drm/i915: Clear VLV_IIR after PIPESTAT
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 if (!intel_engine_initialized(engine))
1000 return;
1001
1002 trace_i915_gem_request_notify(engine);
1003 engine->user_interrupts++;
1004
1005 wake_up_all(&engine->irq_queue);
1006 }
1007
1008 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1009 struct intel_rps_ei *ei)
1010 {
1011 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1012 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1013 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1014 }
1015
1016 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1017 const struct intel_rps_ei *old,
1018 const struct intel_rps_ei *now,
1019 int threshold)
1020 {
1021 u64 time, c0;
1022 unsigned int mul = 100;
1023
1024 if (old->cz_clock == 0)
1025 return false;
1026
1027 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1028 mul <<= 8;
1029
1030 time = now->cz_clock - old->cz_clock;
1031 time *= threshold * dev_priv->czclk_freq;
1032
1033 /* Workload can be split between render + media, e.g. SwapBuffers
1034 * being blitted in X after being rendered in mesa. To account for
1035 * this we need to combine both engines into our activity counter.
1036 */
1037 c0 = now->render_c0 - old->render_c0;
1038 c0 += now->media_c0 - old->media_c0;
1039 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1040
1041 return c0 >= time;
1042 }
1043
1044 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1045 {
1046 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1047 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1048 }
1049
1050 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1051 {
1052 struct intel_rps_ei now;
1053 u32 events = 0;
1054
1055 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1056 return 0;
1057
1058 vlv_c0_read(dev_priv, &now);
1059 if (now.cz_clock == 0)
1060 return 0;
1061
1062 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1063 if (!vlv_c0_above(dev_priv,
1064 &dev_priv->rps.down_ei, &now,
1065 dev_priv->rps.down_threshold))
1066 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1067 dev_priv->rps.down_ei = now;
1068 }
1069
1070 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1071 if (vlv_c0_above(dev_priv,
1072 &dev_priv->rps.up_ei, &now,
1073 dev_priv->rps.up_threshold))
1074 events |= GEN6_PM_RP_UP_THRESHOLD;
1075 dev_priv->rps.up_ei = now;
1076 }
1077
1078 return events;
1079 }
1080
1081 static bool any_waiters(struct drm_i915_private *dev_priv)
1082 {
1083 struct intel_engine_cs *engine;
1084
1085 for_each_engine(engine, dev_priv)
1086 if (engine->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->engine[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->engine[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->engine[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->engine[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->engine[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(engine);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 tasklet_schedule(&engine->irq_tasklet);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->engine[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 u32 pipe_stats[I915_MAX_PIPES] = { };
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654
1655 if (!dev_priv->display_irqs_enabled) {
1656 spin_unlock(&dev_priv->irq_lock);
1657 return;
1658 }
1659
1660 for_each_pipe(dev_priv, pipe) {
1661 i915_reg_t reg;
1662 u32 mask, iir_bit = 0;
1663
1664 /*
1665 * PIPESTAT bits get signalled even when the interrupt is
1666 * disabled with the mask bits, and some of the status bits do
1667 * not generate interrupts at all (like the underrun bit). Hence
1668 * we need to be careful that we only handle what we want to
1669 * handle.
1670 */
1671
1672 /* fifo underruns are filterered in the underrun handler. */
1673 mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675 switch (pipe) {
1676 case PIPE_A:
1677 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678 break;
1679 case PIPE_B:
1680 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681 break;
1682 case PIPE_C:
1683 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684 break;
1685 }
1686 if (iir & iir_bit)
1687 mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689 if (!mask)
1690 continue;
1691
1692 reg = PIPESTAT(pipe);
1693 mask |= PIPESTAT_INT_ENABLE_MASK;
1694 pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696 /*
1697 * Clear the PIPE*STAT regs before the IIR
1698 */
1699 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700 PIPESTAT_INT_STATUS_MASK))
1701 I915_WRITE(reg, pipe_stats[pipe]);
1702 }
1703 spin_unlock(&dev_priv->irq_lock);
1704
1705 for_each_pipe(dev_priv, pipe) {
1706 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707 intel_pipe_handle_vblank(dev, pipe))
1708 intel_check_page_flip(dev, pipe);
1709
1710 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711 intel_prepare_page_flip(dev, pipe);
1712 intel_finish_page_flip(dev, pipe);
1713 }
1714
1715 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716 i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720 }
1721
1722 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723 gmbus_irq_handler(dev);
1724 }
1725
1726 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727 {
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730 u32 pin_mask = 0, long_mask = 0;
1731
1732 if (!hotplug_status)
1733 return;
1734
1735 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736 /*
1737 * Make sure hotplug status is cleared before we clear IIR, or else we
1738 * may miss hotplug events.
1739 */
1740 POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745 if (hotplug_trigger) {
1746 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747 hotplug_trigger, hpd_status_g4x,
1748 i9xx_port_hotplug_long_detect);
1749
1750 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751 }
1752
1753 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754 dp_aux_irq_handler(dev);
1755 } else {
1756 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758 if (hotplug_trigger) {
1759 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760 hotplug_trigger, hpd_status_i915,
1761 i9xx_port_hotplug_long_detect);
1762 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763 }
1764 }
1765 }
1766
1767 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768 {
1769 struct drm_device *dev = arg;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 u32 iir, gt_iir, pm_iir;
1772 irqreturn_t ret = IRQ_NONE;
1773
1774 if (!intel_irqs_enabled(dev_priv))
1775 return IRQ_NONE;
1776
1777 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778 disable_rpm_wakeref_asserts(dev_priv);
1779
1780 while (true) {
1781 /* Find, clear, then process each source of interrupt */
1782
1783 gt_iir = I915_READ(GTIIR);
1784 if (gt_iir)
1785 I915_WRITE(GTIIR, gt_iir);
1786
1787 pm_iir = I915_READ(GEN6_PMIIR);
1788 if (pm_iir)
1789 I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791 iir = I915_READ(VLV_IIR);
1792
1793 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1794 goto out;
1795
1796 ret = IRQ_HANDLED;
1797
1798 if (gt_iir)
1799 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1800 if (pm_iir)
1801 gen6_rps_irq_handler(dev_priv, pm_iir);
1802
1803 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1804 i9xx_hpd_irq_handler(dev);
1805
1806 /* Call regardless, as some status bits might not be
1807 * signalled in iir */
1808 valleyview_pipestat_irq_handler(dev, iir);
1809
1810 /*
1811 * VLV_IIR is single buffered, and reflects the level
1812 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1813 */
1814 if (iir)
1815 I915_WRITE(VLV_IIR, iir);
1816 }
1817
1818 out:
1819 enable_rpm_wakeref_asserts(dev_priv);
1820
1821 return ret;
1822 }
1823
1824 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1825 {
1826 struct drm_device *dev = arg;
1827 struct drm_i915_private *dev_priv = dev->dev_private;
1828 u32 master_ctl, iir;
1829 irqreturn_t ret = IRQ_NONE;
1830
1831 if (!intel_irqs_enabled(dev_priv))
1832 return IRQ_NONE;
1833
1834 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1835 disable_rpm_wakeref_asserts(dev_priv);
1836
1837 do {
1838 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1839 iir = I915_READ(VLV_IIR);
1840
1841 if (master_ctl == 0 && iir == 0)
1842 break;
1843
1844 ret = IRQ_HANDLED;
1845
1846 I915_WRITE(GEN8_MASTER_IRQ, 0);
1847
1848 gen8_gt_irq_handler(dev_priv, master_ctl);
1849
1850 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1851 i9xx_hpd_irq_handler(dev);
1852
1853 /* Call regardless, as some status bits might not be
1854 * signalled in iir */
1855 valleyview_pipestat_irq_handler(dev, iir);
1856
1857 /*
1858 * VLV_IIR is single buffered, and reflects the level
1859 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1860 */
1861 if (iir)
1862 I915_WRITE(VLV_IIR, iir);
1863
1864 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1865 POSTING_READ(GEN8_MASTER_IRQ);
1866 } while (0);
1867
1868 enable_rpm_wakeref_asserts(dev_priv);
1869
1870 return ret;
1871 }
1872
1873 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1874 const u32 hpd[HPD_NUM_PINS])
1875 {
1876 struct drm_i915_private *dev_priv = to_i915(dev);
1877 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1878
1879 /*
1880 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1881 * unless we touch the hotplug register, even if hotplug_trigger is
1882 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1883 * errors.
