drm/i915: Improve the accuracy of get_scanout_pos on CTG+
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if (dev_priv->pc8.irqs_disabled) {
89 WARN(1, "IRQs disabled\n");
90 dev_priv->pc8.regsave.deimr &= ~mask;
91 return;
92 }
93
94 if ((dev_priv->irq_mask & mask) != 0) {
95 dev_priv->irq_mask &= ~mask;
96 I915_WRITE(DEIMR, dev_priv->irq_mask);
97 POSTING_READ(DEIMR);
98 }
99 }
100
101 static void
102 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
103 {
104 assert_spin_locked(&dev_priv->irq_lock);
105
106 if (dev_priv->pc8.irqs_disabled) {
107 WARN(1, "IRQs disabled\n");
108 dev_priv->pc8.regsave.deimr |= mask;
109 return;
110 }
111
112 if ((dev_priv->irq_mask & mask) != mask) {
113 dev_priv->irq_mask |= mask;
114 I915_WRITE(DEIMR, dev_priv->irq_mask);
115 POSTING_READ(DEIMR);
116 }
117 }
118
119 /**
120 * ilk_update_gt_irq - update GTIMR
121 * @dev_priv: driver private
122 * @interrupt_mask: mask of interrupt bits to update
123 * @enabled_irq_mask: mask of interrupt bits to enable
124 */
125 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
126 uint32_t interrupt_mask,
127 uint32_t enabled_irq_mask)
128 {
129 assert_spin_locked(&dev_priv->irq_lock);
130
131 if (dev_priv->pc8.irqs_disabled) {
132 WARN(1, "IRQs disabled\n");
133 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
134 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
135 interrupt_mask);
136 return;
137 }
138
139 dev_priv->gt_irq_mask &= ~interrupt_mask;
140 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
141 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
142 POSTING_READ(GTIMR);
143 }
144
145 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
146 {
147 ilk_update_gt_irq(dev_priv, mask, mask);
148 }
149
150 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
151 {
152 ilk_update_gt_irq(dev_priv, mask, 0);
153 }
154
155 /**
156 * snb_update_pm_irq - update GEN6_PMIMR
157 * @dev_priv: driver private
158 * @interrupt_mask: mask of interrupt bits to update
159 * @enabled_irq_mask: mask of interrupt bits to enable
160 */
161 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
162 uint32_t interrupt_mask,
163 uint32_t enabled_irq_mask)
164 {
165 uint32_t new_val;
166
167 assert_spin_locked(&dev_priv->irq_lock);
168
169 if (dev_priv->pc8.irqs_disabled) {
170 WARN(1, "IRQs disabled\n");
171 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
172 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
173 interrupt_mask);
174 return;
175 }
176
177 new_val = dev_priv->pm_irq_mask;
178 new_val &= ~interrupt_mask;
179 new_val |= (~enabled_irq_mask & interrupt_mask);
180
181 if (new_val != dev_priv->pm_irq_mask) {
182 dev_priv->pm_irq_mask = new_val;
183 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
184 POSTING_READ(GEN6_PMIMR);
185 }
186 }
187
188 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
189 {
190 snb_update_pm_irq(dev_priv, mask, mask);
191 }
192
193 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
194 {
195 snb_update_pm_irq(dev_priv, mask, 0);
196 }
197
198 static bool ivb_can_enable_err_int(struct drm_device *dev)
199 {
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 struct intel_crtc *crtc;
202 enum pipe pipe;
203
204 assert_spin_locked(&dev_priv->irq_lock);
205
206 for_each_pipe(pipe) {
207 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
208
209 if (crtc->cpu_fifo_underrun_disabled)
210 return false;
211 }
212
213 return true;
214 }
215
216 static bool cpt_can_enable_serr_int(struct drm_device *dev)
217 {
218 struct drm_i915_private *dev_priv = dev->dev_private;
219 enum pipe pipe;
220 struct intel_crtc *crtc;
221
222 assert_spin_locked(&dev_priv->irq_lock);
223
224 for_each_pipe(pipe) {
225 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
226
227 if (crtc->pch_fifo_underrun_disabled)
228 return false;
229 }
230
231 return true;
232 }
233
234 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
235 enum pipe pipe, bool enable)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
239 DE_PIPEB_FIFO_UNDERRUN;
240
241 if (enable)
242 ironlake_enable_display_irq(dev_priv, bit);
243 else
244 ironlake_disable_display_irq(dev_priv, bit);
245 }
246
247 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249 {
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 if (enable) {
252 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
253
254 if (!ivb_can_enable_err_int(dev))
255 return;
256
257 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
258 } else {
259 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
260
261 /* Change the state _after_ we've read out the current one. */
262 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
263
264 if (!was_enabled &&
265 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
266 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
267 pipe_name(pipe));
268 }
269 }
270 }
271
272 /**
273 * ibx_display_interrupt_update - update SDEIMR
274 * @dev_priv: driver private
275 * @interrupt_mask: mask of interrupt bits to update
276 * @enabled_irq_mask: mask of interrupt bits to enable
277 */
278 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
279 uint32_t interrupt_mask,
280 uint32_t enabled_irq_mask)
281 {
282 uint32_t sdeimr = I915_READ(SDEIMR);
283 sdeimr &= ~interrupt_mask;
284 sdeimr |= (~enabled_irq_mask & interrupt_mask);
285
286 assert_spin_locked(&dev_priv->irq_lock);
287
288 if (dev_priv->pc8.irqs_disabled &&
289 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
290 WARN(1, "IRQs disabled\n");
291 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
292 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
293 interrupt_mask);
294 return;
295 }
296
297 I915_WRITE(SDEIMR, sdeimr);
298 POSTING_READ(SDEIMR);
299 }
300 #define ibx_enable_display_interrupt(dev_priv, bits) \
301 ibx_display_interrupt_update((dev_priv), (bits), (bits))
302 #define ibx_disable_display_interrupt(dev_priv, bits) \
303 ibx_display_interrupt_update((dev_priv), (bits), 0)
304
305 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
306 enum transcoder pch_transcoder,
307 bool enable)
308 {
309 struct drm_i915_private *dev_priv = dev->dev_private;
310 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
311 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
312
313 if (enable)
314 ibx_enable_display_interrupt(dev_priv, bit);
315 else
316 ibx_disable_display_interrupt(dev_priv, bit);
317 }
318
319 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum transcoder pch_transcoder,
321 bool enable)
322 {
323 struct drm_i915_private *dev_priv = dev->dev_private;
324
325 if (enable) {
326 I915_WRITE(SERR_INT,
327 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
328
329 if (!cpt_can_enable_serr_int(dev))
330 return;
331
332 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
333 } else {
334 uint32_t tmp = I915_READ(SERR_INT);
335 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
336
337 /* Change the state _after_ we've read out the current one. */
338 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
339
340 if (!was_enabled &&
341 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
342 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
343 transcoder_name(pch_transcoder));
344 }
345 }
346 }
347
348 /**
349 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
350 * @dev: drm device
351 * @pipe: pipe
352 * @enable: true if we want to report FIFO underrun errors, false otherwise
353 *
354 * This function makes us disable or enable CPU fifo underruns for a specific
355 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
356 * reporting for one pipe may also disable all the other CPU error interruts for
357 * the other pipes, due to the fact that there's just one interrupt mask/enable
358 * bit for all the pipes.
359 *
360 * Returns the previous state of underrun reporting.
361 */
362 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
363 enum pipe pipe, bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368 unsigned long flags;
369 bool ret;
370
371 spin_lock_irqsave(&dev_priv->irq_lock, flags);
372
373 ret = !intel_crtc->cpu_fifo_underrun_disabled;
374
375 if (enable == ret)
376 goto done;
377
378 intel_crtc->cpu_fifo_underrun_disabled = !enable;
379
380 if (IS_GEN5(dev) || IS_GEN6(dev))
381 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
382 else if (IS_GEN7(dev))
383 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
384
385 done:
386 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
387 return ret;
388 }
389
390 /**
391 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
392 * @dev: drm device
393 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
394 * @enable: true if we want to report FIFO underrun errors, false otherwise
395 *
396 * This function makes us disable or enable PCH fifo underruns for a specific
397 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
398 * underrun reporting for one transcoder may also disable all the other PCH
399 * error interruts for the other transcoders, due to the fact that there's just
400 * one interrupt mask/enable bit for all the transcoders.
401 *
402 * Returns the previous state of underrun reporting.
403 */
404 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
405 enum transcoder pch_transcoder,
406 bool enable)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
411 unsigned long flags;
412 bool ret;
413
414 /*
415 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
416 * has only one pch transcoder A that all pipes can use. To avoid racy
417 * pch transcoder -> pipe lookups from interrupt code simply store the
418 * underrun statistics in crtc A. Since we never expose this anywhere
419 * nor use it outside of the fifo underrun code here using the "wrong"
420 * crtc on LPT won't cause issues.
421 */
422
423 spin_lock_irqsave(&dev_priv->irq_lock, flags);
424
425 ret = !intel_crtc->pch_fifo_underrun_disabled;
426
427 if (enable == ret)
428 goto done;
429
430 intel_crtc->pch_fifo_underrun_disabled = !enable;
431
432 if (HAS_PCH_IBX(dev))
433 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
434 else
435 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
436
437 done:
438 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
439 return ret;
440 }
441
442
443 void
444 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
445 {
446 u32 reg = PIPESTAT(pipe);
447 u32 pipestat = I915_READ(reg) & 0x7fff0000;
448
449 assert_spin_locked(&dev_priv->irq_lock);
450
451 if ((pipestat & mask) == mask)
452 return;
453
454 /* Enable the interrupt, clear any pending status */
455 pipestat |= mask | (mask >> 16);
456 I915_WRITE(reg, pipestat);
457 POSTING_READ(reg);
458 }
459
460 void
461 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
462 {
463 u32 reg = PIPESTAT(pipe);
464 u32 pipestat = I915_READ(reg) & 0x7fff0000;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 if ((pipestat & mask) == 0)
469 return;
470
471 pipestat &= ~mask;
472 I915_WRITE(reg, pipestat);
473 POSTING_READ(reg);
474 }
475
476 /**
477 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
478 */
479 static void i915_enable_asle_pipestat(struct drm_device *dev)
480 {
481 drm_i915_private_t *dev_priv = dev->dev_private;
482 unsigned long irqflags;
483
484 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
485 return;
486
487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
488
489 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
490 if (INTEL_INFO(dev)->gen >= 4)
491 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
492
493 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
494 }
495
496 /**
497 * i915_pipe_enabled - check if a pipe is enabled
498 * @dev: DRM device
499 * @pipe: pipe to check
500 *
501 * Reading certain registers when the pipe is disabled can hang the chip.
502 * Use this routine to make sure the PLL is running and the pipe is active
503 * before reading such registers if unsure.
504 */
505 static int
506 i915_pipe_enabled(struct drm_device *dev, int pipe)
507 {
508 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
509
510 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
511 /* Locking is horribly broken here, but whatever. */
512 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
514
515 return intel_crtc->active;
516 } else {
517 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
518 }
519 }
520
521 /* Called from drm generic code, passed a 'crtc', which
522 * we use as a pipe index
523 */
524 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 unsigned long high_frame;
528 unsigned long low_frame;
529 u32 high1, high2, low, pixel, vbl_start;
530
531 if (!i915_pipe_enabled(dev, pipe)) {
532 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
533 "pipe %c\n", pipe_name(pipe));
534 return 0;
535 }
536
537 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
538 struct intel_crtc *intel_crtc =
539 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
540 const struct drm_display_mode *mode =
541 &intel_crtc->config.adjusted_mode;
542
543 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
544 } else {
545 enum transcoder cpu_transcoder =
546 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
547 u32 htotal;
548
549 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
550 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
551
552 vbl_start *= htotal;
553 }
554
555 high_frame = PIPEFRAME(pipe);
556 low_frame = PIPEFRAMEPIXEL(pipe);
557
558 /*
559 * High & low register fields aren't synchronized, so make sure
560 * we get a low value that's stable across two reads of the high
561 * register.
