drm/i915: sanitize rps irq enabling
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94 POSTING_READ(GEN8_##type##_IMR(which)); \
95 I915_WRITE(GEN8_##type##_IER(which), 0); \
96 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97 POSTING_READ(GEN8_##type##_IIR(which)); \
98 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99 POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103 I915_WRITE(type##IMR, 0xffffffff); \
104 POSTING_READ(type##IMR); \
105 I915_WRITE(type##IER, 0); \
106 I915_WRITE(type##IIR, 0xffffffff); \
107 POSTING_READ(type##IIR); \
108 I915_WRITE(type##IIR, 0xffffffff); \
109 POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114 */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116 u32 val = I915_READ(reg); \
117 if (val) { \
118 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119 (reg), val); \
120 I915_WRITE((reg), 0xffffffff); \
121 POSTING_READ(reg); \
122 I915_WRITE((reg), 0xffffffff); \
123 POSTING_READ(reg); \
124 } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131 POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136 I915_WRITE(type##IER, (ier_val)); \
137 I915_WRITE(type##IMR, (imr_val)); \
138 POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 assert_spin_locked(&dev_priv->irq_lock);
148
149 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150 return;
151
152 if ((dev_priv->irq_mask & mask) != 0) {
153 dev_priv->irq_mask &= ~mask;
154 I915_WRITE(DEIMR, dev_priv->irq_mask);
155 POSTING_READ(DEIMR);
156 }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162 assert_spin_locked(&dev_priv->irq_lock);
163
164 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165 return;
166
167 if ((dev_priv->irq_mask & mask) != mask) {
168 dev_priv->irq_mask |= mask;
169 I915_WRITE(DEIMR, dev_priv->irq_mask);
170 POSTING_READ(DEIMR);
171 }
172 }
173
174 /**
175 * ilk_update_gt_irq - update GTIMR
176 * @dev_priv: driver private
177 * @interrupt_mask: mask of interrupt bits to update
178 * @enabled_irq_mask: mask of interrupt bits to enable
179 */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181 uint32_t interrupt_mask,
182 uint32_t enabled_irq_mask)
183 {
184 assert_spin_locked(&dev_priv->irq_lock);
185
186 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
187 return;
188
189 dev_priv->gt_irq_mask &= ~interrupt_mask;
190 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
191 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
192 POSTING_READ(GTIMR);
193 }
194
195 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
196 {
197 ilk_update_gt_irq(dev_priv, mask, mask);
198 }
199
200 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
201 {
202 ilk_update_gt_irq(dev_priv, mask, 0);
203 }
204
205 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
206 {
207 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
208 }
209
210 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
211 {
212 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
213 }
214
215 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
216 {
217 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
218 }
219
220 /**
221 * snb_update_pm_irq - update GEN6_PMIMR
222 * @dev_priv: driver private
223 * @interrupt_mask: mask of interrupt bits to update
224 * @enabled_irq_mask: mask of interrupt bits to enable
225 */
226 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
227 uint32_t interrupt_mask,
228 uint32_t enabled_irq_mask)
229 {
230 uint32_t new_val;
231
232 assert_spin_locked(&dev_priv->irq_lock);
233
234 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
235 return;
236
237 new_val = dev_priv->pm_irq_mask;
238 new_val &= ~interrupt_mask;
239 new_val |= (~enabled_irq_mask & interrupt_mask);
240
241 if (new_val != dev_priv->pm_irq_mask) {
242 dev_priv->pm_irq_mask = new_val;
243 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
244 POSTING_READ(gen6_pm_imr(dev_priv));
245 }
246 }
247
248 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
249 {
250 snb_update_pm_irq(dev_priv, mask, mask);
251 }
252
253 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
254 {
255 snb_update_pm_irq(dev_priv, mask, 0);
256 }
257
258 void gen6_reset_rps_interrupts(struct drm_device *dev)
259 {
260 struct drm_i915_private *dev_priv = dev->dev_private;
261 uint32_t reg = gen6_pm_iir(dev_priv);
262
263 spin_lock_irq(&dev_priv->irq_lock);
264 I915_WRITE(reg, dev_priv->pm_rps_events);
265 I915_WRITE(reg, dev_priv->pm_rps_events);
266 POSTING_READ(reg);
267 spin_unlock_irq(&dev_priv->irq_lock);
268 }
269
270 void gen6_enable_rps_interrupts(struct drm_device *dev)
271 {
272 struct drm_i915_private *dev_priv = dev->dev_private;
273
274 spin_lock_irq(&dev_priv->irq_lock);
275 WARN_ON(dev_priv->rps.pm_iir);
276 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
277 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
278 spin_unlock_irq(&dev_priv->irq_lock);
279 }
280
281 void gen6_disable_rps_interrupts(struct drm_device *dev)
282 {
283 struct drm_i915_private *dev_priv = dev->dev_private;
284
285 I915_WRITE(GEN6_PMINTRMSK, INTEL_INFO(dev_priv)->gen >= 8 ?
286 ~GEN8_PMINTR_REDIRECT_TO_NON_DISP : ~0);
287 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
288 ~dev_priv->pm_rps_events);
289 /* Complete PM interrupt masking here doesn't race with the rps work
290 * item again unmasking PM interrupts because that is using a different
291 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
292 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
293
294 spin_lock_irq(&dev_priv->irq_lock);
295 dev_priv->rps.pm_iir = 0;
296 spin_unlock_irq(&dev_priv->irq_lock);
297
298 I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
299 }
300
301 /**
302 * ibx_display_interrupt_update - update SDEIMR
303 * @dev_priv: driver private
304 * @interrupt_mask: mask of interrupt bits to update
305 * @enabled_irq_mask: mask of interrupt bits to enable
306 */
307 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
308 uint32_t interrupt_mask,
309 uint32_t enabled_irq_mask)
310 {
311 uint32_t sdeimr = I915_READ(SDEIMR);
312 sdeimr &= ~interrupt_mask;
313 sdeimr |= (~enabled_irq_mask & interrupt_mask);
314
315 assert_spin_locked(&dev_priv->irq_lock);
316
317 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
318 return;
319
320 I915_WRITE(SDEIMR, sdeimr);
321 POSTING_READ(SDEIMR);
322 }
323
324 static void
325 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
326 u32 enable_mask, u32 status_mask)
327 {
328 u32 reg = PIPESTAT(pipe);
329 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
330
331 assert_spin_locked(&dev_priv->irq_lock);
332 WARN_ON(!intel_irqs_enabled(dev_priv));
333
334 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
335 status_mask & ~PIPESTAT_INT_STATUS_MASK,
336 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
337 pipe_name(pipe), enable_mask, status_mask))
338 return;
339
340 if ((pipestat & enable_mask) == enable_mask)
341 return;
342
343 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
344
345 /* Enable the interrupt, clear any pending status */
346 pipestat |= enable_mask | status_mask;
347 I915_WRITE(reg, pipestat);
348 POSTING_READ(reg);
349 }
350
351 static void
352 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
353 u32 enable_mask, u32 status_mask)
354 {
355 u32 reg = PIPESTAT(pipe);
356 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
357
358 assert_spin_locked(&dev_priv->irq_lock);
359 WARN_ON(!intel_irqs_enabled(dev_priv));
360
361 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
362 status_mask & ~PIPESTAT_INT_STATUS_MASK,
363 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
364 pipe_name(pipe), enable_mask, status_mask))
365 return;
366
367 if ((pipestat & enable_mask) == 0)
368 return;
369
370 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
371
372 pipestat &= ~enable_mask;
373 I915_WRITE(reg, pipestat);
374 POSTING_READ(reg);
375 }
376
377 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
378 {
379 u32 enable_mask = status_mask << 16;
380
381 /*
382 * On pipe A we don't support the PSR interrupt yet,
383 * on pipe B and C the same bit MBZ.
384 */
385 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
386 return 0;
387 /*
388 * On pipe B and C we don't support the PSR interrupt yet, on pipe
389 * A the same bit is for perf counters which we don't use either.
390 */
391 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
392 return 0;
393
394 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
395 SPRITE0_FLIP_DONE_INT_EN_VLV |
396 SPRITE1_FLIP_DONE_INT_EN_VLV);
397 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
398 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
399 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
400 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
401
402 return enable_mask;
403 }
404
405 void
406 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
407 u32 status_mask)
408 {
409 u32 enable_mask;
410
411 if (IS_VALLEYVIEW(dev_priv->dev))
412 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
413 status_mask);
414 else
415 enable_mask = status_mask << 16;
416 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
417 }
418
419 void
420 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
421 u32 status_mask)
422 {
423 u32 enable_mask;
424
425 if (IS_VALLEYVIEW(dev_priv->dev))
426 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
427 status_mask);
428 else
429 enable_mask = status_mask << 16;
430 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
431 }
432
433 /**
434 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
435 */
436 static void i915_enable_asle_pipestat(struct drm_device *dev)
437 {
438 struct drm_i915_private *dev_priv = dev->dev_private;
439
440 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
441 return;
442
443 spin_lock_irq(&dev_priv->irq_lock);
444
445 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
446 if (INTEL_INFO(dev)->gen >= 4)
447 i915_enable_pipestat(dev_priv, PIPE_A,
448 PIPE_LEGACY_BLC_EVENT_STATUS);
449
450 spin_unlock_irq(&dev_priv->irq_lock);
451 }
452
453 /**
454 * i915_pipe_enabled - check if a pipe is enabled
455 * @dev: DRM device
456 * @pipe: pipe to check
457 *
458 * Reading certain registers when the pipe is disabled can hang the chip.
459 * Use this routine to make sure the PLL is running and the pipe is active
460 * before reading such registers if unsure.
461 */
462 static int
463 i915_pipe_enabled(struct drm_device *dev, int pipe)
464 {
465 struct drm_i915_private *dev_priv = dev->dev_private;
466
467 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
468 /* Locking is horribly broken here, but whatever. */
469 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
471
472 return intel_crtc->active;
473 } else {
474 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
475 }
476 }
477
478 /*
479 * This timing diagram depicts the video signal in and
480 * around the vertical blanking period.
481 *
482 * Assumptions about the fictitious mode used in this example:
483 * vblank_start >= 3
484 * vsync_start = vblank_start + 1
485 * vsync_end = vblank_start + 2
486 * vtotal = vblank_start + 3
487 *
488 * start of vblank:
489 * latch double buffered registers
490 * increment frame counter (ctg+)
491 * generate start of vblank interrupt (gen4+)
492 * |
493 * | frame start:
494 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
495 * | may be shifted forward 1-3 extra lines via PIPECONF
496 * | |
497 * | | start of vsync:
498 * | | generate vsync interrupt
499 * | | |
500 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
501 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
502 * ----va---> <-----------------vb--------------------> <--------va-------------
503 * | | <----vs-----> |
504 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
505 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
506 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
507 * | | |
508 * last visible pixel first visible pixel
509 * | increment frame counter (gen3/4)
510 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
511 *
512 * x = horizontal active
513 * _ = horizontal blanking
514 * hs = horizontal sync
515 * va = vertical active
516 * vb = vertical blanking
517 * vs = vertical sync
518 * vbs = vblank_start (number)
519 *
520 * Summary:
521 * - most events happen at the start of horizontal sync
522 * - frame start happens at the start of horizontal blank, 1-4 lines
523 * (depending on PIPECONF settings) after the start of vblank
524 * - gen3/4 pixel and frame counter are synchronized with the start
525 * of horizontal active on the first line of vertical active
526 */
527
528 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
529 {
530 /* Gen2 doesn't have a hardware frame counter */
531 return 0;
532 }
533
534 /* Called from drm generic code, passed a 'crtc', which
535 * we use as a pipe index
536 */
537 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
538 {
539 struct drm_i915_private *dev_priv = dev->dev_private;
540 unsigned long high_frame;
541 unsigned long low_frame;
542 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
543
544 if (!i915_pipe_enabled(dev, pipe)) {
545 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
546 "pipe %c\n", pipe_name(pipe));
547 return 0;
548 }
549
550 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
551 struct intel_crtc *intel_crtc =
552 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
553 const struct drm_display_mode *mode =
554 &intel_crtc->config.adjusted_mode;
555
556 htotal = mode->crtc_htotal;
557 hsync_start = mode->crtc_hsync_start;
558 vbl_start = mode->crtc_vblank_start;
559 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
560 vbl_start = DIV_ROUND_UP(vbl_start, 2);
561 } else {
562 enum transcoder cpu_transcoder = (enum transcoder) pipe;
563
564 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
565 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1;
566 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
567 if ((I915_READ(PIPECONF(cpu_transcoder)) &
568 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
569 vbl_start = DIV_ROUND_UP(vbl_start, 2);
570 }
571
572 /* Convert to pixel count */
573 vbl_start *= htotal;
574
575 /* Start of vblank event occurs at start of hsync */
576 vbl_start -= htotal - hsync_start;
577
578 high_frame = PIPEFRAME(pipe);
579 low_frame = PIPEFRAMEPIXEL(pipe);
580
581 /*
582 * High & low register fields aren't synchronized, so make sure
583 * we get a low value that's stable across two reads of the high
584 * register.
585 */
586 do {
587 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
588 low = I915_READ(low_frame);
589 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
590 } while (high1 != high2);
591
592 high1 >>= PIPE_FRAME_HIGH_SHIFT;
593 pixel = low & PIPE_PIXEL_MASK;
594 low >>= PIPE_FRAME_LOW_SHIFT;
595
596 /*
597 * The frame counter increments at beginning of active.
598 * Cook up a vblank counter by also checking the pixel
599 * counter against vblank start.
600 */
601 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
602 }
603
604 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
605 {
606 struct drm_i915_private *dev_priv = dev->dev_private;
607 int reg = PIPE_FRMCOUNT_GM45(pipe);
608
609 if (!i915_pipe_enabled(dev, pipe)) {
610 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
611 "pipe %c\n", pipe_name(pipe));
612 return 0;
613 }
614
615 return I915_READ(reg);
616 }
617
618 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
619 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
620
621 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
622 {
623 struct drm_device *dev = crtc->base.dev;
624 struct drm_i915_private *dev_priv = dev->dev_private;
625 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
626 enum pipe pipe = crtc->pipe;
627 int position, vtotal;
628
629 vtotal = mode->crtc_vtotal;
630 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
631 vtotal /= 2;
632
633 if (IS_GEN2(dev))
634 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
635 else
636 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
637
638 /*
639 * See update_scanline_offset() for the details on the
640 * scanline_offset adjustment.
641 */
642 return (position + crtc->scanline_offset) % vtotal;
643 }
644
645 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
646 unsigned int flags, int *vpos, int *hpos,
647 ktime_t *stime, ktime_t *etime)
648 {
649 struct drm_i915_private *dev_priv = dev->dev_private;
650 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
653 int position;
654 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
655 bool in_vbl = true;
656 int ret = 0;
657 unsigned long irqflags;
658
659 if (!intel_crtc->active) {
660 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
661 "pipe %c\n", pipe_name(pipe));
662 return 0;
663 }
664
665 htotal = mode->crtc_htotal;
666 hsync_start = mode->crtc_hsync_start;
667 vtotal = mode->crtc_vtotal;
668 vbl_start = mode->crtc_vblank_start;
669 vbl_end = mode->crtc_vblank_end;
670
671 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
672 vbl_start = DIV_ROUND_UP(vbl_start, 2);
673 vbl_end /= 2;
674 vtotal /= 2;
675 }
676
677 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
678
679 /*
680 * Lock uncore.lock, as we will do multiple timing critical raw
681 * register reads, potentially with preemption disabled, so the
682 * following code must not block on uncore.lock.
683 */
684 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
685
686 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
687
688 /* Get optional system timestamp before query. */
689 if (stime)
690 *stime = ktime_get();
691
692 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
693 /* No obvious pixelcount register. Only query vertical
694 * scanout position from Display scan line register.
695 */
696 position = __intel_get_crtc_scanline(intel_crtc);
697 } else {
698 /* Have access to pixelcount since start of frame.
699 * We can split this into vertical and horizontal
700 * scanout position.
