACTIVE_LOOP;
2669 }
2670
2671 if (IS_GEN2(dev))
2672 return HANGCHECK_HUNG;
2673
2674 /* Is the chip hanging on a WAIT_FOR_EVENT?
2675 * If so we can simply poke the RB_WAIT bit
2676 * and break the hang. This should work on
2677 * all but the second generation chipsets.
2678 */
2679 tmp = I915_READ_CTL(ring);
2680 if (tmp & RING_WAIT) {
2681 i915_handle_error(dev, false,
2682 "Kicking stuck wait on %s",
2683 ring->name);
2684 I915_WRITE_CTL(ring, tmp);
2685 return HANGCHECK_KICK;
2686 }
2687
2688 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2689 switch (semaphore_passed(ring)) {
2690 default:
2691 return HANGCHECK_HUNG;
2692 case 1:
2693 i915_handle_error(dev, false,
2694 "Kicking stuck semaphore on %s",
2695 ring->name);
2696 I915_WRITE_CTL(ring, tmp);
2697 return HANGCHECK_KICK;
2698 case 0:
2699 return HANGCHECK_WAIT;
2700 }
2701 }
2702
2703 return HANGCHECK_HUNG;
2704 }
2705
2706 /*
2707 * This is called when the chip hasn't reported back with completed
2708 * batchbuffers in a long time. We keep track per ring seqno progress and
2709 * if there are no progress, hangcheck score for that ring is increased.
2710 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2711 * we kick the ring. If we see no progress on three subsequent calls
2712 * we assume chip is wedged and try to fix it by resetting the chip.
2713 */
2714 static void i915_hangcheck_elapsed(struct work_struct *work)
2715 {
2716 struct drm_i915_private *dev_priv =
2717 container_of(work, typeof(*dev_priv),
2718 gpu_error.hangcheck_work.work);
2719 struct drm_device *dev = dev_priv->dev;
2720 struct intel_engine_cs *ring;
2721 int i;
2722 int busy_count = 0, rings_hung = 0;
2723 bool stuck[I915_NUM_RINGS] = { 0 };
2724 #define BUSY 1
2725 #define KICK 5
2726 #define HUNG 20
2727
2728 if (!i915.enable_hangcheck)
2729 return;
2730
2731 for_each_ring(ring, dev_priv, i) {
2732 u64 acthd;
2733 u32 seqno;
2734 bool busy = true;
2735
2736 semaphore_clear_deadlocks(dev_priv);
2737
2738 seqno = ring->get_seqno(ring, false);
2739 acthd = intel_ring_get_active_head(ring);
2740
2741 if (ring->hangcheck.seqno == seqno) {
2742 if (ring_idle(ring, seqno)) {
2743 ring->hangcheck.action = HANGCHECK_IDLE;
2744
2745 if (waitqueue_active(&ring->irq_queue)) {
2746 /* Issue a wake-up to catch stuck h/w. */
2747 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2748 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2749 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2750 ring->name);
2751 else
2752 DRM_INFO("Fake missed irq on %s\n",
2753 ring->name);
2754 wake_up_all(&ring->irq_queue);
2755 }
2756 /* Safeguard against driver failure */
2757 ring->hangcheck.score += BUSY;
2758 } else
2759 busy = false;
2760 } else {
2761 /* We always increment the hangcheck score
2762 * if the ring is busy and still processing
2763 * the same request, so that no single request
2764 * can run indefinitely (such as a chain of
2765 * batches). The only time we do not increment
2766 * the hangcheck score on this ring, if this
2767 * ring is in a legitimate wait for another
2768 * ring. In that case the waiting ring is a
2769 * victim and we want to be sure we catch the
2770 * right culprit. Then every time we do kick
2771 * the ring, add a small increment to the
2772 * score so that we can catch a batch that is
2773 * being repeatedly kicked and so responsible
2774 * for stalling the machine.
2775 */
2776 ring->hangcheck.action = ring_stuck(ring,
2777 acthd);
2778
2779 switch (ring->hangcheck.action) {
2780 case HANGCHECK_IDLE:
2781 case HANGCHECK_WAIT:
2782 case HANGCHECK_ACTIVE:
2783 break;
2784 case HANGCHECK_ACTIVE_LOOP:
2785 ring->hangcheck.score += BUSY;
2786 break;
2787 case HANGCHECK_KICK:
2788 ring->hangcheck.score += KICK;
2789 break;
2790 case HANGCHECK_HUNG:
2791 ring->hangcheck.score += HUNG;
2792 stuck[i] = true;
2793 break;
2794 }
2795 }
2796 } else {
2797 ring->hangcheck.action = HANGCHECK_ACTIVE;
2798
2799 /* Gradually reduce the count so that we catch DoS
2800 * attempts across multiple batches.
2801 */
2802 if (ring->hangcheck.score > 0)
2803 ring->hangcheck.score--;
2804
2805 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2806 }
2807
2808 ring->hangcheck.seqno = seqno;
2809 ring->hangcheck.acthd = acthd;
2810 busy_count += busy;
2811 }
2812
2813 for_each_ring(ring, dev_priv, i) {
2814 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2815 DRM_INFO("%s on %s\n",
2816 stuck[i] ? "stuck" : "no progress",
2817 ring->name);
2818 rings_hung++;
2819 }
2820 }
2821
2822 if (rings_hung)
2823 return i915_handle_error(dev, true, "Ring hung");
2824
2825 if (busy_count)
2826 /* Reset timer case chip hangs without another request
2827 * being added */
2828 i915_queue_hangcheck(dev);
2829 }
2830
2831 void i915_queue_hangcheck(struct drm_device *dev)
2832 {
2833 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2834
2835 if (!i915.enable_hangcheck)
2836 return;
2837
2838 /* Don't continually defer the hangcheck so that it is always run at
2839 * least once after work has been scheduled on any ring. Otherwise,
2840 * we will ignore a hung ring if a second ring is kept busy.
2841 */
2842
2843 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2844 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2845 }
2846
2847 static void ibx_irq_reset(struct drm_device *dev)
2848 {
2849 struct drm_i915_private *dev_priv = dev->dev_private;
2850
2851 if (HAS_PCH_NOP(dev))
2852 return;
2853
2854 GEN5_IRQ_RESET(SDE);
2855
2856 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2857 I915_WRITE(SERR_INT, 0xffffffff);
2858 }
2859
2860 /*
2861 * SDEIER is also touched by the interrupt handler to work around missed PCH
2862 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2863 * instead we unconditionally enable all PCH interrupt sources here, but then
2864 * only unmask them as needed with SDEIMR.
