arch: Mass conversion of smp_mb__*()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
86 {
87 assert_spin_locked(&dev_priv->irq_lock);
88
89 if (dev_priv->pm.irqs_disabled) {
90 WARN(1, "IRQs disabled\n");
91 dev_priv->pm.regsave.deimr &= ~mask;
92 return;
93 }
94
95 if ((dev_priv->irq_mask & mask) != 0) {
96 dev_priv->irq_mask &= ~mask;
97 I915_WRITE(DEIMR, dev_priv->irq_mask);
98 POSTING_READ(DEIMR);
99 }
100 }
101
102 static void
103 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
104 {
105 assert_spin_locked(&dev_priv->irq_lock);
106
107 if (dev_priv->pm.irqs_disabled) {
108 WARN(1, "IRQs disabled\n");
109 dev_priv->pm.regsave.deimr |= mask;
110 return;
111 }
112
113 if ((dev_priv->irq_mask & mask) != mask) {
114 dev_priv->irq_mask |= mask;
115 I915_WRITE(DEIMR, dev_priv->irq_mask);
116 POSTING_READ(DEIMR);
117 }
118 }
119
120 /**
121 * ilk_update_gt_irq - update GTIMR
122 * @dev_priv: driver private
123 * @interrupt_mask: mask of interrupt bits to update
124 * @enabled_irq_mask: mask of interrupt bits to enable
125 */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127 uint32_t interrupt_mask,
128 uint32_t enabled_irq_mask)
129 {
130 assert_spin_locked(&dev_priv->irq_lock);
131
132 if (dev_priv->pm.irqs_disabled) {
133 WARN(1, "IRQs disabled\n");
134 dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
135 dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
136 interrupt_mask);
137 return;
138 }
139
140 dev_priv->gt_irq_mask &= ~interrupt_mask;
141 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143 POSTING_READ(GTIMR);
144 }
145
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148 ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153 ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155
156 /**
157 * snb_update_pm_irq - update GEN6_PMIMR
158 * @dev_priv: driver private
159 * @interrupt_mask: mask of interrupt bits to update
160 * @enabled_irq_mask: mask of interrupt bits to enable
161 */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163 uint32_t interrupt_mask,
164 uint32_t enabled_irq_mask)
165 {
166 uint32_t new_val;
167
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (dev_priv->pm.irqs_disabled) {
171 WARN(1, "IRQs disabled\n");
172 dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
173 dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
174 interrupt_mask);
175 return;
176 }
177
178 new_val = dev_priv->pm_irq_mask;
179 new_val &= ~interrupt_mask;
180 new_val |= (~enabled_irq_mask & interrupt_mask);
181
182 if (new_val != dev_priv->pm_irq_mask) {
183 dev_priv->pm_irq_mask = new_val;
184 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185 POSTING_READ(GEN6_PMIMR);
186 }
187 }
188
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191 snb_update_pm_irq(dev_priv, mask, mask);
192 }
193
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196 snb_update_pm_irq(dev_priv, mask, 0);
197 }
198
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201 struct drm_i915_private *dev_priv = dev->dev_private;
202 struct intel_crtc *crtc;
203 enum pipe pipe;
204
205 assert_spin_locked(&dev_priv->irq_lock);
206
207 for_each_pipe(pipe) {
208 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210 if (crtc->cpu_fifo_underrun_disabled)
211 return false;
212 }
213
214 return true;
215 }
216
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 enum pipe pipe;
221 struct intel_crtc *crtc;
222
223 assert_spin_locked(&dev_priv->irq_lock);
224
225 for_each_pipe(pipe) {
226 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228 if (crtc->pch_fifo_underrun_disabled)
229 return false;
230 }
231
232 return true;
233 }
234
235 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 u32 reg = PIPESTAT(pipe);
239 u32 pipestat = I915_READ(reg) & 0x7fff0000;
240
241 assert_spin_locked(&dev_priv->irq_lock);
242
243 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
244 POSTING_READ(reg);
245 }
246
247 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249 {
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
252 DE_PIPEB_FIFO_UNDERRUN;
253
254 if (enable)
255 ironlake_enable_display_irq(dev_priv, bit);
256 else
257 ironlake_disable_display_irq(dev_priv, bit);
258 }
259
260 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
261 enum pipe pipe, bool enable)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 if (enable) {
265 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
266
267 if (!ivb_can_enable_err_int(dev))
268 return;
269
270 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
271 } else {
272 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
273
274 /* Change the state _after_ we've read out the current one. */
275 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
276
277 if (!was_enabled &&
278 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
279 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
280 pipe_name(pipe));
281 }
282 }
283 }
284
285 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
286 enum pipe pipe, bool enable)
287 {
288 struct drm_i915_private *dev_priv = dev->dev_private;
289
290 assert_spin_locked(&dev_priv->irq_lock);
291
292 if (enable)
293 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
294 else
295 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
296 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
297 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
298 }
299
300 /**
301 * ibx_display_interrupt_update - update SDEIMR
302 * @dev_priv: driver private
303 * @interrupt_mask: mask of interrupt bits to update
304 * @enabled_irq_mask: mask of interrupt bits to enable
305 */
306 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
307 uint32_t interrupt_mask,
308 uint32_t enabled_irq_mask)
309 {
310 uint32_t sdeimr = I915_READ(SDEIMR);
311 sdeimr &= ~interrupt_mask;
312 sdeimr |= (~enabled_irq_mask & interrupt_mask);
313
314 assert_spin_locked(&dev_priv->irq_lock);
315
316 if (dev_priv->pm.irqs_disabled &&
317 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
318 WARN(1, "IRQs disabled\n");
319 dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
320 dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
321 interrupt_mask);
322 return;
323 }
324
325 I915_WRITE(SDEIMR, sdeimr);
326 POSTING_READ(SDEIMR);
327 }
328 #define ibx_enable_display_interrupt(dev_priv, bits) \
329 ibx_display_interrupt_update((dev_priv), (bits), (bits))
330 #define ibx_disable_display_interrupt(dev_priv, bits) \
331 ibx_display_interrupt_update((dev_priv), (bits), 0)
332
333 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
334 enum transcoder pch_transcoder,
335 bool enable)
336 {
337 struct drm_i915_private *dev_priv = dev->dev_private;
338 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
339 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
340
341 if (enable)
342 ibx_enable_display_interrupt(dev_priv, bit);
343 else
344 ibx_disable_display_interrupt(dev_priv, bit);
345 }
346
347 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
348 enum transcoder pch_transcoder,
349 bool enable)
350 {
351 struct drm_i915_private *dev_priv = dev->dev_private;
352
353 if (enable) {
354 I915_WRITE(SERR_INT,
355 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
356
357 if (!cpt_can_enable_serr_int(dev))
358 return;
359
360 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
361 } else {
362 uint32_t tmp = I915_READ(SERR_INT);
363 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
364
365 /* Change the state _after_ we've read out the current one. */
366 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
367
368 if (!was_enabled &&
369 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
370 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
371 transcoder_name(pch_transcoder));
372 }
373 }
374 }
375
376 /**
377 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
378 * @dev: drm device
379 * @pipe: pipe
380 * @enable: true if we want to report FIFO underrun errors, false otherwise
381 *
382 * This function makes us disable or enable CPU fifo underruns for a specific
383 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
384 * reporting for one pipe may also disable all the other CPU error interruts for
385 * the other pipes, due to the fact that there's just one interrupt mask/enable
386 * bit for all the pipes.
387 *
388 * Returns the previous state of underrun reporting.
389 */
390 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
391 enum pipe pipe, bool enable)
392 {
393 struct drm_i915_private *dev_priv = dev->dev_private;
394 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
396 bool ret;
397
398 assert_spin_locked(&dev_priv->irq_lock);
399
400 ret = !intel_crtc->cpu_fifo_underrun_disabled;
401
402 if (enable == ret)
403 goto done;
404
405 intel_crtc->cpu_fifo_underrun_disabled = !enable;
406
407 if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
408 i9xx_clear_fifo_underrun(dev, pipe);
409 else if (IS_GEN5(dev) || IS_GEN6(dev))
410 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
411 else if (IS_GEN7(dev))
412 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
413 else if (IS_GEN8(dev))
414 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
415
416 done:
417 return ret;
418 }
419
420 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
421 enum pipe pipe, bool enable)
422 {
423 struct drm_i915_private *dev_priv = dev->dev_private;
424 unsigned long flags;
425 bool ret;
426
427 spin_lock_irqsave(&dev_priv->irq_lock, flags);
428 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
429 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
430
431 return ret;
432 }
433
434 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
435 enum pipe pipe)
436 {
437 struct drm_i915_private *dev_priv = dev->dev_private;
438 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
440
441 return !intel_crtc->cpu_fifo_underrun_disabled;
442 }
443
444 /**
445 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
446 * @dev: drm device
447 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
448 * @enable: true if we want to report FIFO underrun errors, false otherwise
449 *
450 * This function makes us disable or enable PCH fifo underruns for a specific
451 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
452 * underrun reporting for one transcoder may also disable all the other PCH
453 * error interruts for the other transcoders, due to the fact that there's just
454 * one interrupt mask/enable bit for all the transcoders.
455 *
456 * Returns the previous state of underrun reporting.
457 */
458 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
459 enum transcoder pch_transcoder,
460 bool enable)
461 {
462 struct drm_i915_private *dev_priv = dev->dev_private;
463 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
465 unsigned long flags;
466 bool ret;
467
468 /*
469 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
470 * has only one pch transcoder A that all pipes can use. To avoid racy
471 * pch transcoder -> pipe lookups from interrupt code simply store the
472 * underrun statistics in crtc A. Since we never expose this anywhere
473 * nor use it outside of the fifo underrun code here using the "wrong"
474 * crtc on LPT won't cause issues.
475 */
476
477 spin_lock_irqsave(&dev_priv->irq_lock, flags);
478
479 ret = !intel_crtc->pch_fifo_underrun_disabled;
480
481 if (enable == ret)
482 goto done;
483
484 intel_crtc->pch_fifo_underrun_disabled = !enable;
485
486 if (HAS_PCH_IBX(dev))
487 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
488 else
489 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
490
491 done:
492 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
493 return ret;
494 }
495
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 u32 reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505
506 if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
507 status_mask & ~PIPESTAT_INT_STATUS_MASK))
508 return;
509
510 if ((pipestat & enable_mask) == enable_mask)
511 return;
512
513 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
514
515 /* Enable the interrupt, clear any pending status */
516 pipestat |= enable_mask | status_mask;
517 I915_WRITE(reg, pipestat);
518 POSTING_READ(reg);
519 }
520
521 static void
522 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
523 u32 enable_mask, u32 status_mask)
524 {
525 u32 reg = PIPESTAT(pipe);
526 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
527
528 assert_spin_locked(&dev_priv->irq_lock);
529
530 if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531 status_mask & ~PIPESTAT_INT_STATUS_MASK))
532 return;
533
534 if ((pipestat & enable_mask) == 0)
535 return;
536
537 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
538
539 pipestat &= ~enable_mask;
540 I915_WRITE(reg, pipestat);
541 POSTING_READ(reg);
542 }
543
544 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
545 {
546 u32 enable_mask = status_mask << 16;
547
548 /*
549 * On pipe A we don't support the PSR interrupt yet, on pipe B the
550 * same bit MBZ.
551 */
552 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
553 return 0;
554
555 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
556 SPRITE0_FLIP_DONE_INT_EN_VLV |
557 SPRITE1_FLIP_DONE_INT_EN_VLV);
558 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
559 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
560 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
561 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
562
563 return enable_mask;
564 }
565
566 void
567 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
568 u32 status_mask)
569 {
570 u32 enable_mask;
571
572 if (IS_VALLEYVIEW(dev_priv->dev))
573 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
574 status_mask);
575 else
576 enable_mask = status_mask << 16;
577 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
578 }
579
580 void
581 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
582 u32 status_mask)
583 {
584 u32 enable_mask;
585
586 if (IS_VALLEYVIEW(dev_priv->dev))
587 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
588 status_mask);
589 else
590 enable_mask = status_mask << 16;
591 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
592 }
593
594 /**
595 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
596 */
597 static void i915_enable_asle_pipestat(struct drm_device *dev)
598 {
599 struct drm_i915_private *dev_priv = dev->dev_private;
600 unsigned long irqflags;
601
602 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
603 return;
604
605 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
606
607 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608 if (INTEL_INFO(dev)->gen >= 4)
609 i915_enable_pipestat(dev_priv, PIPE_A,
610 PIPE_LEGACY_BLC_EVENT_STATUS);
611
612 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
613 }
614
615 /**
616 * i915_pipe_enabled - check if a pipe is enabled
617 * @dev: DRM device
618 * @pipe: pipe to check
619 *
620 * Reading certain registers when the pipe is disabled can hang the chip.
621 * Use this routine to make sure the PLL is running and the pipe is active
622 * before reading such registers if unsure.
623 */
624 static int
625 i915_pipe_enabled(struct drm_device *dev, int pipe)
626 {
627 struct drm_i915_private *dev_priv = dev->dev_private;
628
629 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
630 /* Locking is horribly broken here, but whatever. */
631 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
633
634 return intel_crtc->active;
635 } else {
636 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
637 }
638 }
639
640 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
641 {
642 /* Gen2 doesn't have a hardware frame counter */
643 return 0;
644 }
645
646 /* Called from drm generic code, passed a 'crtc', which
647 * we use as a pipe index
648 */
649 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
650 {
651 struct drm_i915_private *dev_priv = dev->dev_private;
652 unsigned long high_frame;
653 unsigned long low_frame;
654 u32 high1, high2, low, pixel, vbl_start;
655
656 if (!i915_pipe_enabled(dev, pipe)) {
657 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
658 "pipe %c\n", pipe_name(pipe));
659 return 0;
660 }
661
662 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
663 struct intel_crtc *intel_crtc =
664 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
665 const struct drm_display_mode *mode =
666 &intel_crtc->config.adjusted_mode;
667
668 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
669 } else {
670 enum transcoder cpu_transcoder = (enum transcoder) pipe;
671 u32 htotal;
672
673 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
674 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
675
676 vbl_start *= htotal;
677 }
678
679 high_frame = PIPEFRAME(pipe);
680 low_frame = PIPEFRAMEPIXEL(pipe);
681
682 /*
683 * High & low register fields aren't synchronized, so make sure
684 * we get a low value that's stable across two reads of the high
685 * register.
686 */
687 do {
688 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
689 low = I915_READ(low_frame);
690 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
691 } while (high1 != high2);
692
693 high1 >>= PIPE_FRAME_HIGH_SHIFT;
694 pixel = low & PIPE_PIXEL_MASK;
695 low >>= PIPE_FRAME_LOW_SHIFT;
696
697 /*
698 * The frame counter increments at beginning of active.