1884 */
1885 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1886 if (!hotplug_trigger) {
1887 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1888 PORTD_HOTPLUG_STATUS_MASK |
1889 PORTC_HOTPLUG_STATUS_MASK |
1890 PORTB_HOTPLUG_STATUS_MASK;
1891 dig_hotplug_reg &= ~mask;
1892 }
1893
1894 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1895 if (!hotplug_trigger)
1896 return;
1897
1898 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1899 dig_hotplug_reg, hpd,
1900 pch_port_hotplug_long_detect);
1901
1902 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1903 }
1904
1905 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1906 {
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908 int pipe;
1909 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1910
1911 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1912
1913 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1914 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1915 SDE_AUDIO_POWER_SHIFT);
1916 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1917 port_name(port));
1918 }
1919
1920 if (pch_iir & SDE_AUX_MASK)
1921 dp_aux_irq_handler(dev);
1922
1923 if (pch_iir & SDE_GMBUS)
1924 gmbus_irq_handler(dev);
1925
1926 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1927 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1928
1929 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1930 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1931
1932 if (pch_iir & SDE_POISON)
1933 DRM_ERROR("PCH poison interrupt\n");
1934
1935 if (pch_iir & SDE_FDI_MASK)
1936 for_each_pipe(dev_priv, pipe)
1937 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1938 pipe_name(pipe),
1939 I915_READ(FDI_RX_IIR(pipe)));
1940
1941 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1942 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1943
1944 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1945 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1946
1947 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1948 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1949
1950 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1951 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1952 }
1953
1954 static void ivb_err_int_handler(struct drm_device *dev)
1955 {
1956 struct drm_i915_private *dev_priv = dev->dev_private;
1957 u32 err_int = I915_READ(GEN7_ERR_INT);
1958 enum pipe pipe;
1959
1960 if (err_int & ERR_INT_POISON)
1961 DRM_ERROR("Poison interrupt\n");
1962
1963 for_each_pipe(dev_priv, pipe) {
1964 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1965 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1966
1967 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1968 if (IS_IVYBRIDGE(dev))
1969 ivb_pipe_crc_irq_handler(dev, pipe);
1970 else
1971 hsw_pipe_crc_irq_handler(dev, pipe);
1972 }
1973 }
1974
1975 I915_WRITE(GEN7_ERR_INT, err_int);
1976 }
1977
1978 static void cpt_serr_int_handler(struct drm_device *dev)
1979 {
1980 struct drm_i915_private *dev_priv = dev->dev_private;
1981 u32 serr_int = I915_READ(SERR_INT);
1982
1983 if (serr_int & SERR_INT_POISON)
1984 DRM_ERROR("PCH poison interrupt\n");
1985
1986 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1987 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1988
1989 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1990 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1991
1992 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1993 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1994
1995 I915_WRITE(SERR_INT, serr_int);
1996 }
1997
1998 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1999 {
2000 struct drm_i915_private *dev_priv = dev->dev_private;
2001 int pipe;
2002 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2003
2004 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2005
2006 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2007 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2008 SDE_AUDIO_POWER_SHIFT_CPT);
2009 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2010 port_name(port));
2011 }
2012
2013 if (pch_iir & SDE_AUX_MASK_CPT)
2014 dp_aux_irq_handler(dev);
2015
2016 if (pch_iir & SDE_GMBUS_CPT)
2017 gmbus_irq_handler(dev);
2018
2019 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2020 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2021
2022 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2023 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2024
2025 if (pch_iir & SDE_FDI_MASK_CPT)
2026 for_each_pipe(dev_priv, pipe)
2027 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2028 pipe_name(pipe),
2029 I915_READ(FDI_RX_IIR(pipe)));
2030
2031 if (pch_iir & SDE_ERROR_CPT)
2032 cpt_serr_int_handler(dev);
2033 }
2034
2035 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2036 {
2037 struct drm_i915_private *dev_priv = dev->dev_private;
2038 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2039 ~SDE_PORTE_HOTPLUG_SPT;
2040 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2041 u32 pin_mask = 0, long_mask = 0;
2042
2043 if (hotplug_trigger) {
2044 u32 dig_hotplug_reg;
2045
2046 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2047 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2048
2049 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2050 dig_hotplug_reg, hpd_spt,
2051 spt_port_hotplug_long_detect);
2052 }
2053
2054 if (hotplug2_trigger) {
2055 u32 dig_hotplug_reg;
2056
2057 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2058 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2059
2060 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2061 dig_hotplug_reg, hpd_spt,
2062 spt_port_hotplug2_long_detect);
2063 }
2064
2065 if (pin_mask)
2066 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2067
2068 if (pch_iir & SDE_GMBUS_CPT)
2069 gmbus_irq_handler(dev);
2070 }
2071
2072 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2073 const u32 hpd[HPD_NUM_PINS])
2074 {
2075 struct drm_i915_private *dev_priv = to_i915(dev);
2076 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2077
2078 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2079 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2080
2081 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2082 dig_hotplug_reg, hpd,
2083 ilk_port_hotplug_long_detect);
2084
2085 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2086 }
2087
2088 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2089 {
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091 enum pipe pipe;
2092 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2093
2094 if (hotplug_trigger)
2095 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2096
2097 if (de_iir & DE_AUX_CHANNEL_A)
2098 dp_aux_irq_handler(dev);
2099
2100 if (de_iir & DE_GSE)
2101 intel_opregion_asle_intr(dev);
2102
2103 if (de_iir & DE_POISON)
2104 DRM_ERROR("Poison interrupt\n");
2105
2106 for_each_pipe(dev_priv, pipe) {
2107 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2108 intel_pipe_handle_vblank(dev, pipe))
2109 intel_check_page_flip(dev, pipe);
2110
2111 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2112 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2113
2114 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2115 i9xx_pipe_crc_irq_handler(dev, pipe);
2116
2117 /* plane/pipes map 1:1 on ilk+ */
2118 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2119 intel_prepare_page_flip(dev, pipe);
2120 intel_finish_page_flip_plane(dev, pipe);
2121 }
2122 }
2123
2124 /* check event from PCH */
2125 if (de_iir & DE_PCH_EVENT) {
2126 u32 pch_iir = I915_READ(SDEIIR);
2127
2128 if (HAS_PCH_CPT(dev))
2129 cpt_irq_handler(dev, pch_iir);
2130 else
2131 ibx_irq_handler(dev, pch_iir);
2132
2133 /* should clear PCH hotplug event before clear CPU irq */
2134 I915_WRITE(SDEIIR, pch_iir);
2135 }
2136
2137 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2138 ironlake_rps_change_irq_handler(dev);
2139 }
2140
2141 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2142 {
2143 struct drm_i915_private *dev_priv = dev->dev_private;
2144 enum pipe pipe;
2145 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2146
2147 if (hotplug_trigger)
2148 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2149
2150 if (de_iir & DE_ERR_INT_IVB)
2151 ivb_err_int_handler(dev);
2152
2153 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2154 dp_aux_irq_handler(dev);
2155
2156 if (de_iir & DE_GSE_IVB)
2157 intel_opregion_asle_intr(dev);
2158
2159 for_each_pipe(dev_priv, pipe) {
2160 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2161 intel_pipe_handle_vblank(dev, pipe))
2162 intel_check_page_flip(dev, pipe);
2163
2164 /* plane/pipes map 1:1 on ilk+ */
2165 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2166 intel_prepare_page_flip(dev, pipe);
2167 intel_finish_page_flip_plane(dev, pipe);
2168 }
2169 }
2170
2171 /* check event from PCH */
2172 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2173 u32 pch_iir = I915_READ(SDEIIR);
2174
2175 cpt_irq_handler(dev, pch_iir);
2176
2177 /* clear PCH hotplug event before clear CPU irq */
2178 I915_WRITE(SDEIIR, pch_iir);
2179 }
2180 }
2181
2182 /*
2183 * To handle irqs with the minimum potential races with fresh interrupts, we:
2184 * 1 - Disable Master Interrupt Control.
2185 * 2 - Find the source(s) of the interrupt.
2186 * 3 - Clear the Interrupt Identity bits (IIR).
2187 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2188 * 5 - Re-enable Master Interrupt Control.
2189 */
2190 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2191 {
2192 struct drm_device *dev = arg;
2193 struct drm_i915_private *dev_priv = dev->dev_private;
2194 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2195 irqreturn_t ret = IRQ_NONE;
2196
2197 if (!intel_irqs_enabled(dev_priv))
2198 return IRQ_NONE;
2199
2200 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2201 disable_rpm_wakeref_asserts(dev_priv);
2202
2203 /* disable master interrupt before clearing iir */
2204 de_ier = I915_READ(DEIER);
2205 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2206 POSTING_READ(DEIER);
2207
2208 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2209 * interrupts will will be stored on its back queue, and then we'll be
2210 * able to process them after we restore SDEIER (as soon as we restore
2211 * it, we'll get an interrupt if SDEIIR still has something to process
2212 * due to its back queue). */
2213 if (!HAS_PCH_NOP(dev)) {
2214 sde_ier = I915_READ(SDEIER);
2215 I915_WRITE(SDEIER, 0);
2216 POSTING_READ(SDEIER);
2217 }
2218
2219 /* Find, clear, then process each source of interrupt */
2220
2221 gt_iir = I915_READ(GTIIR);
2222 if (gt_iir) {
2223 I915_WRITE(GTIIR, gt_iir);
2224 ret = IRQ_HANDLED;
2225 if (INTEL_INFO(dev)->gen >= 6)
2226 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2227 else
2228 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2229 }
2230
2231 de_iir = I915_READ(DEIIR);
2232 if (de_iir) {
2233 I915_WRITE(DEIIR, de_iir);
2234 ret = IRQ_HANDLED;
2235 if (INTEL_INFO(dev)->gen >= 7)
2236 ivb_display_irq_handler(dev, de_iir);
2237 else
2238 ilk_display_irq_handler(dev, de_iir);
2239 }
2240
2241 if (INTEL_INFO(dev)->gen >= 6) {
2242 u32 pm_iir = I915_READ(GEN6_PMIIR);
2243 if (pm_iir) {
2244 I915_WRITE(GEN6_PMIIR, pm_iir);
2245 ret = IRQ_HANDLED;
2246 gen6_rps_irq_handler(dev_priv, pm_iir);
2247 }
2248 }
2249
2250 I915_WRITE(DEIER, de_ier);
2251 POSTING_READ(DEIER);
2252 if (!HAS_PCH_NOP(dev)) {
2253 I915_WRITE(SDEIER, sde_ier);
2254 POSTING_READ(SDEIER);
2255 }
2256
2257 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2258 enable_rpm_wakeref_asserts(dev_priv);
2259
2260 return ret;
2261 }
2262
2263 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2264 const u32 hpd[HPD_NUM_PINS])
2265 {
2266 struct drm_i915_private *dev_priv = to_i915(dev);
2267 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2268
2269 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2270 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2271
2272 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2273 dig_hotplug_reg, hpd,
2274 bxt_port_hotplug_long_detect);
2275
2276 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2277 }
2278
2279 static irqreturn_t
2280 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2281 {
2282 struct drm_device *dev = dev_priv->dev;
2283 irqreturn_t ret = IRQ_NONE;
2284 u32 iir;
2285 enum pipe pipe;
2286
2287 if (master_ctl & GEN8_DE_MISC_IRQ) {
2288 iir = I915_READ(GEN8_DE_MISC_IIR);
2289 if (iir) {
2290 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2291 ret = IRQ_HANDLED;
2292 if (iir & GEN8_DE_MISC_GSE)
2293 intel_opregion_asle_intr(dev);
2294 else
2295 DRM_ERROR("Unexpected DE Misc interrupt\n");
2296 }
2297 else
2298 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2299 }
2300
2301 if (master_ctl & GEN8_DE_PORT_IRQ) {
2302 iir = I915_READ(GEN8_DE_PORT_IIR);
2303 if (iir) {
2304 u32 tmp_mask;
2305 bool found = false;
2306
2307 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2308 ret = IRQ_HANDLED;
2309
2310 tmp_mask = GEN8_AUX_CHANNEL_A;
2311 if (INTEL_INFO(dev_priv)->gen >= 9)
2312 tmp_mask |= GEN9_AUX_CHANNEL_B |
2313 GEN9_AUX_CHANNEL_C |
2314 GEN9_AUX_CHANNEL_D;
2315
2316 if (iir & tmp_mask) {
2317 dp_aux_irq_handler(dev);
2318 found = true;
2319 }
2320
2321 if (IS_BROXTON(dev_priv)) {
2322 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2323 if (tmp_mask) {
2324 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2325 found = true;
2326 }
2327 } else if (IS_BROADWELL(dev_priv)) {
2328 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2329 if (tmp_mask) {
2330 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2331 found = true;
2332 }
2333 }
2334
2335 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2336 gmbus_irq_handler(dev);
2337 found = true;
2338 }
2339
2340 if (!found)
2341 DRM_ERROR("Unexpected DE Port interrupt\n");
2342 }
2343 else
2344 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2345 }
2346
2347 for_each_pipe(dev_priv, pipe) {
2348 u32 flip_done, fault_errors;
2349
2350 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2351 continue;
2352
2353 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2354 if (!iir) {
2355 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2356 continue;
2357 }
2358
2359 ret = IRQ_HANDLED;
2360 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2361
2362 if (iir & GEN8_PIPE_VBLANK &&
2363 intel_pipe_handle_vblank(dev, pipe))
2364 intel_check_page_flip(dev, pipe);
2365
2366 flip_done = iir;
2367 if (INTEL_INFO(dev_priv)->gen >= 9)
2368 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2369 else
2370 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2371
2372 if (flip_done) {
2373 intel_prepare_page_flip(dev, pipe);
2374 intel_finish_page_flip_plane(dev, pipe);
2375 }
2376
2377 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2378 hsw_pipe_crc_irq_handler(dev, pipe);
2379
2380 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2381 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2382
2383 fault_errors = iir;
2384 if (INTEL_INFO(dev_priv)->gen >= 9)
2385 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2386 else
2387 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2388
2389 if (fault_errors)
2390 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2391 pipe_name(pipe),
2392 fault_errors);
2393 }
2394
2395 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2396 master_ctl & GEN8_DE_PCH_IRQ) {
2397 /*
2398 * FIXME(BDW): Assume for now that the new interrupt handling
2399 * scheme also closed the SDE interrupt handling race we've seen
2400 * on older pch-split platforms. But this needs testing.
2401 */
2402 iir = I915_READ(SDEIIR);
2403 if (iir) {
2404 I915_WRITE(SDEIIR, iir);
2405 ret = IRQ_HANDLED;
2406
2407 if (HAS_PCH_SPT(dev_priv))
2408 spt_irq_handler(dev, iir);
2409 else
2410 cpt_irq_handler(dev, iir);
2411 } else {
2412 /*
2413 * Like on previous PCH there seems to be something
2414 * fishy going on with forwarding PCH interrupts.
