drm/i915: Eliminate loop from VLV irq handler
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 if (!intel_engine_initialized(engine))
1000 return;
1001
1002 trace_i915_gem_request_notify(engine);
1003 engine->user_interrupts++;
1004
1005 wake_up_all(&engine->irq_queue);
1006 }
1007
1008 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1009 struct intel_rps_ei *ei)
1010 {
1011 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1012 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1013 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1014 }
1015
1016 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1017 const struct intel_rps_ei *old,
1018 const struct intel_rps_ei *now,
1019 int threshold)
1020 {
1021 u64 time, c0;
1022 unsigned int mul = 100;
1023
1024 if (old->cz_clock == 0)
1025 return false;
1026
1027 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1028 mul <<= 8;
1029
1030 time = now->cz_clock - old->cz_clock;
1031 time *= threshold * dev_priv->czclk_freq;
1032
1033 /* Workload can be split between render + media, e.g. SwapBuffers
1034 * being blitted in X after being rendered in mesa. To account for
1035 * this we need to combine both engines into our activity counter.
1036 */
1037 c0 = now->render_c0 - old->render_c0;
1038 c0 += now->media_c0 - old->media_c0;
1039 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1040
1041 return c0 >= time;
1042 }
1043
1044 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1045 {
1046 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1047 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1048 }
1049
1050 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1051 {
1052 struct intel_rps_ei now;
1053 u32 events = 0;
1054
1055 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1056 return 0;
1057
1058 vlv_c0_read(dev_priv, &now);
1059 if (now.cz_clock == 0)
1060 return 0;
1061
1062 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1063 if (!vlv_c0_above(dev_priv,
1064 &dev_priv->rps.down_ei, &now,
1065 dev_priv->rps.down_threshold))
1066 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1067 dev_priv->rps.down_ei = now;
1068 }
1069
1070 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1071 if (vlv_c0_above(dev_priv,
1072 &dev_priv->rps.up_ei, &now,
1073 dev_priv->rps.up_threshold))
1074 events |= GEN6_PM_RP_UP_THRESHOLD;
1075 dev_priv->rps.up_ei = now;
1076 }
1077
1078 return events;
1079 }
1080
1081 static bool any_waiters(struct drm_i915_private *dev_priv)
1082 {
1083 struct intel_engine_cs *engine;
1084
1085 for_each_engine(engine, dev_priv)
1086 if (engine->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->engine[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->engine[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->engine[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->engine[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->engine[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(engine);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 tasklet_schedule(&engine->irq_tasklet);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->engine[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 u32 pipe_stats[I915_MAX_PIPES] = { };
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654
1655 if (!dev_priv->display_irqs_enabled) {
1656 spin_unlock(&dev_priv->irq_lock);
1657 return;
1658 }
1659
1660 for_each_pipe(dev_priv, pipe) {
1661 i915_reg_t reg;
1662 u32 mask, iir_bit = 0;
1663
1664 /*
1665 * PIPESTAT bits get signalled even when the interrupt is
1666 * disabled with the mask bits, and some of the status bits do
1667 * not generate interrupts at all (like the underrun bit). Hence
1668 * we need to be careful that we only handle what we want to
1669 * handle.
1670 */
1671
1672 /* fifo underruns are filterered in the underrun handler. */
1673 mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675 switch (pipe) {
1676 case PIPE_A:
1677 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678 break;
1679 case PIPE_B:
1680 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681 break;
1682 case PIPE_C:
1683 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684 break;
1685 }
1686 if (iir & iir_bit)
1687 mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689 if (!mask)
1690 continue;
1691
1692 reg = PIPESTAT(pipe);
1693 mask |= PIPESTAT_INT_ENABLE_MASK;
1694 pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696 /*
1697 * Clear the PIPE*STAT regs before the IIR
1698 */
1699 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700 PIPESTAT_INT_STATUS_MASK))
1701 I915_WRITE(reg, pipe_stats[pipe]);
1702 }
1703 spin_unlock(&dev_priv->irq_lock);
1704
1705 for_each_pipe(dev_priv, pipe) {
1706 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707 intel_pipe_handle_vblank(dev, pipe))
1708 intel_check_page_flip(dev, pipe);
1709
1710 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711 intel_prepare_page_flip(dev, pipe);
1712 intel_finish_page_flip(dev, pipe);
1713 }
1714
1715 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716 i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720 }
1721
1722 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723 gmbus_irq_handler(dev);
1724 }
1725
1726 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727 {
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730 u32 pin_mask = 0, long_mask = 0;
1731
1732 if (!hotplug_status)
1733 return;
1734
1735 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736 /*
1737 * Make sure hotplug status is cleared before we clear IIR, or else we
1738 * may miss hotplug events.
1739 */
1740 POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745 if (hotplug_trigger) {
1746 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747 hotplug_trigger, hpd_status_g4x,
1748 i9xx_port_hotplug_long_detect);
1749
1750 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751 }
1752
1753 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754 dp_aux_irq_handler(dev);
1755 } else {
1756 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758 if (hotplug_trigger) {
1759 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760 hotplug_trigger, hpd_status_i915,
1761 i9xx_port_hotplug_long_detect);
1762 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763 }
1764 }
1765 }
1766
1767 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768 {
1769 struct drm_device *dev = arg;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 u32 iir, gt_iir, pm_iir;
1772 irqreturn_t ret = IRQ_NONE;
1773
1774 if (!intel_irqs_enabled(dev_priv))
1775 return IRQ_NONE;
1776
1777 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778 disable_rpm_wakeref_asserts(dev_priv);
1779
1780 do {
1781 u32 ier = 0;
1782
1783 gt_iir = I915_READ(GTIIR);
1784 pm_iir = I915_READ(GEN6_PMIIR);
1785 iir = I915_READ(VLV_IIR);
1786
1787 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1788 break;
1789
1790 ret = IRQ_HANDLED;
1791
1792 /*
1793 * Theory on interrupt generation, based on empirical evidence:
1794 *
1795 * x = ((VLV_IIR & VLV_IER) ||
1796 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1797 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1798 *
1799 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1800 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1801 * guarantee the CPU interrupt will be raised again even if we
1802 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1803 * bits this time around.
1804 */
1805 I915_WRITE(VLV_MASTER_IER, 0);
1806 ier = I915_READ(VLV_IER);
1807 I915_WRITE(VLV_IER, 0);
1808
1809 if (gt_iir)
1810 I915_WRITE(GTIIR, gt_iir);
1811 if (pm_iir)
1812 I915_WRITE(GEN6_PMIIR, pm_iir);
1813
1814 if (gt_iir)
1815 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1816 if (pm_iir)
1817 gen6_rps_irq_handler(dev_priv, pm_iir);
1818
1819 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1820 i9xx_hpd_irq_handler(dev);
1821
1822 /* Call regardless, as some status bits might not be
1823 * signalled in iir */
1824 valleyview_pipestat_irq_handler(dev, iir);
1825
1826 /*
1827 * VLV_IIR is single buffered, and reflects the level
1828 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1829 */
1830 if (iir)
1831 I915_WRITE(VLV_IIR, iir);
1832
1833 I915_WRITE(VLV_IER, ier);
1834 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1835 POSTING_READ(VLV_MASTER_IER);
1836 } while (0);
1837
1838 enable_rpm_wakeref_asserts(dev_priv);
1839
1840 return ret;
1841 }
1842
1843 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1844 {
1845 struct drm_device *dev = arg;
1846 struct drm_i915_private *dev_priv = dev->dev_private;
1847 u32 master_ctl, iir;
1848 irqreturn_t ret = IRQ_NONE;
1849
1850 if (!intel_irqs_enabled(dev_priv))
1851 return IRQ_NONE;
1852
1853 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1854 disable_rpm_wakeref_asserts(dev_priv);
1855
1856 do {
1857 u32 ier = 0;
1858
1859 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1860 iir = I915_READ(VLV_IIR);
1861
1862 if (master_ctl == 0 && iir == 0)
1863 break;
1864
1865 ret = IRQ_HANDLED;
1866
1867 /*
1868 * Theory on interrupt generation, based on empirical evidence:
1869 *
1870 * x = ((VLV_IIR & VLV_IER) ||
1871 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1872 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1873 *
1874 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1875 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1876 * guarantee the CPU interrupt will be raised again even if we
1877 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1878 * bits this time around.
1879 */
1880 I915_WRITE(GEN8_MASTER_IRQ, 0);
1881 ier = I915_READ(VLV_IER);
1882 I915_WRITE(VLV_IER, 0);
1883
1884 gen8_gt_irq_handler(dev_priv, master_ctl);
1885
1886 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1887 i9xx_hpd_irq_handler(dev);
1888
1889 /* Call regardless, as some status bits might not be
1890 * signalled in iir */
1891 valleyview_pipestat_irq_handler(dev, iir);
1892
1893 /*
1894 * VLV_IIR is single buffered, and reflects the level
1895 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1896 */
1897 if (iir)
1898 I915_WRITE(VLV_IIR, iir);
1899
1900 I915_WRITE(VLV_IER, ier);
1901 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1902 POSTING_READ(GEN8_MASTER_IRQ);
1903 } while (0);
1904
1905 enable_rpm_wakeref_asserts(dev_priv);
1906
1907 return ret;
1908 }
1909
1910 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1911 const u32 hpd[HPD_NUM_PINS])
1912 {
1913 struct drm_i915_private *dev_priv = to_i915(dev);
1914 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1915
1916 /*
1917 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1918 * unless we touch the hotplug register, even if hotplug_trigger is
1919 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1920 * errors.
