drm/i915: Don't use WaGsvRC0ResidenncyMethod on chv
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140 return;
141
142 if ((dev_priv->irq_mask & mask) != 0) {
143 dev_priv->irq_mask &= ~mask;
144 I915_WRITE(DEIMR, dev_priv->irq_mask);
145 POSTING_READ(DEIMR);
146 }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 assert_spin_locked(&dev_priv->irq_lock);
153
154 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
155 return;
156
157 if ((dev_priv->irq_mask & mask) != mask) {
158 dev_priv->irq_mask |= mask;
159 I915_WRITE(DEIMR, dev_priv->irq_mask);
160 POSTING_READ(DEIMR);
161 }
162 }
163
164 /**
165 * ilk_update_gt_irq - update GTIMR
166 * @dev_priv: driver private
167 * @interrupt_mask: mask of interrupt bits to update
168 * @enabled_irq_mask: mask of interrupt bits to enable
169 */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 uint32_t interrupt_mask,
172 uint32_t enabled_irq_mask)
173 {
174 assert_spin_locked(&dev_priv->irq_lock);
175
176 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177 return;
178
179 dev_priv->gt_irq_mask &= ~interrupt_mask;
180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 POSTING_READ(GTIMR);
183 }
184
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196 * snb_update_pm_irq - update GEN6_PMIMR
197 * @dev_priv: driver private
198 * @interrupt_mask: mask of interrupt bits to update
199 * @enabled_irq_mask: mask of interrupt bits to enable
200 */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 uint32_t interrupt_mask,
203 uint32_t enabled_irq_mask)
204 {
205 uint32_t new_val;
206
207 assert_spin_locked(&dev_priv->irq_lock);
208
209 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210 return;
211
212 new_val = dev_priv->pm_irq_mask;
213 new_val &= ~interrupt_mask;
214 new_val |= (~enabled_irq_mask & interrupt_mask);
215
216 if (new_val != dev_priv->pm_irq_mask) {
217 dev_priv->pm_irq_mask = new_val;
218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 POSTING_READ(GEN6_PMIMR);
220 }
221 }
222
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct intel_crtc *crtc;
237 enum pipe pipe;
238
239 assert_spin_locked(&dev_priv->irq_lock);
240
241 for_each_pipe(dev_priv, pipe) {
242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244 if (crtc->cpu_fifo_underrun_disabled)
245 return false;
246 }
247
248 return true;
249 }
250
251 /**
252 * bdw_update_pm_irq - update GT interrupt 2
253 * @dev_priv: driver private
254 * @interrupt_mask: mask of interrupt bits to update
255 * @enabled_irq_mask: mask of interrupt bits to enable
256 *
257 * Copied from the snb function, updated with relevant register offsets
258 */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 uint32_t interrupt_mask,
261 uint32_t enabled_irq_mask)
262 {
263 uint32_t new_val;
264
265 assert_spin_locked(&dev_priv->irq_lock);
266
267 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 return;
269
270 new_val = dev_priv->pm_irq_mask;
271 new_val &= ~interrupt_mask;
272 new_val |= (~enabled_irq_mask & interrupt_mask);
273
274 if (new_val != dev_priv->pm_irq_mask) {
275 dev_priv->pm_irq_mask = new_val;
276 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 POSTING_READ(GEN8_GT_IMR(2));
278 }
279 }
280
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 struct drm_i915_private *dev_priv = dev->dev_private;
294 enum pipe pipe;
295 struct intel_crtc *crtc;
296
297 assert_spin_locked(&dev_priv->irq_lock);
298
299 for_each_pipe(dev_priv, pipe) {
300 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302 if (crtc->pch_fifo_underrun_disabled)
303 return false;
304 }
305
306 return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312 struct intel_crtc *crtc;
313 unsigned long flags;
314
315 spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317 for_each_intel_crtc(dev, crtc) {
318 u32 reg = PIPESTAT(crtc->pipe);
319 u32 pipestat;
320
321 if (crtc->cpu_fifo_underrun_disabled)
322 continue;
323
324 pipestat = I915_READ(reg) & 0xffff0000;
325 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 continue;
327
328 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 POSTING_READ(reg);
330
331 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 }
333
334 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 enum pipe pipe,
339 bool enable, bool old)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 u32 reg = PIPESTAT(pipe);
343 u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345 assert_spin_locked(&dev_priv->irq_lock);
346
347 if (enable) {
348 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 POSTING_READ(reg);
350 } else {
351 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 enum pipe pipe, bool enable)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 DE_PIPEB_FIFO_UNDERRUN;
362
363 if (enable)
364 ironlake_enable_display_irq(dev_priv, bit);
365 else
366 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 enum pipe pipe,
371 bool enable, bool old)
372 {
373 struct drm_i915_private *dev_priv = dev->dev_private;
374 if (enable) {
375 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377 if (!ivb_can_enable_err_int(dev))
378 return;
379
380 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 } else {
382 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384 if (old &&
385 I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 pipe_name(pipe));
388 }
389 }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 enum pipe pipe, bool enable)
394 {
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 assert_spin_locked(&dev_priv->irq_lock);
398
399 if (enable)
400 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 else
402 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408 * ibx_display_interrupt_update - update SDEIMR
409 * @dev_priv: driver private
410 * @interrupt_mask: mask of interrupt bits to update
411 * @enabled_irq_mask: mask of interrupt bits to enable
412 */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 uint32_t interrupt_mask,
415 uint32_t enabled_irq_mask)
416 {
417 uint32_t sdeimr = I915_READ(SDEIMR);
418 sdeimr &= ~interrupt_mask;
419 sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424 return;
425
426 I915_WRITE(SDEIMR, sdeimr);
427 POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 enum transcoder pch_transcoder,
436 bool enable)
437 {
438 struct drm_i915_private *dev_priv = dev->dev_private;
439 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442 if (enable)
443 ibx_enable_display_interrupt(dev_priv, bit);
444 else
445 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 enum transcoder pch_transcoder,
450 bool enable, bool old)
451 {
452 struct drm_i915_private *dev_priv = dev->dev_private;
453
454 if (enable) {
455 I915_WRITE(SERR_INT,
456 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458 if (!cpt_can_enable_serr_int(dev))
459 return;
460
461 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 } else {
463 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465 if (old && I915_READ(SERR_INT) &
466 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 transcoder_name(pch_transcoder));
469 }
470 }
471 }
472
473 /**
474 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475 * @dev: drm device
476 * @pipe: pipe
477 * @enable: true if we want to report FIFO underrun errors, false otherwise
478 *
479 * This function makes us disable or enable CPU fifo underruns for a specific
480 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481 * reporting for one pipe may also disable all the other CPU error interruts for
482 * the other pipes, due to the fact that there's just one interrupt mask/enable
483 * bit for all the pipes.
484 *
485 * Returns the previous state of underrun reporting.
486 */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 enum pipe pipe, bool enable)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 bool old;
494
495 assert_spin_locked(&dev_priv->irq_lock);
496
497 old = !intel_crtc->cpu_fifo_underrun_disabled;
498 intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500 if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 else if (IS_GEN5(dev) || IS_GEN6(dev))
503 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 else if (IS_GEN7(dev))
505 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 else if (IS_GEN8(dev))
507 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509 return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 enum pipe pipe, bool enable)
514 {
515 struct drm_i915_private *dev_priv = dev->dev_private;
516 unsigned long flags;
517 bool ret;
518
519 spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523 return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 enum pipe pipe)
528 {
529 struct drm_i915_private *dev_priv = dev->dev_private;
530 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533 return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538 * @dev: drm device
539 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540 * @enable: true if we want to report FIFO underrun errors, false otherwise
541 *
542 * This function makes us disable or enable PCH fifo underruns for a specific
543 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544 * underrun reporting for one transcoder may also disable all the other PCH
545 * error interruts for the other transcoders, due to the fact that there's just
546 * one interrupt mask/enable bit for all the transcoders.
547 *
548 * Returns the previous state of underrun reporting.
549 */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 enum transcoder pch_transcoder,
552 bool enable)
553 {
554 struct drm_i915_private *dev_priv = dev->dev_private;
555 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 unsigned long flags;
558 bool old;
559
560 /*
561 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 * has only one pch transcoder A that all pipes can use. To avoid racy
563 * pch transcoder -> pipe lookups from interrupt code simply store the
564 * underrun statistics in crtc A. Since we never expose this anywhere
565 * nor use it outside of the fifo underrun code here using the "wrong"
566 * crtc on LPT won't cause issues.
567 */
568
569 spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571 old = !intel_crtc->pch_fifo_underrun_disabled;
572 intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574 if (HAS_PCH_IBX(dev))
575 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 else
577 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 u32 enable_mask, u32 status_mask)
587 {
588 u32 reg = PIPESTAT(pipe);
589 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591 assert_spin_locked(&dev_priv->irq_lock);
592
593 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 pipe_name(pipe), enable_mask, status_mask))
597 return;
598
599 if ((pipestat & enable_mask) == enable_mask)
600 return;
601
602 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604 /* Enable the interrupt, clear any pending status */
605 pipestat |= enable_mask | status_mask;
606 I915_WRITE(reg, pipestat);
607 POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 u32 enable_mask, u32 status_mask)
613 {
614 u32 reg = PIPESTAT(pipe);
615 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617 assert_spin_locked(&dev_priv->irq_lock);
618
619 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 pipe_name(pipe), enable_mask, status_mask))
623 return;
624
625 if ((pipestat & enable_mask) == 0)
626 return;
627
628 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630 pipestat &= ~enable_mask;
631 I915_WRITE(reg, pipestat);
632 POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 u32 enable_mask = status_mask << 16;
638
639 /*
640 * On pipe A we don't support the PSR interrupt yet,
641 * on pipe B and C the same bit MBZ.
642 */
643 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 return 0;
645 /*
646 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 * A the same bit is for perf counters which we don't use either.
648 */
649 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 return 0;
651
652 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660 return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 u32 status_mask)
666 {
667 u32 enable_mask;
668
669 if (IS_VALLEYVIEW(dev_priv->dev))
670 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 status_mask);
672 else
673 enable_mask = status_mask << 16;
674 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 u32 status_mask)
680 {
681 u32 enable_mask;
682
683 if (IS_VALLEYVIEW(dev_priv->dev))
684 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 status_mask);
686 else
687 enable_mask = status_mask << 16;
688 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693 */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 struct drm_i915_private *dev_priv = dev->dev_private;
697 unsigned long irqflags;
698
699 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 return;
701
702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 if (INTEL_INFO(dev)->gen >= 4)
706 i915_enable_pipestat(dev_priv, PIPE_A,
707 PIPE_LEGACY_BLC_EVENT_STATUS);
708
709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713 * i915_pipe_enabled - check if a pipe is enabled
714 * @dev: DRM device
715 * @pipe: pipe to check
716 *
717 * Reading certain registers when the pipe is disabled can hang the chip.
718 * Use this routine to make sure the PLL is running and the pipe is active
719 * before reading such registers if unsure.
720 */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 struct drm_i915_private *dev_priv = dev->dev_private;
725
726 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 /* Locking is horribly broken here, but whatever. */
728 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731 return intel_crtc->active;
732 } else {
733 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 }
735 }
736
737 /*
738 * This timing diagram depicts the video signal in and
739 * around the vertical blanking period.
740 *
741 * Assumptions about the fictitious mode used in this example:
742 * vblank_start >= 3
743 * vsync_start = vblank_start + 1
744 * vsync_end = vblank_start + 2
745 * vtotal = vblank_start + 3
746 *
747 * start of vblank:
748 * latch double buffered registers
749 * increment frame counter (ctg+)
750 * generate start of vblank interrupt (gen4+)
751 * |
752 * | frame start:
753 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
754 * | may be shifted forward 1-3 extra lines via PIPECONF
755 * | |
756 * | | start of vsync:
757 * | | generate vsync interrupt
758 * | | |
759 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
760 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
761 * ----va---> <-----------------vb--------------------> <--------va-------------
762 * | | <----vs-----> |
763 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766 * | | |
767 * last visible pixel first visible pixel
768 * | increment frame counter (gen3/4)
769 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
770 *
771 * x = horizontal active
772 * _ = horizontal blanking
773 * hs = horizontal sync
774 * va = vertical active
775 * vb = vertical blanking
776 * vs = vertical sync
777 * vbs = vblank_start (number)
778 *
779 * Summary:
780 * - most events happen at the start of horizontal sync
781 * - frame start happens at the start of horizontal blank, 1-4 lines
782 * (depending on PIPECONF settings) after the start of vblank
783 * - gen3/4 pixel and frame counter are synchronized with the start
784 * of horizontal active on the first line of vertical active
785 */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 /* Gen2 doesn't have a hardware frame counter */
790 return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794 * we use as a pipe index
795 */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 unsigned long high_frame;
800 unsigned long low_frame;
801 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803 if (!i915_pipe_enabled(dev, pipe)) {
804 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 "pipe %c\n", pipe_name(pipe));
806 return 0;
807 }
808
809 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 struct intel_crtc *intel_crtc =
811 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 const struct drm_display_mode *mode =
813 &intel_crtc->config.adjusted_mode;
814
815 htotal = mode->crtc_htotal;
816 hsync_start = mode->crtc_hsync_start;
817 vbl_start = mode->crtc_vblank_start;
818 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 } else {
821 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1;
825 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 }
830
831 /* Convert to pixel count */
832 vbl_start *= htotal;
833
834 /* Start of vblank event occurs at start of hsync */
835 vbl_start -= htotal - hsync_start;
836
837 high_frame = PIPEFRAME(pipe);
838 low_frame = PIPEFRAMEPIXEL(pipe);
839
840 /*
841 * High & low register fields aren't synchronized, so make sure
842 * we get a low value that's stable across two reads of the high
843 * register.
844 */
845 do {
846 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 low = I915_READ(low_frame);
848 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 } while (high1 != high2);
850
851 high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 pixel = low & PIPE_PIXEL_MASK;
853 low >>= PIPE_FRAME_LOW_SHIFT;
854
855 /*
856 * The frame counter increments at beginning of active.
857 * Cook up a vblank counter by also checking the pixel
858 * counter against vblank start.
859 */
860 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868 if (!i915_pipe_enabled(dev, pipe)) {
869 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 "pipe %c\n", pipe_name(pipe));
871 return 0;
872 }
873
874 return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 struct drm_device *dev = crtc->base.dev;
883 struct drm_i915_private *dev_priv = dev->dev_private;
884 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 enum pipe pipe = crtc->pipe;
886 int position, vtotal;
887
888 vtotal = mode->crtc_vtotal;
889 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 vtotal /= 2;
891
892 if (IS_GEN2(dev))
893 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 else
895 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897 /*
898 * See update_scanline_offset() for the details on the
899 * scanline_offset adjustment.
900 */
901 return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 unsigned int flags, int *vpos, int *hpos,
906 ktime_t *stime, ktime_t *etime)
907 {
908 struct drm_i915_private *dev_priv = dev->dev_private;
909 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 int position;
913 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 bool in_vbl = true;
915 int ret = 0;
916 unsigned long irqflags;
917
918 if (!intel_crtc->active) {
919 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 "pipe %c\n", pipe_name(pipe));
921 return 0;
922 }
923
924 htotal = mode->crtc_htotal;
925 hsync_start = mode->crtc_hsync_start;
926 vtotal = mode->crtc_vtotal;
927 vbl_start = mode->crtc_vblank_start;
928 vbl_end = mode->crtc_vblank_end;
929
930 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 vbl_end /= 2;
933 vtotal /= 2;
934 }
935
936 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938 /*
939 * Lock uncore.lock, as we will do multiple timing critical raw
940 * register reads, potentially with preemption disabled, so the
941 * following code must not block on uncore.lock.
942 */
943 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947 /* Get optional system timestamp before query. */
948 if (stime)
949 *stime = ktime_get();
950
951 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 /* No obvious pixelcount register. Only query vertical
953 * scanout position from Display scan line register.
954 */
955 position = __intel_get_crtc_scanline(intel_crtc);
956 } else {
957 /* Have access to pixelcount since start of frame.
958 * We can split this into vertical and horizontal
959 * scanout position.
