Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if (dev_priv->pc8.irqs_disabled) {
89 WARN(1, "IRQs disabled\n");
90 dev_priv->pc8.regsave.deimr &= ~mask;
91 return;
92 }
93
94 if ((dev_priv->irq_mask & mask) != 0) {
95 dev_priv->irq_mask &= ~mask;
96 I915_WRITE(DEIMR, dev_priv->irq_mask);
97 POSTING_READ(DEIMR);
98 }
99 }
100
101 static void
102 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
103 {
104 assert_spin_locked(&dev_priv->irq_lock);
105
106 if (dev_priv->pc8.irqs_disabled) {
107 WARN(1, "IRQs disabled\n");
108 dev_priv->pc8.regsave.deimr |= mask;
109 return;
110 }
111
112 if ((dev_priv->irq_mask & mask) != mask) {
113 dev_priv->irq_mask |= mask;
114 I915_WRITE(DEIMR, dev_priv->irq_mask);
115 POSTING_READ(DEIMR);
116 }
117 }
118
119 /**
120 * ilk_update_gt_irq - update GTIMR
121 * @dev_priv: driver private
122 * @interrupt_mask: mask of interrupt bits to update
123 * @enabled_irq_mask: mask of interrupt bits to enable
124 */
125 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
126 uint32_t interrupt_mask,
127 uint32_t enabled_irq_mask)
128 {
129 assert_spin_locked(&dev_priv->irq_lock);
130
131 if (dev_priv->pc8.irqs_disabled) {
132 WARN(1, "IRQs disabled\n");
133 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
134 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
135 interrupt_mask);
136 return;
137 }
138
139 dev_priv->gt_irq_mask &= ~interrupt_mask;
140 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
141 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
142 POSTING_READ(GTIMR);
143 }
144
145 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
146 {
147 ilk_update_gt_irq(dev_priv, mask, mask);
148 }
149
150 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
151 {
152 ilk_update_gt_irq(dev_priv, mask, 0);
153 }
154
155 /**
156 * snb_update_pm_irq - update GEN6_PMIMR
157 * @dev_priv: driver private
158 * @interrupt_mask: mask of interrupt bits to update
159 * @enabled_irq_mask: mask of interrupt bits to enable
160 */
161 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
162 uint32_t interrupt_mask,
163 uint32_t enabled_irq_mask)
164 {
165 uint32_t new_val;
166
167 assert_spin_locked(&dev_priv->irq_lock);
168
169 if (dev_priv->pc8.irqs_disabled) {
170 WARN(1, "IRQs disabled\n");
171 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
172 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
173 interrupt_mask);
174 return;
175 }
176
177 new_val = dev_priv->pm_irq_mask;
178 new_val &= ~interrupt_mask;
179 new_val |= (~enabled_irq_mask & interrupt_mask);
180
181 if (new_val != dev_priv->pm_irq_mask) {
182 dev_priv->pm_irq_mask = new_val;
183 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
184 POSTING_READ(GEN6_PMIMR);
185 }
186 }
187
188 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
189 {
190 snb_update_pm_irq(dev_priv, mask, mask);
191 }
192
193 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
194 {
195 snb_update_pm_irq(dev_priv, mask, 0);
196 }
197
198 static bool ivb_can_enable_err_int(struct drm_device *dev)
199 {
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 struct intel_crtc *crtc;
202 enum pipe pipe;
203
204 assert_spin_locked(&dev_priv->irq_lock);
205
206 for_each_pipe(pipe) {
207 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
208
209 if (crtc->cpu_fifo_underrun_disabled)
210 return false;
211 }
212
213 return true;
214 }
215
216 static bool cpt_can_enable_serr_int(struct drm_device *dev)
217 {
218 struct drm_i915_private *dev_priv = dev->dev_private;
219 enum pipe pipe;
220 struct intel_crtc *crtc;
221
222 assert_spin_locked(&dev_priv->irq_lock);
223
224 for_each_pipe(pipe) {
225 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
226
227 if (crtc->pch_fifo_underrun_disabled)
228 return false;
229 }
230
231 return true;
232 }
233
234 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
235 enum pipe pipe, bool enable)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
239 DE_PIPEB_FIFO_UNDERRUN;
240
241 if (enable)
242 ironlake_enable_display_irq(dev_priv, bit);
243 else
244 ironlake_disable_display_irq(dev_priv, bit);
245 }
246
247 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249 {
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 if (enable) {
252 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
253
254 if (!ivb_can_enable_err_int(dev))
255 return;
256
257 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
258 } else {
259 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
260
261 /* Change the state _after_ we've read out the current one. */
262 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
263
264 if (!was_enabled &&
265 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
266 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
267 pipe_name(pipe));
268 }
269 }
270 }
271
272 /**
273 * ibx_display_interrupt_update - update SDEIMR
274 * @dev_priv: driver private
275 * @interrupt_mask: mask of interrupt bits to update
276 * @enabled_irq_mask: mask of interrupt bits to enable
277 */
278 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
279 uint32_t interrupt_mask,
280 uint32_t enabled_irq_mask)
281 {
282 uint32_t sdeimr = I915_READ(SDEIMR);
283 sdeimr &= ~interrupt_mask;
284 sdeimr |= (~enabled_irq_mask & interrupt_mask);
285
286 assert_spin_locked(&dev_priv->irq_lock);
287
288 if (dev_priv->pc8.irqs_disabled &&
289 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
290 WARN(1, "IRQs disabled\n");
291 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
292 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
293 interrupt_mask);
294 return;
295 }
296
297 I915_WRITE(SDEIMR, sdeimr);
298 POSTING_READ(SDEIMR);
299 }
300 #define ibx_enable_display_interrupt(dev_priv, bits) \
301 ibx_display_interrupt_update((dev_priv), (bits), (bits))
302 #define ibx_disable_display_interrupt(dev_priv, bits) \
303 ibx_display_interrupt_update((dev_priv), (bits), 0)
304
305 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
306 enum transcoder pch_transcoder,
307 bool enable)
308 {
309 struct drm_i915_private *dev_priv = dev->dev_private;
310 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
311 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
312
313 if (enable)
314 ibx_enable_display_interrupt(dev_priv, bit);
315 else
316 ibx_disable_display_interrupt(dev_priv, bit);
317 }
318
319 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum transcoder pch_transcoder,
321 bool enable)
322 {
323 struct drm_i915_private *dev_priv = dev->dev_private;
324
325 if (enable) {
326 I915_WRITE(SERR_INT,
327 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
328
329 if (!cpt_can_enable_serr_int(dev))
330 return;
331
332 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
333 } else {
334 uint32_t tmp = I915_READ(SERR_INT);
335 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
336
337 /* Change the state _after_ we've read out the current one. */
338 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
339
340 if (!was_enabled &&
341 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
342 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
343 transcoder_name(pch_transcoder));
344 }
345 }
346 }
347
348 /**
349 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
350 * @dev: drm device
351 * @pipe: pipe
352 * @enable: true if we want to report FIFO underrun errors, false otherwise
353 *
354 * This function makes us disable or enable CPU fifo underruns for a specific
355 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
356 * reporting for one pipe may also disable all the other CPU error interruts for
357 * the other pipes, due to the fact that there's just one interrupt mask/enable
358 * bit for all the pipes.
359 *
360 * Returns the previous state of underrun reporting.
361 */
362 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
363 enum pipe pipe, bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368 unsigned long flags;
369 bool ret;
370
371 spin_lock_irqsave(&dev_priv->irq_lock, flags);
372
373 ret = !intel_crtc->cpu_fifo_underrun_disabled;
374
375 if (enable == ret)
376 goto done;
377
378 intel_crtc->cpu_fifo_underrun_disabled = !enable;
379
380 if (IS_GEN5(dev) || IS_GEN6(dev))
381 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
382 else if (IS_GEN7(dev))
383 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
384
385 done:
386 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
387 return ret;
388 }
389
390 /**
391 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
392 * @dev: drm device
393 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
394 * @enable: true if we want to report FIFO underrun errors, false otherwise
395 *
396 * This function makes us disable or enable PCH fifo underruns for a specific
397 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
398 * underrun reporting for one transcoder may also disable all the other PCH
399 * error interruts for the other transcoders, due to the fact that there's just
400 * one interrupt mask/enable bit for all the transcoders.
401 *
402 * Returns the previous state of underrun reporting.
403 */
404 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
405 enum transcoder pch_transcoder,
406 bool enable)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
411 unsigned long flags;
412 bool ret;
413
414 /*
415 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
416 * has only one pch transcoder A that all pipes can use. To avoid racy
417 * pch transcoder -> pipe lookups from interrupt code simply store the
418 * underrun statistics in crtc A. Since we never expose this anywhere
419 * nor use it outside of the fifo underrun code here using the "wrong"
420 * crtc on LPT won't cause issues.
421 */
422
423 spin_lock_irqsave(&dev_priv->irq_lock, flags);
424
425 ret = !intel_crtc->pch_fifo_underrun_disabled;
426
427 if (enable == ret)
428 goto done;
429
430 intel_crtc->pch_fifo_underrun_disabled = !enable;
431
432 if (HAS_PCH_IBX(dev))
433 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
434 else
435 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
436
437 done:
438 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
439 return ret;
440 }
441
442
443 void
444 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
445 {
446 u32 reg = PIPESTAT(pipe);
447 u32 pipestat = I915_READ(reg) & 0x7fff0000;
448
449 assert_spin_locked(&dev_priv->irq_lock);
450
451 if ((pipestat & mask) == mask)
452 return;
453
454 /* Enable the interrupt, clear any pending status */
455 pipestat |= mask | (mask >> 16);
456 I915_WRITE(reg, pipestat);
457 POSTING_READ(reg);
458 }
459
460 void
461 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
462 {
463 u32 reg = PIPESTAT(pipe);
464 u32 pipestat = I915_READ(reg) & 0x7fff0000;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 if ((pipestat & mask) == 0)
469 return;
470
471 pipestat &= ~mask;
472 I915_WRITE(reg, pipestat);
473 POSTING_READ(reg);
474 }
475
476 /**
477 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
478 */
479 static void i915_enable_asle_pipestat(struct drm_device *dev)
480 {
481 drm_i915_private_t *dev_priv = dev->dev_private;
482 unsigned long irqflags;
483
484 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
485 return;
486
487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
488
489 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
490 if (INTEL_INFO(dev)->gen >= 4)
491 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
492
493 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
494 }
495
496 /**
497 * i915_pipe_enabled - check if a pipe is enabled
498 * @dev: DRM device
499 * @pipe: pipe to check
500 *
501 * Reading certain registers when the pipe is disabled can hang the chip.
502 * Use this routine to make sure the PLL is running and the pipe is active
503 * before reading such registers if unsure.
504 */
505 static int
506 i915_pipe_enabled(struct drm_device *dev, int pipe)
507 {
508 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
509
510 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
511 /* Locking is horribly broken here, but whatever. */
512 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
514
515 return intel_crtc->active;
516 } else {
517 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
518 }
519 }
520
521 /* Called from drm generic code, passed a 'crtc', which
522 * we use as a pipe index
523 */
524 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 unsigned long high_frame;
528 unsigned long low_frame;
529 u32 high1, high2, low;
530
531 if (!i915_pipe_enabled(dev, pipe)) {
532 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
533 "pipe %c\n", pipe_name(pipe));
534 return 0;
535 }
536
537 high_frame = PIPEFRAME(pipe);
538 low_frame = PIPEFRAMEPIXEL(pipe);
539
540 /*
541 * High & low register fields aren't synchronized, so make sure
542 * we get a low value that's stable across two reads of the high
543 * register.
