Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (WARN_ON(dev_priv->pm.irqs_disabled))
140 return;
141
142 if ((dev_priv->irq_mask & mask) != 0) {
143 dev_priv->irq_mask &= ~mask;
144 I915_WRITE(DEIMR, dev_priv->irq_mask);
145 POSTING_READ(DEIMR);
146 }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 assert_spin_locked(&dev_priv->irq_lock);
153
154 if (WARN_ON(dev_priv->pm.irqs_disabled))
155 return;
156
157 if ((dev_priv->irq_mask & mask) != mask) {
158 dev_priv->irq_mask |= mask;
159 I915_WRITE(DEIMR, dev_priv->irq_mask);
160 POSTING_READ(DEIMR);
161 }
162 }
163
164 /**
165 * ilk_update_gt_irq - update GTIMR
166 * @dev_priv: driver private
167 * @interrupt_mask: mask of interrupt bits to update
168 * @enabled_irq_mask: mask of interrupt bits to enable
169 */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 uint32_t interrupt_mask,
172 uint32_t enabled_irq_mask)
173 {
174 assert_spin_locked(&dev_priv->irq_lock);
175
176 if (WARN_ON(dev_priv->pm.irqs_disabled))
177 return;
178
179 dev_priv->gt_irq_mask &= ~interrupt_mask;
180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 POSTING_READ(GTIMR);
183 }
184
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196 * snb_update_pm_irq - update GEN6_PMIMR
197 * @dev_priv: driver private
198 * @interrupt_mask: mask of interrupt bits to update
199 * @enabled_irq_mask: mask of interrupt bits to enable
200 */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 uint32_t interrupt_mask,
203 uint32_t enabled_irq_mask)
204 {
205 uint32_t new_val;
206
207 assert_spin_locked(&dev_priv->irq_lock);
208
209 if (WARN_ON(dev_priv->pm.irqs_disabled))
210 return;
211
212 new_val = dev_priv->pm_irq_mask;
213 new_val &= ~interrupt_mask;
214 new_val |= (~enabled_irq_mask & interrupt_mask);
215
216 if (new_val != dev_priv->pm_irq_mask) {
217 dev_priv->pm_irq_mask = new_val;
218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 POSTING_READ(GEN6_PMIMR);
220 }
221 }
222
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct intel_crtc *crtc;
237 enum pipe pipe;
238
239 assert_spin_locked(&dev_priv->irq_lock);
240
241 for_each_pipe(pipe) {
242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244 if (crtc->cpu_fifo_underrun_disabled)
245 return false;
246 }
247
248 return true;
249 }
250
251 /**
252 * bdw_update_pm_irq - update GT interrupt 2
253 * @dev_priv: driver private
254 * @interrupt_mask: mask of interrupt bits to update
255 * @enabled_irq_mask: mask of interrupt bits to enable
256 *
257 * Copied from the snb function, updated with relevant register offsets
258 */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 uint32_t interrupt_mask,
261 uint32_t enabled_irq_mask)
262 {
263 uint32_t new_val;
264
265 assert_spin_locked(&dev_priv->irq_lock);
266
267 if (WARN_ON(dev_priv->pm.irqs_disabled))
268 return;
269
270 new_val = dev_priv->pm_irq_mask;
271 new_val &= ~interrupt_mask;
272 new_val |= (~enabled_irq_mask & interrupt_mask);
273
274 if (new_val != dev_priv->pm_irq_mask) {
275 dev_priv->pm_irq_mask = new_val;
276 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 POSTING_READ(GEN8_GT_IMR(2));
278 }
279 }
280
281 void bdw_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void bdw_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 struct drm_i915_private *dev_priv = dev->dev_private;
294 enum pipe pipe;
295 struct intel_crtc *crtc;
296
297 assert_spin_locked(&dev_priv->irq_lock);
298
299 for_each_pipe(pipe) {
300 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302 if (crtc->pch_fifo_underrun_disabled)
303 return false;
304 }
305
306 return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312 struct intel_crtc *crtc;
313 unsigned long flags;
314
315 spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317 for_each_intel_crtc(dev, crtc) {
318 u32 reg = PIPESTAT(crtc->pipe);
319 u32 pipestat;
320
321 if (crtc->cpu_fifo_underrun_disabled)
322 continue;
323
324 pipestat = I915_READ(reg) & 0xffff0000;
325 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 continue;
327
328 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 POSTING_READ(reg);
330
331 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 }
333
334 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 enum pipe pipe,
339 bool enable, bool old)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 u32 reg = PIPESTAT(pipe);
343 u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345 assert_spin_locked(&dev_priv->irq_lock);
346
347 if (enable) {
348 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 POSTING_READ(reg);
350 } else {
351 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 enum pipe pipe, bool enable)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 DE_PIPEB_FIFO_UNDERRUN;
362
363 if (enable)
364 ironlake_enable_display_irq(dev_priv, bit);
365 else
366 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 enum pipe pipe,
371 bool enable, bool old)
372 {
373 struct drm_i915_private *dev_priv = dev->dev_private;
374 if (enable) {
375 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377 if (!ivb_can_enable_err_int(dev))
378 return;
379
380 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 } else {
382 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384 if (old &&
385 I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 pipe_name(pipe));
388 }
389 }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 enum pipe pipe, bool enable)
394 {
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 assert_spin_locked(&dev_priv->irq_lock);
398
399 if (enable)
400 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 else
402 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408 * ibx_display_interrupt_update - update SDEIMR
409 * @dev_priv: driver private
410 * @interrupt_mask: mask of interrupt bits to update
411 * @enabled_irq_mask: mask of interrupt bits to enable
412 */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 uint32_t interrupt_mask,
415 uint32_t enabled_irq_mask)
416 {
417 uint32_t sdeimr = I915_READ(SDEIMR);
418 sdeimr &= ~interrupt_mask;
419 sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 if (WARN_ON(dev_priv->pm.irqs_disabled))
424 return;
425
426 I915_WRITE(SDEIMR, sdeimr);
427 POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 enum transcoder pch_transcoder,
436 bool enable)
437 {
438 struct drm_i915_private *dev_priv = dev->dev_private;
439 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442 if (enable)
443 ibx_enable_display_interrupt(dev_priv, bit);
444 else
445 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 enum transcoder pch_transcoder,
450 bool enable, bool old)
451 {
452 struct drm_i915_private *dev_priv = dev->dev_private;
453
454 if (enable) {
455 I915_WRITE(SERR_INT,
456 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458 if (!cpt_can_enable_serr_int(dev))
459 return;
460
461 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 } else {
463 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465 if (old && I915_READ(SERR_INT) &
466 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 transcoder_name(pch_transcoder));
469 }
470 }
471 }
472
473 /**
474 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475 * @dev: drm device
476 * @pipe: pipe
477 * @enable: true if we want to report FIFO underrun errors, false otherwise
478 *
479 * This function makes us disable or enable CPU fifo underruns for a specific
480 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481 * reporting for one pipe may also disable all the other CPU error interruts for
482 * the other pipes, due to the fact that there's just one interrupt mask/enable
483 * bit for all the pipes.
484 *
485 * Returns the previous state of underrun reporting.
486 */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 enum pipe pipe, bool enable)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 bool old;
494
495 assert_spin_locked(&dev_priv->irq_lock);
496
497 old = !intel_crtc->cpu_fifo_underrun_disabled;
498 intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500 if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 else if (IS_GEN5(dev) || IS_GEN6(dev))
503 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 else if (IS_GEN7(dev))
505 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 else if (IS_GEN8(dev))
507 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509 return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 enum pipe pipe, bool enable)
514 {
515 struct drm_i915_private *dev_priv = dev->dev_private;
516 unsigned long flags;
517 bool ret;
518
519 spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523 return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 enum pipe pipe)
528 {
529 struct drm_i915_private *dev_priv = dev->dev_private;
530 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533 return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538 * @dev: drm device
539 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540 * @enable: true if we want to report FIFO underrun errors, false otherwise
541 *
542 * This function makes us disable or enable PCH fifo underruns for a specific
543 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544 * underrun reporting for one transcoder may also disable all the other PCH
545 * error interruts for the other transcoders, due to the fact that there's just
546 * one interrupt mask/enable bit for all the transcoders.
547 *
548 * Returns the previous state of underrun reporting.
549 */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 enum transcoder pch_transcoder,
552 bool enable)
553 {
554 struct drm_i915_private *dev_priv = dev->dev_private;
555 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 unsigned long flags;
558 bool old;
559
560 /*
561 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 * has only one pch transcoder A that all pipes can use. To avoid racy
563 * pch transcoder -> pipe lookups from interrupt code simply store the
564 * underrun statistics in crtc A. Since we never expose this anywhere
565 * nor use it outside of the fifo underrun code here using the "wrong"
566 * crtc on LPT won't cause issues.
567 */
568
569 spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571 old = !intel_crtc->pch_fifo_underrun_disabled;
572 intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574 if (HAS_PCH_IBX(dev))
575 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 else
577 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 u32 enable_mask, u32 status_mask)
587 {
588 u32 reg = PIPESTAT(pipe);
589 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591 assert_spin_locked(&dev_priv->irq_lock);
592
593 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 pipe_name(pipe), enable_mask, status_mask))
597 return;
598
599 if ((pipestat & enable_mask) == enable_mask)
600 return;
601
602 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604 /* Enable the interrupt, clear any pending status */
605 pipestat |= enable_mask | status_mask;
606 I915_WRITE(reg, pipestat);
607 POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 u32 enable_mask, u32 status_mask)
613 {
614 u32 reg = PIPESTAT(pipe);
615 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617 assert_spin_locked(&dev_priv->irq_lock);
618
619 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 pipe_name(pipe), enable_mask, status_mask))
623 return;
624
625 if ((pipestat & enable_mask) == 0)
626 return;
627
628 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630 pipestat &= ~enable_mask;
631 I915_WRITE(reg, pipestat);
632 POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 u32 enable_mask = status_mask << 16;
638
639 /*
640 * On pipe A we don't support the PSR interrupt yet,
641 * on pipe B and C the same bit MBZ.
642 */
643 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 return 0;
645 /*
646 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 * A the same bit is for perf counters which we don't use either.
648 */
649 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 return 0;
651
652 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660 return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 u32 status_mask)
666 {
667 u32 enable_mask;
668
669 if (IS_VALLEYVIEW(dev_priv->dev))
670 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 status_mask);
672 else
673 enable_mask = status_mask << 16;
674 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 u32 status_mask)
680 {
681 u32 enable_mask;
682
683 if (IS_VALLEYVIEW(dev_priv->dev))
684 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 status_mask);
686 else
687 enable_mask = status_mask << 16;
688 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693 */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 struct drm_i915_private *dev_priv = dev->dev_private;
697 unsigned long irqflags;
698
699 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 return;
701
702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 if (INTEL_INFO(dev)->gen >= 4)
706 i915_enable_pipestat(dev_priv, PIPE_A,
707 PIPE_LEGACY_BLC_EVENT_STATUS);
708
709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713 * i915_pipe_enabled - check if a pipe is enabled
714 * @dev: DRM device
715 * @pipe: pipe to check
716 *
717 * Reading certain registers when the pipe is disabled can hang the chip.
718 * Use this routine to make sure the PLL is running and the pipe is active
719 * before reading such registers if unsure.
720 */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 struct drm_i915_private *dev_priv = dev->dev_private;
725
726 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 /* Locking is horribly broken here, but whatever. */
728 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731 return intel_crtc->active;
732 } else {
733 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 }
735 }
736
737 /*
738 * This timing diagram depicts the video signal in and
739 * around the vertical blanking period.
740 *
741 * Assumptions about the fictitious mode used in this example:
742 * vblank_start >= 3
743 * vsync_start = vblank_start + 1
744 * vsync_end = vblank_start + 2
745 * vtotal = vblank_start + 3
746 *
747 * start of vblank:
748 * latch double buffered registers
749 * increment frame counter (ctg+)
750 * generate start of vblank interrupt (gen4+)
751 * |
752 * | frame start:
753 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
754 * | may be shifted forward 1-3 extra lines via PIPECONF
755 * | |
756 * | | start of vsync:
757 * | | generate vsync interrupt
758 * | | |
759 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
760 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
761 * ----va---> <-----------------vb--------------------> <--------va-------------
762 * | | <----vs-----> |
763 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766 * | | |
767 * last visible pixel first visible pixel
768 * | increment frame counter (gen3/4)
769 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
770 *
771 * x = horizontal active
772 * _ = horizontal blanking
773 * hs = horizontal sync
774 * va = vertical active
775 * vb = vertical blanking
776 * vs = vertical sync
777 * vbs = vblank_start (number)
778 *
779 * Summary:
780 * - most events happen at the start of horizontal sync
781 * - frame start happens at the start of horizontal blank, 1-4 lines
782 * (depending on PIPECONF settings) after the start of vblank
783 * - gen3/4 pixel and frame counter are synchronized with the start
784 * of horizontal active on the first line of vertical active
785 */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 /* Gen2 doesn't have a hardware frame counter */
790 return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794 * we use as a pipe index
795 */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 unsigned long high_frame;
800 unsigned long low_frame;
801 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803 if (!i915_pipe_enabled(dev, pipe)) {
804 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 "pipe %c\n", pipe_name(pipe));
806 return 0;
807 }
808
809 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 struct intel_crtc *intel_crtc =
811 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 const struct drm_display_mode *mode =
813 &intel_crtc->config.adjusted_mode;
814
815 htotal = mode->crtc_htotal;
816 hsync_start = mode->crtc_hsync_start;
817 vbl_start = mode->crtc_vblank_start;
818 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 } else {
821 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1;
825 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 }
830
831 /* Convert to pixel count */
832 vbl_start *= htotal;
833
834 /* Start of vblank event occurs at start of hsync */
835 vbl_start -= htotal - hsync_start;
836
837 high_frame = PIPEFRAME(pipe);
838 low_frame = PIPEFRAMEPIXEL(pipe);
839
840 /*
841 * High & low register fields aren't synchronized, so make sure
842 * we get a low value that's stable across two reads of the high
843 * register.
844 */
845 do {
846 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 low = I915_READ(low_frame);
848 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 } while (high1 != high2);
850
851 high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 pixel = low & PIPE_PIXEL_MASK;
853 low >>= PIPE_FRAME_LOW_SHIFT;
854
855 /*
856 * The frame counter increments at beginning of active.
857 * Cook up a vblank counter by also checking the pixel
858 * counter against vblank start.
859 */
860 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868 if (!i915_pipe_enabled(dev, pipe)) {
869 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 "pipe %c\n", pipe_name(pipe));
871 return 0;
872 }
873
874 return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 struct drm_device *dev = crtc->base.dev;
883 struct drm_i915_private *dev_priv = dev->dev_private;
884 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 enum pipe pipe = crtc->pipe;
886 int position, vtotal;
887
888 vtotal = mode->crtc_vtotal;
889 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 vtotal /= 2;
891
892 if (IS_GEN2(dev))
893 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 else
895 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897 /*
898 * See update_scanline_offset() for the details on the
899 * scanline_offset adjustment.