562 */
563 do {
564 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
565 low = I915_READ(low_frame);
566 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
567 } while (high1 != high2);
568
569 high1 >>= PIPE_FRAME_HIGH_SHIFT;
570 pixel = low & PIPE_PIXEL_MASK;
571 low >>= PIPE_FRAME_LOW_SHIFT;
572
573 /*
574 * The frame counter increments at beginning of active.
575 * Cook up a vblank counter by also checking the pixel
576 * counter against vblank start.
577 */
578 return ((high1 << 8) | low) + (pixel >= vbl_start);
579 }
580
581 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
582 {
583 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
584 int reg = PIPE_FRMCOUNT_GM45(pipe);
585
586 if (!i915_pipe_enabled(dev, pipe)) {
587 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
588 "pipe %c\n", pipe_name(pipe));
589 return 0;
590 }
591
592 return I915_READ(reg);
593 }
594
595 static bool g4x_pipe_in_vblank(struct drm_device *dev, enum pipe pipe)
596 {
597 struct drm_i915_private *dev_priv = dev->dev_private;
598 uint32_t status;
599
600 if (IS_VALLEYVIEW(dev)) {
601 status = pipe == PIPE_A ?
602 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
603 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
604
605 return I915_READ(VLV_ISR) & status;
606 } else if (IS_G4X(dev)) {
607 status = pipe == PIPE_A ?
608 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT :
609 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
610
611 return I915_READ(ISR) & status;
612 } else if (INTEL_INFO(dev)->gen < 7) {
613 status = pipe == PIPE_A ?
614 DE_PIPEA_VBLANK :
615 DE_PIPEB_VBLANK;
616
617 return I915_READ(DEISR) & status;
618 } else {
619 switch (pipe) {
620 default:
621 case PIPE_A:
622 status = DE_PIPEA_VBLANK_IVB;
623 break;
624 case PIPE_B:
625 status = DE_PIPEB_VBLANK_IVB;
626 break;
627 case PIPE_C:
628 status = DE_PIPEC_VBLANK_IVB;
629 break;
630 }
631
632 return I915_READ(DEISR) & status;
633 }
634 }
635
636 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
637 int *vpos, int *hpos)
638 {
639 struct drm_i915_private *dev_priv = dev->dev_private;
640 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
642 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
643 int position;
644 int vbl_start, vbl_end, htotal, vtotal;
645 bool in_vbl = true;
646 int ret = 0;
647
648 if (!intel_crtc->active) {
649 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
650 "pipe %c\n", pipe_name(pipe));
651 return 0;
652 }
653
654 htotal = mode->crtc_htotal;
655 vtotal = mode->crtc_vtotal;
656 vbl_start = mode->crtc_vblank_start;
657 vbl_end = mode->crtc_vblank_end;
658
659 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
660
661 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
662 /* No obvious pixelcount register. Only query vertical
663 * scanout position from Display scan line register.
664 */
665 position = I915_READ(PIPEDSL(pipe)) & 0x1fff;
666
667 /*
668 * The scanline counter increments at the leading edge
669 * of hsync, ie. it completely misses the active portion
670 * of the line. Fix up the counter at both edges of vblank
671 * to get a more accurate picture whether we're in vblank
672 * or not.
673 */
674 in_vbl = g4x_pipe_in_vblank(dev, pipe);
675 if ((in_vbl && position == vbl_start - 1) ||
676 (!in_vbl && position == vbl_end - 1))
677 position = (position + 1) % vtotal;
678 } else {
679 /* Have access to pixelcount since start of frame.
680 * We can split this into vertical and horizontal
681 * scanout position.
682 */
683 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
684
685 /* convert to pixel counts */
686 vbl_start *= htotal;
687 vbl_end *= htotal;
688 vtotal *= htotal;
689 }
690
691 in_vbl = position >= vbl_start && position < vbl_end;
692
693 /*
694 * While in vblank, position will be negative
695 * counting up towards 0 at vbl_end. And outside
696 * vblank, position will be positive counting
697 * up since vbl_end.
698 */
699 if (position >= vbl_start)
700 position -= vbl_end;
701 else
702 position += vtotal - vbl_end;
703
704 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
705 *vpos = position;
706 *hpos = 0;
707 } else {
708 *vpos = position / htotal;
709 *hpos = position - (*vpos * htotal);
710 }
711
712 /* In vblank? */
713 if (in_vbl)
714 ret |= DRM_SCANOUTPOS_INVBL;
715
716 return ret;
717 }
718
719 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
720 int *max_error,
721 struct timeval *vblank_time,
722 unsigned flags)
723 {
724 struct drm_crtc *crtc;
725
726 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
727 DRM_ERROR("Invalid crtc %d\n", pipe);
728 return -EINVAL;
729 }
730
731 /* Get drm_crtc to timestamp: */
732 crtc = intel_get_crtc_for_pipe(dev, pipe);
733 if (crtc == NULL) {
734 DRM_ERROR("Invalid crtc %d\n", pipe);
735 return -EINVAL;
736 }
737
738 if (!crtc->enabled) {
739 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
740 return -EBUSY;
741 }
742
743 /* Helper routine in DRM core does all the work: */
744 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
745 vblank_time, flags,
746 crtc);
747 }
748
749 static bool intel_hpd_irq_event(struct drm_device *dev,
750 struct drm_connector *connector)
751 {
752 enum drm_connector_status old_status;
753
754 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
755 old_status = connector->status;
756
757 connector->status = connector->funcs->detect(connector, false);
758 if (old_status == connector->status)
759 return false;
760
761 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
762 connector->base.id,
763 drm_get_connector_name(connector),
764 drm_get_connector_status_name(old_status),
765 drm_get_connector_status_name(connector->status));
766
767 return true;
768 }
769
770 /*
771 * Handle hotplug events outside the interrupt handler proper.
772 */
773 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
774
775 static void i915_hotplug_work_func(struct work_struct *work)
776 {
777 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
778 hotplug_work);
779 struct drm_device *dev = dev_priv->dev;
780 struct drm_mode_config *mode_config = &dev->mode_config;
781 struct intel_connector *intel_connector;
782 struct intel_encoder *intel_encoder;
783 struct drm_connector *connector;
784 unsigned long irqflags;
785 bool hpd_disabled = false;
786 bool changed = false;
787 u32 hpd_event_bits;
788
789 /* HPD irq before everything is fully set up. */
790 if (!dev_priv->enable_hotplug_processing)
791 return;
792
793 mutex_lock(&mode_config->mutex);
794 DRM_DEBUG_KMS("running encoder hotplug functions\n");
795
796 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
797
798 hpd_event_bits = dev_priv->hpd_event_bits;
799 dev_priv->hpd_event_bits = 0;
800 list_for_each_entry(connector, &mode_config->connector_list, head) {
801 intel_connector = to_intel_connector(connector);
802 intel_encoder = intel_connector->encoder;
803 if (intel_encoder->hpd_pin > HPD_NONE &&
804 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
805 connector->polled == DRM_CONNECTOR_POLL_HPD) {
806 DRM_INFO("HPD interrupt storm detected on connector %s: "
807 "switching from hotplug detection to polling\n",
808 drm_get_connector_name(connector));
809 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
810 connector->polled = DRM_CONNECTOR_POLL_CONNECT
811 | DRM_CONNECTOR_POLL_DISCONNECT;
812 hpd_disabled = true;
813 }
814 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
815 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
816 drm_get_connector_name(connector), intel_encoder->hpd_pin);
817 }
818 }
819 /* if there were no outputs to poll, poll was disabled,
820 * therefore make sure it's enabled when disabling HPD on
821 * some connectors */
822 if (hpd_disabled) {
823 drm_kms_helper_poll_enable(dev);
824 mod_timer(&dev_priv->hotplug_reenable_timer,
825 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
826 }
827
828 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
829
830 list_for_each_entry(connector, &mode_config->connector_list, head) {
831 intel_connector = to_intel_connector(connector);
832 intel_encoder = intel_connector->encoder;
833 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
834 if (intel_encoder->hot_plug)
835 intel_encoder->hot_plug(intel_encoder);
836 if (intel_hpd_irq_event(dev, connector))
837 changed = true;
838 }
839 }
840 mutex_unlock(&mode_config->mutex);
841
842 if (changed)
843 drm_kms_helper_hotplug_event(dev);
844 }
845
846 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
847 {
848 drm_i915_private_t *dev_priv = dev->dev_private;
849 u32 busy_up, busy_down, max_avg, min_avg;
850 u8 new_delay;
851
852 spin_lock(&mchdev_lock);
853
854 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
855
856 new_delay = dev_priv->ips.cur_delay;
857
858 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
859 busy_up = I915_READ(RCPREVBSYTUPAVG);
860 busy_down = I915_READ(RCPREVBSYTDNAVG);
861 max_avg = I915_READ(RCBMAXAVG);
862 min_avg = I915_READ(RCBMINAVG);
863
864 /* Handle RCS change request from hw */
865 if (busy_up > max_avg) {
866 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
867 new_delay = dev_priv->ips.cur_delay - 1;
868 if (new_delay < dev_priv->ips.max_delay)
869 new_delay = dev_priv->ips.max_delay;
870 } else if (busy_down < min_avg) {
871 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
872 new_delay = dev_priv->ips.cur_delay + 1;
873 if (new_delay > dev_priv->ips.min_delay)
874 new_delay = dev_priv->ips.min_delay;
875 }
876
877 if (ironlake_set_drps(dev, new_delay))
878 dev_priv->ips.cur_delay = new_delay;
879
880 spin_unlock(&mchdev_lock);
881
882 return;
883 }
884
885 static void notify_ring(struct drm_device *dev,
886 struct intel_ring_buffer *ring)
887 {
888 if (ring->obj == NULL)
889 return;
890
891 trace_i915_gem_request_complete(ring);
892
893 wake_up_all(&ring->irq_queue);
894 i915_queue_hangcheck(dev);
895 }
896
897 static void gen6_pm_rps_work(struct work_struct *work)
898 {
899 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
900 rps.work);
901 u32 pm_iir;
902 int new_delay, adj;
903
904 spin_lock_irq(&dev_priv->irq_lock);
905 pm_iir = dev_priv->rps.pm_iir;
906 dev_priv->rps.pm_iir = 0;
907 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
908 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
909 spin_unlock_irq(&dev_priv->irq_lock);
910
911 /* Make sure we didn't queue anything we're not going to process. */
912 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
913
914 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
915 return;
916
917 mutex_lock(&dev_priv->rps.hw_lock);
918
919 adj = dev_priv->rps.last_adj;
920 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
921 if (adj > 0)
922 adj *= 2;
923 else
924 adj = 1;
925 new_delay = dev_priv->rps.cur_delay + adj;
926
927 /*
928 * For better performance, jump directly
929 * to RPe if we're below it.
930 */
931 if (new_delay < dev_priv->rps.rpe_delay)
932 new_delay = dev_priv->rps.rpe_delay;
933 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
934 if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
935 new_delay = dev_priv->rps.rpe_delay;
936 else
937 new_delay = dev_priv->rps.min_delay;
938 adj = 0;
939 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
940 if (adj < 0)
941 adj *= 2;
942 else
943 adj = -1;
944 new_delay = dev_priv->rps.cur_delay + adj;
945 } else { /* unknown event */
946 new_delay = dev_priv->rps.cur_delay;
947 }
948
949 /* sysfs frequency interfaces may have snuck in while servicing the
950 * interrupt
951 */
952 if (new_delay < (int)dev_priv->rps.min_delay)
953 new_delay = dev_priv->rps.min_delay;
954 if (new_delay > (int)dev_priv->rps.max_delay)
955 new_delay = dev_priv->rps.max_delay;
956 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay;
957
958 if (IS_VALLEYVIEW(dev_priv->dev))
959 valleyview_set_rps(dev_priv->dev, new_delay);
960 else
961 gen6_set_rps(dev_priv->dev, new_delay);
962
963 mutex_unlock(&dev_priv->rps.hw_lock);
964 }
965
966
967 /**
968 * ivybridge_parity_work - Workqueue called when a parity error interrupt
969 * occurred.