960 */
961 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963 /* convert to pixel counts */
964 vbl_start *= htotal;
965 vbl_end *= htotal;
966 vtotal *= htotal;
967
968 /*
969 * In interlaced modes, the pixel counter counts all pixels,
970 * so one field will have htotal more pixels. In order to avoid
971 * the reported position from jumping backwards when the pixel
972 * counter is beyond the length of the shorter field, just
973 * clamp the position the length of the shorter field. This
974 * matches how the scanline counter based position works since
975 * the scanline counter doesn't count the two half lines.
976 */
977 if (position >= vtotal)
978 position = vtotal - 1;
979
980 /*
981 * Start of vblank interrupt is triggered at start of hsync,
982 * just prior to the first active line of vblank. However we
983 * consider lines to start at the leading edge of horizontal
984 * active. So, should we get here before we've crossed into
985 * the horizontal active of the first line in vblank, we would
986 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 * always add htotal-hsync_start to the current pixel position.
988 */
989 position = (position + htotal - hsync_start) % vtotal;
990 }
991
992 /* Get optional system timestamp after query. */
993 if (etime)
994 *etime = ktime_get();
995
996 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000 in_vbl = position >= vbl_start && position < vbl_end;
1001
1002 /*
1003 * While in vblank, position will be negative
1004 * counting up towards 0 at vbl_end. And outside
1005 * vblank, position will be positive counting
1006 * up since vbl_end.
1007 */
1008 if (position >= vbl_start)
1009 position -= vbl_end;
1010 else
1011 position += vtotal - vbl_end;
1012
1013 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 *vpos = position;
1015 *hpos = 0;
1016 } else {
1017 *vpos = position / htotal;
1018 *hpos = position - (*vpos * htotal);
1019 }
1020
1021 /* In vblank? */
1022 if (in_vbl)
1023 ret |= DRM_SCANOUTPOS_INVBL;
1024
1025 return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 unsigned long irqflags;
1032 int position;
1033
1034 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 position = __intel_get_crtc_scanline(crtc);
1036 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038 return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 int *max_error,
1043 struct timeval *vblank_time,
1044 unsigned flags)
1045 {
1046 struct drm_crtc *crtc;
1047
1048 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 DRM_ERROR("Invalid crtc %d\n", pipe);
1050 return -EINVAL;
1051 }
1052
1053 /* Get drm_crtc to timestamp: */
1054 crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 if (crtc == NULL) {
1056 DRM_ERROR("Invalid crtc %d\n", pipe);
1057 return -EINVAL;
1058 }
1059
1060 if (!crtc->enabled) {
1061 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 return -EBUSY;
1063 }
1064
1065 /* Helper routine in DRM core does all the work: */
1066 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 vblank_time, flags,
1068 crtc,
1069 &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 struct drm_connector *connector)
1074 {
1075 enum drm_connector_status old_status;
1076
1077 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 old_status = connector->status;
1079
1080 connector->status = connector->funcs->detect(connector, false);
1081 if (old_status == connector->status)
1082 return false;
1083
1084 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 connector->base.id,
1086 connector->name,
1087 drm_get_connector_status_name(old_status),
1088 drm_get_connector_status_name(connector->status));
1089
1090 return true;
1091 }
1092
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095 struct drm_i915_private *dev_priv =
1096 container_of(work, struct drm_i915_private, dig_port_work);
1097 unsigned long irqflags;
1098 u32 long_port_mask, short_port_mask;
1099 struct intel_digital_port *intel_dig_port;
1100 int i, ret;
1101 u32 old_bits = 0;
1102
1103 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104 long_port_mask = dev_priv->long_hpd_port_mask;
1105 dev_priv->long_hpd_port_mask = 0;
1106 short_port_mask = dev_priv->short_hpd_port_mask;
1107 dev_priv->short_hpd_port_mask = 0;
1108 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109
1110 for (i = 0; i < I915_MAX_PORTS; i++) {
1111 bool valid = false;
1112 bool long_hpd = false;
1113 intel_dig_port = dev_priv->hpd_irq_port[i];
1114 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115 continue;
1116
1117 if (long_port_mask & (1 << i)) {
1118 valid = true;
1119 long_hpd = true;
1120 } else if (short_port_mask & (1 << i))
1121 valid = true;
1122
1123 if (valid) {
1124 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125 if (ret == true) {
1126 /* if we get true fallback to old school hpd */
1127 old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128 }
1129 }
1130 }
1131
1132 if (old_bits) {
1133 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134 dev_priv->hpd_event_bits |= old_bits;
1135 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136 schedule_work(&dev_priv->hotplug_work);
1137 }
1138 }
1139
1140 /*
1141 * Handle hotplug events outside the interrupt handler proper.
1142 */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147 struct drm_i915_private *dev_priv =
1148 container_of(work, struct drm_i915_private, hotplug_work);
1149 struct drm_device *dev = dev_priv->dev;
1150 struct drm_mode_config *mode_config = &dev->mode_config;
1151 struct intel_connector *intel_connector;
1152 struct intel_encoder *intel_encoder;
1153 struct drm_connector *connector;
1154 unsigned long irqflags;
1155 bool hpd_disabled = false;
1156 bool changed = false;
1157 u32 hpd_event_bits;
1158
1159 mutex_lock(&mode_config->mutex);
1160 DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161
1162 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163
1164 hpd_event_bits = dev_priv->hpd_event_bits;
1165 dev_priv->hpd_event_bits = 0;
1166 list_for_each_entry(connector, &mode_config->connector_list, head) {
1167 intel_connector = to_intel_connector(connector);
1168 if (!intel_connector->encoder)
1169 continue;
1170 intel_encoder = intel_connector->encoder;
1171 if (intel_encoder->hpd_pin > HPD_NONE &&
1172 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173 connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174 DRM_INFO("HPD interrupt storm detected on connector %s: "
1175 "switching from hotplug detection to polling\n",
1176 connector->name);
1177 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178 connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179 | DRM_CONNECTOR_POLL_DISCONNECT;
1180 hpd_disabled = true;
1181 }
1182 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184 connector->name, intel_encoder->hpd_pin);
1185 }
1186 }
1187 /* if there were no outputs to poll, poll was disabled,
1188 * therefore make sure it's enabled when disabling HPD on
1189 * some connectors */
1190 if (hpd_disabled) {
1191 drm_kms_helper_poll_enable(dev);
1192 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194 }
1195
1196 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197
1198 list_for_each_entry(connector, &mode_config->connector_list, head) {
1199 intel_connector = to_intel_connector(connector);
1200 if (!intel_connector->encoder)
1201 continue;
1202 intel_encoder = intel_connector->encoder;
1203 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204 if (intel_encoder->hot_plug)
1205 intel_encoder->hot_plug(intel_encoder);
1206 if (intel_hpd_irq_event(dev, connector))
1207 changed = true;
1208 }
1209 }
1210 mutex_unlock(&mode_config->mutex);
1211
1212 if (changed)
1213 drm_kms_helper_hotplug_event(dev);
1214 }
1215
1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218 struct drm_i915_private *dev_priv = dev->dev_private;
1219 u32 busy_up, busy_down, max_avg, min_avg;
1220 u8 new_delay;
1221
1222 spin_lock(&mchdev_lock);
1223
1224 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225
1226 new_delay = dev_priv->ips.cur_delay;
1227
1228 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229 busy_up = I915_READ(RCPREVBSYTUPAVG);
1230 busy_down = I915_READ(RCPREVBSYTDNAVG);
1231 max_avg = I915_READ(RCBMAXAVG);
1232 min_avg = I915_READ(RCBMINAVG);
1233
1234 /* Handle RCS change request from hw */
1235 if (busy_up > max_avg) {
1236 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237 new_delay = dev_priv->ips.cur_delay - 1;
1238 if (new_delay < dev_priv->ips.max_delay)
1239 new_delay = dev_priv->ips.max_delay;
1240 } else if (busy_down < min_avg) {
1241 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242 new_delay = dev_priv->ips.cur_delay + 1;
1243 if (new_delay > dev_priv->ips.min_delay)
1244 new_delay = dev_priv->ips.min_delay;
1245 }
1246
1247 if (ironlake_set_drps(dev, new_delay))
1248 dev_priv->ips.cur_delay = new_delay;
1249
1250 spin_unlock(&mchdev_lock);
1251
1252 return;
1253 }
1254
1255 static void notify_ring(struct drm_device *dev,
1256 struct intel_engine_cs *ring)
1257 {
1258 if (!intel_ring_initialized(ring))
1259 return;
1260
1261 trace_i915_gem_request_complete(ring);
1262
1263 if (drm_core_check_feature(dev, DRIVER_MODESET))
1264 intel_notify_mmio_flip(ring);
1265
1266 wake_up_all(&ring->irq_queue);
1267 i915_queue_hangcheck(dev);
1268 }
1269
1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271 struct intel_rps_ei *rps_ei)
1272 {
1273 u32 cz_ts, cz_freq_khz;
1274 u32 render_count, media_count;
1275 u32 elapsed_render, elapsed_media, elapsed_time;
1276 u32 residency = 0;
1277
1278 cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279 cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280
1281 render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282 media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283
1284 if (rps_ei->cz_clock == 0) {
1285 rps_ei->cz_clock = cz_ts;
1286 rps_ei->render_c0 = render_count;
1287 rps_ei->media_c0 = media_count;
1288
1289 return dev_priv->rps.cur_freq;
1290 }
1291
1292 elapsed_time = cz_ts - rps_ei->cz_clock;
1293 rps_ei->cz_clock = cz_ts;
1294
1295 elapsed_render = render_count - rps_ei->render_c0;
1296 rps_ei->render_c0 = render_count;
1297
1298 elapsed_media = media_count - rps_ei->media_c0;
1299 rps_ei->media_c0 = media_count;
1300
1301 /* Convert all the counters into common unit of milli sec */
1302 elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303 elapsed_render /= cz_freq_khz;
1304 elapsed_media /= cz_freq_khz;
1305
1306 /*
1307 * Calculate overall C0 residency percentage
1308 * only if elapsed time is non zero
1309 */
1310 if (elapsed_time) {
1311 residency =
1312 ((max(elapsed_render, elapsed_media) * 100)
1313 / elapsed_time);
1314 }
1315
1316 return residency;
1317 }
1318
1319 /**
1320 * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321 * busy-ness calculated from C0 counters of render & media power wells
1322 * @dev_priv: DRM device private
1323 *
1324 */
1325 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327 u32 residency_C0_up = 0, residency_C0_down = 0;
1328 int new_delay, adj;
1329
1330 dev_priv->rps.ei_interrupt_count++;
1331
1332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333
1334
1335 if (dev_priv->rps.up_ei.cz_clock == 0) {
1336 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338 return dev_priv->rps.cur_freq;
1339 }
1340
1341
1342 /*
1343 * To down throttle, C0 residency should be less than down threshold
1344 * for continous EI intervals. So calculate down EI counters
1345 * once in VLV_INT_COUNT_FOR_DOWN_EI
1346 */
1347 if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348
1349 dev_priv->rps.ei_interrupt_count = 0;
1350
1351 residency_C0_down = vlv_c0_residency(dev_priv,
1352 &dev_priv->rps.down_ei);
1353 } else {
1354 residency_C0_up = vlv_c0_residency(dev_priv,
1355 &dev_priv->rps.up_ei);
1356 }
1357
1358 new_delay = dev_priv->rps.cur_freq;
1359
1360 adj = dev_priv->rps.last_adj;
1361 /* C0 residency is greater than UP threshold. Increase Frequency */
1362 if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363 if (adj > 0)
1364 adj *= 2;
1365 else
1366 adj = 1;
1367
1368 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369 new_delay = dev_priv->rps.cur_freq + adj;
1370
1371 /*
1372 * For better performance, jump directly
1373 * to RPe if we're below it.
1374 */
1375 if (new_delay < dev_priv->rps.efficient_freq)
1376 new_delay = dev_priv->rps.efficient_freq;
1377
1378 } else if (!dev_priv->rps.ei_interrupt_count &&
1379 (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380 if (adj < 0)
1381 adj *= 2;
1382 else
1383 adj = -1;
1384 /*
1385 * This means, C0 residency is less than down threshold over
1386 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387 */
1388 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389 new_delay = dev_priv->rps.cur_freq + adj;
1390 }
1391
1392 return new_delay;
1393 }
1394
1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397 struct drm_i915_private *dev_priv =
1398 container_of(work, struct drm_i915_private, rps.work);
1399 u32 pm_iir;
1400 int new_delay, adj;
1401
1402 spin_lock_irq(&dev_priv->irq_lock);
1403 pm_iir = dev_priv->rps.pm_iir;
1404 dev_priv->rps.pm_iir = 0;
1405 if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407 else {
1408 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1409 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410 }
1411 spin_unlock_irq(&dev_priv->irq_lock);
1412
1413 /* Make sure we didn't queue anything we're not going to process. */
1414 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415
1416 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417 return;
1418
1419 mutex_lock(&dev_priv->rps.hw_lock);
1420
1421 adj = dev_priv->rps.last_adj;
1422 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423 if (adj > 0)
1424 adj *= 2;
1425 else {
1426 /* CHV needs even encode values */
1427 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428 }
1429 new_delay = dev_priv->rps.cur_freq + adj;
1430
1431 /*
1432 * For better performance, jump directly
1433 * to RPe if we're below it.
1434 */
1435 if (new_delay < dev_priv->rps.efficient_freq)
1436 new_delay = dev_priv->rps.efficient_freq;
1437 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439 new_delay = dev_priv->rps.efficient_freq;
1440 else
1441 new_delay = dev_priv->rps.min_freq_softlimit;
1442 adj = 0;
1443 } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446 if (adj < 0)
1447 adj *= 2;
1448 else {
1449 /* CHV needs even encode values */
1450 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451 }
1452 new_delay = dev_priv->rps.cur_freq + adj;
1453 } else { /* unknown event */
1454 new_delay = dev_priv->rps.cur_freq;
1455 }
1456
1457 /* sysfs frequency interfaces may have snuck in while servicing the
1458 * interrupt
1459 */
1460 new_delay = clamp_t(int, new_delay,
1461 dev_priv->rps.min_freq_softlimit,
1462 dev_priv->rps.max_freq_softlimit);
1463
1464 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465
1466 if (IS_VALLEYVIEW(dev_priv->dev))
1467 valleyview_set_rps(dev_priv->dev, new_delay);
1468 else
1469 gen6_set_rps(dev_priv->dev, new_delay);
1470
1471 mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473
1474
1475 /**
1476 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477 * occurred.
1478 * @work: workqueue struct
1479 *
1480 * Doesn't actually do anything except notify userspace. As a consequence of
1481 * this event, userspace should try to remap the bad rows since statistically
1482 * it is likely the same row is more likely to go bad again.
1483 */
1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486 struct drm_i915_private *dev_priv =
1487 container_of(work, struct drm_i915_private, l3_parity.error_work);
1488 u32 error_status, row, bank, subbank;
1489 char *parity_event[6];
1490 uint32_t misccpctl;
1491 unsigned long flags;
1492 uint8_t slice = 0;
1493
1494 /* We must turn off DOP level clock gating to access the L3 registers.
1495 * In order to prevent a get/put style interface, acquire struct mutex
1496 * any time we access those registers.