2865 *
2866 * This function needs to be called before interrupts are enabled.
2867 */
2868 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2869 {
2870 struct drm_i915_private *dev_priv = dev->dev_private;
2871
2872 if (HAS_PCH_NOP(dev))
2873 return;
2874
2875 WARN_ON(I915_READ(SDEIER) != 0);
2876 I915_WRITE(SDEIER, 0xffffffff);
2877 POSTING_READ(SDEIER);
2878 }
2879
2880 static void gen5_gt_irq_reset(struct drm_device *dev)
2881 {
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883
2884 GEN5_IRQ_RESET(GT);
2885 if (INTEL_INFO(dev)->gen >= 6)
2886 GEN5_IRQ_RESET(GEN6_PM);
2887 }
2888
2889 /* drm_dma.h hooks
2890 */
2891 static void ironlake_irq_reset(struct drm_device *dev)
2892 {
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894
2895 I915_WRITE(HWSTAM, 0xffffffff);
2896
2897 GEN5_IRQ_RESET(DE);
2898 if (IS_GEN7(dev))
2899 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2900
2901 gen5_gt_irq_reset(dev);
2902
2903 ibx_irq_reset(dev);
2904 }
2905
2906 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2907 {
2908 enum pipe pipe;
2909
2910 I915_WRITE(PORT_HOTPLUG_EN, 0);
2911 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2912
2913 for_each_pipe(dev_priv, pipe)
2914 I915_WRITE(PIPESTAT(pipe), 0xffff);
2915
2916 GEN5_IRQ_RESET(VLV_);
2917 }
2918
2919 static void valleyview_irq_preinstall(struct drm_device *dev)
2920 {
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922
2923 /* VLV magic */
2924 I915_WRITE(VLV_IMR, 0);
2925 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2926 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2927 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2928
2929 gen5_gt_irq_reset(dev);
2930
2931 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2932
2933 vlv_display_irq_reset(dev_priv);
2934 }
2935
2936 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2937 {
2938 GEN8_IRQ_RESET_NDX(GT, 0);
2939 GEN8_IRQ_RESET_NDX(GT, 1);
2940 GEN8_IRQ_RESET_NDX(GT, 2);
2941 GEN8_IRQ_RESET_NDX(GT, 3);
2942 }
2943
2944 static void gen8_irq_reset(struct drm_device *dev)
2945 {
2946 struct drm_i915_private *dev_priv = dev->dev_private;
2947 int pipe;
2948
2949 I915_WRITE(GEN8_MASTER_IRQ, 0);
2950 POSTING_READ(GEN8_MASTER_IRQ);
2951
2952 gen8_gt_irq_reset(dev_priv);
2953
2954 for_each_pipe(dev_priv, pipe)
2955 if (intel_display_power_is_enabled(dev_priv,
2956 POWER_DOMAIN_PIPE(pipe)))
2957 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2958
2959 GEN5_IRQ_RESET(GEN8_DE_PORT_);
2960 GEN5_IRQ_RESET(GEN8_DE_MISC_);
2961 GEN5_IRQ_RESET(GEN8_PCU_);
2962
2963 if (HAS_PCH_SPLIT(dev))
2964 ibx_irq_reset(dev);
2965 }
2966
2967 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2968 unsigned int pipe_mask)
2969 {
2970 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2971
2972 spin_lock_irq(&dev_priv->irq_lock);
2973 if (pipe_mask & 1 << PIPE_A)
2974 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
2975 dev_priv->de_irq_mask[PIPE_A],
2976 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
2977 if (pipe_mask & 1 << PIPE_B)
2978 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
2979 dev_priv->de_irq_mask[PIPE_B],
2980 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
2981 if (pipe_mask & 1 << PIPE_C)
2982 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
2983 dev_priv->de_irq_mask[PIPE_C],
2984 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
2985 spin_unlock_irq(&dev_priv->irq_lock);
2986 }
2987
2988 static void cherryview_irq_preinstall(struct drm_device *dev)
2989 {
2990 struct drm_i915_private *dev_priv = dev->dev_private;
2991
2992 I915_WRITE(GEN8_MASTER_IRQ, 0);
2993 POSTING_READ(GEN8_MASTER_IRQ);
2994
2995 gen8_gt_irq_reset(dev_priv);
2996
2997 GEN5_IRQ_RESET(GEN8_PCU_);
2998
2999 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3000
3001 vlv_display_irq_reset(dev_priv);
3002 }
3003
3004 static void ibx_hpd_irq_setup(struct drm_device *dev)
3005 {
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 struct intel_encoder *intel_encoder;
3008 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3009
3010 if (HAS_PCH_IBX(dev)) {
3011 hotplug_irqs = SDE_HOTPLUG_MASK;
3012 for_each_intel_encoder(dev, intel_encoder)
3013 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3014 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3015 } else if (HAS_PCH_SPT(dev)) {
3016 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3017 for_each_intel_encoder(dev, intel_encoder)
3018 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3019 enabled_irqs |= hpd_spt[intel_encoder->hpd_pin];
3020 } else {
3021 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3022 for_each_intel_encoder(dev, intel_encoder)
3023 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3024 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3025 }
3026
3027 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3028
3029 /*
3030 * Enable digital hotplug on the PCH, and configure the DP short pulse
3031 * duration to 2ms (which is the minimum in the Display Port spec)
3032 *
3033 * This register is the same on all known PCH chips.