970 * @work: workqueue struct
971 *
972 * Doesn't actually do anything except notify userspace. As a consequence of
973 * this event, userspace should try to remap the bad rows since statistically
974 * it is likely the same row is more likely to go bad again.
975 */
976 static void ivybridge_parity_work(struct work_struct *work)
977 {
978 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
979 l3_parity.error_work);
980 u32 error_status, row, bank, subbank;
981 char *parity_event[6];
982 uint32_t misccpctl;
983 unsigned long flags;
984 uint8_t slice = 0;
985
986 /* We must turn off DOP level clock gating to access the L3 registers.
987 * In order to prevent a get/put style interface, acquire struct mutex
988 * any time we access those registers.
989 */
990 mutex_lock(&dev_priv->dev->struct_mutex);
991
992 /* If we've screwed up tracking, just let the interrupt fire again */
993 if (WARN_ON(!dev_priv->l3_parity.which_slice))
994 goto out;
995
996 misccpctl = I915_READ(GEN7_MISCCPCTL);
997 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
998 POSTING_READ(GEN7_MISCCPCTL);
999
1000 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1001 u32 reg;
1002
1003 slice--;
1004 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1005 break;
1006
1007 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1008
1009 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1010
1011 error_status = I915_READ(reg);
1012 row = GEN7_PARITY_ERROR_ROW(error_status);
1013 bank = GEN7_PARITY_ERROR_BANK(error_status);
1014 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1015
1016 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1017 POSTING_READ(reg);
1018
1019 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1020 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1021 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1022 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1023 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1024 parity_event[5] = NULL;
1025
1026 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
1027 KOBJ_CHANGE, parity_event);
1028
1029 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1030 slice, row, bank, subbank);
1031
1032 kfree(parity_event[4]);
1033 kfree(parity_event[3]);
1034 kfree(parity_event[2]);
1035 kfree(parity_event[1]);
1036 }
1037
1038 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1039
1040 out:
1041 WARN_ON(dev_priv->l3_parity.which_slice);
1042 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1043 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1044 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1045
1046 mutex_unlock(&dev_priv->dev->struct_mutex);
1047 }
1048
1049 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1050 {
1051 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1052
1053 if (!HAS_L3_DPF(dev))
1054 return;
1055
1056 spin_lock(&dev_priv->irq_lock);
1057 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1058 spin_unlock(&dev_priv->irq_lock);
1059
1060 iir &= GT_PARITY_ERROR(dev);
1061 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1062 dev_priv->l3_parity.which_slice |= 1 << 1;
1063
1064 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1065 dev_priv->l3_parity.which_slice |= 1 << 0;
1066
1067 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1068 }
1069
1070 static void ilk_gt_irq_handler(struct drm_device *dev,
1071 struct drm_i915_private *dev_priv,
1072 u32 gt_iir)
1073 {
1074 if (gt_iir &
1075 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1076 notify_ring(dev, &dev_priv->ring[RCS]);
1077 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1078 notify_ring(dev, &dev_priv->ring[VCS]);
1079 }
1080
1081 static void snb_gt_irq_handler(struct drm_device *dev,
1082 struct drm_i915_private *dev_priv,
1083 u32 gt_iir)
1084 {
1085
1086 if (gt_iir &
1087 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1088 notify_ring(dev, &dev_priv->ring[RCS]);
1089 if (gt_iir & GT_BSD_USER_INTERRUPT)
1090 notify_ring(dev, &dev_priv->ring[VCS]);
1091 if (gt_iir & GT_BLT_USER_INTERRUPT)
1092 notify_ring(dev, &dev_priv->ring[BCS]);
1093
1094 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1095 GT_BSD_CS_ERROR_INTERRUPT |
1096 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1097 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1098 i915_handle_error(dev, false);
1099 }
1100
1101 if (gt_iir & GT_PARITY_ERROR(dev))
1102 ivybridge_parity_error_irq_handler(dev, gt_iir);
1103 }
1104
1105 #define HPD_STORM_DETECT_PERIOD 1000
1106 #define HPD_STORM_THRESHOLD 5
1107
1108 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1109 u32 hotplug_trigger,
1110 const u32 *hpd)
1111 {
1112 drm_i915_private_t *dev_priv = dev->dev_private;
1113 int i;
1114 bool storm_detected = false;
1115
1116 if (!hotplug_trigger)
1117 return;
1118
1119 spin_lock(&dev_priv->irq_lock);
1120 for (i = 1; i < HPD_NUM_PINS; i++) {
1121
1122 WARN(((hpd[i] & hotplug_trigger) &&
1123 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1124 "Received HPD interrupt although disabled\n");
1125
1126 if (!(hpd[i] & hotplug_trigger) ||
1127 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1128 continue;
1129
1130 dev_priv->hpd_event_bits |= (1 << i);
1131 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1132 dev_priv->hpd_stats[i].hpd_last_jiffies
1133 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1134 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1135 dev_priv->hpd_stats[i].hpd_cnt = 0;
1136 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1137 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1138 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1139 dev_priv->hpd_event_bits &= ~(1 << i);
1140 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1141 storm_detected = true;
1142 } else {
1143 dev_priv->hpd_stats[i].hpd_cnt++;
1144 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1145 dev_priv->hpd_stats[i].hpd_cnt);
1146 }
1147 }
1148
1149 if (storm_detected)
1150 dev_priv->display.hpd_irq_setup(dev);
1151 spin_unlock(&dev_priv->irq_lock);
1152
1153 /*
1154 * Our hotplug handler can grab modeset locks (by calling down into the
1155 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1156 * queue for otherwise the flush_work in the pageflip code will
1157 * deadlock.
1158 */
1159 schedule_work(&dev_priv->hotplug_work);
1160 }
1161
1162 static void gmbus_irq_handler(struct drm_device *dev)
1163 {
1164 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1165
1166 wake_up_all(&dev_priv->gmbus_wait_queue);
1167 }
1168
1169 static void dp_aux_irq_handler(struct drm_device *dev)
1170 {
1171 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1172
1173 wake_up_all(&dev_priv->gmbus_wait_queue);
1174 }
1175
1176 /* The RPS events need forcewake, so we add them to a work queue and mask their
1177 * IMR bits until the work is done. Other interrupts can be processed without
1178 * the work queue. */
1179 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1180 {
1181 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1182 spin_lock(&dev_priv->irq_lock);
1183 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1184 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1185 spin_unlock(&dev_priv->irq_lock);
1186
1187 queue_work(dev_priv->wq, &dev_priv->rps.work);
1188 }
1189
1190 if (HAS_VEBOX(dev_priv->dev)) {
1191 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1192 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1193
1194 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1195 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1196 i915_handle_error(dev_priv->dev, false);
1197 }
1198 }
1199 }
1200
1201 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1202 {
1203 struct drm_device *dev = (struct drm_device *) arg;
1204 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1205 u32 iir, gt_iir, pm_iir;
1206 irqreturn_t ret = IRQ_NONE;
1207 unsigned long irqflags;
1208 int pipe;
1209 u32 pipe_stats[I915_MAX_PIPES];
1210
1211 atomic_inc(&dev_priv->irq_received);
1212
1213 while (true) {
1214 iir = I915_READ(VLV_IIR);
1215 gt_iir = I915_READ(GTIIR);
1216 pm_iir = I915_READ(GEN6_PMIIR);
1217
1218 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1219 goto out;
1220
1221 ret = IRQ_HANDLED;
1222
1223 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1224
1225 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1226 for_each_pipe(pipe) {
1227 int reg = PIPESTAT(pipe);
1228 pipe_stats[pipe] = I915_READ(reg);
1229
1230 /*
1231 * Clear the PIPE*STAT regs before the IIR
1232 */
1233 if (pipe_stats[pipe] & 0x8000ffff) {
1234 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1235 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1236 pipe_name(pipe));
1237 I915_WRITE(reg, pipe_stats[pipe]);
1238 }
1239 }
1240 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1241
1242 for_each_pipe(pipe) {
1243 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1244 drm_handle_vblank(dev, pipe);
1245
1246 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1247 intel_prepare_page_flip(dev, pipe);
1248 intel_finish_page_flip(dev, pipe);
1249 }
1250 }
1251
1252 /* Consume port. Then clear IIR or we'll miss events */
1253 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1254 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1255 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1256
1257 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1258 hotplug_status);
1259
1260 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1261
1262 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1263 I915_READ(PORT_HOTPLUG_STAT);
1264 }
1265
1266 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1267 gmbus_irq_handler(dev);
1268
1269 if (pm_iir)
1270 gen6_rps_irq_handler(dev_priv, pm_iir);
1271
1272 I915_WRITE(GTIIR, gt_iir);
1273 I915_WRITE(GEN6_PMIIR, pm_iir);
1274 I915_WRITE(VLV_IIR, iir);
1275 }
1276
1277 out:
1278 return ret;
1279 }
1280
1281 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1282 {
1283 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1284 int pipe;
1285 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1286
1287 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1288
1289 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1290 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1291 SDE_AUDIO_POWER_SHIFT);
1292 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1293 port_name(port));
1294 }
1295
1296 if (pch_iir & SDE_AUX_MASK)
1297 dp_aux_irq_handler(dev);
1298
1299 if (pch_iir & SDE_GMBUS)
1300 gmbus_irq_handler(dev);
1301
1302 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1303 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1304
1305 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1306 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1307
1308 if (pch_iir & SDE_POISON)
1309 DRM_ERROR("PCH poison interrupt\n");
1310
1311 if (pch_iir & SDE_FDI_MASK)
1312 for_each_pipe(pipe)
1313 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1314 pipe_name(pipe),
1315 I915_READ(FDI_RX_IIR(pipe)));
1316
1317 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1318 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1319
1320 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1321 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1322
1323 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1324 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1325 false))
1326 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1327
1328 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1329 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1330 false))
1331 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1332 }
1333
1334 static void ivb_err_int_handler(struct drm_device *dev)
1335 {
1336 struct drm_i915_private *dev_priv = dev->dev_private;
1337 u32 err_int = I915_READ(GEN7_ERR_INT);
1338
1339 if (err_int & ERR_INT_POISON)
1340 DRM_ERROR("Poison interrupt\n");
1341
1342 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1343 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1344 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1345
1346 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1347 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1348 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1349
1350 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1351 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1352 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1353
1354 I915_WRITE(GEN7_ERR_INT, err_int);
1355 }
1356
1357 static void cpt_serr_int_handler(struct drm_device *dev)
1358 {
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 u32 serr_int = I915_READ(SERR_INT);
1361
1362 if (serr_int & SERR_INT_POISON)
1363 DRM_ERROR("PCH poison interrupt\n");
1364
1365 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1366 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1367 false))
1368 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1369