2415 */
2416 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2417 }
2418 }
2419
2420 return ret;
2421 }
2422
2423 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2424 {
2425 struct drm_device *dev = arg;
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 u32 master_ctl;
2428 irqreturn_t ret;
2429
2430 if (!intel_irqs_enabled(dev_priv))
2431 return IRQ_NONE;
2432
2433 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2434 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2435 if (!master_ctl)
2436 return IRQ_NONE;
2437
2438 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2439
2440 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2441 disable_rpm_wakeref_asserts(dev_priv);
2442
2443 /* Find, clear, then process each source of interrupt */
2444 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2445 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2446
2447 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2448 POSTING_READ_FW(GEN8_MASTER_IRQ);
2449
2450 enable_rpm_wakeref_asserts(dev_priv);
2451
2452 return ret;
2453 }
2454
2455 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2456 bool reset_completed)
2457 {
2458 struct intel_engine_cs *engine;
2459
2460 /*
2461 * Notify all waiters for GPU completion events that reset state has
2462 * been changed, and that they need to restart their wait after
2463 * checking for potential errors (and bail out to drop locks if there is
2464 * a gpu reset pending so that i915_error_work_func can acquire them).
2465 */
2466
2467 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2468 for_each_engine(engine, dev_priv)
2469 wake_up_all(&engine->irq_queue);
2470
2471 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2472 wake_up_all(&dev_priv->pending_flip_queue);
2473
2474 /*
2475 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2476 * reset state is cleared.
2477 */
2478 if (reset_completed)
2479 wake_up_all(&dev_priv->gpu_error.reset_queue);
2480 }
2481
2482 /**
2483 * i915_reset_and_wakeup - do process context error handling work
2484 * @dev: drm device
2485 *
2486 * Fire an error uevent so userspace can see that a hang or error
2487 * was detected.
2488 */
2489 static void i915_reset_and_wakeup(struct drm_device *dev)
2490 {
2491 struct drm_i915_private *dev_priv = to_i915(dev);
2492 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2493 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2494 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2495 int ret;
2496
2497 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2498
2499 /*
2500 * Note that there's only one work item which does gpu resets, so we
2501 * need not worry about concurrent gpu resets potentially incrementing
2502 * error->reset_counter twice. We only need to take care of another
2503 * racing irq/hangcheck declaring the gpu dead for a second time. A
2504 * quick check for that is good enough: schedule_work ensures the
2505 * correct ordering between hang detection and this work item, and since
2506 * the reset in-progress bit is only ever set by code outside of this
2507 * work we don't need to worry about any other races.
2508 */
2509 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2510 DRM_DEBUG_DRIVER("resetting chip\n");
2511 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2512 reset_event);
2513
2514 /*
2515 * In most cases it's guaranteed that we get here with an RPM
2516 * reference held, for example because there is a pending GPU
2517 * request that won't finish until the reset is done. This
2518 * isn't the case at least when we get here by doing a
2519 * simulated reset via debugs, so get an RPM reference.
2520 */
2521 intel_runtime_pm_get(dev_priv);
2522
2523 intel_prepare_reset(dev);
2524
2525 /*
2526 * All state reset _must_ be completed before we update the
2527 * reset counter, for otherwise waiters might miss the reset
2528 * pending state and not properly drop locks, resulting in
2529 * deadlocks with the reset work.
2530 */
2531 ret = i915_reset(dev);
2532
2533 intel_finish_reset(dev);
2534
2535 intel_runtime_pm_put(dev_priv);
2536
2537 if (ret == 0)
2538 kobject_uevent_env(&dev->primary->kdev->kobj,
2539 KOBJ_CHANGE, reset_done_event);
2540
2541 /*
2542 * Note: The wake_up also serves as a memory barrier so that
2543 * waiters see the update value of the reset counter atomic_t.
2544 */
2545 i915_error_wake_up(dev_priv, true);
2546 }
2547 }
2548
2549 static void i915_report_and_clear_eir(struct drm_device *dev)
2550 {
2551 struct drm_i915_private *dev_priv = dev->dev_private;
2552 uint32_t instdone[I915_NUM_INSTDONE_REG];
2553 u32 eir = I915_READ(EIR);
2554 int pipe, i;
2555
2556 if (!eir)
2557 return;
2558
2559 pr_err("render error detected, EIR: 0x%08x\n", eir);
2560
2561 i915_get_extra_instdone(dev, instdone);
2562
2563 if (IS_G4X(dev)) {
2564 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2565 u32 ipeir = I915_READ(IPEIR_I965);
2566
2567 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2568 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2569 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2570 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2571 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2572 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2573 I915_WRITE(IPEIR_I965, ipeir);
2574 POSTING_READ(IPEIR_I965);
2575 }
2576 if (eir & GM45_ERROR_PAGE_TABLE) {
2577 u32 pgtbl_err = I915_READ(PGTBL_ER);
2578 pr_err("page table error\n");
2579 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2580 I915_WRITE(PGTBL_ER, pgtbl_err);
2581 POSTING_READ(PGTBL_ER);
2582 }
2583 }
2584
2585 if (!IS_GEN2(dev)) {
2586 if (eir & I915_ERROR_PAGE_TABLE) {
2587 u32 pgtbl_err = I915_READ(PGTBL_ER);
2588 pr_err("page table error\n");
2589 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2590 I915_WRITE(PGTBL_ER, pgtbl_err);
2591 POSTING_READ(PGTBL_ER);
2592 }
2593 }
2594
2595 if (eir & I915_ERROR_MEMORY_REFRESH) {
2596 pr_err("memory refresh error:\n");
2597 for_each_pipe(dev_priv, pipe)
2598 pr_err("pipe %c stat: 0x%08x\n",
2599 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2600 /* pipestat has already been acked */
2601 }
2602 if (eir & I915_ERROR_INSTRUCTION) {
2603 pr_err("instruction error\n");
2604 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2605 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2606 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2607 if (INTEL_INFO(dev)->gen < 4) {
2608 u32 ipeir = I915_READ(IPEIR);
2609
2610 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2611 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2612 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2613 I915_WRITE(IPEIR, ipeir);
2614 POSTING_READ(IPEIR);
2615 } else {
2616 u32 ipeir = I915_READ(IPEIR_I965);
2617
2618 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2619 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2620 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2621 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2622 I915_WRITE(IPEIR_I965, ipeir);
2623 POSTING_READ(IPEIR_I965);
2624 }
2625 }
2626
2627 I915_WRITE(EIR, eir);
2628 POSTING_READ(EIR);
2629 eir = I915_READ(EIR);
2630 if (eir) {
2631 /*
2632 * some errors might have become stuck,
2633 * mask them.
2634 */
2635 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2636 I915_WRITE(EMR, I915_READ(EMR) | eir);
2637 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2638 }
2639 }
2640
2641 /**
2642 * i915_handle_error - handle a gpu error
2643 * @dev: drm device
2644 * @engine_mask: mask representing engines that are hung
2645 * Do some basic checking of register state at error time and
2646 * dump it to the syslog. Also call i915_capture_error_state() to make
2647 * sure we get a record and make it available in debugfs. Fire a uevent
2648 * so userspace knows something bad happened (should trigger collection
2649 * of a ring dump etc.).
2650 */
2651 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2652 const char *fmt, ...)
2653 {
2654 struct drm_i915_private *dev_priv = dev->dev_private;
2655 va_list args;
2656 char error_msg[80];
2657
2658 va_start(args, fmt);
2659 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2660 va_end(args);
2661
2662 i915_capture_error_state(dev, engine_mask, error_msg);
2663 i915_report_and_clear_eir(dev);
2664
2665 if (engine_mask) {
2666 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2667 &dev_priv->gpu_error.reset_counter);
2668
2669 /*
2670 * Wakeup waiting processes so that the reset function
2671 * i915_reset_and_wakeup doesn't deadlock trying to grab
2672 * various locks. By bumping the reset counter first, the woken
2673 * processes will see a reset in progress and back off,
2674 * releasing their locks and then wait for the reset completion.
2675 * We must do this for _all_ gpu waiters that might hold locks
2676 * that the reset work needs to acquire.
2677 *
2678 * Note: The wake_up serves as the required memory barrier to
2679 * ensure that the waiters see the updated value of the reset
2680 * counter atomic_t.
2681 */
2682 i915_error_wake_up(dev_priv, false);
2683 }
2684
2685 i915_reset_and_wakeup(dev);
2686 }
2687
2688 /* Called from drm generic code, passed 'crtc' which
2689 * we use as a pipe index
2690 */
2691 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2692 {
2693 struct drm_i915_private *dev_priv = dev->dev_private;
2694 unsigned long irqflags;
2695
2696 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2697 if (INTEL_INFO(dev)->gen >= 4)
2698 i915_enable_pipestat(dev_priv, pipe,
2699 PIPE_START_VBLANK_INTERRUPT_STATUS);
2700 else
2701 i915_enable_pipestat(dev_priv, pipe,
2702 PIPE_VBLANK_INTERRUPT_STATUS);
2703 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2704
2705 return 0;
2706 }
2707
2708 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2709 {
2710 struct drm_i915_private *dev_priv = dev->dev_private;
2711 unsigned long irqflags;
2712 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2713 DE_PIPE_VBLANK(pipe);
2714
2715 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2716 ilk_enable_display_irq(dev_priv, bit);
2717 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2718
2719 return 0;
2720 }
2721
2722 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2723 {
2724 struct drm_i915_private *dev_priv = dev->dev_private;
2725 unsigned long irqflags;
2726
2727 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728 i915_enable_pipestat(dev_priv, pipe,
2729 PIPE_START_VBLANK_INTERRUPT_STATUS);
2730 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2731
2732 return 0;
2733 }
2734
2735 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2736 {
2737 struct drm_i915_private *dev_priv = dev->dev_private;
2738 unsigned long irqflags;
2739
2740 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2741 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2742 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
2744 return 0;
2745 }
2746
2747 /* Called from drm generic code, passed 'crtc' which
2748 * we use as a pipe index
2749 */
2750 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2751 {
2752 struct drm_i915_private *dev_priv = dev->dev_private;
2753 unsigned long irqflags;
2754
2755 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2756 i915_disable_pipestat(dev_priv, pipe,
2757 PIPE_VBLANK_INTERRUPT_STATUS |
2758 PIPE_START_VBLANK_INTERRUPT_STATUS);
2759 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2760 }
2761
2762 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763 {
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 unsigned long irqflags;
2766 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2767 DE_PIPE_VBLANK(pipe);
2768
2769 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2770 ilk_disable_display_irq(dev_priv, bit);
2771 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772 }
2773
2774 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775 {
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 unsigned long irqflags;
2778
2779 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2780 i915_disable_pipestat(dev_priv, pipe,
2781 PIPE_START_VBLANK_INTERRUPT_STATUS);
2782 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2783 }
2784
2785 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2786 {
2787 struct drm_i915_private *dev_priv = dev->dev_private;
2788 unsigned long irqflags;
2789
2790 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2791 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2792 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2793 }
2794
2795 static bool
2796 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2797 {
2798 return i915_seqno_passed(seqno,
2799 READ_ONCE(engine->last_submitted_seqno));
2800 }
2801
2802 static bool
2803 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2804 {
2805 if (INTEL_INFO(dev)->gen >= 8) {
2806 return (ipehr >> 23) == 0x1c;
2807 } else {
2808 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2809 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2810 MI_SEMAPHORE_REGISTER);
2811 }
2812 }
2813
2814 static struct intel_engine_cs *
2815 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2816 u64 offset)
2817 {
2818 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2819 struct intel_engine_cs *signaller;
2820
2821 if (INTEL_INFO(dev_priv)->gen >= 8) {
2822 for_each_engine(signaller, dev_priv) {
2823 if (engine == signaller)
2824 continue;
2825
2826 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2827 return signaller;
2828 }
2829 } else {
2830 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2831
2832 for_each_engine(signaller, dev_priv) {
2833 if(engine == signaller)
2834 continue;
2835
2836 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2837 return signaller;
2838 }
2839 }
2840
2841 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2842 engine->id, ipehr, offset);
2843
2844 return NULL;
2845 }
2846
2847 static struct intel_engine_cs *
2848 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2849 {
2850 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2851 u32 cmd, ipehr, head;
2852 u64 offset = 0;
2853 int i, backwards;
2854
2855 /*
2856 * This function does not support execlist mode - any attempt to
2857 * proceed further into this function will result in a kernel panic
2858 * when dereferencing ring->buffer, which is not set up in execlist
2859 * mode.