3034 */
3035 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3036 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3037 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3038 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3039 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3040 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3041
3042 /* enable SPT PORTE hot plug */
3043 if (HAS_PCH_SPT(dev)) {
3044 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3045 hotplug |= PORTE_HOTPLUG_ENABLE;
3046 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3047 }
3048 }
3049
3050 static void bxt_hpd_irq_setup(struct drm_device *dev)
3051 {
3052 struct drm_i915_private *dev_priv = dev->dev_private;
3053 struct intel_encoder *intel_encoder;
3054 u32 hotplug_port = 0;
3055 u32 hotplug_ctrl;
3056
3057 /* Now, enable HPD */
3058 for_each_intel_encoder(dev, intel_encoder) {
3059 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
3060 == HPD_ENABLED)
3061 hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3062 }
3063
3064 /* Mask all HPD control bits */
3065 hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3066
3067 /* Enable requested port in hotplug control */
3068 /* TODO: implement (short) HPD support on port A */
3069 WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3070 if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3071 hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3072 if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3073 hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3074 I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3075
3076 /* Unmask DDI hotplug in IMR */
3077 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3078 I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3079
3080 /* Enable DDI hotplug in IER */
3081 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3082 I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3083 POSTING_READ(GEN8_DE_PORT_IER);
3084 }
3085
3086 static void ibx_irq_postinstall(struct drm_device *dev)
3087 {
3088 struct drm_i915_private *dev_priv = dev->dev_private;
3089 u32 mask;
3090
3091 if (HAS_PCH_NOP(dev))
3092 return;
3093
3094 if (HAS_PCH_IBX(dev))
3095 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3096 else
3097 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3098
3099 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3100 I915_WRITE(SDEIMR, ~mask);
3101 }
3102
3103 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3104 {
3105 struct drm_i915_private *dev_priv = dev->dev_private;
3106 u32 pm_irqs, gt_irqs;
3107
3108 pm_irqs = gt_irqs = 0;
3109
3110 dev_priv->gt_irq_mask = ~0;
3111 if (HAS_L3_DPF(dev)) {
3112 /* L3 parity interrupt is always unmasked. */
3113 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3114 gt_irqs |= GT_PARITY_ERROR(dev);
3115 }
3116
3117 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3118 if (IS_GEN5(dev)) {
3119 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3120 ILK_BSD_USER_INTERRUPT;
3121 } else {
3122 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3123 }
3124
3125 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3126
3127 if (INTEL_INFO(dev)->gen >= 6) {
3128 /*
3129 * RPS interrupts will get enabled/disabled on demand when RPS
3130 * itself is enabled/disabled.
3131 */
3132 if (HAS_VEBOX(dev))
3133 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3134
3135 dev_priv->pm_irq_mask = 0xffffffff;
3136 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3137 }
3138 }
3139
3140 static int ironlake_irq_postinstall(struct drm_device *dev)
3141 {
3142 struct drm_i915_private *dev_priv = dev->dev_private;
3143 u32 display_mask, extra_mask;
3144
3145 if (INTEL_INFO(dev)->gen >= 7) {
3146 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3147 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3148 DE_PLANEB_FLIP_DONE_IVB |
3149 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3150 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3151 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3152 } else {
3153 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3154 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3155 DE_AUX_CHANNEL_A |
3156 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3157 DE_POISON);
3158 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3159 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3160 }
3161
3162 dev_priv->irq_mask = ~display_mask;
3163
3164 I915_WRITE(HWSTAM, 0xeffe);
3165
3166 ibx_irq_pre_postinstall(dev);
3167
3168 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3169
3170 gen5_gt_irq_postinstall(dev);
3171
3172 ibx_irq_postinstall(dev);
3173
3174 if (IS_IRONLAKE_M(dev)) {
3175 /* Enable PCU event interrupts
3176 *
3177 * spinlocking not required here for correctness since interrupt
3178 * setup is guaranteed to run in single-threaded context. But we
3179 * need it to make the assert_spin_locked happy. */
3180 spin_lock_irq(&dev_priv->irq_lock);
3181 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3182 spin_unlock_irq(&dev_priv->irq_lock);
3183 }
3184
3185 return 0;
3186 }
3187
3188 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3189 {
3190 u32 pipestat_mask;
3191 u32 iir_mask;
3192 enum pipe pipe;
3193
3194 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3195 PIPE_FIFO_UNDERRUN_STATUS;
3196
3197 for_each_pipe(dev_priv, pipe)
3198 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3199 POSTING_READ(PIPESTAT(PIPE_A));
3200
3201 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3202 PIPE_CRC_DONE_INTERRUPT_STATUS;
3203
3204 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3205 for_each_pipe(dev_priv, pipe)
3206 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3207
3208 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3209 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3210 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3211 if (IS_CHERRYVIEW(dev_priv))
3212 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3213 dev_priv->irq_mask &= ~iir_mask;
3214
3215 I915_WRITE(VLV_IIR, iir_mask);
3216 I915_WRITE(VLV_IIR, iir_mask);
3217 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3218 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3219 POSTING_READ(VLV_IMR);
3220 }
3221
3222 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3223 {
3224 u32 pipestat_mask;
3225 u32 iir_mask;
3226 enum pipe pipe;
3227
3228 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3229 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3230 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3231 if (IS_CHERRYVIEW(dev_priv))
3232 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3233
3234 dev_priv->irq_mask |= iir_mask;
3235 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3236 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3237 I915_WRITE(VLV_IIR, iir_mask);
3238 I915_WRITE(VLV_IIR, iir_mask);
3239 POSTING_READ(VLV_IIR);
3240
3241 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3242 PIPE_CRC_DONE_INTERRUPT_STATUS;
3243
3244 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3245 for_each_pipe(dev_priv, pipe)
3246 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3247
3248 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3249 PIPE_FIFO_UNDERRUN_STATUS;
3250
3251 for_each_pipe(dev_priv, pipe)
3252 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3253 POSTING_READ(PIPESTAT(PIPE_A));
3254 }
3255
3256 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3257 {
3258 assert_spin_locked(&dev_priv->irq_lock);
3259
3260 if (dev_priv->display_irqs_enabled)
3261 return;
3262
3263 dev_priv->display_irqs_enabled = true;
3264
3265 if (intel_irqs_enabled(dev_priv))
3266 valleyview_display_irqs_install(dev_priv);
3267 }
3268
3269 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3270 {
3271 assert_spin_locked(&dev_priv->irq_lock);
3272
3273 if (!dev_priv->display_irqs_enabled)
3274 return;
3275
3276 dev_priv->display_irqs_enabled = false;
3277
3278 if (intel_irqs_enabled(dev_priv))
3279 valleyview_display_irqs_uninstall(dev_priv);
3280 }
3281
3282 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3283 {
3284 dev_priv->irq_mask = ~0;
3285
3286 I915_WRITE(PORT_HOTPLUG_EN, 0);
3287 POSTING_READ(PORT_HOTPLUG_EN);
3288
3289 I915_WRITE(VLV_IIR, 0xffffffff);
3290 I915_WRITE(VLV_IIR, 0xffffffff);
3291 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3292 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3293 POSTING_READ(VLV_IMR);
3294
3295 /* Interrupt setup is already guaranteed to be single-threaded, this is
3296 * just to make the assert_spin_locked check happy. */
3297 spin_lock_irq(&dev_priv->irq_lock);
3298 if (dev_priv->display_irqs_enabled)
3299 valleyview_display_irqs_install(dev_priv);
3300 spin_unlock_irq(&dev_priv->irq_lock);
3301 }
3302
3303 static int valleyview_irq_postinstall(struct drm_device *dev)
3304 {
3305 struct drm_i915_private *dev_priv = dev->dev_private;
3306
3307 vlv_display_irq_postinstall(dev_priv);
3308
3309 gen5_gt_irq_postinstall(dev);
3310
3311 /* ack & enable invalid PTE error interrupts */
3312 #if 0 /* FIXME: add support to irq handler for checking these bits */
3313 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3314 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3315 #endif
3316
3317 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3318
3319 return 0;
3320 }
3321
3322 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3323 {
3324 /* These are interrupts we'll toggle with the ring mask register */
3325 uint32_t gt_interrupts[] = {
3326 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3327 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3328 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3329 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3330 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3331 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3332 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3333 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3334 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3335 0,
3336 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3337 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3338 };
3339
3340 dev_priv->pm_irq_mask = 0xffffffff;
3341 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3342 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3343 /*
3344 * RPS interrupts will get enabled/disabled on demand when RPS itself
3345 * is enabled/disabled.
