drm/i915: Do not use {HAS_*, IS_*, INTEL_INFO}(dev_priv->dev)
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 if (!intel_engine_initialized(engine))
1000 return;
1001
1002 trace_i915_gem_request_notify(engine);
1003
1004 wake_up_all(&engine->irq_queue);
1005 }
1006
1007 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008 struct intel_rps_ei *ei)
1009 {
1010 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013 }
1014
1015 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016 const struct intel_rps_ei *old,
1017 const struct intel_rps_ei *now,
1018 int threshold)
1019 {
1020 u64 time, c0;
1021 unsigned int mul = 100;
1022
1023 if (old->cz_clock == 0)
1024 return false;
1025
1026 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027 mul <<= 8;
1028
1029 time = now->cz_clock - old->cz_clock;
1030 time *= threshold * dev_priv->czclk_freq;
1031
1032 /* Workload can be split between render + media, e.g. SwapBuffers
1033 * being blitted in X after being rendered in mesa. To account for
1034 * this we need to combine both engines into our activity counter.
1035 */
1036 c0 = now->render_c0 - old->render_c0;
1037 c0 += now->media_c0 - old->media_c0;
1038 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040 return c0 >= time;
1041 }
1042
1043 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044 {
1045 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047 }
1048
1049 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050 {
1051 struct intel_rps_ei now;
1052 u32 events = 0;
1053
1054 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055 return 0;
1056
1057 vlv_c0_read(dev_priv, &now);
1058 if (now.cz_clock == 0)
1059 return 0;
1060
1061 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062 if (!vlv_c0_above(dev_priv,
1063 &dev_priv->rps.down_ei, &now,
1064 dev_priv->rps.down_threshold))
1065 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066 dev_priv->rps.down_ei = now;
1067 }
1068
1069 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070 if (vlv_c0_above(dev_priv,
1071 &dev_priv->rps.up_ei, &now,
1072 dev_priv->rps.up_threshold))
1073 events |= GEN6_PM_RP_UP_THRESHOLD;
1074 dev_priv->rps.up_ei = now;
1075 }
1076
1077 return events;
1078 }
1079
1080 static bool any_waiters(struct drm_i915_private *dev_priv)
1081 {
1082 struct intel_engine_cs *engine;
1083
1084 for_each_engine(engine, dev_priv)
1085 if (engine->irq_refcount)
1086 return true;
1087
1088 return false;
1089 }
1090
1091 static void gen6_pm_rps_work(struct work_struct *work)
1092 {
1093 struct drm_i915_private *dev_priv =
1094 container_of(work, struct drm_i915_private, rps.work);
1095 bool client_boost;
1096 int new_delay, adj, min, max;
1097 u32 pm_iir;
1098
1099 spin_lock_irq(&dev_priv->irq_lock);
1100 /* Speed up work cancelation during disabling rps interrupts. */
1101 if (!dev_priv->rps.interrupts_enabled) {
1102 spin_unlock_irq(&dev_priv->irq_lock);
1103 return;
1104 }
1105
1106 /*
1107 * The RPS work is synced during runtime suspend, we don't require a
1108 * wakeref. TODO: instead of disabling the asserts make sure that we
1109 * always hold an RPM reference while the work is running.
1110 */
1111 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1112
1113 pm_iir = dev_priv->rps.pm_iir;
1114 dev_priv->rps.pm_iir = 0;
1115 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1116 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1117 client_boost = dev_priv->rps.client_boost;
1118 dev_priv->rps.client_boost = false;
1119 spin_unlock_irq(&dev_priv->irq_lock);
1120
1121 /* Make sure we didn't queue anything we're not going to process. */
1122 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1123
1124 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1125 goto out;
1126
1127 mutex_lock(&dev_priv->rps.hw_lock);
1128
1129 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1130
1131 adj = dev_priv->rps.last_adj;
1132 new_delay = dev_priv->rps.cur_freq;
1133 min = dev_priv->rps.min_freq_softlimit;
1134 max = dev_priv->rps.max_freq_softlimit;
1135
1136 if (client_boost) {
1137 new_delay = dev_priv->rps.max_freq_softlimit;
1138 adj = 0;
1139 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1140 if (adj > 0)
1141 adj *= 2;
1142 else /* CHV needs even encode values */
1143 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1144 /*
1145 * For better performance, jump directly
1146 * to RPe if we're below it.
1147 */
1148 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1149 new_delay = dev_priv->rps.efficient_freq;
1150 adj = 0;
1151 }
1152 } else if (any_waiters(dev_priv)) {
1153 adj = 0;
1154 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1155 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1156 new_delay = dev_priv->rps.efficient_freq;
1157 else
1158 new_delay = dev_priv->rps.min_freq_softlimit;
1159 adj = 0;
1160 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1161 if (adj < 0)
1162 adj *= 2;
1163 else /* CHV needs even encode values */
1164 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1165 } else { /* unknown event */
1166 adj = 0;
1167 }
1168
1169 dev_priv->rps.last_adj = adj;
1170
1171 /* sysfs frequency interfaces may have snuck in while servicing the
1172 * interrupt
1173 */
1174 new_delay += adj;
1175 new_delay = clamp_t(int, new_delay, min, max);
1176
1177 intel_set_rps(dev_priv->dev, new_delay);
1178
1179 mutex_unlock(&dev_priv->rps.hw_lock);
1180 out:
1181 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1182 }
1183
1184
1185 /**
1186 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1187 * occurred.
1188 * @work: workqueue struct
1189 *
1190 * Doesn't actually do anything except notify userspace. As a consequence of
1191 * this event, userspace should try to remap the bad rows since statistically
1192 * it is likely the same row is more likely to go bad again.
1193 */
1194 static void ivybridge_parity_work(struct work_struct *work)
1195 {
1196 struct drm_i915_private *dev_priv =
1197 container_of(work, struct drm_i915_private, l3_parity.error_work);
1198 u32 error_status, row, bank, subbank;
1199 char *parity_event[6];
1200 uint32_t misccpctl;
1201 uint8_t slice = 0;
1202
1203 /* We must turn off DOP level clock gating to access the L3 registers.
1204 * In order to prevent a get/put style interface, acquire struct mutex
1205 * any time we access those registers.
1206 */
1207 mutex_lock(&dev_priv->dev->struct_mutex);
1208
1209 /* If we've screwed up tracking, just let the interrupt fire again */
1210 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1211 goto out;
1212
1213 misccpctl = I915_READ(GEN7_MISCCPCTL);
1214 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1215 POSTING_READ(GEN7_MISCCPCTL);
1216
1217 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1218 i915_reg_t reg;
1219
1220 slice--;
1221 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1222 break;
1223
1224 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1225
1226 reg = GEN7_L3CDERRST1(slice);
1227
1228 error_status = I915_READ(reg);
1229 row = GEN7_PARITY_ERROR_ROW(error_status);
1230 bank = GEN7_PARITY_ERROR_BANK(error_status);
1231 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1232
1233 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1234 POSTING_READ(reg);
1235
1236 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1237 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1238 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1239 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1240 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1241 parity_event[5] = NULL;
1242
1243 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1244 KOBJ_CHANGE, parity_event);
1245
1246 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1247 slice, row, bank, subbank);
1248
1249 kfree(parity_event[4]);
1250 kfree(parity_event[3]);
1251 kfree(parity_event[2]);
1252 kfree(parity_event[1]);
1253 }
1254
1255 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1256
1257 out:
1258 WARN_ON(dev_priv->l3_parity.which_slice);
1259 spin_lock_irq(&dev_priv->irq_lock);
1260 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1261 spin_unlock_irq(&dev_priv->irq_lock);
1262
1263 mutex_unlock(&dev_priv->dev->struct_mutex);
1264 }
1265
1266 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1267 {
1268 struct drm_i915_private *dev_priv = dev->dev_private;
1269
1270 if (!HAS_L3_DPF(dev))
1271 return;
1272
1273 spin_lock(&dev_priv->irq_lock);
1274 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1275 spin_unlock(&dev_priv->irq_lock);
1276
1277 iir &= GT_PARITY_ERROR(dev);
1278 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1279 dev_priv->l3_parity.which_slice |= 1 << 1;
1280
1281 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1282 dev_priv->l3_parity.which_slice |= 1 << 0;
1283
1284 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1285 }
1286
1287 static void ilk_gt_irq_handler(struct drm_device *dev,
1288 struct drm_i915_private *dev_priv,
1289 u32 gt_iir)
1290 {
1291 if (gt_iir &
1292 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1293 notify_ring(&dev_priv->engine[RCS]);
1294 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1295 notify_ring(&dev_priv->engine[VCS]);
1296 }
1297
1298 static void snb_gt_irq_handler(struct drm_device *dev,
1299 struct drm_i915_private *dev_priv,
1300 u32 gt_iir)
1301 {
1302
1303 if (gt_iir &
1304 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1305 notify_ring(&dev_priv->engine[RCS]);
1306 if (gt_iir & GT_BSD_USER_INTERRUPT)
1307 notify_ring(&dev_priv->engine[VCS]);
1308 if (gt_iir & GT_BLT_USER_INTERRUPT)
1309 notify_ring(&dev_priv->engine[BCS]);
1310
1311 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1312 GT_BSD_CS_ERROR_INTERRUPT |
1313 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1314 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1315
1316 if (gt_iir & GT_PARITY_ERROR(dev))
1317 ivybridge_parity_error_irq_handler(dev, gt_iir);
1318 }
1319
1320 static __always_inline void
1321 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1322 {
1323 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1324 notify_ring(engine);
1325 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1326 tasklet_schedule(&engine->irq_tasklet);
1327 }
1328
1329 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1330 u32 master_ctl)
1331 {
1332 irqreturn_t ret = IRQ_NONE;
1333
1334 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1335 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1336 if (iir) {
1337 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1338 ret = IRQ_HANDLED;
1339
1340 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1341 iir, GEN8_RCS_IRQ_SHIFT);
1342
1343 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1344 iir, GEN8_BCS_IRQ_SHIFT);
1345 } else
1346 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1347 }
1348
1349 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1350 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1351 if (iir) {
1352 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1353 ret = IRQ_HANDLED;
1354
1355 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1356 iir, GEN8_VCS1_IRQ_SHIFT);
1357
1358 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1359 iir, GEN8_VCS2_IRQ_SHIFT);
1360 } else
1361 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1362 }
1363
1364 if (master_ctl & GEN8_GT_VECS_IRQ) {
1365 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1366 if (iir) {
1367 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1368 ret = IRQ_HANDLED;
1369
1370 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1371 iir, GEN8_VECS_IRQ_SHIFT);
1372 } else
1373 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1374 }
1375
1376 if (master_ctl & GEN8_GT_PM_IRQ) {
1377 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1378 if (iir & dev_priv->pm_rps_events) {
1379 I915_WRITE_FW(GEN8_GT_IIR(2),
1380 iir & dev_priv->pm_rps_events);
1381 ret = IRQ_HANDLED;
1382 gen6_rps_irq_handler(dev_priv, iir);
1383 } else
1384 DRM_ERROR("The master control interrupt lied (PM)!\n");
1385 }
1386
1387 return ret;
1388 }
1389
1390 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1391 {
1392 switch (port) {
1393 case PORT_A:
1394 return val & PORTA_HOTPLUG_LONG_DETECT;
1395 case PORT_B:
1396 return val & PORTB_HOTPLUG_LONG_DETECT;
1397 case PORT_C:
1398 return val & PORTC_HOTPLUG_LONG_DETECT;
1399 default:
1400 return false;
1401 }
1402 }
1403
1404 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1405 {
1406 switch (port) {
1407 case PORT_E:
1408 return val & PORTE_HOTPLUG_LONG_DETECT;
1409 default:
1410 return false;
1411 }
1412 }
1413
1414 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1415 {
1416 switch (port) {
1417 case PORT_A:
1418 return val & PORTA_HOTPLUG_LONG_DETECT;
1419 case PORT_B:
1420 return val & PORTB_HOTPLUG_LONG_DETECT;
1421 case PORT_C:
1422 return val & PORTC_HOTPLUG_LONG_DETECT;
1423 case PORT_D:
1424 return val & PORTD_HOTPLUG_LONG_DETECT;
1425 default:
1426 return false;
1427 }
1428 }
1429
1430 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1431 {
1432 switch (port) {
1433 case PORT_A:
1434 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1435 default:
1436 return false;
1437 }
1438 }
1439
1440 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1441 {
1442 switch (port) {
1443 case PORT_B:
1444 return val & PORTB_HOTPLUG_LONG_DETECT;
1445 case PORT_C:
1446 return val & PORTC_HOTPLUG_LONG_DETECT;
1447 case PORT_D:
1448 return val & PORTD_HOTPLUG_LONG_DETECT;
1449 default:
1450 return false;
1451 }
1452 }
1453
1454 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1455 {
1456 switch (port) {
1457 case PORT_B:
1458 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1459 case PORT_C:
1460 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1461 case PORT_D:
1462 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1463 default:
1464 return false;
1465 }
1466 }
1467
1468 /*
1469 * Get a bit mask of pins that have triggered, and which ones may be long.
1470 * This can be called multiple times with the same masks to accumulate
1471 * hotplug detection results from several registers.
1472 *
1473 * Note that the caller is expected to zero out the masks initially.