1921 */
1922 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1923 if (!hotplug_trigger) {
1924 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1925 PORTD_HOTPLUG_STATUS_MASK |
1926 PORTC_HOTPLUG_STATUS_MASK |
1927 PORTB_HOTPLUG_STATUS_MASK;
1928 dig_hotplug_reg &= ~mask;
1929 }
1930
1931 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1932 if (!hotplug_trigger)
1933 return;
1934
1935 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1936 dig_hotplug_reg, hpd,
1937 pch_port_hotplug_long_detect);
1938
1939 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1940 }
1941
1942 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1943 {
1944 struct drm_i915_private *dev_priv = dev->dev_private;
1945 int pipe;
1946 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1947
1948 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1949
1950 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1951 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1952 SDE_AUDIO_POWER_SHIFT);
1953 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1954 port_name(port));
1955 }
1956
1957 if (pch_iir & SDE_AUX_MASK)
1958 dp_aux_irq_handler(dev);
1959
1960 if (pch_iir & SDE_GMBUS)
1961 gmbus_irq_handler(dev);
1962
1963 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1964 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1965
1966 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1967 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1968
1969 if (pch_iir & SDE_POISON)
1970 DRM_ERROR("PCH poison interrupt\n");
1971
1972 if (pch_iir & SDE_FDI_MASK)
1973 for_each_pipe(dev_priv, pipe)
1974 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1975 pipe_name(pipe),
1976 I915_READ(FDI_RX_IIR(pipe)));
1977
1978 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1979 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1980
1981 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1982 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1983
1984 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1985 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1986
1987 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1988 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1989 }
1990
1991 static void ivb_err_int_handler(struct drm_device *dev)
1992 {
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994 u32 err_int = I915_READ(GEN7_ERR_INT);
1995 enum pipe pipe;
1996
1997 if (err_int & ERR_INT_POISON)
1998 DRM_ERROR("Poison interrupt\n");
1999
2000 for_each_pipe(dev_priv, pipe) {
2001 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2002 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2003
2004 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2005 if (IS_IVYBRIDGE(dev))
2006 ivb_pipe_crc_irq_handler(dev, pipe);
2007 else
2008 hsw_pipe_crc_irq_handler(dev, pipe);
2009 }
2010 }
2011
2012 I915_WRITE(GEN7_ERR_INT, err_int);
2013 }
2014
2015 static void cpt_serr_int_handler(struct drm_device *dev)
2016 {
2017 struct drm_i915_private *dev_priv = dev->dev_private;
2018 u32 serr_int = I915_READ(SERR_INT);
2019
2020 if (serr_int & SERR_INT_POISON)
2021 DRM_ERROR("PCH poison interrupt\n");
2022
2023 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2024 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2025
2026 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2027 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2028
2029 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2030 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2031
2032 I915_WRITE(SERR_INT, serr_int);
2033 }
2034
2035 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2036 {
2037 struct drm_i915_private *dev_priv = dev->dev_private;
2038 int pipe;
2039 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2040
2041 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2042
2043 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2044 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2045 SDE_AUDIO_POWER_SHIFT_CPT);
2046 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2047 port_name(port));
2048 }
2049
2050 if (pch_iir & SDE_AUX_MASK_CPT)
2051 dp_aux_irq_handler(dev);
2052
2053 if (pch_iir & SDE_GMBUS_CPT)
2054 gmbus_irq_handler(dev);
2055
2056 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2057 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2058
2059 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2060 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2061
2062 if (pch_iir & SDE_FDI_MASK_CPT)
2063 for_each_pipe(dev_priv, pipe)
2064 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2065 pipe_name(pipe),
2066 I915_READ(FDI_RX_IIR(pipe)));
2067
2068 if (pch_iir & SDE_ERROR_CPT)
2069 cpt_serr_int_handler(dev);
2070 }
2071
2072 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2073 {
2074 struct drm_i915_private *dev_priv = dev->dev_private;
2075 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2076 ~SDE_PORTE_HOTPLUG_SPT;
2077 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2078 u32 pin_mask = 0, long_mask = 0;
2079
2080 if (hotplug_trigger) {
2081 u32 dig_hotplug_reg;
2082
2083 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2084 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2085
2086 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2087 dig_hotplug_reg, hpd_spt,
2088 spt_port_hotplug_long_detect);
2089 }
2090
2091 if (hotplug2_trigger) {
2092 u32 dig_hotplug_reg;
2093
2094 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2095 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2096
2097 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2098 dig_hotplug_reg, hpd_spt,
2099 spt_port_hotplug2_long_detect);
2100 }
2101
2102 if (pin_mask)
2103 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2104
2105 if (pch_iir & SDE_GMBUS_CPT)
2106 gmbus_irq_handler(dev);
2107 }
2108
2109 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2110 const u32 hpd[HPD_NUM_PINS])
2111 {
2112 struct drm_i915_private *dev_priv = to_i915(dev);
2113 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2114
2115 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2116 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2117
2118 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2119 dig_hotplug_reg, hpd,
2120 ilk_port_hotplug_long_detect);
2121
2122 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2123 }
2124
2125 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2126 {
2127 struct drm_i915_private *dev_priv = dev->dev_private;
2128 enum pipe pipe;
2129 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2130
2131 if (hotplug_trigger)
2132 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2133
2134 if (de_iir & DE_AUX_CHANNEL_A)
2135 dp_aux_irq_handler(dev);
2136
2137 if (de_iir & DE_GSE)
2138 intel_opregion_asle_intr(dev);
2139
2140 if (de_iir & DE_POISON)
2141 DRM_ERROR("Poison interrupt\n");
2142
2143 for_each_pipe(dev_priv, pipe) {
2144 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2145 intel_pipe_handle_vblank(dev, pipe))
2146 intel_check_page_flip(dev, pipe);
2147
2148 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2149 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2150
2151 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2152 i9xx_pipe_crc_irq_handler(dev, pipe);
2153
2154 /* plane/pipes map 1:1 on ilk+ */
2155 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2156 intel_prepare_page_flip(dev, pipe);
2157 intel_finish_page_flip_plane(dev, pipe);
2158 }
2159 }
2160
2161 /* check event from PCH */
2162 if (de_iir & DE_PCH_EVENT) {
2163 u32 pch_iir = I915_READ(SDEIIR);
2164
2165 if (HAS_PCH_CPT(dev))
2166 cpt_irq_handler(dev, pch_iir);
2167 else
2168 ibx_irq_handler(dev, pch_iir);
2169
2170 /* should clear PCH hotplug event before clear CPU irq */
2171 I915_WRITE(SDEIIR, pch_iir);
2172 }
2173
2174 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2175 ironlake_rps_change_irq_handler(dev);
2176 }
2177
2178 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2179 {
2180 struct drm_i915_private *dev_priv = dev->dev_private;
2181 enum pipe pipe;
2182 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2183
2184 if (hotplug_trigger)
2185 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2186
2187 if (de_iir & DE_ERR_INT_IVB)
2188 ivb_err_int_handler(dev);
2189
2190 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2191 dp_aux_irq_handler(dev);
2192
2193 if (de_iir & DE_GSE_IVB)
2194 intel_opregion_asle_intr(dev);
2195
2196 for_each_pipe(dev_priv, pipe) {
2197 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2198 intel_pipe_handle_vblank(dev, pipe))
2199 intel_check_page_flip(dev, pipe);
2200
2201 /* plane/pipes map 1:1 on ilk+ */
2202 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2203 intel_prepare_page_flip(dev, pipe);
2204 intel_finish_page_flip_plane(dev, pipe);
2205 }
2206 }
2207
2208 /* check event from PCH */
2209 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2210 u32 pch_iir = I915_READ(SDEIIR);
2211
2212 cpt_irq_handler(dev, pch_iir);
2213
2214 /* clear PCH hotplug event before clear CPU irq */
2215 I915_WRITE(SDEIIR, pch_iir);
2216 }
2217 }
2218
2219 /*
2220 * To handle irqs with the minimum potential races with fresh interrupts, we:
2221 * 1 - Disable Master Interrupt Control.
2222 * 2 - Find the source(s) of the interrupt.
2223 * 3 - Clear the Interrupt Identity bits (IIR).
2224 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2225 * 5 - Re-enable Master Interrupt Control.
2226 */
2227 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2228 {
2229 struct drm_device *dev = arg;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2232 irqreturn_t ret = IRQ_NONE;
2233
2234 if (!intel_irqs_enabled(dev_priv))
2235 return IRQ_NONE;
2236
2237 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2238 disable_rpm_wakeref_asserts(dev_priv);
2239
2240 /* disable master interrupt before clearing iir */
2241 de_ier = I915_READ(DEIER);
2242 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2243 POSTING_READ(DEIER);
2244
2245 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2246 * interrupts will will be stored on its back queue, and then we'll be
2247 * able to process them after we restore SDEIER (as soon as we restore
2248 * it, we'll get an interrupt if SDEIIR still has something to process
2249 * due to its back queue). */
2250 if (!HAS_PCH_NOP(dev)) {
2251 sde_ier = I915_READ(SDEIER);
2252 I915_WRITE(SDEIER, 0);
2253 POSTING_READ(SDEIER);
2254 }
2255
2256 /* Find, clear, then process each source of interrupt */
2257
2258 gt_iir = I915_READ(GTIIR);
2259 if (gt_iir) {
2260 I915_WRITE(GTIIR, gt_iir);
2261 ret = IRQ_HANDLED;
2262 if (INTEL_INFO(dev)->gen >= 6)
2263 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2264 else
2265 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2266 }
2267
2268 de_iir = I915_READ(DEIIR);
2269 if (de_iir) {
2270 I915_WRITE(DEIIR, de_iir);
2271 ret = IRQ_HANDLED;
2272 if (INTEL_INFO(dev)->gen >= 7)
2273 ivb_display_irq_handler(dev, de_iir);
2274 else
2275 ilk_display_irq_handler(dev, de_iir);
2276 }
2277
2278 if (INTEL_INFO(dev)->gen >= 6) {
2279 u32 pm_iir = I915_READ(GEN6_PMIIR);
2280 if (pm_iir) {
2281 I915_WRITE(GEN6_PMIIR, pm_iir);
2282 ret = IRQ_HANDLED;
2283 gen6_rps_irq_handler(dev_priv, pm_iir);
2284 }
2285 }
2286
2287 I915_WRITE(DEIER, de_ier);
2288 POSTING_READ(DEIER);
2289 if (!HAS_PCH_NOP(dev)) {
2290 I915_WRITE(SDEIER, sde_ier);
2291 POSTING_READ(SDEIER);
2292 }
2293
2294 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2295 enable_rpm_wakeref_asserts(dev_priv);
2296
2297 return ret;
2298 }
2299
2300 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2301 const u32 hpd[HPD_NUM_PINS])
2302 {
2303 struct drm_i915_private *dev_priv = to_i915(dev);
2304 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2305
2306 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2307 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2308
2309 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2310 dig_hotplug_reg, hpd,
2311 bxt_port_hotplug_long_detect);
2312
2313 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2314 }
2315
2316 static irqreturn_t
2317 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2318 {
2319 struct drm_device *dev = dev_priv->dev;
2320 irqreturn_t ret = IRQ_NONE;
2321 u32 iir;
2322 enum pipe pipe;
2323
2324 if (master_ctl & GEN8_DE_MISC_IRQ) {
2325 iir = I915_READ(GEN8_DE_MISC_IIR);
2326 if (iir) {
2327 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2328 ret = IRQ_HANDLED;
2329 if (iir & GEN8_DE_MISC_GSE)
2330 intel_opregion_asle_intr(dev);
2331 else
2332 DRM_ERROR("Unexpected DE Misc interrupt\n");
2333 }
2334 else
2335 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2336 }
2337
2338 if (master_ctl & GEN8_DE_PORT_IRQ) {
2339 iir = I915_READ(GEN8_DE_PORT_IIR);
2340 if (iir) {
2341 u32 tmp_mask;
2342 bool found = false;
2343
2344 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2345 ret = IRQ_HANDLED;
2346
2347 tmp_mask = GEN8_AUX_CHANNEL_A;
2348 if (INTEL_INFO(dev_priv)->gen >= 9)
2349 tmp_mask |= GEN9_AUX_CHANNEL_B |
2350 GEN9_AUX_CHANNEL_C |
2351 GEN9_AUX_CHANNEL_D;
2352
2353 if (iir & tmp_mask) {
2354 dp_aux_irq_handler(dev);
2355 found = true;
2356 }
2357
2358 if (IS_BROXTON(dev_priv)) {
2359 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2360 if (tmp_mask) {
2361 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2362 found = true;
2363 }
2364 } else if (IS_BROADWELL(dev_priv)) {
2365 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2366 if (tmp_mask) {
2367 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2368 found = true;
2369 }
2370 }
2371
2372 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2373 gmbus_irq_handler(dev);
2374 found = true;
2375 }
2376
2377 if (!found)
2378 DRM_ERROR("Unexpected DE Port interrupt\n");
2379 }
2380 else
2381 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2382 }
2383
2384 for_each_pipe(dev_priv, pipe) {
2385 u32 flip_done, fault_errors;
2386
2387 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2388 continue;
2389
2390 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2391 if (!iir) {
2392 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2393 continue;
2394 }
2395
2396 ret = IRQ_HANDLED;
2397 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2398
2399 if (iir & GEN8_PIPE_VBLANK &&
2400 intel_pipe_handle_vblank(dev, pipe))
2401 intel_check_page_flip(dev, pipe);
2402
2403 flip_done = iir;
2404 if (INTEL_INFO(dev_priv)->gen >= 9)
2405 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2406 else
2407 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2408
2409 if (flip_done) {
2410 intel_prepare_page_flip(dev, pipe);
2411 intel_finish_page_flip_plane(dev, pipe);
2412 }
2413
2414 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2415 hsw_pipe_crc_irq_handler(dev, pipe);
2416
2417 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2418 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2419
2420 fault_errors = iir;
2421 if (INTEL_INFO(dev_priv)->gen >= 9)
2422 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2423 else
2424 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2425
2426 if (fault_errors)
2427 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2428 pipe_name(pipe),
2429 fault_errors);
2430 }
2431
2432 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2433 master_ctl & GEN8_DE_PCH_IRQ) {
2434 /*
2435 * FIXME(BDW): Assume for now that the new interrupt handling
2436 * scheme also closed the SDE interrupt handling race we've seen
2437 * on older pch-split platforms. But this needs testing.
