drm/i915: only report hpd connector status change when it actually changed
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if (dev_priv->pc8.irqs_disabled) {
89 WARN(1, "IRQs disabled\n");
90 dev_priv->pc8.regsave.deimr &= ~mask;
91 return;
92 }
93
94 if ((dev_priv->irq_mask & mask) != 0) {
95 dev_priv->irq_mask &= ~mask;
96 I915_WRITE(DEIMR, dev_priv->irq_mask);
97 POSTING_READ(DEIMR);
98 }
99 }
100
101 static void
102 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
103 {
104 assert_spin_locked(&dev_priv->irq_lock);
105
106 if (dev_priv->pc8.irqs_disabled) {
107 WARN(1, "IRQs disabled\n");
108 dev_priv->pc8.regsave.deimr |= mask;
109 return;
110 }
111
112 if ((dev_priv->irq_mask & mask) != mask) {
113 dev_priv->irq_mask |= mask;
114 I915_WRITE(DEIMR, dev_priv->irq_mask);
115 POSTING_READ(DEIMR);
116 }
117 }
118
119 /**
120 * ilk_update_gt_irq - update GTIMR
121 * @dev_priv: driver private
122 * @interrupt_mask: mask of interrupt bits to update
123 * @enabled_irq_mask: mask of interrupt bits to enable
124 */
125 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
126 uint32_t interrupt_mask,
127 uint32_t enabled_irq_mask)
128 {
129 assert_spin_locked(&dev_priv->irq_lock);
130
131 if (dev_priv->pc8.irqs_disabled) {
132 WARN(1, "IRQs disabled\n");
133 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
134 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
135 interrupt_mask);
136 return;
137 }
138
139 dev_priv->gt_irq_mask &= ~interrupt_mask;
140 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
141 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
142 POSTING_READ(GTIMR);
143 }
144
145 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
146 {
147 ilk_update_gt_irq(dev_priv, mask, mask);
148 }
149
150 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
151 {
152 ilk_update_gt_irq(dev_priv, mask, 0);
153 }
154
155 /**
156 * snb_update_pm_irq - update GEN6_PMIMR
157 * @dev_priv: driver private
158 * @interrupt_mask: mask of interrupt bits to update
159 * @enabled_irq_mask: mask of interrupt bits to enable
160 */
161 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
162 uint32_t interrupt_mask,
163 uint32_t enabled_irq_mask)
164 {
165 uint32_t new_val;
166
167 assert_spin_locked(&dev_priv->irq_lock);
168
169 if (dev_priv->pc8.irqs_disabled) {
170 WARN(1, "IRQs disabled\n");
171 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
172 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
173 interrupt_mask);
174 return;
175 }
176
177 new_val = dev_priv->pm_irq_mask;
178 new_val &= ~interrupt_mask;
179 new_val |= (~enabled_irq_mask & interrupt_mask);
180
181 if (new_val != dev_priv->pm_irq_mask) {
182 dev_priv->pm_irq_mask = new_val;
183 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
184 POSTING_READ(GEN6_PMIMR);
185 }
186 }
187
188 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
189 {
190 snb_update_pm_irq(dev_priv, mask, mask);
191 }
192
193 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
194 {
195 snb_update_pm_irq(dev_priv, mask, 0);
196 }
197
198 static bool ivb_can_enable_err_int(struct drm_device *dev)
199 {
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 struct intel_crtc *crtc;
202 enum pipe pipe;
203
204 assert_spin_locked(&dev_priv->irq_lock);
205
206 for_each_pipe(pipe) {
207 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
208
209 if (crtc->cpu_fifo_underrun_disabled)
210 return false;
211 }
212
213 return true;
214 }
215
216 static bool cpt_can_enable_serr_int(struct drm_device *dev)
217 {
218 struct drm_i915_private *dev_priv = dev->dev_private;
219 enum pipe pipe;
220 struct intel_crtc *crtc;
221
222 assert_spin_locked(&dev_priv->irq_lock);
223
224 for_each_pipe(pipe) {
225 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
226
227 if (crtc->pch_fifo_underrun_disabled)
228 return false;
229 }
230
231 return true;
232 }
233
234 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
235 enum pipe pipe, bool enable)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
239 DE_PIPEB_FIFO_UNDERRUN;
240
241 if (enable)
242 ironlake_enable_display_irq(dev_priv, bit);
243 else
244 ironlake_disable_display_irq(dev_priv, bit);
245 }
246
247 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249 {
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 if (enable) {
252 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
253
254 if (!ivb_can_enable_err_int(dev))
255 return;
256
257 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
258 } else {
259 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
260
261 /* Change the state _after_ we've read out the current one. */
262 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
263
264 if (!was_enabled &&
265 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
266 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
267 pipe_name(pipe));
268 }
269 }
270 }
271
272 /**
273 * ibx_display_interrupt_update - update SDEIMR
274 * @dev_priv: driver private
275 * @interrupt_mask: mask of interrupt bits to update
276 * @enabled_irq_mask: mask of interrupt bits to enable
277 */
278 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
279 uint32_t interrupt_mask,
280 uint32_t enabled_irq_mask)
281 {
282 uint32_t sdeimr = I915_READ(SDEIMR);
283 sdeimr &= ~interrupt_mask;
284 sdeimr |= (~enabled_irq_mask & interrupt_mask);
285
286 assert_spin_locked(&dev_priv->irq_lock);
287
288 if (dev_priv->pc8.irqs_disabled &&
289 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
290 WARN(1, "IRQs disabled\n");
291 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
292 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
293 interrupt_mask);
294 return;
295 }
296
297 I915_WRITE(SDEIMR, sdeimr);
298 POSTING_READ(SDEIMR);
299 }
300 #define ibx_enable_display_interrupt(dev_priv, bits) \
301 ibx_display_interrupt_update((dev_priv), (bits), (bits))
302 #define ibx_disable_display_interrupt(dev_priv, bits) \
303 ibx_display_interrupt_update((dev_priv), (bits), 0)
304
305 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
306 enum transcoder pch_transcoder,
307 bool enable)
308 {
309 struct drm_i915_private *dev_priv = dev->dev_private;
310 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
311 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
312
313 if (enable)
314 ibx_enable_display_interrupt(dev_priv, bit);
315 else
316 ibx_disable_display_interrupt(dev_priv, bit);
317 }
318
319 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum transcoder pch_transcoder,
321 bool enable)
322 {
323 struct drm_i915_private *dev_priv = dev->dev_private;
324
325 if (enable) {
326 I915_WRITE(SERR_INT,
327 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
328
329 if (!cpt_can_enable_serr_int(dev))
330 return;
331
332 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
333 } else {
334 uint32_t tmp = I915_READ(SERR_INT);
335 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
336
337 /* Change the state _after_ we've read out the current one. */
338 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
339
340 if (!was_enabled &&
341 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
342 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
343 transcoder_name(pch_transcoder));
344 }
345 }
346 }
347
348 /**
349 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
350 * @dev: drm device
351 * @pipe: pipe
352 * @enable: true if we want to report FIFO underrun errors, false otherwise
353 *
354 * This function makes us disable or enable CPU fifo underruns for a specific
355 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
356 * reporting for one pipe may also disable all the other CPU error interruts for
357 * the other pipes, due to the fact that there's just one interrupt mask/enable
358 * bit for all the pipes.
359 *
360 * Returns the previous state of underrun reporting.
361 */
362 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
363 enum pipe pipe, bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368 unsigned long flags;
369 bool ret;
370
371 spin_lock_irqsave(&dev_priv->irq_lock, flags);
372
373 ret = !intel_crtc->cpu_fifo_underrun_disabled;
374
375 if (enable == ret)
376 goto done;
377
378 intel_crtc->cpu_fifo_underrun_disabled = !enable;
379
380 if (IS_GEN5(dev) || IS_GEN6(dev))
381 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
382 else if (IS_GEN7(dev))
383 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
384
385 done:
386 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
387 return ret;
388 }
389
390 /**
391 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
392 * @dev: drm device
393 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
394 * @enable: true if we want to report FIFO underrun errors, false otherwise
395 *
396 * This function makes us disable or enable PCH fifo underruns for a specific
397 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
398 * underrun reporting for one transcoder may also disable all the other PCH
399 * error interruts for the other transcoders, due to the fact that there's just
400 * one interrupt mask/enable bit for all the transcoders.
401 *
402 * Returns the previous state of underrun reporting.
403 */
404 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
405 enum transcoder pch_transcoder,
406 bool enable)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
411 unsigned long flags;
412 bool ret;
413
414 /*
415 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
416 * has only one pch transcoder A that all pipes can use. To avoid racy
417 * pch transcoder -> pipe lookups from interrupt code simply store the
418 * underrun statistics in crtc A. Since we never expose this anywhere
419 * nor use it outside of the fifo underrun code here using the "wrong"
420 * crtc on LPT won't cause issues.
421 */
422
423 spin_lock_irqsave(&dev_priv->irq_lock, flags);
424
425 ret = !intel_crtc->pch_fifo_underrun_disabled;
426
427 if (enable == ret)
428 goto done;
429
430 intel_crtc->pch_fifo_underrun_disabled = !enable;
431
432 if (HAS_PCH_IBX(dev))
433 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
434 else
435 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
436
437 done:
438 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
439 return ret;
440 }
441
442
443 void
444 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
445 {
446 u32 reg = PIPESTAT(pipe);
447 u32 pipestat = I915_READ(reg) & 0x7fff0000;
448
449 assert_spin_locked(&dev_priv->irq_lock);
450
451 if ((pipestat & mask) == mask)
452 return;
453
454 /* Enable the interrupt, clear any pending status */
455 pipestat |= mask | (mask >> 16);
456 I915_WRITE(reg, pipestat);
457 POSTING_READ(reg);
458 }
459
460 void
461 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
462 {
463 u32 reg = PIPESTAT(pipe);
464 u32 pipestat = I915_READ(reg) & 0x7fff0000;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 if ((pipestat & mask) == 0)
469 return;
470
471 pipestat &= ~mask;
472 I915_WRITE(reg, pipestat);
473 POSTING_READ(reg);
474 }
475
476 /**
477 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
478 */
479 static void i915_enable_asle_pipestat(struct drm_device *dev)
480 {
481 drm_i915_private_t *dev_priv = dev->dev_private;
482 unsigned long irqflags;
483
484 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
485 return;
486
487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
488
489 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
490 if (INTEL_INFO(dev)->gen >= 4)
491 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
492
493 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
494 }
495
496 /**
497 * i915_pipe_enabled - check if a pipe is enabled
498 * @dev: DRM device
499 * @pipe: pipe to check
500 *
501 * Reading certain registers when the pipe is disabled can hang the chip.
502 * Use this routine to make sure the PLL is running and the pipe is active
503 * before reading such registers if unsure.
504 */
505 static int
506 i915_pipe_enabled(struct drm_device *dev, int pipe)
507 {
508 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
509
510 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
511 /* Locking is horribly broken here, but whatever. */
512 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
514
515 return intel_crtc->active;
516 } else {
517 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
518 }
519 }
520
521 /* Called from drm generic code, passed a 'crtc', which
522 * we use as a pipe index
523 */
524 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 unsigned long high_frame;
528 unsigned long low_frame;
529 u32 high1, high2, low;
530
531 if (!i915_pipe_enabled(dev, pipe)) {
532 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
533 "pipe %c\n", pipe_name(pipe));
534 return 0;
535 }
536
537 high_frame = PIPEFRAME(pipe);
538 low_frame = PIPEFRAMEPIXEL(pipe);
539
540 /*
541 * High & low register fields aren't synchronized, so make sure
542 * we get a low value that's stable across two reads of the high
543 * register.
