drm/i915: Split VLV/CVH PIPESTAT handling into ack+handler
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 if (!intel_engine_initialized(engine))
1000 return;
1001
1002 trace_i915_gem_request_notify(engine);
1003 engine->user_interrupts++;
1004
1005 wake_up_all(&engine->irq_queue);
1006 }
1007
1008 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1009 struct intel_rps_ei *ei)
1010 {
1011 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1012 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1013 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1014 }
1015
1016 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1017 const struct intel_rps_ei *old,
1018 const struct intel_rps_ei *now,
1019 int threshold)
1020 {
1021 u64 time, c0;
1022 unsigned int mul = 100;
1023
1024 if (old->cz_clock == 0)
1025 return false;
1026
1027 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1028 mul <<= 8;
1029
1030 time = now->cz_clock - old->cz_clock;
1031 time *= threshold * dev_priv->czclk_freq;
1032
1033 /* Workload can be split between render + media, e.g. SwapBuffers
1034 * being blitted in X after being rendered in mesa. To account for
1035 * this we need to combine both engines into our activity counter.
1036 */
1037 c0 = now->render_c0 - old->render_c0;
1038 c0 += now->media_c0 - old->media_c0;
1039 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1040
1041 return c0 >= time;
1042 }
1043
1044 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1045 {
1046 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1047 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1048 }
1049
1050 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1051 {
1052 struct intel_rps_ei now;
1053 u32 events = 0;
1054
1055 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1056 return 0;
1057
1058 vlv_c0_read(dev_priv, &now);
1059 if (now.cz_clock == 0)
1060 return 0;
1061
1062 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1063 if (!vlv_c0_above(dev_priv,
1064 &dev_priv->rps.down_ei, &now,
1065 dev_priv->rps.down_threshold))
1066 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1067 dev_priv->rps.down_ei = now;
1068 }
1069
1070 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1071 if (vlv_c0_above(dev_priv,
1072 &dev_priv->rps.up_ei, &now,
1073 dev_priv->rps.up_threshold))
1074 events |= GEN6_PM_RP_UP_THRESHOLD;
1075 dev_priv->rps.up_ei = now;
1076 }
1077
1078 return events;
1079 }
1080
1081 static bool any_waiters(struct drm_i915_private *dev_priv)
1082 {
1083 struct intel_engine_cs *engine;
1084
1085 for_each_engine(engine, dev_priv)
1086 if (engine->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->engine[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->engine[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->engine[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->engine[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->engine[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(engine);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 tasklet_schedule(&engine->irq_tasklet);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->engine[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_ack(struct drm_device *dev, u32 iir,
1648 u32 pipe_stats[I915_MAX_PIPES])
1649 {
1650 struct drm_i915_private *dev_priv = dev->dev_private;
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654
1655 if (!dev_priv->display_irqs_enabled) {
1656 spin_unlock(&dev_priv->irq_lock);
1657 return;
1658 }
1659
1660 for_each_pipe(dev_priv, pipe) {
1661 i915_reg_t reg;
1662 u32 mask, iir_bit = 0;
1663
1664 /*
1665 * PIPESTAT bits get signalled even when the interrupt is
1666 * disabled with the mask bits, and some of the status bits do
1667 * not generate interrupts at all (like the underrun bit). Hence
1668 * we need to be careful that we only handle what we want to
1669 * handle.
1670 */
1671
1672 /* fifo underruns are filterered in the underrun handler. */
1673 mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675 switch (pipe) {
1676 case PIPE_A:
1677 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678 break;
1679 case PIPE_B:
1680 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681 break;
1682 case PIPE_C:
1683 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684 break;
1685 }
1686 if (iir & iir_bit)
1687 mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689 if (!mask)
1690 continue;
1691
1692 reg = PIPESTAT(pipe);
1693 mask |= PIPESTAT_INT_ENABLE_MASK;
1694 pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696 /*
1697 * Clear the PIPE*STAT regs before the IIR
1698 */
1699 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700 PIPESTAT_INT_STATUS_MASK))
1701 I915_WRITE(reg, pipe_stats[pipe]);
1702 }
1703 spin_unlock(&dev_priv->irq_lock);
1704 }
1705
1706 static void valleyview_pipestat_irq_handler(struct drm_device *dev,
1707 u32 pipe_stats[I915_MAX_PIPES])
1708 {
1709 struct drm_i915_private *dev_priv = to_i915(dev);
1710 enum pipe pipe;
1711
1712 for_each_pipe(dev_priv, pipe) {
1713 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1714 intel_pipe_handle_vblank(dev, pipe))
1715 intel_check_page_flip(dev, pipe);
1716
1717 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1718 intel_prepare_page_flip(dev, pipe);
1719 intel_finish_page_flip(dev, pipe);
1720 }
1721
1722 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1723 i9xx_pipe_crc_irq_handler(dev, pipe);
1724
1725 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1726 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1727 }
1728
1729 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1730 gmbus_irq_handler(dev);
1731 }
1732
1733 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1734 {
1735 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1736
1737 if (hotplug_status)
1738 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1739
1740 return hotplug_status;
1741 }
1742
1743 static void i9xx_hpd_irq_handler(struct drm_device *dev,
1744 u32 hotplug_status)
1745 {
1746 u32 pin_mask = 0, long_mask = 0;
1747
1748 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1749 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1750
1751 if (hotplug_trigger) {
1752 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1753 hotplug_trigger, hpd_status_g4x,
1754 i9xx_port_hotplug_long_detect);
1755
1756 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1757 }
1758
1759 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1760 dp_aux_irq_handler(dev);
1761 } else {
1762 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1763
1764 if (hotplug_trigger) {
1765 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1766 hotplug_trigger, hpd_status_i915,
1767 i9xx_port_hotplug_long_detect);
1768 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1769 }
1770 }
1771 }
1772
1773 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1774 {
1775 struct drm_device *dev = arg;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 irqreturn_t ret = IRQ_NONE;
1778
1779 if (!intel_irqs_enabled(dev_priv))
1780 return IRQ_NONE;
1781
1782 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1783 disable_rpm_wakeref_asserts(dev_priv);
1784
1785 do {
1786 u32 iir, gt_iir, pm_iir;
1787 u32 pipe_stats[I915_MAX_PIPES] = {};
1788 u32 hotplug_status = 0;
1789 u32 ier = 0;
1790
1791 gt_iir = I915_READ(GTIIR);
1792 pm_iir = I915_READ(GEN6_PMIIR);
1793 iir = I915_READ(VLV_IIR);
1794
1795 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1796 break;
1797
1798 ret = IRQ_HANDLED;
1799
1800 /*
1801 * Theory on interrupt generation, based on empirical evidence:
1802 *
1803 * x = ((VLV_IIR & VLV_IER) ||
1804 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1805 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1806 *
1807 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1808 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1809 * guarantee the CPU interrupt will be raised again even if we
1810 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1811 * bits this time around.
1812 */
1813 I915_WRITE(VLV_MASTER_IER, 0);
1814 ier = I915_READ(VLV_IER);
1815 I915_WRITE(VLV_IER, 0);
1816
1817 if (gt_iir)
1818 I915_WRITE(GTIIR, gt_iir);
1819 if (pm_iir)
1820 I915_WRITE(GEN6_PMIIR, pm_iir);
1821
1822 if (gt_iir)
1823 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1824 if (pm_iir)
1825 gen6_rps_irq_handler(dev_priv, pm_iir);
1826
1827 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1828 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1829
1830 /* Call regardless, as some status bits might not be
1831 * signalled in iir */
1832 valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
1833
1834 /*
1835 * VLV_IIR is single buffered, and reflects the level
1836 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1837 */
1838 if (iir)
1839 I915_WRITE(VLV_IIR, iir);
1840
1841 I915_WRITE(VLV_IER, ier);
1842 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1843 POSTING_READ(VLV_MASTER_IER);
1844
1845 if (hotplug_status)
1846 i9xx_hpd_irq_handler(dev, hotplug_status);
1847
1848 valleyview_pipestat_irq_handler(dev, pipe_stats);
1849 } while (0);
1850
1851 enable_rpm_wakeref_asserts(dev_priv);
1852
1853 return ret;
1854 }
1855
1856 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1857 {
1858 struct drm_device *dev = arg;
1859 struct drm_i915_private *dev_priv = dev->dev_private;
1860 irqreturn_t ret = IRQ_NONE;
1861
1862 if (!intel_irqs_enabled(dev_priv))
1863 return IRQ_NONE;
1864
1865 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1866 disable_rpm_wakeref_asserts(dev_priv);
1867
1868 do {
1869 u32 master_ctl, iir;
1870 u32 pipe_stats[I915_MAX_PIPES] = {};
1871 u32 hotplug_status = 0;
1872 u32 ier = 0;
1873
1874 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1875 iir = I915_READ(VLV_IIR);
1876
1877 if (master_ctl == 0 && iir == 0)
1878 break;
1879
1880 ret = IRQ_HANDLED;
1881
1882 /*
1883 * Theory on interrupt generation, based on empirical evidence:
1884 *
1885 * x = ((VLV_IIR & VLV_IER) ||
1886 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1887 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1888 *
1889 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1890 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1891 * guarantee the CPU interrupt will be raised again even if we
1892 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1893 * bits this time around.
1894 */
1895 I915_WRITE(GEN8_MASTER_IRQ, 0);
1896 ier = I915_READ(VLV_IER);
1897 I915_WRITE(VLV_IER, 0);
1898
1899 gen8_gt_irq_handler(dev_priv, master_ctl);
1900
1901 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1902 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1903
1904 /* Call regardless, as some status bits might not be
1905 * signalled in iir */
1906 valleyview_pipestat_irq_ack(dev, iir, pipe_stats);
1907
1908 /*
1909 * VLV_IIR is single buffered, and reflects the level
1910 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1911 */
1912 if (iir)
1913 I915_WRITE(VLV_IIR, iir);
1914
1915 I915_WRITE(VLV_IER, ier);
1916 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1917 POSTING_READ(GEN8_MASTER_IRQ);
1918
1919 if (hotplug_status)
1920 i9xx_hpd_irq_handler(dev, hotplug_status);
1921
1922 valleyview_pipestat_irq_handler(dev, pipe_stats);
1923 } while (0);
1924
1925 enable_rpm_wakeref_asserts(dev_priv);
1926
1927 return ret;
1928 }
1929
1930 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1931 const u32 hpd[HPD_NUM_PINS])
1932 {
1933 struct drm_i915_private *dev_priv = to_i915(dev);
1934 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1935
1936 /*
1937 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1938 * unless we touch the hotplug register, even if hotplug_trigger is
1939 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1940 * errors.