699 * Cook up a vblank counter by also checking the pixel
700 * counter against vblank start.
701 */
702 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
703 }
704
705 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
706 {
707 struct drm_i915_private *dev_priv = dev->dev_private;
708 int reg = PIPE_FRMCOUNT_GM45(pipe);
709
710 if (!i915_pipe_enabled(dev, pipe)) {
711 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
712 "pipe %c\n", pipe_name(pipe));
713 return 0;
714 }
715
716 return I915_READ(reg);
717 }
718
719 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
720 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721
722 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
723 {
724 struct drm_i915_private *dev_priv = dev->dev_private;
725 uint32_t status;
726 int reg;
727
728 if (INTEL_INFO(dev)->gen >= 8) {
729 status = GEN8_PIPE_VBLANK;
730 reg = GEN8_DE_PIPE_ISR(pipe);
731 } else if (INTEL_INFO(dev)->gen >= 7) {
732 status = DE_PIPE_VBLANK_IVB(pipe);
733 reg = DEISR;
734 } else {
735 status = DE_PIPE_VBLANK(pipe);
736 reg = DEISR;
737 }
738
739 return __raw_i915_read32(dev_priv, reg) & status;
740 }
741
742 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
743 unsigned int flags, int *vpos, int *hpos,
744 ktime_t *stime, ktime_t *etime)
745 {
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
749 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
750 int position;
751 int vbl_start, vbl_end, htotal, vtotal;
752 bool in_vbl = true;
753 int ret = 0;
754 unsigned long irqflags;
755
756 if (!intel_crtc->active) {
757 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
758 "pipe %c\n", pipe_name(pipe));
759 return 0;
760 }
761
762 htotal = mode->crtc_htotal;
763 vtotal = mode->crtc_vtotal;
764 vbl_start = mode->crtc_vblank_start;
765 vbl_end = mode->crtc_vblank_end;
766
767 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
768 vbl_start = DIV_ROUND_UP(vbl_start, 2);
769 vbl_end /= 2;
770 vtotal /= 2;
771 }
772
773 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
774
775 /*
776 * Lock uncore.lock, as we will do multiple timing critical raw
777 * register reads, potentially with preemption disabled, so the
778 * following code must not block on uncore.lock.
779 */
780 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
781
782 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
783
784 /* Get optional system timestamp before query. */
785 if (stime)
786 *stime = ktime_get();
787
788 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
789 /* No obvious pixelcount register. Only query vertical
790 * scanout position from Display scan line register.
791 */
792 if (IS_GEN2(dev))
793 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
794 else
795 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
796
797 if (HAS_DDI(dev)) {
798 /*
799 * On HSW HDMI outputs there seems to be a 2 line
800 * difference, whereas eDP has the normal 1 line
801 * difference that earlier platforms have. External
802 * DP is unknown. For now just check for the 2 line
803 * difference case on all output types on HSW+.
804 *
805 * This might misinterpret the scanline counter being
806 * one line too far along on eDP, but that's less
807 * dangerous than the alternative since that would lead
808 * the vblank timestamp code astray when it sees a
809 * scanline count before vblank_start during a vblank
810 * interrupt.
811 */
812 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
813 if ((in_vbl && (position == vbl_start - 2 ||
814 position == vbl_start - 1)) ||
815 (!in_vbl && (position == vbl_end - 2 ||
816 position == vbl_end - 1)))
817 position = (position + 2) % vtotal;
818 } else if (HAS_PCH_SPLIT(dev)) {
819 /*
820 * The scanline counter increments at the leading edge
821 * of hsync, ie. it completely misses the active portion
822 * of the line. Fix up the counter at both edges of vblank
823 * to get a more accurate picture whether we're in vblank
824 * or not.
825 */
826 in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
827 if ((in_vbl && position == vbl_start - 1) ||
828 (!in_vbl && position == vbl_end - 1))
829 position = (position + 1) % vtotal;
830 } else {
831 /*
832 * ISR vblank status bits don't work the way we'd want
833 * them to work on non-PCH platforms (for
834 * ilk_pipe_in_vblank_locked()), and there doesn't
835 * appear any other way to determine if we're currently
836 * in vblank.
837 *
838 * Instead let's assume that we're already in vblank if
839 * we got called from the vblank interrupt and the
840 * scanline counter value indicates that we're on the
841 * line just prior to vblank start. This should result
842 * in the correct answer, unless the vblank interrupt
843 * delivery really got delayed for almost exactly one
844 * full frame/field.
845 */
846 if (flags & DRM_CALLED_FROM_VBLIRQ &&
847 position == vbl_start - 1) {
848 position = (position + 1) % vtotal;
849
850 /* Signal this correction as "applied". */
851 ret |= 0x8;
852 }
853 }
854 } else {
855 /* Have access to pixelcount since start of frame.
856 * We can split this into vertical and horizontal
857 * scanout position.
858 */
859 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
860
861 /* convert to pixel counts */
862 vbl_start *= htotal;
863 vbl_end *= htotal;
864 vtotal *= htotal;
865 }
866
867 /* Get optional system timestamp after query. */
868 if (etime)
869 *etime = ktime_get();
870
871 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
872
873 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
874
875 in_vbl = position >= vbl_start && position < vbl_end;
876
877 /*
878 * While in vblank, position will be negative
879 * counting up towards 0 at vbl_end. And outside
880 * vblank, position will be positive counting
881 * up since vbl_end.
882 */
883 if (position >= vbl_start)
884 position -= vbl_end;
885 else
886 position += vtotal - vbl_end;
887
888 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
889 *vpos = position;
890 *hpos = 0;
891 } else {
892 *vpos = position / htotal;
893 *hpos = position - (*vpos * htotal);
894 }
895
896 /* In vblank? */
897 if (in_vbl)
898 ret |= DRM_SCANOUTPOS_INVBL;
899
900 return ret;
901 }
902
903 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
904 int *max_error,
905 struct timeval *vblank_time,
906 unsigned flags)
907 {
908 struct drm_crtc *crtc;
909
910 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
911 DRM_ERROR("Invalid crtc %d\n", pipe);
912 return -EINVAL;
913 }
914
915 /* Get drm_crtc to timestamp: */
916 crtc = intel_get_crtc_for_pipe(dev, pipe);
917 if (crtc == NULL) {
918 DRM_ERROR("Invalid crtc %d\n", pipe);
919 return -EINVAL;
920 }
921
922 if (!crtc->enabled) {
923 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
924 return -EBUSY;
925 }
926
927 /* Helper routine in DRM core does all the work: */
928 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
929 vblank_time, flags,
930 crtc,
931 &to_intel_crtc(crtc)->config.adjusted_mode);
932 }
933
934 static bool intel_hpd_irq_event(struct drm_device *dev,
935 struct drm_connector *connector)
936 {
937 enum drm_connector_status old_status;
938
939 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
940 old_status = connector->status;
941
942 connector->status = connector->funcs->detect(connector, false);
943 if (old_status == connector->status)
944 return false;
945
946 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
947 connector->base.id,
948 drm_get_connector_name(connector),
949 drm_get_connector_status_name(old_status),
950 drm_get_connector_status_name(connector->status));
951
952 return true;
953 }
954
955 /*
956 * Handle hotplug events outside the interrupt handler proper.
957 */
958 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
959
960 static void i915_hotplug_work_func(struct work_struct *work)
961 {
962 struct drm_i915_private *dev_priv =
963 container_of(work, struct drm_i915_private, hotplug_work);
964 struct drm_device *dev = dev_priv->dev;
965 struct drm_mode_config *mode_config = &dev->mode_config;
966 struct intel_connector *intel_connector;
967 struct intel_encoder *intel_encoder;
968 struct drm_connector *connector;
969 unsigned long irqflags;
970 bool hpd_disabled = false;
971 bool changed = false;
972 u32 hpd_event_bits;
973
974 /* HPD irq before everything is fully set up. */
975 if (!dev_priv->enable_hotplug_processing)
976 return;
977
978 mutex_lock(&mode_config->mutex);
979 DRM_DEBUG_KMS("running encoder hotplug functions\n");
980
981 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
982
983 hpd_event_bits = dev_priv->hpd_event_bits;
984 dev_priv->hpd_event_bits = 0;
985 list_for_each_entry(connector, &mode_config->connector_list, head) {
986 intel_connector = to_intel_connector(connector);
987 intel_encoder = intel_connector->encoder;
988 if (intel_encoder->hpd_pin > HPD_NONE &&
989 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
990 connector->polled == DRM_CONNECTOR_POLL_HPD) {
991 DRM_INFO("HPD interrupt storm detected on connector %s: "
992 "switching from hotplug detection to polling\n",
993 drm_get_connector_name(connector));
994 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
995 connector->polled = DRM_CONNECTOR_POLL_CONNECT
996 | DRM_CONNECTOR_POLL_DISCONNECT;
997 hpd_disabled = true;
998 }
999 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1000 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1001 drm_get_connector_name(connector), intel_encoder->hpd_pin);
1002 }
1003 }
1004 /* if there were no outputs to poll, poll was disabled,
1005 * therefore make sure it's enabled when disabling HPD on
1006 * some connectors */
1007 if (hpd_disabled) {
1008 drm_kms_helper_poll_enable(dev);
1009 mod_timer(&dev_priv->hotplug_reenable_timer,
1010 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1011 }
1012
1013 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1014
1015 list_for_each_entry(connector, &mode_config->connector_list, head) {
1016 intel_connector = to_intel_connector(connector);
1017 intel_encoder = intel_connector->encoder;
1018 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1019 if (intel_encoder->hot_plug)
1020 intel_encoder->hot_plug(intel_encoder);
1021 if (intel_hpd_irq_event(dev, connector))
1022 changed = true;
1023 }
1024 }
1025 mutex_unlock(&mode_config->mutex);
1026
1027 if (changed)
1028 drm_kms_helper_hotplug_event(dev);
1029 }
1030
1031 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1032 {
1033 del_timer_sync(&dev_priv->hotplug_reenable_timer);
1034 }
1035
1036 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1037 {
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1039 u32 busy_up, busy_down, max_avg, min_avg;
1040 u8 new_delay;
1041
1042 spin_lock(&mchdev_lock);
1043
1044 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1045
1046 new_delay = dev_priv->ips.cur_delay;
1047
1048 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1049 busy_up = I915_READ(RCPREVBSYTUPAVG);
1050 busy_down = I915_READ(RCPREVBSYTDNAVG);
1051 max_avg = I915_READ(RCBMAXAVG);
1052 min_avg = I915_READ(RCBMINAVG);
1053
1054 /* Handle RCS change request from hw */
1055 if (busy_up > max_avg) {
1056 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1057 new_delay = dev_priv->ips.cur_delay - 1;
1058 if (new_delay < dev_priv->ips.max_delay)
1059 new_delay = dev_priv->ips.max_delay;
1060 } else if (busy_down < min_avg) {
1061 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1062 new_delay = dev_priv->ips.cur_delay + 1;
1063 if (new_delay > dev_priv->ips.min_delay)
1064 new_delay = dev_priv->ips.min_delay;
1065 }
1066
1067 if (ironlake_set_drps(dev, new_delay))
1068 dev_priv->ips.cur_delay = new_delay;
1069
1070 spin_unlock(&mchdev_lock);
1071
1072 return;
1073 }
1074
1075 static void notify_ring(struct drm_device *dev,
1076 struct intel_ring_buffer *ring)
1077 {
1078 if (ring->obj == NULL)
1079 return;
1080
1081 trace_i915_gem_request_complete(ring);
1082
1083 wake_up_all(&ring->irq_queue);
1084 i915_queue_hangcheck(dev);
1085 }
1086
1087 static void gen6_pm_rps_work(struct work_struct *work)
1088 {
1089 struct drm_i915_private *dev_priv =
1090 container_of(work, struct drm_i915_private, rps.work);
1091 u32 pm_iir;
1092 int new_delay, adj;
1093
1094 spin_lock_irq(&dev_priv->irq_lock);
1095 pm_iir = dev_priv->rps.pm_iir;
1096 dev_priv->rps.pm_iir = 0;
1097 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1098 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1099 spin_unlock_irq(&dev_priv->irq_lock);
1100
1101 /* Make sure we didn't queue anything we're not going to process. */
1102 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1103
1104 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1105 return;
1106
1107 mutex_lock(&dev_priv->rps.hw_lock);
1108
1109 adj = dev_priv->rps.last_adj;
1110 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1111 if (adj > 0)
1112 adj *= 2;
1113 else
1114 adj = 1;
1115 new_delay = dev_priv->rps.cur_freq + adj;
1116
1117 /*
1118 * For better performance, jump directly
1119 * to RPe if we're below it.
1120 */
1121 if (new_delay < dev_priv->rps.efficient_freq)
1122 new_delay = dev_priv->rps.efficient_freq;
1123 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1124 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1125 new_delay = dev_priv->rps.efficient_freq;
1126 else
1127 new_delay = dev_priv->rps.min_freq_softlimit;
1128 adj = 0;
1129 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1130 if (adj < 0)
1131 adj *= 2;
1132 else
1133 adj = -1;
1134 new_delay = dev_priv->rps.cur_freq + adj;
1135 } else { /* unknown event */
1136 new_delay = dev_priv->rps.cur_freq;
1137 }
1138
1139 /* sysfs frequency interfaces may have snuck in while servicing the
1140 * interrupt
1141 */
1142 new_delay = clamp_t(int, new_delay,
1143 dev_priv->rps.min_freq_softlimit,
1144 dev_priv->rps.max_freq_softlimit);
1145
1146 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1147
1148 if (IS_VALLEYVIEW(dev_priv->dev))
1149 valleyview_set_rps(dev_priv->dev, new_delay);
1150 else
1151 gen6_set_rps(dev_priv->dev, new_delay);
1152
1153 mutex_unlock(&dev_priv->rps.hw_lock);
1154 }
1155
1156
1157 /**
1158 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159 * occurred.
1160 * @work: workqueue struct
1161 *
1162 * Doesn't actually do anything except notify userspace. As a consequence of
1163 * this event, userspace should try to remap the bad rows since statistically
1164 * it is likely the same row is more likely to go bad again.
1165 */
1166 static void ivybridge_parity_work(struct work_struct *work)
1167 {
1168 struct drm_i915_private *dev_priv =
1169 container_of(work, struct drm_i915_private, l3_parity.error_work);
1170 u32 error_status, row, bank, subbank;
1171 char *parity_event[6];
1172 uint32_t misccpctl;
1173 unsigned long flags;
1174 uint8_t slice = 0;
1175
1176 /* We must turn off DOP level clock gating to access the L3 registers.
1177 * In order to prevent a get/put style interface, acquire struct mutex
1178 * any time we access those registers.