1474 */
1475 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1476 u32 hotplug_trigger, u32 dig_hotplug_reg,
1477 const u32 hpd[HPD_NUM_PINS],
1478 bool long_pulse_detect(enum port port, u32 val))
1479 {
1480 enum port port;
1481 int i;
1482
1483 for_each_hpd_pin(i) {
1484 if ((hpd[i] & hotplug_trigger) == 0)
1485 continue;
1486
1487 *pin_mask |= BIT(i);
1488
1489 if (!intel_hpd_pin_to_port(i, &port))
1490 continue;
1491
1492 if (long_pulse_detect(port, dig_hotplug_reg))
1493 *long_mask |= BIT(i);
1494 }
1495
1496 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1497 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1498
1499 }
1500
1501 static void gmbus_irq_handler(struct drm_device *dev)
1502 {
1503 struct drm_i915_private *dev_priv = dev->dev_private;
1504
1505 wake_up_all(&dev_priv->gmbus_wait_queue);
1506 }
1507
1508 static void dp_aux_irq_handler(struct drm_device *dev)
1509 {
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511
1512 wake_up_all(&dev_priv->gmbus_wait_queue);
1513 }
1514
1515 #if defined(CONFIG_DEBUG_FS)
1516 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1517 uint32_t crc0, uint32_t crc1,
1518 uint32_t crc2, uint32_t crc3,
1519 uint32_t crc4)
1520 {
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1523 struct intel_pipe_crc_entry *entry;
1524 int head, tail;
1525
1526 spin_lock(&pipe_crc->lock);
1527
1528 if (!pipe_crc->entries) {
1529 spin_unlock(&pipe_crc->lock);
1530 DRM_DEBUG_KMS("spurious interrupt\n");
1531 return;
1532 }
1533
1534 head = pipe_crc->head;
1535 tail = pipe_crc->tail;
1536
1537 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1538 spin_unlock(&pipe_crc->lock);
1539 DRM_ERROR("CRC buffer overflowing\n");
1540 return;
1541 }
1542
1543 entry = &pipe_crc->entries[head];
1544
1545 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1546 entry->crc[0] = crc0;
1547 entry->crc[1] = crc1;
1548 entry->crc[2] = crc2;
1549 entry->crc[3] = crc3;
1550 entry->crc[4] = crc4;
1551
1552 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1553 pipe_crc->head = head;
1554
1555 spin_unlock(&pipe_crc->lock);
1556
1557 wake_up_interruptible(&pipe_crc->wq);
1558 }
1559 #else
1560 static inline void
1561 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1562 uint32_t crc0, uint32_t crc1,
1563 uint32_t crc2, uint32_t crc3,
1564 uint32_t crc4) {}
1565 #endif
1566
1567
1568 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1569 {
1570 struct drm_i915_private *dev_priv = dev->dev_private;
1571
1572 display_pipe_crc_irq_handler(dev, pipe,
1573 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1574 0, 0, 0, 0);
1575 }
1576
1577 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1578 {
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580
1581 display_pipe_crc_irq_handler(dev, pipe,
1582 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1583 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1587 }
1588
1589 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1590 {
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592 uint32_t res1, res2;
1593
1594 if (INTEL_INFO(dev)->gen >= 3)
1595 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1596 else
1597 res1 = 0;
1598
1599 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1600 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1601 else
1602 res2 = 0;
1603
1604 display_pipe_crc_irq_handler(dev, pipe,
1605 I915_READ(PIPE_CRC_RES_RED(pipe)),
1606 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1607 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1608 res1, res2);
1609 }
1610
1611 /* The RPS events need forcewake, so we add them to a work queue and mask their
1612 * IMR bits until the work is done. Other interrupts can be processed without
1613 * the work queue. */
1614 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1615 {
1616 if (pm_iir & dev_priv->pm_rps_events) {
1617 spin_lock(&dev_priv->irq_lock);
1618 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1619 if (dev_priv->rps.interrupts_enabled) {
1620 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1621 queue_work(dev_priv->wq, &dev_priv->rps.work);
1622 }
1623 spin_unlock(&dev_priv->irq_lock);
1624 }
1625
1626 if (INTEL_INFO(dev_priv)->gen >= 8)
1627 return;
1628
1629 if (HAS_VEBOX(dev_priv)) {
1630 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1631 notify_ring(&dev_priv->engine[VECS]);
1632
1633 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1634 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1635 }
1636 }
1637
1638 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1639 {
1640 if (!drm_handle_vblank(dev, pipe))
1641 return false;
1642
1643 return true;
1644 }
1645
1646 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1647 {
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 u32 pipe_stats[I915_MAX_PIPES] = { };
1650 int pipe;
1651
1652 spin_lock(&dev_priv->irq_lock);
1653
1654 if (!dev_priv->display_irqs_enabled) {
1655 spin_unlock(&dev_priv->irq_lock);
1656 return;
1657 }
1658
1659 for_each_pipe(dev_priv, pipe) {
1660 i915_reg_t reg;
1661 u32 mask, iir_bit = 0;
1662
1663 /*
1664 * PIPESTAT bits get signalled even when the interrupt is
1665 * disabled with the mask bits, and some of the status bits do
1666 * not generate interrupts at all (like the underrun bit). Hence
1667 * we need to be careful that we only handle what we want to
1668 * handle.
1669 */
1670
1671 /* fifo underruns are filterered in the underrun handler. */
1672 mask = PIPE_FIFO_UNDERRUN_STATUS;
1673
1674 switch (pipe) {
1675 case PIPE_A:
1676 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1677 break;
1678 case PIPE_B:
1679 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1680 break;
1681 case PIPE_C:
1682 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1683 break;
1684 }
1685 if (iir & iir_bit)
1686 mask |= dev_priv->pipestat_irq_mask[pipe];
1687
1688 if (!mask)
1689 continue;
1690
1691 reg = PIPESTAT(pipe);
1692 mask |= PIPESTAT_INT_ENABLE_MASK;
1693 pipe_stats[pipe] = I915_READ(reg) & mask;
1694
1695 /*
1696 * Clear the PIPE*STAT regs before the IIR
1697 */
1698 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1699 PIPESTAT_INT_STATUS_MASK))
1700 I915_WRITE(reg, pipe_stats[pipe]);
1701 }
1702 spin_unlock(&dev_priv->irq_lock);
1703
1704 for_each_pipe(dev_priv, pipe) {
1705 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1706 intel_pipe_handle_vblank(dev, pipe))
1707 intel_check_page_flip(dev, pipe);
1708
1709 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1710 intel_prepare_page_flip(dev, pipe);
1711 intel_finish_page_flip(dev, pipe);
1712 }
1713
1714 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1715 i9xx_pipe_crc_irq_handler(dev, pipe);
1716
1717 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1718 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1719 }
1720
1721 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1722 gmbus_irq_handler(dev);
1723 }
1724
1725 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1726 {
1727 struct drm_i915_private *dev_priv = dev->dev_private;
1728 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1729 u32 pin_mask = 0, long_mask = 0;
1730
1731 if (!hotplug_status)
1732 return;
1733
1734 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1735 /*
1736 * Make sure hotplug status is cleared before we clear IIR, or else we
1737 * may miss hotplug events.
1738 */
1739 POSTING_READ(PORT_HOTPLUG_STAT);
1740
1741 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1742 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1743
1744 if (hotplug_trigger) {
1745 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1746 hotplug_trigger, hpd_status_g4x,
1747 i9xx_port_hotplug_long_detect);
1748
1749 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1750 }
1751
1752 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1753 dp_aux_irq_handler(dev);
1754 } else {
1755 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1756
1757 if (hotplug_trigger) {
1758 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1759 hotplug_trigger, hpd_status_i915,
1760 i9xx_port_hotplug_long_detect);
1761 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1762 }
1763 }
1764 }
1765
1766 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1767 {
1768 struct drm_device *dev = arg;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 u32 iir, gt_iir, pm_iir;
1771 irqreturn_t ret = IRQ_NONE;
1772
1773 if (!intel_irqs_enabled(dev_priv))
1774 return IRQ_NONE;
1775
1776 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1777 disable_rpm_wakeref_asserts(dev_priv);
1778
1779 while (true) {
1780 /* Find, clear, then process each source of interrupt */
1781
1782 gt_iir = I915_READ(GTIIR);
1783 if (gt_iir)
1784 I915_WRITE(GTIIR, gt_iir);
1785
1786 pm_iir = I915_READ(GEN6_PMIIR);
1787 if (pm_iir)
1788 I915_WRITE(GEN6_PMIIR, pm_iir);
1789
1790 iir = I915_READ(VLV_IIR);
1791 if (iir) {
1792 /* Consume port before clearing IIR or we'll miss events */
1793 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1794 i9xx_hpd_irq_handler(dev);
1795 I915_WRITE(VLV_IIR, iir);
1796 }
1797
1798 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1799 goto out;
1800
1801 ret = IRQ_HANDLED;
1802
1803 if (gt_iir)
1804 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1805 if (pm_iir)
1806 gen6_rps_irq_handler(dev_priv, pm_iir);
1807 /* Call regardless, as some status bits might not be
1808 * signalled in iir */
1809 valleyview_pipestat_irq_handler(dev, iir);
1810 }
1811
1812 out:
1813 enable_rpm_wakeref_asserts(dev_priv);
1814
1815 return ret;
1816 }
1817
1818 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1819 {
1820 struct drm_device *dev = arg;
1821 struct drm_i915_private *dev_priv = dev->dev_private;
1822 u32 master_ctl, iir;
1823 irqreturn_t ret = IRQ_NONE;
1824
1825 if (!intel_irqs_enabled(dev_priv))
1826 return IRQ_NONE;
1827
1828 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1829 disable_rpm_wakeref_asserts(dev_priv);
1830
1831 do {
1832 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1833 iir = I915_READ(VLV_IIR);
1834
1835 if (master_ctl == 0 && iir == 0)
1836 break;
1837
1838 ret = IRQ_HANDLED;
1839
1840 I915_WRITE(GEN8_MASTER_IRQ, 0);
1841
1842 /* Find, clear, then process each source of interrupt */
1843
1844 if (iir) {
1845 /* Consume port before clearing IIR or we'll miss events */
1846 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1847 i9xx_hpd_irq_handler(dev);
1848 I915_WRITE(VLV_IIR, iir);
1849 }
1850
1851 gen8_gt_irq_handler(dev_priv, master_ctl);
1852
1853 /* Call regardless, as some status bits might not be
1854 * signalled in iir */
1855 valleyview_pipestat_irq_handler(dev, iir);
1856
1857 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1858 POSTING_READ(GEN8_MASTER_IRQ);
1859 } while (0);
1860
1861 enable_rpm_wakeref_asserts(dev_priv);
1862
1863 return ret;
1864 }
1865
1866 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1867 const u32 hpd[HPD_NUM_PINS])
1868 {
1869 struct drm_i915_private *dev_priv = to_i915(dev);
1870 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1871
1872 /*
1873 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1874 * unless we touch the hotplug register, even if hotplug_trigger is
1875 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1876 * errors.