1941 */
1942 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1943 if (!hotplug_trigger) {
1944 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1945 PORTD_HOTPLUG_STATUS_MASK |
1946 PORTC_HOTPLUG_STATUS_MASK |
1947 PORTB_HOTPLUG_STATUS_MASK;
1948 dig_hotplug_reg &= ~mask;
1949 }
1950
1951 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1952 if (!hotplug_trigger)
1953 return;
1954
1955 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1956 dig_hotplug_reg, hpd,
1957 pch_port_hotplug_long_detect);
1958
1959 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1960 }
1961
1962 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1963 {
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 int pipe;
1966 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1967
1968 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1969
1970 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1971 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1972 SDE_AUDIO_POWER_SHIFT);
1973 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1974 port_name(port));
1975 }
1976
1977 if (pch_iir & SDE_AUX_MASK)
1978 dp_aux_irq_handler(dev);
1979
1980 if (pch_iir & SDE_GMBUS)
1981 gmbus_irq_handler(dev);
1982
1983 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1984 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1985
1986 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1987 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1988
1989 if (pch_iir & SDE_POISON)
1990 DRM_ERROR("PCH poison interrupt\n");
1991
1992 if (pch_iir & SDE_FDI_MASK)
1993 for_each_pipe(dev_priv, pipe)
1994 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1995 pipe_name(pipe),
1996 I915_READ(FDI_RX_IIR(pipe)));
1997
1998 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1999 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2000
2001 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2002 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2003
2004 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2005 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2006
2007 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2008 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2009 }
2010
2011 static void ivb_err_int_handler(struct drm_device *dev)
2012 {
2013 struct drm_i915_private *dev_priv = dev->dev_private;
2014 u32 err_int = I915_READ(GEN7_ERR_INT);
2015 enum pipe pipe;
2016
2017 if (err_int & ERR_INT_POISON)
2018 DRM_ERROR("Poison interrupt\n");
2019
2020 for_each_pipe(dev_priv, pipe) {
2021 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2022 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2023
2024 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2025 if (IS_IVYBRIDGE(dev))
2026 ivb_pipe_crc_irq_handler(dev, pipe);
2027 else
2028 hsw_pipe_crc_irq_handler(dev, pipe);
2029 }
2030 }
2031
2032 I915_WRITE(GEN7_ERR_INT, err_int);
2033 }
2034
2035 static void cpt_serr_int_handler(struct drm_device *dev)
2036 {
2037 struct drm_i915_private *dev_priv = dev->dev_private;
2038 u32 serr_int = I915_READ(SERR_INT);
2039
2040 if (serr_int & SERR_INT_POISON)
2041 DRM_ERROR("PCH poison interrupt\n");
2042
2043 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2044 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2045
2046 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2047 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2048
2049 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2050 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2051
2052 I915_WRITE(SERR_INT, serr_int);
2053 }
2054
2055 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2056 {
2057 struct drm_i915_private *dev_priv = dev->dev_private;
2058 int pipe;
2059 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2060
2061 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2062
2063 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2064 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2065 SDE_AUDIO_POWER_SHIFT_CPT);
2066 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2067 port_name(port));
2068 }
2069
2070 if (pch_iir & SDE_AUX_MASK_CPT)
2071 dp_aux_irq_handler(dev);
2072
2073 if (pch_iir & SDE_GMBUS_CPT)
2074 gmbus_irq_handler(dev);
2075
2076 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2077 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2078
2079 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2080 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2081
2082 if (pch_iir & SDE_FDI_MASK_CPT)
2083 for_each_pipe(dev_priv, pipe)
2084 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2085 pipe_name(pipe),
2086 I915_READ(FDI_RX_IIR(pipe)));
2087
2088 if (pch_iir & SDE_ERROR_CPT)
2089 cpt_serr_int_handler(dev);
2090 }
2091
2092 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2093 {
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2096 ~SDE_PORTE_HOTPLUG_SPT;
2097 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2098 u32 pin_mask = 0, long_mask = 0;
2099
2100 if (hotplug_trigger) {
2101 u32 dig_hotplug_reg;
2102
2103 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2104 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2105
2106 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2107 dig_hotplug_reg, hpd_spt,
2108 spt_port_hotplug_long_detect);
2109 }
2110
2111 if (hotplug2_trigger) {
2112 u32 dig_hotplug_reg;
2113
2114 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2115 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2116
2117 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2118 dig_hotplug_reg, hpd_spt,
2119 spt_port_hotplug2_long_detect);
2120 }
2121
2122 if (pin_mask)
2123 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2124
2125 if (pch_iir & SDE_GMBUS_CPT)
2126 gmbus_irq_handler(dev);
2127 }
2128
2129 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2130 const u32 hpd[HPD_NUM_PINS])
2131 {
2132 struct drm_i915_private *dev_priv = to_i915(dev);
2133 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2134
2135 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2136 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2137
2138 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2139 dig_hotplug_reg, hpd,
2140 ilk_port_hotplug_long_detect);
2141
2142 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2143 }
2144
2145 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2146 {
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148 enum pipe pipe;
2149 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2150
2151 if (hotplug_trigger)
2152 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2153
2154 if (de_iir & DE_AUX_CHANNEL_A)
2155 dp_aux_irq_handler(dev);
2156
2157 if (de_iir & DE_GSE)
2158 intel_opregion_asle_intr(dev);
2159
2160 if (de_iir & DE_POISON)
2161 DRM_ERROR("Poison interrupt\n");
2162
2163 for_each_pipe(dev_priv, pipe) {
2164 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2165 intel_pipe_handle_vblank(dev, pipe))
2166 intel_check_page_flip(dev, pipe);
2167
2168 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2169 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2170
2171 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2172 i9xx_pipe_crc_irq_handler(dev, pipe);
2173
2174 /* plane/pipes map 1:1 on ilk+ */
2175 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2176 intel_prepare_page_flip(dev, pipe);
2177 intel_finish_page_flip_plane(dev, pipe);
2178 }
2179 }
2180
2181 /* check event from PCH */
2182 if (de_iir & DE_PCH_EVENT) {
2183 u32 pch_iir = I915_READ(SDEIIR);
2184
2185 if (HAS_PCH_CPT(dev))
2186 cpt_irq_handler(dev, pch_iir);
2187 else
2188 ibx_irq_handler(dev, pch_iir);
2189
2190 /* should clear PCH hotplug event before clear CPU irq */
2191 I915_WRITE(SDEIIR, pch_iir);
2192 }
2193
2194 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2195 ironlake_rps_change_irq_handler(dev);
2196 }
2197
2198 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2199 {
2200 struct drm_i915_private *dev_priv = dev->dev_private;
2201 enum pipe pipe;
2202 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2203
2204 if (hotplug_trigger)
2205 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2206
2207 if (de_iir & DE_ERR_INT_IVB)
2208 ivb_err_int_handler(dev);
2209
2210 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2211 dp_aux_irq_handler(dev);
2212
2213 if (de_iir & DE_GSE_IVB)
2214 intel_opregion_asle_intr(dev);
2215
2216 for_each_pipe(dev_priv, pipe) {
2217 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2218 intel_pipe_handle_vblank(dev, pipe))
2219 intel_check_page_flip(dev, pipe);
2220
2221 /* plane/pipes map 1:1 on ilk+ */
2222 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2223 intel_prepare_page_flip(dev, pipe);
2224 intel_finish_page_flip_plane(dev, pipe);
2225 }
2226 }
2227
2228 /* check event from PCH */
2229 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2230 u32 pch_iir = I915_READ(SDEIIR);
2231
2232 cpt_irq_handler(dev, pch_iir);
2233
2234 /* clear PCH hotplug event before clear CPU irq */
2235 I915_WRITE(SDEIIR, pch_iir);
2236 }
2237 }
2238
2239 /*
2240 * To handle irqs with the minimum potential races with fresh interrupts, we:
2241 * 1 - Disable Master Interrupt Control.
2242 * 2 - Find the source(s) of the interrupt.
2243 * 3 - Clear the Interrupt Identity bits (IIR).
2244 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2245 * 5 - Re-enable Master Interrupt Control.
2246 */
2247 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2248 {
2249 struct drm_device *dev = arg;
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2252 irqreturn_t ret = IRQ_NONE;
2253
2254 if (!intel_irqs_enabled(dev_priv))
2255 return IRQ_NONE;
2256
2257 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2258 disable_rpm_wakeref_asserts(dev_priv);
2259
2260 /* disable master interrupt before clearing iir */
2261 de_ier = I915_READ(DEIER);
2262 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2263 POSTING_READ(DEIER);
2264
2265 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2266 * interrupts will will be stored on its back queue, and then we'll be
2267 * able to process them after we restore SDEIER (as soon as we restore
2268 * it, we'll get an interrupt if SDEIIR still has something to process
2269 * due to its back queue). */
2270 if (!HAS_PCH_NOP(dev)) {
2271 sde_ier = I915_READ(SDEIER);
2272 I915_WRITE(SDEIER, 0);
2273 POSTING_READ(SDEIER);
2274 }
2275
2276 /* Find, clear, then process each source of interrupt */
2277
2278 gt_iir = I915_READ(GTIIR);
2279 if (gt_iir) {
2280 I915_WRITE(GTIIR, gt_iir);
2281 ret = IRQ_HANDLED;
2282 if (INTEL_INFO(dev)->gen >= 6)
2283 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2284 else
2285 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2286 }
2287
2288 de_iir = I915_READ(DEIIR);
2289 if (de_iir) {
2290 I915_WRITE(DEIIR, de_iir);
2291 ret = IRQ_HANDLED;
2292 if (INTEL_INFO(dev)->gen >= 7)
2293 ivb_display_irq_handler(dev, de_iir);
2294 else
2295 ilk_display_irq_handler(dev, de_iir);
2296 }
2297
2298 if (INTEL_INFO(dev)->gen >= 6) {
2299 u32 pm_iir = I915_READ(GEN6_PMIIR);
2300 if (pm_iir) {
2301 I915_WRITE(GEN6_PMIIR, pm_iir);
2302 ret = IRQ_HANDLED;
2303 gen6_rps_irq_handler(dev_priv, pm_iir);
2304 }
2305 }
2306
2307 I915_WRITE(DEIER, de_ier);
2308 POSTING_READ(DEIER);
2309 if (!HAS_PCH_NOP(dev)) {
2310 I915_WRITE(SDEIER, sde_ier);
2311 POSTING_READ(SDEIER);
2312 }
2313
2314 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2315 enable_rpm_wakeref_asserts(dev_priv);
2316
2317 return ret;
2318 }
2319
2320 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2321 const u32 hpd[HPD_NUM_PINS])
2322 {
2323 struct drm_i915_private *dev_priv = to_i915(dev);
2324 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2325
2326 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2327 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2328
2329 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2330 dig_hotplug_reg, hpd,
2331 bxt_port_hotplug_long_detect);
2332
2333 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2334 }
2335
2336 static irqreturn_t
2337 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2338 {
2339 struct drm_device *dev = dev_priv->dev;
2340 irqreturn_t ret = IRQ_NONE;
2341 u32 iir;
2342 enum pipe pipe;
2343
2344 if (master_ctl & GEN8_DE_MISC_IRQ) {
2345 iir = I915_READ(GEN8_DE_MISC_IIR);
2346 if (iir) {
2347 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2348 ret = IRQ_HANDLED;
2349 if (iir & GEN8_DE_MISC_GSE)
2350 intel_opregion_asle_intr(dev);
2351 else
2352 DRM_ERROR("Unexpected DE Misc interrupt\n");
2353 }
2354 else
2355 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2356 }
2357
2358 if (master_ctl & GEN8_DE_PORT_IRQ) {
2359 iir = I915_READ(GEN8_DE_PORT_IIR);
2360 if (iir) {
2361 u32 tmp_mask;
2362 bool found = false;
2363
2364 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2365 ret = IRQ_HANDLED;
2366
2367 tmp_mask = GEN8_AUX_CHANNEL_A;
2368 if (INTEL_INFO(dev_priv)->gen >= 9)
2369 tmp_mask |= GEN9_AUX_CHANNEL_B |
2370 GEN9_AUX_CHANNEL_C |
2371 GEN9_AUX_CHANNEL_D;
2372
2373 if (iir & tmp_mask) {
2374 dp_aux_irq_handler(dev);
2375 found = true;
2376 }
2377
2378 if (IS_BROXTON(dev_priv)) {
2379 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2380 if (tmp_mask) {
2381 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2382 found = true;
2383 }
2384 } else if (IS_BROADWELL(dev_priv)) {
2385 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2386 if (tmp_mask) {
2387 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2388 found = true;
2389 }
2390 }
2391
2392 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2393 gmbus_irq_handler(dev);
2394 found = true;
2395 }
2396
2397 if (!found)
2398 DRM_ERROR("Unexpected DE Port interrupt\n");
2399 }
2400 else
2401 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2402 }
2403
2404 for_each_pipe(dev_priv, pipe) {
2405 u32 flip_done, fault_errors;
2406
2407 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2408 continue;
2409
2410 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2411 if (!iir) {
2412 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2413 continue;
2414 }
2415
2416 ret = IRQ_HANDLED;
2417 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2418
2419 if (iir & GEN8_PIPE_VBLANK &&
2420 intel_pipe_handle_vblank(dev, pipe))
2421 intel_check_page_flip(dev, pipe);
2422
2423 flip_done = iir;
2424 if (INTEL_INFO(dev_priv)->gen >= 9)
2425 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2426 else
2427 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2428
2429 if (flip_done) {
2430 intel_prepare_page_flip(dev, pipe);
2431 intel_finish_page_flip_plane(dev, pipe);
2432 }
2433
2434 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2435 hsw_pipe_crc_irq_handler(dev, pipe);
2436
2437 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2438 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2439
2440 fault_errors = iir;
2441 if (INTEL_INFO(dev_priv)->gen >= 9)
2442 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2443 else
2444 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2445
2446 if (fault_errors)
2447 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2448 pipe_name(pipe),
2449 fault_errors);
2450 }
2451
2452 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2453 master_ctl & GEN8_DE_PCH_IRQ) {
2454 /*
2455 * FIXME(BDW): Assume for now that the new interrupt handling
2456 * scheme also closed the SDE interrupt handling race we've seen
2457 * on older pch-split platforms. But this needs testing.