2438 */
2439 iir = I915_READ(SDEIIR);
2440 if (iir) {
2441 I915_WRITE(SDEIIR, iir);
2442 ret = IRQ_HANDLED;
2443
2444 if (HAS_PCH_SPT(dev_priv))
2445 spt_irq_handler(dev, iir);
2446 else
2447 cpt_irq_handler(dev, iir);
2448 } else {
2449 /*
2450 * Like on previous PCH there seems to be something
2451 * fishy going on with forwarding PCH interrupts.
2452 */
2453 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2454 }
2455 }
2456
2457 return ret;
2458 }
2459
2460 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2461 {
2462 struct drm_device *dev = arg;
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464 u32 master_ctl;
2465 irqreturn_t ret;
2466
2467 if (!intel_irqs_enabled(dev_priv))
2468 return IRQ_NONE;
2469
2470 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2471 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2472 if (!master_ctl)
2473 return IRQ_NONE;
2474
2475 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2476
2477 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2478 disable_rpm_wakeref_asserts(dev_priv);
2479
2480 /* Find, clear, then process each source of interrupt */
2481 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2482 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2483
2484 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2485 POSTING_READ_FW(GEN8_MASTER_IRQ);
2486
2487 enable_rpm_wakeref_asserts(dev_priv);
2488
2489 return ret;
2490 }
2491
2492 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2493 bool reset_completed)
2494 {
2495 struct intel_engine_cs *engine;
2496
2497 /*
2498 * Notify all waiters for GPU completion events that reset state has
2499 * been changed, and that they need to restart their wait after
2500 * checking for potential errors (and bail out to drop locks if there is
2501 * a gpu reset pending so that i915_error_work_func can acquire them).
2502 */
2503
2504 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2505 for_each_engine(engine, dev_priv)
2506 wake_up_all(&engine->irq_queue);
2507
2508 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2509 wake_up_all(&dev_priv->pending_flip_queue);
2510
2511 /*
2512 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2513 * reset state is cleared.
2514 */
2515 if (reset_completed)
2516 wake_up_all(&dev_priv->gpu_error.reset_queue);
2517 }
2518
2519 /**
2520 * i915_reset_and_wakeup - do process context error handling work
2521 * @dev: drm device
2522 *
2523 * Fire an error uevent so userspace can see that a hang or error
2524 * was detected.
2525 */
2526 static void i915_reset_and_wakeup(struct drm_device *dev)
2527 {
2528 struct drm_i915_private *dev_priv = to_i915(dev);
2529 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2530 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2531 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2532 int ret;
2533
2534 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2535
2536 /*
2537 * Note that there's only one work item which does gpu resets, so we
2538 * need not worry about concurrent gpu resets potentially incrementing
2539 * error->reset_counter twice. We only need to take care of another
2540 * racing irq/hangcheck declaring the gpu dead for a second time. A
2541 * quick check for that is good enough: schedule_work ensures the
2542 * correct ordering between hang detection and this work item, and since
2543 * the reset in-progress bit is only ever set by code outside of this
2544 * work we don't need to worry about any other races.
2545 */
2546 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2547 DRM_DEBUG_DRIVER("resetting chip\n");
2548 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2549 reset_event);
2550
2551 /*
2552 * In most cases it's guaranteed that we get here with an RPM
2553 * reference held, for example because there is a pending GPU
2554 * request that won't finish until the reset is done. This
2555 * isn't the case at least when we get here by doing a
2556 * simulated reset via debugs, so get an RPM reference.
2557 */
2558 intel_runtime_pm_get(dev_priv);
2559
2560 intel_prepare_reset(dev);
2561
2562 /*
2563 * All state reset _must_ be completed before we update the
2564 * reset counter, for otherwise waiters might miss the reset
2565 * pending state and not properly drop locks, resulting in
2566 * deadlocks with the reset work.
2567 */
2568 ret = i915_reset(dev);
2569
2570 intel_finish_reset(dev);
2571
2572 intel_runtime_pm_put(dev_priv);
2573
2574 if (ret == 0)
2575 kobject_uevent_env(&dev->primary->kdev->kobj,
2576 KOBJ_CHANGE, reset_done_event);
2577
2578 /*
2579 * Note: The wake_up also serves as a memory barrier so that
2580 * waiters see the update value of the reset counter atomic_t.
2581 */
2582 i915_error_wake_up(dev_priv, true);
2583 }
2584 }
2585
2586 static void i915_report_and_clear_eir(struct drm_device *dev)
2587 {
2588 struct drm_i915_private *dev_priv = dev->dev_private;
2589 uint32_t instdone[I915_NUM_INSTDONE_REG];
2590 u32 eir = I915_READ(EIR);
2591 int pipe, i;
2592
2593 if (!eir)
2594 return;
2595
2596 pr_err("render error detected, EIR: 0x%08x\n", eir);
2597
2598 i915_get_extra_instdone(dev, instdone);
2599
2600 if (IS_G4X(dev)) {
2601 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2602 u32 ipeir = I915_READ(IPEIR_I965);
2603
2604 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2605 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2606 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2607 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2608 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2609 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2610 I915_WRITE(IPEIR_I965, ipeir);
2611 POSTING_READ(IPEIR_I965);
2612 }
2613 if (eir & GM45_ERROR_PAGE_TABLE) {
2614 u32 pgtbl_err = I915_READ(PGTBL_ER);
2615 pr_err("page table error\n");
2616 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2617 I915_WRITE(PGTBL_ER, pgtbl_err);
2618 POSTING_READ(PGTBL_ER);
2619 }
2620 }
2621
2622 if (!IS_GEN2(dev)) {
2623 if (eir & I915_ERROR_PAGE_TABLE) {
2624 u32 pgtbl_err = I915_READ(PGTBL_ER);
2625 pr_err("page table error\n");
2626 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2627 I915_WRITE(PGTBL_ER, pgtbl_err);
2628 POSTING_READ(PGTBL_ER);
2629 }
2630 }
2631
2632 if (eir & I915_ERROR_MEMORY_REFRESH) {
2633 pr_err("memory refresh error:\n");
2634 for_each_pipe(dev_priv, pipe)
2635 pr_err("pipe %c stat: 0x%08x\n",
2636 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2637 /* pipestat has already been acked */
2638 }
2639 if (eir & I915_ERROR_INSTRUCTION) {
2640 pr_err("instruction error\n");
2641 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2642 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2643 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2644 if (INTEL_INFO(dev)->gen < 4) {
2645 u32 ipeir = I915_READ(IPEIR);
2646
2647 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2648 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2649 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2650 I915_WRITE(IPEIR, ipeir);
2651 POSTING_READ(IPEIR);
2652 } else {
2653 u32 ipeir = I915_READ(IPEIR_I965);
2654
2655 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2656 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2657 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2658 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2659 I915_WRITE(IPEIR_I965, ipeir);
2660 POSTING_READ(IPEIR_I965);
2661 }
2662 }
2663
2664 I915_WRITE(EIR, eir);
2665 POSTING_READ(EIR);
2666 eir = I915_READ(EIR);
2667 if (eir) {
2668 /*
2669 * some errors might have become stuck,
2670 * mask them.
2671 */
2672 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2673 I915_WRITE(EMR, I915_READ(EMR) | eir);
2674 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2675 }
2676 }
2677
2678 /**
2679 * i915_handle_error - handle a gpu error
2680 * @dev: drm device
2681 * @engine_mask: mask representing engines that are hung
2682 * Do some basic checking of register state at error time and
2683 * dump it to the syslog. Also call i915_capture_error_state() to make
2684 * sure we get a record and make it available in debugfs. Fire a uevent
2685 * so userspace knows something bad happened (should trigger collection
2686 * of a ring dump etc.).
2687 */
2688 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2689 const char *fmt, ...)
2690 {
2691 struct drm_i915_private *dev_priv = dev->dev_private;
2692 va_list args;
2693 char error_msg[80];
2694
2695 va_start(args, fmt);
2696 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2697 va_end(args);
2698
2699 i915_capture_error_state(dev, engine_mask, error_msg);
2700 i915_report_and_clear_eir(dev);
2701
2702 if (engine_mask) {
2703 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2704 &dev_priv->gpu_error.reset_counter);
2705
2706 /*
2707 * Wakeup waiting processes so that the reset function
2708 * i915_reset_and_wakeup doesn't deadlock trying to grab
2709 * various locks. By bumping the reset counter first, the woken
2710 * processes will see a reset in progress and back off,
2711 * releasing their locks and then wait for the reset completion.
2712 * We must do this for _all_ gpu waiters that might hold locks
2713 * that the reset work needs to acquire.
2714 *
2715 * Note: The wake_up serves as the required memory barrier to
2716 * ensure that the waiters see the updated value of the reset
2717 * counter atomic_t.
2718 */
2719 i915_error_wake_up(dev_priv, false);
2720 }
2721
2722 i915_reset_and_wakeup(dev);
2723 }
2724
2725 /* Called from drm generic code, passed 'crtc' which
2726 * we use as a pipe index
2727 */
2728 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2729 {
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 unsigned long irqflags;
2732
2733 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2734 if (INTEL_INFO(dev)->gen >= 4)
2735 i915_enable_pipestat(dev_priv, pipe,
2736 PIPE_START_VBLANK_INTERRUPT_STATUS);
2737 else
2738 i915_enable_pipestat(dev_priv, pipe,
2739 PIPE_VBLANK_INTERRUPT_STATUS);
2740 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2741
2742 return 0;
2743 }
2744
2745 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2746 {
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 unsigned long irqflags;
2749 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2750 DE_PIPE_VBLANK(pipe);
2751
2752 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753 ilk_enable_display_irq(dev_priv, bit);
2754 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756 return 0;
2757 }
2758
2759 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2760 {
2761 struct drm_i915_private *dev_priv = dev->dev_private;
2762 unsigned long irqflags;
2763
2764 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2765 i915_enable_pipestat(dev_priv, pipe,
2766 PIPE_START_VBLANK_INTERRUPT_STATUS);
2767 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2768
2769 return 0;
2770 }
2771
2772 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2773 {
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 unsigned long irqflags;
2776
2777 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2778 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2779 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2780
2781 return 0;
2782 }
2783
2784 /* Called from drm generic code, passed 'crtc' which
2785 * we use as a pipe index
2786 */
2787 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2788 {
2789 struct drm_i915_private *dev_priv = dev->dev_private;
2790 unsigned long irqflags;
2791
2792 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2793 i915_disable_pipestat(dev_priv, pipe,
2794 PIPE_VBLANK_INTERRUPT_STATUS |
2795 PIPE_START_VBLANK_INTERRUPT_STATUS);
2796 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2797 }
2798
2799 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2800 {
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802 unsigned long irqflags;
2803 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2804 DE_PIPE_VBLANK(pipe);
2805
2806 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2807 ilk_disable_display_irq(dev_priv, bit);
2808 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2809 }
2810
2811 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2812 {
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 unsigned long irqflags;
2815
2816 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2817 i915_disable_pipestat(dev_priv, pipe,
2818 PIPE_START_VBLANK_INTERRUPT_STATUS);
2819 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2820 }
2821
2822 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2823 {
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 unsigned long irqflags;
2826
2827 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2828 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2829 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2830 }
2831
2832 static bool
2833 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2834 {
2835 return i915_seqno_passed(seqno,
2836 READ_ONCE(engine->last_submitted_seqno));
2837 }
2838
2839 static bool
2840 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2841 {
2842 if (INTEL_INFO(dev)->gen >= 8) {
2843 return (ipehr >> 23) == 0x1c;
2844 } else {
2845 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2846 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2847 MI_SEMAPHORE_REGISTER);
2848 }
2849 }
2850
2851 static struct intel_engine_cs *
2852 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2853 u64 offset)
2854 {
2855 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2856 struct intel_engine_cs *signaller;
2857
2858 if (INTEL_INFO(dev_priv)->gen >= 8) {
2859 for_each_engine(signaller, dev_priv) {
2860 if (engine == signaller)
2861 continue;
2862
2863 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2864 return signaller;
2865 }
2866 } else {
2867 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2868
2869 for_each_engine(signaller, dev_priv) {
2870 if(engine == signaller)
2871 continue;
2872
2873 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2874 return signaller;
2875 }
2876 }
2877
2878 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2879 engine->id, ipehr, offset);
2880
2881 return NULL;
2882 }
2883
2884 static struct intel_engine_cs *
2885 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2886 {
2887 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2888 u32 cmd, ipehr, head;
2889 u64 offset = 0;
2890 int i, backwards;
2891
2892 /*
2893 * This function does not support execlist mode - any attempt to
2894 * proceed further into this function will result in a kernel panic
2895 * when dereferencing ring->buffer, which is not set up in execlist
2896 * mode.