544 */
545 do {
546 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
547 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
548 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
549 } while (high1 != high2);
550
551 high1 >>= PIPE_FRAME_HIGH_SHIFT;
552 low >>= PIPE_FRAME_LOW_SHIFT;
553 return (high1 << 8) | low;
554 }
555
556 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
557 {
558 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
559 int reg = PIPE_FRMCOUNT_GM45(pipe);
560
561 if (!i915_pipe_enabled(dev, pipe)) {
562 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
563 "pipe %c\n", pipe_name(pipe));
564 return 0;
565 }
566
567 return I915_READ(reg);
568 }
569
570 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
571 int *vpos, int *hpos)
572 {
573 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
574 u32 vbl = 0, position = 0;
575 int vbl_start, vbl_end, htotal, vtotal;
576 bool in_vbl = true;
577 int ret = 0;
578 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
579 pipe);
580
581 if (!i915_pipe_enabled(dev, pipe)) {
582 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
583 "pipe %c\n", pipe_name(pipe));
584 return 0;
585 }
586
587 /* Get vtotal. */
588 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
589
590 if (INTEL_INFO(dev)->gen >= 4) {
591 /* No obvious pixelcount register. Only query vertical
592 * scanout position from Display scan line register.
593 */
594 position = I915_READ(PIPEDSL(pipe));
595
596 /* Decode into vertical scanout position. Don't have
597 * horizontal scanout position.
598 */
599 *vpos = position & 0x1fff;
600 *hpos = 0;
601 } else {
602 /* Have access to pixelcount since start of frame.
603 * We can split this into vertical and horizontal
604 * scanout position.
605 */
606 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
607
608 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
609 *vpos = position / htotal;
610 *hpos = position - (*vpos * htotal);
611 }
612
613 /* Query vblank area. */
614 vbl = I915_READ(VBLANK(cpu_transcoder));
615
616 /* Test position against vblank region. */
617 vbl_start = vbl & 0x1fff;
618 vbl_end = (vbl >> 16) & 0x1fff;
619
620 if ((*vpos < vbl_start) || (*vpos > vbl_end))
621 in_vbl = false;
622
623 /* Inside "upper part" of vblank area? Apply corrective offset: */
624 if (in_vbl && (*vpos >= vbl_start))
625 *vpos = *vpos - vtotal;
626
627 /* Readouts valid? */
628 if (vbl > 0)
629 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
630
631 /* In vblank? */
632 if (in_vbl)
633 ret |= DRM_SCANOUTPOS_INVBL;
634
635 return ret;
636 }
637
638 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
639 int *max_error,
640 struct timeval *vblank_time,
641 unsigned flags)
642 {
643 struct drm_crtc *crtc;
644
645 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
646 DRM_ERROR("Invalid crtc %d\n", pipe);
647 return -EINVAL;
648 }
649
650 /* Get drm_crtc to timestamp: */
651 crtc = intel_get_crtc_for_pipe(dev, pipe);
652 if (crtc == NULL) {
653 DRM_ERROR("Invalid crtc %d\n", pipe);
654 return -EINVAL;
655 }
656
657 if (!crtc->enabled) {
658 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
659 return -EBUSY;
660 }
661
662 /* Helper routine in DRM core does all the work: */
663 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
664 vblank_time, flags,
665 crtc);
666 }
667
668 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
669 {
670 enum drm_connector_status old_status;
671
672 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
673 old_status = connector->status;
674
675 connector->status = connector->funcs->detect(connector, false);
676 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
677 connector->base.id,
678 drm_get_connector_name(connector),
679 old_status, connector->status);
680 return (old_status != connector->status);
681 }
682
683 /*
684 * Handle hotplug events outside the interrupt handler proper.
685 */
686 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
687
688 static void i915_hotplug_work_func(struct work_struct *work)
689 {
690 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
691 hotplug_work);
692 struct drm_device *dev = dev_priv->dev;
693 struct drm_mode_config *mode_config = &dev->mode_config;
694 struct intel_connector *intel_connector;
695 struct intel_encoder *intel_encoder;
696 struct drm_connector *connector;
697 unsigned long irqflags;
698 bool hpd_disabled = false;
699 bool changed = false;
700 u32 hpd_event_bits;
701
702 /* HPD irq before everything is fully set up. */
703 if (!dev_priv->enable_hotplug_processing)
704 return;
705
706 mutex_lock(&mode_config->mutex);
707 DRM_DEBUG_KMS("running encoder hotplug functions\n");
708
709 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
710
711 hpd_event_bits = dev_priv->hpd_event_bits;
712 dev_priv->hpd_event_bits = 0;
713 list_for_each_entry(connector, &mode_config->connector_list, head) {
714 intel_connector = to_intel_connector(connector);
715 intel_encoder = intel_connector->encoder;
716 if (intel_encoder->hpd_pin > HPD_NONE &&
717 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
718 connector->polled == DRM_CONNECTOR_POLL_HPD) {
719 DRM_INFO("HPD interrupt storm detected on connector %s: "
720 "switching from hotplug detection to polling\n",
721 drm_get_connector_name(connector));
722 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
723 connector->polled = DRM_CONNECTOR_POLL_CONNECT
724 | DRM_CONNECTOR_POLL_DISCONNECT;
725 hpd_disabled = true;
726 }
727 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
728 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
729 drm_get_connector_name(connector), intel_encoder->hpd_pin);
730 }
731 }
732 /* if there were no outputs to poll, poll was disabled,
733 * therefore make sure it's enabled when disabling HPD on
734 * some connectors */
735 if (hpd_disabled) {
736 drm_kms_helper_poll_enable(dev);
737 mod_timer(&dev_priv->hotplug_reenable_timer,
738 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
739 }
740
741 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
742
743 list_for_each_entry(connector, &mode_config->connector_list, head) {
744 intel_connector = to_intel_connector(connector);
745 intel_encoder = intel_connector->encoder;
746 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
747 if (intel_encoder->hot_plug)
748 intel_encoder->hot_plug(intel_encoder);
749 if (intel_hpd_irq_event(dev, connector))
750 changed = true;
751 }
752 }
753 mutex_unlock(&mode_config->mutex);
754
755 if (changed)
756 drm_kms_helper_hotplug_event(dev);
757 }
758
759 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
760 {
761 drm_i915_private_t *dev_priv = dev->dev_private;
762 u32 busy_up, busy_down, max_avg, min_avg;
763 u8 new_delay;
764
765 spin_lock(&mchdev_lock);
766
767 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
768
769 new_delay = dev_priv->ips.cur_delay;
770
771 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
772 busy_up = I915_READ(RCPREVBSYTUPAVG);
773 busy_down = I915_READ(RCPREVBSYTDNAVG);
774 max_avg = I915_READ(RCBMAXAVG);
775 min_avg = I915_READ(RCBMINAVG);
776
777 /* Handle RCS change request from hw */
778 if (busy_up > max_avg) {
779 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
780 new_delay = dev_priv->ips.cur_delay - 1;
781 if (new_delay < dev_priv->ips.max_delay)
782 new_delay = dev_priv->ips.max_delay;
783 } else if (busy_down < min_avg) {
784 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
785 new_delay = dev_priv->ips.cur_delay + 1;
786 if (new_delay > dev_priv->ips.min_delay)
787 new_delay = dev_priv->ips.min_delay;
788 }
789
790 if (ironlake_set_drps(dev, new_delay))
791 dev_priv->ips.cur_delay = new_delay;
792
793 spin_unlock(&mchdev_lock);
794
795 return;
796 }
797
798 static void notify_ring(struct drm_device *dev,
799 struct intel_ring_buffer *ring)
800 {
801 if (ring->obj == NULL)
802 return;
803
804 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
805
806 wake_up_all(&ring->irq_queue);
807 i915_queue_hangcheck(dev);
808 }
809
810 static void gen6_pm_rps_work(struct work_struct *work)
811 {
812 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
813 rps.work);
814 u32 pm_iir;
815 u8 new_delay;
816
817 spin_lock_irq(&dev_priv->irq_lock);
818 pm_iir = dev_priv->rps.pm_iir;
819 dev_priv->rps.pm_iir = 0;
820 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
821 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
822 spin_unlock_irq(&dev_priv->irq_lock);
823
824 /* Make sure we didn't queue anything we're not going to process. */
825 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
826
827 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
828 return;
829
830 mutex_lock(&dev_priv->rps.hw_lock);
831
832 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
833 new_delay = dev_priv->rps.cur_delay + 1;
834
835 /*
836 * For better performance, jump directly
837 * to RPe if we're below it.
838 */
839 if (IS_VALLEYVIEW(dev_priv->dev) &&
840 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
841 new_delay = dev_priv->rps.rpe_delay;
842 } else
843 new_delay = dev_priv->rps.cur_delay - 1;
844
845 /* sysfs frequency interfaces may have snuck in while servicing the
846 * interrupt
847 */
848 if (new_delay >= dev_priv->rps.min_delay &&
849 new_delay <= dev_priv->rps.max_delay) {
850 if (IS_VALLEYVIEW(dev_priv->dev))
851 valleyview_set_rps(dev_priv->dev, new_delay);
852 else
853 gen6_set_rps(dev_priv->dev, new_delay);
854 }
855
856 if (IS_VALLEYVIEW(dev_priv->dev)) {
857 /*
858 * On VLV, when we enter RC6 we may not be at the minimum
859 * voltage level, so arm a timer to check. It should only
860 * fire when there's activity or once after we've entered
861 * RC6, and then won't be re-armed until the next RPS interrupt.
862 */
863 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
864 msecs_to_jiffies(100));
865 }
866
867 mutex_unlock(&dev_priv->rps.hw_lock);
868 }
869
870
871 /**
872 * ivybridge_parity_work - Workqueue called when a parity error interrupt
873 * occurred.
874 * @work: workqueue struct
875 *
876 * Doesn't actually do anything except notify userspace. As a consequence of
877 * this event, userspace should try to remap the bad rows since statistically
878 * it is likely the same row is more likely to go bad again.
879 */
880 static void ivybridge_parity_work(struct work_struct *work)
881 {
882 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
883 l3_parity.error_work);
884 u32 error_status, row, bank, subbank;
885 char *parity_event[5];
886 uint32_t misccpctl;
887 unsigned long flags;
888
889 /* We must turn off DOP level clock gating to access the L3 registers.
890 * In order to prevent a get/put style interface, acquire struct mutex
891 * any time we access those registers.