900 */
901 return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 unsigned int flags, int *vpos, int *hpos,
906 ktime_t *stime, ktime_t *etime)
907 {
908 struct drm_i915_private *dev_priv = dev->dev_private;
909 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 int position;
913 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 bool in_vbl = true;
915 int ret = 0;
916 unsigned long irqflags;
917
918 if (!intel_crtc->active) {
919 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 "pipe %c\n", pipe_name(pipe));
921 return 0;
922 }
923
924 htotal = mode->crtc_htotal;
925 hsync_start = mode->crtc_hsync_start;
926 vtotal = mode->crtc_vtotal;
927 vbl_start = mode->crtc_vblank_start;
928 vbl_end = mode->crtc_vblank_end;
929
930 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 vbl_end /= 2;
933 vtotal /= 2;
934 }
935
936 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938 /*
939 * Lock uncore.lock, as we will do multiple timing critical raw
940 * register reads, potentially with preemption disabled, so the
941 * following code must not block on uncore.lock.
942 */
943 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947 /* Get optional system timestamp before query. */
948 if (stime)
949 *stime = ktime_get();
950
951 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 /* No obvious pixelcount register. Only query vertical
953 * scanout position from Display scan line register.
954 */
955 position = __intel_get_crtc_scanline(intel_crtc);
956 } else {
957 /* Have access to pixelcount since start of frame.
958 * We can split this into vertical and horizontal
959 * scanout position.
960 */
961 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963 /* convert to pixel counts */
964 vbl_start *= htotal;
965 vbl_end *= htotal;
966 vtotal *= htotal;
967
968 /*
969 * In interlaced modes, the pixel counter counts all pixels,
970 * so one field will have htotal more pixels. In order to avoid
971 * the reported position from jumping backwards when the pixel
972 * counter is beyond the length of the shorter field, just
973 * clamp the position the length of the shorter field. This
974 * matches how the scanline counter based position works since
975 * the scanline counter doesn't count the two half lines.
976 */
977 if (position >= vtotal)
978 position = vtotal - 1;
979
980 /*
981 * Start of vblank interrupt is triggered at start of hsync,
982 * just prior to the first active line of vblank. However we
983 * consider lines to start at the leading edge of horizontal
984 * active. So, should we get here before we've crossed into
985 * the horizontal active of the first line in vblank, we would
986 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 * always add htotal-hsync_start to the current pixel position.
988 */
989 position = (position + htotal - hsync_start) % vtotal;
990 }
991
992 /* Get optional system timestamp after query. */
993 if (etime)
994 *etime = ktime_get();
995
996 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000 in_vbl = position >= vbl_start && position < vbl_end;
1001
1002 /*
1003 * While in vblank, position will be negative
1004 * counting up towards 0 at vbl_end. And outside
1005 * vblank, position will be positive counting
1006 * up since vbl_end.
1007 */
1008 if (position >= vbl_start)
1009 position -= vbl_end;
1010 else
1011 position += vtotal - vbl_end;
1012
1013 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 *vpos = position;
1015 *hpos = 0;
1016 } else {
1017 *vpos = position / htotal;
1018 *hpos = position - (*vpos * htotal);
1019 }
1020
1021 /* In vblank? */
1022 if (in_vbl)
1023 ret |= DRM_SCANOUTPOS_INVBL;
1024
1025 return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 unsigned long irqflags;
1032 int position;
1033
1034 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 position = __intel_get_crtc_scanline(crtc);
1036 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038 return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 int *max_error,
1043 struct timeval *vblank_time,
1044 unsigned flags)
1045 {
1046 struct drm_crtc *crtc;
1047
1048 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 DRM_ERROR("Invalid crtc %d\n", pipe);
1050 return -EINVAL;
1051 }
1052
1053 /* Get drm_crtc to timestamp: */
1054 crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 if (crtc == NULL) {
1056 DRM_ERROR("Invalid crtc %d\n", pipe);
1057 return -EINVAL;
1058 }
1059
1060 if (!crtc->enabled) {
1061 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 return -EBUSY;
1063 }
1064
1065 /* Helper routine in DRM core does all the work: */
1066 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 vblank_time, flags,
1068 crtc,
1069 &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 struct drm_connector *connector)
1074 {
1075 enum drm_connector_status old_status;
1076
1077 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 old_status = connector->status;
1079
1080 connector->status = connector->funcs->detect(connector, false);
1081 if (old_status == connector->status)
1082 return false;
1083
1084 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 connector->base.id,
1086 connector->name,
1087 drm_get_connector_status_name(old_status),
1088 drm_get_connector_status_name(connector->status));
1089
1090 return true;
1091 }
1092
1093 /*
1094 * Handle hotplug events outside the interrupt handler proper.
1095 */
1096 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1097
1098 static void i915_hotplug_work_func(struct work_struct *work)
1099 {
1100 struct drm_i915_private *dev_priv =
1101 container_of(work, struct drm_i915_private, hotplug_work);
1102 struct drm_device *dev = dev_priv->dev;
1103 struct drm_mode_config *mode_config = &dev->mode_config;
1104 struct intel_connector *intel_connector;
1105 struct intel_encoder *intel_encoder;
1106 struct drm_connector *connector;
1107 unsigned long irqflags;
1108 bool hpd_disabled = false;
1109 bool changed = false;
1110 u32 hpd_event_bits;
1111
1112 /* HPD irq before everything is fully set up. */
1113 if (!dev_priv->enable_hotplug_processing)
1114 return;
1115
1116 mutex_lock(&mode_config->mutex);
1117 DRM_DEBUG_KMS("running encoder hotplug functions\n");
1118
1119 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1120
1121 hpd_event_bits = dev_priv->hpd_event_bits;
1122 dev_priv->hpd_event_bits = 0;
1123 list_for_each_entry(connector, &mode_config->connector_list, head) {
1124 intel_connector = to_intel_connector(connector);
1125 intel_encoder = intel_connector->encoder;
1126 if (intel_encoder->hpd_pin > HPD_NONE &&
1127 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1128 connector->polled == DRM_CONNECTOR_POLL_HPD) {
1129 DRM_INFO("HPD interrupt storm detected on connector %s: "
1130 "switching from hotplug detection to polling\n",
1131 connector->name);
1132 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1133 connector->polled = DRM_CONNECTOR_POLL_CONNECT
1134 | DRM_CONNECTOR_POLL_DISCONNECT;
1135 hpd_disabled = true;
1136 }
1137 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1138 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1139 connector->name, intel_encoder->hpd_pin);
1140 }
1141 }
1142 /* if there were no outputs to poll, poll was disabled,
1143 * therefore make sure it's enabled when disabling HPD on
1144 * some connectors */
1145 if (hpd_disabled) {
1146 drm_kms_helper_poll_enable(dev);
1147 mod_timer(&dev_priv->hotplug_reenable_timer,
1148 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1149 }
1150
1151 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1152
1153 list_for_each_entry(connector, &mode_config->connector_list, head) {
1154 intel_connector = to_intel_connector(connector);
1155 intel_encoder = intel_connector->encoder;
1156 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1157 if (intel_encoder->hot_plug)
1158 intel_encoder->hot_plug(intel_encoder);
1159 if (intel_hpd_irq_event(dev, connector))
1160 changed = true;
1161 }
1162 }
1163 mutex_unlock(&mode_config->mutex);
1164
1165 if (changed)
1166 drm_kms_helper_hotplug_event(dev);
1167 }
1168
1169 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1170 {
1171 del_timer_sync(&dev_priv->hotplug_reenable_timer);
1172 }
1173
1174 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1175 {
1176 struct drm_i915_private *dev_priv = dev->dev_private;
1177 u32 busy_up, busy_down, max_avg, min_avg;
1178 u8 new_delay;
1179
1180 spin_lock(&mchdev_lock);
1181
1182 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1183
1184 new_delay = dev_priv->ips.cur_delay;
1185
1186 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1187 busy_up = I915_READ(RCPREVBSYTUPAVG);
1188 busy_down = I915_READ(RCPREVBSYTDNAVG);
1189 max_avg = I915_READ(RCBMAXAVG);
1190 min_avg = I915_READ(RCBMINAVG);
1191
1192 /* Handle RCS change request from hw */
1193 if (busy_up > max_avg) {
1194 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1195 new_delay = dev_priv->ips.cur_delay - 1;
1196 if (new_delay < dev_priv->ips.max_delay)
1197 new_delay = dev_priv->ips.max_delay;
1198 } else if (busy_down < min_avg) {
1199 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1200 new_delay = dev_priv->ips.cur_delay + 1;
1201 if (new_delay > dev_priv->ips.min_delay)
1202 new_delay = dev_priv->ips.min_delay;
1203 }
1204
1205 if (ironlake_set_drps(dev, new_delay))
1206 dev_priv->ips.cur_delay = new_delay;
1207
1208 spin_unlock(&mchdev_lock);
1209
1210 return;
1211 }
1212
1213 static void notify_ring(struct drm_device *dev,
1214 struct intel_engine_cs *ring)
1215 {
1216 if (!intel_ring_initialized(ring))
1217 return;
1218
1219 trace_i915_gem_request_complete(ring);
1220
1221 wake_up_all(&ring->irq_queue);
1222 i915_queue_hangcheck(dev);
1223 }
1224
1225 static void gen6_pm_rps_work(struct work_struct *work)
1226 {
1227 struct drm_i915_private *dev_priv =
1228 container_of(work, struct drm_i915_private, rps.work);
1229 u32 pm_iir;
1230 int new_delay, adj;
1231
1232 spin_lock_irq(&dev_priv->irq_lock);
1233 pm_iir = dev_priv->rps.pm_iir;
1234 dev_priv->rps.pm_iir = 0;
1235 if (IS_BROADWELL(dev_priv->dev))
1236 bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1237 else {
1238 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1239 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1240 }
1241 spin_unlock_irq(&dev_priv->irq_lock);
1242
1243 /* Make sure we didn't queue anything we're not going to process. */
1244 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1245
1246 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1247 return;
1248
1249 mutex_lock(&dev_priv->rps.hw_lock);
1250
1251 adj = dev_priv->rps.last_adj;
1252 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1253 if (adj > 0)
1254 adj *= 2;
1255 else
1256 adj = 1;
1257 new_delay = dev_priv->rps.cur_freq + adj;
1258
1259 /*
1260 * For better performance, jump directly
1261 * to RPe if we're below it.
1262 */
1263 if (new_delay < dev_priv->rps.efficient_freq)
1264 new_delay = dev_priv->rps.efficient_freq;
1265 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1266 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1267 new_delay = dev_priv->rps.efficient_freq;
1268 else
1269 new_delay = dev_priv->rps.min_freq_softlimit;
1270 adj = 0;
1271 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1272 if (adj < 0)
1273 adj *= 2;
1274 else
1275 adj = -1;
1276 new_delay = dev_priv->rps.cur_freq + adj;
1277 } else { /* unknown event */
1278 new_delay = dev_priv->rps.cur_freq;
1279 }
1280
1281 /* sysfs frequency interfaces may have snuck in while servicing the
1282 * interrupt
1283 */
1284 new_delay = clamp_t(int, new_delay,
1285 dev_priv->rps.min_freq_softlimit,
1286 dev_priv->rps.max_freq_softlimit);
1287
1288 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1289
1290 if (IS_VALLEYVIEW(dev_priv->dev))
1291 valleyview_set_rps(dev_priv->dev, new_delay);
1292 else
1293 gen6_set_rps(dev_priv->dev, new_delay);
1294
1295 mutex_unlock(&dev_priv->rps.hw_lock);
1296 }
1297
1298
1299 /**
1300 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1301 * occurred.
1302 * @work: workqueue struct
1303 *
1304 * Doesn't actually do anything except notify userspace. As a consequence of
1305 * this event, userspace should try to remap the bad rows since statistically
1306 * it is likely the same row is more likely to go bad again.
1307 */
1308 static void ivybridge_parity_work(struct work_struct *work)
1309 {
1310 struct drm_i915_private *dev_priv =
1311 container_of(work, struct drm_i915_private, l3_parity.error_work);
1312 u32 error_status, row, bank, subbank;
1313 char *parity_event[6];
1314 uint32_t misccpctl;
1315 unsigned long flags;
1316 uint8_t slice = 0;
1317
1318 /* We must turn off DOP level clock gating to access the L3 registers.
1319 * In order to prevent a get/put style interface, acquire struct mutex
1320 * any time we access those registers.
