drm/i915: Move the conditional seqno query into the tracepoint
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if (dev_priv->pc8.irqs_disabled) {
89 WARN(1, "IRQs disabled\n");
90 dev_priv->pc8.regsave.deimr &= ~mask;
91 return;
92 }
93
94 if ((dev_priv->irq_mask & mask) != 0) {
95 dev_priv->irq_mask &= ~mask;
96 I915_WRITE(DEIMR, dev_priv->irq_mask);
97 POSTING_READ(DEIMR);
98 }
99 }
100
101 static void
102 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
103 {
104 assert_spin_locked(&dev_priv->irq_lock);
105
106 if (dev_priv->pc8.irqs_disabled) {
107 WARN(1, "IRQs disabled\n");
108 dev_priv->pc8.regsave.deimr |= mask;
109 return;
110 }
111
112 if ((dev_priv->irq_mask & mask) != mask) {
113 dev_priv->irq_mask |= mask;
114 I915_WRITE(DEIMR, dev_priv->irq_mask);
115 POSTING_READ(DEIMR);
116 }
117 }
118
119 /**
120 * ilk_update_gt_irq - update GTIMR
121 * @dev_priv: driver private
122 * @interrupt_mask: mask of interrupt bits to update
123 * @enabled_irq_mask: mask of interrupt bits to enable
124 */
125 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
126 uint32_t interrupt_mask,
127 uint32_t enabled_irq_mask)
128 {
129 assert_spin_locked(&dev_priv->irq_lock);
130
131 if (dev_priv->pc8.irqs_disabled) {
132 WARN(1, "IRQs disabled\n");
133 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
134 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
135 interrupt_mask);
136 return;
137 }
138
139 dev_priv->gt_irq_mask &= ~interrupt_mask;
140 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
141 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
142 POSTING_READ(GTIMR);
143 }
144
145 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
146 {
147 ilk_update_gt_irq(dev_priv, mask, mask);
148 }
149
150 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
151 {
152 ilk_update_gt_irq(dev_priv, mask, 0);
153 }
154
155 /**
156 * snb_update_pm_irq - update GEN6_PMIMR
157 * @dev_priv: driver private
158 * @interrupt_mask: mask of interrupt bits to update
159 * @enabled_irq_mask: mask of interrupt bits to enable
160 */
161 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
162 uint32_t interrupt_mask,
163 uint32_t enabled_irq_mask)
164 {
165 uint32_t new_val;
166
167 assert_spin_locked(&dev_priv->irq_lock);
168
169 if (dev_priv->pc8.irqs_disabled) {
170 WARN(1, "IRQs disabled\n");
171 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
172 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
173 interrupt_mask);
174 return;
175 }
176
177 new_val = dev_priv->pm_irq_mask;
178 new_val &= ~interrupt_mask;
179 new_val |= (~enabled_irq_mask & interrupt_mask);
180
181 if (new_val != dev_priv->pm_irq_mask) {
182 dev_priv->pm_irq_mask = new_val;
183 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
184 POSTING_READ(GEN6_PMIMR);
185 }
186 }
187
188 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
189 {
190 snb_update_pm_irq(dev_priv, mask, mask);
191 }
192
193 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
194 {
195 snb_update_pm_irq(dev_priv, mask, 0);
196 }
197
198 static bool ivb_can_enable_err_int(struct drm_device *dev)
199 {
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 struct intel_crtc *crtc;
202 enum pipe pipe;
203
204 assert_spin_locked(&dev_priv->irq_lock);
205
206 for_each_pipe(pipe) {
207 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
208
209 if (crtc->cpu_fifo_underrun_disabled)
210 return false;
211 }
212
213 return true;
214 }
215
216 static bool cpt_can_enable_serr_int(struct drm_device *dev)
217 {
218 struct drm_i915_private *dev_priv = dev->dev_private;
219 enum pipe pipe;
220 struct intel_crtc *crtc;
221
222 assert_spin_locked(&dev_priv->irq_lock);
223
224 for_each_pipe(pipe) {
225 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
226
227 if (crtc->pch_fifo_underrun_disabled)
228 return false;
229 }
230
231 return true;
232 }
233
234 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
235 enum pipe pipe, bool enable)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
239 DE_PIPEB_FIFO_UNDERRUN;
240
241 if (enable)
242 ironlake_enable_display_irq(dev_priv, bit);
243 else
244 ironlake_disable_display_irq(dev_priv, bit);
245 }
246
247 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249 {
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 if (enable) {
252 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
253
254 if (!ivb_can_enable_err_int(dev))
255 return;
256
257 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
258 } else {
259 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
260
261 /* Change the state _after_ we've read out the current one. */
262 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
263
264 if (!was_enabled &&
265 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
266 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
267 pipe_name(pipe));
268 }
269 }
270 }
271
272 /**
273 * ibx_display_interrupt_update - update SDEIMR
274 * @dev_priv: driver private
275 * @interrupt_mask: mask of interrupt bits to update
276 * @enabled_irq_mask: mask of interrupt bits to enable
277 */
278 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
279 uint32_t interrupt_mask,
280 uint32_t enabled_irq_mask)
281 {
282 uint32_t sdeimr = I915_READ(SDEIMR);
283 sdeimr &= ~interrupt_mask;
284 sdeimr |= (~enabled_irq_mask & interrupt_mask);
285
286 assert_spin_locked(&dev_priv->irq_lock);
287
288 if (dev_priv->pc8.irqs_disabled &&
289 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
290 WARN(1, "IRQs disabled\n");
291 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
292 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
293 interrupt_mask);
294 return;
295 }
296
297 I915_WRITE(SDEIMR, sdeimr);
298 POSTING_READ(SDEIMR);
299 }
300 #define ibx_enable_display_interrupt(dev_priv, bits) \
301 ibx_display_interrupt_update((dev_priv), (bits), (bits))
302 #define ibx_disable_display_interrupt(dev_priv, bits) \
303 ibx_display_interrupt_update((dev_priv), (bits), 0)
304
305 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
306 enum transcoder pch_transcoder,
307 bool enable)
308 {
309 struct drm_i915_private *dev_priv = dev->dev_private;
310 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
311 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
312
313 if (enable)
314 ibx_enable_display_interrupt(dev_priv, bit);
315 else
316 ibx_disable_display_interrupt(dev_priv, bit);
317 }
318
319 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum transcoder pch_transcoder,
321 bool enable)
322 {
323 struct drm_i915_private *dev_priv = dev->dev_private;
324
325 if (enable) {
326 I915_WRITE(SERR_INT,
327 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
328
329 if (!cpt_can_enable_serr_int(dev))
330 return;
331
332 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
333 } else {
334 uint32_t tmp = I915_READ(SERR_INT);
335 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
336
337 /* Change the state _after_ we've read out the current one. */
338 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
339
340 if (!was_enabled &&
341 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
342 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
343 transcoder_name(pch_transcoder));
344 }
345 }
346 }
347
348 /**
349 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
350 * @dev: drm device
351 * @pipe: pipe
352 * @enable: true if we want to report FIFO underrun errors, false otherwise
353 *
354 * This function makes us disable or enable CPU fifo underruns for a specific
355 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
356 * reporting for one pipe may also disable all the other CPU error interruts for
357 * the other pipes, due to the fact that there's just one interrupt mask/enable
358 * bit for all the pipes.
359 *
360 * Returns the previous state of underrun reporting.
361 */
362 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
363 enum pipe pipe, bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368 unsigned long flags;
369 bool ret;
370
371 spin_lock_irqsave(&dev_priv->irq_lock, flags);
372
373 ret = !intel_crtc->cpu_fifo_underrun_disabled;
374
375 if (enable == ret)
376 goto done;
377
378 intel_crtc->cpu_fifo_underrun_disabled = !enable;
379
380 if (IS_GEN5(dev) || IS_GEN6(dev))
381 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
382 else if (IS_GEN7(dev))
383 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
384
385 done:
386 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
387 return ret;
388 }
389
390 /**
391 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
392 * @dev: drm device
393 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
394 * @enable: true if we want to report FIFO underrun errors, false otherwise
395 *
396 * This function makes us disable or enable PCH fifo underruns for a specific
397 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
398 * underrun reporting for one transcoder may also disable all the other PCH
399 * error interruts for the other transcoders, due to the fact that there's just
400 * one interrupt mask/enable bit for all the transcoders.
401 *
402 * Returns the previous state of underrun reporting.
403 */
404 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
405 enum transcoder pch_transcoder,
406 bool enable)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
411 unsigned long flags;
412 bool ret;
413
414 /*
415 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
416 * has only one pch transcoder A that all pipes can use. To avoid racy
417 * pch transcoder -> pipe lookups from interrupt code simply store the
418 * underrun statistics in crtc A. Since we never expose this anywhere
419 * nor use it outside of the fifo underrun code here using the "wrong"
420 * crtc on LPT won't cause issues.
421 */
422
423 spin_lock_irqsave(&dev_priv->irq_lock, flags);
424
425 ret = !intel_crtc->pch_fifo_underrun_disabled;
426
427 if (enable == ret)
428 goto done;
429
430 intel_crtc->pch_fifo_underrun_disabled = !enable;
431
432 if (HAS_PCH_IBX(dev))
433 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
434 else
435 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
436
437 done:
438 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
439 return ret;
440 }
441
442
443 void
444 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
445 {
446 u32 reg = PIPESTAT(pipe);
447 u32 pipestat = I915_READ(reg) & 0x7fff0000;
448
449 assert_spin_locked(&dev_priv->irq_lock);
450
451 if ((pipestat & mask) == mask)
452 return;
453
454 /* Enable the interrupt, clear any pending status */
455 pipestat |= mask | (mask >> 16);
456 I915_WRITE(reg, pipestat);
457 POSTING_READ(reg);
458 }
459
460 void
461 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
462 {
463 u32 reg = PIPESTAT(pipe);
464 u32 pipestat = I915_READ(reg) & 0x7fff0000;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 if ((pipestat & mask) == 0)
469 return;
470
471 pipestat &= ~mask;
472 I915_WRITE(reg, pipestat);
473 POSTING_READ(reg);
474 }
475
476 /**
477 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
478 */
479 static void i915_enable_asle_pipestat(struct drm_device *dev)
480 {
481 drm_i915_private_t *dev_priv = dev->dev_private;
482 unsigned long irqflags;
483
484 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
485 return;
486
487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
488
489 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
490 if (INTEL_INFO(dev)->gen >= 4)
491 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
492
493 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
494 }
495
496 /**
497 * i915_pipe_enabled - check if a pipe is enabled
498 * @dev: DRM device
499 * @pipe: pipe to check
500 *
501 * Reading certain registers when the pipe is disabled can hang the chip.
502 * Use this routine to make sure the PLL is running and the pipe is active
503 * before reading such registers if unsure.
504 */
505 static int
506 i915_pipe_enabled(struct drm_device *dev, int pipe)
507 {
508 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
509
510 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
511 /* Locking is horribly broken here, but whatever. */
512 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
514
515 return intel_crtc->active;
516 } else {
517 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
518 }
519 }
520
521 /* Called from drm generic code, passed a 'crtc', which
522 * we use as a pipe index
523 */
524 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 unsigned long high_frame;
528 unsigned long low_frame;
529 u32 high1, high2, low;
530
531 if (!i915_pipe_enabled(dev, pipe)) {
532 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
533 "pipe %c\n", pipe_name(pipe));
534 return 0;
535 }
536
537 high_frame = PIPEFRAME(pipe);
538 low_frame = PIPEFRAMEPIXEL(pipe);
539
540 /*
541 * High & low register fields aren't synchronized, so make sure
542 * we get a low value that's stable across two reads of the high
543 * register.
