drm/i915: kill ivybridge_irq_preinstall
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if ((dev_priv->irq_mask & mask) != 0) {
89 dev_priv->irq_mask &= ~mask;
90 I915_WRITE(DEIMR, dev_priv->irq_mask);
91 POSTING_READ(DEIMR);
92 }
93 }
94
95 static void
96 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 assert_spin_locked(&dev_priv->irq_lock);
99
100 if ((dev_priv->irq_mask & mask) != mask) {
101 dev_priv->irq_mask |= mask;
102 I915_WRITE(DEIMR, dev_priv->irq_mask);
103 POSTING_READ(DEIMR);
104 }
105 }
106
107 static bool ivb_can_enable_err_int(struct drm_device *dev)
108 {
109 struct drm_i915_private *dev_priv = dev->dev_private;
110 struct intel_crtc *crtc;
111 enum pipe pipe;
112
113 assert_spin_locked(&dev_priv->irq_lock);
114
115 for_each_pipe(pipe) {
116 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
117
118 if (crtc->cpu_fifo_underrun_disabled)
119 return false;
120 }
121
122 return true;
123 }
124
125 static bool cpt_can_enable_serr_int(struct drm_device *dev)
126 {
127 struct drm_i915_private *dev_priv = dev->dev_private;
128 enum pipe pipe;
129 struct intel_crtc *crtc;
130
131 assert_spin_locked(&dev_priv->irq_lock);
132
133 for_each_pipe(pipe) {
134 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
135
136 if (crtc->pch_fifo_underrun_disabled)
137 return false;
138 }
139
140 return true;
141 }
142
143 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
144 enum pipe pipe, bool enable)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
148 DE_PIPEB_FIFO_UNDERRUN;
149
150 if (enable)
151 ironlake_enable_display_irq(dev_priv, bit);
152 else
153 ironlake_disable_display_irq(dev_priv, bit);
154 }
155
156 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
157 enum pipe pipe, bool enable)
158 {
159 struct drm_i915_private *dev_priv = dev->dev_private;
160 if (enable) {
161 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
162
163 if (!ivb_can_enable_err_int(dev))
164 return;
165
166 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
167 } else {
168 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
169
170 /* Change the state _after_ we've read out the current one. */
171 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
172
173 if (!was_enabled &&
174 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
175 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
176 pipe_name(pipe));
177 }
178 }
179 }
180
181 /**
182 * ibx_display_interrupt_update - update SDEIMR
183 * @dev_priv: driver private
184 * @interrupt_mask: mask of interrupt bits to update
185 * @enabled_irq_mask: mask of interrupt bits to enable
186 */
187 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
188 uint32_t interrupt_mask,
189 uint32_t enabled_irq_mask)
190 {
191 uint32_t sdeimr = I915_READ(SDEIMR);
192 sdeimr &= ~interrupt_mask;
193 sdeimr |= (~enabled_irq_mask & interrupt_mask);
194
195 assert_spin_locked(&dev_priv->irq_lock);
196
197 I915_WRITE(SDEIMR, sdeimr);
198 POSTING_READ(SDEIMR);
199 }
200 #define ibx_enable_display_interrupt(dev_priv, bits) \
201 ibx_display_interrupt_update((dev_priv), (bits), (bits))
202 #define ibx_disable_display_interrupt(dev_priv, bits) \
203 ibx_display_interrupt_update((dev_priv), (bits), 0)
204
205 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
206 enum transcoder pch_transcoder,
207 bool enable)
208 {
209 struct drm_i915_private *dev_priv = dev->dev_private;
210 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
211 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
212
213 if (enable)
214 ibx_enable_display_interrupt(dev_priv, bit);
215 else
216 ibx_disable_display_interrupt(dev_priv, bit);
217 }
218
219 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
220 enum transcoder pch_transcoder,
221 bool enable)
222 {
223 struct drm_i915_private *dev_priv = dev->dev_private;
224
225 if (enable) {
226 I915_WRITE(SERR_INT,
227 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
228
229 if (!cpt_can_enable_serr_int(dev))
230 return;
231
232 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
233 } else {
234 uint32_t tmp = I915_READ(SERR_INT);
235 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
236
237 /* Change the state _after_ we've read out the current one. */
238 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
239
240 if (!was_enabled &&
241 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
242 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
243 transcoder_name(pch_transcoder));
244 }
245 }
246 }
247
248 /**
249 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
250 * @dev: drm device
251 * @pipe: pipe
252 * @enable: true if we want to report FIFO underrun errors, false otherwise
253 *
254 * This function makes us disable or enable CPU fifo underruns for a specific
255 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
256 * reporting for one pipe may also disable all the other CPU error interruts for
257 * the other pipes, due to the fact that there's just one interrupt mask/enable
258 * bit for all the pipes.
259 *
260 * Returns the previous state of underrun reporting.
261 */
262 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
263 enum pipe pipe, bool enable)
264 {
265 struct drm_i915_private *dev_priv = dev->dev_private;
266 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
268 unsigned long flags;
269 bool ret;
270
271 spin_lock_irqsave(&dev_priv->irq_lock, flags);
272
273 ret = !intel_crtc->cpu_fifo_underrun_disabled;
274
275 if (enable == ret)
276 goto done;
277
278 intel_crtc->cpu_fifo_underrun_disabled = !enable;
279
280 if (IS_GEN5(dev) || IS_GEN6(dev))
281 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
282 else if (IS_GEN7(dev))
283 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
284
285 done:
286 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
287 return ret;
288 }
289
290 /**
291 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
292 * @dev: drm device
293 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
294 * @enable: true if we want to report FIFO underrun errors, false otherwise
295 *
296 * This function makes us disable or enable PCH fifo underruns for a specific
297 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
298 * underrun reporting for one transcoder may also disable all the other PCH
299 * error interruts for the other transcoders, due to the fact that there's just
300 * one interrupt mask/enable bit for all the transcoders.
301 *
302 * Returns the previous state of underrun reporting.
303 */
304 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
305 enum transcoder pch_transcoder,
306 bool enable)
307 {
308 struct drm_i915_private *dev_priv = dev->dev_private;
309 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
311 unsigned long flags;
312 bool ret;
313
314 /*
315 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
316 * has only one pch transcoder A that all pipes can use. To avoid racy
317 * pch transcoder -> pipe lookups from interrupt code simply store the
318 * underrun statistics in crtc A. Since we never expose this anywhere
319 * nor use it outside of the fifo underrun code here using the "wrong"
320 * crtc on LPT won't cause issues.
321 */
322
323 spin_lock_irqsave(&dev_priv->irq_lock, flags);
324
325 ret = !intel_crtc->pch_fifo_underrun_disabled;
326
327 if (enable == ret)
328 goto done;
329
330 intel_crtc->pch_fifo_underrun_disabled = !enable;
331
332 if (HAS_PCH_IBX(dev))
333 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
334 else
335 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
336
337 done:
338 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
339 return ret;
340 }
341
342
343 void
344 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
345 {
346 u32 reg = PIPESTAT(pipe);
347 u32 pipestat = I915_READ(reg) & 0x7fff0000;
348
349 assert_spin_locked(&dev_priv->irq_lock);
350
351 if ((pipestat & mask) == mask)
352 return;
353
354 /* Enable the interrupt, clear any pending status */
355 pipestat |= mask | (mask >> 16);
356 I915_WRITE(reg, pipestat);
357 POSTING_READ(reg);
358 }
359
360 void
361 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
362 {
363 u32 reg = PIPESTAT(pipe);
364 u32 pipestat = I915_READ(reg) & 0x7fff0000;
365
366 assert_spin_locked(&dev_priv->irq_lock);
367
368 if ((pipestat & mask) == 0)
369 return;
370
371 pipestat &= ~mask;
372 I915_WRITE(reg, pipestat);
373 POSTING_READ(reg);
374 }
375
376 /**
377 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
378 */
379 static void i915_enable_asle_pipestat(struct drm_device *dev)
380 {
381 drm_i915_private_t *dev_priv = dev->dev_private;
382 unsigned long irqflags;
383
384 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
385 return;
386
387 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
388
389 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
390 if (INTEL_INFO(dev)->gen >= 4)
391 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
392
393 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
394 }
395
396 /**
397 * i915_pipe_enabled - check if a pipe is enabled
398 * @dev: DRM device
399 * @pipe: pipe to check
400 *
401 * Reading certain registers when the pipe is disabled can hang the chip.
402 * Use this routine to make sure the PLL is running and the pipe is active
403 * before reading such registers if unsure.
404 */
405 static int
406 i915_pipe_enabled(struct drm_device *dev, int pipe)
407 {
408 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
409
410 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
411 /* Locking is horribly broken here, but whatever. */
412 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
414
415 return intel_crtc->active;
416 } else {
417 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
418 }
419 }
420
421 /* Called from drm generic code, passed a 'crtc', which
422 * we use as a pipe index
423 */
424 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
425 {
426 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
427 unsigned long high_frame;
428 unsigned long low_frame;
429 u32 high1, high2, low;
430
431 if (!i915_pipe_enabled(dev, pipe)) {
432 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
433 "pipe %c\n", pipe_name(pipe));
434 return 0;
435 }
436
437 high_frame = PIPEFRAME(pipe);
438 low_frame = PIPEFRAMEPIXEL(pipe);
439
440 /*
441 * High & low register fields aren't synchronized, so make sure
442 * we get a low value that's stable across two reads of the high
443 * register.
444 */
445 do {
446 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
447 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
448 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
449 } while (high1 != high2);
450
451 high1 >>= PIPE_FRAME_HIGH_SHIFT;
452 low >>= PIPE_FRAME_LOW_SHIFT;
453 return (high1 << 8) | low;
454 }
455
456 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
457 {
458 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
459 int reg = PIPE_FRMCOUNT_GM45(pipe);
460
461 if (!i915_pipe_enabled(dev, pipe)) {
462 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
463 "pipe %c\n", pipe_name(pipe));
464 return 0;
465 }
466
467 return I915_READ(reg);
468 }
469
470 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
471 int *vpos, int *hpos)
472 {
473 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
474 u32 vbl = 0, position = 0;
475 int vbl_start, vbl_end, htotal, vtotal;
476 bool in_vbl = true;
477 int ret = 0;
478 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
479 pipe);
480
481 if (!i915_pipe_enabled(dev, pipe)) {
482 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
483 "pipe %c\n", pipe_name(pipe));
484 return 0;
485 }
486
487 /* Get vtotal. */
488 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
489
490 if (INTEL_INFO(dev)->gen >= 4) {
491 /* No obvious pixelcount register. Only query vertical
492 * scanout position from Display scan line register.
493 */
494 position = I915_READ(PIPEDSL(pipe));
495
496 /* Decode into vertical scanout position. Don't have
497 * horizontal scanout position.
498 */
499 *vpos = position & 0x1fff;
500 *hpos = 0;
501 } else {
502 /* Have access to pixelcount since start of frame.
503 * We can split this into vertical and horizontal
504 * scanout position.