1179 */
1180 mutex_lock(&dev_priv->dev->struct_mutex);
1181
1182 /* If we've screwed up tracking, just let the interrupt fire again */
1183 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184 goto out;
1185
1186 misccpctl = I915_READ(GEN7_MISCCPCTL);
1187 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188 POSTING_READ(GEN7_MISCCPCTL);
1189
1190 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191 u32 reg;
1192
1193 slice--;
1194 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195 break;
1196
1197 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198
1199 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200
1201 error_status = I915_READ(reg);
1202 row = GEN7_PARITY_ERROR_ROW(error_status);
1203 bank = GEN7_PARITY_ERROR_BANK(error_status);
1204 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205
1206 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207 POSTING_READ(reg);
1208
1209 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214 parity_event[5] = NULL;
1215
1216 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217 KOBJ_CHANGE, parity_event);
1218
1219 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220 slice, row, bank, subbank);
1221
1222 kfree(parity_event[4]);
1223 kfree(parity_event[3]);
1224 kfree(parity_event[2]);
1225 kfree(parity_event[1]);
1226 }
1227
1228 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229
1230 out:
1231 WARN_ON(dev_priv->l3_parity.which_slice);
1232 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1233 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1235
1236 mutex_unlock(&dev_priv->dev->struct_mutex);
1237 }
1238
1239 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240 {
1241 struct drm_i915_private *dev_priv = dev->dev_private;
1242
1243 if (!HAS_L3_DPF(dev))
1244 return;
1245
1246 spin_lock(&dev_priv->irq_lock);
1247 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248 spin_unlock(&dev_priv->irq_lock);
1249
1250 iir &= GT_PARITY_ERROR(dev);
1251 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252 dev_priv->l3_parity.which_slice |= 1 << 1;
1253
1254 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255 dev_priv->l3_parity.which_slice |= 1 << 0;
1256
1257 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258 }
1259
1260 static void ilk_gt_irq_handler(struct drm_device *dev,
1261 struct drm_i915_private *dev_priv,
1262 u32 gt_iir)
1263 {
1264 if (gt_iir &
1265 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266 notify_ring(dev, &dev_priv->ring[RCS]);
1267 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268 notify_ring(dev, &dev_priv->ring[VCS]);
1269 }
1270
1271 static void snb_gt_irq_handler(struct drm_device *dev,
1272 struct drm_i915_private *dev_priv,
1273 u32 gt_iir)
1274 {
1275
1276 if (gt_iir &
1277 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278 notify_ring(dev, &dev_priv->ring[RCS]);
1279 if (gt_iir & GT_BSD_USER_INTERRUPT)
1280 notify_ring(dev, &dev_priv->ring[VCS]);
1281 if (gt_iir & GT_BLT_USER_INTERRUPT)
1282 notify_ring(dev, &dev_priv->ring[BCS]);
1283
1284 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285 GT_BSD_CS_ERROR_INTERRUPT |
1286 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1287 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1288 gt_iir);
1289 }
1290
1291 if (gt_iir & GT_PARITY_ERROR(dev))
1292 ivybridge_parity_error_irq_handler(dev, gt_iir);
1293 }
1294
1295 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1296 struct drm_i915_private *dev_priv,
1297 u32 master_ctl)
1298 {
1299 u32 rcs, bcs, vcs;
1300 uint32_t tmp = 0;
1301 irqreturn_t ret = IRQ_NONE;
1302
1303 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1304 tmp = I915_READ(GEN8_GT_IIR(0));
1305 if (tmp) {
1306 ret = IRQ_HANDLED;
1307 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1308 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1309 if (rcs & GT_RENDER_USER_INTERRUPT)
1310 notify_ring(dev, &dev_priv->ring[RCS]);
1311 if (bcs & GT_RENDER_USER_INTERRUPT)
1312 notify_ring(dev, &dev_priv->ring[BCS]);
1313 I915_WRITE(GEN8_GT_IIR(0), tmp);
1314 } else
1315 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1316 }
1317
1318 if (master_ctl & GEN8_GT_VCS1_IRQ) {
1319 tmp = I915_READ(GEN8_GT_IIR(1));
1320 if (tmp) {
1321 ret = IRQ_HANDLED;
1322 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1323 if (vcs & GT_RENDER_USER_INTERRUPT)
1324 notify_ring(dev, &dev_priv->ring[VCS]);
1325 I915_WRITE(GEN8_GT_IIR(1), tmp);
1326 } else
1327 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1328 }
1329
1330 if (master_ctl & GEN8_GT_VECS_IRQ) {
1331 tmp = I915_READ(GEN8_GT_IIR(3));
1332 if (tmp) {
1333 ret = IRQ_HANDLED;
1334 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1335 if (vcs & GT_RENDER_USER_INTERRUPT)
1336 notify_ring(dev, &dev_priv->ring[VECS]);
1337 I915_WRITE(GEN8_GT_IIR(3), tmp);
1338 } else
1339 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1340 }
1341
1342 return ret;
1343 }
1344
1345 #define HPD_STORM_DETECT_PERIOD 1000
1346 #define HPD_STORM_THRESHOLD 5
1347
1348 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1349 u32 hotplug_trigger,
1350 const u32 *hpd)
1351 {
1352 struct drm_i915_private *dev_priv = dev->dev_private;
1353 int i;
1354 bool storm_detected = false;
1355
1356 if (!hotplug_trigger)
1357 return;
1358
1359 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1360 hotplug_trigger);
1361
1362 spin_lock(&dev_priv->irq_lock);
1363 for (i = 1; i < HPD_NUM_PINS; i++) {
1364
1365 WARN_ONCE(hpd[i] & hotplug_trigger &&
1366 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1367 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1368 hotplug_trigger, i, hpd[i]);
1369
1370 if (!(hpd[i] & hotplug_trigger) ||
1371 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1372 continue;
1373
1374 dev_priv->hpd_event_bits |= (1 << i);
1375 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1376 dev_priv->hpd_stats[i].hpd_last_jiffies
1377 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1378 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1379 dev_priv->hpd_stats[i].hpd_cnt = 0;
1380 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1381 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1382 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1383 dev_priv->hpd_event_bits &= ~(1 << i);
1384 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1385 storm_detected = true;
1386 } else {
1387 dev_priv->hpd_stats[i].hpd_cnt++;
1388 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1389 dev_priv->hpd_stats[i].hpd_cnt);
1390 }
1391 }
1392
1393 if (storm_detected)
1394 dev_priv->display.hpd_irq_setup(dev);
1395 spin_unlock(&dev_priv->irq_lock);
1396
1397 /*
1398 * Our hotplug handler can grab modeset locks (by calling down into the
1399 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1400 * queue for otherwise the flush_work in the pageflip code will
1401 * deadlock.
1402 */
1403 schedule_work(&dev_priv->hotplug_work);
1404 }
1405
1406 static void gmbus_irq_handler(struct drm_device *dev)
1407 {
1408 struct drm_i915_private *dev_priv = dev->dev_private;
1409
1410 wake_up_all(&dev_priv->gmbus_wait_queue);
1411 }
1412
1413 static void dp_aux_irq_handler(struct drm_device *dev)
1414 {
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416
1417 wake_up_all(&dev_priv->gmbus_wait_queue);
1418 }
1419
1420 #if defined(CONFIG_DEBUG_FS)
1421 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1422 uint32_t crc0, uint32_t crc1,
1423 uint32_t crc2, uint32_t crc3,
1424 uint32_t crc4)
1425 {
1426 struct drm_i915_private *dev_priv = dev->dev_private;
1427 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1428 struct intel_pipe_crc_entry *entry;
1429 int head, tail;
1430
1431 spin_lock(&pipe_crc->lock);
1432
1433 if (!pipe_crc->entries) {
1434 spin_unlock(&pipe_crc->lock);
1435 DRM_ERROR("spurious interrupt\n");
1436 return;
1437 }
1438
1439 head = pipe_crc->head;
1440 tail = pipe_crc->tail;
1441
1442 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1443 spin_unlock(&pipe_crc->lock);
1444 DRM_ERROR("CRC buffer overflowing\n");
1445 return;
1446 }
1447
1448 entry = &pipe_crc->entries[head];
1449
1450 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1451 entry->crc[0] = crc0;
1452 entry->crc[1] = crc1;
1453 entry->crc[2] = crc2;
1454 entry->crc[3] = crc3;
1455 entry->crc[4] = crc4;
1456
1457 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1458 pipe_crc->head = head;
1459
1460 spin_unlock(&pipe_crc->lock);
1461
1462 wake_up_interruptible(&pipe_crc->wq);
1463 }
1464 #else
1465 static inline void
1466 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1467 uint32_t crc0, uint32_t crc1,
1468 uint32_t crc2, uint32_t crc3,
1469 uint32_t crc4) {}
1470 #endif
1471
1472
1473 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1474 {
1475 struct drm_i915_private *dev_priv = dev->dev_private;
1476
1477 display_pipe_crc_irq_handler(dev, pipe,
1478 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1479 0, 0, 0, 0);
1480 }
1481
1482 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1483 {
1484 struct drm_i915_private *dev_priv = dev->dev_private;
1485
1486 display_pipe_crc_irq_handler(dev, pipe,
1487 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1488 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1489 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1490 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1491 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1492 }
1493
1494 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1495 {
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497 uint32_t res1, res2;
1498
1499 if (INTEL_INFO(dev)->gen >= 3)
1500 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1501 else
1502 res1 = 0;
1503
1504 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1505 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1506 else
1507 res2 = 0;
1508
1509 display_pipe_crc_irq_handler(dev, pipe,
1510 I915_READ(PIPE_CRC_RES_RED(pipe)),
1511 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1512 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1513 res1, res2);
1514 }
1515
1516 /* The RPS events need forcewake, so we add them to a work queue and mask their
1517 * IMR bits until the work is done. Other interrupts can be processed without
1518 * the work queue. */
1519 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1520 {
1521 if (pm_iir & dev_priv->pm_rps_events) {
1522 spin_lock(&dev_priv->irq_lock);
1523 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1524 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1525 spin_unlock(&dev_priv->irq_lock);
1526
1527 queue_work(dev_priv->wq, &dev_priv->rps.work);
1528 }
1529
1530 if (HAS_VEBOX(dev_priv->dev)) {
1531 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1532 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1533
1534 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1535 i915_handle_error(dev_priv->dev, false,
1536 "VEBOX CS error interrupt 0x%08x",
1537 pm_iir);
1538 }
1539 }
1540 }
1541
1542 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1543 {
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 u32 pipe_stats[I915_MAX_PIPES] = { };
1546 int pipe;
1547
1548 spin_lock(&dev_priv->irq_lock);
1549 for_each_pipe(pipe) {
1550 int reg;
1551 u32 mask, iir_bit = 0;
1552
1553 /*
1554 * PIPESTAT bits get signalled even when the interrupt is
1555 * disabled with the mask bits, and some of the status bits do
1556 * not generate interrupts at all (like the underrun bit). Hence
1557 * we need to be careful that we only handle what we want to
1558 * handle.