2458 */
2459 iir = I915_READ(SDEIIR);
2460 if (iir) {
2461 I915_WRITE(SDEIIR, iir);
2462 ret = IRQ_HANDLED;
2463
2464 if (HAS_PCH_SPT(dev_priv))
2465 spt_irq_handler(dev, iir);
2466 else
2467 cpt_irq_handler(dev, iir);
2468 } else {
2469 /*
2470 * Like on previous PCH there seems to be something
2471 * fishy going on with forwarding PCH interrupts.
2472 */
2473 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2474 }
2475 }
2476
2477 return ret;
2478 }
2479
2480 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2481 {
2482 struct drm_device *dev = arg;
2483 struct drm_i915_private *dev_priv = dev->dev_private;
2484 u32 master_ctl;
2485 irqreturn_t ret;
2486
2487 if (!intel_irqs_enabled(dev_priv))
2488 return IRQ_NONE;
2489
2490 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2491 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2492 if (!master_ctl)
2493 return IRQ_NONE;
2494
2495 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2496
2497 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2498 disable_rpm_wakeref_asserts(dev_priv);
2499
2500 /* Find, clear, then process each source of interrupt */
2501 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2502 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2503
2504 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2505 POSTING_READ_FW(GEN8_MASTER_IRQ);
2506
2507 enable_rpm_wakeref_asserts(dev_priv);
2508
2509 return ret;
2510 }
2511
2512 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2513 bool reset_completed)
2514 {
2515 struct intel_engine_cs *engine;
2516
2517 /*
2518 * Notify all waiters for GPU completion events that reset state has
2519 * been changed, and that they need to restart their wait after
2520 * checking for potential errors (and bail out to drop locks if there is
2521 * a gpu reset pending so that i915_error_work_func can acquire them).
2522 */
2523
2524 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2525 for_each_engine(engine, dev_priv)
2526 wake_up_all(&engine->irq_queue);
2527
2528 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2529 wake_up_all(&dev_priv->pending_flip_queue);
2530
2531 /*
2532 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2533 * reset state is cleared.
2534 */
2535 if (reset_completed)
2536 wake_up_all(&dev_priv->gpu_error.reset_queue);
2537 }
2538
2539 /**
2540 * i915_reset_and_wakeup - do process context error handling work
2541 * @dev: drm device
2542 *
2543 * Fire an error uevent so userspace can see that a hang or error
2544 * was detected.
2545 */
2546 static void i915_reset_and_wakeup(struct drm_device *dev)
2547 {
2548 struct drm_i915_private *dev_priv = to_i915(dev);
2549 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2550 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2551 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2552 int ret;
2553
2554 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2555
2556 /*
2557 * Note that there's only one work item which does gpu resets, so we
2558 * need not worry about concurrent gpu resets potentially incrementing
2559 * error->reset_counter twice. We only need to take care of another
2560 * racing irq/hangcheck declaring the gpu dead for a second time. A
2561 * quick check for that is good enough: schedule_work ensures the
2562 * correct ordering between hang detection and this work item, and since
2563 * the reset in-progress bit is only ever set by code outside of this
2564 * work we don't need to worry about any other races.
2565 */
2566 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2567 DRM_DEBUG_DRIVER("resetting chip\n");
2568 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2569 reset_event);
2570
2571 /*
2572 * In most cases it's guaranteed that we get here with an RPM
2573 * reference held, for example because there is a pending GPU
2574 * request that won't finish until the reset is done. This
2575 * isn't the case at least when we get here by doing a
2576 * simulated reset via debugs, so get an RPM reference.
2577 */
2578 intel_runtime_pm_get(dev_priv);
2579
2580 intel_prepare_reset(dev);
2581
2582 /*
2583 * All state reset _must_ be completed before we update the
2584 * reset counter, for otherwise waiters might miss the reset
2585 * pending state and not properly drop locks, resulting in
2586 * deadlocks with the reset work.
2587 */
2588 ret = i915_reset(dev);
2589
2590 intel_finish_reset(dev);
2591
2592 intel_runtime_pm_put(dev_priv);
2593
2594 if (ret == 0)
2595 kobject_uevent_env(&dev->primary->kdev->kobj,
2596 KOBJ_CHANGE, reset_done_event);
2597
2598 /*
2599 * Note: The wake_up also serves as a memory barrier so that
2600 * waiters see the update value of the reset counter atomic_t.
2601 */
2602 i915_error_wake_up(dev_priv, true);
2603 }
2604 }
2605
2606 static void i915_report_and_clear_eir(struct drm_device *dev)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 uint32_t instdone[I915_NUM_INSTDONE_REG];
2610 u32 eir = I915_READ(EIR);
2611 int pipe, i;
2612
2613 if (!eir)
2614 return;
2615
2616 pr_err("render error detected, EIR: 0x%08x\n", eir);
2617
2618 i915_get_extra_instdone(dev, instdone);
2619
2620 if (IS_G4X(dev)) {
2621 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2622 u32 ipeir = I915_READ(IPEIR_I965);
2623
2624 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2625 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2626 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2627 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2628 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2629 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2630 I915_WRITE(IPEIR_I965, ipeir);
2631 POSTING_READ(IPEIR_I965);
2632 }
2633 if (eir & GM45_ERROR_PAGE_TABLE) {
2634 u32 pgtbl_err = I915_READ(PGTBL_ER);
2635 pr_err("page table error\n");
2636 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2637 I915_WRITE(PGTBL_ER, pgtbl_err);
2638 POSTING_READ(PGTBL_ER);
2639 }
2640 }
2641
2642 if (!IS_GEN2(dev)) {
2643 if (eir & I915_ERROR_PAGE_TABLE) {
2644 u32 pgtbl_err = I915_READ(PGTBL_ER);
2645 pr_err("page table error\n");
2646 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2647 I915_WRITE(PGTBL_ER, pgtbl_err);
2648 POSTING_READ(PGTBL_ER);
2649 }
2650 }
2651
2652 if (eir & I915_ERROR_MEMORY_REFRESH) {
2653 pr_err("memory refresh error:\n");
2654 for_each_pipe(dev_priv, pipe)
2655 pr_err("pipe %c stat: 0x%08x\n",
2656 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2657 /* pipestat has already been acked */
2658 }
2659 if (eir & I915_ERROR_INSTRUCTION) {
2660 pr_err("instruction error\n");
2661 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2662 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2663 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2664 if (INTEL_INFO(dev)->gen < 4) {
2665 u32 ipeir = I915_READ(IPEIR);
2666
2667 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2668 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2669 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2670 I915_WRITE(IPEIR, ipeir);
2671 POSTING_READ(IPEIR);
2672 } else {
2673 u32 ipeir = I915_READ(IPEIR_I965);
2674
2675 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2676 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2677 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2678 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2679 I915_WRITE(IPEIR_I965, ipeir);
2680 POSTING_READ(IPEIR_I965);
2681 }
2682 }
2683
2684 I915_WRITE(EIR, eir);
2685 POSTING_READ(EIR);
2686 eir = I915_READ(EIR);
2687 if (eir) {
2688 /*
2689 * some errors might have become stuck,
2690 * mask them.
2691 */
2692 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2693 I915_WRITE(EMR, I915_READ(EMR) | eir);
2694 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2695 }
2696 }
2697
2698 /**
2699 * i915_handle_error - handle a gpu error
2700 * @dev: drm device
2701 * @engine_mask: mask representing engines that are hung
2702 * Do some basic checking of register state at error time and
2703 * dump it to the syslog. Also call i915_capture_error_state() to make
2704 * sure we get a record and make it available in debugfs. Fire a uevent
2705 * so userspace knows something bad happened (should trigger collection
2706 * of a ring dump etc.).
2707 */
2708 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2709 const char *fmt, ...)
2710 {
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 va_list args;
2713 char error_msg[80];
2714
2715 va_start(args, fmt);
2716 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2717 va_end(args);
2718
2719 i915_capture_error_state(dev, engine_mask, error_msg);
2720 i915_report_and_clear_eir(dev);
2721
2722 if (engine_mask) {
2723 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2724 &dev_priv->gpu_error.reset_counter);
2725
2726 /*
2727 * Wakeup waiting processes so that the reset function
2728 * i915_reset_and_wakeup doesn't deadlock trying to grab
2729 * various locks. By bumping the reset counter first, the woken
2730 * processes will see a reset in progress and back off,
2731 * releasing their locks and then wait for the reset completion.
2732 * We must do this for _all_ gpu waiters that might hold locks
2733 * that the reset work needs to acquire.
2734 *
2735 * Note: The wake_up serves as the required memory barrier to
2736 * ensure that the waiters see the updated value of the reset
2737 * counter atomic_t.