1321 */
1322 mutex_lock(&dev_priv->dev->struct_mutex);
1323
1324 /* If we've screwed up tracking, just let the interrupt fire again */
1325 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1326 goto out;
1327
1328 misccpctl = I915_READ(GEN7_MISCCPCTL);
1329 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1330 POSTING_READ(GEN7_MISCCPCTL);
1331
1332 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1333 u32 reg;
1334
1335 slice--;
1336 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1337 break;
1338
1339 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1340
1341 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1342
1343 error_status = I915_READ(reg);
1344 row = GEN7_PARITY_ERROR_ROW(error_status);
1345 bank = GEN7_PARITY_ERROR_BANK(error_status);
1346 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1347
1348 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1349 POSTING_READ(reg);
1350
1351 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1352 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1353 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1354 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1355 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1356 parity_event[5] = NULL;
1357
1358 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1359 KOBJ_CHANGE, parity_event);
1360
1361 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1362 slice, row, bank, subbank);
1363
1364 kfree(parity_event[4]);
1365 kfree(parity_event[3]);
1366 kfree(parity_event[2]);
1367 kfree(parity_event[1]);
1368 }
1369
1370 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1371
1372 out:
1373 WARN_ON(dev_priv->l3_parity.which_slice);
1374 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1375 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1376 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1377
1378 mutex_unlock(&dev_priv->dev->struct_mutex);
1379 }
1380
1381 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1382 {
1383 struct drm_i915_private *dev_priv = dev->dev_private;
1384
1385 if (!HAS_L3_DPF(dev))
1386 return;
1387
1388 spin_lock(&dev_priv->irq_lock);
1389 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1390 spin_unlock(&dev_priv->irq_lock);
1391
1392 iir &= GT_PARITY_ERROR(dev);
1393 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1394 dev_priv->l3_parity.which_slice |= 1 << 1;
1395
1396 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1397 dev_priv->l3_parity.which_slice |= 1 << 0;
1398
1399 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1400 }
1401
1402 static void ilk_gt_irq_handler(struct drm_device *dev,
1403 struct drm_i915_private *dev_priv,
1404 u32 gt_iir)
1405 {
1406 if (gt_iir &
1407 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1408 notify_ring(dev, &dev_priv->ring[RCS]);
1409 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1410 notify_ring(dev, &dev_priv->ring[VCS]);
1411 }
1412
1413 static void snb_gt_irq_handler(struct drm_device *dev,
1414 struct drm_i915_private *dev_priv,
1415 u32 gt_iir)
1416 {
1417
1418 if (gt_iir &
1419 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1420 notify_ring(dev, &dev_priv->ring[RCS]);
1421 if (gt_iir & GT_BSD_USER_INTERRUPT)
1422 notify_ring(dev, &dev_priv->ring[VCS]);
1423 if (gt_iir & GT_BLT_USER_INTERRUPT)
1424 notify_ring(dev, &dev_priv->ring[BCS]);
1425
1426 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1427 GT_BSD_CS_ERROR_INTERRUPT |
1428 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1429 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1430 gt_iir);
1431 }
1432
1433 if (gt_iir & GT_PARITY_ERROR(dev))
1434 ivybridge_parity_error_irq_handler(dev, gt_iir);
1435 }
1436
1437 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1438 {
1439 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1440 return;
1441
1442 spin_lock(&dev_priv->irq_lock);
1443 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1444 bdw_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1445 spin_unlock(&dev_priv->irq_lock);
1446
1447 queue_work(dev_priv->wq, &dev_priv->rps.work);
1448 }
1449
1450 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1451 struct drm_i915_private *dev_priv,
1452 u32 master_ctl)
1453 {
1454 u32 rcs, bcs, vcs;
1455 uint32_t tmp = 0;
1456 irqreturn_t ret = IRQ_NONE;
1457
1458 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1459 tmp = I915_READ(GEN8_GT_IIR(0));
1460 if (tmp) {
1461 ret = IRQ_HANDLED;
1462 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1463 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1464 if (rcs & GT_RENDER_USER_INTERRUPT)
1465 notify_ring(dev, &dev_priv->ring[RCS]);
1466 if (bcs & GT_RENDER_USER_INTERRUPT)
1467 notify_ring(dev, &dev_priv->ring[BCS]);
1468 I915_WRITE(GEN8_GT_IIR(0), tmp);
1469 } else
1470 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1471 }
1472
1473 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1474 tmp = I915_READ(GEN8_GT_IIR(1));
1475 if (tmp) {
1476 ret = IRQ_HANDLED;
1477 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1478 if (vcs & GT_RENDER_USER_INTERRUPT)
1479 notify_ring(dev, &dev_priv->ring[VCS]);
1480 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1481 if (vcs & GT_RENDER_USER_INTERRUPT)
1482 notify_ring(dev, &dev_priv->ring[VCS2]);
1483 I915_WRITE(GEN8_GT_IIR(1), tmp);
1484 } else
1485 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1486 }
1487
1488 if (master_ctl & GEN8_GT_PM_IRQ) {
1489 tmp = I915_READ(GEN8_GT_IIR(2));
1490 if (tmp & dev_priv->pm_rps_events) {
1491 ret = IRQ_HANDLED;
1492 gen8_rps_irq_handler(dev_priv, tmp);
1493 I915_WRITE(GEN8_GT_IIR(2),
1494 tmp & dev_priv->pm_rps_events);
1495 } else
1496 DRM_ERROR("The master control interrupt lied (PM)!\n");
1497 }
1498
1499 if (master_ctl & GEN8_GT_VECS_IRQ) {
1500 tmp = I915_READ(GEN8_GT_IIR(3));
1501 if (tmp) {
1502 ret = IRQ_HANDLED;
1503 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1504 if (vcs & GT_RENDER_USER_INTERRUPT)
1505 notify_ring(dev, &dev_priv->ring[VECS]);
1506 I915_WRITE(GEN8_GT_IIR(3), tmp);
1507 } else
1508 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1509 }
1510
1511 return ret;
1512 }
1513
1514 #define HPD_STORM_DETECT_PERIOD 1000
1515 #define HPD_STORM_THRESHOLD 5
1516
1517 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1518 u32 hotplug_trigger,
1519 const u32 *hpd)
1520 {
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522 int i;
1523 bool storm_detected = false;
1524
1525 if (!hotplug_trigger)
1526 return;
1527
1528 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1529 hotplug_trigger);
1530
1531 spin_lock(&dev_priv->irq_lock);
1532 for (i = 1; i < HPD_NUM_PINS; i++) {
1533
1534 if (hpd[i] & hotplug_trigger &&
1535 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1536 /*
1537 * On GMCH platforms the interrupt mask bits only
1538 * prevent irq generation, not the setting of the
1539 * hotplug bits itself. So only WARN about unexpected
1540 * interrupts on saner platforms.
1541 */
1542 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1543 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1544 hotplug_trigger, i, hpd[i]);
1545
1546 continue;
1547 }
1548
1549 if (!(hpd[i] & hotplug_trigger) ||
1550 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1551 continue;
1552
1553 dev_priv->hpd_event_bits |= (1 << i);
1554 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1555 dev_priv->hpd_stats[i].hpd_last_jiffies
1556 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1557 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1558 dev_priv->hpd_stats[i].hpd_cnt = 0;
1559 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1560 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1561 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1562 dev_priv->hpd_event_bits &= ~(1 << i);
1563 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1564 storm_detected = true;
1565 } else {
1566 dev_priv->hpd_stats[i].hpd_cnt++;
1567 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1568 dev_priv->hpd_stats[i].hpd_cnt);
1569 }
1570 }
1571
1572 if (storm_detected)
1573 dev_priv->display.hpd_irq_setup(dev);
1574 spin_unlock(&dev_priv->irq_lock);
1575
1576 /*
1577 * Our hotplug handler can grab modeset locks (by calling down into the
1578 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1579 * queue for otherwise the flush_work in the pageflip code will
1580 * deadlock.
1581 */
1582 schedule_work(&dev_priv->hotplug_work);
1583 }
1584
1585 static void gmbus_irq_handler(struct drm_device *dev)
1586 {
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589 wake_up_all(&dev_priv->gmbus_wait_queue);
1590 }
1591
1592 static void dp_aux_irq_handler(struct drm_device *dev)
1593 {
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595
1596 wake_up_all(&dev_priv->gmbus_wait_queue);
1597 }
1598
1599 #if defined(CONFIG_DEBUG_FS)
1600 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1601 uint32_t crc0, uint32_t crc1,
1602 uint32_t crc2, uint32_t crc3,
1603 uint32_t crc4)
1604 {
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1607 struct intel_pipe_crc_entry *entry;
1608 int head, tail;
1609
1610 spin_lock(&pipe_crc->lock);
1611
1612 if (!pipe_crc->entries) {
1613 spin_unlock(&pipe_crc->lock);
1614 DRM_ERROR("spurious interrupt\n");
1615 return;
1616 }
1617
1618 head = pipe_crc->head;
1619 tail = pipe_crc->tail;
1620
1621 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1622 spin_unlock(&pipe_crc->lock);
1623 DRM_ERROR("CRC buffer overflowing\n");
1624 return;
1625 }
1626
1627 entry = &pipe_crc->entries[head];
1628
1629 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1630 entry->crc[0] = crc0;
1631 entry->crc[1] = crc1;
1632 entry->crc[2] = crc2;
1633 entry->crc[3] = crc3;
1634 entry->crc[4] = crc4;
1635
1636 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1637 pipe_crc->head = head;
1638
1639 spin_unlock(&pipe_crc->lock);
1640
1641 wake_up_interruptible(&pipe_crc->wq);
1642 }
1643 #else
1644 static inline void
1645 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1646 uint32_t crc0, uint32_t crc1,
1647 uint32_t crc2, uint32_t crc3,
1648 uint32_t crc4) {}
1649 #endif
1650
1651
1652 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1653 {
1654 struct drm_i915_private *dev_priv = dev->dev_private;
1655
1656 display_pipe_crc_irq_handler(dev, pipe,
1657 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1658 0, 0, 0, 0);
1659 }
1660
1661 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1662 {
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664
1665 display_pipe_crc_irq_handler(dev, pipe,
1666 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1667 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1668 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1669 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1670 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1671 }
1672
1673 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1674 {
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676 uint32_t res1, res2;
1677
1678 if (INTEL_INFO(dev)->gen >= 3)
1679 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1680 else
1681 res1 = 0;
1682
1683 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1684 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1685 else
1686 res2 = 0;
1687
1688 display_pipe_crc_irq_handler(dev, pipe,
1689 I915_READ(PIPE_CRC_RES_RED(pipe)),
1690 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1691 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1692 res1, res2);
1693 }
1694
1695 /* The RPS events need forcewake, so we add them to a work queue and mask their
1696 * IMR bits until the work is done. Other interrupts can be processed without
1697 * the work queue. */
1698 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1699 {
1700 if (pm_iir & dev_priv->pm_rps_events) {
1701 spin_lock(&dev_priv->irq_lock);
1702 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1703 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1704 spin_unlock(&dev_priv->irq_lock);
1705
1706 queue_work(dev_priv->wq, &dev_priv->rps.work);
1707 }
1708
1709 if (HAS_VEBOX(dev_priv->dev)) {
1710 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1711 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1712
1713 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1714 i915_handle_error(dev_priv->dev, false,
1715 "VEBOX CS error interrupt 0x%08x",
1716 pm_iir);
1717 }
1718 }
1719 }
1720
1721 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1722 {
1723 struct intel_crtc *crtc;
1724
1725 if (!drm_handle_vblank(dev, pipe))
1726 return false;
1727
1728 crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1729 wake_up(&crtc->vbl_wait);
1730
1731 return true;
1732 }
1733
1734 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1735 {
1736 struct drm_i915_private *dev_priv = dev->dev_private;
1737 u32 pipe_stats[I915_MAX_PIPES] = { };
1738 int pipe;
1739
1740 spin_lock(&dev_priv->irq_lock);
1741 for_each_pipe(pipe) {
1742 int reg;
1743 u32 mask, iir_bit = 0;
1744
1745 /*
1746 * PIPESTAT bits get signalled even when the interrupt is
1747 * disabled with the mask bits, and some of the status bits do
1748 * not generate interrupts at all (like the underrun bit). Hence
1749 * we need to be careful that we only handle what we want to
1750 * handle.
1751 */
1752 mask = 0;
1753 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1754 mask |= PIPE_FIFO_UNDERRUN_STATUS;
1755
1756 switch (pipe) {
1757 case PIPE_A:
1758 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1759 break;
1760 case PIPE_B:
1761 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1762 break;
1763 case PIPE_C:
1764 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1765 break;
1766 }
1767 if (iir & iir_bit)
1768 mask |= dev_priv->pipestat_irq_mask[pipe];
1769
1770 if (!mask)
1771 continue;
1772
1773 reg = PIPESTAT(pipe);
1774 mask |= PIPESTAT_INT_ENABLE_MASK;
1775 pipe_stats[pipe] = I915_READ(reg) & mask;
1776
1777 /*
1778 * Clear the PIPE*STAT regs before the IIR
1779 */
1780 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1781 PIPESTAT_INT_STATUS_MASK))
1782 I915_WRITE(reg, pipe_stats[pipe]);
1783 }
1784 spin_unlock(&dev_priv->irq_lock);
1785
1786 for_each_pipe(pipe) {
1787 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1788 intel_pipe_handle_vblank(dev, pipe);
1789
1790 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1791 intel_prepare_page_flip(dev, pipe);
1792 intel_finish_page_flip(dev, pipe);
1793 }
1794
1795 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1796 i9xx_pipe_crc_irq_handler(dev, pipe);
1797
1798 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1799 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1800 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1801 }
1802
1803 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1804 gmbus_irq_handler(dev);
1805 }
1806
1807 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1808 {
1809 struct drm_i915_private *dev_priv = dev->dev_private;
1810 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1811
1812 if (IS_G4X(dev)) {
1813 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1814
1815 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1816 } else {
1817 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1818
1819 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1820 }
1821
1822 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1823 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1824 dp_aux_irq_handler(dev);
1825
1826 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1827 /*
1828 * Make sure hotplug status is cleared before we clear IIR, or else we
1829 * may miss hotplug events.