1370 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1371 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1372 false))
1373 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1374
1375 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1376 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1377 false))
1378 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1379
1380 I915_WRITE(SERR_INT, serr_int);
1381 }
1382
1383 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1384 {
1385 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1386 int pipe;
1387 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1388
1389 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1390
1391 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1392 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1393 SDE_AUDIO_POWER_SHIFT_CPT);
1394 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1395 port_name(port));
1396 }
1397
1398 if (pch_iir & SDE_AUX_MASK_CPT)
1399 dp_aux_irq_handler(dev);
1400
1401 if (pch_iir & SDE_GMBUS_CPT)
1402 gmbus_irq_handler(dev);
1403
1404 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1405 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1406
1407 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1408 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1409
1410 if (pch_iir & SDE_FDI_MASK_CPT)
1411 for_each_pipe(pipe)
1412 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1413 pipe_name(pipe),
1414 I915_READ(FDI_RX_IIR(pipe)));
1415
1416 if (pch_iir & SDE_ERROR_CPT)
1417 cpt_serr_int_handler(dev);
1418 }
1419
1420 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1421 {
1422 struct drm_i915_private *dev_priv = dev->dev_private;
1423
1424 if (de_iir & DE_AUX_CHANNEL_A)
1425 dp_aux_irq_handler(dev);
1426
1427 if (de_iir & DE_GSE)
1428 intel_opregion_asle_intr(dev);
1429
1430 if (de_iir & DE_PIPEA_VBLANK)
1431 drm_handle_vblank(dev, 0);
1432
1433 if (de_iir & DE_PIPEB_VBLANK)
1434 drm_handle_vblank(dev, 1);
1435
1436 if (de_iir & DE_POISON)
1437 DRM_ERROR("Poison interrupt\n");
1438
1439 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1440 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1441 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1442
1443 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1444 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1445 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1446
1447 if (de_iir & DE_PLANEA_FLIP_DONE) {
1448 intel_prepare_page_flip(dev, 0);
1449 intel_finish_page_flip_plane(dev, 0);
1450 }
1451
1452 if (de_iir & DE_PLANEB_FLIP_DONE) {
1453 intel_prepare_page_flip(dev, 1);
1454 intel_finish_page_flip_plane(dev, 1);
1455 }
1456
1457 /* check event from PCH */
1458 if (de_iir & DE_PCH_EVENT) {
1459 u32 pch_iir = I915_READ(SDEIIR);
1460
1461 if (HAS_PCH_CPT(dev))
1462 cpt_irq_handler(dev, pch_iir);
1463 else
1464 ibx_irq_handler(dev, pch_iir);
1465
1466 /* should clear PCH hotplug event before clear CPU irq */
1467 I915_WRITE(SDEIIR, pch_iir);
1468 }
1469
1470 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1471 ironlake_rps_change_irq_handler(dev);
1472 }
1473
1474 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1475 {
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 int i;
1478
1479 if (de_iir & DE_ERR_INT_IVB)
1480 ivb_err_int_handler(dev);
1481
1482 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1483 dp_aux_irq_handler(dev);
1484
1485 if (de_iir & DE_GSE_IVB)
1486 intel_opregion_asle_intr(dev);
1487
1488 for (i = 0; i < 3; i++) {
1489 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1490 drm_handle_vblank(dev, i);
1491 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1492 intel_prepare_page_flip(dev, i);
1493 intel_finish_page_flip_plane(dev, i);
1494 }
1495 }
1496
1497 /* check event from PCH */
1498 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1499 u32 pch_iir = I915_READ(SDEIIR);
1500
1501 cpt_irq_handler(dev, pch_iir);
1502
1503 /* clear PCH hotplug event before clear CPU irq */
1504 I915_WRITE(SDEIIR, pch_iir);
1505 }
1506 }
1507
1508 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1509 {
1510 struct drm_device *dev = (struct drm_device *) arg;
1511 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1512 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1513 irqreturn_t ret = IRQ_NONE;
1514
1515 atomic_inc(&dev_priv->irq_received);
1516
1517 /* We get interrupts on unclaimed registers, so check for this before we
1518 * do any I915_{READ,WRITE}. */
1519 intel_uncore_check_errors(dev);
1520
1521 /* disable master interrupt before clearing iir */
1522 de_ier = I915_READ(DEIER);
1523 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1524 POSTING_READ(DEIER);
1525
1526 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1527 * interrupts will will be stored on its back queue, and then we'll be
1528 * able to process them after we restore SDEIER (as soon as we restore
1529 * it, we'll get an interrupt if SDEIIR still has something to process
1530 * due to its back queue). */
1531 if (!HAS_PCH_NOP(dev)) {
1532 sde_ier = I915_READ(SDEIER);
1533 I915_WRITE(SDEIER, 0);
1534 POSTING_READ(SDEIER);
1535 }
1536
1537 gt_iir = I915_READ(GTIIR);
1538 if (gt_iir) {
1539 if (INTEL_INFO(dev)->gen >= 6)
1540 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1541 else
1542 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1543 I915_WRITE(GTIIR, gt_iir);
1544 ret = IRQ_HANDLED;
1545 }
1546
1547 de_iir = I915_READ(DEIIR);
1548 if (de_iir) {
1549 if (INTEL_INFO(dev)->gen >= 7)
1550 ivb_display_irq_handler(dev, de_iir);
1551 else
1552 ilk_display_irq_handler(dev, de_iir);
1553 I915_WRITE(DEIIR, de_iir);
1554 ret = IRQ_HANDLED;
1555 }
1556
1557 if (INTEL_INFO(dev)->gen >= 6) {
1558 u32 pm_iir = I915_READ(GEN6_PMIIR);
1559 if (pm_iir) {
1560 gen6_rps_irq_handler(dev_priv, pm_iir);
1561 I915_WRITE(GEN6_PMIIR, pm_iir);
1562 ret = IRQ_HANDLED;
1563 }
1564 }
1565
1566 I915_WRITE(DEIER, de_ier);
1567 POSTING_READ(DEIER);
1568 if (!HAS_PCH_NOP(dev)) {
1569 I915_WRITE(SDEIER, sde_ier);
1570 POSTING_READ(SDEIER);
1571 }
1572
1573 return ret;
1574 }
1575
1576 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1577 bool reset_completed)
1578 {
1579 struct intel_ring_buffer *ring;
1580 int i;
1581
1582 /*
1583 * Notify all waiters for GPU completion events that reset state has
1584 * been changed, and that they need to restart their wait after
1585 * checking for potential errors (and bail out to drop locks if there is
1586 * a gpu reset pending so that i915_error_work_func can acquire them).
1587 */
1588
1589 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1590 for_each_ring(ring, dev_priv, i)
1591 wake_up_all(&ring->irq_queue);
1592
1593 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1594 wake_up_all(&dev_priv->pending_flip_queue);
1595
1596 /*
1597 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1598 * reset state is cleared.
1599 */
1600 if (reset_completed)
1601 wake_up_all(&dev_priv->gpu_error.reset_queue);
1602 }
1603
1604 /**
1605 * i915_error_work_func - do process context error handling work
1606 * @work: work struct
1607 *
1608 * Fire an error uevent so userspace can see that a hang or error
1609 * was detected.
1610 */
1611 static void i915_error_work_func(struct work_struct *work)
1612 {
1613 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1614 work);
1615 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1616 gpu_error);
1617 struct drm_device *dev = dev_priv->dev;
1618 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1619 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1620 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1621 int ret;
1622
1623 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1624
1625 /*
1626 * Note that there's only one work item which does gpu resets, so we
1627 * need not worry about concurrent gpu resets potentially incrementing
1628 * error->reset_counter twice. We only need to take care of another
1629 * racing irq/hangcheck declaring the gpu dead for a second time. A
1630 * quick check for that is good enough: schedule_work ensures the
1631 * correct ordering between hang detection and this work item, and since
1632 * the reset in-progress bit is only ever set by code outside of this
1633 * work we don't need to worry about any other races.
1634 */
1635 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1636 DRM_DEBUG_DRIVER("resetting chip\n");
1637 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1638 reset_event);
1639
1640 /*
1641 * All state reset _must_ be completed before we update the
1642 * reset counter, for otherwise waiters might miss the reset
1643 * pending state and not properly drop locks, resulting in
1644 * deadlocks with the reset work.
1645 */
1646 ret = i915_reset(dev);
1647
1648 intel_display_handle_reset(dev);
1649
1650 if (ret == 0) {
1651 /*
1652 * After all the gem state is reset, increment the reset
1653 * counter and wake up everyone waiting for the reset to
1654 * complete.
1655 *
1656 * Since unlock operations are a one-sided barrier only,
1657 * we need to insert a barrier here to order any seqno
1658 * updates before
1659 * the counter increment.
1660 */
1661 smp_mb__before_atomic_inc();
1662 atomic_inc(&dev_priv->gpu_error.reset_counter);
1663
1664 kobject_uevent_env(&dev->primary->kdev.kobj,
1665 KOBJ_CHANGE, reset_done_event);
1666 } else {
1667 atomic_set(&error->reset_counter, I915_WEDGED);
1668 }
1669
1670 /*
1671 * Note: The wake_up also serves as a memory barrier so that
1672 * waiters see the update value of the reset counter atomic_t.
1673 */
1674 i915_error_wake_up(dev_priv, true);
1675 }
1676 }
1677
1678 static void i915_report_and_clear_eir(struct drm_device *dev)
1679 {
1680 struct drm_i915_private *dev_priv = dev->dev_private;
1681 uint32_t instdone[I915_NUM_INSTDONE_REG];
1682 u32 eir = I915_READ(EIR);
1683 int pipe, i;
1684
1685 if (!eir)
1686 return;
1687
1688 pr_err("render error detected, EIR: 0x%08x\n", eir);
1689
1690 i915_get_extra_instdone(dev, instdone);
1691
1692 if (IS_G4X(dev)) {
1693 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1694 u32 ipeir = I915_READ(IPEIR_I965);
1695
1696 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1697 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1698 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1699 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1700 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1701 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1702 I915_WRITE(IPEIR_I965, ipeir);
1703 POSTING_READ(IPEIR_I965);
1704 }
1705 if (eir & GM45_ERROR_PAGE_TABLE) {
1706 u32 pgtbl_err = I915_READ(PGTBL_ER);
1707 pr_err("page table error\n");
1708 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1709 I915_WRITE(PGTBL_ER, pgtbl_err);
1710 POSTING_READ(PGTBL_ER);
1711 }
1712 }
1713
1714 if (!IS_GEN2(dev)) {
1715 if (eir & I915_ERROR_PAGE_TABLE) {
1716 u32 pgtbl_err = I915_READ(PGTBL_ER);
1717 pr_err("page table error\n");
1718 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1719 I915_WRITE(PGTBL_ER, pgtbl_err);
1720 POSTING_READ(PGTBL_ER);
1721 }
1722 }
1723
1724 if (eir & I915_ERROR_MEMORY_REFRESH) {
1725 pr_err("memory refresh error:\n");
1726 for_each_pipe(pipe)
1727 pr_err("pipe %c stat: 0x%08x\n",
1728 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1729 /* pipestat has already been acked */
1730 }
1731 if (eir & I915_ERROR_INSTRUCTION) {
1732 pr_err("instruction error\n");
1733 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1734 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1735 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1736 if (INTEL_INFO(dev)->gen < 4) {
1737 u32 ipeir = I915_READ(IPEIR);
1738
1739 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1740 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1741 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1742 I915_WRITE(IPEIR, ipeir);
1743 POSTING_READ(IPEIR);
1744 } else {
1745 u32 ipeir = I915_READ(IPEIR_I965);
1746
1747 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1748 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1749 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1750 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1751 I915_WRITE(IPEIR_I965, ipeir);
1752 POSTING_READ(IPEIR_I965);
1753 }
1754 }
1755
1756 I915_WRITE(EIR, eir);
1757 POSTING_READ(EIR);
1758 eir = I915_READ(EIR);
1759 if (eir) {
1760 /*
1761 * some errors might have become stuck,
1762 * mask them.
1763 */
1764 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1765 I915_WRITE(EMR, I915_READ(EMR) | eir);
1766 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1767 }
1768 }
1769
1770 /**
1771 * i915_handle_error - handle an error interrupt
1772 * @dev: drm device
1773 *
1774 * Do some basic checking of regsiter state at error interrupt time and
1775 * dump it to the syslog. Also call i915_capture_error_state() to make
1776 * sure we get a record and make it available in debugfs. Fire a uevent
1777 * so userspace knows something bad happened (should trigger collection
1778 * of a ring dump etc.).