1497 */
1498 mutex_lock(&dev_priv->dev->struct_mutex);
1499
1500 /* If we've screwed up tracking, just let the interrupt fire again */
1501 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502 goto out;
1503
1504 misccpctl = I915_READ(GEN7_MISCCPCTL);
1505 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506 POSTING_READ(GEN7_MISCCPCTL);
1507
1508 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509 u32 reg;
1510
1511 slice--;
1512 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513 break;
1514
1515 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516
1517 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518
1519 error_status = I915_READ(reg);
1520 row = GEN7_PARITY_ERROR_ROW(error_status);
1521 bank = GEN7_PARITY_ERROR_BANK(error_status);
1522 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523
1524 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525 POSTING_READ(reg);
1526
1527 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532 parity_event[5] = NULL;
1533
1534 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535 KOBJ_CHANGE, parity_event);
1536
1537 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538 slice, row, bank, subbank);
1539
1540 kfree(parity_event[4]);
1541 kfree(parity_event[3]);
1542 kfree(parity_event[2]);
1543 kfree(parity_event[1]);
1544 }
1545
1546 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547
1548 out:
1549 WARN_ON(dev_priv->l3_parity.which_slice);
1550 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553
1554 mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556
1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560
1561 if (!HAS_L3_DPF(dev))
1562 return;
1563
1564 spin_lock(&dev_priv->irq_lock);
1565 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566 spin_unlock(&dev_priv->irq_lock);
1567
1568 iir &= GT_PARITY_ERROR(dev);
1569 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570 dev_priv->l3_parity.which_slice |= 1 << 1;
1571
1572 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573 dev_priv->l3_parity.which_slice |= 1 << 0;
1574
1575 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577
1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579 struct drm_i915_private *dev_priv,
1580 u32 gt_iir)
1581 {
1582 if (gt_iir &
1583 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584 notify_ring(dev, &dev_priv->ring[RCS]);
1585 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586 notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588
1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590 struct drm_i915_private *dev_priv,
1591 u32 gt_iir)
1592 {
1593
1594 if (gt_iir &
1595 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596 notify_ring(dev, &dev_priv->ring[RCS]);
1597 if (gt_iir & GT_BSD_USER_INTERRUPT)
1598 notify_ring(dev, &dev_priv->ring[VCS]);
1599 if (gt_iir & GT_BLT_USER_INTERRUPT)
1600 notify_ring(dev, &dev_priv->ring[BCS]);
1601
1602 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603 GT_BSD_CS_ERROR_INTERRUPT |
1604 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606 gt_iir);
1607 }
1608
1609 if (gt_iir & GT_PARITY_ERROR(dev))
1610 ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612
1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616 return;
1617
1618 spin_lock(&dev_priv->irq_lock);
1619 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620 gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621 spin_unlock(&dev_priv->irq_lock);
1622
1623 queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625
1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627 struct drm_i915_private *dev_priv,
1628 u32 master_ctl)
1629 {
1630 struct intel_engine_cs *ring;
1631 u32 rcs, bcs, vcs;
1632 uint32_t tmp = 0;
1633 irqreturn_t ret = IRQ_NONE;
1634
1635 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1636 tmp = I915_READ(GEN8_GT_IIR(0));
1637 if (tmp) {
1638 I915_WRITE(GEN8_GT_IIR(0), tmp);
1639 ret = IRQ_HANDLED;
1640
1641 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1642 ring = &dev_priv->ring[RCS];
1643 if (rcs & GT_RENDER_USER_INTERRUPT)
1644 notify_ring(dev, ring);
1645 if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1646 intel_execlists_handle_ctx_events(ring);
1647
1648 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1649 ring = &dev_priv->ring[BCS];
1650 if (bcs & GT_RENDER_USER_INTERRUPT)
1651 notify_ring(dev, ring);
1652 if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1653 intel_execlists_handle_ctx_events(ring);
1654 } else
1655 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1656 }
1657
1658 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1659 tmp = I915_READ(GEN8_GT_IIR(1));
1660 if (tmp) {
1661 I915_WRITE(GEN8_GT_IIR(1), tmp);
1662 ret = IRQ_HANDLED;
1663
1664 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1665 ring = &dev_priv->ring[VCS];
1666 if (vcs & GT_RENDER_USER_INTERRUPT)
1667 notify_ring(dev, ring);
1668 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1669 intel_execlists_handle_ctx_events(ring);
1670
1671 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1672 ring = &dev_priv->ring[VCS2];
1673 if (vcs & GT_RENDER_USER_INTERRUPT)
1674 notify_ring(dev, ring);
1675 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1676 intel_execlists_handle_ctx_events(ring);
1677 } else
1678 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1679 }
1680
1681 if (master_ctl & GEN8_GT_PM_IRQ) {
1682 tmp = I915_READ(GEN8_GT_IIR(2));
1683 if (tmp & dev_priv->pm_rps_events) {
1684 I915_WRITE(GEN8_GT_IIR(2),
1685 tmp & dev_priv->pm_rps_events);
1686 ret = IRQ_HANDLED;
1687 gen8_rps_irq_handler(dev_priv, tmp);
1688 } else
1689 DRM_ERROR("The master control interrupt lied (PM)!\n");
1690 }
1691
1692 if (master_ctl & GEN8_GT_VECS_IRQ) {
1693 tmp = I915_READ(GEN8_GT_IIR(3));
1694 if (tmp) {
1695 I915_WRITE(GEN8_GT_IIR(3), tmp);
1696 ret = IRQ_HANDLED;
1697
1698 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1699 ring = &dev_priv->ring[VECS];
1700 if (vcs & GT_RENDER_USER_INTERRUPT)
1701 notify_ring(dev, ring);
1702 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1703 intel_execlists_handle_ctx_events(ring);
1704 } else
1705 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1706 }
1707
1708 return ret;
1709 }
1710
1711 #define HPD_STORM_DETECT_PERIOD 1000
1712 #define HPD_STORM_THRESHOLD 5
1713
1714 static int ilk_port_to_hotplug_shift(enum port port)
1715 {
1716 switch (port) {
1717 case PORT_A:
1718 case PORT_E:
1719 default:
1720 return -1;
1721 case PORT_B:
1722 return 0;
1723 case PORT_C:
1724 return 8;
1725 case PORT_D:
1726 return 16;
1727 }
1728 }
1729
1730 static int g4x_port_to_hotplug_shift(enum port port)
1731 {
1732 switch (port) {
1733 case PORT_A:
1734 case PORT_E:
1735 default:
1736 return -1;
1737 case PORT_B:
1738 return 17;
1739 case PORT_C:
1740 return 19;
1741 case PORT_D:
1742 return 21;
1743 }
1744 }
1745
1746 static inline enum port get_port_from_pin(enum hpd_pin pin)
1747 {
1748 switch (pin) {
1749 case HPD_PORT_B:
1750 return PORT_B;
1751 case HPD_PORT_C:
1752 return PORT_C;
1753 case HPD_PORT_D:
1754 return PORT_D;
1755 default:
1756 return PORT_A; /* no hpd */
1757 }
1758 }
1759
1760 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1761 u32 hotplug_trigger,
1762 u32 dig_hotplug_reg,
1763 const u32 *hpd)
1764 {
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 int i;
1767 enum port port;
1768 bool storm_detected = false;
1769 bool queue_dig = false, queue_hp = false;
1770 u32 dig_shift;
1771 u32 dig_port_mask = 0;
1772
1773 if (!hotplug_trigger)
1774 return;
1775
1776 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1777 hotplug_trigger, dig_hotplug_reg);
1778
1779 spin_lock(&dev_priv->irq_lock);
1780 for (i = 1; i < HPD_NUM_PINS; i++) {
1781 if (!(hpd[i] & hotplug_trigger))
1782 continue;
1783
1784 port = get_port_from_pin(i);
1785 if (port && dev_priv->hpd_irq_port[port]) {
1786 bool long_hpd;
1787
1788 if (IS_G4X(dev)) {
1789 dig_shift = g4x_port_to_hotplug_shift(port);
1790 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1791 } else {
1792 dig_shift = ilk_port_to_hotplug_shift(port);
1793 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1794 }
1795
1796 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1797 port_name(port),
1798 long_hpd ? "long" : "short");
1799 /* for long HPD pulses we want to have the digital queue happen,
1800 but we still want HPD storm detection to function. */
1801 if (long_hpd) {
1802 dev_priv->long_hpd_port_mask |= (1 << port);
1803 dig_port_mask |= hpd[i];
1804 } else {
1805 /* for short HPD just trigger the digital queue */
1806 dev_priv->short_hpd_port_mask |= (1 << port);
1807 hotplug_trigger &= ~hpd[i];
1808 }
1809 queue_dig = true;
1810 }
1811 }
1812
1813 for (i = 1; i < HPD_NUM_PINS; i++) {
1814 if (hpd[i] & hotplug_trigger &&
1815 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1816 /*
1817 * On GMCH platforms the interrupt mask bits only
1818 * prevent irq generation, not the setting of the
1819 * hotplug bits itself. So only WARN about unexpected
1820 * interrupts on saner platforms.
1821 */
1822 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1823 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1824 hotplug_trigger, i, hpd[i]);
1825
1826 continue;
1827 }
1828
1829 if (!(hpd[i] & hotplug_trigger) ||
1830 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1831 continue;
1832
1833 if (!(dig_port_mask & hpd[i])) {
1834 dev_priv->hpd_event_bits |= (1 << i);
1835 queue_hp = true;
1836 }
1837
1838 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1839 dev_priv->hpd_stats[i].hpd_last_jiffies
1840 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1841 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1842 dev_priv->hpd_stats[i].hpd_cnt = 0;
1843 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1844 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1845 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1846 dev_priv->hpd_event_bits &= ~(1 << i);
1847 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1848 storm_detected = true;
1849 } else {
1850 dev_priv->hpd_stats[i].hpd_cnt++;
1851 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1852 dev_priv->hpd_stats[i].hpd_cnt);
1853 }
1854 }
1855
1856 if (storm_detected)
1857 dev_priv->display.hpd_irq_setup(dev);
1858 spin_unlock(&dev_priv->irq_lock);
1859
1860 /*
1861 * Our hotplug handler can grab modeset locks (by calling down into the
1862 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1863 * queue for otherwise the flush_work in the pageflip code will
1864 * deadlock.
1865 */
1866 if (queue_dig)
1867 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1868 if (queue_hp)
1869 schedule_work(&dev_priv->hotplug_work);
1870 }
1871
1872 static void gmbus_irq_handler(struct drm_device *dev)
1873 {
1874 struct drm_i915_private *dev_priv = dev->dev_private;
1875
1876 wake_up_all(&dev_priv->gmbus_wait_queue);
1877 }
1878
1879 static void dp_aux_irq_handler(struct drm_device *dev)
1880 {
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882
1883 wake_up_all(&dev_priv->gmbus_wait_queue);
1884 }
1885
1886 #if defined(CONFIG_DEBUG_FS)
1887 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1888 uint32_t crc0, uint32_t crc1,
1889 uint32_t crc2, uint32_t crc3,
1890 uint32_t crc4)
1891 {
1892 struct drm_i915_private *dev_priv = dev->dev_private;
1893 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1894 struct intel_pipe_crc_entry *entry;
1895 int head, tail;
1896
1897 spin_lock(&pipe_crc->lock);
1898
1899 if (!pipe_crc->entries) {
1900 spin_unlock(&pipe_crc->lock);
1901 DRM_ERROR("spurious interrupt\n");
1902 return;
1903 }
1904
1905 head = pipe_crc->head;
1906 tail = pipe_crc->tail;
1907
1908 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1909 spin_unlock(&pipe_crc->lock);
1910 DRM_ERROR("CRC buffer overflowing\n");
1911 return;
1912 }
1913
1914 entry = &pipe_crc->entries[head];
1915
1916 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1917 entry->crc[0] = crc0;
1918 entry->crc[1] = crc1;
1919 entry->crc[2] = crc2;
1920 entry->crc[3] = crc3;
1921 entry->crc[4] = crc4;
1922
1923 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1924 pipe_crc->head = head;
1925
1926 spin_unlock(&pipe_crc->lock);
1927
1928 wake_up_interruptible(&pipe_crc->wq);
1929 }
1930 #else
1931 static inline void
1932 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1933 uint32_t crc0, uint32_t crc1,
1934 uint32_t crc2, uint32_t crc3,
1935 uint32_t crc4) {}
1936 #endif
1937
1938
1939 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1940 {
1941 struct drm_i915_private *dev_priv = dev->dev_private;
1942
1943 display_pipe_crc_irq_handler(dev, pipe,
1944 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1945 0, 0, 0, 0);
1946 }
1947
1948 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1949 {
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951
1952 display_pipe_crc_irq_handler(dev, pipe,
1953 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1954 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1955 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1956 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1957 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1958 }
1959
1960 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1961 {
1962 struct drm_i915_private *dev_priv = dev->dev_private;
1963 uint32_t res1, res2;
1964
1965 if (INTEL_INFO(dev)->gen >= 3)
1966 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1967 else
1968 res1 = 0;
1969
1970 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1971 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1972 else
1973 res2 = 0;
1974
1975 display_pipe_crc_irq_handler(dev, pipe,
1976 I915_READ(PIPE_CRC_RES_RED(pipe)),
1977 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1978 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1979 res1, res2);
1980 }
1981
1982 void gen8_flip_interrupt(struct drm_device *dev)
1983 {
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986 if (!dev_priv->rps.is_bdw_sw_turbo)
1987 return;
1988
1989 if(atomic_read(&dev_priv->rps.sw_turbo.flip_received)) {
1990 mod_timer(&dev_priv->rps.sw_turbo.flip_timer,
1991 usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies);
1992 }
1993 else {
1994 dev_priv->rps.sw_turbo.flip_timer.expires =
1995 usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
1996 add_timer(&dev_priv->rps.sw_turbo.flip_timer);
1997 atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
1998 }
1999
2000 bdw_software_turbo(dev);
2001 }
2002
2003 /* The RPS events need forcewake, so we add them to a work queue and mask their
2004 * IMR bits until the work is done. Other interrupts can be processed without
2005 * the work queue. */
2006 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
2007 {
2008 if (pm_iir & dev_priv->pm_rps_events) {
2009 spin_lock(&dev_priv->irq_lock);
2010 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
2011 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
2012 spin_unlock(&dev_priv->irq_lock);
2013
2014 queue_work(dev_priv->wq, &dev_priv->rps.work);
2015 }
2016
2017 if (HAS_VEBOX(dev_priv->dev)) {
2018 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
2019 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
2020
2021 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
2022 i915_handle_error(dev_priv->dev, false,
2023 "VEBOX CS error interrupt 0x%08x",
2024 pm_iir);
2025 }
2026 }
2027 }
2028
2029 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
2030 {
2031 if (!drm_handle_vblank(dev, pipe))
2032 return false;
2033
2034 return true;
2035 }
2036
2037 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2038 {
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040 u32 pipe_stats[I915_MAX_PIPES] = { };
2041 int pipe;
2042
2043 spin_lock(&dev_priv->irq_lock);
2044 for_each_pipe(dev_priv, pipe) {
2045 int reg;
2046 u32 mask, iir_bit = 0;
2047
2048 /*
2049 * PIPESTAT bits get signalled even when the interrupt is
2050 * disabled with the mask bits, and some of the status bits do
2051 * not generate interrupts at all (like the underrun bit). Hence
2052 * we need to be careful that we only handle what we want to
2053 * handle.
2054 */
2055 mask = 0;
2056 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2057 mask |= PIPE_FIFO_UNDERRUN_STATUS;
2058
2059 switch (pipe) {
2060 case PIPE_A:
2061 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2062 break;
2063 case PIPE_B:
2064 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2065 break;
2066 case PIPE_C:
2067 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2068 break;
2069 }
2070 if (iir & iir_bit)
2071 mask |= dev_priv->pipestat_irq_mask[pipe];
2072
2073 if (!mask)
2074 continue;
2075
2076 reg = PIPESTAT(pipe);
2077 mask |= PIPESTAT_INT_ENABLE_MASK;
2078 pipe_stats[pipe] = I915_READ(reg) & mask;
2079
2080 /*
2081 * Clear the PIPE*STAT regs before the IIR
2082 */
2083 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2084 PIPESTAT_INT_STATUS_MASK))
2085 I915_WRITE(reg, pipe_stats[pipe]);
2086 }
2087 spin_unlock(&dev_priv->irq_lock);
2088
2089 for_each_pipe(dev_priv, pipe) {
2090 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2091 intel_pipe_handle_vblank(dev, pipe);
2092
2093 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2094 intel_prepare_page_flip(dev, pipe);
2095 intel_finish_page_flip(dev, pipe);
2096 }
2097
2098 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2099 i9xx_pipe_crc_irq_handler(dev, pipe);
2100
2101 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2102 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2103 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2104 }
2105
2106 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2107 gmbus_irq_handler(dev);
2108 }
2109
2110 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2111 {
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2114
2115 if (hotplug_status) {
2116 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2117 /*
2118 * Make sure hotplug status is cleared before we clear IIR, or else we
2119 * may miss hotplug events.