3346 */
3347 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3348 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3349 }
3350
3351 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3352 {
3353 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3354 uint32_t de_pipe_enables;
3355 int pipe;
3356 u32 de_port_en = GEN8_AUX_CHANNEL_A;
3357
3358 if (IS_GEN9(dev_priv)) {
3359 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3360 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3361 de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3362 GEN9_AUX_CHANNEL_D;
3363
3364 if (IS_BROXTON(dev_priv))
3365 de_port_en |= BXT_DE_PORT_GMBUS;
3366 } else
3367 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3368 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3369
3370 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3371 GEN8_PIPE_FIFO_UNDERRUN;
3372
3373 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3374 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3375 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3376
3377 for_each_pipe(dev_priv, pipe)
3378 if (intel_display_power_is_enabled(dev_priv,
3379 POWER_DOMAIN_PIPE(pipe)))
3380 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3381 dev_priv->de_irq_mask[pipe],
3382 de_pipe_enables);
3383
3384 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3385 }
3386
3387 static int gen8_irq_postinstall(struct drm_device *dev)
3388 {
3389 struct drm_i915_private *dev_priv = dev->dev_private;
3390
3391 if (HAS_PCH_SPLIT(dev))
3392 ibx_irq_pre_postinstall(dev);
3393
3394 gen8_gt_irq_postinstall(dev_priv);
3395 gen8_de_irq_postinstall(dev_priv);
3396
3397 if (HAS_PCH_SPLIT(dev))
3398 ibx_irq_postinstall(dev);
3399
3400 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3401 POSTING_READ(GEN8_MASTER_IRQ);
3402
3403 return 0;
3404 }
3405
3406 static int cherryview_irq_postinstall(struct drm_device *dev)
3407 {
3408 struct drm_i915_private *dev_priv = dev->dev_private;
3409
3410 vlv_display_irq_postinstall(dev_priv);
3411
3412 gen8_gt_irq_postinstall(dev_priv);
3413
3414 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3415 POSTING_READ(GEN8_MASTER_IRQ);
3416
3417 return 0;
3418 }
3419
3420 static void gen8_irq_uninstall(struct drm_device *dev)
3421 {
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423
3424 if (!dev_priv)
3425 return;
3426
3427 gen8_irq_reset(dev);
3428 }
3429
3430 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3431 {
3432 /* Interrupt setup is already guaranteed to be single-threaded, this is
3433 * just to make the assert_spin_locked check happy. */
3434 spin_lock_irq(&dev_priv->irq_lock);
3435 if (dev_priv->display_irqs_enabled)
3436 valleyview_display_irqs_uninstall(dev_priv);
3437 spin_unlock_irq(&dev_priv->irq_lock);
3438
3439 vlv_display_irq_reset(dev_priv);
3440
3441 dev_priv->irq_mask = ~0;
3442 }
3443
3444 static void valleyview_irq_uninstall(struct drm_device *dev)
3445 {
3446 struct drm_i915_private *dev_priv = dev->dev_private;
3447
3448 if (!dev_priv)
3449 return;
3450
3451 I915_WRITE(VLV_MASTER_IER, 0);
3452
3453 gen5_gt_irq_reset(dev);
3454
3455 I915_WRITE(HWSTAM, 0xffffffff);
3456
3457 vlv_display_irq_uninstall(dev_priv);
3458 }
3459
3460 static void cherryview_irq_uninstall(struct drm_device *dev)
3461 {
3462 struct drm_i915_private *dev_priv = dev->dev_private;
3463
3464 if (!dev_priv)
3465 return;
3466
3467 I915_WRITE(GEN8_MASTER_IRQ, 0);
3468 POSTING_READ(GEN8_MASTER_IRQ);
3469
3470 gen8_gt_irq_reset(dev_priv);
3471
3472 GEN5_IRQ_RESET(GEN8_PCU_);
3473
3474 vlv_display_irq_uninstall(dev_priv);
3475 }
3476
3477 static void ironlake_irq_uninstall(struct drm_device *dev)
3478 {
3479 struct drm_i915_private *dev_priv = dev->dev_private;
3480
3481 if (!dev_priv)
3482 return;
3483
3484 ironlake_irq_reset(dev);
3485 }
3486
3487 static void i8xx_irq_preinstall(struct drm_device * dev)
3488 {
3489 struct drm_i915_private *dev_priv = dev->dev_private;
3490 int pipe;
3491
3492 for_each_pipe(dev_priv, pipe)
3493 I915_WRITE(PIPESTAT(pipe), 0);
3494 I915_WRITE16(IMR, 0xffff);
3495 I915_WRITE16(IER, 0x0);
3496 POSTING_READ16(IER);
3497 }
3498
3499 static int i8xx_irq_postinstall(struct drm_device *dev)
3500 {
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502
3503 I915_WRITE16(EMR,
3504 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3505
3506 /* Unmask the interrupts that we always want on. */
3507 dev_priv->irq_mask =
3508 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3509 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3510 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3511 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3512 I915_WRITE16(IMR, dev_priv->irq_mask);
3513
3514 I915_WRITE16(IER,
3515 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3516 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3517 I915_USER_INTERRUPT);
3518 POSTING_READ16(IER);
3519
3520 /* Interrupt setup is already guaranteed to be single-threaded, this is
3521 * just to make the assert_spin_locked check happy. */
3522 spin_lock_irq(&dev_priv->irq_lock);
3523 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3524 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3525 spin_unlock_irq(&dev_priv->irq_lock);
3526
3527 return 0;
3528 }
3529
3530 /*
3531 * Returns true when a page flip has completed.