1779 */
1780 void i915_handle_error(struct drm_device *dev, bool wedged)
1781 {
1782 struct drm_i915_private *dev_priv = dev->dev_private;
1783
1784 i915_capture_error_state(dev);
1785 i915_report_and_clear_eir(dev);
1786
1787 if (wedged) {
1788 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1789 &dev_priv->gpu_error.reset_counter);
1790
1791 /*
1792 * Wakeup waiting processes so that the reset work function
1793 * i915_error_work_func doesn't deadlock trying to grab various
1794 * locks. By bumping the reset counter first, the woken
1795 * processes will see a reset in progress and back off,
1796 * releasing their locks and then wait for the reset completion.
1797 * We must do this for _all_ gpu waiters that might hold locks
1798 * that the reset work needs to acquire.
1799 *
1800 * Note: The wake_up serves as the required memory barrier to
1801 * ensure that the waiters see the updated value of the reset
1802 * counter atomic_t.
1803 */
1804 i915_error_wake_up(dev_priv, false);
1805 }
1806
1807 /*
1808 * Our reset work can grab modeset locks (since it needs to reset the
1809 * state of outstanding pagelips). Hence it must not be run on our own
1810 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1811 * code will deadlock.
1812 */
1813 schedule_work(&dev_priv->gpu_error.work);
1814 }
1815
1816 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1817 {
1818 drm_i915_private_t *dev_priv = dev->dev_private;
1819 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1821 struct drm_i915_gem_object *obj;
1822 struct intel_unpin_work *work;
1823 unsigned long flags;
1824 bool stall_detected;
1825
1826 /* Ignore early vblank irqs */
1827 if (intel_crtc == NULL)
1828 return;
1829
1830 spin_lock_irqsave(&dev->event_lock, flags);
1831 work = intel_crtc->unpin_work;
1832
1833 if (work == NULL ||
1834 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1835 !work->enable_stall_check) {
1836 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1837 spin_unlock_irqrestore(&dev->event_lock, flags);
1838 return;
1839 }
1840
1841 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1842 obj = work->pending_flip_obj;
1843 if (INTEL_INFO(dev)->gen >= 4) {
1844 int dspsurf = DSPSURF(intel_crtc->plane);
1845 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1846 i915_gem_obj_ggtt_offset(obj);
1847 } else {
1848 int dspaddr = DSPADDR(intel_crtc->plane);
1849 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1850 crtc->y * crtc->fb->pitches[0] +
1851 crtc->x * crtc->fb->bits_per_pixel/8);
1852 }
1853
1854 spin_unlock_irqrestore(&dev->event_lock, flags);
1855
1856 if (stall_detected) {
1857 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1858 intel_prepare_page_flip(dev, intel_crtc->plane);
1859 }
1860 }
1861
1862 /* Called from drm generic code, passed 'crtc' which
1863 * we use as a pipe index
1864 */
1865 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1866 {
1867 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1868 unsigned long irqflags;
1869
1870 if (!i915_pipe_enabled(dev, pipe))
1871 return -EINVAL;
1872
1873 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1874 if (INTEL_INFO(dev)->gen >= 4)
1875 i915_enable_pipestat(dev_priv, pipe,
1876 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1877 else
1878 i915_enable_pipestat(dev_priv, pipe,
1879 PIPE_VBLANK_INTERRUPT_ENABLE);
1880
1881 /* maintain vblank delivery even in deep C-states */
1882 if (dev_priv->info->gen == 3)
1883 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1884 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1885
1886 return 0;
1887 }
1888
1889 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1890 {
1891 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1892 unsigned long irqflags;
1893 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1894 DE_PIPE_VBLANK_ILK(pipe);
1895
1896 if (!i915_pipe_enabled(dev, pipe))
1897 return -EINVAL;
1898
1899 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1900 ironlake_enable_display_irq(dev_priv, bit);
1901 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1902
1903 return 0;
1904 }
1905
1906 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1907 {
1908 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1909 unsigned long irqflags;
1910 u32 imr;
1911
1912 if (!i915_pipe_enabled(dev, pipe))
1913 return -EINVAL;
1914
1915 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1916 imr = I915_READ(VLV_IMR);
1917 if (pipe == 0)
1918 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1919 else
1920 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1921 I915_WRITE(VLV_IMR, imr);
1922 i915_enable_pipestat(dev_priv, pipe,
1923 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1924 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1925
1926 return 0;
1927 }
1928
1929 /* Called from drm generic code, passed 'crtc' which
1930 * we use as a pipe index
1931 */
1932 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1933 {
1934 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1935 unsigned long irqflags;
1936
1937 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1938 if (dev_priv->info->gen == 3)
1939 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1940
1941 i915_disable_pipestat(dev_priv, pipe,
1942 PIPE_VBLANK_INTERRUPT_ENABLE |
1943 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1944 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1945 }
1946
1947 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1948 {
1949 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1950 unsigned long irqflags;
1951 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1952 DE_PIPE_VBLANK_ILK(pipe);
1953
1954 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1955 ironlake_disable_display_irq(dev_priv, bit);
1956 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1957 }
1958
1959 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1960 {
1961 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1962 unsigned long irqflags;
1963 u32 imr;
1964
1965 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1966 i915_disable_pipestat(dev_priv, pipe,
1967 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1968 imr = I915_READ(VLV_IMR);
1969 if (pipe == 0)
1970 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1971 else
1972 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1973 I915_WRITE(VLV_IMR, imr);
1974 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1975 }
1976
1977 static u32
1978 ring_last_seqno(struct intel_ring_buffer *ring)
1979 {
1980 return list_entry(ring->request_list.prev,
1981 struct drm_i915_gem_request, list)->seqno;
1982 }
1983
1984 static bool
1985 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1986 {
1987 return (list_empty(&ring->request_list) ||
1988 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1989 }
1990
1991 static struct intel_ring_buffer *
1992 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1993 {
1994 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1995 u32 cmd, ipehr, acthd, acthd_min;
1996
1997 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1998 if ((ipehr & ~(0x3 << 16)) !=
1999 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2000 return NULL;
2001
2002 /* ACTHD is likely pointing to the dword after the actual command,
2003 * so scan backwards until we find the MBOX.
2004 */
2005 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2006 acthd_min = max((int)acthd - 3 * 4, 0);
2007 do {
2008 cmd = ioread32(ring->virtual_start + acthd);
2009 if (cmd == ipehr)
2010 break;
2011
2012 acthd -= 4;
2013 if (acthd < acthd_min)
2014 return NULL;
2015 } while (1);
2016
2017 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2018 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2019 }
2020
2021 static int semaphore_passed(struct intel_ring_buffer *ring)
2022 {
2023 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2024 struct intel_ring_buffer *signaller;
2025 u32 seqno, ctl;
2026
2027 ring->hangcheck.deadlock = true;
2028
2029 signaller = semaphore_waits_for(ring, &seqno);
2030 if (signaller == NULL || signaller->hangcheck.deadlock)
2031 return -1;
2032
2033 /* cursory check for an unkickable deadlock */
2034 ctl = I915_READ_CTL(signaller);
2035 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2036 return -1;
2037
2038 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2039 }
2040
2041 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2042 {
2043 struct intel_ring_buffer *ring;
2044 int i;
2045
2046 for_each_ring(ring, dev_priv, i)
2047 ring->hangcheck.deadlock = false;
2048 }
2049
2050 static enum intel_ring_hangcheck_action
2051 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2052 {
2053 struct drm_device *dev = ring->dev;
2054 struct drm_i915_private *dev_priv = dev->dev_private;
2055 u32 tmp;
2056
2057 if (ring->hangcheck.acthd != acthd)
2058 return HANGCHECK_ACTIVE;
2059
2060 if (IS_GEN2(dev))
2061 return HANGCHECK_HUNG;
2062
2063 /* Is the chip hanging on a WAIT_FOR_EVENT?
2064 * If so we can simply poke the RB_WAIT bit
2065 * and break the hang. This should work on
2066 * all but the second generation chipsets.
2067 */
2068 tmp = I915_READ_CTL(ring);
2069 if (tmp & RING_WAIT) {
2070 DRM_ERROR("Kicking stuck wait on %s\n",
2071 ring->name);
2072 i915_handle_error(dev, false);
2073 I915_WRITE_CTL(ring, tmp);
2074 return HANGCHECK_KICK;
2075 }
2076
2077 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2078 switch (semaphore_passed(ring)) {
2079 default:
2080 return HANGCHECK_HUNG;
2081 case 1:
2082 DRM_ERROR("Kicking stuck semaphore on %s\n",
2083 ring->name);
2084 i915_handle_error(dev, false);
2085 I915_WRITE_CTL(ring, tmp);
2086 return HANGCHECK_KICK;
2087 case 0:
2088 return HANGCHECK_WAIT;
2089 }
2090 }
2091
2092 return HANGCHECK_HUNG;
2093 }
2094
2095 /**
2096 * This is called when the chip hasn't reported back with completed
2097 * batchbuffers in a long time. We keep track per ring seqno progress and
2098 * if there are no progress, hangcheck score for that ring is increased.
2099 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2100 * we kick the ring. If we see no progress on three subsequent calls
2101 * we assume chip is wedged and try to fix it by resetting the chip.
2102 */
2103 static void i915_hangcheck_elapsed(unsigned long data)
2104 {
2105 struct drm_device *dev = (struct drm_device *)data;
2106 drm_i915_private_t *dev_priv = dev->dev_private;
2107 struct intel_ring_buffer *ring;
2108 int i;
2109 int busy_count = 0, rings_hung = 0;
2110 bool stuck[I915_NUM_RINGS] = { 0 };
2111 #define BUSY 1
2112 #define KICK 5
2113 #define HUNG 20
2114 #define FIRE 30
2115
2116 if (!i915_enable_hangcheck)
2117 return;
2118
2119 for_each_ring(ring, dev_priv, i) {
2120 u32 seqno, acthd;
2121 bool busy = true;
2122
2123 semaphore_clear_deadlocks(dev_priv);
2124
2125 seqno = ring->get_seqno(ring, false);
2126 acthd = intel_ring_get_active_head(ring);
2127
2128 if (ring->hangcheck.seqno == seqno) {
2129 if (ring_idle(ring, seqno)) {
2130 ring->hangcheck.action = HANGCHECK_IDLE;
2131
2132 if (waitqueue_active(&ring->irq_queue)) {
2133 /* Issue a wake-up to catch stuck h/w. */
2134 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2135 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2136 ring->name);
2137 wake_up_all(&ring->irq_queue);
2138 }
2139 /* Safeguard against driver failure */
2140 ring->hangcheck.score += BUSY;
2141 } else
2142 busy = false;
2143 } else {
2144 /* We always increment the hangcheck score
2145 * if the ring is busy and still processing
2146 * the same request, so that no single request
2147 * can run indefinitely (such as a chain of
2148 * batches). The only time we do not increment
2149 * the hangcheck score on this ring, if this
2150 * ring is in a legitimate wait for another
2151 * ring. In that case the waiting ring is a
2152 * victim and we want to be sure we catch the
2153 * right culprit. Then every time we do kick
2154 * the ring, add a small increment to the
2155 * score so that we can catch a batch that is
2156 * being repeatedly kicked and so responsible
2157 * for stalling the machine.
2158 */
2159 ring->hangcheck.action = ring_stuck(ring,
2160 acthd);
2161
2162 switch (ring->hangcheck.action) {
2163 case HANGCHECK_IDLE:
2164 case HANGCHECK_WAIT:
2165 break;
2166 case HANGCHECK_ACTIVE:
2167 ring->hangcheck.score += BUSY;
2168 break;
2169 case HANGCHECK_KICK:
2170 ring->hangcheck.score += KICK;
2171 break;
2172 case HANGCHECK_HUNG:
2173 ring->hangcheck.score += HUNG;
2174 stuck[i] = true;
2175 break;
2176 }
2177 }
2178 } else {
2179 ring->hangcheck.action = HANGCHECK_ACTIVE;
2180
2181 /* Gradually reduce the count so that we catch DoS
2182 * attempts across multiple batches.