701 */
702 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
703
704 /* convert to pixel counts */
705 vbl_start *= htotal;
706 vbl_end *= htotal;
707 vtotal *= htotal;
708
709 /*
710 * In interlaced modes, the pixel counter counts all pixels,
711 * so one field will have htotal more pixels. In order to avoid
712 * the reported position from jumping backwards when the pixel
713 * counter is beyond the length of the shorter field, just
714 * clamp the position the length of the shorter field. This
715 * matches how the scanline counter based position works since
716 * the scanline counter doesn't count the two half lines.
717 */
718 if (position >= vtotal)
719 position = vtotal - 1;
720
721 /*
722 * Start of vblank interrupt is triggered at start of hsync,
723 * just prior to the first active line of vblank. However we
724 * consider lines to start at the leading edge of horizontal
725 * active. So, should we get here before we've crossed into
726 * the horizontal active of the first line in vblank, we would
727 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
728 * always add htotal-hsync_start to the current pixel position.
729 */
730 position = (position + htotal - hsync_start) % vtotal;
731 }
732
733 /* Get optional system timestamp after query. */
734 if (etime)
735 *etime = ktime_get();
736
737 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
738
739 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
740
741 in_vbl = position >= vbl_start && position < vbl_end;
742
743 /*
744 * While in vblank, position will be negative
745 * counting up towards 0 at vbl_end. And outside
746 * vblank, position will be positive counting
747 * up since vbl_end.
748 */
749 if (position >= vbl_start)
750 position -= vbl_end;
751 else
752 position += vtotal - vbl_end;
753
754 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
755 *vpos = position;
756 *hpos = 0;
757 } else {
758 *vpos = position / htotal;
759 *hpos = position - (*vpos * htotal);
760 }
761
762 /* In vblank? */
763 if (in_vbl)
764 ret |= DRM_SCANOUTPOS_IN_VBLANK;
765
766 return ret;
767 }
768
769 int intel_get_crtc_scanline(struct intel_crtc *crtc)
770 {
771 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
772 unsigned long irqflags;
773 int position;
774
775 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
776 position = __intel_get_crtc_scanline(crtc);
777 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
778
779 return position;
780 }
781
782 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
783 int *max_error,
784 struct timeval *vblank_time,
785 unsigned flags)
786 {
787 struct drm_crtc *crtc;
788
789 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
790 DRM_ERROR("Invalid crtc %d\n", pipe);
791 return -EINVAL;
792 }
793
794 /* Get drm_crtc to timestamp: */
795 crtc = intel_get_crtc_for_pipe(dev, pipe);
796 if (crtc == NULL) {
797 DRM_ERROR("Invalid crtc %d\n", pipe);
798 return -EINVAL;
799 }
800
801 if (!crtc->enabled) {
802 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
803 return -EBUSY;
804 }
805
806 /* Helper routine in DRM core does all the work: */
807 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
808 vblank_time, flags,
809 crtc,
810 &to_intel_crtc(crtc)->config.adjusted_mode);
811 }
812
813 static bool intel_hpd_irq_event(struct drm_device *dev,
814 struct drm_connector *connector)
815 {
816 enum drm_connector_status old_status;
817
818 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
819 old_status = connector->status;
820
821 connector->status = connector->funcs->detect(connector, false);
822 if (old_status == connector->status)
823 return false;
824
825 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
826 connector->base.id,
827 connector->name,
828 drm_get_connector_status_name(old_status),
829 drm_get_connector_status_name(connector->status));
830
831 return true;
832 }
833
834 static void i915_digport_work_func(struct work_struct *work)
835 {
836 struct drm_i915_private *dev_priv =
837 container_of(work, struct drm_i915_private, dig_port_work);
838 u32 long_port_mask, short_port_mask;
839 struct intel_digital_port *intel_dig_port;
840 int i, ret;
841 u32 old_bits = 0;
842
843 spin_lock_irq(&dev_priv->irq_lock);
844 long_port_mask = dev_priv->long_hpd_port_mask;
845 dev_priv->long_hpd_port_mask = 0;
846 short_port_mask = dev_priv->short_hpd_port_mask;
847 dev_priv->short_hpd_port_mask = 0;
848 spin_unlock_irq(&dev_priv->irq_lock);
849
850 for (i = 0; i < I915_MAX_PORTS; i++) {
851 bool valid = false;
852 bool long_hpd = false;
853 intel_dig_port = dev_priv->hpd_irq_port[i];
854 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
855 continue;
856
857 if (long_port_mask & (1 << i)) {
858 valid = true;
859 long_hpd = true;
860 } else if (short_port_mask & (1 << i))
861 valid = true;
862
863 if (valid) {
864 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
865 if (ret == true) {
866 /* if we get true fallback to old school hpd */
867 old_bits |= (1 << intel_dig_port->base.hpd_pin);
868 }
869 }
870 }
871
872 if (old_bits) {
873 spin_lock_irq(&dev_priv->irq_lock);
874 dev_priv->hpd_event_bits |= old_bits;
875 spin_unlock_irq(&dev_priv->irq_lock);
876 schedule_work(&dev_priv->hotplug_work);
877 }
878 }
879
880 /*
881 * Handle hotplug events outside the interrupt handler proper.
882 */
883 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
884
885 static void i915_hotplug_work_func(struct work_struct *work)
886 {
887 struct drm_i915_private *dev_priv =
888 container_of(work, struct drm_i915_private, hotplug_work);
889 struct drm_device *dev = dev_priv->dev;
890 struct drm_mode_config *mode_config = &dev->mode_config;
891 struct intel_connector *intel_connector;
892 struct intel_encoder *intel_encoder;
893 struct drm_connector *connector;
894 bool hpd_disabled = false;
895 bool changed = false;
896 u32 hpd_event_bits;
897
898 mutex_lock(&mode_config->mutex);
899 DRM_DEBUG_KMS("running encoder hotplug functions\n");
900
901 spin_lock_irq(&dev_priv->irq_lock);
902
903 hpd_event_bits = dev_priv->hpd_event_bits;
904 dev_priv->hpd_event_bits = 0;
905 list_for_each_entry(connector, &mode_config->connector_list, head) {
906 intel_connector = to_intel_connector(connector);
907 if (!intel_connector->encoder)
908 continue;
909 intel_encoder = intel_connector->encoder;
910 if (intel_encoder->hpd_pin > HPD_NONE &&
911 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
912 connector->polled == DRM_CONNECTOR_POLL_HPD) {
913 DRM_INFO("HPD interrupt storm detected on connector %s: "
914 "switching from hotplug detection to polling\n",
915 connector->name);
916 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
917 connector->polled = DRM_CONNECTOR_POLL_CONNECT
918 | DRM_CONNECTOR_POLL_DISCONNECT;
919 hpd_disabled = true;
920 }
921 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
922 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
923 connector->name, intel_encoder->hpd_pin);
924 }
925 }
926 /* if there were no outputs to poll, poll was disabled,
927 * therefore make sure it's enabled when disabling HPD on
928 * some connectors */
929 if (hpd_disabled) {
930 drm_kms_helper_poll_enable(dev);
931 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
932 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
933 }
934
935 spin_unlock_irq(&dev_priv->irq_lock);
936
937 list_for_each_entry(connector, &mode_config->connector_list, head) {
938 intel_connector = to_intel_connector(connector);
939 if (!intel_connector->encoder)
940 continue;
941 intel_encoder = intel_connector->encoder;
942 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
943 if (intel_encoder->hot_plug)
944 intel_encoder->hot_plug(intel_encoder);
945 if (intel_hpd_irq_event(dev, connector))
946 changed = true;
947 }
948 }
949 mutex_unlock(&mode_config->mutex);
950
951 if (changed)
952 drm_kms_helper_hotplug_event(dev);
953 }
954
955 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
956 {
957 struct drm_i915_private *dev_priv = dev->dev_private;
958 u32 busy_up, busy_down, max_avg, min_avg;
959 u8 new_delay;
960
961 spin_lock(&mchdev_lock);
962
963 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
964
965 new_delay = dev_priv->ips.cur_delay;
966
967 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
968 busy_up = I915_READ(RCPREVBSYTUPAVG);
969 busy_down = I915_READ(RCPREVBSYTDNAVG);
970 max_avg = I915_READ(RCBMAXAVG);
971 min_avg = I915_READ(RCBMINAVG);
972
973 /* Handle RCS change request from hw */
974 if (busy_up > max_avg) {
975 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
976 new_delay = dev_priv->ips.cur_delay - 1;
977 if (new_delay < dev_priv->ips.max_delay)
978 new_delay = dev_priv->ips.max_delay;
979 } else if (busy_down < min_avg) {
980 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
981 new_delay = dev_priv->ips.cur_delay + 1;
982 if (new_delay > dev_priv->ips.min_delay)
983 new_delay = dev_priv->ips.min_delay;
984 }
985
986 if (ironlake_set_drps(dev, new_delay))
987 dev_priv->ips.cur_delay = new_delay;
988
989 spin_unlock(&mchdev_lock);
990
991 return;
992 }
993
994 static void notify_ring(struct drm_device *dev,
995 struct intel_engine_cs *ring)
996 {
997 if (!intel_ring_initialized(ring))
998 return;
999
1000 trace_i915_gem_request_complete(ring);
1001
1002 wake_up_all(&ring->irq_queue);
1003 }
1004
1005 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1006 struct intel_rps_ei *rps_ei)
1007 {
1008 u32 cz_ts, cz_freq_khz;
1009 u32 render_count, media_count;
1010 u32 elapsed_render, elapsed_media, elapsed_time;
1011 u32 residency = 0;
1012
1013 cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1014 cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1015
1016 render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1017 media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1018
1019 if (rps_ei->cz_clock == 0) {
1020 rps_ei->cz_clock = cz_ts;
1021 rps_ei->render_c0 = render_count;
1022 rps_ei->media_c0 = media_count;
1023
1024 return dev_priv->rps.cur_freq;
1025 }
1026
1027 elapsed_time = cz_ts - rps_ei->cz_clock;
1028 rps_ei->cz_clock = cz_ts;
1029
1030 elapsed_render = render_count - rps_ei->render_c0;
1031 rps_ei->render_c0 = render_count;
1032
1033 elapsed_media = media_count - rps_ei->media_c0;
1034 rps_ei->media_c0 = media_count;
1035
1036 /* Convert all the counters into common unit of milli sec */
1037 elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1038 elapsed_render /= cz_freq_khz;
1039 elapsed_media /= cz_freq_khz;
1040
1041 /*
1042 * Calculate overall C0 residency percentage
1043 * only if elapsed time is non zero
1044 */
1045 if (elapsed_time) {
1046 residency =
1047 ((max(elapsed_render, elapsed_media) * 100)
1048 / elapsed_time);
1049 }
1050
1051 return residency;
1052 }
1053
1054 /**
1055 * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1056 * busy-ness calculated from C0 counters of render & media power wells
1057 * @dev_priv: DRM device private
1058 *
1059 */
1060 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1061 {
1062 u32 residency_C0_up = 0, residency_C0_down = 0;
1063 int new_delay, adj;
1064
1065 dev_priv->rps.ei_interrupt_count++;
1066
1067 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1068
1069
1070 if (dev_priv->rps.up_ei.cz_clock == 0) {
1071 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1072 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1073 return dev_priv->rps.cur_freq;
1074 }
1075
1076
1077 /*
1078 * To down throttle, C0 residency should be less than down threshold
1079 * for continous EI intervals. So calculate down EI counters
1080 * once in VLV_INT_COUNT_FOR_DOWN_EI
1081 */
1082 if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1083
1084 dev_priv->rps.ei_interrupt_count = 0;
1085
1086 residency_C0_down = vlv_c0_residency(dev_priv,
1087 &dev_priv->rps.down_ei);
1088 } else {
1089 residency_C0_up = vlv_c0_residency(dev_priv,
1090 &dev_priv->rps.up_ei);
1091 }
1092
1093 new_delay = dev_priv->rps.cur_freq;
1094
1095 adj = dev_priv->rps.last_adj;
1096 /* C0 residency is greater than UP threshold. Increase Frequency */
1097 if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1098 if (adj > 0)
1099 adj *= 2;
1100 else
1101 adj = 1;
1102
1103 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1104 new_delay = dev_priv->rps.cur_freq + adj;
1105
1106 /*
1107 * For better performance, jump directly
1108 * to RPe if we're below it.
1109 */
1110 if (new_delay < dev_priv->rps.efficient_freq)
1111 new_delay = dev_priv->rps.efficient_freq;
1112
1113 } else if (!dev_priv->rps.ei_interrupt_count &&
1114 (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1115 if (adj < 0)
1116 adj *= 2;
1117 else
1118 adj = -1;
1119 /*
1120 * This means, C0 residency is less than down threshold over
1121 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1122 */
1123 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1124 new_delay = dev_priv->rps.cur_freq + adj;
1125 }
1126
1127 return new_delay;
1128 }
1129
1130 static void gen6_pm_rps_work(struct work_struct *work)
1131 {
1132 struct drm_i915_private *dev_priv =
1133 container_of(work, struct drm_i915_private, rps.work);
1134 u32 pm_iir;
1135 int new_delay, adj;
1136
1137 spin_lock_irq(&dev_priv->irq_lock);
1138 pm_iir = dev_priv->rps.pm_iir;
1139 dev_priv->rps.pm_iir = 0;
1140 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1141 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1142 spin_unlock_irq(&dev_priv->irq_lock);
1143
1144 /* Make sure we didn't queue anything we're not going to process. */
1145 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1146
1147 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1148 return;
1149
1150 mutex_lock(&dev_priv->rps.hw_lock);
1151
1152 adj = dev_priv->rps.last_adj;
1153 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1154 if (adj > 0)
1155 adj *= 2;
1156 else {
1157 /* CHV needs even encode values */
1158 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1159 }
1160 new_delay = dev_priv->rps.cur_freq + adj;
1161
1162 /*
1163 * For better performance, jump directly
1164 * to RPe if we're below it.
1165 */
1166 if (new_delay < dev_priv->rps.efficient_freq)
1167 new_delay = dev_priv->rps.efficient_freq;
1168 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1169 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1170 new_delay = dev_priv->rps.efficient_freq;
1171 else
1172 new_delay = dev_priv->rps.min_freq_softlimit;
1173 adj = 0;
1174 } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1175 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1176 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1177 if (adj < 0)
1178 adj *= 2;
1179 else {
1180 /* CHV needs even encode values */
1181 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1182 }
1183 new_delay = dev_priv->rps.cur_freq + adj;
1184 } else { /* unknown event */
1185 new_delay = dev_priv->rps.cur_freq;
1186 }
1187
1188 /* sysfs frequency interfaces may have snuck in while servicing the
1189 * interrupt
1190 */
1191 new_delay = clamp_t(int, new_delay,
1192 dev_priv->rps.min_freq_softlimit,
1193 dev_priv->rps.max_freq_softlimit);
1194
1195 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1196
1197 if (IS_VALLEYVIEW(dev_priv->dev))
1198 valleyview_set_rps(dev_priv->dev, new_delay);
1199 else
1200 gen6_set_rps(dev_priv->dev, new_delay);
1201
1202 mutex_unlock(&dev_priv->rps.hw_lock);
1203 }
1204
1205
1206 /**
1207 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1208 * occurred.
1209 * @work: workqueue struct
1210 *
1211 * Doesn't actually do anything except notify userspace. As a consequence of
1212 * this event, userspace should try to remap the bad rows since statistically
1213 * it is likely the same row is more likely to go bad again.
1214 */
1215 static void ivybridge_parity_work(struct work_struct *work)
1216 {
1217 struct drm_i915_private *dev_priv =
1218 container_of(work, struct drm_i915_private, l3_parity.error_work);
1219 u32 error_status, row, bank, subbank;
1220 char *parity_event[6];
1221 uint32_t misccpctl;
1222 uint8_t slice = 0;
1223
1224 /* We must turn off DOP level clock gating to access the L3 registers.
1225 * In order to prevent a get/put style interface, acquire struct mutex
1226 * any time we access those registers.