2897 *
2898 * The correct way of doing it would be to derive the currently
2899 * executing ring buffer from the current context, which is derived
2900 * from the currently running request. Unfortunately, to get the
2901 * current request we would have to grab the struct_mutex before doing
2902 * anything else, which would be ill-advised since some other thread
2903 * might have grabbed it already and managed to hang itself, causing
2904 * the hang checker to deadlock.
2905 *
2906 * Therefore, this function does not support execlist mode in its
2907 * current form. Just return NULL and move on.
2908 */
2909 if (engine->buffer == NULL)
2910 return NULL;
2911
2912 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2913 if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2914 return NULL;
2915
2916 /*
2917 * HEAD is likely pointing to the dword after the actual command,
2918 * so scan backwards until we find the MBOX. But limit it to just 3
2919 * or 4 dwords depending on the semaphore wait command size.
2920 * Note that we don't care about ACTHD here since that might
2921 * point at at batch, and semaphores are always emitted into the
2922 * ringbuffer itself.
2923 */
2924 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2925 backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2926
2927 for (i = backwards; i; --i) {
2928 /*
2929 * Be paranoid and presume the hw has gone off into the wild -
2930 * our ring is smaller than what the hardware (and hence
2931 * HEAD_ADDR) allows. Also handles wrap-around.
2932 */
2933 head &= engine->buffer->size - 1;
2934
2935 /* This here seems to blow up */
2936 cmd = ioread32(engine->buffer->virtual_start + head);
2937 if (cmd == ipehr)
2938 break;
2939
2940 head -= 4;
2941 }
2942
2943 if (!i)
2944 return NULL;
2945
2946 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2947 if (INTEL_INFO(engine->dev)->gen >= 8) {
2948 offset = ioread32(engine->buffer->virtual_start + head + 12);
2949 offset <<= 32;
2950 offset = ioread32(engine->buffer->virtual_start + head + 8);
2951 }
2952 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2953 }
2954
2955 static int semaphore_passed(struct intel_engine_cs *engine)
2956 {
2957 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2958 struct intel_engine_cs *signaller;
2959 u32 seqno;
2960
2961 engine->hangcheck.deadlock++;
2962
2963 signaller = semaphore_waits_for(engine, &seqno);
2964 if (signaller == NULL)
2965 return -1;
2966
2967 /* Prevent pathological recursion due to driver bugs */
2968 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2969 return -1;
2970
2971 if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2972 return 1;
2973
2974 /* cursory check for an unkickable deadlock */
2975 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2976 semaphore_passed(signaller) < 0)
2977 return -1;
2978
2979 return 0;
2980 }
2981
2982 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2983 {
2984 struct intel_engine_cs *engine;
2985
2986 for_each_engine(engine, dev_priv)
2987 engine->hangcheck.deadlock = 0;
2988 }
2989
2990 static bool subunits_stuck(struct intel_engine_cs *engine)
2991 {
2992 u32 instdone[I915_NUM_INSTDONE_REG];
2993 bool stuck;
2994 int i;
2995
2996 if (engine->id != RCS)
2997 return true;
2998
2999 i915_get_extra_instdone(engine->dev, instdone);
3000
3001 /* There might be unstable subunit states even when
3002 * actual head is not moving. Filter out the unstable ones by
3003 * accumulating the undone -> done transitions and only
3004 * consider those as progress.
3005 */
3006 stuck = true;
3007 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3008 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3009
3010 if (tmp != engine->hangcheck.instdone[i])
3011 stuck = false;
3012
3013 engine->hangcheck.instdone[i] |= tmp;
3014 }
3015
3016 return stuck;
3017 }
3018
3019 static enum intel_ring_hangcheck_action
3020 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3021 {
3022 if (acthd != engine->hangcheck.acthd) {
3023
3024 /* Clear subunit states on head movement */
3025 memset(engine->hangcheck.instdone, 0,
3026 sizeof(engine->hangcheck.instdone));
3027
3028 return HANGCHECK_ACTIVE;
3029 }
3030
3031 if (!subunits_stuck(engine))
3032 return HANGCHECK_ACTIVE;
3033
3034 return HANGCHECK_HUNG;
3035 }
3036
3037 static enum intel_ring_hangcheck_action
3038 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3039 {
3040 struct drm_device *dev = engine->dev;
3041 struct drm_i915_private *dev_priv = dev->dev_private;
3042 enum intel_ring_hangcheck_action ha;
3043 u32 tmp;
3044
3045 ha = head_stuck(engine, acthd);
3046 if (ha != HANGCHECK_HUNG)
3047 return ha;
3048
3049 if (IS_GEN2(dev))
3050 return HANGCHECK_HUNG;
3051
3052 /* Is the chip hanging on a WAIT_FOR_EVENT?
3053 * If so we can simply poke the RB_WAIT bit
3054 * and break the hang. This should work on
3055 * all but the second generation chipsets.
3056 */
3057 tmp = I915_READ_CTL(engine);
3058 if (tmp & RING_WAIT) {
3059 i915_handle_error(dev, 0,
3060 "Kicking stuck wait on %s",
3061 engine->name);
3062 I915_WRITE_CTL(engine, tmp);
3063 return HANGCHECK_KICK;
3064 }
3065
3066 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3067 switch (semaphore_passed(engine)) {
3068 default:
3069 return HANGCHECK_HUNG;
3070 case 1:
3071 i915_handle_error(dev, 0,
3072 "Kicking stuck semaphore on %s",
3073 engine->name);
3074 I915_WRITE_CTL(engine, tmp);
3075 return HANGCHECK_KICK;
3076 case 0:
3077 return HANGCHECK_WAIT;
3078 }
3079 }
3080
3081 return HANGCHECK_HUNG;
3082 }
3083
3084 static unsigned kick_waiters(struct intel_engine_cs *engine)
3085 {
3086 struct drm_i915_private *i915 = to_i915(engine->dev);
3087 unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3088
3089 if (engine->hangcheck.user_interrupts == user_interrupts &&
3090 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3091 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3092 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3093 engine->name);
3094 else
3095 DRM_INFO("Fake missed irq on %s\n",
3096 engine->name);
3097 wake_up_all(&engine->irq_queue);
3098 }
3099
3100 return user_interrupts;
3101 }
3102 /*
3103 * This is called when the chip hasn't reported back with completed
3104 * batchbuffers in a long time. We keep track per ring seqno progress and
3105 * if there are no progress, hangcheck score for that ring is increased.
3106 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3107 * we kick the ring. If we see no progress on three subsequent calls
3108 * we assume chip is wedged and try to fix it by resetting the chip.
3109 */
3110 static void i915_hangcheck_elapsed(struct work_struct *work)
3111 {
3112 struct drm_i915_private *dev_priv =
3113 container_of(work, typeof(*dev_priv),
3114 gpu_error.hangcheck_work.work);
3115 struct drm_device *dev = dev_priv->dev;
3116 struct intel_engine_cs *engine;
3117 enum intel_engine_id id;
3118 int busy_count = 0, rings_hung = 0;
3119 bool stuck[I915_NUM_ENGINES] = { 0 };
3120 #define BUSY 1
3121 #define KICK 5
3122 #define HUNG 20
3123 #define ACTIVE_DECAY 15
3124
3125 if (!i915.enable_hangcheck)
3126 return;
3127
3128 /*
3129 * The hangcheck work is synced during runtime suspend, we don't
3130 * require a wakeref. TODO: instead of disabling the asserts make
3131 * sure that we hold a reference when this work is running.
3132 */
3133 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3134
3135 /* As enabling the GPU requires fairly extensive mmio access,
3136 * periodically arm the mmio checker to see if we are triggering
3137 * any invalid access.
3138 */
3139 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3140
3141 for_each_engine_id(engine, dev_priv, id) {
3142 u64 acthd;
3143 u32 seqno;
3144 unsigned user_interrupts;
3145 bool busy = true;
3146
3147 semaphore_clear_deadlocks(dev_priv);
3148
3149 /* We don't strictly need an irq-barrier here, as we are not
3150 * serving an interrupt request, be paranoid in case the
3151 * barrier has side-effects (such as preventing a broken
3152 * cacheline snoop) and so be sure that we can see the seqno
3153 * advance. If the seqno should stick, due to a stale
3154 * cacheline, we would erroneously declare the GPU hung.
3155 */
3156 if (engine->irq_seqno_barrier)
3157 engine->irq_seqno_barrier(engine);
3158
3159 acthd = intel_ring_get_active_head(engine);
3160 seqno = engine->get_seqno(engine);
3161
3162 /* Reset stuck interrupts between batch advances */
3163 user_interrupts = 0;
3164
3165 if (engine->hangcheck.seqno == seqno) {
3166 if (ring_idle(engine, seqno)) {
3167 engine->hangcheck.action = HANGCHECK_IDLE;
3168 if (waitqueue_active(&engine->irq_queue)) {
3169 /* Safeguard against driver failure */
3170 user_interrupts = kick_waiters(engine);
3171 engine->hangcheck.score += BUSY;
3172 } else
3173 busy = false;
3174 } else {
3175 /* We always increment the hangcheck score
3176 * if the ring is busy and still processing
3177 * the same request, so that no single request
3178 * can run indefinitely (such as a chain of
3179 * batches). The only time we do not increment
3180 * the hangcheck score on this ring, if this
3181 * ring is in a legitimate wait for another
3182 * ring. In that case the waiting ring is a
3183 * victim and we want to be sure we catch the
3184 * right culprit. Then every time we do kick
3185 * the ring, add a small increment to the
3186 * score so that we can catch a batch that is
3187 * being repeatedly kicked and so responsible
3188 * for stalling the machine.
3189 */
3190 engine->hangcheck.action = ring_stuck(engine,
3191 acthd);
3192
3193 switch (engine->hangcheck.action) {
3194 case HANGCHECK_IDLE:
3195 case HANGCHECK_WAIT:
3196 break;
3197 case HANGCHECK_ACTIVE:
3198 engine->hangcheck.score += BUSY;
3199 break;
3200 case HANGCHECK_KICK:
3201 engine->hangcheck.score += KICK;
3202 break;
3203 case HANGCHECK_HUNG:
3204 engine->hangcheck.score += HUNG;
3205 stuck[id] = true;
3206 break;
3207 }
3208 }
3209 } else {
3210 engine->hangcheck.action = HANGCHECK_ACTIVE;
3211
3212 /* Gradually reduce the count so that we catch DoS
3213 * attempts across multiple batches.