544 */
545 do {
546 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
547 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
548 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
549 } while (high1 != high2);
550
551 high1 >>= PIPE_FRAME_HIGH_SHIFT;
552 low >>= PIPE_FRAME_LOW_SHIFT;
553 return (high1 << 8) | low;
554 }
555
556 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
557 {
558 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
559 int reg = PIPE_FRMCOUNT_GM45(pipe);
560
561 if (!i915_pipe_enabled(dev, pipe)) {
562 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
563 "pipe %c\n", pipe_name(pipe));
564 return 0;
565 }
566
567 return I915_READ(reg);
568 }
569
570 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
571 int *vpos, int *hpos)
572 {
573 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
574 u32 vbl = 0, position = 0;
575 int vbl_start, vbl_end, htotal, vtotal;
576 bool in_vbl = true;
577 int ret = 0;
578 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
579 pipe);
580
581 if (!i915_pipe_enabled(dev, pipe)) {
582 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
583 "pipe %c\n", pipe_name(pipe));
584 return 0;
585 }
586
587 /* Get vtotal. */
588 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
589
590 if (INTEL_INFO(dev)->gen >= 4) {
591 /* No obvious pixelcount register. Only query vertical
592 * scanout position from Display scan line register.
593 */
594 position = I915_READ(PIPEDSL(pipe));
595
596 /* Decode into vertical scanout position. Don't have
597 * horizontal scanout position.
598 */
599 *vpos = position & 0x1fff;
600 *hpos = 0;
601 } else {
602 /* Have access to pixelcount since start of frame.
603 * We can split this into vertical and horizontal
604 * scanout position.
605 */
606 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
607
608 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
609 *vpos = position / htotal;
610 *hpos = position - (*vpos * htotal);
611 }
612
613 /* Query vblank area. */
614 vbl = I915_READ(VBLANK(cpu_transcoder));
615
616 /* Test position against vblank region. */
617 vbl_start = vbl & 0x1fff;
618 vbl_end = (vbl >> 16) & 0x1fff;
619
620 if ((*vpos < vbl_start) || (*vpos > vbl_end))
621 in_vbl = false;
622
623 /* Inside "upper part" of vblank area? Apply corrective offset: */
624 if (in_vbl && (*vpos >= vbl_start))
625 *vpos = *vpos - vtotal;
626
627 /* Readouts valid? */
628 if (vbl > 0)
629 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
630
631 /* In vblank? */
632 if (in_vbl)
633 ret |= DRM_SCANOUTPOS_INVBL;
634
635 return ret;
636 }
637
638 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
639 int *max_error,
640 struct timeval *vblank_time,
641 unsigned flags)
642 {
643 struct drm_crtc *crtc;
644
645 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
646 DRM_ERROR("Invalid crtc %d\n", pipe);
647 return -EINVAL;
648 }
649
650 /* Get drm_crtc to timestamp: */
651 crtc = intel_get_crtc_for_pipe(dev, pipe);
652 if (crtc == NULL) {
653 DRM_ERROR("Invalid crtc %d\n", pipe);
654 return -EINVAL;
655 }
656
657 if (!crtc->enabled) {
658 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
659 return -EBUSY;
660 }
661
662 /* Helper routine in DRM core does all the work: */
663 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
664 vblank_time, flags,
665 crtc);
666 }
667
668 static bool intel_hpd_irq_event(struct drm_device *dev,
669 struct drm_connector *connector)
670 {
671 enum drm_connector_status old_status;
672
673 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
674 old_status = connector->status;
675
676 connector->status = connector->funcs->detect(connector, false);
677 if (old_status == connector->status)
678 return false;
679
680 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
681 connector->base.id,
682 drm_get_connector_name(connector),
683 drm_get_connector_status_name(old_status),
684 drm_get_connector_status_name(connector->status));
685
686 return true;
687 }
688
689 /*
690 * Handle hotplug events outside the interrupt handler proper.
691 */
692 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
693
694 static void i915_hotplug_work_func(struct work_struct *work)
695 {
696 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
697 hotplug_work);
698 struct drm_device *dev = dev_priv->dev;
699 struct drm_mode_config *mode_config = &dev->mode_config;
700 struct intel_connector *intel_connector;
701 struct intel_encoder *intel_encoder;
702 struct drm_connector *connector;
703 unsigned long irqflags;
704 bool hpd_disabled = false;
705 bool changed = false;
706 u32 hpd_event_bits;
707
708 /* HPD irq before everything is fully set up. */
709 if (!dev_priv->enable_hotplug_processing)
710 return;
711
712 mutex_lock(&mode_config->mutex);
713 DRM_DEBUG_KMS("running encoder hotplug functions\n");
714
715 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
716
717 hpd_event_bits = dev_priv->hpd_event_bits;
718 dev_priv->hpd_event_bits = 0;
719 list_for_each_entry(connector, &mode_config->connector_list, head) {
720 intel_connector = to_intel_connector(connector);
721 intel_encoder = intel_connector->encoder;
722 if (intel_encoder->hpd_pin > HPD_NONE &&
723 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
724 connector->polled == DRM_CONNECTOR_POLL_HPD) {
725 DRM_INFO("HPD interrupt storm detected on connector %s: "
726 "switching from hotplug detection to polling\n",
727 drm_get_connector_name(connector));
728 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
729 connector->polled = DRM_CONNECTOR_POLL_CONNECT
730 | DRM_CONNECTOR_POLL_DISCONNECT;
731 hpd_disabled = true;
732 }
733 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
734 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
735 drm_get_connector_name(connector), intel_encoder->hpd_pin);
736 }
737 }
738 /* if there were no outputs to poll, poll was disabled,
739 * therefore make sure it's enabled when disabling HPD on
740 * some connectors */
741 if (hpd_disabled) {
742 drm_kms_helper_poll_enable(dev);
743 mod_timer(&dev_priv->hotplug_reenable_timer,
744 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
745 }
746
747 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
748
749 list_for_each_entry(connector, &mode_config->connector_list, head) {
750 intel_connector = to_intel_connector(connector);
751 intel_encoder = intel_connector->encoder;
752 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
753 if (intel_encoder->hot_plug)
754 intel_encoder->hot_plug(intel_encoder);
755 if (intel_hpd_irq_event(dev, connector))
756 changed = true;
757 }
758 }
759 mutex_unlock(&mode_config->mutex);
760
761 if (changed)
762 drm_kms_helper_hotplug_event(dev);
763 }
764
765 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
766 {
767 drm_i915_private_t *dev_priv = dev->dev_private;
768 u32 busy_up, busy_down, max_avg, min_avg;
769 u8 new_delay;
770
771 spin_lock(&mchdev_lock);
772
773 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
774
775 new_delay = dev_priv->ips.cur_delay;
776
777 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
778 busy_up = I915_READ(RCPREVBSYTUPAVG);
779 busy_down = I915_READ(RCPREVBSYTDNAVG);
780 max_avg = I915_READ(RCBMAXAVG);
781 min_avg = I915_READ(RCBMINAVG);
782
783 /* Handle RCS change request from hw */
784 if (busy_up > max_avg) {
785 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
786 new_delay = dev_priv->ips.cur_delay - 1;
787 if (new_delay < dev_priv->ips.max_delay)
788 new_delay = dev_priv->ips.max_delay;
789 } else if (busy_down < min_avg) {
790 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
791 new_delay = dev_priv->ips.cur_delay + 1;
792 if (new_delay > dev_priv->ips.min_delay)
793 new_delay = dev_priv->ips.min_delay;
794 }
795
796 if (ironlake_set_drps(dev, new_delay))
797 dev_priv->ips.cur_delay = new_delay;
798
799 spin_unlock(&mchdev_lock);
800
801 return;
802 }
803
804 static void notify_ring(struct drm_device *dev,
805 struct intel_ring_buffer *ring)
806 {
807 if (ring->obj == NULL)
808 return;
809
810 trace_i915_gem_request_complete(ring);
811
812 wake_up_all(&ring->irq_queue);
813 i915_queue_hangcheck(dev);
814 }
815
816 static void gen6_pm_rps_work(struct work_struct *work)
817 {
818 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
819 rps.work);
820 u32 pm_iir;
821 u8 new_delay;
822
823 spin_lock_irq(&dev_priv->irq_lock);
824 pm_iir = dev_priv->rps.pm_iir;
825 dev_priv->rps.pm_iir = 0;
826 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
827 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
828 spin_unlock_irq(&dev_priv->irq_lock);
829
830 /* Make sure we didn't queue anything we're not going to process. */
831 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
832
833 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
834 return;
835
836 mutex_lock(&dev_priv->rps.hw_lock);
837
838 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
839 new_delay = dev_priv->rps.cur_delay + 1;
840
841 /*
842 * For better performance, jump directly
843 * to RPe if we're below it.
844 */
845 if (IS_VALLEYVIEW(dev_priv->dev) &&
846 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
847 new_delay = dev_priv->rps.rpe_delay;
848 } else
849 new_delay = dev_priv->rps.cur_delay - 1;
850
851 /* sysfs frequency interfaces may have snuck in while servicing the
852 * interrupt
853 */
854 if (new_delay >= dev_priv->rps.min_delay &&
855 new_delay <= dev_priv->rps.max_delay) {
856 if (IS_VALLEYVIEW(dev_priv->dev))
857 valleyview_set_rps(dev_priv->dev, new_delay);
858 else
859 gen6_set_rps(dev_priv->dev, new_delay);
860 }
861
862 if (IS_VALLEYVIEW(dev_priv->dev)) {
863 /*
864 * On VLV, when we enter RC6 we may not be at the minimum
865 * voltage level, so arm a timer to check. It should only
866 * fire when there's activity or once after we've entered
867 * RC6, and then won't be re-armed until the next RPS interrupt.
868 */
869 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
870 msecs_to_jiffies(100));
871 }
872
873 mutex_unlock(&dev_priv->rps.hw_lock);
874 }
875
876
877 /**
878 * ivybridge_parity_work - Workqueue called when a parity error interrupt
879 * occurred.
880 * @work: workqueue struct
881 *
882 * Doesn't actually do anything except notify userspace. As a consequence of
883 * this event, userspace should try to remap the bad rows since statistically
884 * it is likely the same row is more likely to go bad again.
885 */
886 static void ivybridge_parity_work(struct work_struct *work)
887 {
888 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
889 l3_parity.error_work);
890 u32 error_status, row, bank, subbank;
891 char *parity_event[6];
892 uint32_t misccpctl;
893 unsigned long flags;
894 uint8_t slice = 0;
895
896 /* We must turn off DOP level clock gating to access the L3 registers.
897 * In order to prevent a get/put style interface, acquire struct mutex
898 * any time we access those registers.
