Merge tag 'usb-serial-3.19-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94 POSTING_READ(GEN8_##type##_IMR(which)); \
95 I915_WRITE(GEN8_##type##_IER(which), 0); \
96 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97 POSTING_READ(GEN8_##type##_IIR(which)); \
98 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99 POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103 I915_WRITE(type##IMR, 0xffffffff); \
104 POSTING_READ(type##IMR); \
105 I915_WRITE(type##IER, 0); \
106 I915_WRITE(type##IIR, 0xffffffff); \
107 POSTING_READ(type##IIR); \
108 I915_WRITE(type##IIR, 0xffffffff); \
109 POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114 */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116 u32 val = I915_READ(reg); \
117 if (val) { \
118 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119 (reg), val); \
120 I915_WRITE((reg), 0xffffffff); \
121 POSTING_READ(reg); \
122 I915_WRITE((reg), 0xffffffff); \
123 POSTING_READ(reg); \
124 } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131 POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136 I915_WRITE(type##IER, (ier_val)); \
137 I915_WRITE(type##IMR, (imr_val)); \
138 POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 assert_spin_locked(&dev_priv->irq_lock);
148
149 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150 return;
151
152 if ((dev_priv->irq_mask & mask) != 0) {
153 dev_priv->irq_mask &= ~mask;
154 I915_WRITE(DEIMR, dev_priv->irq_mask);
155 POSTING_READ(DEIMR);
156 }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162 assert_spin_locked(&dev_priv->irq_lock);
163
164 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165 return;
166
167 if ((dev_priv->irq_mask & mask) != mask) {
168 dev_priv->irq_mask |= mask;
169 I915_WRITE(DEIMR, dev_priv->irq_mask);
170 POSTING_READ(DEIMR);
171 }
172 }
173
174 /**
175 * ilk_update_gt_irq - update GTIMR
176 * @dev_priv: driver private
177 * @interrupt_mask: mask of interrupt bits to update
178 * @enabled_irq_mask: mask of interrupt bits to enable
179 */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181 uint32_t interrupt_mask,
182 uint32_t enabled_irq_mask)
183 {
184 assert_spin_locked(&dev_priv->irq_lock);
185
186 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
187 return;
188
189 dev_priv->gt_irq_mask &= ~interrupt_mask;
190 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
191 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
192 POSTING_READ(GTIMR);
193 }
194
195 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
196 {
197 ilk_update_gt_irq(dev_priv, mask, mask);
198 }
199
200 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
201 {
202 ilk_update_gt_irq(dev_priv, mask, 0);
203 }
204
205 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
206 {
207 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
208 }
209
210 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
211 {
212 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
213 }
214
215 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
216 {
217 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
218 }
219
220 /**
221 * snb_update_pm_irq - update GEN6_PMIMR
222 * @dev_priv: driver private
223 * @interrupt_mask: mask of interrupt bits to update
224 * @enabled_irq_mask: mask of interrupt bits to enable
225 */
226 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
227 uint32_t interrupt_mask,
228 uint32_t enabled_irq_mask)
229 {
230 uint32_t new_val;
231
232 assert_spin_locked(&dev_priv->irq_lock);
233
234 new_val = dev_priv->pm_irq_mask;
235 new_val &= ~interrupt_mask;
236 new_val |= (~enabled_irq_mask & interrupt_mask);
237
238 if (new_val != dev_priv->pm_irq_mask) {
239 dev_priv->pm_irq_mask = new_val;
240 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
241 POSTING_READ(gen6_pm_imr(dev_priv));
242 }
243 }
244
245 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
246 {
247 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
248 return;
249
250 snb_update_pm_irq(dev_priv, mask, mask);
251 }
252
253 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
254 uint32_t mask)
255 {
256 snb_update_pm_irq(dev_priv, mask, 0);
257 }
258
259 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
260 {
261 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
262 return;
263
264 __gen6_disable_pm_irq(dev_priv, mask);
265 }
266
267 void gen6_reset_rps_interrupts(struct drm_device *dev)
268 {
269 struct drm_i915_private *dev_priv = dev->dev_private;
270 uint32_t reg = gen6_pm_iir(dev_priv);
271
272 spin_lock_irq(&dev_priv->irq_lock);
273 I915_WRITE(reg, dev_priv->pm_rps_events);
274 I915_WRITE(reg, dev_priv->pm_rps_events);
275 POSTING_READ(reg);
276 spin_unlock_irq(&dev_priv->irq_lock);
277 }
278
279 void gen6_enable_rps_interrupts(struct drm_device *dev)
280 {
281 struct drm_i915_private *dev_priv = dev->dev_private;
282
283 spin_lock_irq(&dev_priv->irq_lock);
284
285 WARN_ON(dev_priv->rps.pm_iir);
286 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
287 dev_priv->rps.interrupts_enabled = true;
288 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
289 dev_priv->pm_rps_events);
290 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
291
292 spin_unlock_irq(&dev_priv->irq_lock);
293 }
294
295 void gen6_disable_rps_interrupts(struct drm_device *dev)
296 {
297 struct drm_i915_private *dev_priv = dev->dev_private;
298
299 spin_lock_irq(&dev_priv->irq_lock);
300 dev_priv->rps.interrupts_enabled = false;
301 spin_unlock_irq(&dev_priv->irq_lock);
302
303 cancel_work_sync(&dev_priv->rps.work);
304
305 spin_lock_irq(&dev_priv->irq_lock);
306
307 I915_WRITE(GEN6_PMINTRMSK, INTEL_INFO(dev_priv)->gen >= 8 ?
308 ~GEN8_PMINTR_REDIRECT_TO_NON_DISP : ~0);
309
310 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
311 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
312 ~dev_priv->pm_rps_events);
313 I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
314 I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
315
316 dev_priv->rps.pm_iir = 0;
317
318 spin_unlock_irq(&dev_priv->irq_lock);
319 }
320
321 /**
322 * ibx_display_interrupt_update - update SDEIMR
323 * @dev_priv: driver private
324 * @interrupt_mask: mask of interrupt bits to update
325 * @enabled_irq_mask: mask of interrupt bits to enable
326 */
327 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
328 uint32_t interrupt_mask,
329 uint32_t enabled_irq_mask)
330 {
331 uint32_t sdeimr = I915_READ(SDEIMR);
332 sdeimr &= ~interrupt_mask;
333 sdeimr |= (~enabled_irq_mask & interrupt_mask);
334
335 assert_spin_locked(&dev_priv->irq_lock);
336
337 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
338 return;
339
340 I915_WRITE(SDEIMR, sdeimr);
341 POSTING_READ(SDEIMR);
342 }
343
344 static void
345 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
346 u32 enable_mask, u32 status_mask)
347 {
348 u32 reg = PIPESTAT(pipe);
349 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
350
351 assert_spin_locked(&dev_priv->irq_lock);
352 WARN_ON(!intel_irqs_enabled(dev_priv));
353
354 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
355 status_mask & ~PIPESTAT_INT_STATUS_MASK,
356 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
357 pipe_name(pipe), enable_mask, status_mask))
358 return;
359
360 if ((pipestat & enable_mask) == enable_mask)
361 return;
362
363 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
364
365 /* Enable the interrupt, clear any pending status */
366 pipestat |= enable_mask | status_mask;
367 I915_WRITE(reg, pipestat);
368 POSTING_READ(reg);
369 }
370
371 static void
372 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
373 u32 enable_mask, u32 status_mask)
374 {
375 u32 reg = PIPESTAT(pipe);
376 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
377
378 assert_spin_locked(&dev_priv->irq_lock);
379 WARN_ON(!intel_irqs_enabled(dev_priv));
380
381 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
382 status_mask & ~PIPESTAT_INT_STATUS_MASK,
383 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
384 pipe_name(pipe), enable_mask, status_mask))
385 return;
386
387 if ((pipestat & enable_mask) == 0)
388 return;
389
390 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
391
392 pipestat &= ~enable_mask;
393 I915_WRITE(reg, pipestat);
394 POSTING_READ(reg);
395 }
396
397 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
398 {
399 u32 enable_mask = status_mask << 16;
400
401 /*
402 * On pipe A we don't support the PSR interrupt yet,
403 * on pipe B and C the same bit MBZ.
404 */
405 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
406 return 0;
407 /*
408 * On pipe B and C we don't support the PSR interrupt yet, on pipe
409 * A the same bit is for perf counters which we don't use either.
410 */
411 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
412 return 0;
413
414 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
415 SPRITE0_FLIP_DONE_INT_EN_VLV |
416 SPRITE1_FLIP_DONE_INT_EN_VLV);
417 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
418 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
419 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
420 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
421
422 return enable_mask;
423 }
424
425 void
426 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
427 u32 status_mask)
428 {
429 u32 enable_mask;
430
431 if (IS_VALLEYVIEW(dev_priv->dev))
432 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
433 status_mask);
434 else
435 enable_mask = status_mask << 16;
436 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
437 }
438
439 void
440 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
441 u32 status_mask)
442 {
443 u32 enable_mask;
444
445 if (IS_VALLEYVIEW(dev_priv->dev))
446 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
447 status_mask);
448 else
449 enable_mask = status_mask << 16;
450 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
451 }
452
453 /**
454 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
455 */
456 static void i915_enable_asle_pipestat(struct drm_device *dev)
457 {
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
461 return;
462
463 spin_lock_irq(&dev_priv->irq_lock);
464
465 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
466 if (INTEL_INFO(dev)->gen >= 4)
467 i915_enable_pipestat(dev_priv, PIPE_A,
468 PIPE_LEGACY_BLC_EVENT_STATUS);
469
470 spin_unlock_irq(&dev_priv->irq_lock);
471 }
472
473 /**
474 * i915_pipe_enabled - check if a pipe is enabled
475 * @dev: DRM device
476 * @pipe: pipe to check
477 *
478 * Reading certain registers when the pipe is disabled can hang the chip.
479 * Use this routine to make sure the PLL is running and the pipe is active
480 * before reading such registers if unsure.
481 */
482 static int
483 i915_pipe_enabled(struct drm_device *dev, int pipe)
484 {
485 struct drm_i915_private *dev_priv = dev->dev_private;
486
487 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
488 /* Locking is horribly broken here, but whatever. */
489 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
491
492 return intel_crtc->active;
493 } else {
494 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
495 }
496 }
497
498 /*
499 * This timing diagram depicts the video signal in and
500 * around the vertical blanking period.