544 */
545 do {
546 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
547 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
548 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
549 } while (high1 != high2);
550
551 high1 >>= PIPE_FRAME_HIGH_SHIFT;
552 low >>= PIPE_FRAME_LOW_SHIFT;
553 return (high1 << 8) | low;
554 }
555
556 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
557 {
558 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
559 int reg = PIPE_FRMCOUNT_GM45(pipe);
560
561 if (!i915_pipe_enabled(dev, pipe)) {
562 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
563 "pipe %c\n", pipe_name(pipe));
564 return 0;
565 }
566
567 return I915_READ(reg);
568 }
569
570 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
571 int *vpos, int *hpos)
572 {
573 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
574 u32 vbl = 0, position = 0;
575 int vbl_start, vbl_end, htotal, vtotal;
576 bool in_vbl = true;
577 int ret = 0;
578 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
579 pipe);
580
581 if (!i915_pipe_enabled(dev, pipe)) {
582 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
583 "pipe %c\n", pipe_name(pipe));
584 return 0;
585 }
586
587 /* Get vtotal. */
588 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
589
590 if (INTEL_INFO(dev)->gen >= 4) {
591 /* No obvious pixelcount register. Only query vertical
592 * scanout position from Display scan line register.
593 */
594 position = I915_READ(PIPEDSL(pipe));
595
596 /* Decode into vertical scanout position. Don't have
597 * horizontal scanout position.
598 */
599 *vpos = position & 0x1fff;
600 *hpos = 0;
601 } else {
602 /* Have access to pixelcount since start of frame.
603 * We can split this into vertical and horizontal
604 * scanout position.
605 */
606 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
607
608 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
609 *vpos = position / htotal;
610 *hpos = position - (*vpos * htotal);
611 }
612
613 /* Query vblank area. */
614 vbl = I915_READ(VBLANK(cpu_transcoder));
615
616 /* Test position against vblank region. */
617 vbl_start = vbl & 0x1fff;
618 vbl_end = (vbl >> 16) & 0x1fff;
619
620 if ((*vpos < vbl_start) || (*vpos > vbl_end))
621 in_vbl = false;
622
623 /* Inside "upper part" of vblank area? Apply corrective offset: */
624 if (in_vbl && (*vpos >= vbl_start))
625 *vpos = *vpos - vtotal;
626
627 /* Readouts valid? */
628 if (vbl > 0)
629 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
630
631 /* In vblank? */
632 if (in_vbl)
633 ret |= DRM_SCANOUTPOS_INVBL;
634
635 return ret;
636 }
637
638 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
639 int *max_error,
640 struct timeval *vblank_time,
641 unsigned flags)
642 {
643 struct drm_crtc *crtc;
644
645 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
646 DRM_ERROR("Invalid crtc %d\n", pipe);
647 return -EINVAL;
648 }
649
650 /* Get drm_crtc to timestamp: */
651 crtc = intel_get_crtc_for_pipe(dev, pipe);
652 if (crtc == NULL) {
653 DRM_ERROR("Invalid crtc %d\n", pipe);
654 return -EINVAL;
655 }
656
657 if (!crtc->enabled) {
658 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
659 return -EBUSY;
660 }
661
662 /* Helper routine in DRM core does all the work: */
663 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
664 vblank_time, flags,
665 crtc);
666 }
667
668 static bool intel_hpd_irq_event(struct drm_device *dev,
669 struct drm_connector *connector)
670 {
671 enum drm_connector_status old_status;
672
673 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
674 old_status = connector->status;
675
676 connector->status = connector->funcs->detect(connector, false);
677 if (old_status == connector->status)
678 return false;
679
680 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
681 connector->base.id,
682 drm_get_connector_name(connector),
683 drm_get_connector_status_name(old_status),
684 drm_get_connector_status_name(connector->status));
685
686 return true;
687 }
688
689 /*
690 * Handle hotplug events outside the interrupt handler proper.
691 */
692 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
693
694 static void i915_hotplug_work_func(struct work_struct *work)
695 {
696 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
697 hotplug_work);
698 struct drm_device *dev = dev_priv->dev;
699 struct drm_mode_config *mode_config = &dev->mode_config;
700 struct intel_connector *intel_connector;
701 struct intel_encoder *intel_encoder;
702 struct drm_connector *connector;
703 unsigned long irqflags;
704 bool hpd_disabled = false;
705 bool changed = false;
706 u32 hpd_event_bits;
707
708 /* HPD irq before everything is fully set up. */
709 if (!dev_priv->enable_hotplug_processing)
710 return;
711
712 mutex_lock(&mode_config->mutex);
713 DRM_DEBUG_KMS("running encoder hotplug functions\n");
714
715 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
716
717 hpd_event_bits = dev_priv->hpd_event_bits;
718 dev_priv->hpd_event_bits = 0;
719 list_for_each_entry(connector, &mode_config->connector_list, head) {
720 intel_connector = to_intel_connector(connector);
721 intel_encoder = intel_connector->encoder;
722 if (intel_encoder->hpd_pin > HPD_NONE &&
723 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
724 connector->polled == DRM_CONNECTOR_POLL_HPD) {
725 DRM_INFO("HPD interrupt storm detected on connector %s: "
726 "switching from hotplug detection to polling\n",
727 drm_get_connector_name(connector));
728 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
729 connector->polled = DRM_CONNECTOR_POLL_CONNECT
730 | DRM_CONNECTOR_POLL_DISCONNECT;
731 hpd_disabled = true;
732 }
733 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
734 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
735 drm_get_connector_name(connector), intel_encoder->hpd_pin);
736 }
737 }
738 /* if there were no outputs to poll, poll was disabled,
739 * therefore make sure it's enabled when disabling HPD on
740 * some connectors */
741 if (hpd_disabled) {
742 drm_kms_helper_poll_enable(dev);
743 mod_timer(&dev_priv->hotplug_reenable_timer,
744 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
745 }
746
747 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
748
749 list_for_each_entry(connector, &mode_config->connector_list, head) {
750 intel_connector = to_intel_connector(connector);
751 intel_encoder = intel_connector->encoder;
752 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
753 if (intel_encoder->hot_plug)
754 intel_encoder->hot_plug(intel_encoder);
755 if (intel_hpd_irq_event(dev, connector))
756 changed = true;
757 }
758 }
759 mutex_unlock(&mode_config->mutex);
760
761 if (changed)
762 drm_kms_helper_hotplug_event(dev);
763 }
764
765 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
766 {
767 drm_i915_private_t *dev_priv = dev->dev_private;
768 u32 busy_up, busy_down, max_avg, min_avg;
769 u8 new_delay;
770
771 spin_lock(&mchdev_lock);
772
773 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
774
775 new_delay = dev_priv->ips.cur_delay;
776
777 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
778 busy_up = I915_READ(RCPREVBSYTUPAVG);
779 busy_down = I915_READ(RCPREVBSYTDNAVG);
780 max_avg = I915_READ(RCBMAXAVG);
781 min_avg = I915_READ(RCBMINAVG);
782
783 /* Handle RCS change request from hw */
784 if (busy_up > max_avg) {
785 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
786 new_delay = dev_priv->ips.cur_delay - 1;
787 if (new_delay < dev_priv->ips.max_delay)
788 new_delay = dev_priv->ips.max_delay;
789 } else if (busy_down < min_avg) {
790 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
791 new_delay = dev_priv->ips.cur_delay + 1;
792 if (new_delay > dev_priv->ips.min_delay)
793 new_delay = dev_priv->ips.min_delay;
794 }
795
796 if (ironlake_set_drps(dev, new_delay))
797 dev_priv->ips.cur_delay = new_delay;
798
799 spin_unlock(&mchdev_lock);
800
801 return;
802 }
803
804 static void notify_ring(struct drm_device *dev,
805 struct intel_ring_buffer *ring)
806 {
807 if (ring->obj == NULL)
808 return;
809
810 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
811
812 wake_up_all(&ring->irq_queue);
813 i915_queue_hangcheck(dev);
814 }
815
816 static void gen6_pm_rps_work(struct work_struct *work)
817 {
818 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
819 rps.work);
820 u32 pm_iir;
821 u8 new_delay;
822
823 spin_lock_irq(&dev_priv->irq_lock);
824 pm_iir = dev_priv->rps.pm_iir;
825 dev_priv->rps.pm_iir = 0;
826 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
827 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
828 spin_unlock_irq(&dev_priv->irq_lock);
829
830 /* Make sure we didn't queue anything we're not going to process. */
831 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
832
833 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
834 return;
835
836 mutex_lock(&dev_priv->rps.hw_lock);
837
838 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
839 new_delay = dev_priv->rps.cur_delay + 1;
840
841 /*
842 * For better performance, jump directly
843 * to RPe if we're below it.
844 */
845 if (IS_VALLEYVIEW(dev_priv->dev) &&
846 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
847 new_delay = dev_priv->rps.rpe_delay;
848 } else
849 new_delay = dev_priv->rps.cur_delay - 1;
850
851 /* sysfs frequency interfaces may have snuck in while servicing the
852 * interrupt
853 */
854 if (new_delay >= dev_priv->rps.min_delay &&
855 new_delay <= dev_priv->rps.max_delay) {
856 if (IS_VALLEYVIEW(dev_priv->dev))
857 valleyview_set_rps(dev_priv->dev, new_delay);
858 else
859 gen6_set_rps(dev_priv->dev, new_delay);
860 }
861
862 if (IS_VALLEYVIEW(dev_priv->dev)) {
863 /*
864 * On VLV, when we enter RC6 we may not be at the minimum
865 * voltage level, so arm a timer to check. It should only
866 * fire when there's activity or once after we've entered
867 * RC6, and then won't be re-armed until the next RPS interrupt.
868 */
869 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
870 msecs_to_jiffies(100));
871 }
872
873 mutex_unlock(&dev_priv->rps.hw_lock);
874 }
875
876
877 /**
878 * ivybridge_parity_work - Workqueue called when a parity error interrupt
879 * occurred.
880 * @work: workqueue struct
881 *
882 * Doesn't actually do anything except notify userspace. As a consequence of
883 * this event, userspace should try to remap the bad rows since statistically
884 * it is likely the same row is more likely to go bad again.
885 */
886 static void ivybridge_parity_work(struct work_struct *work)
887 {
888 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
889 l3_parity.error_work);
890 u32 error_status, row, bank, subbank;
891 char *parity_event[5];
892 uint32_t misccpctl;
893 unsigned long flags;
894
895 /* We must turn off DOP level clock gating to access the L3 registers.
896 * In order to prevent a get/put style interface, acquire struct mutex
897 * any time we access those registers.