899 */
900 mutex_lock(&dev_priv->dev->struct_mutex);
901
902 /* If we've screwed up tracking, just let the interrupt fire again */
903 if (WARN_ON(!dev_priv->l3_parity.which_slice))
904 goto out;
905
906 misccpctl = I915_READ(GEN7_MISCCPCTL);
907 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
908 POSTING_READ(GEN7_MISCCPCTL);
909
910 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
911 u32 reg;
912
913 slice--;
914 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
915 break;
916
917 dev_priv->l3_parity.which_slice &= ~(1<<slice);
918
919 reg = GEN7_L3CDERRST1 + (slice * 0x200);
920
921 error_status = I915_READ(reg);
922 row = GEN7_PARITY_ERROR_ROW(error_status);
923 bank = GEN7_PARITY_ERROR_BANK(error_status);
924 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
925
926 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
927 POSTING_READ(reg);
928
929 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
930 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
931 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
932 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
933 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
934 parity_event[5] = NULL;
935
936 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
937 KOBJ_CHANGE, parity_event);
938
939 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
940 slice, row, bank, subbank);
941
942 kfree(parity_event[4]);
943 kfree(parity_event[3]);
944 kfree(parity_event[2]);
945 kfree(parity_event[1]);
946 }
947
948 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
949
950 out:
951 WARN_ON(dev_priv->l3_parity.which_slice);
952 spin_lock_irqsave(&dev_priv->irq_lock, flags);
953 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
954 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
955
956 mutex_unlock(&dev_priv->dev->struct_mutex);
957 }
958
959 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
960 {
961 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
962
963 if (!HAS_L3_DPF(dev))
964 return;
965
966 spin_lock(&dev_priv->irq_lock);
967 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
968 spin_unlock(&dev_priv->irq_lock);
969
970 iir &= GT_PARITY_ERROR(dev);
971 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
972 dev_priv->l3_parity.which_slice |= 1 << 1;
973
974 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
975 dev_priv->l3_parity.which_slice |= 1 << 0;
976
977 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
978 }
979
980 static void ilk_gt_irq_handler(struct drm_device *dev,
981 struct drm_i915_private *dev_priv,
982 u32 gt_iir)
983 {
984 if (gt_iir &
985 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
986 notify_ring(dev, &dev_priv->ring[RCS]);
987 if (gt_iir & ILK_BSD_USER_INTERRUPT)
988 notify_ring(dev, &dev_priv->ring[VCS]);
989 }
990
991 static void snb_gt_irq_handler(struct drm_device *dev,
992 struct drm_i915_private *dev_priv,
993 u32 gt_iir)
994 {
995
996 if (gt_iir &
997 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
998 notify_ring(dev, &dev_priv->ring[RCS]);
999 if (gt_iir & GT_BSD_USER_INTERRUPT)
1000 notify_ring(dev, &dev_priv->ring[VCS]);
1001 if (gt_iir & GT_BLT_USER_INTERRUPT)
1002 notify_ring(dev, &dev_priv->ring[BCS]);
1003
1004 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1005 GT_BSD_CS_ERROR_INTERRUPT |
1006 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1007 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
1008 i915_handle_error(dev, false);
1009 }
1010
1011 if (gt_iir & GT_PARITY_ERROR(dev))
1012 ivybridge_parity_error_irq_handler(dev, gt_iir);
1013 }
1014
1015 #define HPD_STORM_DETECT_PERIOD 1000
1016 #define HPD_STORM_THRESHOLD 5
1017
1018 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1019 u32 hotplug_trigger,
1020 const u32 *hpd)
1021 {
1022 drm_i915_private_t *dev_priv = dev->dev_private;
1023 int i;
1024 bool storm_detected = false;
1025
1026 if (!hotplug_trigger)
1027 return;
1028
1029 spin_lock(&dev_priv->irq_lock);
1030 for (i = 1; i < HPD_NUM_PINS; i++) {
1031
1032 WARN(((hpd[i] & hotplug_trigger) &&
1033 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1034 "Received HPD interrupt although disabled\n");
1035
1036 if (!(hpd[i] & hotplug_trigger) ||
1037 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1038 continue;
1039
1040 dev_priv->hpd_event_bits |= (1 << i);
1041 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1042 dev_priv->hpd_stats[i].hpd_last_jiffies
1043 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1044 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1045 dev_priv->hpd_stats[i].hpd_cnt = 0;
1046 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1047 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1048 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1049 dev_priv->hpd_event_bits &= ~(1 << i);
1050 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1051 storm_detected = true;
1052 } else {
1053 dev_priv->hpd_stats[i].hpd_cnt++;
1054 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1055 dev_priv->hpd_stats[i].hpd_cnt);
1056 }
1057 }
1058
1059 if (storm_detected)
1060 dev_priv->display.hpd_irq_setup(dev);
1061 spin_unlock(&dev_priv->irq_lock);
1062
1063 /*
1064 * Our hotplug handler can grab modeset locks (by calling down into the
1065 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1066 * queue for otherwise the flush_work in the pageflip code will
1067 * deadlock.
1068 */
1069 schedule_work(&dev_priv->hotplug_work);
1070 }
1071
1072 static void gmbus_irq_handler(struct drm_device *dev)
1073 {
1074 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1075
1076 wake_up_all(&dev_priv->gmbus_wait_queue);
1077 }
1078
1079 static void dp_aux_irq_handler(struct drm_device *dev)
1080 {
1081 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1082
1083 wake_up_all(&dev_priv->gmbus_wait_queue);
1084 }
1085
1086 /* The RPS events need forcewake, so we add them to a work queue and mask their
1087 * IMR bits until the work is done. Other interrupts can be processed without
1088 * the work queue. */
1089 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1090 {
1091 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1092 spin_lock(&dev_priv->irq_lock);
1093 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1094 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1095 spin_unlock(&dev_priv->irq_lock);
1096
1097 queue_work(dev_priv->wq, &dev_priv->rps.work);
1098 }
1099
1100 if (HAS_VEBOX(dev_priv->dev)) {
1101 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1102 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1103
1104 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1105 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1106 i915_handle_error(dev_priv->dev, false);
1107 }
1108 }
1109 }
1110
1111 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1112 {
1113 struct drm_device *dev = (struct drm_device *) arg;
1114 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1115 u32 iir, gt_iir, pm_iir;
1116 irqreturn_t ret = IRQ_NONE;
1117 unsigned long irqflags;
1118 int pipe;
1119 u32 pipe_stats[I915_MAX_PIPES];
1120
1121 atomic_inc(&dev_priv->irq_received);
1122
1123 while (true) {
1124 iir = I915_READ(VLV_IIR);
1125 gt_iir = I915_READ(GTIIR);
1126 pm_iir = I915_READ(GEN6_PMIIR);
1127
1128 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1129 goto out;
1130
1131 ret = IRQ_HANDLED;
1132
1133 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1134
1135 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1136 for_each_pipe(pipe) {
1137 int reg = PIPESTAT(pipe);
1138 pipe_stats[pipe] = I915_READ(reg);
1139
1140 /*
1141 * Clear the PIPE*STAT regs before the IIR
1142 */
1143 if (pipe_stats[pipe] & 0x8000ffff) {
1144 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1145 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1146 pipe_name(pipe));
1147 I915_WRITE(reg, pipe_stats[pipe]);
1148 }
1149 }
1150 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1151
1152 for_each_pipe(pipe) {
1153 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1154 drm_handle_vblank(dev, pipe);
1155
1156 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1157 intel_prepare_page_flip(dev, pipe);
1158 intel_finish_page_flip(dev, pipe);
1159 }
1160 }
1161
1162 /* Consume port. Then clear IIR or we'll miss events */
1163 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1164 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1165 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1166
1167 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1168 hotplug_status);
1169
1170 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1171
1172 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1173 I915_READ(PORT_HOTPLUG_STAT);
1174 }
1175
1176 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1177 gmbus_irq_handler(dev);
1178
1179 if (pm_iir)
1180 gen6_rps_irq_handler(dev_priv, pm_iir);
1181
1182 I915_WRITE(GTIIR, gt_iir);
1183 I915_WRITE(GEN6_PMIIR, pm_iir);
1184 I915_WRITE(VLV_IIR, iir);
1185 }
1186
1187 out:
1188 return ret;
1189 }
1190
1191 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1192 {
1193 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1194 int pipe;
1195 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1196
1197 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1198
1199 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1200 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1201 SDE_AUDIO_POWER_SHIFT);
1202 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1203 port_name(port));
1204 }
1205
1206 if (pch_iir & SDE_AUX_MASK)
1207 dp_aux_irq_handler(dev);
1208
1209 if (pch_iir & SDE_GMBUS)
1210 gmbus_irq_handler(dev);
1211
1212 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1213 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1214
1215 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1216 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1217
1218 if (pch_iir & SDE_POISON)
1219 DRM_ERROR("PCH poison interrupt\n");
1220
1221 if (pch_iir & SDE_FDI_MASK)
1222 for_each_pipe(pipe)
1223 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1224 pipe_name(pipe),
1225 I915_READ(FDI_RX_IIR(pipe)));
1226
1227 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1228 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1229
1230 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1231 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1232
1233 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1234 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1235 false))
1236 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1237
1238 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1239 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1240 false))
1241 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1242 }
1243
1244 static void ivb_err_int_handler(struct drm_device *dev)
1245 {
1246 struct drm_i915_private *dev_priv = dev->dev_private;
1247 u32 err_int = I915_READ(GEN7_ERR_INT);
1248
1249 if (err_int & ERR_INT_POISON)
1250 DRM_ERROR("Poison interrupt\n");
1251
1252 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1253 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1254 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1255
1256 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1257 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1258 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1259
1260 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1261 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1262 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1263
1264 I915_WRITE(GEN7_ERR_INT, err_int);
1265 }
1266
1267 static void cpt_serr_int_handler(struct drm_device *dev)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 u32 serr_int = I915_READ(SERR_INT);
1271
1272 if (serr_int & SERR_INT_POISON)
1273 DRM_ERROR("PCH poison interrupt\n");
1274
1275 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1276 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1277 false))
1278 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1279
1280 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1281 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1282 false))
1283 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1284
1285 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1286 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1287 false))
1288 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1289
1290 I915_WRITE(SERR_INT, serr_int);
1291 }
1292
1293 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1294 {
1295 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1296 int pipe;
1297 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1298
1299 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1300
1301 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1302 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1303 SDE_AUDIO_POWER_SHIFT_CPT);
1304 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1305 port_name(port));
1306 }
1307
1308 if (pch_iir & SDE_AUX_MASK_CPT)
1309 dp_aux_irq_handler(dev);
1310
1311 if (pch_iir & SDE_GMBUS_CPT)
1312 gmbus_irq_handler(dev);
1313