1830 */
1831 POSTING_READ(PORT_HOTPLUG_STAT);
1832 }
1833
1834 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1835 {
1836 struct drm_device *dev = arg;
1837 struct drm_i915_private *dev_priv = dev->dev_private;
1838 u32 iir, gt_iir, pm_iir;
1839 irqreturn_t ret = IRQ_NONE;
1840
1841 while (true) {
1842 iir = I915_READ(VLV_IIR);
1843 gt_iir = I915_READ(GTIIR);
1844 pm_iir = I915_READ(GEN6_PMIIR);
1845
1846 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1847 goto out;
1848
1849 ret = IRQ_HANDLED;
1850
1851 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1852
1853 valleyview_pipestat_irq_handler(dev, iir);
1854
1855 /* Consume port. Then clear IIR or we'll miss events */
1856 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1857 i9xx_hpd_irq_handler(dev);
1858
1859 if (pm_iir)
1860 gen6_rps_irq_handler(dev_priv, pm_iir);
1861
1862 I915_WRITE(GTIIR, gt_iir);
1863 I915_WRITE(GEN6_PMIIR, pm_iir);
1864 I915_WRITE(VLV_IIR, iir);
1865 }
1866
1867 out:
1868 return ret;
1869 }
1870
1871 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1872 {
1873 struct drm_device *dev = arg;
1874 struct drm_i915_private *dev_priv = dev->dev_private;
1875 u32 master_ctl, iir;
1876 irqreturn_t ret = IRQ_NONE;
1877
1878 for (;;) {
1879 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1880 iir = I915_READ(VLV_IIR);
1881
1882 if (master_ctl == 0 && iir == 0)
1883 break;
1884
1885 I915_WRITE(GEN8_MASTER_IRQ, 0);
1886
1887 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1888
1889 valleyview_pipestat_irq_handler(dev, iir);
1890
1891 /* Consume port. Then clear IIR or we'll miss events */
1892 i9xx_hpd_irq_handler(dev);
1893
1894 I915_WRITE(VLV_IIR, iir);
1895
1896 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1897 POSTING_READ(GEN8_MASTER_IRQ);
1898
1899 ret = IRQ_HANDLED;
1900 }
1901
1902 return ret;
1903 }
1904
1905 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1906 {
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908 int pipe;
1909 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1910
1911 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1912
1913 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1914 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1915 SDE_AUDIO_POWER_SHIFT);
1916 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1917 port_name(port));
1918 }
1919
1920 if (pch_iir & SDE_AUX_MASK)
1921 dp_aux_irq_handler(dev);
1922
1923 if (pch_iir & SDE_GMBUS)
1924 gmbus_irq_handler(dev);
1925
1926 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1927 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1928
1929 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1930 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1931
1932 if (pch_iir & SDE_POISON)
1933 DRM_ERROR("PCH poison interrupt\n");
1934
1935 if (pch_iir & SDE_FDI_MASK)
1936 for_each_pipe(pipe)
1937 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1938 pipe_name(pipe),
1939 I915_READ(FDI_RX_IIR(pipe)));
1940
1941 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1942 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1943
1944 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1945 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1946
1947 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1948 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1949 false))
1950 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1951
1952 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1953 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1954 false))
1955 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1956 }
1957
1958 static void ivb_err_int_handler(struct drm_device *dev)
1959 {
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961 u32 err_int = I915_READ(GEN7_ERR_INT);
1962 enum pipe pipe;
1963
1964 if (err_int & ERR_INT_POISON)
1965 DRM_ERROR("Poison interrupt\n");
1966
1967 for_each_pipe(pipe) {
1968 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1969 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1970 false))
1971 DRM_ERROR("Pipe %c FIFO underrun\n",
1972 pipe_name(pipe));
1973 }
1974
1975 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1976 if (IS_IVYBRIDGE(dev))
1977 ivb_pipe_crc_irq_handler(dev, pipe);
1978 else
1979 hsw_pipe_crc_irq_handler(dev, pipe);
1980 }
1981 }
1982
1983 I915_WRITE(GEN7_ERR_INT, err_int);
1984 }
1985
1986 static void cpt_serr_int_handler(struct drm_device *dev)
1987 {
1988 struct drm_i915_private *dev_priv = dev->dev_private;
1989 u32 serr_int = I915_READ(SERR_INT);
1990
1991 if (serr_int & SERR_INT_POISON)
1992 DRM_ERROR("PCH poison interrupt\n");
1993
1994 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1995 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1996 false))
1997 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1998
1999 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2000 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2001 false))
2002 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2003
2004 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2005 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2006 false))
2007 DRM_ERROR("PCH transcoder C FIFO underrun\n");
2008
2009 I915_WRITE(SERR_INT, serr_int);
2010 }
2011
2012 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2013 {
2014 struct drm_i915_private *dev_priv = dev->dev_private;
2015 int pipe;
2016 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2017
2018 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2019
2020 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2021 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2022 SDE_AUDIO_POWER_SHIFT_CPT);
2023 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2024 port_name(port));
2025 }
2026
2027 if (pch_iir & SDE_AUX_MASK_CPT)
2028 dp_aux_irq_handler(dev);
2029
2030 if (pch_iir & SDE_GMBUS_CPT)
2031 gmbus_irq_handler(dev);
2032
2033 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2034 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2035
2036 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2037 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2038
2039 if (pch_iir & SDE_FDI_MASK_CPT)
2040 for_each_pipe(pipe)
2041 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2042 pipe_name(pipe),
2043 I915_READ(FDI_RX_IIR(pipe)));
2044
2045 if (pch_iir & SDE_ERROR_CPT)
2046 cpt_serr_int_handler(dev);
2047 }
2048
2049 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2050 {
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052 enum pipe pipe;
2053
2054 if (de_iir & DE_AUX_CHANNEL_A)
2055 dp_aux_irq_handler(dev);
2056
2057 if (de_iir & DE_GSE)
2058 intel_opregion_asle_intr(dev);
2059
2060 if (de_iir & DE_POISON)
2061 DRM_ERROR("Poison interrupt\n");
2062
2063 for_each_pipe(pipe) {
2064 if (de_iir & DE_PIPE_VBLANK(pipe))
2065 intel_pipe_handle_vblank(dev, pipe);
2066
2067 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2068 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2069 DRM_ERROR("Pipe %c FIFO underrun\n",
2070 pipe_name(pipe));
2071
2072 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2073 i9xx_pipe_crc_irq_handler(dev, pipe);
2074
2075 /* plane/pipes map 1:1 on ilk+ */
2076 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2077 intel_prepare_page_flip(dev, pipe);
2078 intel_finish_page_flip_plane(dev, pipe);
2079 }
2080 }
2081
2082 /* check event from PCH */
2083 if (de_iir & DE_PCH_EVENT) {
2084 u32 pch_iir = I915_READ(SDEIIR);
2085
2086 if (HAS_PCH_CPT(dev))
2087 cpt_irq_handler(dev, pch_iir);
2088 else
2089 ibx_irq_handler(dev, pch_iir);
2090
2091 /* should clear PCH hotplug event before clear CPU irq */
2092 I915_WRITE(SDEIIR, pch_iir);
2093 }
2094
2095 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2096 ironlake_rps_change_irq_handler(dev);
2097 }
2098
2099 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2100 {
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 enum pipe pipe;
2103
2104 if (de_iir & DE_ERR_INT_IVB)
2105 ivb_err_int_handler(dev);
2106
2107 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2108 dp_aux_irq_handler(dev);
2109
2110 if (de_iir & DE_GSE_IVB)
2111 intel_opregion_asle_intr(dev);
2112
2113 for_each_pipe(pipe) {
2114 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2115 intel_pipe_handle_vblank(dev, pipe);
2116
2117 /* plane/pipes map 1:1 on ilk+ */
2118 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2119 intel_prepare_page_flip(dev, pipe);
2120 intel_finish_page_flip_plane(dev, pipe);
2121 }
2122 }
2123
2124 /* check event from PCH */
2125 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2126 u32 pch_iir = I915_READ(SDEIIR);
2127
2128 cpt_irq_handler(dev, pch_iir);
2129
2130 /* clear PCH hotplug event before clear CPU irq */
2131 I915_WRITE(SDEIIR, pch_iir);
2132 }
2133 }
2134
2135 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2136 {
2137 struct drm_device *dev = arg;
2138 struct drm_i915_private *dev_priv = dev->dev_private;
2139 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2140 irqreturn_t ret = IRQ_NONE;
2141
2142 /* We get interrupts on unclaimed registers, so check for this before we
2143 * do any I915_{READ,WRITE}. */
2144 intel_uncore_check_errors(dev);
2145
2146 /* disable master interrupt before clearing iir */
2147 de_ier = I915_READ(DEIER);
2148 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2149 POSTING_READ(DEIER);
2150
2151 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2152 * interrupts will will be stored on its back queue, and then we'll be
2153 * able to process them after we restore SDEIER (as soon as we restore
2154 * it, we'll get an interrupt if SDEIIR still has something to process
2155 * due to its back queue). */
2156 if (!HAS_PCH_NOP(dev)) {
2157 sde_ier = I915_READ(SDEIER);
2158 I915_WRITE(SDEIER, 0);
2159 POSTING_READ(SDEIER);
2160 }
2161
2162 gt_iir = I915_READ(GTIIR);
2163 if (gt_iir) {
2164 if (INTEL_INFO(dev)->gen >= 6)
2165 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2166 else
2167 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2168 I915_WRITE(GTIIR, gt_iir);
2169 ret = IRQ_HANDLED;
2170 }
2171
2172 de_iir = I915_READ(DEIIR);
2173 if (de_iir) {
2174 if (INTEL_INFO(dev)->gen >= 7)
2175 ivb_display_irq_handler(dev, de_iir);
2176 else
2177 ilk_display_irq_handler(dev, de_iir);
2178 I915_WRITE(DEIIR, de_iir);
2179 ret = IRQ_HANDLED;
2180 }
2181
2182 if (INTEL_INFO(dev)->gen >= 6) {
2183 u32 pm_iir = I915_READ(GEN6_PMIIR);
2184 if (pm_iir) {
2185 gen6_rps_irq_handler(dev_priv, pm_iir);
2186 I915_WRITE(GEN6_PMIIR, pm_iir);
2187 ret = IRQ_HANDLED;
2188 }
2189 }
2190
2191 I915_WRITE(DEIER, de_ier);
2192 POSTING_READ(DEIER);
2193 if (!HAS_PCH_NOP(dev)) {
2194 I915_WRITE(SDEIER, sde_ier);
2195 POSTING_READ(SDEIER);
2196 }
2197
2198 return ret;
2199 }
2200
2201 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2202 {
2203 struct drm_device *dev = arg;
2204 struct drm_i915_private *dev_priv = dev->dev_private;
2205 u32 master_ctl;
2206 irqreturn_t ret = IRQ_NONE;
2207 uint32_t tmp = 0;
2208 enum pipe pipe;
2209
2210 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2211 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2212 if (!master_ctl)
2213 return IRQ_NONE;
2214
2215 I915_WRITE(GEN8_MASTER_IRQ, 0);
2216 POSTING_READ(GEN8_MASTER_IRQ);
2217
2218 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2219
2220 if (master_ctl & GEN8_DE_MISC_IRQ) {
2221 tmp = I915_READ(GEN8_DE_MISC_IIR);
2222 if (tmp & GEN8_DE_MISC_GSE)
2223 intel_opregion_asle_intr(dev);
2224 else if (tmp)
2225 DRM_ERROR("Unexpected DE Misc interrupt\n");
2226 else
2227 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2228
2229 if (tmp) {
2230 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2231 ret = IRQ_HANDLED;
2232 }
2233 }
2234
2235 if (master_ctl & GEN8_DE_PORT_IRQ) {
2236 tmp = I915_READ(GEN8_DE_PORT_IIR);
2237 if (tmp & GEN8_AUX_CHANNEL_A)
2238 dp_aux_irq_handler(dev);
2239 else if (tmp)
2240 DRM_ERROR("Unexpected DE Port interrupt\n");
2241 else
2242 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2243
2244 if (tmp) {
2245 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2246 ret = IRQ_HANDLED;
2247 }
2248 }
2249
2250 for_each_pipe(pipe) {
2251 uint32_t pipe_iir;
2252
2253 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2254 continue;
2255
2256 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2257 if (pipe_iir & GEN8_PIPE_VBLANK)
2258 intel_pipe_handle_vblank(dev, pipe);
2259
2260 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2261 intel_prepare_page_flip(dev, pipe);
2262 intel_finish_page_flip_plane(dev, pipe);
2263 }
2264
2265 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2266 hsw_pipe_crc_irq_handler(dev, pipe);
2267
2268 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2269 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2270 false))
2271 DRM_ERROR("Pipe %c FIFO underrun\n",
2272 pipe_name(pipe));
2273 }
2274
2275 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2276 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2277 pipe_name(pipe),
2278 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2279 }
2280
2281 if (pipe_iir) {
2282 ret = IRQ_HANDLED;
2283 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2284 } else
2285 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2286 }
2287
2288 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2289 /*
2290 * FIXME(BDW): Assume for now that the new interrupt handling
2291 * scheme also closed the SDE interrupt handling race we've seen
2292 * on older pch-split platforms. But this needs testing.
2293 */
2294 u32 pch_iir = I915_READ(SDEIIR);
2295
2296 cpt_irq_handler(dev, pch_iir);
2297
2298 if (pch_iir) {
2299 I915_WRITE(SDEIIR, pch_iir);
2300 ret = IRQ_HANDLED;
2301 }
2302 }
2303
2304 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2305 POSTING_READ(GEN8_MASTER_IRQ);
2306
2307 return ret;
2308 }
2309
2310 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2311 bool reset_completed)
2312 {
2313 struct intel_engine_cs *ring;
2314 int i;
2315
2316 /*
2317 * Notify all waiters for GPU completion events that reset state has
2318 * been changed, and that they need to restart their wait after
2319 * checking for potential errors (and bail out to drop locks if there is
2320 * a gpu reset pending so that i915_error_work_func can acquire them).
2321 */
2322
2323 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2324 for_each_ring(ring, dev_priv, i)
2325 wake_up_all(&ring->irq_queue);
2326
2327 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2328 wake_up_all(&dev_priv->pending_flip_queue);
2329
2330 /*
2331 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2332 * reset state is cleared.
2333 */
2334 if (reset_completed)
2335 wake_up_all(&dev_priv->gpu_error.reset_queue);
2336 }
2337
2338 /**
2339 * i915_error_work_func - do process context error handling work
2340 * @work: work struct
2341 *
2342 * Fire an error uevent so userspace can see that a hang or error
2343 * was detected.
2344 */
2345 static void i915_error_work_func(struct work_struct *work)
2346 {
2347 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2348 work);
2349 struct drm_i915_private *dev_priv =
2350 container_of(error, struct drm_i915_private, gpu_error);
2351 struct drm_device *dev = dev_priv->dev;
2352 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2353 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2354 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2355 int ret;
2356
2357 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2358
2359 /*
2360 * Note that there's only one work item which does gpu resets, so we
2361 * need not worry about concurrent gpu resets potentially incrementing
2362 * error->reset_counter twice. We only need to take care of another
2363 * racing irq/hangcheck declaring the gpu dead for a second time. A
2364 * quick check for that is good enough: schedule_work ensures the
2365 * correct ordering between hang detection and this work item, and since
2366 * the reset in-progress bit is only ever set by code outside of this
2367 * work we don't need to worry about any other races.
2368 */
2369 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2370 DRM_DEBUG_DRIVER("resetting chip\n");
2371 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2372 reset_event);
2373
2374 /*
2375 * In most cases it's guaranteed that we get here with an RPM
2376 * reference held, for example because there is a pending GPU
2377 * request that won't finish until the reset is done. This
2378 * isn't the case at least when we get here by doing a
2379 * simulated reset via debugs, so get an RPM reference.
2380 */
2381 intel_runtime_pm_get(dev_priv);
2382 /*
2383 * All state reset _must_ be completed before we update the
2384 * reset counter, for otherwise waiters might miss the reset
2385 * pending state and not properly drop locks, resulting in
2386 * deadlocks with the reset work.
2387 */
2388 ret = i915_reset(dev);
2389
2390 intel_display_handle_reset(dev);
2391
2392 intel_runtime_pm_put(dev_priv);
2393
2394 if (ret == 0) {
2395 /*
2396 * After all the gem state is reset, increment the reset
2397 * counter and wake up everyone waiting for the reset to
2398 * complete.
2399 *
2400 * Since unlock operations are a one-sided barrier only,
2401 * we need to insert a barrier here to order any seqno
2402 * updates before
2403 * the counter increment.
2404 */
2405 smp_mb__before_atomic();
2406 atomic_inc(&dev_priv->gpu_error.reset_counter);
2407
2408 kobject_uevent_env(&dev->primary->kdev->kobj,
2409 KOBJ_CHANGE, reset_done_event);
2410 } else {
2411 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2412 }
2413
2414 /*
2415 * Note: The wake_up also serves as a memory barrier so that
2416 * waiters see the update value of the reset counter atomic_t.