505 */
506 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
507
508 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
509 *vpos = position / htotal;
510 *hpos = position - (*vpos * htotal);
511 }
512
513 /* Query vblank area. */
514 vbl = I915_READ(VBLANK(cpu_transcoder));
515
516 /* Test position against vblank region. */
517 vbl_start = vbl & 0x1fff;
518 vbl_end = (vbl >> 16) & 0x1fff;
519
520 if ((*vpos < vbl_start) || (*vpos > vbl_end))
521 in_vbl = false;
522
523 /* Inside "upper part" of vblank area? Apply corrective offset: */
524 if (in_vbl && (*vpos >= vbl_start))
525 *vpos = *vpos - vtotal;
526
527 /* Readouts valid? */
528 if (vbl > 0)
529 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
530
531 /* In vblank? */
532 if (in_vbl)
533 ret |= DRM_SCANOUTPOS_INVBL;
534
535 return ret;
536 }
537
538 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
539 int *max_error,
540 struct timeval *vblank_time,
541 unsigned flags)
542 {
543 struct drm_crtc *crtc;
544
545 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
546 DRM_ERROR("Invalid crtc %d\n", pipe);
547 return -EINVAL;
548 }
549
550 /* Get drm_crtc to timestamp: */
551 crtc = intel_get_crtc_for_pipe(dev, pipe);
552 if (crtc == NULL) {
553 DRM_ERROR("Invalid crtc %d\n", pipe);
554 return -EINVAL;
555 }
556
557 if (!crtc->enabled) {
558 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
559 return -EBUSY;
560 }
561
562 /* Helper routine in DRM core does all the work: */
563 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
564 vblank_time, flags,
565 crtc);
566 }
567
568 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
569 {
570 enum drm_connector_status old_status;
571
572 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
573 old_status = connector->status;
574
575 connector->status = connector->funcs->detect(connector, false);
576 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
577 connector->base.id,
578 drm_get_connector_name(connector),
579 old_status, connector->status);
580 return (old_status != connector->status);
581 }
582
583 /*
584 * Handle hotplug events outside the interrupt handler proper.
585 */
586 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
587
588 static void i915_hotplug_work_func(struct work_struct *work)
589 {
590 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
591 hotplug_work);
592 struct drm_device *dev = dev_priv->dev;
593 struct drm_mode_config *mode_config = &dev->mode_config;
594 struct intel_connector *intel_connector;
595 struct intel_encoder *intel_encoder;
596 struct drm_connector *connector;
597 unsigned long irqflags;
598 bool hpd_disabled = false;
599 bool changed = false;
600 u32 hpd_event_bits;
601
602 /* HPD irq before everything is fully set up. */
603 if (!dev_priv->enable_hotplug_processing)
604 return;
605
606 mutex_lock(&mode_config->mutex);
607 DRM_DEBUG_KMS("running encoder hotplug functions\n");
608
609 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
610
611 hpd_event_bits = dev_priv->hpd_event_bits;
612 dev_priv->hpd_event_bits = 0;
613 list_for_each_entry(connector, &mode_config->connector_list, head) {
614 intel_connector = to_intel_connector(connector);
615 intel_encoder = intel_connector->encoder;
616 if (intel_encoder->hpd_pin > HPD_NONE &&
617 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
618 connector->polled == DRM_CONNECTOR_POLL_HPD) {
619 DRM_INFO("HPD interrupt storm detected on connector %s: "
620 "switching from hotplug detection to polling\n",
621 drm_get_connector_name(connector));
622 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
623 connector->polled = DRM_CONNECTOR_POLL_CONNECT
624 | DRM_CONNECTOR_POLL_DISCONNECT;
625 hpd_disabled = true;
626 }
627 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
628 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
629 drm_get_connector_name(connector), intel_encoder->hpd_pin);
630 }
631 }
632 /* if there were no outputs to poll, poll was disabled,
633 * therefore make sure it's enabled when disabling HPD on
634 * some connectors */
635 if (hpd_disabled) {
636 drm_kms_helper_poll_enable(dev);
637 mod_timer(&dev_priv->hotplug_reenable_timer,
638 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
639 }
640
641 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
642
643 list_for_each_entry(connector, &mode_config->connector_list, head) {
644 intel_connector = to_intel_connector(connector);
645 intel_encoder = intel_connector->encoder;
646 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
647 if (intel_encoder->hot_plug)
648 intel_encoder->hot_plug(intel_encoder);
649 if (intel_hpd_irq_event(dev, connector))
650 changed = true;
651 }
652 }
653 mutex_unlock(&mode_config->mutex);
654
655 if (changed)
656 drm_kms_helper_hotplug_event(dev);
657 }
658
659 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
660 {
661 drm_i915_private_t *dev_priv = dev->dev_private;
662 u32 busy_up, busy_down, max_avg, min_avg;
663 u8 new_delay;
664
665 spin_lock(&mchdev_lock);
666
667 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
668
669 new_delay = dev_priv->ips.cur_delay;
670
671 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
672 busy_up = I915_READ(RCPREVBSYTUPAVG);
673 busy_down = I915_READ(RCPREVBSYTDNAVG);
674 max_avg = I915_READ(RCBMAXAVG);
675 min_avg = I915_READ(RCBMINAVG);
676
677 /* Handle RCS change request from hw */
678 if (busy_up > max_avg) {
679 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
680 new_delay = dev_priv->ips.cur_delay - 1;
681 if (new_delay < dev_priv->ips.max_delay)
682 new_delay = dev_priv->ips.max_delay;
683 } else if (busy_down < min_avg) {
684 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
685 new_delay = dev_priv->ips.cur_delay + 1;
686 if (new_delay > dev_priv->ips.min_delay)
687 new_delay = dev_priv->ips.min_delay;
688 }
689
690 if (ironlake_set_drps(dev, new_delay))
691 dev_priv->ips.cur_delay = new_delay;
692
693 spin_unlock(&mchdev_lock);
694
695 return;
696 }
697
698 static void notify_ring(struct drm_device *dev,
699 struct intel_ring_buffer *ring)
700 {
701 if (ring->obj == NULL)
702 return;
703
704 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
705
706 wake_up_all(&ring->irq_queue);
707 i915_queue_hangcheck(dev);
708 }
709
710 static void gen6_pm_rps_work(struct work_struct *work)
711 {
712 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
713 rps.work);
714 u32 pm_iir, pm_imr;
715 u8 new_delay;
716
717 spin_lock_irq(&dev_priv->irq_lock);
718 pm_iir = dev_priv->rps.pm_iir;
719 dev_priv->rps.pm_iir = 0;
720 pm_imr = I915_READ(GEN6_PMIMR);
721 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
722 I915_WRITE(GEN6_PMIMR, pm_imr & ~GEN6_PM_RPS_EVENTS);
723 spin_unlock_irq(&dev_priv->irq_lock);
724
725 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
726 return;
727
728 mutex_lock(&dev_priv->rps.hw_lock);
729
730 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
731 new_delay = dev_priv->rps.cur_delay + 1;
732
733 /*
734 * For better performance, jump directly
735 * to RPe if we're below it.
736 */
737 if (IS_VALLEYVIEW(dev_priv->dev) &&
738 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
739 new_delay = dev_priv->rps.rpe_delay;
740 } else
741 new_delay = dev_priv->rps.cur_delay - 1;
742
743 /* sysfs frequency interfaces may have snuck in while servicing the
744 * interrupt
745 */
746 if (new_delay >= dev_priv->rps.min_delay &&
747 new_delay <= dev_priv->rps.max_delay) {
748 if (IS_VALLEYVIEW(dev_priv->dev))
749 valleyview_set_rps(dev_priv->dev, new_delay);
750 else
751 gen6_set_rps(dev_priv->dev, new_delay);
752 }
753
754 if (IS_VALLEYVIEW(dev_priv->dev)) {
755 /*
756 * On VLV, when we enter RC6 we may not be at the minimum
757 * voltage level, so arm a timer to check. It should only
758 * fire when there's activity or once after we've entered
759 * RC6, and then won't be re-armed until the next RPS interrupt.
760 */
761 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
762 msecs_to_jiffies(100));
763 }
764
765 mutex_unlock(&dev_priv->rps.hw_lock);
766 }
767
768
769 /**
770 * ivybridge_parity_work - Workqueue called when a parity error interrupt
771 * occurred.
772 * @work: workqueue struct
773 *
774 * Doesn't actually do anything except notify userspace. As a consequence of
775 * this event, userspace should try to remap the bad rows since statistically
776 * it is likely the same row is more likely to go bad again.
777 */
778 static void ivybridge_parity_work(struct work_struct *work)
779 {
780 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
781 l3_parity.error_work);
782 u32 error_status, row, bank, subbank;
783 char *parity_event[5];
784 uint32_t misccpctl;
785 unsigned long flags;
786
787 /* We must turn off DOP level clock gating to access the L3 registers.
788 * In order to prevent a get/put style interface, acquire struct mutex
789 * any time we access those registers.
790 */
791 mutex_lock(&dev_priv->dev->struct_mutex);
792
793 misccpctl = I915_READ(GEN7_MISCCPCTL);
794 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
795 POSTING_READ(GEN7_MISCCPCTL);
796
797 error_status = I915_READ(GEN7_L3CDERRST1);
798 row = GEN7_PARITY_ERROR_ROW(error_status);
799 bank = GEN7_PARITY_ERROR_BANK(error_status);
800 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
801
802 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
803 GEN7_L3CDERRST1_ENABLE);
804 POSTING_READ(GEN7_L3CDERRST1);
805
806 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
807
808 spin_lock_irqsave(&dev_priv->irq_lock, flags);
809 dev_priv->gt_irq_mask &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
810 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
811 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
812
813 mutex_unlock(&dev_priv->dev->struct_mutex);
814
815 parity_event[0] = "L3_PARITY_ERROR=1";
816 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
817 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
818 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
819 parity_event[4] = NULL;
820
821 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
822 KOBJ_CHANGE, parity_event);
823
824 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
825 row, bank, subbank);
826
827 kfree(parity_event[3]);
828 kfree(parity_event[2]);
829 kfree(parity_event[1]);
830 }
831
832 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
833 {
834 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
835
836 if (!HAS_L3_GPU_CACHE(dev))
837 return;
838
839 spin_lock(&dev_priv->irq_lock);
840 dev_priv->gt_irq_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
841 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
842 spin_unlock(&dev_priv->irq_lock);
843
844 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
845 }
846
847 static void snb_gt_irq_handler(struct drm_device *dev,
848 struct drm_i915_private *dev_priv,
849 u32 gt_iir)
850 {
851
852 if (gt_iir &
853 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
854 notify_ring(dev, &dev_priv->ring[RCS]);
855 if (gt_iir & GT_BSD_USER_INTERRUPT)
856 notify_ring(dev, &dev_priv->ring[VCS]);
857 if (gt_iir & GT_BLT_USER_INTERRUPT)
858 notify_ring(dev, &dev_priv->ring[BCS]);
859
860 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
861 GT_BSD_CS_ERROR_INTERRUPT |
862 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
863 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
864 i915_handle_error(dev, false);
865 }
866
867 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
868 ivybridge_parity_error_irq_handler(dev);
869 }
870
871 /* Legacy way of handling PM interrupts */
872 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv,
873 u32 pm_iir)
874 {
875 /*
876 * IIR bits should never already be set because IMR should
877 * prevent an interrupt from being shown in IIR. The warning
878 * displays a case where we've unsafely cleared
879 * dev_priv->rps.pm_iir. Although missing an interrupt of the same
880 * type is not a problem, it displays a problem in the logic.
881 *
882 * The mask bit in IMR is cleared by dev_priv->rps.work.