501 *
502 * Assumptions about the fictitious mode used in this example:
503 * vblank_start >= 3
504 * vsync_start = vblank_start + 1
505 * vsync_end = vblank_start + 2
506 * vtotal = vblank_start + 3
507 *
508 * start of vblank:
509 * latch double buffered registers
510 * increment frame counter (ctg+)
511 * generate start of vblank interrupt (gen4+)
512 * |
513 * | frame start:
514 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
515 * | may be shifted forward 1-3 extra lines via PIPECONF
516 * | |
517 * | | start of vsync:
518 * | | generate vsync interrupt
519 * | | |
520 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
521 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
522 * ----va---> <-----------------vb--------------------> <--------va-------------
523 * | | <----vs-----> |
524 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
525 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
526 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
527 * | | |
528 * last visible pixel first visible pixel
529 * | increment frame counter (gen3/4)
530 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
531 *
532 * x = horizontal active
533 * _ = horizontal blanking
534 * hs = horizontal sync
535 * va = vertical active
536 * vb = vertical blanking
537 * vs = vertical sync
538 * vbs = vblank_start (number)
539 *
540 * Summary:
541 * - most events happen at the start of horizontal sync
542 * - frame start happens at the start of horizontal blank, 1-4 lines
543 * (depending on PIPECONF settings) after the start of vblank
544 * - gen3/4 pixel and frame counter are synchronized with the start
545 * of horizontal active on the first line of vertical active
546 */
547
548 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
549 {
550 /* Gen2 doesn't have a hardware frame counter */
551 return 0;
552 }
553
554 /* Called from drm generic code, passed a 'crtc', which
555 * we use as a pipe index
556 */
557 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
558 {
559 struct drm_i915_private *dev_priv = dev->dev_private;
560 unsigned long high_frame;
561 unsigned long low_frame;
562 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
563
564 if (!i915_pipe_enabled(dev, pipe)) {
565 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
566 "pipe %c\n", pipe_name(pipe));
567 return 0;
568 }
569
570 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
571 struct intel_crtc *intel_crtc =
572 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
573 const struct drm_display_mode *mode =
574 &intel_crtc->config.adjusted_mode;
575
576 htotal = mode->crtc_htotal;
577 hsync_start = mode->crtc_hsync_start;
578 vbl_start = mode->crtc_vblank_start;
579 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
580 vbl_start = DIV_ROUND_UP(vbl_start, 2);
581 } else {
582 enum transcoder cpu_transcoder = (enum transcoder) pipe;
583
584 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
585 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1;
586 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
587 if ((I915_READ(PIPECONF(cpu_transcoder)) &
588 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
589 vbl_start = DIV_ROUND_UP(vbl_start, 2);
590 }
591
592 /* Convert to pixel count */
593 vbl_start *= htotal;
594
595 /* Start of vblank event occurs at start of hsync */
596 vbl_start -= htotal - hsync_start;
597
598 high_frame = PIPEFRAME(pipe);
599 low_frame = PIPEFRAMEPIXEL(pipe);
600
601 /*
602 * High & low register fields aren't synchronized, so make sure
603 * we get a low value that's stable across two reads of the high
604 * register.
605 */
606 do {
607 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
608 low = I915_READ(low_frame);
609 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
610 } while (high1 != high2);
611
612 high1 >>= PIPE_FRAME_HIGH_SHIFT;
613 pixel = low & PIPE_PIXEL_MASK;
614 low >>= PIPE_FRAME_LOW_SHIFT;
615
616 /*
617 * The frame counter increments at beginning of active.
618 * Cook up a vblank counter by also checking the pixel
619 * counter against vblank start.
620 */
621 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
622 }
623
624 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
625 {
626 struct drm_i915_private *dev_priv = dev->dev_private;
627 int reg = PIPE_FRMCOUNT_GM45(pipe);
628
629 if (!i915_pipe_enabled(dev, pipe)) {
630 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
631 "pipe %c\n", pipe_name(pipe));
632 return 0;
633 }
634
635 return I915_READ(reg);
636 }
637
638 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
639 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
640
641 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
642 {
643 struct drm_device *dev = crtc->base.dev;
644 struct drm_i915_private *dev_priv = dev->dev_private;
645 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
646 enum pipe pipe = crtc->pipe;
647 int position, vtotal;
648
649 vtotal = mode->crtc_vtotal;
650 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
651 vtotal /= 2;
652
653 if (IS_GEN2(dev))
654 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
655 else
656 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
657
658 /*
659 * See update_scanline_offset() for the details on the
660 * scanline_offset adjustment.
661 */
662 return (position + crtc->scanline_offset) % vtotal;
663 }
664
665 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
666 unsigned int flags, int *vpos, int *hpos,
667 ktime_t *stime, ktime_t *etime)
668 {
669 struct drm_i915_private *dev_priv = dev->dev_private;
670 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
672 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
673 int position;
674 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
675 bool in_vbl = true;
676 int ret = 0;
677 unsigned long irqflags;
678
679 if (!intel_crtc->active) {
680 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
681 "pipe %c\n", pipe_name(pipe));
682 return 0;
683 }
684
685 htotal = mode->crtc_htotal;
686 hsync_start = mode->crtc_hsync_start;
687 vtotal = mode->crtc_vtotal;
688 vbl_start = mode->crtc_vblank_start;
689 vbl_end = mode->crtc_vblank_end;
690
691 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
692 vbl_start = DIV_ROUND_UP(vbl_start, 2);
693 vbl_end /= 2;
694 vtotal /= 2;
695 }
696
697 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
698
699 /*
700 * Lock uncore.lock, as we will do multiple timing critical raw
701 * register reads, potentially with preemption disabled, so the
702 * following code must not block on uncore.lock.
703 */
704 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
705
706 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
707
708 /* Get optional system timestamp before query. */
709 if (stime)
710 *stime = ktime_get();
711
712 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
713 /* No obvious pixelcount register. Only query vertical
714 * scanout position from Display scan line register.
715 */
716 position = __intel_get_crtc_scanline(intel_crtc);
717 } else {
718 /* Have access to pixelcount since start of frame.
719 * We can split this into vertical and horizontal
720 * scanout position.
721 */
722 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
723
724 /* convert to pixel counts */
725 vbl_start *= htotal;
726 vbl_end *= htotal;
727 vtotal *= htotal;
728
729 /*
730 * In interlaced modes, the pixel counter counts all pixels,
731 * so one field will have htotal more pixels. In order to avoid
732 * the reported position from jumping backwards when the pixel
733 * counter is beyond the length of the shorter field, just
734 * clamp the position the length of the shorter field. This
735 * matches how the scanline counter based position works since
736 * the scanline counter doesn't count the two half lines.
737 */
738 if (position >= vtotal)
739 position = vtotal - 1;
740
741 /*
742 * Start of vblank interrupt is triggered at start of hsync,
743 * just prior to the first active line of vblank. However we
744 * consider lines to start at the leading edge of horizontal
745 * active. So, should we get here before we've crossed into
746 * the horizontal active of the first line in vblank, we would
747 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
748 * always add htotal-hsync_start to the current pixel position.
749 */
750 position = (position + htotal - hsync_start) % vtotal;
751 }
752
753 /* Get optional system timestamp after query. */
754 if (etime)
755 *etime = ktime_get();
756
757 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
758
759 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
760
761 in_vbl = position >= vbl_start && position < vbl_end;
762
763 /*
764 * While in vblank, position will be negative
765 * counting up towards 0 at vbl_end. And outside
766 * vblank, position will be positive counting
767 * up since vbl_end.
768 */
769 if (position >= vbl_start)
770 position -= vbl_end;
771 else
772 position += vtotal - vbl_end;
773
774 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
775 *vpos = position;
776 *hpos = 0;
777 } else {
778 *vpos = position / htotal;
779 *hpos = position - (*vpos * htotal);
780 }
781
782 /* In vblank? */
783 if (in_vbl)
784 ret |= DRM_SCANOUTPOS_IN_VBLANK;
785
786 return ret;
787 }
788
789 int intel_get_crtc_scanline(struct intel_crtc *crtc)
790 {
791 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
792 unsigned long irqflags;
793 int position;
794
795 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
796 position = __intel_get_crtc_scanline(crtc);
797 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
798
799 return position;
800 }
801
802 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
803 int *max_error,
804 struct timeval *vblank_time,
805 unsigned flags)
806 {
807 struct drm_crtc *crtc;
808
809 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
810 DRM_ERROR("Invalid crtc %d\n", pipe);
811 return -EINVAL;
812 }
813
814 /* Get drm_crtc to timestamp: */
815 crtc = intel_get_crtc_for_pipe(dev, pipe);
816 if (crtc == NULL) {
817 DRM_ERROR("Invalid crtc %d\n", pipe);
818 return -EINVAL;
819 }
820
821 if (!crtc->enabled) {
822 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
823 return -EBUSY;
824 }
825
826 /* Helper routine in DRM core does all the work: */
827 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
828 vblank_time, flags,
829 crtc,
830 &to_intel_crtc(crtc)->config.adjusted_mode);
831 }
832
833 static bool intel_hpd_irq_event(struct drm_device *dev,
834 struct drm_connector *connector)
835 {
836 enum drm_connector_status old_status;
837
838 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
839 old_status = connector->status;
840
841 connector->status = connector->funcs->detect(connector, false);
842 if (old_status == connector->status)
843 return false;
844
845 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
846 connector->base.id,
847 connector->name,
848 drm_get_connector_status_name(old_status),
849 drm_get_connector_status_name(connector->status));
850
851 return true;
852 }
853
854 static void i915_digport_work_func(struct work_struct *work)
855 {
856 struct drm_i915_private *dev_priv =
857 container_of(work, struct drm_i915_private, dig_port_work);
858 u32 long_port_mask, short_port_mask;
859 struct intel_digital_port *intel_dig_port;
860 int i, ret;
861 u32 old_bits = 0;
862
863 spin_lock_irq(&dev_priv->irq_lock);
864 long_port_mask = dev_priv->long_hpd_port_mask;
865 dev_priv->long_hpd_port_mask = 0;
866 short_port_mask = dev_priv->short_hpd_port_mask;
867 dev_priv->short_hpd_port_mask = 0;
868 spin_unlock_irq(&dev_priv->irq_lock);
869
870 for (i = 0; i < I915_MAX_PORTS; i++) {
871 bool valid = false;
872 bool long_hpd = false;
873 intel_dig_port = dev_priv->hpd_irq_port[i];
874 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
875 continue;
876
877 if (long_port_mask & (1 << i)) {
878 valid = true;
879 long_hpd = true;
880 } else if (short_port_mask & (1 << i))
881 valid = true;
882
883 if (valid) {
884 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
885 if (ret == true) {
886 /* if we get true fallback to old school hpd */
887 old_bits |= (1 << intel_dig_port->base.hpd_pin);
888 }
889 }
890 }
891
892 if (old_bits) {
893 spin_lock_irq(&dev_priv->irq_lock);
894 dev_priv->hpd_event_bits |= old_bits;
895 spin_unlock_irq(&dev_priv->irq_lock);
896 schedule_work(&dev_priv->hotplug_work);
897 }
898 }
899
900 /*
901 * Handle hotplug events outside the interrupt handler proper.