1227 */
1228 mutex_lock(&dev_priv->dev->struct_mutex);
1229
1230 /* If we've screwed up tracking, just let the interrupt fire again */
1231 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1232 goto out;
1233
1234 misccpctl = I915_READ(GEN7_MISCCPCTL);
1235 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1236 POSTING_READ(GEN7_MISCCPCTL);
1237
1238 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1239 u32 reg;
1240
1241 slice--;
1242 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1243 break;
1244
1245 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1246
1247 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1248
1249 error_status = I915_READ(reg);
1250 row = GEN7_PARITY_ERROR_ROW(error_status);
1251 bank = GEN7_PARITY_ERROR_BANK(error_status);
1252 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1253
1254 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1255 POSTING_READ(reg);
1256
1257 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1258 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1259 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1260 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1261 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1262 parity_event[5] = NULL;
1263
1264 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1265 KOBJ_CHANGE, parity_event);
1266
1267 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1268 slice, row, bank, subbank);
1269
1270 kfree(parity_event[4]);
1271 kfree(parity_event[3]);
1272 kfree(parity_event[2]);
1273 kfree(parity_event[1]);
1274 }
1275
1276 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1277
1278 out:
1279 WARN_ON(dev_priv->l3_parity.which_slice);
1280 spin_lock_irq(&dev_priv->irq_lock);
1281 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1282 spin_unlock_irq(&dev_priv->irq_lock);
1283
1284 mutex_unlock(&dev_priv->dev->struct_mutex);
1285 }
1286
1287 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1288 {
1289 struct drm_i915_private *dev_priv = dev->dev_private;
1290
1291 if (!HAS_L3_DPF(dev))
1292 return;
1293
1294 spin_lock(&dev_priv->irq_lock);
1295 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1296 spin_unlock(&dev_priv->irq_lock);
1297
1298 iir &= GT_PARITY_ERROR(dev);
1299 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1300 dev_priv->l3_parity.which_slice |= 1 << 1;
1301
1302 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1303 dev_priv->l3_parity.which_slice |= 1 << 0;
1304
1305 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1306 }
1307
1308 static void ilk_gt_irq_handler(struct drm_device *dev,
1309 struct drm_i915_private *dev_priv,
1310 u32 gt_iir)
1311 {
1312 if (gt_iir &
1313 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1314 notify_ring(dev, &dev_priv->ring[RCS]);
1315 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1316 notify_ring(dev, &dev_priv->ring[VCS]);
1317 }
1318
1319 static void snb_gt_irq_handler(struct drm_device *dev,
1320 struct drm_i915_private *dev_priv,
1321 u32 gt_iir)
1322 {
1323
1324 if (gt_iir &
1325 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1326 notify_ring(dev, &dev_priv->ring[RCS]);
1327 if (gt_iir & GT_BSD_USER_INTERRUPT)
1328 notify_ring(dev, &dev_priv->ring[VCS]);
1329 if (gt_iir & GT_BLT_USER_INTERRUPT)
1330 notify_ring(dev, &dev_priv->ring[BCS]);
1331
1332 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1333 GT_BSD_CS_ERROR_INTERRUPT |
1334 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1335 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1336 gt_iir);
1337 }
1338
1339 if (gt_iir & GT_PARITY_ERROR(dev))
1340 ivybridge_parity_error_irq_handler(dev, gt_iir);
1341 }
1342
1343 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1344 struct drm_i915_private *dev_priv,
1345 u32 master_ctl)
1346 {
1347 struct intel_engine_cs *ring;
1348 u32 rcs, bcs, vcs;
1349 uint32_t tmp = 0;
1350 irqreturn_t ret = IRQ_NONE;
1351
1352 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1353 tmp = I915_READ(GEN8_GT_IIR(0));
1354 if (tmp) {
1355 I915_WRITE(GEN8_GT_IIR(0), tmp);
1356 ret = IRQ_HANDLED;
1357
1358 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1359 ring = &dev_priv->ring[RCS];
1360 if (rcs & GT_RENDER_USER_INTERRUPT)
1361 notify_ring(dev, ring);
1362 if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1363 intel_execlists_handle_ctx_events(ring);
1364
1365 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1366 ring = &dev_priv->ring[BCS];
1367 if (bcs & GT_RENDER_USER_INTERRUPT)
1368 notify_ring(dev, ring);
1369 if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1370 intel_execlists_handle_ctx_events(ring);
1371 } else
1372 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1373 }
1374
1375 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1376 tmp = I915_READ(GEN8_GT_IIR(1));
1377 if (tmp) {
1378 I915_WRITE(GEN8_GT_IIR(1), tmp);
1379 ret = IRQ_HANDLED;
1380
1381 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1382 ring = &dev_priv->ring[VCS];
1383 if (vcs & GT_RENDER_USER_INTERRUPT)
1384 notify_ring(dev, ring);
1385 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1386 intel_execlists_handle_ctx_events(ring);
1387
1388 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1389 ring = &dev_priv->ring[VCS2];
1390 if (vcs & GT_RENDER_USER_INTERRUPT)
1391 notify_ring(dev, ring);
1392 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1393 intel_execlists_handle_ctx_events(ring);
1394 } else
1395 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1396 }
1397
1398 if (master_ctl & GEN8_GT_PM_IRQ) {
1399 tmp = I915_READ(GEN8_GT_IIR(2));
1400 if (tmp & dev_priv->pm_rps_events) {
1401 I915_WRITE(GEN8_GT_IIR(2),
1402 tmp & dev_priv->pm_rps_events);
1403 ret = IRQ_HANDLED;
1404 gen6_rps_irq_handler(dev_priv, tmp);
1405 } else
1406 DRM_ERROR("The master control interrupt lied (PM)!\n");
1407 }
1408
1409 if (master_ctl & GEN8_GT_VECS_IRQ) {
1410 tmp = I915_READ(GEN8_GT_IIR(3));
1411 if (tmp) {
1412 I915_WRITE(GEN8_GT_IIR(3), tmp);
1413 ret = IRQ_HANDLED;
1414
1415 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1416 ring = &dev_priv->ring[VECS];
1417 if (vcs & GT_RENDER_USER_INTERRUPT)
1418 notify_ring(dev, ring);
1419 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1420 intel_execlists_handle_ctx_events(ring);
1421 } else
1422 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1423 }
1424
1425 return ret;
1426 }
1427
1428 #define HPD_STORM_DETECT_PERIOD 1000
1429 #define HPD_STORM_THRESHOLD 5
1430
1431 static int pch_port_to_hotplug_shift(enum port port)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 case PORT_E:
1436 default:
1437 return -1;
1438 case PORT_B:
1439 return 0;
1440 case PORT_C:
1441 return 8;
1442 case PORT_D:
1443 return 16;
1444 }
1445 }
1446
1447 static int i915_port_to_hotplug_shift(enum port port)
1448 {
1449 switch (port) {
1450 case PORT_A:
1451 case PORT_E:
1452 default:
1453 return -1;
1454 case PORT_B:
1455 return 17;
1456 case PORT_C:
1457 return 19;
1458 case PORT_D:
1459 return 21;
1460 }
1461 }
1462
1463 static inline enum port get_port_from_pin(enum hpd_pin pin)
1464 {
1465 switch (pin) {
1466 case HPD_PORT_B:
1467 return PORT_B;
1468 case HPD_PORT_C:
1469 return PORT_C;
1470 case HPD_PORT_D:
1471 return PORT_D;
1472 default:
1473 return PORT_A; /* no hpd */
1474 }
1475 }
1476
1477 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1478 u32 hotplug_trigger,
1479 u32 dig_hotplug_reg,
1480 const u32 *hpd)
1481 {
1482 struct drm_i915_private *dev_priv = dev->dev_private;
1483 int i;
1484 enum port port;
1485 bool storm_detected = false;
1486 bool queue_dig = false, queue_hp = false;
1487 u32 dig_shift;
1488 u32 dig_port_mask = 0;
1489
1490 if (!hotplug_trigger)
1491 return;
1492
1493 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1494 hotplug_trigger, dig_hotplug_reg);
1495
1496 spin_lock(&dev_priv->irq_lock);
1497 for (i = 1; i < HPD_NUM_PINS; i++) {
1498 if (!(hpd[i] & hotplug_trigger))
1499 continue;
1500
1501 port = get_port_from_pin(i);
1502 if (port && dev_priv->hpd_irq_port[port]) {
1503 bool long_hpd;
1504
1505 if (HAS_PCH_SPLIT(dev)) {
1506 dig_shift = pch_port_to_hotplug_shift(port);
1507 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1508 } else {
1509 dig_shift = i915_port_to_hotplug_shift(port);
1510 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1511 }
1512
1513 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1514 port_name(port),
1515 long_hpd ? "long" : "short");
1516 /* for long HPD pulses we want to have the digital queue happen,
1517 but we still want HPD storm detection to function. */
1518 if (long_hpd) {
1519 dev_priv->long_hpd_port_mask |= (1 << port);
1520 dig_port_mask |= hpd[i];
1521 } else {
1522 /* for short HPD just trigger the digital queue */
1523 dev_priv->short_hpd_port_mask |= (1 << port);
1524 hotplug_trigger &= ~hpd[i];
1525 }
1526 queue_dig = true;
1527 }
1528 }
1529
1530 for (i = 1; i < HPD_NUM_PINS; i++) {
1531 if (hpd[i] & hotplug_trigger &&
1532 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1533 /*
1534 * On GMCH platforms the interrupt mask bits only
1535 * prevent irq generation, not the setting of the
1536 * hotplug bits itself. So only WARN about unexpected
1537 * interrupts on saner platforms.
1538 */
1539 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1540 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1541 hotplug_trigger, i, hpd[i]);
1542
1543 continue;
1544 }
1545
1546 if (!(hpd[i] & hotplug_trigger) ||
1547 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1548 continue;
1549
1550 if (!(dig_port_mask & hpd[i])) {
1551 dev_priv->hpd_event_bits |= (1 << i);
1552 queue_hp = true;
1553 }
1554
1555 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1556 dev_priv->hpd_stats[i].hpd_last_jiffies
1557 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1558 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1559 dev_priv->hpd_stats[i].hpd_cnt = 0;
1560 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1561 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1562 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1563 dev_priv->hpd_event_bits &= ~(1 << i);
1564 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1565 storm_detected = true;
1566 } else {
1567 dev_priv->hpd_stats[i].hpd_cnt++;
1568 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1569 dev_priv->hpd_stats[i].hpd_cnt);
1570 }
1571 }
1572
1573 if (storm_detected)
1574 dev_priv->display.hpd_irq_setup(dev);
1575 spin_unlock(&dev_priv->irq_lock);
1576
1577 /*
1578 * Our hotplug handler can grab modeset locks (by calling down into the
1579 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1580 * queue for otherwise the flush_work in the pageflip code will
1581 * deadlock.
1582 */
1583 if (queue_dig)
1584 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1585 if (queue_hp)
1586 schedule_work(&dev_priv->hotplug_work);
1587 }
1588
1589 static void gmbus_irq_handler(struct drm_device *dev)
1590 {
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592
1593 wake_up_all(&dev_priv->gmbus_wait_queue);
1594 }
1595
1596 static void dp_aux_irq_handler(struct drm_device *dev)
1597 {
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599
1600 wake_up_all(&dev_priv->gmbus_wait_queue);
1601 }
1602
1603 #if defined(CONFIG_DEBUG_FS)
1604 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1605 uint32_t crc0, uint32_t crc1,
1606 uint32_t crc2, uint32_t crc3,
1607 uint32_t crc4)
1608 {
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1611 struct intel_pipe_crc_entry *entry;
1612 int head, tail;
1613
1614 spin_lock(&pipe_crc->lock);
1615
1616 if (!pipe_crc->entries) {
1617 spin_unlock(&pipe_crc->lock);
1618 DRM_ERROR("spurious interrupt\n");
1619 return;
1620 }
1621
1622 head = pipe_crc->head;
1623 tail = pipe_crc->tail;
1624
1625 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1626 spin_unlock(&pipe_crc->lock);
1627 DRM_ERROR("CRC buffer overflowing\n");
1628 return;
1629 }
1630
1631 entry = &pipe_crc->entries[head];
1632
1633 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1634 entry->crc[0] = crc0;
1635 entry->crc[1] = crc1;
1636 entry->crc[2] = crc2;
1637 entry->crc[3] = crc3;
1638 entry->crc[4] = crc4;
1639
1640 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1641 pipe_crc->head = head;
1642
1643 spin_unlock(&pipe_crc->lock);
1644
1645 wake_up_interruptible(&pipe_crc->wq);
1646 }
1647 #else
1648 static inline void
1649 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1650 uint32_t crc0, uint32_t crc1,
1651 uint32_t crc2, uint32_t crc3,
1652 uint32_t crc4) {}
1653 #endif
1654
1655
1656 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1657 {
1658 struct drm_i915_private *dev_priv = dev->dev_private;
1659
1660 display_pipe_crc_irq_handler(dev, pipe,
1661 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1662 0, 0, 0, 0);
1663 }
1664
1665 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1666 {
1667 struct drm_i915_private *dev_priv = dev->dev_private;
1668
1669 display_pipe_crc_irq_handler(dev, pipe,
1670 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1671 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1672 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1673 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1674 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1675 }
1676
1677 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1678 {
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 uint32_t res1, res2;
1681
1682 if (INTEL_INFO(dev)->gen >= 3)
1683 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1684 else
1685 res1 = 0;
1686
1687 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1688 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1689 else
1690 res2 = 0;
1691
1692 display_pipe_crc_irq_handler(dev, pipe,
1693 I915_READ(PIPE_CRC_RES_RED(pipe)),
1694 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1695 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1696 res1, res2);
1697 }
1698
1699 /* The RPS events need forcewake, so we add them to a work queue and mask their
1700 * IMR bits until the work is done. Other interrupts can be processed without
1701 * the work queue. */
1702 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1703 {
1704 /* TODO: RPS on GEN9+ is not supported yet. */
1705 if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1706 "GEN9+: unexpected RPS IRQ\n"))
1707 return;
1708
1709 if (pm_iir & dev_priv->pm_rps_events) {
1710 spin_lock(&dev_priv->irq_lock);
1711 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1712 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1713 spin_unlock(&dev_priv->irq_lock);
1714
1715 queue_work(dev_priv->wq, &dev_priv->rps.work);
1716 }
1717
1718 if (INTEL_INFO(dev_priv)->gen >= 8)
1719 return;
1720
1721 if (HAS_VEBOX(dev_priv->dev)) {
1722 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1723 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1724
1725 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1726 i915_handle_error(dev_priv->dev, false,
1727 "VEBOX CS error interrupt 0x%08x",
1728 pm_iir);
1729 }
1730 }
1731 }
1732
1733 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1734 {
1735 if (!drm_handle_vblank(dev, pipe))
1736 return false;
1737
1738 return true;
1739 }
1740
1741 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1742 {
1743 struct drm_i915_private *dev_priv = dev->dev_private;
1744 u32 pipe_stats[I915_MAX_PIPES] = { };
1745 int pipe;
1746
1747 spin_lock(&dev_priv->irq_lock);
1748 for_each_pipe(dev_priv, pipe) {
1749 int reg;
1750 u32 mask, iir_bit = 0;
1751
1752 /*
1753 * PIPESTAT bits get signalled even when the interrupt is
1754 * disabled with the mask bits, and some of the status bits do
1755 * not generate interrupts at all (like the underrun bit). Hence
1756 * we need to be careful that we only handle what we want to
1757 * handle.
1758 */
1759
1760 /* fifo underruns are filterered in the underrun handler. */
1761 mask = PIPE_FIFO_UNDERRUN_STATUS;
1762
1763 switch (pipe) {
1764 case PIPE_A:
1765 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1766 break;
1767 case PIPE_B:
1768 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1769 break;
1770 case PIPE_C:
1771 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1772 break;
1773 }
1774 if (iir & iir_bit)
1775 mask |= dev_priv->pipestat_irq_mask[pipe];
1776
1777 if (!mask)
1778 continue;
1779
1780 reg = PIPESTAT(pipe);
1781 mask |= PIPESTAT_INT_ENABLE_MASK;
1782 pipe_stats[pipe] = I915_READ(reg) & mask;
1783
1784 /*
1785 * Clear the PIPE*STAT regs before the IIR
1786 */
1787 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1788 PIPESTAT_INT_STATUS_MASK))
1789 I915_WRITE(reg, pipe_stats[pipe]);
1790 }
1791 spin_unlock(&dev_priv->irq_lock);
1792
1793 for_each_pipe(dev_priv, pipe) {
1794 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1795 intel_pipe_handle_vblank(dev, pipe))
1796 intel_check_page_flip(dev, pipe);
1797
1798 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1799 intel_prepare_page_flip(dev, pipe);
1800 intel_finish_page_flip(dev, pipe);
1801 }
1802
1803 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1804 i9xx_pipe_crc_irq_handler(dev, pipe);
1805
1806 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1807 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1808 }
1809
1810 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1811 gmbus_irq_handler(dev);
1812 }
1813
1814 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1815 {
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1818
1819 if (hotplug_status) {
1820 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1821 /*
1822 * Make sure hotplug status is cleared before we clear IIR, or else we
1823 * may miss hotplug events.