898 */
899 mutex_lock(&dev_priv->dev->struct_mutex);
900
901 misccpctl = I915_READ(GEN7_MISCCPCTL);
902 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
903 POSTING_READ(GEN7_MISCCPCTL);
904
905 error_status = I915_READ(GEN7_L3CDERRST1);
906 row = GEN7_PARITY_ERROR_ROW(error_status);
907 bank = GEN7_PARITY_ERROR_BANK(error_status);
908 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
909
910 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
911 GEN7_L3CDERRST1_ENABLE);
912 POSTING_READ(GEN7_L3CDERRST1);
913
914 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
915
916 spin_lock_irqsave(&dev_priv->irq_lock, flags);
917 ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
918 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
919
920 mutex_unlock(&dev_priv->dev->struct_mutex);
921
922 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
923 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
924 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
925 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
926 parity_event[4] = NULL;
927
928 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
929 KOBJ_CHANGE, parity_event);
930
931 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
932 row, bank, subbank);
933
934 kfree(parity_event[3]);
935 kfree(parity_event[2]);
936 kfree(parity_event[1]);
937 }
938
939 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
940 {
941 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
942
943 if (!HAS_L3_GPU_CACHE(dev))
944 return;
945
946 spin_lock(&dev_priv->irq_lock);
947 ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
948 spin_unlock(&dev_priv->irq_lock);
949
950 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
951 }
952
953 static void ilk_gt_irq_handler(struct drm_device *dev,
954 struct drm_i915_private *dev_priv,
955 u32 gt_iir)
956 {
957 if (gt_iir &
958 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
959 notify_ring(dev, &dev_priv->ring[RCS]);
960 if (gt_iir & ILK_BSD_USER_INTERRUPT)
961 notify_ring(dev, &dev_priv->ring[VCS]);
962 }
963
964 static void snb_gt_irq_handler(struct drm_device *dev,
965 struct drm_i915_private *dev_priv,
966 u32 gt_iir)
967 {
968
969 if (gt_iir &
970 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
971 notify_ring(dev, &dev_priv->ring[RCS]);
972 if (gt_iir & GT_BSD_USER_INTERRUPT)
973 notify_ring(dev, &dev_priv->ring[VCS]);
974 if (gt_iir & GT_BLT_USER_INTERRUPT)
975 notify_ring(dev, &dev_priv->ring[BCS]);
976
977 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
978 GT_BSD_CS_ERROR_INTERRUPT |
979 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
980 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
981 i915_handle_error(dev, false);
982 }
983
984 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
985 ivybridge_parity_error_irq_handler(dev);
986 }
987
988 #define HPD_STORM_DETECT_PERIOD 1000
989 #define HPD_STORM_THRESHOLD 5
990
991 static inline void intel_hpd_irq_handler(struct drm_device *dev,
992 u32 hotplug_trigger,
993 const u32 *hpd)
994 {
995 drm_i915_private_t *dev_priv = dev->dev_private;
996 int i;
997 bool storm_detected = false;
998
999 if (!hotplug_trigger)
1000 return;
1001
1002 spin_lock(&dev_priv->irq_lock);
1003 for (i = 1; i < HPD_NUM_PINS; i++) {
1004
1005 WARN(((hpd[i] & hotplug_trigger) &&
1006 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1007 "Received HPD interrupt although disabled\n");
1008
1009 if (!(hpd[i] & hotplug_trigger) ||
1010 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1011 continue;
1012
1013 dev_priv->hpd_event_bits |= (1 << i);
1014 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1015 dev_priv->hpd_stats[i].hpd_last_jiffies
1016 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1017 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1018 dev_priv->hpd_stats[i].hpd_cnt = 0;
1019 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1020 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1021 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1022 dev_priv->hpd_event_bits &= ~(1 << i);
1023 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1024 storm_detected = true;
1025 } else {
1026 dev_priv->hpd_stats[i].hpd_cnt++;
1027 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1028 dev_priv->hpd_stats[i].hpd_cnt);
1029 }
1030 }
1031
1032 if (storm_detected)
1033 dev_priv->display.hpd_irq_setup(dev);
1034 spin_unlock(&dev_priv->irq_lock);
1035
1036 /*
1037 * Our hotplug handler can grab modeset locks (by calling down into the
1038 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1039 * queue for otherwise the flush_work in the pageflip code will
1040 * deadlock.
1041 */
1042 schedule_work(&dev_priv->hotplug_work);
1043 }
1044
1045 static void gmbus_irq_handler(struct drm_device *dev)
1046 {
1047 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1048
1049 wake_up_all(&dev_priv->gmbus_wait_queue);
1050 }
1051
1052 static void dp_aux_irq_handler(struct drm_device *dev)
1053 {
1054 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1055
1056 wake_up_all(&dev_priv->gmbus_wait_queue);
1057 }
1058
1059 /* The RPS events need forcewake, so we add them to a work queue and mask their
1060 * IMR bits until the work is done. Other interrupts can be processed without
1061 * the work queue. */
1062 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1063 {
1064 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1065 spin_lock(&dev_priv->irq_lock);
1066 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1067 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1068 spin_unlock(&dev_priv->irq_lock);
1069
1070 queue_work(dev_priv->wq, &dev_priv->rps.work);
1071 }
1072
1073 if (HAS_VEBOX(dev_priv->dev)) {
1074 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1075 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1076
1077 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1078 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1079 i915_handle_error(dev_priv->dev, false);
1080 }
1081 }
1082 }
1083
1084 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1085 {
1086 struct drm_device *dev = (struct drm_device *) arg;
1087 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1088 u32 iir, gt_iir, pm_iir;
1089 irqreturn_t ret = IRQ_NONE;
1090 unsigned long irqflags;
1091 int pipe;
1092 u32 pipe_stats[I915_MAX_PIPES];
1093
1094 atomic_inc(&dev_priv->irq_received);
1095
1096 while (true) {
1097 iir = I915_READ(VLV_IIR);
1098 gt_iir = I915_READ(GTIIR);
1099 pm_iir = I915_READ(GEN6_PMIIR);
1100
1101 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1102 goto out;
1103
1104 ret = IRQ_HANDLED;
1105
1106 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1107
1108 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1109 for_each_pipe(pipe) {
1110 int reg = PIPESTAT(pipe);
1111 pipe_stats[pipe] = I915_READ(reg);
1112
1113 /*
1114 * Clear the PIPE*STAT regs before the IIR
1115 */
1116 if (pipe_stats[pipe] & 0x8000ffff) {
1117 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1118 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1119 pipe_name(pipe));
1120 I915_WRITE(reg, pipe_stats[pipe]);
1121 }
1122 }
1123 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1124
1125 for_each_pipe(pipe) {
1126 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1127 drm_handle_vblank(dev, pipe);
1128
1129 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1130 intel_prepare_page_flip(dev, pipe);
1131 intel_finish_page_flip(dev, pipe);
1132 }
1133 }
1134
1135 /* Consume port. Then clear IIR or we'll miss events */
1136 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1137 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1138 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1139
1140 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1141 hotplug_status);
1142
1143 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1144
1145 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1146 I915_READ(PORT_HOTPLUG_STAT);
1147 }
1148
1149 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1150 gmbus_irq_handler(dev);
1151
1152 if (pm_iir)
1153 gen6_rps_irq_handler(dev_priv, pm_iir);
1154
1155 I915_WRITE(GTIIR, gt_iir);
1156 I915_WRITE(GEN6_PMIIR, pm_iir);
1157 I915_WRITE(VLV_IIR, iir);
1158 }
1159
1160 out:
1161 return ret;
1162 }
1163
1164 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1165 {
1166 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1167 int pipe;
1168 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1169
1170 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1171
1172 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1173 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1174 SDE_AUDIO_POWER_SHIFT);
1175 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1176 port_name(port));
1177 }
1178
1179 if (pch_iir & SDE_AUX_MASK)
1180 dp_aux_irq_handler(dev);
1181
1182 if (pch_iir & SDE_GMBUS)
1183 gmbus_irq_handler(dev);
1184
1185 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1186 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1187
1188 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1189 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1190
1191 if (pch_iir & SDE_POISON)
1192 DRM_ERROR("PCH poison interrupt\n");
1193
1194 if (pch_iir & SDE_FDI_MASK)
1195 for_each_pipe(pipe)
1196 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1197 pipe_name(pipe),
1198 I915_READ(FDI_RX_IIR(pipe)));
1199
1200 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1201 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1202
1203 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1204 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1205
1206 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1207 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1208 false))
1209 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1210
1211 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1212 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1213 false))
1214 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1215 }
1216
1217 static void ivb_err_int_handler(struct drm_device *dev)
1218 {
1219 struct drm_i915_private *dev_priv = dev->dev_private;
1220 u32 err_int = I915_READ(GEN7_ERR_INT);
1221
1222 if (err_int & ERR_INT_POISON)
1223 DRM_ERROR("Poison interrupt\n");
1224
1225 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1226 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1227 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1228
1229 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1230 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1231 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1232
1233 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1234 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1235 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1236
1237 I915_WRITE(GEN7_ERR_INT, err_int);
1238 }
1239
1240 static void cpt_serr_int_handler(struct drm_device *dev)
1241 {
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 u32 serr_int = I915_READ(SERR_INT);
1244
1245 if (serr_int & SERR_INT_POISON)
1246 DRM_ERROR("PCH poison interrupt\n");
1247
1248 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1249 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1250 false))
1251 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1252
1253 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1254 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1255 false))
1256 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1257
1258 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1259 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1260 false))
1261 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1262
1263 I915_WRITE(SERR_INT, serr_int);
1264 }
1265
1266 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1267 {
1268 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1269 int pipe;
1270 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1271
1272 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1273
1274 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1275 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1276 SDE_AUDIO_POWER_SHIFT_CPT);