892 */
893 mutex_lock(&dev_priv->dev->struct_mutex);
894
895 misccpctl = I915_READ(GEN7_MISCCPCTL);
896 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
897 POSTING_READ(GEN7_MISCCPCTL);
898
899 error_status = I915_READ(GEN7_L3CDERRST1);
900 row = GEN7_PARITY_ERROR_ROW(error_status);
901 bank = GEN7_PARITY_ERROR_BANK(error_status);
902 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
903
904 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
905 GEN7_L3CDERRST1_ENABLE);
906 POSTING_READ(GEN7_L3CDERRST1);
907
908 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
909
910 spin_lock_irqsave(&dev_priv->irq_lock, flags);
911 ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
912 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
913
914 mutex_unlock(&dev_priv->dev->struct_mutex);
915
916 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
917 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
918 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
919 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
920 parity_event[4] = NULL;
921
922 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
923 KOBJ_CHANGE, parity_event);
924
925 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
926 row, bank, subbank);
927
928 kfree(parity_event[3]);
929 kfree(parity_event[2]);
930 kfree(parity_event[1]);
931 }
932
933 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
934 {
935 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
936
937 if (!HAS_L3_GPU_CACHE(dev))
938 return;
939
940 spin_lock(&dev_priv->irq_lock);
941 ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
942 spin_unlock(&dev_priv->irq_lock);
943
944 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
945 }
946
947 static void ilk_gt_irq_handler(struct drm_device *dev,
948 struct drm_i915_private *dev_priv,
949 u32 gt_iir)
950 {
951 if (gt_iir &
952 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
953 notify_ring(dev, &dev_priv->ring[RCS]);
954 if (gt_iir & ILK_BSD_USER_INTERRUPT)
955 notify_ring(dev, &dev_priv->ring[VCS]);
956 }
957
958 static void snb_gt_irq_handler(struct drm_device *dev,
959 struct drm_i915_private *dev_priv,
960 u32 gt_iir)
961 {
962
963 if (gt_iir &
964 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
965 notify_ring(dev, &dev_priv->ring[RCS]);
966 if (gt_iir & GT_BSD_USER_INTERRUPT)
967 notify_ring(dev, &dev_priv->ring[VCS]);
968 if (gt_iir & GT_BLT_USER_INTERRUPT)
969 notify_ring(dev, &dev_priv->ring[BCS]);
970
971 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
972 GT_BSD_CS_ERROR_INTERRUPT |
973 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
974 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
975 i915_handle_error(dev, false);
976 }
977
978 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
979 ivybridge_parity_error_irq_handler(dev);
980 }
981
982 #define HPD_STORM_DETECT_PERIOD 1000
983 #define HPD_STORM_THRESHOLD 5
984
985 static inline void intel_hpd_irq_handler(struct drm_device *dev,
986 u32 hotplug_trigger,
987 const u32 *hpd)
988 {
989 drm_i915_private_t *dev_priv = dev->dev_private;
990 int i;
991 bool storm_detected = false;
992
993 if (!hotplug_trigger)
994 return;
995
996 spin_lock(&dev_priv->irq_lock);
997 for (i = 1; i < HPD_NUM_PINS; i++) {
998
999 WARN(((hpd[i] & hotplug_trigger) &&
1000 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1001 "Received HPD interrupt although disabled\n");
1002
1003 if (!(hpd[i] & hotplug_trigger) ||
1004 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1005 continue;
1006
1007 dev_priv->hpd_event_bits |= (1 << i);
1008 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1009 dev_priv->hpd_stats[i].hpd_last_jiffies
1010 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1011 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1012 dev_priv->hpd_stats[i].hpd_cnt = 0;
1013 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1014 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1015 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1016 dev_priv->hpd_event_bits &= ~(1 << i);
1017 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1018 storm_detected = true;
1019 } else {
1020 dev_priv->hpd_stats[i].hpd_cnt++;
1021 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1022 dev_priv->hpd_stats[i].hpd_cnt);
1023 }
1024 }
1025
1026 if (storm_detected)
1027 dev_priv->display.hpd_irq_setup(dev);
1028 spin_unlock(&dev_priv->irq_lock);
1029
1030 /*
1031 * Our hotplug handler can grab modeset locks (by calling down into the
1032 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1033 * queue for otherwise the flush_work in the pageflip code will
1034 * deadlock.
1035 */
1036 schedule_work(&dev_priv->hotplug_work);
1037 }
1038
1039 static void gmbus_irq_handler(struct drm_device *dev)
1040 {
1041 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1042
1043 wake_up_all(&dev_priv->gmbus_wait_queue);
1044 }
1045
1046 static void dp_aux_irq_handler(struct drm_device *dev)
1047 {
1048 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1049
1050 wake_up_all(&dev_priv->gmbus_wait_queue);
1051 }
1052
1053 /* The RPS events need forcewake, so we add them to a work queue and mask their
1054 * IMR bits until the work is done. Other interrupts can be processed without
1055 * the work queue. */
1056 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1057 {
1058 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1059 spin_lock(&dev_priv->irq_lock);
1060 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1061 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1062 spin_unlock(&dev_priv->irq_lock);
1063
1064 queue_work(dev_priv->wq, &dev_priv->rps.work);
1065 }
1066
1067 if (HAS_VEBOX(dev_priv->dev)) {
1068 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1069 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1070
1071 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1072 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1073 i915_handle_error(dev_priv->dev, false);
1074 }
1075 }
1076 }
1077
1078 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1079 {
1080 struct drm_device *dev = (struct drm_device *) arg;
1081 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1082 u32 iir, gt_iir, pm_iir;
1083 irqreturn_t ret = IRQ_NONE;
1084 unsigned long irqflags;
1085 int pipe;
1086 u32 pipe_stats[I915_MAX_PIPES];
1087
1088 atomic_inc(&dev_priv->irq_received);
1089
1090 while (true) {
1091 iir = I915_READ(VLV_IIR);
1092 gt_iir = I915_READ(GTIIR);
1093 pm_iir = I915_READ(GEN6_PMIIR);
1094
1095 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1096 goto out;
1097
1098 ret = IRQ_HANDLED;
1099
1100 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1101
1102 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1103 for_each_pipe(pipe) {
1104 int reg = PIPESTAT(pipe);
1105 pipe_stats[pipe] = I915_READ(reg);
1106
1107 /*
1108 * Clear the PIPE*STAT regs before the IIR
1109 */
1110 if (pipe_stats[pipe] & 0x8000ffff) {
1111 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1112 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1113 pipe_name(pipe));
1114 I915_WRITE(reg, pipe_stats[pipe]);
1115 }
1116 }
1117 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1118
1119 for_each_pipe(pipe) {
1120 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1121 drm_handle_vblank(dev, pipe);
1122
1123 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1124 intel_prepare_page_flip(dev, pipe);
1125 intel_finish_page_flip(dev, pipe);
1126 }
1127 }
1128
1129 /* Consume port. Then clear IIR or we'll miss events */
1130 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1131 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1132 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1133
1134 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1135 hotplug_status);
1136
1137 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1138
1139 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1140 I915_READ(PORT_HOTPLUG_STAT);
1141 }
1142
1143 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1144 gmbus_irq_handler(dev);
1145
1146 if (pm_iir)
1147 gen6_rps_irq_handler(dev_priv, pm_iir);
1148
1149 I915_WRITE(GTIIR, gt_iir);
1150 I915_WRITE(GEN6_PMIIR, pm_iir);
1151 I915_WRITE(VLV_IIR, iir);
1152 }
1153
1154 out:
1155 return ret;
1156 }
1157
1158 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1159 {
1160 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1161 int pipe;
1162 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1163
1164 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1165
1166 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1167 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1168 SDE_AUDIO_POWER_SHIFT);
1169 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1170 port_name(port));
1171 }
1172
1173 if (pch_iir & SDE_AUX_MASK)
1174 dp_aux_irq_handler(dev);
1175
1176 if (pch_iir & SDE_GMBUS)
1177 gmbus_irq_handler(dev);
1178
1179 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1180 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1181
1182 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1183 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1184
1185 if (pch_iir & SDE_POISON)
1186 DRM_ERROR("PCH poison interrupt\n");
1187
1188 if (pch_iir & SDE_FDI_MASK)
1189 for_each_pipe(pipe)
1190 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1191 pipe_name(pipe),
1192 I915_READ(FDI_RX_IIR(pipe)));
1193
1194 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1195 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1196
1197 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1198 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1199
1200 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1201 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1202 false))
1203 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1204
1205 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1206 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1207 false))
1208 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1209 }
1210
1211 static void ivb_err_int_handler(struct drm_device *dev)
1212 {
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 u32 err_int = I915_READ(GEN7_ERR_INT);
1215
1216 if (err_int & ERR_INT_POISON)
1217 DRM_ERROR("Poison interrupt\n");
1218
1219 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1220 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1221 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1222
1223 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1224 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1225 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1226
1227 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1228 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1229 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1230
1231 I915_WRITE(GEN7_ERR_INT, err_int);
1232 }
1233
1234 static void cpt_serr_int_handler(struct drm_device *dev)
1235 {
1236 struct drm_i915_private *dev_priv = dev->dev_private;
1237 u32 serr_int = I915_READ(SERR_INT);
1238
1239 if (serr_int & SERR_INT_POISON)
1240 DRM_ERROR("PCH poison interrupt\n");
1241
1242 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1243 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1244 false))
1245 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1246
1247 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1248 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1249 false))
1250 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1251
1252 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1253 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1254 false))
1255 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1256
1257 I915_WRITE(SERR_INT, serr_int);
1258 }
1259
1260 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1261 {
1262 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1263 int pipe;
1264 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1265
1266 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1267
1268 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1269 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1270 SDE_AUDIO_POWER_SHIFT_CPT);
1271 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1272 port_name(port));
1273 }
1274
1275 if (pch_iir & SDE_AUX_MASK_CPT)
1276 dp_aux_irq_handler(dev);
1277
1278 if (pch_iir & SDE_GMBUS_CPT)
1279 gmbus_irq_handler(dev);
1280
1281 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1282 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1283
1284 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1285 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1286
1287 if (pch_iir & SDE_FDI_MASK_CPT)
1288 for_each_pipe(pipe)
1289 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1290 pipe_name(pipe),
1291 I915_READ(FDI_RX_IIR(pipe)));
1292
1293 if (pch_iir & SDE_ERROR_CPT)
1294 cpt_serr_int_handler(dev);
1295 }
1296
1297 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1298 {
1299 struct drm_i915_private *dev_priv = dev->dev_private;
1300
1301 if (de_iir & DE_AUX_CHANNEL_A)
1302 dp_aux_irq_handler(dev);
1303
1304 if (de_iir & DE_GSE)
1305 intel_opregion_asle_intr(dev);
1306