1877 */
1878 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1879 if (!hotplug_trigger) {
1880 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1881 PORTD_HOTPLUG_STATUS_MASK |
1882 PORTC_HOTPLUG_STATUS_MASK |
1883 PORTB_HOTPLUG_STATUS_MASK;
1884 dig_hotplug_reg &= ~mask;
1885 }
1886
1887 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1888 if (!hotplug_trigger)
1889 return;
1890
1891 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1892 dig_hotplug_reg, hpd,
1893 pch_port_hotplug_long_detect);
1894
1895 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1896 }
1897
1898 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1899 {
1900 struct drm_i915_private *dev_priv = dev->dev_private;
1901 int pipe;
1902 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1903
1904 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1905
1906 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1907 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1908 SDE_AUDIO_POWER_SHIFT);
1909 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1910 port_name(port));
1911 }
1912
1913 if (pch_iir & SDE_AUX_MASK)
1914 dp_aux_irq_handler(dev);
1915
1916 if (pch_iir & SDE_GMBUS)
1917 gmbus_irq_handler(dev);
1918
1919 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1920 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1921
1922 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1923 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1924
1925 if (pch_iir & SDE_POISON)
1926 DRM_ERROR("PCH poison interrupt\n");
1927
1928 if (pch_iir & SDE_FDI_MASK)
1929 for_each_pipe(dev_priv, pipe)
1930 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1931 pipe_name(pipe),
1932 I915_READ(FDI_RX_IIR(pipe)));
1933
1934 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1935 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1936
1937 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1938 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1939
1940 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1941 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1942
1943 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1944 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1945 }
1946
1947 static void ivb_err_int_handler(struct drm_device *dev)
1948 {
1949 struct drm_i915_private *dev_priv = dev->dev_private;
1950 u32 err_int = I915_READ(GEN7_ERR_INT);
1951 enum pipe pipe;
1952
1953 if (err_int & ERR_INT_POISON)
1954 DRM_ERROR("Poison interrupt\n");
1955
1956 for_each_pipe(dev_priv, pipe) {
1957 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1958 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1959
1960 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1961 if (IS_IVYBRIDGE(dev))
1962 ivb_pipe_crc_irq_handler(dev, pipe);
1963 else
1964 hsw_pipe_crc_irq_handler(dev, pipe);
1965 }
1966 }
1967
1968 I915_WRITE(GEN7_ERR_INT, err_int);
1969 }
1970
1971 static void cpt_serr_int_handler(struct drm_device *dev)
1972 {
1973 struct drm_i915_private *dev_priv = dev->dev_private;
1974 u32 serr_int = I915_READ(SERR_INT);
1975
1976 if (serr_int & SERR_INT_POISON)
1977 DRM_ERROR("PCH poison interrupt\n");
1978
1979 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1980 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1981
1982 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1983 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1984
1985 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1986 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1987
1988 I915_WRITE(SERR_INT, serr_int);
1989 }
1990
1991 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1992 {
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994 int pipe;
1995 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1996
1997 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1998
1999 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2000 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2001 SDE_AUDIO_POWER_SHIFT_CPT);
2002 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2003 port_name(port));
2004 }
2005
2006 if (pch_iir & SDE_AUX_MASK_CPT)
2007 dp_aux_irq_handler(dev);
2008
2009 if (pch_iir & SDE_GMBUS_CPT)
2010 gmbus_irq_handler(dev);
2011
2012 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2013 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2014
2015 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2016 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2017
2018 if (pch_iir & SDE_FDI_MASK_CPT)
2019 for_each_pipe(dev_priv, pipe)
2020 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2021 pipe_name(pipe),
2022 I915_READ(FDI_RX_IIR(pipe)));
2023
2024 if (pch_iir & SDE_ERROR_CPT)
2025 cpt_serr_int_handler(dev);
2026 }
2027
2028 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2029 {
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2032 ~SDE_PORTE_HOTPLUG_SPT;
2033 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2034 u32 pin_mask = 0, long_mask = 0;
2035
2036 if (hotplug_trigger) {
2037 u32 dig_hotplug_reg;
2038
2039 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2040 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2041
2042 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2043 dig_hotplug_reg, hpd_spt,
2044 spt_port_hotplug_long_detect);
2045 }
2046
2047 if (hotplug2_trigger) {
2048 u32 dig_hotplug_reg;
2049
2050 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2051 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2052
2053 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2054 dig_hotplug_reg, hpd_spt,
2055 spt_port_hotplug2_long_detect);
2056 }
2057
2058 if (pin_mask)
2059 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2060
2061 if (pch_iir & SDE_GMBUS_CPT)
2062 gmbus_irq_handler(dev);
2063 }
2064
2065 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2066 const u32 hpd[HPD_NUM_PINS])
2067 {
2068 struct drm_i915_private *dev_priv = to_i915(dev);
2069 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2070
2071 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2072 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2073
2074 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2075 dig_hotplug_reg, hpd,
2076 ilk_port_hotplug_long_detect);
2077
2078 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2079 }
2080
2081 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2082 {
2083 struct drm_i915_private *dev_priv = dev->dev_private;
2084 enum pipe pipe;
2085 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2086
2087 if (hotplug_trigger)
2088 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2089
2090 if (de_iir & DE_AUX_CHANNEL_A)
2091 dp_aux_irq_handler(dev);
2092
2093 if (de_iir & DE_GSE)
2094 intel_opregion_asle_intr(dev);
2095
2096 if (de_iir & DE_POISON)
2097 DRM_ERROR("Poison interrupt\n");
2098
2099 for_each_pipe(dev_priv, pipe) {
2100 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2101 intel_pipe_handle_vblank(dev, pipe))
2102 intel_check_page_flip(dev, pipe);
2103
2104 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2105 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2106
2107 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2108 i9xx_pipe_crc_irq_handler(dev, pipe);
2109
2110 /* plane/pipes map 1:1 on ilk+ */
2111 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2112 intel_prepare_page_flip(dev, pipe);
2113 intel_finish_page_flip_plane(dev, pipe);
2114 }
2115 }
2116
2117 /* check event from PCH */
2118 if (de_iir & DE_PCH_EVENT) {
2119 u32 pch_iir = I915_READ(SDEIIR);
2120
2121 if (HAS_PCH_CPT(dev))
2122 cpt_irq_handler(dev, pch_iir);
2123 else
2124 ibx_irq_handler(dev, pch_iir);
2125
2126 /* should clear PCH hotplug event before clear CPU irq */
2127 I915_WRITE(SDEIIR, pch_iir);
2128 }
2129
2130 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2131 ironlake_rps_change_irq_handler(dev);
2132 }
2133
2134 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2135 {
2136 struct drm_i915_private *dev_priv = dev->dev_private;
2137 enum pipe pipe;
2138 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2139
2140 if (hotplug_trigger)
2141 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2142
2143 if (de_iir & DE_ERR_INT_IVB)
2144 ivb_err_int_handler(dev);
2145
2146 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2147 dp_aux_irq_handler(dev);
2148
2149 if (de_iir & DE_GSE_IVB)
2150 intel_opregion_asle_intr(dev);
2151
2152 for_each_pipe(dev_priv, pipe) {
2153 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2154 intel_pipe_handle_vblank(dev, pipe))
2155 intel_check_page_flip(dev, pipe);
2156
2157 /* plane/pipes map 1:1 on ilk+ */
2158 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2159 intel_prepare_page_flip(dev, pipe);
2160 intel_finish_page_flip_plane(dev, pipe);
2161 }
2162 }
2163
2164 /* check event from PCH */
2165 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2166 u32 pch_iir = I915_READ(SDEIIR);
2167
2168 cpt_irq_handler(dev, pch_iir);
2169
2170 /* clear PCH hotplug event before clear CPU irq */
2171 I915_WRITE(SDEIIR, pch_iir);
2172 }
2173 }
2174
2175 /*
2176 * To handle irqs with the minimum potential races with fresh interrupts, we:
2177 * 1 - Disable Master Interrupt Control.
2178 * 2 - Find the source(s) of the interrupt.
2179 * 3 - Clear the Interrupt Identity bits (IIR).
2180 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2181 * 5 - Re-enable Master Interrupt Control.
2182 */
2183 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2184 {
2185 struct drm_device *dev = arg;
2186 struct drm_i915_private *dev_priv = dev->dev_private;
2187 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2188 irqreturn_t ret = IRQ_NONE;
2189
2190 if (!intel_irqs_enabled(dev_priv))
2191 return IRQ_NONE;
2192
2193 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2194 disable_rpm_wakeref_asserts(dev_priv);
2195
2196 /* disable master interrupt before clearing iir */
2197 de_ier = I915_READ(DEIER);
2198 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2199 POSTING_READ(DEIER);
2200
2201 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2202 * interrupts will will be stored on its back queue, and then we'll be
2203 * able to process them after we restore SDEIER (as soon as we restore
2204 * it, we'll get an interrupt if SDEIIR still has something to process
2205 * due to its back queue). */
2206 if (!HAS_PCH_NOP(dev)) {
2207 sde_ier = I915_READ(SDEIER);
2208 I915_WRITE(SDEIER, 0);
2209 POSTING_READ(SDEIER);
2210 }
2211
2212 /* Find, clear, then process each source of interrupt */
2213
2214 gt_iir = I915_READ(GTIIR);
2215 if (gt_iir) {
2216 I915_WRITE(GTIIR, gt_iir);
2217 ret = IRQ_HANDLED;
2218 if (INTEL_INFO(dev)->gen >= 6)
2219 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2220 else
2221 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2222 }
2223
2224 de_iir = I915_READ(DEIIR);
2225 if (de_iir) {
2226 I915_WRITE(DEIIR, de_iir);
2227 ret = IRQ_HANDLED;
2228 if (INTEL_INFO(dev)->gen >= 7)
2229 ivb_display_irq_handler(dev, de_iir);
2230 else
2231 ilk_display_irq_handler(dev, de_iir);
2232 }
2233
2234 if (INTEL_INFO(dev)->gen >= 6) {
2235 u32 pm_iir = I915_READ(GEN6_PMIIR);
2236 if (pm_iir) {
2237 I915_WRITE(GEN6_PMIIR, pm_iir);
2238 ret = IRQ_HANDLED;
2239 gen6_rps_irq_handler(dev_priv, pm_iir);
2240 }
2241 }
2242
2243 I915_WRITE(DEIER, de_ier);
2244 POSTING_READ(DEIER);
2245 if (!HAS_PCH_NOP(dev)) {
2246 I915_WRITE(SDEIER, sde_ier);
2247 POSTING_READ(SDEIER);
2248 }
2249
2250 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2251 enable_rpm_wakeref_asserts(dev_priv);
2252
2253 return ret;
2254 }
2255
2256 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2257 const u32 hpd[HPD_NUM_PINS])
2258 {
2259 struct drm_i915_private *dev_priv = to_i915(dev);
2260 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2261
2262 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2263 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2264
2265 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2266 dig_hotplug_reg, hpd,
2267 bxt_port_hotplug_long_detect);
2268
2269 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2270 }
2271
2272 static irqreturn_t
2273 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2274 {
2275 struct drm_device *dev = dev_priv->dev;
2276 irqreturn_t ret = IRQ_NONE;
2277 u32 iir;
2278 enum pipe pipe;
2279
2280 if (master_ctl & GEN8_DE_MISC_IRQ) {
2281 iir = I915_READ(GEN8_DE_MISC_IIR);
2282 if (iir) {
2283 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2284 ret = IRQ_HANDLED;
2285 if (iir & GEN8_DE_MISC_GSE)
2286 intel_opregion_asle_intr(dev);
2287 else
2288 DRM_ERROR("Unexpected DE Misc interrupt\n");
2289 }
2290 else
2291 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2292 }
2293
2294 if (master_ctl & GEN8_DE_PORT_IRQ) {
2295 iir = I915_READ(GEN8_DE_PORT_IIR);
2296 if (iir) {
2297 u32 tmp_mask;
2298 bool found = false;
2299
2300 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2301 ret = IRQ_HANDLED;
2302
2303 tmp_mask = GEN8_AUX_CHANNEL_A;
2304 if (INTEL_INFO(dev_priv)->gen >= 9)
2305 tmp_mask |= GEN9_AUX_CHANNEL_B |
2306 GEN9_AUX_CHANNEL_C |
2307 GEN9_AUX_CHANNEL_D;
2308
2309 if (iir & tmp_mask) {
2310 dp_aux_irq_handler(dev);
2311 found = true;
2312 }
2313
2314 if (IS_BROXTON(dev_priv)) {
2315 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2316 if (tmp_mask) {
2317 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2318 found = true;
2319 }
2320 } else if (IS_BROADWELL(dev_priv)) {
2321 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2322 if (tmp_mask) {
2323 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2324 found = true;
2325 }
2326 }
2327
2328 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2329 gmbus_irq_handler(dev);
2330 found = true;
2331 }
2332
2333 if (!found)
2334 DRM_ERROR("Unexpected DE Port interrupt\n");
2335 }
2336 else
2337 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2338 }
2339
2340 for_each_pipe(dev_priv, pipe) {
2341 u32 flip_done, fault_errors;
2342
2343 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2344 continue;
2345
2346 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2347 if (!iir) {
2348 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2349 continue;
2350 }
2351
2352 ret = IRQ_HANDLED;
2353 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2354
2355 if (iir & GEN8_PIPE_VBLANK &&
2356 intel_pipe_handle_vblank(dev, pipe))
2357 intel_check_page_flip(dev, pipe);
2358
2359 flip_done = iir;
2360 if (INTEL_INFO(dev_priv)->gen >= 9)
2361 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2362 else
2363 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2364
2365 if (flip_done) {
2366 intel_prepare_page_flip(dev, pipe);
2367 intel_finish_page_flip_plane(dev, pipe);
2368 }
2369
2370 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2371 hsw_pipe_crc_irq_handler(dev, pipe);
2372
2373 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2374 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2375
2376 fault_errors = iir;
2377 if (INTEL_INFO(dev_priv)->gen >= 9)
2378 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2379 else
2380 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2381
2382 if (fault_errors)
2383 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2384 pipe_name(pipe),
2385 fault_errors);
2386 }
2387
2388 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2389 master_ctl & GEN8_DE_PCH_IRQ) {
2390 /*
2391 * FIXME(BDW): Assume for now that the new interrupt handling
2392 * scheme also closed the SDE interrupt handling race we've seen
2393 * on older pch-split platforms. But this needs testing.
2394 */
2395 iir = I915_READ(SDEIIR);
2396 if (iir) {
2397 I915_WRITE(SDEIIR, iir);
2398 ret = IRQ_HANDLED;
2399
2400 if (HAS_PCH_SPT(dev_priv))
2401 spt_irq_handler(dev, iir);
2402 else
2403 cpt_irq_handler(dev, iir);
2404 } else {
2405 /*
2406 * Like on previous PCH there seems to be something
2407 * fishy going on with forwarding PCH interrupts.
2408 */
2409 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2410 }
2411 }
2412
2413 return ret;
2414 }
2415
2416 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2417 {
2418 struct drm_device *dev = arg;
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420 u32 master_ctl;
2421 irqreturn_t ret;
2422
2423 if (!intel_irqs_enabled(dev_priv))
2424 return IRQ_NONE;
2425
2426 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2427 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2428 if (!master_ctl)
2429 return IRQ_NONE;
2430
2431 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2432
2433 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2434 disable_rpm_wakeref_asserts(dev_priv);
2435
2436 /* Find, clear, then process each source of interrupt */
2437 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2438 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2439
2440 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2441 POSTING_READ_FW(GEN8_MASTER_IRQ);
2442
2443 enable_rpm_wakeref_asserts(dev_priv);
2444
2445 return ret;
2446 }
2447
2448 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2449 bool reset_completed)
2450 {
2451 struct intel_engine_cs *engine;
2452
2453 /*
2454 * Notify all waiters for GPU completion events that reset state has
2455 * been changed, and that they need to restart their wait after
2456 * checking for potential errors (and bail out to drop locks if there is
2457 * a gpu reset pending so that i915_error_work_func can acquire them).
2458 */
2459
2460 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2461 for_each_engine(engine, dev_priv)
2462 wake_up_all(&engine->irq_queue);
2463
2464 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2465 wake_up_all(&dev_priv->pending_flip_queue);
2466
2467 /*
2468 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2469 * reset state is cleared.
2470 */
2471 if (reset_completed)
2472 wake_up_all(&dev_priv->gpu_error.reset_queue);
2473 }
2474
2475 /**
2476 * i915_reset_and_wakeup - do process context error handling work
2477 * @dev: drm device
2478 *
2479 * Fire an error uevent so userspace can see that a hang or error
2480 * was detected.