2417 */
2418 i915_error_wake_up(dev_priv, true);
2419 }
2420 }
2421
2422 static void i915_report_and_clear_eir(struct drm_device *dev)
2423 {
2424 struct drm_i915_private *dev_priv = dev->dev_private;
2425 uint32_t instdone[I915_NUM_INSTDONE_REG];
2426 u32 eir = I915_READ(EIR);
2427 int pipe, i;
2428
2429 if (!eir)
2430 return;
2431
2432 pr_err("render error detected, EIR: 0x%08x\n", eir);
2433
2434 i915_get_extra_instdone(dev, instdone);
2435
2436 if (IS_G4X(dev)) {
2437 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2438 u32 ipeir = I915_READ(IPEIR_I965);
2439
2440 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2441 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2442 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2443 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2444 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2445 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2446 I915_WRITE(IPEIR_I965, ipeir);
2447 POSTING_READ(IPEIR_I965);
2448 }
2449 if (eir & GM45_ERROR_PAGE_TABLE) {
2450 u32 pgtbl_err = I915_READ(PGTBL_ER);
2451 pr_err("page table error\n");
2452 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2453 I915_WRITE(PGTBL_ER, pgtbl_err);
2454 POSTING_READ(PGTBL_ER);
2455 }
2456 }
2457
2458 if (!IS_GEN2(dev)) {
2459 if (eir & I915_ERROR_PAGE_TABLE) {
2460 u32 pgtbl_err = I915_READ(PGTBL_ER);
2461 pr_err("page table error\n");
2462 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2463 I915_WRITE(PGTBL_ER, pgtbl_err);
2464 POSTING_READ(PGTBL_ER);
2465 }
2466 }
2467
2468 if (eir & I915_ERROR_MEMORY_REFRESH) {
2469 pr_err("memory refresh error:\n");
2470 for_each_pipe(pipe)
2471 pr_err("pipe %c stat: 0x%08x\n",
2472 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2473 /* pipestat has already been acked */
2474 }
2475 if (eir & I915_ERROR_INSTRUCTION) {
2476 pr_err("instruction error\n");
2477 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2478 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2479 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2480 if (INTEL_INFO(dev)->gen < 4) {
2481 u32 ipeir = I915_READ(IPEIR);
2482
2483 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2484 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2485 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2486 I915_WRITE(IPEIR, ipeir);
2487 POSTING_READ(IPEIR);
2488 } else {
2489 u32 ipeir = I915_READ(IPEIR_I965);
2490
2491 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2492 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2493 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2494 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2495 I915_WRITE(IPEIR_I965, ipeir);
2496 POSTING_READ(IPEIR_I965);
2497 }
2498 }
2499
2500 I915_WRITE(EIR, eir);
2501 POSTING_READ(EIR);
2502 eir = I915_READ(EIR);
2503 if (eir) {
2504 /*
2505 * some errors might have become stuck,
2506 * mask them.
2507 */
2508 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2509 I915_WRITE(EMR, I915_READ(EMR) | eir);
2510 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2511 }
2512 }
2513
2514 /**
2515 * i915_handle_error - handle an error interrupt
2516 * @dev: drm device
2517 *
2518 * Do some basic checking of regsiter state at error interrupt time and
2519 * dump it to the syslog. Also call i915_capture_error_state() to make
2520 * sure we get a record and make it available in debugfs. Fire a uevent
2521 * so userspace knows something bad happened (should trigger collection
2522 * of a ring dump etc.).
2523 */
2524 void i915_handle_error(struct drm_device *dev, bool wedged,
2525 const char *fmt, ...)
2526 {
2527 struct drm_i915_private *dev_priv = dev->dev_private;
2528 va_list args;
2529 char error_msg[80];
2530
2531 va_start(args, fmt);
2532 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2533 va_end(args);
2534
2535 i915_capture_error_state(dev, wedged, error_msg);
2536 i915_report_and_clear_eir(dev);
2537
2538 if (wedged) {
2539 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2540 &dev_priv->gpu_error.reset_counter);
2541
2542 /*
2543 * Wakeup waiting processes so that the reset work function
2544 * i915_error_work_func doesn't deadlock trying to grab various
2545 * locks. By bumping the reset counter first, the woken
2546 * processes will see a reset in progress and back off,
2547 * releasing their locks and then wait for the reset completion.
2548 * We must do this for _all_ gpu waiters that might hold locks
2549 * that the reset work needs to acquire.
2550 *
2551 * Note: The wake_up serves as the required memory barrier to
2552 * ensure that the waiters see the updated value of the reset
2553 * counter atomic_t.
2554 */
2555 i915_error_wake_up(dev_priv, false);
2556 }
2557
2558 /*
2559 * Our reset work can grab modeset locks (since it needs to reset the
2560 * state of outstanding pagelips). Hence it must not be run on our own
2561 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2562 * code will deadlock.
2563 */
2564 schedule_work(&dev_priv->gpu_error.work);
2565 }
2566
2567 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2568 {
2569 struct drm_i915_private *dev_priv = dev->dev_private;
2570 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2572 struct drm_i915_gem_object *obj;
2573 struct intel_unpin_work *work;
2574 unsigned long flags;
2575 bool stall_detected;
2576
2577 /* Ignore early vblank irqs */
2578 if (intel_crtc == NULL)
2579 return;
2580
2581 spin_lock_irqsave(&dev->event_lock, flags);
2582 work = intel_crtc->unpin_work;
2583
2584 if (work == NULL ||
2585 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2586 !work->enable_stall_check) {
2587 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2588 spin_unlock_irqrestore(&dev->event_lock, flags);
2589 return;
2590 }
2591
2592 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2593 obj = work->pending_flip_obj;
2594 if (INTEL_INFO(dev)->gen >= 4) {
2595 int dspsurf = DSPSURF(intel_crtc->plane);
2596 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2597 i915_gem_obj_ggtt_offset(obj);
2598 } else {
2599 int dspaddr = DSPADDR(intel_crtc->plane);
2600 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2601 crtc->y * crtc->primary->fb->pitches[0] +
2602 crtc->x * crtc->primary->fb->bits_per_pixel/8);
2603 }
2604
2605 spin_unlock_irqrestore(&dev->event_lock, flags);
2606
2607 if (stall_detected) {
2608 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2609 intel_prepare_page_flip(dev, intel_crtc->plane);
2610 }
2611 }
2612
2613 /* Called from drm generic code, passed 'crtc' which
2614 * we use as a pipe index
2615 */
2616 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2617 {
2618 struct drm_i915_private *dev_priv = dev->dev_private;
2619 unsigned long irqflags;
2620
2621 if (!i915_pipe_enabled(dev, pipe))
2622 return -EINVAL;
2623
2624 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2625 if (INTEL_INFO(dev)->gen >= 4)
2626 i915_enable_pipestat(dev_priv, pipe,
2627 PIPE_START_VBLANK_INTERRUPT_STATUS);
2628 else
2629 i915_enable_pipestat(dev_priv, pipe,
2630 PIPE_VBLANK_INTERRUPT_STATUS);
2631 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2632
2633 return 0;
2634 }
2635
2636 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2637 {
2638 struct drm_i915_private *dev_priv = dev->dev_private;
2639 unsigned long irqflags;
2640 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2641 DE_PIPE_VBLANK(pipe);
2642
2643 if (!i915_pipe_enabled(dev, pipe))
2644 return -EINVAL;
2645
2646 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647 ironlake_enable_display_irq(dev_priv, bit);
2648 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2649
2650 return 0;
2651 }
2652
2653 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2654 {
2655 struct drm_i915_private *dev_priv = dev->dev_private;
2656 unsigned long irqflags;
2657
2658 if (!i915_pipe_enabled(dev, pipe))
2659 return -EINVAL;
2660
2661 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2662 i915_enable_pipestat(dev_priv, pipe,
2663 PIPE_START_VBLANK_INTERRUPT_STATUS);
2664 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2665
2666 return 0;
2667 }
2668
2669 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2670 {
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 unsigned long irqflags;
2673
2674 if (!i915_pipe_enabled(dev, pipe))
2675 return -EINVAL;
2676
2677 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2678 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2679 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2680 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2681 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2682 return 0;
2683 }
2684
2685 /* Called from drm generic code, passed 'crtc' which
2686 * we use as a pipe index
2687 */
2688 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2689 {
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 unsigned long irqflags;
2692
2693 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2694 i915_disable_pipestat(dev_priv, pipe,
2695 PIPE_VBLANK_INTERRUPT_STATUS |
2696 PIPE_START_VBLANK_INTERRUPT_STATUS);
2697 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2698 }
2699
2700 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2701 {
2702 struct drm_i915_private *dev_priv = dev->dev_private;
2703 unsigned long irqflags;
2704 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2705 DE_PIPE_VBLANK(pipe);
2706
2707 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708 ironlake_disable_display_irq(dev_priv, bit);
2709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2710 }
2711
2712 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2713 {
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 unsigned long irqflags;
2716
2717 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718 i915_disable_pipestat(dev_priv, pipe,
2719 PIPE_START_VBLANK_INTERRUPT_STATUS);
2720 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2721 }
2722
2723 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2724 {
2725 struct drm_i915_private *dev_priv = dev->dev_private;
2726 unsigned long irqflags;
2727
2728 if (!i915_pipe_enabled(dev, pipe))
2729 return;
2730
2731 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2732 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2733 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2734 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2735 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2736 }
2737
2738 static u32
2739 ring_last_seqno(struct intel_engine_cs *ring)
2740 {
2741 return list_entry(ring->request_list.prev,
2742 struct drm_i915_gem_request, list)->seqno;
2743 }
2744
2745 static bool
2746 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2747 {
2748 return (list_empty(&ring->request_list) ||
2749 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2750 }
2751
2752 static bool
2753 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2754 {
2755 if (INTEL_INFO(dev)->gen >= 8) {
2756 /*
2757 * FIXME: gen8 semaphore support - currently we don't emit
2758 * semaphores on bdw anyway, but this needs to be addressed when
2759 * we merge that code.
2760 */
2761 return false;
2762 } else {
2763 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2764 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2765 MI_SEMAPHORE_REGISTER);
2766 }
2767 }
2768
2769 static struct intel_engine_cs *
2770 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr)
2771 {
2772 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2773 struct intel_engine_cs *signaller;
2774 int i;
2775
2776 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2777 /*
2778 * FIXME: gen8 semaphore support - currently we don't emit
2779 * semaphores on bdw anyway, but this needs to be addressed when
2780 * we merge that code.
2781 */
2782 return NULL;
2783 } else {
2784 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2785
2786 for_each_ring(signaller, dev_priv, i) {
2787 if(ring == signaller)
2788 continue;
2789
2790 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2791 return signaller;
2792 }
2793 }
2794
2795 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2796 ring->id, ipehr);
2797
2798 return NULL;
2799 }
2800
2801 static struct intel_engine_cs *
2802 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2803 {
2804 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2805 u32 cmd, ipehr, head;
2806 int i;
2807
2808 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2809 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2810 return NULL;
2811
2812 /*
2813 * HEAD is likely pointing to the dword after the actual command,
2814 * so scan backwards until we find the MBOX. But limit it to just 3
2815 * dwords. Note that we don't care about ACTHD here since that might
2816 * point at at batch, and semaphores are always emitted into the
2817 * ringbuffer itself.
2818 */
2819 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2820
2821 for (i = 4; i; --i) {
2822 /*
2823 * Be paranoid and presume the hw has gone off into the wild -
2824 * our ring is smaller than what the hardware (and hence
2825 * HEAD_ADDR) allows. Also handles wrap-around.
2826 */
2827 head &= ring->buffer->size - 1;
2828
2829 /* This here seems to blow up */
2830 cmd = ioread32(ring->buffer->virtual_start + head);
2831 if (cmd == ipehr)
2832 break;
2833
2834 head -= 4;
2835 }
2836
2837 if (!i)
2838 return NULL;
2839
2840 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2841 return semaphore_wait_to_signaller_ring(ring, ipehr);
2842 }
2843
2844 static int semaphore_passed(struct intel_engine_cs *ring)
2845 {
2846 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2847 struct intel_engine_cs *signaller;
2848 u32 seqno;
2849
2850 ring->hangcheck.deadlock++;
2851
2852 signaller = semaphore_waits_for(ring, &seqno);
2853 if (signaller == NULL)
2854 return -1;
2855
2856 /* Prevent pathological recursion due to driver bugs */
2857 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2858 return -1;
2859
2860 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2861 return 1;
2862
2863 /* cursory check for an unkickable deadlock */
2864 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2865 semaphore_passed(signaller) < 0)
2866 return -1;
2867
2868 return 0;
2869 }
2870
2871 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2872 {
2873 struct intel_engine_cs *ring;
2874 int i;
2875
2876 for_each_ring(ring, dev_priv, i)
2877 ring->hangcheck.deadlock = 0;
2878 }
2879
2880 static enum intel_ring_hangcheck_action
2881 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2882 {
2883 struct drm_device *dev = ring->dev;
2884 struct drm_i915_private *dev_priv = dev->dev_private;
2885 u32 tmp;
2886
2887 if (ring->hangcheck.acthd != acthd)
2888 return HANGCHECK_ACTIVE;
2889
2890 if (IS_GEN2(dev))
2891 return HANGCHECK_HUNG;
2892
2893 /* Is the chip hanging on a WAIT_FOR_EVENT?
2894 * If so we can simply poke the RB_WAIT bit
2895 * and break the hang. This should work on
2896 * all but the second generation chipsets.
2897 */
2898 tmp = I915_READ_CTL(ring);
2899 if (tmp & RING_WAIT) {
2900 i915_handle_error(dev, false,
2901 "Kicking stuck wait on %s",
2902 ring->name);
2903 I915_WRITE_CTL(ring, tmp);
2904 return HANGCHECK_KICK;
2905 }
2906
2907 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2908 switch (semaphore_passed(ring)) {
2909 default:
2910 return HANGCHECK_HUNG;
2911 case 1:
2912 i915_handle_error(dev, false,
2913 "Kicking stuck semaphore on %s",
2914 ring->name);
2915 I915_WRITE_CTL(ring, tmp);
2916 return HANGCHECK_KICK;
2917 case 0:
2918 return HANGCHECK_WAIT;
2919 }
2920 }
2921
2922 return HANGCHECK_HUNG;
2923 }
2924
2925 /**
2926 * This is called when the chip hasn't reported back with completed
2927 * batchbuffers in a long time. We keep track per ring seqno progress and
2928 * if there are no progress, hangcheck score for that ring is increased.
2929 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2930 * we kick the ring. If we see no progress on three subsequent calls
2931 * we assume chip is wedged and try to fix it by resetting the chip.
2932 */
2933 static void i915_hangcheck_elapsed(unsigned long data)
2934 {
2935 struct drm_device *dev = (struct drm_device *)data;
2936 struct drm_i915_private *dev_priv = dev->dev_private;
2937 struct intel_engine_cs *ring;
2938 int i;
2939 int busy_count = 0, rings_hung = 0;
2940 bool stuck[I915_NUM_RINGS] = { 0 };
2941 #define BUSY 1
2942 #define KICK 5
2943 #define HUNG 20
2944
2945 if (!i915.enable_hangcheck)
2946 return;
2947
2948 for_each_ring(ring, dev_priv, i) {
2949 u64 acthd;
2950 u32 seqno;
2951 bool busy = true;
2952
2953 semaphore_clear_deadlocks(dev_priv);
2954
2955 seqno = ring->get_seqno(ring, false);
2956 acthd = intel_ring_get_active_head(ring);
2957
2958 if (ring->hangcheck.seqno == seqno) {
2959 if (ring_idle(ring, seqno)) {
2960 ring->hangcheck.action = HANGCHECK_IDLE;
2961
2962 if (waitqueue_active(&ring->irq_queue)) {
2963 /* Issue a wake-up to catch stuck h/w. */
2964 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2965 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2966 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2967 ring->name);
2968 else
2969 DRM_INFO("Fake missed irq on %s\n",
2970 ring->name);
2971 wake_up_all(&ring->irq_queue);
2972 }
2973 /* Safeguard against driver failure */
2974 ring->hangcheck.score += BUSY;
2975 } else
2976 busy = false;
2977 } else {
2978 /* We always increment the hangcheck score
2979 * if the ring is busy and still processing
2980 * the same request, so that no single request
2981 * can run indefinitely (such as a chain of
2982 * batches). The only time we do not increment
2983 * the hangcheck score on this ring, if this
2984 * ring is in a legitimate wait for another
2985 * ring. In that case the waiting ring is a
2986 * victim and we want to be sure we catch the
2987 * right culprit. Then every time we do kick
2988 * the ring, add a small increment to the
2989 * score so that we can catch a batch that is
2990 * being repeatedly kicked and so responsible
2991 * for stalling the machine.