1307 if (de_iir & DE_PIPEA_VBLANK)
1308 drm_handle_vblank(dev, 0);
1309
1310 if (de_iir & DE_PIPEB_VBLANK)
1311 drm_handle_vblank(dev, 1);
1312
1313 if (de_iir & DE_POISON)
1314 DRM_ERROR("Poison interrupt\n");
1315
1316 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1317 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1318 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1319
1320 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1321 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1322 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1323
1324 if (de_iir & DE_PLANEA_FLIP_DONE) {
1325 intel_prepare_page_flip(dev, 0);
1326 intel_finish_page_flip_plane(dev, 0);
1327 }
1328
1329 if (de_iir & DE_PLANEB_FLIP_DONE) {
1330 intel_prepare_page_flip(dev, 1);
1331 intel_finish_page_flip_plane(dev, 1);
1332 }
1333
1334 /* check event from PCH */
1335 if (de_iir & DE_PCH_EVENT) {
1336 u32 pch_iir = I915_READ(SDEIIR);
1337
1338 if (HAS_PCH_CPT(dev))
1339 cpt_irq_handler(dev, pch_iir);
1340 else
1341 ibx_irq_handler(dev, pch_iir);
1342
1343 /* should clear PCH hotplug event before clear CPU irq */
1344 I915_WRITE(SDEIIR, pch_iir);
1345 }
1346
1347 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1348 ironlake_rps_change_irq_handler(dev);
1349 }
1350
1351 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1352 {
1353 struct drm_i915_private *dev_priv = dev->dev_private;
1354 int i;
1355
1356 if (de_iir & DE_ERR_INT_IVB)
1357 ivb_err_int_handler(dev);
1358
1359 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1360 dp_aux_irq_handler(dev);
1361
1362 if (de_iir & DE_GSE_IVB)
1363 intel_opregion_asle_intr(dev);
1364
1365 for (i = 0; i < 3; i++) {
1366 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1367 drm_handle_vblank(dev, i);
1368 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1369 intel_prepare_page_flip(dev, i);
1370 intel_finish_page_flip_plane(dev, i);
1371 }
1372 }
1373
1374 /* check event from PCH */
1375 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1376 u32 pch_iir = I915_READ(SDEIIR);
1377
1378 cpt_irq_handler(dev, pch_iir);
1379
1380 /* clear PCH hotplug event before clear CPU irq */
1381 I915_WRITE(SDEIIR, pch_iir);
1382 }
1383 }
1384
1385 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1386 {
1387 struct drm_device *dev = (struct drm_device *) arg;
1388 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1389 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1390 irqreturn_t ret = IRQ_NONE;
1391 bool err_int_reenable = false;
1392
1393 atomic_inc(&dev_priv->irq_received);
1394
1395 /* We get interrupts on unclaimed registers, so check for this before we
1396 * do any I915_{READ,WRITE}. */
1397 intel_uncore_check_errors(dev);
1398
1399 /* disable master interrupt before clearing iir */
1400 de_ier = I915_READ(DEIER);
1401 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1402 POSTING_READ(DEIER);
1403
1404 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1405 * interrupts will will be stored on its back queue, and then we'll be
1406 * able to process them after we restore SDEIER (as soon as we restore
1407 * it, we'll get an interrupt if SDEIIR still has something to process
1408 * due to its back queue). */
1409 if (!HAS_PCH_NOP(dev)) {
1410 sde_ier = I915_READ(SDEIER);
1411 I915_WRITE(SDEIER, 0);
1412 POSTING_READ(SDEIER);
1413 }
1414
1415 /* On Haswell, also mask ERR_INT because we don't want to risk
1416 * generating "unclaimed register" interrupts from inside the interrupt
1417 * handler. */
1418 if (IS_HASWELL(dev)) {
1419 spin_lock(&dev_priv->irq_lock);
1420 err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
1421 if (err_int_reenable)
1422 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1423 spin_unlock(&dev_priv->irq_lock);
1424 }
1425
1426 gt_iir = I915_READ(GTIIR);
1427 if (gt_iir) {
1428 if (INTEL_INFO(dev)->gen >= 6)
1429 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1430 else
1431 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1432 I915_WRITE(GTIIR, gt_iir);
1433 ret = IRQ_HANDLED;
1434 }
1435
1436 de_iir = I915_READ(DEIIR);
1437 if (de_iir) {
1438 if (INTEL_INFO(dev)->gen >= 7)
1439 ivb_display_irq_handler(dev, de_iir);
1440 else
1441 ilk_display_irq_handler(dev, de_iir);
1442 I915_WRITE(DEIIR, de_iir);
1443 ret = IRQ_HANDLED;
1444 }
1445
1446 if (INTEL_INFO(dev)->gen >= 6) {
1447 u32 pm_iir = I915_READ(GEN6_PMIIR);
1448 if (pm_iir) {
1449 gen6_rps_irq_handler(dev_priv, pm_iir);
1450 I915_WRITE(GEN6_PMIIR, pm_iir);
1451 ret = IRQ_HANDLED;
1452 }
1453 }
1454
1455 if (err_int_reenable) {
1456 spin_lock(&dev_priv->irq_lock);
1457 if (ivb_can_enable_err_int(dev))
1458 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1459 spin_unlock(&dev_priv->irq_lock);
1460 }
1461
1462 I915_WRITE(DEIER, de_ier);
1463 POSTING_READ(DEIER);
1464 if (!HAS_PCH_NOP(dev)) {
1465 I915_WRITE(SDEIER, sde_ier);
1466 POSTING_READ(SDEIER);
1467 }
1468
1469 return ret;
1470 }
1471
1472 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1473 bool reset_completed)
1474 {
1475 struct intel_ring_buffer *ring;
1476 int i;
1477
1478 /*
1479 * Notify all waiters for GPU completion events that reset state has
1480 * been changed, and that they need to restart their wait after
1481 * checking for potential errors (and bail out to drop locks if there is
1482 * a gpu reset pending so that i915_error_work_func can acquire them).
1483 */
1484
1485 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1486 for_each_ring(ring, dev_priv, i)
1487 wake_up_all(&ring->irq_queue);
1488
1489 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1490 wake_up_all(&dev_priv->pending_flip_queue);
1491
1492 /*
1493 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1494 * reset state is cleared.
1495 */
1496 if (reset_completed)
1497 wake_up_all(&dev_priv->gpu_error.reset_queue);
1498 }
1499
1500 /**
1501 * i915_error_work_func - do process context error handling work
1502 * @work: work struct
1503 *
1504 * Fire an error uevent so userspace can see that a hang or error
1505 * was detected.
1506 */
1507 static void i915_error_work_func(struct work_struct *work)
1508 {
1509 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1510 work);
1511 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1512 gpu_error);
1513 struct drm_device *dev = dev_priv->dev;
1514 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1515 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1516 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1517 int ret;
1518
1519 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1520
1521 /*
1522 * Note that there's only one work item which does gpu resets, so we
1523 * need not worry about concurrent gpu resets potentially incrementing
1524 * error->reset_counter twice. We only need to take care of another
1525 * racing irq/hangcheck declaring the gpu dead for a second time. A
1526 * quick check for that is good enough: schedule_work ensures the
1527 * correct ordering between hang detection and this work item, and since
1528 * the reset in-progress bit is only ever set by code outside of this
1529 * work we don't need to worry about any other races.
1530 */
1531 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1532 DRM_DEBUG_DRIVER("resetting chip\n");
1533 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1534 reset_event);
1535
1536 /*
1537 * All state reset _must_ be completed before we update the
1538 * reset counter, for otherwise waiters might miss the reset
1539 * pending state and not properly drop locks, resulting in
1540 * deadlocks with the reset work.
1541 */
1542 ret = i915_reset(dev);
1543
1544 intel_display_handle_reset(dev);
1545
1546 if (ret == 0) {
1547 /*
1548 * After all the gem state is reset, increment the reset
1549 * counter and wake up everyone waiting for the reset to
1550 * complete.
1551 *
1552 * Since unlock operations are a one-sided barrier only,
1553 * we need to insert a barrier here to order any seqno
1554 * updates before
1555 * the counter increment.
1556 */
1557 smp_mb__before_atomic_inc();
1558 atomic_inc(&dev_priv->gpu_error.reset_counter);
1559
1560 kobject_uevent_env(&dev->primary->kdev.kobj,
1561 KOBJ_CHANGE, reset_done_event);
1562 } else {
1563 atomic_set(&error->reset_counter, I915_WEDGED);
1564 }
1565
1566 /*
1567 * Note: The wake_up also serves as a memory barrier so that
1568 * waiters see the update value of the reset counter atomic_t.
1569 */
1570 i915_error_wake_up(dev_priv, true);
1571 }
1572 }
1573
1574 static void i915_report_and_clear_eir(struct drm_device *dev)
1575 {
1576 struct drm_i915_private *dev_priv = dev->dev_private;
1577 uint32_t instdone[I915_NUM_INSTDONE_REG];
1578 u32 eir = I915_READ(EIR);
1579 int pipe, i;
1580
1581 if (!eir)
1582 return;
1583
1584 pr_err("render error detected, EIR: 0x%08x\n", eir);
1585
1586 i915_get_extra_instdone(dev, instdone);
1587
1588 if (IS_G4X(dev)) {
1589 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1590 u32 ipeir = I915_READ(IPEIR_I965);
1591
1592 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1593 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1594 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1595 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1596 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1597 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1598 I915_WRITE(IPEIR_I965, ipeir);
1599 POSTING_READ(IPEIR_I965);
1600 }
1601 if (eir & GM45_ERROR_PAGE_TABLE) {
1602 u32 pgtbl_err = I915_READ(PGTBL_ER);
1603 pr_err("page table error\n");
1604 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1605 I915_WRITE(PGTBL_ER, pgtbl_err);
1606 POSTING_READ(PGTBL_ER);
1607 }
1608 }
1609
1610 if (!IS_GEN2(dev)) {
1611 if (eir & I915_ERROR_PAGE_TABLE) {
1612 u32 pgtbl_err = I915_READ(PGTBL_ER);
1613 pr_err("page table error\n");
1614 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1615 I915_WRITE(PGTBL_ER, pgtbl_err);
1616 POSTING_READ(PGTBL_ER);
1617 }
1618 }
1619
1620 if (eir & I915_ERROR_MEMORY_REFRESH) {
1621 pr_err("memory refresh error:\n");
1622 for_each_pipe(pipe)
1623 pr_err("pipe %c stat: 0x%08x\n",
1624 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1625 /* pipestat has already been acked */
1626 }
1627 if (eir & I915_ERROR_INSTRUCTION) {
1628 pr_err("instruction error\n");
1629 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1630 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1631 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1632 if (INTEL_INFO(dev)->gen < 4) {
1633 u32 ipeir = I915_READ(IPEIR);
1634
1635 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1636 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1637 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1638 I915_WRITE(IPEIR, ipeir);
1639 POSTING_READ(IPEIR);
1640 } else {
1641 u32 ipeir = I915_READ(IPEIR_I965);
1642
1643 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1644 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1645 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1646 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1647 I915_WRITE(IPEIR_I965, ipeir);
1648 POSTING_READ(IPEIR_I965);
1649 }
1650 }
1651
1652 I915_WRITE(EIR, eir);
1653 POSTING_READ(EIR);
1654 eir = I915_READ(EIR);
1655 if (eir) {
1656 /*
1657 * some errors might have become stuck,
1658 * mask them.
1659 */
1660 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1661 I915_WRITE(EMR, I915_READ(EMR) | eir);
1662 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1663 }
1664 }
1665
1666 /**
1667 * i915_handle_error - handle an error interrupt
1668 * @dev: drm device
1669 *
1670 * Do some basic checking of regsiter state at error interrupt time and
1671 * dump it to the syslog. Also call i915_capture_error_state() to make
1672 * sure we get a record and make it available in debugfs. Fire a uevent
1673 * so userspace knows something bad happened (should trigger collection
1674 * of a ring dump etc.).
1675 */
1676 void i915_handle_error(struct drm_device *dev, bool wedged)
1677 {
1678 struct drm_i915_private *dev_priv = dev->dev_private;
1679
1680 i915_capture_error_state(dev);
1681 i915_report_and_clear_eir(dev);
1682
1683 if (wedged) {
1684 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1685 &dev_priv->gpu_error.reset_counter);
1686
1687 /*
1688 * Wakeup waiting processes so that the reset work function
1689 * i915_error_work_func doesn't deadlock trying to grab various
1690 * locks. By bumping the reset counter first, the woken
1691 * processes will see a reset in progress and back off,
1692 * releasing their locks and then wait for the reset completion.
1693 * We must do this for _all_ gpu waiters that might hold locks
1694 * that the reset work needs to acquire.
1695 *
1696 * Note: The wake_up serves as the required memory barrier to
1697 * ensure that the waiters see the updated value of the reset
1698 * counter atomic_t.
1699 */
1700 i915_error_wake_up(dev_priv, false);
1701 }
1702
1703 /*
1704 * Our reset work can grab modeset locks (since it needs to reset the
1705 * state of outstanding pagelips). Hence it must not be run on our own
1706 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1707 * code will deadlock.