883 */
884
885 spin_lock(&dev_priv->irq_lock);
886 dev_priv->rps.pm_iir |= pm_iir;
887 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
888 POSTING_READ(GEN6_PMIMR);
889 spin_unlock(&dev_priv->irq_lock);
890
891 queue_work(dev_priv->wq, &dev_priv->rps.work);
892 }
893
894 #define HPD_STORM_DETECT_PERIOD 1000
895 #define HPD_STORM_THRESHOLD 5
896
897 static inline void intel_hpd_irq_handler(struct drm_device *dev,
898 u32 hotplug_trigger,
899 const u32 *hpd)
900 {
901 drm_i915_private_t *dev_priv = dev->dev_private;
902 int i;
903 bool storm_detected = false;
904
905 if (!hotplug_trigger)
906 return;
907
908 spin_lock(&dev_priv->irq_lock);
909 for (i = 1; i < HPD_NUM_PINS; i++) {
910
911 if (!(hpd[i] & hotplug_trigger) ||
912 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
913 continue;
914
915 dev_priv->hpd_event_bits |= (1 << i);
916 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
917 dev_priv->hpd_stats[i].hpd_last_jiffies
918 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
919 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
920 dev_priv->hpd_stats[i].hpd_cnt = 0;
921 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
922 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
923 dev_priv->hpd_event_bits &= ~(1 << i);
924 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
925 storm_detected = true;
926 } else {
927 dev_priv->hpd_stats[i].hpd_cnt++;
928 }
929 }
930
931 if (storm_detected)
932 dev_priv->display.hpd_irq_setup(dev);
933 spin_unlock(&dev_priv->irq_lock);
934
935 queue_work(dev_priv->wq,
936 &dev_priv->hotplug_work);
937 }
938
939 static void gmbus_irq_handler(struct drm_device *dev)
940 {
941 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
942
943 wake_up_all(&dev_priv->gmbus_wait_queue);
944 }
945
946 static void dp_aux_irq_handler(struct drm_device *dev)
947 {
948 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
949
950 wake_up_all(&dev_priv->gmbus_wait_queue);
951 }
952
953 /* Unlike gen6_rps_irq_handler() from which this function is originally derived,
954 * we must be able to deal with other PM interrupts. This is complicated because
955 * of the way in which we use the masks to defer the RPS work (which for
956 * posterity is necessary because of forcewake).
957 */
958 static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
959 u32 pm_iir)
960 {
961 if (pm_iir & GEN6_PM_RPS_EVENTS) {
962 spin_lock(&dev_priv->irq_lock);
963 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
964 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
965 /* never want to mask useful interrupts. (also posting read) */
966 WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
967 spin_unlock(&dev_priv->irq_lock);
968
969 queue_work(dev_priv->wq, &dev_priv->rps.work);
970 }
971
972 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
973 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
974
975 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
976 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
977 i915_handle_error(dev_priv->dev, false);
978 }
979 }
980
981 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
982 {
983 struct drm_device *dev = (struct drm_device *) arg;
984 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
985 u32 iir, gt_iir, pm_iir;
986 irqreturn_t ret = IRQ_NONE;
987 unsigned long irqflags;
988 int pipe;
989 u32 pipe_stats[I915_MAX_PIPES];
990
991 atomic_inc(&dev_priv->irq_received);
992
993 while (true) {
994 iir = I915_READ(VLV_IIR);
995 gt_iir = I915_READ(GTIIR);
996 pm_iir = I915_READ(GEN6_PMIIR);
997
998 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
999 goto out;
1000
1001 ret = IRQ_HANDLED;
1002
1003 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1004
1005 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1006 for_each_pipe(pipe) {
1007 int reg = PIPESTAT(pipe);
1008 pipe_stats[pipe] = I915_READ(reg);
1009
1010 /*
1011 * Clear the PIPE*STAT regs before the IIR
1012 */
1013 if (pipe_stats[pipe] & 0x8000ffff) {
1014 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1015 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1016 pipe_name(pipe));
1017 I915_WRITE(reg, pipe_stats[pipe]);
1018 }
1019 }
1020 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1021
1022 for_each_pipe(pipe) {
1023 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1024 drm_handle_vblank(dev, pipe);
1025
1026 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1027 intel_prepare_page_flip(dev, pipe);
1028 intel_finish_page_flip(dev, pipe);
1029 }
1030 }
1031
1032 /* Consume port. Then clear IIR or we'll miss events */
1033 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1034 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1035 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1036
1037 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1038 hotplug_status);
1039
1040 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1041
1042 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1043 I915_READ(PORT_HOTPLUG_STAT);
1044 }
1045
1046 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1047 gmbus_irq_handler(dev);
1048
1049 if (pm_iir & GEN6_PM_RPS_EVENTS)
1050 gen6_rps_irq_handler(dev_priv, pm_iir);
1051
1052 I915_WRITE(GTIIR, gt_iir);
1053 I915_WRITE(GEN6_PMIIR, pm_iir);
1054 I915_WRITE(VLV_IIR, iir);
1055 }
1056
1057 out:
1058 return ret;
1059 }
1060
1061 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1062 {
1063 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1064 int pipe;
1065 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1066
1067 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1068
1069 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1070 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1071 SDE_AUDIO_POWER_SHIFT);
1072 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1073 port_name(port));
1074 }
1075
1076 if (pch_iir & SDE_AUX_MASK)
1077 dp_aux_irq_handler(dev);
1078
1079 if (pch_iir & SDE_GMBUS)
1080 gmbus_irq_handler(dev);
1081
1082 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1083 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1084
1085 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1086 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1087
1088 if (pch_iir & SDE_POISON)
1089 DRM_ERROR("PCH poison interrupt\n");
1090
1091 if (pch_iir & SDE_FDI_MASK)
1092 for_each_pipe(pipe)
1093 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1094 pipe_name(pipe),
1095 I915_READ(FDI_RX_IIR(pipe)));
1096
1097 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1098 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1099
1100 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1101 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1102
1103 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1104 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1105 false))
1106 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1107
1108 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1109 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1110 false))
1111 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1112 }
1113
1114 static void ivb_err_int_handler(struct drm_device *dev)
1115 {
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1117 u32 err_int = I915_READ(GEN7_ERR_INT);
1118
1119 if (err_int & ERR_INT_POISON)
1120 DRM_ERROR("Poison interrupt\n");
1121
1122 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1123 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1124 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1125
1126 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1127 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1128 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1129
1130 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1131 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1132 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1133
1134 I915_WRITE(GEN7_ERR_INT, err_int);
1135 }
1136
1137 static void cpt_serr_int_handler(struct drm_device *dev)
1138 {
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 u32 serr_int = I915_READ(SERR_INT);
1141
1142 if (serr_int & SERR_INT_POISON)
1143 DRM_ERROR("PCH poison interrupt\n");
1144
1145 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1146 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1147 false))
1148 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1149
1150 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1151 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1152 false))
1153 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1154
1155 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1156 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1157 false))
1158 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1159
1160 I915_WRITE(SERR_INT, serr_int);
1161 }
1162
1163 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1164 {
1165 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1166 int pipe;
1167 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1168
1169 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1170
1171 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1172 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1173 SDE_AUDIO_POWER_SHIFT_CPT);
1174 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1175 port_name(port));
1176 }
1177
1178 if (pch_iir & SDE_AUX_MASK_CPT)
1179 dp_aux_irq_handler(dev);
1180
1181 if (pch_iir & SDE_GMBUS_CPT)
1182 gmbus_irq_handler(dev);
1183
1184 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1185 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1186
1187 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1188 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1189
1190 if (pch_iir & SDE_FDI_MASK_CPT)
1191 for_each_pipe(pipe)
1192 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1193 pipe_name(pipe),
1194 I915_READ(FDI_RX_IIR(pipe)));
1195
1196 if (pch_iir & SDE_ERROR_CPT)
1197 cpt_serr_int_handler(dev);
1198 }
1199
1200 static irqreturn_t ivybridge_irq_handler(int irq, void *arg)
1201 {
1202 struct drm_device *dev = (struct drm_device *) arg;
1203 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1204 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0;
1205 irqreturn_t ret = IRQ_NONE;
1206 int i;
1207
1208 atomic_inc(&dev_priv->irq_received);
1209
1210 /* We get interrupts on unclaimed registers, so check for this before we
1211 * do any I915_{READ,WRITE}. */
1212 if (IS_HASWELL(dev) &&
1213 (I915_READ_NOTRACE(FPGA_DBG) & FPGA_DBG_RM_NOCLAIM)) {
1214 DRM_ERROR("Unclaimed register before interrupt\n");
1215 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
1216 }
1217
1218 /* disable master interrupt before clearing iir */
1219 de_ier = I915_READ(DEIER);
1220 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1221
1222 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1223 * interrupts will will be stored on its back queue, and then we'll be
1224 * able to process them after we restore SDEIER (as soon as we restore
1225 * it, we'll get an interrupt if SDEIIR still has something to process
1226 * due to its back queue). */
1227 if (!HAS_PCH_NOP(dev)) {
1228 sde_ier = I915_READ(SDEIER);
1229 I915_WRITE(SDEIER, 0);
1230 POSTING_READ(SDEIER);
1231 }
1232
1233 /* On Haswell, also mask ERR_INT because we don't want to risk
1234 * generating "unclaimed register" interrupts from inside the interrupt
1235 * handler. */
1236 if (IS_HASWELL(dev)) {
1237 spin_lock(&dev_priv->irq_lock);
1238 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1239 spin_unlock(&dev_priv->irq_lock);