2120 */
2121 POSTING_READ(PORT_HOTPLUG_STAT);
2122
2123 if (IS_G4X(dev)) {
2124 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2125
2126 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2127 } else {
2128 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2129
2130 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2131 }
2132
2133 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2134 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2135 dp_aux_irq_handler(dev);
2136 }
2137 }
2138
2139 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2140 {
2141 struct drm_device *dev = arg;
2142 struct drm_i915_private *dev_priv = dev->dev_private;
2143 u32 iir, gt_iir, pm_iir;
2144 irqreturn_t ret = IRQ_NONE;
2145
2146 while (true) {
2147 /* Find, clear, then process each source of interrupt */
2148
2149 gt_iir = I915_READ(GTIIR);
2150 if (gt_iir)
2151 I915_WRITE(GTIIR, gt_iir);
2152
2153 pm_iir = I915_READ(GEN6_PMIIR);
2154 if (pm_iir)
2155 I915_WRITE(GEN6_PMIIR, pm_iir);
2156
2157 iir = I915_READ(VLV_IIR);
2158 if (iir) {
2159 /* Consume port before clearing IIR or we'll miss events */
2160 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2161 i9xx_hpd_irq_handler(dev);
2162 I915_WRITE(VLV_IIR, iir);
2163 }
2164
2165 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2166 goto out;
2167
2168 ret = IRQ_HANDLED;
2169
2170 if (gt_iir)
2171 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2172 if (pm_iir)
2173 gen6_rps_irq_handler(dev_priv, pm_iir);
2174 /* Call regardless, as some status bits might not be
2175 * signalled in iir */
2176 valleyview_pipestat_irq_handler(dev, iir);
2177 }
2178
2179 out:
2180 return ret;
2181 }
2182
2183 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2184 {
2185 struct drm_device *dev = arg;
2186 struct drm_i915_private *dev_priv = dev->dev_private;
2187 u32 master_ctl, iir;
2188 irqreturn_t ret = IRQ_NONE;
2189
2190 for (;;) {
2191 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2192 iir = I915_READ(VLV_IIR);
2193
2194 if (master_ctl == 0 && iir == 0)
2195 break;
2196
2197 ret = IRQ_HANDLED;
2198
2199 I915_WRITE(GEN8_MASTER_IRQ, 0);
2200
2201 /* Find, clear, then process each source of interrupt */
2202
2203 if (iir) {
2204 /* Consume port before clearing IIR or we'll miss events */
2205 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2206 i9xx_hpd_irq_handler(dev);
2207 I915_WRITE(VLV_IIR, iir);
2208 }
2209
2210 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2211
2212 /* Call regardless, as some status bits might not be
2213 * signalled in iir */
2214 valleyview_pipestat_irq_handler(dev, iir);
2215
2216 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2217 POSTING_READ(GEN8_MASTER_IRQ);
2218 }
2219
2220 return ret;
2221 }
2222
2223 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2224 {
2225 struct drm_i915_private *dev_priv = dev->dev_private;
2226 int pipe;
2227 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2228 u32 dig_hotplug_reg;
2229
2230 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2231 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2232
2233 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2234
2235 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2236 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2237 SDE_AUDIO_POWER_SHIFT);
2238 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2239 port_name(port));
2240 }
2241
2242 if (pch_iir & SDE_AUX_MASK)
2243 dp_aux_irq_handler(dev);
2244
2245 if (pch_iir & SDE_GMBUS)
2246 gmbus_irq_handler(dev);
2247
2248 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2249 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2250
2251 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2252 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2253
2254 if (pch_iir & SDE_POISON)
2255 DRM_ERROR("PCH poison interrupt\n");
2256
2257 if (pch_iir & SDE_FDI_MASK)
2258 for_each_pipe(dev_priv, pipe)
2259 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2260 pipe_name(pipe),
2261 I915_READ(FDI_RX_IIR(pipe)));
2262
2263 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2264 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2265
2266 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2267 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2268
2269 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2270 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2271 false))
2272 DRM_ERROR("PCH transcoder A FIFO underrun\n");
2273
2274 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2275 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2276 false))
2277 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2278 }
2279
2280 static void ivb_err_int_handler(struct drm_device *dev)
2281 {
2282 struct drm_i915_private *dev_priv = dev->dev_private;
2283 u32 err_int = I915_READ(GEN7_ERR_INT);
2284 enum pipe pipe;
2285
2286 if (err_int & ERR_INT_POISON)
2287 DRM_ERROR("Poison interrupt\n");
2288
2289 for_each_pipe(dev_priv, pipe) {
2290 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2291 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2292 false))
2293 DRM_ERROR("Pipe %c FIFO underrun\n",
2294 pipe_name(pipe));
2295 }
2296
2297 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2298 if (IS_IVYBRIDGE(dev))
2299 ivb_pipe_crc_irq_handler(dev, pipe);
2300 else
2301 hsw_pipe_crc_irq_handler(dev, pipe);
2302 }
2303 }
2304
2305 I915_WRITE(GEN7_ERR_INT, err_int);
2306 }
2307
2308 static void cpt_serr_int_handler(struct drm_device *dev)
2309 {
2310 struct drm_i915_private *dev_priv = dev->dev_private;
2311 u32 serr_int = I915_READ(SERR_INT);
2312
2313 if (serr_int & SERR_INT_POISON)
2314 DRM_ERROR("PCH poison interrupt\n");
2315
2316 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2317 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2318 false))
2319 DRM_ERROR("PCH transcoder A FIFO underrun\n");
2320
2321 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2322 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2323 false))
2324 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2325
2326 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2327 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2328 false))
2329 DRM_ERROR("PCH transcoder C FIFO underrun\n");
2330
2331 I915_WRITE(SERR_INT, serr_int);
2332 }
2333
2334 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2335 {
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 int pipe;
2338 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2339 u32 dig_hotplug_reg;
2340
2341 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2342 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2343
2344 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2345
2346 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2347 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2348 SDE_AUDIO_POWER_SHIFT_CPT);
2349 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2350 port_name(port));
2351 }
2352
2353 if (pch_iir & SDE_AUX_MASK_CPT)
2354 dp_aux_irq_handler(dev);
2355
2356 if (pch_iir & SDE_GMBUS_CPT)
2357 gmbus_irq_handler(dev);
2358
2359 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2360 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2361
2362 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2363 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2364
2365 if (pch_iir & SDE_FDI_MASK_CPT)
2366 for_each_pipe(dev_priv, pipe)
2367 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2368 pipe_name(pipe),
2369 I915_READ(FDI_RX_IIR(pipe)));
2370
2371 if (pch_iir & SDE_ERROR_CPT)
2372 cpt_serr_int_handler(dev);
2373 }
2374
2375 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2376 {
2377 struct drm_i915_private *dev_priv = dev->dev_private;
2378 enum pipe pipe;
2379
2380 if (de_iir & DE_AUX_CHANNEL_A)
2381 dp_aux_irq_handler(dev);
2382
2383 if (de_iir & DE_GSE)
2384 intel_opregion_asle_intr(dev);
2385
2386 if (de_iir & DE_POISON)
2387 DRM_ERROR("Poison interrupt\n");
2388
2389 for_each_pipe(dev_priv, pipe) {
2390 if (de_iir & DE_PIPE_VBLANK(pipe))
2391 intel_pipe_handle_vblank(dev, pipe);
2392
2393 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2394 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2395 DRM_ERROR("Pipe %c FIFO underrun\n",
2396 pipe_name(pipe));
2397
2398 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2399 i9xx_pipe_crc_irq_handler(dev, pipe);
2400
2401 /* plane/pipes map 1:1 on ilk+ */
2402 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2403 intel_prepare_page_flip(dev, pipe);
2404 intel_finish_page_flip_plane(dev, pipe);
2405 }
2406 }
2407
2408 /* check event from PCH */
2409 if (de_iir & DE_PCH_EVENT) {
2410 u32 pch_iir = I915_READ(SDEIIR);
2411
2412 if (HAS_PCH_CPT(dev))
2413 cpt_irq_handler(dev, pch_iir);
2414 else
2415 ibx_irq_handler(dev, pch_iir);
2416
2417 /* should clear PCH hotplug event before clear CPU irq */
2418 I915_WRITE(SDEIIR, pch_iir);
2419 }
2420
2421 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2422 ironlake_rps_change_irq_handler(dev);
2423 }
2424
2425 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2426 {
2427 struct drm_i915_private *dev_priv = dev->dev_private;
2428 enum pipe pipe;
2429
2430 if (de_iir & DE_ERR_INT_IVB)
2431 ivb_err_int_handler(dev);
2432
2433 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2434 dp_aux_irq_handler(dev);
2435
2436 if (de_iir & DE_GSE_IVB)
2437 intel_opregion_asle_intr(dev);
2438
2439 for_each_pipe(dev_priv, pipe) {
2440 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2441 intel_pipe_handle_vblank(dev, pipe);
2442
2443 /* plane/pipes map 1:1 on ilk+ */
2444 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2445 intel_prepare_page_flip(dev, pipe);
2446 intel_finish_page_flip_plane(dev, pipe);
2447 }
2448 }
2449
2450 /* check event from PCH */
2451 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2452 u32 pch_iir = I915_READ(SDEIIR);
2453
2454 cpt_irq_handler(dev, pch_iir);
2455
2456 /* clear PCH hotplug event before clear CPU irq */
2457 I915_WRITE(SDEIIR, pch_iir);
2458 }
2459 }
2460
2461 /*
2462 * To handle irqs with the minimum potential races with fresh interrupts, we:
2463 * 1 - Disable Master Interrupt Control.
2464 * 2 - Find the source(s) of the interrupt.
2465 * 3 - Clear the Interrupt Identity bits (IIR).
2466 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2467 * 5 - Re-enable Master Interrupt Control.
2468 */
2469 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2470 {
2471 struct drm_device *dev = arg;
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2474 irqreturn_t ret = IRQ_NONE;
2475
2476 /* We get interrupts on unclaimed registers, so check for this before we
2477 * do any I915_{READ,WRITE}. */
2478 intel_uncore_check_errors(dev);
2479
2480 /* disable master interrupt before clearing iir */
2481 de_ier = I915_READ(DEIER);
2482 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2483 POSTING_READ(DEIER);
2484
2485 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2486 * interrupts will will be stored on its back queue, and then we'll be
2487 * able to process them after we restore SDEIER (as soon as we restore
2488 * it, we'll get an interrupt if SDEIIR still has something to process
2489 * due to its back queue). */
2490 if (!HAS_PCH_NOP(dev)) {
2491 sde_ier = I915_READ(SDEIER);
2492 I915_WRITE(SDEIER, 0);
2493 POSTING_READ(SDEIER);
2494 }
2495
2496 /* Find, clear, then process each source of interrupt */
2497
2498 gt_iir = I915_READ(GTIIR);
2499 if (gt_iir) {
2500 I915_WRITE(GTIIR, gt_iir);
2501 ret = IRQ_HANDLED;
2502 if (INTEL_INFO(dev)->gen >= 6)
2503 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2504 else
2505 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2506 }
2507
2508 de_iir = I915_READ(DEIIR);
2509 if (de_iir) {
2510 I915_WRITE(DEIIR, de_iir);
2511 ret = IRQ_HANDLED;
2512 if (INTEL_INFO(dev)->gen >= 7)
2513 ivb_display_irq_handler(dev, de_iir);
2514 else
2515 ilk_display_irq_handler(dev, de_iir);
2516 }
2517
2518 if (INTEL_INFO(dev)->gen >= 6) {
2519 u32 pm_iir = I915_READ(GEN6_PMIIR);
2520 if (pm_iir) {
2521 I915_WRITE(GEN6_PMIIR, pm_iir);
2522 ret = IRQ_HANDLED;
2523 gen6_rps_irq_handler(dev_priv, pm_iir);
2524 }
2525 }
2526
2527 I915_WRITE(DEIER, de_ier);
2528 POSTING_READ(DEIER);
2529 if (!HAS_PCH_NOP(dev)) {
2530 I915_WRITE(SDEIER, sde_ier);
2531 POSTING_READ(SDEIER);
2532 }
2533
2534 return ret;
2535 }
2536
2537 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2538 {
2539 struct drm_device *dev = arg;
2540 struct drm_i915_private *dev_priv = dev->dev_private;
2541 u32 master_ctl;
2542 irqreturn_t ret = IRQ_NONE;
2543 uint32_t tmp = 0;
2544 enum pipe pipe;
2545
2546 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2547 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2548 if (!master_ctl)
2549 return IRQ_NONE;
2550
2551 I915_WRITE(GEN8_MASTER_IRQ, 0);
2552 POSTING_READ(GEN8_MASTER_IRQ);
2553
2554 /* Find, clear, then process each source of interrupt */
2555
2556 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2557
2558 if (master_ctl & GEN8_DE_MISC_IRQ) {
2559 tmp = I915_READ(GEN8_DE_MISC_IIR);
2560 if (tmp) {
2561 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2562 ret = IRQ_HANDLED;
2563 if (tmp & GEN8_DE_MISC_GSE)
2564 intel_opregion_asle_intr(dev);
2565 else
2566 DRM_ERROR("Unexpected DE Misc interrupt\n");
2567 }
2568 else
2569 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2570 }
2571
2572 if (master_ctl & GEN8_DE_PORT_IRQ) {
2573 tmp = I915_READ(GEN8_DE_PORT_IIR);
2574 if (tmp) {
2575 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2576 ret = IRQ_HANDLED;
2577 if (tmp & GEN8_AUX_CHANNEL_A)
2578 dp_aux_irq_handler(dev);
2579 else
2580 DRM_ERROR("Unexpected DE Port interrupt\n");
2581 }
2582 else
2583 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2584 }
2585
2586 for_each_pipe(dev_priv, pipe) {
2587 uint32_t pipe_iir;
2588
2589 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2590 continue;
2591
2592 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2593 if (pipe_iir) {
2594 ret = IRQ_HANDLED;
2595 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2596 if (pipe_iir & GEN8_PIPE_VBLANK)
2597 intel_pipe_handle_vblank(dev, pipe);
2598
2599 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2600 intel_prepare_page_flip(dev, pipe);
2601 intel_finish_page_flip_plane(dev, pipe);
2602 }
2603
2604 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2605 hsw_pipe_crc_irq_handler(dev, pipe);
2606
2607 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2608 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2609 false))
2610 DRM_ERROR("Pipe %c FIFO underrun\n",
2611 pipe_name(pipe));
2612 }
2613
2614 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2615 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2616 pipe_name(pipe),
2617 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2618 }
2619 } else
2620 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2621 }
2622
2623 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2624 /*
2625 * FIXME(BDW): Assume for now that the new interrupt handling
2626 * scheme also closed the SDE interrupt handling race we've seen
2627 * on older pch-split platforms. But this needs testing.
2628 */
2629 u32 pch_iir = I915_READ(SDEIIR);
2630 if (pch_iir) {
2631 I915_WRITE(SDEIIR, pch_iir);
2632 ret = IRQ_HANDLED;
2633 cpt_irq_handler(dev, pch_iir);
2634 } else
2635 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2636
2637 }
2638
2639 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2640 POSTING_READ(GEN8_MASTER_IRQ);
2641
2642 return ret;
2643 }
2644
2645 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2646 bool reset_completed)
2647 {
2648 struct intel_engine_cs *ring;
2649 int i;
2650
2651 /*
2652 * Notify all waiters for GPU completion events that reset state has
2653 * been changed, and that they need to restart their wait after
2654 * checking for potential errors (and bail out to drop locks if there is
2655 * a gpu reset pending so that i915_error_work_func can acquire them).
2656 */
2657
2658 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2659 for_each_ring(ring, dev_priv, i)
2660 wake_up_all(&ring->irq_queue);
2661
2662 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2663 wake_up_all(&dev_priv->pending_flip_queue);
2664
2665 /*
2666 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2667 * reset state is cleared.
2668 */
2669 if (reset_completed)
2670 wake_up_all(&dev_priv->gpu_error.reset_queue);
2671 }
2672
2673 /**
2674 * i915_error_work_func - do process context error handling work
2675 * @work: work struct
2676 *
2677 * Fire an error uevent so userspace can see that a hang or error
2678 * was detected.
2679 */
2680 static void i915_error_work_func(struct work_struct *work)
2681 {
2682 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2683 work);
2684 struct drm_i915_private *dev_priv =
2685 container_of(error, struct drm_i915_private, gpu_error);
2686 struct drm_device *dev = dev_priv->dev;
2687 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2688 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2689 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2690 int ret;
2691
2692 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2693
2694 /*
2695 * Note that there's only one work item which does gpu resets, so we
2696 * need not worry about concurrent gpu resets potentially incrementing
2697 * error->reset_counter twice. We only need to take care of another
2698 * racing irq/hangcheck declaring the gpu dead for a second time. A
2699 * quick check for that is good enough: schedule_work ensures the
2700 * correct ordering between hang detection and this work item, and since
2701 * the reset in-progress bit is only ever set by code outside of this
2702 * work we don't need to worry about any other races.