3532 */
3533 static bool i8xx_handle_vblank(struct drm_device *dev,
3534 int plane, int pipe, u32 iir)
3535 {
3536 struct drm_i915_private *dev_priv = dev->dev_private;
3537 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3538
3539 if (!intel_pipe_handle_vblank(dev, pipe))
3540 return false;
3541
3542 if ((iir & flip_pending) == 0)
3543 goto check_page_flip;
3544
3545 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3546 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3547 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3548 * the flip is completed (no longer pending). Since this doesn't raise
3549 * an interrupt per se, we watch for the change at vblank.
3550 */
3551 if (I915_READ16(ISR) & flip_pending)
3552 goto check_page_flip;
3553
3554 intel_prepare_page_flip(dev, plane);
3555 intel_finish_page_flip(dev, pipe);
3556 return true;
3557
3558 check_page_flip:
3559 intel_check_page_flip(dev, pipe);
3560 return false;
3561 }
3562
3563 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3564 {
3565 struct drm_device *dev = arg;
3566 struct drm_i915_private *dev_priv = dev->dev_private;
3567 u16 iir, new_iir;
3568 u32 pipe_stats[2];
3569 int pipe;
3570 u16 flip_mask =
3571 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3572 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3573
3574 if (!intel_irqs_enabled(dev_priv))
3575 return IRQ_NONE;
3576
3577 iir = I915_READ16(IIR);
3578 if (iir == 0)
3579 return IRQ_NONE;
3580
3581 while (iir & ~flip_mask) {
3582 /* Can't rely on pipestat interrupt bit in iir as it might
3583 * have been cleared after the pipestat interrupt was received.
3584 * It doesn't set the bit in iir again, but it still produces
3585 * interrupts (for non-MSI).
3586 */
3587 spin_lock(&dev_priv->irq_lock);
3588 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3589 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3590
3591 for_each_pipe(dev_priv, pipe) {
3592 int reg = PIPESTAT(pipe);
3593 pipe_stats[pipe] = I915_READ(reg);
3594
3595 /*
3596 * Clear the PIPE*STAT regs before the IIR
3597 */
3598 if (pipe_stats[pipe] & 0x8000ffff)
3599 I915_WRITE(reg, pipe_stats[pipe]);
3600 }
3601 spin_unlock(&dev_priv->irq_lock);
3602
3603 I915_WRITE16(IIR, iir & ~flip_mask);
3604 new_iir = I915_READ16(IIR); /* Flush posted writes */
3605
3606 if (iir & I915_USER_INTERRUPT)
3607 notify_ring(&dev_priv->ring[RCS]);
3608
3609 for_each_pipe(dev_priv, pipe) {
3610 int plane = pipe;
3611 if (HAS_FBC(dev))
3612 plane = !plane;
3613
3614 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3615 i8xx_handle_vblank(dev, plane, pipe, iir))
3616 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3617
3618 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3619 i9xx_pipe_crc_irq_handler(dev, pipe);
3620
3621 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3622 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3623 pipe);
3624 }
3625
3626 iir = new_iir;
3627 }
3628
3629 return IRQ_HANDLED;
3630 }
3631
3632 static void i8xx_irq_uninstall(struct drm_device * dev)
3633 {
3634 struct drm_i915_private *dev_priv = dev->dev_private;
3635 int pipe;
3636
3637 for_each_pipe(dev_priv, pipe) {
3638 /* Clear enable bits; then clear status bits */
3639 I915_WRITE(PIPESTAT(pipe), 0);
3640 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3641 }
3642 I915_WRITE16(IMR, 0xffff);
3643 I915_WRITE16(IER, 0x0);
3644 I915_WRITE16(IIR, I915_READ16(IIR));
3645 }
3646
3647 static void i915_irq_preinstall(struct drm_device * dev)
3648 {
3649 struct drm_i915_private *dev_priv = dev->dev_private;
3650 int pipe;
3651
3652 if (I915_HAS_HOTPLUG(dev)) {
3653 I915_WRITE(PORT_HOTPLUG_EN, 0);
3654 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3655 }
3656
3657 I915_WRITE16(HWSTAM, 0xeffe);
3658 for_each_pipe(dev_priv, pipe)
3659 I915_WRITE(PIPESTAT(pipe), 0);
3660 I915_WRITE(IMR, 0xffffffff);
3661 I915_WRITE(IER, 0x0);
3662 POSTING_READ(IER);
3663 }
3664
3665 static int i915_irq_postinstall(struct drm_device *dev)
3666 {
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 u32 enable_mask;
3669
3670 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3671
3672 /* Unmask the interrupts that we always want on. */
3673 dev_priv->irq_mask =
3674 ~(I915_ASLE_INTERRUPT |
3675 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3676 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3677 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3678 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3679
3680 enable_mask =
3681 I915_ASLE_INTERRUPT |
3682 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3683 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3684 I915_USER_INTERRUPT;
3685
3686 if (I915_HAS_HOTPLUG(dev)) {
3687 I915_WRITE(PORT_HOTPLUG_EN, 0);
3688 POSTING_READ(PORT_HOTPLUG_EN);
3689
3690 /* Enable in IER... */
3691 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3692 /* and unmask in IMR */
3693 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3694 }
3695
3696 I915_WRITE(IMR, dev_priv->irq_mask);
3697 I915_WRITE(IER, enable_mask);
3698 POSTING_READ(IER);
3699
3700 i915_enable_asle_pipestat(dev);
3701
3702 /* Interrupt setup is already guaranteed to be single-threaded, this is
3703 * just to make the assert_spin_locked check happy. */
3704 spin_lock_irq(&dev_priv->irq_lock);
3705 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3706 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3707 spin_unlock_irq(&dev_priv->irq_lock);
3708
3709 return 0;
3710 }
3711
3712 /*
3713 * Returns true when a page flip has completed.