2738 */
2739 i915_error_wake_up(dev_priv, false);
2740 }
2741
2742 i915_reset_and_wakeup(dev);
2743 }
2744
2745 /* Called from drm generic code, passed 'crtc' which
2746 * we use as a pipe index
2747 */
2748 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2749 {
2750 struct drm_i915_private *dev_priv = dev->dev_private;
2751 unsigned long irqflags;
2752
2753 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2754 if (INTEL_INFO(dev)->gen >= 4)
2755 i915_enable_pipestat(dev_priv, pipe,
2756 PIPE_START_VBLANK_INTERRUPT_STATUS);
2757 else
2758 i915_enable_pipestat(dev_priv, pipe,
2759 PIPE_VBLANK_INTERRUPT_STATUS);
2760 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2761
2762 return 0;
2763 }
2764
2765 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2766 {
2767 struct drm_i915_private *dev_priv = dev->dev_private;
2768 unsigned long irqflags;
2769 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2770 DE_PIPE_VBLANK(pipe);
2771
2772 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2773 ilk_enable_display_irq(dev_priv, bit);
2774 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2775
2776 return 0;
2777 }
2778
2779 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2780 {
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782 unsigned long irqflags;
2783
2784 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2785 i915_enable_pipestat(dev_priv, pipe,
2786 PIPE_START_VBLANK_INTERRUPT_STATUS);
2787 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2788
2789 return 0;
2790 }
2791
2792 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2793 {
2794 struct drm_i915_private *dev_priv = dev->dev_private;
2795 unsigned long irqflags;
2796
2797 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2798 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2799 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2800
2801 return 0;
2802 }
2803
2804 /* Called from drm generic code, passed 'crtc' which
2805 * we use as a pipe index
2806 */
2807 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2808 {
2809 struct drm_i915_private *dev_priv = dev->dev_private;
2810 unsigned long irqflags;
2811
2812 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2813 i915_disable_pipestat(dev_priv, pipe,
2814 PIPE_VBLANK_INTERRUPT_STATUS |
2815 PIPE_START_VBLANK_INTERRUPT_STATUS);
2816 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2817 }
2818
2819 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2820 {
2821 struct drm_i915_private *dev_priv = dev->dev_private;
2822 unsigned long irqflags;
2823 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2824 DE_PIPE_VBLANK(pipe);
2825
2826 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2827 ilk_disable_display_irq(dev_priv, bit);
2828 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2829 }
2830
2831 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2832 {
2833 struct drm_i915_private *dev_priv = dev->dev_private;
2834 unsigned long irqflags;
2835
2836 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2837 i915_disable_pipestat(dev_priv, pipe,
2838 PIPE_START_VBLANK_INTERRUPT_STATUS);
2839 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2840 }
2841
2842 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2843 {
2844 struct drm_i915_private *dev_priv = dev->dev_private;
2845 unsigned long irqflags;
2846
2847 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2848 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2849 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2850 }
2851
2852 static bool
2853 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2854 {
2855 return i915_seqno_passed(seqno,
2856 READ_ONCE(engine->last_submitted_seqno));
2857 }
2858
2859 static bool
2860 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2861 {
2862 if (INTEL_INFO(dev)->gen >= 8) {
2863 return (ipehr >> 23) == 0x1c;
2864 } else {
2865 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2866 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2867 MI_SEMAPHORE_REGISTER);
2868 }
2869 }
2870
2871 static struct intel_engine_cs *
2872 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2873 u64 offset)
2874 {
2875 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2876 struct intel_engine_cs *signaller;
2877
2878 if (INTEL_INFO(dev_priv)->gen >= 8) {
2879 for_each_engine(signaller, dev_priv) {
2880 if (engine == signaller)
2881 continue;
2882
2883 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2884 return signaller;
2885 }
2886 } else {
2887 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2888
2889 for_each_engine(signaller, dev_priv) {
2890 if(engine == signaller)
2891 continue;
2892
2893 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2894 return signaller;
2895 }
2896 }
2897
2898 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2899 engine->id, ipehr, offset);
2900
2901 return NULL;
2902 }
2903
2904 static struct intel_engine_cs *
2905 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2906 {
2907 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2908 u32 cmd, ipehr, head;
2909 u64 offset = 0;
2910 int i, backwards;
2911
2912 /*
2913 * This function does not support execlist mode - any attempt to
2914 * proceed further into this function will result in a kernel panic
2915 * when dereferencing ring->buffer, which is not set up in execlist
2916 * mode.
2917 *
2918 * The correct way of doing it would be to derive the currently
2919 * executing ring buffer from the current context, which is derived
2920 * from the currently running request. Unfortunately, to get the
2921 * current request we would have to grab the struct_mutex before doing
2922 * anything else, which would be ill-advised since some other thread
2923 * might have grabbed it already and managed to hang itself, causing
2924 * the hang checker to deadlock.
2925 *
2926 * Therefore, this function does not support execlist mode in its
2927 * current form. Just return NULL and move on.
2928 */
2929 if (engine->buffer == NULL)
2930 return NULL;
2931
2932 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2933 if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2934 return NULL;
2935
2936 /*
2937 * HEAD is likely pointing to the dword after the actual command,
2938 * so scan backwards until we find the MBOX. But limit it to just 3
2939 * or 4 dwords depending on the semaphore wait command size.
2940 * Note that we don't care about ACTHD here since that might
2941 * point at at batch, and semaphores are always emitted into the
2942 * ringbuffer itself.
2943 */
2944 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2945 backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2946
2947 for (i = backwards; i; --i) {
2948 /*
2949 * Be paranoid and presume the hw has gone off into the wild -
2950 * our ring is smaller than what the hardware (and hence
2951 * HEAD_ADDR) allows. Also handles wrap-around.
2952 */
2953 head &= engine->buffer->size - 1;
2954
2955 /* This here seems to blow up */
2956 cmd = ioread32(engine->buffer->virtual_start + head);
2957 if (cmd == ipehr)
2958 break;
2959
2960 head -= 4;
2961 }
2962
2963 if (!i)
2964 return NULL;
2965
2966 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2967 if (INTEL_INFO(engine->dev)->gen >= 8) {
2968 offset = ioread32(engine->buffer->virtual_start + head + 12);
2969 offset <<= 32;
2970 offset = ioread32(engine->buffer->virtual_start + head + 8);
2971 }
2972 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2973 }
2974
2975 static int semaphore_passed(struct intel_engine_cs *engine)
2976 {
2977 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2978 struct intel_engine_cs *signaller;
2979 u32 seqno;
2980
2981 engine->hangcheck.deadlock++;
2982
2983 signaller = semaphore_waits_for(engine, &seqno);
2984 if (signaller == NULL)
2985 return -1;
2986
2987 /* Prevent pathological recursion due to driver bugs */
2988 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2989 return -1;
2990
2991 if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2992 return 1;
2993
2994 /* cursory check for an unkickable deadlock */
2995 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2996 semaphore_passed(signaller) < 0)
2997 return -1;
2998
2999 return 0;
3000 }
3001
3002 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3003 {
3004 struct intel_engine_cs *engine;
3005
3006 for_each_engine(engine, dev_priv)
3007 engine->hangcheck.deadlock = 0;
3008 }
3009
3010 static bool subunits_stuck(struct intel_engine_cs *engine)
3011 {
3012 u32 instdone[I915_NUM_INSTDONE_REG];
3013 bool stuck;
3014 int i;
3015
3016 if (engine->id != RCS)
3017 return true;
3018
3019 i915_get_extra_instdone(engine->dev, instdone);
3020
3021 /* There might be unstable subunit states even when
3022 * actual head is not moving. Filter out the unstable ones by
3023 * accumulating the undone -> done transitions and only
3024 * consider those as progress.
3025 */
3026 stuck = true;
3027 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3028 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3029
3030 if (tmp != engine->hangcheck.instdone[i])
3031 stuck = false;
3032
3033 engine->hangcheck.instdone[i] |= tmp;
3034 }
3035
3036 return stuck;
3037 }
3038
3039 static enum intel_ring_hangcheck_action
3040 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3041 {
3042 if (acthd != engine->hangcheck.acthd) {
3043
3044 /* Clear subunit states on head movement */
3045 memset(engine->hangcheck.instdone, 0,
3046 sizeof(engine->hangcheck.instdone));
3047
3048 return HANGCHECK_ACTIVE;
3049 }
3050
3051 if (!subunits_stuck(engine))
3052 return HANGCHECK_ACTIVE;
3053
3054 return HANGCHECK_HUNG;
3055 }
3056
3057 static enum intel_ring_hangcheck_action
3058 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3059 {
3060 struct drm_device *dev = engine->dev;
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 enum intel_ring_hangcheck_action ha;
3063 u32 tmp;
3064
3065 ha = head_stuck(engine, acthd);
3066 if (ha != HANGCHECK_HUNG)
3067 return ha;
3068
3069 if (IS_GEN2(dev))
3070 return HANGCHECK_HUNG;
3071
3072 /* Is the chip hanging on a WAIT_FOR_EVENT?
3073 * If so we can simply poke the RB_WAIT bit
3074 * and break the hang. This should work on
3075 * all but the second generation chipsets.
3076 */
3077 tmp = I915_READ_CTL(engine);
3078 if (tmp & RING_WAIT) {
3079 i915_handle_error(dev, 0,
3080 "Kicking stuck wait on %s",
3081 engine->name);
3082 I915_WRITE_CTL(engine, tmp);
3083 return HANGCHECK_KICK;
3084 }
3085
3086 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3087 switch (semaphore_passed(engine)) {
3088 default:
3089 return HANGCHECK_HUNG;
3090 case 1:
3091 i915_handle_error(dev, 0,
3092 "Kicking stuck semaphore on %s",
3093 engine->name);
3094 I915_WRITE_CTL(engine, tmp);
3095 return HANGCHECK_KICK;
3096 case 0:
3097 return HANGCHECK_WAIT;
3098 }
3099 }
3100
3101 return HANGCHECK_HUNG;
3102 }
3103
3104 static unsigned kick_waiters(struct intel_engine_cs *engine)
3105 {
3106 struct drm_i915_private *i915 = to_i915(engine->dev);
3107 unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3108
3109 if (engine->hangcheck.user_interrupts == user_interrupts &&
3110 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3111 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3112 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3113 engine->name);
3114 else
3115 DRM_INFO("Fake missed irq on %s\n",
3116 engine->name);
3117 wake_up_all(&engine->irq_queue);
3118 }
3119
3120 return user_interrupts;
3121 }
3122 /*
3123 * This is called when the chip hasn't reported back with completed
3124 * batchbuffers in a long time. We keep track per ring seqno progress and
3125 * if there are no progress, hangcheck score for that ring is increased.
3126 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3127 * we kick the ring. If we see no progress on three subsequent calls
3128 * we assume chip is wedged and try to fix it by resetting the chip.
3129 */
3130 static void i915_hangcheck_elapsed(struct work_struct *work)
3131 {
3132 struct drm_i915_private *dev_priv =
3133 container_of(work, typeof(*dev_priv),
3134 gpu_error.hangcheck_work.work);
3135 struct drm_device *dev = dev_priv->dev;
3136 struct intel_engine_cs *engine;
3137 enum intel_engine_id id;
3138 int busy_count = 0, rings_hung = 0;
3139 bool stuck[I915_NUM_ENGINES] = { 0 };
3140 #define BUSY 1
3141 #define KICK 5
3142 #define HUNG 20
3143 #define ACTIVE_DECAY 15
3144
3145 if (!i915.enable_hangcheck)
3146 return;
3147
3148 /*
3149 * The hangcheck work is synced during runtime suspend, we don't
3150 * require a wakeref. TODO: instead of disabling the asserts make
3151 * sure that we hold a reference when this work is running.
3152 */
3153 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3154
3155 /* As enabling the GPU requires fairly extensive mmio access,
3156 * periodically arm the mmio checker to see if we are triggering
3157 * any invalid access.
3158 */
3159 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3160
3161 for_each_engine_id(engine, dev_priv, id) {
3162 u64 acthd;
3163 u32 seqno;
3164 unsigned user_interrupts;
3165 bool busy = true;
3166
3167 semaphore_clear_deadlocks(dev_priv);
3168
3169 /* We don't strictly need an irq-barrier here, as we are not
3170 * serving an interrupt request, be paranoid in case the
3171 * barrier has side-effects (such as preventing a broken
3172 * cacheline snoop) and so be sure that we can see the seqno
3173 * advance. If the seqno should stick, due to a stale
3174 * cacheline, we would erroneously declare the GPU hung.
3175 */
3176 if (engine->irq_seqno_barrier)
3177 engine->irq_seqno_barrier(engine);
3178
3179 acthd = intel_ring_get_active_head(engine);
3180 seqno = engine->get_seqno(engine);
3181
3182 /* Reset stuck interrupts between batch advances */
3183 user_interrupts = 0;
3184
3185 if (engine->hangcheck.seqno == seqno) {
3186 if (ring_idle(engine, seqno)) {
3187 engine->hangcheck.action = HANGCHECK_IDLE;
3188 if (waitqueue_active(&engine->irq_queue)) {
3189 /* Safeguard against driver failure */
3190 user_interrupts = kick_waiters(engine);
3191 engine->hangcheck.score += BUSY;
3192 } else
3193 busy = false;
3194 } else {
3195 /* We always increment the hangcheck score
3196 * if the ring is busy and still processing
3197 * the same request, so that no single request
3198 * can run indefinitely (such as a chain of
3199 * batches). The only time we do not increment
3200 * the hangcheck score on this ring, if this
3201 * ring is in a legitimate wait for another
3202 * ring. In that case the waiting ring is a
3203 * victim and we want to be sure we catch the
3204 * right culprit. Then every time we do kick
3205 * the ring, add a small increment to the
3206 * score so that we can catch a batch that is
3207 * being repeatedly kicked and so responsible
3208 * for stalling the machine.