2992 */
2993 ring->hangcheck.action = ring_stuck(ring,
2994 acthd);
2995
2996 switch (ring->hangcheck.action) {
2997 case HANGCHECK_IDLE:
2998 case HANGCHECK_WAIT:
2999 break;
3000 case HANGCHECK_ACTIVE:
3001 ring->hangcheck.score += BUSY;
3002 break;
3003 case HANGCHECK_KICK:
3004 ring->hangcheck.score += KICK;
3005 break;
3006 case HANGCHECK_HUNG:
3007 ring->hangcheck.score += HUNG;
3008 stuck[i] = true;
3009 break;
3010 }
3011 }
3012 } else {
3013 ring->hangcheck.action = HANGCHECK_ACTIVE;
3014
3015 /* Gradually reduce the count so that we catch DoS
3016 * attempts across multiple batches.
3017 */
3018 if (ring->hangcheck.score > 0)
3019 ring->hangcheck.score--;
3020 }
3021
3022 ring->hangcheck.seqno = seqno;
3023 ring->hangcheck.acthd = acthd;
3024 busy_count += busy;
3025 }
3026
3027 for_each_ring(ring, dev_priv, i) {
3028 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3029 DRM_INFO("%s on %s\n",
3030 stuck[i] ? "stuck" : "no progress",
3031 ring->name);
3032 rings_hung++;
3033 }
3034 }
3035
3036 if (rings_hung)
3037 return i915_handle_error(dev, true, "Ring hung");
3038
3039 if (busy_count)
3040 /* Reset timer case chip hangs without another request
3041 * being added */
3042 i915_queue_hangcheck(dev);
3043 }
3044
3045 void i915_queue_hangcheck(struct drm_device *dev)
3046 {
3047 struct drm_i915_private *dev_priv = dev->dev_private;
3048 if (!i915.enable_hangcheck)
3049 return;
3050
3051 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3052 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3053 }
3054
3055 static void ibx_irq_reset(struct drm_device *dev)
3056 {
3057 struct drm_i915_private *dev_priv = dev->dev_private;
3058
3059 if (HAS_PCH_NOP(dev))
3060 return;
3061
3062 GEN5_IRQ_RESET(SDE);
3063
3064 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3065 I915_WRITE(SERR_INT, 0xffffffff);
3066 }
3067
3068 /*
3069 * SDEIER is also touched by the interrupt handler to work around missed PCH
3070 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3071 * instead we unconditionally enable all PCH interrupt sources here, but then
3072 * only unmask them as needed with SDEIMR.
3073 *
3074 * This function needs to be called before interrupts are enabled.
3075 */
3076 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3077 {
3078 struct drm_i915_private *dev_priv = dev->dev_private;
3079
3080 if (HAS_PCH_NOP(dev))
3081 return;
3082
3083 WARN_ON(I915_READ(SDEIER) != 0);
3084 I915_WRITE(SDEIER, 0xffffffff);
3085 POSTING_READ(SDEIER);
3086 }
3087
3088 static void gen5_gt_irq_reset(struct drm_device *dev)
3089 {
3090 struct drm_i915_private *dev_priv = dev->dev_private;
3091
3092 GEN5_IRQ_RESET(GT);
3093 if (INTEL_INFO(dev)->gen >= 6)
3094 GEN5_IRQ_RESET(GEN6_PM);
3095 }
3096
3097 /* drm_dma.h hooks
3098 */
3099 static void ironlake_irq_reset(struct drm_device *dev)
3100 {
3101 struct drm_i915_private *dev_priv = dev->dev_private;
3102
3103 I915_WRITE(HWSTAM, 0xffffffff);
3104
3105 GEN5_IRQ_RESET(DE);
3106 if (IS_GEN7(dev))
3107 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3108
3109 gen5_gt_irq_reset(dev);
3110
3111 ibx_irq_reset(dev);
3112 }
3113
3114 static void valleyview_irq_preinstall(struct drm_device *dev)
3115 {
3116 struct drm_i915_private *dev_priv = dev->dev_private;
3117 int pipe;
3118
3119 /* VLV magic */
3120 I915_WRITE(VLV_IMR, 0);
3121 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3122 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3123 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3124
3125 /* and GT */
3126 I915_WRITE(GTIIR, I915_READ(GTIIR));
3127 I915_WRITE(GTIIR, I915_READ(GTIIR));
3128
3129 gen5_gt_irq_reset(dev);
3130
3131 I915_WRITE(DPINVGTT, 0xff);
3132
3133 I915_WRITE(PORT_HOTPLUG_EN, 0);
3134 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3135 for_each_pipe(pipe)
3136 I915_WRITE(PIPESTAT(pipe), 0xffff);
3137 I915_WRITE(VLV_IIR, 0xffffffff);
3138 I915_WRITE(VLV_IMR, 0xffffffff);
3139 I915_WRITE(VLV_IER, 0x0);
3140 POSTING_READ(VLV_IER);
3141 }
3142
3143 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3144 {
3145 GEN8_IRQ_RESET_NDX(GT, 0);
3146 GEN8_IRQ_RESET_NDX(GT, 1);
3147 GEN8_IRQ_RESET_NDX(GT, 2);
3148 GEN8_IRQ_RESET_NDX(GT, 3);
3149 }
3150
3151 static void gen8_irq_reset(struct drm_device *dev)
3152 {
3153 struct drm_i915_private *dev_priv = dev->dev_private;
3154 int pipe;
3155
3156 I915_WRITE(GEN8_MASTER_IRQ, 0);
3157 POSTING_READ(GEN8_MASTER_IRQ);
3158
3159 gen8_gt_irq_reset(dev_priv);
3160
3161 for_each_pipe(pipe)
3162 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3163
3164 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3165 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3166 GEN5_IRQ_RESET(GEN8_PCU_);
3167
3168 ibx_irq_reset(dev);
3169 }
3170
3171 static void cherryview_irq_preinstall(struct drm_device *dev)
3172 {
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 int pipe;
3175
3176 I915_WRITE(GEN8_MASTER_IRQ, 0);
3177 POSTING_READ(GEN8_MASTER_IRQ);
3178
3179 gen8_gt_irq_reset(dev_priv);
3180
3181 GEN5_IRQ_RESET(GEN8_PCU_);
3182
3183 POSTING_READ(GEN8_PCU_IIR);
3184
3185 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3186
3187 I915_WRITE(PORT_HOTPLUG_EN, 0);
3188 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3189
3190 for_each_pipe(pipe)
3191 I915_WRITE(PIPESTAT(pipe), 0xffff);
3192
3193 I915_WRITE(VLV_IMR, 0xffffffff);
3194 I915_WRITE(VLV_IER, 0x0);
3195 I915_WRITE(VLV_IIR, 0xffffffff);
3196 POSTING_READ(VLV_IIR);
3197 }
3198
3199 static void ibx_hpd_irq_setup(struct drm_device *dev)
3200 {
3201 struct drm_i915_private *dev_priv = dev->dev_private;
3202 struct drm_mode_config *mode_config = &dev->mode_config;
3203 struct intel_encoder *intel_encoder;
3204 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3205
3206 if (HAS_PCH_IBX(dev)) {
3207 hotplug_irqs = SDE_HOTPLUG_MASK;
3208 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3209 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3210 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3211 } else {
3212 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3213 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3214 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3215 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3216 }
3217
3218 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3219
3220 /*
3221 * Enable digital hotplug on the PCH, and configure the DP short pulse
3222 * duration to 2ms (which is the minimum in the Display Port spec)
3223 *
3224 * This register is the same on all known PCH chips.
3225 */
3226 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3227 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3228 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3229 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3230 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3231 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3232 }
3233
3234 static void ibx_irq_postinstall(struct drm_device *dev)
3235 {
3236 struct drm_i915_private *dev_priv = dev->dev_private;
3237 u32 mask;
3238
3239 if (HAS_PCH_NOP(dev))
3240 return;
3241
3242 if (HAS_PCH_IBX(dev))
3243 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3244 else
3245 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3246
3247 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3248 I915_WRITE(SDEIMR, ~mask);
3249 }
3250
3251 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3252 {
3253 struct drm_i915_private *dev_priv = dev->dev_private;
3254 u32 pm_irqs, gt_irqs;
3255
3256 pm_irqs = gt_irqs = 0;
3257
3258 dev_priv->gt_irq_mask = ~0;
3259 if (HAS_L3_DPF(dev)) {
3260 /* L3 parity interrupt is always unmasked. */
3261 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3262 gt_irqs |= GT_PARITY_ERROR(dev);
3263 }
3264
3265 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3266 if (IS_GEN5(dev)) {
3267 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3268 ILK_BSD_USER_INTERRUPT;
3269 } else {
3270 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3271 }
3272
3273 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3274
3275 if (INTEL_INFO(dev)->gen >= 6) {
3276 pm_irqs |= dev_priv->pm_rps_events;
3277
3278 if (HAS_VEBOX(dev))
3279 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3280
3281 dev_priv->pm_irq_mask = 0xffffffff;
3282 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3283 }
3284 }
3285
3286 static int ironlake_irq_postinstall(struct drm_device *dev)
3287 {
3288 unsigned long irqflags;
3289 struct drm_i915_private *dev_priv = dev->dev_private;
3290 u32 display_mask, extra_mask;
3291
3292 if (INTEL_INFO(dev)->gen >= 7) {
3293 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3294 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3295 DE_PLANEB_FLIP_DONE_IVB |
3296 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3297 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3298 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3299 } else {
3300 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3301 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3302 DE_AUX_CHANNEL_A |
3303 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3304 DE_POISON);
3305 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3306 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3307 }
3308
3309 dev_priv->irq_mask = ~display_mask;
3310
3311 I915_WRITE(HWSTAM, 0xeffe);
3312
3313 ibx_irq_pre_postinstall(dev);
3314
3315 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3316
3317 gen5_gt_irq_postinstall(dev);
3318
3319 ibx_irq_postinstall(dev);
3320
3321 if (IS_IRONLAKE_M(dev)) {
3322 /* Enable PCU event interrupts
3323 *
3324 * spinlocking not required here for correctness since interrupt
3325 * setup is guaranteed to run in single-threaded context. But we
3326 * need it to make the assert_spin_locked happy. */
3327 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3328 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3329 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3330 }
3331
3332 return 0;
3333 }
3334
3335 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3336 {
3337 u32 pipestat_mask;
3338 u32 iir_mask;
3339
3340 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3341 PIPE_FIFO_UNDERRUN_STATUS;
3342
3343 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3344 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3345 POSTING_READ(PIPESTAT(PIPE_A));
3346
3347 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3348 PIPE_CRC_DONE_INTERRUPT_STATUS;
3349
3350 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3351 PIPE_GMBUS_INTERRUPT_STATUS);
3352 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3353
3354 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3355 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3356 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3357 dev_priv->irq_mask &= ~iir_mask;
3358
3359 I915_WRITE(VLV_IIR, iir_mask);
3360 I915_WRITE(VLV_IIR, iir_mask);
3361 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3362 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3363 POSTING_READ(VLV_IER);
3364 }
3365
3366 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3367 {
3368 u32 pipestat_mask;
3369 u32 iir_mask;
3370
3371 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3372 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3373 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3374
3375 dev_priv->irq_mask |= iir_mask;
3376 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3377 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3378 I915_WRITE(VLV_IIR, iir_mask);
3379 I915_WRITE(VLV_IIR, iir_mask);
3380 POSTING_READ(VLV_IIR);
3381
3382 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3383 PIPE_CRC_DONE_INTERRUPT_STATUS;
3384
3385 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3386 PIPE_GMBUS_INTERRUPT_STATUS);
3387 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3388
3389 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3390 PIPE_FIFO_UNDERRUN_STATUS;
3391 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3392 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3393 POSTING_READ(PIPESTAT(PIPE_A));
3394 }
3395
3396 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3397 {
3398 assert_spin_locked(&dev_priv->irq_lock);
3399
3400 if (dev_priv->display_irqs_enabled)
3401 return;
3402
3403 dev_priv->display_irqs_enabled = true;
3404
3405 if (dev_priv->dev->irq_enabled)
3406 valleyview_display_irqs_install(dev_priv);
3407 }
3408
3409 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3410 {
3411 assert_spin_locked(&dev_priv->irq_lock);
3412
3413 if (!dev_priv->display_irqs_enabled)
3414 return;
3415
3416 dev_priv->display_irqs_enabled = false;
3417
3418 if (dev_priv->dev->irq_enabled)
3419 valleyview_display_irqs_uninstall(dev_priv);
3420 }
3421
3422 static int valleyview_irq_postinstall(struct drm_device *dev)
3423 {
3424 struct drm_i915_private *dev_priv = dev->dev_private;
3425 unsigned long irqflags;
3426
3427 dev_priv->irq_mask = ~0;
3428
3429 I915_WRITE(PORT_HOTPLUG_EN, 0);
3430 POSTING_READ(PORT_HOTPLUG_EN);
3431
3432 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3433 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3434 I915_WRITE(VLV_IIR, 0xffffffff);
3435 POSTING_READ(VLV_IER);
3436
3437 /* Interrupt setup is already guaranteed to be single-threaded, this is
3438 * just to make the assert_spin_locked check happy. */
3439 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3440 if (dev_priv->display_irqs_enabled)
3441 valleyview_display_irqs_install(dev_priv);
3442 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3443
3444 I915_WRITE(VLV_IIR, 0xffffffff);
3445 I915_WRITE(VLV_IIR, 0xffffffff);
3446
3447 gen5_gt_irq_postinstall(dev);
3448
3449 /* ack & enable invalid PTE error interrupts */
3450 #if 0 /* FIXME: add support to irq handler for checking these bits */
3451 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3452 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3453 #endif
3454
3455 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3456
3457 return 0;
3458 }
3459
3460 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3461 {
3462 int i;
3463
3464 /* These are interrupts we'll toggle with the ring mask register */
3465 uint32_t gt_interrupts[] = {
3466 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3467 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3468 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3469 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3470 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3471 0,
3472 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3473 };
3474
3475 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3476 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3477
3478 dev_priv->pm_irq_mask = 0xffffffff;
3479 }
3480
3481 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3482 {
3483 struct drm_device *dev = dev_priv->dev;
3484 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3485 GEN8_PIPE_CDCLK_CRC_DONE |
3486 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3487 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3488 GEN8_PIPE_FIFO_UNDERRUN;
3489 int pipe;
3490 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3491 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3492 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3493
3494 for_each_pipe(pipe)
3495 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3496 de_pipe_enables);
3497
3498 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3499 }
3500
3501 static int gen8_irq_postinstall(struct drm_device *dev)
3502 {
3503 struct drm_i915_private *dev_priv = dev->dev_private;
3504
3505 ibx_irq_pre_postinstall(dev);
3506
3507 gen8_gt_irq_postinstall(dev_priv);
3508 gen8_de_irq_postinstall(dev_priv);
3509
3510 ibx_irq_postinstall(dev);
3511
3512 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3513 POSTING_READ(GEN8_MASTER_IRQ);
3514
3515 return 0;
3516 }
3517
3518 static int cherryview_irq_postinstall(struct drm_device *dev)
3519 {
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3522 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3523 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3524 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3525 u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3526 PIPE_CRC_DONE_INTERRUPT_STATUS;
3527 unsigned long irqflags;
3528 int pipe;
3529
3530 /*
3531 * Leave vblank interrupts masked initially. enable/disable will
3532 * toggle them based on usage.