1824 */
1825 POSTING_READ(PORT_HOTPLUG_STAT);
1826
1827 if (IS_G4X(dev)) {
1828 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1829
1830 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1831 } else {
1832 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1833
1834 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1835 }
1836
1837 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1838 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1839 dp_aux_irq_handler(dev);
1840 }
1841 }
1842
1843 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1844 {
1845 struct drm_device *dev = arg;
1846 struct drm_i915_private *dev_priv = dev->dev_private;
1847 u32 iir, gt_iir, pm_iir;
1848 irqreturn_t ret = IRQ_NONE;
1849
1850 while (true) {
1851 /* Find, clear, then process each source of interrupt */
1852
1853 gt_iir = I915_READ(GTIIR);
1854 if (gt_iir)
1855 I915_WRITE(GTIIR, gt_iir);
1856
1857 pm_iir = I915_READ(GEN6_PMIIR);
1858 if (pm_iir)
1859 I915_WRITE(GEN6_PMIIR, pm_iir);
1860
1861 iir = I915_READ(VLV_IIR);
1862 if (iir) {
1863 /* Consume port before clearing IIR or we'll miss events */
1864 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1865 i9xx_hpd_irq_handler(dev);
1866 I915_WRITE(VLV_IIR, iir);
1867 }
1868
1869 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1870 goto out;
1871
1872 ret = IRQ_HANDLED;
1873
1874 if (gt_iir)
1875 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1876 if (pm_iir)
1877 gen6_rps_irq_handler(dev_priv, pm_iir);
1878 /* Call regardless, as some status bits might not be
1879 * signalled in iir */
1880 valleyview_pipestat_irq_handler(dev, iir);
1881 }
1882
1883 out:
1884 return ret;
1885 }
1886
1887 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1888 {
1889 struct drm_device *dev = arg;
1890 struct drm_i915_private *dev_priv = dev->dev_private;
1891 u32 master_ctl, iir;
1892 irqreturn_t ret = IRQ_NONE;
1893
1894 for (;;) {
1895 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1896 iir = I915_READ(VLV_IIR);
1897
1898 if (master_ctl == 0 && iir == 0)
1899 break;
1900
1901 ret = IRQ_HANDLED;
1902
1903 I915_WRITE(GEN8_MASTER_IRQ, 0);
1904
1905 /* Find, clear, then process each source of interrupt */
1906
1907 if (iir) {
1908 /* Consume port before clearing IIR or we'll miss events */
1909 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1910 i9xx_hpd_irq_handler(dev);
1911 I915_WRITE(VLV_IIR, iir);
1912 }
1913
1914 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1915
1916 /* Call regardless, as some status bits might not be
1917 * signalled in iir */
1918 valleyview_pipestat_irq_handler(dev, iir);
1919
1920 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1921 POSTING_READ(GEN8_MASTER_IRQ);
1922 }
1923
1924 return ret;
1925 }
1926
1927 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1928 {
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930 int pipe;
1931 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1932 u32 dig_hotplug_reg;
1933
1934 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1935 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1936
1937 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1938
1939 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1940 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1941 SDE_AUDIO_POWER_SHIFT);
1942 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1943 port_name(port));
1944 }
1945
1946 if (pch_iir & SDE_AUX_MASK)
1947 dp_aux_irq_handler(dev);
1948
1949 if (pch_iir & SDE_GMBUS)
1950 gmbus_irq_handler(dev);
1951
1952 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1953 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1954
1955 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1956 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1957
1958 if (pch_iir & SDE_POISON)
1959 DRM_ERROR("PCH poison interrupt\n");
1960
1961 if (pch_iir & SDE_FDI_MASK)
1962 for_each_pipe(dev_priv, pipe)
1963 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1964 pipe_name(pipe),
1965 I915_READ(FDI_RX_IIR(pipe)));
1966
1967 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1968 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1969
1970 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1971 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1972
1973 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1974 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1975
1976 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1977 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1978 }
1979
1980 static void ivb_err_int_handler(struct drm_device *dev)
1981 {
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 u32 err_int = I915_READ(GEN7_ERR_INT);
1984 enum pipe pipe;
1985
1986 if (err_int & ERR_INT_POISON)
1987 DRM_ERROR("Poison interrupt\n");
1988
1989 for_each_pipe(dev_priv, pipe) {
1990 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1991 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1992
1993 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1994 if (IS_IVYBRIDGE(dev))
1995 ivb_pipe_crc_irq_handler(dev, pipe);
1996 else
1997 hsw_pipe_crc_irq_handler(dev, pipe);
1998 }
1999 }
2000
2001 I915_WRITE(GEN7_ERR_INT, err_int);
2002 }
2003
2004 static void cpt_serr_int_handler(struct drm_device *dev)
2005 {
2006 struct drm_i915_private *dev_priv = dev->dev_private;
2007 u32 serr_int = I915_READ(SERR_INT);
2008
2009 if (serr_int & SERR_INT_POISON)
2010 DRM_ERROR("PCH poison interrupt\n");
2011
2012 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2013 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2014
2015 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2016 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2017
2018 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2019 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2020
2021 I915_WRITE(SERR_INT, serr_int);
2022 }
2023
2024 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2025 {
2026 struct drm_i915_private *dev_priv = dev->dev_private;
2027 int pipe;
2028 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2029 u32 dig_hotplug_reg;
2030
2031 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2032 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2033
2034 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2035
2036 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2037 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2038 SDE_AUDIO_POWER_SHIFT_CPT);
2039 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2040 port_name(port));
2041 }
2042
2043 if (pch_iir & SDE_AUX_MASK_CPT)
2044 dp_aux_irq_handler(dev);
2045
2046 if (pch_iir & SDE_GMBUS_CPT)
2047 gmbus_irq_handler(dev);
2048
2049 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2050 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2051
2052 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2053 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2054
2055 if (pch_iir & SDE_FDI_MASK_CPT)
2056 for_each_pipe(dev_priv, pipe)
2057 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2058 pipe_name(pipe),
2059 I915_READ(FDI_RX_IIR(pipe)));
2060
2061 if (pch_iir & SDE_ERROR_CPT)
2062 cpt_serr_int_handler(dev);
2063 }
2064
2065 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2066 {
2067 struct drm_i915_private *dev_priv = dev->dev_private;
2068 enum pipe pipe;
2069
2070 if (de_iir & DE_AUX_CHANNEL_A)
2071 dp_aux_irq_handler(dev);
2072
2073 if (de_iir & DE_GSE)
2074 intel_opregion_asle_intr(dev);
2075
2076 if (de_iir & DE_POISON)
2077 DRM_ERROR("Poison interrupt\n");
2078
2079 for_each_pipe(dev_priv, pipe) {
2080 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2081 intel_pipe_handle_vblank(dev, pipe))
2082 intel_check_page_flip(dev, pipe);
2083
2084 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2085 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2086
2087 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2088 i9xx_pipe_crc_irq_handler(dev, pipe);
2089
2090 /* plane/pipes map 1:1 on ilk+ */
2091 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2092 intel_prepare_page_flip(dev, pipe);
2093 intel_finish_page_flip_plane(dev, pipe);
2094 }
2095 }
2096
2097 /* check event from PCH */
2098 if (de_iir & DE_PCH_EVENT) {
2099 u32 pch_iir = I915_READ(SDEIIR);
2100
2101 if (HAS_PCH_CPT(dev))
2102 cpt_irq_handler(dev, pch_iir);
2103 else
2104 ibx_irq_handler(dev, pch_iir);
2105
2106 /* should clear PCH hotplug event before clear CPU irq */
2107 I915_WRITE(SDEIIR, pch_iir);
2108 }
2109
2110 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2111 ironlake_rps_change_irq_handler(dev);
2112 }
2113
2114 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2115 {
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117 enum pipe pipe;
2118
2119 if (de_iir & DE_ERR_INT_IVB)
2120 ivb_err_int_handler(dev);
2121
2122 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2123 dp_aux_irq_handler(dev);
2124
2125 if (de_iir & DE_GSE_IVB)
2126 intel_opregion_asle_intr(dev);
2127
2128 for_each_pipe(dev_priv, pipe) {
2129 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2130 intel_pipe_handle_vblank(dev, pipe))
2131 intel_check_page_flip(dev, pipe);
2132
2133 /* plane/pipes map 1:1 on ilk+ */
2134 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2135 intel_prepare_page_flip(dev, pipe);
2136 intel_finish_page_flip_plane(dev, pipe);
2137 }
2138 }
2139
2140 /* check event from PCH */
2141 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2142 u32 pch_iir = I915_READ(SDEIIR);
2143
2144 cpt_irq_handler(dev, pch_iir);
2145
2146 /* clear PCH hotplug event before clear CPU irq */
2147 I915_WRITE(SDEIIR, pch_iir);
2148 }
2149 }
2150
2151 /*
2152 * To handle irqs with the minimum potential races with fresh interrupts, we:
2153 * 1 - Disable Master Interrupt Control.
2154 * 2 - Find the source(s) of the interrupt.
2155 * 3 - Clear the Interrupt Identity bits (IIR).
2156 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2157 * 5 - Re-enable Master Interrupt Control.
2158 */
2159 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2160 {
2161 struct drm_device *dev = arg;
2162 struct drm_i915_private *dev_priv = dev->dev_private;
2163 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2164 irqreturn_t ret = IRQ_NONE;
2165
2166 /* We get interrupts on unclaimed registers, so check for this before we
2167 * do any I915_{READ,WRITE}. */
2168 intel_uncore_check_errors(dev);
2169
2170 /* disable master interrupt before clearing iir */
2171 de_ier = I915_READ(DEIER);
2172 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2173 POSTING_READ(DEIER);
2174
2175 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2176 * interrupts will will be stored on its back queue, and then we'll be
2177 * able to process them after we restore SDEIER (as soon as we restore
2178 * it, we'll get an interrupt if SDEIIR still has something to process
2179 * due to its back queue). */
2180 if (!HAS_PCH_NOP(dev)) {
2181 sde_ier = I915_READ(SDEIER);
2182 I915_WRITE(SDEIER, 0);
2183 POSTING_READ(SDEIER);
2184 }
2185
2186 /* Find, clear, then process each source of interrupt */
2187
2188 gt_iir = I915_READ(GTIIR);
2189 if (gt_iir) {
2190 I915_WRITE(GTIIR, gt_iir);
2191 ret = IRQ_HANDLED;
2192 if (INTEL_INFO(dev)->gen >= 6)
2193 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2194 else
2195 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2196 }
2197
2198 de_iir = I915_READ(DEIIR);
2199 if (de_iir) {
2200 I915_WRITE(DEIIR, de_iir);
2201 ret = IRQ_HANDLED;
2202 if (INTEL_INFO(dev)->gen >= 7)
2203 ivb_display_irq_handler(dev, de_iir);
2204 else
2205 ilk_display_irq_handler(dev, de_iir);
2206 }
2207
2208 if (INTEL_INFO(dev)->gen >= 6) {
2209 u32 pm_iir = I915_READ(GEN6_PMIIR);
2210 if (pm_iir) {
2211 I915_WRITE(GEN6_PMIIR, pm_iir);
2212 ret = IRQ_HANDLED;
2213 gen6_rps_irq_handler(dev_priv, pm_iir);
2214 }
2215 }
2216
2217 I915_WRITE(DEIER, de_ier);
2218 POSTING_READ(DEIER);
2219 if (!HAS_PCH_NOP(dev)) {
2220 I915_WRITE(SDEIER, sde_ier);
2221 POSTING_READ(SDEIER);
2222 }
2223
2224 return ret;
2225 }
2226
2227 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2228 {
2229 struct drm_device *dev = arg;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 u32 master_ctl;
2232 irqreturn_t ret = IRQ_NONE;
2233 uint32_t tmp = 0;
2234 enum pipe pipe;
2235 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2236
2237 if (IS_GEN9(dev))
2238 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2239 GEN9_AUX_CHANNEL_D;
2240
2241 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2242 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2243 if (!master_ctl)
2244 return IRQ_NONE;
2245
2246 I915_WRITE(GEN8_MASTER_IRQ, 0);
2247 POSTING_READ(GEN8_MASTER_IRQ);
2248
2249 /* Find, clear, then process each source of interrupt */
2250
2251 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2252
2253 if (master_ctl & GEN8_DE_MISC_IRQ) {
2254 tmp = I915_READ(GEN8_DE_MISC_IIR);
2255 if (tmp) {
2256 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2257 ret = IRQ_HANDLED;
2258 if (tmp & GEN8_DE_MISC_GSE)
2259 intel_opregion_asle_intr(dev);
2260 else
2261 DRM_ERROR("Unexpected DE Misc interrupt\n");
2262 }
2263 else
2264 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2265 }
2266
2267 if (master_ctl & GEN8_DE_PORT_IRQ) {
2268 tmp = I915_READ(GEN8_DE_PORT_IIR);
2269 if (tmp) {
2270 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2271 ret = IRQ_HANDLED;
2272
2273 if (tmp & aux_mask)
2274 dp_aux_irq_handler(dev);
2275 else
2276 DRM_ERROR("Unexpected DE Port interrupt\n");
2277 }
2278 else
2279 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2280 }
2281
2282 for_each_pipe(dev_priv, pipe) {
2283 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2284
2285 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2286 continue;
2287
2288 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2289 if (pipe_iir) {
2290 ret = IRQ_HANDLED;
2291 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2292
2293 if (pipe_iir & GEN8_PIPE_VBLANK &&
2294 intel_pipe_handle_vblank(dev, pipe))
2295 intel_check_page_flip(dev, pipe);
2296
2297 if (IS_GEN9(dev))
2298 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2299 else
2300 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2301
2302 if (flip_done) {
2303 intel_prepare_page_flip(dev, pipe);
2304 intel_finish_page_flip_plane(dev, pipe);
2305 }
2306
2307 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2308 hsw_pipe_crc_irq_handler(dev, pipe);
2309
2310 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2311 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2312 pipe);
2313
2314
2315 if (IS_GEN9(dev))
2316 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2317 else
2318 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2319
2320 if (fault_errors)
2321 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2322 pipe_name(pipe),
2323 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2324 } else
2325 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2326 }
2327
2328 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2329 /*
2330 * FIXME(BDW): Assume for now that the new interrupt handling
2331 * scheme also closed the SDE interrupt handling race we've seen
2332 * on older pch-split platforms. But this needs testing.
2333 */
2334 u32 pch_iir = I915_READ(SDEIIR);
2335 if (pch_iir) {
2336 I915_WRITE(SDEIIR, pch_iir);
2337 ret = IRQ_HANDLED;
2338 cpt_irq_handler(dev, pch_iir);
2339 } else
2340 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2341
2342 }
2343
2344 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2345 POSTING_READ(GEN8_MASTER_IRQ);
2346
2347 return ret;
2348 }
2349
2350 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2351 bool reset_completed)
2352 {
2353 struct intel_engine_cs *ring;
2354 int i;
2355
2356 /*
2357 * Notify all waiters for GPU completion events that reset state has
2358 * been changed, and that they need to restart their wait after
2359 * checking for potential errors (and bail out to drop locks if there is
2360 * a gpu reset pending so that i915_error_work_func can acquire them).
2361 */
2362
2363 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2364 for_each_ring(ring, dev_priv, i)
2365 wake_up_all(&ring->irq_queue);
2366
2367 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2368 wake_up_all(&dev_priv->pending_flip_queue);
2369
2370 /*
2371 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2372 * reset state is cleared.
2373 */
2374 if (reset_completed)
2375 wake_up_all(&dev_priv->gpu_error.reset_queue);
2376 }
2377
2378 /**
2379 * i915_error_work_func - do process context error handling work
2380 * @work: work struct
2381 *
2382 * Fire an error uevent so userspace can see that a hang or error
2383 * was detected.