902 */
903 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
904
905 static void i915_hotplug_work_func(struct work_struct *work)
906 {
907 struct drm_i915_private *dev_priv =
908 container_of(work, struct drm_i915_private, hotplug_work);
909 struct drm_device *dev = dev_priv->dev;
910 struct drm_mode_config *mode_config = &dev->mode_config;
911 struct intel_connector *intel_connector;
912 struct intel_encoder *intel_encoder;
913 struct drm_connector *connector;
914 bool hpd_disabled = false;
915 bool changed = false;
916 u32 hpd_event_bits;
917
918 mutex_lock(&mode_config->mutex);
919 DRM_DEBUG_KMS("running encoder hotplug functions\n");
920
921 spin_lock_irq(&dev_priv->irq_lock);
922
923 hpd_event_bits = dev_priv->hpd_event_bits;
924 dev_priv->hpd_event_bits = 0;
925 list_for_each_entry(connector, &mode_config->connector_list, head) {
926 intel_connector = to_intel_connector(connector);
927 if (!intel_connector->encoder)
928 continue;
929 intel_encoder = intel_connector->encoder;
930 if (intel_encoder->hpd_pin > HPD_NONE &&
931 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
932 connector->polled == DRM_CONNECTOR_POLL_HPD) {
933 DRM_INFO("HPD interrupt storm detected on connector %s: "
934 "switching from hotplug detection to polling\n",
935 connector->name);
936 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
937 connector->polled = DRM_CONNECTOR_POLL_CONNECT
938 | DRM_CONNECTOR_POLL_DISCONNECT;
939 hpd_disabled = true;
940 }
941 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
942 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
943 connector->name, intel_encoder->hpd_pin);
944 }
945 }
946 /* if there were no outputs to poll, poll was disabled,
947 * therefore make sure it's enabled when disabling HPD on
948 * some connectors */
949 if (hpd_disabled) {
950 drm_kms_helper_poll_enable(dev);
951 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
952 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
953 }
954
955 spin_unlock_irq(&dev_priv->irq_lock);
956
957 list_for_each_entry(connector, &mode_config->connector_list, head) {
958 intel_connector = to_intel_connector(connector);
959 if (!intel_connector->encoder)
960 continue;
961 intel_encoder = intel_connector->encoder;
962 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
963 if (intel_encoder->hot_plug)
964 intel_encoder->hot_plug(intel_encoder);
965 if (intel_hpd_irq_event(dev, connector))
966 changed = true;
967 }
968 }
969 mutex_unlock(&mode_config->mutex);
970
971 if (changed)
972 drm_kms_helper_hotplug_event(dev);
973 }
974
975 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
976 {
977 struct drm_i915_private *dev_priv = dev->dev_private;
978 u32 busy_up, busy_down, max_avg, min_avg;
979 u8 new_delay;
980
981 spin_lock(&mchdev_lock);
982
983 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
984
985 new_delay = dev_priv->ips.cur_delay;
986
987 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
988 busy_up = I915_READ(RCPREVBSYTUPAVG);
989 busy_down = I915_READ(RCPREVBSYTDNAVG);
990 max_avg = I915_READ(RCBMAXAVG);
991 min_avg = I915_READ(RCBMINAVG);
992
993 /* Handle RCS change request from hw */
994 if (busy_up > max_avg) {
995 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
996 new_delay = dev_priv->ips.cur_delay - 1;
997 if (new_delay < dev_priv->ips.max_delay)
998 new_delay = dev_priv->ips.max_delay;
999 } else if (busy_down < min_avg) {
1000 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1001 new_delay = dev_priv->ips.cur_delay + 1;
1002 if (new_delay > dev_priv->ips.min_delay)
1003 new_delay = dev_priv->ips.min_delay;
1004 }
1005
1006 if (ironlake_set_drps(dev, new_delay))
1007 dev_priv->ips.cur_delay = new_delay;
1008
1009 spin_unlock(&mchdev_lock);
1010
1011 return;
1012 }
1013
1014 static void notify_ring(struct drm_device *dev,
1015 struct intel_engine_cs *ring)
1016 {
1017 if (!intel_ring_initialized(ring))
1018 return;
1019
1020 trace_i915_gem_request_complete(ring);
1021
1022 wake_up_all(&ring->irq_queue);
1023 }
1024
1025 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1026 struct intel_rps_ei *rps_ei)
1027 {
1028 u32 cz_ts, cz_freq_khz;
1029 u32 render_count, media_count;
1030 u32 elapsed_render, elapsed_media, elapsed_time;
1031 u32 residency = 0;
1032
1033 cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1034 cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1035
1036 render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1037 media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1038
1039 if (rps_ei->cz_clock == 0) {
1040 rps_ei->cz_clock = cz_ts;
1041 rps_ei->render_c0 = render_count;
1042 rps_ei->media_c0 = media_count;
1043
1044 return dev_priv->rps.cur_freq;
1045 }
1046
1047 elapsed_time = cz_ts - rps_ei->cz_clock;
1048 rps_ei->cz_clock = cz_ts;
1049
1050 elapsed_render = render_count - rps_ei->render_c0;
1051 rps_ei->render_c0 = render_count;
1052
1053 elapsed_media = media_count - rps_ei->media_c0;
1054 rps_ei->media_c0 = media_count;
1055
1056 /* Convert all the counters into common unit of milli sec */
1057 elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1058 elapsed_render /= cz_freq_khz;
1059 elapsed_media /= cz_freq_khz;
1060
1061 /*
1062 * Calculate overall C0 residency percentage
1063 * only if elapsed time is non zero
1064 */
1065 if (elapsed_time) {
1066 residency =
1067 ((max(elapsed_render, elapsed_media) * 100)
1068 / elapsed_time);
1069 }
1070
1071 return residency;
1072 }
1073
1074 /**
1075 * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1076 * busy-ness calculated from C0 counters of render & media power wells
1077 * @dev_priv: DRM device private
1078 *
1079 */
1080 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1081 {
1082 u32 residency_C0_up = 0, residency_C0_down = 0;
1083 int new_delay, adj;
1084
1085 dev_priv->rps.ei_interrupt_count++;
1086
1087 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1088
1089
1090 if (dev_priv->rps.up_ei.cz_clock == 0) {
1091 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1092 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1093 return dev_priv->rps.cur_freq;
1094 }
1095
1096
1097 /*
1098 * To down throttle, C0 residency should be less than down threshold
1099 * for continous EI intervals. So calculate down EI counters
1100 * once in VLV_INT_COUNT_FOR_DOWN_EI
1101 */
1102 if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1103
1104 dev_priv->rps.ei_interrupt_count = 0;
1105
1106 residency_C0_down = vlv_c0_residency(dev_priv,
1107 &dev_priv->rps.down_ei);
1108 } else {
1109 residency_C0_up = vlv_c0_residency(dev_priv,
1110 &dev_priv->rps.up_ei);
1111 }
1112
1113 new_delay = dev_priv->rps.cur_freq;
1114
1115 adj = dev_priv->rps.last_adj;
1116 /* C0 residency is greater than UP threshold. Increase Frequency */
1117 if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1118 if (adj > 0)
1119 adj *= 2;
1120 else
1121 adj = 1;
1122
1123 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1124 new_delay = dev_priv->rps.cur_freq + adj;
1125
1126 /*
1127 * For better performance, jump directly
1128 * to RPe if we're below it.
1129 */
1130 if (new_delay < dev_priv->rps.efficient_freq)
1131 new_delay = dev_priv->rps.efficient_freq;
1132
1133 } else if (!dev_priv->rps.ei_interrupt_count &&
1134 (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1135 if (adj < 0)
1136 adj *= 2;
1137 else
1138 adj = -1;
1139 /*
1140 * This means, C0 residency is less than down threshold over
1141 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1142 */
1143 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1144 new_delay = dev_priv->rps.cur_freq + adj;
1145 }
1146
1147 return new_delay;
1148 }
1149
1150 static void gen6_pm_rps_work(struct work_struct *work)
1151 {
1152 struct drm_i915_private *dev_priv =
1153 container_of(work, struct drm_i915_private, rps.work);
1154 u32 pm_iir;
1155 int new_delay, adj;
1156
1157 spin_lock_irq(&dev_priv->irq_lock);
1158 /* Speed up work cancelation during disabling rps interrupts. */
1159 if (!dev_priv->rps.interrupts_enabled) {
1160 spin_unlock_irq(&dev_priv->irq_lock);
1161 return;
1162 }
1163 pm_iir = dev_priv->rps.pm_iir;
1164 dev_priv->rps.pm_iir = 0;
1165 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1166 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1167 spin_unlock_irq(&dev_priv->irq_lock);
1168
1169 /* Make sure we didn't queue anything we're not going to process. */
1170 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1171
1172 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1173 return;
1174
1175 mutex_lock(&dev_priv->rps.hw_lock);
1176
1177 adj = dev_priv->rps.last_adj;
1178 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1179 if (adj > 0)
1180 adj *= 2;
1181 else {
1182 /* CHV needs even encode values */
1183 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1184 }
1185 new_delay = dev_priv->rps.cur_freq + adj;
1186
1187 /*
1188 * For better performance, jump directly
1189 * to RPe if we're below it.
1190 */
1191 if (new_delay < dev_priv->rps.efficient_freq)
1192 new_delay = dev_priv->rps.efficient_freq;
1193 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1194 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1195 new_delay = dev_priv->rps.efficient_freq;
1196 else
1197 new_delay = dev_priv->rps.min_freq_softlimit;
1198 adj = 0;
1199 } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1200 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1201 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1202 if (adj < 0)
1203 adj *= 2;
1204 else {
1205 /* CHV needs even encode values */
1206 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1207 }
1208 new_delay = dev_priv->rps.cur_freq + adj;
1209 } else { /* unknown event */
1210 new_delay = dev_priv->rps.cur_freq;
1211 }
1212
1213 /* sysfs frequency interfaces may have snuck in while servicing the
1214 * interrupt
1215 */
1216 new_delay = clamp_t(int, new_delay,
1217 dev_priv->rps.min_freq_softlimit,
1218 dev_priv->rps.max_freq_softlimit);
1219
1220 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1221
1222 if (IS_VALLEYVIEW(dev_priv->dev))
1223 valleyview_set_rps(dev_priv->dev, new_delay);
1224 else
1225 gen6_set_rps(dev_priv->dev, new_delay);
1226
1227 mutex_unlock(&dev_priv->rps.hw_lock);
1228 }
1229
1230
1231 /**
1232 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1233 * occurred.
1234 * @work: workqueue struct
1235 *
1236 * Doesn't actually do anything except notify userspace. As a consequence of
1237 * this event, userspace should try to remap the bad rows since statistically
1238 * it is likely the same row is more likely to go bad again.
1239 */
1240 static void ivybridge_parity_work(struct work_struct *work)
1241 {
1242 struct drm_i915_private *dev_priv =
1243 container_of(work, struct drm_i915_private, l3_parity.error_work);
1244 u32 error_status, row, bank, subbank;
1245 char *parity_event[6];
1246 uint32_t misccpctl;
1247 uint8_t slice = 0;
1248
1249 /* We must turn off DOP level clock gating to access the L3 registers.
1250 * In order to prevent a get/put style interface, acquire struct mutex
1251 * any time we access those registers.