2481 */
2482 static void i915_reset_and_wakeup(struct drm_device *dev)
2483 {
2484 struct drm_i915_private *dev_priv = to_i915(dev);
2485 struct i915_gpu_error *error = &dev_priv->gpu_error;
2486 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2487 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2488 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2489 int ret;
2490
2491 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2492
2493 /*
2494 * Note that there's only one work item which does gpu resets, so we
2495 * need not worry about concurrent gpu resets potentially incrementing
2496 * error->reset_counter twice. We only need to take care of another
2497 * racing irq/hangcheck declaring the gpu dead for a second time. A
2498 * quick check for that is good enough: schedule_work ensures the
2499 * correct ordering between hang detection and this work item, and since
2500 * the reset in-progress bit is only ever set by code outside of this
2501 * work we don't need to worry about any other races.
2502 */
2503 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2504 DRM_DEBUG_DRIVER("resetting chip\n");
2505 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2506 reset_event);
2507
2508 /*
2509 * In most cases it's guaranteed that we get here with an RPM
2510 * reference held, for example because there is a pending GPU
2511 * request that won't finish until the reset is done. This
2512 * isn't the case at least when we get here by doing a
2513 * simulated reset via debugs, so get an RPM reference.
2514 */
2515 intel_runtime_pm_get(dev_priv);
2516
2517 intel_prepare_reset(dev);
2518
2519 /*
2520 * All state reset _must_ be completed before we update the
2521 * reset counter, for otherwise waiters might miss the reset
2522 * pending state and not properly drop locks, resulting in
2523 * deadlocks with the reset work.
2524 */
2525 ret = i915_reset(dev);
2526
2527 intel_finish_reset(dev);
2528
2529 intel_runtime_pm_put(dev_priv);
2530
2531 if (ret == 0) {
2532 /*
2533 * After all the gem state is reset, increment the reset
2534 * counter and wake up everyone waiting for the reset to
2535 * complete.
2536 *
2537 * Since unlock operations are a one-sided barrier only,
2538 * we need to insert a barrier here to order any seqno
2539 * updates before
2540 * the counter increment.
2541 */
2542 smp_mb__before_atomic();
2543 atomic_inc(&dev_priv->gpu_error.reset_counter);
2544
2545 kobject_uevent_env(&dev->primary->kdev->kobj,
2546 KOBJ_CHANGE, reset_done_event);
2547 } else {
2548 atomic_or(I915_WEDGED, &error->reset_counter);
2549 }
2550
2551 /*
2552 * Note: The wake_up also serves as a memory barrier so that
2553 * waiters see the update value of the reset counter atomic_t.
2554 */
2555 i915_error_wake_up(dev_priv, true);
2556 }
2557 }
2558
2559 static void i915_report_and_clear_eir(struct drm_device *dev)
2560 {
2561 struct drm_i915_private *dev_priv = dev->dev_private;
2562 uint32_t instdone[I915_NUM_INSTDONE_REG];
2563 u32 eir = I915_READ(EIR);
2564 int pipe, i;
2565
2566 if (!eir)
2567 return;
2568
2569 pr_err("render error detected, EIR: 0x%08x\n", eir);
2570
2571 i915_get_extra_instdone(dev, instdone);
2572
2573 if (IS_G4X(dev)) {
2574 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2575 u32 ipeir = I915_READ(IPEIR_I965);
2576
2577 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2578 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2579 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2580 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2581 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2582 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2583 I915_WRITE(IPEIR_I965, ipeir);
2584 POSTING_READ(IPEIR_I965);
2585 }
2586 if (eir & GM45_ERROR_PAGE_TABLE) {
2587 u32 pgtbl_err = I915_READ(PGTBL_ER);
2588 pr_err("page table error\n");
2589 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2590 I915_WRITE(PGTBL_ER, pgtbl_err);
2591 POSTING_READ(PGTBL_ER);
2592 }
2593 }
2594
2595 if (!IS_GEN2(dev)) {
2596 if (eir & I915_ERROR_PAGE_TABLE) {
2597 u32 pgtbl_err = I915_READ(PGTBL_ER);
2598 pr_err("page table error\n");
2599 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2600 I915_WRITE(PGTBL_ER, pgtbl_err);
2601 POSTING_READ(PGTBL_ER);
2602 }
2603 }
2604
2605 if (eir & I915_ERROR_MEMORY_REFRESH) {
2606 pr_err("memory refresh error:\n");
2607 for_each_pipe(dev_priv, pipe)
2608 pr_err("pipe %c stat: 0x%08x\n",
2609 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2610 /* pipestat has already been acked */
2611 }
2612 if (eir & I915_ERROR_INSTRUCTION) {
2613 pr_err("instruction error\n");
2614 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2615 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2616 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2617 if (INTEL_INFO(dev)->gen < 4) {
2618 u32 ipeir = I915_READ(IPEIR);
2619
2620 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2621 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2622 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2623 I915_WRITE(IPEIR, ipeir);
2624 POSTING_READ(IPEIR);
2625 } else {
2626 u32 ipeir = I915_READ(IPEIR_I965);
2627
2628 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2629 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2630 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2631 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2632 I915_WRITE(IPEIR_I965, ipeir);
2633 POSTING_READ(IPEIR_I965);
2634 }
2635 }
2636
2637 I915_WRITE(EIR, eir);
2638 POSTING_READ(EIR);
2639 eir = I915_READ(EIR);
2640 if (eir) {
2641 /*
2642 * some errors might have become stuck,
2643 * mask them.
2644 */
2645 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2646 I915_WRITE(EMR, I915_READ(EMR) | eir);
2647 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2648 }
2649 }
2650
2651 /**
2652 * i915_handle_error - handle a gpu error
2653 * @dev: drm device
2654 * @engine_mask: mask representing engines that are hung
2655 * Do some basic checking of register state at error time and
2656 * dump it to the syslog. Also call i915_capture_error_state() to make
2657 * sure we get a record and make it available in debugfs. Fire a uevent
2658 * so userspace knows something bad happened (should trigger collection
2659 * of a ring dump etc.).
2660 */
2661 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2662 const char *fmt, ...)
2663 {
2664 struct drm_i915_private *dev_priv = dev->dev_private;
2665 va_list args;
2666 char error_msg[80];
2667
2668 va_start(args, fmt);
2669 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2670 va_end(args);
2671
2672 i915_capture_error_state(dev, engine_mask, error_msg);
2673 i915_report_and_clear_eir(dev);
2674
2675 if (engine_mask) {
2676 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2677 &dev_priv->gpu_error.reset_counter);
2678
2679 /*
2680 * Wakeup waiting processes so that the reset function
2681 * i915_reset_and_wakeup doesn't deadlock trying to grab
2682 * various locks. By bumping the reset counter first, the woken
2683 * processes will see a reset in progress and back off,
2684 * releasing their locks and then wait for the reset completion.
2685 * We must do this for _all_ gpu waiters that might hold locks
2686 * that the reset work needs to acquire.
2687 *
2688 * Note: The wake_up serves as the required memory barrier to
2689 * ensure that the waiters see the updated value of the reset
2690 * counter atomic_t.
2691 */
2692 i915_error_wake_up(dev_priv, false);
2693 }
2694
2695 i915_reset_and_wakeup(dev);
2696 }
2697
2698 /* Called from drm generic code, passed 'crtc' which
2699 * we use as a pipe index
2700 */
2701 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2702 {
2703 struct drm_i915_private *dev_priv = dev->dev_private;
2704 unsigned long irqflags;
2705
2706 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2707 if (INTEL_INFO(dev)->gen >= 4)
2708 i915_enable_pipestat(dev_priv, pipe,
2709 PIPE_START_VBLANK_INTERRUPT_STATUS);
2710 else
2711 i915_enable_pipestat(dev_priv, pipe,
2712 PIPE_VBLANK_INTERRUPT_STATUS);
2713 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2714
2715 return 0;
2716 }
2717
2718 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2719 {
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 unsigned long irqflags;
2722 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2723 DE_PIPE_VBLANK(pipe);
2724
2725 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2726 ilk_enable_display_irq(dev_priv, bit);
2727 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2728
2729 return 0;
2730 }
2731
2732 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2733 {
2734 struct drm_i915_private *dev_priv = dev->dev_private;
2735 unsigned long irqflags;
2736
2737 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2738 i915_enable_pipestat(dev_priv, pipe,
2739 PIPE_START_VBLANK_INTERRUPT_STATUS);
2740 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2741
2742 return 0;
2743 }
2744
2745 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2746 {
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 unsigned long irqflags;
2749
2750 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2751 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2752 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2753
2754 return 0;
2755 }
2756
2757 /* Called from drm generic code, passed 'crtc' which
2758 * we use as a pipe index
2759 */
2760 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2761 {
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 unsigned long irqflags;
2764
2765 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2766 i915_disable_pipestat(dev_priv, pipe,
2767 PIPE_VBLANK_INTERRUPT_STATUS |
2768 PIPE_START_VBLANK_INTERRUPT_STATUS);
2769 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2770 }
2771
2772 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2773 {
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 unsigned long irqflags;
2776 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2777 DE_PIPE_VBLANK(pipe);
2778
2779 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2780 ilk_disable_display_irq(dev_priv, bit);
2781 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2782 }
2783
2784 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2785 {
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 unsigned long irqflags;
2788
2789 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2790 i915_disable_pipestat(dev_priv, pipe,
2791 PIPE_START_VBLANK_INTERRUPT_STATUS);
2792 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2793 }
2794
2795 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2796 {
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 unsigned long irqflags;
2799
2800 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2801 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2802 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2803 }
2804
2805 static bool
2806 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2807 {
2808 return (list_empty(&engine->request_list) ||
2809 i915_seqno_passed(seqno, engine->last_submitted_seqno));
2810 }
2811
2812 static bool
2813 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2814 {
2815 if (INTEL_INFO(dev)->gen >= 8) {
2816 return (ipehr >> 23) == 0x1c;
2817 } else {
2818 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2819 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2820 MI_SEMAPHORE_REGISTER);
2821 }
2822 }
2823
2824 static struct intel_engine_cs *
2825 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2826 u64 offset)
2827 {
2828 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2829 struct intel_engine_cs *signaller;
2830
2831 if (INTEL_INFO(dev_priv)->gen >= 8) {
2832 for_each_engine(signaller, dev_priv) {
2833 if (engine == signaller)
2834 continue;
2835
2836 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2837 return signaller;
2838 }
2839 } else {
2840 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2841
2842 for_each_engine(signaller, dev_priv) {
2843 if(engine == signaller)
2844 continue;
2845
2846 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2847 return signaller;
2848 }
2849 }
2850
2851 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2852 engine->id, ipehr, offset);
2853
2854 return NULL;
2855 }
2856
2857 static struct intel_engine_cs *
2858 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2859 {
2860 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2861 u32 cmd, ipehr, head;
2862 u64 offset = 0;
2863 int i, backwards;
2864
2865 /*
2866 * This function does not support execlist mode - any attempt to
2867 * proceed further into this function will result in a kernel panic
2868 * when dereferencing ring->buffer, which is not set up in execlist
2869 * mode.
2870 *
2871 * The correct way of doing it would be to derive the currently
2872 * executing ring buffer from the current context, which is derived
2873 * from the currently running request. Unfortunately, to get the
2874 * current request we would have to grab the struct_mutex before doing
2875 * anything else, which would be ill-advised since some other thread
2876 * might have grabbed it already and managed to hang itself, causing
2877 * the hang checker to deadlock.
2878 *
2879 * Therefore, this function does not support execlist mode in its
2880 * current form. Just return NULL and move on.
2881 */
2882 if (engine->buffer == NULL)
2883 return NULL;
2884
2885 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2886 if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2887 return NULL;
2888
2889 /*
2890 * HEAD is likely pointing to the dword after the actual command,
2891 * so scan backwards until we find the MBOX. But limit it to just 3
2892 * or 4 dwords depending on the semaphore wait command size.
2893 * Note that we don't care about ACTHD here since that might
2894 * point at at batch, and semaphores are always emitted into the
2895 * ringbuffer itself.
2896 */
2897 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2898 backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2899
2900 for (i = backwards; i; --i) {
2901 /*
2902 * Be paranoid and presume the hw has gone off into the wild -
2903 * our ring is smaller than what the hardware (and hence
2904 * HEAD_ADDR) allows. Also handles wrap-around.
2905 */
2906 head &= engine->buffer->size - 1;
2907
2908 /* This here seems to blow up */
2909 cmd = ioread32(engine->buffer->virtual_start + head);
2910 if (cmd == ipehr)
2911 break;
2912
2913 head -= 4;
2914 }
2915
2916 if (!i)
2917 return NULL;
2918
2919 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2920 if (INTEL_INFO(engine->dev)->gen >= 8) {
2921 offset = ioread32(engine->buffer->virtual_start + head + 12);
2922 offset <<= 32;
2923 offset = ioread32(engine->buffer->virtual_start + head + 8);
2924 }
2925 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2926 }
2927
2928 static int semaphore_passed(struct intel_engine_cs *engine)
2929 {
2930 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2931 struct intel_engine_cs *signaller;
2932 u32 seqno;
2933
2934 engine->hangcheck.deadlock++;
2935
2936 signaller = semaphore_waits_for(engine, &seqno);
2937 if (signaller == NULL)
2938 return -1;
2939
2940 /* Prevent pathological recursion due to driver bugs */
2941 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2942 return -1;
2943
2944 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2945 return 1;
2946
2947 /* cursory check for an unkickable deadlock */
2948 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2949 semaphore_passed(signaller) < 0)
2950 return -1;
2951
2952 return 0;
2953 }
2954
2955 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2956 {
2957 struct intel_engine_cs *engine;
2958
2959 for_each_engine(engine, dev_priv)
2960 engine->hangcheck.deadlock = 0;
2961 }
2962
2963 static bool subunits_stuck(struct intel_engine_cs *engine)
2964 {
2965 u32 instdone[I915_NUM_INSTDONE_REG];
2966 bool stuck;
2967 int i;
2968
2969 if (engine->id != RCS)
2970 return true;
2971
2972 i915_get_extra_instdone(engine->dev, instdone);
2973
2974 /* There might be unstable subunit states even when
2975 * actual head is not moving. Filter out the unstable ones by
2976 * accumulating the undone -> done transitions and only
2977 * consider those as progress.