2860 *
2861 * The correct way of doing it would be to derive the currently
2862 * executing ring buffer from the current context, which is derived
2863 * from the currently running request. Unfortunately, to get the
2864 * current request we would have to grab the struct_mutex before doing
2865 * anything else, which would be ill-advised since some other thread
2866 * might have grabbed it already and managed to hang itself, causing
2867 * the hang checker to deadlock.
2868 *
2869 * Therefore, this function does not support execlist mode in its
2870 * current form. Just return NULL and move on.
2871 */
2872 if (engine->buffer == NULL)
2873 return NULL;
2874
2875 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2876 if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2877 return NULL;
2878
2879 /*
2880 * HEAD is likely pointing to the dword after the actual command,
2881 * so scan backwards until we find the MBOX. But limit it to just 3
2882 * or 4 dwords depending on the semaphore wait command size.
2883 * Note that we don't care about ACTHD here since that might
2884 * point at at batch, and semaphores are always emitted into the
2885 * ringbuffer itself.
2886 */
2887 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2888 backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2889
2890 for (i = backwards; i; --i) {
2891 /*
2892 * Be paranoid and presume the hw has gone off into the wild -
2893 * our ring is smaller than what the hardware (and hence
2894 * HEAD_ADDR) allows. Also handles wrap-around.
2895 */
2896 head &= engine->buffer->size - 1;
2897
2898 /* This here seems to blow up */
2899 cmd = ioread32(engine->buffer->virtual_start + head);
2900 if (cmd == ipehr)
2901 break;
2902
2903 head -= 4;
2904 }
2905
2906 if (!i)
2907 return NULL;
2908
2909 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2910 if (INTEL_INFO(engine->dev)->gen >= 8) {
2911 offset = ioread32(engine->buffer->virtual_start + head + 12);
2912 offset <<= 32;
2913 offset = ioread32(engine->buffer->virtual_start + head + 8);
2914 }
2915 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2916 }
2917
2918 static int semaphore_passed(struct intel_engine_cs *engine)
2919 {
2920 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2921 struct intel_engine_cs *signaller;
2922 u32 seqno;
2923
2924 engine->hangcheck.deadlock++;
2925
2926 signaller = semaphore_waits_for(engine, &seqno);
2927 if (signaller == NULL)
2928 return -1;
2929
2930 /* Prevent pathological recursion due to driver bugs */
2931 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2932 return -1;
2933
2934 if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2935 return 1;
2936
2937 /* cursory check for an unkickable deadlock */
2938 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2939 semaphore_passed(signaller) < 0)
2940 return -1;
2941
2942 return 0;
2943 }
2944
2945 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2946 {
2947 struct intel_engine_cs *engine;
2948
2949 for_each_engine(engine, dev_priv)
2950 engine->hangcheck.deadlock = 0;
2951 }
2952
2953 static bool subunits_stuck(struct intel_engine_cs *engine)
2954 {
2955 u32 instdone[I915_NUM_INSTDONE_REG];
2956 bool stuck;
2957 int i;
2958
2959 if (engine->id != RCS)
2960 return true;
2961
2962 i915_get_extra_instdone(engine->dev, instdone);
2963
2964 /* There might be unstable subunit states even when
2965 * actual head is not moving. Filter out the unstable ones by
2966 * accumulating the undone -> done transitions and only
2967 * consider those as progress.
2968 */
2969 stuck = true;
2970 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2971 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2972
2973 if (tmp != engine->hangcheck.instdone[i])
2974 stuck = false;
2975
2976 engine->hangcheck.instdone[i] |= tmp;
2977 }
2978
2979 return stuck;
2980 }
2981
2982 static enum intel_ring_hangcheck_action
2983 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2984 {
2985 if (acthd != engine->hangcheck.acthd) {
2986
2987 /* Clear subunit states on head movement */
2988 memset(engine->hangcheck.instdone, 0,
2989 sizeof(engine->hangcheck.instdone));
2990
2991 return HANGCHECK_ACTIVE;
2992 }
2993
2994 if (!subunits_stuck(engine))
2995 return HANGCHECK_ACTIVE;
2996
2997 return HANGCHECK_HUNG;
2998 }
2999
3000 static enum intel_ring_hangcheck_action
3001 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3002 {
3003 struct drm_device *dev = engine->dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 enum intel_ring_hangcheck_action ha;
3006 u32 tmp;
3007
3008 ha = head_stuck(engine, acthd);
3009 if (ha != HANGCHECK_HUNG)
3010 return ha;
3011
3012 if (IS_GEN2(dev))
3013 return HANGCHECK_HUNG;
3014
3015 /* Is the chip hanging on a WAIT_FOR_EVENT?
3016 * If so we can simply poke the RB_WAIT bit
3017 * and break the hang. This should work on
3018 * all but the second generation chipsets.
3019 */
3020 tmp = I915_READ_CTL(engine);
3021 if (tmp & RING_WAIT) {
3022 i915_handle_error(dev, 0,
3023 "Kicking stuck wait on %s",
3024 engine->name);
3025 I915_WRITE_CTL(engine, tmp);
3026 return HANGCHECK_KICK;
3027 }
3028
3029 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3030 switch (semaphore_passed(engine)) {
3031 default:
3032 return HANGCHECK_HUNG;
3033 case 1:
3034 i915_handle_error(dev, 0,
3035 "Kicking stuck semaphore on %s",
3036 engine->name);
3037 I915_WRITE_CTL(engine, tmp);
3038 return HANGCHECK_KICK;
3039 case 0:
3040 return HANGCHECK_WAIT;
3041 }
3042 }
3043
3044 return HANGCHECK_HUNG;
3045 }
3046
3047 static unsigned kick_waiters(struct intel_engine_cs *engine)
3048 {
3049 struct drm_i915_private *i915 = to_i915(engine->dev);
3050 unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3051
3052 if (engine->hangcheck.user_interrupts == user_interrupts &&
3053 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3054 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3055 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3056 engine->name);
3057 else
3058 DRM_INFO("Fake missed irq on %s\n",
3059 engine->name);
3060 wake_up_all(&engine->irq_queue);
3061 }
3062
3063 return user_interrupts;
3064 }
3065 /*
3066 * This is called when the chip hasn't reported back with completed
3067 * batchbuffers in a long time. We keep track per ring seqno progress and
3068 * if there are no progress, hangcheck score for that ring is increased.
3069 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3070 * we kick the ring. If we see no progress on three subsequent calls
3071 * we assume chip is wedged and try to fix it by resetting the chip.
3072 */
3073 static void i915_hangcheck_elapsed(struct work_struct *work)
3074 {
3075 struct drm_i915_private *dev_priv =
3076 container_of(work, typeof(*dev_priv),
3077 gpu_error.hangcheck_work.work);
3078 struct drm_device *dev = dev_priv->dev;
3079 struct intel_engine_cs *engine;
3080 enum intel_engine_id id;
3081 int busy_count = 0, rings_hung = 0;
3082 bool stuck[I915_NUM_ENGINES] = { 0 };
3083 #define BUSY 1
3084 #define KICK 5
3085 #define HUNG 20
3086 #define ACTIVE_DECAY 15
3087
3088 if (!i915.enable_hangcheck)
3089 return;
3090
3091 /*
3092 * The hangcheck work is synced during runtime suspend, we don't
3093 * require a wakeref. TODO: instead of disabling the asserts make
3094 * sure that we hold a reference when this work is running.
3095 */
3096 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3097
3098 /* As enabling the GPU requires fairly extensive mmio access,
3099 * periodically arm the mmio checker to see if we are triggering
3100 * any invalid access.
3101 */
3102 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3103
3104 for_each_engine_id(engine, dev_priv, id) {
3105 u64 acthd;
3106 u32 seqno;
3107 unsigned user_interrupts;
3108 bool busy = true;
3109
3110 semaphore_clear_deadlocks(dev_priv);
3111
3112 /* We don't strictly need an irq-barrier here, as we are not
3113 * serving an interrupt request, be paranoid in case the
3114 * barrier has side-effects (such as preventing a broken
3115 * cacheline snoop) and so be sure that we can see the seqno
3116 * advance. If the seqno should stick, due to a stale
3117 * cacheline, we would erroneously declare the GPU hung.
3118 */
3119 if (engine->irq_seqno_barrier)
3120 engine->irq_seqno_barrier(engine);
3121
3122 acthd = intel_ring_get_active_head(engine);
3123 seqno = engine->get_seqno(engine);
3124
3125 /* Reset stuck interrupts between batch advances */
3126 user_interrupts = 0;
3127
3128 if (engine->hangcheck.seqno == seqno) {
3129 if (ring_idle(engine, seqno)) {
3130 engine->hangcheck.action = HANGCHECK_IDLE;
3131 if (waitqueue_active(&engine->irq_queue)) {
3132 /* Safeguard against driver failure */
3133 user_interrupts = kick_waiters(engine);
3134 engine->hangcheck.score += BUSY;
3135 } else
3136 busy = false;
3137 } else {
3138 /* We always increment the hangcheck score
3139 * if the ring is busy and still processing
3140 * the same request, so that no single request
3141 * can run indefinitely (such as a chain of
3142 * batches). The only time we do not increment
3143 * the hangcheck score on this ring, if this
3144 * ring is in a legitimate wait for another
3145 * ring. In that case the waiting ring is a
3146 * victim and we want to be sure we catch the
3147 * right culprit. Then every time we do kick
3148 * the ring, add a small increment to the
3149 * score so that we can catch a batch that is
3150 * being repeatedly kicked and so responsible
3151 * for stalling the machine.
3152 */
3153 engine->hangcheck.action = ring_stuck(engine,
3154 acthd);
3155
3156 switch (engine->hangcheck.action) {
3157 case HANGCHECK_IDLE:
3158 case HANGCHECK_WAIT:
3159 break;
3160 case HANGCHECK_ACTIVE:
3161 engine->hangcheck.score += BUSY;
3162 break;
3163 case HANGCHECK_KICK:
3164 engine->hangcheck.score += KICK;
3165 break;
3166 case HANGCHECK_HUNG:
3167 engine->hangcheck.score += HUNG;
3168 stuck[id] = true;
3169 break;
3170 }
3171 }
3172 } else {
3173 engine->hangcheck.action = HANGCHECK_ACTIVE;
3174
3175 /* Gradually reduce the count so that we catch DoS
3176 * attempts across multiple batches.