1314 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1315 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1316
1317 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1318 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1319
1320 if (pch_iir & SDE_FDI_MASK_CPT)
1321 for_each_pipe(pipe)
1322 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1323 pipe_name(pipe),
1324 I915_READ(FDI_RX_IIR(pipe)));
1325
1326 if (pch_iir & SDE_ERROR_CPT)
1327 cpt_serr_int_handler(dev);
1328 }
1329
1330 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1331 {
1332 struct drm_i915_private *dev_priv = dev->dev_private;
1333
1334 if (de_iir & DE_AUX_CHANNEL_A)
1335 dp_aux_irq_handler(dev);
1336
1337 if (de_iir & DE_GSE)
1338 intel_opregion_asle_intr(dev);
1339
1340 if (de_iir & DE_PIPEA_VBLANK)
1341 drm_handle_vblank(dev, 0);
1342
1343 if (de_iir & DE_PIPEB_VBLANK)
1344 drm_handle_vblank(dev, 1);
1345
1346 if (de_iir & DE_POISON)
1347 DRM_ERROR("Poison interrupt\n");
1348
1349 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1350 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1351 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1352
1353 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1354 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1355 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1356
1357 if (de_iir & DE_PLANEA_FLIP_DONE) {
1358 intel_prepare_page_flip(dev, 0);
1359 intel_finish_page_flip_plane(dev, 0);
1360 }
1361
1362 if (de_iir & DE_PLANEB_FLIP_DONE) {
1363 intel_prepare_page_flip(dev, 1);
1364 intel_finish_page_flip_plane(dev, 1);
1365 }
1366
1367 /* check event from PCH */
1368 if (de_iir & DE_PCH_EVENT) {
1369 u32 pch_iir = I915_READ(SDEIIR);
1370
1371 if (HAS_PCH_CPT(dev))
1372 cpt_irq_handler(dev, pch_iir);
1373 else
1374 ibx_irq_handler(dev, pch_iir);
1375
1376 /* should clear PCH hotplug event before clear CPU irq */
1377 I915_WRITE(SDEIIR, pch_iir);
1378 }
1379
1380 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1381 ironlake_rps_change_irq_handler(dev);
1382 }
1383
1384 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1385 {
1386 struct drm_i915_private *dev_priv = dev->dev_private;
1387 int i;
1388
1389 if (de_iir & DE_ERR_INT_IVB)
1390 ivb_err_int_handler(dev);
1391
1392 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1393 dp_aux_irq_handler(dev);
1394
1395 if (de_iir & DE_GSE_IVB)
1396 intel_opregion_asle_intr(dev);
1397
1398 for (i = 0; i < 3; i++) {
1399 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1400 drm_handle_vblank(dev, i);
1401 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1402 intel_prepare_page_flip(dev, i);
1403 intel_finish_page_flip_plane(dev, i);
1404 }
1405 }
1406
1407 /* check event from PCH */
1408 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1409 u32 pch_iir = I915_READ(SDEIIR);
1410
1411 cpt_irq_handler(dev, pch_iir);
1412
1413 /* clear PCH hotplug event before clear CPU irq */
1414 I915_WRITE(SDEIIR, pch_iir);
1415 }
1416 }
1417
1418 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1419 {
1420 struct drm_device *dev = (struct drm_device *) arg;
1421 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1422 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1423 irqreturn_t ret = IRQ_NONE;
1424
1425 atomic_inc(&dev_priv->irq_received);
1426
1427 /* We get interrupts on unclaimed registers, so check for this before we
1428 * do any I915_{READ,WRITE}. */
1429 intel_uncore_check_errors(dev);
1430
1431 /* disable master interrupt before clearing iir */
1432 de_ier = I915_READ(DEIER);
1433 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1434 POSTING_READ(DEIER);
1435
1436 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1437 * interrupts will will be stored on its back queue, and then we'll be
1438 * able to process them after we restore SDEIER (as soon as we restore
1439 * it, we'll get an interrupt if SDEIIR still has something to process
1440 * due to its back queue). */
1441 if (!HAS_PCH_NOP(dev)) {
1442 sde_ier = I915_READ(SDEIER);
1443 I915_WRITE(SDEIER, 0);
1444 POSTING_READ(SDEIER);
1445 }
1446
1447 gt_iir = I915_READ(GTIIR);
1448 if (gt_iir) {
1449 if (INTEL_INFO(dev)->gen >= 6)
1450 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1451 else
1452 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1453 I915_WRITE(GTIIR, gt_iir);
1454 ret = IRQ_HANDLED;
1455 }
1456
1457 de_iir = I915_READ(DEIIR);
1458 if (de_iir) {
1459 if (INTEL_INFO(dev)->gen >= 7)
1460 ivb_display_irq_handler(dev, de_iir);
1461 else
1462 ilk_display_irq_handler(dev, de_iir);
1463 I915_WRITE(DEIIR, de_iir);
1464 ret = IRQ_HANDLED;
1465 }
1466
1467 if (INTEL_INFO(dev)->gen >= 6) {
1468 u32 pm_iir = I915_READ(GEN6_PMIIR);
1469 if (pm_iir) {
1470 gen6_rps_irq_handler(dev_priv, pm_iir);
1471 I915_WRITE(GEN6_PMIIR, pm_iir);
1472 ret = IRQ_HANDLED;
1473 }
1474 }
1475
1476 I915_WRITE(DEIER, de_ier);
1477 POSTING_READ(DEIER);
1478 if (!HAS_PCH_NOP(dev)) {
1479 I915_WRITE(SDEIER, sde_ier);
1480 POSTING_READ(SDEIER);
1481 }
1482
1483 return ret;
1484 }
1485
1486 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1487 bool reset_completed)
1488 {
1489 struct intel_ring_buffer *ring;
1490 int i;
1491
1492 /*
1493 * Notify all waiters for GPU completion events that reset state has
1494 * been changed, and that they need to restart their wait after
1495 * checking for potential errors (and bail out to drop locks if there is
1496 * a gpu reset pending so that i915_error_work_func can acquire them).
1497 */
1498
1499 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1500 for_each_ring(ring, dev_priv, i)
1501 wake_up_all(&ring->irq_queue);
1502
1503 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1504 wake_up_all(&dev_priv->pending_flip_queue);
1505
1506 /*
1507 * Signal tasks blocked in i915_gem_wait_for_error that the pending
1508 * reset state is cleared.
1509 */
1510 if (reset_completed)
1511 wake_up_all(&dev_priv->gpu_error.reset_queue);
1512 }
1513
1514 /**
1515 * i915_error_work_func - do process context error handling work
1516 * @work: work struct
1517 *
1518 * Fire an error uevent so userspace can see that a hang or error
1519 * was detected.
1520 */
1521 static void i915_error_work_func(struct work_struct *work)
1522 {
1523 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1524 work);
1525 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1526 gpu_error);
1527 struct drm_device *dev = dev_priv->dev;
1528 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1529 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1530 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1531 int ret;
1532
1533 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1534
1535 /*
1536 * Note that there's only one work item which does gpu resets, so we
1537 * need not worry about concurrent gpu resets potentially incrementing
1538 * error->reset_counter twice. We only need to take care of another
1539 * racing irq/hangcheck declaring the gpu dead for a second time. A
1540 * quick check for that is good enough: schedule_work ensures the
1541 * correct ordering between hang detection and this work item, and since
1542 * the reset in-progress bit is only ever set by code outside of this
1543 * work we don't need to worry about any other races.
1544 */
1545 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1546 DRM_DEBUG_DRIVER("resetting chip\n");
1547 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1548 reset_event);
1549
1550 /*
1551 * All state reset _must_ be completed before we update the
1552 * reset counter, for otherwise waiters might miss the reset
1553 * pending state and not properly drop locks, resulting in
1554 * deadlocks with the reset work.
1555 */
1556 ret = i915_reset(dev);
1557
1558 intel_display_handle_reset(dev);
1559
1560 if (ret == 0) {
1561 /*
1562 * After all the gem state is reset, increment the reset
1563 * counter and wake up everyone waiting for the reset to
1564 * complete.
1565 *
1566 * Since unlock operations are a one-sided barrier only,
1567 * we need to insert a barrier here to order any seqno
1568 * updates before
1569 * the counter increment.
1570 */
1571 smp_mb__before_atomic_inc();
1572 atomic_inc(&dev_priv->gpu_error.reset_counter);
1573
1574 kobject_uevent_env(&dev->primary->kdev.kobj,
1575 KOBJ_CHANGE, reset_done_event);
1576 } else {
1577 atomic_set(&error->reset_counter, I915_WEDGED);
1578 }
1579
1580 /*
1581 * Note: The wake_up also serves as a memory barrier so that
1582 * waiters see the update value of the reset counter atomic_t.
1583 */
1584 i915_error_wake_up(dev_priv, true);
1585 }
1586 }
1587
1588 static void i915_report_and_clear_eir(struct drm_device *dev)
1589 {
1590 struct drm_i915_private *dev_priv = dev->dev_private;
1591 uint32_t instdone[I915_NUM_INSTDONE_REG];
1592 u32 eir = I915_READ(EIR);
1593 int pipe, i;
1594
1595 if (!eir)
1596 return;
1597
1598 pr_err("render error detected, EIR: 0x%08x\n", eir);
1599
1600 i915_get_extra_instdone(dev, instdone);
1601
1602 if (IS_G4X(dev)) {
1603 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1604 u32 ipeir = I915_READ(IPEIR_I965);
1605
1606 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1607 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1608 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1609 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1610 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1611 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1612 I915_WRITE(IPEIR_I965, ipeir);
1613 POSTING_READ(IPEIR_I965);
1614 }
1615 if (eir & GM45_ERROR_PAGE_TABLE) {
1616 u32 pgtbl_err = I915_READ(PGTBL_ER);
1617 pr_err("page table error\n");
1618 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1619 I915_WRITE(PGTBL_ER, pgtbl_err);
1620 POSTING_READ(PGTBL_ER);
1621 }
1622 }
1623
1624 if (!IS_GEN2(dev)) {
1625 if (eir & I915_ERROR_PAGE_TABLE) {
1626 u32 pgtbl_err = I915_READ(PGTBL_ER);
1627 pr_err("page table error\n");
1628 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1629 I915_WRITE(PGTBL_ER, pgtbl_err);
1630 POSTING_READ(PGTBL_ER);
1631 }
1632 }
1633
1634 if (eir & I915_ERROR_MEMORY_REFRESH) {
1635 pr_err("memory refresh error:\n");
1636 for_each_pipe(pipe)
1637 pr_err("pipe %c stat: 0x%08x\n",
1638 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1639 /* pipestat has already been acked */
1640 }
1641 if (eir & I915_ERROR_INSTRUCTION) {
1642 pr_err("instruction error\n");
1643 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1644 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1645 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1646 if (INTEL_INFO(dev)->gen < 4) {
1647 u32 ipeir = I915_READ(IPEIR);
1648
1649 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1650 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1651 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1652 I915_WRITE(IPEIR, ipeir);
1653 POSTING_READ(IPEIR);
1654 } else {
1655 u32 ipeir = I915_READ(IPEIR_I965);
1656
1657 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1658 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1659 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1660 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1661 I915_WRITE(IPEIR_I965, ipeir);
1662 POSTING_READ(IPEIR_I965);
1663 }
1664 }
1665
1666 I915_WRITE(EIR, eir);
1667 POSTING_READ(EIR);
1668 eir = I915_READ(EIR);
1669 if (eir) {
1670 /*
1671 * some errors might have become stuck,
1672 * mask them.
1673 */
1674 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1675 I915_WRITE(EMR, I915_READ(EMR) | eir);
1676 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1677 }
1678 }
1679
1680 /**
1681 * i915_handle_error - handle an error interrupt
1682 * @dev: drm device
1683 *
1684 * Do some basic checking of regsiter state at error interrupt time and
1685 * dump it to the syslog. Also call i915_capture_error_state() to make
1686 * sure we get a record and make it available in debugfs. Fire a uevent
1687 * so userspace knows something bad happened (should trigger collection
1688 * of a ring dump etc.).
1689 */
1690 void i915_handle_error(struct drm_device *dev, bool wedged)
1691 {
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693
1694 i915_capture_error_state(dev);
1695 i915_report_and_clear_eir(dev);
1696
1697 if (wedged) {
1698 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1699 &dev_priv->gpu_error.reset_counter);
1700
1701 /*
1702 * Wakeup waiting processes so that the reset work function
1703 * i915_error_work_func doesn't deadlock trying to grab various
1704 * locks. By bumping the reset counter first, the woken
1705 * processes will see a reset in progress and back off,
1706 * releasing their locks and then wait for the reset completion.
1707 * We must do this for _all_ gpu waiters that might hold locks
1708 * that the reset work needs to acquire.
1709 *
1710 * Note: The wake_up serves as the required memory barrier to
1711 * ensure that the waiters see the updated value of the reset
1712 * counter atomic_t.
1713 */
1714 i915_error_wake_up(dev_priv, false);
1715 }
1716
1717 /*
1718 * Our reset work can grab modeset locks (since it needs to reset the
1719 * state of outstanding pagelips). Hence it must not be run on our own
1720 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1721 * code will deadlock.