2978 */
2979 stuck = true;
2980 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2981 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2982
2983 if (tmp != engine->hangcheck.instdone[i])
2984 stuck = false;
2985
2986 engine->hangcheck.instdone[i] |= tmp;
2987 }
2988
2989 return stuck;
2990 }
2991
2992 static enum intel_ring_hangcheck_action
2993 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2994 {
2995 if (acthd != engine->hangcheck.acthd) {
2996
2997 /* Clear subunit states on head movement */
2998 memset(engine->hangcheck.instdone, 0,
2999 sizeof(engine->hangcheck.instdone));
3000
3001 return HANGCHECK_ACTIVE;
3002 }
3003
3004 if (!subunits_stuck(engine))
3005 return HANGCHECK_ACTIVE;
3006
3007 return HANGCHECK_HUNG;
3008 }
3009
3010 static enum intel_ring_hangcheck_action
3011 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3012 {
3013 struct drm_device *dev = engine->dev;
3014 struct drm_i915_private *dev_priv = dev->dev_private;
3015 enum intel_ring_hangcheck_action ha;
3016 u32 tmp;
3017
3018 ha = head_stuck(engine, acthd);
3019 if (ha != HANGCHECK_HUNG)
3020 return ha;
3021
3022 if (IS_GEN2(dev))
3023 return HANGCHECK_HUNG;
3024
3025 /* Is the chip hanging on a WAIT_FOR_EVENT?
3026 * If so we can simply poke the RB_WAIT bit
3027 * and break the hang. This should work on
3028 * all but the second generation chipsets.
3029 */
3030 tmp = I915_READ_CTL(engine);
3031 if (tmp & RING_WAIT) {
3032 i915_handle_error(dev, 0,
3033 "Kicking stuck wait on %s",
3034 engine->name);
3035 I915_WRITE_CTL(engine, tmp);
3036 return HANGCHECK_KICK;
3037 }
3038
3039 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3040 switch (semaphore_passed(engine)) {
3041 default:
3042 return HANGCHECK_HUNG;
3043 case 1:
3044 i915_handle_error(dev, 0,
3045 "Kicking stuck semaphore on %s",
3046 engine->name);
3047 I915_WRITE_CTL(engine, tmp);
3048 return HANGCHECK_KICK;
3049 case 0:
3050 return HANGCHECK_WAIT;
3051 }
3052 }
3053
3054 return HANGCHECK_HUNG;
3055 }
3056
3057 /*
3058 * This is called when the chip hasn't reported back with completed
3059 * batchbuffers in a long time. We keep track per ring seqno progress and
3060 * if there are no progress, hangcheck score for that ring is increased.
3061 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3062 * we kick the ring. If we see no progress on three subsequent calls
3063 * we assume chip is wedged and try to fix it by resetting the chip.
3064 */
3065 static void i915_hangcheck_elapsed(struct work_struct *work)
3066 {
3067 struct drm_i915_private *dev_priv =
3068 container_of(work, typeof(*dev_priv),
3069 gpu_error.hangcheck_work.work);
3070 struct drm_device *dev = dev_priv->dev;
3071 struct intel_engine_cs *engine;
3072 enum intel_engine_id id;
3073 int busy_count = 0, rings_hung = 0;
3074 bool stuck[I915_NUM_ENGINES] = { 0 };
3075 #define BUSY 1
3076 #define KICK 5
3077 #define HUNG 20
3078 #define ACTIVE_DECAY 15
3079
3080 if (!i915.enable_hangcheck)
3081 return;
3082
3083 /*
3084 * The hangcheck work is synced during runtime suspend, we don't
3085 * require a wakeref. TODO: instead of disabling the asserts make
3086 * sure that we hold a reference when this work is running.
3087 */
3088 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3089
3090 /* As enabling the GPU requires fairly extensive mmio access,
3091 * periodically arm the mmio checker to see if we are triggering
3092 * any invalid access.
3093 */
3094 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3095
3096 for_each_engine_id(engine, dev_priv, id) {
3097 u64 acthd;
3098 u32 seqno;
3099 bool busy = true;
3100
3101 semaphore_clear_deadlocks(dev_priv);
3102
3103 seqno = engine->get_seqno(engine, false);
3104 acthd = intel_ring_get_active_head(engine);
3105
3106 if (engine->hangcheck.seqno == seqno) {
3107 if (ring_idle(engine, seqno)) {
3108 engine->hangcheck.action = HANGCHECK_IDLE;
3109
3110 if (waitqueue_active(&engine->irq_queue)) {
3111 /* Issue a wake-up to catch stuck h/w. */
3112 if (!test_and_set_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings)) {
3113 if (!(dev_priv->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3114 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3115 engine->name);
3116 else
3117 DRM_INFO("Fake missed irq on %s\n",
3118 engine->name);
3119 wake_up_all(&engine->irq_queue);
3120 }
3121 /* Safeguard against driver failure */
3122 engine->hangcheck.score += BUSY;
3123 } else
3124 busy = false;
3125 } else {
3126 /* We always increment the hangcheck score
3127 * if the ring is busy and still processing
3128 * the same request, so that no single request
3129 * can run indefinitely (such as a chain of
3130 * batches). The only time we do not increment
3131 * the hangcheck score on this ring, if this
3132 * ring is in a legitimate wait for another
3133 * ring. In that case the waiting ring is a
3134 * victim and we want to be sure we catch the
3135 * right culprit. Then every time we do kick
3136 * the ring, add a small increment to the
3137 * score so that we can catch a batch that is
3138 * being repeatedly kicked and so responsible
3139 * for stalling the machine.
3140 */
3141 engine->hangcheck.action = ring_stuck(engine,
3142 acthd);
3143
3144 switch (engine->hangcheck.action) {
3145 case HANGCHECK_IDLE:
3146 case HANGCHECK_WAIT:
3147 break;
3148 case HANGCHECK_ACTIVE:
3149 engine->hangcheck.score += BUSY;
3150 break;
3151 case HANGCHECK_KICK:
3152 engine->hangcheck.score += KICK;
3153 break;
3154 case HANGCHECK_HUNG:
3155 engine->hangcheck.score += HUNG;
3156 stuck[id] = true;
3157 break;
3158 }
3159 }
3160 } else {
3161 engine->hangcheck.action = HANGCHECK_ACTIVE;
3162
3163 /* Gradually reduce the count so that we catch DoS
3164 * attempts across multiple batches.
3165 */
3166 if (engine->hangcheck.score > 0)
3167 engine->hangcheck.score -= ACTIVE_DECAY;
3168 if (engine->hangcheck.score < 0)
3169 engine->hangcheck.score = 0;
3170
3171 /* Clear head and subunit states on seqno movement */
3172 engine->hangcheck.acthd = 0;
3173
3174 memset(engine->hangcheck.instdone, 0,
3175 sizeof(engine->hangcheck.instdone));
3176 }
3177
3178 engine->hangcheck.seqno = seqno;
3179 engine->hangcheck.acthd = acthd;
3180 busy_count += busy;
3181 }
3182
3183 for_each_engine_id(engine, dev_priv, id) {
3184 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3185 DRM_INFO("%s on %s\n",
3186 stuck[id] ? "stuck" : "no progress",
3187 engine->name);
3188 rings_hung |= intel_engine_flag(engine);
3189 }
3190 }
3191
3192 if (rings_hung) {
3193 i915_handle_error(dev, rings_hung, "Engine(s) hung");
3194 goto out;
3195 }
3196
3197 if (busy_count)
3198 /* Reset timer case chip hangs without another request
3199 * being added */
3200 i915_queue_hangcheck(dev);
3201
3202 out:
3203 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3204 }
3205
3206 void i915_queue_hangcheck(struct drm_device *dev)
3207 {
3208 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3209
3210 if (!i915.enable_hangcheck)
3211 return;
3212
3213 /* Don't continually defer the hangcheck so that it is always run at
3214 * least once after work has been scheduled on any ring. Otherwise,
3215 * we will ignore a hung ring if a second ring is kept busy.
3216 */
3217
3218 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3219 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3220 }
3221
3222 static void ibx_irq_reset(struct drm_device *dev)
3223 {
3224 struct drm_i915_private *dev_priv = dev->dev_private;
3225
3226 if (HAS_PCH_NOP(dev))
3227 return;
3228
3229 GEN5_IRQ_RESET(SDE);
3230
3231 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3232 I915_WRITE(SERR_INT, 0xffffffff);
3233 }
3234
3235 /*
3236 * SDEIER is also touched by the interrupt handler to work around missed PCH
3237 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3238 * instead we unconditionally enable all PCH interrupt sources here, but then
3239 * only unmask them as needed with SDEIMR.
3240 *
3241 * This function needs to be called before interrupts are enabled.
3242 */
3243 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3244 {
3245 struct drm_i915_private *dev_priv = dev->dev_private;
3246
3247 if (HAS_PCH_NOP(dev))
3248 return;
3249
3250 WARN_ON(I915_READ(SDEIER) != 0);
3251 I915_WRITE(SDEIER, 0xffffffff);
3252 POSTING_READ(SDEIER);
3253 }
3254
3255 static void gen5_gt_irq_reset(struct drm_device *dev)
3256 {
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258
3259 GEN5_IRQ_RESET(GT);
3260 if (INTEL_INFO(dev)->gen >= 6)
3261 GEN5_IRQ_RESET(GEN6_PM);
3262 }
3263
3264 /* drm_dma.h hooks
3265 */
3266 static void ironlake_irq_reset(struct drm_device *dev)
3267 {
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269
3270 I915_WRITE(HWSTAM, 0xffffffff);
3271
3272 GEN5_IRQ_RESET(DE);
3273 if (IS_GEN7(dev))
3274 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3275
3276 gen5_gt_irq_reset(dev);
3277
3278 ibx_irq_reset(dev);
3279 }
3280
3281 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3282 {
3283 enum pipe pipe;
3284
3285 i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3286 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3287
3288 for_each_pipe(dev_priv, pipe)
3289 I915_WRITE(PIPESTAT(pipe), 0xffff);
3290
3291 GEN5_IRQ_RESET(VLV_);
3292 }
3293
3294 static void valleyview_irq_preinstall(struct drm_device *dev)
3295 {
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297
3298 /* VLV magic */
3299 I915_WRITE(VLV_IMR, 0);
3300 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3301 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3302 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3303
3304 gen5_gt_irq_reset(dev);
3305
3306 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3307
3308 vlv_display_irq_reset(dev_priv);
3309 }
3310
3311 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3312 {
3313 GEN8_IRQ_RESET_NDX(GT, 0);
3314 GEN8_IRQ_RESET_NDX(GT, 1);
3315 GEN8_IRQ_RESET_NDX(GT, 2);
3316 GEN8_IRQ_RESET_NDX(GT, 3);
3317 }
3318
3319 static void gen8_irq_reset(struct drm_device *dev)
3320 {
3321 struct drm_i915_private *dev_priv = dev->dev_private;
3322 int pipe;
3323
3324 I915_WRITE(GEN8_MASTER_IRQ, 0);
3325 POSTING_READ(GEN8_MASTER_IRQ);
3326
3327 gen8_gt_irq_reset(dev_priv);
3328
3329 for_each_pipe(dev_priv, pipe)
3330 if (intel_display_power_is_enabled(dev_priv,
3331 POWER_DOMAIN_PIPE(pipe)))
3332 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3333
3334 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3335 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3336 GEN5_IRQ_RESET(GEN8_PCU_);
3337
3338 if (HAS_PCH_SPLIT(dev))
3339 ibx_irq_reset(dev);
3340 }
3341
3342 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3343 unsigned int pipe_mask)
3344 {
3345 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3346 enum pipe pipe;
3347
3348 spin_lock_irq(&dev_priv->irq_lock);
3349 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3350 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3351 dev_priv->de_irq_mask[pipe],
3352 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3353 spin_unlock_irq(&dev_priv->irq_lock);
3354 }
3355
3356 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3357 unsigned int pipe_mask)
3358 {
3359 enum pipe pipe;
3360
3361 spin_lock_irq(&dev_priv->irq_lock);
3362 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3363 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3364 spin_unlock_irq(&dev_priv->irq_lock);
3365
3366 /* make sure we're done processing display irqs */
3367 synchronize_irq(dev_priv->dev->irq);
3368 }
3369
3370 static void cherryview_irq_preinstall(struct drm_device *dev)
3371 {
3372 struct drm_i915_private *dev_priv = dev->dev_private;
3373
3374 I915_WRITE(GEN8_MASTER_IRQ, 0);
3375 POSTING_READ(GEN8_MASTER_IRQ);
3376
3377 gen8_gt_irq_reset(dev_priv);
3378
3379 GEN5_IRQ_RESET(GEN8_PCU_);
3380
3381 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3382
3383 vlv_display_irq_reset(dev_priv);
3384 }
3385
3386 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3387 const u32 hpd[HPD_NUM_PINS])
3388 {
3389 struct drm_i915_private *dev_priv = to_i915(dev);
3390 struct intel_encoder *encoder;
3391 u32 enabled_irqs = 0;
3392
3393 for_each_intel_encoder(dev, encoder)
3394 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3395 enabled_irqs |= hpd[encoder->hpd_pin];
3396
3397 return enabled_irqs;
3398 }
3399
3400 static void ibx_hpd_irq_setup(struct drm_device *dev)
3401 {
3402 struct drm_i915_private *dev_priv = dev->dev_private;
3403 u32 hotplug_irqs, hotplug, enabled_irqs;
3404
3405 if (HAS_PCH_IBX(dev)) {
3406 hotplug_irqs = SDE_HOTPLUG_MASK;
3407 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3408 } else {
3409 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3410 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3411 }
3412
3413 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3414
3415 /*
3416 * Enable digital hotplug on the PCH, and configure the DP short pulse
3417 * duration to 2ms (which is the minimum in the Display Port spec).