3714 */
3715 static bool i915_handle_vblank(struct drm_device *dev,
3716 int plane, int pipe, u32 iir)
3717 {
3718 struct drm_i915_private *dev_priv = dev->dev_private;
3719 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3720
3721 if (!intel_pipe_handle_vblank(dev, pipe))
3722 return false;
3723
3724 if ((iir & flip_pending) == 0)
3725 goto check_page_flip;
3726
3727 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3728 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3729 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3730 * the flip is completed (no longer pending). Since this doesn't raise
3731 * an interrupt per se, we watch for the change at vblank.
3732 */
3733 if (I915_READ(ISR) & flip_pending)
3734 goto check_page_flip;
3735
3736 intel_prepare_page_flip(dev, plane);
3737 intel_finish_page_flip(dev, pipe);
3738 return true;
3739
3740 check_page_flip:
3741 intel_check_page_flip(dev, pipe);
3742 return false;
3743 }
3744
3745 static irqreturn_t i915_irq_handler(int irq, void *arg)
3746 {
3747 struct drm_device *dev = arg;
3748 struct drm_i915_private *dev_priv = dev->dev_private;
3749 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3750 u32 flip_mask =
3751 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3752 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3753 int pipe, ret = IRQ_NONE;
3754
3755 if (!intel_irqs_enabled(dev_priv))
3756 return IRQ_NONE;
3757
3758 iir = I915_READ(IIR);
3759 do {
3760 bool irq_received = (iir & ~flip_mask) != 0;
3761 bool blc_event = false;
3762
3763 /* Can't rely on pipestat interrupt bit in iir as it might
3764 * have been cleared after the pipestat interrupt was received.
3765 * It doesn't set the bit in iir again, but it still produces
3766 * interrupts (for non-MSI).
3767 */
3768 spin_lock(&dev_priv->irq_lock);
3769 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3770 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3771
3772 for_each_pipe(dev_priv, pipe) {
3773 int reg = PIPESTAT(pipe);
3774 pipe_stats[pipe] = I915_READ(reg);
3775
3776 /* Clear the PIPE*STAT regs before the IIR */
3777 if (pipe_stats[pipe] & 0x8000ffff) {
3778 I915_WRITE(reg, pipe_stats[pipe]);
3779 irq_received = true;
3780 }
3781 }
3782 spin_unlock(&dev_priv->irq_lock);
3783
3784 if (!irq_received)
3785 break;
3786
3787 /* Consume port. Then clear IIR or we'll miss events */
3788 if (I915_HAS_HOTPLUG(dev) &&
3789 iir & I915_DISPLAY_PORT_INTERRUPT)
3790 i9xx_hpd_irq_handler(dev);
3791
3792 I915_WRITE(IIR, iir & ~flip_mask);
3793 new_iir = I915_READ(IIR); /* Flush posted writes */
3794
3795 if (iir & I915_USER_INTERRUPT)
3796 notify_ring(&dev_priv->ring[RCS]);
3797
3798 for_each_pipe(dev_priv, pipe) {
3799 int plane = pipe;
3800 if (HAS_FBC(dev))
3801 plane = !plane;
3802
3803 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3804 i915_handle_vblank(dev, plane, pipe, iir))
3805 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3806
3807 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3808 blc_event = true;
3809
3810 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3811 i9xx_pipe_crc_irq_handler(dev, pipe);
3812
3813 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3814 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3815 pipe);
3816 }
3817
3818 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3819 intel_opregion_asle_intr(dev);
3820
3821 /* With MSI, interrupts are only generated when iir
3822 * transitions from zero to nonzero. If another bit got
3823 * set while we were handling the existing iir bits, then
3824 * we would never get another interrupt.
3825 *
3826 * This is fine on non-MSI as well, as if we hit this path
3827 * we avoid exiting the interrupt handler only to generate
3828 * another one.
3829 *
3830 * Note that for MSI this could cause a stray interrupt report
3831 * if an interrupt landed in the time between writing IIR and
3832 * the posting read. This should be rare enough to never
3833 * trigger the 99% of 100,000 interrupts test for disabling
3834 * stray interrupts.
3835 */
3836 ret = IRQ_HANDLED;
3837 iir = new_iir;
3838 } while (iir & ~flip_mask);
3839
3840 return ret;
3841 }
3842
3843 static void i915_irq_uninstall(struct drm_device * dev)
3844 {
3845 struct drm_i915_private *dev_priv = dev->dev_private;
3846 int pipe;
3847
3848 if (I915_HAS_HOTPLUG(dev)) {
3849 I915_WRITE(PORT_HOTPLUG_EN, 0);
3850 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3851 }
3852
3853 I915_WRITE16(HWSTAM, 0xffff);
3854 for_each_pipe(dev_priv, pipe) {
3855 /* Clear enable bits; then clear status bits */
3856 I915_WRITE(PIPESTAT(pipe), 0);
3857 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3858 }
3859 I915_WRITE(IMR, 0xffffffff);
3860 I915_WRITE(IER, 0x0);
3861
3862 I915_WRITE(IIR, I915_READ(IIR));
3863 }
3864
3865 static void i965_irq_preinstall(struct drm_device * dev)
3866 {
3867 struct drm_i915_private *dev_priv = dev->dev_private;
3868 int pipe;
3869
3870 I915_WRITE(PORT_HOTPLUG_EN, 0);
3871 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3872
3873 I915_WRITE(HWSTAM, 0xeffe);
3874 for_each_pipe(dev_priv, pipe)
3875 I915_WRITE(PIPESTAT(pipe), 0);
3876 I915_WRITE(IMR, 0xffffffff);
3877 I915_WRITE(IER, 0x0);
3878 POSTING_READ(IER);
3879 }
3880
3881 static int i965_irq_postinstall(struct drm_device *dev)
3882 {
3883 struct drm_i915_private *dev_priv = dev->dev_private;
3884 u32 enable_mask;
3885 u32 error_mask;
3886
3887 /* Unmask the interrupts that we always want on. */
3888 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3889 I915_DISPLAY_PORT_INTERRUPT |
3890 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3891 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3892 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3893 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3894 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3895
3896 enable_mask = ~dev_priv->irq_mask;
3897 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3898 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3899 enable_mask |= I915_USER_INTERRUPT;
3900
3901 if (IS_G4X(dev))
3902 enable_mask |= I915_BSD_USER_INTERRUPT;
3903
3904 /* Interrupt setup is already guaranteed to be single-threaded, this is
3905 * just to make the assert_spin_locked check happy. */
3906 spin_lock_irq(&dev_priv->irq_lock);
3907 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3908 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3909 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910 spin_unlock_irq(&dev_priv->irq_lock);
3911
3912 /*
3913 * Enable some error detection, note the instruction error mask
3914 * bit is reserved, so we leave it masked.