1708 */
1709 schedule_work(&dev_priv->gpu_error.work);
1710 }
1711
1712 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1713 {
1714 drm_i915_private_t *dev_priv = dev->dev_private;
1715 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1717 struct drm_i915_gem_object *obj;
1718 struct intel_unpin_work *work;
1719 unsigned long flags;
1720 bool stall_detected;
1721
1722 /* Ignore early vblank irqs */
1723 if (intel_crtc == NULL)
1724 return;
1725
1726 spin_lock_irqsave(&dev->event_lock, flags);
1727 work = intel_crtc->unpin_work;
1728
1729 if (work == NULL ||
1730 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1731 !work->enable_stall_check) {
1732 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1733 spin_unlock_irqrestore(&dev->event_lock, flags);
1734 return;
1735 }
1736
1737 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1738 obj = work->pending_flip_obj;
1739 if (INTEL_INFO(dev)->gen >= 4) {
1740 int dspsurf = DSPSURF(intel_crtc->plane);
1741 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1742 i915_gem_obj_ggtt_offset(obj);
1743 } else {
1744 int dspaddr = DSPADDR(intel_crtc->plane);
1745 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1746 crtc->y * crtc->fb->pitches[0] +
1747 crtc->x * crtc->fb->bits_per_pixel/8);
1748 }
1749
1750 spin_unlock_irqrestore(&dev->event_lock, flags);
1751
1752 if (stall_detected) {
1753 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1754 intel_prepare_page_flip(dev, intel_crtc->plane);
1755 }
1756 }
1757
1758 /* Called from drm generic code, passed 'crtc' which
1759 * we use as a pipe index
1760 */
1761 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1762 {
1763 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1764 unsigned long irqflags;
1765
1766 if (!i915_pipe_enabled(dev, pipe))
1767 return -EINVAL;
1768
1769 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1770 if (INTEL_INFO(dev)->gen >= 4)
1771 i915_enable_pipestat(dev_priv, pipe,
1772 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1773 else
1774 i915_enable_pipestat(dev_priv, pipe,
1775 PIPE_VBLANK_INTERRUPT_ENABLE);
1776
1777 /* maintain vblank delivery even in deep C-states */
1778 if (dev_priv->info->gen == 3)
1779 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1780 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1781
1782 return 0;
1783 }
1784
1785 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1786 {
1787 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1788 unsigned long irqflags;
1789 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1790 DE_PIPE_VBLANK_ILK(pipe);
1791
1792 if (!i915_pipe_enabled(dev, pipe))
1793 return -EINVAL;
1794
1795 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1796 ironlake_enable_display_irq(dev_priv, bit);
1797 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1798
1799 return 0;
1800 }
1801
1802 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1803 {
1804 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1805 unsigned long irqflags;
1806 u32 imr;
1807
1808 if (!i915_pipe_enabled(dev, pipe))
1809 return -EINVAL;
1810
1811 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1812 imr = I915_READ(VLV_IMR);
1813 if (pipe == 0)
1814 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1815 else
1816 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1817 I915_WRITE(VLV_IMR, imr);
1818 i915_enable_pipestat(dev_priv, pipe,
1819 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1820 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1821
1822 return 0;
1823 }
1824
1825 /* Called from drm generic code, passed 'crtc' which
1826 * we use as a pipe index
1827 */
1828 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1829 {
1830 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1831 unsigned long irqflags;
1832
1833 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1834 if (dev_priv->info->gen == 3)
1835 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1836
1837 i915_disable_pipestat(dev_priv, pipe,
1838 PIPE_VBLANK_INTERRUPT_ENABLE |
1839 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1840 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1841 }
1842
1843 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1844 {
1845 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1846 unsigned long irqflags;
1847 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1848 DE_PIPE_VBLANK_ILK(pipe);
1849
1850 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1851 ironlake_disable_display_irq(dev_priv, bit);
1852 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1853 }
1854
1855 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1856 {
1857 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1858 unsigned long irqflags;
1859 u32 imr;
1860
1861 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1862 i915_disable_pipestat(dev_priv, pipe,
1863 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1864 imr = I915_READ(VLV_IMR);
1865 if (pipe == 0)
1866 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1867 else
1868 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1869 I915_WRITE(VLV_IMR, imr);
1870 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1871 }
1872
1873 static u32
1874 ring_last_seqno(struct intel_ring_buffer *ring)
1875 {
1876 return list_entry(ring->request_list.prev,
1877 struct drm_i915_gem_request, list)->seqno;
1878 }
1879
1880 static bool
1881 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1882 {
1883 return (list_empty(&ring->request_list) ||
1884 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1885 }
1886
1887 static struct intel_ring_buffer *
1888 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1889 {
1890 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1891 u32 cmd, ipehr, acthd, acthd_min;
1892
1893 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1894 if ((ipehr & ~(0x3 << 16)) !=
1895 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1896 return NULL;
1897
1898 /* ACTHD is likely pointing to the dword after the actual command,
1899 * so scan backwards until we find the MBOX.
1900 */
1901 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1902 acthd_min = max((int)acthd - 3 * 4, 0);
1903 do {
1904 cmd = ioread32(ring->virtual_start + acthd);
1905 if (cmd == ipehr)
1906 break;
1907
1908 acthd -= 4;
1909 if (acthd < acthd_min)
1910 return NULL;
1911 } while (1);
1912
1913 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1914 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1915 }
1916
1917 static int semaphore_passed(struct intel_ring_buffer *ring)
1918 {
1919 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1920 struct intel_ring_buffer *signaller;
1921 u32 seqno, ctl;
1922
1923 ring->hangcheck.deadlock = true;
1924
1925 signaller = semaphore_waits_for(ring, &seqno);
1926 if (signaller == NULL || signaller->hangcheck.deadlock)
1927 return -1;
1928
1929 /* cursory check for an unkickable deadlock */
1930 ctl = I915_READ_CTL(signaller);
1931 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1932 return -1;
1933
1934 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1935 }
1936
1937 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1938 {
1939 struct intel_ring_buffer *ring;
1940 int i;
1941
1942 for_each_ring(ring, dev_priv, i)
1943 ring->hangcheck.deadlock = false;
1944 }
1945
1946 static enum intel_ring_hangcheck_action
1947 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1948 {
1949 struct drm_device *dev = ring->dev;
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 u32 tmp;
1952
1953 if (ring->hangcheck.acthd != acthd)
1954 return HANGCHECK_ACTIVE;
1955
1956 if (IS_GEN2(dev))
1957 return HANGCHECK_HUNG;
1958
1959 /* Is the chip hanging on a WAIT_FOR_EVENT?
1960 * If so we can simply poke the RB_WAIT bit
1961 * and break the hang. This should work on
1962 * all but the second generation chipsets.
1963 */
1964 tmp = I915_READ_CTL(ring);
1965 if (tmp & RING_WAIT) {
1966 DRM_ERROR("Kicking stuck wait on %s\n",
1967 ring->name);
1968 I915_WRITE_CTL(ring, tmp);
1969 return HANGCHECK_KICK;
1970 }
1971
1972 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1973 switch (semaphore_passed(ring)) {
1974 default:
1975 return HANGCHECK_HUNG;
1976 case 1:
1977 DRM_ERROR("Kicking stuck semaphore on %s\n",
1978 ring->name);
1979 I915_WRITE_CTL(ring, tmp);
1980 return HANGCHECK_KICK;
1981 case 0:
1982 return HANGCHECK_WAIT;
1983 }
1984 }
1985
1986 return HANGCHECK_HUNG;
1987 }
1988
1989 /**
1990 * This is called when the chip hasn't reported back with completed
1991 * batchbuffers in a long time. We keep track per ring seqno progress and
1992 * if there are no progress, hangcheck score for that ring is increased.
1993 * Further, acthd is inspected to see if the ring is stuck. On stuck case
1994 * we kick the ring. If we see no progress on three subsequent calls
1995 * we assume chip is wedged and try to fix it by resetting the chip.
1996 */
1997 static void i915_hangcheck_elapsed(unsigned long data)
1998 {
1999 struct drm_device *dev = (struct drm_device *)data;
2000 drm_i915_private_t *dev_priv = dev->dev_private;
2001 struct intel_ring_buffer *ring;
2002 int i;
2003 int busy_count = 0, rings_hung = 0;
2004 bool stuck[I915_NUM_RINGS] = { 0 };
2005 #define BUSY 1
2006 #define KICK 5
2007 #define HUNG 20
2008 #define FIRE 30
2009
2010 if (!i915_enable_hangcheck)
2011 return;
2012
2013 for_each_ring(ring, dev_priv, i) {
2014 u32 seqno, acthd;
2015 bool busy = true;
2016
2017 semaphore_clear_deadlocks(dev_priv);
2018
2019 seqno = ring->get_seqno(ring, false);
2020 acthd = intel_ring_get_active_head(ring);
2021
2022 if (ring->hangcheck.seqno == seqno) {
2023 if (ring_idle(ring, seqno)) {
2024 if (waitqueue_active(&ring->irq_queue)) {
2025 /* Issue a wake-up to catch stuck h/w. */
2026 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2027 ring->name);
2028 wake_up_all(&ring->irq_queue);
2029 ring->hangcheck.score += HUNG;
2030 } else
2031 busy = false;
2032 } else {
2033 /* We always increment the hangcheck score
2034 * if the ring is busy and still processing
2035 * the same request, so that no single request
2036 * can run indefinitely (such as a chain of
2037 * batches). The only time we do not increment
2038 * the hangcheck score on this ring, if this
2039 * ring is in a legitimate wait for another
2040 * ring. In that case the waiting ring is a
2041 * victim and we want to be sure we catch the
2042 * right culprit. Then every time we do kick
2043 * the ring, add a small increment to the
2044 * score so that we can catch a batch that is
2045 * being repeatedly kicked and so responsible
2046 * for stalling the machine.
2047 */
2048 ring->hangcheck.action = ring_stuck(ring,
2049 acthd);
2050
2051 switch (ring->hangcheck.action) {
2052 case HANGCHECK_WAIT:
2053 break;
2054 case HANGCHECK_ACTIVE:
2055 ring->hangcheck.score += BUSY;
2056 break;
2057 case HANGCHECK_KICK:
2058 ring->hangcheck.score += KICK;
2059 break;
2060 case HANGCHECK_HUNG:
2061 ring->hangcheck.score += HUNG;
2062 stuck[i] = true;
2063 break;
2064 }
2065 }
2066 } else {
2067 /* Gradually reduce the count so that we catch DoS
2068 * attempts across multiple batches.
2069 */
2070 if (ring->hangcheck.score > 0)
2071 ring->hangcheck.score--;
2072 }
2073
2074 ring->hangcheck.seqno = seqno;
2075 ring->hangcheck.acthd = acthd;
2076 busy_count += busy;
2077 }
2078
2079 for_each_ring(ring, dev_priv, i) {
2080 if (ring->hangcheck.score > FIRE) {
2081 DRM_INFO("%s on %s\n",
2082 stuck[i] ? "stuck" : "no progress",
2083 ring->name);
2084 rings_hung++;
2085 }
2086 }
2087
2088 if (rings_hung)
2089 return i915_handle_error(dev, true);
2090
2091 if (busy_count)
2092 /* Reset timer case chip hangs without another request
2093 * being added */
2094 i915_queue_hangcheck(dev);
2095 }
2096
2097 void i915_queue_hangcheck(struct drm_device *dev)
2098 {
2099 struct drm_i915_private *dev_priv = dev->dev_private;
2100 if (!i915_enable_hangcheck)
2101 return;
2102
2103 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2104 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2105 }
2106
2107 static void ibx_irq_preinstall(struct drm_device *dev)
2108 {
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110
2111 if (HAS_PCH_NOP(dev))
2112 return;
2113
2114 /* south display irq */
2115 I915_WRITE(SDEIMR, 0xffffffff);
2116 /*
2117 * SDEIER is also touched by the interrupt handler to work around missed
2118 * PCH interrupts. Hence we can't update it after the interrupt handler
2119 * is enabled - instead we unconditionally enable all PCH interrupt
2120 * sources here, but then only unmask them as needed with SDEIMR.