1240 }
1241
1242 gt_iir = I915_READ(GTIIR);
1243 if (gt_iir) {
1244 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1245 I915_WRITE(GTIIR, gt_iir);
1246 ret = IRQ_HANDLED;
1247 }
1248
1249 de_iir = I915_READ(DEIIR);
1250 if (de_iir) {
1251 if (de_iir & DE_ERR_INT_IVB)
1252 ivb_err_int_handler(dev);
1253
1254 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1255 dp_aux_irq_handler(dev);
1256
1257 if (de_iir & DE_GSE_IVB)
1258 intel_opregion_asle_intr(dev);
1259
1260 for (i = 0; i < 3; i++) {
1261 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1262 drm_handle_vblank(dev, i);
1263 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1264 intel_prepare_page_flip(dev, i);
1265 intel_finish_page_flip_plane(dev, i);
1266 }
1267 }
1268
1269 /* check event from PCH */
1270 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1271 u32 pch_iir = I915_READ(SDEIIR);
1272
1273 cpt_irq_handler(dev, pch_iir);
1274
1275 /* clear PCH hotplug event before clear CPU irq */
1276 I915_WRITE(SDEIIR, pch_iir);
1277 }
1278
1279 I915_WRITE(DEIIR, de_iir);
1280 ret = IRQ_HANDLED;
1281 }
1282
1283 pm_iir = I915_READ(GEN6_PMIIR);
1284 if (pm_iir) {
1285 if (IS_HASWELL(dev))
1286 hsw_pm_irq_handler(dev_priv, pm_iir);
1287 else if (pm_iir & GEN6_PM_RPS_EVENTS)
1288 gen6_rps_irq_handler(dev_priv, pm_iir);
1289 I915_WRITE(GEN6_PMIIR, pm_iir);
1290 ret = IRQ_HANDLED;
1291 }
1292
1293 if (IS_HASWELL(dev)) {
1294 spin_lock(&dev_priv->irq_lock);
1295 if (ivb_can_enable_err_int(dev))
1296 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1297 spin_unlock(&dev_priv->irq_lock);
1298 }
1299
1300 I915_WRITE(DEIER, de_ier);
1301 POSTING_READ(DEIER);
1302 if (!HAS_PCH_NOP(dev)) {
1303 I915_WRITE(SDEIER, sde_ier);
1304 POSTING_READ(SDEIER);
1305 }
1306
1307 return ret;
1308 }
1309
1310 static void ilk_gt_irq_handler(struct drm_device *dev,
1311 struct drm_i915_private *dev_priv,
1312 u32 gt_iir)
1313 {
1314 if (gt_iir &
1315 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1316 notify_ring(dev, &dev_priv->ring[RCS]);
1317 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1318 notify_ring(dev, &dev_priv->ring[VCS]);
1319 }
1320
1321 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1322 {
1323 struct drm_device *dev = (struct drm_device *) arg;
1324 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1325 int ret = IRQ_NONE;
1326 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier;
1327
1328 atomic_inc(&dev_priv->irq_received);
1329
1330 /* disable master interrupt before clearing iir */
1331 de_ier = I915_READ(DEIER);
1332 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1333 POSTING_READ(DEIER);
1334
1335 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1336 * interrupts will will be stored on its back queue, and then we'll be
1337 * able to process them after we restore SDEIER (as soon as we restore
1338 * it, we'll get an interrupt if SDEIIR still has something to process
1339 * due to its back queue). */
1340 sde_ier = I915_READ(SDEIER);
1341 I915_WRITE(SDEIER, 0);
1342 POSTING_READ(SDEIER);
1343
1344 de_iir = I915_READ(DEIIR);
1345 gt_iir = I915_READ(GTIIR);
1346 pm_iir = I915_READ(GEN6_PMIIR);
1347
1348 if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0))
1349 goto done;
1350
1351 ret = IRQ_HANDLED;
1352
1353 if (IS_GEN5(dev))
1354 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1355 else
1356 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1357
1358 if (de_iir & DE_AUX_CHANNEL_A)
1359 dp_aux_irq_handler(dev);
1360
1361 if (de_iir & DE_GSE)
1362 intel_opregion_asle_intr(dev);
1363
1364 if (de_iir & DE_PIPEA_VBLANK)
1365 drm_handle_vblank(dev, 0);
1366
1367 if (de_iir & DE_PIPEB_VBLANK)
1368 drm_handle_vblank(dev, 1);
1369
1370 if (de_iir & DE_POISON)
1371 DRM_ERROR("Poison interrupt\n");
1372
1373 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1374 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1375 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1376
1377 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1378 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1379 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1380
1381 if (de_iir & DE_PLANEA_FLIP_DONE) {
1382 intel_prepare_page_flip(dev, 0);
1383 intel_finish_page_flip_plane(dev, 0);
1384 }
1385
1386 if (de_iir & DE_PLANEB_FLIP_DONE) {
1387 intel_prepare_page_flip(dev, 1);
1388 intel_finish_page_flip_plane(dev, 1);
1389 }
1390
1391 /* check event from PCH */
1392 if (de_iir & DE_PCH_EVENT) {
1393 u32 pch_iir = I915_READ(SDEIIR);
1394
1395 if (HAS_PCH_CPT(dev))
1396 cpt_irq_handler(dev, pch_iir);
1397 else
1398 ibx_irq_handler(dev, pch_iir);
1399
1400 /* should clear PCH hotplug event before clear CPU irq */
1401 I915_WRITE(SDEIIR, pch_iir);
1402 }
1403
1404 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1405 ironlake_rps_change_irq_handler(dev);
1406
1407 if (IS_GEN6(dev) && pm_iir & GEN6_PM_RPS_EVENTS)
1408 gen6_rps_irq_handler(dev_priv, pm_iir);
1409
1410 I915_WRITE(GTIIR, gt_iir);
1411 I915_WRITE(DEIIR, de_iir);
1412 I915_WRITE(GEN6_PMIIR, pm_iir);
1413
1414 done:
1415 I915_WRITE(DEIER, de_ier);
1416 POSTING_READ(DEIER);
1417 I915_WRITE(SDEIER, sde_ier);
1418 POSTING_READ(SDEIER);
1419
1420 return ret;
1421 }
1422
1423 /**
1424 * i915_error_work_func - do process context error handling work
1425 * @work: work struct
1426 *
1427 * Fire an error uevent so userspace can see that a hang or error
1428 * was detected.
1429 */
1430 static void i915_error_work_func(struct work_struct *work)
1431 {
1432 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1433 work);
1434 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1435 gpu_error);
1436 struct drm_device *dev = dev_priv->dev;
1437 struct intel_ring_buffer *ring;
1438 char *error_event[] = { "ERROR=1", NULL };
1439 char *reset_event[] = { "RESET=1", NULL };
1440 char *reset_done_event[] = { "ERROR=0", NULL };
1441 int i, ret;
1442
1443 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1444
1445 /*
1446 * Note that there's only one work item which does gpu resets, so we
1447 * need not worry about concurrent gpu resets potentially incrementing
1448 * error->reset_counter twice. We only need to take care of another
1449 * racing irq/hangcheck declaring the gpu dead for a second time. A
1450 * quick check for that is good enough: schedule_work ensures the
1451 * correct ordering between hang detection and this work item, and since
1452 * the reset in-progress bit is only ever set by code outside of this
1453 * work we don't need to worry about any other races.
1454 */
1455 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1456 DRM_DEBUG_DRIVER("resetting chip\n");
1457 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1458 reset_event);
1459
1460 ret = i915_reset(dev);
1461
1462 if (ret == 0) {
1463 /*
1464 * After all the gem state is reset, increment the reset
1465 * counter and wake up everyone waiting for the reset to
1466 * complete.
1467 *
1468 * Since unlock operations are a one-sided barrier only,
1469 * we need to insert a barrier here to order any seqno
1470 * updates before
1471 * the counter increment.
1472 */
1473 smp_mb__before_atomic_inc();
1474 atomic_inc(&dev_priv->gpu_error.reset_counter);
1475
1476 kobject_uevent_env(&dev->primary->kdev.kobj,
1477 KOBJ_CHANGE, reset_done_event);
1478 } else {
1479 atomic_set(&error->reset_counter, I915_WEDGED);
1480 }
1481
1482 for_each_ring(ring, dev_priv, i)
1483 wake_up_all(&ring->irq_queue);
1484
1485 intel_display_handle_reset(dev);
1486
1487 wake_up_all(&dev_priv->gpu_error.reset_queue);
1488 }
1489 }
1490
1491 static void i915_report_and_clear_eir(struct drm_device *dev)
1492 {
1493 struct drm_i915_private *dev_priv = dev->dev_private;
1494 uint32_t instdone[I915_NUM_INSTDONE_REG];
1495 u32 eir = I915_READ(EIR);
1496 int pipe, i;
1497
1498 if (!eir)
1499 return;
1500
1501 pr_err("render error detected, EIR: 0x%08x\n", eir);
1502
1503 i915_get_extra_instdone(dev, instdone);
1504
1505 if (IS_G4X(dev)) {
1506 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1507 u32 ipeir = I915_READ(IPEIR_I965);
1508
1509 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1510 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1511 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1512 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1513 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1514 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1515 I915_WRITE(IPEIR_I965, ipeir);
1516 POSTING_READ(IPEIR_I965);
1517 }
1518 if (eir & GM45_ERROR_PAGE_TABLE) {
1519 u32 pgtbl_err = I915_READ(PGTBL_ER);
1520 pr_err("page table error\n");
1521 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1522 I915_WRITE(PGTBL_ER, pgtbl_err);
1523 POSTING_READ(PGTBL_ER);
1524 }
1525 }
1526
1527 if (!IS_GEN2(dev)) {
1528 if (eir & I915_ERROR_PAGE_TABLE) {
1529 u32 pgtbl_err = I915_READ(PGTBL_ER);
1530 pr_err("page table error\n");
1531 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1532 I915_WRITE(PGTBL_ER, pgtbl_err);
1533 POSTING_READ(PGTBL_ER);
1534 }
1535 }
1536
1537 if (eir & I915_ERROR_MEMORY_REFRESH) {
1538 pr_err("memory refresh error:\n");
1539 for_each_pipe(pipe)
1540 pr_err("pipe %c stat: 0x%08x\n",
1541 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1542 /* pipestat has already been acked */
1543 }
1544 if (eir & I915_ERROR_INSTRUCTION) {
1545 pr_err("instruction error\n");
1546 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1547 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1548 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1549 if (INTEL_INFO(dev)->gen < 4) {
1550 u32 ipeir = I915_READ(IPEIR);
1551
1552 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1553 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1554 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1555 I915_WRITE(IPEIR, ipeir);
1556 POSTING_READ(IPEIR);
1557 } else {
1558 u32 ipeir = I915_READ(IPEIR_I965);
1559
1560 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1561 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1562 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1563 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1564 I915_WRITE(IPEIR_I965, ipeir);
1565 POSTING_READ(IPEIR_I965);
1566 }
1567 }
1568
1569 I915_WRITE(EIR, eir);
1570 POSTING_READ(EIR);
1571 eir = I915_READ(EIR);
1572 if (eir) {
1573 /*
1574 * some errors might have become stuck,
1575 * mask them.
1576 */
1577 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1578 I915_WRITE(EMR, I915_READ(EMR) | eir);
1579 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1580 }
1581 }
1582
1583 /**
1584 * i915_handle_error - handle an error interrupt
1585 * @dev: drm device
1586 *
1587 * Do some basic checking of regsiter state at error interrupt time and
1588 * dump it to the syslog. Also call i915_capture_error_state() to make
1589 * sure we get a record and make it available in debugfs. Fire a uevent
1590 * so userspace knows something bad happened (should trigger collection
1591 * of a ring dump etc.).
1592 */
1593 void i915_handle_error(struct drm_device *dev, bool wedged)
1594 {
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596 struct intel_ring_buffer *ring;
1597 int i;
1598
1599 i915_capture_error_state(dev);
1600 i915_report_and_clear_eir(dev);
1601
1602 if (wedged) {
1603 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1604 &dev_priv->gpu_error.reset_counter);
1605
1606 /*
1607 * Wakeup waiting processes so that the reset work item
1608 * doesn't deadlock trying to grab various locks.