3915 */
3916 if (IS_G4X(dev)) {
3917 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3918 GM45_ERROR_MEM_PRIV |
3919 GM45_ERROR_CP_PRIV |
3920 I915_ERROR_MEMORY_REFRESH);
3921 } else {
3922 error_mask = ~(I915_ERROR_PAGE_TABLE |
3923 I915_ERROR_MEMORY_REFRESH);
3924 }
3925 I915_WRITE(EMR, error_mask);
3926
3927 I915_WRITE(IMR, dev_priv->irq_mask);
3928 I915_WRITE(IER, enable_mask);
3929 POSTING_READ(IER);
3930
3931 I915_WRITE(PORT_HOTPLUG_EN, 0);
3932 POSTING_READ(PORT_HOTPLUG_EN);
3933
3934 i915_enable_asle_pipestat(dev);
3935
3936 return 0;
3937 }
3938
3939 static void i915_hpd_irq_setup(struct drm_device *dev)
3940 {
3941 struct drm_i915_private *dev_priv = dev->dev_private;
3942 struct intel_encoder *intel_encoder;
3943 u32 hotplug_en;
3944
3945 assert_spin_locked(&dev_priv->irq_lock);
3946
3947 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3948 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3949 /* Note HDMI and DP share hotplug bits */
3950 /* enable bits are the same for all generations */
3951 for_each_intel_encoder(dev, intel_encoder)
3952 if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
3953 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3954 /* Programming the CRT detection parameters tends
3955 to generate a spurious hotplug event about three
3956 seconds later. So just do it once.
3957 */
3958 if (IS_G4X(dev))
3959 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3960 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3961 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3962
3963 /* Ignore TV since it's buggy */
3964 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3965 }
3966
3967 static irqreturn_t i965_irq_handler(int irq, void *arg)
3968 {
3969 struct drm_device *dev = arg;
3970 struct drm_i915_private *dev_priv = dev->dev_private;
3971 u32 iir, new_iir;
3972 u32 pipe_stats[I915_MAX_PIPES];
3973 int ret = IRQ_NONE, pipe;
3974 u32 flip_mask =
3975 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3976 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3977
3978 if (!intel_irqs_enabled(dev_priv))
3979 return IRQ_NONE;
3980
3981 iir = I915_READ(IIR);
3982
3983 for (;;) {
3984 bool irq_received = (iir & ~flip_mask) != 0;
3985 bool blc_event = false;
3986
3987 /* Can't rely on pipestat interrupt bit in iir as it might
3988 * have been cleared after the pipestat interrupt was received.
3989 * It doesn't set the bit in iir again, but it still produces
3990 * interrupts (for non-MSI).
3991 */
3992 spin_lock(&dev_priv->irq_lock);
3993 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3994 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3995
3996 for_each_pipe(dev_priv, pipe) {
3997 int reg = PIPESTAT(pipe);
3998 pipe_stats[pipe] = I915_READ(reg);
3999
4000 /*
4001 * Clear the PIPE*STAT regs before the IIR
4002 */
4003 if (pipe_stats[pipe] & 0x8000ffff) {
4004 I915_WRITE(reg, pipe_stats[pipe]);
4005 irq_received = true;
4006 }
4007 }
4008 spin_unlock(&dev_priv->irq_lock);
4009
4010 if (!irq_received)
4011 break;
4012
4013 ret = IRQ_HANDLED;
4014
4015 /* Consume port. Then clear IIR or we'll miss events */
4016 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4017 i9xx_hpd_irq_handler(dev);
4018
4019 I915_WRITE(IIR, iir & ~flip_mask);
4020 new_iir = I915_READ(IIR); /* Flush posted writes */
4021
4022 if (iir & I915_USER_INTERRUPT)
4023 notify_ring(&dev_priv->ring[RCS]);
4024 if (iir & I915_BSD_USER_INTERRUPT)
4025 notify_ring(&dev_priv->ring[VCS]);
4026
4027 for_each_pipe(dev_priv, pipe) {
4028 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4029 i915_handle_vblank(dev, pipe, pipe, iir))
4030 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4031
4032 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4033 blc_event = true;
4034
4035 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4036 i9xx_pipe_crc_irq_handler(dev, pipe);
4037
4038 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4039 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4040 }
4041
4042 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4043 intel_opregion_asle_intr(dev);
4044
4045 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4046 gmbus_irq_handler(dev);
4047
4048 /* With MSI, interrupts are only generated when iir
4049 * transitions from zero to nonzero. If another bit got
4050 * set while we were handling the existing iir bits, then
4051 * we would never get another interrupt.
4052 *
4053 * This is fine on non-MSI as well, as if we hit this path
4054 * we avoid exiting the interrupt handler only to generate
4055 * another one.
4056 *
4057 * Note that for MSI this could cause a stray interrupt report
4058 * if an interrupt landed in the time between writing IIR and
4059 * the posting read. This should be rare enough to never
4060 * trigger the 99% of 100,000 interrupts test for disabling
4061 * stray interrupts.