1252 */
1253 mutex_lock(&dev_priv->dev->struct_mutex);
1254
1255 /* If we've screwed up tracking, just let the interrupt fire again */
1256 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1257 goto out;
1258
1259 misccpctl = I915_READ(GEN7_MISCCPCTL);
1260 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1261 POSTING_READ(GEN7_MISCCPCTL);
1262
1263 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1264 u32 reg;
1265
1266 slice--;
1267 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1268 break;
1269
1270 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1271
1272 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1273
1274 error_status = I915_READ(reg);
1275 row = GEN7_PARITY_ERROR_ROW(error_status);
1276 bank = GEN7_PARITY_ERROR_BANK(error_status);
1277 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1278
1279 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1280 POSTING_READ(reg);
1281
1282 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1283 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1284 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1285 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1286 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1287 parity_event[5] = NULL;
1288
1289 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1290 KOBJ_CHANGE, parity_event);
1291
1292 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1293 slice, row, bank, subbank);
1294
1295 kfree(parity_event[4]);
1296 kfree(parity_event[3]);
1297 kfree(parity_event[2]);
1298 kfree(parity_event[1]);
1299 }
1300
1301 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1302
1303 out:
1304 WARN_ON(dev_priv->l3_parity.which_slice);
1305 spin_lock_irq(&dev_priv->irq_lock);
1306 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1307 spin_unlock_irq(&dev_priv->irq_lock);
1308
1309 mutex_unlock(&dev_priv->dev->struct_mutex);
1310 }
1311
1312 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1313 {
1314 struct drm_i915_private *dev_priv = dev->dev_private;
1315
1316 if (!HAS_L3_DPF(dev))
1317 return;
1318
1319 spin_lock(&dev_priv->irq_lock);
1320 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1321 spin_unlock(&dev_priv->irq_lock);
1322
1323 iir &= GT_PARITY_ERROR(dev);
1324 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1325 dev_priv->l3_parity.which_slice |= 1 << 1;
1326
1327 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1328 dev_priv->l3_parity.which_slice |= 1 << 0;
1329
1330 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1331 }
1332
1333 static void ilk_gt_irq_handler(struct drm_device *dev,
1334 struct drm_i915_private *dev_priv,
1335 u32 gt_iir)
1336 {
1337 if (gt_iir &
1338 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1339 notify_ring(dev, &dev_priv->ring[RCS]);
1340 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1341 notify_ring(dev, &dev_priv->ring[VCS]);
1342 }
1343
1344 static void snb_gt_irq_handler(struct drm_device *dev,
1345 struct drm_i915_private *dev_priv,
1346 u32 gt_iir)
1347 {
1348
1349 if (gt_iir &
1350 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1351 notify_ring(dev, &dev_priv->ring[RCS]);
1352 if (gt_iir & GT_BSD_USER_INTERRUPT)
1353 notify_ring(dev, &dev_priv->ring[VCS]);
1354 if (gt_iir & GT_BLT_USER_INTERRUPT)
1355 notify_ring(dev, &dev_priv->ring[BCS]);
1356
1357 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1358 GT_BSD_CS_ERROR_INTERRUPT |
1359 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1360 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1361
1362 if (gt_iir & GT_PARITY_ERROR(dev))
1363 ivybridge_parity_error_irq_handler(dev, gt_iir);
1364 }
1365
1366 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1367 struct drm_i915_private *dev_priv,
1368 u32 master_ctl)
1369 {
1370 struct intel_engine_cs *ring;
1371 u32 rcs, bcs, vcs;
1372 uint32_t tmp = 0;
1373 irqreturn_t ret = IRQ_NONE;
1374
1375 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1376 tmp = I915_READ(GEN8_GT_IIR(0));
1377 if (tmp) {
1378 I915_WRITE(GEN8_GT_IIR(0), tmp);
1379 ret = IRQ_HANDLED;
1380
1381 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1382 ring = &dev_priv->ring[RCS];
1383 if (rcs & GT_RENDER_USER_INTERRUPT)
1384 notify_ring(dev, ring);
1385 if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1386 intel_execlists_handle_ctx_events(ring);
1387
1388 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1389 ring = &dev_priv->ring[BCS];
1390 if (bcs & GT_RENDER_USER_INTERRUPT)
1391 notify_ring(dev, ring);
1392 if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1393 intel_execlists_handle_ctx_events(ring);
1394 } else
1395 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1396 }
1397
1398 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1399 tmp = I915_READ(GEN8_GT_IIR(1));
1400 if (tmp) {
1401 I915_WRITE(GEN8_GT_IIR(1), tmp);
1402 ret = IRQ_HANDLED;
1403
1404 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1405 ring = &dev_priv->ring[VCS];
1406 if (vcs & GT_RENDER_USER_INTERRUPT)
1407 notify_ring(dev, ring);
1408 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1409 intel_execlists_handle_ctx_events(ring);
1410
1411 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1412 ring = &dev_priv->ring[VCS2];
1413 if (vcs & GT_RENDER_USER_INTERRUPT)
1414 notify_ring(dev, ring);
1415 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1416 intel_execlists_handle_ctx_events(ring);
1417 } else
1418 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1419 }
1420
1421 if (master_ctl & GEN8_GT_PM_IRQ) {
1422 tmp = I915_READ(GEN8_GT_IIR(2));
1423 if (tmp & dev_priv->pm_rps_events) {
1424 I915_WRITE(GEN8_GT_IIR(2),
1425 tmp & dev_priv->pm_rps_events);
1426 ret = IRQ_HANDLED;
1427 gen6_rps_irq_handler(dev_priv, tmp);
1428 } else
1429 DRM_ERROR("The master control interrupt lied (PM)!\n");
1430 }
1431
1432 if (master_ctl & GEN8_GT_VECS_IRQ) {
1433 tmp = I915_READ(GEN8_GT_IIR(3));
1434 if (tmp) {
1435 I915_WRITE(GEN8_GT_IIR(3), tmp);
1436 ret = IRQ_HANDLED;
1437
1438 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1439 ring = &dev_priv->ring[VECS];
1440 if (vcs & GT_RENDER_USER_INTERRUPT)
1441 notify_ring(dev, ring);
1442 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1443 intel_execlists_handle_ctx_events(ring);
1444 } else
1445 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1446 }
1447
1448 return ret;
1449 }
1450
1451 #define HPD_STORM_DETECT_PERIOD 1000
1452 #define HPD_STORM_THRESHOLD 5
1453
1454 static int pch_port_to_hotplug_shift(enum port port)
1455 {
1456 switch (port) {
1457 case PORT_A:
1458 case PORT_E:
1459 default:
1460 return -1;
1461 case PORT_B:
1462 return 0;
1463 case PORT_C:
1464 return 8;
1465 case PORT_D:
1466 return 16;
1467 }
1468 }
1469
1470 static int i915_port_to_hotplug_shift(enum port port)
1471 {
1472 switch (port) {
1473 case PORT_A:
1474 case PORT_E:
1475 default:
1476 return -1;
1477 case PORT_B:
1478 return 17;
1479 case PORT_C:
1480 return 19;
1481 case PORT_D:
1482 return 21;
1483 }
1484 }
1485
1486 static inline enum port get_port_from_pin(enum hpd_pin pin)
1487 {
1488 switch (pin) {
1489 case HPD_PORT_B:
1490 return PORT_B;
1491 case HPD_PORT_C:
1492 return PORT_C;
1493 case HPD_PORT_D:
1494 return PORT_D;
1495 default:
1496 return PORT_A; /* no hpd */
1497 }
1498 }
1499
1500 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1501 u32 hotplug_trigger,
1502 u32 dig_hotplug_reg,
1503 const u32 *hpd)
1504 {
1505 struct drm_i915_private *dev_priv = dev->dev_private;
1506 int i;
1507 enum port port;
1508 bool storm_detected = false;
1509 bool queue_dig = false, queue_hp = false;
1510 u32 dig_shift;
1511 u32 dig_port_mask = 0;
1512
1513 if (!hotplug_trigger)
1514 return;
1515
1516 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1517 hotplug_trigger, dig_hotplug_reg);
1518
1519 spin_lock(&dev_priv->irq_lock);
1520 for (i = 1; i < HPD_NUM_PINS; i++) {
1521 if (!(hpd[i] & hotplug_trigger))
1522 continue;
1523
1524 port = get_port_from_pin(i);
1525 if (port && dev_priv->hpd_irq_port[port]) {
1526 bool long_hpd;
1527
1528 if (HAS_PCH_SPLIT(dev)) {
1529 dig_shift = pch_port_to_hotplug_shift(port);
1530 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1531 } else {
1532 dig_shift = i915_port_to_hotplug_shift(port);
1533 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1534 }
1535
1536 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1537 port_name(port),
1538 long_hpd ? "long" : "short");
1539 /* for long HPD pulses we want to have the digital queue happen,
1540 but we still want HPD storm detection to function. */
1541 if (long_hpd) {
1542 dev_priv->long_hpd_port_mask |= (1 << port);
1543 dig_port_mask |= hpd[i];
1544 } else {
1545 /* for short HPD just trigger the digital queue */
1546 dev_priv->short_hpd_port_mask |= (1 << port);
1547 hotplug_trigger &= ~hpd[i];
1548 }
1549 queue_dig = true;
1550 }
1551 }
1552
1553 for (i = 1; i < HPD_NUM_PINS; i++) {
1554 if (hpd[i] & hotplug_trigger &&
1555 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1556 /*
1557 * On GMCH platforms the interrupt mask bits only
1558 * prevent irq generation, not the setting of the
1559 * hotplug bits itself. So only WARN about unexpected
1560 * interrupts on saner platforms.
1561 */
1562 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1563 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1564 hotplug_trigger, i, hpd[i]);
1565
1566 continue;
1567 }
1568
1569 if (!(hpd[i] & hotplug_trigger) ||
1570 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1571 continue;
1572
1573 if (!(dig_port_mask & hpd[i])) {
1574 dev_priv->hpd_event_bits |= (1 << i);
1575 queue_hp = true;
1576 }
1577
1578 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1579 dev_priv->hpd_stats[i].hpd_last_jiffies
1580 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1581 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1582 dev_priv->hpd_stats[i].hpd_cnt = 0;
1583 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1584 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1585 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1586 dev_priv->hpd_event_bits &= ~(1 << i);
1587 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1588 storm_detected = true;
1589 } else {
1590 dev_priv->hpd_stats[i].hpd_cnt++;
1591 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1592 dev_priv->hpd_stats[i].hpd_cnt);
1593 }
1594 }
1595
1596 if (storm_detected)
1597 dev_priv->display.hpd_irq_setup(dev);
1598 spin_unlock(&dev_priv->irq_lock);
1599
1600 /*
1601 * Our hotplug handler can grab modeset locks (by calling down into the
1602 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1603 * queue for otherwise the flush_work in the pageflip code will
1604 * deadlock.