1722 */
1723 schedule_work(&dev_priv->gpu_error.work);
1724 }
1725
1726 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1727 {
1728 drm_i915_private_t *dev_priv = dev->dev_private;
1729 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1731 struct drm_i915_gem_object *obj;
1732 struct intel_unpin_work *work;
1733 unsigned long flags;
1734 bool stall_detected;
1735
1736 /* Ignore early vblank irqs */
1737 if (intel_crtc == NULL)
1738 return;
1739
1740 spin_lock_irqsave(&dev->event_lock, flags);
1741 work = intel_crtc->unpin_work;
1742
1743 if (work == NULL ||
1744 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1745 !work->enable_stall_check) {
1746 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1747 spin_unlock_irqrestore(&dev->event_lock, flags);
1748 return;
1749 }
1750
1751 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1752 obj = work->pending_flip_obj;
1753 if (INTEL_INFO(dev)->gen >= 4) {
1754 int dspsurf = DSPSURF(intel_crtc->plane);
1755 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1756 i915_gem_obj_ggtt_offset(obj);
1757 } else {
1758 int dspaddr = DSPADDR(intel_crtc->plane);
1759 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1760 crtc->y * crtc->fb->pitches[0] +
1761 crtc->x * crtc->fb->bits_per_pixel/8);
1762 }
1763
1764 spin_unlock_irqrestore(&dev->event_lock, flags);
1765
1766 if (stall_detected) {
1767 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1768 intel_prepare_page_flip(dev, intel_crtc->plane);
1769 }
1770 }
1771
1772 /* Called from drm generic code, passed 'crtc' which
1773 * we use as a pipe index
1774 */
1775 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1776 {
1777 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1778 unsigned long irqflags;
1779
1780 if (!i915_pipe_enabled(dev, pipe))
1781 return -EINVAL;
1782
1783 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1784 if (INTEL_INFO(dev)->gen >= 4)
1785 i915_enable_pipestat(dev_priv, pipe,
1786 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1787 else
1788 i915_enable_pipestat(dev_priv, pipe,
1789 PIPE_VBLANK_INTERRUPT_ENABLE);
1790
1791 /* maintain vblank delivery even in deep C-states */
1792 if (dev_priv->info->gen == 3)
1793 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1794 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1795
1796 return 0;
1797 }
1798
1799 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1800 {
1801 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1802 unsigned long irqflags;
1803 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1804 DE_PIPE_VBLANK_ILK(pipe);
1805
1806 if (!i915_pipe_enabled(dev, pipe))
1807 return -EINVAL;
1808
1809 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1810 ironlake_enable_display_irq(dev_priv, bit);
1811 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1812
1813 return 0;
1814 }
1815
1816 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1817 {
1818 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1819 unsigned long irqflags;
1820 u32 imr;
1821
1822 if (!i915_pipe_enabled(dev, pipe))
1823 return -EINVAL;
1824
1825 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1826 imr = I915_READ(VLV_IMR);
1827 if (pipe == 0)
1828 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1829 else
1830 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1831 I915_WRITE(VLV_IMR, imr);
1832 i915_enable_pipestat(dev_priv, pipe,
1833 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1834 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1835
1836 return 0;
1837 }
1838
1839 /* Called from drm generic code, passed 'crtc' which
1840 * we use as a pipe index
1841 */
1842 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1843 {
1844 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1845 unsigned long irqflags;
1846
1847 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1848 if (dev_priv->info->gen == 3)
1849 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1850
1851 i915_disable_pipestat(dev_priv, pipe,
1852 PIPE_VBLANK_INTERRUPT_ENABLE |
1853 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1854 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1855 }
1856
1857 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1858 {
1859 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1860 unsigned long irqflags;
1861 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1862 DE_PIPE_VBLANK_ILK(pipe);
1863
1864 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1865 ironlake_disable_display_irq(dev_priv, bit);
1866 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1867 }
1868
1869 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1870 {
1871 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1872 unsigned long irqflags;
1873 u32 imr;
1874
1875 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1876 i915_disable_pipestat(dev_priv, pipe,
1877 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1878 imr = I915_READ(VLV_IMR);
1879 if (pipe == 0)
1880 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1881 else
1882 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1883 I915_WRITE(VLV_IMR, imr);
1884 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1885 }
1886
1887 static u32
1888 ring_last_seqno(struct intel_ring_buffer *ring)
1889 {
1890 return list_entry(ring->request_list.prev,
1891 struct drm_i915_gem_request, list)->seqno;
1892 }
1893
1894 static bool
1895 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1896 {
1897 return (list_empty(&ring->request_list) ||
1898 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1899 }
1900
1901 static struct intel_ring_buffer *
1902 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1903 {
1904 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1905 u32 cmd, ipehr, acthd, acthd_min;
1906
1907 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1908 if ((ipehr & ~(0x3 << 16)) !=
1909 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1910 return NULL;
1911
1912 /* ACTHD is likely pointing to the dword after the actual command,
1913 * so scan backwards until we find the MBOX.
1914 */
1915 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1916 acthd_min = max((int)acthd - 3 * 4, 0);
1917 do {
1918 cmd = ioread32(ring->virtual_start + acthd);
1919 if (cmd == ipehr)
1920 break;
1921
1922 acthd -= 4;
1923 if (acthd < acthd_min)
1924 return NULL;
1925 } while (1);
1926
1927 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1928 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1929 }
1930
1931 static int semaphore_passed(struct intel_ring_buffer *ring)
1932 {
1933 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1934 struct intel_ring_buffer *signaller;
1935 u32 seqno, ctl;
1936
1937 ring->hangcheck.deadlock = true;
1938
1939 signaller = semaphore_waits_for(ring, &seqno);
1940 if (signaller == NULL || signaller->hangcheck.deadlock)
1941 return -1;
1942
1943 /* cursory check for an unkickable deadlock */
1944 ctl = I915_READ_CTL(signaller);
1945 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1946 return -1;
1947
1948 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1949 }
1950
1951 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1952 {
1953 struct intel_ring_buffer *ring;
1954 int i;
1955
1956 for_each_ring(ring, dev_priv, i)
1957 ring->hangcheck.deadlock = false;
1958 }
1959
1960 static enum intel_ring_hangcheck_action
1961 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1962 {
1963 struct drm_device *dev = ring->dev;
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 u32 tmp;
1966
1967 if (ring->hangcheck.acthd != acthd)
1968 return HANGCHECK_ACTIVE;
1969
1970 if (IS_GEN2(dev))
1971 return HANGCHECK_HUNG;
1972
1973 /* Is the chip hanging on a WAIT_FOR_EVENT?
1974 * If so we can simply poke the RB_WAIT bit
1975 * and break the hang. This should work on
1976 * all but the second generation chipsets.
1977 */
1978 tmp = I915_READ_CTL(ring);
1979 if (tmp & RING_WAIT) {
1980 DRM_ERROR("Kicking stuck wait on %s\n",
1981 ring->name);
1982 I915_WRITE_CTL(ring, tmp);
1983 return HANGCHECK_KICK;
1984 }
1985
1986 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1987 switch (semaphore_passed(ring)) {
1988 default:
1989 return HANGCHECK_HUNG;
1990 case 1:
1991 DRM_ERROR("Kicking stuck semaphore on %s\n",
1992 ring->name);
1993 I915_WRITE_CTL(ring, tmp);
1994 return HANGCHECK_KICK;
1995 case 0:
1996 return HANGCHECK_WAIT;
1997 }
1998 }
1999
2000 return HANGCHECK_HUNG;
2001 }
2002
2003 /**
2004 * This is called when the chip hasn't reported back with completed
2005 * batchbuffers in a long time. We keep track per ring seqno progress and
2006 * if there are no progress, hangcheck score for that ring is increased.
2007 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2008 * we kick the ring. If we see no progress on three subsequent calls
2009 * we assume chip is wedged and try to fix it by resetting the chip.
2010 */
2011 static void i915_hangcheck_elapsed(unsigned long data)
2012 {
2013 struct drm_device *dev = (struct drm_device *)data;
2014 drm_i915_private_t *dev_priv = dev->dev_private;
2015 struct intel_ring_buffer *ring;
2016 int i;
2017 int busy_count = 0, rings_hung = 0;
2018 bool stuck[I915_NUM_RINGS] = { 0 };
2019 #define BUSY 1
2020 #define KICK 5
2021 #define HUNG 20
2022 #define FIRE 30
2023
2024 if (!i915_enable_hangcheck)
2025 return;
2026
2027 for_each_ring(ring, dev_priv, i) {
2028 u32 seqno, acthd;
2029 bool busy = true;
2030
2031 semaphore_clear_deadlocks(dev_priv);
2032
2033 seqno = ring->get_seqno(ring, false);
2034 acthd = intel_ring_get_active_head(ring);
2035
2036 if (ring->hangcheck.seqno == seqno) {
2037 if (ring_idle(ring, seqno)) {
2038 ring->hangcheck.action = HANGCHECK_IDLE;
2039
2040 if (waitqueue_active(&ring->irq_queue)) {
2041 /* Issue a wake-up to catch stuck h/w. */
2042 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2043 ring->name);
2044 wake_up_all(&ring->irq_queue);
2045 ring->hangcheck.score += HUNG;
2046 } else
2047 busy = false;
2048 } else {
2049 /* We always increment the hangcheck score
2050 * if the ring is busy and still processing
2051 * the same request, so that no single request
2052 * can run indefinitely (such as a chain of
2053 * batches). The only time we do not increment
2054 * the hangcheck score on this ring, if this
2055 * ring is in a legitimate wait for another
2056 * ring. In that case the waiting ring is a
2057 * victim and we want to be sure we catch the
2058 * right culprit. Then every time we do kick
2059 * the ring, add a small increment to the
2060 * score so that we can catch a batch that is
2061 * being repeatedly kicked and so responsible
2062 * for stalling the machine.
2063 */
2064 ring->hangcheck.action = ring_stuck(ring,
2065 acthd);
2066
2067 switch (ring->hangcheck.action) {
2068 case HANGCHECK_IDLE:
2069 case HANGCHECK_WAIT:
2070 break;
2071 case HANGCHECK_ACTIVE:
2072 ring->hangcheck.score += BUSY;
2073 break;
2074 case HANGCHECK_KICK:
2075 ring->hangcheck.score += KICK;
2076 break;
2077 case HANGCHECK_HUNG:
2078 ring->hangcheck.score += HUNG;
2079 stuck[i] = true;
2080 break;
2081 }
2082 }
2083 } else {
2084 ring->hangcheck.action = HANGCHECK_ACTIVE;
2085
2086 /* Gradually reduce the count so that we catch DoS
2087 * attempts across multiple batches.
2088 */
2089 if (ring->hangcheck.score > 0)
2090 ring->hangcheck.score--;
2091 }
2092
2093 ring->hangcheck.seqno = seqno;
2094 ring->hangcheck.acthd = acthd;
2095 busy_count += busy;
2096 }
2097
2098 for_each_ring(ring, dev_priv, i) {
2099 if (ring->hangcheck.score > FIRE) {
2100 DRM_INFO("%s on %s\n",
2101 stuck[i] ? "stuck" : "no progress",
2102 ring->name);
2103 rings_hung++;
2104 }
2105 }
2106
2107 if (rings_hung)
2108 return i915_handle_error(dev, true);
2109
2110 if (busy_count)
2111 /* Reset timer case chip hangs without another request
2112 * being added */
2113 i915_queue_hangcheck(dev);
2114 }
2115
2116 void i915_queue_hangcheck(struct drm_device *dev)
2117 {
2118 struct drm_i915_private *dev_priv = dev->dev_private;
2119 if (!i915_enable_hangcheck)
2120 return;
2121
2122 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2123 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2124 }
2125
2126 static void ibx_irq_preinstall(struct drm_device *dev)
2127 {
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129
2130 if (HAS_PCH_NOP(dev))
2131 return;
2132
2133 /* south display irq */
2134 I915_WRITE(SDEIMR, 0xffffffff);
2135 /*
2136 * SDEIER is also touched by the interrupt handler to work around missed
2137 * PCH interrupts. Hence we can't update it after the interrupt handler
2138 * is enabled - instead we unconditionally enable all PCH interrupt
2139 * sources here, but then only unmask them as needed with SDEIMR.