1609 */
1610 for_each_ring(ring, dev_priv, i)
1611 wake_up_all(&ring->irq_queue);
1612 }
1613
1614 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
1615 }
1616
1617 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1618 {
1619 drm_i915_private_t *dev_priv = dev->dev_private;
1620 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1622 struct drm_i915_gem_object *obj;
1623 struct intel_unpin_work *work;
1624 unsigned long flags;
1625 bool stall_detected;
1626
1627 /* Ignore early vblank irqs */
1628 if (intel_crtc == NULL)
1629 return;
1630
1631 spin_lock_irqsave(&dev->event_lock, flags);
1632 work = intel_crtc->unpin_work;
1633
1634 if (work == NULL ||
1635 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1636 !work->enable_stall_check) {
1637 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1638 spin_unlock_irqrestore(&dev->event_lock, flags);
1639 return;
1640 }
1641
1642 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1643 obj = work->pending_flip_obj;
1644 if (INTEL_INFO(dev)->gen >= 4) {
1645 int dspsurf = DSPSURF(intel_crtc->plane);
1646 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1647 i915_gem_obj_ggtt_offset(obj);
1648 } else {
1649 int dspaddr = DSPADDR(intel_crtc->plane);
1650 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1651 crtc->y * crtc->fb->pitches[0] +
1652 crtc->x * crtc->fb->bits_per_pixel/8);
1653 }
1654
1655 spin_unlock_irqrestore(&dev->event_lock, flags);
1656
1657 if (stall_detected) {
1658 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1659 intel_prepare_page_flip(dev, intel_crtc->plane);
1660 }
1661 }
1662
1663 /* Called from drm generic code, passed 'crtc' which
1664 * we use as a pipe index
1665 */
1666 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1667 {
1668 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1669 unsigned long irqflags;
1670
1671 if (!i915_pipe_enabled(dev, pipe))
1672 return -EINVAL;
1673
1674 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1675 if (INTEL_INFO(dev)->gen >= 4)
1676 i915_enable_pipestat(dev_priv, pipe,
1677 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1678 else
1679 i915_enable_pipestat(dev_priv, pipe,
1680 PIPE_VBLANK_INTERRUPT_ENABLE);
1681
1682 /* maintain vblank delivery even in deep C-states */
1683 if (dev_priv->info->gen == 3)
1684 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1685 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1686
1687 return 0;
1688 }
1689
1690 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1691 {
1692 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1693 unsigned long irqflags;
1694
1695 if (!i915_pipe_enabled(dev, pipe))
1696 return -EINVAL;
1697
1698 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1699 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1700 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
1701 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1702
1703 return 0;
1704 }
1705
1706 static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
1707 {
1708 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1709 unsigned long irqflags;
1710
1711 if (!i915_pipe_enabled(dev, pipe))
1712 return -EINVAL;
1713
1714 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1715 ironlake_enable_display_irq(dev_priv,
1716 DE_PIPEA_VBLANK_IVB << (5 * pipe));
1717 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1718
1719 return 0;
1720 }
1721
1722 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1723 {
1724 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1725 unsigned long irqflags;
1726 u32 imr;
1727
1728 if (!i915_pipe_enabled(dev, pipe))
1729 return -EINVAL;
1730
1731 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1732 imr = I915_READ(VLV_IMR);
1733 if (pipe == 0)
1734 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1735 else
1736 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1737 I915_WRITE(VLV_IMR, imr);
1738 i915_enable_pipestat(dev_priv, pipe,
1739 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1740 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1741
1742 return 0;
1743 }
1744
1745 /* Called from drm generic code, passed 'crtc' which
1746 * we use as a pipe index
1747 */
1748 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1749 {
1750 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1751 unsigned long irqflags;
1752
1753 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1754 if (dev_priv->info->gen == 3)
1755 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1756
1757 i915_disable_pipestat(dev_priv, pipe,
1758 PIPE_VBLANK_INTERRUPT_ENABLE |
1759 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1760 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1761 }
1762
1763 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1764 {
1765 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1766 unsigned long irqflags;
1767
1768 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1769 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1770 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
1771 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1772 }
1773
1774 static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1775 {
1776 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1777 unsigned long irqflags;
1778
1779 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1780 ironlake_disable_display_irq(dev_priv,
1781 DE_PIPEA_VBLANK_IVB << (pipe * 5));
1782 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1783 }
1784
1785 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1786 {
1787 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1788 unsigned long irqflags;
1789 u32 imr;
1790
1791 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1792 i915_disable_pipestat(dev_priv, pipe,
1793 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1794 imr = I915_READ(VLV_IMR);
1795 if (pipe == 0)
1796 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1797 else
1798 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1799 I915_WRITE(VLV_IMR, imr);
1800 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1801 }
1802
1803 static u32
1804 ring_last_seqno(struct intel_ring_buffer *ring)
1805 {
1806 return list_entry(ring->request_list.prev,
1807 struct drm_i915_gem_request, list)->seqno;
1808 }
1809
1810 static bool
1811 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1812 {
1813 return (list_empty(&ring->request_list) ||
1814 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1815 }
1816
1817 static struct intel_ring_buffer *
1818 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1819 {
1820 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1821 u32 cmd, ipehr, acthd, acthd_min;
1822
1823 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1824 if ((ipehr & ~(0x3 << 16)) !=
1825 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1826 return NULL;
1827
1828 /* ACTHD is likely pointing to the dword after the actual command,
1829 * so scan backwards until we find the MBOX.
1830 */
1831 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1832 acthd_min = max((int)acthd - 3 * 4, 0);
1833 do {
1834 cmd = ioread32(ring->virtual_start + acthd);
1835 if (cmd == ipehr)
1836 break;
1837
1838 acthd -= 4;
1839 if (acthd < acthd_min)
1840 return NULL;
1841 } while (1);
1842
1843 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1844 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1845 }
1846
1847 static int semaphore_passed(struct intel_ring_buffer *ring)
1848 {
1849 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1850 struct intel_ring_buffer *signaller;
1851 u32 seqno, ctl;
1852
1853 ring->hangcheck.deadlock = true;
1854
1855 signaller = semaphore_waits_for(ring, &seqno);
1856 if (signaller == NULL || signaller->hangcheck.deadlock)
1857 return -1;
1858
1859 /* cursory check for an unkickable deadlock */
1860 ctl = I915_READ_CTL(signaller);
1861 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1862 return -1;
1863
1864 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1865 }
1866
1867 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1868 {
1869 struct intel_ring_buffer *ring;
1870 int i;
1871
1872 for_each_ring(ring, dev_priv, i)
1873 ring->hangcheck.deadlock = false;
1874 }
1875
1876 static enum intel_ring_hangcheck_action
1877 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1878 {
1879 struct drm_device *dev = ring->dev;
1880 struct drm_i915_private *dev_priv = dev->dev_private;
1881 u32 tmp;
1882
1883 if (ring->hangcheck.acthd != acthd)
1884 return active;
1885
1886 if (IS_GEN2(dev))
1887 return hung;
1888
1889 /* Is the chip hanging on a WAIT_FOR_EVENT?
1890 * If so we can simply poke the RB_WAIT bit
1891 * and break the hang. This should work on
1892 * all but the second generation chipsets.
1893 */
1894 tmp = I915_READ_CTL(ring);
1895 if (tmp & RING_WAIT) {
1896 DRM_ERROR("Kicking stuck wait on %s\n",
1897 ring->name);
1898 I915_WRITE_CTL(ring, tmp);
1899 return kick;
1900 }
1901
1902 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1903 switch (semaphore_passed(ring)) {
1904 default:
1905 return hung;
1906 case 1:
1907 DRM_ERROR("Kicking stuck semaphore on %s\n",
1908 ring->name);
1909 I915_WRITE_CTL(ring, tmp);
1910 return kick;
1911 case 0:
1912 return wait;
1913 }
1914 }
1915
1916 return hung;
1917 }
1918
1919 /**
1920 * This is called when the chip hasn't reported back with completed
1921 * batchbuffers in a long time. We keep track per ring seqno progress and
1922 * if there are no progress, hangcheck score for that ring is increased.
1923 * Further, acthd is inspected to see if the ring is stuck. On stuck case
1924 * we kick the ring. If we see no progress on three subsequent calls
1925 * we assume chip is wedged and try to fix it by resetting the chip.
1926 */
1927 void i915_hangcheck_elapsed(unsigned long data)
1928 {
1929 struct drm_device *dev = (struct drm_device *)data;
1930 drm_i915_private_t *dev_priv = dev->dev_private;
1931 struct intel_ring_buffer *ring;
1932 int i;
1933 int busy_count = 0, rings_hung = 0;
1934 bool stuck[I915_NUM_RINGS] = { 0 };
1935 #define BUSY 1
1936 #define KICK 5
1937 #define HUNG 20
1938 #define FIRE 30
1939
1940 if (!i915_enable_hangcheck)
1941 return;
1942
1943 for_each_ring(ring, dev_priv, i) {
1944 u32 seqno, acthd;
1945 bool busy = true;
1946
1947 semaphore_clear_deadlocks(dev_priv);
1948
1949 seqno = ring->get_seqno(ring, false);
1950 acthd = intel_ring_get_active_head(ring);
1951
1952 if (ring->hangcheck.seqno == seqno) {
1953 if (ring_idle(ring, seqno)) {
1954 if (waitqueue_active(&ring->irq_queue)) {
1955 /* Issue a wake-up to catch stuck h/w. */
1956 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1957 ring->name);
1958 wake_up_all(&ring->irq_queue);
1959 ring->hangcheck.score += HUNG;
1960 } else
1961 busy = false;
1962 } else {
1963 int score;
1964
1965 /* We always increment the hangcheck score
1966 * if the ring is busy and still processing
1967 * the same request, so that no single request
1968 * can run indefinitely (such as a chain of
1969 * batches). The only time we do not increment
1970 * the hangcheck score on this ring, if this
1971 * ring is in a legitimate wait for another
1972 * ring. In that case the waiting ring is a
1973 * victim and we want to be sure we catch the
1974 * right culprit. Then every time we do kick
1975 * the ring, add a small increment to the
1976 * score so that we can catch a batch that is
1977 * being repeatedly kicked and so responsible
1978 * for stalling the machine.
1979 */
1980 ring->hangcheck.action = ring_stuck(ring,
1981 acthd);
1982
1983 switch (ring->hangcheck.action) {
1984 case wait:
1985 score = 0;
1986 break;
1987 case active:
1988 score = BUSY;
1989 break;
1990 case kick:
1991 score = KICK;
1992 break;
1993 case hung:
1994 score = HUNG;
1995 stuck[i] = true;
1996 break;
1997 }
1998 ring->hangcheck.score += score;
1999 }
2000 } else {
2001 /* Gradually reduce the count so that we catch DoS
2002 * attempts across multiple batches.
2003 */
2004 if (ring->hangcheck.score > 0)
2005 ring->hangcheck.score--;
2006 }
2007
2008 ring->hangcheck.seqno = seqno;
2009 ring->hangcheck.acthd = acthd;
2010 busy_count += busy;
2011 }
2012
2013 for_each_ring(ring, dev_priv, i) {
2014 if (ring->hangcheck.score > FIRE) {
2015 DRM_ERROR("%s on %s\n",
2016 stuck[i] ? "stuck" : "no progress",
2017 ring->name);
2018 rings_hung++;
2019 }
2020 }
2021
2022 if (rings_hung)
2023 return i915_handle_error(dev, true);
2024
2025 if (busy_count)
2026 /* Reset timer case chip hangs without another request
2027 * being added */
2028 i915_queue_hangcheck(dev);
2029 }
2030
2031 void i915_queue_hangcheck(struct drm_device *dev)
2032 {
2033 struct drm_i915_private *dev_priv = dev->dev_private;
2034 if (!i915_enable_hangcheck)
2035 return;
2036
2037 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2038 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2039 }
2040
2041 static void ibx_irq_preinstall(struct drm_device *dev)
2042 {
2043 struct drm_i915_private *dev_priv = dev->dev_private;
2044
2045 if (HAS_PCH_NOP(dev))
2046 return;
2047
2048 /* south display irq */
2049 I915_WRITE(SDEIMR, 0xffffffff);
2050 /*
2051 * SDEIER is also touched by the interrupt handler to work around missed
2052 * PCH interrupts. Hence we can't update it after the interrupt handler
2053 * is enabled - instead we unconditionally enable all PCH interrupt
2054 * sources here, but then only unmask them as needed with SDEIMR.