1277 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1278 port_name(port));
1279 }
1280
1281 if (pch_iir & SDE_AUX_MASK_CPT)
1282 dp_aux_irq_handler(dev);
1283
1284 if (pch_iir & SDE_GMBUS_CPT)
1285 gmbus_irq_handler(dev);
1286
1287 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1288 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1289
1290 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1291 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1292
1293 if (pch_iir & SDE_FDI_MASK_CPT)
1294 for_each_pipe(pipe)
1295 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1296 pipe_name(pipe),
1297 I915_READ(FDI_RX_IIR(pipe)));
1298
1299 if (pch_iir & SDE_ERROR_CPT)
1300 cpt_serr_int_handler(dev);
1301 }
1302
1303 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1304 {
1305 struct drm_i915_private *dev_priv = dev->dev_private;
1306
1307 if (de_iir & DE_AUX_CHANNEL_A)
1308 dp_aux_irq_handler(dev);
1309
1310 if (de_iir & DE_GSE)
1311 intel_opregion_asle_intr(dev);
1312
1313 if (de_iir & DE_PIPEA_VBLANK)
1314 drm_handle_vblank(dev, 0);
1315
1316 if (de_iir & DE_PIPEB_VBLANK)
1317 drm_handle_vblank(dev, 1);
1318
1319 if (de_iir & DE_POISON)
1320 DRM_ERROR("Poison interrupt\n");
1321
1322 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1323 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1324 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1325
1326 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1327 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1328 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1329
1330 if (de_iir & DE_PLANEA_FLIP_DONE) {
1331 intel_prepare_page_flip(dev, 0);
1332 intel_finish_page_flip_plane(dev, 0);
1333 }
1334
1335 if (de_iir & DE_PLANEB_FLIP_DONE) {
1336 intel_prepare_page_flip(dev, 1);
1337 intel_finish_page_flip_plane(dev, 1);
1338 }
1339
1340 /* check event from PCH */
1341 if (de_iir & DE_PCH_EVENT) {
1342 u32 pch_iir = I915_READ(SDEIIR);
1343
1344 if (HAS_PCH_CPT(dev))
1345 cpt_irq_handler(dev, pch_iir);
1346 else
1347 ibx_irq_handler(dev, pch_iir);
1348
1349 /* should clear PCH hotplug event before clear CPU irq */
1350 I915_WRITE(SDEIIR, pch_iir);
1351 }
1352
1353 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1354 ironlake_rps_change_irq_handler(dev);
1355 }
1356
1357 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1358 {
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 int i;
1361
1362 if (de_iir & DE_ERR_INT_IVB)
1363 ivb_err_int_handler(dev);
1364
1365 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1366 dp_aux_irq_handler(dev);
1367
1368 if (de_iir & DE_GSE_IVB)
1369 intel_opregion_asle_intr(dev);
1370
1371 for (i = 0; i < 3; i++) {
1372 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1373 drm_handle_vblank(dev, i);
1374 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1375 intel_prepare_page_flip(dev, i);
1376 intel_finish_page_flip_plane(dev, i);
1377 }
1378 }
1379
1380 /* check event from PCH */
1381 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1382 u32 pch_iir = I915_READ(SDEIIR);
1383
1384 cpt_irq_handler(dev, pch_iir);
1385
1386 /* clear PCH hotplug event before clear CPU irq */
1387 I915_WRITE(SDEIIR, pch_iir);
1388 }
1389 }
1390
1391 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1392 {
1393 struct drm_device *dev = (struct drm_device *) arg;
1394 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1395 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1396 irqreturn_t ret = IRQ_NONE;
1397 bool err_int_reenable = false;
1398
1399 atomic_inc(&dev_priv->irq_received);
1400
1401 /* We get interrupts on unclaimed registers, so check for this before we
1402 * do any I915_{READ,WRITE}. */
1403 intel_uncore_check_errors(dev);
1404
1405 /* disable master interrupt before clearing iir */
1406 de_ier = I915_READ(DEIER);
1407 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1408 POSTING_READ(DEIER);
1409
1410 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1411 * interrupts will will be stored on its back queue, and then we'll be
1412 * able to process them after we restore SDEIER (as soon as we restore
1413 * it, we'll get an interrupt if SDEIIR still has something to process
1414 * due to its back queue). */
1415 if (!HAS_PCH_NOP(dev)) {
1416 sde_ier = I915_READ(SDEIER);
1417 I915_WRITE(SDEIER, 0);
1418 POSTING_READ(SDEIER);
1419 }
1420
1421 /* On Haswell, also mask ERR_INT because we don't want to risk
1422 * generating "unclaimed register" interrupts from inside the interrupt
1423 * handler. */
1424 if (IS_HASWELL(dev)) {
1425 spin_lock(&dev_priv->irq_lock);
1426 err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
1427 if (err_int_reenable)
1428 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1429 spin_unlock(&dev_priv->irq_lock);
1430 }
1431
1432 gt_iir = I915_READ(GTIIR);
1433 if (gt_iir) {
1434 if (INTEL_INFO(dev)->gen >= 6)
1435 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1436 else
1437 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1438 I915_WRITE(GTIIR, gt_iir);
1439 ret = IRQ_HANDLED;
1440 }
1441
1442 de_iir = I915_READ(DEIIR);
1443 if (de_iir) {
1444 if (INTEL_INFO(dev)->gen >= 7)
1445 ivb_display_irq_handler(dev, de_iir);
1446 else
1447 ilk_display_irq_handler(dev, de_iir);
1448 I915_WRITE(DEIIR, de_iir);
1449 ret = IRQ_HANDLED;
1450 }
1451
1452 if (INTEL_INFO(dev)->gen >= 6) {
1453 u32 pm_iir = I915_READ(GEN6_PMIIR);
1454 if (pm_iir) {
1455 gen6_rps_irq_handler(dev_priv, pm_iir);
1456 I915_WRITE(GEN6_PMIIR, pm_iir);
1457 ret = IRQ_HANDLED;
1458 }
1459 }
1460
1461 if (err_int_reenable) {
1462 spin_lock(&dev_priv->irq_lock);
1463 if (ivb_can_enable_err_int(dev))
1464 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1465 spin_unlock(&dev_priv->irq_lock);
1466 }
1467
1468 I915_WRITE(DEIER, de_ier);
1469 POSTING_READ(DEIER);
1470 if (!HAS_PCH_NOP(dev)) {
1471 I915_WRITE(SDEIER, sde_ier);
1472 POSTING_READ(SDEIER);
1473 }
1474
1475 return ret;
1476 }
1477
1478 /**
1479 * i915_error_work_func - do process context error handling work
1480 * @work: work struct
1481 *
1482 * Fire an error uevent so userspace can see that a hang or error
1483 * was detected.
1484 */
1485 static void i915_error_work_func(struct work_struct *work)
1486 {
1487 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1488 work);
1489 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1490 gpu_error);
1491 struct drm_device *dev = dev_priv->dev;
1492 struct intel_ring_buffer *ring;
1493 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1494 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1495 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1496 int i, ret;
1497
1498 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1499
1500 /*
1501 * Note that there's only one work item which does gpu resets, so we
1502 * need not worry about concurrent gpu resets potentially incrementing
1503 * error->reset_counter twice. We only need to take care of another
1504 * racing irq/hangcheck declaring the gpu dead for a second time. A
1505 * quick check for that is good enough: schedule_work ensures the
1506 * correct ordering between hang detection and this work item, and since
1507 * the reset in-progress bit is only ever set by code outside of this
1508 * work we don't need to worry about any other races.
1509 */
1510 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1511 DRM_DEBUG_DRIVER("resetting chip\n");
1512 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1513 reset_event);
1514
1515 ret = i915_reset(dev);
1516
1517 if (ret == 0) {
1518 /*
1519 * After all the gem state is reset, increment the reset
1520 * counter and wake up everyone waiting for the reset to
1521 * complete.
1522 *
1523 * Since unlock operations are a one-sided barrier only,
1524 * we need to insert a barrier here to order any seqno
1525 * updates before
1526 * the counter increment.
1527 */
1528 smp_mb__before_atomic_inc();
1529 atomic_inc(&dev_priv->gpu_error.reset_counter);
1530
1531 kobject_uevent_env(&dev->primary->kdev.kobj,
1532 KOBJ_CHANGE, reset_done_event);
1533 } else {
1534 atomic_set(&error->reset_counter, I915_WEDGED);
1535 }
1536
1537 for_each_ring(ring, dev_priv, i)
1538 wake_up_all(&ring->irq_queue);
1539
1540 intel_display_handle_reset(dev);
1541
1542 wake_up_all(&dev_priv->gpu_error.reset_queue);
1543 }
1544 }
1545
1546 static void i915_report_and_clear_eir(struct drm_device *dev)
1547 {
1548 struct drm_i915_private *dev_priv = dev->dev_private;
1549 uint32_t instdone[I915_NUM_INSTDONE_REG];
1550 u32 eir = I915_READ(EIR);
1551 int pipe, i;
1552
1553 if (!eir)
1554 return;
1555
1556 pr_err("render error detected, EIR: 0x%08x\n", eir);
1557
1558 i915_get_extra_instdone(dev, instdone);
1559
1560 if (IS_G4X(dev)) {
1561 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1562 u32 ipeir = I915_READ(IPEIR_I965);
1563
1564 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1565 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1566 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1567 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1568 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1569 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1570 I915_WRITE(IPEIR_I965, ipeir);
1571 POSTING_READ(IPEIR_I965);
1572 }
1573 if (eir & GM45_ERROR_PAGE_TABLE) {
1574 u32 pgtbl_err = I915_READ(PGTBL_ER);
1575 pr_err("page table error\n");
1576 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1577 I915_WRITE(PGTBL_ER, pgtbl_err);
1578 POSTING_READ(PGTBL_ER);
1579 }
1580 }
1581
1582 if (!IS_GEN2(dev)) {
1583 if (eir & I915_ERROR_PAGE_TABLE) {
1584 u32 pgtbl_err = I915_READ(PGTBL_ER);
1585 pr_err("page table error\n");
1586 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1587 I915_WRITE(PGTBL_ER, pgtbl_err);
1588 POSTING_READ(PGTBL_ER);
1589 }
1590 }
1591
1592 if (eir & I915_ERROR_MEMORY_REFRESH) {
1593 pr_err("memory refresh error:\n");
1594 for_each_pipe(pipe)
1595 pr_err("pipe %c stat: 0x%08x\n",
1596 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1597 /* pipestat has already been acked */
1598 }
1599 if (eir & I915_ERROR_INSTRUCTION) {
1600 pr_err("instruction error\n");
1601 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1602 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1603 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1604 if (INTEL_INFO(dev)->gen < 4) {
1605 u32 ipeir = I915_READ(IPEIR);
1606
1607 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1608 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1609 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1610 I915_WRITE(IPEIR, ipeir);
1611 POSTING_READ(IPEIR);
1612 } else {
1613 u32 ipeir = I915_READ(IPEIR_I965);
1614
1615 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1616 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1617 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1618 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1619 I915_WRITE(IPEIR_I965, ipeir);
1620 POSTING_READ(IPEIR_I965);
1621 }
1622 }
1623
1624 I915_WRITE(EIR, eir);
1625 POSTING_READ(EIR);
1626 eir = I915_READ(EIR);
1627 if (eir) {
1628 /*
1629 * some errors might have become stuck,
1630 * mask them.
1631 */
1632 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1633 I915_WRITE(EMR, I915_READ(EMR) | eir);
1634 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1635 }
1636 }
1637
1638 /**
1639 * i915_handle_error - handle an error interrupt
1640 * @dev: drm device
1641 *
1642 * Do some basic checking of regsiter state at error interrupt time and
1643 * dump it to the syslog. Also call i915_capture_error_state() to make
1644 * sure we get a record and make it available in debugfs. Fire a uevent
1645 * so userspace knows something bad happened (should trigger collection
1646 * of a ring dump etc.).
1647 */
1648 void i915_handle_error(struct drm_device *dev, bool wedged)
1649 {
1650 struct drm_i915_private *dev_priv = dev->dev_private;
1651 struct intel_ring_buffer *ring;
1652 int i;
1653
1654 i915_capture_error_state(dev);
1655 i915_report_and_clear_eir(dev);
1656
1657 if (wedged) {
1658 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1659 &dev_priv->gpu_error.reset_counter);
1660
1661 /*
1662 * Wakeup waiting processes so that the reset work item
1663 * doesn't deadlock trying to grab various locks.