1559 */
1560 mask = 0;
1561 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1562 mask |= PIPE_FIFO_UNDERRUN_STATUS;
1563
1564 switch (pipe) {
1565 case PIPE_A:
1566 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1567 break;
1568 case PIPE_B:
1569 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1570 break;
1571 }
1572 if (iir & iir_bit)
1573 mask |= dev_priv->pipestat_irq_mask[pipe];
1574
1575 if (!mask)
1576 continue;
1577
1578 reg = PIPESTAT(pipe);
1579 mask |= PIPESTAT_INT_ENABLE_MASK;
1580 pipe_stats[pipe] = I915_READ(reg) & mask;
1581
1582 /*
1583 * Clear the PIPE*STAT regs before the IIR
1584 */
1585 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1586 PIPESTAT_INT_STATUS_MASK))
1587 I915_WRITE(reg, pipe_stats[pipe]);
1588 }
1589 spin_unlock(&dev_priv->irq_lock);
1590
1591 for_each_pipe(pipe) {
1592 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1593 drm_handle_vblank(dev, pipe);
1594
1595 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1596 intel_prepare_page_flip(dev, pipe);
1597 intel_finish_page_flip(dev, pipe);
1598 }
1599
1600 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1601 i9xx_pipe_crc_irq_handler(dev, pipe);
1602
1603 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1604 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1605 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1606 }
1607
1608 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1609 gmbus_irq_handler(dev);
1610 }
1611
1612 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1613 {
1614 struct drm_device *dev = (struct drm_device *) arg;
1615 struct drm_i915_private *dev_priv = dev->dev_private;
1616 u32 iir, gt_iir, pm_iir;
1617 irqreturn_t ret = IRQ_NONE;
1618
1619 while (true) {
1620 iir = I915_READ(VLV_IIR);
1621 gt_iir = I915_READ(GTIIR);
1622 pm_iir = I915_READ(GEN6_PMIIR);
1623
1624 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1625 goto out;
1626
1627 ret = IRQ_HANDLED;
1628
1629 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1630
1631 valleyview_pipestat_irq_handler(dev, iir);
1632
1633 /* Consume port. Then clear IIR or we'll miss events */
1634 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1635 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1636 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1637
1638 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1639
1640 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1641 dp_aux_irq_handler(dev);
1642
1643 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1644 I915_READ(PORT_HOTPLUG_STAT);
1645 }
1646
1647
1648 if (pm_iir)
1649 gen6_rps_irq_handler(dev_priv, pm_iir);
1650
1651 I915_WRITE(GTIIR, gt_iir);
1652 I915_WRITE(GEN6_PMIIR, pm_iir);
1653 I915_WRITE(VLV_IIR, iir);
1654 }
1655
1656 out:
1657 return ret;
1658 }
1659
1660 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1661 {
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1663 int pipe;
1664 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1665
1666 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1667
1668 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1669 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1670 SDE_AUDIO_POWER_SHIFT);
1671 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1672 port_name(port));
1673 }
1674
1675 if (pch_iir & SDE_AUX_MASK)
1676 dp_aux_irq_handler(dev);
1677
1678 if (pch_iir & SDE_GMBUS)
1679 gmbus_irq_handler(dev);
1680
1681 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1682 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1683
1684 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1685 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1686
1687 if (pch_iir & SDE_POISON)
1688 DRM_ERROR("PCH poison interrupt\n");
1689
1690 if (pch_iir & SDE_FDI_MASK)
1691 for_each_pipe(pipe)
1692 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1693 pipe_name(pipe),
1694 I915_READ(FDI_RX_IIR(pipe)));
1695
1696 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1697 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1698
1699 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1700 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1701
1702 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1703 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1704 false))
1705 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1706
1707 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1708 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1709 false))
1710 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1711 }
1712
1713 static void ivb_err_int_handler(struct drm_device *dev)
1714 {
1715 struct drm_i915_private *dev_priv = dev->dev_private;
1716 u32 err_int = I915_READ(GEN7_ERR_INT);
1717 enum pipe pipe;
1718
1719 if (err_int & ERR_INT_POISON)
1720 DRM_ERROR("Poison interrupt\n");
1721
1722 for_each_pipe(pipe) {
1723 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1724 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1725 false))
1726 DRM_ERROR("Pipe %c FIFO underrun\n",
1727 pipe_name(pipe));
1728 }
1729
1730 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1731 if (IS_IVYBRIDGE(dev))
1732 ivb_pipe_crc_irq_handler(dev, pipe);
1733 else
1734 hsw_pipe_crc_irq_handler(dev, pipe);
1735 }
1736 }
1737
1738 I915_WRITE(GEN7_ERR_INT, err_int);
1739 }
1740
1741 static void cpt_serr_int_handler(struct drm_device *dev)
1742 {
1743 struct drm_i915_private *dev_priv = dev->dev_private;
1744 u32 serr_int = I915_READ(SERR_INT);
1745
1746 if (serr_int & SERR_INT_POISON)
1747 DRM_ERROR("PCH poison interrupt\n");
1748
1749 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1750 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1751 false))
1752 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1753
1754 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1755 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1756 false))
1757 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1758
1759 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1760 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1761 false))
1762 DRM_ERROR("PCH transcoder C FIFO underrun\n");
1763
1764 I915_WRITE(SERR_INT, serr_int);
1765 }
1766
1767 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1768 {
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 int pipe;
1771 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1772
1773 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1774
1775 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1776 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1777 SDE_AUDIO_POWER_SHIFT_CPT);
1778 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1779 port_name(port));
1780 }
1781
1782 if (pch_iir & SDE_AUX_MASK_CPT)
1783 dp_aux_irq_handler(dev);
1784
1785 if (pch_iir & SDE_GMBUS_CPT)
1786 gmbus_irq_handler(dev);
1787
1788 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1789 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1790
1791 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1792 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1793
1794 if (pch_iir & SDE_FDI_MASK_CPT)
1795 for_each_pipe(pipe)
1796 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1797 pipe_name(pipe),
1798 I915_READ(FDI_RX_IIR(pipe)));
1799
1800 if (pch_iir & SDE_ERROR_CPT)
1801 cpt_serr_int_handler(dev);
1802 }
1803
1804 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1805 {
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 enum pipe pipe;
1808
1809 if (de_iir & DE_AUX_CHANNEL_A)
1810 dp_aux_irq_handler(dev);
1811
1812 if (de_iir & DE_GSE)
1813 intel_opregion_asle_intr(dev);
1814
1815 if (de_iir & DE_POISON)
1816 DRM_ERROR("Poison interrupt\n");
1817
1818 for_each_pipe(pipe) {
1819 if (de_iir & DE_PIPE_VBLANK(pipe))
1820 drm_handle_vblank(dev, pipe);
1821
1822 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1823 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1824 DRM_ERROR("Pipe %c FIFO underrun\n",
1825 pipe_name(pipe));
1826
1827 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1828 i9xx_pipe_crc_irq_handler(dev, pipe);
1829
1830 /* plane/pipes map 1:1 on ilk+ */
1831 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1832 intel_prepare_page_flip(dev, pipe);
1833 intel_finish_page_flip_plane(dev, pipe);
1834 }
1835 }
1836
1837 /* check event from PCH */
1838 if (de_iir & DE_PCH_EVENT) {
1839 u32 pch_iir = I915_READ(SDEIIR);
1840
1841 if (HAS_PCH_CPT(dev))
1842 cpt_irq_handler(dev, pch_iir);
1843 else
1844 ibx_irq_handler(dev, pch_iir);
1845
1846 /* should clear PCH hotplug event before clear CPU irq */
1847 I915_WRITE(SDEIIR, pch_iir);
1848 }
1849
1850 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1851 ironlake_rps_change_irq_handler(dev);
1852 }
1853
1854 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1855 {
1856 struct drm_i915_private *dev_priv = dev->dev_private;
1857 enum pipe pipe;
1858
1859 if (de_iir & DE_ERR_INT_IVB)
1860 ivb_err_int_handler(dev);
1861
1862 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1863 dp_aux_irq_handler(dev);
1864
1865 if (de_iir & DE_GSE_IVB)
1866 intel_opregion_asle_intr(dev);
1867
1868 for_each_pipe(pipe) {
1869 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1870 drm_handle_vblank(dev, pipe);
1871
1872 /* plane/pipes map 1:1 on ilk+ */
1873 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1874 intel_prepare_page_flip(dev, pipe);
1875 intel_finish_page_flip_plane(dev, pipe);
1876 }
1877 }
1878
1879 /* check event from PCH */
1880 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1881 u32 pch_iir = I915_READ(SDEIIR);
1882
1883 cpt_irq_handler(dev, pch_iir);
1884
1885 /* clear PCH hotplug event before clear CPU irq */
1886 I915_WRITE(SDEIIR, pch_iir);
1887 }
1888 }
1889
1890 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1891 {
1892 struct drm_device *dev = (struct drm_device *) arg;
1893 struct drm_i915_private *dev_priv = dev->dev_private;
1894 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1895 irqreturn_t ret = IRQ_NONE;
1896
1897 /* We get interrupts on unclaimed registers, so check for this before we
1898 * do any I915_{READ,WRITE}. */
1899 intel_uncore_check_errors(dev);
1900
1901 /* disable master interrupt before clearing iir */
1902 de_ier = I915_READ(DEIER);
1903 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1904 POSTING_READ(DEIER);
1905
1906 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1907 * interrupts will will be stored on its back queue, and then we'll be
1908 * able to process them after we restore SDEIER (as soon as we restore
1909 * it, we'll get an interrupt if SDEIIR still has something to process
1910 * due to its back queue). */
1911 if (!HAS_PCH_NOP(dev)) {
1912 sde_ier = I915_READ(SDEIER);
1913 I915_WRITE(SDEIER, 0);
1914 POSTING_READ(SDEIER);
1915 }
1916
1917 gt_iir = I915_READ(GTIIR);
1918 if (gt_iir) {
1919 if (INTEL_INFO(dev)->gen >= 6)
1920 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1921 else
1922 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1923 I915_WRITE(GTIIR, gt_iir);
1924 ret = IRQ_HANDLED;
1925 }
1926
1927 de_iir = I915_READ(DEIIR);
1928 if (de_iir) {
1929 if (INTEL_INFO(dev)->gen >= 7)
1930 ivb_display_irq_handler(dev, de_iir);
1931 else
1932 ilk_display_irq_handler(dev, de_iir);
1933 I915_WRITE(DEIIR, de_iir);
1934 ret = IRQ_HANDLED;
1935 }
1936
1937 if (INTEL_INFO(dev)->gen >= 6) {
1938 u32 pm_iir = I915_READ(GEN6_PMIIR);
1939 if (pm_iir) {
1940 gen6_rps_irq_handler(dev_priv, pm_iir);
1941 I915_WRITE(GEN6_PMIIR, pm_iir);
1942 ret = IRQ_HANDLED;
1943 }
1944 }
1945
1946 I915_WRITE(DEIER, de_ier);
1947 POSTING_READ(DEIER);
1948 if (!HAS_PCH_NOP(dev)) {
1949 I915_WRITE(SDEIER, sde_ier);
1950 POSTING_READ(SDEIER);
1951 }
1952
1953 return ret;
1954 }
1955
1956 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1957 {
1958 struct drm_device *dev = arg;
1959 struct drm_i915_private *dev_priv = dev->dev_private;
1960 u32 master_ctl;
1961 irqreturn_t ret = IRQ_NONE;
1962 uint32_t tmp = 0;
1963 enum pipe pipe;
1964
1965 master_ctl = I915_READ(GEN8_MASTER_IRQ);
1966 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1967 if (!master_ctl)
1968 return IRQ_NONE;
1969
1970 I915_WRITE(GEN8_MASTER_IRQ, 0);
1971 POSTING_READ(GEN8_MASTER_IRQ);
1972
1973 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1974
1975 if (master_ctl & GEN8_DE_MISC_IRQ) {
1976 tmp = I915_READ(GEN8_DE_MISC_IIR);
1977 if (tmp & GEN8_DE_MISC_GSE)
1978 intel_opregion_asle_intr(dev);
1979 else if (tmp)
1980 DRM_ERROR("Unexpected DE Misc interrupt\n");
1981 else
1982 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1983
1984 if (tmp) {
1985 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1986 ret = IRQ_HANDLED;
1987 }
1988 }
1989
1990 if (master_ctl & GEN8_DE_PORT_IRQ) {
1991 tmp = I915_READ(GEN8_DE_PORT_IIR);
1992 if (tmp & GEN8_AUX_CHANNEL_A)
1993 dp_aux_irq_handler(dev);
1994 else if (tmp)
1995 DRM_ERROR("Unexpected DE Port interrupt\n");
1996 else
1997 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
1998
1999 if (tmp) {
2000 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2001 ret = IRQ_HANDLED;
2002 }
2003 }
2004
2005 for_each_pipe(pipe) {
2006 uint32_t pipe_iir;
2007
2008 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2009 continue;
2010
2011 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2012 if (pipe_iir & GEN8_PIPE_VBLANK)
2013 drm_handle_vblank(dev, pipe);
2014
2015 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2016 intel_prepare_page_flip(dev, pipe);
2017 intel_finish_page_flip_plane(dev, pipe);
2018 }
2019
2020 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2021 hsw_pipe_crc_irq_handler(dev, pipe);
2022
2023 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2024 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2025 false))
2026 DRM_ERROR("Pipe %c FIFO underrun\n",
2027 pipe_name(pipe));
2028 }
2029
2030 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2031 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2032 pipe_name(pipe),
2033 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2034 }
2035
2036 if (pipe_iir) {
2037 ret = IRQ_HANDLED;
2038 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2039 } else
2040 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2041 }
2042
2043 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2044 /*
2045 * FIXME(BDW): Assume for now that the new interrupt handling
2046 * scheme also closed the SDE interrupt handling race we've seen
2047 * on older pch-split platforms. But this needs testing.
2048 */
2049 u32 pch_iir = I915_READ(SDEIIR);
2050
2051 cpt_irq_handler(dev, pch_iir);
2052
2053 if (pch_iir) {
2054 I915_WRITE(SDEIIR, pch_iir);
2055 ret = IRQ_HANDLED;
2056 }
2057 }
2058
2059 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2060 POSTING_READ(GEN8_MASTER_IRQ);
2061
2062 return ret;
2063 }
2064
2065 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2066 bool reset_completed)
2067 {
2068 struct intel_ring_buffer *ring;
2069 int i;
2070
2071 /*
2072 * Notify all waiters for GPU completion events that reset state has
2073 * been changed, and that they need to restart their wait after
2074 * checking for potential errors (and bail out to drop locks if there is
2075 * a gpu reset pending so that i915_error_work_func can acquire them).
2076 */
2077
2078 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2079 for_each_ring(ring, dev_priv, i)
2080 wake_up_all(&ring->irq_queue);
2081
2082 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2083 wake_up_all(&dev_priv->pending_flip_queue);
2084
2085 /*
2086 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2087 * reset state is cleared.
2088 */
2089 if (reset_completed)
2090 wake_up_all(&dev_priv->gpu_error.reset_queue);
2091 }
2092
2093 /**
2094 * i915_error_work_func - do process context error handling work
2095 * @work: work struct
2096 *
2097 * Fire an error uevent so userspace can see that a hang or error
2098 * was detected.
2099 */
2100 static void i915_error_work_func(struct work_struct *work)
2101 {
2102 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2103 work);
2104 struct drm_i915_private *dev_priv =
2105 container_of(error, struct drm_i915_private, gpu_error);
2106 struct drm_device *dev = dev_priv->dev;
2107 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2108 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2109 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2110 int ret;
2111
2112 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2113
2114 /*
2115 * Note that there's only one work item which does gpu resets, so we
2116 * need not worry about concurrent gpu resets potentially incrementing
2117 * error->reset_counter twice. We only need to take care of another
2118 * racing irq/hangcheck declaring the gpu dead for a second time. A
2119 * quick check for that is good enough: schedule_work ensures the
2120 * correct ordering between hang detection and this work item, and since
2121 * the reset in-progress bit is only ever set by code outside of this
2122 * work we don't need to worry about any other races.
2123 */
2124 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2125 DRM_DEBUG_DRIVER("resetting chip\n");
2126 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2127 reset_event);
2128
2129 /*
2130 * All state reset _must_ be completed before we update the
2131 * reset counter, for otherwise waiters might miss the reset
2132 * pending state and not properly drop locks, resulting in
2133 * deadlocks with the reset work.
2134 */
2135 ret = i915_reset(dev);
2136
2137 intel_display_handle_reset(dev);
2138
2139 if (ret == 0) {
2140 /*
2141 * After all the gem state is reset, increment the reset
2142 * counter and wake up everyone waiting for the reset to
2143 * complete.
2144 *
2145 * Since unlock operations are a one-sided barrier only,
2146 * we need to insert a barrier here to order any seqno
2147 * updates before
2148 * the counter increment.
2149 */
2150 smp_mb__before_atomic();
2151 atomic_inc(&dev_priv->gpu_error.reset_counter);
2152
2153 kobject_uevent_env(&dev->primary->kdev->kobj,
2154 KOBJ_CHANGE, reset_done_event);
2155 } else {
2156 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2157 }
2158
2159 /*
2160 * Note: The wake_up also serves as a memory barrier so that
2161 * waiters see the update value of the reset counter atomic_t.