2703 */
2704 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2705 DRM_DEBUG_DRIVER("resetting chip\n");
2706 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2707 reset_event);
2708
2709 /*
2710 * In most cases it's guaranteed that we get here with an RPM
2711 * reference held, for example because there is a pending GPU
2712 * request that won't finish until the reset is done. This
2713 * isn't the case at least when we get here by doing a
2714 * simulated reset via debugs, so get an RPM reference.
2715 */
2716 intel_runtime_pm_get(dev_priv);
2717 /*
2718 * All state reset _must_ be completed before we update the
2719 * reset counter, for otherwise waiters might miss the reset
2720 * pending state and not properly drop locks, resulting in
2721 * deadlocks with the reset work.
2722 */
2723 ret = i915_reset(dev);
2724
2725 intel_display_handle_reset(dev);
2726
2727 intel_runtime_pm_put(dev_priv);
2728
2729 if (ret == 0) {
2730 /*
2731 * After all the gem state is reset, increment the reset
2732 * counter and wake up everyone waiting for the reset to
2733 * complete.
2734 *
2735 * Since unlock operations are a one-sided barrier only,
2736 * we need to insert a barrier here to order any seqno
2737 * updates before
2738 * the counter increment.
2739 */
2740 smp_mb__before_atomic();
2741 atomic_inc(&dev_priv->gpu_error.reset_counter);
2742
2743 kobject_uevent_env(&dev->primary->kdev->kobj,
2744 KOBJ_CHANGE, reset_done_event);
2745 } else {
2746 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2747 }
2748
2749 /*
2750 * Note: The wake_up also serves as a memory barrier so that
2751 * waiters see the update value of the reset counter atomic_t.
2752 */
2753 i915_error_wake_up(dev_priv, true);
2754 }
2755 }
2756
2757 static void i915_report_and_clear_eir(struct drm_device *dev)
2758 {
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 uint32_t instdone[I915_NUM_INSTDONE_REG];
2761 u32 eir = I915_READ(EIR);
2762 int pipe, i;
2763
2764 if (!eir)
2765 return;
2766
2767 pr_err("render error detected, EIR: 0x%08x\n", eir);
2768
2769 i915_get_extra_instdone(dev, instdone);
2770
2771 if (IS_G4X(dev)) {
2772 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2773 u32 ipeir = I915_READ(IPEIR_I965);
2774
2775 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2776 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2777 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2778 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2779 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2780 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2781 I915_WRITE(IPEIR_I965, ipeir);
2782 POSTING_READ(IPEIR_I965);
2783 }
2784 if (eir & GM45_ERROR_PAGE_TABLE) {
2785 u32 pgtbl_err = I915_READ(PGTBL_ER);
2786 pr_err("page table error\n");
2787 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2788 I915_WRITE(PGTBL_ER, pgtbl_err);
2789 POSTING_READ(PGTBL_ER);
2790 }
2791 }
2792
2793 if (!IS_GEN2(dev)) {
2794 if (eir & I915_ERROR_PAGE_TABLE) {
2795 u32 pgtbl_err = I915_READ(PGTBL_ER);
2796 pr_err("page table error\n");
2797 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2798 I915_WRITE(PGTBL_ER, pgtbl_err);
2799 POSTING_READ(PGTBL_ER);
2800 }
2801 }
2802
2803 if (eir & I915_ERROR_MEMORY_REFRESH) {
2804 pr_err("memory refresh error:\n");
2805 for_each_pipe(dev_priv, pipe)
2806 pr_err("pipe %c stat: 0x%08x\n",
2807 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2808 /* pipestat has already been acked */
2809 }
2810 if (eir & I915_ERROR_INSTRUCTION) {
2811 pr_err("instruction error\n");
2812 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2813 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2814 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2815 if (INTEL_INFO(dev)->gen < 4) {
2816 u32 ipeir = I915_READ(IPEIR);
2817
2818 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2819 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2820 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2821 I915_WRITE(IPEIR, ipeir);
2822 POSTING_READ(IPEIR);
2823 } else {
2824 u32 ipeir = I915_READ(IPEIR_I965);
2825
2826 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2827 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2828 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2829 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2830 I915_WRITE(IPEIR_I965, ipeir);
2831 POSTING_READ(IPEIR_I965);
2832 }
2833 }
2834
2835 I915_WRITE(EIR, eir);
2836 POSTING_READ(EIR);
2837 eir = I915_READ(EIR);
2838 if (eir) {
2839 /*
2840 * some errors might have become stuck,
2841 * mask them.
2842 */
2843 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2844 I915_WRITE(EMR, I915_READ(EMR) | eir);
2845 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2846 }
2847 }
2848
2849 /**
2850 * i915_handle_error - handle an error interrupt
2851 * @dev: drm device
2852 *
2853 * Do some basic checking of regsiter state at error interrupt time and
2854 * dump it to the syslog. Also call i915_capture_error_state() to make
2855 * sure we get a record and make it available in debugfs. Fire a uevent
2856 * so userspace knows something bad happened (should trigger collection
2857 * of a ring dump etc.).
2858 */
2859 void i915_handle_error(struct drm_device *dev, bool wedged,
2860 const char *fmt, ...)
2861 {
2862 struct drm_i915_private *dev_priv = dev->dev_private;
2863 va_list args;
2864 char error_msg[80];
2865
2866 va_start(args, fmt);
2867 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2868 va_end(args);
2869
2870 i915_capture_error_state(dev, wedged, error_msg);
2871 i915_report_and_clear_eir(dev);
2872
2873 if (wedged) {
2874 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2875 &dev_priv->gpu_error.reset_counter);
2876
2877 /*
2878 * Wakeup waiting processes so that the reset work function
2879 * i915_error_work_func doesn't deadlock trying to grab various
2880 * locks. By bumping the reset counter first, the woken
2881 * processes will see a reset in progress and back off,
2882 * releasing their locks and then wait for the reset completion.
2883 * We must do this for _all_ gpu waiters that might hold locks
2884 * that the reset work needs to acquire.
2885 *
2886 * Note: The wake_up serves as the required memory barrier to
2887 * ensure that the waiters see the updated value of the reset
2888 * counter atomic_t.
2889 */
2890 i915_error_wake_up(dev_priv, false);
2891 }
2892
2893 /*
2894 * Our reset work can grab modeset locks (since it needs to reset the
2895 * state of outstanding pagelips). Hence it must not be run on our own
2896 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2897 * code will deadlock.
2898 */
2899 schedule_work(&dev_priv->gpu_error.work);
2900 }
2901
2902 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2903 {
2904 struct drm_i915_private *dev_priv = dev->dev_private;
2905 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2907 struct drm_i915_gem_object *obj;
2908 struct intel_unpin_work *work;
2909 unsigned long flags;
2910 bool stall_detected;
2911
2912 /* Ignore early vblank irqs */
2913 if (intel_crtc == NULL)
2914 return;
2915
2916 spin_lock_irqsave(&dev->event_lock, flags);
2917 work = intel_crtc->unpin_work;
2918
2919 if (work == NULL ||
2920 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2921 !work->enable_stall_check) {
2922 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2923 spin_unlock_irqrestore(&dev->event_lock, flags);
2924 return;
2925 }
2926
2927 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2928 obj = work->pending_flip_obj;
2929 if (INTEL_INFO(dev)->gen >= 4) {
2930 int dspsurf = DSPSURF(intel_crtc->plane);
2931 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2932 i915_gem_obj_ggtt_offset(obj);
2933 } else {
2934 int dspaddr = DSPADDR(intel_crtc->plane);
2935 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2936 crtc->y * crtc->primary->fb->pitches[0] +
2937 crtc->x * crtc->primary->fb->bits_per_pixel/8);
2938 }
2939
2940 spin_unlock_irqrestore(&dev->event_lock, flags);
2941
2942 if (stall_detected) {
2943 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2944 intel_prepare_page_flip(dev, intel_crtc->plane);
2945 }
2946 }
2947
2948 /* Called from drm generic code, passed 'crtc' which
2949 * we use as a pipe index
2950 */
2951 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2952 {
2953 struct drm_i915_private *dev_priv = dev->dev_private;
2954 unsigned long irqflags;
2955
2956 if (!i915_pipe_enabled(dev, pipe))
2957 return -EINVAL;
2958
2959 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2960 if (INTEL_INFO(dev)->gen >= 4)
2961 i915_enable_pipestat(dev_priv, pipe,
2962 PIPE_START_VBLANK_INTERRUPT_STATUS);
2963 else
2964 i915_enable_pipestat(dev_priv, pipe,
2965 PIPE_VBLANK_INTERRUPT_STATUS);
2966 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2967
2968 return 0;
2969 }
2970
2971 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2972 {
2973 struct drm_i915_private *dev_priv = dev->dev_private;
2974 unsigned long irqflags;
2975 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2976 DE_PIPE_VBLANK(pipe);
2977
2978 if (!i915_pipe_enabled(dev, pipe))
2979 return -EINVAL;
2980
2981 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2982 ironlake_enable_display_irq(dev_priv, bit);
2983 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2984
2985 return 0;
2986 }
2987
2988 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2989 {
2990 struct drm_i915_private *dev_priv = dev->dev_private;
2991 unsigned long irqflags;
2992
2993 if (!i915_pipe_enabled(dev, pipe))
2994 return -EINVAL;
2995
2996 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2997 i915_enable_pipestat(dev_priv, pipe,
2998 PIPE_START_VBLANK_INTERRUPT_STATUS);
2999 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3000
3001 return 0;
3002 }
3003
3004 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
3005 {
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 unsigned long irqflags;
3008
3009 if (!i915_pipe_enabled(dev, pipe))
3010 return -EINVAL;
3011
3012 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3013 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
3014 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3015 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3016 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3017 return 0;
3018 }
3019
3020 /* Called from drm generic code, passed 'crtc' which
3021 * we use as a pipe index
3022 */
3023 static void i915_disable_vblank(struct drm_device *dev, int pipe)
3024 {
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 unsigned long irqflags;
3027
3028 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029 i915_disable_pipestat(dev_priv, pipe,
3030 PIPE_VBLANK_INTERRUPT_STATUS |
3031 PIPE_START_VBLANK_INTERRUPT_STATUS);
3032 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3033 }
3034
3035 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
3036 {
3037 struct drm_i915_private *dev_priv = dev->dev_private;
3038 unsigned long irqflags;
3039 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
3040 DE_PIPE_VBLANK(pipe);
3041
3042 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3043 ironlake_disable_display_irq(dev_priv, bit);
3044 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3045 }
3046
3047 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
3048 {
3049 struct drm_i915_private *dev_priv = dev->dev_private;
3050 unsigned long irqflags;
3051
3052 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3053 i915_disable_pipestat(dev_priv, pipe,
3054 PIPE_START_VBLANK_INTERRUPT_STATUS);
3055 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3056 }
3057
3058 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3059 {
3060 struct drm_i915_private *dev_priv = dev->dev_private;
3061 unsigned long irqflags;
3062
3063 if (!i915_pipe_enabled(dev, pipe))
3064 return;
3065
3066 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3067 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3068 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3069 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3070 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3071 }
3072
3073 static u32
3074 ring_last_seqno(struct intel_engine_cs *ring)
3075 {
3076 return list_entry(ring->request_list.prev,
3077 struct drm_i915_gem_request, list)->seqno;
3078 }
3079
3080 static bool
3081 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3082 {
3083 return (list_empty(&ring->request_list) ||
3084 i915_seqno_passed(seqno, ring_last_seqno(ring)));
3085 }
3086
3087 static bool
3088 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3089 {
3090 if (INTEL_INFO(dev)->gen >= 8) {
3091 return (ipehr >> 23) == 0x1c;
3092 } else {
3093 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3094 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3095 MI_SEMAPHORE_REGISTER);
3096 }
3097 }
3098
3099 static struct intel_engine_cs *
3100 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3101 {
3102 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3103 struct intel_engine_cs *signaller;
3104 int i;
3105
3106 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3107 for_each_ring(signaller, dev_priv, i) {
3108 if (ring == signaller)
3109 continue;
3110
3111 if (offset == signaller->semaphore.signal_ggtt[ring->id])
3112 return signaller;
3113 }
3114 } else {
3115 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3116
3117 for_each_ring(signaller, dev_priv, i) {
3118 if(ring == signaller)
3119 continue;
3120
3121 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3122 return signaller;
3123 }
3124 }
3125
3126 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3127 ring->id, ipehr, offset);
3128
3129 return NULL;
3130 }
3131
3132 static struct intel_engine_cs *
3133 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3134 {
3135 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3136 u32 cmd, ipehr, head;
3137 u64 offset = 0;
3138 int i, backwards;
3139
3140 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3141 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3142 return NULL;
3143
3144 /*
3145 * HEAD is likely pointing to the dword after the actual command,
3146 * so scan backwards until we find the MBOX. But limit it to just 3
3147 * or 4 dwords depending on the semaphore wait command size.
3148 * Note that we don't care about ACTHD here since that might
3149 * point at at batch, and semaphores are always emitted into the
3150 * ringbuffer itself.
3151 */
3152 head = I915_READ_HEAD(ring) & HEAD_ADDR;
3153 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3154
3155 for (i = backwards; i; --i) {
3156 /*
3157 * Be paranoid and presume the hw has gone off into the wild -
3158 * our ring is smaller than what the hardware (and hence
3159 * HEAD_ADDR) allows. Also handles wrap-around.
3160 */
3161 head &= ring->buffer->size - 1;
3162
3163 /* This here seems to blow up */
3164 cmd = ioread32(ring->buffer->virtual_start + head);
3165 if (cmd == ipehr)
3166 break;
3167
3168 head -= 4;
3169 }
3170
3171 if (!i)
3172 return NULL;
3173
3174 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3175 if (INTEL_INFO(ring->dev)->gen >= 8) {
3176 offset = ioread32(ring->buffer->virtual_start + head + 12);
3177 offset <<= 32;
3178 offset = ioread32(ring->buffer->virtual_start + head + 8);
3179 }
3180 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3181 }
3182
3183 static int semaphore_passed(struct intel_engine_cs *ring)
3184 {
3185 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3186 struct intel_engine_cs *signaller;
3187 u32 seqno;
3188
3189 ring->hangcheck.deadlock++;
3190
3191 signaller = semaphore_waits_for(ring, &seqno);
3192 if (signaller == NULL)
3193 return -1;
3194
3195 /* Prevent pathological recursion due to driver bugs */
3196 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3197 return -1;
3198
3199 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3200 return 1;
3201
3202 /* cursory check for an unkickable deadlock */
3203 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3204 semaphore_passed(signaller) < 0)
3205 return -1;
3206
3207 return 0;
3208 }
3209
3210 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3211 {
3212 struct intel_engine_cs *ring;
3213 int i;
3214
3215 for_each_ring(ring, dev_priv, i)
3216 ring->hangcheck.deadlock = 0;
3217 }
3218
3219 static enum intel_ring_hangcheck_action
3220 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3221 {
3222 struct drm_device *dev = ring->dev;
3223 struct drm_i915_private *dev_priv = dev->dev_private;
3224 u32 tmp;
3225
3226 if (acthd != ring->hangcheck.acthd) {
3227 if (acthd > ring->hangcheck.max_acthd) {
3228 ring->hangcheck.max_acthd = acthd;
3229 return HANGCHECK_ACTIVE;
3230 }
3231
3232 return HANGCHECK_ACTIVE_LOOP;
3233 }
3234
3235 if (IS_GEN2(dev))
3236 return HANGCHECK_HUNG;
3237
3238 /* Is the chip hanging on a WAIT_FOR_EVENT?
3239 * If so we can simply poke the RB_WAIT bit
3240 * and break the hang. This should work on
3241 * all but the second generation chipsets.