1664 */
1665 for_each_ring(ring, dev_priv, i)
1666 wake_up_all(&ring->irq_queue);
1667 }
1668
1669 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
1670 }
1671
1672 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1673 {
1674 drm_i915_private_t *dev_priv = dev->dev_private;
1675 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1677 struct drm_i915_gem_object *obj;
1678 struct intel_unpin_work *work;
1679 unsigned long flags;
1680 bool stall_detected;
1681
1682 /* Ignore early vblank irqs */
1683 if (intel_crtc == NULL)
1684 return;
1685
1686 spin_lock_irqsave(&dev->event_lock, flags);
1687 work = intel_crtc->unpin_work;
1688
1689 if (work == NULL ||
1690 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1691 !work->enable_stall_check) {
1692 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1693 spin_unlock_irqrestore(&dev->event_lock, flags);
1694 return;
1695 }
1696
1697 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1698 obj = work->pending_flip_obj;
1699 if (INTEL_INFO(dev)->gen >= 4) {
1700 int dspsurf = DSPSURF(intel_crtc->plane);
1701 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1702 i915_gem_obj_ggtt_offset(obj);
1703 } else {
1704 int dspaddr = DSPADDR(intel_crtc->plane);
1705 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1706 crtc->y * crtc->fb->pitches[0] +
1707 crtc->x * crtc->fb->bits_per_pixel/8);
1708 }
1709
1710 spin_unlock_irqrestore(&dev->event_lock, flags);
1711
1712 if (stall_detected) {
1713 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1714 intel_prepare_page_flip(dev, intel_crtc->plane);
1715 }
1716 }
1717
1718 /* Called from drm generic code, passed 'crtc' which
1719 * we use as a pipe index
1720 */
1721 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1722 {
1723 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1724 unsigned long irqflags;
1725
1726 if (!i915_pipe_enabled(dev, pipe))
1727 return -EINVAL;
1728
1729 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1730 if (INTEL_INFO(dev)->gen >= 4)
1731 i915_enable_pipestat(dev_priv, pipe,
1732 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1733 else
1734 i915_enable_pipestat(dev_priv, pipe,
1735 PIPE_VBLANK_INTERRUPT_ENABLE);
1736
1737 /* maintain vblank delivery even in deep C-states */
1738 if (dev_priv->info->gen == 3)
1739 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1740 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1741
1742 return 0;
1743 }
1744
1745 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1746 {
1747 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1748 unsigned long irqflags;
1749 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1750 DE_PIPE_VBLANK_ILK(pipe);
1751
1752 if (!i915_pipe_enabled(dev, pipe))
1753 return -EINVAL;
1754
1755 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1756 ironlake_enable_display_irq(dev_priv, bit);
1757 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1758
1759 return 0;
1760 }
1761
1762 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1763 {
1764 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1765 unsigned long irqflags;
1766 u32 imr;
1767
1768 if (!i915_pipe_enabled(dev, pipe))
1769 return -EINVAL;
1770
1771 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1772 imr = I915_READ(VLV_IMR);
1773 if (pipe == 0)
1774 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1775 else
1776 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1777 I915_WRITE(VLV_IMR, imr);
1778 i915_enable_pipestat(dev_priv, pipe,
1779 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1780 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1781
1782 return 0;
1783 }
1784
1785 /* Called from drm generic code, passed 'crtc' which
1786 * we use as a pipe index
1787 */
1788 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1789 {
1790 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1791 unsigned long irqflags;
1792
1793 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1794 if (dev_priv->info->gen == 3)
1795 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1796
1797 i915_disable_pipestat(dev_priv, pipe,
1798 PIPE_VBLANK_INTERRUPT_ENABLE |
1799 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1800 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1801 }
1802
1803 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1804 {
1805 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1806 unsigned long irqflags;
1807 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1808 DE_PIPE_VBLANK_ILK(pipe);
1809
1810 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1811 ironlake_disable_display_irq(dev_priv, bit);
1812 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1813 }
1814
1815 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1816 {
1817 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1818 unsigned long irqflags;
1819 u32 imr;
1820
1821 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1822 i915_disable_pipestat(dev_priv, pipe,
1823 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1824 imr = I915_READ(VLV_IMR);
1825 if (pipe == 0)
1826 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1827 else
1828 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1829 I915_WRITE(VLV_IMR, imr);
1830 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1831 }
1832
1833 static u32
1834 ring_last_seqno(struct intel_ring_buffer *ring)
1835 {
1836 return list_entry(ring->request_list.prev,
1837 struct drm_i915_gem_request, list)->seqno;
1838 }
1839
1840 static bool
1841 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1842 {
1843 return (list_empty(&ring->request_list) ||
1844 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1845 }
1846
1847 static struct intel_ring_buffer *
1848 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1849 {
1850 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1851 u32 cmd, ipehr, acthd, acthd_min;
1852
1853 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1854 if ((ipehr & ~(0x3 << 16)) !=
1855 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1856 return NULL;
1857
1858 /* ACTHD is likely pointing to the dword after the actual command,
1859 * so scan backwards until we find the MBOX.
1860 */
1861 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1862 acthd_min = max((int)acthd - 3 * 4, 0);
1863 do {
1864 cmd = ioread32(ring->virtual_start + acthd);
1865 if (cmd == ipehr)
1866 break;
1867
1868 acthd -= 4;
1869 if (acthd < acthd_min)
1870 return NULL;
1871 } while (1);
1872
1873 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1874 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1875 }
1876
1877 static int semaphore_passed(struct intel_ring_buffer *ring)
1878 {
1879 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1880 struct intel_ring_buffer *signaller;
1881 u32 seqno, ctl;
1882
1883 ring->hangcheck.deadlock = true;
1884
1885 signaller = semaphore_waits_for(ring, &seqno);
1886 if (signaller == NULL || signaller->hangcheck.deadlock)
1887 return -1;
1888
1889 /* cursory check for an unkickable deadlock */
1890 ctl = I915_READ_CTL(signaller);
1891 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1892 return -1;
1893
1894 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1895 }
1896
1897 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1898 {
1899 struct intel_ring_buffer *ring;
1900 int i;
1901
1902 for_each_ring(ring, dev_priv, i)
1903 ring->hangcheck.deadlock = false;
1904 }
1905
1906 static enum intel_ring_hangcheck_action
1907 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1908 {
1909 struct drm_device *dev = ring->dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 u32 tmp;
1912
1913 if (ring->hangcheck.acthd != acthd)
1914 return HANGCHECK_ACTIVE;
1915
1916 if (IS_GEN2(dev))
1917 return HANGCHECK_HUNG;
1918
1919 /* Is the chip hanging on a WAIT_FOR_EVENT?
1920 * If so we can simply poke the RB_WAIT bit
1921 * and break the hang. This should work on
1922 * all but the second generation chipsets.
1923 */
1924 tmp = I915_READ_CTL(ring);
1925 if (tmp & RING_WAIT) {
1926 DRM_ERROR("Kicking stuck wait on %s\n",
1927 ring->name);
1928 I915_WRITE_CTL(ring, tmp);
1929 return HANGCHECK_KICK;
1930 }
1931
1932 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1933 switch (semaphore_passed(ring)) {
1934 default:
1935 return HANGCHECK_HUNG;
1936 case 1:
1937 DRM_ERROR("Kicking stuck semaphore on %s\n",
1938 ring->name);
1939 I915_WRITE_CTL(ring, tmp);
1940 return HANGCHECK_KICK;
1941 case 0:
1942 return HANGCHECK_WAIT;
1943 }
1944 }
1945
1946 return HANGCHECK_HUNG;
1947 }
1948
1949 /**
1950 * This is called when the chip hasn't reported back with completed
1951 * batchbuffers in a long time. We keep track per ring seqno progress and
1952 * if there are no progress, hangcheck score for that ring is increased.
1953 * Further, acthd is inspected to see if the ring is stuck. On stuck case
1954 * we kick the ring. If we see no progress on three subsequent calls
1955 * we assume chip is wedged and try to fix it by resetting the chip.
1956 */
1957 static void i915_hangcheck_elapsed(unsigned long data)
1958 {
1959 struct drm_device *dev = (struct drm_device *)data;
1960 drm_i915_private_t *dev_priv = dev->dev_private;
1961 struct intel_ring_buffer *ring;
1962 int i;
1963 int busy_count = 0, rings_hung = 0;
1964 bool stuck[I915_NUM_RINGS] = { 0 };
1965 #define BUSY 1
1966 #define KICK 5
1967 #define HUNG 20
1968 #define FIRE 30
1969
1970 if (!i915_enable_hangcheck)
1971 return;
1972
1973 for_each_ring(ring, dev_priv, i) {
1974 u32 seqno, acthd;
1975 bool busy = true;
1976
1977 semaphore_clear_deadlocks(dev_priv);
1978
1979 seqno = ring->get_seqno(ring, false);
1980 acthd = intel_ring_get_active_head(ring);
1981
1982 if (ring->hangcheck.seqno == seqno) {
1983 if (ring_idle(ring, seqno)) {
1984 ring->hangcheck.action = HANGCHECK_IDLE;
1985
1986 if (waitqueue_active(&ring->irq_queue)) {
1987 /* Issue a wake-up to catch stuck h/w. */
1988 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1989 ring->name);
1990 wake_up_all(&ring->irq_queue);
1991 ring->hangcheck.score += HUNG;
1992 } else
1993 busy = false;
1994 } else {
1995 /* We always increment the hangcheck score
1996 * if the ring is busy and still processing
1997 * the same request, so that no single request
1998 * can run indefinitely (such as a chain of
1999 * batches). The only time we do not increment
2000 * the hangcheck score on this ring, if this
2001 * ring is in a legitimate wait for another
2002 * ring. In that case the waiting ring is a
2003 * victim and we want to be sure we catch the
2004 * right culprit. Then every time we do kick
2005 * the ring, add a small increment to the
2006 * score so that we can catch a batch that is
2007 * being repeatedly kicked and so responsible
2008 * for stalling the machine.
2009 */
2010 ring->hangcheck.action = ring_stuck(ring,
2011 acthd);
2012
2013 switch (ring->hangcheck.action) {
2014 case HANGCHECK_IDLE:
2015 case HANGCHECK_WAIT:
2016 break;
2017 case HANGCHECK_ACTIVE:
2018 ring->hangcheck.score += BUSY;
2019 break;
2020 case HANGCHECK_KICK:
2021 ring->hangcheck.score += KICK;
2022 break;
2023 case HANGCHECK_HUNG:
2024 ring->hangcheck.score += HUNG;
2025 stuck[i] = true;
2026 break;
2027 }
2028 }
2029 } else {
2030 ring->hangcheck.action = HANGCHECK_ACTIVE;
2031
2032 /* Gradually reduce the count so that we catch DoS
2033 * attempts across multiple batches.
2034 */
2035 if (ring->hangcheck.score > 0)
2036 ring->hangcheck.score--;
2037 }
2038
2039 ring->hangcheck.seqno = seqno;
2040 ring->hangcheck.acthd = acthd;
2041 busy_count += busy;
2042 }
2043
2044 for_each_ring(ring, dev_priv, i) {
2045 if (ring->hangcheck.score > FIRE) {
2046 DRM_INFO("%s on %s\n",
2047 stuck[i] ? "stuck" : "no progress",
2048 ring->name);
2049 rings_hung++;
2050 }
2051 }
2052
2053 if (rings_hung)
2054 return i915_handle_error(dev, true);
2055
2056 if (busy_count)
2057 /* Reset timer case chip hangs without another request
2058 * being added */
2059 i915_queue_hangcheck(dev);
2060 }
2061
2062 void i915_queue_hangcheck(struct drm_device *dev)
2063 {
2064 struct drm_i915_private *dev_priv = dev->dev_private;
2065 if (!i915_enable_hangcheck)
2066 return;
2067
2068 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2069 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2070 }
2071
2072 static void ibx_irq_preinstall(struct drm_device *dev)
2073 {
2074 struct drm_i915_private *dev_priv = dev->dev_private;
2075
2076 if (HAS_PCH_NOP(dev))
2077 return;
2078
2079 /* south display irq */
2080 I915_WRITE(SDEIMR, 0xffffffff);
2081 /*
2082 * SDEIER is also touched by the interrupt handler to work around missed
2083 * PCH interrupts. Hence we can't update it after the interrupt handler
2084 * is enabled - instead we unconditionally enable all PCH interrupt
2085 * sources here, but then only unmask them as needed with SDEIMR.