2183 */
2184 if (ring->hangcheck.score > 0)
2185 ring->hangcheck.score--;
2186 }
2187
2188 ring->hangcheck.seqno = seqno;
2189 ring->hangcheck.acthd = acthd;
2190 busy_count += busy;
2191 }
2192
2193 for_each_ring(ring, dev_priv, i) {
2194 if (ring->hangcheck.score > FIRE) {
2195 DRM_INFO("%s on %s\n",
2196 stuck[i] ? "stuck" : "no progress",
2197 ring->name);
2198 rings_hung++;
2199 }
2200 }
2201
2202 if (rings_hung)
2203 return i915_handle_error(dev, true);
2204
2205 if (busy_count)
2206 /* Reset timer case chip hangs without another request
2207 * being added */
2208 i915_queue_hangcheck(dev);
2209 }
2210
2211 void i915_queue_hangcheck(struct drm_device *dev)
2212 {
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 if (!i915_enable_hangcheck)
2215 return;
2216
2217 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2218 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2219 }
2220
2221 static void ibx_irq_preinstall(struct drm_device *dev)
2222 {
2223 struct drm_i915_private *dev_priv = dev->dev_private;
2224
2225 if (HAS_PCH_NOP(dev))
2226 return;
2227
2228 /* south display irq */
2229 I915_WRITE(SDEIMR, 0xffffffff);
2230 /*
2231 * SDEIER is also touched by the interrupt handler to work around missed
2232 * PCH interrupts. Hence we can't update it after the interrupt handler
2233 * is enabled - instead we unconditionally enable all PCH interrupt
2234 * sources here, but then only unmask them as needed with SDEIMR.
2235 */
2236 I915_WRITE(SDEIER, 0xffffffff);
2237 POSTING_READ(SDEIER);
2238 }
2239
2240 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2241 {
2242 struct drm_i915_private *dev_priv = dev->dev_private;
2243
2244 /* and GT */
2245 I915_WRITE(GTIMR, 0xffffffff);
2246 I915_WRITE(GTIER, 0x0);
2247 POSTING_READ(GTIER);
2248
2249 if (INTEL_INFO(dev)->gen >= 6) {
2250 /* and PM */
2251 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2252 I915_WRITE(GEN6_PMIER, 0x0);
2253 POSTING_READ(GEN6_PMIER);
2254 }
2255 }
2256
2257 /* drm_dma.h hooks
2258 */
2259 static void ironlake_irq_preinstall(struct drm_device *dev)
2260 {
2261 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2262
2263 atomic_set(&dev_priv->irq_received, 0);
2264
2265 I915_WRITE(HWSTAM, 0xeffe);
2266
2267 I915_WRITE(DEIMR, 0xffffffff);
2268 I915_WRITE(DEIER, 0x0);
2269 POSTING_READ(DEIER);
2270
2271 gen5_gt_irq_preinstall(dev);
2272
2273 ibx_irq_preinstall(dev);
2274 }
2275
2276 static void valleyview_irq_preinstall(struct drm_device *dev)
2277 {
2278 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2279 int pipe;
2280
2281 atomic_set(&dev_priv->irq_received, 0);
2282
2283 /* VLV magic */
2284 I915_WRITE(VLV_IMR, 0);
2285 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2286 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2287 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2288
2289 /* and GT */
2290 I915_WRITE(GTIIR, I915_READ(GTIIR));
2291 I915_WRITE(GTIIR, I915_READ(GTIIR));
2292
2293 gen5_gt_irq_preinstall(dev);
2294
2295 I915_WRITE(DPINVGTT, 0xff);
2296
2297 I915_WRITE(PORT_HOTPLUG_EN, 0);
2298 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2299 for_each_pipe(pipe)
2300 I915_WRITE(PIPESTAT(pipe), 0xffff);
2301 I915_WRITE(VLV_IIR, 0xffffffff);
2302 I915_WRITE(VLV_IMR, 0xffffffff);
2303 I915_WRITE(VLV_IER, 0x0);
2304 POSTING_READ(VLV_IER);
2305 }
2306
2307 static void ibx_hpd_irq_setup(struct drm_device *dev)
2308 {
2309 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2310 struct drm_mode_config *mode_config = &dev->mode_config;
2311 struct intel_encoder *intel_encoder;
2312 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2313
2314 if (HAS_PCH_IBX(dev)) {
2315 hotplug_irqs = SDE_HOTPLUG_MASK;
2316 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2317 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2318 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2319 } else {
2320 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2321 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2322 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2323 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2324 }
2325
2326 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2327
2328 /*
2329 * Enable digital hotplug on the PCH, and configure the DP short pulse
2330 * duration to 2ms (which is the minimum in the Display Port spec)
2331 *
2332 * This register is the same on all known PCH chips.
2333 */
2334 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2335 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2336 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2337 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2338 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2339 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2340 }
2341
2342 static void ibx_irq_postinstall(struct drm_device *dev)
2343 {
2344 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2345 u32 mask;
2346
2347 if (HAS_PCH_NOP(dev))
2348 return;
2349
2350 if (HAS_PCH_IBX(dev)) {
2351 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2352 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2353 } else {
2354 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2355
2356 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2357 }
2358
2359 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2360 I915_WRITE(SDEIMR, ~mask);
2361 }
2362
2363 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2364 {
2365 struct drm_i915_private *dev_priv = dev->dev_private;
2366 u32 pm_irqs, gt_irqs;
2367
2368 pm_irqs = gt_irqs = 0;
2369
2370 dev_priv->gt_irq_mask = ~0;
2371 if (HAS_L3_DPF(dev)) {
2372 /* L3 parity interrupt is always unmasked. */
2373 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2374 gt_irqs |= GT_PARITY_ERROR(dev);
2375 }
2376
2377 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2378 if (IS_GEN5(dev)) {
2379 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2380 ILK_BSD_USER_INTERRUPT;
2381 } else {
2382 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2383 }
2384
2385 I915_WRITE(GTIIR, I915_READ(GTIIR));
2386 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2387 I915_WRITE(GTIER, gt_irqs);
2388 POSTING_READ(GTIER);
2389
2390 if (INTEL_INFO(dev)->gen >= 6) {
2391 pm_irqs |= GEN6_PM_RPS_EVENTS;
2392
2393 if (HAS_VEBOX(dev))
2394 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2395
2396 dev_priv->pm_irq_mask = 0xffffffff;
2397 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2398 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2399 I915_WRITE(GEN6_PMIER, pm_irqs);
2400 POSTING_READ(GEN6_PMIER);
2401 }
2402 }
2403
2404 static int ironlake_irq_postinstall(struct drm_device *dev)
2405 {
2406 unsigned long irqflags;
2407 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2408 u32 display_mask, extra_mask;
2409
2410 if (INTEL_INFO(dev)->gen >= 7) {
2411 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2412 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2413 DE_PLANEB_FLIP_DONE_IVB |
2414 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2415 DE_ERR_INT_IVB);
2416 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2417 DE_PIPEA_VBLANK_IVB);
2418
2419 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2420 } else {
2421 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2422 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2423 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2424 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2425 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2426 }
2427
2428 dev_priv->irq_mask = ~display_mask;
2429
2430 /* should always can generate irq */
2431 I915_WRITE(DEIIR, I915_READ(DEIIR));
2432 I915_WRITE(DEIMR, dev_priv->irq_mask);
2433 I915_WRITE(DEIER, display_mask | extra_mask);
2434 POSTING_READ(DEIER);
2435
2436 gen5_gt_irq_postinstall(dev);
2437
2438 ibx_irq_postinstall(dev);
2439
2440 if (IS_IRONLAKE_M(dev)) {
2441 /* Enable PCU event interrupts
2442 *
2443 * spinlocking not required here for correctness since interrupt
2444 * setup is guaranteed to run in single-threaded context. But we
2445 * need it to make the assert_spin_locked happy. */
2446 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2447 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2448 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2449 }
2450
2451 return 0;
2452 }
2453
2454 static int valleyview_irq_postinstall(struct drm_device *dev)
2455 {
2456 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2457 u32 enable_mask;
2458 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2459 unsigned long irqflags;
2460
2461 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2462 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2463 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2464 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2465 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2466
2467 /*
2468 *Leave vblank interrupts masked initially. enable/disable will
2469 * toggle them based on usage.
2470 */
2471 dev_priv->irq_mask = (~enable_mask) |
2472 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2473 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2474
2475 I915_WRITE(PORT_HOTPLUG_EN, 0);
2476 POSTING_READ(PORT_HOTPLUG_EN);
2477
2478 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2479 I915_WRITE(VLV_IER, enable_mask);
2480 I915_WRITE(VLV_IIR, 0xffffffff);
2481 I915_WRITE(PIPESTAT(0), 0xffff);
2482 I915_WRITE(PIPESTAT(1), 0xffff);
2483 POSTING_READ(VLV_IER);
2484
2485 /* Interrupt setup is already guaranteed to be single-threaded, this is
2486 * just to make the assert_spin_locked check happy. */
2487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2488 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2489 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2490 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2491 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2492
2493 I915_WRITE(VLV_IIR, 0xffffffff);
2494 I915_WRITE(VLV_IIR, 0xffffffff);
2495
2496 gen5_gt_irq_postinstall(dev);
2497
2498 /* ack & enable invalid PTE error interrupts */
2499 #if 0 /* FIXME: add support to irq handler for checking these bits */
2500 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2501 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2502 #endif
2503
2504 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2505
2506 return 0;
2507 }
2508
2509 static void valleyview_irq_uninstall(struct drm_device *dev)
2510 {
2511 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2512 int pipe;
2513
2514 if (!dev_priv)
2515 return;
2516
2517 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2518
2519 for_each_pipe(pipe)
2520 I915_WRITE(PIPESTAT(pipe), 0xffff);
2521
2522 I915_WRITE(HWSTAM, 0xffffffff);
2523 I915_WRITE(PORT_HOTPLUG_EN, 0);
2524 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2525 for_each_pipe(pipe)
2526 I915_WRITE(PIPESTAT(pipe), 0xffff);
2527 I915_WRITE(VLV_IIR, 0xffffffff);
2528 I915_WRITE(VLV_IMR, 0xffffffff);
2529 I915_WRITE(VLV_IER, 0x0);
2530 POSTING_READ(VLV_IER);
2531 }
2532
2533 static void ironlake_irq_uninstall(struct drm_device *dev)
2534 {
2535 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2536
2537 if (!dev_priv)
2538 return;
2539
2540 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2541
2542 I915_WRITE(HWSTAM, 0xffffffff);
2543
2544 I915_WRITE(DEIMR, 0xffffffff);
2545 I915_WRITE(DEIER, 0x0);
2546 I915_WRITE(DEIIR, I915_READ(DEIIR));
2547 if (IS_GEN7(dev))
2548 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2549
2550 I915_WRITE(GTIMR, 0xffffffff);
2551 I915_WRITE(GTIER, 0x0);
2552 I915_WRITE(GTIIR, I915_READ(GTIIR));
2553
2554 if (HAS_PCH_NOP(dev))
2555 return;
2556
2557 I915_WRITE(SDEIMR, 0xffffffff);
2558 I915_WRITE(SDEIER, 0x0);
2559 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2560 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2561 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2562 }
2563
2564 static void i8xx_irq_preinstall(struct drm_device * dev)
2565 {
2566 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2567 int pipe;
2568
2569 atomic_set(&dev_priv->irq_received, 0);
2570
2571 for_each_pipe(pipe)
2572 I915_WRITE(PIPESTAT(pipe), 0);
2573 I915_WRITE16(IMR, 0xffff);
2574 I915_WRITE16(IER, 0x0);
2575 POSTING_READ16(IER);
2576 }
2577
2578 static int i8xx_irq_postinstall(struct drm_device *dev)
2579 {
2580 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2581
2582 I915_WRITE16(EMR,
2583 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2584
2585 /* Unmask the interrupts that we always want on. */
2586 dev_priv->irq_mask =
2587 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2588 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2589 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2590 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2591 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2592 I915_WRITE16(IMR, dev_priv->irq_mask);
2593
2594 I915_WRITE16(IER,
2595 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2596 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2597 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2598 I915_USER_INTERRUPT);
2599 POSTING_READ16(IER);
2600
2601 return 0;
2602 }
2603
2604 /*
2605 * Returns true when a page flip has completed.