1605 */
1606 if (queue_dig)
1607 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1608 if (queue_hp)
1609 schedule_work(&dev_priv->hotplug_work);
1610 }
1611
1612 static void gmbus_irq_handler(struct drm_device *dev)
1613 {
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615
1616 wake_up_all(&dev_priv->gmbus_wait_queue);
1617 }
1618
1619 static void dp_aux_irq_handler(struct drm_device *dev)
1620 {
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622
1623 wake_up_all(&dev_priv->gmbus_wait_queue);
1624 }
1625
1626 #if defined(CONFIG_DEBUG_FS)
1627 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1628 uint32_t crc0, uint32_t crc1,
1629 uint32_t crc2, uint32_t crc3,
1630 uint32_t crc4)
1631 {
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1634 struct intel_pipe_crc_entry *entry;
1635 int head, tail;
1636
1637 spin_lock(&pipe_crc->lock);
1638
1639 if (!pipe_crc->entries) {
1640 spin_unlock(&pipe_crc->lock);
1641 DRM_DEBUG_KMS("spurious interrupt\n");
1642 return;
1643 }
1644
1645 head = pipe_crc->head;
1646 tail = pipe_crc->tail;
1647
1648 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1649 spin_unlock(&pipe_crc->lock);
1650 DRM_ERROR("CRC buffer overflowing\n");
1651 return;
1652 }
1653
1654 entry = &pipe_crc->entries[head];
1655
1656 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1657 entry->crc[0] = crc0;
1658 entry->crc[1] = crc1;
1659 entry->crc[2] = crc2;
1660 entry->crc[3] = crc3;
1661 entry->crc[4] = crc4;
1662
1663 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1664 pipe_crc->head = head;
1665
1666 spin_unlock(&pipe_crc->lock);
1667
1668 wake_up_interruptible(&pipe_crc->wq);
1669 }
1670 #else
1671 static inline void
1672 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1673 uint32_t crc0, uint32_t crc1,
1674 uint32_t crc2, uint32_t crc3,
1675 uint32_t crc4) {}
1676 #endif
1677
1678
1679 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1680 {
1681 struct drm_i915_private *dev_priv = dev->dev_private;
1682
1683 display_pipe_crc_irq_handler(dev, pipe,
1684 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1685 0, 0, 0, 0);
1686 }
1687
1688 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1689 {
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691
1692 display_pipe_crc_irq_handler(dev, pipe,
1693 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1694 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1695 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1696 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1697 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1698 }
1699
1700 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1701 {
1702 struct drm_i915_private *dev_priv = dev->dev_private;
1703 uint32_t res1, res2;
1704
1705 if (INTEL_INFO(dev)->gen >= 3)
1706 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1707 else
1708 res1 = 0;
1709
1710 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1711 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1712 else
1713 res2 = 0;
1714
1715 display_pipe_crc_irq_handler(dev, pipe,
1716 I915_READ(PIPE_CRC_RES_RED(pipe)),
1717 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1718 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1719 res1, res2);
1720 }
1721
1722 /* The RPS events need forcewake, so we add them to a work queue and mask their
1723 * IMR bits until the work is done. Other interrupts can be processed without
1724 * the work queue. */
1725 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1726 {
1727 /* TODO: RPS on GEN9+ is not supported yet. */
1728 if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1729 "GEN9+: unexpected RPS IRQ\n"))
1730 return;
1731
1732 if (pm_iir & dev_priv->pm_rps_events) {
1733 spin_lock(&dev_priv->irq_lock);
1734 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1735 if (dev_priv->rps.interrupts_enabled) {
1736 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1737 queue_work(dev_priv->wq, &dev_priv->rps.work);
1738 }
1739 spin_unlock(&dev_priv->irq_lock);
1740 }
1741
1742 if (INTEL_INFO(dev_priv)->gen >= 8)
1743 return;
1744
1745 if (HAS_VEBOX(dev_priv->dev)) {
1746 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1747 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1748
1749 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1750 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1751 }
1752 }
1753
1754 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1755 {
1756 if (!drm_handle_vblank(dev, pipe))
1757 return false;
1758
1759 return true;
1760 }
1761
1762 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1763 {
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 u32 pipe_stats[I915_MAX_PIPES] = { };
1766 int pipe;
1767
1768 spin_lock(&dev_priv->irq_lock);
1769 for_each_pipe(dev_priv, pipe) {
1770 int reg;
1771 u32 mask, iir_bit = 0;
1772
1773 /*
1774 * PIPESTAT bits get signalled even when the interrupt is
1775 * disabled with the mask bits, and some of the status bits do
1776 * not generate interrupts at all (like the underrun bit). Hence
1777 * we need to be careful that we only handle what we want to
1778 * handle.
1779 */
1780
1781 /* fifo underruns are filterered in the underrun handler. */
1782 mask = PIPE_FIFO_UNDERRUN_STATUS;
1783
1784 switch (pipe) {
1785 case PIPE_A:
1786 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1787 break;
1788 case PIPE_B:
1789 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1790 break;
1791 case PIPE_C:
1792 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1793 break;
1794 }
1795 if (iir & iir_bit)
1796 mask |= dev_priv->pipestat_irq_mask[pipe];
1797
1798 if (!mask)
1799 continue;
1800
1801 reg = PIPESTAT(pipe);
1802 mask |= PIPESTAT_INT_ENABLE_MASK;
1803 pipe_stats[pipe] = I915_READ(reg) & mask;
1804
1805 /*
1806 * Clear the PIPE*STAT regs before the IIR
1807 */
1808 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1809 PIPESTAT_INT_STATUS_MASK))
1810 I915_WRITE(reg, pipe_stats[pipe]);
1811 }
1812 spin_unlock(&dev_priv->irq_lock);
1813
1814 for_each_pipe(dev_priv, pipe) {
1815 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1816 intel_pipe_handle_vblank(dev, pipe))
1817 intel_check_page_flip(dev, pipe);
1818
1819 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1820 intel_prepare_page_flip(dev, pipe);
1821 intel_finish_page_flip(dev, pipe);
1822 }
1823
1824 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1825 i9xx_pipe_crc_irq_handler(dev, pipe);
1826
1827 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1828 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1829 }
1830
1831 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1832 gmbus_irq_handler(dev);
1833 }
1834
1835 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1836 {
1837 struct drm_i915_private *dev_priv = dev->dev_private;
1838 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1839
1840 if (hotplug_status) {
1841 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1842 /*
1843 * Make sure hotplug status is cleared before we clear IIR, or else we
1844 * may miss hotplug events.
1845 */
1846 POSTING_READ(PORT_HOTPLUG_STAT);
1847
1848 if (IS_G4X(dev)) {
1849 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1850
1851 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1852 } else {
1853 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1854
1855 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1856 }
1857
1858 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1859 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1860 dp_aux_irq_handler(dev);
1861 }
1862 }
1863
1864 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1865 {
1866 struct drm_device *dev = arg;
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 u32 iir, gt_iir, pm_iir;
1869 irqreturn_t ret = IRQ_NONE;
1870
1871 while (true) {
1872 /* Find, clear, then process each source of interrupt */
1873
1874 gt_iir = I915_READ(GTIIR);
1875 if (gt_iir)
1876 I915_WRITE(GTIIR, gt_iir);
1877
1878 pm_iir = I915_READ(GEN6_PMIIR);
1879 if (pm_iir)
1880 I915_WRITE(GEN6_PMIIR, pm_iir);
1881
1882 iir = I915_READ(VLV_IIR);
1883 if (iir) {
1884 /* Consume port before clearing IIR or we'll miss events */
1885 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1886 i9xx_hpd_irq_handler(dev);
1887 I915_WRITE(VLV_IIR, iir);
1888 }
1889
1890 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1891 goto out;
1892
1893 ret = IRQ_HANDLED;
1894
1895 if (gt_iir)
1896 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1897 if (pm_iir)
1898 gen6_rps_irq_handler(dev_priv, pm_iir);
1899 /* Call regardless, as some status bits might not be
1900 * signalled in iir */
1901 valleyview_pipestat_irq_handler(dev, iir);
1902 }
1903
1904 out:
1905 return ret;
1906 }
1907
1908 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1909 {
1910 struct drm_device *dev = arg;
1911 struct drm_i915_private *dev_priv = dev->dev_private;
1912 u32 master_ctl, iir;
1913 irqreturn_t ret = IRQ_NONE;
1914
1915 for (;;) {
1916 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1917 iir = I915_READ(VLV_IIR);
1918
1919 if (master_ctl == 0 && iir == 0)
1920 break;
1921
1922 ret = IRQ_HANDLED;
1923
1924 I915_WRITE(GEN8_MASTER_IRQ, 0);
1925
1926 /* Find, clear, then process each source of interrupt */
1927
1928 if (iir) {
1929 /* Consume port before clearing IIR or we'll miss events */
1930 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1931 i9xx_hpd_irq_handler(dev);
1932 I915_WRITE(VLV_IIR, iir);
1933 }
1934
1935 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1936
1937 /* Call regardless, as some status bits might not be
1938 * signalled in iir */
1939 valleyview_pipestat_irq_handler(dev, iir);
1940
1941 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1942 POSTING_READ(GEN8_MASTER_IRQ);
1943 }
1944
1945 return ret;
1946 }
1947
1948 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1949 {
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 int pipe;
1952 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1953 u32 dig_hotplug_reg;
1954
1955 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1956 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1957
1958 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1959
1960 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1961 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1962 SDE_AUDIO_POWER_SHIFT);
1963 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1964 port_name(port));
1965 }
1966
1967 if (pch_iir & SDE_AUX_MASK)
1968 dp_aux_irq_handler(dev);
1969
1970 if (pch_iir & SDE_GMBUS)
1971 gmbus_irq_handler(dev);
1972
1973 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1974 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1975
1976 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1977 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1978
1979 if (pch_iir & SDE_POISON)
1980 DRM_ERROR("PCH poison interrupt\n");
1981
1982 if (pch_iir & SDE_FDI_MASK)
1983 for_each_pipe(dev_priv, pipe)
1984 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1985 pipe_name(pipe),
1986 I915_READ(FDI_RX_IIR(pipe)));
1987
1988 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1989 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1990
1991 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1992 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1993
1994 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1995 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1996
1997 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1998 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1999 }
2000
2001 static void ivb_err_int_handler(struct drm_device *dev)
2002 {
2003 struct drm_i915_private *dev_priv = dev->dev_private;
2004 u32 err_int = I915_READ(GEN7_ERR_INT);
2005 enum pipe pipe;
2006
2007 if (err_int & ERR_INT_POISON)
2008 DRM_ERROR("Poison interrupt\n");
2009
2010 for_each_pipe(dev_priv, pipe) {
2011 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2012 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2013
2014 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2015 if (IS_IVYBRIDGE(dev))
2016 ivb_pipe_crc_irq_handler(dev, pipe);
2017 else
2018 hsw_pipe_crc_irq_handler(dev, pipe);
2019 }
2020 }
2021
2022 I915_WRITE(GEN7_ERR_INT, err_int);
2023 }
2024
2025 static void cpt_serr_int_handler(struct drm_device *dev)
2026 {
2027 struct drm_i915_private *dev_priv = dev->dev_private;
2028 u32 serr_int = I915_READ(SERR_INT);
2029
2030 if (serr_int & SERR_INT_POISON)
2031 DRM_ERROR("PCH poison interrupt\n");
2032
2033 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2034 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2035
2036 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2037 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2038
2039 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2040 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2041
2042 I915_WRITE(SERR_INT, serr_int);
2043 }
2044
2045 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2046 {
2047 struct drm_i915_private *dev_priv = dev->dev_private;
2048 int pipe;
2049 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2050 u32 dig_hotplug_reg;
2051
2052 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2053 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2054
2055 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2056
2057 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2058 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2059 SDE_AUDIO_POWER_SHIFT_CPT);
2060 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2061 port_name(port));
2062 }
2063
2064 if (pch_iir & SDE_AUX_MASK_CPT)
2065 dp_aux_irq_handler(dev);
2066
2067 if (pch_iir & SDE_GMBUS_CPT)
2068 gmbus_irq_handler(dev);
2069
2070 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2071 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2072
2073 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2074 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2075
2076 if (pch_iir & SDE_FDI_MASK_CPT)
2077 for_each_pipe(dev_priv, pipe)
2078 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2079 pipe_name(pipe),
2080 I915_READ(FDI_RX_IIR(pipe)));
2081
2082 if (pch_iir & SDE_ERROR_CPT)
2083 cpt_serr_int_handler(dev);
2084 }
2085
2086 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2087 {
2088 struct drm_i915_private *dev_priv = dev->dev_private;
2089 enum pipe pipe;
2090
2091 if (de_iir & DE_AUX_CHANNEL_A)
2092 dp_aux_irq_handler(dev);
2093
2094 if (de_iir & DE_GSE)
2095 intel_opregion_asle_intr(dev);
2096
2097 if (de_iir & DE_POISON)
2098 DRM_ERROR("Poison interrupt\n");
2099
2100 for_each_pipe(dev_priv, pipe) {
2101 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102 intel_pipe_handle_vblank(dev, pipe))
2103 intel_check_page_flip(dev, pipe);
2104
2105 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109 i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111 /* plane/pipes map 1:1 on ilk+ */
2112 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113 intel_prepare_page_flip(dev, pipe);
2114 intel_finish_page_flip_plane(dev, pipe);
2115 }
2116 }
2117
2118 /* check event from PCH */
2119 if (de_iir & DE_PCH_EVENT) {
2120 u32 pch_iir = I915_READ(SDEIIR);
2121
2122 if (HAS_PCH_CPT(dev))
2123 cpt_irq_handler(dev, pch_iir);
2124 else
2125 ibx_irq_handler(dev, pch_iir);
2126
2127 /* should clear PCH hotplug event before clear CPU irq */
2128 I915_WRITE(SDEIIR, pch_iir);
2129 }
2130
2131 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132 ironlake_rps_change_irq_handler(dev);
2133 }
2134
2135 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136 {
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 enum pipe pipe;
2139
2140 if (de_iir & DE_ERR_INT_IVB)
2141 ivb_err_int_handler(dev);
2142
2143 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2144 dp_aux_irq_handler(dev);
2145
2146 if (de_iir & DE_GSE_IVB)
2147 intel_opregion_asle_intr(dev);
2148
2149 for_each_pipe(dev_priv, pipe) {
2150 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2151 intel_pipe_handle_vblank(dev, pipe))
2152 intel_check_page_flip(dev, pipe);
2153
2154 /* plane/pipes map 1:1 on ilk+ */
2155 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2156 intel_prepare_page_flip(dev, pipe);
2157 intel_finish_page_flip_plane(dev, pipe);
2158 }
2159 }
2160
2161 /* check event from PCH */
2162 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2163 u32 pch_iir = I915_READ(SDEIIR);
2164
2165 cpt_irq_handler(dev, pch_iir);
2166
2167 /* clear PCH hotplug event before clear CPU irq */
2168 I915_WRITE(SDEIIR, pch_iir);
2169 }
2170 }
2171
2172 /*
2173 * To handle irqs with the minimum potential races with fresh interrupts, we:
2174 * 1 - Disable Master Interrupt Control.