3418 * The pulse duration bits are reserved on LPT+.
3419 */
3420 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3421 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3422 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3423 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3424 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3425 /*
3426 * When CPU and PCH are on the same package, port A
3427 * HPD must be enabled in both north and south.
3428 */
3429 if (HAS_PCH_LPT_LP(dev))
3430 hotplug |= PORTA_HOTPLUG_ENABLE;
3431 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3432 }
3433
3434 static void spt_hpd_irq_setup(struct drm_device *dev)
3435 {
3436 struct drm_i915_private *dev_priv = dev->dev_private;
3437 u32 hotplug_irqs, hotplug, enabled_irqs;
3438
3439 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3440 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3441
3442 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3443
3444 /* Enable digital hotplug on the PCH */
3445 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3446 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3447 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3448 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3449
3450 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3451 hotplug |= PORTE_HOTPLUG_ENABLE;
3452 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3453 }
3454
3455 static void ilk_hpd_irq_setup(struct drm_device *dev)
3456 {
3457 struct drm_i915_private *dev_priv = dev->dev_private;
3458 u32 hotplug_irqs, hotplug, enabled_irqs;
3459
3460 if (INTEL_INFO(dev)->gen >= 8) {
3461 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3462 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3463
3464 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3465 } else if (INTEL_INFO(dev)->gen >= 7) {
3466 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3467 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3468
3469 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3470 } else {
3471 hotplug_irqs = DE_DP_A_HOTPLUG;
3472 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3473
3474 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3475 }
3476
3477 /*
3478 * Enable digital hotplug on the CPU, and configure the DP short pulse
3479 * duration to 2ms (which is the minimum in the Display Port spec)
3480 * The pulse duration bits are reserved on HSW+.
3481 */
3482 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3483 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3484 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3485 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3486
3487 ibx_hpd_irq_setup(dev);
3488 }
3489
3490 static void bxt_hpd_irq_setup(struct drm_device *dev)
3491 {
3492 struct drm_i915_private *dev_priv = dev->dev_private;
3493 u32 hotplug_irqs, hotplug, enabled_irqs;
3494
3495 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3496 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3497
3498 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3499
3500 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3501 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3502 PORTA_HOTPLUG_ENABLE;
3503
3504 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3505 hotplug, enabled_irqs);
3506 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3507
3508 /*
3509 * For BXT invert bit has to be set based on AOB design
3510 * for HPD detection logic, update it based on VBT fields.
3511 */
3512
3513 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3514 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3515 hotplug |= BXT_DDIA_HPD_INVERT;
3516 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3517 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3518 hotplug |= BXT_DDIB_HPD_INVERT;
3519 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3520 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3521 hotplug |= BXT_DDIC_HPD_INVERT;
3522
3523 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3524 }
3525
3526 static void ibx_irq_postinstall(struct drm_device *dev)
3527 {
3528 struct drm_i915_private *dev_priv = dev->dev_private;
3529 u32 mask;
3530
3531 if (HAS_PCH_NOP(dev))
3532 return;
3533
3534 if (HAS_PCH_IBX(dev))
3535 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3536 else
3537 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3538
3539 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3540 I915_WRITE(SDEIMR, ~mask);
3541 }
3542
3543 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3544 {
3545 struct drm_i915_private *dev_priv = dev->dev_private;
3546 u32 pm_irqs, gt_irqs;
3547
3548 pm_irqs = gt_irqs = 0;
3549
3550 dev_priv->gt_irq_mask = ~0;
3551 if (HAS_L3_DPF(dev)) {
3552 /* L3 parity interrupt is always unmasked. */
3553 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3554 gt_irqs |= GT_PARITY_ERROR(dev);
3555 }
3556
3557 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3558 if (IS_GEN5(dev)) {
3559 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3560 ILK_BSD_USER_INTERRUPT;
3561 } else {
3562 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3563 }
3564
3565 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3566
3567 if (INTEL_INFO(dev)->gen >= 6) {
3568 /*
3569 * RPS interrupts will get enabled/disabled on demand when RPS
3570 * itself is enabled/disabled.
3571 */
3572 if (HAS_VEBOX(dev))
3573 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3574
3575 dev_priv->pm_irq_mask = 0xffffffff;
3576 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3577 }
3578 }
3579
3580 static int ironlake_irq_postinstall(struct drm_device *dev)
3581 {
3582 struct drm_i915_private *dev_priv = dev->dev_private;
3583 u32 display_mask, extra_mask;
3584
3585 if (INTEL_INFO(dev)->gen >= 7) {
3586 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3587 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3588 DE_PLANEB_FLIP_DONE_IVB |
3589 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3590 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3591 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3592 DE_DP_A_HOTPLUG_IVB);
3593 } else {
3594 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3595 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3596 DE_AUX_CHANNEL_A |
3597 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3598 DE_POISON);
3599 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3600 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3601 DE_DP_A_HOTPLUG);
3602 }
3603
3604 dev_priv->irq_mask = ~display_mask;
3605
3606 I915_WRITE(HWSTAM, 0xeffe);
3607
3608 ibx_irq_pre_postinstall(dev);
3609
3610 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3611
3612 gen5_gt_irq_postinstall(dev);
3613
3614 ibx_irq_postinstall(dev);
3615
3616 if (IS_IRONLAKE_M(dev)) {
3617 /* Enable PCU event interrupts
3618 *
3619 * spinlocking not required here for correctness since interrupt
3620 * setup is guaranteed to run in single-threaded context. But we
3621 * need it to make the assert_spin_locked happy. */
3622 spin_lock_irq(&dev_priv->irq_lock);
3623 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3624 spin_unlock_irq(&dev_priv->irq_lock);
3625 }
3626
3627 return 0;
3628 }
3629
3630 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3631 {
3632 u32 pipestat_mask;
3633 u32 iir_mask;
3634 enum pipe pipe;
3635
3636 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3637 PIPE_FIFO_UNDERRUN_STATUS;
3638
3639 for_each_pipe(dev_priv, pipe)
3640 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3641 POSTING_READ(PIPESTAT(PIPE_A));
3642
3643 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3644 PIPE_CRC_DONE_INTERRUPT_STATUS;
3645
3646 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3647 for_each_pipe(dev_priv, pipe)
3648 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3649
3650 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3651 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3652 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3653 if (IS_CHERRYVIEW(dev_priv))
3654 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3655 dev_priv->irq_mask &= ~iir_mask;
3656
3657 I915_WRITE(VLV_IIR, iir_mask);
3658 I915_WRITE(VLV_IIR, iir_mask);
3659 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3660 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3661 POSTING_READ(VLV_IMR);
3662 }
3663
3664 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3665 {
3666 u32 pipestat_mask;
3667 u32 iir_mask;
3668 enum pipe pipe;
3669
3670 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3671 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3672 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3673 if (IS_CHERRYVIEW(dev_priv))
3674 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3675
3676 dev_priv->irq_mask |= iir_mask;
3677 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3678 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3679 I915_WRITE(VLV_IIR, iir_mask);
3680 I915_WRITE(VLV_IIR, iir_mask);
3681 POSTING_READ(VLV_IIR);
3682
3683 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3684 PIPE_CRC_DONE_INTERRUPT_STATUS;
3685
3686 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3687 for_each_pipe(dev_priv, pipe)
3688 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3689
3690 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3691 PIPE_FIFO_UNDERRUN_STATUS;
3692
3693 for_each_pipe(dev_priv, pipe)
3694 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3695 POSTING_READ(PIPESTAT(PIPE_A));
3696 }
3697
3698 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3699 {
3700 assert_spin_locked(&dev_priv->irq_lock);
3701
3702 if (dev_priv->display_irqs_enabled)
3703 return;
3704
3705 dev_priv->display_irqs_enabled = true;
3706
3707 if (intel_irqs_enabled(dev_priv))
3708 valleyview_display_irqs_install(dev_priv);
3709 }
3710
3711 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3712 {
3713 assert_spin_locked(&dev_priv->irq_lock);
3714
3715 if (!dev_priv->display_irqs_enabled)
3716 return;
3717
3718 dev_priv->display_irqs_enabled = false;
3719
3720 if (intel_irqs_enabled(dev_priv))
3721 valleyview_display_irqs_uninstall(dev_priv);
3722 }
3723
3724 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3725 {
3726 dev_priv->irq_mask = ~0;
3727
3728 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3729 POSTING_READ(PORT_HOTPLUG_EN);
3730
3731 I915_WRITE(VLV_IIR, 0xffffffff);
3732 I915_WRITE(VLV_IIR, 0xffffffff);
3733 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3734 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3735 POSTING_READ(VLV_IMR);
3736
3737 /* Interrupt setup is already guaranteed to be single-threaded, this is
3738 * just to make the assert_spin_locked check happy. */
3739 spin_lock_irq(&dev_priv->irq_lock);
3740 if (dev_priv->display_irqs_enabled)
3741 valleyview_display_irqs_install(dev_priv);
3742 spin_unlock_irq(&dev_priv->irq_lock);
3743 }
3744
3745 static int valleyview_irq_postinstall(struct drm_device *dev)
3746 {
3747 struct drm_i915_private *dev_priv = dev->dev_private;
3748
3749 vlv_display_irq_postinstall(dev_priv);
3750
3751 gen5_gt_irq_postinstall(dev);
3752
3753 /* ack & enable invalid PTE error interrupts */
3754 #if 0 /* FIXME: add support to irq handler for checking these bits */
3755 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3756 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3757 #endif
3758
3759 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3760
3761 return 0;
3762 }
3763
3764 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3765 {
3766 /* These are interrupts we'll toggle with the ring mask register */
3767 uint32_t gt_interrupts[] = {
3768 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3769 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3770 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3771 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3772 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3773 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3774 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3775 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3776 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3777 0,
3778 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3779 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3780 };
3781
3782 dev_priv->pm_irq_mask = 0xffffffff;
3783 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3784 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3785 /*
3786 * RPS interrupts will get enabled/disabled on demand when RPS itself
3787 * is enabled/disabled.