2384 */
2385 static void i915_error_work_func(struct work_struct *work)
2386 {
2387 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2388 work);
2389 struct drm_i915_private *dev_priv =
2390 container_of(error, struct drm_i915_private, gpu_error);
2391 struct drm_device *dev = dev_priv->dev;
2392 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2393 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2394 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2395 int ret;
2396
2397 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2398
2399 /*
2400 * Note that there's only one work item which does gpu resets, so we
2401 * need not worry about concurrent gpu resets potentially incrementing
2402 * error->reset_counter twice. We only need to take care of another
2403 * racing irq/hangcheck declaring the gpu dead for a second time. A
2404 * quick check for that is good enough: schedule_work ensures the
2405 * correct ordering between hang detection and this work item, and since
2406 * the reset in-progress bit is only ever set by code outside of this
2407 * work we don't need to worry about any other races.
2408 */
2409 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2410 DRM_DEBUG_DRIVER("resetting chip\n");
2411 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2412 reset_event);
2413
2414 /*
2415 * In most cases it's guaranteed that we get here with an RPM
2416 * reference held, for example because there is a pending GPU
2417 * request that won't finish until the reset is done. This
2418 * isn't the case at least when we get here by doing a
2419 * simulated reset via debugs, so get an RPM reference.
2420 */
2421 intel_runtime_pm_get(dev_priv);
2422 /*
2423 * All state reset _must_ be completed before we update the
2424 * reset counter, for otherwise waiters might miss the reset
2425 * pending state and not properly drop locks, resulting in
2426 * deadlocks with the reset work.
2427 */
2428 ret = i915_reset(dev);
2429
2430 intel_display_handle_reset(dev);
2431
2432 intel_runtime_pm_put(dev_priv);
2433
2434 if (ret == 0) {
2435 /*
2436 * After all the gem state is reset, increment the reset
2437 * counter and wake up everyone waiting for the reset to
2438 * complete.
2439 *
2440 * Since unlock operations are a one-sided barrier only,
2441 * we need to insert a barrier here to order any seqno
2442 * updates before
2443 * the counter increment.
2444 */
2445 smp_mb__before_atomic();
2446 atomic_inc(&dev_priv->gpu_error.reset_counter);
2447
2448 kobject_uevent_env(&dev->primary->kdev->kobj,
2449 KOBJ_CHANGE, reset_done_event);
2450 } else {
2451 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2452 }
2453
2454 /*
2455 * Note: The wake_up also serves as a memory barrier so that
2456 * waiters see the update value of the reset counter atomic_t.
2457 */
2458 i915_error_wake_up(dev_priv, true);
2459 }
2460 }
2461
2462 static void i915_report_and_clear_eir(struct drm_device *dev)
2463 {
2464 struct drm_i915_private *dev_priv = dev->dev_private;
2465 uint32_t instdone[I915_NUM_INSTDONE_REG];
2466 u32 eir = I915_READ(EIR);
2467 int pipe, i;
2468
2469 if (!eir)
2470 return;
2471
2472 pr_err("render error detected, EIR: 0x%08x\n", eir);
2473
2474 i915_get_extra_instdone(dev, instdone);
2475
2476 if (IS_G4X(dev)) {
2477 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2478 u32 ipeir = I915_READ(IPEIR_I965);
2479
2480 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2481 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2482 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2483 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2484 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2485 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2486 I915_WRITE(IPEIR_I965, ipeir);
2487 POSTING_READ(IPEIR_I965);
2488 }
2489 if (eir & GM45_ERROR_PAGE_TABLE) {
2490 u32 pgtbl_err = I915_READ(PGTBL_ER);
2491 pr_err("page table error\n");
2492 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2493 I915_WRITE(PGTBL_ER, pgtbl_err);
2494 POSTING_READ(PGTBL_ER);
2495 }
2496 }
2497
2498 if (!IS_GEN2(dev)) {
2499 if (eir & I915_ERROR_PAGE_TABLE) {
2500 u32 pgtbl_err = I915_READ(PGTBL_ER);
2501 pr_err("page table error\n");
2502 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2503 I915_WRITE(PGTBL_ER, pgtbl_err);
2504 POSTING_READ(PGTBL_ER);
2505 }
2506 }
2507
2508 if (eir & I915_ERROR_MEMORY_REFRESH) {
2509 pr_err("memory refresh error:\n");
2510 for_each_pipe(dev_priv, pipe)
2511 pr_err("pipe %c stat: 0x%08x\n",
2512 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2513 /* pipestat has already been acked */
2514 }
2515 if (eir & I915_ERROR_INSTRUCTION) {
2516 pr_err("instruction error\n");
2517 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2518 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2519 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2520 if (INTEL_INFO(dev)->gen < 4) {
2521 u32 ipeir = I915_READ(IPEIR);
2522
2523 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2524 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2525 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2526 I915_WRITE(IPEIR, ipeir);
2527 POSTING_READ(IPEIR);
2528 } else {
2529 u32 ipeir = I915_READ(IPEIR_I965);
2530
2531 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2532 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2533 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2534 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2535 I915_WRITE(IPEIR_I965, ipeir);
2536 POSTING_READ(IPEIR_I965);
2537 }
2538 }
2539
2540 I915_WRITE(EIR, eir);
2541 POSTING_READ(EIR);
2542 eir = I915_READ(EIR);
2543 if (eir) {
2544 /*
2545 * some errors might have become stuck,
2546 * mask them.
2547 */
2548 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2549 I915_WRITE(EMR, I915_READ(EMR) | eir);
2550 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2551 }
2552 }
2553
2554 /**
2555 * i915_handle_error - handle an error interrupt
2556 * @dev: drm device
2557 *
2558 * Do some basic checking of regsiter state at error interrupt time and
2559 * dump it to the syslog. Also call i915_capture_error_state() to make
2560 * sure we get a record and make it available in debugfs. Fire a uevent
2561 * so userspace knows something bad happened (should trigger collection
2562 * of a ring dump etc.).
2563 */
2564 void i915_handle_error(struct drm_device *dev, bool wedged,
2565 const char *fmt, ...)
2566 {
2567 struct drm_i915_private *dev_priv = dev->dev_private;
2568 va_list args;
2569 char error_msg[80];
2570
2571 va_start(args, fmt);
2572 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2573 va_end(args);
2574
2575 i915_capture_error_state(dev, wedged, error_msg);
2576 i915_report_and_clear_eir(dev);
2577
2578 if (wedged) {
2579 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2580 &dev_priv->gpu_error.reset_counter);
2581
2582 /*
2583 * Wakeup waiting processes so that the reset work function
2584 * i915_error_work_func doesn't deadlock trying to grab various
2585 * locks. By bumping the reset counter first, the woken
2586 * processes will see a reset in progress and back off,
2587 * releasing their locks and then wait for the reset completion.
2588 * We must do this for _all_ gpu waiters that might hold locks
2589 * that the reset work needs to acquire.
2590 *
2591 * Note: The wake_up serves as the required memory barrier to
2592 * ensure that the waiters see the updated value of the reset
2593 * counter atomic_t.
2594 */
2595 i915_error_wake_up(dev_priv, false);
2596 }
2597
2598 /*
2599 * Our reset work can grab modeset locks (since it needs to reset the
2600 * state of outstanding pagelips). Hence it must not be run on our own
2601 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2602 * code will deadlock.
2603 */
2604 schedule_work(&dev_priv->gpu_error.work);
2605 }
2606
2607 /* Called from drm generic code, passed 'crtc' which
2608 * we use as a pipe index
2609 */
2610 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2611 {
2612 struct drm_i915_private *dev_priv = dev->dev_private;
2613 unsigned long irqflags;
2614
2615 if (!i915_pipe_enabled(dev, pipe))
2616 return -EINVAL;
2617
2618 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2619 if (INTEL_INFO(dev)->gen >= 4)
2620 i915_enable_pipestat(dev_priv, pipe,
2621 PIPE_START_VBLANK_INTERRUPT_STATUS);
2622 else
2623 i915_enable_pipestat(dev_priv, pipe,
2624 PIPE_VBLANK_INTERRUPT_STATUS);
2625 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2626
2627 return 0;
2628 }
2629
2630 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2631 {
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 unsigned long irqflags;
2634 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2635 DE_PIPE_VBLANK(pipe);
2636
2637 if (!i915_pipe_enabled(dev, pipe))
2638 return -EINVAL;
2639
2640 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2641 ironlake_enable_display_irq(dev_priv, bit);
2642 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2643
2644 return 0;
2645 }
2646
2647 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2648 {
2649 struct drm_i915_private *dev_priv = dev->dev_private;
2650 unsigned long irqflags;
2651
2652 if (!i915_pipe_enabled(dev, pipe))
2653 return -EINVAL;
2654
2655 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2656 i915_enable_pipestat(dev_priv, pipe,
2657 PIPE_START_VBLANK_INTERRUPT_STATUS);
2658 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2659
2660 return 0;
2661 }
2662
2663 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2664 {
2665 struct drm_i915_private *dev_priv = dev->dev_private;
2666 unsigned long irqflags;
2667
2668 if (!i915_pipe_enabled(dev, pipe))
2669 return -EINVAL;
2670
2671 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2672 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2673 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2674 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2675 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2676 return 0;
2677 }
2678
2679 /* Called from drm generic code, passed 'crtc' which
2680 * we use as a pipe index
2681 */
2682 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2683 {
2684 struct drm_i915_private *dev_priv = dev->dev_private;
2685 unsigned long irqflags;
2686
2687 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2688 i915_disable_pipestat(dev_priv, pipe,
2689 PIPE_VBLANK_INTERRUPT_STATUS |
2690 PIPE_START_VBLANK_INTERRUPT_STATUS);
2691 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2692 }
2693
2694 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2695 {
2696 struct drm_i915_private *dev_priv = dev->dev_private;
2697 unsigned long irqflags;
2698 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2699 DE_PIPE_VBLANK(pipe);
2700
2701 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2702 ironlake_disable_display_irq(dev_priv, bit);
2703 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2704 }
2705
2706 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2707 {
2708 struct drm_i915_private *dev_priv = dev->dev_private;
2709 unsigned long irqflags;
2710
2711 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2712 i915_disable_pipestat(dev_priv, pipe,
2713 PIPE_START_VBLANK_INTERRUPT_STATUS);
2714 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2715 }
2716
2717 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2718 {
2719 struct drm_i915_private *dev_priv = dev->dev_private;
2720 unsigned long irqflags;
2721
2722 if (!i915_pipe_enabled(dev, pipe))
2723 return;
2724
2725 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2726 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2727 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2728 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2729 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730 }
2731
2732 static u32
2733 ring_last_seqno(struct intel_engine_cs *ring)
2734 {
2735 return list_entry(ring->request_list.prev,
2736 struct drm_i915_gem_request, list)->seqno;
2737 }
2738
2739 static bool
2740 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2741 {
2742 return (list_empty(&ring->request_list) ||
2743 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2744 }
2745
2746 static bool
2747 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2748 {
2749 if (INTEL_INFO(dev)->gen >= 8) {
2750 return (ipehr >> 23) == 0x1c;
2751 } else {
2752 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2753 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2754 MI_SEMAPHORE_REGISTER);
2755 }
2756 }
2757
2758 static struct intel_engine_cs *
2759 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2760 {
2761 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2762 struct intel_engine_cs *signaller;
2763 int i;
2764
2765 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2766 for_each_ring(signaller, dev_priv, i) {
2767 if (ring == signaller)
2768 continue;
2769
2770 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2771 return signaller;
2772 }
2773 } else {
2774 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2775
2776 for_each_ring(signaller, dev_priv, i) {
2777 if(ring == signaller)
2778 continue;
2779
2780 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2781 return signaller;
2782 }
2783 }
2784
2785 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2786 ring->id, ipehr, offset);
2787
2788 return NULL;
2789 }
2790
2791 static struct intel_engine_cs *
2792 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2793 {
2794 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2795 u32 cmd, ipehr, head;
2796 u64 offset = 0;
2797 int i, backwards;
2798
2799 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2800 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2801 return NULL;
2802
2803 /*
2804 * HEAD is likely pointing to the dword after the actual command,
2805 * so scan backwards until we find the MBOX. But limit it to just 3
2806 * or 4 dwords depending on the semaphore wait command size.
2807 * Note that we don't care about ACTHD here since that might
2808 * point at at batch, and semaphores are always emitted into the
2809 * ringbuffer itself.
2810 */
2811 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2812 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2813
2814 for (i = backwards; i; --i) {
2815 /*
2816 * Be paranoid and presume the hw has gone off into the wild -
2817 * our ring is smaller than what the hardware (and hence
2818 * HEAD_ADDR) allows. Also handles wrap-around.
2819 */
2820 head &= ring->buffer->size - 1;
2821
2822 /* This here seems to blow up */
2823 cmd = ioread32(ring->buffer->virtual_start + head);
2824 if (cmd == ipehr)
2825 break;
2826
2827 head -= 4;
2828 }
2829
2830 if (!i)
2831 return NULL;
2832
2833 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2834 if (INTEL_INFO(ring->dev)->gen >= 8) {
2835 offset = ioread32(ring->buffer->virtual_start + head + 12);
2836 offset <<= 32;
2837 offset = ioread32(ring->buffer->virtual_start + head + 8);
2838 }
2839 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2840 }
2841
2842 static int semaphore_passed(struct intel_engine_cs *ring)
2843 {
2844 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2845 struct intel_engine_cs *signaller;
2846 u32 seqno;
2847
2848 ring->hangcheck.deadlock++;
2849
2850 signaller = semaphore_waits_for(ring, &seqno);
2851 if (signaller == NULL)
2852 return -1;
2853
2854 /* Prevent pathological recursion due to driver bugs */
2855 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2856 return -1;
2857
2858 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2859 return 1;
2860
2861 /* cursory check for an unkickable deadlock */
2862 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2863 semaphore_passed(signaller) < 0)
2864 return -1;
2865
2866 return 0;
2867 }
2868
2869 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2870 {
2871 struct intel_engine_cs *ring;
2872 int i;
2873
2874 for_each_ring(ring, dev_priv, i)
2875 ring->hangcheck.deadlock = 0;
2876 }
2877
2878 static enum intel_ring_hangcheck_action
2879 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2880 {
2881 struct drm_device *dev = ring->dev;
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 u32 tmp;
2884
2885 if (acthd != ring->hangcheck.acthd) {
2886 if (acthd > ring->hangcheck.max_acthd) {
2887 ring->hangcheck.max_acthd = acthd;
2888 return HANGCHECK_ACTIVE;
2889 }
2890
2891 return HANGCHECK_ACTIVE_LOOP;
2892 }
2893
2894 if (IS_GEN2(dev))
2895 return HANGCHECK_HUNG;
2896
2897 /* Is the chip hanging on a WAIT_FOR_EVENT?
2898 * If so we can simply poke the RB_WAIT bit
2899 * and break the hang. This should work on
2900 * all but the second generation chipsets.
2901 */
2902 tmp = I915_READ_CTL(ring);
2903 if (tmp & RING_WAIT) {
2904 i915_handle_error(dev, false,
2905 "Kicking stuck wait on %s",
2906 ring->name);
2907 I915_WRITE_CTL(ring, tmp);
2908 return HANGCHECK_KICK;
2909 }
2910
2911 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2912 switch (semaphore_passed(ring)) {
2913 default:
2914 return HANGCHECK_HUNG;
2915 case 1:
2916 i915_handle_error(dev, false,
2917 "Kicking stuck semaphore on %s",
2918 ring->name);
2919 I915_WRITE_CTL(ring, tmp);
2920 return HANGCHECK_KICK;
2921 case 0:
2922 return HANGCHECK_WAIT;
2923 }
2924 }
2925
2926 return HANGCHECK_HUNG;
2927 }
2928
2929 /**
2930 * This is called when the chip hasn't reported back with completed
2931 * batchbuffers in a long time. We keep track per ring seqno progress and
2932 * if there are no progress, hangcheck score for that ring is increased.
2933 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2934 * we kick the ring. If we see no progress on three subsequent calls
2935 * we assume chip is wedged and try to fix it by resetting the chip.