2175 * 2 - Find the source(s) of the interrupt.
2176 * 3 - Clear the Interrupt Identity bits (IIR).
2177 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2178 * 5 - Re-enable Master Interrupt Control.
2179 */
2180 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2181 {
2182 struct drm_device *dev = arg;
2183 struct drm_i915_private *dev_priv = dev->dev_private;
2184 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2185 irqreturn_t ret = IRQ_NONE;
2186
2187 /* We get interrupts on unclaimed registers, so check for this before we
2188 * do any I915_{READ,WRITE}. */
2189 intel_uncore_check_errors(dev);
2190
2191 /* disable master interrupt before clearing iir */
2192 de_ier = I915_READ(DEIER);
2193 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2194 POSTING_READ(DEIER);
2195
2196 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2197 * interrupts will will be stored on its back queue, and then we'll be
2198 * able to process them after we restore SDEIER (as soon as we restore
2199 * it, we'll get an interrupt if SDEIIR still has something to process
2200 * due to its back queue). */
2201 if (!HAS_PCH_NOP(dev)) {
2202 sde_ier = I915_READ(SDEIER);
2203 I915_WRITE(SDEIER, 0);
2204 POSTING_READ(SDEIER);
2205 }
2206
2207 /* Find, clear, then process each source of interrupt */
2208
2209 gt_iir = I915_READ(GTIIR);
2210 if (gt_iir) {
2211 I915_WRITE(GTIIR, gt_iir);
2212 ret = IRQ_HANDLED;
2213 if (INTEL_INFO(dev)->gen >= 6)
2214 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2215 else
2216 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2217 }
2218
2219 de_iir = I915_READ(DEIIR);
2220 if (de_iir) {
2221 I915_WRITE(DEIIR, de_iir);
2222 ret = IRQ_HANDLED;
2223 if (INTEL_INFO(dev)->gen >= 7)
2224 ivb_display_irq_handler(dev, de_iir);
2225 else
2226 ilk_display_irq_handler(dev, de_iir);
2227 }
2228
2229 if (INTEL_INFO(dev)->gen >= 6) {
2230 u32 pm_iir = I915_READ(GEN6_PMIIR);
2231 if (pm_iir) {
2232 I915_WRITE(GEN6_PMIIR, pm_iir);
2233 ret = IRQ_HANDLED;
2234 gen6_rps_irq_handler(dev_priv, pm_iir);
2235 }
2236 }
2237
2238 I915_WRITE(DEIER, de_ier);
2239 POSTING_READ(DEIER);
2240 if (!HAS_PCH_NOP(dev)) {
2241 I915_WRITE(SDEIER, sde_ier);
2242 POSTING_READ(SDEIER);
2243 }
2244
2245 return ret;
2246 }
2247
2248 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2249 {
2250 struct drm_device *dev = arg;
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 u32 master_ctl;
2253 irqreturn_t ret = IRQ_NONE;
2254 uint32_t tmp = 0;
2255 enum pipe pipe;
2256 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2257
2258 if (IS_GEN9(dev))
2259 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2260 GEN9_AUX_CHANNEL_D;
2261
2262 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2263 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2264 if (!master_ctl)
2265 return IRQ_NONE;
2266
2267 I915_WRITE(GEN8_MASTER_IRQ, 0);
2268 POSTING_READ(GEN8_MASTER_IRQ);
2269
2270 /* Find, clear, then process each source of interrupt */
2271
2272 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2273
2274 if (master_ctl & GEN8_DE_MISC_IRQ) {
2275 tmp = I915_READ(GEN8_DE_MISC_IIR);
2276 if (tmp) {
2277 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2278 ret = IRQ_HANDLED;
2279 if (tmp & GEN8_DE_MISC_GSE)
2280 intel_opregion_asle_intr(dev);
2281 else
2282 DRM_ERROR("Unexpected DE Misc interrupt\n");
2283 }
2284 else
2285 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2286 }
2287
2288 if (master_ctl & GEN8_DE_PORT_IRQ) {
2289 tmp = I915_READ(GEN8_DE_PORT_IIR);
2290 if (tmp) {
2291 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2292 ret = IRQ_HANDLED;
2293
2294 if (tmp & aux_mask)
2295 dp_aux_irq_handler(dev);
2296 else
2297 DRM_ERROR("Unexpected DE Port interrupt\n");
2298 }
2299 else
2300 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2301 }
2302
2303 for_each_pipe(dev_priv, pipe) {
2304 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2305
2306 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2307 continue;
2308
2309 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2310 if (pipe_iir) {
2311 ret = IRQ_HANDLED;
2312 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2313
2314 if (pipe_iir & GEN8_PIPE_VBLANK &&
2315 intel_pipe_handle_vblank(dev, pipe))
2316 intel_check_page_flip(dev, pipe);
2317
2318 if (IS_GEN9(dev))
2319 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2320 else
2321 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2322
2323 if (flip_done) {
2324 intel_prepare_page_flip(dev, pipe);
2325 intel_finish_page_flip_plane(dev, pipe);
2326 }
2327
2328 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2329 hsw_pipe_crc_irq_handler(dev, pipe);
2330
2331 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2332 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2333 pipe);
2334
2335
2336 if (IS_GEN9(dev))
2337 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2338 else
2339 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2340
2341 if (fault_errors)
2342 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2343 pipe_name(pipe),
2344 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2345 } else
2346 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2347 }
2348
2349 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2350 /*
2351 * FIXME(BDW): Assume for now that the new interrupt handling
2352 * scheme also closed the SDE interrupt handling race we've seen
2353 * on older pch-split platforms. But this needs testing.
2354 */
2355 u32 pch_iir = I915_READ(SDEIIR);
2356 if (pch_iir) {
2357 I915_WRITE(SDEIIR, pch_iir);
2358 ret = IRQ_HANDLED;
2359 cpt_irq_handler(dev, pch_iir);
2360 } else
2361 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2362
2363 }
2364
2365 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2366 POSTING_READ(GEN8_MASTER_IRQ);
2367
2368 return ret;
2369 }
2370
2371 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2372 bool reset_completed)
2373 {
2374 struct intel_engine_cs *ring;
2375 int i;
2376
2377 /*
2378 * Notify all waiters for GPU completion events that reset state has
2379 * been changed, and that they need to restart their wait after
2380 * checking for potential errors (and bail out to drop locks if there is
2381 * a gpu reset pending so that i915_error_work_func can acquire them).
2382 */
2383
2384 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2385 for_each_ring(ring, dev_priv, i)
2386 wake_up_all(&ring->irq_queue);
2387
2388 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2389 wake_up_all(&dev_priv->pending_flip_queue);
2390
2391 /*
2392 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2393 * reset state is cleared.
2394 */
2395 if (reset_completed)
2396 wake_up_all(&dev_priv->gpu_error.reset_queue);
2397 }
2398
2399 /**
2400 * i915_error_work_func - do process context error handling work
2401 * @work: work struct
2402 *
2403 * Fire an error uevent so userspace can see that a hang or error
2404 * was detected.
2405 */
2406 static void i915_error_work_func(struct work_struct *work)
2407 {
2408 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2409 work);
2410 struct drm_i915_private *dev_priv =
2411 container_of(error, struct drm_i915_private, gpu_error);
2412 struct drm_device *dev = dev_priv->dev;
2413 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2414 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2415 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2416 int ret;
2417
2418 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2419
2420 /*
2421 * Note that there's only one work item which does gpu resets, so we
2422 * need not worry about concurrent gpu resets potentially incrementing
2423 * error->reset_counter twice. We only need to take care of another
2424 * racing irq/hangcheck declaring the gpu dead for a second time. A
2425 * quick check for that is good enough: schedule_work ensures the
2426 * correct ordering between hang detection and this work item, and since
2427 * the reset in-progress bit is only ever set by code outside of this
2428 * work we don't need to worry about any other races.
2429 */
2430 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2431 DRM_DEBUG_DRIVER("resetting chip\n");
2432 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2433 reset_event);
2434
2435 /*
2436 * In most cases it's guaranteed that we get here with an RPM
2437 * reference held, for example because there is a pending GPU
2438 * request that won't finish until the reset is done. This
2439 * isn't the case at least when we get here by doing a
2440 * simulated reset via debugs, so get an RPM reference.
2441 */
2442 intel_runtime_pm_get(dev_priv);
2443
2444 intel_prepare_reset(dev);
2445
2446 /*
2447 * All state reset _must_ be completed before we update the
2448 * reset counter, for otherwise waiters might miss the reset
2449 * pending state and not properly drop locks, resulting in
2450 * deadlocks with the reset work.
2451 */
2452 ret = i915_reset(dev);
2453
2454 intel_finish_reset(dev);
2455
2456 intel_runtime_pm_put(dev_priv);
2457
2458 if (ret == 0) {
2459 /*
2460 * After all the gem state is reset, increment the reset
2461 * counter and wake up everyone waiting for the reset to
2462 * complete.
2463 *
2464 * Since unlock operations are a one-sided barrier only,
2465 * we need to insert a barrier here to order any seqno
2466 * updates before
2467 * the counter increment.
2468 */
2469 smp_mb__before_atomic();
2470 atomic_inc(&dev_priv->gpu_error.reset_counter);
2471
2472 kobject_uevent_env(&dev->primary->kdev->kobj,
2473 KOBJ_CHANGE, reset_done_event);
2474 } else {
2475 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2476 }
2477
2478 /*
2479 * Note: The wake_up also serves as a memory barrier so that
2480 * waiters see the update value of the reset counter atomic_t.