2086 */
2087 I915_WRITE(SDEIER, 0xffffffff);
2088 POSTING_READ(SDEIER);
2089 }
2090
2091 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2092 {
2093 struct drm_i915_private *dev_priv = dev->dev_private;
2094
2095 /* and GT */
2096 I915_WRITE(GTIMR, 0xffffffff);
2097 I915_WRITE(GTIER, 0x0);
2098 POSTING_READ(GTIER);
2099
2100 if (INTEL_INFO(dev)->gen >= 6) {
2101 /* and PM */
2102 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2103 I915_WRITE(GEN6_PMIER, 0x0);
2104 POSTING_READ(GEN6_PMIER);
2105 }
2106 }
2107
2108 /* drm_dma.h hooks
2109 */
2110 static void ironlake_irq_preinstall(struct drm_device *dev)
2111 {
2112 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2113
2114 atomic_set(&dev_priv->irq_received, 0);
2115
2116 I915_WRITE(HWSTAM, 0xeffe);
2117
2118 I915_WRITE(DEIMR, 0xffffffff);
2119 I915_WRITE(DEIER, 0x0);
2120 POSTING_READ(DEIER);
2121
2122 gen5_gt_irq_preinstall(dev);
2123
2124 ibx_irq_preinstall(dev);
2125 }
2126
2127 static void valleyview_irq_preinstall(struct drm_device *dev)
2128 {
2129 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2130 int pipe;
2131
2132 atomic_set(&dev_priv->irq_received, 0);
2133
2134 /* VLV magic */
2135 I915_WRITE(VLV_IMR, 0);
2136 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2137 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2138 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2139
2140 /* and GT */
2141 I915_WRITE(GTIIR, I915_READ(GTIIR));
2142 I915_WRITE(GTIIR, I915_READ(GTIIR));
2143
2144 gen5_gt_irq_preinstall(dev);
2145
2146 I915_WRITE(DPINVGTT, 0xff);
2147
2148 I915_WRITE(PORT_HOTPLUG_EN, 0);
2149 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2150 for_each_pipe(pipe)
2151 I915_WRITE(PIPESTAT(pipe), 0xffff);
2152 I915_WRITE(VLV_IIR, 0xffffffff);
2153 I915_WRITE(VLV_IMR, 0xffffffff);
2154 I915_WRITE(VLV_IER, 0x0);
2155 POSTING_READ(VLV_IER);
2156 }
2157
2158 static void ibx_hpd_irq_setup(struct drm_device *dev)
2159 {
2160 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2161 struct drm_mode_config *mode_config = &dev->mode_config;
2162 struct intel_encoder *intel_encoder;
2163 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2164
2165 if (HAS_PCH_IBX(dev)) {
2166 hotplug_irqs = SDE_HOTPLUG_MASK;
2167 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2168 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2169 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2170 } else {
2171 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2172 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2173 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2174 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2175 }
2176
2177 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2178
2179 /*
2180 * Enable digital hotplug on the PCH, and configure the DP short pulse
2181 * duration to 2ms (which is the minimum in the Display Port spec)
2182 *
2183 * This register is the same on all known PCH chips.
2184 */
2185 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2186 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2187 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2188 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2189 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2190 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2191 }
2192
2193 static void ibx_irq_postinstall(struct drm_device *dev)
2194 {
2195 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2196 u32 mask;
2197
2198 if (HAS_PCH_NOP(dev))
2199 return;
2200
2201 if (HAS_PCH_IBX(dev)) {
2202 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2203 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2204 } else {
2205 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2206
2207 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2208 }
2209
2210 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2211 I915_WRITE(SDEIMR, ~mask);
2212 }
2213
2214 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2215 {
2216 struct drm_i915_private *dev_priv = dev->dev_private;
2217 u32 pm_irqs, gt_irqs;
2218
2219 pm_irqs = gt_irqs = 0;
2220
2221 dev_priv->gt_irq_mask = ~0;
2222 if (HAS_L3_GPU_CACHE(dev)) {
2223 /* L3 parity interrupt is always unmasked. */
2224 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2225 gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2226 }
2227
2228 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2229 if (IS_GEN5(dev)) {
2230 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2231 ILK_BSD_USER_INTERRUPT;
2232 } else {
2233 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2234 }
2235
2236 I915_WRITE(GTIIR, I915_READ(GTIIR));
2237 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2238 I915_WRITE(GTIER, gt_irqs);
2239 POSTING_READ(GTIER);
2240
2241 if (INTEL_INFO(dev)->gen >= 6) {
2242 pm_irqs |= GEN6_PM_RPS_EVENTS;
2243
2244 if (HAS_VEBOX(dev))
2245 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2246
2247 dev_priv->pm_irq_mask = 0xffffffff;
2248 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2249 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2250 I915_WRITE(GEN6_PMIER, pm_irqs);
2251 POSTING_READ(GEN6_PMIER);
2252 }
2253 }
2254
2255 static int ironlake_irq_postinstall(struct drm_device *dev)
2256 {
2257 unsigned long irqflags;
2258 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2259 u32 display_mask, extra_mask;
2260
2261 if (INTEL_INFO(dev)->gen >= 7) {
2262 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2263 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2264 DE_PLANEB_FLIP_DONE_IVB |
2265 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2266 DE_ERR_INT_IVB);
2267 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2268 DE_PIPEA_VBLANK_IVB);
2269
2270 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2271 } else {
2272 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2273 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2274 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2275 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2276 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2277 }
2278
2279 dev_priv->irq_mask = ~display_mask;
2280
2281 /* should always can generate irq */
2282 I915_WRITE(DEIIR, I915_READ(DEIIR));
2283 I915_WRITE(DEIMR, dev_priv->irq_mask);
2284 I915_WRITE(DEIER, display_mask | extra_mask);
2285 POSTING_READ(DEIER);
2286
2287 gen5_gt_irq_postinstall(dev);
2288
2289 ibx_irq_postinstall(dev);
2290
2291 if (IS_IRONLAKE_M(dev)) {
2292 /* Enable PCU event interrupts
2293 *
2294 * spinlocking not required here for correctness since interrupt
2295 * setup is guaranteed to run in single-threaded context. But we
2296 * need it to make the assert_spin_locked happy. */
2297 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2298 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2299 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2300 }
2301
2302 return 0;
2303 }
2304
2305 static int valleyview_irq_postinstall(struct drm_device *dev)
2306 {
2307 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2308 u32 enable_mask;
2309 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2310 unsigned long irqflags;
2311
2312 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2313 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2314 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2315 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2316 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2317
2318 /*
2319 *Leave vblank interrupts masked initially. enable/disable will
2320 * toggle them based on usage.
2321 */
2322 dev_priv->irq_mask = (~enable_mask) |
2323 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2324 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2325
2326 I915_WRITE(PORT_HOTPLUG_EN, 0);
2327 POSTING_READ(PORT_HOTPLUG_EN);
2328
2329 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2330 I915_WRITE(VLV_IER, enable_mask);
2331 I915_WRITE(VLV_IIR, 0xffffffff);
2332 I915_WRITE(PIPESTAT(0), 0xffff);
2333 I915_WRITE(PIPESTAT(1), 0xffff);
2334 POSTING_READ(VLV_IER);
2335
2336 /* Interrupt setup is already guaranteed to be single-threaded, this is
2337 * just to make the assert_spin_locked check happy. */
2338 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2339 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2340 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2341 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2342 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2343
2344 I915_WRITE(VLV_IIR, 0xffffffff);
2345 I915_WRITE(VLV_IIR, 0xffffffff);
2346
2347 gen5_gt_irq_postinstall(dev);
2348
2349 /* ack & enable invalid PTE error interrupts */
2350 #if 0 /* FIXME: add support to irq handler for checking these bits */
2351 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2352 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2353 #endif
2354
2355 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2356
2357 return 0;
2358 }
2359
2360 static void valleyview_irq_uninstall(struct drm_device *dev)
2361 {
2362 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2363 int pipe;
2364
2365 if (!dev_priv)
2366 return;
2367
2368 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2369
2370 for_each_pipe(pipe)
2371 I915_WRITE(PIPESTAT(pipe), 0xffff);
2372
2373 I915_WRITE(HWSTAM, 0xffffffff);
2374 I915_WRITE(PORT_HOTPLUG_EN, 0);
2375 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2376 for_each_pipe(pipe)
2377 I915_WRITE(PIPESTAT(pipe), 0xffff);
2378 I915_WRITE(VLV_IIR, 0xffffffff);
2379 I915_WRITE(VLV_IMR, 0xffffffff);
2380 I915_WRITE(VLV_IER, 0x0);
2381 POSTING_READ(VLV_IER);
2382 }
2383
2384 static void ironlake_irq_uninstall(struct drm_device *dev)
2385 {
2386 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2387
2388 if (!dev_priv)
2389 return;
2390
2391 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2392
2393 I915_WRITE(HWSTAM, 0xffffffff);
2394
2395 I915_WRITE(DEIMR, 0xffffffff);
2396 I915_WRITE(DEIER, 0x0);
2397 I915_WRITE(DEIIR, I915_READ(DEIIR));
2398 if (IS_GEN7(dev))
2399 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2400
2401 I915_WRITE(GTIMR, 0xffffffff);
2402 I915_WRITE(GTIER, 0x0);
2403 I915_WRITE(GTIIR, I915_READ(GTIIR));
2404
2405 if (HAS_PCH_NOP(dev))
2406 return;
2407
2408 I915_WRITE(SDEIMR, 0xffffffff);
2409 I915_WRITE(SDEIER, 0x0);
2410 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2411 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2412 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2413 }
2414
2415 static void i8xx_irq_preinstall(struct drm_device * dev)
2416 {
2417 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2418 int pipe;
2419
2420 atomic_set(&dev_priv->irq_received, 0);
2421
2422 for_each_pipe(pipe)
2423 I915_WRITE(PIPESTAT(pipe), 0);
2424 I915_WRITE16(IMR, 0xffff);
2425 I915_WRITE16(IER, 0x0);
2426 POSTING_READ16(IER);
2427 }
2428
2429 static int i8xx_irq_postinstall(struct drm_device *dev)
2430 {
2431 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2432
2433 I915_WRITE16(EMR,
2434 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2435
2436 /* Unmask the interrupts that we always want on. */
2437 dev_priv->irq_mask =
2438 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2439 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2440 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2441 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2442 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2443 I915_WRITE16(IMR, dev_priv->irq_mask);
2444
2445 I915_WRITE16(IER,
2446 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2447 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2448 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2449 I915_USER_INTERRUPT);
2450 POSTING_READ16(IER);
2451
2452 return 0;
2453 }
2454
2455 /*
2456 * Returns true when a page flip has completed.
2457 */
2458 static bool i8xx_handle_vblank(struct drm_device *dev,
2459 int pipe, u16 iir)
2460 {
2461 drm_i915_private_t *dev_priv = dev->dev_private;
2462 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2463
2464 if (!drm_handle_vblank(dev, pipe))
2465 return false;
2466
2467 if ((iir & flip_pending) == 0)
2468 return false;
2469
2470 intel_prepare_page_flip(dev, pipe);
2471
2472 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2473 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2474 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2475 * the flip is completed (no longer pending). Since this doesn't raise
2476 * an interrupt per se, we watch for the change at vblank.