2121 */
2122 I915_WRITE(SDEIER, 0xffffffff);
2123 POSTING_READ(SDEIER);
2124 }
2125
2126 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2127 {
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129
2130 /* and GT */
2131 I915_WRITE(GTIMR, 0xffffffff);
2132 I915_WRITE(GTIER, 0x0);
2133 POSTING_READ(GTIER);
2134
2135 if (INTEL_INFO(dev)->gen >= 6) {
2136 /* and PM */
2137 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2138 I915_WRITE(GEN6_PMIER, 0x0);
2139 POSTING_READ(GEN6_PMIER);
2140 }
2141 }
2142
2143 /* drm_dma.h hooks
2144 */
2145 static void ironlake_irq_preinstall(struct drm_device *dev)
2146 {
2147 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2148
2149 atomic_set(&dev_priv->irq_received, 0);
2150
2151 I915_WRITE(HWSTAM, 0xeffe);
2152
2153 I915_WRITE(DEIMR, 0xffffffff);
2154 I915_WRITE(DEIER, 0x0);
2155 POSTING_READ(DEIER);
2156
2157 gen5_gt_irq_preinstall(dev);
2158
2159 ibx_irq_preinstall(dev);
2160 }
2161
2162 static void valleyview_irq_preinstall(struct drm_device *dev)
2163 {
2164 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2165 int pipe;
2166
2167 atomic_set(&dev_priv->irq_received, 0);
2168
2169 /* VLV magic */
2170 I915_WRITE(VLV_IMR, 0);
2171 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2172 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2173 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2174
2175 /* and GT */
2176 I915_WRITE(GTIIR, I915_READ(GTIIR));
2177 I915_WRITE(GTIIR, I915_READ(GTIIR));
2178
2179 gen5_gt_irq_preinstall(dev);
2180
2181 I915_WRITE(DPINVGTT, 0xff);
2182
2183 I915_WRITE(PORT_HOTPLUG_EN, 0);
2184 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2185 for_each_pipe(pipe)
2186 I915_WRITE(PIPESTAT(pipe), 0xffff);
2187 I915_WRITE(VLV_IIR, 0xffffffff);
2188 I915_WRITE(VLV_IMR, 0xffffffff);
2189 I915_WRITE(VLV_IER, 0x0);
2190 POSTING_READ(VLV_IER);
2191 }
2192
2193 static void ibx_hpd_irq_setup(struct drm_device *dev)
2194 {
2195 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2196 struct drm_mode_config *mode_config = &dev->mode_config;
2197 struct intel_encoder *intel_encoder;
2198 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2199
2200 if (HAS_PCH_IBX(dev)) {
2201 hotplug_irqs = SDE_HOTPLUG_MASK;
2202 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2203 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2204 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2205 } else {
2206 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2207 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2208 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2209 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2210 }
2211
2212 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2213
2214 /*
2215 * Enable digital hotplug on the PCH, and configure the DP short pulse
2216 * duration to 2ms (which is the minimum in the Display Port spec)
2217 *
2218 * This register is the same on all known PCH chips.
2219 */
2220 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2221 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2222 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2223 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2224 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2225 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2226 }
2227
2228 static void ibx_irq_postinstall(struct drm_device *dev)
2229 {
2230 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2231 u32 mask;
2232
2233 if (HAS_PCH_NOP(dev))
2234 return;
2235
2236 if (HAS_PCH_IBX(dev)) {
2237 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2238 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2239 } else {
2240 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2241
2242 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2243 }
2244
2245 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2246 I915_WRITE(SDEIMR, ~mask);
2247 }
2248
2249 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2250 {
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 u32 pm_irqs, gt_irqs;
2253
2254 pm_irqs = gt_irqs = 0;
2255
2256 dev_priv->gt_irq_mask = ~0;
2257 if (HAS_L3_GPU_CACHE(dev)) {
2258 /* L3 parity interrupt is always unmasked. */
2259 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2260 gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2261 }
2262
2263 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2264 if (IS_GEN5(dev)) {
2265 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2266 ILK_BSD_USER_INTERRUPT;
2267 } else {
2268 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2269 }
2270
2271 I915_WRITE(GTIIR, I915_READ(GTIIR));
2272 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2273 I915_WRITE(GTIER, gt_irqs);
2274 POSTING_READ(GTIER);
2275
2276 if (INTEL_INFO(dev)->gen >= 6) {
2277 pm_irqs |= GEN6_PM_RPS_EVENTS;
2278
2279 if (HAS_VEBOX(dev))
2280 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2281
2282 dev_priv->pm_irq_mask = 0xffffffff;
2283 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2284 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2285 I915_WRITE(GEN6_PMIER, pm_irqs);
2286 POSTING_READ(GEN6_PMIER);
2287 }
2288 }
2289
2290 static int ironlake_irq_postinstall(struct drm_device *dev)
2291 {
2292 unsigned long irqflags;
2293 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2294 u32 display_mask, extra_mask;
2295
2296 if (INTEL_INFO(dev)->gen >= 7) {
2297 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2298 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2299 DE_PLANEB_FLIP_DONE_IVB |
2300 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2301 DE_ERR_INT_IVB);
2302 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2303 DE_PIPEA_VBLANK_IVB);
2304
2305 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2306 } else {
2307 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2308 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2309 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2310 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2311 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2312 }
2313
2314 dev_priv->irq_mask = ~display_mask;
2315
2316 /* should always can generate irq */
2317 I915_WRITE(DEIIR, I915_READ(DEIIR));
2318 I915_WRITE(DEIMR, dev_priv->irq_mask);
2319 I915_WRITE(DEIER, display_mask | extra_mask);
2320 POSTING_READ(DEIER);
2321
2322 gen5_gt_irq_postinstall(dev);
2323
2324 ibx_irq_postinstall(dev);
2325
2326 if (IS_IRONLAKE_M(dev)) {
2327 /* Enable PCU event interrupts
2328 *
2329 * spinlocking not required here for correctness since interrupt
2330 * setup is guaranteed to run in single-threaded context. But we
2331 * need it to make the assert_spin_locked happy. */
2332 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2333 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2334 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2335 }
2336
2337 return 0;
2338 }
2339
2340 static int valleyview_irq_postinstall(struct drm_device *dev)
2341 {
2342 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2343 u32 enable_mask;
2344 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2345 unsigned long irqflags;
2346
2347 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2348 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2349 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2350 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2351 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2352
2353 /*
2354 *Leave vblank interrupts masked initially. enable/disable will
2355 * toggle them based on usage.
2356 */
2357 dev_priv->irq_mask = (~enable_mask) |
2358 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2359 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2360
2361 I915_WRITE(PORT_HOTPLUG_EN, 0);
2362 POSTING_READ(PORT_HOTPLUG_EN);
2363
2364 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2365 I915_WRITE(VLV_IER, enable_mask);
2366 I915_WRITE(VLV_IIR, 0xffffffff);
2367 I915_WRITE(PIPESTAT(0), 0xffff);
2368 I915_WRITE(PIPESTAT(1), 0xffff);
2369 POSTING_READ(VLV_IER);
2370
2371 /* Interrupt setup is already guaranteed to be single-threaded, this is
2372 * just to make the assert_spin_locked check happy. */
2373 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2374 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2375 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2376 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2377 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2378
2379 I915_WRITE(VLV_IIR, 0xffffffff);
2380 I915_WRITE(VLV_IIR, 0xffffffff);
2381
2382 gen5_gt_irq_postinstall(dev);
2383
2384 /* ack & enable invalid PTE error interrupts */
2385 #if 0 /* FIXME: add support to irq handler for checking these bits */
2386 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2387 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2388 #endif
2389
2390 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2391
2392 return 0;
2393 }
2394
2395 static void valleyview_irq_uninstall(struct drm_device *dev)
2396 {
2397 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2398 int pipe;
2399
2400 if (!dev_priv)
2401 return;
2402
2403 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2404
2405 for_each_pipe(pipe)
2406 I915_WRITE(PIPESTAT(pipe), 0xffff);
2407
2408 I915_WRITE(HWSTAM, 0xffffffff);
2409 I915_WRITE(PORT_HOTPLUG_EN, 0);
2410 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2411 for_each_pipe(pipe)
2412 I915_WRITE(PIPESTAT(pipe), 0xffff);
2413 I915_WRITE(VLV_IIR, 0xffffffff);
2414 I915_WRITE(VLV_IMR, 0xffffffff);
2415 I915_WRITE(VLV_IER, 0x0);
2416 POSTING_READ(VLV_IER);
2417 }
2418
2419 static void ironlake_irq_uninstall(struct drm_device *dev)
2420 {
2421 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2422
2423 if (!dev_priv)
2424 return;
2425
2426 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2427
2428 I915_WRITE(HWSTAM, 0xffffffff);
2429
2430 I915_WRITE(DEIMR, 0xffffffff);
2431 I915_WRITE(DEIER, 0x0);
2432 I915_WRITE(DEIIR, I915_READ(DEIIR));
2433 if (IS_GEN7(dev))
2434 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2435
2436 I915_WRITE(GTIMR, 0xffffffff);
2437 I915_WRITE(GTIER, 0x0);
2438 I915_WRITE(GTIIR, I915_READ(GTIIR));
2439
2440 if (HAS_PCH_NOP(dev))
2441 return;
2442
2443 I915_WRITE(SDEIMR, 0xffffffff);
2444 I915_WRITE(SDEIER, 0x0);
2445 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2446 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2447 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2448 }
2449
2450 static void i8xx_irq_preinstall(struct drm_device * dev)
2451 {
2452 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2453 int pipe;
2454
2455 atomic_set(&dev_priv->irq_received, 0);
2456
2457 for_each_pipe(pipe)
2458 I915_WRITE(PIPESTAT(pipe), 0);
2459 I915_WRITE16(IMR, 0xffff);
2460 I915_WRITE16(IER, 0x0);
2461 POSTING_READ16(IER);
2462 }
2463
2464 static int i8xx_irq_postinstall(struct drm_device *dev)
2465 {
2466 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2467
2468 I915_WRITE16(EMR,
2469 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2470
2471 /* Unmask the interrupts that we always want on. */
2472 dev_priv->irq_mask =
2473 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2474 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2475 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2476 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2477 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2478 I915_WRITE16(IMR, dev_priv->irq_mask);
2479
2480 I915_WRITE16(IER,
2481 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2482 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2483 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2484 I915_USER_INTERRUPT);
2485 POSTING_READ16(IER);
2486
2487 return 0;
2488 }
2489
2490 /*
2491 * Returns true when a page flip has completed.