3214 */
3215 if (engine->hangcheck.score > 0)
3216 engine->hangcheck.score -= ACTIVE_DECAY;
3217 if (engine->hangcheck.score < 0)
3218 engine->hangcheck.score = 0;
3219
3220 /* Clear head and subunit states on seqno movement */
3221 acthd = 0;
3222
3223 memset(engine->hangcheck.instdone, 0,
3224 sizeof(engine->hangcheck.instdone));
3225 }
3226
3227 engine->hangcheck.seqno = seqno;
3228 engine->hangcheck.acthd = acthd;
3229 engine->hangcheck.user_interrupts = user_interrupts;
3230 busy_count += busy;
3231 }
3232
3233 for_each_engine_id(engine, dev_priv, id) {
3234 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3235 DRM_INFO("%s on %s\n",
3236 stuck[id] ? "stuck" : "no progress",
3237 engine->name);
3238 rings_hung |= intel_engine_flag(engine);
3239 }
3240 }
3241
3242 if (rings_hung) {
3243 i915_handle_error(dev, rings_hung, "Engine(s) hung");
3244 goto out;
3245 }
3246
3247 if (busy_count)
3248 /* Reset timer case chip hangs without another request
3249 * being added */
3250 i915_queue_hangcheck(dev);
3251
3252 out:
3253 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3254 }
3255
3256 void i915_queue_hangcheck(struct drm_device *dev)
3257 {
3258 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3259
3260 if (!i915.enable_hangcheck)
3261 return;
3262
3263 /* Don't continually defer the hangcheck so that it is always run at
3264 * least once after work has been scheduled on any ring. Otherwise,
3265 * we will ignore a hung ring if a second ring is kept busy.
3266 */
3267
3268 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3269 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3270 }
3271
3272 static void ibx_irq_reset(struct drm_device *dev)
3273 {
3274 struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276 if (HAS_PCH_NOP(dev))
3277 return;
3278
3279 GEN5_IRQ_RESET(SDE);
3280
3281 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3282 I915_WRITE(SERR_INT, 0xffffffff);
3283 }
3284
3285 /*
3286 * SDEIER is also touched by the interrupt handler to work around missed PCH
3287 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3288 * instead we unconditionally enable all PCH interrupt sources here, but then
3289 * only unmask them as needed with SDEIMR.
3290 *
3291 * This function needs to be called before interrupts are enabled.
3292 */
3293 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3294 {
3295 struct drm_i915_private *dev_priv = dev->dev_private;
3296
3297 if (HAS_PCH_NOP(dev))
3298 return;
3299
3300 WARN_ON(I915_READ(SDEIER) != 0);
3301 I915_WRITE(SDEIER, 0xffffffff);
3302 POSTING_READ(SDEIER);
3303 }
3304
3305 static void gen5_gt_irq_reset(struct drm_device *dev)
3306 {
3307 struct drm_i915_private *dev_priv = dev->dev_private;
3308
3309 GEN5_IRQ_RESET(GT);
3310 if (INTEL_INFO(dev)->gen >= 6)
3311 GEN5_IRQ_RESET(GEN6_PM);
3312 }
3313
3314 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3315 {
3316 enum pipe pipe;
3317
3318 if (IS_CHERRYVIEW(dev_priv))
3319 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3320 else
3321 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3322
3323 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3324 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3325
3326 for_each_pipe(dev_priv, pipe) {
3327 I915_WRITE(PIPESTAT(pipe),
3328 PIPE_FIFO_UNDERRUN_STATUS |
3329 PIPESTAT_INT_STATUS_MASK);
3330 dev_priv->pipestat_irq_mask[pipe] = 0;
3331 }
3332
3333 GEN5_IRQ_RESET(VLV_);
3334 dev_priv->irq_mask = ~0;
3335 }
3336
3337 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3338 {
3339 u32 pipestat_mask;
3340 u32 enable_mask;
3341 enum pipe pipe;
3342
3343 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3344 PIPE_CRC_DONE_INTERRUPT_STATUS;
3345
3346 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3347 for_each_pipe(dev_priv, pipe)
3348 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3349
3350 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3351 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3352 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3353 if (IS_CHERRYVIEW(dev_priv))
3354 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3355
3356 WARN_ON(dev_priv->irq_mask != ~0);
3357
3358 dev_priv->irq_mask = ~enable_mask;
3359
3360 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3361 }
3362
3363 /* drm_dma.h hooks
3364 */
3365 static void ironlake_irq_reset(struct drm_device *dev)
3366 {
3367 struct drm_i915_private *dev_priv = dev->dev_private;
3368
3369 I915_WRITE(HWSTAM, 0xffffffff);
3370
3371 GEN5_IRQ_RESET(DE);
3372 if (IS_GEN7(dev))
3373 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3374
3375 gen5_gt_irq_reset(dev);
3376
3377 ibx_irq_reset(dev);
3378 }
3379
3380 static void valleyview_irq_preinstall(struct drm_device *dev)
3381 {
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384 I915_WRITE(VLV_MASTER_IER, 0);
3385 POSTING_READ(VLV_MASTER_IER);
3386
3387 gen5_gt_irq_reset(dev);
3388
3389 spin_lock_irq(&dev_priv->irq_lock);
3390 if (dev_priv->display_irqs_enabled)
3391 vlv_display_irq_reset(dev_priv);
3392 spin_unlock_irq(&dev_priv->irq_lock);
3393 }
3394
3395 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3396 {
3397 GEN8_IRQ_RESET_NDX(GT, 0);
3398 GEN8_IRQ_RESET_NDX(GT, 1);
3399 GEN8_IRQ_RESET_NDX(GT, 2);
3400 GEN8_IRQ_RESET_NDX(GT, 3);
3401 }
3402
3403 static void gen8_irq_reset(struct drm_device *dev)
3404 {
3405 struct drm_i915_private *dev_priv = dev->dev_private;
3406 int pipe;
3407
3408 I915_WRITE(GEN8_MASTER_IRQ, 0);
3409 POSTING_READ(GEN8_MASTER_IRQ);
3410
3411 gen8_gt_irq_reset(dev_priv);
3412
3413 for_each_pipe(dev_priv, pipe)
3414 if (intel_display_power_is_enabled(dev_priv,
3415 POWER_DOMAIN_PIPE(pipe)))
3416 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3417
3418 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3419 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3420 GEN5_IRQ_RESET(GEN8_PCU_);
3421
3422 if (HAS_PCH_SPLIT(dev))
3423 ibx_irq_reset(dev);
3424 }
3425
3426 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3427 unsigned int pipe_mask)
3428 {
3429 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3430 enum pipe pipe;
3431
3432 spin_lock_irq(&dev_priv->irq_lock);
3433 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3434 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3435 dev_priv->de_irq_mask[pipe],
3436 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3437 spin_unlock_irq(&dev_priv->irq_lock);
3438 }
3439
3440 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3441 unsigned int pipe_mask)
3442 {
3443 enum pipe pipe;
3444
3445 spin_lock_irq(&dev_priv->irq_lock);
3446 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3447 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3448 spin_unlock_irq(&dev_priv->irq_lock);
3449
3450 /* make sure we're done processing display irqs */
3451 synchronize_irq(dev_priv->dev->irq);
3452 }
3453
3454 static void cherryview_irq_preinstall(struct drm_device *dev)
3455 {
3456 struct drm_i915_private *dev_priv = dev->dev_private;
3457
3458 I915_WRITE(GEN8_MASTER_IRQ, 0);
3459 POSTING_READ(GEN8_MASTER_IRQ);
3460
3461 gen8_gt_irq_reset(dev_priv);
3462
3463 GEN5_IRQ_RESET(GEN8_PCU_);
3464
3465 spin_lock_irq(&dev_priv->irq_lock);
3466 if (dev_priv->display_irqs_enabled)
3467 vlv_display_irq_reset(dev_priv);
3468 spin_unlock_irq(&dev_priv->irq_lock);
3469 }
3470
3471 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3472 const u32 hpd[HPD_NUM_PINS])
3473 {
3474 struct drm_i915_private *dev_priv = to_i915(dev);
3475 struct intel_encoder *encoder;
3476 u32 enabled_irqs = 0;
3477
3478 for_each_intel_encoder(dev, encoder)
3479 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3480 enabled_irqs |= hpd[encoder->hpd_pin];
3481
3482 return enabled_irqs;
3483 }
3484
3485 static void ibx_hpd_irq_setup(struct drm_device *dev)
3486 {
3487 struct drm_i915_private *dev_priv = dev->dev_private;
3488 u32 hotplug_irqs, hotplug, enabled_irqs;
3489
3490 if (HAS_PCH_IBX(dev)) {
3491 hotplug_irqs = SDE_HOTPLUG_MASK;
3492 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3493 } else {
3494 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3495 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3496 }
3497
3498 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3499
3500 /*
3501 * Enable digital hotplug on the PCH, and configure the DP short pulse
3502 * duration to 2ms (which is the minimum in the Display Port spec).
3503 * The pulse duration bits are reserved on LPT+.
3504 */
3505 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3506 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3507 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3508 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3509 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3510 /*
3511 * When CPU and PCH are on the same package, port A
3512 * HPD must be enabled in both north and south.
3513 */
3514 if (HAS_PCH_LPT_LP(dev))
3515 hotplug |= PORTA_HOTPLUG_ENABLE;
3516 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3517 }
3518
3519 static void spt_hpd_irq_setup(struct drm_device *dev)
3520 {
3521 struct drm_i915_private *dev_priv = dev->dev_private;
3522 u32 hotplug_irqs, hotplug, enabled_irqs;
3523
3524 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3525 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3526
3527 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3528
3529 /* Enable digital hotplug on the PCH */
3530 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3531 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3532 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3533 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3534
3535 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3536 hotplug |= PORTE_HOTPLUG_ENABLE;
3537 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3538 }
3539
3540 static void ilk_hpd_irq_setup(struct drm_device *dev)
3541 {
3542 struct drm_i915_private *dev_priv = dev->dev_private;
3543 u32 hotplug_irqs, hotplug, enabled_irqs;
3544
3545 if (INTEL_INFO(dev)->gen >= 8) {
3546 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3547 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3548
3549 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3550 } else if (INTEL_INFO(dev)->gen >= 7) {
3551 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3552 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3553
3554 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3555 } else {
3556 hotplug_irqs = DE_DP_A_HOTPLUG;
3557 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3558
3559 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3560 }
3561
3562 /*
3563 * Enable digital hotplug on the CPU, and configure the DP short pulse
3564 * duration to 2ms (which is the minimum in the Display Port spec)
3565 * The pulse duration bits are reserved on HSW+.
3566 */
3567 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3568 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3569 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3570 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3571
3572 ibx_hpd_irq_setup(dev);
3573 }
3574
3575 static void bxt_hpd_irq_setup(struct drm_device *dev)
3576 {
3577 struct drm_i915_private *dev_priv = dev->dev_private;
3578 u32 hotplug_irqs, hotplug, enabled_irqs;
3579
3580 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3581 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3582
3583 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3584
3585 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3586 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3587 PORTA_HOTPLUG_ENABLE;
3588
3589 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3590 hotplug, enabled_irqs);
3591 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3592
3593 /*
3594 * For BXT invert bit has to be set based on AOB design
3595 * for HPD detection logic, update it based on VBT fields.