2055 */
2056 I915_WRITE(SDEIER, 0xffffffff);
2057 POSTING_READ(SDEIER);
2058 }
2059
2060 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2061 {
2062 struct drm_i915_private *dev_priv = dev->dev_private;
2063
2064 /* and GT */
2065 I915_WRITE(GTIMR, 0xffffffff);
2066 I915_WRITE(GTIER, 0x0);
2067 POSTING_READ(GTIER);
2068
2069 if (INTEL_INFO(dev)->gen >= 6) {
2070 /* and PM */
2071 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2072 I915_WRITE(GEN6_PMIER, 0x0);
2073 POSTING_READ(GEN6_PMIER);
2074 }
2075 }
2076
2077 /* drm_dma.h hooks
2078 */
2079 static void ironlake_irq_preinstall(struct drm_device *dev)
2080 {
2081 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2082
2083 atomic_set(&dev_priv->irq_received, 0);
2084
2085 I915_WRITE(HWSTAM, 0xeffe);
2086
2087 I915_WRITE(DEIMR, 0xffffffff);
2088 I915_WRITE(DEIER, 0x0);
2089 POSTING_READ(DEIER);
2090
2091 gen5_gt_irq_preinstall(dev);
2092
2093 ibx_irq_preinstall(dev);
2094 }
2095
2096 static void valleyview_irq_preinstall(struct drm_device *dev)
2097 {
2098 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2099 int pipe;
2100
2101 atomic_set(&dev_priv->irq_received, 0);
2102
2103 /* VLV magic */
2104 I915_WRITE(VLV_IMR, 0);
2105 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2106 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2107 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2108
2109 /* and GT */
2110 I915_WRITE(GTIIR, I915_READ(GTIIR));
2111 I915_WRITE(GTIIR, I915_READ(GTIIR));
2112
2113 gen5_gt_irq_preinstall(dev);
2114
2115 I915_WRITE(DPINVGTT, 0xff);
2116
2117 I915_WRITE(PORT_HOTPLUG_EN, 0);
2118 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2119 for_each_pipe(pipe)
2120 I915_WRITE(PIPESTAT(pipe), 0xffff);
2121 I915_WRITE(VLV_IIR, 0xffffffff);
2122 I915_WRITE(VLV_IMR, 0xffffffff);
2123 I915_WRITE(VLV_IER, 0x0);
2124 POSTING_READ(VLV_IER);
2125 }
2126
2127 static void ibx_hpd_irq_setup(struct drm_device *dev)
2128 {
2129 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2130 struct drm_mode_config *mode_config = &dev->mode_config;
2131 struct intel_encoder *intel_encoder;
2132 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2133
2134 if (HAS_PCH_IBX(dev)) {
2135 hotplug_irqs = SDE_HOTPLUG_MASK;
2136 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2137 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2138 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2139 } else {
2140 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2141 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2142 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2143 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2144 }
2145
2146 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2147
2148 /*
2149 * Enable digital hotplug on the PCH, and configure the DP short pulse
2150 * duration to 2ms (which is the minimum in the Display Port spec)
2151 *
2152 * This register is the same on all known PCH chips.
2153 */
2154 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2155 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2156 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2157 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2158 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2159 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2160 }
2161
2162 static void ibx_irq_postinstall(struct drm_device *dev)
2163 {
2164 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2165 u32 mask;
2166
2167 if (HAS_PCH_NOP(dev))
2168 return;
2169
2170 if (HAS_PCH_IBX(dev)) {
2171 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2172 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2173 } else {
2174 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2175
2176 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2177 }
2178
2179 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2180 I915_WRITE(SDEIMR, ~mask);
2181 }
2182
2183 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2184 {
2185 struct drm_i915_private *dev_priv = dev->dev_private;
2186 u32 pm_irqs, gt_irqs;
2187
2188 pm_irqs = gt_irqs = 0;
2189
2190 dev_priv->gt_irq_mask = ~0;
2191 if (HAS_L3_GPU_CACHE(dev)) {
2192 /* L3 parity interrupt is always unmasked. */
2193 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2194 gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2195 }
2196
2197 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2198 if (IS_GEN5(dev)) {
2199 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2200 ILK_BSD_USER_INTERRUPT;
2201 } else {
2202 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2203 }
2204
2205 I915_WRITE(GTIIR, I915_READ(GTIIR));
2206 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2207 I915_WRITE(GTIER, gt_irqs);
2208 POSTING_READ(GTIER);
2209
2210 if (INTEL_INFO(dev)->gen >= 6) {
2211 pm_irqs |= GEN6_PM_RPS_EVENTS;
2212
2213 if (HAS_VEBOX(dev))
2214 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2215
2216 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2217 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2218 I915_WRITE(GEN6_PMIER, pm_irqs);
2219 POSTING_READ(GEN6_PMIER);
2220 }
2221 }
2222
2223 static int ironlake_irq_postinstall(struct drm_device *dev)
2224 {
2225 unsigned long irqflags;
2226
2227 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2228 /* enable kind of interrupts always enabled */
2229 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2230 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2231 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2232 DE_PIPEA_FIFO_UNDERRUN | DE_POISON;
2233
2234 dev_priv->irq_mask = ~display_mask;
2235
2236 /* should always can generate irq */
2237 I915_WRITE(DEIIR, I915_READ(DEIIR));
2238 I915_WRITE(DEIMR, dev_priv->irq_mask);
2239 I915_WRITE(DEIER, display_mask |
2240 DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT);
2241 POSTING_READ(DEIER);
2242
2243 gen5_gt_irq_postinstall(dev);
2244
2245 ibx_irq_postinstall(dev);
2246
2247 if (IS_IRONLAKE_M(dev)) {
2248 /* Enable PCU event interrupts
2249 *
2250 * spinlocking not required here for correctness since interrupt
2251 * setup is guaranteed to run in single-threaded context. But we
2252 * need it to make the assert_spin_locked happy. */
2253 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2254 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2255 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2256 }
2257
2258 return 0;
2259 }
2260
2261 static int ivybridge_irq_postinstall(struct drm_device *dev)
2262 {
2263 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2264 /* enable kind of interrupts always enabled */
2265 u32 display_mask =
2266 DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
2267 DE_PLANEC_FLIP_DONE_IVB |
2268 DE_PLANEB_FLIP_DONE_IVB |
2269 DE_PLANEA_FLIP_DONE_IVB |
2270 DE_AUX_CHANNEL_A_IVB |
2271 DE_ERR_INT_IVB;
2272
2273 dev_priv->irq_mask = ~display_mask;
2274
2275 /* should always can generate irq */
2276 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2277 I915_WRITE(DEIIR, I915_READ(DEIIR));
2278 I915_WRITE(DEIMR, dev_priv->irq_mask);
2279 I915_WRITE(DEIER,
2280 display_mask |
2281 DE_PIPEC_VBLANK_IVB |
2282 DE_PIPEB_VBLANK_IVB |
2283 DE_PIPEA_VBLANK_IVB);
2284 POSTING_READ(DEIER);
2285
2286 gen5_gt_irq_postinstall(dev);
2287
2288 ibx_irq_postinstall(dev);
2289
2290 return 0;
2291 }
2292
2293 static int valleyview_irq_postinstall(struct drm_device *dev)
2294 {
2295 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2296 u32 enable_mask;
2297 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2298 unsigned long irqflags;
2299
2300 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2301 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2302 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2303 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2304 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2305
2306 /*
2307 *Leave vblank interrupts masked initially. enable/disable will
2308 * toggle them based on usage.
2309 */
2310 dev_priv->irq_mask = (~enable_mask) |
2311 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2312 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2313
2314 I915_WRITE(PORT_HOTPLUG_EN, 0);
2315 POSTING_READ(PORT_HOTPLUG_EN);
2316
2317 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2318 I915_WRITE(VLV_IER, enable_mask);
2319 I915_WRITE(VLV_IIR, 0xffffffff);
2320 I915_WRITE(PIPESTAT(0), 0xffff);
2321 I915_WRITE(PIPESTAT(1), 0xffff);
2322 POSTING_READ(VLV_IER);
2323
2324 /* Interrupt setup is already guaranteed to be single-threaded, this is
2325 * just to make the assert_spin_locked check happy. */
2326 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2327 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2328 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2329 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2330 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2331
2332 I915_WRITE(VLV_IIR, 0xffffffff);
2333 I915_WRITE(VLV_IIR, 0xffffffff);
2334
2335 gen5_gt_irq_postinstall(dev);
2336
2337 /* ack & enable invalid PTE error interrupts */
2338 #if 0 /* FIXME: add support to irq handler for checking these bits */
2339 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2340 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2341 #endif
2342
2343 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2344
2345 return 0;
2346 }
2347
2348 static void valleyview_irq_uninstall(struct drm_device *dev)
2349 {
2350 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2351 int pipe;
2352
2353 if (!dev_priv)
2354 return;
2355
2356 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2357
2358 for_each_pipe(pipe)
2359 I915_WRITE(PIPESTAT(pipe), 0xffff);
2360
2361 I915_WRITE(HWSTAM, 0xffffffff);
2362 I915_WRITE(PORT_HOTPLUG_EN, 0);
2363 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2364 for_each_pipe(pipe)
2365 I915_WRITE(PIPESTAT(pipe), 0xffff);
2366 I915_WRITE(VLV_IIR, 0xffffffff);
2367 I915_WRITE(VLV_IMR, 0xffffffff);
2368 I915_WRITE(VLV_IER, 0x0);
2369 POSTING_READ(VLV_IER);
2370 }
2371
2372 static void ironlake_irq_uninstall(struct drm_device *dev)
2373 {
2374 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2375
2376 if (!dev_priv)
2377 return;
2378
2379 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2380
2381 I915_WRITE(HWSTAM, 0xffffffff);
2382
2383 I915_WRITE(DEIMR, 0xffffffff);
2384 I915_WRITE(DEIER, 0x0);
2385 I915_WRITE(DEIIR, I915_READ(DEIIR));
2386 if (IS_GEN7(dev))
2387 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2388
2389 I915_WRITE(GTIMR, 0xffffffff);
2390 I915_WRITE(GTIER, 0x0);
2391 I915_WRITE(GTIIR, I915_READ(GTIIR));
2392
2393 if (HAS_PCH_NOP(dev))
2394 return;
2395
2396 I915_WRITE(SDEIMR, 0xffffffff);
2397 I915_WRITE(SDEIER, 0x0);
2398 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2399 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2400 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2401 }
2402
2403 static void i8xx_irq_preinstall(struct drm_device * dev)
2404 {
2405 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2406 int pipe;
2407
2408 atomic_set(&dev_priv->irq_received, 0);
2409
2410 for_each_pipe(pipe)
2411 I915_WRITE(PIPESTAT(pipe), 0);
2412 I915_WRITE16(IMR, 0xffff);
2413 I915_WRITE16(IER, 0x0);
2414 POSTING_READ16(IER);
2415 }
2416
2417 static int i8xx_irq_postinstall(struct drm_device *dev)
2418 {
2419 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2420
2421 I915_WRITE16(EMR,
2422 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2423
2424 /* Unmask the interrupts that we always want on. */
2425 dev_priv->irq_mask =
2426 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2427 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2428 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2429 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2430 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2431 I915_WRITE16(IMR, dev_priv->irq_mask);
2432
2433 I915_WRITE16(IER,
2434 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2435 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2436 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2437 I915_USER_INTERRUPT);
2438 POSTING_READ16(IER);
2439
2440 return 0;
2441 }
2442
2443 /*
2444 * Returns true when a page flip has completed.