2162 */
2163 i915_error_wake_up(dev_priv, true);
2164 }
2165 }
2166
2167 static void i915_report_and_clear_eir(struct drm_device *dev)
2168 {
2169 struct drm_i915_private *dev_priv = dev->dev_private;
2170 uint32_t instdone[I915_NUM_INSTDONE_REG];
2171 u32 eir = I915_READ(EIR);
2172 int pipe, i;
2173
2174 if (!eir)
2175 return;
2176
2177 pr_err("render error detected, EIR: 0x%08x\n", eir);
2178
2179 i915_get_extra_instdone(dev, instdone);
2180
2181 if (IS_G4X(dev)) {
2182 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2183 u32 ipeir = I915_READ(IPEIR_I965);
2184
2185 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2186 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2187 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2188 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2189 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2190 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2191 I915_WRITE(IPEIR_I965, ipeir);
2192 POSTING_READ(IPEIR_I965);
2193 }
2194 if (eir & GM45_ERROR_PAGE_TABLE) {
2195 u32 pgtbl_err = I915_READ(PGTBL_ER);
2196 pr_err("page table error\n");
2197 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2198 I915_WRITE(PGTBL_ER, pgtbl_err);
2199 POSTING_READ(PGTBL_ER);
2200 }
2201 }
2202
2203 if (!IS_GEN2(dev)) {
2204 if (eir & I915_ERROR_PAGE_TABLE) {
2205 u32 pgtbl_err = I915_READ(PGTBL_ER);
2206 pr_err("page table error\n");
2207 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2208 I915_WRITE(PGTBL_ER, pgtbl_err);
2209 POSTING_READ(PGTBL_ER);
2210 }
2211 }
2212
2213 if (eir & I915_ERROR_MEMORY_REFRESH) {
2214 pr_err("memory refresh error:\n");
2215 for_each_pipe(pipe)
2216 pr_err("pipe %c stat: 0x%08x\n",
2217 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2218 /* pipestat has already been acked */
2219 }
2220 if (eir & I915_ERROR_INSTRUCTION) {
2221 pr_err("instruction error\n");
2222 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2223 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2224 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2225 if (INTEL_INFO(dev)->gen < 4) {
2226 u32 ipeir = I915_READ(IPEIR);
2227
2228 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2229 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2230 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2231 I915_WRITE(IPEIR, ipeir);
2232 POSTING_READ(IPEIR);
2233 } else {
2234 u32 ipeir = I915_READ(IPEIR_I965);
2235
2236 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2237 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2238 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2239 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2240 I915_WRITE(IPEIR_I965, ipeir);
2241 POSTING_READ(IPEIR_I965);
2242 }
2243 }
2244
2245 I915_WRITE(EIR, eir);
2246 POSTING_READ(EIR);
2247 eir = I915_READ(EIR);
2248 if (eir) {
2249 /*
2250 * some errors might have become stuck,
2251 * mask them.
2252 */
2253 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2254 I915_WRITE(EMR, I915_READ(EMR) | eir);
2255 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2256 }
2257 }
2258
2259 /**
2260 * i915_handle_error - handle an error interrupt
2261 * @dev: drm device
2262 *
2263 * Do some basic checking of regsiter state at error interrupt time and
2264 * dump it to the syslog. Also call i915_capture_error_state() to make
2265 * sure we get a record and make it available in debugfs. Fire a uevent
2266 * so userspace knows something bad happened (should trigger collection
2267 * of a ring dump etc.).
2268 */
2269 void i915_handle_error(struct drm_device *dev, bool wedged,
2270 const char *fmt, ...)
2271 {
2272 struct drm_i915_private *dev_priv = dev->dev_private;
2273 va_list args;
2274 char error_msg[80];
2275
2276 va_start(args, fmt);
2277 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2278 va_end(args);
2279
2280 i915_capture_error_state(dev, wedged, error_msg);
2281 i915_report_and_clear_eir(dev);
2282
2283 if (wedged) {
2284 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2285 &dev_priv->gpu_error.reset_counter);
2286
2287 /*
2288 * Wakeup waiting processes so that the reset work function
2289 * i915_error_work_func doesn't deadlock trying to grab various
2290 * locks. By bumping the reset counter first, the woken
2291 * processes will see a reset in progress and back off,
2292 * releasing their locks and then wait for the reset completion.
2293 * We must do this for _all_ gpu waiters that might hold locks
2294 * that the reset work needs to acquire.
2295 *
2296 * Note: The wake_up serves as the required memory barrier to
2297 * ensure that the waiters see the updated value of the reset
2298 * counter atomic_t.
2299 */
2300 i915_error_wake_up(dev_priv, false);
2301 }
2302
2303 /*
2304 * Our reset work can grab modeset locks (since it needs to reset the
2305 * state of outstanding pagelips). Hence it must not be run on our own
2306 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2307 * code will deadlock.
2308 */
2309 schedule_work(&dev_priv->gpu_error.work);
2310 }
2311
2312 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2313 {
2314 struct drm_i915_private *dev_priv = dev->dev_private;
2315 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2317 struct drm_i915_gem_object *obj;
2318 struct intel_unpin_work *work;
2319 unsigned long flags;
2320 bool stall_detected;
2321
2322 /* Ignore early vblank irqs */
2323 if (intel_crtc == NULL)
2324 return;
2325
2326 spin_lock_irqsave(&dev->event_lock, flags);
2327 work = intel_crtc->unpin_work;
2328
2329 if (work == NULL ||
2330 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2331 !work->enable_stall_check) {
2332 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2333 spin_unlock_irqrestore(&dev->event_lock, flags);
2334 return;
2335 }
2336
2337 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2338 obj = work->pending_flip_obj;
2339 if (INTEL_INFO(dev)->gen >= 4) {
2340 int dspsurf = DSPSURF(intel_crtc->plane);
2341 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2342 i915_gem_obj_ggtt_offset(obj);
2343 } else {
2344 int dspaddr = DSPADDR(intel_crtc->plane);
2345 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2346 crtc->y * crtc->primary->fb->pitches[0] +
2347 crtc->x * crtc->primary->fb->bits_per_pixel/8);
2348 }
2349
2350 spin_unlock_irqrestore(&dev->event_lock, flags);
2351
2352 if (stall_detected) {
2353 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2354 intel_prepare_page_flip(dev, intel_crtc->plane);
2355 }
2356 }
2357
2358 /* Called from drm generic code, passed 'crtc' which
2359 * we use as a pipe index
2360 */
2361 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2362 {
2363 struct drm_i915_private *dev_priv = dev->dev_private;
2364 unsigned long irqflags;
2365
2366 if (!i915_pipe_enabled(dev, pipe))
2367 return -EINVAL;
2368
2369 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2370 if (INTEL_INFO(dev)->gen >= 4)
2371 i915_enable_pipestat(dev_priv, pipe,
2372 PIPE_START_VBLANK_INTERRUPT_STATUS);
2373 else
2374 i915_enable_pipestat(dev_priv, pipe,
2375 PIPE_VBLANK_INTERRUPT_STATUS);
2376
2377 /* maintain vblank delivery even in deep C-states */
2378 if (INTEL_INFO(dev)->gen == 3)
2379 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2380 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2381
2382 return 0;
2383 }
2384
2385 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2386 {
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 unsigned long irqflags;
2389 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2390 DE_PIPE_VBLANK(pipe);
2391
2392 if (!i915_pipe_enabled(dev, pipe))
2393 return -EINVAL;
2394
2395 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2396 ironlake_enable_display_irq(dev_priv, bit);
2397 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2398
2399 return 0;
2400 }
2401
2402 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2403 {
2404 struct drm_i915_private *dev_priv = dev->dev_private;
2405 unsigned long irqflags;
2406
2407 if (!i915_pipe_enabled(dev, pipe))
2408 return -EINVAL;
2409
2410 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2411 i915_enable_pipestat(dev_priv, pipe,
2412 PIPE_START_VBLANK_INTERRUPT_STATUS);
2413 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2414
2415 return 0;
2416 }
2417
2418 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2419 {
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 unsigned long irqflags;
2422
2423 if (!i915_pipe_enabled(dev, pipe))
2424 return -EINVAL;
2425
2426 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2427 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2428 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2429 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2430 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2431 return 0;
2432 }
2433
2434 /* Called from drm generic code, passed 'crtc' which
2435 * we use as a pipe index
2436 */
2437 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2438 {
2439 struct drm_i915_private *dev_priv = dev->dev_private;
2440 unsigned long irqflags;
2441
2442 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2443 if (INTEL_INFO(dev)->gen == 3)
2444 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2445
2446 i915_disable_pipestat(dev_priv, pipe,
2447 PIPE_VBLANK_INTERRUPT_STATUS |
2448 PIPE_START_VBLANK_INTERRUPT_STATUS);
2449 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2450 }
2451
2452 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2453 {
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 unsigned long irqflags;
2456 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2457 DE_PIPE_VBLANK(pipe);
2458
2459 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2460 ironlake_disable_display_irq(dev_priv, bit);
2461 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2462 }
2463
2464 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2465 {
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 unsigned long irqflags;
2468
2469 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2470 i915_disable_pipestat(dev_priv, pipe,
2471 PIPE_START_VBLANK_INTERRUPT_STATUS);
2472 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2473 }
2474
2475 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2476 {
2477 struct drm_i915_private *dev_priv = dev->dev_private;
2478 unsigned long irqflags;
2479
2480 if (!i915_pipe_enabled(dev, pipe))
2481 return;
2482
2483 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2484 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2485 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2486 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2487 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2488 }
2489
2490 static u32
2491 ring_last_seqno(struct intel_ring_buffer *ring)
2492 {
2493 return list_entry(ring->request_list.prev,
2494 struct drm_i915_gem_request, list)->seqno;
2495 }
2496
2497 static bool
2498 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2499 {
2500 return (list_empty(&ring->request_list) ||
2501 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2502 }
2503
2504 static struct intel_ring_buffer *
2505 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2506 {
2507 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2508 u32 cmd, ipehr, head;
2509 int i;
2510
2511 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2512 if ((ipehr & ~(0x3 << 16)) !=
2513 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2514 return NULL;
2515
2516 /*
2517 * HEAD is likely pointing to the dword after the actual command,
2518 * so scan backwards until we find the MBOX. But limit it to just 3
2519 * dwords. Note that we don't care about ACTHD here since that might
2520 * point at at batch, and semaphores are always emitted into the
2521 * ringbuffer itself.
2522 */
2523 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2524
2525 for (i = 4; i; --i) {
2526 /*
2527 * Be paranoid and presume the hw has gone off into the wild -
2528 * our ring is smaller than what the hardware (and hence
2529 * HEAD_ADDR) allows. Also handles wrap-around.
2530 */
2531 head &= ring->size - 1;
2532
2533 /* This here seems to blow up */
2534 cmd = ioread32(ring->virtual_start + head);
2535 if (cmd == ipehr)
2536 break;
2537
2538 head -= 4;
2539 }
2540
2541 if (!i)
2542 return NULL;
2543
2544 *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2545 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2546 }
2547
2548 static int semaphore_passed(struct intel_ring_buffer *ring)
2549 {
2550 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2551 struct intel_ring_buffer *signaller;
2552 u32 seqno, ctl;
2553
2554 ring->hangcheck.deadlock = true;
2555
2556 signaller = semaphore_waits_for(ring, &seqno);
2557 if (signaller == NULL || signaller->hangcheck.deadlock)
2558 return -1;
2559
2560 /* cursory check for an unkickable deadlock */
2561 ctl = I915_READ_CTL(signaller);
2562 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2563 return -1;
2564
2565 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2566 }
2567
2568 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2569 {
2570 struct intel_ring_buffer *ring;
2571 int i;
2572
2573 for_each_ring(ring, dev_priv, i)
2574 ring->hangcheck.deadlock = false;
2575 }
2576
2577 static enum intel_ring_hangcheck_action
2578 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2579 {
2580 struct drm_device *dev = ring->dev;
2581 struct drm_i915_private *dev_priv = dev->dev_private;
2582 u32 tmp;
2583
2584 if (ring->hangcheck.acthd != acthd)
2585 return HANGCHECK_ACTIVE;
2586
2587 if (IS_GEN2(dev))
2588 return HANGCHECK_HUNG;
2589
2590 /* Is the chip hanging on a WAIT_FOR_EVENT?
2591 * If so we can simply poke the RB_WAIT bit
2592 * and break the hang. This should work on
2593 * all but the second generation chipsets.
2594 */
2595 tmp = I915_READ_CTL(ring);
2596 if (tmp & RING_WAIT) {
2597 i915_handle_error(dev, false,
2598 "Kicking stuck wait on %s",
2599 ring->name);
2600 I915_WRITE_CTL(ring, tmp);
2601 return HANGCHECK_KICK;
2602 }
2603
2604 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2605 switch (semaphore_passed(ring)) {
2606 default:
2607 return HANGCHECK_HUNG;
2608 case 1:
2609 i915_handle_error(dev, false,
2610 "Kicking stuck semaphore on %s",
2611 ring->name);
2612 I915_WRITE_CTL(ring, tmp);
2613 return HANGCHECK_KICK;
2614 case 0:
2615 return HANGCHECK_WAIT;
2616 }
2617 }
2618
2619 return HANGCHECK_HUNG;
2620 }
2621
2622 /**
2623 * This is called when the chip hasn't reported back with completed
2624 * batchbuffers in a long time. We keep track per ring seqno progress and
2625 * if there are no progress, hangcheck score for that ring is increased.
2626 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2627 * we kick the ring. If we see no progress on three subsequent calls
2628 * we assume chip is wedged and try to fix it by resetting the chip.
2629 */
2630 static void i915_hangcheck_elapsed(unsigned long data)
2631 {
2632 struct drm_device *dev = (struct drm_device *)data;
2633 struct drm_i915_private *dev_priv = dev->dev_private;
2634 struct intel_ring_buffer *ring;
2635 int i;
2636 int busy_count = 0, rings_hung = 0;
2637 bool stuck[I915_NUM_RINGS] = { 0 };
2638 #define BUSY 1
2639 #define KICK 5
2640 #define HUNG 20
2641
2642 if (!i915.enable_hangcheck)
2643 return;
2644
2645 for_each_ring(ring, dev_priv, i) {
2646 u64 acthd;
2647 u32 seqno;
2648 bool busy = true;
2649
2650 semaphore_clear_deadlocks(dev_priv);
2651
2652 seqno = ring->get_seqno(ring, false);
2653 acthd = intel_ring_get_active_head(ring);
2654
2655 if (ring->hangcheck.seqno == seqno) {
2656 if (ring_idle(ring, seqno)) {
2657 ring->hangcheck.action = HANGCHECK_IDLE;
2658
2659 if (waitqueue_active(&ring->irq_queue)) {
2660 /* Issue a wake-up to catch stuck h/w. */
2661 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2662 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2663 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2664 ring->name);
2665 else
2666 DRM_INFO("Fake missed irq on %s\n",
2667 ring->name);
2668 wake_up_all(&ring->irq_queue);
2669 }
2670 /* Safeguard against driver failure */
2671 ring->hangcheck.score += BUSY;
2672 } else
2673 busy = false;
2674 } else {
2675 /* We always increment the hangcheck score
2676 * if the ring is busy and still processing
2677 * the same request, so that no single request
2678 * can run indefinitely (such as a chain of
2679 * batches). The only time we do not increment
2680 * the hangcheck score on this ring, if this
2681 * ring is in a legitimate wait for another
2682 * ring. In that case the waiting ring is a
2683 * victim and we want to be sure we catch the
2684 * right culprit. Then every time we do kick
2685 * the ring, add a small increment to the
2686 * score so that we can catch a batch that is
2687 * being repeatedly kicked and so responsible
2688 * for stalling the machine.
2689 */
2690 ring->hangcheck.action = ring_stuck(ring,
2691 acthd);
2692
2693 switch (ring->hangcheck.action) {
2694 case HANGCHECK_IDLE:
2695 case HANGCHECK_WAIT:
2696 break;
2697 case HANGCHECK_ACTIVE:
2698 ring->hangcheck.score += BUSY;
2699 break;
2700 case HANGCHECK_KICK:
2701 ring->hangcheck.score += KICK;
2702 break;
2703 case HANGCHECK_HUNG:
2704 ring->hangcheck.score += HUNG;
2705 stuck[i] = true;
2706 break;
2707 }
2708 }
2709 } else {
2710 ring->hangcheck.action = HANGCHECK_ACTIVE;
2711
2712 /* Gradually reduce the count so that we catch DoS
2713 * attempts across multiple batches.