3533 */
3534 dev_priv->irq_mask = ~enable_mask;
3535
3536 for_each_pipe(pipe)
3537 I915_WRITE(PIPESTAT(pipe), 0xffff);
3538
3539 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3540 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3541 for_each_pipe(pipe)
3542 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3543 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3544
3545 I915_WRITE(VLV_IIR, 0xffffffff);
3546 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3547 I915_WRITE(VLV_IER, enable_mask);
3548
3549 gen8_gt_irq_postinstall(dev_priv);
3550
3551 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3552 POSTING_READ(GEN8_MASTER_IRQ);
3553
3554 return 0;
3555 }
3556
3557 static void gen8_irq_uninstall(struct drm_device *dev)
3558 {
3559 struct drm_i915_private *dev_priv = dev->dev_private;
3560
3561 if (!dev_priv)
3562 return;
3563
3564 intel_hpd_irq_uninstall(dev_priv);
3565
3566 gen8_irq_reset(dev);
3567 }
3568
3569 static void valleyview_irq_uninstall(struct drm_device *dev)
3570 {
3571 struct drm_i915_private *dev_priv = dev->dev_private;
3572 unsigned long irqflags;
3573 int pipe;
3574
3575 if (!dev_priv)
3576 return;
3577
3578 I915_WRITE(VLV_MASTER_IER, 0);
3579
3580 intel_hpd_irq_uninstall(dev_priv);
3581
3582 for_each_pipe(pipe)
3583 I915_WRITE(PIPESTAT(pipe), 0xffff);
3584
3585 I915_WRITE(HWSTAM, 0xffffffff);
3586 I915_WRITE(PORT_HOTPLUG_EN, 0);
3587 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3588
3589 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3590 if (dev_priv->display_irqs_enabled)
3591 valleyview_display_irqs_uninstall(dev_priv);
3592 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3593
3594 dev_priv->irq_mask = 0;
3595
3596 I915_WRITE(VLV_IIR, 0xffffffff);
3597 I915_WRITE(VLV_IMR, 0xffffffff);
3598 I915_WRITE(VLV_IER, 0x0);
3599 POSTING_READ(VLV_IER);
3600 }
3601
3602 static void cherryview_irq_uninstall(struct drm_device *dev)
3603 {
3604 struct drm_i915_private *dev_priv = dev->dev_private;
3605 int pipe;
3606
3607 if (!dev_priv)
3608 return;
3609
3610 I915_WRITE(GEN8_MASTER_IRQ, 0);
3611 POSTING_READ(GEN8_MASTER_IRQ);
3612
3613 #define GEN8_IRQ_FINI_NDX(type, which) \
3614 do { \
3615 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3616 I915_WRITE(GEN8_##type##_IER(which), 0); \
3617 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3618 POSTING_READ(GEN8_##type##_IIR(which)); \
3619 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3620 } while (0)
3621
3622 #define GEN8_IRQ_FINI(type) \
3623 do { \
3624 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3625 I915_WRITE(GEN8_##type##_IER, 0); \
3626 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3627 POSTING_READ(GEN8_##type##_IIR); \
3628 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3629 } while (0)
3630
3631 GEN8_IRQ_FINI_NDX(GT, 0);
3632 GEN8_IRQ_FINI_NDX(GT, 1);
3633 GEN8_IRQ_FINI_NDX(GT, 2);
3634 GEN8_IRQ_FINI_NDX(GT, 3);
3635
3636 GEN8_IRQ_FINI(PCU);
3637
3638 #undef GEN8_IRQ_FINI
3639 #undef GEN8_IRQ_FINI_NDX
3640
3641 I915_WRITE(PORT_HOTPLUG_EN, 0);
3642 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3643
3644 for_each_pipe(pipe)
3645 I915_WRITE(PIPESTAT(pipe), 0xffff);
3646
3647 I915_WRITE(VLV_IMR, 0xffffffff);
3648 I915_WRITE(VLV_IER, 0x0);
3649 I915_WRITE(VLV_IIR, 0xffffffff);
3650 POSTING_READ(VLV_IIR);
3651 }
3652
3653 static void ironlake_irq_uninstall(struct drm_device *dev)
3654 {
3655 struct drm_i915_private *dev_priv = dev->dev_private;
3656
3657 if (!dev_priv)
3658 return;
3659
3660 intel_hpd_irq_uninstall(dev_priv);
3661
3662 ironlake_irq_reset(dev);
3663 }
3664
3665 static void i8xx_irq_preinstall(struct drm_device * dev)
3666 {
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 int pipe;
3669
3670 for_each_pipe(pipe)
3671 I915_WRITE(PIPESTAT(pipe), 0);
3672 I915_WRITE16(IMR, 0xffff);
3673 I915_WRITE16(IER, 0x0);
3674 POSTING_READ16(IER);
3675 }
3676
3677 static int i8xx_irq_postinstall(struct drm_device *dev)
3678 {
3679 struct drm_i915_private *dev_priv = dev->dev_private;
3680 unsigned long irqflags;
3681
3682 I915_WRITE16(EMR,
3683 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3684
3685 /* Unmask the interrupts that we always want on. */
3686 dev_priv->irq_mask =
3687 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3688 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3689 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3690 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3691 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3692 I915_WRITE16(IMR, dev_priv->irq_mask);
3693
3694 I915_WRITE16(IER,
3695 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3697 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3698 I915_USER_INTERRUPT);
3699 POSTING_READ16(IER);
3700
3701 /* Interrupt setup is already guaranteed to be single-threaded, this is
3702 * just to make the assert_spin_locked check happy. */
3703 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3704 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3705 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3706 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3707
3708 return 0;
3709 }
3710
3711 /*
3712 * Returns true when a page flip has completed.
3713 */
3714 static bool i8xx_handle_vblank(struct drm_device *dev,
3715 int plane, int pipe, u32 iir)
3716 {
3717 struct drm_i915_private *dev_priv = dev->dev_private;
3718 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3719
3720 if (!intel_pipe_handle_vblank(dev, pipe))
3721 return false;
3722
3723 if ((iir & flip_pending) == 0)
3724 return false;
3725
3726 intel_prepare_page_flip(dev, plane);
3727
3728 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3729 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3730 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3731 * the flip is completed (no longer pending). Since this doesn't raise
3732 * an interrupt per se, we watch for the change at vblank.
3733 */
3734 if (I915_READ16(ISR) & flip_pending)
3735 return false;
3736
3737 intel_finish_page_flip(dev, pipe);
3738
3739 return true;
3740 }
3741
3742 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3743 {
3744 struct drm_device *dev = arg;
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746 u16 iir, new_iir;
3747 u32 pipe_stats[2];
3748 unsigned long irqflags;
3749 int pipe;
3750 u16 flip_mask =
3751 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3752 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3753
3754 iir = I915_READ16(IIR);
3755 if (iir == 0)
3756 return IRQ_NONE;
3757
3758 while (iir & ~flip_mask) {
3759 /* Can't rely on pipestat interrupt bit in iir as it might
3760 * have been cleared after the pipestat interrupt was received.
3761 * It doesn't set the bit in iir again, but it still produces
3762 * interrupts (for non-MSI).
3763 */
3764 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3765 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3766 i915_handle_error(dev, false,
3767 "Command parser error, iir 0x%08x",
3768 iir);
3769
3770 for_each_pipe(pipe) {
3771 int reg = PIPESTAT(pipe);
3772 pipe_stats[pipe] = I915_READ(reg);
3773
3774 /*
3775 * Clear the PIPE*STAT regs before the IIR
3776 */
3777 if (pipe_stats[pipe] & 0x8000ffff)
3778 I915_WRITE(reg, pipe_stats[pipe]);
3779 }
3780 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3781
3782 I915_WRITE16(IIR, iir & ~flip_mask);
3783 new_iir = I915_READ16(IIR); /* Flush posted writes */
3784
3785 i915_update_dri1_breadcrumb(dev);
3786
3787 if (iir & I915_USER_INTERRUPT)
3788 notify_ring(dev, &dev_priv->ring[RCS]);
3789
3790 for_each_pipe(pipe) {
3791 int plane = pipe;
3792 if (HAS_FBC(dev))
3793 plane = !plane;
3794
3795 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3796 i8xx_handle_vblank(dev, plane, pipe, iir))
3797 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3798
3799 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3800 i9xx_pipe_crc_irq_handler(dev, pipe);
3801
3802 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3803 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3804 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3805 }
3806
3807 iir = new_iir;
3808 }
3809
3810 return IRQ_HANDLED;
3811 }
3812
3813 static void i8xx_irq_uninstall(struct drm_device * dev)
3814 {
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816 int pipe;
3817
3818 for_each_pipe(pipe) {
3819 /* Clear enable bits; then clear status bits */
3820 I915_WRITE(PIPESTAT(pipe), 0);
3821 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3822 }
3823 I915_WRITE16(IMR, 0xffff);
3824 I915_WRITE16(IER, 0x0);
3825 I915_WRITE16(IIR, I915_READ16(IIR));
3826 }
3827
3828 static void i915_irq_preinstall(struct drm_device * dev)
3829 {
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831 int pipe;
3832
3833 if (I915_HAS_HOTPLUG(dev)) {
3834 I915_WRITE(PORT_HOTPLUG_EN, 0);
3835 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3836 }
3837
3838 I915_WRITE16(HWSTAM, 0xeffe);
3839 for_each_pipe(pipe)
3840 I915_WRITE(PIPESTAT(pipe), 0);
3841 I915_WRITE(IMR, 0xffffffff);
3842 I915_WRITE(IER, 0x0);
3843 POSTING_READ(IER);
3844 }
3845
3846 static int i915_irq_postinstall(struct drm_device *dev)
3847 {
3848 struct drm_i915_private *dev_priv = dev->dev_private;
3849 u32 enable_mask;
3850 unsigned long irqflags;
3851
3852 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3853
3854 /* Unmask the interrupts that we always want on. */
3855 dev_priv->irq_mask =
3856 ~(I915_ASLE_INTERRUPT |
3857 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3858 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3859 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3860 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3861 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3862
3863 enable_mask =
3864 I915_ASLE_INTERRUPT |
3865 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3866 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3867 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3868 I915_USER_INTERRUPT;
3869
3870 if (I915_HAS_HOTPLUG(dev)) {
3871 I915_WRITE(PORT_HOTPLUG_EN, 0);
3872 POSTING_READ(PORT_HOTPLUG_EN);
3873
3874 /* Enable in IER... */
3875 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3876 /* and unmask in IMR */
3877 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3878 }
3879
3880 I915_WRITE(IMR, dev_priv->irq_mask);
3881 I915_WRITE(IER, enable_mask);
3882 POSTING_READ(IER);
3883
3884 i915_enable_asle_pipestat(dev);
3885
3886 /* Interrupt setup is already guaranteed to be single-threaded, this is
3887 * just to make the assert_spin_locked check happy. */
3888 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3889 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3890 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3891 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3892
3893 return 0;
3894 }
3895
3896 /*
3897 * Returns true when a page flip has completed.
3898 */
3899 static bool i915_handle_vblank(struct drm_device *dev,
3900 int plane, int pipe, u32 iir)
3901 {
3902 struct drm_i915_private *dev_priv = dev->dev_private;
3903 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3904
3905 if (!intel_pipe_handle_vblank(dev, pipe))
3906 return false;
3907
3908 if ((iir & flip_pending) == 0)
3909 return false;
3910
3911 intel_prepare_page_flip(dev, plane);
3912
3913 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3914 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3915 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3916 * the flip is completed (no longer pending). Since this doesn't raise
3917 * an interrupt per se, we watch for the change at vblank.
3918 */
3919 if (I915_READ(ISR) & flip_pending)
3920 return false;
3921
3922 intel_finish_page_flip(dev, pipe);
3923
3924 return true;
3925 }
3926
3927 static irqreturn_t i915_irq_handler(int irq, void *arg)
3928 {
3929 struct drm_device *dev = arg;
3930 struct drm_i915_private *dev_priv = dev->dev_private;
3931 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3932 unsigned long irqflags;
3933 u32 flip_mask =
3934 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3935 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3936 int pipe, ret = IRQ_NONE;
3937
3938 iir = I915_READ(IIR);
3939 do {
3940 bool irq_received = (iir & ~flip_mask) != 0;
3941 bool blc_event = false;
3942
3943 /* Can't rely on pipestat interrupt bit in iir as it might
3944 * have been cleared after the pipestat interrupt was received.
3945 * It doesn't set the bit in iir again, but it still produces
3946 * interrupts (for non-MSI).
3947 */
3948 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3949 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3950 i915_handle_error(dev, false,
3951 "Command parser error, iir 0x%08x",
3952 iir);
3953
3954 for_each_pipe(pipe) {
3955 int reg = PIPESTAT(pipe);
3956 pipe_stats[pipe] = I915_READ(reg);
3957
3958 /* Clear the PIPE*STAT regs before the IIR */
3959 if (pipe_stats[pipe] & 0x8000ffff) {
3960 I915_WRITE(reg, pipe_stats[pipe]);
3961 irq_received = true;
3962 }
3963 }
3964 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3965
3966 if (!irq_received)
3967 break;
3968
3969 /* Consume port. Then clear IIR or we'll miss events */
3970 if (I915_HAS_HOTPLUG(dev) &&
3971 iir & I915_DISPLAY_PORT_INTERRUPT)
3972 i9xx_hpd_irq_handler(dev);
3973
3974 I915_WRITE(IIR, iir & ~flip_mask);
3975 new_iir = I915_READ(IIR); /* Flush posted writes */
3976
3977 if (iir & I915_USER_INTERRUPT)
3978 notify_ring(dev, &dev_priv->ring[RCS]);
3979
3980 for_each_pipe(pipe) {
3981 int plane = pipe;
3982 if (HAS_FBC(dev))
3983 plane = !plane;
3984
3985 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3986 i915_handle_vblank(dev, plane, pipe, iir))
3987 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3988
3989 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3990 blc_event = true;
3991
3992 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3993 i9xx_pipe_crc_irq_handler(dev, pipe);
3994
3995 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3996 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3997 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3998 }
3999
4000 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4001 intel_opregion_asle_intr(dev);
4002
4003 /* With MSI, interrupts are only generated when iir
4004 * transitions from zero to nonzero. If another bit got
4005 * set while we were handling the existing iir bits, then
4006 * we would never get another interrupt.