3209 */
3210 engine->hangcheck.action = ring_stuck(engine,
3211 acthd);
3212
3213 switch (engine->hangcheck.action) {
3214 case HANGCHECK_IDLE:
3215 case HANGCHECK_WAIT:
3216 break;
3217 case HANGCHECK_ACTIVE:
3218 engine->hangcheck.score += BUSY;
3219 break;
3220 case HANGCHECK_KICK:
3221 engine->hangcheck.score += KICK;
3222 break;
3223 case HANGCHECK_HUNG:
3224 engine->hangcheck.score += HUNG;
3225 stuck[id] = true;
3226 break;
3227 }
3228 }
3229 } else {
3230 engine->hangcheck.action = HANGCHECK_ACTIVE;
3231
3232 /* Gradually reduce the count so that we catch DoS
3233 * attempts across multiple batches.
3234 */
3235 if (engine->hangcheck.score > 0)
3236 engine->hangcheck.score -= ACTIVE_DECAY;
3237 if (engine->hangcheck.score < 0)
3238 engine->hangcheck.score = 0;
3239
3240 /* Clear head and subunit states on seqno movement */
3241 acthd = 0;
3242
3243 memset(engine->hangcheck.instdone, 0,
3244 sizeof(engine->hangcheck.instdone));
3245 }
3246
3247 engine->hangcheck.seqno = seqno;
3248 engine->hangcheck.acthd = acthd;
3249 engine->hangcheck.user_interrupts = user_interrupts;
3250 busy_count += busy;
3251 }
3252
3253 for_each_engine_id(engine, dev_priv, id) {
3254 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3255 DRM_INFO("%s on %s\n",
3256 stuck[id] ? "stuck" : "no progress",
3257 engine->name);
3258 rings_hung |= intel_engine_flag(engine);
3259 }
3260 }
3261
3262 if (rings_hung) {
3263 i915_handle_error(dev, rings_hung, "Engine(s) hung");
3264 goto out;
3265 }
3266
3267 if (busy_count)
3268 /* Reset timer case chip hangs without another request
3269 * being added */
3270 i915_queue_hangcheck(dev);
3271
3272 out:
3273 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3274 }
3275
3276 void i915_queue_hangcheck(struct drm_device *dev)
3277 {
3278 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3279
3280 if (!i915.enable_hangcheck)
3281 return;
3282
3283 /* Don't continually defer the hangcheck so that it is always run at
3284 * least once after work has been scheduled on any ring. Otherwise,
3285 * we will ignore a hung ring if a second ring is kept busy.
3286 */
3287
3288 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3289 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3290 }
3291
3292 static void ibx_irq_reset(struct drm_device *dev)
3293 {
3294 struct drm_i915_private *dev_priv = dev->dev_private;
3295
3296 if (HAS_PCH_NOP(dev))
3297 return;
3298
3299 GEN5_IRQ_RESET(SDE);
3300
3301 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3302 I915_WRITE(SERR_INT, 0xffffffff);
3303 }
3304
3305 /*
3306 * SDEIER is also touched by the interrupt handler to work around missed PCH
3307 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3308 * instead we unconditionally enable all PCH interrupt sources here, but then
3309 * only unmask them as needed with SDEIMR.
3310 *
3311 * This function needs to be called before interrupts are enabled.
3312 */
3313 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3314 {
3315 struct drm_i915_private *dev_priv = dev->dev_private;
3316
3317 if (HAS_PCH_NOP(dev))
3318 return;
3319
3320 WARN_ON(I915_READ(SDEIER) != 0);
3321 I915_WRITE(SDEIER, 0xffffffff);
3322 POSTING_READ(SDEIER);
3323 }
3324
3325 static void gen5_gt_irq_reset(struct drm_device *dev)
3326 {
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328
3329 GEN5_IRQ_RESET(GT);
3330 if (INTEL_INFO(dev)->gen >= 6)
3331 GEN5_IRQ_RESET(GEN6_PM);
3332 }
3333
3334 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3335 {
3336 enum pipe pipe;
3337
3338 if (IS_CHERRYVIEW(dev_priv))
3339 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3340 else
3341 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3342
3343 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3344 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3345
3346 for_each_pipe(dev_priv, pipe) {
3347 I915_WRITE(PIPESTAT(pipe),
3348 PIPE_FIFO_UNDERRUN_STATUS |
3349 PIPESTAT_INT_STATUS_MASK);
3350 dev_priv->pipestat_irq_mask[pipe] = 0;
3351 }
3352
3353 GEN5_IRQ_RESET(VLV_);
3354 dev_priv->irq_mask = ~0;
3355 }
3356
3357 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3358 {
3359 u32 pipestat_mask;
3360 u32 enable_mask;
3361 enum pipe pipe;
3362
3363 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3364 PIPE_CRC_DONE_INTERRUPT_STATUS;
3365
3366 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3367 for_each_pipe(dev_priv, pipe)
3368 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3369
3370 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3371 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3372 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3373 if (IS_CHERRYVIEW(dev_priv))
3374 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3375
3376 WARN_ON(dev_priv->irq_mask != ~0);
3377
3378 dev_priv->irq_mask = ~enable_mask;
3379
3380 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3381 }
3382
3383 /* drm_dma.h hooks
3384 */
3385 static void ironlake_irq_reset(struct drm_device *dev)
3386 {
3387 struct drm_i915_private *dev_priv = dev->dev_private;
3388
3389 I915_WRITE(HWSTAM, 0xffffffff);
3390
3391 GEN5_IRQ_RESET(DE);
3392 if (IS_GEN7(dev))
3393 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3394
3395 gen5_gt_irq_reset(dev);
3396
3397 ibx_irq_reset(dev);
3398 }
3399
3400 static void valleyview_irq_preinstall(struct drm_device *dev)
3401 {
3402 struct drm_i915_private *dev_priv = dev->dev_private;
3403
3404 I915_WRITE(VLV_MASTER_IER, 0);
3405 POSTING_READ(VLV_MASTER_IER);
3406
3407 gen5_gt_irq_reset(dev);
3408
3409 spin_lock_irq(&dev_priv->irq_lock);
3410 if (dev_priv->display_irqs_enabled)
3411 vlv_display_irq_reset(dev_priv);
3412 spin_unlock_irq(&dev_priv->irq_lock);
3413 }
3414
3415 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3416 {
3417 GEN8_IRQ_RESET_NDX(GT, 0);
3418 GEN8_IRQ_RESET_NDX(GT, 1);
3419 GEN8_IRQ_RESET_NDX(GT, 2);
3420 GEN8_IRQ_RESET_NDX(GT, 3);
3421 }
3422
3423 static void gen8_irq_reset(struct drm_device *dev)
3424 {
3425 struct drm_i915_private *dev_priv = dev->dev_private;
3426 int pipe;
3427
3428 I915_WRITE(GEN8_MASTER_IRQ, 0);
3429 POSTING_READ(GEN8_MASTER_IRQ);
3430
3431 gen8_gt_irq_reset(dev_priv);
3432
3433 for_each_pipe(dev_priv, pipe)
3434 if (intel_display_power_is_enabled(dev_priv,
3435 POWER_DOMAIN_PIPE(pipe)))
3436 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3437
3438 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3439 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3440 GEN5_IRQ_RESET(GEN8_PCU_);
3441
3442 if (HAS_PCH_SPLIT(dev))
3443 ibx_irq_reset(dev);
3444 }
3445
3446 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3447 unsigned int pipe_mask)
3448 {
3449 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3450 enum pipe pipe;
3451
3452 spin_lock_irq(&dev_priv->irq_lock);
3453 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3454 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3455 dev_priv->de_irq_mask[pipe],
3456 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3457 spin_unlock_irq(&dev_priv->irq_lock);
3458 }
3459
3460 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3461 unsigned int pipe_mask)
3462 {
3463 enum pipe pipe;
3464
3465 spin_lock_irq(&dev_priv->irq_lock);
3466 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3467 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3468 spin_unlock_irq(&dev_priv->irq_lock);
3469
3470 /* make sure we're done processing display irqs */
3471 synchronize_irq(dev_priv->dev->irq);
3472 }
3473
3474 static void cherryview_irq_preinstall(struct drm_device *dev)
3475 {
3476 struct drm_i915_private *dev_priv = dev->dev_private;
3477
3478 I915_WRITE(GEN8_MASTER_IRQ, 0);
3479 POSTING_READ(GEN8_MASTER_IRQ);
3480
3481 gen8_gt_irq_reset(dev_priv);
3482
3483 GEN5_IRQ_RESET(GEN8_PCU_);
3484
3485 spin_lock_irq(&dev_priv->irq_lock);
3486 if (dev_priv->display_irqs_enabled)
3487 vlv_display_irq_reset(dev_priv);
3488 spin_unlock_irq(&dev_priv->irq_lock);
3489 }
3490
3491 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3492 const u32 hpd[HPD_NUM_PINS])
3493 {
3494 struct drm_i915_private *dev_priv = to_i915(dev);
3495 struct intel_encoder *encoder;
3496 u32 enabled_irqs = 0;
3497
3498 for_each_intel_encoder(dev, encoder)
3499 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3500 enabled_irqs |= hpd[encoder->hpd_pin];
3501
3502 return enabled_irqs;
3503 }
3504
3505 static void ibx_hpd_irq_setup(struct drm_device *dev)
3506 {
3507 struct drm_i915_private *dev_priv = dev->dev_private;
3508 u32 hotplug_irqs, hotplug, enabled_irqs;
3509
3510 if (HAS_PCH_IBX(dev)) {
3511 hotplug_irqs = SDE_HOTPLUG_MASK;
3512 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3513 } else {
3514 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3515 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3516 }
3517
3518 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3519
3520 /*
3521 * Enable digital hotplug on the PCH, and configure the DP short pulse
3522 * duration to 2ms (which is the minimum in the Display Port spec).
3523 * The pulse duration bits are reserved on LPT+.
3524 */
3525 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3526 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3527 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3528 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3529 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3530 /*
3531 * When CPU and PCH are on the same package, port A
3532 * HPD must be enabled in both north and south.
3533 */
3534 if (HAS_PCH_LPT_LP(dev))
3535 hotplug |= PORTA_HOTPLUG_ENABLE;
3536 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3537 }
3538
3539 static void spt_hpd_irq_setup(struct drm_device *dev)
3540 {
3541 struct drm_i915_private *dev_priv = dev->dev_private;
3542 u32 hotplug_irqs, hotplug, enabled_irqs;
3543
3544 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3545 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3546
3547 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3548
3549 /* Enable digital hotplug on the PCH */
3550 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3551 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3552 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3553 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3554
3555 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3556 hotplug |= PORTE_HOTPLUG_ENABLE;
3557 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3558 }
3559
3560 static void ilk_hpd_irq_setup(struct drm_device *dev)
3561 {
3562 struct drm_i915_private *dev_priv = dev->dev_private;
3563 u32 hotplug_irqs, hotplug, enabled_irqs;
3564
3565 if (INTEL_INFO(dev)->gen >= 8) {
3566 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3567 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3568
3569 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3570 } else if (INTEL_INFO(dev)->gen >= 7) {
3571 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3572 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3573
3574 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3575 } else {
3576 hotplug_irqs = DE_DP_A_HOTPLUG;
3577 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3578
3579 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3580 }
3581
3582 /*
3583 * Enable digital hotplug on the CPU, and configure the DP short pulse
3584 * duration to 2ms (which is the minimum in the Display Port spec)
3585 * The pulse duration bits are reserved on HSW+.
3586 */
3587 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3588 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3589 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3590 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3591
3592 ibx_hpd_irq_setup(dev);
3593 }
3594
3595 static void bxt_hpd_irq_setup(struct drm_device *dev)
3596 {
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598 u32 hotplug_irqs, hotplug, enabled_irqs;
3599
3600 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3601 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3602
3603 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3604
3605 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3606 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3607 PORTA_HOTPLUG_ENABLE;
3608
3609 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3610 hotplug, enabled_irqs);
3611 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3612
3613 /*
3614 * For BXT invert bit has to be set based on AOB design
3615 * for HPD detection logic, update it based on VBT fields.