3177 */
3178 if (engine->hangcheck.score > 0)
3179 engine->hangcheck.score -= ACTIVE_DECAY;
3180 if (engine->hangcheck.score < 0)
3181 engine->hangcheck.score = 0;
3182
3183 /* Clear head and subunit states on seqno movement */
3184 acthd = 0;
3185
3186 memset(engine->hangcheck.instdone, 0,
3187 sizeof(engine->hangcheck.instdone));
3188 }
3189
3190 engine->hangcheck.seqno = seqno;
3191 engine->hangcheck.acthd = acthd;
3192 engine->hangcheck.user_interrupts = user_interrupts;
3193 busy_count += busy;
3194 }
3195
3196 for_each_engine_id(engine, dev_priv, id) {
3197 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3198 DRM_INFO("%s on %s\n",
3199 stuck[id] ? "stuck" : "no progress",
3200 engine->name);
3201 rings_hung |= intel_engine_flag(engine);
3202 }
3203 }
3204
3205 if (rings_hung) {
3206 i915_handle_error(dev, rings_hung, "Engine(s) hung");
3207 goto out;
3208 }
3209
3210 if (busy_count)
3211 /* Reset timer case chip hangs without another request
3212 * being added */
3213 i915_queue_hangcheck(dev);
3214
3215 out:
3216 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3217 }
3218
3219 void i915_queue_hangcheck(struct drm_device *dev)
3220 {
3221 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3222
3223 if (!i915.enable_hangcheck)
3224 return;
3225
3226 /* Don't continually defer the hangcheck so that it is always run at
3227 * least once after work has been scheduled on any ring. Otherwise,
3228 * we will ignore a hung ring if a second ring is kept busy.
3229 */
3230
3231 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3232 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3233 }
3234
3235 static void ibx_irq_reset(struct drm_device *dev)
3236 {
3237 struct drm_i915_private *dev_priv = dev->dev_private;
3238
3239 if (HAS_PCH_NOP(dev))
3240 return;
3241
3242 GEN5_IRQ_RESET(SDE);
3243
3244 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3245 I915_WRITE(SERR_INT, 0xffffffff);
3246 }
3247
3248 /*
3249 * SDEIER is also touched by the interrupt handler to work around missed PCH
3250 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3251 * instead we unconditionally enable all PCH interrupt sources here, but then
3252 * only unmask them as needed with SDEIMR.
3253 *
3254 * This function needs to be called before interrupts are enabled.
3255 */
3256 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3257 {
3258 struct drm_i915_private *dev_priv = dev->dev_private;
3259
3260 if (HAS_PCH_NOP(dev))
3261 return;
3262
3263 WARN_ON(I915_READ(SDEIER) != 0);
3264 I915_WRITE(SDEIER, 0xffffffff);
3265 POSTING_READ(SDEIER);
3266 }
3267
3268 static void gen5_gt_irq_reset(struct drm_device *dev)
3269 {
3270 struct drm_i915_private *dev_priv = dev->dev_private;
3271
3272 GEN5_IRQ_RESET(GT);
3273 if (INTEL_INFO(dev)->gen >= 6)
3274 GEN5_IRQ_RESET(GEN6_PM);
3275 }
3276
3277 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3278 {
3279 enum pipe pipe;
3280
3281 if (IS_CHERRYVIEW(dev_priv))
3282 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3283 else
3284 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3285
3286 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3287 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3288
3289 for_each_pipe(dev_priv, pipe) {
3290 I915_WRITE(PIPESTAT(pipe),
3291 PIPE_FIFO_UNDERRUN_STATUS |
3292 PIPESTAT_INT_STATUS_MASK);
3293 dev_priv->pipestat_irq_mask[pipe] = 0;
3294 }
3295
3296 GEN5_IRQ_RESET(VLV_);
3297 dev_priv->irq_mask = ~0;
3298 }
3299
3300 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3301 {
3302 u32 pipestat_mask;
3303 u32 enable_mask;
3304 enum pipe pipe;
3305
3306 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3307 PIPE_CRC_DONE_INTERRUPT_STATUS;
3308
3309 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3310 for_each_pipe(dev_priv, pipe)
3311 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3312
3313 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3314 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3315 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3316 if (IS_CHERRYVIEW(dev_priv))
3317 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3318
3319 WARN_ON(dev_priv->irq_mask != ~0);
3320
3321 dev_priv->irq_mask = ~enable_mask;
3322
3323 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3324 }
3325
3326 /* drm_dma.h hooks
3327 */
3328 static void ironlake_irq_reset(struct drm_device *dev)
3329 {
3330 struct drm_i915_private *dev_priv = dev->dev_private;
3331
3332 I915_WRITE(HWSTAM, 0xffffffff);
3333
3334 GEN5_IRQ_RESET(DE);
3335 if (IS_GEN7(dev))
3336 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3337
3338 gen5_gt_irq_reset(dev);
3339
3340 ibx_irq_reset(dev);
3341 }
3342
3343 static void valleyview_irq_preinstall(struct drm_device *dev)
3344 {
3345 struct drm_i915_private *dev_priv = dev->dev_private;
3346
3347 I915_WRITE(VLV_MASTER_IER, 0);
3348 POSTING_READ(VLV_MASTER_IER);
3349
3350 gen5_gt_irq_reset(dev);
3351
3352 spin_lock_irq(&dev_priv->irq_lock);
3353 if (dev_priv->display_irqs_enabled)
3354 vlv_display_irq_reset(dev_priv);
3355 spin_unlock_irq(&dev_priv->irq_lock);
3356 }
3357
3358 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3359 {
3360 GEN8_IRQ_RESET_NDX(GT, 0);
3361 GEN8_IRQ_RESET_NDX(GT, 1);
3362 GEN8_IRQ_RESET_NDX(GT, 2);
3363 GEN8_IRQ_RESET_NDX(GT, 3);
3364 }
3365
3366 static void gen8_irq_reset(struct drm_device *dev)
3367 {
3368 struct drm_i915_private *dev_priv = dev->dev_private;
3369 int pipe;
3370
3371 I915_WRITE(GEN8_MASTER_IRQ, 0);
3372 POSTING_READ(GEN8_MASTER_IRQ);
3373
3374 gen8_gt_irq_reset(dev_priv);
3375
3376 for_each_pipe(dev_priv, pipe)
3377 if (intel_display_power_is_enabled(dev_priv,
3378 POWER_DOMAIN_PIPE(pipe)))
3379 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3380
3381 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3382 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3383 GEN5_IRQ_RESET(GEN8_PCU_);
3384
3385 if (HAS_PCH_SPLIT(dev))
3386 ibx_irq_reset(dev);
3387 }
3388
3389 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3390 unsigned int pipe_mask)
3391 {
3392 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3393 enum pipe pipe;
3394
3395 spin_lock_irq(&dev_priv->irq_lock);
3396 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3397 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3398 dev_priv->de_irq_mask[pipe],
3399 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3400 spin_unlock_irq(&dev_priv->irq_lock);
3401 }
3402
3403 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3404 unsigned int pipe_mask)
3405 {
3406 enum pipe pipe;
3407
3408 spin_lock_irq(&dev_priv->irq_lock);
3409 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3410 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3411 spin_unlock_irq(&dev_priv->irq_lock);
3412
3413 /* make sure we're done processing display irqs */
3414 synchronize_irq(dev_priv->dev->irq);
3415 }
3416
3417 static void cherryview_irq_preinstall(struct drm_device *dev)
3418 {
3419 struct drm_i915_private *dev_priv = dev->dev_private;
3420
3421 I915_WRITE(GEN8_MASTER_IRQ, 0);
3422 POSTING_READ(GEN8_MASTER_IRQ);
3423
3424 gen8_gt_irq_reset(dev_priv);
3425
3426 GEN5_IRQ_RESET(GEN8_PCU_);
3427
3428 spin_lock_irq(&dev_priv->irq_lock);
3429 if (dev_priv->display_irqs_enabled)
3430 vlv_display_irq_reset(dev_priv);
3431 spin_unlock_irq(&dev_priv->irq_lock);
3432 }
3433
3434 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3435 const u32 hpd[HPD_NUM_PINS])
3436 {
3437 struct drm_i915_private *dev_priv = to_i915(dev);
3438 struct intel_encoder *encoder;
3439 u32 enabled_irqs = 0;
3440
3441 for_each_intel_encoder(dev, encoder)
3442 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3443 enabled_irqs |= hpd[encoder->hpd_pin];
3444
3445 return enabled_irqs;
3446 }
3447
3448 static void ibx_hpd_irq_setup(struct drm_device *dev)
3449 {
3450 struct drm_i915_private *dev_priv = dev->dev_private;
3451 u32 hotplug_irqs, hotplug, enabled_irqs;
3452
3453 if (HAS_PCH_IBX(dev)) {
3454 hotplug_irqs = SDE_HOTPLUG_MASK;
3455 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3456 } else {
3457 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3458 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3459 }
3460
3461 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3462
3463 /*
3464 * Enable digital hotplug on the PCH, and configure the DP short pulse
3465 * duration to 2ms (which is the minimum in the Display Port spec).
3466 * The pulse duration bits are reserved on LPT+.
3467 */
3468 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3469 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3470 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3471 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3472 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3473 /*
3474 * When CPU and PCH are on the same package, port A
3475 * HPD must be enabled in both north and south.
3476 */
3477 if (HAS_PCH_LPT_LP(dev))
3478 hotplug |= PORTA_HOTPLUG_ENABLE;
3479 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3480 }
3481
3482 static void spt_hpd_irq_setup(struct drm_device *dev)
3483 {
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485 u32 hotplug_irqs, hotplug, enabled_irqs;
3486
3487 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3488 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3489
3490 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3491
3492 /* Enable digital hotplug on the PCH */
3493 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3494 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3495 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3496 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3497
3498 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3499 hotplug |= PORTE_HOTPLUG_ENABLE;
3500 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3501 }
3502
3503 static void ilk_hpd_irq_setup(struct drm_device *dev)
3504 {
3505 struct drm_i915_private *dev_priv = dev->dev_private;
3506 u32 hotplug_irqs, hotplug, enabled_irqs;
3507
3508 if (INTEL_INFO(dev)->gen >= 8) {
3509 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3510 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3511
3512 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3513 } else if (INTEL_INFO(dev)->gen >= 7) {
3514 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3515 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3516
3517 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3518 } else {
3519 hotplug_irqs = DE_DP_A_HOTPLUG;
3520 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3521
3522 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3523 }
3524
3525 /*
3526 * Enable digital hotplug on the CPU, and configure the DP short pulse
3527 * duration to 2ms (which is the minimum in the Display Port spec)
3528 * The pulse duration bits are reserved on HSW+.
3529 */
3530 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3531 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3532 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3533 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3534
3535 ibx_hpd_irq_setup(dev);
3536 }
3537
3538 static void bxt_hpd_irq_setup(struct drm_device *dev)
3539 {
3540 struct drm_i915_private *dev_priv = dev->dev_private;
3541 u32 hotplug_irqs, hotplug, enabled_irqs;
3542
3543 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3544 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3545
3546 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3549 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3550 PORTA_HOTPLUG_ENABLE;
3551
3552 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3553 hotplug, enabled_irqs);
3554 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3555
3556 /*
3557 * For BXT invert bit has to be set based on AOB design
3558 * for HPD detection logic, update it based on VBT fields.