2936 */
2937 static void i915_hangcheck_elapsed(unsigned long data)
2938 {
2939 struct drm_device *dev = (struct drm_device *)data;
2940 struct drm_i915_private *dev_priv = dev->dev_private;
2941 struct intel_engine_cs *ring;
2942 int i;
2943 int busy_count = 0, rings_hung = 0;
2944 bool stuck[I915_NUM_RINGS] = { 0 };
2945 #define BUSY 1
2946 #define KICK 5
2947 #define HUNG 20
2948
2949 if (!i915.enable_hangcheck)
2950 return;
2951
2952 for_each_ring(ring, dev_priv, i) {
2953 u64 acthd;
2954 u32 seqno;
2955 bool busy = true;
2956
2957 semaphore_clear_deadlocks(dev_priv);
2958
2959 seqno = ring->get_seqno(ring, false);
2960 acthd = intel_ring_get_active_head(ring);
2961
2962 if (ring->hangcheck.seqno == seqno) {
2963 if (ring_idle(ring, seqno)) {
2964 ring->hangcheck.action = HANGCHECK_IDLE;
2965
2966 if (waitqueue_active(&ring->irq_queue)) {
2967 /* Issue a wake-up to catch stuck h/w. */
2968 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2969 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2970 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2971 ring->name);
2972 else
2973 DRM_INFO("Fake missed irq on %s\n",
2974 ring->name);
2975 wake_up_all(&ring->irq_queue);
2976 }
2977 /* Safeguard against driver failure */
2978 ring->hangcheck.score += BUSY;
2979 } else
2980 busy = false;
2981 } else {
2982 /* We always increment the hangcheck score
2983 * if the ring is busy and still processing
2984 * the same request, so that no single request
2985 * can run indefinitely (such as a chain of
2986 * batches). The only time we do not increment
2987 * the hangcheck score on this ring, if this
2988 * ring is in a legitimate wait for another
2989 * ring. In that case the waiting ring is a
2990 * victim and we want to be sure we catch the
2991 * right culprit. Then every time we do kick
2992 * the ring, add a small increment to the
2993 * score so that we can catch a batch that is
2994 * being repeatedly kicked and so responsible
2995 * for stalling the machine.
2996 */
2997 ring->hangcheck.action = ring_stuck(ring,
2998 acthd);
2999
3000 switch (ring->hangcheck.action) {
3001 case HANGCHECK_IDLE:
3002 case HANGCHECK_WAIT:
3003 case HANGCHECK_ACTIVE:
3004 break;
3005 case HANGCHECK_ACTIVE_LOOP:
3006 ring->hangcheck.score += BUSY;
3007 break;
3008 case HANGCHECK_KICK:
3009 ring->hangcheck.score += KICK;
3010 break;
3011 case HANGCHECK_HUNG:
3012 ring->hangcheck.score += HUNG;
3013 stuck[i] = true;
3014 break;
3015 }
3016 }
3017 } else {
3018 ring->hangcheck.action = HANGCHECK_ACTIVE;
3019
3020 /* Gradually reduce the count so that we catch DoS
3021 * attempts across multiple batches.
3022 */
3023 if (ring->hangcheck.score > 0)
3024 ring->hangcheck.score--;
3025
3026 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3027 }
3028
3029 ring->hangcheck.seqno = seqno;
3030 ring->hangcheck.acthd = acthd;
3031 busy_count += busy;
3032 }
3033
3034 for_each_ring(ring, dev_priv, i) {
3035 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3036 DRM_INFO("%s on %s\n",
3037 stuck[i] ? "stuck" : "no progress",
3038 ring->name);
3039 rings_hung++;
3040 }
3041 }
3042
3043 if (rings_hung)
3044 return i915_handle_error(dev, true, "Ring hung");
3045
3046 if (busy_count)
3047 /* Reset timer case chip hangs without another request
3048 * being added */
3049 i915_queue_hangcheck(dev);
3050 }
3051
3052 void i915_queue_hangcheck(struct drm_device *dev)
3053 {
3054 struct drm_i915_private *dev_priv = dev->dev_private;
3055 struct timer_list *timer = &dev_priv->gpu_error.hangcheck_timer;
3056
3057 if (!i915.enable_hangcheck)
3058 return;
3059
3060 /* Don't continually defer the hangcheck, but make sure it is active */
3061 if (!timer_pending(timer))
3062 timer->expires = round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
3063 mod_timer(timer, timer->expires);
3064 }
3065
3066 static void ibx_irq_reset(struct drm_device *dev)
3067 {
3068 struct drm_i915_private *dev_priv = dev->dev_private;
3069
3070 if (HAS_PCH_NOP(dev))
3071 return;
3072
3073 GEN5_IRQ_RESET(SDE);
3074
3075 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3076 I915_WRITE(SERR_INT, 0xffffffff);
3077 }
3078
3079 /*
3080 * SDEIER is also touched by the interrupt handler to work around missed PCH
3081 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3082 * instead we unconditionally enable all PCH interrupt sources here, but then
3083 * only unmask them as needed with SDEIMR.
3084 *
3085 * This function needs to be called before interrupts are enabled.
3086 */
3087 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3088 {
3089 struct drm_i915_private *dev_priv = dev->dev_private;
3090
3091 if (HAS_PCH_NOP(dev))
3092 return;
3093
3094 WARN_ON(I915_READ(SDEIER) != 0);
3095 I915_WRITE(SDEIER, 0xffffffff);
3096 POSTING_READ(SDEIER);
3097 }
3098
3099 static void gen5_gt_irq_reset(struct drm_device *dev)
3100 {
3101 struct drm_i915_private *dev_priv = dev->dev_private;
3102
3103 GEN5_IRQ_RESET(GT);
3104 if (INTEL_INFO(dev)->gen >= 6)
3105 GEN5_IRQ_RESET(GEN6_PM);
3106 }
3107
3108 /* drm_dma.h hooks
3109 */
3110 static void ironlake_irq_reset(struct drm_device *dev)
3111 {
3112 struct drm_i915_private *dev_priv = dev->dev_private;
3113
3114 I915_WRITE(HWSTAM, 0xffffffff);
3115
3116 GEN5_IRQ_RESET(DE);
3117 if (IS_GEN7(dev))
3118 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3119
3120 gen5_gt_irq_reset(dev);
3121
3122 ibx_irq_reset(dev);
3123 }
3124
3125 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3126 {
3127 enum pipe pipe;
3128
3129 I915_WRITE(PORT_HOTPLUG_EN, 0);
3130 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3131
3132 for_each_pipe(dev_priv, pipe)
3133 I915_WRITE(PIPESTAT(pipe), 0xffff);
3134
3135 GEN5_IRQ_RESET(VLV_);
3136 }
3137
3138 static void valleyview_irq_preinstall(struct drm_device *dev)
3139 {
3140 struct drm_i915_private *dev_priv = dev->dev_private;
3141
3142 /* VLV magic */
3143 I915_WRITE(VLV_IMR, 0);
3144 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3145 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3146 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3147
3148 gen5_gt_irq_reset(dev);
3149
3150 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3151
3152 vlv_display_irq_reset(dev_priv);
3153 }
3154
3155 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3156 {
3157 GEN8_IRQ_RESET_NDX(GT, 0);
3158 GEN8_IRQ_RESET_NDX(GT, 1);
3159 GEN8_IRQ_RESET_NDX(GT, 2);
3160 GEN8_IRQ_RESET_NDX(GT, 3);
3161 }
3162
3163 static void gen8_irq_reset(struct drm_device *dev)
3164 {
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 int pipe;
3167
3168 I915_WRITE(GEN8_MASTER_IRQ, 0);
3169 POSTING_READ(GEN8_MASTER_IRQ);
3170
3171 gen8_gt_irq_reset(dev_priv);
3172
3173 for_each_pipe(dev_priv, pipe)
3174 if (intel_display_power_is_enabled(dev_priv,
3175 POWER_DOMAIN_PIPE(pipe)))
3176 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3177
3178 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3179 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3180 GEN5_IRQ_RESET(GEN8_PCU_);
3181
3182 ibx_irq_reset(dev);
3183 }
3184
3185 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3186 {
3187 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3188
3189 spin_lock_irq(&dev_priv->irq_lock);
3190 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3191 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3192 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3193 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3194 spin_unlock_irq(&dev_priv->irq_lock);
3195 }
3196
3197 static void cherryview_irq_preinstall(struct drm_device *dev)
3198 {
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200
3201 I915_WRITE(GEN8_MASTER_IRQ, 0);
3202 POSTING_READ(GEN8_MASTER_IRQ);
3203
3204 gen8_gt_irq_reset(dev_priv);
3205
3206 GEN5_IRQ_RESET(GEN8_PCU_);
3207
3208 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3209
3210 vlv_display_irq_reset(dev_priv);
3211 }
3212
3213 static void ibx_hpd_irq_setup(struct drm_device *dev)
3214 {
3215 struct drm_i915_private *dev_priv = dev->dev_private;
3216 struct intel_encoder *intel_encoder;
3217 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3218
3219 if (HAS_PCH_IBX(dev)) {
3220 hotplug_irqs = SDE_HOTPLUG_MASK;
3221 for_each_intel_encoder(dev, intel_encoder)
3222 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3223 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3224 } else {
3225 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3226 for_each_intel_encoder(dev, intel_encoder)
3227 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3228 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3229 }
3230
3231 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3232
3233 /*
3234 * Enable digital hotplug on the PCH, and configure the DP short pulse
3235 * duration to 2ms (which is the minimum in the Display Port spec)
3236 *
3237 * This register is the same on all known PCH chips.
3238 */
3239 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3240 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3241 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3242 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3243 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3244 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3245 }
3246
3247 static void ibx_irq_postinstall(struct drm_device *dev)
3248 {
3249 struct drm_i915_private *dev_priv = dev->dev_private;
3250 u32 mask;
3251
3252 if (HAS_PCH_NOP(dev))
3253 return;
3254
3255 if (HAS_PCH_IBX(dev))
3256 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3257 else
3258 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3259
3260 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3261 I915_WRITE(SDEIMR, ~mask);
3262 }
3263
3264 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3265 {
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 u32 pm_irqs, gt_irqs;
3268
3269 pm_irqs = gt_irqs = 0;
3270
3271 dev_priv->gt_irq_mask = ~0;
3272 if (HAS_L3_DPF(dev)) {
3273 /* L3 parity interrupt is always unmasked. */
3274 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3275 gt_irqs |= GT_PARITY_ERROR(dev);
3276 }
3277
3278 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3279 if (IS_GEN5(dev)) {
3280 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3281 ILK_BSD_USER_INTERRUPT;
3282 } else {
3283 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3284 }
3285
3286 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3287
3288 if (INTEL_INFO(dev)->gen >= 6) {
3289 pm_irqs |= dev_priv->pm_rps_events;
3290
3291 if (HAS_VEBOX(dev))
3292 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3293
3294 dev_priv->pm_irq_mask = 0xffffffff;
3295 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3296 }
3297 }
3298
3299 static int ironlake_irq_postinstall(struct drm_device *dev)
3300 {
3301 struct drm_i915_private *dev_priv = dev->dev_private;
3302 u32 display_mask, extra_mask;
3303
3304 if (INTEL_INFO(dev)->gen >= 7) {
3305 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3306 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3307 DE_PLANEB_FLIP_DONE_IVB |
3308 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3309 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3310 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3311 } else {
3312 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3313 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3314 DE_AUX_CHANNEL_A |
3315 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3316 DE_POISON);
3317 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3318 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3319 }
3320
3321 dev_priv->irq_mask = ~display_mask;
3322
3323 I915_WRITE(HWSTAM, 0xeffe);
3324
3325 ibx_irq_pre_postinstall(dev);
3326
3327 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3328
3329 gen5_gt_irq_postinstall(dev);
3330
3331 ibx_irq_postinstall(dev);
3332
3333 if (IS_IRONLAKE_M(dev)) {
3334 /* Enable PCU event interrupts
3335 *
3336 * spinlocking not required here for correctness since interrupt
3337 * setup is guaranteed to run in single-threaded context. But we
3338 * need it to make the assert_spin_locked happy. */
3339 spin_lock_irq(&dev_priv->irq_lock);
3340 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3341 spin_unlock_irq(&dev_priv->irq_lock);
3342 }
3343
3344 return 0;
3345 }
3346
3347 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3348 {
3349 u32 pipestat_mask;
3350 u32 iir_mask;
3351 enum pipe pipe;
3352
3353 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3354 PIPE_FIFO_UNDERRUN_STATUS;
3355
3356 for_each_pipe(dev_priv, pipe)
3357 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3358 POSTING_READ(PIPESTAT(PIPE_A));
3359
3360 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3361 PIPE_CRC_DONE_INTERRUPT_STATUS;
3362
3363 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3364 for_each_pipe(dev_priv, pipe)
3365 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3366
3367 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3368 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3369 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3370 if (IS_CHERRYVIEW(dev_priv))
3371 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3372 dev_priv->irq_mask &= ~iir_mask;
3373
3374 I915_WRITE(VLV_IIR, iir_mask);
3375 I915_WRITE(VLV_IIR, iir_mask);
3376 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3377 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3378 POSTING_READ(VLV_IMR);
3379 }
3380
3381 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3382 {
3383 u32 pipestat_mask;
3384 u32 iir_mask;
3385 enum pipe pipe;
3386
3387 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3388 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3389 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3390 if (IS_CHERRYVIEW(dev_priv))
3391 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3392
3393 dev_priv->irq_mask |= iir_mask;
3394 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3395 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3396 I915_WRITE(VLV_IIR, iir_mask);
3397 I915_WRITE(VLV_IIR, iir_mask);
3398 POSTING_READ(VLV_IIR);
3399
3400 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3401 PIPE_CRC_DONE_INTERRUPT_STATUS;
3402
3403 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3404 for_each_pipe(dev_priv, pipe)
3405 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3406
3407 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3408 PIPE_FIFO_UNDERRUN_STATUS;
3409
3410 for_each_pipe(dev_priv, pipe)
3411 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3412 POSTING_READ(PIPESTAT(PIPE_A));
3413 }
3414
3415 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3416 {
3417 assert_spin_locked(&dev_priv->irq_lock);
3418
3419 if (dev_priv->display_irqs_enabled)
3420 return;
3421
3422 dev_priv->display_irqs_enabled = true;
3423
3424 if (intel_irqs_enabled(dev_priv))
3425 valleyview_display_irqs_install(dev_priv);
3426 }
3427
3428 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3429 {
3430 assert_spin_locked(&dev_priv->irq_lock);
3431
3432 if (!dev_priv->display_irqs_enabled)
3433 return;
3434
3435 dev_priv->display_irqs_enabled = false;
3436
3437 if (intel_irqs_enabled(dev_priv))
3438 valleyview_display_irqs_uninstall(dev_priv);
3439 }
3440
3441 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3442 {
3443 dev_priv->irq_mask = ~0;
3444
3445 I915_WRITE(PORT_HOTPLUG_EN, 0);
3446 POSTING_READ(PORT_HOTPLUG_EN);
3447
3448 I915_WRITE(VLV_IIR, 0xffffffff);
3449 I915_WRITE(VLV_IIR, 0xffffffff);
3450 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3451 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3452 POSTING_READ(VLV_IMR);
3453
3454 /* Interrupt setup is already guaranteed to be single-threaded, this is
3455 * just to make the assert_spin_locked check happy. */
3456 spin_lock_irq(&dev_priv->irq_lock);
3457 if (dev_priv->display_irqs_enabled)
3458 valleyview_display_irqs_install(dev_priv);
3459 spin_unlock_irq(&dev_priv->irq_lock);
3460 }
3461
3462 static int valleyview_irq_postinstall(struct drm_device *dev)
3463 {
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465
3466 vlv_display_irq_postinstall(dev_priv);
3467
3468 gen5_gt_irq_postinstall(dev);
3469
3470 /* ack & enable invalid PTE error interrupts */