2477 */
2478 if (I915_READ16(ISR) & flip_pending)
2479 return false;
2480
2481 intel_finish_page_flip(dev, pipe);
2482
2483 return true;
2484 }
2485
2486 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2487 {
2488 struct drm_device *dev = (struct drm_device *) arg;
2489 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2490 u16 iir, new_iir;
2491 u32 pipe_stats[2];
2492 unsigned long irqflags;
2493 int pipe;
2494 u16 flip_mask =
2495 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2496 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2497
2498 atomic_inc(&dev_priv->irq_received);
2499
2500 iir = I915_READ16(IIR);
2501 if (iir == 0)
2502 return IRQ_NONE;
2503
2504 while (iir & ~flip_mask) {
2505 /* Can't rely on pipestat interrupt bit in iir as it might
2506 * have been cleared after the pipestat interrupt was received.
2507 * It doesn't set the bit in iir again, but it still produces
2508 * interrupts (for non-MSI).
2509 */
2510 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2511 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2512 i915_handle_error(dev, false);
2513
2514 for_each_pipe(pipe) {
2515 int reg = PIPESTAT(pipe);
2516 pipe_stats[pipe] = I915_READ(reg);
2517
2518 /*
2519 * Clear the PIPE*STAT regs before the IIR
2520 */
2521 if (pipe_stats[pipe] & 0x8000ffff) {
2522 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2523 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2524 pipe_name(pipe));
2525 I915_WRITE(reg, pipe_stats[pipe]);
2526 }
2527 }
2528 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2529
2530 I915_WRITE16(IIR, iir & ~flip_mask);
2531 new_iir = I915_READ16(IIR); /* Flush posted writes */
2532
2533 i915_update_dri1_breadcrumb(dev);
2534
2535 if (iir & I915_USER_INTERRUPT)
2536 notify_ring(dev, &dev_priv->ring[RCS]);
2537
2538 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2539 i8xx_handle_vblank(dev, 0, iir))
2540 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2541
2542 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2543 i8xx_handle_vblank(dev, 1, iir))
2544 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2545
2546 iir = new_iir;
2547 }
2548
2549 return IRQ_HANDLED;
2550 }
2551
2552 static void i8xx_irq_uninstall(struct drm_device * dev)
2553 {
2554 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2555 int pipe;
2556
2557 for_each_pipe(pipe) {
2558 /* Clear enable bits; then clear status bits */
2559 I915_WRITE(PIPESTAT(pipe), 0);
2560 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2561 }
2562 I915_WRITE16(IMR, 0xffff);
2563 I915_WRITE16(IER, 0x0);
2564 I915_WRITE16(IIR, I915_READ16(IIR));
2565 }
2566
2567 static void i915_irq_preinstall(struct drm_device * dev)
2568 {
2569 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2570 int pipe;
2571
2572 atomic_set(&dev_priv->irq_received, 0);
2573
2574 if (I915_HAS_HOTPLUG(dev)) {
2575 I915_WRITE(PORT_HOTPLUG_EN, 0);
2576 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2577 }
2578
2579 I915_WRITE16(HWSTAM, 0xeffe);
2580 for_each_pipe(pipe)
2581 I915_WRITE(PIPESTAT(pipe), 0);
2582 I915_WRITE(IMR, 0xffffffff);
2583 I915_WRITE(IER, 0x0);
2584 POSTING_READ(IER);
2585 }
2586
2587 static int i915_irq_postinstall(struct drm_device *dev)
2588 {
2589 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2590 u32 enable_mask;
2591
2592 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2593
2594 /* Unmask the interrupts that we always want on. */
2595 dev_priv->irq_mask =
2596 ~(I915_ASLE_INTERRUPT |
2597 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2598 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2599 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2600 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2601 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2602
2603 enable_mask =
2604 I915_ASLE_INTERRUPT |
2605 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2606 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2607 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2608 I915_USER_INTERRUPT;
2609
2610 if (I915_HAS_HOTPLUG(dev)) {
2611 I915_WRITE(PORT_HOTPLUG_EN, 0);
2612 POSTING_READ(PORT_HOTPLUG_EN);
2613
2614 /* Enable in IER... */
2615 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2616 /* and unmask in IMR */
2617 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2618 }
2619
2620 I915_WRITE(IMR, dev_priv->irq_mask);
2621 I915_WRITE(IER, enable_mask);
2622 POSTING_READ(IER);
2623
2624 i915_enable_asle_pipestat(dev);
2625
2626 return 0;
2627 }
2628
2629 /*
2630 * Returns true when a page flip has completed.
2631 */
2632 static bool i915_handle_vblank(struct drm_device *dev,
2633 int plane, int pipe, u32 iir)
2634 {
2635 drm_i915_private_t *dev_priv = dev->dev_private;
2636 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2637
2638 if (!drm_handle_vblank(dev, pipe))
2639 return false;
2640
2641 if ((iir & flip_pending) == 0)
2642 return false;
2643
2644 intel_prepare_page_flip(dev, plane);
2645
2646 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2647 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2648 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2649 * the flip is completed (no longer pending). Since this doesn't raise
2650 * an interrupt per se, we watch for the change at vblank.
2651 */
2652 if (I915_READ(ISR) & flip_pending)
2653 return false;
2654
2655 intel_finish_page_flip(dev, pipe);
2656
2657 return true;
2658 }
2659
2660 static irqreturn_t i915_irq_handler(int irq, void *arg)
2661 {
2662 struct drm_device *dev = (struct drm_device *) arg;
2663 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2664 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2665 unsigned long irqflags;
2666 u32 flip_mask =
2667 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2668 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2669 int pipe, ret = IRQ_NONE;
2670
2671 atomic_inc(&dev_priv->irq_received);
2672
2673 iir = I915_READ(IIR);
2674 do {
2675 bool irq_received = (iir & ~flip_mask) != 0;
2676 bool blc_event = false;
2677
2678 /* Can't rely on pipestat interrupt bit in iir as it might
2679 * have been cleared after the pipestat interrupt was received.
2680 * It doesn't set the bit in iir again, but it still produces
2681 * interrupts (for non-MSI).
2682 */
2683 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2684 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2685 i915_handle_error(dev, false);
2686
2687 for_each_pipe(pipe) {
2688 int reg = PIPESTAT(pipe);
2689 pipe_stats[pipe] = I915_READ(reg);
2690
2691 /* Clear the PIPE*STAT regs before the IIR */
2692 if (pipe_stats[pipe] & 0x8000ffff) {
2693 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2694 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2695 pipe_name(pipe));
2696 I915_WRITE(reg, pipe_stats[pipe]);
2697 irq_received = true;
2698 }
2699 }
2700 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2701
2702 if (!irq_received)
2703 break;
2704
2705 /* Consume port. Then clear IIR or we'll miss events */
2706 if ((I915_HAS_HOTPLUG(dev)) &&
2707 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2708 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2709 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2710
2711 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2712 hotplug_status);
2713
2714 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2715
2716 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2717 POSTING_READ(PORT_HOTPLUG_STAT);
2718 }
2719
2720 I915_WRITE(IIR, iir & ~flip_mask);
2721 new_iir = I915_READ(IIR); /* Flush posted writes */
2722
2723 if (iir & I915_USER_INTERRUPT)
2724 notify_ring(dev, &dev_priv->ring[RCS]);
2725
2726 for_each_pipe(pipe) {
2727 int plane = pipe;
2728 if (IS_MOBILE(dev))
2729 plane = !plane;
2730
2731 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2732 i915_handle_vblank(dev, plane, pipe, iir))
2733 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2734
2735 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2736 blc_event = true;
2737 }
2738
2739 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2740 intel_opregion_asle_intr(dev);
2741
2742 /* With MSI, interrupts are only generated when iir
2743 * transitions from zero to nonzero. If another bit got
2744 * set while we were handling the existing iir bits, then
2745 * we would never get another interrupt.
2746 *
2747 * This is fine on non-MSI as well, as if we hit this path
2748 * we avoid exiting the interrupt handler only to generate
2749 * another one.
2750 *
2751 * Note that for MSI this could cause a stray interrupt report
2752 * if an interrupt landed in the time between writing IIR and
2753 * the posting read. This should be rare enough to never
2754 * trigger the 99% of 100,000 interrupts test for disabling
2755 * stray interrupts.
2756 */
2757 ret = IRQ_HANDLED;
2758 iir = new_iir;
2759 } while (iir & ~flip_mask);
2760
2761 i915_update_dri1_breadcrumb(dev);
2762
2763 return ret;
2764 }
2765
2766 static void i915_irq_uninstall(struct drm_device * dev)
2767 {
2768 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2769 int pipe;
2770
2771 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2772
2773 if (I915_HAS_HOTPLUG(dev)) {
2774 I915_WRITE(PORT_HOTPLUG_EN, 0);
2775 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2776 }
2777
2778 I915_WRITE16(HWSTAM, 0xffff);
2779 for_each_pipe(pipe) {
2780 /* Clear enable bits; then clear status bits */
2781 I915_WRITE(PIPESTAT(pipe), 0);
2782 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2783 }
2784 I915_WRITE(IMR, 0xffffffff);
2785 I915_WRITE(IER, 0x0);
2786
2787 I915_WRITE(IIR, I915_READ(IIR));
2788 }
2789
2790 static void i965_irq_preinstall(struct drm_device * dev)
2791 {
2792 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2793 int pipe;
2794
2795 atomic_set(&dev_priv->irq_received, 0);
2796
2797 I915_WRITE(PORT_HOTPLUG_EN, 0);
2798 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2799
2800 I915_WRITE(HWSTAM, 0xeffe);
2801 for_each_pipe(pipe)
2802 I915_WRITE(PIPESTAT(pipe), 0);
2803 I915_WRITE(IMR, 0xffffffff);
2804 I915_WRITE(IER, 0x0);
2805 POSTING_READ(IER);
2806 }
2807
2808 static int i965_irq_postinstall(struct drm_device *dev)
2809 {
2810 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2811 u32 enable_mask;
2812 u32 error_mask;
2813 unsigned long irqflags;
2814
2815 /* Unmask the interrupts that we always want on. */
2816 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2817 I915_DISPLAY_PORT_INTERRUPT |
2818 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2819 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2820 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2821 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2822 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2823
2824 enable_mask = ~dev_priv->irq_mask;
2825 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2826 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2827 enable_mask |= I915_USER_INTERRUPT;
2828
2829 if (IS_G4X(dev))
2830 enable_mask |= I915_BSD_USER_INTERRUPT;
2831
2832 /* Interrupt setup is already guaranteed to be single-threaded, this is
2833 * just to make the assert_spin_locked check happy. */
2834 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2835 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2836 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2837
2838 /*
2839 * Enable some error detection, note the instruction error mask
2840 * bit is reserved, so we leave it masked.