3616 */
3617
3618 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3619 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3620 hotplug |= BXT_DDIA_HPD_INVERT;
3621 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3622 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3623 hotplug |= BXT_DDIB_HPD_INVERT;
3624 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3625 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3626 hotplug |= BXT_DDIC_HPD_INVERT;
3627
3628 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3629 }
3630
3631 static void ibx_irq_postinstall(struct drm_device *dev)
3632 {
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634 u32 mask;
3635
3636 if (HAS_PCH_NOP(dev))
3637 return;
3638
3639 if (HAS_PCH_IBX(dev))
3640 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3641 else
3642 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3643
3644 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3645 I915_WRITE(SDEIMR, ~mask);
3646 }
3647
3648 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3649 {
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651 u32 pm_irqs, gt_irqs;
3652
3653 pm_irqs = gt_irqs = 0;
3654
3655 dev_priv->gt_irq_mask = ~0;
3656 if (HAS_L3_DPF(dev)) {
3657 /* L3 parity interrupt is always unmasked. */
3658 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3659 gt_irqs |= GT_PARITY_ERROR(dev);
3660 }
3661
3662 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3663 if (IS_GEN5(dev)) {
3664 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3665 ILK_BSD_USER_INTERRUPT;
3666 } else {
3667 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3668 }
3669
3670 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3671
3672 if (INTEL_INFO(dev)->gen >= 6) {
3673 /*
3674 * RPS interrupts will get enabled/disabled on demand when RPS
3675 * itself is enabled/disabled.
3676 */
3677 if (HAS_VEBOX(dev))
3678 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3679
3680 dev_priv->pm_irq_mask = 0xffffffff;
3681 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3682 }
3683 }
3684
3685 static int ironlake_irq_postinstall(struct drm_device *dev)
3686 {
3687 struct drm_i915_private *dev_priv = dev->dev_private;
3688 u32 display_mask, extra_mask;
3689
3690 if (INTEL_INFO(dev)->gen >= 7) {
3691 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3692 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3693 DE_PLANEB_FLIP_DONE_IVB |
3694 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3695 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3696 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3697 DE_DP_A_HOTPLUG_IVB);
3698 } else {
3699 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3700 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3701 DE_AUX_CHANNEL_A |
3702 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3703 DE_POISON);
3704 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3705 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3706 DE_DP_A_HOTPLUG);
3707 }
3708
3709 dev_priv->irq_mask = ~display_mask;
3710
3711 I915_WRITE(HWSTAM, 0xeffe);
3712
3713 ibx_irq_pre_postinstall(dev);
3714
3715 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3716
3717 gen5_gt_irq_postinstall(dev);
3718
3719 ibx_irq_postinstall(dev);
3720
3721 if (IS_IRONLAKE_M(dev)) {
3722 /* Enable PCU event interrupts
3723 *
3724 * spinlocking not required here for correctness since interrupt
3725 * setup is guaranteed to run in single-threaded context. But we
3726 * need it to make the assert_spin_locked happy. */
3727 spin_lock_irq(&dev_priv->irq_lock);
3728 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3729 spin_unlock_irq(&dev_priv->irq_lock);
3730 }
3731
3732 return 0;
3733 }
3734
3735 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3736 {
3737 assert_spin_locked(&dev_priv->irq_lock);
3738
3739 if (dev_priv->display_irqs_enabled)
3740 return;
3741
3742 dev_priv->display_irqs_enabled = true;
3743
3744 if (intel_irqs_enabled(dev_priv)) {
3745 vlv_display_irq_reset(dev_priv);
3746 vlv_display_irq_postinstall(dev_priv);
3747 }
3748 }
3749
3750 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3751 {
3752 assert_spin_locked(&dev_priv->irq_lock);
3753
3754 if (!dev_priv->display_irqs_enabled)
3755 return;
3756
3757 dev_priv->display_irqs_enabled = false;
3758
3759 if (intel_irqs_enabled(dev_priv))
3760 vlv_display_irq_reset(dev_priv);
3761 }
3762
3763
3764 static int valleyview_irq_postinstall(struct drm_device *dev)
3765 {
3766 struct drm_i915_private *dev_priv = dev->dev_private;
3767
3768 gen5_gt_irq_postinstall(dev);
3769
3770 spin_lock_irq(&dev_priv->irq_lock);
3771 if (dev_priv->display_irqs_enabled)
3772 vlv_display_irq_postinstall(dev_priv);
3773 spin_unlock_irq(&dev_priv->irq_lock);
3774
3775 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3776 POSTING_READ(VLV_MASTER_IER);
3777
3778 return 0;
3779 }
3780
3781 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3782 {
3783 /* These are interrupts we'll toggle with the ring mask register */
3784 uint32_t gt_interrupts[] = {
3785 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3786 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3787 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3788 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3789 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3790 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3791 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3792 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3793 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3794 0,
3795 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3796 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3797 };
3798
3799 dev_priv->pm_irq_mask = 0xffffffff;
3800 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3801 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3802 /*
3803 * RPS interrupts will get enabled/disabled on demand when RPS itself
3804 * is enabled/disabled.
3805 */
3806 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3807 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3808 }
3809
3810 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3811 {
3812 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3813 uint32_t de_pipe_enables;
3814 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3815 u32 de_port_enables;
3816 enum pipe pipe;
3817
3818 if (INTEL_INFO(dev_priv)->gen >= 9) {
3819 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3820 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3821 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3822 GEN9_AUX_CHANNEL_D;
3823 if (IS_BROXTON(dev_priv))
3824 de_port_masked |= BXT_DE_PORT_GMBUS;
3825 } else {
3826 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3827 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3828 }
3829
3830 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3831 GEN8_PIPE_FIFO_UNDERRUN;
3832
3833 de_port_enables = de_port_masked;
3834 if (IS_BROXTON(dev_priv))
3835 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3836 else if (IS_BROADWELL(dev_priv))
3837 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3838
3839 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3840 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3841 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3842
3843 for_each_pipe(dev_priv, pipe)
3844 if (intel_display_power_is_enabled(dev_priv,
3845 POWER_DOMAIN_PIPE(pipe)))
3846 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3847 dev_priv->de_irq_mask[pipe],
3848 de_pipe_enables);
3849
3850 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3851 }
3852
3853 static int gen8_irq_postinstall(struct drm_device *dev)
3854 {
3855 struct drm_i915_private *dev_priv = dev->dev_private;
3856
3857 if (HAS_PCH_SPLIT(dev))
3858 ibx_irq_pre_postinstall(dev);
3859
3860 gen8_gt_irq_postinstall(dev_priv);
3861 gen8_de_irq_postinstall(dev_priv);
3862
3863 if (HAS_PCH_SPLIT(dev))
3864 ibx_irq_postinstall(dev);
3865
3866 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3867 POSTING_READ(GEN8_MASTER_IRQ);
3868
3869 return 0;
3870 }
3871
3872 static int cherryview_irq_postinstall(struct drm_device *dev)
3873 {
3874 struct drm_i915_private *dev_priv = dev->dev_private;
3875
3876 gen8_gt_irq_postinstall(dev_priv);
3877
3878 spin_lock_irq(&dev_priv->irq_lock);
3879 if (dev_priv->display_irqs_enabled)
3880 vlv_display_irq_postinstall(dev_priv);
3881 spin_unlock_irq(&dev_priv->irq_lock);
3882
3883 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3884 POSTING_READ(GEN8_MASTER_IRQ);
3885
3886 return 0;
3887 }
3888
3889 static void gen8_irq_uninstall(struct drm_device *dev)
3890 {
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892
3893 if (!dev_priv)
3894 return;
3895
3896 gen8_irq_reset(dev);
3897 }
3898
3899 static void valleyview_irq_uninstall(struct drm_device *dev)
3900 {
3901 struct drm_i915_private *dev_priv = dev->dev_private;
3902
3903 if (!dev_priv)
3904 return;
3905
3906 I915_WRITE(VLV_MASTER_IER, 0);
3907 POSTING_READ(VLV_MASTER_IER);
3908
3909 gen5_gt_irq_reset(dev);
3910
3911 I915_WRITE(HWSTAM, 0xffffffff);
3912
3913 spin_lock_irq(&dev_priv->irq_lock);
3914 if (dev_priv->display_irqs_enabled)
3915 vlv_display_irq_reset(dev_priv);
3916 spin_unlock_irq(&dev_priv->irq_lock);
3917 }
3918
3919 static void cherryview_irq_uninstall(struct drm_device *dev)
3920 {
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922
3923 if (!dev_priv)
3924 return;
3925
3926 I915_WRITE(GEN8_MASTER_IRQ, 0);
3927 POSTING_READ(GEN8_MASTER_IRQ);
3928
3929 gen8_gt_irq_reset(dev_priv);
3930
3931 GEN5_IRQ_RESET(GEN8_PCU_);
3932
3933 spin_lock_irq(&dev_priv->irq_lock);
3934 if (dev_priv->display_irqs_enabled)
3935 vlv_display_irq_reset(dev_priv);
3936 spin_unlock_irq(&dev_priv->irq_lock);
3937 }
3938
3939 static void ironlake_irq_uninstall(struct drm_device *dev)
3940 {
3941 struct drm_i915_private *dev_priv = dev->dev_private;
3942
3943 if (!dev_priv)
3944 return;
3945
3946 ironlake_irq_reset(dev);
3947 }
3948
3949 static void i8xx_irq_preinstall(struct drm_device * dev)
3950 {
3951 struct drm_i915_private *dev_priv = dev->dev_private;
3952 int pipe;
3953
3954 for_each_pipe(dev_priv, pipe)
3955 I915_WRITE(PIPESTAT(pipe), 0);
3956 I915_WRITE16(IMR, 0xffff);
3957 I915_WRITE16(IER, 0x0);
3958 POSTING_READ16(IER);
3959 }
3960
3961 static int i8xx_irq_postinstall(struct drm_device *dev)
3962 {
3963 struct drm_i915_private *dev_priv = dev->dev_private;
3964
3965 I915_WRITE16(EMR,
3966 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3967
3968 /* Unmask the interrupts that we always want on. */
3969 dev_priv->irq_mask =
3970 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3971 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3972 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3973 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3974 I915_WRITE16(IMR, dev_priv->irq_mask);
3975
3976 I915_WRITE16(IER,
3977 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3978 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3979 I915_USER_INTERRUPT);
3980 POSTING_READ16(IER);
3981
3982 /* Interrupt setup is already guaranteed to be single-threaded, this is
3983 * just to make the assert_spin_locked check happy. */
3984 spin_lock_irq(&dev_priv->irq_lock);
3985 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3986 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3987 spin_unlock_irq(&dev_priv->irq_lock);
3988
3989 return 0;
3990 }
3991
3992 /*
3993 * Returns true when a page flip has completed.
3994 */
3995 static bool i8xx_handle_vblank(struct drm_device *dev,
3996 int plane, int pipe, u32 iir)
3997 {
3998 struct drm_i915_private *dev_priv = dev->dev_private;
3999 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4000
4001 if (!intel_pipe_handle_vblank(dev, pipe))
4002 return false;
4003
4004 if ((iir & flip_pending) == 0)
4005 goto check_page_flip;
4006
4007 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4008 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4009 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4010 * the flip is completed (no longer pending). Since this doesn't raise
4011 * an interrupt per se, we watch for the change at vblank.