4007 *
4008 * This is fine on non-MSI as well, as if we hit this path
4009 * we avoid exiting the interrupt handler only to generate
4010 * another one.
4011 *
4012 * Note that for MSI this could cause a stray interrupt report
4013 * if an interrupt landed in the time between writing IIR and
4014 * the posting read. This should be rare enough to never
4015 * trigger the 99% of 100,000 interrupts test for disabling
4016 * stray interrupts.
4017 */
4018 ret = IRQ_HANDLED;
4019 iir = new_iir;
4020 } while (iir & ~flip_mask);
4021
4022 i915_update_dri1_breadcrumb(dev);
4023
4024 return ret;
4025 }
4026
4027 static void i915_irq_uninstall(struct drm_device * dev)
4028 {
4029 struct drm_i915_private *dev_priv = dev->dev_private;
4030 int pipe;
4031
4032 intel_hpd_irq_uninstall(dev_priv);
4033
4034 if (I915_HAS_HOTPLUG(dev)) {
4035 I915_WRITE(PORT_HOTPLUG_EN, 0);
4036 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4037 }
4038
4039 I915_WRITE16(HWSTAM, 0xffff);
4040 for_each_pipe(pipe) {
4041 /* Clear enable bits; then clear status bits */
4042 I915_WRITE(PIPESTAT(pipe), 0);
4043 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4044 }
4045 I915_WRITE(IMR, 0xffffffff);
4046 I915_WRITE(IER, 0x0);
4047
4048 I915_WRITE(IIR, I915_READ(IIR));
4049 }
4050
4051 static void i965_irq_preinstall(struct drm_device * dev)
4052 {
4053 struct drm_i915_private *dev_priv = dev->dev_private;
4054 int pipe;
4055
4056 I915_WRITE(PORT_HOTPLUG_EN, 0);
4057 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4058
4059 I915_WRITE(HWSTAM, 0xeffe);
4060 for_each_pipe(pipe)
4061 I915_WRITE(PIPESTAT(pipe), 0);
4062 I915_WRITE(IMR, 0xffffffff);
4063 I915_WRITE(IER, 0x0);
4064 POSTING_READ(IER);
4065 }
4066
4067 static int i965_irq_postinstall(struct drm_device *dev)
4068 {
4069 struct drm_i915_private *dev_priv = dev->dev_private;
4070 u32 enable_mask;
4071 u32 error_mask;
4072 unsigned long irqflags;
4073
4074 /* Unmask the interrupts that we always want on. */
4075 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4076 I915_DISPLAY_PORT_INTERRUPT |
4077 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4078 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4079 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4080 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4081 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4082
4083 enable_mask = ~dev_priv->irq_mask;
4084 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4085 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4086 enable_mask |= I915_USER_INTERRUPT;
4087
4088 if (IS_G4X(dev))
4089 enable_mask |= I915_BSD_USER_INTERRUPT;
4090
4091 /* Interrupt setup is already guaranteed to be single-threaded, this is
4092 * just to make the assert_spin_locked check happy. */
4093 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4094 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4095 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4096 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4097 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4098
4099 /*
4100 * Enable some error detection, note the instruction error mask
4101 * bit is reserved, so we leave it masked.
4102 */
4103 if (IS_G4X(dev)) {
4104 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4105 GM45_ERROR_MEM_PRIV |
4106 GM45_ERROR_CP_PRIV |
4107 I915_ERROR_MEMORY_REFRESH);
4108 } else {
4109 error_mask = ~(I915_ERROR_PAGE_TABLE |
4110 I915_ERROR_MEMORY_REFRESH);
4111 }
4112 I915_WRITE(EMR, error_mask);
4113
4114 I915_WRITE(IMR, dev_priv->irq_mask);
4115 I915_WRITE(IER, enable_mask);
4116 POSTING_READ(IER);
4117
4118 I915_WRITE(PORT_HOTPLUG_EN, 0);
4119 POSTING_READ(PORT_HOTPLUG_EN);
4120
4121 i915_enable_asle_pipestat(dev);
4122
4123 return 0;
4124 }
4125
4126 static void i915_hpd_irq_setup(struct drm_device *dev)
4127 {
4128 struct drm_i915_private *dev_priv = dev->dev_private;
4129 struct drm_mode_config *mode_config = &dev->mode_config;
4130 struct intel_encoder *intel_encoder;
4131 u32 hotplug_en;
4132
4133 assert_spin_locked(&dev_priv->irq_lock);
4134
4135 if (I915_HAS_HOTPLUG(dev)) {
4136 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4137 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4138 /* Note HDMI and DP share hotplug bits */
4139 /* enable bits are the same for all generations */
4140 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4141 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4142 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4143 /* Programming the CRT detection parameters tends
4144 to generate a spurious hotplug event about three
4145 seconds later. So just do it once.
4146 */
4147 if (IS_G4X(dev))
4148 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4149 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4150 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4151
4152 /* Ignore TV since it's buggy */
4153 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4154 }
4155 }
4156
4157 static irqreturn_t i965_irq_handler(int irq, void *arg)
4158 {
4159 struct drm_device *dev = arg;
4160 struct drm_i915_private *dev_priv = dev->dev_private;
4161 u32 iir, new_iir;
4162 u32 pipe_stats[I915_MAX_PIPES];
4163 unsigned long irqflags;
4164 int ret = IRQ_NONE, pipe;
4165 u32 flip_mask =
4166 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4167 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4168
4169 iir = I915_READ(IIR);
4170
4171 for (;;) {
4172 bool irq_received = (iir & ~flip_mask) != 0;
4173 bool blc_event = false;
4174
4175 /* Can't rely on pipestat interrupt bit in iir as it might
4176 * have been cleared after the pipestat interrupt was received.
4177 * It doesn't set the bit in iir again, but it still produces
4178 * interrupts (for non-MSI).
4179 */
4180 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4181 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4182 i915_handle_error(dev, false,
4183 "Command parser error, iir 0x%08x",
4184 iir);
4185
4186 for_each_pipe(pipe) {
4187 int reg = PIPESTAT(pipe);
4188 pipe_stats[pipe] = I915_READ(reg);
4189
4190 /*
4191 * Clear the PIPE*STAT regs before the IIR
4192 */
4193 if (pipe_stats[pipe] & 0x8000ffff) {
4194 I915_WRITE(reg, pipe_stats[pipe]);
4195 irq_received = true;
4196 }
4197 }
4198 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4199
4200 if (!irq_received)
4201 break;
4202
4203 ret = IRQ_HANDLED;
4204
4205 /* Consume port. Then clear IIR or we'll miss events */
4206 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4207 i9xx_hpd_irq_handler(dev);
4208
4209 I915_WRITE(IIR, iir & ~flip_mask);
4210 new_iir = I915_READ(IIR); /* Flush posted writes */
4211
4212 if (iir & I915_USER_INTERRUPT)
4213 notify_ring(dev, &dev_priv->ring[RCS]);
4214 if (iir & I915_BSD_USER_INTERRUPT)
4215 notify_ring(dev, &dev_priv->ring[VCS]);
4216
4217 for_each_pipe(pipe) {
4218 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4219 i915_handle_vblank(dev, pipe, pipe, iir))
4220 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4221
4222 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4223 blc_event = true;
4224
4225 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4226 i9xx_pipe_crc_irq_handler(dev, pipe);
4227
4228 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4229 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4230 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4231 }
4232
4233 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4234 intel_opregion_asle_intr(dev);
4235
4236 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4237 gmbus_irq_handler(dev);
4238
4239 /* With MSI, interrupts are only generated when iir
4240 * transitions from zero to nonzero. If another bit got
4241 * set while we were handling the existing iir bits, then
4242 * we would never get another interrupt.
4243 *
4244 * This is fine on non-MSI as well, as if we hit this path
4245 * we avoid exiting the interrupt handler only to generate
4246 * another one.
4247 *
4248 * Note that for MSI this could cause a stray interrupt report
4249 * if an interrupt landed in the time between writing IIR and
4250 * the posting read. This should be rare enough to never
4251 * trigger the 99% of 100,000 interrupts test for disabling
4252 * stray interrupts.
4253 */
4254 iir = new_iir;
4255 }
4256
4257 i915_update_dri1_breadcrumb(dev);
4258
4259 return ret;
4260 }
4261
4262 static void i965_irq_uninstall(struct drm_device * dev)
4263 {
4264 struct drm_i915_private *dev_priv = dev->dev_private;
4265 int pipe;
4266
4267 if (!dev_priv)
4268 return;
4269
4270 intel_hpd_irq_uninstall(dev_priv);
4271
4272 I915_WRITE(PORT_HOTPLUG_EN, 0);
4273 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4274
4275 I915_WRITE(HWSTAM, 0xffffffff);
4276 for_each_pipe(pipe)
4277 I915_WRITE(PIPESTAT(pipe), 0);
4278 I915_WRITE(IMR, 0xffffffff);
4279 I915_WRITE(IER, 0x0);
4280
4281 for_each_pipe(pipe)
4282 I915_WRITE(PIPESTAT(pipe),
4283 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4284 I915_WRITE(IIR, I915_READ(IIR));
4285 }
4286
4287 static void intel_hpd_irq_reenable(unsigned long data)
4288 {
4289 struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4290 struct drm_device *dev = dev_priv->dev;
4291 struct drm_mode_config *mode_config = &dev->mode_config;
4292 unsigned long irqflags;
4293 int i;
4294
4295 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4296 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4297 struct drm_connector *connector;
4298
4299 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4300 continue;
4301
4302 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4303
4304 list_for_each_entry(connector, &mode_config->connector_list, head) {
4305 struct intel_connector *intel_connector = to_intel_connector(connector);
4306
4307 if (intel_connector->encoder->hpd_pin == i) {
4308 if (connector->polled != intel_connector->polled)
4309 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4310 connector->name);
4311 connector->polled = intel_connector->polled;
4312 if (!connector->polled)
4313 connector->polled = DRM_CONNECTOR_POLL_HPD;
4314 }
4315 }
4316 }
4317 if (dev_priv->display.hpd_irq_setup)
4318 dev_priv->display.hpd_irq_setup(dev);
4319 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4320 }
4321
4322 void intel_irq_init(struct drm_device *dev)
4323 {
4324 struct drm_i915_private *dev_priv = dev->dev_private;
4325
4326 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4327 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4328 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4329 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4330
4331 /* Let's track the enabled rps events */
4332 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4333
4334 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4335 i915_hangcheck_elapsed,
4336 (unsigned long) dev);
4337 setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4338 (unsigned long) dev_priv);
4339
4340 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4341
4342 if (IS_GEN2(dev)) {
4343 dev->max_vblank_count = 0;
4344 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4345 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4346 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4347 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4348 } else {
4349 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4350 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4351 }
4352
4353 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4354 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4355 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4356 }
4357
4358 if (IS_CHERRYVIEW(dev)) {
4359 dev->driver->irq_handler = cherryview_irq_handler;
4360 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4361 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4362 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4363 dev->driver->enable_vblank = valleyview_enable_vblank;
4364 dev->driver->disable_vblank = valleyview_disable_vblank;
4365 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4366 } else if (IS_VALLEYVIEW(dev)) {
4367 dev->driver->irq_handler = valleyview_irq_handler;
4368 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4369 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4370 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4371 dev->driver->enable_vblank = valleyview_enable_vblank;
4372 dev->driver->disable_vblank = valleyview_disable_vblank;
4373 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4374 } else if (IS_GEN8(dev)) {
4375 dev->driver->irq_handler = gen8_irq_handler;
4376 dev->driver->irq_preinstall = gen8_irq_reset;
4377 dev->driver->irq_postinstall = gen8_irq_postinstall;
4378 dev->driver->irq_uninstall = gen8_irq_uninstall;
4379 dev->driver->enable_vblank = gen8_enable_vblank;
4380 dev->driver->disable_vblank = gen8_disable_vblank;
4381 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4382 } else if (HAS_PCH_SPLIT(dev)) {
4383 dev->driver->irq_handler = ironlake_irq_handler;
4384 dev->driver->irq_preinstall = ironlake_irq_reset;
4385 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4386 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4387 dev->driver->enable_vblank = ironlake_enable_vblank;
4388 dev->driver->disable_vblank = ironlake_disable_vblank;
4389 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4390 } else {
4391 if (INTEL_INFO(dev)->gen == 2) {
4392 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4393 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4394 dev->driver->irq_handler = i8xx_irq_handler;
4395 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4396 } else if (INTEL_INFO(dev)->gen == 3) {
4397 dev->driver->irq_preinstall = i915_irq_preinstall;
4398 dev->driver->irq_postinstall = i915_irq_postinstall;
4399 dev->driver->irq_uninstall = i915_irq_uninstall;
4400 dev->driver->irq_handler = i915_irq_handler;
4401 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4402 } else {
4403 dev->driver->irq_preinstall = i965_irq_preinstall;
4404 dev->driver->irq_postinstall = i965_irq_postinstall;
4405 dev->driver->irq_uninstall = i965_irq_uninstall;
4406 dev->driver->irq_handler = i965_irq_handler;
4407 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4408 }
4409 dev->driver->enable_vblank = i915_enable_vblank;
4410 dev->driver->disable_vblank = i915_disable_vblank;
4411 }
4412 }
4413
4414 void intel_hpd_init(struct drm_device *dev)
4415 {
4416 struct drm_i915_private *dev_priv = dev->dev_private;
4417 struct drm_mode_config *mode_config = &dev->mode_config;
4418 struct drm_connector *connector;
4419 unsigned long irqflags;
4420 int i;
4421
4422 for (i = 1; i < HPD_NUM_PINS; i++) {
4423 dev_priv->hpd_stats[i].hpd_cnt = 0;
4424 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4425 }
4426 list_for_each_entry(connector, &mode_config->connector_list, head) {
4427 struct intel_connector *intel_connector = to_intel_connector(connector);
4428 connector->polled = intel_connector->polled;
4429 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4430 connector->polled = DRM_CONNECTOR_POLL_HPD;
4431 }
4432
4433 /* Interrupt setup is already guaranteed to be single-threaded, this is
4434 * just to make the assert_spin_locked checks happy. */
4435 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4436 if (dev_priv->display.hpd_irq_setup)
4437 dev_priv->display.hpd_irq_setup(dev);
4438 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4439 }
4440
4441 /* Disable interrupts so we can allow runtime PM. */
4442 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4443 {
4444 struct drm_i915_private *dev_priv = dev->dev_private;
4445
4446 dev->driver->irq_uninstall(dev);
4447 dev_priv->pm.irqs_disabled = true;
4448 }
4449
4450 /* Restore interrupts so we can recover from runtime PM. */
4451 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4452 {
4453 struct drm_i915_private *dev_priv = dev->dev_private;
4454
4455 dev_priv->pm.irqs_disabled = false;
4456 dev->driver->irq_preinstall(dev);
4457 dev->driver->irq_postinstall(dev);
4458 }
This page took 0.118382 seconds and 6 git commands to generate.