2714 */
2715 if (ring->hangcheck.score > 0)
2716 ring->hangcheck.score--;
2717 }
2718
2719 ring->hangcheck.seqno = seqno;
2720 ring->hangcheck.acthd = acthd;
2721 busy_count += busy;
2722 }
2723
2724 for_each_ring(ring, dev_priv, i) {
2725 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2726 DRM_INFO("%s on %s\n",
2727 stuck[i] ? "stuck" : "no progress",
2728 ring->name);
2729 rings_hung++;
2730 }
2731 }
2732
2733 if (rings_hung)
2734 return i915_handle_error(dev, true, "Ring hung");
2735
2736 if (busy_count)
2737 /* Reset timer case chip hangs without another request
2738 * being added */
2739 i915_queue_hangcheck(dev);
2740 }
2741
2742 void i915_queue_hangcheck(struct drm_device *dev)
2743 {
2744 struct drm_i915_private *dev_priv = dev->dev_private;
2745 if (!i915.enable_hangcheck)
2746 return;
2747
2748 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2749 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2750 }
2751
2752 static void ibx_irq_preinstall(struct drm_device *dev)
2753 {
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755
2756 if (HAS_PCH_NOP(dev))
2757 return;
2758
2759 /* south display irq */
2760 I915_WRITE(SDEIMR, 0xffffffff);
2761 /*
2762 * SDEIER is also touched by the interrupt handler to work around missed
2763 * PCH interrupts. Hence we can't update it after the interrupt handler
2764 * is enabled - instead we unconditionally enable all PCH interrupt
2765 * sources here, but then only unmask them as needed with SDEIMR.
2766 */
2767 I915_WRITE(SDEIER, 0xffffffff);
2768 POSTING_READ(SDEIER);
2769 }
2770
2771 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2772 {
2773 struct drm_i915_private *dev_priv = dev->dev_private;
2774
2775 /* and GT */
2776 I915_WRITE(GTIMR, 0xffffffff);
2777 I915_WRITE(GTIER, 0x0);
2778 POSTING_READ(GTIER);
2779
2780 if (INTEL_INFO(dev)->gen >= 6) {
2781 /* and PM */
2782 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2783 I915_WRITE(GEN6_PMIER, 0x0);
2784 POSTING_READ(GEN6_PMIER);
2785 }
2786 }
2787
2788 /* drm_dma.h hooks
2789 */
2790 static void ironlake_irq_preinstall(struct drm_device *dev)
2791 {
2792 struct drm_i915_private *dev_priv = dev->dev_private;
2793
2794 I915_WRITE(HWSTAM, 0xeffe);
2795
2796 I915_WRITE(DEIMR, 0xffffffff);
2797 I915_WRITE(DEIER, 0x0);
2798 POSTING_READ(DEIER);
2799
2800 gen5_gt_irq_preinstall(dev);
2801
2802 ibx_irq_preinstall(dev);
2803 }
2804
2805 static void valleyview_irq_preinstall(struct drm_device *dev)
2806 {
2807 struct drm_i915_private *dev_priv = dev->dev_private;
2808 int pipe;
2809
2810 /* VLV magic */
2811 I915_WRITE(VLV_IMR, 0);
2812 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2813 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2814 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2815
2816 /* and GT */
2817 I915_WRITE(GTIIR, I915_READ(GTIIR));
2818 I915_WRITE(GTIIR, I915_READ(GTIIR));
2819
2820 gen5_gt_irq_preinstall(dev);
2821
2822 I915_WRITE(DPINVGTT, 0xff);
2823
2824 I915_WRITE(PORT_HOTPLUG_EN, 0);
2825 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2826 for_each_pipe(pipe)
2827 I915_WRITE(PIPESTAT(pipe), 0xffff);
2828 I915_WRITE(VLV_IIR, 0xffffffff);
2829 I915_WRITE(VLV_IMR, 0xffffffff);
2830 I915_WRITE(VLV_IER, 0x0);
2831 POSTING_READ(VLV_IER);
2832 }
2833
2834 static void gen8_irq_preinstall(struct drm_device *dev)
2835 {
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 int pipe;
2838
2839 I915_WRITE(GEN8_MASTER_IRQ, 0);
2840 POSTING_READ(GEN8_MASTER_IRQ);
2841
2842 /* IIR can theoretically queue up two events. Be paranoid */
2843 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2844 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2845 POSTING_READ(GEN8_##type##_IMR(which)); \
2846 I915_WRITE(GEN8_##type##_IER(which), 0); \
2847 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2848 POSTING_READ(GEN8_##type##_IIR(which)); \
2849 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2850 } while (0)
2851
2852 #define GEN8_IRQ_INIT(type) do { \
2853 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2854 POSTING_READ(GEN8_##type##_IMR); \
2855 I915_WRITE(GEN8_##type##_IER, 0); \
2856 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2857 POSTING_READ(GEN8_##type##_IIR); \
2858 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2859 } while (0)
2860
2861 GEN8_IRQ_INIT_NDX(GT, 0);
2862 GEN8_IRQ_INIT_NDX(GT, 1);
2863 GEN8_IRQ_INIT_NDX(GT, 2);
2864 GEN8_IRQ_INIT_NDX(GT, 3);
2865
2866 for_each_pipe(pipe) {
2867 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2868 }
2869
2870 GEN8_IRQ_INIT(DE_PORT);
2871 GEN8_IRQ_INIT(DE_MISC);
2872 GEN8_IRQ_INIT(PCU);
2873 #undef GEN8_IRQ_INIT
2874 #undef GEN8_IRQ_INIT_NDX
2875
2876 POSTING_READ(GEN8_PCU_IIR);
2877
2878 ibx_irq_preinstall(dev);
2879 }
2880
2881 static void ibx_hpd_irq_setup(struct drm_device *dev)
2882 {
2883 struct drm_i915_private *dev_priv = dev->dev_private;
2884 struct drm_mode_config *mode_config = &dev->mode_config;
2885 struct intel_encoder *intel_encoder;
2886 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2887
2888 if (HAS_PCH_IBX(dev)) {
2889 hotplug_irqs = SDE_HOTPLUG_MASK;
2890 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2891 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2892 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2893 } else {
2894 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2895 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2896 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2897 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2898 }
2899
2900 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2901
2902 /*
2903 * Enable digital hotplug on the PCH, and configure the DP short pulse
2904 * duration to 2ms (which is the minimum in the Display Port spec)
2905 *
2906 * This register is the same on all known PCH chips.
2907 */
2908 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2909 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2910 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2911 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2912 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2913 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2914 }
2915
2916 static void ibx_irq_postinstall(struct drm_device *dev)
2917 {
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919 u32 mask;
2920
2921 if (HAS_PCH_NOP(dev))
2922 return;
2923
2924 if (HAS_PCH_IBX(dev)) {
2925 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2926 } else {
2927 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2928
2929 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2930 }
2931
2932 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2933 I915_WRITE(SDEIMR, ~mask);
2934 }
2935
2936 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2937 {
2938 struct drm_i915_private *dev_priv = dev->dev_private;
2939 u32 pm_irqs, gt_irqs;
2940
2941 pm_irqs = gt_irqs = 0;
2942
2943 dev_priv->gt_irq_mask = ~0;
2944 if (HAS_L3_DPF(dev)) {
2945 /* L3 parity interrupt is always unmasked. */
2946 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2947 gt_irqs |= GT_PARITY_ERROR(dev);
2948 }
2949
2950 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2951 if (IS_GEN5(dev)) {
2952 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2953 ILK_BSD_USER_INTERRUPT;
2954 } else {
2955 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2956 }
2957
2958 I915_WRITE(GTIIR, I915_READ(GTIIR));
2959 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2960 I915_WRITE(GTIER, gt_irqs);
2961 POSTING_READ(GTIER);
2962
2963 if (INTEL_INFO(dev)->gen >= 6) {
2964 pm_irqs |= dev_priv->pm_rps_events;
2965
2966 if (HAS_VEBOX(dev))
2967 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2968
2969 dev_priv->pm_irq_mask = 0xffffffff;
2970 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2971 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2972 I915_WRITE(GEN6_PMIER, pm_irqs);
2973 POSTING_READ(GEN6_PMIER);
2974 }
2975 }
2976
2977 static int ironlake_irq_postinstall(struct drm_device *dev)
2978 {
2979 unsigned long irqflags;
2980 struct drm_i915_private *dev_priv = dev->dev_private;
2981 u32 display_mask, extra_mask;
2982
2983 if (INTEL_INFO(dev)->gen >= 7) {
2984 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2985 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2986 DE_PLANEB_FLIP_DONE_IVB |
2987 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2988 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2989 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
2990
2991 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2992 } else {
2993 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2994 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2995 DE_AUX_CHANNEL_A |
2996 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
2997 DE_POISON);
2998 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
2999 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3000 }
3001
3002 dev_priv->irq_mask = ~display_mask;
3003
3004 /* should always can generate irq */
3005 I915_WRITE(DEIIR, I915_READ(DEIIR));
3006 I915_WRITE(DEIMR, dev_priv->irq_mask);
3007 I915_WRITE(DEIER, display_mask | extra_mask);
3008 POSTING_READ(DEIER);
3009
3010 gen5_gt_irq_postinstall(dev);
3011
3012 ibx_irq_postinstall(dev);
3013
3014 if (IS_IRONLAKE_M(dev)) {
3015 /* Enable PCU event interrupts
3016 *
3017 * spinlocking not required here for correctness since interrupt
3018 * setup is guaranteed to run in single-threaded context. But we
3019 * need it to make the assert_spin_locked happy. */
3020 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3021 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3022 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3023 }
3024
3025 return 0;
3026 }
3027
3028 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3029 {
3030 u32 pipestat_mask;
3031 u32 iir_mask;
3032
3033 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3034 PIPE_FIFO_UNDERRUN_STATUS;
3035
3036 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3037 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3038 POSTING_READ(PIPESTAT(PIPE_A));
3039
3040 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3041 PIPE_CRC_DONE_INTERRUPT_STATUS;
3042
3043 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3044 PIPE_GMBUS_INTERRUPT_STATUS);
3045 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3046
3047 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3048 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3049 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3050 dev_priv->irq_mask &= ~iir_mask;
3051
3052 I915_WRITE(VLV_IIR, iir_mask);
3053 I915_WRITE(VLV_IIR, iir_mask);
3054 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3055 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3056 POSTING_READ(VLV_IER);
3057 }
3058
3059 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3060 {
3061 u32 pipestat_mask;
3062 u32 iir_mask;
3063
3064 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3065 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3066 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3067
3068 dev_priv->irq_mask |= iir_mask;
3069 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3070 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3071 I915_WRITE(VLV_IIR, iir_mask);
3072 I915_WRITE(VLV_IIR, iir_mask);
3073 POSTING_READ(VLV_IIR);
3074
3075 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3076 PIPE_CRC_DONE_INTERRUPT_STATUS;
3077
3078 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3079 PIPE_GMBUS_INTERRUPT_STATUS);
3080 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3081
3082 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3083 PIPE_FIFO_UNDERRUN_STATUS;
3084 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3085 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3086 POSTING_READ(PIPESTAT(PIPE_A));
3087 }
3088
3089 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3090 {
3091 assert_spin_locked(&dev_priv->irq_lock);
3092
3093 if (dev_priv->display_irqs_enabled)
3094 return;
3095
3096 dev_priv->display_irqs_enabled = true;
3097
3098 if (dev_priv->dev->irq_enabled)
3099 valleyview_display_irqs_install(dev_priv);
3100 }
3101
3102 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3103 {
3104 assert_spin_locked(&dev_priv->irq_lock);
3105
3106 if (!dev_priv->display_irqs_enabled)
3107 return;
3108
3109 dev_priv->display_irqs_enabled = false;
3110
3111 if (dev_priv->dev->irq_enabled)
3112 valleyview_display_irqs_uninstall(dev_priv);
3113 }
3114
3115 static int valleyview_irq_postinstall(struct drm_device *dev)
3116 {
3117 struct drm_i915_private *dev_priv = dev->dev_private;
3118 unsigned long irqflags;
3119
3120 dev_priv->irq_mask = ~0;
3121
3122 I915_WRITE(PORT_HOTPLUG_EN, 0);
3123 POSTING_READ(PORT_HOTPLUG_EN);
3124
3125 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3126 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3127 I915_WRITE(VLV_IIR, 0xffffffff);
3128 POSTING_READ(VLV_IER);
3129
3130 /* Interrupt setup is already guaranteed to be single-threaded, this is
3131 * just to make the assert_spin_locked check happy. */
3132 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3133 if (dev_priv->display_irqs_enabled)
3134 valleyview_display_irqs_install(dev_priv);
3135 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3136
3137 I915_WRITE(VLV_IIR, 0xffffffff);
3138 I915_WRITE(VLV_IIR, 0xffffffff);
3139
3140 gen5_gt_irq_postinstall(dev);
3141
3142 /* ack & enable invalid PTE error interrupts */
3143 #if 0 /* FIXME: add support to irq handler for checking these bits */
3144 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3145 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3146 #endif
3147
3148 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3149
3150 return 0;
3151 }
3152
3153 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3154 {
3155 int i;
3156
3157 /* These are interrupts we'll toggle with the ring mask register */
3158 uint32_t gt_interrupts[] = {
3159 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3160 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3161 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3162 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3163 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3164 0,
3165 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3166 };
3167
3168 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
3169 u32 tmp = I915_READ(GEN8_GT_IIR(i));
3170 if (tmp)
3171 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3172 i, tmp);
3173 I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
3174 I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
3175 }
3176 POSTING_READ(GEN8_GT_IER(0));
3177 }
3178
3179 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3180 {
3181 struct drm_device *dev = dev_priv->dev;
3182 uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3183 GEN8_PIPE_CDCLK_CRC_DONE |
3184 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3185 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3186 GEN8_PIPE_FIFO_UNDERRUN;
3187 int pipe;
3188 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3189 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3190 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3191
3192 for_each_pipe(pipe) {
3193 u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