3471 #if 0 /* FIXME: add support to irq handler for checking these bits */
3472 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3473 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3474 #endif
3475
3476 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3477
3478 return 0;
3479 }
3480
3481 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3482 {
3483 /* These are interrupts we'll toggle with the ring mask register */
3484 uint32_t gt_interrupts[] = {
3485 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3486 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3487 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3488 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3489 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3490 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3491 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3492 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3493 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3494 0,
3495 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3496 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3497 };
3498
3499 dev_priv->pm_irq_mask = 0xffffffff;
3500 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3501 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3502 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3503 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3504 }
3505
3506 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3507 {
3508 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3509 uint32_t de_pipe_enables;
3510 int pipe;
3511 u32 aux_en = GEN8_AUX_CHANNEL_A;
3512
3513 if (IS_GEN9(dev_priv)) {
3514 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3515 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3516 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3517 GEN9_AUX_CHANNEL_D;
3518 } else
3519 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3520 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3521
3522 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3523 GEN8_PIPE_FIFO_UNDERRUN;
3524
3525 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3526 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3527 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3528
3529 for_each_pipe(dev_priv, pipe)
3530 if (intel_display_power_is_enabled(dev_priv,
3531 POWER_DOMAIN_PIPE(pipe)))
3532 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3533 dev_priv->de_irq_mask[pipe],
3534 de_pipe_enables);
3535
3536 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3537 }
3538
3539 static int gen8_irq_postinstall(struct drm_device *dev)
3540 {
3541 struct drm_i915_private *dev_priv = dev->dev_private;
3542
3543 ibx_irq_pre_postinstall(dev);
3544
3545 gen8_gt_irq_postinstall(dev_priv);
3546 gen8_de_irq_postinstall(dev_priv);
3547
3548 ibx_irq_postinstall(dev);
3549
3550 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3551 POSTING_READ(GEN8_MASTER_IRQ);
3552
3553 return 0;
3554 }
3555
3556 static int cherryview_irq_postinstall(struct drm_device *dev)
3557 {
3558 struct drm_i915_private *dev_priv = dev->dev_private;
3559
3560 vlv_display_irq_postinstall(dev_priv);
3561
3562 gen8_gt_irq_postinstall(dev_priv);
3563
3564 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3565 POSTING_READ(GEN8_MASTER_IRQ);
3566
3567 return 0;
3568 }
3569
3570 static void gen8_irq_uninstall(struct drm_device *dev)
3571 {
3572 struct drm_i915_private *dev_priv = dev->dev_private;
3573
3574 if (!dev_priv)
3575 return;
3576
3577 gen8_irq_reset(dev);
3578 }
3579
3580 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3581 {
3582 /* Interrupt setup is already guaranteed to be single-threaded, this is
3583 * just to make the assert_spin_locked check happy. */
3584 spin_lock_irq(&dev_priv->irq_lock);
3585 if (dev_priv->display_irqs_enabled)
3586 valleyview_display_irqs_uninstall(dev_priv);
3587 spin_unlock_irq(&dev_priv->irq_lock);
3588
3589 vlv_display_irq_reset(dev_priv);
3590
3591 dev_priv->irq_mask = 0;
3592 }
3593
3594 static void valleyview_irq_uninstall(struct drm_device *dev)
3595 {
3596 struct drm_i915_private *dev_priv = dev->dev_private;
3597
3598 if (!dev_priv)
3599 return;
3600
3601 I915_WRITE(VLV_MASTER_IER, 0);
3602
3603 gen5_gt_irq_reset(dev);
3604
3605 I915_WRITE(HWSTAM, 0xffffffff);
3606
3607 vlv_display_irq_uninstall(dev_priv);
3608 }
3609
3610 static void cherryview_irq_uninstall(struct drm_device *dev)
3611 {
3612 struct drm_i915_private *dev_priv = dev->dev_private;
3613
3614 if (!dev_priv)
3615 return;
3616
3617 I915_WRITE(GEN8_MASTER_IRQ, 0);
3618 POSTING_READ(GEN8_MASTER_IRQ);
3619
3620 gen8_gt_irq_reset(dev_priv);
3621
3622 GEN5_IRQ_RESET(GEN8_PCU_);
3623
3624 vlv_display_irq_uninstall(dev_priv);
3625 }
3626
3627 static void ironlake_irq_uninstall(struct drm_device *dev)
3628 {
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631 if (!dev_priv)
3632 return;
3633
3634 ironlake_irq_reset(dev);
3635 }
3636
3637 static void i8xx_irq_preinstall(struct drm_device * dev)
3638 {
3639 struct drm_i915_private *dev_priv = dev->dev_private;
3640 int pipe;
3641
3642 for_each_pipe(dev_priv, pipe)
3643 I915_WRITE(PIPESTAT(pipe), 0);
3644 I915_WRITE16(IMR, 0xffff);
3645 I915_WRITE16(IER, 0x0);
3646 POSTING_READ16(IER);
3647 }
3648
3649 static int i8xx_irq_postinstall(struct drm_device *dev)
3650 {
3651 struct drm_i915_private *dev_priv = dev->dev_private;
3652
3653 I915_WRITE16(EMR,
3654 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3655
3656 /* Unmask the interrupts that we always want on. */
3657 dev_priv->irq_mask =
3658 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3659 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3660 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3661 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3662 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3663 I915_WRITE16(IMR, dev_priv->irq_mask);
3664
3665 I915_WRITE16(IER,
3666 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3667 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3668 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3669 I915_USER_INTERRUPT);
3670 POSTING_READ16(IER);
3671
3672 /* Interrupt setup is already guaranteed to be single-threaded, this is
3673 * just to make the assert_spin_locked check happy. */
3674 spin_lock_irq(&dev_priv->irq_lock);
3675 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3676 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3677 spin_unlock_irq(&dev_priv->irq_lock);
3678
3679 return 0;
3680 }
3681
3682 /*
3683 * Returns true when a page flip has completed.
3684 */
3685 static bool i8xx_handle_vblank(struct drm_device *dev,
3686 int plane, int pipe, u32 iir)
3687 {
3688 struct drm_i915_private *dev_priv = dev->dev_private;
3689 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3690
3691 if (!intel_pipe_handle_vblank(dev, pipe))
3692 return false;
3693
3694 if ((iir & flip_pending) == 0)
3695 goto check_page_flip;
3696
3697 intel_prepare_page_flip(dev, plane);
3698
3699 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3700 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3701 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3702 * the flip is completed (no longer pending). Since this doesn't raise
3703 * an interrupt per se, we watch for the change at vblank.
3704 */
3705 if (I915_READ16(ISR) & flip_pending)
3706 goto check_page_flip;
3707
3708 intel_finish_page_flip(dev, pipe);
3709 return true;
3710
3711 check_page_flip:
3712 intel_check_page_flip(dev, pipe);
3713 return false;
3714 }
3715
3716 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3717 {
3718 struct drm_device *dev = arg;
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720 u16 iir, new_iir;
3721 u32 pipe_stats[2];
3722 int pipe;
3723 u16 flip_mask =
3724 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3725 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3726
3727 iir = I915_READ16(IIR);
3728 if (iir == 0)
3729 return IRQ_NONE;
3730
3731 while (iir & ~flip_mask) {
3732 /* Can't rely on pipestat interrupt bit in iir as it might
3733 * have been cleared after the pipestat interrupt was received.
3734 * It doesn't set the bit in iir again, but it still produces
3735 * interrupts (for non-MSI).
3736 */
3737 spin_lock(&dev_priv->irq_lock);
3738 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3739 i915_handle_error(dev, false,
3740 "Command parser error, iir 0x%08x",
3741 iir);
3742
3743 for_each_pipe(dev_priv, pipe) {
3744 int reg = PIPESTAT(pipe);
3745 pipe_stats[pipe] = I915_READ(reg);
3746
3747 /*
3748 * Clear the PIPE*STAT regs before the IIR
3749 */
3750 if (pipe_stats[pipe] & 0x8000ffff)
3751 I915_WRITE(reg, pipe_stats[pipe]);
3752 }
3753 spin_unlock(&dev_priv->irq_lock);
3754
3755 I915_WRITE16(IIR, iir & ~flip_mask);
3756 new_iir = I915_READ16(IIR); /* Flush posted writes */
3757
3758 i915_update_dri1_breadcrumb(dev);
3759
3760 if (iir & I915_USER_INTERRUPT)
3761 notify_ring(dev, &dev_priv->ring[RCS]);
3762
3763 for_each_pipe(dev_priv, pipe) {
3764 int plane = pipe;
3765 if (HAS_FBC(dev))
3766 plane = !plane;
3767
3768 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3769 i8xx_handle_vblank(dev, plane, pipe, iir))
3770 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3771
3772 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3773 i9xx_pipe_crc_irq_handler(dev, pipe);
3774
3775 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3776 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3777 pipe);
3778 }
3779
3780 iir = new_iir;
3781 }
3782
3783 return IRQ_HANDLED;
3784 }
3785
3786 static void i8xx_irq_uninstall(struct drm_device * dev)
3787 {
3788 struct drm_i915_private *dev_priv = dev->dev_private;
3789 int pipe;
3790
3791 for_each_pipe(dev_priv, pipe) {
3792 /* Clear enable bits; then clear status bits */
3793 I915_WRITE(PIPESTAT(pipe), 0);
3794 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3795 }
3796 I915_WRITE16(IMR, 0xffff);
3797 I915_WRITE16(IER, 0x0);
3798 I915_WRITE16(IIR, I915_READ16(IIR));
3799 }
3800
3801 static void i915_irq_preinstall(struct drm_device * dev)
3802 {
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 int pipe;
3805
3806 if (I915_HAS_HOTPLUG(dev)) {
3807 I915_WRITE(PORT_HOTPLUG_EN, 0);
3808 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3809 }
3810
3811 I915_WRITE16(HWSTAM, 0xeffe);
3812 for_each_pipe(dev_priv, pipe)
3813 I915_WRITE(PIPESTAT(pipe), 0);
3814 I915_WRITE(IMR, 0xffffffff);
3815 I915_WRITE(IER, 0x0);
3816 POSTING_READ(IER);
3817 }
3818
3819 static int i915_irq_postinstall(struct drm_device *dev)
3820 {
3821 struct drm_i915_private *dev_priv = dev->dev_private;
3822 u32 enable_mask;
3823
3824 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3825
3826 /* Unmask the interrupts that we always want on. */
3827 dev_priv->irq_mask =
3828 ~(I915_ASLE_INTERRUPT |
3829 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3830 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3831 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3832 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3833 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3834
3835 enable_mask =
3836 I915_ASLE_INTERRUPT |
3837 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3838 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3839 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3840 I915_USER_INTERRUPT;
3841
3842 if (I915_HAS_HOTPLUG(dev)) {
3843 I915_WRITE(PORT_HOTPLUG_EN, 0);
3844 POSTING_READ(PORT_HOTPLUG_EN);
3845
3846 /* Enable in IER... */
3847 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3848 /* and unmask in IMR */
3849 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3850 }
3851
3852 I915_WRITE(IMR, dev_priv->irq_mask);
3853 I915_WRITE(IER, enable_mask);
3854 POSTING_READ(IER);
3855
3856 i915_enable_asle_pipestat(dev);
3857
3858 /* Interrupt setup is already guaranteed to be single-threaded, this is
3859 * just to make the assert_spin_locked check happy. */
3860 spin_lock_irq(&dev_priv->irq_lock);
3861 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3862 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3863 spin_unlock_irq(&dev_priv->irq_lock);
3864
3865 return 0;
3866 }
3867
3868 /*
3869 * Returns true when a page flip has completed.
3870 */
3871 static bool i915_handle_vblank(struct drm_device *dev,
3872 int plane, int pipe, u32 iir)
3873 {
3874 struct drm_i915_private *dev_priv = dev->dev_private;
3875 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3876
3877 if (!intel_pipe_handle_vblank(dev, pipe))
3878 return false;
3879
3880 if ((iir & flip_pending) == 0)
3881 goto check_page_flip;
3882
3883 intel_prepare_page_flip(dev, plane);
3884
3885 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3886 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3887 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3888 * the flip is completed (no longer pending). Since this doesn't raise
3889 * an interrupt per se, we watch for the change at vblank.
3890 */
3891 if (I915_READ(ISR) & flip_pending)
3892 goto check_page_flip;
3893
3894 intel_finish_page_flip(dev, pipe);
3895 return true;
3896
3897 check_page_flip:
3898 intel_check_page_flip(dev, pipe);
3899 return false;
3900 }
3901
3902 static irqreturn_t i915_irq_handler(int irq, void *arg)
3903 {
3904 struct drm_device *dev = arg;
3905 struct drm_i915_private *dev_priv = dev->dev_private;
3906 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3907 u32 flip_mask =
3908 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3909 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3910 int pipe, ret = IRQ_NONE;
3911
3912 iir = I915_READ(IIR);
3913 do {
3914 bool irq_received = (iir & ~flip_mask) != 0;
3915 bool blc_event = false;
3916
3917 /* Can't rely on pipestat interrupt bit in iir as it might
3918 * have been cleared after the pipestat interrupt was received.
3919 * It doesn't set the bit in iir again, but it still produces
3920 * interrupts (for non-MSI).
3921 */
3922 spin_lock(&dev_priv->irq_lock);
3923 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3924 i915_handle_error(dev, false,
3925 "Command parser error, iir 0x%08x",
3926 iir);
3927
3928 for_each_pipe(dev_priv, pipe) {
3929 int reg = PIPESTAT(pipe);
3930 pipe_stats[pipe] = I915_READ(reg);
3931
3932 /* Clear the PIPE*STAT regs before the IIR */
3933 if (pipe_stats[pipe] & 0x8000ffff) {
3934 I915_WRITE(reg, pipe_stats[pipe]);
3935 irq_received = true;
3936 }
3937 }
3938 spin_unlock(&dev_priv->irq_lock);
3939
3940 if (!irq_received)
3941 break;
3942
3943 /* Consume port. Then clear IIR or we'll miss events */
3944 if (I915_HAS_HOTPLUG(dev) &&
3945 iir & I915_DISPLAY_PORT_INTERRUPT)
3946 i9xx_hpd_irq_handler(dev);
3947
3948 I915_WRITE(IIR, iir & ~flip_mask);
3949 new_iir = I915_READ(IIR); /* Flush posted writes */
3950
3951 if (iir & I915_USER_INTERRUPT)
3952 notify_ring(dev, &dev_priv->ring[RCS]);
3953
3954 for_each_pipe(dev_priv, pipe) {
3955 int plane = pipe;
3956 if (HAS_FBC(dev))
3957 plane = !plane;
3958
3959 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3960 i915_handle_vblank(dev, plane, pipe, iir))
3961 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3962
3963 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3964 blc_event = true;
3965
3966 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3967 i9xx_pipe_crc_irq_handler(dev, pipe);
3968
3969 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3970 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3971 pipe);
3972 }
3973
3974 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3975 intel_opregion_asle_intr(dev);
3976
3977 /* With MSI, interrupts are only generated when iir
3978 * transitions from zero to nonzero. If another bit got
3979 * set while we were handling the existing iir bits, then
3980 * we would never get another interrupt.
3981 *
3982 * This is fine on non-MSI as well, as if we hit this path
3983 * we avoid exiting the interrupt handler only to generate
3984 * another one.
3985 *
3986 * Note that for MSI this could cause a stray interrupt report
3987 * if an interrupt landed in the time between writing IIR and
3988 * the posting read. This should be rare enough to never
3989 * trigger the 99% of 100,000 interrupts test for disabling
3990 * stray interrupts.