2481 */
2482 i915_error_wake_up(dev_priv, true);
2483 }
2484 }
2485
2486 static void i915_report_and_clear_eir(struct drm_device *dev)
2487 {
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 uint32_t instdone[I915_NUM_INSTDONE_REG];
2490 u32 eir = I915_READ(EIR);
2491 int pipe, i;
2492
2493 if (!eir)
2494 return;
2495
2496 pr_err("render error detected, EIR: 0x%08x\n", eir);
2497
2498 i915_get_extra_instdone(dev, instdone);
2499
2500 if (IS_G4X(dev)) {
2501 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2502 u32 ipeir = I915_READ(IPEIR_I965);
2503
2504 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2505 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2506 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2507 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2508 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2509 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2510 I915_WRITE(IPEIR_I965, ipeir);
2511 POSTING_READ(IPEIR_I965);
2512 }
2513 if (eir & GM45_ERROR_PAGE_TABLE) {
2514 u32 pgtbl_err = I915_READ(PGTBL_ER);
2515 pr_err("page table error\n");
2516 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2517 I915_WRITE(PGTBL_ER, pgtbl_err);
2518 POSTING_READ(PGTBL_ER);
2519 }
2520 }
2521
2522 if (!IS_GEN2(dev)) {
2523 if (eir & I915_ERROR_PAGE_TABLE) {
2524 u32 pgtbl_err = I915_READ(PGTBL_ER);
2525 pr_err("page table error\n");
2526 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2527 I915_WRITE(PGTBL_ER, pgtbl_err);
2528 POSTING_READ(PGTBL_ER);
2529 }
2530 }
2531
2532 if (eir & I915_ERROR_MEMORY_REFRESH) {
2533 pr_err("memory refresh error:\n");
2534 for_each_pipe(dev_priv, pipe)
2535 pr_err("pipe %c stat: 0x%08x\n",
2536 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2537 /* pipestat has already been acked */
2538 }
2539 if (eir & I915_ERROR_INSTRUCTION) {
2540 pr_err("instruction error\n");
2541 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2542 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2543 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2544 if (INTEL_INFO(dev)->gen < 4) {
2545 u32 ipeir = I915_READ(IPEIR);
2546
2547 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2548 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2549 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2550 I915_WRITE(IPEIR, ipeir);
2551 POSTING_READ(IPEIR);
2552 } else {
2553 u32 ipeir = I915_READ(IPEIR_I965);
2554
2555 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2556 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2557 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2558 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2559 I915_WRITE(IPEIR_I965, ipeir);
2560 POSTING_READ(IPEIR_I965);
2561 }
2562 }
2563
2564 I915_WRITE(EIR, eir);
2565 POSTING_READ(EIR);
2566 eir = I915_READ(EIR);
2567 if (eir) {
2568 /*
2569 * some errors might have become stuck,
2570 * mask them.
2571 */
2572 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2573 I915_WRITE(EMR, I915_READ(EMR) | eir);
2574 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2575 }
2576 }
2577
2578 /**
2579 * i915_handle_error - handle an error interrupt
2580 * @dev: drm device
2581 *
2582 * Do some basic checking of regsiter state at error interrupt time and
2583 * dump it to the syslog. Also call i915_capture_error_state() to make
2584 * sure we get a record and make it available in debugfs. Fire a uevent
2585 * so userspace knows something bad happened (should trigger collection
2586 * of a ring dump etc.).
2587 */
2588 void i915_handle_error(struct drm_device *dev, bool wedged,
2589 const char *fmt, ...)
2590 {
2591 struct drm_i915_private *dev_priv = dev->dev_private;
2592 va_list args;
2593 char error_msg[80];
2594
2595 va_start(args, fmt);
2596 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2597 va_end(args);
2598
2599 i915_capture_error_state(dev, wedged, error_msg);
2600 i915_report_and_clear_eir(dev);
2601
2602 if (wedged) {
2603 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2604 &dev_priv->gpu_error.reset_counter);
2605
2606 /*
2607 * Wakeup waiting processes so that the reset work function
2608 * i915_error_work_func doesn't deadlock trying to grab various
2609 * locks. By bumping the reset counter first, the woken
2610 * processes will see a reset in progress and back off,
2611 * releasing their locks and then wait for the reset completion.
2612 * We must do this for _all_ gpu waiters that might hold locks
2613 * that the reset work needs to acquire.
2614 *
2615 * Note: The wake_up serves as the required memory barrier to
2616 * ensure that the waiters see the updated value of the reset
2617 * counter atomic_t.
2618 */
2619 i915_error_wake_up(dev_priv, false);
2620 }
2621
2622 /*
2623 * Our reset work can grab modeset locks (since it needs to reset the
2624 * state of outstanding pagelips). Hence it must not be run on our own
2625 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2626 * code will deadlock.
2627 */
2628 schedule_work(&dev_priv->gpu_error.work);
2629 }
2630
2631 /* Called from drm generic code, passed 'crtc' which
2632 * we use as a pipe index
2633 */
2634 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2635 {
2636 struct drm_i915_private *dev_priv = dev->dev_private;
2637 unsigned long irqflags;
2638
2639 if (!i915_pipe_enabled(dev, pipe))
2640 return -EINVAL;
2641
2642 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2643 if (INTEL_INFO(dev)->gen >= 4)
2644 i915_enable_pipestat(dev_priv, pipe,
2645 PIPE_START_VBLANK_INTERRUPT_STATUS);
2646 else
2647 i915_enable_pipestat(dev_priv, pipe,
2648 PIPE_VBLANK_INTERRUPT_STATUS);
2649 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2650
2651 return 0;
2652 }
2653
2654 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2655 {
2656 struct drm_i915_private *dev_priv = dev->dev_private;
2657 unsigned long irqflags;
2658 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2659 DE_PIPE_VBLANK(pipe);
2660
2661 if (!i915_pipe_enabled(dev, pipe))
2662 return -EINVAL;
2663
2664 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2665 ironlake_enable_display_irq(dev_priv, bit);
2666 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2667
2668 return 0;
2669 }
2670
2671 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2672 {
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 unsigned long irqflags;
2675
2676 if (!i915_pipe_enabled(dev, pipe))
2677 return -EINVAL;
2678
2679 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2680 i915_enable_pipestat(dev_priv, pipe,
2681 PIPE_START_VBLANK_INTERRUPT_STATUS);
2682 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2683
2684 return 0;
2685 }
2686
2687 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2688 {
2689 struct drm_i915_private *dev_priv = dev->dev_private;
2690 unsigned long irqflags;
2691
2692 if (!i915_pipe_enabled(dev, pipe))
2693 return -EINVAL;
2694
2695 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2696 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2697 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2698 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2699 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2700 return 0;
2701 }
2702
2703 /* Called from drm generic code, passed 'crtc' which
2704 * we use as a pipe index
2705 */
2706 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2707 {
2708 struct drm_i915_private *dev_priv = dev->dev_private;
2709 unsigned long irqflags;
2710
2711 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2712 i915_disable_pipestat(dev_priv, pipe,
2713 PIPE_VBLANK_INTERRUPT_STATUS |
2714 PIPE_START_VBLANK_INTERRUPT_STATUS);
2715 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716 }
2717
2718 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2719 {
2720 struct drm_i915_private *dev_priv = dev->dev_private;
2721 unsigned long irqflags;
2722 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2723 DE_PIPE_VBLANK(pipe);
2724
2725 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2726 ironlake_disable_display_irq(dev_priv, bit);
2727 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2728 }
2729
2730 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2731 {
2732 struct drm_i915_private *dev_priv = dev->dev_private;
2733 unsigned long irqflags;
2734
2735 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2736 i915_disable_pipestat(dev_priv, pipe,
2737 PIPE_START_VBLANK_INTERRUPT_STATUS);
2738 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2739 }
2740
2741 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2742 {
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 unsigned long irqflags;
2745
2746 if (!i915_pipe_enabled(dev, pipe))
2747 return;
2748
2749 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2750 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2751 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2752 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2753 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 }
2755
2756 static u32
2757 ring_last_seqno(struct intel_engine_cs *ring)
2758 {
2759 return list_entry(ring->request_list.prev,
2760 struct drm_i915_gem_request, list)->seqno;
2761 }
2762
2763 static bool
2764 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2765 {
2766 return (list_empty(&ring->request_list) ||
2767 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2768 }
2769
2770 static bool
2771 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2772 {
2773 if (INTEL_INFO(dev)->gen >= 8) {
2774 return (ipehr >> 23) == 0x1c;
2775 } else {
2776 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2777 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2778 MI_SEMAPHORE_REGISTER);
2779 }
2780 }
2781
2782 static struct intel_engine_cs *
2783 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2784 {
2785 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2786 struct intel_engine_cs *signaller;
2787 int i;
2788
2789 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2790 for_each_ring(signaller, dev_priv, i) {
2791 if (ring == signaller)
2792 continue;
2793
2794 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2795 return signaller;
2796 }
2797 } else {
2798 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2799
2800 for_each_ring(signaller, dev_priv, i) {
2801 if(ring == signaller)
2802 continue;
2803
2804 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2805 return signaller;
2806 }
2807 }
2808
2809 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2810 ring->id, ipehr, offset);
2811
2812 return NULL;
2813 }
2814
2815 static struct intel_engine_cs *
2816 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2817 {
2818 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2819 u32 cmd, ipehr, head;
2820 u64 offset = 0;
2821 int i, backwards;
2822
2823 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2824 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2825 return NULL;
2826
2827 /*
2828 * HEAD is likely pointing to the dword after the actual command,
2829 * so scan backwards until we find the MBOX. But limit it to just 3
2830 * or 4 dwords depending on the semaphore wait command size.
2831 * Note that we don't care about ACTHD here since that might
2832 * point at at batch, and semaphores are always emitted into the
2833 * ringbuffer itself.
2834 */
2835 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2836 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2837
2838 for (i = backwards; i; --i) {
2839 /*
2840 * Be paranoid and presume the hw has gone off into the wild -
2841 * our ring is smaller than what the hardware (and hence
2842 * HEAD_ADDR) allows. Also handles wrap-around.
2843 */
2844 head &= ring->buffer->size - 1;
2845
2846 /* This here seems to blow up */
2847 cmd = ioread32(ring->buffer->virtual_start + head);
2848 if (cmd == ipehr)
2849 break;
2850
2851 head -= 4;
2852 }
2853
2854 if (!i)
2855 return NULL;
2856
2857 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2858 if (INTEL_INFO(ring->dev)->gen >= 8) {
2859 offset = ioread32(ring->buffer->virtual_start + head + 12);
2860 offset <<= 32;
2861 offset = ioread32(ring->buffer->virtual_start + head + 8);
2862 }
2863 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2864 }
2865
2866 static int semaphore_passed(struct intel_engine_cs *ring)
2867 {
2868 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2869 struct intel_engine_cs *signaller;
2870 u32 seqno;
2871
2872 ring->hangcheck.deadlock++;
2873
2874 signaller = semaphore_waits_for(ring, &seqno);
2875 if (signaller == NULL)
2876 return -1;
2877
2878 /* Prevent pathological recursion due to driver bugs */
2879 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2880 return -1;
2881
2882 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2883 return 1;
2884
2885 /* cursory check for an unkickable deadlock */
2886 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2887 semaphore_passed(signaller) < 0)
2888 return -1;
2889
2890 return 0;
2891 }
2892
2893 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2894 {
2895 struct intel_engine_cs *ring;
2896 int i;
2897
2898 for_each_ring(ring, dev_priv, i)
2899 ring->hangcheck.deadlock = 0;
2900 }
2901
2902 static enum intel_ring_hangcheck_action
2903 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2904 {
2905 struct drm_device *dev = ring->dev;
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 u32 tmp;
2908
2909 if (acthd != ring->hangcheck.acthd) {
2910 if (acthd > ring->hangcheck.max_acthd) {
2911 ring->hangcheck.max_acthd = acthd;
2912 return HANGCHECK_ACTIVE;
2913 }
2914
2915 return HANGCHECK_ACTIVE_LOOP;
2916 }
2917
2918 if (IS_GEN2(dev))
2919 return HANGCHECK_HUNG;
2920
2921 /* Is the chip hanging on a WAIT_FOR_EVENT?