3242 */
3243 tmp = I915_READ_CTL(ring);
3244 if (tmp & RING_WAIT) {
3245 i915_handle_error(dev, false,
3246 "Kicking stuck wait on %s",
3247 ring->name);
3248 I915_WRITE_CTL(ring, tmp);
3249 return HANGCHECK_KICK;
3250 }
3251
3252 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3253 switch (semaphore_passed(ring)) {
3254 default:
3255 return HANGCHECK_HUNG;
3256 case 1:
3257 i915_handle_error(dev, false,
3258 "Kicking stuck semaphore on %s",
3259 ring->name);
3260 I915_WRITE_CTL(ring, tmp);
3261 return HANGCHECK_KICK;
3262 case 0:
3263 return HANGCHECK_WAIT;
3264 }
3265 }
3266
3267 return HANGCHECK_HUNG;
3268 }
3269
3270 /**
3271 * This is called when the chip hasn't reported back with completed
3272 * batchbuffers in a long time. We keep track per ring seqno progress and
3273 * if there are no progress, hangcheck score for that ring is increased.
3274 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3275 * we kick the ring. If we see no progress on three subsequent calls
3276 * we assume chip is wedged and try to fix it by resetting the chip.
3277 */
3278 static void i915_hangcheck_elapsed(unsigned long data)
3279 {
3280 struct drm_device *dev = (struct drm_device *)data;
3281 struct drm_i915_private *dev_priv = dev->dev_private;
3282 struct intel_engine_cs *ring;
3283 int i;
3284 int busy_count = 0, rings_hung = 0;
3285 bool stuck[I915_NUM_RINGS] = { 0 };
3286 #define BUSY 1
3287 #define KICK 5
3288 #define HUNG 20
3289
3290 if (!i915.enable_hangcheck)
3291 return;
3292
3293 for_each_ring(ring, dev_priv, i) {
3294 u64 acthd;
3295 u32 seqno;
3296 bool busy = true;
3297
3298 semaphore_clear_deadlocks(dev_priv);
3299
3300 seqno = ring->get_seqno(ring, false);
3301 acthd = intel_ring_get_active_head(ring);
3302
3303 if (ring->hangcheck.seqno == seqno) {
3304 if (ring_idle(ring, seqno)) {
3305 ring->hangcheck.action = HANGCHECK_IDLE;
3306
3307 if (waitqueue_active(&ring->irq_queue)) {
3308 /* Issue a wake-up to catch stuck h/w. */
3309 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3310 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3311 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3312 ring->name);
3313 else
3314 DRM_INFO("Fake missed irq on %s\n",
3315 ring->name);
3316 wake_up_all(&ring->irq_queue);
3317 }
3318 /* Safeguard against driver failure */
3319 ring->hangcheck.score += BUSY;
3320 } else
3321 busy = false;
3322 } else {
3323 /* We always increment the hangcheck score
3324 * if the ring is busy and still processing
3325 * the same request, so that no single request
3326 * can run indefinitely (such as a chain of
3327 * batches). The only time we do not increment
3328 * the hangcheck score on this ring, if this
3329 * ring is in a legitimate wait for another
3330 * ring. In that case the waiting ring is a
3331 * victim and we want to be sure we catch the
3332 * right culprit. Then every time we do kick
3333 * the ring, add a small increment to the
3334 * score so that we can catch a batch that is
3335 * being repeatedly kicked and so responsible
3336 * for stalling the machine.
3337 */
3338 ring->hangcheck.action = ring_stuck(ring,
3339 acthd);
3340
3341 switch (ring->hangcheck.action) {
3342 case HANGCHECK_IDLE:
3343 case HANGCHECK_WAIT:
3344 case HANGCHECK_ACTIVE:
3345 break;
3346 case HANGCHECK_ACTIVE_LOOP:
3347 ring->hangcheck.score += BUSY;
3348 break;
3349 case HANGCHECK_KICK:
3350 ring->hangcheck.score += KICK;
3351 break;
3352 case HANGCHECK_HUNG:
3353 ring->hangcheck.score += HUNG;
3354 stuck[i] = true;
3355 break;
3356 }
3357 }
3358 } else {
3359 ring->hangcheck.action = HANGCHECK_ACTIVE;
3360
3361 /* Gradually reduce the count so that we catch DoS
3362 * attempts across multiple batches.
3363 */
3364 if (ring->hangcheck.score > 0)
3365 ring->hangcheck.score--;
3366
3367 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3368 }
3369
3370 ring->hangcheck.seqno = seqno;
3371 ring->hangcheck.acthd = acthd;
3372 busy_count += busy;
3373 }
3374
3375 for_each_ring(ring, dev_priv, i) {
3376 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3377 DRM_INFO("%s on %s\n",
3378 stuck[i] ? "stuck" : "no progress",
3379 ring->name);
3380 rings_hung++;
3381 }
3382 }
3383
3384 if (rings_hung)
3385 return i915_handle_error(dev, true, "Ring hung");
3386
3387 if (busy_count)
3388 /* Reset timer case chip hangs without another request
3389 * being added */
3390 i915_queue_hangcheck(dev);
3391 }
3392
3393 void i915_queue_hangcheck(struct drm_device *dev)
3394 {
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 if (!i915.enable_hangcheck)
3397 return;
3398
3399 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3400 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3401 }
3402
3403 static void ibx_irq_reset(struct drm_device *dev)
3404 {
3405 struct drm_i915_private *dev_priv = dev->dev_private;
3406
3407 if (HAS_PCH_NOP(dev))
3408 return;
3409
3410 GEN5_IRQ_RESET(SDE);
3411
3412 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3413 I915_WRITE(SERR_INT, 0xffffffff);
3414 }
3415
3416 /*
3417 * SDEIER is also touched by the interrupt handler to work around missed PCH
3418 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3419 * instead we unconditionally enable all PCH interrupt sources here, but then
3420 * only unmask them as needed with SDEIMR.
3421 *
3422 * This function needs to be called before interrupts are enabled.
3423 */
3424 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3425 {
3426 struct drm_i915_private *dev_priv = dev->dev_private;
3427
3428 if (HAS_PCH_NOP(dev))
3429 return;
3430
3431 WARN_ON(I915_READ(SDEIER) != 0);
3432 I915_WRITE(SDEIER, 0xffffffff);
3433 POSTING_READ(SDEIER);
3434 }
3435
3436 static void gen5_gt_irq_reset(struct drm_device *dev)
3437 {
3438 struct drm_i915_private *dev_priv = dev->dev_private;
3439
3440 GEN5_IRQ_RESET(GT);
3441 if (INTEL_INFO(dev)->gen >= 6)
3442 GEN5_IRQ_RESET(GEN6_PM);
3443 }
3444
3445 /* drm_dma.h hooks
3446 */
3447 static void ironlake_irq_reset(struct drm_device *dev)
3448 {
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450
3451 I915_WRITE(HWSTAM, 0xffffffff);
3452
3453 GEN5_IRQ_RESET(DE);
3454 if (IS_GEN7(dev))
3455 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3456
3457 gen5_gt_irq_reset(dev);
3458
3459 ibx_irq_reset(dev);
3460 }
3461
3462 static void valleyview_irq_preinstall(struct drm_device *dev)
3463 {
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465 int pipe;
3466
3467 /* VLV magic */
3468 I915_WRITE(VLV_IMR, 0);
3469 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3470 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3471 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3472
3473 /* and GT */
3474 I915_WRITE(GTIIR, I915_READ(GTIIR));
3475 I915_WRITE(GTIIR, I915_READ(GTIIR));
3476
3477 gen5_gt_irq_reset(dev);
3478
3479 I915_WRITE(DPINVGTT, 0xff);
3480
3481 I915_WRITE(PORT_HOTPLUG_EN, 0);
3482 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3483 for_each_pipe(dev_priv, pipe)
3484 I915_WRITE(PIPESTAT(pipe), 0xffff);
3485 I915_WRITE(VLV_IIR, 0xffffffff);
3486 I915_WRITE(VLV_IMR, 0xffffffff);
3487 I915_WRITE(VLV_IER, 0x0);
3488 POSTING_READ(VLV_IER);
3489 }
3490
3491 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3492 {
3493 GEN8_IRQ_RESET_NDX(GT, 0);
3494 GEN8_IRQ_RESET_NDX(GT, 1);
3495 GEN8_IRQ_RESET_NDX(GT, 2);
3496 GEN8_IRQ_RESET_NDX(GT, 3);
3497 }
3498
3499 static void gen8_irq_reset(struct drm_device *dev)
3500 {
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502 int pipe;
3503
3504 I915_WRITE(GEN8_MASTER_IRQ, 0);
3505 POSTING_READ(GEN8_MASTER_IRQ);
3506
3507 gen8_gt_irq_reset(dev_priv);
3508
3509 for_each_pipe(dev_priv, pipe)
3510 if (intel_display_power_enabled(dev_priv,
3511 POWER_DOMAIN_PIPE(pipe)))
3512 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3513
3514 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3515 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3516 GEN5_IRQ_RESET(GEN8_PCU_);
3517
3518 ibx_irq_reset(dev);
3519 }
3520
3521 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3522 {
3523 unsigned long irqflags;
3524
3525 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3526 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3527 ~dev_priv->de_irq_mask[PIPE_B]);
3528 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3529 ~dev_priv->de_irq_mask[PIPE_C]);
3530 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3531 }
3532
3533 static void cherryview_irq_preinstall(struct drm_device *dev)
3534 {
3535 struct drm_i915_private *dev_priv = dev->dev_private;
3536 int pipe;
3537
3538 I915_WRITE(GEN8_MASTER_IRQ, 0);
3539 POSTING_READ(GEN8_MASTER_IRQ);
3540
3541 gen8_gt_irq_reset(dev_priv);
3542
3543 GEN5_IRQ_RESET(GEN8_PCU_);
3544
3545 POSTING_READ(GEN8_PCU_IIR);
3546
3547 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3548
3549 I915_WRITE(PORT_HOTPLUG_EN, 0);
3550 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3551
3552 for_each_pipe(dev_priv, pipe)
3553 I915_WRITE(PIPESTAT(pipe), 0xffff);
3554
3555 I915_WRITE(VLV_IMR, 0xffffffff);
3556 I915_WRITE(VLV_IER, 0x0);
3557 I915_WRITE(VLV_IIR, 0xffffffff);
3558 POSTING_READ(VLV_IIR);
3559 }
3560
3561 static void ibx_hpd_irq_setup(struct drm_device *dev)
3562 {
3563 struct drm_i915_private *dev_priv = dev->dev_private;
3564 struct intel_encoder *intel_encoder;
3565 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3566
3567 if (HAS_PCH_IBX(dev)) {
3568 hotplug_irqs = SDE_HOTPLUG_MASK;
3569 for_each_intel_encoder(dev, intel_encoder)
3570 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3571 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3572 } else {
3573 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3574 for_each_intel_encoder(dev, intel_encoder)
3575 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3576 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3577 }
3578
3579 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3580
3581 /*
3582 * Enable digital hotplug on the PCH, and configure the DP short pulse
3583 * duration to 2ms (which is the minimum in the Display Port spec)
3584 *
3585 * This register is the same on all known PCH chips.
3586 */
3587 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3588 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3589 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3590 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3591 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3592 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3593 }
3594
3595 static void ibx_irq_postinstall(struct drm_device *dev)
3596 {
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598 u32 mask;
3599
3600 if (HAS_PCH_NOP(dev))
3601 return;
3602
3603 if (HAS_PCH_IBX(dev))
3604 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3605 else
3606 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3607
3608 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3609 I915_WRITE(SDEIMR, ~mask);
3610 }
3611
3612 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3613 {
3614 struct drm_i915_private *dev_priv = dev->dev_private;
3615 u32 pm_irqs, gt_irqs;
3616
3617 pm_irqs = gt_irqs = 0;
3618
3619 dev_priv->gt_irq_mask = ~0;
3620 if (HAS_L3_DPF(dev)) {
3621 /* L3 parity interrupt is always unmasked. */
3622 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3623 gt_irqs |= GT_PARITY_ERROR(dev);
3624 }
3625
3626 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3627 if (IS_GEN5(dev)) {
3628 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3629 ILK_BSD_USER_INTERRUPT;
3630 } else {
3631 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3632 }
3633
3634 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3635
3636 if (INTEL_INFO(dev)->gen >= 6) {
3637 pm_irqs |= dev_priv->pm_rps_events;
3638
3639 if (HAS_VEBOX(dev))
3640 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3641
3642 dev_priv->pm_irq_mask = 0xffffffff;
3643 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3644 }
3645 }
3646
3647 static int ironlake_irq_postinstall(struct drm_device *dev)
3648 {
3649 unsigned long irqflags;
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651 u32 display_mask, extra_mask;
3652
3653 if (INTEL_INFO(dev)->gen >= 7) {
3654 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3655 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3656 DE_PLANEB_FLIP_DONE_IVB |
3657 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3658 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3659 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3660 } else {
3661 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3662 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3663 DE_AUX_CHANNEL_A |
3664 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3665 DE_POISON);
3666 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3667 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3668 }
3669
3670 dev_priv->irq_mask = ~display_mask;
3671
3672 I915_WRITE(HWSTAM, 0xeffe);
3673
3674 ibx_irq_pre_postinstall(dev);
3675
3676 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3677
3678 gen5_gt_irq_postinstall(dev);
3679
3680 ibx_irq_postinstall(dev);
3681
3682 if (IS_IRONLAKE_M(dev)) {
3683 /* Enable PCU event interrupts
3684 *
3685 * spinlocking not required here for correctness since interrupt
3686 * setup is guaranteed to run in single-threaded context. But we
3687 * need it to make the assert_spin_locked happy. */
3688 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3689 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3690 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3691 }
3692
3693 return 0;
3694 }
3695
3696 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3697 {
3698 u32 pipestat_mask;
3699 u32 iir_mask;
3700
3701 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3702 PIPE_FIFO_UNDERRUN_STATUS;
3703
3704 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3705 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3706 POSTING_READ(PIPESTAT(PIPE_A));
3707
3708 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3709 PIPE_CRC_DONE_INTERRUPT_STATUS;
3710
3711 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3712 PIPE_GMBUS_INTERRUPT_STATUS);
3713 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3714
3715 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3716 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3717 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3718 dev_priv->irq_mask &= ~iir_mask;
3719
3720 I915_WRITE(VLV_IIR, iir_mask);
3721 I915_WRITE(VLV_IIR, iir_mask);
3722 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3723 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3724 POSTING_READ(VLV_IER);
3725 }
3726
3727 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3728 {
3729 u32 pipestat_mask;
3730 u32 iir_mask;
3731
3732 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3733 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3734 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3735
3736 dev_priv->irq_mask |= iir_mask;
3737 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3738 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3739 I915_WRITE(VLV_IIR, iir_mask);
3740 I915_WRITE(VLV_IIR, iir_mask);
3741 POSTING_READ(VLV_IIR);
3742
3743 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3744 PIPE_CRC_DONE_INTERRUPT_STATUS;
3745
3746 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3747 PIPE_GMBUS_INTERRUPT_STATUS);
3748 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3749
3750 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3751 PIPE_FIFO_UNDERRUN_STATUS;
3752 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3753 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3754 POSTING_READ(PIPESTAT(PIPE_A));
3755 }
3756
3757 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3758 {
3759 assert_spin_locked(&dev_priv->irq_lock);
3760
3761 if (dev_priv->display_irqs_enabled)
3762 return;
3763
3764 dev_priv->display_irqs_enabled = true;
3765
3766 if (dev_priv->dev->irq_enabled)
3767 valleyview_display_irqs_install(dev_priv);
3768 }
3769
3770 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3771 {
3772 assert_spin_locked(&dev_priv->irq_lock);
3773
3774 if (!dev_priv->display_irqs_enabled)
3775 return;
3776
3777 dev_priv->display_irqs_enabled = false;
3778
3779 if (dev_priv->dev->irq_enabled)
3780 valleyview_display_irqs_uninstall(dev_priv);
3781 }
3782
3783 static int valleyview_irq_postinstall(struct drm_device *dev)
3784 {
3785 struct drm_i915_private *dev_priv = dev->dev_private;
3786 unsigned long irqflags;
3787
3788 dev_priv->irq_mask = ~0;
3789
3790 I915_WRITE(PORT_HOTPLUG_EN, 0);
3791 POSTING_READ(PORT_HOTPLUG_EN);
3792
3793 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3794 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3795 I915_WRITE(VLV_IIR, 0xffffffff);
3796 POSTING_READ(VLV_IER);
3797
3798 /* Interrupt setup is already guaranteed to be single-threaded, this is
3799 * just to make the assert_spin_locked check happy. */
3800 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3801 if (dev_priv->display_irqs_enabled)
3802 valleyview_display_irqs_install(dev_priv);
3803 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3804
3805 I915_WRITE(VLV_IIR, 0xffffffff);
3806 I915_WRITE(VLV_IIR, 0xffffffff);
3807
3808 gen5_gt_irq_postinstall(dev);
3809
3810 /* ack & enable invalid PTE error interrupts */
3811 #if 0 /* FIXME: add support to irq handler for checking these bits */
3812 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3813 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3814 #endif
3815
3816 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3817
3818 return 0;
3819 }
3820
3821 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3822 {
3823 /* These are interrupts we'll toggle with the ring mask register */
3824 uint32_t gt_interrupts[] = {
3825 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3826 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3827 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3828 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3829 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3830 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3831 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3832 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3833 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3834 0,
3835 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3836 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3837 };
3838
3839 dev_priv->pm_irq_mask = 0xffffffff;
3840 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3841 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3842 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3843 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3844 }
3845
3846 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3847 {
3848 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3849 GEN8_PIPE_CDCLK_CRC_DONE |
3850 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3851 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3852 GEN8_PIPE_FIFO_UNDERRUN;
3853 int pipe;
3854 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3855 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3856 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3857
3858 for_each_pipe(dev_priv, pipe)
3859 if (intel_display_power_enabled(dev_priv,
3860 POWER_DOMAIN_PIPE(pipe)))
3861 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3862 dev_priv->de_irq_mask[pipe],
3863 de_pipe_enables);
3864
3865 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3866 }
3867
3868 static int gen8_irq_postinstall(struct drm_device *dev)
3869 {
3870 struct drm_i915_private *dev_priv = dev->dev_private;
3871
3872 ibx_irq_pre_postinstall(dev);
3873
3874 gen8_gt_irq_postinstall(dev_priv);
3875 gen8_de_irq_postinstall(dev_priv);
3876
3877 ibx_irq_postinstall(dev);
3878
3879 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3880 POSTING_READ(GEN8_MASTER_IRQ);
3881
3882 return 0;
3883 }
3884
3885 static int cherryview_irq_postinstall(struct drm_device *dev)
3886 {
3887 struct drm_i915_private *dev_priv = dev->dev_private;
3888 u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3889 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3890 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3891 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3892 u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3893 PIPE_CRC_DONE_INTERRUPT_STATUS;
3894 unsigned long irqflags;
3895 int pipe;
3896
3897 /*
3898 * Leave vblank interrupts masked initially. enable/disable will
3899 * toggle them based on usage.