3596 */
3597
3598 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3599 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3600 hotplug |= BXT_DDIA_HPD_INVERT;
3601 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3602 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3603 hotplug |= BXT_DDIB_HPD_INVERT;
3604 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3605 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3606 hotplug |= BXT_DDIC_HPD_INVERT;
3607
3608 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3609 }
3610
3611 static void ibx_irq_postinstall(struct drm_device *dev)
3612 {
3613 struct drm_i915_private *dev_priv = dev->dev_private;
3614 u32 mask;
3615
3616 if (HAS_PCH_NOP(dev))
3617 return;
3618
3619 if (HAS_PCH_IBX(dev))
3620 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3621 else
3622 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3623
3624 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3625 I915_WRITE(SDEIMR, ~mask);
3626 }
3627
3628 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3629 {
3630 struct drm_i915_private *dev_priv = dev->dev_private;
3631 u32 pm_irqs, gt_irqs;
3632
3633 pm_irqs = gt_irqs = 0;
3634
3635 dev_priv->gt_irq_mask = ~0;
3636 if (HAS_L3_DPF(dev)) {
3637 /* L3 parity interrupt is always unmasked. */
3638 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3639 gt_irqs |= GT_PARITY_ERROR(dev);
3640 }
3641
3642 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3643 if (IS_GEN5(dev)) {
3644 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3645 ILK_BSD_USER_INTERRUPT;
3646 } else {
3647 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3648 }
3649
3650 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3651
3652 if (INTEL_INFO(dev)->gen >= 6) {
3653 /*
3654 * RPS interrupts will get enabled/disabled on demand when RPS
3655 * itself is enabled/disabled.
3656 */
3657 if (HAS_VEBOX(dev))
3658 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3659
3660 dev_priv->pm_irq_mask = 0xffffffff;
3661 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3662 }
3663 }
3664
3665 static int ironlake_irq_postinstall(struct drm_device *dev)
3666 {
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 u32 display_mask, extra_mask;
3669
3670 if (INTEL_INFO(dev)->gen >= 7) {
3671 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3673 DE_PLANEB_FLIP_DONE_IVB |
3674 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3675 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3676 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3677 DE_DP_A_HOTPLUG_IVB);
3678 } else {
3679 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3680 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3681 DE_AUX_CHANNEL_A |
3682 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3683 DE_POISON);
3684 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3685 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3686 DE_DP_A_HOTPLUG);
3687 }
3688
3689 dev_priv->irq_mask = ~display_mask;
3690
3691 I915_WRITE(HWSTAM, 0xeffe);
3692
3693 ibx_irq_pre_postinstall(dev);
3694
3695 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3696
3697 gen5_gt_irq_postinstall(dev);
3698
3699 ibx_irq_postinstall(dev);
3700
3701 if (IS_IRONLAKE_M(dev)) {
3702 /* Enable PCU event interrupts
3703 *
3704 * spinlocking not required here for correctness since interrupt
3705 * setup is guaranteed to run in single-threaded context. But we
3706 * need it to make the assert_spin_locked happy. */
3707 spin_lock_irq(&dev_priv->irq_lock);
3708 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3709 spin_unlock_irq(&dev_priv->irq_lock);
3710 }
3711
3712 return 0;
3713 }
3714
3715 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3716 {
3717 assert_spin_locked(&dev_priv->irq_lock);
3718
3719 if (dev_priv->display_irqs_enabled)
3720 return;
3721
3722 dev_priv->display_irqs_enabled = true;
3723
3724 if (intel_irqs_enabled(dev_priv)) {
3725 vlv_display_irq_reset(dev_priv);
3726 vlv_display_irq_postinstall(dev_priv);
3727 }
3728 }
3729
3730 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3731 {
3732 assert_spin_locked(&dev_priv->irq_lock);
3733
3734 if (!dev_priv->display_irqs_enabled)
3735 return;
3736
3737 dev_priv->display_irqs_enabled = false;
3738
3739 if (intel_irqs_enabled(dev_priv))
3740 vlv_display_irq_reset(dev_priv);
3741 }
3742
3743
3744 static int valleyview_irq_postinstall(struct drm_device *dev)
3745 {
3746 struct drm_i915_private *dev_priv = dev->dev_private;
3747
3748 gen5_gt_irq_postinstall(dev);
3749
3750 spin_lock_irq(&dev_priv->irq_lock);
3751 if (dev_priv->display_irqs_enabled)
3752 vlv_display_irq_postinstall(dev_priv);
3753 spin_unlock_irq(&dev_priv->irq_lock);
3754
3755 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3756 POSTING_READ(VLV_MASTER_IER);
3757
3758 return 0;
3759 }
3760
3761 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3762 {
3763 /* These are interrupts we'll toggle with the ring mask register */
3764 uint32_t gt_interrupts[] = {
3765 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3766 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3767 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3768 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3769 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3770 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3771 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3772 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3773 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3774 0,
3775 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3776 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3777 };
3778
3779 dev_priv->pm_irq_mask = 0xffffffff;
3780 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3781 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3782 /*
3783 * RPS interrupts will get enabled/disabled on demand when RPS itself
3784 * is enabled/disabled.
3785 */
3786 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3787 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3788 }
3789
3790 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3791 {
3792 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3793 uint32_t de_pipe_enables;
3794 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3795 u32 de_port_enables;
3796 enum pipe pipe;
3797
3798 if (INTEL_INFO(dev_priv)->gen >= 9) {
3799 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3800 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3801 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3802 GEN9_AUX_CHANNEL_D;
3803 if (IS_BROXTON(dev_priv))
3804 de_port_masked |= BXT_DE_PORT_GMBUS;
3805 } else {
3806 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3807 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3808 }
3809
3810 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3811 GEN8_PIPE_FIFO_UNDERRUN;
3812
3813 de_port_enables = de_port_masked;
3814 if (IS_BROXTON(dev_priv))
3815 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3816 else if (IS_BROADWELL(dev_priv))
3817 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3818
3819 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3820 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3821 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3822
3823 for_each_pipe(dev_priv, pipe)
3824 if (intel_display_power_is_enabled(dev_priv,
3825 POWER_DOMAIN_PIPE(pipe)))
3826 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3827 dev_priv->de_irq_mask[pipe],
3828 de_pipe_enables);
3829
3830 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3831 }
3832
3833 static int gen8_irq_postinstall(struct drm_device *dev)
3834 {
3835 struct drm_i915_private *dev_priv = dev->dev_private;
3836
3837 if (HAS_PCH_SPLIT(dev))
3838 ibx_irq_pre_postinstall(dev);
3839
3840 gen8_gt_irq_postinstall(dev_priv);
3841 gen8_de_irq_postinstall(dev_priv);
3842
3843 if (HAS_PCH_SPLIT(dev))
3844 ibx_irq_postinstall(dev);
3845
3846 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3847 POSTING_READ(GEN8_MASTER_IRQ);
3848
3849 return 0;
3850 }
3851
3852 static int cherryview_irq_postinstall(struct drm_device *dev)
3853 {
3854 struct drm_i915_private *dev_priv = dev->dev_private;
3855
3856 gen8_gt_irq_postinstall(dev_priv);
3857
3858 spin_lock_irq(&dev_priv->irq_lock);
3859 if (dev_priv->display_irqs_enabled)
3860 vlv_display_irq_postinstall(dev_priv);
3861 spin_unlock_irq(&dev_priv->irq_lock);
3862
3863 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3864 POSTING_READ(GEN8_MASTER_IRQ);
3865
3866 return 0;
3867 }
3868
3869 static void gen8_irq_uninstall(struct drm_device *dev)
3870 {
3871 struct drm_i915_private *dev_priv = dev->dev_private;
3872
3873 if (!dev_priv)
3874 return;
3875
3876 gen8_irq_reset(dev);
3877 }
3878
3879 static void valleyview_irq_uninstall(struct drm_device *dev)
3880 {
3881 struct drm_i915_private *dev_priv = dev->dev_private;
3882
3883 if (!dev_priv)
3884 return;
3885
3886 I915_WRITE(VLV_MASTER_IER, 0);
3887 POSTING_READ(VLV_MASTER_IER);
3888
3889 gen5_gt_irq_reset(dev);
3890
3891 I915_WRITE(HWSTAM, 0xffffffff);
3892
3893 spin_lock_irq(&dev_priv->irq_lock);
3894 if (dev_priv->display_irqs_enabled)
3895 vlv_display_irq_reset(dev_priv);
3896 spin_unlock_irq(&dev_priv->irq_lock);
3897 }
3898
3899 static void cherryview_irq_uninstall(struct drm_device *dev)
3900 {
3901 struct drm_i915_private *dev_priv = dev->dev_private;
3902
3903 if (!dev_priv)
3904 return;
3905
3906 I915_WRITE(GEN8_MASTER_IRQ, 0);
3907 POSTING_READ(GEN8_MASTER_IRQ);
3908
3909 gen8_gt_irq_reset(dev_priv);
3910
3911 GEN5_IRQ_RESET(GEN8_PCU_);
3912
3913 spin_lock_irq(&dev_priv->irq_lock);
3914 if (dev_priv->display_irqs_enabled)
3915 vlv_display_irq_reset(dev_priv);
3916 spin_unlock_irq(&dev_priv->irq_lock);
3917 }
3918
3919 static void ironlake_irq_uninstall(struct drm_device *dev)
3920 {
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922
3923 if (!dev_priv)
3924 return;
3925
3926 ironlake_irq_reset(dev);
3927 }
3928
3929 static void i8xx_irq_preinstall(struct drm_device * dev)
3930 {
3931 struct drm_i915_private *dev_priv = dev->dev_private;
3932 int pipe;
3933
3934 for_each_pipe(dev_priv, pipe)
3935 I915_WRITE(PIPESTAT(pipe), 0);
3936 I915_WRITE16(IMR, 0xffff);
3937 I915_WRITE16(IER, 0x0);
3938 POSTING_READ16(IER);
3939 }
3940
3941 static int i8xx_irq_postinstall(struct drm_device *dev)
3942 {
3943 struct drm_i915_private *dev_priv = dev->dev_private;
3944
3945 I915_WRITE16(EMR,
3946 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3947
3948 /* Unmask the interrupts that we always want on. */
3949 dev_priv->irq_mask =
3950 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3952 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3953 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3954 I915_WRITE16(IMR, dev_priv->irq_mask);
3955
3956 I915_WRITE16(IER,
3957 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3958 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3959 I915_USER_INTERRUPT);
3960 POSTING_READ16(IER);
3961
3962 /* Interrupt setup is already guaranteed to be single-threaded, this is
3963 * just to make the assert_spin_locked check happy. */
3964 spin_lock_irq(&dev_priv->irq_lock);
3965 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3966 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3967 spin_unlock_irq(&dev_priv->irq_lock);
3968
3969 return 0;
3970 }
3971
3972 /*
3973 * Returns true when a page flip has completed.
3974 */
3975 static bool i8xx_handle_vblank(struct drm_device *dev,
3976 int plane, int pipe, u32 iir)
3977 {
3978 struct drm_i915_private *dev_priv = dev->dev_private;
3979 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3980
3981 if (!intel_pipe_handle_vblank(dev, pipe))
3982 return false;
3983
3984 if ((iir & flip_pending) == 0)
3985 goto check_page_flip;
3986
3987 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3988 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3989 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3990 * the flip is completed (no longer pending). Since this doesn't raise
3991 * an interrupt per se, we watch for the change at vblank.