2140 */
2141 I915_WRITE(SDEIER, 0xffffffff);
2142 POSTING_READ(SDEIER);
2143 }
2144
2145 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2146 {
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148
2149 /* and GT */
2150 I915_WRITE(GTIMR, 0xffffffff);
2151 I915_WRITE(GTIER, 0x0);
2152 POSTING_READ(GTIER);
2153
2154 if (INTEL_INFO(dev)->gen >= 6) {
2155 /* and PM */
2156 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2157 I915_WRITE(GEN6_PMIER, 0x0);
2158 POSTING_READ(GEN6_PMIER);
2159 }
2160 }
2161
2162 /* drm_dma.h hooks
2163 */
2164 static void ironlake_irq_preinstall(struct drm_device *dev)
2165 {
2166 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2167
2168 atomic_set(&dev_priv->irq_received, 0);
2169
2170 I915_WRITE(HWSTAM, 0xeffe);
2171
2172 I915_WRITE(DEIMR, 0xffffffff);
2173 I915_WRITE(DEIER, 0x0);
2174 POSTING_READ(DEIER);
2175
2176 gen5_gt_irq_preinstall(dev);
2177
2178 ibx_irq_preinstall(dev);
2179 }
2180
2181 static void valleyview_irq_preinstall(struct drm_device *dev)
2182 {
2183 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2184 int pipe;
2185
2186 atomic_set(&dev_priv->irq_received, 0);
2187
2188 /* VLV magic */
2189 I915_WRITE(VLV_IMR, 0);
2190 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2191 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2192 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2193
2194 /* and GT */
2195 I915_WRITE(GTIIR, I915_READ(GTIIR));
2196 I915_WRITE(GTIIR, I915_READ(GTIIR));
2197
2198 gen5_gt_irq_preinstall(dev);
2199
2200 I915_WRITE(DPINVGTT, 0xff);
2201
2202 I915_WRITE(PORT_HOTPLUG_EN, 0);
2203 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2204 for_each_pipe(pipe)
2205 I915_WRITE(PIPESTAT(pipe), 0xffff);
2206 I915_WRITE(VLV_IIR, 0xffffffff);
2207 I915_WRITE(VLV_IMR, 0xffffffff);
2208 I915_WRITE(VLV_IER, 0x0);
2209 POSTING_READ(VLV_IER);
2210 }
2211
2212 static void ibx_hpd_irq_setup(struct drm_device *dev)
2213 {
2214 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2215 struct drm_mode_config *mode_config = &dev->mode_config;
2216 struct intel_encoder *intel_encoder;
2217 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2218
2219 if (HAS_PCH_IBX(dev)) {
2220 hotplug_irqs = SDE_HOTPLUG_MASK;
2221 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2222 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2223 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2224 } else {
2225 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2226 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2227 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2228 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2229 }
2230
2231 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2232
2233 /*
2234 * Enable digital hotplug on the PCH, and configure the DP short pulse
2235 * duration to 2ms (which is the minimum in the Display Port spec)
2236 *
2237 * This register is the same on all known PCH chips.
2238 */
2239 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2240 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2241 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2242 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2243 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2244 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2245 }
2246
2247 static void ibx_irq_postinstall(struct drm_device *dev)
2248 {
2249 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2250 u32 mask;
2251
2252 if (HAS_PCH_NOP(dev))
2253 return;
2254
2255 if (HAS_PCH_IBX(dev)) {
2256 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2257 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2258 } else {
2259 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2260
2261 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2262 }
2263
2264 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2265 I915_WRITE(SDEIMR, ~mask);
2266 }
2267
2268 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2269 {
2270 struct drm_i915_private *dev_priv = dev->dev_private;
2271 u32 pm_irqs, gt_irqs;
2272
2273 pm_irqs = gt_irqs = 0;
2274
2275 dev_priv->gt_irq_mask = ~0;
2276 if (HAS_L3_DPF(dev)) {
2277 /* L3 parity interrupt is always unmasked. */
2278 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2279 gt_irqs |= GT_PARITY_ERROR(dev);
2280 }
2281
2282 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2283 if (IS_GEN5(dev)) {
2284 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2285 ILK_BSD_USER_INTERRUPT;
2286 } else {
2287 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2288 }
2289
2290 I915_WRITE(GTIIR, I915_READ(GTIIR));
2291 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2292 I915_WRITE(GTIER, gt_irqs);
2293 POSTING_READ(GTIER);
2294
2295 if (INTEL_INFO(dev)->gen >= 6) {
2296 pm_irqs |= GEN6_PM_RPS_EVENTS;
2297
2298 if (HAS_VEBOX(dev))
2299 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2300
2301 dev_priv->pm_irq_mask = 0xffffffff;
2302 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2303 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2304 I915_WRITE(GEN6_PMIER, pm_irqs);
2305 POSTING_READ(GEN6_PMIER);
2306 }
2307 }
2308
2309 static int ironlake_irq_postinstall(struct drm_device *dev)
2310 {
2311 unsigned long irqflags;
2312 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2313 u32 display_mask, extra_mask;
2314
2315 if (INTEL_INFO(dev)->gen >= 7) {
2316 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2317 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2318 DE_PLANEB_FLIP_DONE_IVB |
2319 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2320 DE_ERR_INT_IVB);
2321 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2322 DE_PIPEA_VBLANK_IVB);
2323
2324 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2325 } else {
2326 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2327 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2328 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2329 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2330 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2331 }
2332
2333 dev_priv->irq_mask = ~display_mask;
2334
2335 /* should always can generate irq */
2336 I915_WRITE(DEIIR, I915_READ(DEIIR));
2337 I915_WRITE(DEIMR, dev_priv->irq_mask);
2338 I915_WRITE(DEIER, display_mask | extra_mask);
2339 POSTING_READ(DEIER);
2340
2341 gen5_gt_irq_postinstall(dev);
2342
2343 ibx_irq_postinstall(dev);
2344
2345 if (IS_IRONLAKE_M(dev)) {
2346 /* Enable PCU event interrupts
2347 *
2348 * spinlocking not required here for correctness since interrupt
2349 * setup is guaranteed to run in single-threaded context. But we
2350 * need it to make the assert_spin_locked happy. */
2351 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2352 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2353 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2354 }
2355
2356 return 0;
2357 }
2358
2359 static int valleyview_irq_postinstall(struct drm_device *dev)
2360 {
2361 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2362 u32 enable_mask;
2363 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2364 unsigned long irqflags;
2365
2366 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2367 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2368 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2369 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2370 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2371
2372 /*
2373 *Leave vblank interrupts masked initially. enable/disable will
2374 * toggle them based on usage.
2375 */
2376 dev_priv->irq_mask = (~enable_mask) |
2377 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2378 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2379
2380 I915_WRITE(PORT_HOTPLUG_EN, 0);
2381 POSTING_READ(PORT_HOTPLUG_EN);
2382
2383 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2384 I915_WRITE(VLV_IER, enable_mask);
2385 I915_WRITE(VLV_IIR, 0xffffffff);
2386 I915_WRITE(PIPESTAT(0), 0xffff);
2387 I915_WRITE(PIPESTAT(1), 0xffff);
2388 POSTING_READ(VLV_IER);
2389
2390 /* Interrupt setup is already guaranteed to be single-threaded, this is
2391 * just to make the assert_spin_locked check happy. */
2392 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2393 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2394 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2395 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2396 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2397
2398 I915_WRITE(VLV_IIR, 0xffffffff);
2399 I915_WRITE(VLV_IIR, 0xffffffff);
2400
2401 gen5_gt_irq_postinstall(dev);
2402
2403 /* ack & enable invalid PTE error interrupts */
2404 #if 0 /* FIXME: add support to irq handler for checking these bits */
2405 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2406 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2407 #endif
2408
2409 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2410
2411 return 0;
2412 }
2413
2414 static void valleyview_irq_uninstall(struct drm_device *dev)
2415 {
2416 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2417 int pipe;
2418
2419 if (!dev_priv)
2420 return;
2421
2422 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2423
2424 for_each_pipe(pipe)
2425 I915_WRITE(PIPESTAT(pipe), 0xffff);
2426
2427 I915_WRITE(HWSTAM, 0xffffffff);
2428 I915_WRITE(PORT_HOTPLUG_EN, 0);
2429 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2430 for_each_pipe(pipe)
2431 I915_WRITE(PIPESTAT(pipe), 0xffff);
2432 I915_WRITE(VLV_IIR, 0xffffffff);
2433 I915_WRITE(VLV_IMR, 0xffffffff);
2434 I915_WRITE(VLV_IER, 0x0);
2435 POSTING_READ(VLV_IER);
2436 }
2437
2438 static void ironlake_irq_uninstall(struct drm_device *dev)
2439 {
2440 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2441
2442 if (!dev_priv)
2443 return;
2444
2445 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2446
2447 I915_WRITE(HWSTAM, 0xffffffff);
2448
2449 I915_WRITE(DEIMR, 0xffffffff);
2450 I915_WRITE(DEIER, 0x0);
2451 I915_WRITE(DEIIR, I915_READ(DEIIR));
2452 if (IS_GEN7(dev))
2453 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2454
2455 I915_WRITE(GTIMR, 0xffffffff);
2456 I915_WRITE(GTIER, 0x0);
2457 I915_WRITE(GTIIR, I915_READ(GTIIR));
2458
2459 if (HAS_PCH_NOP(dev))
2460 return;
2461
2462 I915_WRITE(SDEIMR, 0xffffffff);
2463 I915_WRITE(SDEIER, 0x0);
2464 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2465 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2466 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2467 }
2468
2469 static void i8xx_irq_preinstall(struct drm_device * dev)
2470 {
2471 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2472 int pipe;
2473
2474 atomic_set(&dev_priv->irq_received, 0);
2475
2476 for_each_pipe(pipe)
2477 I915_WRITE(PIPESTAT(pipe), 0);
2478 I915_WRITE16(IMR, 0xffff);
2479 I915_WRITE16(IER, 0x0);
2480 POSTING_READ16(IER);
2481 }
2482
2483 static int i8xx_irq_postinstall(struct drm_device *dev)
2484 {
2485 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2486
2487 I915_WRITE16(EMR,
2488 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2489
2490 /* Unmask the interrupts that we always want on. */
2491 dev_priv->irq_mask =
2492 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2493 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2494 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2495 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2496 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2497 I915_WRITE16(IMR, dev_priv->irq_mask);
2498
2499 I915_WRITE16(IER,
2500 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2501 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2502 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2503 I915_USER_INTERRUPT);
2504 POSTING_READ16(IER);
2505
2506 return 0;
2507 }
2508
2509 /*
2510 * Returns true when a page flip has completed.