2606 */
2607 static bool i8xx_handle_vblank(struct drm_device *dev,
2608 int pipe, u16 iir)
2609 {
2610 drm_i915_private_t *dev_priv = dev->dev_private;
2611 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2612
2613 if (!drm_handle_vblank(dev, pipe))
2614 return false;
2615
2616 if ((iir & flip_pending) == 0)
2617 return false;
2618
2619 intel_prepare_page_flip(dev, pipe);
2620
2621 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2622 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2623 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2624 * the flip is completed (no longer pending). Since this doesn't raise
2625 * an interrupt per se, we watch for the change at vblank.
2626 */
2627 if (I915_READ16(ISR) & flip_pending)
2628 return false;
2629
2630 intel_finish_page_flip(dev, pipe);
2631
2632 return true;
2633 }
2634
2635 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2636 {
2637 struct drm_device *dev = (struct drm_device *) arg;
2638 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2639 u16 iir, new_iir;
2640 u32 pipe_stats[2];
2641 unsigned long irqflags;
2642 int pipe;
2643 u16 flip_mask =
2644 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2645 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2646
2647 atomic_inc(&dev_priv->irq_received);
2648
2649 iir = I915_READ16(IIR);
2650 if (iir == 0)
2651 return IRQ_NONE;
2652
2653 while (iir & ~flip_mask) {
2654 /* Can't rely on pipestat interrupt bit in iir as it might
2655 * have been cleared after the pipestat interrupt was received.
2656 * It doesn't set the bit in iir again, but it still produces
2657 * interrupts (for non-MSI).
2658 */
2659 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2660 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2661 i915_handle_error(dev, false);
2662
2663 for_each_pipe(pipe) {
2664 int reg = PIPESTAT(pipe);
2665 pipe_stats[pipe] = I915_READ(reg);
2666
2667 /*
2668 * Clear the PIPE*STAT regs before the IIR
2669 */
2670 if (pipe_stats[pipe] & 0x8000ffff) {
2671 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2672 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2673 pipe_name(pipe));
2674 I915_WRITE(reg, pipe_stats[pipe]);
2675 }
2676 }
2677 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2678
2679 I915_WRITE16(IIR, iir & ~flip_mask);
2680 new_iir = I915_READ16(IIR); /* Flush posted writes */
2681
2682 i915_update_dri1_breadcrumb(dev);
2683
2684 if (iir & I915_USER_INTERRUPT)
2685 notify_ring(dev, &dev_priv->ring[RCS]);
2686
2687 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2688 i8xx_handle_vblank(dev, 0, iir))
2689 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2690
2691 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2692 i8xx_handle_vblank(dev, 1, iir))
2693 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2694
2695 iir = new_iir;
2696 }
2697
2698 return IRQ_HANDLED;
2699 }
2700
2701 static void i8xx_irq_uninstall(struct drm_device * dev)
2702 {
2703 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2704 int pipe;
2705
2706 for_each_pipe(pipe) {
2707 /* Clear enable bits; then clear status bits */
2708 I915_WRITE(PIPESTAT(pipe), 0);
2709 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2710 }
2711 I915_WRITE16(IMR, 0xffff);
2712 I915_WRITE16(IER, 0x0);
2713 I915_WRITE16(IIR, I915_READ16(IIR));
2714 }
2715
2716 static void i915_irq_preinstall(struct drm_device * dev)
2717 {
2718 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2719 int pipe;
2720
2721 atomic_set(&dev_priv->irq_received, 0);
2722
2723 if (I915_HAS_HOTPLUG(dev)) {
2724 I915_WRITE(PORT_HOTPLUG_EN, 0);
2725 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2726 }
2727
2728 I915_WRITE16(HWSTAM, 0xeffe);
2729 for_each_pipe(pipe)
2730 I915_WRITE(PIPESTAT(pipe), 0);
2731 I915_WRITE(IMR, 0xffffffff);
2732 I915_WRITE(IER, 0x0);
2733 POSTING_READ(IER);
2734 }
2735
2736 static int i915_irq_postinstall(struct drm_device *dev)
2737 {
2738 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2739 u32 enable_mask;
2740
2741 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2742
2743 /* Unmask the interrupts that we always want on. */
2744 dev_priv->irq_mask =
2745 ~(I915_ASLE_INTERRUPT |
2746 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2747 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2748 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2749 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2750 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2751
2752 enable_mask =
2753 I915_ASLE_INTERRUPT |
2754 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2755 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2756 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2757 I915_USER_INTERRUPT;
2758
2759 if (I915_HAS_HOTPLUG(dev)) {
2760 I915_WRITE(PORT_HOTPLUG_EN, 0);
2761 POSTING_READ(PORT_HOTPLUG_EN);
2762
2763 /* Enable in IER... */
2764 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2765 /* and unmask in IMR */
2766 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2767 }
2768
2769 I915_WRITE(IMR, dev_priv->irq_mask);
2770 I915_WRITE(IER, enable_mask);
2771 POSTING_READ(IER);
2772
2773 i915_enable_asle_pipestat(dev);
2774
2775 return 0;
2776 }
2777
2778 /*
2779 * Returns true when a page flip has completed.
2780 */
2781 static bool i915_handle_vblank(struct drm_device *dev,
2782 int plane, int pipe, u32 iir)
2783 {
2784 drm_i915_private_t *dev_priv = dev->dev_private;
2785 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2786
2787 if (!drm_handle_vblank(dev, pipe))
2788 return false;
2789
2790 if ((iir & flip_pending) == 0)
2791 return false;
2792
2793 intel_prepare_page_flip(dev, plane);
2794
2795 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2796 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2797 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2798 * the flip is completed (no longer pending). Since this doesn't raise
2799 * an interrupt per se, we watch for the change at vblank.
2800 */
2801 if (I915_READ(ISR) & flip_pending)
2802 return false;
2803
2804 intel_finish_page_flip(dev, pipe);
2805
2806 return true;
2807 }
2808
2809 static irqreturn_t i915_irq_handler(int irq, void *arg)
2810 {
2811 struct drm_device *dev = (struct drm_device *) arg;
2812 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2813 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2814 unsigned long irqflags;
2815 u32 flip_mask =
2816 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2817 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2818 int pipe, ret = IRQ_NONE;
2819
2820 atomic_inc(&dev_priv->irq_received);
2821
2822 iir = I915_READ(IIR);
2823 do {
2824 bool irq_received = (iir & ~flip_mask) != 0;
2825 bool blc_event = false;
2826
2827 /* Can't rely on pipestat interrupt bit in iir as it might
2828 * have been cleared after the pipestat interrupt was received.
2829 * It doesn't set the bit in iir again, but it still produces
2830 * interrupts (for non-MSI).
2831 */
2832 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2833 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2834 i915_handle_error(dev, false);
2835
2836 for_each_pipe(pipe) {
2837 int reg = PIPESTAT(pipe);
2838 pipe_stats[pipe] = I915_READ(reg);
2839
2840 /* Clear the PIPE*STAT regs before the IIR */
2841 if (pipe_stats[pipe] & 0x8000ffff) {
2842 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2843 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2844 pipe_name(pipe));
2845 I915_WRITE(reg, pipe_stats[pipe]);
2846 irq_received = true;
2847 }
2848 }
2849 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2850
2851 if (!irq_received)
2852 break;
2853
2854 /* Consume port. Then clear IIR or we'll miss events */
2855 if ((I915_HAS_HOTPLUG(dev)) &&
2856 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2857 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2858 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2859
2860 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2861 hotplug_status);
2862
2863 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2864
2865 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2866 POSTING_READ(PORT_HOTPLUG_STAT);
2867 }
2868
2869 I915_WRITE(IIR, iir & ~flip_mask);
2870 new_iir = I915_READ(IIR); /* Flush posted writes */
2871
2872 if (iir & I915_USER_INTERRUPT)
2873 notify_ring(dev, &dev_priv->ring[RCS]);
2874
2875 for_each_pipe(pipe) {
2876 int plane = pipe;
2877 if (IS_MOBILE(dev))
2878 plane = !plane;
2879
2880 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2881 i915_handle_vblank(dev, plane, pipe, iir))
2882 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2883
2884 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2885 blc_event = true;
2886 }
2887
2888 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2889 intel_opregion_asle_intr(dev);
2890
2891 /* With MSI, interrupts are only generated when iir
2892 * transitions from zero to nonzero. If another bit got
2893 * set while we were handling the existing iir bits, then
2894 * we would never get another interrupt.
2895 *
2896 * This is fine on non-MSI as well, as if we hit this path
2897 * we avoid exiting the interrupt handler only to generate
2898 * another one.
2899 *
2900 * Note that for MSI this could cause a stray interrupt report
2901 * if an interrupt landed in the time between writing IIR and
2902 * the posting read. This should be rare enough to never
2903 * trigger the 99% of 100,000 interrupts test for disabling
2904 * stray interrupts.
2905 */
2906 ret = IRQ_HANDLED;
2907 iir = new_iir;
2908 } while (iir & ~flip_mask);
2909
2910 i915_update_dri1_breadcrumb(dev);
2911
2912 return ret;
2913 }
2914
2915 static void i915_irq_uninstall(struct drm_device * dev)
2916 {
2917 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2918 int pipe;
2919
2920 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2921
2922 if (I915_HAS_HOTPLUG(dev)) {
2923 I915_WRITE(PORT_HOTPLUG_EN, 0);
2924 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2925 }
2926
2927 I915_WRITE16(HWSTAM, 0xffff);
2928 for_each_pipe(pipe) {
2929 /* Clear enable bits; then clear status bits */
2930 I915_WRITE(PIPESTAT(pipe), 0);
2931 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2932 }
2933 I915_WRITE(IMR, 0xffffffff);
2934 I915_WRITE(IER, 0x0);
2935
2936 I915_WRITE(IIR, I915_READ(IIR));
2937 }
2938
2939 static void i965_irq_preinstall(struct drm_device * dev)
2940 {
2941 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2942 int pipe;
2943
2944 atomic_set(&dev_priv->irq_received, 0);
2945
2946 I915_WRITE(PORT_HOTPLUG_EN, 0);
2947 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2948
2949 I915_WRITE(HWSTAM, 0xeffe);
2950 for_each_pipe(pipe)
2951 I915_WRITE(PIPESTAT(pipe), 0);
2952 I915_WRITE(IMR, 0xffffffff);
2953 I915_WRITE(IER, 0x0);
2954 POSTING_READ(IER);
2955 }
2956
2957 static int i965_irq_postinstall(struct drm_device *dev)
2958 {
2959 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2960 u32 enable_mask;
2961 u32 error_mask;
2962 unsigned long irqflags;
2963
2964 /* Unmask the interrupts that we always want on. */
2965 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2966 I915_DISPLAY_PORT_INTERRUPT |
2967 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2968 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2969 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2970 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2971 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2972
2973 enable_mask = ~dev_priv->irq_mask;
2974 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2975 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2976 enable_mask |= I915_USER_INTERRUPT;
2977
2978 if (IS_G4X(dev))
2979 enable_mask |= I915_BSD_USER_INTERRUPT;
2980
2981 /* Interrupt setup is already guaranteed to be single-threaded, this is
2982 * just to make the assert_spin_locked check happy. */
2983 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2984 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2985 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2986
2987 /*
2988 * Enable some error detection, note the instruction error mask
2989 * bit is reserved, so we leave it masked.