3991 */
3992 ret = IRQ_HANDLED;
3993 iir = new_iir;
3994 } while (iir & ~flip_mask);
3995
3996 i915_update_dri1_breadcrumb(dev);
3997
3998 return ret;
3999 }
4000
4001 static void i915_irq_uninstall(struct drm_device * dev)
4002 {
4003 struct drm_i915_private *dev_priv = dev->dev_private;
4004 int pipe;
4005
4006 if (I915_HAS_HOTPLUG(dev)) {
4007 I915_WRITE(PORT_HOTPLUG_EN, 0);
4008 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4009 }
4010
4011 I915_WRITE16(HWSTAM, 0xffff);
4012 for_each_pipe(dev_priv, pipe) {
4013 /* Clear enable bits; then clear status bits */
4014 I915_WRITE(PIPESTAT(pipe), 0);
4015 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4016 }
4017 I915_WRITE(IMR, 0xffffffff);
4018 I915_WRITE(IER, 0x0);
4019
4020 I915_WRITE(IIR, I915_READ(IIR));
4021 }
4022
4023 static void i965_irq_preinstall(struct drm_device * dev)
4024 {
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 int pipe;
4027
4028 I915_WRITE(PORT_HOTPLUG_EN, 0);
4029 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4030
4031 I915_WRITE(HWSTAM, 0xeffe);
4032 for_each_pipe(dev_priv, pipe)
4033 I915_WRITE(PIPESTAT(pipe), 0);
4034 I915_WRITE(IMR, 0xffffffff);
4035 I915_WRITE(IER, 0x0);
4036 POSTING_READ(IER);
4037 }
4038
4039 static int i965_irq_postinstall(struct drm_device *dev)
4040 {
4041 struct drm_i915_private *dev_priv = dev->dev_private;
4042 u32 enable_mask;
4043 u32 error_mask;
4044
4045 /* Unmask the interrupts that we always want on. */
4046 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4047 I915_DISPLAY_PORT_INTERRUPT |
4048 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4049 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4050 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4051 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4052 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4053
4054 enable_mask = ~dev_priv->irq_mask;
4055 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4056 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4057 enable_mask |= I915_USER_INTERRUPT;
4058
4059 if (IS_G4X(dev))
4060 enable_mask |= I915_BSD_USER_INTERRUPT;
4061
4062 /* Interrupt setup is already guaranteed to be single-threaded, this is
4063 * just to make the assert_spin_locked check happy. */
4064 spin_lock_irq(&dev_priv->irq_lock);
4065 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4066 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4067 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4068 spin_unlock_irq(&dev_priv->irq_lock);
4069
4070 /*
4071 * Enable some error detection, note the instruction error mask
4072 * bit is reserved, so we leave it masked.
4073 */
4074 if (IS_G4X(dev)) {
4075 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4076 GM45_ERROR_MEM_PRIV |
4077 GM45_ERROR_CP_PRIV |
4078 I915_ERROR_MEMORY_REFRESH);
4079 } else {
4080 error_mask = ~(I915_ERROR_PAGE_TABLE |
4081 I915_ERROR_MEMORY_REFRESH);
4082 }
4083 I915_WRITE(EMR, error_mask);
4084
4085 I915_WRITE(IMR, dev_priv->irq_mask);
4086 I915_WRITE(IER, enable_mask);
4087 POSTING_READ(IER);
4088
4089 I915_WRITE(PORT_HOTPLUG_EN, 0);
4090 POSTING_READ(PORT_HOTPLUG_EN);
4091
4092 i915_enable_asle_pipestat(dev);
4093
4094 return 0;
4095 }
4096
4097 static void i915_hpd_irq_setup(struct drm_device *dev)
4098 {
4099 struct drm_i915_private *dev_priv = dev->dev_private;
4100 struct intel_encoder *intel_encoder;
4101 u32 hotplug_en;
4102
4103 assert_spin_locked(&dev_priv->irq_lock);
4104
4105 if (I915_HAS_HOTPLUG(dev)) {
4106 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4107 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4108 /* Note HDMI and DP share hotplug bits */
4109 /* enable bits are the same for all generations */
4110 for_each_intel_encoder(dev, intel_encoder)
4111 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4112 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4113 /* Programming the CRT detection parameters tends
4114 to generate a spurious hotplug event about three
4115 seconds later. So just do it once.
4116 */
4117 if (IS_G4X(dev))
4118 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4119 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4120 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4121
4122 /* Ignore TV since it's buggy */
4123 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4124 }
4125 }
4126
4127 static irqreturn_t i965_irq_handler(int irq, void *arg)
4128 {
4129 struct drm_device *dev = arg;
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 u32 iir, new_iir;
4132 u32 pipe_stats[I915_MAX_PIPES];
4133 int ret = IRQ_NONE, pipe;
4134 u32 flip_mask =
4135 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4136 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4137
4138 iir = I915_READ(IIR);
4139
4140 for (;;) {
4141 bool irq_received = (iir & ~flip_mask) != 0;
4142 bool blc_event = false;
4143
4144 /* Can't rely on pipestat interrupt bit in iir as it might
4145 * have been cleared after the pipestat interrupt was received.
4146 * It doesn't set the bit in iir again, but it still produces
4147 * interrupts (for non-MSI).
4148 */
4149 spin_lock(&dev_priv->irq_lock);
4150 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4151 i915_handle_error(dev, false,
4152 "Command parser error, iir 0x%08x",
4153 iir);
4154
4155 for_each_pipe(dev_priv, pipe) {
4156 int reg = PIPESTAT(pipe);
4157 pipe_stats[pipe] = I915_READ(reg);
4158
4159 /*
4160 * Clear the PIPE*STAT regs before the IIR
4161 */
4162 if (pipe_stats[pipe] & 0x8000ffff) {
4163 I915_WRITE(reg, pipe_stats[pipe]);
4164 irq_received = true;
4165 }
4166 }
4167 spin_unlock(&dev_priv->irq_lock);
4168
4169 if (!irq_received)
4170 break;
4171
4172 ret = IRQ_HANDLED;
4173
4174 /* Consume port. Then clear IIR or we'll miss events */
4175 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4176 i9xx_hpd_irq_handler(dev);
4177
4178 I915_WRITE(IIR, iir & ~flip_mask);
4179 new_iir = I915_READ(IIR); /* Flush posted writes */
4180
4181 if (iir & I915_USER_INTERRUPT)
4182 notify_ring(dev, &dev_priv->ring[RCS]);
4183 if (iir & I915_BSD_USER_INTERRUPT)
4184 notify_ring(dev, &dev_priv->ring[VCS]);
4185
4186 for_each_pipe(dev_priv, pipe) {
4187 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4188 i915_handle_vblank(dev, pipe, pipe, iir))
4189 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4190
4191 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4192 blc_event = true;
4193
4194 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4195 i9xx_pipe_crc_irq_handler(dev, pipe);
4196
4197 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4198 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4199 }
4200
4201 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4202 intel_opregion_asle_intr(dev);
4203
4204 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4205 gmbus_irq_handler(dev);
4206
4207 /* With MSI, interrupts are only generated when iir
4208 * transitions from zero to nonzero. If another bit got
4209 * set while we were handling the existing iir bits, then
4210 * we would never get another interrupt.
4211 *
4212 * This is fine on non-MSI as well, as if we hit this path
4213 * we avoid exiting the interrupt handler only to generate
4214 * another one.
4215 *
4216 * Note that for MSI this could cause a stray interrupt report
4217 * if an interrupt landed in the time between writing IIR and
4218 * the posting read. This should be rare enough to never
4219 * trigger the 99% of 100,000 interrupts test for disabling
4220 * stray interrupts.
4221 */
4222 iir = new_iir;
4223 }
4224
4225 i915_update_dri1_breadcrumb(dev);
4226
4227 return ret;
4228 }
4229
4230 static void i965_irq_uninstall(struct drm_device * dev)
4231 {
4232 struct drm_i915_private *dev_priv = dev->dev_private;
4233 int pipe;
4234
4235 if (!dev_priv)
4236 return;
4237
4238 I915_WRITE(PORT_HOTPLUG_EN, 0);
4239 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4240
4241 I915_WRITE(HWSTAM, 0xffffffff);
4242 for_each_pipe(dev_priv, pipe)
4243 I915_WRITE(PIPESTAT(pipe), 0);
4244 I915_WRITE(IMR, 0xffffffff);
4245 I915_WRITE(IER, 0x0);
4246
4247 for_each_pipe(dev_priv, pipe)
4248 I915_WRITE(PIPESTAT(pipe),
4249 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4250 I915_WRITE(IIR, I915_READ(IIR));
4251 }
4252
4253 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4254 {
4255 struct drm_i915_private *dev_priv =
4256 container_of(work, typeof(*dev_priv),
4257 hotplug_reenable_work.work);
4258 struct drm_device *dev = dev_priv->dev;
4259 struct drm_mode_config *mode_config = &dev->mode_config;
4260 int i;
4261
4262 intel_runtime_pm_get(dev_priv);
4263
4264 spin_lock_irq(&dev_priv->irq_lock);
4265 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4266 struct drm_connector *connector;
4267
4268 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4269 continue;
4270
4271 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4272
4273 list_for_each_entry(connector, &mode_config->connector_list, head) {
4274 struct intel_connector *intel_connector = to_intel_connector(connector);
4275
4276 if (intel_connector->encoder->hpd_pin == i) {
4277 if (connector->polled != intel_connector->polled)
4278 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4279 connector->name);
4280 connector->polled = intel_connector->polled;
4281 if (!connector->polled)
4282 connector->polled = DRM_CONNECTOR_POLL_HPD;
4283 }
4284 }
4285 }
4286 if (dev_priv->display.hpd_irq_setup)
4287 dev_priv->display.hpd_irq_setup(dev);
4288 spin_unlock_irq(&dev_priv->irq_lock);
4289
4290 intel_runtime_pm_put(dev_priv);
4291 }
4292
4293 /**
4294 * intel_irq_init - initializes irq support
4295 * @dev_priv: i915 device instance
4296 *
4297 * This function initializes all the irq support including work items, timers
4298 * and all the vtables. It does not setup the interrupt itself though.
4299 */
4300 void intel_irq_init(struct drm_i915_private *dev_priv)
4301 {
4302 struct drm_device *dev = dev_priv->dev;
4303
4304 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4305 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4306 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4307 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4308 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4309
4310 /* Let's track the enabled rps events */
4311 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4312 /* WaGsvRC0ResidencyMethod:vlv */
4313 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4314 else
4315 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4316
4317 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4318 i915_hangcheck_elapsed,
4319 (unsigned long) dev);
4320 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4321 intel_hpd_irq_reenable_work);
4322
4323 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4324
4325 if (IS_GEN2(dev_priv)) {
4326 dev->max_vblank_count = 0;
4327 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4328 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4329 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4330 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4331 } else {
4332 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4333 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4334 }
4335
4336 /*
4337 * Opt out of the vblank disable timer on everything except gen2.
4338 * Gen2 doesn't have a hardware frame counter and so depends on
4339 * vblank interrupts to produce sane vblank seuquence numbers.
4340 */
4341 if (!IS_GEN2(dev_priv))
4342 dev->vblank_disable_immediate = true;
4343
4344 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4345 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4346 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4347 }
4348
4349 if (IS_CHERRYVIEW(dev_priv)) {
4350 dev->driver->irq_handler = cherryview_irq_handler;
4351 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4352 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4353 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4354 dev->driver->enable_vblank = valleyview_enable_vblank;
4355 dev->driver->disable_vblank = valleyview_disable_vblank;
4356 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4357 } else if (IS_VALLEYVIEW(dev_priv)) {
4358 dev->driver->irq_handler = valleyview_irq_handler;
4359 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4360 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4361 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4362 dev->driver->enable_vblank = valleyview_enable_vblank;
4363 dev->driver->disable_vblank = valleyview_disable_vblank;
4364 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4365 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4366 dev->driver->irq_handler = gen8_irq_handler;
4367 dev->driver->irq_preinstall = gen8_irq_reset;
4368 dev->driver->irq_postinstall = gen8_irq_postinstall;
4369 dev->driver->irq_uninstall = gen8_irq_uninstall;
4370 dev->driver->enable_vblank = gen8_enable_vblank;
4371 dev->driver->disable_vblank = gen8_disable_vblank;
4372 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4373 } else if (HAS_PCH_SPLIT(dev)) {
4374 dev->driver->irq_handler = ironlake_irq_handler;
4375 dev->driver->irq_preinstall = ironlake_irq_reset;
4376 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4377 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4378 dev->driver->enable_vblank = ironlake_enable_vblank;
4379 dev->driver->disable_vblank = ironlake_disable_vblank;
4380 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4381 } else {
4382 if (INTEL_INFO(dev_priv)->gen == 2) {
4383 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4384 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4385 dev->driver->irq_handler = i8xx_irq_handler;
4386 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4387 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4388 dev->driver->irq_preinstall = i915_irq_preinstall;
4389 dev->driver->irq_postinstall = i915_irq_postinstall;
4390 dev->driver->irq_uninstall = i915_irq_uninstall;
4391 dev->driver->irq_handler = i915_irq_handler;
4392 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4393 } else {
4394 dev->driver->irq_preinstall = i965_irq_preinstall;
4395 dev->driver->irq_postinstall = i965_irq_postinstall;
4396 dev->driver->irq_uninstall = i965_irq_uninstall;
4397 dev->driver->irq_handler = i965_irq_handler;
4398 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4399 }
4400 dev->driver->enable_vblank = i915_enable_vblank;
4401 dev->driver->disable_vblank = i915_disable_vblank;
4402 }
4403 }
4404
4405 /**
4406 * intel_hpd_init - initializes and enables hpd support
4407 * @dev_priv: i915 device instance
4408 *
4409 * This function enables the hotplug support. It requires that interrupts have
4410 * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4411 * poll request can run concurrently to other code, so locking rules must be
4412 * obeyed.
4413 *
4414 * This is a separate step from interrupt enabling to simplify the locking rules
4415 * in the driver load and resume code.
4416 */
4417 void intel_hpd_init(struct drm_i915_private *dev_priv)
4418 {
4419 struct drm_device *dev = dev_priv->dev;
4420 struct drm_mode_config *mode_config = &dev->mode_config;
4421 struct drm_connector *connector;
4422 int i;
4423
4424 for (i = 1; i < HPD_NUM_PINS; i++) {
4425 dev_priv->hpd_stats[i].hpd_cnt = 0;
4426 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4427 }
4428 list_for_each_entry(connector, &mode_config->connector_list, head) {
4429 struct intel_connector *intel_connector = to_intel_connector(connector);
4430 connector->polled = intel_connector->polled;
4431 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4432 connector->polled = DRM_CONNECTOR_POLL_HPD;
4433 if (intel_connector->mst_port)
4434 connector->polled = DRM_CONNECTOR_POLL_HPD;
4435 }
4436
4437 /* Interrupt setup is already guaranteed to be single-threaded, this is
4438 * just to make the assert_spin_locked checks happy. */
4439 spin_lock_irq(&dev_priv->irq_lock);
4440 if (dev_priv->display.hpd_irq_setup)
4441 dev_priv->display.hpd_irq_setup(dev);
4442 spin_unlock_irq(&dev_priv->irq_lock);
4443 }
4444
4445 /**
4446 * intel_irq_install - enables the hardware interrupt
4447 * @dev_priv: i915 device instance
4448 *
4449 * This function enables the hardware interrupt handling, but leaves the hotplug
4450 * handling still disabled. It is called after intel_irq_init().
4451 *
4452 * In the driver load and resume code we need working interrupts in a few places
4453 * but don't want to deal with the hassle of concurrent probe and hotplug
4454 * workers. Hence the split into this two-stage approach.
4455 */
4456 int intel_irq_install(struct drm_i915_private *dev_priv)
4457 {
4458 /*
4459 * We enable some interrupt sources in our postinstall hooks, so mark
4460 * interrupts as enabled _before_ actually enabling them to avoid
4461 * special cases in our ordering checks.
4462 */
4463 dev_priv->pm.irqs_enabled = true;
4464
4465 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4466 }
4467
4468 /**
4469 * intel_irq_uninstall - finilizes all irq handling
4470 * @dev_priv: i915 device instance
4471 *
4472 * This stops interrupt and hotplug handling and unregisters and frees all
4473 * resources acquired in the init functions.
4474 */
4475 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4476 {
4477 drm_irq_uninstall(dev_priv->dev);
4478 intel_hpd_cancel_work(dev_priv);
4479 dev_priv->pm.irqs_enabled = false;
4480 }
4481
4482 /**
4483 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4484 * @dev_priv: i915 device instance
4485 *
4486 * This function is used to disable interrupts at runtime, both in the runtime
4487 * pm and the system suspend/resume code.
4488 */
4489 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4490 {
4491 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4492 dev_priv->pm.irqs_enabled = false;
4493 }
4494
4495 /**
4496 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4497 * @dev_priv: i915 device instance
4498 *
4499 * This function is used to enable interrupts at runtime, both in the runtime
4500 * pm and the system suspend/resume code.
4501 */
4502 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4503 {
4504 dev_priv->pm.irqs_enabled = true;
4505 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4506 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4507 }
This page took 0.118285 seconds and 6 git commands to generate.