2511 */
2512 static bool i8xx_handle_vblank(struct drm_device *dev,
2513 int pipe, u16 iir)
2514 {
2515 drm_i915_private_t *dev_priv = dev->dev_private;
2516 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2517
2518 if (!drm_handle_vblank(dev, pipe))
2519 return false;
2520
2521 if ((iir & flip_pending) == 0)
2522 return false;
2523
2524 intel_prepare_page_flip(dev, pipe);
2525
2526 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2527 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2528 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2529 * the flip is completed (no longer pending). Since this doesn't raise
2530 * an interrupt per se, we watch for the change at vblank.
2531 */
2532 if (I915_READ16(ISR) & flip_pending)
2533 return false;
2534
2535 intel_finish_page_flip(dev, pipe);
2536
2537 return true;
2538 }
2539
2540 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2541 {
2542 struct drm_device *dev = (struct drm_device *) arg;
2543 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2544 u16 iir, new_iir;
2545 u32 pipe_stats[2];
2546 unsigned long irqflags;
2547 int pipe;
2548 u16 flip_mask =
2549 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2550 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2551
2552 atomic_inc(&dev_priv->irq_received);
2553
2554 iir = I915_READ16(IIR);
2555 if (iir == 0)
2556 return IRQ_NONE;
2557
2558 while (iir & ~flip_mask) {
2559 /* Can't rely on pipestat interrupt bit in iir as it might
2560 * have been cleared after the pipestat interrupt was received.
2561 * It doesn't set the bit in iir again, but it still produces
2562 * interrupts (for non-MSI).
2563 */
2564 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2565 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2566 i915_handle_error(dev, false);
2567
2568 for_each_pipe(pipe) {
2569 int reg = PIPESTAT(pipe);
2570 pipe_stats[pipe] = I915_READ(reg);
2571
2572 /*
2573 * Clear the PIPE*STAT regs before the IIR
2574 */
2575 if (pipe_stats[pipe] & 0x8000ffff) {
2576 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2577 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2578 pipe_name(pipe));
2579 I915_WRITE(reg, pipe_stats[pipe]);
2580 }
2581 }
2582 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2583
2584 I915_WRITE16(IIR, iir & ~flip_mask);
2585 new_iir = I915_READ16(IIR); /* Flush posted writes */
2586
2587 i915_update_dri1_breadcrumb(dev);
2588
2589 if (iir & I915_USER_INTERRUPT)
2590 notify_ring(dev, &dev_priv->ring[RCS]);
2591
2592 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2593 i8xx_handle_vblank(dev, 0, iir))
2594 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2595
2596 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2597 i8xx_handle_vblank(dev, 1, iir))
2598 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2599
2600 iir = new_iir;
2601 }
2602
2603 return IRQ_HANDLED;
2604 }
2605
2606 static void i8xx_irq_uninstall(struct drm_device * dev)
2607 {
2608 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2609 int pipe;
2610
2611 for_each_pipe(pipe) {
2612 /* Clear enable bits; then clear status bits */
2613 I915_WRITE(PIPESTAT(pipe), 0);
2614 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2615 }
2616 I915_WRITE16(IMR, 0xffff);
2617 I915_WRITE16(IER, 0x0);
2618 I915_WRITE16(IIR, I915_READ16(IIR));
2619 }
2620
2621 static void i915_irq_preinstall(struct drm_device * dev)
2622 {
2623 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2624 int pipe;
2625
2626 atomic_set(&dev_priv->irq_received, 0);
2627
2628 if (I915_HAS_HOTPLUG(dev)) {
2629 I915_WRITE(PORT_HOTPLUG_EN, 0);
2630 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2631 }
2632
2633 I915_WRITE16(HWSTAM, 0xeffe);
2634 for_each_pipe(pipe)
2635 I915_WRITE(PIPESTAT(pipe), 0);
2636 I915_WRITE(IMR, 0xffffffff);
2637 I915_WRITE(IER, 0x0);
2638 POSTING_READ(IER);
2639 }
2640
2641 static int i915_irq_postinstall(struct drm_device *dev)
2642 {
2643 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2644 u32 enable_mask;
2645
2646 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2647
2648 /* Unmask the interrupts that we always want on. */
2649 dev_priv->irq_mask =
2650 ~(I915_ASLE_INTERRUPT |
2651 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2652 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2653 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2654 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2655 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2656
2657 enable_mask =
2658 I915_ASLE_INTERRUPT |
2659 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2660 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2661 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2662 I915_USER_INTERRUPT;
2663
2664 if (I915_HAS_HOTPLUG(dev)) {
2665 I915_WRITE(PORT_HOTPLUG_EN, 0);
2666 POSTING_READ(PORT_HOTPLUG_EN);
2667
2668 /* Enable in IER... */
2669 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2670 /* and unmask in IMR */
2671 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2672 }
2673
2674 I915_WRITE(IMR, dev_priv->irq_mask);
2675 I915_WRITE(IER, enable_mask);
2676 POSTING_READ(IER);
2677
2678 i915_enable_asle_pipestat(dev);
2679
2680 return 0;
2681 }
2682
2683 /*
2684 * Returns true when a page flip has completed.
2685 */
2686 static bool i915_handle_vblank(struct drm_device *dev,
2687 int plane, int pipe, u32 iir)
2688 {
2689 drm_i915_private_t *dev_priv = dev->dev_private;
2690 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2691
2692 if (!drm_handle_vblank(dev, pipe))
2693 return false;
2694
2695 if ((iir & flip_pending) == 0)
2696 return false;
2697
2698 intel_prepare_page_flip(dev, plane);
2699
2700 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2701 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2702 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2703 * the flip is completed (no longer pending). Since this doesn't raise
2704 * an interrupt per se, we watch for the change at vblank.
2705 */
2706 if (I915_READ(ISR) & flip_pending)
2707 return false;
2708
2709 intel_finish_page_flip(dev, pipe);
2710
2711 return true;
2712 }
2713
2714 static irqreturn_t i915_irq_handler(int irq, void *arg)
2715 {
2716 struct drm_device *dev = (struct drm_device *) arg;
2717 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2718 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2719 unsigned long irqflags;
2720 u32 flip_mask =
2721 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2722 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2723 int pipe, ret = IRQ_NONE;
2724
2725 atomic_inc(&dev_priv->irq_received);
2726
2727 iir = I915_READ(IIR);
2728 do {
2729 bool irq_received = (iir & ~flip_mask) != 0;
2730 bool blc_event = false;
2731
2732 /* Can't rely on pipestat interrupt bit in iir as it might
2733 * have been cleared after the pipestat interrupt was received.
2734 * It doesn't set the bit in iir again, but it still produces
2735 * interrupts (for non-MSI).
2736 */
2737 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2738 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2739 i915_handle_error(dev, false);
2740
2741 for_each_pipe(pipe) {
2742 int reg = PIPESTAT(pipe);
2743 pipe_stats[pipe] = I915_READ(reg);
2744
2745 /* Clear the PIPE*STAT regs before the IIR */
2746 if (pipe_stats[pipe] & 0x8000ffff) {
2747 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2748 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2749 pipe_name(pipe));
2750 I915_WRITE(reg, pipe_stats[pipe]);
2751 irq_received = true;
2752 }
2753 }
2754 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756 if (!irq_received)
2757 break;
2758
2759 /* Consume port. Then clear IIR or we'll miss events */
2760 if ((I915_HAS_HOTPLUG(dev)) &&
2761 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2762 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2763 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2764
2765 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2766 hotplug_status);
2767
2768 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2769
2770 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2771 POSTING_READ(PORT_HOTPLUG_STAT);
2772 }
2773
2774 I915_WRITE(IIR, iir & ~flip_mask);
2775 new_iir = I915_READ(IIR); /* Flush posted writes */
2776
2777 if (iir & I915_USER_INTERRUPT)
2778 notify_ring(dev, &dev_priv->ring[RCS]);
2779
2780 for_each_pipe(pipe) {
2781 int plane = pipe;
2782 if (IS_MOBILE(dev))
2783 plane = !plane;
2784
2785 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2786 i915_handle_vblank(dev, plane, pipe, iir))
2787 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2788
2789 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2790 blc_event = true;
2791 }
2792
2793 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2794 intel_opregion_asle_intr(dev);
2795
2796 /* With MSI, interrupts are only generated when iir
2797 * transitions from zero to nonzero. If another bit got
2798 * set while we were handling the existing iir bits, then
2799 * we would never get another interrupt.
2800 *
2801 * This is fine on non-MSI as well, as if we hit this path
2802 * we avoid exiting the interrupt handler only to generate
2803 * another one.
2804 *
2805 * Note that for MSI this could cause a stray interrupt report
2806 * if an interrupt landed in the time between writing IIR and
2807 * the posting read. This should be rare enough to never
2808 * trigger the 99% of 100,000 interrupts test for disabling
2809 * stray interrupts.
2810 */
2811 ret = IRQ_HANDLED;
2812 iir = new_iir;
2813 } while (iir & ~flip_mask);
2814
2815 i915_update_dri1_breadcrumb(dev);
2816
2817 return ret;
2818 }
2819
2820 static void i915_irq_uninstall(struct drm_device * dev)
2821 {
2822 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2823 int pipe;
2824
2825 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2826
2827 if (I915_HAS_HOTPLUG(dev)) {
2828 I915_WRITE(PORT_HOTPLUG_EN, 0);
2829 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2830 }
2831
2832 I915_WRITE16(HWSTAM, 0xffff);
2833 for_each_pipe(pipe) {
2834 /* Clear enable bits; then clear status bits */
2835 I915_WRITE(PIPESTAT(pipe), 0);
2836 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2837 }
2838 I915_WRITE(IMR, 0xffffffff);
2839 I915_WRITE(IER, 0x0);
2840
2841 I915_WRITE(IIR, I915_READ(IIR));
2842 }
2843
2844 static void i965_irq_preinstall(struct drm_device * dev)
2845 {
2846 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2847 int pipe;
2848
2849 atomic_set(&dev_priv->irq_received, 0);
2850
2851 I915_WRITE(PORT_HOTPLUG_EN, 0);
2852 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2853
2854 I915_WRITE(HWSTAM, 0xeffe);
2855 for_each_pipe(pipe)
2856 I915_WRITE(PIPESTAT(pipe), 0);
2857 I915_WRITE(IMR, 0xffffffff);
2858 I915_WRITE(IER, 0x0);
2859 POSTING_READ(IER);
2860 }
2861
2862 static int i965_irq_postinstall(struct drm_device *dev)
2863 {
2864 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2865 u32 enable_mask;
2866 u32 error_mask;
2867 unsigned long irqflags;
2868
2869 /* Unmask the interrupts that we always want on. */
2870 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2871 I915_DISPLAY_PORT_INTERRUPT |
2872 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2873 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2874 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2875 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2876 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2877
2878 enable_mask = ~dev_priv->irq_mask;
2879 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2880 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2881 enable_mask |= I915_USER_INTERRUPT;
2882
2883 if (IS_G4X(dev))
2884 enable_mask |= I915_BSD_USER_INTERRUPT;
2885
2886 /* Interrupt setup is already guaranteed to be single-threaded, this is
2887 * just to make the assert_spin_locked check happy. */
2888 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2889 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2890 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2891
2892 /*
2893 * Enable some error detection, note the instruction error mask
2894 * bit is reserved, so we leave it masked.