3992 */
3993 if (I915_READ16(ISR) & flip_pending)
3994 goto check_page_flip;
3995
3996 intel_prepare_page_flip(dev, plane);
3997 intel_finish_page_flip(dev, pipe);
3998 return true;
3999
4000 check_page_flip:
4001 intel_check_page_flip(dev, pipe);
4002 return false;
4003 }
4004
4005 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4006 {
4007 struct drm_device *dev = arg;
4008 struct drm_i915_private *dev_priv = dev->dev_private;
4009 u16 iir, new_iir;
4010 u32 pipe_stats[2];
4011 int pipe;
4012 u16 flip_mask =
4013 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4014 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4015 irqreturn_t ret;
4016
4017 if (!intel_irqs_enabled(dev_priv))
4018 return IRQ_NONE;
4019
4020 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021 disable_rpm_wakeref_asserts(dev_priv);
4022
4023 ret = IRQ_NONE;
4024 iir = I915_READ16(IIR);
4025 if (iir == 0)
4026 goto out;
4027
4028 while (iir & ~flip_mask) {
4029 /* Can't rely on pipestat interrupt bit in iir as it might
4030 * have been cleared after the pipestat interrupt was received.
4031 * It doesn't set the bit in iir again, but it still produces
4032 * interrupts (for non-MSI).
4033 */
4034 spin_lock(&dev_priv->irq_lock);
4035 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4036 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4037
4038 for_each_pipe(dev_priv, pipe) {
4039 i915_reg_t reg = PIPESTAT(pipe);
4040 pipe_stats[pipe] = I915_READ(reg);
4041
4042 /*
4043 * Clear the PIPE*STAT regs before the IIR
4044 */
4045 if (pipe_stats[pipe] & 0x8000ffff)
4046 I915_WRITE(reg, pipe_stats[pipe]);
4047 }
4048 spin_unlock(&dev_priv->irq_lock);
4049
4050 I915_WRITE16(IIR, iir & ~flip_mask);
4051 new_iir = I915_READ16(IIR); /* Flush posted writes */
4052
4053 if (iir & I915_USER_INTERRUPT)
4054 notify_ring(&dev_priv->engine[RCS]);
4055
4056 for_each_pipe(dev_priv, pipe) {
4057 int plane = pipe;
4058 if (HAS_FBC(dev))
4059 plane = !plane;
4060
4061 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4062 i8xx_handle_vblank(dev, plane, pipe, iir))
4063 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4064
4065 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4066 i9xx_pipe_crc_irq_handler(dev, pipe);
4067
4068 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4069 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4070 pipe);
4071 }
4072
4073 iir = new_iir;
4074 }
4075 ret = IRQ_HANDLED;
4076
4077 out:
4078 enable_rpm_wakeref_asserts(dev_priv);
4079
4080 return ret;
4081 }
4082
4083 static void i8xx_irq_uninstall(struct drm_device * dev)
4084 {
4085 struct drm_i915_private *dev_priv = dev->dev_private;
4086 int pipe;
4087
4088 for_each_pipe(dev_priv, pipe) {
4089 /* Clear enable bits; then clear status bits */
4090 I915_WRITE(PIPESTAT(pipe), 0);
4091 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4092 }
4093 I915_WRITE16(IMR, 0xffff);
4094 I915_WRITE16(IER, 0x0);
4095 I915_WRITE16(IIR, I915_READ16(IIR));
4096 }
4097
4098 static void i915_irq_preinstall(struct drm_device * dev)
4099 {
4100 struct drm_i915_private *dev_priv = dev->dev_private;
4101 int pipe;
4102
4103 if (I915_HAS_HOTPLUG(dev)) {
4104 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4105 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4106 }
4107
4108 I915_WRITE16(HWSTAM, 0xeffe);
4109 for_each_pipe(dev_priv, pipe)
4110 I915_WRITE(PIPESTAT(pipe), 0);
4111 I915_WRITE(IMR, 0xffffffff);
4112 I915_WRITE(IER, 0x0);
4113 POSTING_READ(IER);
4114 }
4115
4116 static int i915_irq_postinstall(struct drm_device *dev)
4117 {
4118 struct drm_i915_private *dev_priv = dev->dev_private;
4119 u32 enable_mask;
4120
4121 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4122
4123 /* Unmask the interrupts that we always want on. */
4124 dev_priv->irq_mask =
4125 ~(I915_ASLE_INTERRUPT |
4126 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4128 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4129 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4130
4131 enable_mask =
4132 I915_ASLE_INTERRUPT |
4133 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4134 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4135 I915_USER_INTERRUPT;
4136
4137 if (I915_HAS_HOTPLUG(dev)) {
4138 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4139 POSTING_READ(PORT_HOTPLUG_EN);
4140
4141 /* Enable in IER... */
4142 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4143 /* and unmask in IMR */
4144 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4145 }
4146
4147 I915_WRITE(IMR, dev_priv->irq_mask);
4148 I915_WRITE(IER, enable_mask);
4149 POSTING_READ(IER);
4150
4151 i915_enable_asle_pipestat(dev);
4152
4153 /* Interrupt setup is already guaranteed to be single-threaded, this is
4154 * just to make the assert_spin_locked check happy. */
4155 spin_lock_irq(&dev_priv->irq_lock);
4156 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4157 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4158 spin_unlock_irq(&dev_priv->irq_lock);
4159
4160 return 0;
4161 }
4162
4163 /*
4164 * Returns true when a page flip has completed.
4165 */
4166 static bool i915_handle_vblank(struct drm_device *dev,
4167 int plane, int pipe, u32 iir)
4168 {
4169 struct drm_i915_private *dev_priv = dev->dev_private;
4170 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4171
4172 if (!intel_pipe_handle_vblank(dev, pipe))
4173 return false;
4174
4175 if ((iir & flip_pending) == 0)
4176 goto check_page_flip;
4177
4178 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4179 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4180 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4181 * the flip is completed (no longer pending). Since this doesn't raise
4182 * an interrupt per se, we watch for the change at vblank.
4183 */
4184 if (I915_READ(ISR) & flip_pending)
4185 goto check_page_flip;
4186
4187 intel_prepare_page_flip(dev, plane);
4188 intel_finish_page_flip(dev, pipe);
4189 return true;
4190
4191 check_page_flip:
4192 intel_check_page_flip(dev, pipe);
4193 return false;
4194 }
4195
4196 static irqreturn_t i915_irq_handler(int irq, void *arg)
4197 {
4198 struct drm_device *dev = arg;
4199 struct drm_i915_private *dev_priv = dev->dev_private;
4200 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4201 u32 flip_mask =
4202 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4203 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4204 int pipe, ret = IRQ_NONE;
4205
4206 if (!intel_irqs_enabled(dev_priv))
4207 return IRQ_NONE;
4208
4209 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4210 disable_rpm_wakeref_asserts(dev_priv);
4211
4212 iir = I915_READ(IIR);
4213 do {
4214 bool irq_received = (iir & ~flip_mask) != 0;
4215 bool blc_event = false;
4216
4217 /* Can't rely on pipestat interrupt bit in iir as it might
4218 * have been cleared after the pipestat interrupt was received.
4219 * It doesn't set the bit in iir again, but it still produces
4220 * interrupts (for non-MSI).
4221 */
4222 spin_lock(&dev_priv->irq_lock);
4223 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4224 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4225
4226 for_each_pipe(dev_priv, pipe) {
4227 i915_reg_t reg = PIPESTAT(pipe);
4228 pipe_stats[pipe] = I915_READ(reg);
4229
4230 /* Clear the PIPE*STAT regs before the IIR */
4231 if (pipe_stats[pipe] & 0x8000ffff) {
4232 I915_WRITE(reg, pipe_stats[pipe]);
4233 irq_received = true;
4234 }
4235 }
4236 spin_unlock(&dev_priv->irq_lock);
4237
4238 if (!irq_received)
4239 break;
4240
4241 /* Consume port. Then clear IIR or we'll miss events */
4242 if (I915_HAS_HOTPLUG(dev) &&
4243 iir & I915_DISPLAY_PORT_INTERRUPT)
4244 i9xx_hpd_irq_handler(dev);
4245
4246 I915_WRITE(IIR, iir & ~flip_mask);
4247 new_iir = I915_READ(IIR); /* Flush posted writes */
4248
4249 if (iir & I915_USER_INTERRUPT)
4250 notify_ring(&dev_priv->engine[RCS]);
4251
4252 for_each_pipe(dev_priv, pipe) {
4253 int plane = pipe;
4254 if (HAS_FBC(dev))
4255 plane = !plane;
4256
4257 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4258 i915_handle_vblank(dev, plane, pipe, iir))
4259 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4260
4261 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4262 blc_event = true;
4263
4264 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4265 i9xx_pipe_crc_irq_handler(dev, pipe);
4266
4267 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4268 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4269 pipe);
4270 }
4271
4272 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4273 intel_opregion_asle_intr(dev);
4274
4275 /* With MSI, interrupts are only generated when iir
4276 * transitions from zero to nonzero. If another bit got
4277 * set while we were handling the existing iir bits, then
4278 * we would never get another interrupt.
4279 *
4280 * This is fine on non-MSI as well, as if we hit this path
4281 * we avoid exiting the interrupt handler only to generate
4282 * another one.
4283 *
4284 * Note that for MSI this could cause a stray interrupt report
4285 * if an interrupt landed in the time between writing IIR and
4286 * the posting read. This should be rare enough to never
4287 * trigger the 99% of 100,000 interrupts test for disabling
4288 * stray interrupts.
4289 */
4290 ret = IRQ_HANDLED;
4291 iir = new_iir;
4292 } while (iir & ~flip_mask);
4293
4294 enable_rpm_wakeref_asserts(dev_priv);
4295
4296 return ret;
4297 }
4298
4299 static void i915_irq_uninstall(struct drm_device * dev)
4300 {
4301 struct drm_i915_private *dev_priv = dev->dev_private;
4302 int pipe;
4303
4304 if (I915_HAS_HOTPLUG(dev)) {
4305 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4306 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4307 }
4308
4309 I915_WRITE16(HWSTAM, 0xffff);
4310 for_each_pipe(dev_priv, pipe) {
4311 /* Clear enable bits; then clear status bits */
4312 I915_WRITE(PIPESTAT(pipe), 0);
4313 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4314 }
4315 I915_WRITE(IMR, 0xffffffff);
4316 I915_WRITE(IER, 0x0);
4317
4318 I915_WRITE(IIR, I915_READ(IIR));
4319 }
4320
4321 static void i965_irq_preinstall(struct drm_device * dev)
4322 {
4323 struct drm_i915_private *dev_priv = dev->dev_private;
4324 int pipe;
4325
4326 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4327 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4328
4329 I915_WRITE(HWSTAM, 0xeffe);
4330 for_each_pipe(dev_priv, pipe)
4331 I915_WRITE(PIPESTAT(pipe), 0);
4332 I915_WRITE(IMR, 0xffffffff);
4333 I915_WRITE(IER, 0x0);
4334 POSTING_READ(IER);
4335 }
4336
4337 static int i965_irq_postinstall(struct drm_device *dev)
4338 {
4339 struct drm_i915_private *dev_priv = dev->dev_private;
4340 u32 enable_mask;
4341 u32 error_mask;
4342
4343 /* Unmask the interrupts that we always want on. */
4344 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4345 I915_DISPLAY_PORT_INTERRUPT |
4346 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4347 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4348 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4349 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4350 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4351
4352 enable_mask = ~dev_priv->irq_mask;
4353 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4354 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4355 enable_mask |= I915_USER_INTERRUPT;
4356
4357 if (IS_G4X(dev))
4358 enable_mask |= I915_BSD_USER_INTERRUPT;
4359
4360 /* Interrupt setup is already guaranteed to be single-threaded, this is
4361 * just to make the assert_spin_locked check happy. */
4362 spin_lock_irq(&dev_priv->irq_lock);
4363 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4364 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4365 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4366 spin_unlock_irq(&dev_priv->irq_lock);
4367
4368 /*
4369 * Enable some error detection, note the instruction error mask
4370 * bit is reserved, so we leave it masked.