3194 if (tmp)
3195 DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3196 pipe, tmp);
3197 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3198 I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
3199 }
3200 POSTING_READ(GEN8_DE_PIPE_ISR(0));
3201
3202 I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
3203 I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
3204 POSTING_READ(GEN8_DE_PORT_IER);
3205 }
3206
3207 static int gen8_irq_postinstall(struct drm_device *dev)
3208 {
3209 struct drm_i915_private *dev_priv = dev->dev_private;
3210
3211 gen8_gt_irq_postinstall(dev_priv);
3212 gen8_de_irq_postinstall(dev_priv);
3213
3214 ibx_irq_postinstall(dev);
3215
3216 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3217 POSTING_READ(GEN8_MASTER_IRQ);
3218
3219 return 0;
3220 }
3221
3222 static void gen8_irq_uninstall(struct drm_device *dev)
3223 {
3224 struct drm_i915_private *dev_priv = dev->dev_private;
3225 int pipe;
3226
3227 if (!dev_priv)
3228 return;
3229
3230 I915_WRITE(GEN8_MASTER_IRQ, 0);
3231
3232 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3233 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3234 I915_WRITE(GEN8_##type##_IER(which), 0); \
3235 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3236 } while (0)
3237
3238 #define GEN8_IRQ_FINI(type) do { \
3239 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3240 I915_WRITE(GEN8_##type##_IER, 0); \
3241 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3242 } while (0)
3243
3244 GEN8_IRQ_FINI_NDX(GT, 0);
3245 GEN8_IRQ_FINI_NDX(GT, 1);
3246 GEN8_IRQ_FINI_NDX(GT, 2);
3247 GEN8_IRQ_FINI_NDX(GT, 3);
3248
3249 for_each_pipe(pipe) {
3250 GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3251 }
3252
3253 GEN8_IRQ_FINI(DE_PORT);
3254 GEN8_IRQ_FINI(DE_MISC);
3255 GEN8_IRQ_FINI(PCU);
3256 #undef GEN8_IRQ_FINI
3257 #undef GEN8_IRQ_FINI_NDX
3258
3259 POSTING_READ(GEN8_PCU_IIR);
3260 }
3261
3262 static void valleyview_irq_uninstall(struct drm_device *dev)
3263 {
3264 struct drm_i915_private *dev_priv = dev->dev_private;
3265 unsigned long irqflags;
3266 int pipe;
3267
3268 if (!dev_priv)
3269 return;
3270
3271 intel_hpd_irq_uninstall(dev_priv);
3272
3273 for_each_pipe(pipe)
3274 I915_WRITE(PIPESTAT(pipe), 0xffff);
3275
3276 I915_WRITE(HWSTAM, 0xffffffff);
3277 I915_WRITE(PORT_HOTPLUG_EN, 0);
3278 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3279
3280 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3281 if (dev_priv->display_irqs_enabled)
3282 valleyview_display_irqs_uninstall(dev_priv);
3283 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3284
3285 dev_priv->irq_mask = 0;
3286
3287 I915_WRITE(VLV_IIR, 0xffffffff);
3288 I915_WRITE(VLV_IMR, 0xffffffff);
3289 I915_WRITE(VLV_IER, 0x0);
3290 POSTING_READ(VLV_IER);
3291 }
3292
3293 static void ironlake_irq_uninstall(struct drm_device *dev)
3294 {
3295 struct drm_i915_private *dev_priv = dev->dev_private;
3296
3297 if (!dev_priv)
3298 return;
3299
3300 intel_hpd_irq_uninstall(dev_priv);
3301
3302 I915_WRITE(HWSTAM, 0xffffffff);
3303
3304 I915_WRITE(DEIMR, 0xffffffff);
3305 I915_WRITE(DEIER, 0x0);
3306 I915_WRITE(DEIIR, I915_READ(DEIIR));
3307 if (IS_GEN7(dev))
3308 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3309
3310 I915_WRITE(GTIMR, 0xffffffff);
3311 I915_WRITE(GTIER, 0x0);
3312 I915_WRITE(GTIIR, I915_READ(GTIIR));
3313
3314 if (HAS_PCH_NOP(dev))
3315 return;
3316
3317 I915_WRITE(SDEIMR, 0xffffffff);
3318 I915_WRITE(SDEIER, 0x0);
3319 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3320 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3321 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3322 }
3323
3324 static void i8xx_irq_preinstall(struct drm_device * dev)
3325 {
3326 struct drm_i915_private *dev_priv = dev->dev_private;
3327 int pipe;
3328
3329 for_each_pipe(pipe)
3330 I915_WRITE(PIPESTAT(pipe), 0);
3331 I915_WRITE16(IMR, 0xffff);
3332 I915_WRITE16(IER, 0x0);
3333 POSTING_READ16(IER);
3334 }
3335
3336 static int i8xx_irq_postinstall(struct drm_device *dev)
3337 {
3338 struct drm_i915_private *dev_priv = dev->dev_private;
3339 unsigned long irqflags;
3340
3341 I915_WRITE16(EMR,
3342 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3343
3344 /* Unmask the interrupts that we always want on. */
3345 dev_priv->irq_mask =
3346 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3347 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3348 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3349 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3350 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3351 I915_WRITE16(IMR, dev_priv->irq_mask);
3352
3353 I915_WRITE16(IER,
3354 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3355 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3356 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3357 I915_USER_INTERRUPT);
3358 POSTING_READ16(IER);
3359
3360 /* Interrupt setup is already guaranteed to be single-threaded, this is
3361 * just to make the assert_spin_locked check happy. */
3362 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3363 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3364 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3365 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3366
3367 return 0;
3368 }
3369
3370 /*
3371 * Returns true when a page flip has completed.
3372 */
3373 static bool i8xx_handle_vblank(struct drm_device *dev,
3374 int plane, int pipe, u32 iir)
3375 {
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3378
3379 if (!drm_handle_vblank(dev, pipe))
3380 return false;
3381
3382 if ((iir & flip_pending) == 0)
3383 return false;
3384
3385 intel_prepare_page_flip(dev, plane);
3386
3387 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3388 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3389 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3390 * the flip is completed (no longer pending). Since this doesn't raise
3391 * an interrupt per se, we watch for the change at vblank.
3392 */
3393 if (I915_READ16(ISR) & flip_pending)
3394 return false;
3395
3396 intel_finish_page_flip(dev, pipe);
3397
3398 return true;
3399 }
3400
3401 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3402 {
3403 struct drm_device *dev = (struct drm_device *) arg;
3404 struct drm_i915_private *dev_priv = dev->dev_private;
3405 u16 iir, new_iir;
3406 u32 pipe_stats[2];
3407 unsigned long irqflags;
3408 int pipe;
3409 u16 flip_mask =
3410 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3411 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3412
3413 iir = I915_READ16(IIR);
3414 if (iir == 0)
3415 return IRQ_NONE;
3416
3417 while (iir & ~flip_mask) {
3418 /* Can't rely on pipestat interrupt bit in iir as it might
3419 * have been cleared after the pipestat interrupt was received.
3420 * It doesn't set the bit in iir again, but it still produces
3421 * interrupts (for non-MSI).
3422 */
3423 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3424 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3425 i915_handle_error(dev, false,
3426 "Command parser error, iir 0x%08x",
3427 iir);
3428
3429 for_each_pipe(pipe) {
3430 int reg = PIPESTAT(pipe);
3431 pipe_stats[pipe] = I915_READ(reg);
3432
3433 /*
3434 * Clear the PIPE*STAT regs before the IIR
3435 */
3436 if (pipe_stats[pipe] & 0x8000ffff)
3437 I915_WRITE(reg, pipe_stats[pipe]);
3438 }
3439 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3440
3441 I915_WRITE16(IIR, iir & ~flip_mask);
3442 new_iir = I915_READ16(IIR); /* Flush posted writes */
3443
3444 i915_update_dri1_breadcrumb(dev);
3445
3446 if (iir & I915_USER_INTERRUPT)
3447 notify_ring(dev, &dev_priv->ring[RCS]);
3448
3449 for_each_pipe(pipe) {
3450 int plane = pipe;
3451 if (HAS_FBC(dev))
3452 plane = !plane;
3453
3454 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3455 i8xx_handle_vblank(dev, plane, pipe, iir))
3456 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3457
3458 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3459 i9xx_pipe_crc_irq_handler(dev, pipe);
3460
3461 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3462 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3463 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3464 }
3465
3466 iir = new_iir;
3467 }
3468
3469 return IRQ_HANDLED;
3470 }
3471
3472 static void i8xx_irq_uninstall(struct drm_device * dev)
3473 {
3474 struct drm_i915_private *dev_priv = dev->dev_private;
3475 int pipe;
3476
3477 for_each_pipe(pipe) {
3478 /* Clear enable bits; then clear status bits */
3479 I915_WRITE(PIPESTAT(pipe), 0);
3480 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3481 }
3482 I915_WRITE16(IMR, 0xffff);
3483 I915_WRITE16(IER, 0x0);
3484 I915_WRITE16(IIR, I915_READ16(IIR));
3485 }
3486
3487 static void i915_irq_preinstall(struct drm_device * dev)
3488 {
3489 struct drm_i915_private *dev_priv = dev->dev_private;
3490 int pipe;
3491
3492 if (I915_HAS_HOTPLUG(dev)) {
3493 I915_WRITE(PORT_HOTPLUG_EN, 0);
3494 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3495 }
3496
3497 I915_WRITE16(HWSTAM, 0xeffe);
3498 for_each_pipe(pipe)
3499 I915_WRITE(PIPESTAT(pipe), 0);
3500 I915_WRITE(IMR, 0xffffffff);
3501 I915_WRITE(IER, 0x0);
3502 POSTING_READ(IER);
3503 }
3504
3505 static int i915_irq_postinstall(struct drm_device *dev)
3506 {
3507 struct drm_i915_private *dev_priv = dev->dev_private;
3508 u32 enable_mask;
3509 unsigned long irqflags;
3510
3511 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3512
3513 /* Unmask the interrupts that we always want on. */
3514 dev_priv->irq_mask =
3515 ~(I915_ASLE_INTERRUPT |
3516 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3517 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3518 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3519 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3520 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3521
3522 enable_mask =
3523 I915_ASLE_INTERRUPT |
3524 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3525 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3526 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3527 I915_USER_INTERRUPT;
3528
3529 if (I915_HAS_HOTPLUG(dev)) {
3530 I915_WRITE(PORT_HOTPLUG_EN, 0);
3531 POSTING_READ(PORT_HOTPLUG_EN);
3532
3533 /* Enable in IER... */
3534 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3535 /* and unmask in IMR */
3536 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3537 }
3538
3539 I915_WRITE(IMR, dev_priv->irq_mask);
3540 I915_WRITE(IER, enable_mask);
3541 POSTING_READ(IER);
3542
3543 i915_enable_asle_pipestat(dev);
3544
3545 /* Interrupt setup is already guaranteed to be single-threaded, this is
3546 * just to make the assert_spin_locked check happy. */
3547 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3548 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3549 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3550 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3551
3552 return 0;
3553 }
3554
3555 /*
3556 * Returns true when a page flip has completed.
3557 */
3558 static bool i915_handle_vblank(struct drm_device *dev,
3559 int plane, int pipe, u32 iir)
3560 {
3561 struct drm_i915_private *dev_priv = dev->dev_private;
3562 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3563
3564 if (!drm_handle_vblank(dev, pipe))
3565 return false;
3566
3567 if ((iir & flip_pending) == 0)
3568 return false;
3569
3570 intel_prepare_page_flip(dev, plane);
3571
3572 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3573 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3574 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3575 * the flip is completed (no longer pending). Since this doesn't raise
3576 * an interrupt per se, we watch for the change at vblank.
3577 */
3578 if (I915_READ(ISR) & flip_pending)
3579 return false;
3580
3581 intel_finish_page_flip(dev, pipe);
3582
3583 return true;
3584 }
3585
3586 static irqreturn_t i915_irq_handler(int irq, void *arg)
3587 {
3588 struct drm_device *dev = (struct drm_device *) arg;
3589 struct drm_i915_private *dev_priv = dev->dev_private;
3590 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3591 unsigned long irqflags;
3592 u32 flip_mask =
3593 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3594 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3595 int pipe, ret = IRQ_NONE;
3596
3597 iir = I915_READ(IIR);
3598 do {
3599 bool irq_received = (iir & ~flip_mask) != 0;
3600 bool blc_event = false;
3601
3602 /* Can't rely on pipestat interrupt bit in iir as it might
3603 * have been cleared after the pipestat interrupt was received.
3604 * It doesn't set the bit in iir again, but it still produces
3605 * interrupts (for non-MSI).
3606 */
3607 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3608 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3609 i915_handle_error(dev, false,
3610 "Command parser error, iir 0x%08x",
3611 iir);
3612
3613 for_each_pipe(pipe) {
3614 int reg = PIPESTAT(pipe);
3615 pipe_stats[pipe] = I915_READ(reg);
3616
3617 /* Clear the PIPE*STAT regs before the IIR */
3618 if (pipe_stats[pipe] & 0x8000ffff) {
3619 I915_WRITE(reg, pipe_stats[pipe]);
3620 irq_received = true;
3621 }
3622 }
3623 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3624
3625 if (!irq_received)
3626 break;
3627
3628 /* Consume port. Then clear IIR or we'll miss events */
3629 if ((I915_HAS_HOTPLUG(dev)) &&
3630 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3631 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3632 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3633
3634 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3635
3636 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3637 POSTING_READ(PORT_HOTPLUG_STAT);
3638 }
3639
3640 I915_WRITE(IIR, iir & ~flip_mask);
3641 new_iir = I915_READ(IIR); /* Flush posted writes */
3642
3643 if (iir & I915_USER_INTERRUPT)
3644 notify_ring(dev, &dev_priv->ring[RCS]);
3645
3646 for_each_pipe(pipe) {
3647 int plane = pipe;
3648 if (HAS_FBC(dev))
3649 plane = !plane;
3650
3651 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3652 i915_handle_vblank(dev, plane, pipe, iir))
3653 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3654
3655 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3656 blc_event = true;
3657
3658 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3659 i9xx_pipe_crc_irq_handler(dev, pipe);
3660
3661 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3662 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3663 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3664 }
3665
3666 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3667 intel_opregion_asle_intr(dev);
3668
3669 /* With MSI, interrupts are only generated when iir
3670 * transitions from zero to nonzero. If another bit got
3671 * set while we were handling the existing iir bits, then
3672 * we would never get another interrupt.
3673 *
3674 * This is fine on non-MSI as well, as if we hit this path
3675 * we avoid exiting the interrupt handler only to generate
3676 * another one.
3677 *
3678 * Note that for MSI this could cause a stray interrupt report
3679 * if an interrupt landed in the time between writing IIR and
3680 * the posting read. This should be rare enough to never
3681 * trigger the 99% of 100,000 interrupts test for disabling
3682 * stray interrupts.