2841 */
2842 if (IS_G4X(dev)) {
2843 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2844 GM45_ERROR_MEM_PRIV |
2845 GM45_ERROR_CP_PRIV |
2846 I915_ERROR_MEMORY_REFRESH);
2847 } else {
2848 error_mask = ~(I915_ERROR_PAGE_TABLE |
2849 I915_ERROR_MEMORY_REFRESH);
2850 }
2851 I915_WRITE(EMR, error_mask);
2852
2853 I915_WRITE(IMR, dev_priv->irq_mask);
2854 I915_WRITE(IER, enable_mask);
2855 POSTING_READ(IER);
2856
2857 I915_WRITE(PORT_HOTPLUG_EN, 0);
2858 POSTING_READ(PORT_HOTPLUG_EN);
2859
2860 i915_enable_asle_pipestat(dev);
2861
2862 return 0;
2863 }
2864
2865 static void i915_hpd_irq_setup(struct drm_device *dev)
2866 {
2867 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2868 struct drm_mode_config *mode_config = &dev->mode_config;
2869 struct intel_encoder *intel_encoder;
2870 u32 hotplug_en;
2871
2872 assert_spin_locked(&dev_priv->irq_lock);
2873
2874 if (I915_HAS_HOTPLUG(dev)) {
2875 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2876 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2877 /* Note HDMI and DP share hotplug bits */
2878 /* enable bits are the same for all generations */
2879 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2880 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2881 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2882 /* Programming the CRT detection parameters tends
2883 to generate a spurious hotplug event about three
2884 seconds later. So just do it once.
2885 */
2886 if (IS_G4X(dev))
2887 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2888 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2889 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2890
2891 /* Ignore TV since it's buggy */
2892 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2893 }
2894 }
2895
2896 static irqreturn_t i965_irq_handler(int irq, void *arg)
2897 {
2898 struct drm_device *dev = (struct drm_device *) arg;
2899 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2900 u32 iir, new_iir;
2901 u32 pipe_stats[I915_MAX_PIPES];
2902 unsigned long irqflags;
2903 int irq_received;
2904 int ret = IRQ_NONE, pipe;
2905 u32 flip_mask =
2906 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2907 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2908
2909 atomic_inc(&dev_priv->irq_received);
2910
2911 iir = I915_READ(IIR);
2912
2913 for (;;) {
2914 bool blc_event = false;
2915
2916 irq_received = (iir & ~flip_mask) != 0;
2917
2918 /* Can't rely on pipestat interrupt bit in iir as it might
2919 * have been cleared after the pipestat interrupt was received.
2920 * It doesn't set the bit in iir again, but it still produces
2921 * interrupts (for non-MSI).
2922 */
2923 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2924 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2925 i915_handle_error(dev, false);
2926
2927 for_each_pipe(pipe) {
2928 int reg = PIPESTAT(pipe);
2929 pipe_stats[pipe] = I915_READ(reg);
2930
2931 /*
2932 * Clear the PIPE*STAT regs before the IIR
2933 */
2934 if (pipe_stats[pipe] & 0x8000ffff) {
2935 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2936 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2937 pipe_name(pipe));
2938 I915_WRITE(reg, pipe_stats[pipe]);
2939 irq_received = 1;
2940 }
2941 }
2942 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2943
2944 if (!irq_received)
2945 break;
2946
2947 ret = IRQ_HANDLED;
2948
2949 /* Consume port. Then clear IIR or we'll miss events */
2950 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2951 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2952 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2953 HOTPLUG_INT_STATUS_G4X :
2954 HOTPLUG_INT_STATUS_I915);
2955
2956 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2957 hotplug_status);
2958
2959 intel_hpd_irq_handler(dev, hotplug_trigger,
2960 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2961
2962 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2963 I915_READ(PORT_HOTPLUG_STAT);
2964 }
2965
2966 I915_WRITE(IIR, iir & ~flip_mask);
2967 new_iir = I915_READ(IIR); /* Flush posted writes */
2968
2969 if (iir & I915_USER_INTERRUPT)
2970 notify_ring(dev, &dev_priv->ring[RCS]);
2971 if (iir & I915_BSD_USER_INTERRUPT)
2972 notify_ring(dev, &dev_priv->ring[VCS]);
2973
2974 for_each_pipe(pipe) {
2975 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2976 i915_handle_vblank(dev, pipe, pipe, iir))
2977 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
2978
2979 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2980 blc_event = true;
2981 }
2982
2983
2984 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2985 intel_opregion_asle_intr(dev);
2986
2987 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2988 gmbus_irq_handler(dev);
2989
2990 /* With MSI, interrupts are only generated when iir
2991 * transitions from zero to nonzero. If another bit got
2992 * set while we were handling the existing iir bits, then
2993 * we would never get another interrupt.
2994 *
2995 * This is fine on non-MSI as well, as if we hit this path
2996 * we avoid exiting the interrupt handler only to generate
2997 * another one.
2998 *
2999 * Note that for MSI this could cause a stray interrupt report
3000 * if an interrupt landed in the time between writing IIR and
3001 * the posting read. This should be rare enough to never
3002 * trigger the 99% of 100,000 interrupts test for disabling
3003 * stray interrupts.
3004 */
3005 iir = new_iir;
3006 }
3007
3008 i915_update_dri1_breadcrumb(dev);
3009
3010 return ret;
3011 }
3012
3013 static void i965_irq_uninstall(struct drm_device * dev)
3014 {
3015 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3016 int pipe;
3017
3018 if (!dev_priv)
3019 return;
3020
3021 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3022
3023 I915_WRITE(PORT_HOTPLUG_EN, 0);
3024 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3025
3026 I915_WRITE(HWSTAM, 0xffffffff);
3027 for_each_pipe(pipe)
3028 I915_WRITE(PIPESTAT(pipe), 0);
3029 I915_WRITE(IMR, 0xffffffff);
3030 I915_WRITE(IER, 0x0);
3031
3032 for_each_pipe(pipe)
3033 I915_WRITE(PIPESTAT(pipe),
3034 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3035 I915_WRITE(IIR, I915_READ(IIR));
3036 }
3037
3038 static void i915_reenable_hotplug_timer_func(unsigned long data)
3039 {
3040 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3041 struct drm_device *dev = dev_priv->dev;
3042 struct drm_mode_config *mode_config = &dev->mode_config;
3043 unsigned long irqflags;
3044 int i;
3045
3046 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3047 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3048 struct drm_connector *connector;
3049
3050 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3051 continue;
3052
3053 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3054
3055 list_for_each_entry(connector, &mode_config->connector_list, head) {
3056 struct intel_connector *intel_connector = to_intel_connector(connector);
3057
3058 if (intel_connector->encoder->hpd_pin == i) {
3059 if (connector->polled != intel_connector->polled)
3060 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3061 drm_get_connector_name(connector));
3062 connector->polled = intel_connector->polled;
3063 if (!connector->polled)
3064 connector->polled = DRM_CONNECTOR_POLL_HPD;
3065 }
3066 }
3067 }
3068 if (dev_priv->display.hpd_irq_setup)
3069 dev_priv->display.hpd_irq_setup(dev);
3070 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3071 }
3072
3073 void intel_irq_init(struct drm_device *dev)
3074 {
3075 struct drm_i915_private *dev_priv = dev->dev_private;
3076
3077 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3078 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3079 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3080 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3081
3082 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3083 i915_hangcheck_elapsed,
3084 (unsigned long) dev);
3085 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3086 (unsigned long) dev_priv);
3087
3088 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3089
3090 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3091 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3092 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3093 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3094 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3095 }
3096
3097 if (drm_core_check_feature(dev, DRIVER_MODESET))
3098 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3099 else
3100 dev->driver->get_vblank_timestamp = NULL;
3101 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3102
3103 if (IS_VALLEYVIEW(dev)) {
3104 dev->driver->irq_handler = valleyview_irq_handler;
3105 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3106 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3107 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3108 dev->driver->enable_vblank = valleyview_enable_vblank;
3109 dev->driver->disable_vblank = valleyview_disable_vblank;
3110 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3111 } else if (HAS_PCH_SPLIT(dev)) {
3112 dev->driver->irq_handler = ironlake_irq_handler;
3113 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3114 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3115 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3116 dev->driver->enable_vblank = ironlake_enable_vblank;
3117 dev->driver->disable_vblank = ironlake_disable_vblank;
3118 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3119 } else {
3120 if (INTEL_INFO(dev)->gen == 2) {
3121 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3122 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3123 dev->driver->irq_handler = i8xx_irq_handler;
3124 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3125 } else if (INTEL_INFO(dev)->gen == 3) {
3126 dev->driver->irq_preinstall = i915_irq_preinstall;
3127 dev->driver->irq_postinstall = i915_irq_postinstall;
3128 dev->driver->irq_uninstall = i915_irq_uninstall;
3129 dev->driver->irq_handler = i915_irq_handler;
3130 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3131 } else {
3132 dev->driver->irq_preinstall = i965_irq_preinstall;
3133 dev->driver->irq_postinstall = i965_irq_postinstall;
3134 dev->driver->irq_uninstall = i965_irq_uninstall;
3135 dev->driver->irq_handler = i965_irq_handler;
3136 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3137 }
3138 dev->driver->enable_vblank = i915_enable_vblank;
3139 dev->driver->disable_vblank = i915_disable_vblank;
3140 }
3141 }
3142
3143 void intel_hpd_init(struct drm_device *dev)
3144 {
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146 struct drm_mode_config *mode_config = &dev->mode_config;
3147 struct drm_connector *connector;
3148 unsigned long irqflags;
3149 int i;
3150
3151 for (i = 1; i < HPD_NUM_PINS; i++) {
3152 dev_priv->hpd_stats[i].hpd_cnt = 0;
3153 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3154 }
3155 list_for_each_entry(connector, &mode_config->connector_list, head) {
3156 struct intel_connector *intel_connector = to_intel_connector(connector);
3157 connector->polled = intel_connector->polled;
3158 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3159 connector->polled = DRM_CONNECTOR_POLL_HPD;
3160 }
3161
3162 /* Interrupt setup is already guaranteed to be single-threaded, this is
3163 * just to make the assert_spin_locked checks happy. */
3164 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3165 if (dev_priv->display.hpd_irq_setup)
3166 dev_priv->display.hpd_irq_setup(dev);
3167 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3168 }
3169
3170 /* Disable interrupts so we can allow Package C8+. */
3171 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3172 {
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 unsigned long irqflags;
3175
3176 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3177
3178 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3179 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3180 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3181 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3182 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3183
3184 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3185 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3186 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3187 snb_disable_pm_irq(dev_priv, 0xffffffff);
3188
3189 dev_priv->pc8.irqs_disabled = true;
3190
3191 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3192 }
3193
3194 /* Restore interrupts so we can recover from Package C8+. */
3195 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3196 {
3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198 unsigned long irqflags;
3199 uint32_t val, expected;
3200
3201 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3202
3203 val = I915_READ(DEIMR);
3204 expected = ~DE_PCH_EVENT_IVB;
3205 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3206
3207 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3208 expected = ~SDE_HOTPLUG_MASK_CPT;
3209 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3210 val, expected);
3211
3212 val = I915_READ(GTIMR);
3213 expected = 0xffffffff;
3214 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3215
3216 val = I915_READ(GEN6_PMIMR);
3217 expected = 0xffffffff;
3218 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3219 expected);
3220
3221 dev_priv->pc8.irqs_disabled = false;
3222
3223 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3224 ibx_enable_display_interrupt(dev_priv,
3225 ~dev_priv->pc8.regsave.sdeimr &
3226 ~SDE_HOTPLUG_MASK_CPT);
3227 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3228 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3229 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3230
3231 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3232 }
This page took 0.125062 seconds and 6 git commands to generate.