4371 */
4372 if (IS_G4X(dev)) {
4373 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4374 GM45_ERROR_MEM_PRIV |
4375 GM45_ERROR_CP_PRIV |
4376 I915_ERROR_MEMORY_REFRESH);
4377 } else {
4378 error_mask = ~(I915_ERROR_PAGE_TABLE |
4379 I915_ERROR_MEMORY_REFRESH);
4380 }
4381 I915_WRITE(EMR, error_mask);
4382
4383 I915_WRITE(IMR, dev_priv->irq_mask);
4384 I915_WRITE(IER, enable_mask);
4385 POSTING_READ(IER);
4386
4387 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4388 POSTING_READ(PORT_HOTPLUG_EN);
4389
4390 i915_enable_asle_pipestat(dev);
4391
4392 return 0;
4393 }
4394
4395 static void i915_hpd_irq_setup(struct drm_device *dev)
4396 {
4397 struct drm_i915_private *dev_priv = dev->dev_private;
4398 u32 hotplug_en;
4399
4400 assert_spin_locked(&dev_priv->irq_lock);
4401
4402 /* Note HDMI and DP share hotplug bits */
4403 /* enable bits are the same for all generations */
4404 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4405 /* Programming the CRT detection parameters tends
4406 to generate a spurious hotplug event about three
4407 seconds later. So just do it once.
4408 */
4409 if (IS_G4X(dev))
4410 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4411 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4412
4413 /* Ignore TV since it's buggy */
4414 i915_hotplug_interrupt_update_locked(dev_priv,
4415 HOTPLUG_INT_EN_MASK |
4416 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4417 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4418 hotplug_en);
4419 }
4420
4421 static irqreturn_t i965_irq_handler(int irq, void *arg)
4422 {
4423 struct drm_device *dev = arg;
4424 struct drm_i915_private *dev_priv = dev->dev_private;
4425 u32 iir, new_iir;
4426 u32 pipe_stats[I915_MAX_PIPES];
4427 int ret = IRQ_NONE, pipe;
4428 u32 flip_mask =
4429 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4430 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4431
4432 if (!intel_irqs_enabled(dev_priv))
4433 return IRQ_NONE;
4434
4435 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4436 disable_rpm_wakeref_asserts(dev_priv);
4437
4438 iir = I915_READ(IIR);
4439
4440 for (;;) {
4441 bool irq_received = (iir & ~flip_mask) != 0;
4442 bool blc_event = false;
4443
4444 /* Can't rely on pipestat interrupt bit in iir as it might
4445 * have been cleared after the pipestat interrupt was received.
4446 * It doesn't set the bit in iir again, but it still produces
4447 * interrupts (for non-MSI).
4448 */
4449 spin_lock(&dev_priv->irq_lock);
4450 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4451 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4452
4453 for_each_pipe(dev_priv, pipe) {
4454 i915_reg_t reg = PIPESTAT(pipe);
4455 pipe_stats[pipe] = I915_READ(reg);
4456
4457 /*
4458 * Clear the PIPE*STAT regs before the IIR
4459 */
4460 if (pipe_stats[pipe] & 0x8000ffff) {
4461 I915_WRITE(reg, pipe_stats[pipe]);
4462 irq_received = true;
4463 }
4464 }
4465 spin_unlock(&dev_priv->irq_lock);
4466
4467 if (!irq_received)
4468 break;
4469
4470 ret = IRQ_HANDLED;
4471
4472 /* Consume port. Then clear IIR or we'll miss events */
4473 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4474 i9xx_hpd_irq_handler(dev);
4475
4476 I915_WRITE(IIR, iir & ~flip_mask);
4477 new_iir = I915_READ(IIR); /* Flush posted writes */
4478
4479 if (iir & I915_USER_INTERRUPT)
4480 notify_ring(&dev_priv->engine[RCS]);
4481 if (iir & I915_BSD_USER_INTERRUPT)
4482 notify_ring(&dev_priv->engine[VCS]);
4483
4484 for_each_pipe(dev_priv, pipe) {
4485 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4486 i915_handle_vblank(dev, pipe, pipe, iir))
4487 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4488
4489 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4490 blc_event = true;
4491
4492 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4493 i9xx_pipe_crc_irq_handler(dev, pipe);
4494
4495 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4496 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4497 }
4498
4499 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4500 intel_opregion_asle_intr(dev);
4501
4502 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4503 gmbus_irq_handler(dev);
4504
4505 /* With MSI, interrupts are only generated when iir
4506 * transitions from zero to nonzero. If another bit got
4507 * set while we were handling the existing iir bits, then
4508 * we would never get another interrupt.
4509 *
4510 * This is fine on non-MSI as well, as if we hit this path
4511 * we avoid exiting the interrupt handler only to generate
4512 * another one.
4513 *
4514 * Note that for MSI this could cause a stray interrupt report
4515 * if an interrupt landed in the time between writing IIR and
4516 * the posting read. This should be rare enough to never
4517 * trigger the 99% of 100,000 interrupts test for disabling
4518 * stray interrupts.
4519 */
4520 iir = new_iir;
4521 }
4522
4523 enable_rpm_wakeref_asserts(dev_priv);
4524
4525 return ret;
4526 }
4527
4528 static void i965_irq_uninstall(struct drm_device * dev)
4529 {
4530 struct drm_i915_private *dev_priv = dev->dev_private;
4531 int pipe;
4532
4533 if (!dev_priv)
4534 return;
4535
4536 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4537 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4538
4539 I915_WRITE(HWSTAM, 0xffffffff);
4540 for_each_pipe(dev_priv, pipe)
4541 I915_WRITE(PIPESTAT(pipe), 0);
4542 I915_WRITE(IMR, 0xffffffff);
4543 I915_WRITE(IER, 0x0);
4544
4545 for_each_pipe(dev_priv, pipe)
4546 I915_WRITE(PIPESTAT(pipe),
4547 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4548 I915_WRITE(IIR, I915_READ(IIR));
4549 }
4550
4551 /**
4552 * intel_irq_init - initializes irq support
4553 * @dev_priv: i915 device instance
4554 *
4555 * This function initializes all the irq support including work items, timers
4556 * and all the vtables. It does not setup the interrupt itself though.
4557 */
4558 void intel_irq_init(struct drm_i915_private *dev_priv)
4559 {
4560 struct drm_device *dev = dev_priv->dev;
4561
4562 intel_hpd_init_work(dev_priv);
4563
4564 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4565 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4566
4567 /* Let's track the enabled rps events */
4568 if (IS_VALLEYVIEW(dev_priv))
4569 /* WaGsvRC0ResidencyMethod:vlv */
4570 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4571 else
4572 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4573
4574 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4575 i915_hangcheck_elapsed);
4576
4577 if (IS_GEN2(dev_priv)) {
4578 dev->max_vblank_count = 0;
4579 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4580 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4581 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4582 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4583 } else {
4584 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4585 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4586 }
4587
4588 /*
4589 * Opt out of the vblank disable timer on everything except gen2.
4590 * Gen2 doesn't have a hardware frame counter and so depends on
4591 * vblank interrupts to produce sane vblank seuquence numbers.
4592 */
4593 if (!IS_GEN2(dev_priv))
4594 dev->vblank_disable_immediate = true;
4595
4596 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4597 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4598
4599 if (IS_CHERRYVIEW(dev_priv)) {
4600 dev->driver->irq_handler = cherryview_irq_handler;
4601 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4602 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4603 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4604 dev->driver->enable_vblank = valleyview_enable_vblank;
4605 dev->driver->disable_vblank = valleyview_disable_vblank;
4606 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4607 } else if (IS_VALLEYVIEW(dev_priv)) {
4608 dev->driver->irq_handler = valleyview_irq_handler;
4609 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4610 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4611 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4612 dev->driver->enable_vblank = valleyview_enable_vblank;
4613 dev->driver->disable_vblank = valleyview_disable_vblank;
4614 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4615 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4616 dev->driver->irq_handler = gen8_irq_handler;
4617 dev->driver->irq_preinstall = gen8_irq_reset;
4618 dev->driver->irq_postinstall = gen8_irq_postinstall;
4619 dev->driver->irq_uninstall = gen8_irq_uninstall;
4620 dev->driver->enable_vblank = gen8_enable_vblank;
4621 dev->driver->disable_vblank = gen8_disable_vblank;
4622 if (IS_BROXTON(dev))
4623 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4624 else if (HAS_PCH_SPT(dev))
4625 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4626 else
4627 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4628 } else if (HAS_PCH_SPLIT(dev)) {
4629 dev->driver->irq_handler = ironlake_irq_handler;
4630 dev->driver->irq_preinstall = ironlake_irq_reset;
4631 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4632 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4633 dev->driver->enable_vblank = ironlake_enable_vblank;
4634 dev->driver->disable_vblank = ironlake_disable_vblank;
4635 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4636 } else {
4637 if (INTEL_INFO(dev_priv)->gen == 2) {
4638 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4639 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4640 dev->driver->irq_handler = i8xx_irq_handler;
4641 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4642 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4643 dev->driver->irq_preinstall = i915_irq_preinstall;
4644 dev->driver->irq_postinstall = i915_irq_postinstall;
4645 dev->driver->irq_uninstall = i915_irq_uninstall;
4646 dev->driver->irq_handler = i915_irq_handler;
4647 } else {
4648 dev->driver->irq_preinstall = i965_irq_preinstall;
4649 dev->driver->irq_postinstall = i965_irq_postinstall;
4650 dev->driver->irq_uninstall = i965_irq_uninstall;
4651 dev->driver->irq_handler = i965_irq_handler;
4652 }
4653 if (I915_HAS_HOTPLUG(dev_priv))
4654 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4655 dev->driver->enable_vblank = i915_enable_vblank;
4656 dev->driver->disable_vblank = i915_disable_vblank;
4657 }
4658 }
4659
4660 /**
4661 * intel_irq_install - enables the hardware interrupt
4662 * @dev_priv: i915 device instance
4663 *
4664 * This function enables the hardware interrupt handling, but leaves the hotplug
4665 * handling still disabled. It is called after intel_irq_init().
4666 *
4667 * In the driver load and resume code we need working interrupts in a few places
4668 * but don't want to deal with the hassle of concurrent probe and hotplug
4669 * workers. Hence the split into this two-stage approach.
4670 */
4671 int intel_irq_install(struct drm_i915_private *dev_priv)
4672 {
4673 /*
4674 * We enable some interrupt sources in our postinstall hooks, so mark
4675 * interrupts as enabled _before_ actually enabling them to avoid
4676 * special cases in our ordering checks.
4677 */
4678 dev_priv->pm.irqs_enabled = true;
4679
4680 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4681 }
4682
4683 /**
4684 * intel_irq_uninstall - finilizes all irq handling
4685 * @dev_priv: i915 device instance
4686 *
4687 * This stops interrupt and hotplug handling and unregisters and frees all
4688 * resources acquired in the init functions.
4689 */
4690 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4691 {
4692 drm_irq_uninstall(dev_priv->dev);
4693 intel_hpd_cancel_work(dev_priv);
4694 dev_priv->pm.irqs_enabled = false;
4695 }
4696
4697 /**
4698 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4699 * @dev_priv: i915 device instance
4700 *
4701 * This function is used to disable interrupts at runtime, both in the runtime
4702 * pm and the system suspend/resume code.
4703 */
4704 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4705 {
4706 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4707 dev_priv->pm.irqs_enabled = false;
4708 synchronize_irq(dev_priv->dev->irq);
4709 }
4710
4711 /**
4712 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4713 * @dev_priv: i915 device instance
4714 *
4715 * This function is used to enable interrupts at runtime, both in the runtime
4716 * pm and the system suspend/resume code.
4717 */
4718 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4719 {
4720 dev_priv->pm.irqs_enabled = true;
4721 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4722 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4723 }
This page took 0.149665 seconds and 6 git commands to generate.