3683 */
3684 ret = IRQ_HANDLED;
3685 iir = new_iir;
3686 } while (iir & ~flip_mask);
3687
3688 i915_update_dri1_breadcrumb(dev);
3689
3690 return ret;
3691 }
3692
3693 static void i915_irq_uninstall(struct drm_device * dev)
3694 {
3695 struct drm_i915_private *dev_priv = dev->dev_private;
3696 int pipe;
3697
3698 intel_hpd_irq_uninstall(dev_priv);
3699
3700 if (I915_HAS_HOTPLUG(dev)) {
3701 I915_WRITE(PORT_HOTPLUG_EN, 0);
3702 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3703 }
3704
3705 I915_WRITE16(HWSTAM, 0xffff);
3706 for_each_pipe(pipe) {
3707 /* Clear enable bits; then clear status bits */
3708 I915_WRITE(PIPESTAT(pipe), 0);
3709 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3710 }
3711 I915_WRITE(IMR, 0xffffffff);
3712 I915_WRITE(IER, 0x0);
3713
3714 I915_WRITE(IIR, I915_READ(IIR));
3715 }
3716
3717 static void i965_irq_preinstall(struct drm_device * dev)
3718 {
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720 int pipe;
3721
3722 I915_WRITE(PORT_HOTPLUG_EN, 0);
3723 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3724
3725 I915_WRITE(HWSTAM, 0xeffe);
3726 for_each_pipe(pipe)
3727 I915_WRITE(PIPESTAT(pipe), 0);
3728 I915_WRITE(IMR, 0xffffffff);
3729 I915_WRITE(IER, 0x0);
3730 POSTING_READ(IER);
3731 }
3732
3733 static int i965_irq_postinstall(struct drm_device *dev)
3734 {
3735 struct drm_i915_private *dev_priv = dev->dev_private;
3736 u32 enable_mask;
3737 u32 error_mask;
3738 unsigned long irqflags;
3739
3740 /* Unmask the interrupts that we always want on. */
3741 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3742 I915_DISPLAY_PORT_INTERRUPT |
3743 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3744 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3745 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3746 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3747 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3748
3749 enable_mask = ~dev_priv->irq_mask;
3750 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3751 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3752 enable_mask |= I915_USER_INTERRUPT;
3753
3754 if (IS_G4X(dev))
3755 enable_mask |= I915_BSD_USER_INTERRUPT;
3756
3757 /* Interrupt setup is already guaranteed to be single-threaded, this is
3758 * just to make the assert_spin_locked check happy. */
3759 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3760 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3761 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3762 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3763 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3764
3765 /*
3766 * Enable some error detection, note the instruction error mask
3767 * bit is reserved, so we leave it masked.
3768 */
3769 if (IS_G4X(dev)) {
3770 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3771 GM45_ERROR_MEM_PRIV |
3772 GM45_ERROR_CP_PRIV |
3773 I915_ERROR_MEMORY_REFRESH);
3774 } else {
3775 error_mask = ~(I915_ERROR_PAGE_TABLE |
3776 I915_ERROR_MEMORY_REFRESH);
3777 }
3778 I915_WRITE(EMR, error_mask);
3779
3780 I915_WRITE(IMR, dev_priv->irq_mask);
3781 I915_WRITE(IER, enable_mask);
3782 POSTING_READ(IER);
3783
3784 I915_WRITE(PORT_HOTPLUG_EN, 0);
3785 POSTING_READ(PORT_HOTPLUG_EN);
3786
3787 i915_enable_asle_pipestat(dev);
3788
3789 return 0;
3790 }
3791
3792 static void i915_hpd_irq_setup(struct drm_device *dev)
3793 {
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795 struct drm_mode_config *mode_config = &dev->mode_config;
3796 struct intel_encoder *intel_encoder;
3797 u32 hotplug_en;
3798
3799 assert_spin_locked(&dev_priv->irq_lock);
3800
3801 if (I915_HAS_HOTPLUG(dev)) {
3802 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3803 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3804 /* Note HDMI and DP share hotplug bits */
3805 /* enable bits are the same for all generations */
3806 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3807 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3808 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3809 /* Programming the CRT detection parameters tends
3810 to generate a spurious hotplug event about three
3811 seconds later. So just do it once.
3812 */
3813 if (IS_G4X(dev))
3814 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3815 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3816 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3817
3818 /* Ignore TV since it's buggy */
3819 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3820 }
3821 }
3822
3823 static irqreturn_t i965_irq_handler(int irq, void *arg)
3824 {
3825 struct drm_device *dev = (struct drm_device *) arg;
3826 struct drm_i915_private *dev_priv = dev->dev_private;
3827 u32 iir, new_iir;
3828 u32 pipe_stats[I915_MAX_PIPES];
3829 unsigned long irqflags;
3830 int ret = IRQ_NONE, pipe;
3831 u32 flip_mask =
3832 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3833 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3834
3835 iir = I915_READ(IIR);
3836
3837 for (;;) {
3838 bool irq_received = (iir & ~flip_mask) != 0;
3839 bool blc_event = false;
3840
3841 /* Can't rely on pipestat interrupt bit in iir as it might
3842 * have been cleared after the pipestat interrupt was received.
3843 * It doesn't set the bit in iir again, but it still produces
3844 * interrupts (for non-MSI).
3845 */
3846 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3847 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3848 i915_handle_error(dev, false,
3849 "Command parser error, iir 0x%08x",
3850 iir);
3851
3852 for_each_pipe(pipe) {
3853 int reg = PIPESTAT(pipe);
3854 pipe_stats[pipe] = I915_READ(reg);
3855
3856 /*
3857 * Clear the PIPE*STAT regs before the IIR
3858 */
3859 if (pipe_stats[pipe] & 0x8000ffff) {
3860 I915_WRITE(reg, pipe_stats[pipe]);
3861 irq_received = true;
3862 }
3863 }
3864 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3865
3866 if (!irq_received)
3867 break;
3868
3869 ret = IRQ_HANDLED;
3870
3871 /* Consume port. Then clear IIR or we'll miss events */
3872 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3873 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3874 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3875 HOTPLUG_INT_STATUS_G4X :
3876 HOTPLUG_INT_STATUS_I915);
3877
3878 intel_hpd_irq_handler(dev, hotplug_trigger,
3879 IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3880
3881 if (IS_G4X(dev) &&
3882 (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3883 dp_aux_irq_handler(dev);
3884
3885 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3886 I915_READ(PORT_HOTPLUG_STAT);
3887 }
3888
3889 I915_WRITE(IIR, iir & ~flip_mask);
3890 new_iir = I915_READ(IIR); /* Flush posted writes */
3891
3892 if (iir & I915_USER_INTERRUPT)
3893 notify_ring(dev, &dev_priv->ring[RCS]);
3894 if (iir & I915_BSD_USER_INTERRUPT)
3895 notify_ring(dev, &dev_priv->ring[VCS]);
3896
3897 for_each_pipe(pipe) {
3898 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3899 i915_handle_vblank(dev, pipe, pipe, iir))
3900 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3901
3902 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3903 blc_event = true;
3904
3905 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3906 i9xx_pipe_crc_irq_handler(dev, pipe);
3907
3908 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3909 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3910 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3911 }
3912
3913 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3914 intel_opregion_asle_intr(dev);
3915
3916 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3917 gmbus_irq_handler(dev);
3918
3919 /* With MSI, interrupts are only generated when iir
3920 * transitions from zero to nonzero. If another bit got
3921 * set while we were handling the existing iir bits, then
3922 * we would never get another interrupt.
3923 *
3924 * This is fine on non-MSI as well, as if we hit this path
3925 * we avoid exiting the interrupt handler only to generate
3926 * another one.
3927 *
3928 * Note that for MSI this could cause a stray interrupt report
3929 * if an interrupt landed in the time between writing IIR and
3930 * the posting read. This should be rare enough to never
3931 * trigger the 99% of 100,000 interrupts test for disabling
3932 * stray interrupts.
3933 */
3934 iir = new_iir;
3935 }
3936
3937 i915_update_dri1_breadcrumb(dev);
3938
3939 return ret;
3940 }
3941
3942 static void i965_irq_uninstall(struct drm_device * dev)
3943 {
3944 struct drm_i915_private *dev_priv = dev->dev_private;
3945 int pipe;
3946
3947 if (!dev_priv)
3948 return;
3949
3950 intel_hpd_irq_uninstall(dev_priv);
3951
3952 I915_WRITE(PORT_HOTPLUG_EN, 0);
3953 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3954
3955 I915_WRITE(HWSTAM, 0xffffffff);
3956 for_each_pipe(pipe)
3957 I915_WRITE(PIPESTAT(pipe), 0);
3958 I915_WRITE(IMR, 0xffffffff);
3959 I915_WRITE(IER, 0x0);
3960
3961 for_each_pipe(pipe)
3962 I915_WRITE(PIPESTAT(pipe),
3963 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3964 I915_WRITE(IIR, I915_READ(IIR));
3965 }
3966
3967 static void intel_hpd_irq_reenable(unsigned long data)
3968 {
3969 struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3970 struct drm_device *dev = dev_priv->dev;
3971 struct drm_mode_config *mode_config = &dev->mode_config;
3972 unsigned long irqflags;
3973 int i;
3974
3975 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3976 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3977 struct drm_connector *connector;
3978
3979 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3980 continue;
3981
3982 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3983
3984 list_for_each_entry(connector, &mode_config->connector_list, head) {
3985 struct intel_connector *intel_connector = to_intel_connector(connector);
3986
3987 if (intel_connector->encoder->hpd_pin == i) {
3988 if (connector->polled != intel_connector->polled)
3989 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3990 drm_get_connector_name(connector));
3991 connector->polled = intel_connector->polled;
3992 if (!connector->polled)
3993 connector->polled = DRM_CONNECTOR_POLL_HPD;
3994 }
3995 }
3996 }
3997 if (dev_priv->display.hpd_irq_setup)
3998 dev_priv->display.hpd_irq_setup(dev);
3999 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4000 }
4001
4002 void intel_irq_init(struct drm_device *dev)
4003 {
4004 struct drm_i915_private *dev_priv = dev->dev_private;
4005
4006 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4007 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4008 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4009 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4010
4011 /* Let's track the enabled rps events */
4012 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4013
4014 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4015 i915_hangcheck_elapsed,
4016 (unsigned long) dev);
4017 setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4018 (unsigned long) dev_priv);
4019
4020 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4021
4022 if (IS_GEN2(dev)) {
4023 dev->max_vblank_count = 0;
4024 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4025 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4026 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4027 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4028 } else {
4029 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4030 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4031 }
4032
4033 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4034 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4035 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4036 }
4037
4038 if (IS_VALLEYVIEW(dev)) {
4039 dev->driver->irq_handler = valleyview_irq_handler;
4040 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4041 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4042 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4043 dev->driver->enable_vblank = valleyview_enable_vblank;
4044 dev->driver->disable_vblank = valleyview_disable_vblank;
4045 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4046 } else if (IS_GEN8(dev)) {
4047 dev->driver->irq_handler = gen8_irq_handler;
4048 dev->driver->irq_preinstall = gen8_irq_preinstall;
4049 dev->driver->irq_postinstall = gen8_irq_postinstall;
4050 dev->driver->irq_uninstall = gen8_irq_uninstall;
4051 dev->driver->enable_vblank = gen8_enable_vblank;
4052 dev->driver->disable_vblank = gen8_disable_vblank;
4053 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4054 } else if (HAS_PCH_SPLIT(dev)) {
4055 dev->driver->irq_handler = ironlake_irq_handler;
4056 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4057 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4058 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4059 dev->driver->enable_vblank = ironlake_enable_vblank;
4060 dev->driver->disable_vblank = ironlake_disable_vblank;
4061 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4062 } else {
4063 if (INTEL_INFO(dev)->gen == 2) {
4064 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4065 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4066 dev->driver->irq_handler = i8xx_irq_handler;
4067 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4068 } else if (INTEL_INFO(dev)->gen == 3) {
4069 dev->driver->irq_preinstall = i915_irq_preinstall;
4070 dev->driver->irq_postinstall = i915_irq_postinstall;
4071 dev->driver->irq_uninstall = i915_irq_uninstall;
4072 dev->driver->irq_handler = i915_irq_handler;
4073 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4074 } else {
4075 dev->driver->irq_preinstall = i965_irq_preinstall;
4076 dev->driver->irq_postinstall = i965_irq_postinstall;
4077 dev->driver->irq_uninstall = i965_irq_uninstall;
4078 dev->driver->irq_handler = i965_irq_handler;
4079 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4080 }
4081 dev->driver->enable_vblank = i915_enable_vblank;
4082 dev->driver->disable_vblank = i915_disable_vblank;
4083 }
4084 }
4085
4086 void intel_hpd_init(struct drm_device *dev)
4087 {
4088 struct drm_i915_private *dev_priv = dev->dev_private;
4089 struct drm_mode_config *mode_config = &dev->mode_config;
4090 struct drm_connector *connector;
4091 unsigned long irqflags;
4092 int i;
4093
4094 for (i = 1; i < HPD_NUM_PINS; i++) {
4095 dev_priv->hpd_stats[i].hpd_cnt = 0;
4096 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4097 }
4098 list_for_each_entry(connector, &mode_config->connector_list, head) {
4099 struct intel_connector *intel_connector = to_intel_connector(connector);
4100 connector->polled = intel_connector->polled;
4101 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4102 connector->polled = DRM_CONNECTOR_POLL_HPD;
4103 }
4104
4105 /* Interrupt setup is already guaranteed to be single-threaded, this is
4106 * just to make the assert_spin_locked checks happy. */
4107 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4108 if (dev_priv->display.hpd_irq_setup)
4109 dev_priv->display.hpd_irq_setup(dev);
4110 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4111 }
4112
4113 /* Disable interrupts so we can allow runtime PM. */
4114 void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
4115 {
4116 struct drm_i915_private *dev_priv = dev->dev_private;
4117 unsigned long irqflags;
4118
4119 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4120
4121 dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4122 dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4123 dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4124 dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4125 dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4126
4127 ironlake_disable_display_irq(dev_priv, 0xffffffff);
4128 ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4129 ilk_disable_gt_irq(dev_priv, 0xffffffff);
4130 snb_disable_pm_irq(dev_priv, 0xffffffff);
4131
4132 dev_priv->pm.irqs_disabled = true;
4133
4134 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4135 }
4136
4137 /* Restore interrupts so we can recover from runtime PM. */
4138 void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
4139 {
4140 struct drm_i915_private *dev_priv = dev->dev_private;
4141 unsigned long irqflags;
4142 uint32_t val;
4143
4144 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4145
4146 val = I915_READ(DEIMR);
4147 WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4148
4149 val = I915_READ(SDEIMR);
4150 WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4151
4152 val = I915_READ(GTIMR);
4153 WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4154
4155 val = I915_READ(GEN6_PMIMR);
4156 WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
4157
4158 dev_priv->pm.irqs_disabled = false;
4159
4160 ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4161 ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4162 ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4163 snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4164 I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
4165
4166 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4167 }
This page took 0.120984 seconds and 6 git commands to generate.