3788 */
3789 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3790 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3791 }
3792
3793 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3794 {
3795 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3796 uint32_t de_pipe_enables;
3797 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3798 u32 de_port_enables;
3799 enum pipe pipe;
3800
3801 if (INTEL_INFO(dev_priv)->gen >= 9) {
3802 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3803 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3804 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3805 GEN9_AUX_CHANNEL_D;
3806 if (IS_BROXTON(dev_priv))
3807 de_port_masked |= BXT_DE_PORT_GMBUS;
3808 } else {
3809 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3810 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3811 }
3812
3813 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3814 GEN8_PIPE_FIFO_UNDERRUN;
3815
3816 de_port_enables = de_port_masked;
3817 if (IS_BROXTON(dev_priv))
3818 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3819 else if (IS_BROADWELL(dev_priv))
3820 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3821
3822 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3823 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3824 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3825
3826 for_each_pipe(dev_priv, pipe)
3827 if (intel_display_power_is_enabled(dev_priv,
3828 POWER_DOMAIN_PIPE(pipe)))
3829 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3830 dev_priv->de_irq_mask[pipe],
3831 de_pipe_enables);
3832
3833 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3834 }
3835
3836 static int gen8_irq_postinstall(struct drm_device *dev)
3837 {
3838 struct drm_i915_private *dev_priv = dev->dev_private;
3839
3840 if (HAS_PCH_SPLIT(dev))
3841 ibx_irq_pre_postinstall(dev);
3842
3843 gen8_gt_irq_postinstall(dev_priv);
3844 gen8_de_irq_postinstall(dev_priv);
3845
3846 if (HAS_PCH_SPLIT(dev))
3847 ibx_irq_postinstall(dev);
3848
3849 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3850 POSTING_READ(GEN8_MASTER_IRQ);
3851
3852 return 0;
3853 }
3854
3855 static int cherryview_irq_postinstall(struct drm_device *dev)
3856 {
3857 struct drm_i915_private *dev_priv = dev->dev_private;
3858
3859 vlv_display_irq_postinstall(dev_priv);
3860
3861 gen8_gt_irq_postinstall(dev_priv);
3862
3863 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3864 POSTING_READ(GEN8_MASTER_IRQ);
3865
3866 return 0;
3867 }
3868
3869 static void gen8_irq_uninstall(struct drm_device *dev)
3870 {
3871 struct drm_i915_private *dev_priv = dev->dev_private;
3872
3873 if (!dev_priv)
3874 return;
3875
3876 gen8_irq_reset(dev);
3877 }
3878
3879 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3880 {
3881 /* Interrupt setup is already guaranteed to be single-threaded, this is
3882 * just to make the assert_spin_locked check happy. */
3883 spin_lock_irq(&dev_priv->irq_lock);
3884 if (dev_priv->display_irqs_enabled)
3885 valleyview_display_irqs_uninstall(dev_priv);
3886 spin_unlock_irq(&dev_priv->irq_lock);
3887
3888 vlv_display_irq_reset(dev_priv);
3889
3890 dev_priv->irq_mask = ~0;
3891 }
3892
3893 static void valleyview_irq_uninstall(struct drm_device *dev)
3894 {
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896
3897 if (!dev_priv)
3898 return;
3899
3900 I915_WRITE(VLV_MASTER_IER, 0);
3901
3902 gen5_gt_irq_reset(dev);
3903
3904 I915_WRITE(HWSTAM, 0xffffffff);
3905
3906 vlv_display_irq_uninstall(dev_priv);
3907 }
3908
3909 static void cherryview_irq_uninstall(struct drm_device *dev)
3910 {
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3912
3913 if (!dev_priv)
3914 return;
3915
3916 I915_WRITE(GEN8_MASTER_IRQ, 0);
3917 POSTING_READ(GEN8_MASTER_IRQ);
3918
3919 gen8_gt_irq_reset(dev_priv);
3920
3921 GEN5_IRQ_RESET(GEN8_PCU_);
3922
3923 vlv_display_irq_uninstall(dev_priv);
3924 }
3925
3926 static void ironlake_irq_uninstall(struct drm_device *dev)
3927 {
3928 struct drm_i915_private *dev_priv = dev->dev_private;
3929
3930 if (!dev_priv)
3931 return;
3932
3933 ironlake_irq_reset(dev);
3934 }
3935
3936 static void i8xx_irq_preinstall(struct drm_device * dev)
3937 {
3938 struct drm_i915_private *dev_priv = dev->dev_private;
3939 int pipe;
3940
3941 for_each_pipe(dev_priv, pipe)
3942 I915_WRITE(PIPESTAT(pipe), 0);
3943 I915_WRITE16(IMR, 0xffff);
3944 I915_WRITE16(IER, 0x0);
3945 POSTING_READ16(IER);
3946 }
3947
3948 static int i8xx_irq_postinstall(struct drm_device *dev)
3949 {
3950 struct drm_i915_private *dev_priv = dev->dev_private;
3951
3952 I915_WRITE16(EMR,
3953 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3954
3955 /* Unmask the interrupts that we always want on. */
3956 dev_priv->irq_mask =
3957 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3958 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3959 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3960 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3961 I915_WRITE16(IMR, dev_priv->irq_mask);
3962
3963 I915_WRITE16(IER,
3964 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3965 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3966 I915_USER_INTERRUPT);
3967 POSTING_READ16(IER);
3968
3969 /* Interrupt setup is already guaranteed to be single-threaded, this is
3970 * just to make the assert_spin_locked check happy. */
3971 spin_lock_irq(&dev_priv->irq_lock);
3972 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3973 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3974 spin_unlock_irq(&dev_priv->irq_lock);
3975
3976 return 0;
3977 }
3978
3979 /*
3980 * Returns true when a page flip has completed.
3981 */
3982 static bool i8xx_handle_vblank(struct drm_device *dev,
3983 int plane, int pipe, u32 iir)
3984 {
3985 struct drm_i915_private *dev_priv = dev->dev_private;
3986 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3987
3988 if (!intel_pipe_handle_vblank(dev, pipe))
3989 return false;
3990
3991 if ((iir & flip_pending) == 0)
3992 goto check_page_flip;
3993
3994 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3995 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3996 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3997 * the flip is completed (no longer pending). Since this doesn't raise
3998 * an interrupt per se, we watch for the change at vblank.
3999 */
4000 if (I915_READ16(ISR) & flip_pending)
4001 goto check_page_flip;
4002
4003 intel_prepare_page_flip(dev, plane);
4004 intel_finish_page_flip(dev, pipe);
4005 return true;
4006
4007 check_page_flip:
4008 intel_check_page_flip(dev, pipe);
4009 return false;
4010 }
4011
4012 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013 {
4014 struct drm_device *dev = arg;
4015 struct drm_i915_private *dev_priv = dev->dev_private;
4016 u16 iir, new_iir;
4017 u32 pipe_stats[2];
4018 int pipe;
4019 u16 flip_mask =
4020 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4021 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4022 irqreturn_t ret;
4023
4024 if (!intel_irqs_enabled(dev_priv))
4025 return IRQ_NONE;
4026
4027 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4028 disable_rpm_wakeref_asserts(dev_priv);
4029
4030 ret = IRQ_NONE;
4031 iir = I915_READ16(IIR);
4032 if (iir == 0)
4033 goto out;
4034
4035 while (iir & ~flip_mask) {
4036 /* Can't rely on pipestat interrupt bit in iir as it might
4037 * have been cleared after the pipestat interrupt was received.
4038 * It doesn't set the bit in iir again, but it still produces
4039 * interrupts (for non-MSI).
4040 */
4041 spin_lock(&dev_priv->irq_lock);
4042 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4043 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4044
4045 for_each_pipe(dev_priv, pipe) {
4046 i915_reg_t reg = PIPESTAT(pipe);
4047 pipe_stats[pipe] = I915_READ(reg);
4048
4049 /*
4050 * Clear the PIPE*STAT regs before the IIR
4051 */
4052 if (pipe_stats[pipe] & 0x8000ffff)
4053 I915_WRITE(reg, pipe_stats[pipe]);
4054 }
4055 spin_unlock(&dev_priv->irq_lock);
4056
4057 I915_WRITE16(IIR, iir & ~flip_mask);
4058 new_iir = I915_READ16(IIR); /* Flush posted writes */
4059
4060 if (iir & I915_USER_INTERRUPT)
4061 notify_ring(&dev_priv->engine[RCS]);
4062
4063 for_each_pipe(dev_priv, pipe) {
4064 int plane = pipe;
4065 if (HAS_FBC(dev))
4066 plane = !plane;
4067
4068 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4069 i8xx_handle_vblank(dev, plane, pipe, iir))
4070 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4071
4072 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4073 i9xx_pipe_crc_irq_handler(dev, pipe);
4074
4075 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4076 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4077 pipe);
4078 }
4079
4080 iir = new_iir;
4081 }
4082 ret = IRQ_HANDLED;
4083
4084 out:
4085 enable_rpm_wakeref_asserts(dev_priv);
4086
4087 return ret;
4088 }
4089
4090 static void i8xx_irq_uninstall(struct drm_device * dev)
4091 {
4092 struct drm_i915_private *dev_priv = dev->dev_private;
4093 int pipe;
4094
4095 for_each_pipe(dev_priv, pipe) {
4096 /* Clear enable bits; then clear status bits */
4097 I915_WRITE(PIPESTAT(pipe), 0);
4098 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4099 }
4100 I915_WRITE16(IMR, 0xffff);
4101 I915_WRITE16(IER, 0x0);
4102 I915_WRITE16(IIR, I915_READ16(IIR));
4103 }
4104
4105 static void i915_irq_preinstall(struct drm_device * dev)
4106 {
4107 struct drm_i915_private *dev_priv = dev->dev_private;
4108 int pipe;
4109
4110 if (I915_HAS_HOTPLUG(dev)) {
4111 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4112 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4113 }
4114
4115 I915_WRITE16(HWSTAM, 0xeffe);
4116 for_each_pipe(dev_priv, pipe)
4117 I915_WRITE(PIPESTAT(pipe), 0);
4118 I915_WRITE(IMR, 0xffffffff);
4119 I915_WRITE(IER, 0x0);
4120 POSTING_READ(IER);
4121 }
4122
4123 static int i915_irq_postinstall(struct drm_device *dev)
4124 {
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 u32 enable_mask;
4127
4128 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4129
4130 /* Unmask the interrupts that we always want on. */
4131 dev_priv->irq_mask =
4132 ~(I915_ASLE_INTERRUPT |
4133 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4134 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4135 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4136 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4137
4138 enable_mask =
4139 I915_ASLE_INTERRUPT |
4140 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4141 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4142 I915_USER_INTERRUPT;
4143
4144 if (I915_HAS_HOTPLUG(dev)) {
4145 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4146 POSTING_READ(PORT_HOTPLUG_EN);
4147
4148 /* Enable in IER... */
4149 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4150 /* and unmask in IMR */
4151 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4152 }
4153
4154 I915_WRITE(IMR, dev_priv->irq_mask);
4155 I915_WRITE(IER, enable_mask);
4156 POSTING_READ(IER);
4157
4158 i915_enable_asle_pipestat(dev);
4159
4160 /* Interrupt setup is already guaranteed to be single-threaded, this is
4161 * just to make the assert_spin_locked check happy. */
4162 spin_lock_irq(&dev_priv->irq_lock);
4163 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4164 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4165 spin_unlock_irq(&dev_priv->irq_lock);
4166
4167 return 0;
4168 }
4169
4170 /*
4171 * Returns true when a page flip has completed.
4172 */
4173 static bool i915_handle_vblank(struct drm_device *dev,
4174 int plane, int pipe, u32 iir)
4175 {
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4178
4179 if (!intel_pipe_handle_vblank(dev, pipe))
4180 return false;
4181
4182 if ((iir & flip_pending) == 0)
4183 goto check_page_flip;
4184
4185 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4186 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4187 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4188 * the flip is completed (no longer pending). Since this doesn't raise
4189 * an interrupt per se, we watch for the change at vblank.
4190 */
4191 if (I915_READ(ISR) & flip_pending)
4192 goto check_page_flip;
4193
4194 intel_prepare_page_flip(dev, plane);
4195 intel_finish_page_flip(dev, pipe);
4196 return true;
4197
4198 check_page_flip:
4199 intel_check_page_flip(dev, pipe);
4200 return false;
4201 }
4202
4203 static irqreturn_t i915_irq_handler(int irq, void *arg)
4204 {
4205 struct drm_device *dev = arg;
4206 struct drm_i915_private *dev_priv = dev->dev_private;
4207 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4208 u32 flip_mask =
4209 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4210 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4211 int pipe, ret = IRQ_NONE;
4212
4213 if (!intel_irqs_enabled(dev_priv))
4214 return IRQ_NONE;
4215
4216 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4217 disable_rpm_wakeref_asserts(dev_priv);
4218
4219 iir = I915_READ(IIR);
4220 do {
4221 bool irq_received = (iir & ~flip_mask) != 0;
4222 bool blc_event = false;
4223
4224 /* Can't rely on pipestat interrupt bit in iir as it might
4225 * have been cleared after the pipestat interrupt was received.
4226 * It doesn't set the bit in iir again, but it still produces
4227 * interrupts (for non-MSI).
4228 */
4229 spin_lock(&dev_priv->irq_lock);
4230 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4231 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4232
4233 for_each_pipe(dev_priv, pipe) {
4234 i915_reg_t reg = PIPESTAT(pipe);
4235 pipe_stats[pipe] = I915_READ(reg);
4236
4237 /* Clear the PIPE*STAT regs before the IIR */
4238 if (pipe_stats[pipe] & 0x8000ffff) {
4239 I915_WRITE(reg, pipe_stats[pipe]);
4240 irq_received = true;
4241 }
4242 }
4243 spin_unlock(&dev_priv->irq_lock);
4244
4245 if (!irq_received)
4246 break;
4247
4248 /* Consume port. Then clear IIR or we'll miss events */
4249 if (I915_HAS_HOTPLUG(dev) &&
4250 iir & I915_DISPLAY_PORT_INTERRUPT)
4251 i9xx_hpd_irq_handler(dev);
4252
4253 I915_WRITE(IIR, iir & ~flip_mask);
4254 new_iir = I915_READ(IIR); /* Flush posted writes */
4255
4256 if (iir & I915_USER_INTERRUPT)
4257 notify_ring(&dev_priv->engine[RCS]);
4258
4259 for_each_pipe(dev_priv, pipe) {
4260 int plane = pipe;
4261 if (HAS_FBC(dev))
4262 plane = !plane;
4263
4264 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4265 i915_handle_vblank(dev, plane, pipe, iir))
4266 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4267
4268 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4269 blc_event = true;
4270
4271 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4272 i9xx_pipe_crc_irq_handler(dev, pipe);
4273
4274 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4275 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4276 pipe);
4277 }
4278
4279 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4280 intel_opregion_asle_intr(dev);
4281
4282 /* With MSI, interrupts are only generated when iir
4283 * transitions from zero to nonzero. If another bit got
4284 * set while we were handling the existing iir bits, then
4285 * we would never get another interrupt.
4286 *
4287 * This is fine on non-MSI as well, as if we hit this path
4288 * we avoid exiting the interrupt handler only to generate
4289 * another one.
4290 *
4291 * Note that for MSI this could cause a stray interrupt report
4292 * if an interrupt landed in the time between writing IIR and
4293 * the posting read. This should be rare enough to never
4294 * trigger the 99% of 100,000 interrupts test for disabling
4295 * stray interrupts.