3900 */
3901 dev_priv->irq_mask = ~enable_mask;
3902
3903 for_each_pipe(dev_priv, pipe)
3904 I915_WRITE(PIPESTAT(pipe), 0xffff);
3905
3906 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3907 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3908 for_each_pipe(dev_priv, pipe)
3909 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3910 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3911
3912 I915_WRITE(VLV_IIR, 0xffffffff);
3913 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3914 I915_WRITE(VLV_IER, enable_mask);
3915
3916 gen8_gt_irq_postinstall(dev_priv);
3917
3918 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3919 POSTING_READ(GEN8_MASTER_IRQ);
3920
3921 return 0;
3922 }
3923
3924 static void gen8_irq_uninstall(struct drm_device *dev)
3925 {
3926 struct drm_i915_private *dev_priv = dev->dev_private;
3927
3928 if (!dev_priv)
3929 return;
3930
3931 gen8_irq_reset(dev);
3932 }
3933
3934 static void valleyview_irq_uninstall(struct drm_device *dev)
3935 {
3936 struct drm_i915_private *dev_priv = dev->dev_private;
3937 unsigned long irqflags;
3938 int pipe;
3939
3940 if (!dev_priv)
3941 return;
3942
3943 I915_WRITE(VLV_MASTER_IER, 0);
3944
3945 for_each_pipe(dev_priv, pipe)
3946 I915_WRITE(PIPESTAT(pipe), 0xffff);
3947
3948 I915_WRITE(HWSTAM, 0xffffffff);
3949 I915_WRITE(PORT_HOTPLUG_EN, 0);
3950 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3951
3952 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3953 if (dev_priv->display_irqs_enabled)
3954 valleyview_display_irqs_uninstall(dev_priv);
3955 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3956
3957 dev_priv->irq_mask = 0;
3958
3959 I915_WRITE(VLV_IIR, 0xffffffff);
3960 I915_WRITE(VLV_IMR, 0xffffffff);
3961 I915_WRITE(VLV_IER, 0x0);
3962 POSTING_READ(VLV_IER);
3963 }
3964
3965 static void cherryview_irq_uninstall(struct drm_device *dev)
3966 {
3967 struct drm_i915_private *dev_priv = dev->dev_private;
3968 int pipe;
3969
3970 if (!dev_priv)
3971 return;
3972
3973 I915_WRITE(GEN8_MASTER_IRQ, 0);
3974 POSTING_READ(GEN8_MASTER_IRQ);
3975
3976 #define GEN8_IRQ_FINI_NDX(type, which) \
3977 do { \
3978 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3979 I915_WRITE(GEN8_##type##_IER(which), 0); \
3980 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3981 POSTING_READ(GEN8_##type##_IIR(which)); \
3982 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3983 } while (0)
3984
3985 #define GEN8_IRQ_FINI(type) \
3986 do { \
3987 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3988 I915_WRITE(GEN8_##type##_IER, 0); \
3989 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3990 POSTING_READ(GEN8_##type##_IIR); \
3991 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3992 } while (0)
3993
3994 GEN8_IRQ_FINI_NDX(GT, 0);
3995 GEN8_IRQ_FINI_NDX(GT, 1);
3996 GEN8_IRQ_FINI_NDX(GT, 2);
3997 GEN8_IRQ_FINI_NDX(GT, 3);
3998
3999 GEN8_IRQ_FINI(PCU);
4000
4001 #undef GEN8_IRQ_FINI
4002 #undef GEN8_IRQ_FINI_NDX
4003
4004 I915_WRITE(PORT_HOTPLUG_EN, 0);
4005 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4006
4007 for_each_pipe(dev_priv, pipe)
4008 I915_WRITE(PIPESTAT(pipe), 0xffff);
4009
4010 I915_WRITE(VLV_IMR, 0xffffffff);
4011 I915_WRITE(VLV_IER, 0x0);
4012 I915_WRITE(VLV_IIR, 0xffffffff);
4013 POSTING_READ(VLV_IIR);
4014 }
4015
4016 static void ironlake_irq_uninstall(struct drm_device *dev)
4017 {
4018 struct drm_i915_private *dev_priv = dev->dev_private;
4019
4020 if (!dev_priv)
4021 return;
4022
4023 ironlake_irq_reset(dev);
4024 }
4025
4026 static void i8xx_irq_preinstall(struct drm_device * dev)
4027 {
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029 int pipe;
4030
4031 for_each_pipe(dev_priv, pipe)
4032 I915_WRITE(PIPESTAT(pipe), 0);
4033 I915_WRITE16(IMR, 0xffff);
4034 I915_WRITE16(IER, 0x0);
4035 POSTING_READ16(IER);
4036 }
4037
4038 static int i8xx_irq_postinstall(struct drm_device *dev)
4039 {
4040 struct drm_i915_private *dev_priv = dev->dev_private;
4041 unsigned long irqflags;
4042
4043 I915_WRITE16(EMR,
4044 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4045
4046 /* Unmask the interrupts that we always want on. */
4047 dev_priv->irq_mask =
4048 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4049 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4050 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4051 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4052 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4053 I915_WRITE16(IMR, dev_priv->irq_mask);
4054
4055 I915_WRITE16(IER,
4056 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4057 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4058 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4059 I915_USER_INTERRUPT);
4060 POSTING_READ16(IER);
4061
4062 /* Interrupt setup is already guaranteed to be single-threaded, this is
4063 * just to make the assert_spin_locked check happy. */
4064 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4065 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4066 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4067 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4068
4069 return 0;
4070 }
4071
4072 /*
4073 * Returns true when a page flip has completed.
4074 */
4075 static bool i8xx_handle_vblank(struct drm_device *dev,
4076 int plane, int pipe, u32 iir)
4077 {
4078 struct drm_i915_private *dev_priv = dev->dev_private;
4079 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4080
4081 if (!intel_pipe_handle_vblank(dev, pipe))
4082 return false;
4083
4084 if ((iir & flip_pending) == 0)
4085 return false;
4086
4087 intel_prepare_page_flip(dev, plane);
4088
4089 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4090 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4091 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4092 * the flip is completed (no longer pending). Since this doesn't raise
4093 * an interrupt per se, we watch for the change at vblank.
4094 */
4095 if (I915_READ16(ISR) & flip_pending)
4096 return false;
4097
4098 intel_finish_page_flip(dev, pipe);
4099
4100 return true;
4101 }
4102
4103 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4104 {
4105 struct drm_device *dev = arg;
4106 struct drm_i915_private *dev_priv = dev->dev_private;
4107 u16 iir, new_iir;
4108 u32 pipe_stats[2];
4109 unsigned long irqflags;
4110 int pipe;
4111 u16 flip_mask =
4112 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4113 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4114
4115 iir = I915_READ16(IIR);
4116 if (iir == 0)
4117 return IRQ_NONE;
4118
4119 while (iir & ~flip_mask) {
4120 /* Can't rely on pipestat interrupt bit in iir as it might
4121 * have been cleared after the pipestat interrupt was received.
4122 * It doesn't set the bit in iir again, but it still produces
4123 * interrupts (for non-MSI).
4124 */
4125 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4126 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4127 i915_handle_error(dev, false,
4128 "Command parser error, iir 0x%08x",
4129 iir);
4130
4131 for_each_pipe(dev_priv, pipe) {
4132 int reg = PIPESTAT(pipe);
4133 pipe_stats[pipe] = I915_READ(reg);
4134
4135 /*
4136 * Clear the PIPE*STAT regs before the IIR
4137 */
4138 if (pipe_stats[pipe] & 0x8000ffff)
4139 I915_WRITE(reg, pipe_stats[pipe]);
4140 }
4141 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4142
4143 I915_WRITE16(IIR, iir & ~flip_mask);
4144 new_iir = I915_READ16(IIR); /* Flush posted writes */
4145
4146 i915_update_dri1_breadcrumb(dev);
4147
4148 if (iir & I915_USER_INTERRUPT)
4149 notify_ring(dev, &dev_priv->ring[RCS]);
4150
4151 for_each_pipe(dev_priv, pipe) {
4152 int plane = pipe;
4153 if (HAS_FBC(dev))
4154 plane = !plane;
4155
4156 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4157 i8xx_handle_vblank(dev, plane, pipe, iir))
4158 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4159
4160 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4161 i9xx_pipe_crc_irq_handler(dev, pipe);
4162
4163 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4164 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4165 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4166 }
4167
4168 iir = new_iir;
4169 }
4170
4171 return IRQ_HANDLED;
4172 }
4173
4174 static void i8xx_irq_uninstall(struct drm_device * dev)
4175 {
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177 int pipe;
4178
4179 for_each_pipe(dev_priv, pipe) {
4180 /* Clear enable bits; then clear status bits */
4181 I915_WRITE(PIPESTAT(pipe), 0);
4182 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4183 }
4184 I915_WRITE16(IMR, 0xffff);
4185 I915_WRITE16(IER, 0x0);
4186 I915_WRITE16(IIR, I915_READ16(IIR));
4187 }
4188
4189 static void i915_irq_preinstall(struct drm_device * dev)
4190 {
4191 struct drm_i915_private *dev_priv = dev->dev_private;
4192 int pipe;
4193
4194 if (I915_HAS_HOTPLUG(dev)) {
4195 I915_WRITE(PORT_HOTPLUG_EN, 0);
4196 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4197 }
4198
4199 I915_WRITE16(HWSTAM, 0xeffe);
4200 for_each_pipe(dev_priv, pipe)
4201 I915_WRITE(PIPESTAT(pipe), 0);
4202 I915_WRITE(IMR, 0xffffffff);
4203 I915_WRITE(IER, 0x0);
4204 POSTING_READ(IER);
4205 }
4206
4207 static int i915_irq_postinstall(struct drm_device *dev)
4208 {
4209 struct drm_i915_private *dev_priv = dev->dev_private;
4210 u32 enable_mask;
4211 unsigned long irqflags;
4212
4213 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4214
4215 /* Unmask the interrupts that we always want on. */
4216 dev_priv->irq_mask =
4217 ~(I915_ASLE_INTERRUPT |
4218 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4219 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4220 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4221 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4222 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4223
4224 enable_mask =
4225 I915_ASLE_INTERRUPT |
4226 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4227 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4228 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4229 I915_USER_INTERRUPT;
4230
4231 if (I915_HAS_HOTPLUG(dev)) {
4232 I915_WRITE(PORT_HOTPLUG_EN, 0);
4233 POSTING_READ(PORT_HOTPLUG_EN);
4234
4235 /* Enable in IER... */
4236 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4237 /* and unmask in IMR */
4238 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4239 }
4240
4241 I915_WRITE(IMR, dev_priv->irq_mask);
4242 I915_WRITE(IER, enable_mask);
4243 POSTING_READ(IER);
4244
4245 i915_enable_asle_pipestat(dev);
4246
4247 /* Interrupt setup is already guaranteed to be single-threaded, this is
4248 * just to make the assert_spin_locked check happy. */
4249 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4250 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4251 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4252 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4253
4254 return 0;
4255 }
4256
4257 /*
4258 * Returns true when a page flip has completed.
4259 */
4260 static bool i915_handle_vblank(struct drm_device *dev,
4261 int plane, int pipe, u32 iir)
4262 {
4263 struct drm_i915_private *dev_priv = dev->dev_private;
4264 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4265
4266 if (!intel_pipe_handle_vblank(dev, pipe))
4267 return false;
4268
4269 if ((iir & flip_pending) == 0)
4270 return false;
4271
4272 intel_prepare_page_flip(dev, plane);
4273
4274 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4275 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4276 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4277 * the flip is completed (no longer pending). Since this doesn't raise
4278 * an interrupt per se, we watch for the change at vblank.
4279 */
4280 if (I915_READ(ISR) & flip_pending)
4281 return false;
4282
4283 intel_finish_page_flip(dev, pipe);
4284
4285 return true;
4286 }
4287
4288 static irqreturn_t i915_irq_handler(int irq, void *arg)
4289 {
4290 struct drm_device *dev = arg;
4291 struct drm_i915_private *dev_priv = dev->dev_private;
4292 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4293 unsigned long irqflags;
4294 u32 flip_mask =
4295 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4296 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4297 int pipe, ret = IRQ_NONE;
4298
4299 iir = I915_READ(IIR);
4300 do {
4301 bool irq_received = (iir & ~flip_mask) != 0;
4302 bool blc_event = false;
4303
4304 /* Can't rely on pipestat interrupt bit in iir as it might
4305 * have been cleared after the pipestat interrupt was received.
4306 * It doesn't set the bit in iir again, but it still produces
4307 * interrupts (for non-MSI).
4308 */
4309 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4310 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4311 i915_handle_error(dev, false,
4312 "Command parser error, iir 0x%08x",
4313 iir);
4314
4315 for_each_pipe(dev_priv, pipe) {
4316 int reg = PIPESTAT(pipe);
4317 pipe_stats[pipe] = I915_READ(reg);
4318
4319 /* Clear the PIPE*STAT regs before the IIR */
4320 if (pipe_stats[pipe] & 0x8000ffff) {
4321 I915_WRITE(reg, pipe_stats[pipe]);
4322 irq_received = true;
4323 }
4324 }
4325 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4326
4327 if (!irq_received)
4328 break;
4329
4330 /* Consume port. Then clear IIR or we'll miss events */
4331 if (I915_HAS_HOTPLUG(dev) &&
4332 iir & I915_DISPLAY_PORT_INTERRUPT)
4333 i9xx_hpd_irq_handler(dev);
4334
4335 I915_WRITE(IIR, iir & ~flip_mask);
4336 new_iir = I915_READ(IIR); /* Flush posted writes */
4337
4338 if (iir & I915_USER_INTERRUPT)
4339 notify_ring(dev, &dev_priv->ring[RCS]);
4340
4341 for_each_pipe(dev_priv, pipe) {
4342 int plane = pipe;
4343 if (HAS_FBC(dev))
4344 plane = !plane;
4345
4346 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4347 i915_handle_vblank(dev, plane, pipe, iir))
4348 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4349
4350 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4351 blc_event = true;
4352
4353 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4354 i9xx_pipe_crc_irq_handler(dev, pipe);
4355
4356 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4357 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4358 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4359 }
4360
4361 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4362 intel_opregion_asle_intr(dev);
4363
4364 /* With MSI, interrupts are only generated when iir
4365 * transitions from zero to nonzero. If another bit got
4366 * set while we were handling the existing iir bits, then
4367 * we would never get another interrupt.