4012 */
4013 if (I915_READ16(ISR) & flip_pending)
4014 goto check_page_flip;
4015
4016 intel_prepare_page_flip(dev, plane);
4017 intel_finish_page_flip(dev, pipe);
4018 return true;
4019
4020 check_page_flip:
4021 intel_check_page_flip(dev, pipe);
4022 return false;
4023 }
4024
4025 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4026 {
4027 struct drm_device *dev = arg;
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029 u16 iir, new_iir;
4030 u32 pipe_stats[2];
4031 int pipe;
4032 u16 flip_mask =
4033 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4034 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4035 irqreturn_t ret;
4036
4037 if (!intel_irqs_enabled(dev_priv))
4038 return IRQ_NONE;
4039
4040 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4041 disable_rpm_wakeref_asserts(dev_priv);
4042
4043 ret = IRQ_NONE;
4044 iir = I915_READ16(IIR);
4045 if (iir == 0)
4046 goto out;
4047
4048 while (iir & ~flip_mask) {
4049 /* Can't rely on pipestat interrupt bit in iir as it might
4050 * have been cleared after the pipestat interrupt was received.
4051 * It doesn't set the bit in iir again, but it still produces
4052 * interrupts (for non-MSI).
4053 */
4054 spin_lock(&dev_priv->irq_lock);
4055 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4056 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4057
4058 for_each_pipe(dev_priv, pipe) {
4059 i915_reg_t reg = PIPESTAT(pipe);
4060 pipe_stats[pipe] = I915_READ(reg);
4061
4062 /*
4063 * Clear the PIPE*STAT regs before the IIR
4064 */
4065 if (pipe_stats[pipe] & 0x8000ffff)
4066 I915_WRITE(reg, pipe_stats[pipe]);
4067 }
4068 spin_unlock(&dev_priv->irq_lock);
4069
4070 I915_WRITE16(IIR, iir & ~flip_mask);
4071 new_iir = I915_READ16(IIR); /* Flush posted writes */
4072
4073 if (iir & I915_USER_INTERRUPT)
4074 notify_ring(&dev_priv->engine[RCS]);
4075
4076 for_each_pipe(dev_priv, pipe) {
4077 int plane = pipe;
4078 if (HAS_FBC(dev))
4079 plane = !plane;
4080
4081 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4082 i8xx_handle_vblank(dev, plane, pipe, iir))
4083 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4084
4085 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4086 i9xx_pipe_crc_irq_handler(dev, pipe);
4087
4088 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4089 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4090 pipe);
4091 }
4092
4093 iir = new_iir;
4094 }
4095 ret = IRQ_HANDLED;
4096
4097 out:
4098 enable_rpm_wakeref_asserts(dev_priv);
4099
4100 return ret;
4101 }
4102
4103 static void i8xx_irq_uninstall(struct drm_device * dev)
4104 {
4105 struct drm_i915_private *dev_priv = dev->dev_private;
4106 int pipe;
4107
4108 for_each_pipe(dev_priv, pipe) {
4109 /* Clear enable bits; then clear status bits */
4110 I915_WRITE(PIPESTAT(pipe), 0);
4111 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4112 }
4113 I915_WRITE16(IMR, 0xffff);
4114 I915_WRITE16(IER, 0x0);
4115 I915_WRITE16(IIR, I915_READ16(IIR));
4116 }
4117
4118 static void i915_irq_preinstall(struct drm_device * dev)
4119 {
4120 struct drm_i915_private *dev_priv = dev->dev_private;
4121 int pipe;
4122
4123 if (I915_HAS_HOTPLUG(dev)) {
4124 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4125 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4126 }
4127
4128 I915_WRITE16(HWSTAM, 0xeffe);
4129 for_each_pipe(dev_priv, pipe)
4130 I915_WRITE(PIPESTAT(pipe), 0);
4131 I915_WRITE(IMR, 0xffffffff);
4132 I915_WRITE(IER, 0x0);
4133 POSTING_READ(IER);
4134 }
4135
4136 static int i915_irq_postinstall(struct drm_device *dev)
4137 {
4138 struct drm_i915_private *dev_priv = dev->dev_private;
4139 u32 enable_mask;
4140
4141 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4142
4143 /* Unmask the interrupts that we always want on. */
4144 dev_priv->irq_mask =
4145 ~(I915_ASLE_INTERRUPT |
4146 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4147 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4148 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4149 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4150
4151 enable_mask =
4152 I915_ASLE_INTERRUPT |
4153 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4154 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4155 I915_USER_INTERRUPT;
4156
4157 if (I915_HAS_HOTPLUG(dev)) {
4158 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4159 POSTING_READ(PORT_HOTPLUG_EN);
4160
4161 /* Enable in IER... */
4162 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4163 /* and unmask in IMR */
4164 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4165 }
4166
4167 I915_WRITE(IMR, dev_priv->irq_mask);
4168 I915_WRITE(IER, enable_mask);
4169 POSTING_READ(IER);
4170
4171 i915_enable_asle_pipestat(dev);
4172
4173 /* Interrupt setup is already guaranteed to be single-threaded, this is
4174 * just to make the assert_spin_locked check happy. */
4175 spin_lock_irq(&dev_priv->irq_lock);
4176 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4177 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4178 spin_unlock_irq(&dev_priv->irq_lock);
4179
4180 return 0;
4181 }
4182
4183 /*
4184 * Returns true when a page flip has completed.
4185 */
4186 static bool i915_handle_vblank(struct drm_device *dev,
4187 int plane, int pipe, u32 iir)
4188 {
4189 struct drm_i915_private *dev_priv = dev->dev_private;
4190 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4191
4192 if (!intel_pipe_handle_vblank(dev, pipe))
4193 return false;
4194
4195 if ((iir & flip_pending) == 0)
4196 goto check_page_flip;
4197
4198 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4199 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4200 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4201 * the flip is completed (no longer pending). Since this doesn't raise
4202 * an interrupt per se, we watch for the change at vblank.
4203 */
4204 if (I915_READ(ISR) & flip_pending)
4205 goto check_page_flip;
4206
4207 intel_prepare_page_flip(dev, plane);
4208 intel_finish_page_flip(dev, pipe);
4209 return true;
4210
4211 check_page_flip:
4212 intel_check_page_flip(dev, pipe);
4213 return false;
4214 }
4215
4216 static irqreturn_t i915_irq_handler(int irq, void *arg)
4217 {
4218 struct drm_device *dev = arg;
4219 struct drm_i915_private *dev_priv = dev->dev_private;
4220 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4221 u32 flip_mask =
4222 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4223 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4224 int pipe, ret = IRQ_NONE;
4225
4226 if (!intel_irqs_enabled(dev_priv))
4227 return IRQ_NONE;
4228
4229 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4230 disable_rpm_wakeref_asserts(dev_priv);
4231
4232 iir = I915_READ(IIR);
4233 do {
4234 bool irq_received = (iir & ~flip_mask) != 0;
4235 bool blc_event = false;
4236
4237 /* Can't rely on pipestat interrupt bit in iir as it might
4238 * have been cleared after the pipestat interrupt was received.
4239 * It doesn't set the bit in iir again, but it still produces
4240 * interrupts (for non-MSI).
4241 */
4242 spin_lock(&dev_priv->irq_lock);
4243 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4244 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4245
4246 for_each_pipe(dev_priv, pipe) {
4247 i915_reg_t reg = PIPESTAT(pipe);
4248 pipe_stats[pipe] = I915_READ(reg);
4249
4250 /* Clear the PIPE*STAT regs before the IIR */
4251 if (pipe_stats[pipe] & 0x8000ffff) {
4252 I915_WRITE(reg, pipe_stats[pipe]);
4253 irq_received = true;
4254 }
4255 }
4256 spin_unlock(&dev_priv->irq_lock);
4257
4258 if (!irq_received)
4259 break;
4260
4261 /* Consume port. Then clear IIR or we'll miss events */
4262 if (I915_HAS_HOTPLUG(dev) &&
4263 iir & I915_DISPLAY_PORT_INTERRUPT) {
4264 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4265 if (hotplug_status)
4266 i9xx_hpd_irq_handler(dev, hotplug_status);
4267 }
4268
4269 I915_WRITE(IIR, iir & ~flip_mask);
4270 new_iir = I915_READ(IIR); /* Flush posted writes */
4271
4272 if (iir & I915_USER_INTERRUPT)
4273 notify_ring(&dev_priv->engine[RCS]);
4274
4275 for_each_pipe(dev_priv, pipe) {
4276 int plane = pipe;
4277 if (HAS_FBC(dev))
4278 plane = !plane;
4279
4280 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4281 i915_handle_vblank(dev, plane, pipe, iir))
4282 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4283
4284 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4285 blc_event = true;
4286
4287 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4288 i9xx_pipe_crc_irq_handler(dev, pipe);
4289
4290 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4291 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4292 pipe);
4293 }
4294
4295 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4296 intel_opregion_asle_intr(dev);
4297
4298 /* With MSI, interrupts are only generated when iir
4299 * transitions from zero to nonzero. If another bit got
4300 * set while we were handling the existing iir bits, then
4301 * we would never get another interrupt.
4302 *
4303 * This is fine on non-MSI as well, as if we hit this path
4304 * we avoid exiting the interrupt handler only to generate
4305 * another one.
4306 *
4307 * Note that for MSI this could cause a stray interrupt report
4308 * if an interrupt landed in the time between writing IIR and
4309 * the posting read. This should be rare enough to never
4310 * trigger the 99% of 100,000 interrupts test for disabling
4311 * stray interrupts.
4312 */
4313 ret = IRQ_HANDLED;
4314 iir = new_iir;
4315 } while (iir & ~flip_mask);
4316
4317 enable_rpm_wakeref_asserts(dev_priv);
4318
4319 return ret;
4320 }
4321
4322 static void i915_irq_uninstall(struct drm_device * dev)
4323 {
4324 struct drm_i915_private *dev_priv = dev->dev_private;
4325 int pipe;
4326
4327 if (I915_HAS_HOTPLUG(dev)) {
4328 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4329 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4330 }
4331
4332 I915_WRITE16(HWSTAM, 0xffff);
4333 for_each_pipe(dev_priv, pipe) {
4334 /* Clear enable bits; then clear status bits */
4335 I915_WRITE(PIPESTAT(pipe), 0);
4336 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4337 }
4338 I915_WRITE(IMR, 0xffffffff);
4339 I915_WRITE(IER, 0x0);
4340
4341 I915_WRITE(IIR, I915_READ(IIR));
4342 }
4343
4344 static void i965_irq_preinstall(struct drm_device * dev)
4345 {
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347 int pipe;
4348
4349 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4350 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4351
4352 I915_WRITE(HWSTAM, 0xeffe);
4353 for_each_pipe(dev_priv, pipe)
4354 I915_WRITE(PIPESTAT(pipe), 0);
4355 I915_WRITE(IMR, 0xffffffff);
4356 I915_WRITE(IER, 0x0);
4357 POSTING_READ(IER);
4358 }
4359
4360 static int i965_irq_postinstall(struct drm_device *dev)
4361 {
4362 struct drm_i915_private *dev_priv = dev->dev_private;
4363 u32 enable_mask;
4364 u32 error_mask;
4365
4366 /* Unmask the interrupts that we always want on. */
4367 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4368 I915_DISPLAY_PORT_INTERRUPT |
4369 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4370 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4371 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4372 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4373 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4374
4375 enable_mask = ~dev_priv->irq_mask;
4376 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4377 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4378 enable_mask |= I915_USER_INTERRUPT;
4379
4380 if (IS_G4X(dev))
4381 enable_mask |= I915_BSD_USER_INTERRUPT;
4382
4383 /* Interrupt setup is already guaranteed to be single-threaded, this is
4384 * just to make the assert_spin_locked check happy. */
4385 spin_lock_irq(&dev_priv->irq_lock);
4386 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4387 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4388 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4389 spin_unlock_irq(&dev_priv->irq_lock);
4390
4391 /*
4392 * Enable some error detection, note the instruction error mask
4393 * bit is reserved, so we leave it masked.