3559 */
3560
3561 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3562 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3563 hotplug |= BXT_DDIA_HPD_INVERT;
3564 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3565 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3566 hotplug |= BXT_DDIB_HPD_INVERT;
3567 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3568 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3569 hotplug |= BXT_DDIC_HPD_INVERT;
3570
3571 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3572 }
3573
3574 static void ibx_irq_postinstall(struct drm_device *dev)
3575 {
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 u32 mask;
3578
3579 if (HAS_PCH_NOP(dev))
3580 return;
3581
3582 if (HAS_PCH_IBX(dev))
3583 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3584 else
3585 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3586
3587 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3588 I915_WRITE(SDEIMR, ~mask);
3589 }
3590
3591 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3592 {
3593 struct drm_i915_private *dev_priv = dev->dev_private;
3594 u32 pm_irqs, gt_irqs;
3595
3596 pm_irqs = gt_irqs = 0;
3597
3598 dev_priv->gt_irq_mask = ~0;
3599 if (HAS_L3_DPF(dev)) {
3600 /* L3 parity interrupt is always unmasked. */
3601 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3602 gt_irqs |= GT_PARITY_ERROR(dev);
3603 }
3604
3605 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3606 if (IS_GEN5(dev)) {
3607 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3608 ILK_BSD_USER_INTERRUPT;
3609 } else {
3610 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3611 }
3612
3613 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3614
3615 if (INTEL_INFO(dev)->gen >= 6) {
3616 /*
3617 * RPS interrupts will get enabled/disabled on demand when RPS
3618 * itself is enabled/disabled.
3619 */
3620 if (HAS_VEBOX(dev))
3621 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3622
3623 dev_priv->pm_irq_mask = 0xffffffff;
3624 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3625 }
3626 }
3627
3628 static int ironlake_irq_postinstall(struct drm_device *dev)
3629 {
3630 struct drm_i915_private *dev_priv = dev->dev_private;
3631 u32 display_mask, extra_mask;
3632
3633 if (INTEL_INFO(dev)->gen >= 7) {
3634 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3635 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3636 DE_PLANEB_FLIP_DONE_IVB |
3637 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3638 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3639 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3640 DE_DP_A_HOTPLUG_IVB);
3641 } else {
3642 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3643 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3644 DE_AUX_CHANNEL_A |
3645 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3646 DE_POISON);
3647 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3648 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3649 DE_DP_A_HOTPLUG);
3650 }
3651
3652 dev_priv->irq_mask = ~display_mask;
3653
3654 I915_WRITE(HWSTAM, 0xeffe);
3655
3656 ibx_irq_pre_postinstall(dev);
3657
3658 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3659
3660 gen5_gt_irq_postinstall(dev);
3661
3662 ibx_irq_postinstall(dev);
3663
3664 if (IS_IRONLAKE_M(dev)) {
3665 /* Enable PCU event interrupts
3666 *
3667 * spinlocking not required here for correctness since interrupt
3668 * setup is guaranteed to run in single-threaded context. But we
3669 * need it to make the assert_spin_locked happy. */
3670 spin_lock_irq(&dev_priv->irq_lock);
3671 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3672 spin_unlock_irq(&dev_priv->irq_lock);
3673 }
3674
3675 return 0;
3676 }
3677
3678 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3679 {
3680 assert_spin_locked(&dev_priv->irq_lock);
3681
3682 if (dev_priv->display_irqs_enabled)
3683 return;
3684
3685 dev_priv->display_irqs_enabled = true;
3686
3687 if (intel_irqs_enabled(dev_priv)) {
3688 vlv_display_irq_reset(dev_priv);
3689 vlv_display_irq_postinstall(dev_priv);
3690 }
3691 }
3692
3693 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3694 {
3695 assert_spin_locked(&dev_priv->irq_lock);
3696
3697 if (!dev_priv->display_irqs_enabled)
3698 return;
3699
3700 dev_priv->display_irqs_enabled = false;
3701
3702 if (intel_irqs_enabled(dev_priv))
3703 vlv_display_irq_reset(dev_priv);
3704 }
3705
3706
3707 static int valleyview_irq_postinstall(struct drm_device *dev)
3708 {
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710
3711 gen5_gt_irq_postinstall(dev);
3712
3713 spin_lock_irq(&dev_priv->irq_lock);
3714 if (dev_priv->display_irqs_enabled)
3715 vlv_display_irq_postinstall(dev_priv);
3716 spin_unlock_irq(&dev_priv->irq_lock);
3717
3718 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3719 POSTING_READ(VLV_MASTER_IER);
3720
3721 return 0;
3722 }
3723
3724 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3725 {
3726 /* These are interrupts we'll toggle with the ring mask register */
3727 uint32_t gt_interrupts[] = {
3728 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3729 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3730 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3731 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3732 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3733 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3734 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3735 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3736 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3737 0,
3738 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3739 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3740 };
3741
3742 dev_priv->pm_irq_mask = 0xffffffff;
3743 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3744 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3745 /*
3746 * RPS interrupts will get enabled/disabled on demand when RPS itself
3747 * is enabled/disabled.
3748 */
3749 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3750 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3751 }
3752
3753 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3754 {
3755 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3756 uint32_t de_pipe_enables;
3757 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3758 u32 de_port_enables;
3759 enum pipe pipe;
3760
3761 if (INTEL_INFO(dev_priv)->gen >= 9) {
3762 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3763 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3764 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3765 GEN9_AUX_CHANNEL_D;
3766 if (IS_BROXTON(dev_priv))
3767 de_port_masked |= BXT_DE_PORT_GMBUS;
3768 } else {
3769 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3770 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3771 }
3772
3773 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3774 GEN8_PIPE_FIFO_UNDERRUN;
3775
3776 de_port_enables = de_port_masked;
3777 if (IS_BROXTON(dev_priv))
3778 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3779 else if (IS_BROADWELL(dev_priv))
3780 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3781
3782 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3783 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3784 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3785
3786 for_each_pipe(dev_priv, pipe)
3787 if (intel_display_power_is_enabled(dev_priv,
3788 POWER_DOMAIN_PIPE(pipe)))
3789 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3790 dev_priv->de_irq_mask[pipe],
3791 de_pipe_enables);
3792
3793 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3794 }
3795
3796 static int gen8_irq_postinstall(struct drm_device *dev)
3797 {
3798 struct drm_i915_private *dev_priv = dev->dev_private;
3799
3800 if (HAS_PCH_SPLIT(dev))
3801 ibx_irq_pre_postinstall(dev);
3802
3803 gen8_gt_irq_postinstall(dev_priv);
3804 gen8_de_irq_postinstall(dev_priv);
3805
3806 if (HAS_PCH_SPLIT(dev))
3807 ibx_irq_postinstall(dev);
3808
3809 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3810 POSTING_READ(GEN8_MASTER_IRQ);
3811
3812 return 0;
3813 }
3814
3815 static int cherryview_irq_postinstall(struct drm_device *dev)
3816 {
3817 struct drm_i915_private *dev_priv = dev->dev_private;
3818
3819 gen8_gt_irq_postinstall(dev_priv);
3820
3821 spin_lock_irq(&dev_priv->irq_lock);
3822 if (dev_priv->display_irqs_enabled)
3823 vlv_display_irq_postinstall(dev_priv);
3824 spin_unlock_irq(&dev_priv->irq_lock);
3825
3826 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3827 POSTING_READ(GEN8_MASTER_IRQ);
3828
3829 return 0;
3830 }
3831
3832 static void gen8_irq_uninstall(struct drm_device *dev)
3833 {
3834 struct drm_i915_private *dev_priv = dev->dev_private;
3835
3836 if (!dev_priv)
3837 return;
3838
3839 gen8_irq_reset(dev);
3840 }
3841
3842 static void valleyview_irq_uninstall(struct drm_device *dev)
3843 {
3844 struct drm_i915_private *dev_priv = dev->dev_private;
3845
3846 if (!dev_priv)
3847 return;
3848
3849 I915_WRITE(VLV_MASTER_IER, 0);
3850 POSTING_READ(VLV_MASTER_IER);
3851
3852 gen5_gt_irq_reset(dev);
3853
3854 I915_WRITE(HWSTAM, 0xffffffff);
3855
3856 spin_lock_irq(&dev_priv->irq_lock);
3857 if (dev_priv->display_irqs_enabled)
3858 vlv_display_irq_reset(dev_priv);
3859 spin_unlock_irq(&dev_priv->irq_lock);
3860 }
3861
3862 static void cherryview_irq_uninstall(struct drm_device *dev)
3863 {
3864 struct drm_i915_private *dev_priv = dev->dev_private;
3865
3866 if (!dev_priv)
3867 return;
3868
3869 I915_WRITE(GEN8_MASTER_IRQ, 0);
3870 POSTING_READ(GEN8_MASTER_IRQ);
3871
3872 gen8_gt_irq_reset(dev_priv);
3873
3874 GEN5_IRQ_RESET(GEN8_PCU_);
3875
3876 spin_lock_irq(&dev_priv->irq_lock);
3877 if (dev_priv->display_irqs_enabled)
3878 vlv_display_irq_reset(dev_priv);
3879 spin_unlock_irq(&dev_priv->irq_lock);
3880 }
3881
3882 static void ironlake_irq_uninstall(struct drm_device *dev)
3883 {
3884 struct drm_i915_private *dev_priv = dev->dev_private;
3885
3886 if (!dev_priv)
3887 return;
3888
3889 ironlake_irq_reset(dev);
3890 }
3891
3892 static void i8xx_irq_preinstall(struct drm_device * dev)
3893 {
3894 struct drm_i915_private *dev_priv = dev->dev_private;
3895 int pipe;
3896
3897 for_each_pipe(dev_priv, pipe)
3898 I915_WRITE(PIPESTAT(pipe), 0);
3899 I915_WRITE16(IMR, 0xffff);
3900 I915_WRITE16(IER, 0x0);
3901 POSTING_READ16(IER);
3902 }
3903
3904 static int i8xx_irq_postinstall(struct drm_device *dev)
3905 {
3906 struct drm_i915_private *dev_priv = dev->dev_private;
3907
3908 I915_WRITE16(EMR,
3909 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3910
3911 /* Unmask the interrupts that we always want on. */
3912 dev_priv->irq_mask =
3913 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3914 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3915 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3916 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3917 I915_WRITE16(IMR, dev_priv->irq_mask);
3918
3919 I915_WRITE16(IER,
3920 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3921 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3922 I915_USER_INTERRUPT);
3923 POSTING_READ16(IER);
3924
3925 /* Interrupt setup is already guaranteed to be single-threaded, this is
3926 * just to make the assert_spin_locked check happy. */
3927 spin_lock_irq(&dev_priv->irq_lock);
3928 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3929 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3930 spin_unlock_irq(&dev_priv->irq_lock);
3931
3932 return 0;
3933 }
3934
3935 /*
3936 * Returns true when a page flip has completed.
3937 */
3938 static bool i8xx_handle_vblank(struct drm_device *dev,
3939 int plane, int pipe, u32 iir)
3940 {
3941 struct drm_i915_private *dev_priv = dev->dev_private;
3942 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3943
3944 if (!intel_pipe_handle_vblank(dev, pipe))
3945 return false;
3946
3947 if ((iir & flip_pending) == 0)
3948 goto check_page_flip;
3949
3950 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3951 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3952 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3953 * the flip is completed (no longer pending). Since this doesn't raise
3954 * an interrupt per se, we watch for the change at vblank.
3955 */
3956 if (I915_READ16(ISR) & flip_pending)
3957 goto check_page_flip;
3958
3959 intel_prepare_page_flip(dev, plane);
3960 intel_finish_page_flip(dev, pipe);
3961 return true;
3962
3963 check_page_flip:
3964 intel_check_page_flip(dev, pipe);
3965 return false;
3966 }
3967
3968 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3969 {
3970 struct drm_device *dev = arg;
3971 struct drm_i915_private *dev_priv = dev->dev_private;
3972 u16 iir, new_iir;
3973 u32 pipe_stats[2];
3974 int pipe;
3975 u16 flip_mask =
3976 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3977 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3978 irqreturn_t ret;
3979
3980 if (!intel_irqs_enabled(dev_priv))
3981 return IRQ_NONE;
3982
3983 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3984 disable_rpm_wakeref_asserts(dev_priv);
3985
3986 ret = IRQ_NONE;
3987 iir = I915_READ16(IIR);
3988 if (iir == 0)
3989 goto out;
3990
3991 while (iir & ~flip_mask) {
3992 /* Can't rely on pipestat interrupt bit in iir as it might
3993 * have been cleared after the pipestat interrupt was received.