2445 */
2446 static bool i8xx_handle_vblank(struct drm_device *dev,
2447 int pipe, u16 iir)
2448 {
2449 drm_i915_private_t *dev_priv = dev->dev_private;
2450 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2451
2452 if (!drm_handle_vblank(dev, pipe))
2453 return false;
2454
2455 if ((iir & flip_pending) == 0)
2456 return false;
2457
2458 intel_prepare_page_flip(dev, pipe);
2459
2460 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2461 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2462 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2463 * the flip is completed (no longer pending). Since this doesn't raise
2464 * an interrupt per se, we watch for the change at vblank.
2465 */
2466 if (I915_READ16(ISR) & flip_pending)
2467 return false;
2468
2469 intel_finish_page_flip(dev, pipe);
2470
2471 return true;
2472 }
2473
2474 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2475 {
2476 struct drm_device *dev = (struct drm_device *) arg;
2477 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2478 u16 iir, new_iir;
2479 u32 pipe_stats[2];
2480 unsigned long irqflags;
2481 int irq_received;
2482 int pipe;
2483 u16 flip_mask =
2484 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2485 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2486
2487 atomic_inc(&dev_priv->irq_received);
2488
2489 iir = I915_READ16(IIR);
2490 if (iir == 0)
2491 return IRQ_NONE;
2492
2493 while (iir & ~flip_mask) {
2494 /* Can't rely on pipestat interrupt bit in iir as it might
2495 * have been cleared after the pipestat interrupt was received.
2496 * It doesn't set the bit in iir again, but it still produces
2497 * interrupts (for non-MSI).
2498 */
2499 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2500 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2501 i915_handle_error(dev, false);
2502
2503 for_each_pipe(pipe) {
2504 int reg = PIPESTAT(pipe);
2505 pipe_stats[pipe] = I915_READ(reg);
2506
2507 /*
2508 * Clear the PIPE*STAT regs before the IIR
2509 */
2510 if (pipe_stats[pipe] & 0x8000ffff) {
2511 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2512 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2513 pipe_name(pipe));
2514 I915_WRITE(reg, pipe_stats[pipe]);
2515 irq_received = 1;
2516 }
2517 }
2518 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2519
2520 I915_WRITE16(IIR, iir & ~flip_mask);
2521 new_iir = I915_READ16(IIR); /* Flush posted writes */
2522
2523 i915_update_dri1_breadcrumb(dev);
2524
2525 if (iir & I915_USER_INTERRUPT)
2526 notify_ring(dev, &dev_priv->ring[RCS]);
2527
2528 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2529 i8xx_handle_vblank(dev, 0, iir))
2530 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2531
2532 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2533 i8xx_handle_vblank(dev, 1, iir))
2534 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2535
2536 iir = new_iir;
2537 }
2538
2539 return IRQ_HANDLED;
2540 }
2541
2542 static void i8xx_irq_uninstall(struct drm_device * dev)
2543 {
2544 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2545 int pipe;
2546
2547 for_each_pipe(pipe) {
2548 /* Clear enable bits; then clear status bits */
2549 I915_WRITE(PIPESTAT(pipe), 0);
2550 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2551 }
2552 I915_WRITE16(IMR, 0xffff);
2553 I915_WRITE16(IER, 0x0);
2554 I915_WRITE16(IIR, I915_READ16(IIR));
2555 }
2556
2557 static void i915_irq_preinstall(struct drm_device * dev)
2558 {
2559 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2560 int pipe;
2561
2562 atomic_set(&dev_priv->irq_received, 0);
2563
2564 if (I915_HAS_HOTPLUG(dev)) {
2565 I915_WRITE(PORT_HOTPLUG_EN, 0);
2566 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2567 }
2568
2569 I915_WRITE16(HWSTAM, 0xeffe);
2570 for_each_pipe(pipe)
2571 I915_WRITE(PIPESTAT(pipe), 0);
2572 I915_WRITE(IMR, 0xffffffff);
2573 I915_WRITE(IER, 0x0);
2574 POSTING_READ(IER);
2575 }
2576
2577 static int i915_irq_postinstall(struct drm_device *dev)
2578 {
2579 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2580 u32 enable_mask;
2581
2582 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2583
2584 /* Unmask the interrupts that we always want on. */
2585 dev_priv->irq_mask =
2586 ~(I915_ASLE_INTERRUPT |
2587 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2588 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2589 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2590 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2591 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2592
2593 enable_mask =
2594 I915_ASLE_INTERRUPT |
2595 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2596 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2597 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2598 I915_USER_INTERRUPT;
2599
2600 if (I915_HAS_HOTPLUG(dev)) {
2601 I915_WRITE(PORT_HOTPLUG_EN, 0);
2602 POSTING_READ(PORT_HOTPLUG_EN);
2603
2604 /* Enable in IER... */
2605 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2606 /* and unmask in IMR */
2607 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2608 }
2609
2610 I915_WRITE(IMR, dev_priv->irq_mask);
2611 I915_WRITE(IER, enable_mask);
2612 POSTING_READ(IER);
2613
2614 i915_enable_asle_pipestat(dev);
2615
2616 return 0;
2617 }
2618
2619 /*
2620 * Returns true when a page flip has completed.
2621 */
2622 static bool i915_handle_vblank(struct drm_device *dev,
2623 int plane, int pipe, u32 iir)
2624 {
2625 drm_i915_private_t *dev_priv = dev->dev_private;
2626 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2627
2628 if (!drm_handle_vblank(dev, pipe))
2629 return false;
2630
2631 if ((iir & flip_pending) == 0)
2632 return false;
2633
2634 intel_prepare_page_flip(dev, plane);
2635
2636 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2637 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2638 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2639 * the flip is completed (no longer pending). Since this doesn't raise
2640 * an interrupt per se, we watch for the change at vblank.
2641 */
2642 if (I915_READ(ISR) & flip_pending)
2643 return false;
2644
2645 intel_finish_page_flip(dev, pipe);
2646
2647 return true;
2648 }
2649
2650 static irqreturn_t i915_irq_handler(int irq, void *arg)
2651 {
2652 struct drm_device *dev = (struct drm_device *) arg;
2653 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2654 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2655 unsigned long irqflags;
2656 u32 flip_mask =
2657 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2658 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2659 int pipe, ret = IRQ_NONE;
2660
2661 atomic_inc(&dev_priv->irq_received);
2662
2663 iir = I915_READ(IIR);
2664 do {
2665 bool irq_received = (iir & ~flip_mask) != 0;
2666 bool blc_event = false;
2667
2668 /* Can't rely on pipestat interrupt bit in iir as it might
2669 * have been cleared after the pipestat interrupt was received.
2670 * It doesn't set the bit in iir again, but it still produces
2671 * interrupts (for non-MSI).
2672 */
2673 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2674 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2675 i915_handle_error(dev, false);
2676
2677 for_each_pipe(pipe) {
2678 int reg = PIPESTAT(pipe);
2679 pipe_stats[pipe] = I915_READ(reg);
2680
2681 /* Clear the PIPE*STAT regs before the IIR */
2682 if (pipe_stats[pipe] & 0x8000ffff) {
2683 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2684 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2685 pipe_name(pipe));
2686 I915_WRITE(reg, pipe_stats[pipe]);
2687 irq_received = true;
2688 }
2689 }
2690 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2691
2692 if (!irq_received)
2693 break;
2694
2695 /* Consume port. Then clear IIR or we'll miss events */
2696 if ((I915_HAS_HOTPLUG(dev)) &&
2697 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2698 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2699 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2700
2701 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2702 hotplug_status);
2703
2704 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2705
2706 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2707 POSTING_READ(PORT_HOTPLUG_STAT);
2708 }
2709
2710 I915_WRITE(IIR, iir & ~flip_mask);
2711 new_iir = I915_READ(IIR); /* Flush posted writes */
2712
2713 if (iir & I915_USER_INTERRUPT)
2714 notify_ring(dev, &dev_priv->ring[RCS]);
2715
2716 for_each_pipe(pipe) {
2717 int plane = pipe;
2718 if (IS_MOBILE(dev))
2719 plane = !plane;
2720
2721 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2722 i915_handle_vblank(dev, plane, pipe, iir))
2723 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2724
2725 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2726 blc_event = true;
2727 }
2728
2729 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2730 intel_opregion_asle_intr(dev);
2731
2732 /* With MSI, interrupts are only generated when iir
2733 * transitions from zero to nonzero. If another bit got
2734 * set while we were handling the existing iir bits, then
2735 * we would never get another interrupt.
2736 *
2737 * This is fine on non-MSI as well, as if we hit this path
2738 * we avoid exiting the interrupt handler only to generate
2739 * another one.
2740 *
2741 * Note that for MSI this could cause a stray interrupt report
2742 * if an interrupt landed in the time between writing IIR and
2743 * the posting read. This should be rare enough to never
2744 * trigger the 99% of 100,000 interrupts test for disabling
2745 * stray interrupts.
2746 */
2747 ret = IRQ_HANDLED;
2748 iir = new_iir;
2749 } while (iir & ~flip_mask);
2750
2751 i915_update_dri1_breadcrumb(dev);
2752
2753 return ret;
2754 }
2755
2756 static void i915_irq_uninstall(struct drm_device * dev)
2757 {
2758 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2759 int pipe;
2760
2761 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2762
2763 if (I915_HAS_HOTPLUG(dev)) {
2764 I915_WRITE(PORT_HOTPLUG_EN, 0);
2765 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2766 }
2767
2768 I915_WRITE16(HWSTAM, 0xffff);
2769 for_each_pipe(pipe) {
2770 /* Clear enable bits; then clear status bits */
2771 I915_WRITE(PIPESTAT(pipe), 0);
2772 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2773 }
2774 I915_WRITE(IMR, 0xffffffff);
2775 I915_WRITE(IER, 0x0);
2776
2777 I915_WRITE(IIR, I915_READ(IIR));
2778 }
2779
2780 static void i965_irq_preinstall(struct drm_device * dev)
2781 {
2782 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2783 int pipe;
2784
2785 atomic_set(&dev_priv->irq_received, 0);
2786
2787 I915_WRITE(PORT_HOTPLUG_EN, 0);
2788 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2789
2790 I915_WRITE(HWSTAM, 0xeffe);
2791 for_each_pipe(pipe)
2792 I915_WRITE(PIPESTAT(pipe), 0);
2793 I915_WRITE(IMR, 0xffffffff);
2794 I915_WRITE(IER, 0x0);
2795 POSTING_READ(IER);
2796 }
2797
2798 static int i965_irq_postinstall(struct drm_device *dev)
2799 {
2800 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2801 u32 enable_mask;
2802 u32 error_mask;
2803 unsigned long irqflags;
2804
2805 /* Unmask the interrupts that we always want on. */
2806 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2807 I915_DISPLAY_PORT_INTERRUPT |
2808 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2809 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2810 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2811 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2812 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2813
2814 enable_mask = ~dev_priv->irq_mask;
2815 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2816 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2817 enable_mask |= I915_USER_INTERRUPT;
2818
2819 if (IS_G4X(dev))
2820 enable_mask |= I915_BSD_USER_INTERRUPT;
2821
2822 /* Interrupt setup is already guaranteed to be single-threaded, this is
2823 * just to make the assert_spin_locked check happy. */
2824 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2825 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2826 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2827
2828 /*
2829 * Enable some error detection, note the instruction error mask
2830 * bit is reserved, so we leave it masked.