2895 */
2896 if (IS_G4X(dev)) {
2897 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2898 GM45_ERROR_MEM_PRIV |
2899 GM45_ERROR_CP_PRIV |
2900 I915_ERROR_MEMORY_REFRESH);
2901 } else {
2902 error_mask = ~(I915_ERROR_PAGE_TABLE |
2903 I915_ERROR_MEMORY_REFRESH);
2904 }
2905 I915_WRITE(EMR, error_mask);
2906
2907 I915_WRITE(IMR, dev_priv->irq_mask);
2908 I915_WRITE(IER, enable_mask);
2909 POSTING_READ(IER);
2910
2911 I915_WRITE(PORT_HOTPLUG_EN, 0);
2912 POSTING_READ(PORT_HOTPLUG_EN);
2913
2914 i915_enable_asle_pipestat(dev);
2915
2916 return 0;
2917 }
2918
2919 static void i915_hpd_irq_setup(struct drm_device *dev)
2920 {
2921 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2922 struct drm_mode_config *mode_config = &dev->mode_config;
2923 struct intel_encoder *intel_encoder;
2924 u32 hotplug_en;
2925
2926 assert_spin_locked(&dev_priv->irq_lock);
2927
2928 if (I915_HAS_HOTPLUG(dev)) {
2929 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2930 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2931 /* Note HDMI and DP share hotplug bits */
2932 /* enable bits are the same for all generations */
2933 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2934 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2935 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2936 /* Programming the CRT detection parameters tends
2937 to generate a spurious hotplug event about three
2938 seconds later. So just do it once.
2939 */
2940 if (IS_G4X(dev))
2941 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2942 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2943 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2944
2945 /* Ignore TV since it's buggy */
2946 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2947 }
2948 }
2949
2950 static irqreturn_t i965_irq_handler(int irq, void *arg)
2951 {
2952 struct drm_device *dev = (struct drm_device *) arg;
2953 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2954 u32 iir, new_iir;
2955 u32 pipe_stats[I915_MAX_PIPES];
2956 unsigned long irqflags;
2957 int irq_received;
2958 int ret = IRQ_NONE, pipe;
2959 u32 flip_mask =
2960 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2961 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2962
2963 atomic_inc(&dev_priv->irq_received);
2964
2965 iir = I915_READ(IIR);
2966
2967 for (;;) {
2968 bool blc_event = false;
2969
2970 irq_received = (iir & ~flip_mask) != 0;
2971
2972 /* Can't rely on pipestat interrupt bit in iir as it might
2973 * have been cleared after the pipestat interrupt was received.
2974 * It doesn't set the bit in iir again, but it still produces
2975 * interrupts (for non-MSI).
2976 */
2977 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2978 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2979 i915_handle_error(dev, false);
2980
2981 for_each_pipe(pipe) {
2982 int reg = PIPESTAT(pipe);
2983 pipe_stats[pipe] = I915_READ(reg);
2984
2985 /*
2986 * Clear the PIPE*STAT regs before the IIR
2987 */
2988 if (pipe_stats[pipe] & 0x8000ffff) {
2989 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2990 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2991 pipe_name(pipe));
2992 I915_WRITE(reg, pipe_stats[pipe]);
2993 irq_received = 1;
2994 }
2995 }
2996 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2997
2998 if (!irq_received)
2999 break;
3000
3001 ret = IRQ_HANDLED;
3002
3003 /* Consume port. Then clear IIR or we'll miss events */
3004 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3005 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3006 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3007 HOTPLUG_INT_STATUS_G4X :
3008 HOTPLUG_INT_STATUS_I915);
3009
3010 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3011 hotplug_status);
3012
3013 intel_hpd_irq_handler(dev, hotplug_trigger,
3014 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
3015
3016 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3017 I915_READ(PORT_HOTPLUG_STAT);
3018 }
3019
3020 I915_WRITE(IIR, iir & ~flip_mask);
3021 new_iir = I915_READ(IIR); /* Flush posted writes */
3022
3023 if (iir & I915_USER_INTERRUPT)
3024 notify_ring(dev, &dev_priv->ring[RCS]);
3025 if (iir & I915_BSD_USER_INTERRUPT)
3026 notify_ring(dev, &dev_priv->ring[VCS]);
3027
3028 for_each_pipe(pipe) {
3029 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3030 i915_handle_vblank(dev, pipe, pipe, iir))
3031 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3032
3033 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3034 blc_event = true;
3035 }
3036
3037
3038 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3039 intel_opregion_asle_intr(dev);
3040
3041 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3042 gmbus_irq_handler(dev);
3043
3044 /* With MSI, interrupts are only generated when iir
3045 * transitions from zero to nonzero. If another bit got
3046 * set while we were handling the existing iir bits, then
3047 * we would never get another interrupt.
3048 *
3049 * This is fine on non-MSI as well, as if we hit this path
3050 * we avoid exiting the interrupt handler only to generate
3051 * another one.
3052 *
3053 * Note that for MSI this could cause a stray interrupt report
3054 * if an interrupt landed in the time between writing IIR and
3055 * the posting read. This should be rare enough to never
3056 * trigger the 99% of 100,000 interrupts test for disabling
3057 * stray interrupts.
3058 */
3059 iir = new_iir;
3060 }
3061
3062 i915_update_dri1_breadcrumb(dev);
3063
3064 return ret;
3065 }
3066
3067 static void i965_irq_uninstall(struct drm_device * dev)
3068 {
3069 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3070 int pipe;
3071
3072 if (!dev_priv)
3073 return;
3074
3075 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3076
3077 I915_WRITE(PORT_HOTPLUG_EN, 0);
3078 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3079
3080 I915_WRITE(HWSTAM, 0xffffffff);
3081 for_each_pipe(pipe)
3082 I915_WRITE(PIPESTAT(pipe), 0);
3083 I915_WRITE(IMR, 0xffffffff);
3084 I915_WRITE(IER, 0x0);
3085
3086 for_each_pipe(pipe)
3087 I915_WRITE(PIPESTAT(pipe),
3088 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3089 I915_WRITE(IIR, I915_READ(IIR));
3090 }
3091
3092 static void i915_reenable_hotplug_timer_func(unsigned long data)
3093 {
3094 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3095 struct drm_device *dev = dev_priv->dev;
3096 struct drm_mode_config *mode_config = &dev->mode_config;
3097 unsigned long irqflags;
3098 int i;
3099
3100 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3101 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3102 struct drm_connector *connector;
3103
3104 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3105 continue;
3106
3107 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3108
3109 list_for_each_entry(connector, &mode_config->connector_list, head) {
3110 struct intel_connector *intel_connector = to_intel_connector(connector);
3111
3112 if (intel_connector->encoder->hpd_pin == i) {
3113 if (connector->polled != intel_connector->polled)
3114 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3115 drm_get_connector_name(connector));
3116 connector->polled = intel_connector->polled;
3117 if (!connector->polled)
3118 connector->polled = DRM_CONNECTOR_POLL_HPD;
3119 }
3120 }
3121 }
3122 if (dev_priv->display.hpd_irq_setup)
3123 dev_priv->display.hpd_irq_setup(dev);
3124 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3125 }
3126
3127 void intel_irq_init(struct drm_device *dev)
3128 {
3129 struct drm_i915_private *dev_priv = dev->dev_private;
3130
3131 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3132 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3133 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3134 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3135
3136 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3137 i915_hangcheck_elapsed,
3138 (unsigned long) dev);
3139 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3140 (unsigned long) dev_priv);
3141
3142 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3143
3144 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3145 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3146 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3147 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3148 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3149 }
3150
3151 if (drm_core_check_feature(dev, DRIVER_MODESET))
3152 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3153 else
3154 dev->driver->get_vblank_timestamp = NULL;
3155 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3156
3157 if (IS_VALLEYVIEW(dev)) {
3158 dev->driver->irq_handler = valleyview_irq_handler;
3159 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3160 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3161 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3162 dev->driver->enable_vblank = valleyview_enable_vblank;
3163 dev->driver->disable_vblank = valleyview_disable_vblank;
3164 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3165 } else if (HAS_PCH_SPLIT(dev)) {
3166 dev->driver->irq_handler = ironlake_irq_handler;
3167 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3168 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3169 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3170 dev->driver->enable_vblank = ironlake_enable_vblank;
3171 dev->driver->disable_vblank = ironlake_disable_vblank;
3172 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3173 } else {
3174 if (INTEL_INFO(dev)->gen == 2) {
3175 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3176 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3177 dev->driver->irq_handler = i8xx_irq_handler;
3178 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3179 } else if (INTEL_INFO(dev)->gen == 3) {
3180 dev->driver->irq_preinstall = i915_irq_preinstall;
3181 dev->driver->irq_postinstall = i915_irq_postinstall;
3182 dev->driver->irq_uninstall = i915_irq_uninstall;
3183 dev->driver->irq_handler = i915_irq_handler;
3184 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3185 } else {
3186 dev->driver->irq_preinstall = i965_irq_preinstall;
3187 dev->driver->irq_postinstall = i965_irq_postinstall;
3188 dev->driver->irq_uninstall = i965_irq_uninstall;
3189 dev->driver->irq_handler = i965_irq_handler;
3190 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3191 }
3192 dev->driver->enable_vblank = i915_enable_vblank;
3193 dev->driver->disable_vblank = i915_disable_vblank;
3194 }
3195 }
3196
3197 void intel_hpd_init(struct drm_device *dev)
3198 {
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct drm_mode_config *mode_config = &dev->mode_config;
3201 struct drm_connector *connector;
3202 unsigned long irqflags;
3203 int i;
3204
3205 for (i = 1; i < HPD_NUM_PINS; i++) {
3206 dev_priv->hpd_stats[i].hpd_cnt = 0;
3207 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3208 }
3209 list_for_each_entry(connector, &mode_config->connector_list, head) {
3210 struct intel_connector *intel_connector = to_intel_connector(connector);
3211 connector->polled = intel_connector->polled;
3212 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3213 connector->polled = DRM_CONNECTOR_POLL_HPD;
3214 }
3215
3216 /* Interrupt setup is already guaranteed to be single-threaded, this is
3217 * just to make the assert_spin_locked checks happy. */
3218 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3219 if (dev_priv->display.hpd_irq_setup)
3220 dev_priv->display.hpd_irq_setup(dev);
3221 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3222 }
3223
3224 /* Disable interrupts so we can allow Package C8+. */
3225 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3226 {
3227 struct drm_i915_private *dev_priv = dev->dev_private;
3228 unsigned long irqflags;
3229
3230 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3231
3232 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3233 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3234 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3235 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3236 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3237
3238 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3239 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3240 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3241 snb_disable_pm_irq(dev_priv, 0xffffffff);
3242
3243 dev_priv->pc8.irqs_disabled = true;
3244
3245 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3246 }
3247
3248 /* Restore interrupts so we can recover from Package C8+. */
3249 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3250 {
3251 struct drm_i915_private *dev_priv = dev->dev_private;
3252 unsigned long irqflags;
3253 uint32_t val, expected;
3254
3255 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3256
3257 val = I915_READ(DEIMR);
3258 expected = ~DE_PCH_EVENT_IVB;
3259 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3260
3261 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3262 expected = ~SDE_HOTPLUG_MASK_CPT;
3263 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3264 val, expected);
3265
3266 val = I915_READ(GTIMR);
3267 expected = 0xffffffff;
3268 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3269
3270 val = I915_READ(GEN6_PMIMR);
3271 expected = 0xffffffff;
3272 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3273 expected);
3274
3275 dev_priv->pc8.irqs_disabled = false;
3276
3277 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3278 ibx_enable_display_interrupt(dev_priv,
3279 ~dev_priv->pc8.regsave.sdeimr &
3280 ~SDE_HOTPLUG_MASK_CPT);
3281 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3282 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3283 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3284
3285 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3286 }
This page took 0.094811 seconds and 6 git commands to generate.