3994 * It doesn't set the bit in iir again, but it still produces
3995 * interrupts (for non-MSI).
3996 */
3997 spin_lock(&dev_priv->irq_lock);
3998 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3999 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4000
4001 for_each_pipe(dev_priv, pipe) {
4002 i915_reg_t reg = PIPESTAT(pipe);
4003 pipe_stats[pipe] = I915_READ(reg);
4004
4005 /*
4006 * Clear the PIPE*STAT regs before the IIR
4007 */
4008 if (pipe_stats[pipe] & 0x8000ffff)
4009 I915_WRITE(reg, pipe_stats[pipe]);
4010 }
4011 spin_unlock(&dev_priv->irq_lock);
4012
4013 I915_WRITE16(IIR, iir & ~flip_mask);
4014 new_iir = I915_READ16(IIR); /* Flush posted writes */
4015
4016 if (iir & I915_USER_INTERRUPT)
4017 notify_ring(&dev_priv->engine[RCS]);
4018
4019 for_each_pipe(dev_priv, pipe) {
4020 int plane = pipe;
4021 if (HAS_FBC(dev))
4022 plane = !plane;
4023
4024 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4025 i8xx_handle_vblank(dev, plane, pipe, iir))
4026 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4027
4028 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4029 i9xx_pipe_crc_irq_handler(dev, pipe);
4030
4031 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4032 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4033 pipe);
4034 }
4035
4036 iir = new_iir;
4037 }
4038 ret = IRQ_HANDLED;
4039
4040 out:
4041 enable_rpm_wakeref_asserts(dev_priv);
4042
4043 return ret;
4044 }
4045
4046 static void i8xx_irq_uninstall(struct drm_device * dev)
4047 {
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 int pipe;
4050
4051 for_each_pipe(dev_priv, pipe) {
4052 /* Clear enable bits; then clear status bits */
4053 I915_WRITE(PIPESTAT(pipe), 0);
4054 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4055 }
4056 I915_WRITE16(IMR, 0xffff);
4057 I915_WRITE16(IER, 0x0);
4058 I915_WRITE16(IIR, I915_READ16(IIR));
4059 }
4060
4061 static void i915_irq_preinstall(struct drm_device * dev)
4062 {
4063 struct drm_i915_private *dev_priv = dev->dev_private;
4064 int pipe;
4065
4066 if (I915_HAS_HOTPLUG(dev)) {
4067 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4068 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4069 }
4070
4071 I915_WRITE16(HWSTAM, 0xeffe);
4072 for_each_pipe(dev_priv, pipe)
4073 I915_WRITE(PIPESTAT(pipe), 0);
4074 I915_WRITE(IMR, 0xffffffff);
4075 I915_WRITE(IER, 0x0);
4076 POSTING_READ(IER);
4077 }
4078
4079 static int i915_irq_postinstall(struct drm_device *dev)
4080 {
4081 struct drm_i915_private *dev_priv = dev->dev_private;
4082 u32 enable_mask;
4083
4084 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4085
4086 /* Unmask the interrupts that we always want on. */
4087 dev_priv->irq_mask =
4088 ~(I915_ASLE_INTERRUPT |
4089 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4090 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4091 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4092 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4093
4094 enable_mask =
4095 I915_ASLE_INTERRUPT |
4096 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4097 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4098 I915_USER_INTERRUPT;
4099
4100 if (I915_HAS_HOTPLUG(dev)) {
4101 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4102 POSTING_READ(PORT_HOTPLUG_EN);
4103
4104 /* Enable in IER... */
4105 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4106 /* and unmask in IMR */
4107 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4108 }
4109
4110 I915_WRITE(IMR, dev_priv->irq_mask);
4111 I915_WRITE(IER, enable_mask);
4112 POSTING_READ(IER);
4113
4114 i915_enable_asle_pipestat(dev);
4115
4116 /* Interrupt setup is already guaranteed to be single-threaded, this is
4117 * just to make the assert_spin_locked check happy. */
4118 spin_lock_irq(&dev_priv->irq_lock);
4119 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4120 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4121 spin_unlock_irq(&dev_priv->irq_lock);
4122
4123 return 0;
4124 }
4125
4126 /*
4127 * Returns true when a page flip has completed.
4128 */
4129 static bool i915_handle_vblank(struct drm_device *dev,
4130 int plane, int pipe, u32 iir)
4131 {
4132 struct drm_i915_private *dev_priv = dev->dev_private;
4133 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4134
4135 if (!intel_pipe_handle_vblank(dev, pipe))
4136 return false;
4137
4138 if ((iir & flip_pending) == 0)
4139 goto check_page_flip;
4140
4141 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4142 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4143 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4144 * the flip is completed (no longer pending). Since this doesn't raise
4145 * an interrupt per se, we watch for the change at vblank.
4146 */
4147 if (I915_READ(ISR) & flip_pending)
4148 goto check_page_flip;
4149
4150 intel_prepare_page_flip(dev, plane);
4151 intel_finish_page_flip(dev, pipe);
4152 return true;
4153
4154 check_page_flip:
4155 intel_check_page_flip(dev, pipe);
4156 return false;
4157 }
4158
4159 static irqreturn_t i915_irq_handler(int irq, void *arg)
4160 {
4161 struct drm_device *dev = arg;
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4164 u32 flip_mask =
4165 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4166 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4167 int pipe, ret = IRQ_NONE;
4168
4169 if (!intel_irqs_enabled(dev_priv))
4170 return IRQ_NONE;
4171
4172 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4173 disable_rpm_wakeref_asserts(dev_priv);
4174
4175 iir = I915_READ(IIR);
4176 do {
4177 bool irq_received = (iir & ~flip_mask) != 0;
4178 bool blc_event = false;
4179
4180 /* Can't rely on pipestat interrupt bit in iir as it might
4181 * have been cleared after the pipestat interrupt was received.
4182 * It doesn't set the bit in iir again, but it still produces
4183 * interrupts (for non-MSI).
4184 */
4185 spin_lock(&dev_priv->irq_lock);
4186 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4187 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4188
4189 for_each_pipe(dev_priv, pipe) {
4190 i915_reg_t reg = PIPESTAT(pipe);
4191 pipe_stats[pipe] = I915_READ(reg);
4192
4193 /* Clear the PIPE*STAT regs before the IIR */
4194 if (pipe_stats[pipe] & 0x8000ffff) {
4195 I915_WRITE(reg, pipe_stats[pipe]);
4196 irq_received = true;
4197 }
4198 }
4199 spin_unlock(&dev_priv->irq_lock);
4200
4201 if (!irq_received)
4202 break;
4203
4204 /* Consume port. Then clear IIR or we'll miss events */
4205 if (I915_HAS_HOTPLUG(dev) &&
4206 iir & I915_DISPLAY_PORT_INTERRUPT)
4207 i9xx_hpd_irq_handler(dev);
4208
4209 I915_WRITE(IIR, iir & ~flip_mask);
4210 new_iir = I915_READ(IIR); /* Flush posted writes */
4211
4212 if (iir & I915_USER_INTERRUPT)
4213 notify_ring(&dev_priv->engine[RCS]);
4214
4215 for_each_pipe(dev_priv, pipe) {
4216 int plane = pipe;
4217 if (HAS_FBC(dev))
4218 plane = !plane;
4219
4220 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4221 i915_handle_vblank(dev, plane, pipe, iir))
4222 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4223
4224 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4225 blc_event = true;
4226
4227 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4228 i9xx_pipe_crc_irq_handler(dev, pipe);
4229
4230 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4231 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4232 pipe);
4233 }
4234
4235 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4236 intel_opregion_asle_intr(dev);
4237
4238 /* With MSI, interrupts are only generated when iir
4239 * transitions from zero to nonzero. If another bit got
4240 * set while we were handling the existing iir bits, then
4241 * we would never get another interrupt.
4242 *
4243 * This is fine on non-MSI as well, as if we hit this path
4244 * we avoid exiting the interrupt handler only to generate
4245 * another one.
4246 *
4247 * Note that for MSI this could cause a stray interrupt report
4248 * if an interrupt landed in the time between writing IIR and
4249 * the posting read. This should be rare enough to never
4250 * trigger the 99% of 100,000 interrupts test for disabling
4251 * stray interrupts.
4252 */
4253 ret = IRQ_HANDLED;
4254 iir = new_iir;
4255 } while (iir & ~flip_mask);
4256
4257 enable_rpm_wakeref_asserts(dev_priv);
4258
4259 return ret;
4260 }
4261
4262 static void i915_irq_uninstall(struct drm_device * dev)
4263 {
4264 struct drm_i915_private *dev_priv = dev->dev_private;
4265 int pipe;
4266
4267 if (I915_HAS_HOTPLUG(dev)) {
4268 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4269 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4270 }
4271
4272 I915_WRITE16(HWSTAM, 0xffff);
4273 for_each_pipe(dev_priv, pipe) {
4274 /* Clear enable bits; then clear status bits */
4275 I915_WRITE(PIPESTAT(pipe), 0);
4276 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4277 }
4278 I915_WRITE(IMR, 0xffffffff);
4279 I915_WRITE(IER, 0x0);
4280
4281 I915_WRITE(IIR, I915_READ(IIR));
4282 }
4283
4284 static void i965_irq_preinstall(struct drm_device * dev)
4285 {
4286 struct drm_i915_private *dev_priv = dev->dev_private;
4287 int pipe;
4288
4289 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4290 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4291
4292 I915_WRITE(HWSTAM, 0xeffe);
4293 for_each_pipe(dev_priv, pipe)
4294 I915_WRITE(PIPESTAT(pipe), 0);
4295 I915_WRITE(IMR, 0xffffffff);
4296 I915_WRITE(IER, 0x0);
4297 POSTING_READ(IER);
4298 }
4299
4300 static int i965_irq_postinstall(struct drm_device *dev)
4301 {
4302 struct drm_i915_private *dev_priv = dev->dev_private;
4303 u32 enable_mask;
4304 u32 error_mask;
4305
4306 /* Unmask the interrupts that we always want on. */
4307 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4308 I915_DISPLAY_PORT_INTERRUPT |
4309 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4310 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4311 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4312 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4313 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4314
4315 enable_mask = ~dev_priv->irq_mask;
4316 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4317 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4318 enable_mask |= I915_USER_INTERRUPT;
4319
4320 if (IS_G4X(dev))
4321 enable_mask |= I915_BSD_USER_INTERRUPT;
4322
4323 /* Interrupt setup is already guaranteed to be single-threaded, this is
4324 * just to make the assert_spin_locked check happy. */
4325 spin_lock_irq(&dev_priv->irq_lock);
4326 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4327 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4328 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4329 spin_unlock_irq(&dev_priv->irq_lock);
4330
4331 /*
4332 * Enable some error detection, note the instruction error mask
4333 * bit is reserved, so we leave it masked.