2492 */
2493 static bool i8xx_handle_vblank(struct drm_device *dev,
2494 int pipe, u16 iir)
2495 {
2496 drm_i915_private_t *dev_priv = dev->dev_private;
2497 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2498
2499 if (!drm_handle_vblank(dev, pipe))
2500 return false;
2501
2502 if ((iir & flip_pending) == 0)
2503 return false;
2504
2505 intel_prepare_page_flip(dev, pipe);
2506
2507 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2508 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2509 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2510 * the flip is completed (no longer pending). Since this doesn't raise
2511 * an interrupt per se, we watch for the change at vblank.
2512 */
2513 if (I915_READ16(ISR) & flip_pending)
2514 return false;
2515
2516 intel_finish_page_flip(dev, pipe);
2517
2518 return true;
2519 }
2520
2521 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2522 {
2523 struct drm_device *dev = (struct drm_device *) arg;
2524 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2525 u16 iir, new_iir;
2526 u32 pipe_stats[2];
2527 unsigned long irqflags;
2528 int pipe;
2529 u16 flip_mask =
2530 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2531 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2532
2533 atomic_inc(&dev_priv->irq_received);
2534
2535 iir = I915_READ16(IIR);
2536 if (iir == 0)
2537 return IRQ_NONE;
2538
2539 while (iir & ~flip_mask) {
2540 /* Can't rely on pipestat interrupt bit in iir as it might
2541 * have been cleared after the pipestat interrupt was received.
2542 * It doesn't set the bit in iir again, but it still produces
2543 * interrupts (for non-MSI).
2544 */
2545 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2546 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2547 i915_handle_error(dev, false);
2548
2549 for_each_pipe(pipe) {
2550 int reg = PIPESTAT(pipe);
2551 pipe_stats[pipe] = I915_READ(reg);
2552
2553 /*
2554 * Clear the PIPE*STAT regs before the IIR
2555 */
2556 if (pipe_stats[pipe] & 0x8000ffff) {
2557 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2558 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2559 pipe_name(pipe));
2560 I915_WRITE(reg, pipe_stats[pipe]);
2561 }
2562 }
2563 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2564
2565 I915_WRITE16(IIR, iir & ~flip_mask);
2566 new_iir = I915_READ16(IIR); /* Flush posted writes */
2567
2568 i915_update_dri1_breadcrumb(dev);
2569
2570 if (iir & I915_USER_INTERRUPT)
2571 notify_ring(dev, &dev_priv->ring[RCS]);
2572
2573 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2574 i8xx_handle_vblank(dev, 0, iir))
2575 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2576
2577 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2578 i8xx_handle_vblank(dev, 1, iir))
2579 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2580
2581 iir = new_iir;
2582 }
2583
2584 return IRQ_HANDLED;
2585 }
2586
2587 static void i8xx_irq_uninstall(struct drm_device * dev)
2588 {
2589 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2590 int pipe;
2591
2592 for_each_pipe(pipe) {
2593 /* Clear enable bits; then clear status bits */
2594 I915_WRITE(PIPESTAT(pipe), 0);
2595 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2596 }
2597 I915_WRITE16(IMR, 0xffff);
2598 I915_WRITE16(IER, 0x0);
2599 I915_WRITE16(IIR, I915_READ16(IIR));
2600 }
2601
2602 static void i915_irq_preinstall(struct drm_device * dev)
2603 {
2604 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2605 int pipe;
2606
2607 atomic_set(&dev_priv->irq_received, 0);
2608
2609 if (I915_HAS_HOTPLUG(dev)) {
2610 I915_WRITE(PORT_HOTPLUG_EN, 0);
2611 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2612 }
2613
2614 I915_WRITE16(HWSTAM, 0xeffe);
2615 for_each_pipe(pipe)
2616 I915_WRITE(PIPESTAT(pipe), 0);
2617 I915_WRITE(IMR, 0xffffffff);
2618 I915_WRITE(IER, 0x0);
2619 POSTING_READ(IER);
2620 }
2621
2622 static int i915_irq_postinstall(struct drm_device *dev)
2623 {
2624 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2625 u32 enable_mask;
2626
2627 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2628
2629 /* Unmask the interrupts that we always want on. */
2630 dev_priv->irq_mask =
2631 ~(I915_ASLE_INTERRUPT |
2632 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2633 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2634 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2635 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2636 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2637
2638 enable_mask =
2639 I915_ASLE_INTERRUPT |
2640 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2641 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2642 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2643 I915_USER_INTERRUPT;
2644
2645 if (I915_HAS_HOTPLUG(dev)) {
2646 I915_WRITE(PORT_HOTPLUG_EN, 0);
2647 POSTING_READ(PORT_HOTPLUG_EN);
2648
2649 /* Enable in IER... */
2650 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2651 /* and unmask in IMR */
2652 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2653 }
2654
2655 I915_WRITE(IMR, dev_priv->irq_mask);
2656 I915_WRITE(IER, enable_mask);
2657 POSTING_READ(IER);
2658
2659 i915_enable_asle_pipestat(dev);
2660
2661 return 0;
2662 }
2663
2664 /*
2665 * Returns true when a page flip has completed.
2666 */
2667 static bool i915_handle_vblank(struct drm_device *dev,
2668 int plane, int pipe, u32 iir)
2669 {
2670 drm_i915_private_t *dev_priv = dev->dev_private;
2671 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2672
2673 if (!drm_handle_vblank(dev, pipe))
2674 return false;
2675
2676 if ((iir & flip_pending) == 0)
2677 return false;
2678
2679 intel_prepare_page_flip(dev, plane);
2680
2681 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2682 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2683 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2684 * the flip is completed (no longer pending). Since this doesn't raise
2685 * an interrupt per se, we watch for the change at vblank.
2686 */
2687 if (I915_READ(ISR) & flip_pending)
2688 return false;
2689
2690 intel_finish_page_flip(dev, pipe);
2691
2692 return true;
2693 }
2694
2695 static irqreturn_t i915_irq_handler(int irq, void *arg)
2696 {
2697 struct drm_device *dev = (struct drm_device *) arg;
2698 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2699 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2700 unsigned long irqflags;
2701 u32 flip_mask =
2702 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2703 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2704 int pipe, ret = IRQ_NONE;
2705
2706 atomic_inc(&dev_priv->irq_received);
2707
2708 iir = I915_READ(IIR);
2709 do {
2710 bool irq_received = (iir & ~flip_mask) != 0;
2711 bool blc_event = false;
2712
2713 /* Can't rely on pipestat interrupt bit in iir as it might
2714 * have been cleared after the pipestat interrupt was received.
2715 * It doesn't set the bit in iir again, but it still produces
2716 * interrupts (for non-MSI).
2717 */
2718 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2719 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2720 i915_handle_error(dev, false);
2721
2722 for_each_pipe(pipe) {
2723 int reg = PIPESTAT(pipe);
2724 pipe_stats[pipe] = I915_READ(reg);
2725
2726 /* Clear the PIPE*STAT regs before the IIR */
2727 if (pipe_stats[pipe] & 0x8000ffff) {
2728 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2729 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2730 pipe_name(pipe));
2731 I915_WRITE(reg, pipe_stats[pipe]);
2732 irq_received = true;
2733 }
2734 }
2735 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2736
2737 if (!irq_received)
2738 break;
2739
2740 /* Consume port. Then clear IIR or we'll miss events */
2741 if ((I915_HAS_HOTPLUG(dev)) &&
2742 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2743 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2744 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2745
2746 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2747 hotplug_status);
2748
2749 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2750
2751 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2752 POSTING_READ(PORT_HOTPLUG_STAT);
2753 }
2754
2755 I915_WRITE(IIR, iir & ~flip_mask);
2756 new_iir = I915_READ(IIR); /* Flush posted writes */
2757
2758 if (iir & I915_USER_INTERRUPT)
2759 notify_ring(dev, &dev_priv->ring[RCS]);
2760
2761 for_each_pipe(pipe) {
2762 int plane = pipe;
2763 if (IS_MOBILE(dev))
2764 plane = !plane;
2765
2766 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2767 i915_handle_vblank(dev, plane, pipe, iir))
2768 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2769
2770 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2771 blc_event = true;
2772 }
2773
2774 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2775 intel_opregion_asle_intr(dev);
2776
2777 /* With MSI, interrupts are only generated when iir
2778 * transitions from zero to nonzero. If another bit got
2779 * set while we were handling the existing iir bits, then
2780 * we would never get another interrupt.
2781 *
2782 * This is fine on non-MSI as well, as if we hit this path
2783 * we avoid exiting the interrupt handler only to generate
2784 * another one.
2785 *
2786 * Note that for MSI this could cause a stray interrupt report
2787 * if an interrupt landed in the time between writing IIR and
2788 * the posting read. This should be rare enough to never
2789 * trigger the 99% of 100,000 interrupts test for disabling
2790 * stray interrupts.
2791 */
2792 ret = IRQ_HANDLED;
2793 iir = new_iir;
2794 } while (iir & ~flip_mask);
2795
2796 i915_update_dri1_breadcrumb(dev);
2797
2798 return ret;
2799 }
2800
2801 static void i915_irq_uninstall(struct drm_device * dev)
2802 {
2803 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2804 int pipe;
2805
2806 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2807
2808 if (I915_HAS_HOTPLUG(dev)) {
2809 I915_WRITE(PORT_HOTPLUG_EN, 0);
2810 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2811 }
2812
2813 I915_WRITE16(HWSTAM, 0xffff);
2814 for_each_pipe(pipe) {
2815 /* Clear enable bits; then clear status bits */
2816 I915_WRITE(PIPESTAT(pipe), 0);
2817 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2818 }
2819 I915_WRITE(IMR, 0xffffffff);
2820 I915_WRITE(IER, 0x0);
2821
2822 I915_WRITE(IIR, I915_READ(IIR));
2823 }
2824
2825 static void i965_irq_preinstall(struct drm_device * dev)
2826 {
2827 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2828 int pipe;
2829
2830 atomic_set(&dev_priv->irq_received, 0);
2831
2832 I915_WRITE(PORT_HOTPLUG_EN, 0);
2833 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2834
2835 I915_WRITE(HWSTAM, 0xeffe);
2836 for_each_pipe(pipe)
2837 I915_WRITE(PIPESTAT(pipe), 0);
2838 I915_WRITE(IMR, 0xffffffff);
2839 I915_WRITE(IER, 0x0);
2840 POSTING_READ(IER);
2841 }
2842
2843 static int i965_irq_postinstall(struct drm_device *dev)
2844 {
2845 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2846 u32 enable_mask;
2847 u32 error_mask;
2848 unsigned long irqflags;
2849
2850 /* Unmask the interrupts that we always want on. */
2851 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2852 I915_DISPLAY_PORT_INTERRUPT |
2853 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2854 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2855 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2856 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2857 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2858
2859 enable_mask = ~dev_priv->irq_mask;
2860 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2861 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2862 enable_mask |= I915_USER_INTERRUPT;
2863
2864 if (IS_G4X(dev))
2865 enable_mask |= I915_BSD_USER_INTERRUPT;
2866
2867 /* Interrupt setup is already guaranteed to be single-threaded, this is
2868 * just to make the assert_spin_locked check happy. */
2869 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2870 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2871 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2872
2873 /*
2874 * Enable some error detection, note the instruction error mask
2875 * bit is reserved, so we leave it masked.