2831 */
2832 if (IS_G4X(dev)) {
2833 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2834 GM45_ERROR_MEM_PRIV |
2835 GM45_ERROR_CP_PRIV |
2836 I915_ERROR_MEMORY_REFRESH);
2837 } else {
2838 error_mask = ~(I915_ERROR_PAGE_TABLE |
2839 I915_ERROR_MEMORY_REFRESH);
2840 }
2841 I915_WRITE(EMR, error_mask);
2842
2843 I915_WRITE(IMR, dev_priv->irq_mask);
2844 I915_WRITE(IER, enable_mask);
2845 POSTING_READ(IER);
2846
2847 I915_WRITE(PORT_HOTPLUG_EN, 0);
2848 POSTING_READ(PORT_HOTPLUG_EN);
2849
2850 i915_enable_asle_pipestat(dev);
2851
2852 return 0;
2853 }
2854
2855 static void i915_hpd_irq_setup(struct drm_device *dev)
2856 {
2857 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2858 struct drm_mode_config *mode_config = &dev->mode_config;
2859 struct intel_encoder *intel_encoder;
2860 u32 hotplug_en;
2861
2862 assert_spin_locked(&dev_priv->irq_lock);
2863
2864 if (I915_HAS_HOTPLUG(dev)) {
2865 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2866 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2867 /* Note HDMI and DP share hotplug bits */
2868 /* enable bits are the same for all generations */
2869 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2870 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2871 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2872 /* Programming the CRT detection parameters tends
2873 to generate a spurious hotplug event about three
2874 seconds later. So just do it once.
2875 */
2876 if (IS_G4X(dev))
2877 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2878 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2879 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2880
2881 /* Ignore TV since it's buggy */
2882 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2883 }
2884 }
2885
2886 static irqreturn_t i965_irq_handler(int irq, void *arg)
2887 {
2888 struct drm_device *dev = (struct drm_device *) arg;
2889 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2890 u32 iir, new_iir;
2891 u32 pipe_stats[I915_MAX_PIPES];
2892 unsigned long irqflags;
2893 int irq_received;
2894 int ret = IRQ_NONE, pipe;
2895 u32 flip_mask =
2896 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2897 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2898
2899 atomic_inc(&dev_priv->irq_received);
2900
2901 iir = I915_READ(IIR);
2902
2903 for (;;) {
2904 bool blc_event = false;
2905
2906 irq_received = (iir & ~flip_mask) != 0;
2907
2908 /* Can't rely on pipestat interrupt bit in iir as it might
2909 * have been cleared after the pipestat interrupt was received.
2910 * It doesn't set the bit in iir again, but it still produces
2911 * interrupts (for non-MSI).
2912 */
2913 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2914 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2915 i915_handle_error(dev, false);
2916
2917 for_each_pipe(pipe) {
2918 int reg = PIPESTAT(pipe);
2919 pipe_stats[pipe] = I915_READ(reg);
2920
2921 /*
2922 * Clear the PIPE*STAT regs before the IIR
2923 */
2924 if (pipe_stats[pipe] & 0x8000ffff) {
2925 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2926 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2927 pipe_name(pipe));
2928 I915_WRITE(reg, pipe_stats[pipe]);
2929 irq_received = 1;
2930 }
2931 }
2932 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2933
2934 if (!irq_received)
2935 break;
2936
2937 ret = IRQ_HANDLED;
2938
2939 /* Consume port. Then clear IIR or we'll miss events */
2940 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2941 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2942 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2943 HOTPLUG_INT_STATUS_G4X :
2944 HOTPLUG_INT_STATUS_I915);
2945
2946 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2947 hotplug_status);
2948
2949 intel_hpd_irq_handler(dev, hotplug_trigger,
2950 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2951
2952 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2953 I915_READ(PORT_HOTPLUG_STAT);
2954 }
2955
2956 I915_WRITE(IIR, iir & ~flip_mask);
2957 new_iir = I915_READ(IIR); /* Flush posted writes */
2958
2959 if (iir & I915_USER_INTERRUPT)
2960 notify_ring(dev, &dev_priv->ring[RCS]);
2961 if (iir & I915_BSD_USER_INTERRUPT)
2962 notify_ring(dev, &dev_priv->ring[VCS]);
2963
2964 for_each_pipe(pipe) {
2965 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2966 i915_handle_vblank(dev, pipe, pipe, iir))
2967 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
2968
2969 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2970 blc_event = true;
2971 }
2972
2973
2974 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2975 intel_opregion_asle_intr(dev);
2976
2977 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2978 gmbus_irq_handler(dev);
2979
2980 /* With MSI, interrupts are only generated when iir
2981 * transitions from zero to nonzero. If another bit got
2982 * set while we were handling the existing iir bits, then
2983 * we would never get another interrupt.
2984 *
2985 * This is fine on non-MSI as well, as if we hit this path
2986 * we avoid exiting the interrupt handler only to generate
2987 * another one.
2988 *
2989 * Note that for MSI this could cause a stray interrupt report
2990 * if an interrupt landed in the time between writing IIR and
2991 * the posting read. This should be rare enough to never
2992 * trigger the 99% of 100,000 interrupts test for disabling
2993 * stray interrupts.
2994 */
2995 iir = new_iir;
2996 }
2997
2998 i915_update_dri1_breadcrumb(dev);
2999
3000 return ret;
3001 }
3002
3003 static void i965_irq_uninstall(struct drm_device * dev)
3004 {
3005 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3006 int pipe;
3007
3008 if (!dev_priv)
3009 return;
3010
3011 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3012
3013 I915_WRITE(PORT_HOTPLUG_EN, 0);
3014 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3015
3016 I915_WRITE(HWSTAM, 0xffffffff);
3017 for_each_pipe(pipe)
3018 I915_WRITE(PIPESTAT(pipe), 0);
3019 I915_WRITE(IMR, 0xffffffff);
3020 I915_WRITE(IER, 0x0);
3021
3022 for_each_pipe(pipe)
3023 I915_WRITE(PIPESTAT(pipe),
3024 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3025 I915_WRITE(IIR, I915_READ(IIR));
3026 }
3027
3028 static void i915_reenable_hotplug_timer_func(unsigned long data)
3029 {
3030 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3031 struct drm_device *dev = dev_priv->dev;
3032 struct drm_mode_config *mode_config = &dev->mode_config;
3033 unsigned long irqflags;
3034 int i;
3035
3036 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3037 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3038 struct drm_connector *connector;
3039
3040 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3041 continue;
3042
3043 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3044
3045 list_for_each_entry(connector, &mode_config->connector_list, head) {
3046 struct intel_connector *intel_connector = to_intel_connector(connector);
3047
3048 if (intel_connector->encoder->hpd_pin == i) {
3049 if (connector->polled != intel_connector->polled)
3050 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3051 drm_get_connector_name(connector));
3052 connector->polled = intel_connector->polled;
3053 if (!connector->polled)
3054 connector->polled = DRM_CONNECTOR_POLL_HPD;
3055 }
3056 }
3057 }
3058 if (dev_priv->display.hpd_irq_setup)
3059 dev_priv->display.hpd_irq_setup(dev);
3060 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3061 }
3062
3063 void intel_irq_init(struct drm_device *dev)
3064 {
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066
3067 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3068 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3069 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3070 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3071
3072 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3073 i915_hangcheck_elapsed,
3074 (unsigned long) dev);
3075 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3076 (unsigned long) dev_priv);
3077
3078 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3079
3080 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3081 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3082 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3083 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3084 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3085 }
3086
3087 if (drm_core_check_feature(dev, DRIVER_MODESET))
3088 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3089 else
3090 dev->driver->get_vblank_timestamp = NULL;
3091 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3092
3093 if (IS_VALLEYVIEW(dev)) {
3094 dev->driver->irq_handler = valleyview_irq_handler;
3095 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3096 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3097 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3098 dev->driver->enable_vblank = valleyview_enable_vblank;
3099 dev->driver->disable_vblank = valleyview_disable_vblank;
3100 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3101 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3102 /* Share uninstall handlers with ILK/SNB */
3103 dev->driver->irq_handler = ivybridge_irq_handler;
3104 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3105 dev->driver->irq_postinstall = ivybridge_irq_postinstall;
3106 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3107 dev->driver->enable_vblank = ivybridge_enable_vblank;
3108 dev->driver->disable_vblank = ivybridge_disable_vblank;
3109 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3110 } else if (HAS_PCH_SPLIT(dev)) {
3111 dev->driver->irq_handler = ironlake_irq_handler;
3112 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3113 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3114 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3115 dev->driver->enable_vblank = ironlake_enable_vblank;
3116 dev->driver->disable_vblank = ironlake_disable_vblank;
3117 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3118 } else {
3119 if (INTEL_INFO(dev)->gen == 2) {
3120 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3121 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3122 dev->driver->irq_handler = i8xx_irq_handler;
3123 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3124 } else if (INTEL_INFO(dev)->gen == 3) {
3125 dev->driver->irq_preinstall = i915_irq_preinstall;
3126 dev->driver->irq_postinstall = i915_irq_postinstall;
3127 dev->driver->irq_uninstall = i915_irq_uninstall;
3128 dev->driver->irq_handler = i915_irq_handler;
3129 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3130 } else {
3131 dev->driver->irq_preinstall = i965_irq_preinstall;
3132 dev->driver->irq_postinstall = i965_irq_postinstall;
3133 dev->driver->irq_uninstall = i965_irq_uninstall;
3134 dev->driver->irq_handler = i965_irq_handler;
3135 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3136 }
3137 dev->driver->enable_vblank = i915_enable_vblank;
3138 dev->driver->disable_vblank = i915_disable_vblank;
3139 }
3140 }
3141
3142 void intel_hpd_init(struct drm_device *dev)
3143 {
3144 struct drm_i915_private *dev_priv = dev->dev_private;
3145 struct drm_mode_config *mode_config = &dev->mode_config;
3146 struct drm_connector *connector;
3147 unsigned long irqflags;
3148 int i;
3149
3150 for (i = 1; i < HPD_NUM_PINS; i++) {
3151 dev_priv->hpd_stats[i].hpd_cnt = 0;
3152 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3153 }
3154 list_for_each_entry(connector, &mode_config->connector_list, head) {
3155 struct intel_connector *intel_connector = to_intel_connector(connector);
3156 connector->polled = intel_connector->polled;
3157 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3158 connector->polled = DRM_CONNECTOR_POLL_HPD;
3159 }
3160
3161 /* Interrupt setup is already guaranteed to be single-threaded, this is
3162 * just to make the assert_spin_locked checks happy. */
3163 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3164 if (dev_priv->display.hpd_irq_setup)
3165 dev_priv->display.hpd_irq_setup(dev);
3166 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3167 }
This page took 0.102195 seconds and 6 git commands to generate.