4334 */
4335 if (IS_G4X(dev)) {
4336 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4337 GM45_ERROR_MEM_PRIV |
4338 GM45_ERROR_CP_PRIV |
4339 I915_ERROR_MEMORY_REFRESH);
4340 } else {
4341 error_mask = ~(I915_ERROR_PAGE_TABLE |
4342 I915_ERROR_MEMORY_REFRESH);
4343 }
4344 I915_WRITE(EMR, error_mask);
4345
4346 I915_WRITE(IMR, dev_priv->irq_mask);
4347 I915_WRITE(IER, enable_mask);
4348 POSTING_READ(IER);
4349
4350 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4351 POSTING_READ(PORT_HOTPLUG_EN);
4352
4353 i915_enable_asle_pipestat(dev);
4354
4355 return 0;
4356 }
4357
4358 static void i915_hpd_irq_setup(struct drm_device *dev)
4359 {
4360 struct drm_i915_private *dev_priv = dev->dev_private;
4361 u32 hotplug_en;
4362
4363 assert_spin_locked(&dev_priv->irq_lock);
4364
4365 /* Note HDMI and DP share hotplug bits */
4366 /* enable bits are the same for all generations */
4367 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4368 /* Programming the CRT detection parameters tends
4369 to generate a spurious hotplug event about three
4370 seconds later. So just do it once.
4371 */
4372 if (IS_G4X(dev))
4373 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4374 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4375
4376 /* Ignore TV since it's buggy */
4377 i915_hotplug_interrupt_update_locked(dev_priv,
4378 HOTPLUG_INT_EN_MASK |
4379 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4380 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4381 hotplug_en);
4382 }
4383
4384 static irqreturn_t i965_irq_handler(int irq, void *arg)
4385 {
4386 struct drm_device *dev = arg;
4387 struct drm_i915_private *dev_priv = dev->dev_private;
4388 u32 iir, new_iir;
4389 u32 pipe_stats[I915_MAX_PIPES];
4390 int ret = IRQ_NONE, pipe;
4391 u32 flip_mask =
4392 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4393 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4394
4395 if (!intel_irqs_enabled(dev_priv))
4396 return IRQ_NONE;
4397
4398 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4399 disable_rpm_wakeref_asserts(dev_priv);
4400
4401 iir = I915_READ(IIR);
4402
4403 for (;;) {
4404 bool irq_received = (iir & ~flip_mask) != 0;
4405 bool blc_event = false;
4406
4407 /* Can't rely on pipestat interrupt bit in iir as it might
4408 * have been cleared after the pipestat interrupt was received.
4409 * It doesn't set the bit in iir again, but it still produces
4410 * interrupts (for non-MSI).
4411 */
4412 spin_lock(&dev_priv->irq_lock);
4413 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4414 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4415
4416 for_each_pipe(dev_priv, pipe) {
4417 i915_reg_t reg = PIPESTAT(pipe);
4418 pipe_stats[pipe] = I915_READ(reg);
4419
4420 /*
4421 * Clear the PIPE*STAT regs before the IIR
4422 */
4423 if (pipe_stats[pipe] & 0x8000ffff) {
4424 I915_WRITE(reg, pipe_stats[pipe]);
4425 irq_received = true;
4426 }
4427 }
4428 spin_unlock(&dev_priv->irq_lock);
4429
4430 if (!irq_received)
4431 break;
4432
4433 ret = IRQ_HANDLED;
4434
4435 /* Consume port. Then clear IIR or we'll miss events */
4436 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4437 i9xx_hpd_irq_handler(dev);
4438
4439 I915_WRITE(IIR, iir & ~flip_mask);
4440 new_iir = I915_READ(IIR); /* Flush posted writes */
4441
4442 if (iir & I915_USER_INTERRUPT)
4443 notify_ring(&dev_priv->engine[RCS]);
4444 if (iir & I915_BSD_USER_INTERRUPT)
4445 notify_ring(&dev_priv->engine[VCS]);
4446
4447 for_each_pipe(dev_priv, pipe) {
4448 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4449 i915_handle_vblank(dev, pipe, pipe, iir))
4450 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4451
4452 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4453 blc_event = true;
4454
4455 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4456 i9xx_pipe_crc_irq_handler(dev, pipe);
4457
4458 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4459 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4460 }
4461
4462 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4463 intel_opregion_asle_intr(dev);
4464
4465 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4466 gmbus_irq_handler(dev);
4467
4468 /* With MSI, interrupts are only generated when iir
4469 * transitions from zero to nonzero. If another bit got
4470 * set while we were handling the existing iir bits, then
4471 * we would never get another interrupt.
4472 *
4473 * This is fine on non-MSI as well, as if we hit this path
4474 * we avoid exiting the interrupt handler only to generate
4475 * another one.
4476 *
4477 * Note that for MSI this could cause a stray interrupt report
4478 * if an interrupt landed in the time between writing IIR and
4479 * the posting read. This should be rare enough to never
4480 * trigger the 99% of 100,000 interrupts test for disabling
4481 * stray interrupts.
4482 */
4483 iir = new_iir;
4484 }
4485
4486 enable_rpm_wakeref_asserts(dev_priv);
4487
4488 return ret;
4489 }
4490
4491 static void i965_irq_uninstall(struct drm_device * dev)
4492 {
4493 struct drm_i915_private *dev_priv = dev->dev_private;
4494 int pipe;
4495
4496 if (!dev_priv)
4497 return;
4498
4499 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4500 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4501
4502 I915_WRITE(HWSTAM, 0xffffffff);
4503 for_each_pipe(dev_priv, pipe)
4504 I915_WRITE(PIPESTAT(pipe), 0);
4505 I915_WRITE(IMR, 0xffffffff);
4506 I915_WRITE(IER, 0x0);
4507
4508 for_each_pipe(dev_priv, pipe)
4509 I915_WRITE(PIPESTAT(pipe),
4510 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4511 I915_WRITE(IIR, I915_READ(IIR));
4512 }
4513
4514 /**
4515 * intel_irq_init - initializes irq support
4516 * @dev_priv: i915 device instance
4517 *
4518 * This function initializes all the irq support including work items, timers
4519 * and all the vtables. It does not setup the interrupt itself though.
4520 */
4521 void intel_irq_init(struct drm_i915_private *dev_priv)
4522 {
4523 struct drm_device *dev = dev_priv->dev;
4524
4525 intel_hpd_init_work(dev_priv);
4526
4527 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4528 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4529
4530 /* Let's track the enabled rps events */
4531 if (IS_VALLEYVIEW(dev_priv))
4532 /* WaGsvRC0ResidencyMethod:vlv */
4533 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4534 else
4535 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4536
4537 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4538 i915_hangcheck_elapsed);
4539
4540 if (IS_GEN2(dev_priv)) {
4541 dev->max_vblank_count = 0;
4542 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4543 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4544 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4545 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4546 } else {
4547 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4548 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4549 }
4550
4551 /*
4552 * Opt out of the vblank disable timer on everything except gen2.
4553 * Gen2 doesn't have a hardware frame counter and so depends on
4554 * vblank interrupts to produce sane vblank seuquence numbers.
4555 */
4556 if (!IS_GEN2(dev_priv))
4557 dev->vblank_disable_immediate = true;
4558
4559 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4560 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4561
4562 if (IS_CHERRYVIEW(dev_priv)) {
4563 dev->driver->irq_handler = cherryview_irq_handler;
4564 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4565 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4566 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4567 dev->driver->enable_vblank = valleyview_enable_vblank;
4568 dev->driver->disable_vblank = valleyview_disable_vblank;
4569 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4570 } else if (IS_VALLEYVIEW(dev_priv)) {
4571 dev->driver->irq_handler = valleyview_irq_handler;
4572 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4573 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4574 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4575 dev->driver->enable_vblank = valleyview_enable_vblank;
4576 dev->driver->disable_vblank = valleyview_disable_vblank;
4577 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4578 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4579 dev->driver->irq_handler = gen8_irq_handler;
4580 dev->driver->irq_preinstall = gen8_irq_reset;
4581 dev->driver->irq_postinstall = gen8_irq_postinstall;
4582 dev->driver->irq_uninstall = gen8_irq_uninstall;
4583 dev->driver->enable_vblank = gen8_enable_vblank;
4584 dev->driver->disable_vblank = gen8_disable_vblank;
4585 if (IS_BROXTON(dev))
4586 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4587 else if (HAS_PCH_SPT(dev))
4588 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4589 else
4590 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4591 } else if (HAS_PCH_SPLIT(dev)) {
4592 dev->driver->irq_handler = ironlake_irq_handler;
4593 dev->driver->irq_preinstall = ironlake_irq_reset;
4594 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4595 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4596 dev->driver->enable_vblank = ironlake_enable_vblank;
4597 dev->driver->disable_vblank = ironlake_disable_vblank;
4598 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4599 } else {
4600 if (INTEL_INFO(dev_priv)->gen == 2) {
4601 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4602 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4603 dev->driver->irq_handler = i8xx_irq_handler;
4604 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4605 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4606 dev->driver->irq_preinstall = i915_irq_preinstall;
4607 dev->driver->irq_postinstall = i915_irq_postinstall;
4608 dev->driver->irq_uninstall = i915_irq_uninstall;
4609 dev->driver->irq_handler = i915_irq_handler;
4610 } else {
4611 dev->driver->irq_preinstall = i965_irq_preinstall;
4612 dev->driver->irq_postinstall = i965_irq_postinstall;
4613 dev->driver->irq_uninstall = i965_irq_uninstall;
4614 dev->driver->irq_handler = i965_irq_handler;
4615 }
4616 if (I915_HAS_HOTPLUG(dev_priv))
4617 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4618 dev->driver->enable_vblank = i915_enable_vblank;
4619 dev->driver->disable_vblank = i915_disable_vblank;
4620 }
4621 }
4622
4623 /**
4624 * intel_irq_install - enables the hardware interrupt
4625 * @dev_priv: i915 device instance
4626 *
4627 * This function enables the hardware interrupt handling, but leaves the hotplug
4628 * handling still disabled. It is called after intel_irq_init().
4629 *
4630 * In the driver load and resume code we need working interrupts in a few places
4631 * but don't want to deal with the hassle of concurrent probe and hotplug
4632 * workers. Hence the split into this two-stage approach.
4633 */
4634 int intel_irq_install(struct drm_i915_private *dev_priv)
4635 {
4636 /*
4637 * We enable some interrupt sources in our postinstall hooks, so mark
4638 * interrupts as enabled _before_ actually enabling them to avoid
4639 * special cases in our ordering checks.
4640 */
4641 dev_priv->pm.irqs_enabled = true;
4642
4643 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4644 }
4645
4646 /**
4647 * intel_irq_uninstall - finilizes all irq handling
4648 * @dev_priv: i915 device instance
4649 *
4650 * This stops interrupt and hotplug handling and unregisters and frees all
4651 * resources acquired in the init functions.
4652 */
4653 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4654 {
4655 drm_irq_uninstall(dev_priv->dev);
4656 intel_hpd_cancel_work(dev_priv);
4657 dev_priv->pm.irqs_enabled = false;
4658 }
4659
4660 /**
4661 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4662 * @dev_priv: i915 device instance
4663 *
4664 * This function is used to disable interrupts at runtime, both in the runtime
4665 * pm and the system suspend/resume code.
4666 */
4667 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4668 {
4669 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4670 dev_priv->pm.irqs_enabled = false;
4671 synchronize_irq(dev_priv->dev->irq);
4672 }
4673
4674 /**
4675 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4676 * @dev_priv: i915 device instance
4677 *
4678 * This function is used to enable interrupts at runtime, both in the runtime
4679 * pm and the system suspend/resume code.
4680 */
4681 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4682 {
4683 dev_priv->pm.irqs_enabled = true;
4684 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4685 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4686 }
This page took 0.229606 seconds and 6 git commands to generate.