4368 *
4369 * This is fine on non-MSI as well, as if we hit this path
4370 * we avoid exiting the interrupt handler only to generate
4371 * another one.
4372 *
4373 * Note that for MSI this could cause a stray interrupt report
4374 * if an interrupt landed in the time between writing IIR and
4375 * the posting read. This should be rare enough to never
4376 * trigger the 99% of 100,000 interrupts test for disabling
4377 * stray interrupts.
4378 */
4379 ret = IRQ_HANDLED;
4380 iir = new_iir;
4381 } while (iir & ~flip_mask);
4382
4383 i915_update_dri1_breadcrumb(dev);
4384
4385 return ret;
4386 }
4387
4388 static void i915_irq_uninstall(struct drm_device * dev)
4389 {
4390 struct drm_i915_private *dev_priv = dev->dev_private;
4391 int pipe;
4392
4393 if (I915_HAS_HOTPLUG(dev)) {
4394 I915_WRITE(PORT_HOTPLUG_EN, 0);
4395 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4396 }
4397
4398 I915_WRITE16(HWSTAM, 0xffff);
4399 for_each_pipe(dev_priv, pipe) {
4400 /* Clear enable bits; then clear status bits */
4401 I915_WRITE(PIPESTAT(pipe), 0);
4402 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4403 }
4404 I915_WRITE(IMR, 0xffffffff);
4405 I915_WRITE(IER, 0x0);
4406
4407 I915_WRITE(IIR, I915_READ(IIR));
4408 }
4409
4410 static void i965_irq_preinstall(struct drm_device * dev)
4411 {
4412 struct drm_i915_private *dev_priv = dev->dev_private;
4413 int pipe;
4414
4415 I915_WRITE(PORT_HOTPLUG_EN, 0);
4416 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4417
4418 I915_WRITE(HWSTAM, 0xeffe);
4419 for_each_pipe(dev_priv, pipe)
4420 I915_WRITE(PIPESTAT(pipe), 0);
4421 I915_WRITE(IMR, 0xffffffff);
4422 I915_WRITE(IER, 0x0);
4423 POSTING_READ(IER);
4424 }
4425
4426 static int i965_irq_postinstall(struct drm_device *dev)
4427 {
4428 struct drm_i915_private *dev_priv = dev->dev_private;
4429 u32 enable_mask;
4430 u32 error_mask;
4431 unsigned long irqflags;
4432
4433 /* Unmask the interrupts that we always want on. */
4434 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4435 I915_DISPLAY_PORT_INTERRUPT |
4436 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4437 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4438 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4439 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4440 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4441
4442 enable_mask = ~dev_priv->irq_mask;
4443 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4444 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4445 enable_mask |= I915_USER_INTERRUPT;
4446
4447 if (IS_G4X(dev))
4448 enable_mask |= I915_BSD_USER_INTERRUPT;
4449
4450 /* Interrupt setup is already guaranteed to be single-threaded, this is
4451 * just to make the assert_spin_locked check happy. */
4452 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4453 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4454 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4455 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4456 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4457
4458 /*
4459 * Enable some error detection, note the instruction error mask
4460 * bit is reserved, so we leave it masked.
4461 */
4462 if (IS_G4X(dev)) {
4463 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4464 GM45_ERROR_MEM_PRIV |
4465 GM45_ERROR_CP_PRIV |
4466 I915_ERROR_MEMORY_REFRESH);
4467 } else {
4468 error_mask = ~(I915_ERROR_PAGE_TABLE |
4469 I915_ERROR_MEMORY_REFRESH);
4470 }
4471 I915_WRITE(EMR, error_mask);
4472
4473 I915_WRITE(IMR, dev_priv->irq_mask);
4474 I915_WRITE(IER, enable_mask);
4475 POSTING_READ(IER);
4476
4477 I915_WRITE(PORT_HOTPLUG_EN, 0);
4478 POSTING_READ(PORT_HOTPLUG_EN);
4479
4480 i915_enable_asle_pipestat(dev);
4481
4482 return 0;
4483 }
4484
4485 static void i915_hpd_irq_setup(struct drm_device *dev)
4486 {
4487 struct drm_i915_private *dev_priv = dev->dev_private;
4488 struct intel_encoder *intel_encoder;
4489 u32 hotplug_en;
4490
4491 assert_spin_locked(&dev_priv->irq_lock);
4492
4493 if (I915_HAS_HOTPLUG(dev)) {
4494 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4495 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4496 /* Note HDMI and DP share hotplug bits */
4497 /* enable bits are the same for all generations */
4498 for_each_intel_encoder(dev, intel_encoder)
4499 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4500 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4501 /* Programming the CRT detection parameters tends
4502 to generate a spurious hotplug event about three
4503 seconds later. So just do it once.
4504 */
4505 if (IS_G4X(dev))
4506 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4507 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4508 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4509
4510 /* Ignore TV since it's buggy */
4511 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4512 }
4513 }
4514
4515 static irqreturn_t i965_irq_handler(int irq, void *arg)
4516 {
4517 struct drm_device *dev = arg;
4518 struct drm_i915_private *dev_priv = dev->dev_private;
4519 u32 iir, new_iir;
4520 u32 pipe_stats[I915_MAX_PIPES];
4521 unsigned long irqflags;
4522 int ret = IRQ_NONE, pipe;
4523 u32 flip_mask =
4524 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4525 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4526
4527 iir = I915_READ(IIR);
4528
4529 for (;;) {
4530 bool irq_received = (iir & ~flip_mask) != 0;
4531 bool blc_event = false;
4532
4533 /* Can't rely on pipestat interrupt bit in iir as it might
4534 * have been cleared after the pipestat interrupt was received.
4535 * It doesn't set the bit in iir again, but it still produces
4536 * interrupts (for non-MSI).
4537 */
4538 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4539 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4540 i915_handle_error(dev, false,
4541 "Command parser error, iir 0x%08x",
4542 iir);
4543
4544 for_each_pipe(dev_priv, pipe) {
4545 int reg = PIPESTAT(pipe);
4546 pipe_stats[pipe] = I915_READ(reg);
4547
4548 /*
4549 * Clear the PIPE*STAT regs before the IIR
4550 */
4551 if (pipe_stats[pipe] & 0x8000ffff) {
4552 I915_WRITE(reg, pipe_stats[pipe]);
4553 irq_received = true;
4554 }
4555 }
4556 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4557
4558 if (!irq_received)
4559 break;
4560
4561 ret = IRQ_HANDLED;
4562
4563 /* Consume port. Then clear IIR or we'll miss events */
4564 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4565 i9xx_hpd_irq_handler(dev);
4566
4567 I915_WRITE(IIR, iir & ~flip_mask);
4568 new_iir = I915_READ(IIR); /* Flush posted writes */
4569
4570 if (iir & I915_USER_INTERRUPT)
4571 notify_ring(dev, &dev_priv->ring[RCS]);
4572 if (iir & I915_BSD_USER_INTERRUPT)
4573 notify_ring(dev, &dev_priv->ring[VCS]);
4574
4575 for_each_pipe(dev_priv, pipe) {
4576 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4577 i915_handle_vblank(dev, pipe, pipe, iir))
4578 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4579
4580 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4581 blc_event = true;
4582
4583 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4584 i9xx_pipe_crc_irq_handler(dev, pipe);
4585
4586 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4587 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4588 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4589 }
4590
4591 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4592 intel_opregion_asle_intr(dev);
4593
4594 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4595 gmbus_irq_handler(dev);
4596
4597 /* With MSI, interrupts are only generated when iir
4598 * transitions from zero to nonzero. If another bit got
4599 * set while we were handling the existing iir bits, then
4600 * we would never get another interrupt.
4601 *
4602 * This is fine on non-MSI as well, as if we hit this path
4603 * we avoid exiting the interrupt handler only to generate
4604 * another one.
4605 *
4606 * Note that for MSI this could cause a stray interrupt report
4607 * if an interrupt landed in the time between writing IIR and
4608 * the posting read. This should be rare enough to never
4609 * trigger the 99% of 100,000 interrupts test for disabling
4610 * stray interrupts.
4611 */
4612 iir = new_iir;
4613 }
4614
4615 i915_update_dri1_breadcrumb(dev);
4616
4617 return ret;
4618 }
4619
4620 static void i965_irq_uninstall(struct drm_device * dev)
4621 {
4622 struct drm_i915_private *dev_priv = dev->dev_private;
4623 int pipe;
4624
4625 if (!dev_priv)
4626 return;
4627
4628 I915_WRITE(PORT_HOTPLUG_EN, 0);
4629 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4630
4631 I915_WRITE(HWSTAM, 0xffffffff);
4632 for_each_pipe(dev_priv, pipe)
4633 I915_WRITE(PIPESTAT(pipe), 0);
4634 I915_WRITE(IMR, 0xffffffff);
4635 I915_WRITE(IER, 0x0);
4636
4637 for_each_pipe(dev_priv, pipe)
4638 I915_WRITE(PIPESTAT(pipe),
4639 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4640 I915_WRITE(IIR, I915_READ(IIR));
4641 }
4642
4643 static void intel_hpd_irq_reenable(struct work_struct *work)
4644 {
4645 struct drm_i915_private *dev_priv =
4646 container_of(work, typeof(*dev_priv),
4647 hotplug_reenable_work.work);
4648 struct drm_device *dev = dev_priv->dev;
4649 struct drm_mode_config *mode_config = &dev->mode_config;
4650 unsigned long irqflags;
4651 int i;
4652
4653 intel_runtime_pm_get(dev_priv);
4654
4655 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4656 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4657 struct drm_connector *connector;
4658
4659 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4660 continue;
4661
4662 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4663
4664 list_for_each_entry(connector, &mode_config->connector_list, head) {
4665 struct intel_connector *intel_connector = to_intel_connector(connector);
4666
4667 if (intel_connector->encoder->hpd_pin == i) {
4668 if (connector->polled != intel_connector->polled)
4669 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4670 connector->name);
4671 connector->polled = intel_connector->polled;
4672 if (!connector->polled)
4673 connector->polled = DRM_CONNECTOR_POLL_HPD;
4674 }
4675 }
4676 }
4677 if (dev_priv->display.hpd_irq_setup)
4678 dev_priv->display.hpd_irq_setup(dev);
4679 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4680
4681 intel_runtime_pm_put(dev_priv);
4682 }
4683
4684 void intel_irq_init(struct drm_device *dev)
4685 {
4686 struct drm_i915_private *dev_priv = dev->dev_private;
4687
4688 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4689 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4690 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4691 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4692 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4693
4694 /* Let's track the enabled rps events */
4695 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4696 /* WaGsvRC0ResidencyMethod:vlv */
4697 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4698 else
4699 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4700
4701 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4702 i915_hangcheck_elapsed,
4703 (unsigned long) dev);
4704 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4705 intel_hpd_irq_reenable);
4706
4707 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4708
4709 /* Haven't installed the IRQ handler yet */
4710 dev_priv->pm._irqs_disabled = true;
4711
4712 if (IS_GEN2(dev)) {
4713 dev->max_vblank_count = 0;
4714 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4715 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4716 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4717 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4718 } else {
4719 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4720 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4721 }
4722
4723 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4724 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4725 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4726 }
4727
4728 if (IS_CHERRYVIEW(dev)) {
4729 dev->driver->irq_handler = cherryview_irq_handler;
4730 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4731 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4732 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4733 dev->driver->enable_vblank = valleyview_enable_vblank;
4734 dev->driver->disable_vblank = valleyview_disable_vblank;
4735 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4736 } else if (IS_VALLEYVIEW(dev)) {
4737 dev->driver->irq_handler = valleyview_irq_handler;
4738 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4739 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4740 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4741 dev->driver->enable_vblank = valleyview_enable_vblank;
4742 dev->driver->disable_vblank = valleyview_disable_vblank;
4743 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4744 } else if (IS_GEN8(dev)) {
4745 dev->driver->irq_handler = gen8_irq_handler;
4746 dev->driver->irq_preinstall = gen8_irq_reset;
4747 dev->driver->irq_postinstall = gen8_irq_postinstall;
4748 dev->driver->irq_uninstall = gen8_irq_uninstall;
4749 dev->driver->enable_vblank = gen8_enable_vblank;
4750 dev->driver->disable_vblank = gen8_disable_vblank;
4751 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4752 } else if (HAS_PCH_SPLIT(dev)) {
4753 dev->driver->irq_handler = ironlake_irq_handler;
4754 dev->driver->irq_preinstall = ironlake_irq_reset;
4755 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4756 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4757 dev->driver->enable_vblank = ironlake_enable_vblank;
4758 dev->driver->disable_vblank = ironlake_disable_vblank;
4759 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4760 } else {
4761 if (INTEL_INFO(dev)->gen == 2) {
4762 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4763 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4764 dev->driver->irq_handler = i8xx_irq_handler;
4765 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4766 } else if (INTEL_INFO(dev)->gen == 3) {
4767 dev->driver->irq_preinstall = i915_irq_preinstall;
4768 dev->driver->irq_postinstall = i915_irq_postinstall;
4769 dev->driver->irq_uninstall = i915_irq_uninstall;
4770 dev->driver->irq_handler = i915_irq_handler;
4771 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4772 } else {
4773 dev->driver->irq_preinstall = i965_irq_preinstall;
4774 dev->driver->irq_postinstall = i965_irq_postinstall;
4775 dev->driver->irq_uninstall = i965_irq_uninstall;
4776 dev->driver->irq_handler = i965_irq_handler;
4777 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4778 }
4779 dev->driver->enable_vblank = i915_enable_vblank;
4780 dev->driver->disable_vblank = i915_disable_vblank;
4781 }
4782 }
4783
4784 void intel_hpd_init(struct drm_device *dev)
4785 {
4786 struct drm_i915_private *dev_priv = dev->dev_private;
4787 struct drm_mode_config *mode_config = &dev->mode_config;
4788 struct drm_connector *connector;
4789 unsigned long irqflags;
4790 int i;
4791
4792 for (i = 1; i < HPD_NUM_PINS; i++) {
4793 dev_priv->hpd_stats[i].hpd_cnt = 0;
4794 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4795 }
4796 list_for_each_entry(connector, &mode_config->connector_list, head) {
4797 struct intel_connector *intel_connector = to_intel_connector(connector);
4798 connector->polled = intel_connector->polled;
4799 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4800 connector->polled = DRM_CONNECTOR_POLL_HPD;
4801 if (intel_connector->mst_port)
4802 connector->polled = DRM_CONNECTOR_POLL_HPD;
4803 }
4804
4805 /* Interrupt setup is already guaranteed to be single-threaded, this is
4806 * just to make the assert_spin_locked checks happy. */
4807 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4808 if (dev_priv->display.hpd_irq_setup)
4809 dev_priv->display.hpd_irq_setup(dev);
4810 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4811 }
4812
4813 /* Disable interrupts so we can allow runtime PM. */
4814 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4815 {
4816 struct drm_i915_private *dev_priv = dev->dev_private;
4817
4818 dev->driver->irq_uninstall(dev);
4819 dev_priv->pm._irqs_disabled = true;
4820 }
4821
4822 /* Restore interrupts so we can recover from runtime PM. */
4823 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4824 {
4825 struct drm_i915_private *dev_priv = dev->dev_private;
4826
4827 dev_priv->pm._irqs_disabled = false;
4828 dev->driver->irq_preinstall(dev);
4829 dev->driver->irq_postinstall(dev);
4830 }
This page took 0.127668 seconds and 6 git commands to generate.