2990 */
2991 if (IS_G4X(dev)) {
2992 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2993 GM45_ERROR_MEM_PRIV |
2994 GM45_ERROR_CP_PRIV |
2995 I915_ERROR_MEMORY_REFRESH);
2996 } else {
2997 error_mask = ~(I915_ERROR_PAGE_TABLE |
2998 I915_ERROR_MEMORY_REFRESH);
2999 }
3000 I915_WRITE(EMR, error_mask);
3001
3002 I915_WRITE(IMR, dev_priv->irq_mask);
3003 I915_WRITE(IER, enable_mask);
3004 POSTING_READ(IER);
3005
3006 I915_WRITE(PORT_HOTPLUG_EN, 0);
3007 POSTING_READ(PORT_HOTPLUG_EN);
3008
3009 i915_enable_asle_pipestat(dev);
3010
3011 return 0;
3012 }
3013
3014 static void i915_hpd_irq_setup(struct drm_device *dev)
3015 {
3016 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3017 struct drm_mode_config *mode_config = &dev->mode_config;
3018 struct intel_encoder *intel_encoder;
3019 u32 hotplug_en;
3020
3021 assert_spin_locked(&dev_priv->irq_lock);
3022
3023 if (I915_HAS_HOTPLUG(dev)) {
3024 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3025 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3026 /* Note HDMI and DP share hotplug bits */
3027 /* enable bits are the same for all generations */
3028 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3029 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3030 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3031 /* Programming the CRT detection parameters tends
3032 to generate a spurious hotplug event about three
3033 seconds later. So just do it once.
3034 */
3035 if (IS_G4X(dev))
3036 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3037 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3038 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3039
3040 /* Ignore TV since it's buggy */
3041 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3042 }
3043 }
3044
3045 static irqreturn_t i965_irq_handler(int irq, void *arg)
3046 {
3047 struct drm_device *dev = (struct drm_device *) arg;
3048 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3049 u32 iir, new_iir;
3050 u32 pipe_stats[I915_MAX_PIPES];
3051 unsigned long irqflags;
3052 int irq_received;
3053 int ret = IRQ_NONE, pipe;
3054 u32 flip_mask =
3055 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3056 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3057
3058 atomic_inc(&dev_priv->irq_received);
3059
3060 iir = I915_READ(IIR);
3061
3062 for (;;) {
3063 bool blc_event = false;
3064
3065 irq_received = (iir & ~flip_mask) != 0;
3066
3067 /* Can't rely on pipestat interrupt bit in iir as it might
3068 * have been cleared after the pipestat interrupt was received.
3069 * It doesn't set the bit in iir again, but it still produces
3070 * interrupts (for non-MSI).
3071 */
3072 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3073 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3074 i915_handle_error(dev, false);
3075
3076 for_each_pipe(pipe) {
3077 int reg = PIPESTAT(pipe);
3078 pipe_stats[pipe] = I915_READ(reg);
3079
3080 /*
3081 * Clear the PIPE*STAT regs before the IIR
3082 */
3083 if (pipe_stats[pipe] & 0x8000ffff) {
3084 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3085 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3086 pipe_name(pipe));
3087 I915_WRITE(reg, pipe_stats[pipe]);
3088 irq_received = 1;
3089 }
3090 }
3091 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3092
3093 if (!irq_received)
3094 break;
3095
3096 ret = IRQ_HANDLED;
3097
3098 /* Consume port. Then clear IIR or we'll miss events */
3099 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3100 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3101 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3102 HOTPLUG_INT_STATUS_G4X :
3103 HOTPLUG_INT_STATUS_I915);
3104
3105 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3106 hotplug_status);
3107
3108 intel_hpd_irq_handler(dev, hotplug_trigger,
3109 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3110
3111 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3112 I915_READ(PORT_HOTPLUG_STAT);
3113 }
3114
3115 I915_WRITE(IIR, iir & ~flip_mask);
3116 new_iir = I915_READ(IIR); /* Flush posted writes */
3117
3118 if (iir & I915_USER_INTERRUPT)
3119 notify_ring(dev, &dev_priv->ring[RCS]);
3120 if (iir & I915_BSD_USER_INTERRUPT)
3121 notify_ring(dev, &dev_priv->ring[VCS]);
3122
3123 for_each_pipe(pipe) {
3124 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3125 i915_handle_vblank(dev, pipe, pipe, iir))
3126 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3127
3128 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3129 blc_event = true;
3130 }
3131
3132
3133 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3134 intel_opregion_asle_intr(dev);
3135
3136 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3137 gmbus_irq_handler(dev);
3138
3139 /* With MSI, interrupts are only generated when iir
3140 * transitions from zero to nonzero. If another bit got
3141 * set while we were handling the existing iir bits, then
3142 * we would never get another interrupt.
3143 *
3144 * This is fine on non-MSI as well, as if we hit this path
3145 * we avoid exiting the interrupt handler only to generate
3146 * another one.
3147 *
3148 * Note that for MSI this could cause a stray interrupt report
3149 * if an interrupt landed in the time between writing IIR and
3150 * the posting read. This should be rare enough to never
3151 * trigger the 99% of 100,000 interrupts test for disabling
3152 * stray interrupts.
3153 */
3154 iir = new_iir;
3155 }
3156
3157 i915_update_dri1_breadcrumb(dev);
3158
3159 return ret;
3160 }
3161
3162 static void i965_irq_uninstall(struct drm_device * dev)
3163 {
3164 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3165 int pipe;
3166
3167 if (!dev_priv)
3168 return;
3169
3170 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3171
3172 I915_WRITE(PORT_HOTPLUG_EN, 0);
3173 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3174
3175 I915_WRITE(HWSTAM, 0xffffffff);
3176 for_each_pipe(pipe)
3177 I915_WRITE(PIPESTAT(pipe), 0);
3178 I915_WRITE(IMR, 0xffffffff);
3179 I915_WRITE(IER, 0x0);
3180
3181 for_each_pipe(pipe)
3182 I915_WRITE(PIPESTAT(pipe),
3183 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3184 I915_WRITE(IIR, I915_READ(IIR));
3185 }
3186
3187 static void i915_reenable_hotplug_timer_func(unsigned long data)
3188 {
3189 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3190 struct drm_device *dev = dev_priv->dev;
3191 struct drm_mode_config *mode_config = &dev->mode_config;
3192 unsigned long irqflags;
3193 int i;
3194
3195 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3196 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3197 struct drm_connector *connector;
3198
3199 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3200 continue;
3201
3202 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3203
3204 list_for_each_entry(connector, &mode_config->connector_list, head) {
3205 struct intel_connector *intel_connector = to_intel_connector(connector);
3206
3207 if (intel_connector->encoder->hpd_pin == i) {
3208 if (connector->polled != intel_connector->polled)
3209 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3210 drm_get_connector_name(connector));
3211 connector->polled = intel_connector->polled;
3212 if (!connector->polled)
3213 connector->polled = DRM_CONNECTOR_POLL_HPD;
3214 }
3215 }
3216 }
3217 if (dev_priv->display.hpd_irq_setup)
3218 dev_priv->display.hpd_irq_setup(dev);
3219 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3220 }
3221
3222 void intel_irq_init(struct drm_device *dev)
3223 {
3224 struct drm_i915_private *dev_priv = dev->dev_private;
3225
3226 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3227 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3228 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3229 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3230
3231 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3232 i915_hangcheck_elapsed,
3233 (unsigned long) dev);
3234 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3235 (unsigned long) dev_priv);
3236
3237 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3238
3239 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3240 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3241 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3242 } else {
3243 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3244 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3245 }
3246
3247 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
3248 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3249 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3250 }
3251
3252 if (IS_VALLEYVIEW(dev)) {
3253 dev->driver->irq_handler = valleyview_irq_handler;
3254 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3255 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3256 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3257 dev->driver->enable_vblank = valleyview_enable_vblank;
3258 dev->driver->disable_vblank = valleyview_disable_vblank;
3259 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3260 } else if (HAS_PCH_SPLIT(dev)) {
3261 dev->driver->irq_handler = ironlake_irq_handler;
3262 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3263 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3264 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3265 dev->driver->enable_vblank = ironlake_enable_vblank;
3266 dev->driver->disable_vblank = ironlake_disable_vblank;
3267 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3268 } else {
3269 if (INTEL_INFO(dev)->gen == 2) {
3270 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3271 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3272 dev->driver->irq_handler = i8xx_irq_handler;
3273 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3274 } else if (INTEL_INFO(dev)->gen == 3) {
3275 dev->driver->irq_preinstall = i915_irq_preinstall;
3276 dev->driver->irq_postinstall = i915_irq_postinstall;
3277 dev->driver->irq_uninstall = i915_irq_uninstall;
3278 dev->driver->irq_handler = i915_irq_handler;
3279 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3280 } else {
3281 dev->driver->irq_preinstall = i965_irq_preinstall;
3282 dev->driver->irq_postinstall = i965_irq_postinstall;
3283 dev->driver->irq_uninstall = i965_irq_uninstall;
3284 dev->driver->irq_handler = i965_irq_handler;
3285 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3286 }
3287 dev->driver->enable_vblank = i915_enable_vblank;
3288 dev->driver->disable_vblank = i915_disable_vblank;
3289 }
3290 }
3291
3292 void intel_hpd_init(struct drm_device *dev)
3293 {
3294 struct drm_i915_private *dev_priv = dev->dev_private;
3295 struct drm_mode_config *mode_config = &dev->mode_config;
3296 struct drm_connector *connector;
3297 unsigned long irqflags;
3298 int i;
3299
3300 for (i = 1; i < HPD_NUM_PINS; i++) {
3301 dev_priv->hpd_stats[i].hpd_cnt = 0;
3302 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3303 }
3304 list_for_each_entry(connector, &mode_config->connector_list, head) {
3305 struct intel_connector *intel_connector = to_intel_connector(connector);
3306 connector->polled = intel_connector->polled;
3307 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3308 connector->polled = DRM_CONNECTOR_POLL_HPD;
3309 }
3310
3311 /* Interrupt setup is already guaranteed to be single-threaded, this is
3312 * just to make the assert_spin_locked checks happy. */
3313 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3314 if (dev_priv->display.hpd_irq_setup)
3315 dev_priv->display.hpd_irq_setup(dev);
3316 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3317 }
3318
3319 /* Disable interrupts so we can allow Package C8+. */
3320 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3321 {
3322 struct drm_i915_private *dev_priv = dev->dev_private;
3323 unsigned long irqflags;
3324
3325 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3326
3327 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3328 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3329 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3330 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3331 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3332
3333 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3334 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3335 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3336 snb_disable_pm_irq(dev_priv, 0xffffffff);
3337
3338 dev_priv->pc8.irqs_disabled = true;
3339
3340 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3341 }
3342
3343 /* Restore interrupts so we can recover from Package C8+. */
3344 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3345 {
3346 struct drm_i915_private *dev_priv = dev->dev_private;
3347 unsigned long irqflags;
3348 uint32_t val, expected;
3349
3350 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3351
3352 val = I915_READ(DEIMR);
3353 expected = ~DE_PCH_EVENT_IVB;
3354 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3355
3356 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3357 expected = ~SDE_HOTPLUG_MASK_CPT;
3358 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3359 val, expected);
3360
3361 val = I915_READ(GTIMR);
3362 expected = 0xffffffff;
3363 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3364
3365 val = I915_READ(GEN6_PMIMR);
3366 expected = 0xffffffff;
3367 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3368 expected);
3369
3370 dev_priv->pc8.irqs_disabled = false;
3371
3372 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3373 ibx_enable_display_interrupt(dev_priv,
3374 ~dev_priv->pc8.regsave.sdeimr &
3375 ~SDE_HOTPLUG_MASK_CPT);
3376 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3377 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3378 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3379
3380 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3381 }
This page took 0.096363 seconds and 6 git commands to generate.