4296 */
4297 ret = IRQ_HANDLED;
4298 iir = new_iir;
4299 } while (iir & ~flip_mask);
4300
4301 enable_rpm_wakeref_asserts(dev_priv);
4302
4303 return ret;
4304 }
4305
4306 static void i915_irq_uninstall(struct drm_device * dev)
4307 {
4308 struct drm_i915_private *dev_priv = dev->dev_private;
4309 int pipe;
4310
4311 if (I915_HAS_HOTPLUG(dev)) {
4312 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4313 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4314 }
4315
4316 I915_WRITE16(HWSTAM, 0xffff);
4317 for_each_pipe(dev_priv, pipe) {
4318 /* Clear enable bits; then clear status bits */
4319 I915_WRITE(PIPESTAT(pipe), 0);
4320 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4321 }
4322 I915_WRITE(IMR, 0xffffffff);
4323 I915_WRITE(IER, 0x0);
4324
4325 I915_WRITE(IIR, I915_READ(IIR));
4326 }
4327
4328 static void i965_irq_preinstall(struct drm_device * dev)
4329 {
4330 struct drm_i915_private *dev_priv = dev->dev_private;
4331 int pipe;
4332
4333 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4334 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4335
4336 I915_WRITE(HWSTAM, 0xeffe);
4337 for_each_pipe(dev_priv, pipe)
4338 I915_WRITE(PIPESTAT(pipe), 0);
4339 I915_WRITE(IMR, 0xffffffff);
4340 I915_WRITE(IER, 0x0);
4341 POSTING_READ(IER);
4342 }
4343
4344 static int i965_irq_postinstall(struct drm_device *dev)
4345 {
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347 u32 enable_mask;
4348 u32 error_mask;
4349
4350 /* Unmask the interrupts that we always want on. */
4351 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4352 I915_DISPLAY_PORT_INTERRUPT |
4353 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4354 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4355 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4356 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4357 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4358
4359 enable_mask = ~dev_priv->irq_mask;
4360 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4361 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4362 enable_mask |= I915_USER_INTERRUPT;
4363
4364 if (IS_G4X(dev))
4365 enable_mask |= I915_BSD_USER_INTERRUPT;
4366
4367 /* Interrupt setup is already guaranteed to be single-threaded, this is
4368 * just to make the assert_spin_locked check happy. */
4369 spin_lock_irq(&dev_priv->irq_lock);
4370 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4371 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4372 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4373 spin_unlock_irq(&dev_priv->irq_lock);
4374
4375 /*
4376 * Enable some error detection, note the instruction error mask
4377 * bit is reserved, so we leave it masked.
4378 */
4379 if (IS_G4X(dev)) {
4380 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4381 GM45_ERROR_MEM_PRIV |
4382 GM45_ERROR_CP_PRIV |
4383 I915_ERROR_MEMORY_REFRESH);
4384 } else {
4385 error_mask = ~(I915_ERROR_PAGE_TABLE |
4386 I915_ERROR_MEMORY_REFRESH);
4387 }
4388 I915_WRITE(EMR, error_mask);
4389
4390 I915_WRITE(IMR, dev_priv->irq_mask);
4391 I915_WRITE(IER, enable_mask);
4392 POSTING_READ(IER);
4393
4394 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4395 POSTING_READ(PORT_HOTPLUG_EN);
4396
4397 i915_enable_asle_pipestat(dev);
4398
4399 return 0;
4400 }
4401
4402 static void i915_hpd_irq_setup(struct drm_device *dev)
4403 {
4404 struct drm_i915_private *dev_priv = dev->dev_private;
4405 u32 hotplug_en;
4406
4407 assert_spin_locked(&dev_priv->irq_lock);
4408
4409 /* Note HDMI and DP share hotplug bits */
4410 /* enable bits are the same for all generations */
4411 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4412 /* Programming the CRT detection parameters tends
4413 to generate a spurious hotplug event about three
4414 seconds later. So just do it once.
4415 */
4416 if (IS_G4X(dev))
4417 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4418 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4419
4420 /* Ignore TV since it's buggy */
4421 i915_hotplug_interrupt_update_locked(dev_priv,
4422 HOTPLUG_INT_EN_MASK |
4423 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4424 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4425 hotplug_en);
4426 }
4427
4428 static irqreturn_t i965_irq_handler(int irq, void *arg)
4429 {
4430 struct drm_device *dev = arg;
4431 struct drm_i915_private *dev_priv = dev->dev_private;
4432 u32 iir, new_iir;
4433 u32 pipe_stats[I915_MAX_PIPES];
4434 int ret = IRQ_NONE, pipe;
4435 u32 flip_mask =
4436 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4437 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4438
4439 if (!intel_irqs_enabled(dev_priv))
4440 return IRQ_NONE;
4441
4442 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4443 disable_rpm_wakeref_asserts(dev_priv);
4444
4445 iir = I915_READ(IIR);
4446
4447 for (;;) {
4448 bool irq_received = (iir & ~flip_mask) != 0;
4449 bool blc_event = false;
4450
4451 /* Can't rely on pipestat interrupt bit in iir as it might
4452 * have been cleared after the pipestat interrupt was received.
4453 * It doesn't set the bit in iir again, but it still produces
4454 * interrupts (for non-MSI).
4455 */
4456 spin_lock(&dev_priv->irq_lock);
4457 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4458 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4459
4460 for_each_pipe(dev_priv, pipe) {
4461 i915_reg_t reg = PIPESTAT(pipe);
4462 pipe_stats[pipe] = I915_READ(reg);
4463
4464 /*
4465 * Clear the PIPE*STAT regs before the IIR
4466 */
4467 if (pipe_stats[pipe] & 0x8000ffff) {
4468 I915_WRITE(reg, pipe_stats[pipe]);
4469 irq_received = true;
4470 }
4471 }
4472 spin_unlock(&dev_priv->irq_lock);
4473
4474 if (!irq_received)
4475 break;
4476
4477 ret = IRQ_HANDLED;
4478
4479 /* Consume port. Then clear IIR or we'll miss events */
4480 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4481 i9xx_hpd_irq_handler(dev);
4482
4483 I915_WRITE(IIR, iir & ~flip_mask);
4484 new_iir = I915_READ(IIR); /* Flush posted writes */
4485
4486 if (iir & I915_USER_INTERRUPT)
4487 notify_ring(&dev_priv->engine[RCS]);
4488 if (iir & I915_BSD_USER_INTERRUPT)
4489 notify_ring(&dev_priv->engine[VCS]);
4490
4491 for_each_pipe(dev_priv, pipe) {
4492 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4493 i915_handle_vblank(dev, pipe, pipe, iir))
4494 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4495
4496 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4497 blc_event = true;
4498
4499 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4500 i9xx_pipe_crc_irq_handler(dev, pipe);
4501
4502 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4503 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4504 }
4505
4506 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4507 intel_opregion_asle_intr(dev);
4508
4509 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4510 gmbus_irq_handler(dev);
4511
4512 /* With MSI, interrupts are only generated when iir
4513 * transitions from zero to nonzero. If another bit got
4514 * set while we were handling the existing iir bits, then
4515 * we would never get another interrupt.
4516 *
4517 * This is fine on non-MSI as well, as if we hit this path
4518 * we avoid exiting the interrupt handler only to generate
4519 * another one.
4520 *
4521 * Note that for MSI this could cause a stray interrupt report
4522 * if an interrupt landed in the time between writing IIR and
4523 * the posting read. This should be rare enough to never
4524 * trigger the 99% of 100,000 interrupts test for disabling
4525 * stray interrupts.
4526 */
4527 iir = new_iir;
4528 }
4529
4530 enable_rpm_wakeref_asserts(dev_priv);
4531
4532 return ret;
4533 }
4534
4535 static void i965_irq_uninstall(struct drm_device * dev)
4536 {
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 int pipe;
4539
4540 if (!dev_priv)
4541 return;
4542
4543 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4544 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4545
4546 I915_WRITE(HWSTAM, 0xffffffff);
4547 for_each_pipe(dev_priv, pipe)
4548 I915_WRITE(PIPESTAT(pipe), 0);
4549 I915_WRITE(IMR, 0xffffffff);
4550 I915_WRITE(IER, 0x0);
4551
4552 for_each_pipe(dev_priv, pipe)
4553 I915_WRITE(PIPESTAT(pipe),
4554 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4555 I915_WRITE(IIR, I915_READ(IIR));
4556 }
4557
4558 /**
4559 * intel_irq_init - initializes irq support
4560 * @dev_priv: i915 device instance
4561 *
4562 * This function initializes all the irq support including work items, timers
4563 * and all the vtables. It does not setup the interrupt itself though.
4564 */
4565 void intel_irq_init(struct drm_i915_private *dev_priv)
4566 {
4567 struct drm_device *dev = dev_priv->dev;
4568
4569 intel_hpd_init_work(dev_priv);
4570
4571 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4572 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4573
4574 /* Let's track the enabled rps events */
4575 if (IS_VALLEYVIEW(dev_priv))
4576 /* WaGsvRC0ResidencyMethod:vlv */
4577 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4578 else
4579 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4580
4581 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4582 i915_hangcheck_elapsed);
4583
4584 if (IS_GEN2(dev_priv)) {
4585 dev->max_vblank_count = 0;
4586 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4587 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4588 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4589 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4590 } else {
4591 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4592 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4593 }
4594
4595 /*
4596 * Opt out of the vblank disable timer on everything except gen2.
4597 * Gen2 doesn't have a hardware frame counter and so depends on
4598 * vblank interrupts to produce sane vblank seuquence numbers.
4599 */
4600 if (!IS_GEN2(dev_priv))
4601 dev->vblank_disable_immediate = true;
4602
4603 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4604 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4605
4606 if (IS_CHERRYVIEW(dev_priv)) {
4607 dev->driver->irq_handler = cherryview_irq_handler;
4608 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4609 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4610 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4611 dev->driver->enable_vblank = valleyview_enable_vblank;
4612 dev->driver->disable_vblank = valleyview_disable_vblank;
4613 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4614 } else if (IS_VALLEYVIEW(dev_priv)) {
4615 dev->driver->irq_handler = valleyview_irq_handler;
4616 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4617 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4618 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4619 dev->driver->enable_vblank = valleyview_enable_vblank;
4620 dev->driver->disable_vblank = valleyview_disable_vblank;
4621 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4622 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4623 dev->driver->irq_handler = gen8_irq_handler;
4624 dev->driver->irq_preinstall = gen8_irq_reset;
4625 dev->driver->irq_postinstall = gen8_irq_postinstall;
4626 dev->driver->irq_uninstall = gen8_irq_uninstall;
4627 dev->driver->enable_vblank = gen8_enable_vblank;
4628 dev->driver->disable_vblank = gen8_disable_vblank;
4629 if (IS_BROXTON(dev))
4630 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4631 else if (HAS_PCH_SPT(dev))
4632 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4633 else
4634 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4635 } else if (HAS_PCH_SPLIT(dev)) {
4636 dev->driver->irq_handler = ironlake_irq_handler;
4637 dev->driver->irq_preinstall = ironlake_irq_reset;
4638 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4639 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4640 dev->driver->enable_vblank = ironlake_enable_vblank;
4641 dev->driver->disable_vblank = ironlake_disable_vblank;
4642 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4643 } else {
4644 if (INTEL_INFO(dev_priv)->gen == 2) {
4645 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4646 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4647 dev->driver->irq_handler = i8xx_irq_handler;
4648 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4649 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4650 dev->driver->irq_preinstall = i915_irq_preinstall;
4651 dev->driver->irq_postinstall = i915_irq_postinstall;
4652 dev->driver->irq_uninstall = i915_irq_uninstall;
4653 dev->driver->irq_handler = i915_irq_handler;
4654 } else {
4655 dev->driver->irq_preinstall = i965_irq_preinstall;
4656 dev->driver->irq_postinstall = i965_irq_postinstall;
4657 dev->driver->irq_uninstall = i965_irq_uninstall;
4658 dev->driver->irq_handler = i965_irq_handler;
4659 }
4660 if (I915_HAS_HOTPLUG(dev_priv))
4661 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4662 dev->driver->enable_vblank = i915_enable_vblank;
4663 dev->driver->disable_vblank = i915_disable_vblank;
4664 }
4665 }
4666
4667 /**
4668 * intel_irq_install - enables the hardware interrupt
4669 * @dev_priv: i915 device instance
4670 *
4671 * This function enables the hardware interrupt handling, but leaves the hotplug
4672 * handling still disabled. It is called after intel_irq_init().
4673 *
4674 * In the driver load and resume code we need working interrupts in a few places
4675 * but don't want to deal with the hassle of concurrent probe and hotplug
4676 * workers. Hence the split into this two-stage approach.
4677 */
4678 int intel_irq_install(struct drm_i915_private *dev_priv)
4679 {
4680 /*
4681 * We enable some interrupt sources in our postinstall hooks, so mark
4682 * interrupts as enabled _before_ actually enabling them to avoid
4683 * special cases in our ordering checks.
4684 */
4685 dev_priv->pm.irqs_enabled = true;
4686
4687 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4688 }
4689
4690 /**
4691 * intel_irq_uninstall - finilizes all irq handling
4692 * @dev_priv: i915 device instance
4693 *
4694 * This stops interrupt and hotplug handling and unregisters and frees all
4695 * resources acquired in the init functions.
4696 */
4697 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4698 {
4699 drm_irq_uninstall(dev_priv->dev);
4700 intel_hpd_cancel_work(dev_priv);
4701 dev_priv->pm.irqs_enabled = false;
4702 }
4703
4704 /**
4705 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4706 * @dev_priv: i915 device instance
4707 *
4708 * This function is used to disable interrupts at runtime, both in the runtime
4709 * pm and the system suspend/resume code.
4710 */
4711 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4712 {
4713 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4714 dev_priv->pm.irqs_enabled = false;
4715 synchronize_irq(dev_priv->dev->irq);
4716 }
4717
4718 /**
4719 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4720 * @dev_priv: i915 device instance
4721 *
4722 * This function is used to enable interrupts at runtime, both in the runtime
4723 * pm and the system suspend/resume code.
4724 */
4725 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4726 {
4727 dev_priv->pm.irqs_enabled = true;
4728 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4729 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4730 }
This page took 0.127146 seconds and 6 git commands to generate.