2876 */
2877 if (IS_G4X(dev)) {
2878 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2879 GM45_ERROR_MEM_PRIV |
2880 GM45_ERROR_CP_PRIV |
2881 I915_ERROR_MEMORY_REFRESH);
2882 } else {
2883 error_mask = ~(I915_ERROR_PAGE_TABLE |
2884 I915_ERROR_MEMORY_REFRESH);
2885 }
2886 I915_WRITE(EMR, error_mask);
2887
2888 I915_WRITE(IMR, dev_priv->irq_mask);
2889 I915_WRITE(IER, enable_mask);
2890 POSTING_READ(IER);
2891
2892 I915_WRITE(PORT_HOTPLUG_EN, 0);
2893 POSTING_READ(PORT_HOTPLUG_EN);
2894
2895 i915_enable_asle_pipestat(dev);
2896
2897 return 0;
2898 }
2899
2900 static void i915_hpd_irq_setup(struct drm_device *dev)
2901 {
2902 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2903 struct drm_mode_config *mode_config = &dev->mode_config;
2904 struct intel_encoder *intel_encoder;
2905 u32 hotplug_en;
2906
2907 assert_spin_locked(&dev_priv->irq_lock);
2908
2909 if (I915_HAS_HOTPLUG(dev)) {
2910 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2911 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2912 /* Note HDMI and DP share hotplug bits */
2913 /* enable bits are the same for all generations */
2914 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2915 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2916 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2917 /* Programming the CRT detection parameters tends
2918 to generate a spurious hotplug event about three
2919 seconds later. So just do it once.
2920 */
2921 if (IS_G4X(dev))
2922 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2923 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2924 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2925
2926 /* Ignore TV since it's buggy */
2927 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2928 }
2929 }
2930
2931 static irqreturn_t i965_irq_handler(int irq, void *arg)
2932 {
2933 struct drm_device *dev = (struct drm_device *) arg;
2934 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2935 u32 iir, new_iir;
2936 u32 pipe_stats[I915_MAX_PIPES];
2937 unsigned long irqflags;
2938 int irq_received;
2939 int ret = IRQ_NONE, pipe;
2940 u32 flip_mask =
2941 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2942 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2943
2944 atomic_inc(&dev_priv->irq_received);
2945
2946 iir = I915_READ(IIR);
2947
2948 for (;;) {
2949 bool blc_event = false;
2950
2951 irq_received = (iir & ~flip_mask) != 0;
2952
2953 /* Can't rely on pipestat interrupt bit in iir as it might
2954 * have been cleared after the pipestat interrupt was received.
2955 * It doesn't set the bit in iir again, but it still produces
2956 * interrupts (for non-MSI).
2957 */
2958 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2959 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2960 i915_handle_error(dev, false);
2961
2962 for_each_pipe(pipe) {
2963 int reg = PIPESTAT(pipe);
2964 pipe_stats[pipe] = I915_READ(reg);
2965
2966 /*
2967 * Clear the PIPE*STAT regs before the IIR
2968 */
2969 if (pipe_stats[pipe] & 0x8000ffff) {
2970 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2971 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2972 pipe_name(pipe));
2973 I915_WRITE(reg, pipe_stats[pipe]);
2974 irq_received = 1;
2975 }
2976 }
2977 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2978
2979 if (!irq_received)
2980 break;
2981
2982 ret = IRQ_HANDLED;
2983
2984 /* Consume port. Then clear IIR or we'll miss events */
2985 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2986 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2987 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2988 HOTPLUG_INT_STATUS_G4X :
2989 HOTPLUG_INT_STATUS_I915);
2990
2991 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2992 hotplug_status);
2993
2994 intel_hpd_irq_handler(dev, hotplug_trigger,
2995 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2996
2997 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2998 I915_READ(PORT_HOTPLUG_STAT);
2999 }
3000
3001 I915_WRITE(IIR, iir & ~flip_mask);
3002 new_iir = I915_READ(IIR); /* Flush posted writes */
3003
3004 if (iir & I915_USER_INTERRUPT)
3005 notify_ring(dev, &dev_priv->ring[RCS]);
3006 if (iir & I915_BSD_USER_INTERRUPT)
3007 notify_ring(dev, &dev_priv->ring[VCS]);
3008
3009 for_each_pipe(pipe) {
3010 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3011 i915_handle_vblank(dev, pipe, pipe, iir))
3012 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3013
3014 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3015 blc_event = true;
3016 }
3017
3018
3019 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3020 intel_opregion_asle_intr(dev);
3021
3022 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3023 gmbus_irq_handler(dev);
3024
3025 /* With MSI, interrupts are only generated when iir
3026 * transitions from zero to nonzero. If another bit got
3027 * set while we were handling the existing iir bits, then
3028 * we would never get another interrupt.
3029 *
3030 * This is fine on non-MSI as well, as if we hit this path
3031 * we avoid exiting the interrupt handler only to generate
3032 * another one.
3033 *
3034 * Note that for MSI this could cause a stray interrupt report
3035 * if an interrupt landed in the time between writing IIR and
3036 * the posting read. This should be rare enough to never
3037 * trigger the 99% of 100,000 interrupts test for disabling
3038 * stray interrupts.
3039 */
3040 iir = new_iir;
3041 }
3042
3043 i915_update_dri1_breadcrumb(dev);
3044
3045 return ret;
3046 }
3047
3048 static void i965_irq_uninstall(struct drm_device * dev)
3049 {
3050 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3051 int pipe;
3052
3053 if (!dev_priv)
3054 return;
3055
3056 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3057
3058 I915_WRITE(PORT_HOTPLUG_EN, 0);
3059 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3060
3061 I915_WRITE(HWSTAM, 0xffffffff);
3062 for_each_pipe(pipe)
3063 I915_WRITE(PIPESTAT(pipe), 0);
3064 I915_WRITE(IMR, 0xffffffff);
3065 I915_WRITE(IER, 0x0);
3066
3067 for_each_pipe(pipe)
3068 I915_WRITE(PIPESTAT(pipe),
3069 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3070 I915_WRITE(IIR, I915_READ(IIR));
3071 }
3072
3073 static void i915_reenable_hotplug_timer_func(unsigned long data)
3074 {
3075 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3076 struct drm_device *dev = dev_priv->dev;
3077 struct drm_mode_config *mode_config = &dev->mode_config;
3078 unsigned long irqflags;
3079 int i;
3080
3081 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3082 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3083 struct drm_connector *connector;
3084
3085 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3086 continue;
3087
3088 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3089
3090 list_for_each_entry(connector, &mode_config->connector_list, head) {
3091 struct intel_connector *intel_connector = to_intel_connector(connector);
3092
3093 if (intel_connector->encoder->hpd_pin == i) {
3094 if (connector->polled != intel_connector->polled)
3095 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3096 drm_get_connector_name(connector));
3097 connector->polled = intel_connector->polled;
3098 if (!connector->polled)
3099 connector->polled = DRM_CONNECTOR_POLL_HPD;
3100 }
3101 }
3102 }
3103 if (dev_priv->display.hpd_irq_setup)
3104 dev_priv->display.hpd_irq_setup(dev);
3105 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3106 }
3107
3108 void intel_irq_init(struct drm_device *dev)
3109 {
3110 struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3113 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3114 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3115 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3116
3117 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3118 i915_hangcheck_elapsed,
3119 (unsigned long) dev);
3120 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3121 (unsigned long) dev_priv);
3122
3123 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3124
3125 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3126 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3127 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3128 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3129 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3130 }
3131
3132 if (drm_core_check_feature(dev, DRIVER_MODESET))
3133 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3134 else
3135 dev->driver->get_vblank_timestamp = NULL;
3136 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3137
3138 if (IS_VALLEYVIEW(dev)) {
3139 dev->driver->irq_handler = valleyview_irq_handler;
3140 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3141 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3142 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3143 dev->driver->enable_vblank = valleyview_enable_vblank;
3144 dev->driver->disable_vblank = valleyview_disable_vblank;
3145 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3146 } else if (HAS_PCH_SPLIT(dev)) {
3147 dev->driver->irq_handler = ironlake_irq_handler;
3148 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3149 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3150 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3151 dev->driver->enable_vblank = ironlake_enable_vblank;
3152 dev->driver->disable_vblank = ironlake_disable_vblank;
3153 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3154 } else {
3155 if (INTEL_INFO(dev)->gen == 2) {
3156 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3157 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3158 dev->driver->irq_handler = i8xx_irq_handler;
3159 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3160 } else if (INTEL_INFO(dev)->gen == 3) {
3161 dev->driver->irq_preinstall = i915_irq_preinstall;
3162 dev->driver->irq_postinstall = i915_irq_postinstall;
3163 dev->driver->irq_uninstall = i915_irq_uninstall;
3164 dev->driver->irq_handler = i915_irq_handler;
3165 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3166 } else {
3167 dev->driver->irq_preinstall = i965_irq_preinstall;
3168 dev->driver->irq_postinstall = i965_irq_postinstall;
3169 dev->driver->irq_uninstall = i965_irq_uninstall;
3170 dev->driver->irq_handler = i965_irq_handler;
3171 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3172 }
3173 dev->driver->enable_vblank = i915_enable_vblank;
3174 dev->driver->disable_vblank = i915_disable_vblank;
3175 }
3176 }
3177
3178 void intel_hpd_init(struct drm_device *dev)
3179 {
3180 struct drm_i915_private *dev_priv = dev->dev_private;
3181 struct drm_mode_config *mode_config = &dev->mode_config;
3182 struct drm_connector *connector;
3183 unsigned long irqflags;
3184 int i;
3185
3186 for (i = 1; i < HPD_NUM_PINS; i++) {
3187 dev_priv->hpd_stats[i].hpd_cnt = 0;
3188 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3189 }
3190 list_for_each_entry(connector, &mode_config->connector_list, head) {
3191 struct intel_connector *intel_connector = to_intel_connector(connector);
3192 connector->polled = intel_connector->polled;
3193 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3194 connector->polled = DRM_CONNECTOR_POLL_HPD;
3195 }
3196
3197 /* Interrupt setup is already guaranteed to be single-threaded, this is
3198 * just to make the assert_spin_locked checks happy. */
3199 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3200 if (dev_priv->display.hpd_irq_setup)
3201 dev_priv->display.hpd_irq_setup(dev);
3202 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3203 }
3204
3205 /* Disable interrupts so we can allow Package C8+. */
3206 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3207 {
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 unsigned long irqflags;
3210
3211 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3212
3213 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3214 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3215 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3216 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3217 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3218
3219 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3220 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3221 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3222 snb_disable_pm_irq(dev_priv, 0xffffffff);
3223
3224 dev_priv->pc8.irqs_disabled = true;
3225
3226 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3227 }
3228
3229 /* Restore interrupts so we can recover from Package C8+. */
3230 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3231 {
3232 struct drm_i915_private *dev_priv = dev->dev_private;
3233 unsigned long irqflags;
3234 uint32_t val, expected;
3235
3236 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3237
3238 val = I915_READ(DEIMR);
3239 expected = ~DE_PCH_EVENT_IVB;
3240 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3241
3242 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3243 expected = ~SDE_HOTPLUG_MASK_CPT;
3244 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3245 val, expected);
3246
3247 val = I915_READ(GTIMR);
3248 expected = 0xffffffff;
3249 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3250
3251 val = I915_READ(GEN6_PMIMR);
3252 expected = 0xffffffff;
3253 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3254 expected);
3255
3256 dev_priv->pc8.irqs_disabled = false;
3257
3258 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3259 ibx_enable_display_interrupt(dev_priv,
3260 ~dev_priv->pc8.regsave.sdeimr &
3261 ~SDE_HOTPLUG_MASK_CPT);
3262 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3263 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3264 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3265
3266 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3267 }
This page took 0.131463 seconds and 6 git commands to generate.