4062 */
4063 iir = new_iir;
4064 }
4065
4066 return ret;
4067 }
4068
4069 static void i965_irq_uninstall(struct drm_device * dev)
4070 {
4071 struct drm_i915_private *dev_priv = dev->dev_private;
4072 int pipe;
4073
4074 if (!dev_priv)
4075 return;
4076
4077 I915_WRITE(PORT_HOTPLUG_EN, 0);
4078 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4079
4080 I915_WRITE(HWSTAM, 0xffffffff);
4081 for_each_pipe(dev_priv, pipe)
4082 I915_WRITE(PIPESTAT(pipe), 0);
4083 I915_WRITE(IMR, 0xffffffff);
4084 I915_WRITE(IER, 0x0);
4085
4086 for_each_pipe(dev_priv, pipe)
4087 I915_WRITE(PIPESTAT(pipe),
4088 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4089 I915_WRITE(IIR, I915_READ(IIR));
4090 }
4091
4092 /**
4093 * intel_irq_init - initializes irq support
4094 * @dev_priv: i915 device instance
4095 *
4096 * This function initializes all the irq support including work items, timers
4097 * and all the vtables. It does not setup the interrupt itself though.
4098 */
4099 void intel_irq_init(struct drm_i915_private *dev_priv)
4100 {
4101 struct drm_device *dev = dev_priv->dev;
4102
4103 intel_hpd_init_work(dev_priv);
4104
4105 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4106 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4107
4108 /* Let's track the enabled rps events */
4109 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4110 /* WaGsvRC0ResidencyMethod:vlv */
4111 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4112 else
4113 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4114
4115 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4116 i915_hangcheck_elapsed);
4117
4118 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4119
4120 if (IS_GEN2(dev_priv)) {
4121 dev->max_vblank_count = 0;
4122 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4123 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4124 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4125 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4126 } else {
4127 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4128 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4129 }
4130
4131 /*
4132 * Opt out of the vblank disable timer on everything except gen2.
4133 * Gen2 doesn't have a hardware frame counter and so depends on
4134 * vblank interrupts to produce sane vblank seuquence numbers.
4135 */
4136 if (!IS_GEN2(dev_priv))
4137 dev->vblank_disable_immediate = true;
4138
4139 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4140 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4141
4142 if (IS_CHERRYVIEW(dev_priv)) {
4143 dev->driver->irq_handler = cherryview_irq_handler;
4144 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4145 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4146 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4147 dev->driver->enable_vblank = valleyview_enable_vblank;
4148 dev->driver->disable_vblank = valleyview_disable_vblank;
4149 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4150 } else if (IS_VALLEYVIEW(dev_priv)) {
4151 dev->driver->irq_handler = valleyview_irq_handler;
4152 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4153 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4154 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4155 dev->driver->enable_vblank = valleyview_enable_vblank;
4156 dev->driver->disable_vblank = valleyview_disable_vblank;
4157 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4158 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4159 dev->driver->irq_handler = gen8_irq_handler;
4160 dev->driver->irq_preinstall = gen8_irq_reset;
4161 dev->driver->irq_postinstall = gen8_irq_postinstall;
4162 dev->driver->irq_uninstall = gen8_irq_uninstall;
4163 dev->driver->enable_vblank = gen8_enable_vblank;
4164 dev->driver->disable_vblank = gen8_disable_vblank;
4165 if (HAS_PCH_SPLIT(dev))
4166 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4167 else
4168 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4169 } else if (HAS_PCH_SPLIT(dev)) {
4170 dev->driver->irq_handler = ironlake_irq_handler;
4171 dev->driver->irq_preinstall = ironlake_irq_reset;
4172 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4173 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4174 dev->driver->enable_vblank = ironlake_enable_vblank;
4175 dev->driver->disable_vblank = ironlake_disable_vblank;
4176 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4177 } else {
4178 if (INTEL_INFO(dev_priv)->gen == 2) {
4179 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4180 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4181 dev->driver->irq_handler = i8xx_irq_handler;
4182 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4183 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4184 dev->driver->irq_preinstall = i915_irq_preinstall;
4185 dev->driver->irq_postinstall = i915_irq_postinstall;
4186 dev->driver->irq_uninstall = i915_irq_uninstall;
4187 dev->driver->irq_handler = i915_irq_handler;
4188 } else {
4189 dev->driver->irq_preinstall = i965_irq_preinstall;
4190 dev->driver->irq_postinstall = i965_irq_postinstall;
4191 dev->driver->irq_uninstall = i965_irq_uninstall;
4192 dev->driver->irq_handler = i965_irq_handler;
4193 }
4194 if (I915_HAS_HOTPLUG(dev_priv))
4195 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4196 dev->driver->enable_vblank = i915_enable_vblank;
4197 dev->driver->disable_vblank = i915_disable_vblank;
4198 }
4199 }
4200
4201 /**
4202 * intel_irq_install - enables the hardware interrupt
4203 * @dev_priv: i915 device instance
4204 *
4205 * This function enables the hardware interrupt handling, but leaves the hotplug
4206 * handling still disabled. It is called after intel_irq_init().
4207 *
4208 * In the driver load and resume code we need working interrupts in a few places
4209 * but don't want to deal with the hassle of concurrent probe and hotplug
4210 * workers. Hence the split into this two-stage approach.
4211 */
4212 int intel_irq_install(struct drm_i915_private *dev_priv)
4213 {
4214 /*
4215 * We enable some interrupt sources in our postinstall hooks, so mark
4216 * interrupts as enabled _before_ actually enabling them to avoid
4217 * special cases in our ordering checks.
4218 */
4219 dev_priv->pm.irqs_enabled = true;
4220
4221 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4222 }
4223
4224 /**
4225 * intel_irq_uninstall - finilizes all irq handling
4226 * @dev_priv: i915 device instance
4227 *
4228 * This stops interrupt and hotplug handling and unregisters and frees all
4229 * resources acquired in the init functions.
4230 */
4231 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4232 {
4233 drm_irq_uninstall(dev_priv->dev);
4234 intel_hpd_cancel_work(dev_priv);
4235 dev_priv->pm.irqs_enabled = false;
4236 }
4237
4238 /**
4239 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4240 * @dev_priv: i915 device instance
4241 *
4242 * This function is used to disable interrupts at runtime, both in the runtime
4243 * pm and the system suspend/resume code.
4244 */
4245 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4246 {
4247 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4248 dev_priv->pm.irqs_enabled = false;
4249 synchronize_irq(dev_priv->dev->irq);
4250 }
4251
4252 /**
4253 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4254 * @dev_priv: i915 device instance
4255 *
4256 * This function is used to enable interrupts at runtime, both in the runtime
4257 * pm and the system suspend/resume code.
4258 */
4259 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4260 {
4261 dev_priv->pm.irqs_enabled = true;
4262 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4263 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4264 }
This page took 0.133465 seconds and 6 git commands to generate.