4394 */
4395 if (IS_G4X(dev)) {
4396 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4397 GM45_ERROR_MEM_PRIV |
4398 GM45_ERROR_CP_PRIV |
4399 I915_ERROR_MEMORY_REFRESH);
4400 } else {
4401 error_mask = ~(I915_ERROR_PAGE_TABLE |
4402 I915_ERROR_MEMORY_REFRESH);
4403 }
4404 I915_WRITE(EMR, error_mask);
4405
4406 I915_WRITE(IMR, dev_priv->irq_mask);
4407 I915_WRITE(IER, enable_mask);
4408 POSTING_READ(IER);
4409
4410 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4411 POSTING_READ(PORT_HOTPLUG_EN);
4412
4413 i915_enable_asle_pipestat(dev);
4414
4415 return 0;
4416 }
4417
4418 static void i915_hpd_irq_setup(struct drm_device *dev)
4419 {
4420 struct drm_i915_private *dev_priv = dev->dev_private;
4421 u32 hotplug_en;
4422
4423 assert_spin_locked(&dev_priv->irq_lock);
4424
4425 /* Note HDMI and DP share hotplug bits */
4426 /* enable bits are the same for all generations */
4427 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4428 /* Programming the CRT detection parameters tends
4429 to generate a spurious hotplug event about three
4430 seconds later. So just do it once.
4431 */
4432 if (IS_G4X(dev))
4433 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4434 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4435
4436 /* Ignore TV since it's buggy */
4437 i915_hotplug_interrupt_update_locked(dev_priv,
4438 HOTPLUG_INT_EN_MASK |
4439 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4440 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4441 hotplug_en);
4442 }
4443
4444 static irqreturn_t i965_irq_handler(int irq, void *arg)
4445 {
4446 struct drm_device *dev = arg;
4447 struct drm_i915_private *dev_priv = dev->dev_private;
4448 u32 iir, new_iir;
4449 u32 pipe_stats[I915_MAX_PIPES];
4450 int ret = IRQ_NONE, pipe;
4451 u32 flip_mask =
4452 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4453 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4454
4455 if (!intel_irqs_enabled(dev_priv))
4456 return IRQ_NONE;
4457
4458 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4459 disable_rpm_wakeref_asserts(dev_priv);
4460
4461 iir = I915_READ(IIR);
4462
4463 for (;;) {
4464 bool irq_received = (iir & ~flip_mask) != 0;
4465 bool blc_event = false;
4466
4467 /* Can't rely on pipestat interrupt bit in iir as it might
4468 * have been cleared after the pipestat interrupt was received.
4469 * It doesn't set the bit in iir again, but it still produces
4470 * interrupts (for non-MSI).
4471 */
4472 spin_lock(&dev_priv->irq_lock);
4473 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4474 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4475
4476 for_each_pipe(dev_priv, pipe) {
4477 i915_reg_t reg = PIPESTAT(pipe);
4478 pipe_stats[pipe] = I915_READ(reg);
4479
4480 /*
4481 * Clear the PIPE*STAT regs before the IIR
4482 */
4483 if (pipe_stats[pipe] & 0x8000ffff) {
4484 I915_WRITE(reg, pipe_stats[pipe]);
4485 irq_received = true;
4486 }
4487 }
4488 spin_unlock(&dev_priv->irq_lock);
4489
4490 if (!irq_received)
4491 break;
4492
4493 ret = IRQ_HANDLED;
4494
4495 /* Consume port. Then clear IIR or we'll miss events */
4496 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4497 u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4498 if (hotplug_status)
4499 i9xx_hpd_irq_handler(dev, hotplug_status);
4500 }
4501
4502 I915_WRITE(IIR, iir & ~flip_mask);
4503 new_iir = I915_READ(IIR); /* Flush posted writes */
4504
4505 if (iir & I915_USER_INTERRUPT)
4506 notify_ring(&dev_priv->engine[RCS]);
4507 if (iir & I915_BSD_USER_INTERRUPT)
4508 notify_ring(&dev_priv->engine[VCS]);
4509
4510 for_each_pipe(dev_priv, pipe) {
4511 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4512 i915_handle_vblank(dev, pipe, pipe, iir))
4513 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4514
4515 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4516 blc_event = true;
4517
4518 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4519 i9xx_pipe_crc_irq_handler(dev, pipe);
4520
4521 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4522 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4523 }
4524
4525 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4526 intel_opregion_asle_intr(dev);
4527
4528 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4529 gmbus_irq_handler(dev);
4530
4531 /* With MSI, interrupts are only generated when iir
4532 * transitions from zero to nonzero. If another bit got
4533 * set while we were handling the existing iir bits, then
4534 * we would never get another interrupt.
4535 *
4536 * This is fine on non-MSI as well, as if we hit this path
4537 * we avoid exiting the interrupt handler only to generate
4538 * another one.
4539 *
4540 * Note that for MSI this could cause a stray interrupt report
4541 * if an interrupt landed in the time between writing IIR and
4542 * the posting read. This should be rare enough to never
4543 * trigger the 99% of 100,000 interrupts test for disabling
4544 * stray interrupts.
4545 */
4546 iir = new_iir;
4547 }
4548
4549 enable_rpm_wakeref_asserts(dev_priv);
4550
4551 return ret;
4552 }
4553
4554 static void i965_irq_uninstall(struct drm_device * dev)
4555 {
4556 struct drm_i915_private *dev_priv = dev->dev_private;
4557 int pipe;
4558
4559 if (!dev_priv)
4560 return;
4561
4562 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4563 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4564
4565 I915_WRITE(HWSTAM, 0xffffffff);
4566 for_each_pipe(dev_priv, pipe)
4567 I915_WRITE(PIPESTAT(pipe), 0);
4568 I915_WRITE(IMR, 0xffffffff);
4569 I915_WRITE(IER, 0x0);
4570
4571 for_each_pipe(dev_priv, pipe)
4572 I915_WRITE(PIPESTAT(pipe),
4573 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4574 I915_WRITE(IIR, I915_READ(IIR));
4575 }
4576
4577 /**
4578 * intel_irq_init - initializes irq support
4579 * @dev_priv: i915 device instance
4580 *
4581 * This function initializes all the irq support including work items, timers
4582 * and all the vtables. It does not setup the interrupt itself though.
4583 */
4584 void intel_irq_init(struct drm_i915_private *dev_priv)
4585 {
4586 struct drm_device *dev = dev_priv->dev;
4587
4588 intel_hpd_init_work(dev_priv);
4589
4590 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4591 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4592
4593 /* Let's track the enabled rps events */
4594 if (IS_VALLEYVIEW(dev_priv))
4595 /* WaGsvRC0ResidencyMethod:vlv */
4596 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4597 else
4598 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4599
4600 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4601 i915_hangcheck_elapsed);
4602
4603 if (IS_GEN2(dev_priv)) {
4604 dev->max_vblank_count = 0;
4605 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4606 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4607 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4608 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4609 } else {
4610 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4611 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4612 }
4613
4614 /*
4615 * Opt out of the vblank disable timer on everything except gen2.
4616 * Gen2 doesn't have a hardware frame counter and so depends on
4617 * vblank interrupts to produce sane vblank seuquence numbers.
4618 */
4619 if (!IS_GEN2(dev_priv))
4620 dev->vblank_disable_immediate = true;
4621
4622 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4623 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4624
4625 if (IS_CHERRYVIEW(dev_priv)) {
4626 dev->driver->irq_handler = cherryview_irq_handler;
4627 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4628 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4629 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4630 dev->driver->enable_vblank = valleyview_enable_vblank;
4631 dev->driver->disable_vblank = valleyview_disable_vblank;
4632 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4633 } else if (IS_VALLEYVIEW(dev_priv)) {
4634 dev->driver->irq_handler = valleyview_irq_handler;
4635 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4636 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4637 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4638 dev->driver->enable_vblank = valleyview_enable_vblank;
4639 dev->driver->disable_vblank = valleyview_disable_vblank;
4640 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4641 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4642 dev->driver->irq_handler = gen8_irq_handler;
4643 dev->driver->irq_preinstall = gen8_irq_reset;
4644 dev->driver->irq_postinstall = gen8_irq_postinstall;
4645 dev->driver->irq_uninstall = gen8_irq_uninstall;
4646 dev->driver->enable_vblank = gen8_enable_vblank;
4647 dev->driver->disable_vblank = gen8_disable_vblank;
4648 if (IS_BROXTON(dev))
4649 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4650 else if (HAS_PCH_SPT(dev))
4651 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4652 else
4653 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4654 } else if (HAS_PCH_SPLIT(dev)) {
4655 dev->driver->irq_handler = ironlake_irq_handler;
4656 dev->driver->irq_preinstall = ironlake_irq_reset;
4657 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4658 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4659 dev->driver->enable_vblank = ironlake_enable_vblank;
4660 dev->driver->disable_vblank = ironlake_disable_vblank;
4661 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4662 } else {
4663 if (INTEL_INFO(dev_priv)->gen == 2) {
4664 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4665 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4666 dev->driver->irq_handler = i8xx_irq_handler;
4667 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4668 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4669 dev->driver->irq_preinstall = i915_irq_preinstall;
4670 dev->driver->irq_postinstall = i915_irq_postinstall;
4671 dev->driver->irq_uninstall = i915_irq_uninstall;
4672 dev->driver->irq_handler = i915_irq_handler;
4673 } else {
4674 dev->driver->irq_preinstall = i965_irq_preinstall;
4675 dev->driver->irq_postinstall = i965_irq_postinstall;
4676 dev->driver->irq_uninstall = i965_irq_uninstall;
4677 dev->driver->irq_handler = i965_irq_handler;
4678 }
4679 if (I915_HAS_HOTPLUG(dev_priv))
4680 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4681 dev->driver->enable_vblank = i915_enable_vblank;
4682 dev->driver->disable_vblank = i915_disable_vblank;
4683 }
4684 }
4685
4686 /**
4687 * intel_irq_install - enables the hardware interrupt
4688 * @dev_priv: i915 device instance
4689 *
4690 * This function enables the hardware interrupt handling, but leaves the hotplug
4691 * handling still disabled. It is called after intel_irq_init().
4692 *
4693 * In the driver load and resume code we need working interrupts in a few places
4694 * but don't want to deal with the hassle of concurrent probe and hotplug
4695 * workers. Hence the split into this two-stage approach.
4696 */
4697 int intel_irq_install(struct drm_i915_private *dev_priv)
4698 {
4699 /*
4700 * We enable some interrupt sources in our postinstall hooks, so mark
4701 * interrupts as enabled _before_ actually enabling them to avoid
4702 * special cases in our ordering checks.
4703 */
4704 dev_priv->pm.irqs_enabled = true;
4705
4706 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4707 }
4708
4709 /**
4710 * intel_irq_uninstall - finilizes all irq handling
4711 * @dev_priv: i915 device instance
4712 *
4713 * This stops interrupt and hotplug handling and unregisters and frees all
4714 * resources acquired in the init functions.
4715 */
4716 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4717 {
4718 drm_irq_uninstall(dev_priv->dev);
4719 intel_hpd_cancel_work(dev_priv);
4720 dev_priv->pm.irqs_enabled = false;
4721 }
4722
4723 /**
4724 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4725 * @dev_priv: i915 device instance
4726 *
4727 * This function is used to disable interrupts at runtime, both in the runtime
4728 * pm and the system suspend/resume code.
4729 */
4730 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4731 {
4732 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4733 dev_priv->pm.irqs_enabled = false;
4734 synchronize_irq(dev_priv->dev->irq);
4735 }
4736
4737 /**
4738 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4739 * @dev_priv: i915 device instance
4740 *
4741 * This function is used to enable interrupts at runtime, both in the runtime
4742 * pm and the system suspend/resume code.
4743 */
4744 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4745 {
4746 dev_priv->pm.irqs_enabled = true;
4747 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4748 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4749 }
This page took 0.188817 seconds and 6 git commands to generate.