2922 * If so we can simply poke the RB_WAIT bit
2923 * and break the hang. This should work on
2924 * all but the second generation chipsets.
2925 */
2926 tmp = I915_READ_CTL(ring);
2927 if (tmp & RING_WAIT) {
2928 i915_handle_error(dev, false,
2929 "Kicking stuck wait on %s",
2930 ring->name);
2931 I915_WRITE_CTL(ring, tmp);
2932 return HANGCHECK_KICK;
2933 }
2934
2935 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2936 switch (semaphore_passed(ring)) {
2937 default:
2938 return HANGCHECK_HUNG;
2939 case 1:
2940 i915_handle_error(dev, false,
2941 "Kicking stuck semaphore on %s",
2942 ring->name);
2943 I915_WRITE_CTL(ring, tmp);
2944 return HANGCHECK_KICK;
2945 case 0:
2946 return HANGCHECK_WAIT;
2947 }
2948 }
2949
2950 return HANGCHECK_HUNG;
2951 }
2952
2953 /**
2954 * This is called when the chip hasn't reported back with completed
2955 * batchbuffers in a long time. We keep track per ring seqno progress and
2956 * if there are no progress, hangcheck score for that ring is increased.
2957 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2958 * we kick the ring. If we see no progress on three subsequent calls
2959 * we assume chip is wedged and try to fix it by resetting the chip.
2960 */
2961 static void i915_hangcheck_elapsed(unsigned long data)
2962 {
2963 struct drm_device *dev = (struct drm_device *)data;
2964 struct drm_i915_private *dev_priv = dev->dev_private;
2965 struct intel_engine_cs *ring;
2966 int i;
2967 int busy_count = 0, rings_hung = 0;
2968 bool stuck[I915_NUM_RINGS] = { 0 };
2969 #define BUSY 1
2970 #define KICK 5
2971 #define HUNG 20
2972
2973 if (!i915.enable_hangcheck)
2974 return;
2975
2976 for_each_ring(ring, dev_priv, i) {
2977 u64 acthd;
2978 u32 seqno;
2979 bool busy = true;
2980
2981 semaphore_clear_deadlocks(dev_priv);
2982
2983 seqno = ring->get_seqno(ring, false);
2984 acthd = intel_ring_get_active_head(ring);
2985
2986 if (ring->hangcheck.seqno == seqno) {
2987 if (ring_idle(ring, seqno)) {
2988 ring->hangcheck.action = HANGCHECK_IDLE;
2989
2990 if (waitqueue_active(&ring->irq_queue)) {
2991 /* Issue a wake-up to catch stuck h/w. */
2992 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2993 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2994 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2995 ring->name);
2996 else
2997 DRM_INFO("Fake missed irq on %s\n",
2998 ring->name);
2999 wake_up_all(&ring->irq_queue);
3000 }
3001 /* Safeguard against driver failure */
3002 ring->hangcheck.score += BUSY;
3003 } else
3004 busy = false;
3005 } else {
3006 /* We always increment the hangcheck score
3007 * if the ring is busy and still processing
3008 * the same request, so that no single request
3009 * can run indefinitely (such as a chain of
3010 * batches). The only time we do not increment
3011 * the hangcheck score on this ring, if this
3012 * ring is in a legitimate wait for another
3013 * ring. In that case the waiting ring is a
3014 * victim and we want to be sure we catch the
3015 * right culprit. Then every time we do kick
3016 * the ring, add a small increment to the
3017 * score so that we can catch a batch that is
3018 * being repeatedly kicked and so responsible
3019 * for stalling the machine.
3020 */
3021 ring->hangcheck.action = ring_stuck(ring,
3022 acthd);
3023
3024 switch (ring->hangcheck.action) {
3025 case HANGCHECK_IDLE:
3026 case HANGCHECK_WAIT:
3027 case HANGCHECK_ACTIVE:
3028 break;
3029 case HANGCHECK_ACTIVE_LOOP:
3030 ring->hangcheck.score += BUSY;
3031 break;
3032 case HANGCHECK_KICK:
3033 ring->hangcheck.score += KICK;
3034 break;
3035 case HANGCHECK_HUNG:
3036 ring->hangcheck.score += HUNG;
3037 stuck[i] = true;
3038 break;
3039 }
3040 }
3041 } else {
3042 ring->hangcheck.action = HANGCHECK_ACTIVE;
3043
3044 /* Gradually reduce the count so that we catch DoS
3045 * attempts across multiple batches.
3046 */
3047 if (ring->hangcheck.score > 0)
3048 ring->hangcheck.score--;
3049
3050 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3051 }
3052
3053 ring->hangcheck.seqno = seqno;
3054 ring->hangcheck.acthd = acthd;
3055 busy_count += busy;
3056 }
3057
3058 for_each_ring(ring, dev_priv, i) {
3059 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3060 DRM_INFO("%s on %s\n",
3061 stuck[i] ? "stuck" : "no progress",
3062 ring->name);
3063 rings_hung++;
3064 }
3065 }
3066
3067 if (rings_hung)
3068 return i915_handle_error(dev, true, "Ring hung");
3069
3070 if (busy_count)
3071 /* Reset timer case chip hangs without another request
3072 * being added */
3073 i915_queue_hangcheck(dev);
3074 }
3075
3076 void i915_queue_hangcheck(struct drm_device *dev)
3077 {
3078 struct drm_i915_private *dev_priv = dev->dev_private;
3079 struct timer_list *timer = &dev_priv->gpu_error.hangcheck_timer;
3080
3081 if (!i915.enable_hangcheck)
3082 return;
3083
3084 /* Don't continually defer the hangcheck, but make sure it is active */
3085 if (timer_pending(timer))
3086 return;
3087 mod_timer(timer,
3088 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3089 }
3090
3091 static void ibx_irq_reset(struct drm_device *dev)
3092 {
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094
3095 if (HAS_PCH_NOP(dev))
3096 return;
3097
3098 GEN5_IRQ_RESET(SDE);
3099
3100 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3101 I915_WRITE(SERR_INT, 0xffffffff);
3102 }
3103
3104 /*
3105 * SDEIER is also touched by the interrupt handler to work around missed PCH
3106 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3107 * instead we unconditionally enable all PCH interrupt sources here, but then
3108 * only unmask them as needed with SDEIMR.
3109 *
3110 * This function needs to be called before interrupts are enabled.
3111 */
3112 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3113 {
3114 struct drm_i915_private *dev_priv = dev->dev_private;
3115
3116 if (HAS_PCH_NOP(dev))
3117 return;
3118
3119 WARN_ON(I915_READ(SDEIER) != 0);
3120 I915_WRITE(SDEIER, 0xffffffff);
3121 POSTING_READ(SDEIER);
3122 }
3123
3124 static void gen5_gt_irq_reset(struct drm_device *dev)
3125 {
3126 struct drm_i915_private *dev_priv = dev->dev_private;
3127
3128 GEN5_IRQ_RESET(GT);
3129 if (INTEL_INFO(dev)->gen >= 6)
3130 GEN5_IRQ_RESET(GEN6_PM);
3131 }
3132
3133 /* drm_dma.h hooks
3134 */
3135 static void ironlake_irq_reset(struct drm_device *dev)
3136 {
3137 struct drm_i915_private *dev_priv = dev->dev_private;
3138
3139 I915_WRITE(HWSTAM, 0xffffffff);
3140
3141 GEN5_IRQ_RESET(DE);
3142 if (IS_GEN7(dev))
3143 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3144
3145 gen5_gt_irq_reset(dev);
3146
3147 ibx_irq_reset(dev);
3148 }
3149
3150 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3151 {
3152 enum pipe pipe;
3153
3154 I915_WRITE(PORT_HOTPLUG_EN, 0);
3155 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3156
3157 for_each_pipe(dev_priv, pipe)
3158 I915_WRITE(PIPESTAT(pipe), 0xffff);
3159
3160 GEN5_IRQ_RESET(VLV_);
3161 }
3162
3163 static void valleyview_irq_preinstall(struct drm_device *dev)
3164 {
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166
3167 /* VLV magic */
3168 I915_WRITE(VLV_IMR, 0);
3169 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3170 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3171 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3172
3173 gen5_gt_irq_reset(dev);
3174
3175 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3176
3177 vlv_display_irq_reset(dev_priv);
3178 }
3179
3180 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3181 {
3182 GEN8_IRQ_RESET_NDX(GT, 0);
3183 GEN8_IRQ_RESET_NDX(GT, 1);
3184 GEN8_IRQ_RESET_NDX(GT, 2);
3185 GEN8_IRQ_RESET_NDX(GT, 3);
3186 }
3187
3188 static void gen8_irq_reset(struct drm_device *dev)
3189 {
3190 struct drm_i915_private *dev_priv = dev->dev_private;
3191 int pipe;
3192
3193 I915_WRITE(GEN8_MASTER_IRQ, 0);
3194 POSTING_READ(GEN8_MASTER_IRQ);
3195
3196 gen8_gt_irq_reset(dev_priv);
3197
3198 for_each_pipe(dev_priv, pipe)
3199 if (intel_display_power_is_enabled(dev_priv,
3200 POWER_DOMAIN_PIPE(pipe)))
3201 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3202
3203 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3204 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3205 GEN5_IRQ_RESET(GEN8_PCU_);
3206
3207 ibx_irq_reset(dev);
3208 }
3209
3210 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3211 {
3212 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3213
3214 spin_lock_irq(&dev_priv->irq_lock);
3215 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3216 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3217 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3218 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3219 spin_unlock_irq(&dev_priv->irq_lock);
3220 }
3221
3222 static void cherryview_irq_preinstall(struct drm_device *dev)
3223 {
3224 struct drm_i915_private *dev_priv = dev->dev_private;
3225
3226 I915_WRITE(GEN8_MASTER_IRQ, 0);
3227 POSTING_READ(GEN8_MASTER_IRQ);
3228
3229 gen8_gt_irq_reset(dev_priv);
3230
3231 GEN5_IRQ_RESET(GEN8_PCU_);
3232
3233 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3234
3235 vlv_display_irq_reset(dev_priv);
3236 }
3237
3238 static void ibx_hpd_irq_setup(struct drm_device *dev)
3239 {
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_encoder *intel_encoder;
3242 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3243
3244 if (HAS_PCH_IBX(dev)) {
3245 hotplug_irqs = SDE_HOTPLUG_MASK;
3246 for_each_intel_encoder(dev, intel_encoder)
3247 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3248 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3249 } else {
3250 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3251 for_each_intel_encoder(dev, intel_encoder)
3252 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3253 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3254 }
3255
3256 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3257
3258 /*
3259 * Enable digital hotplug on the PCH, and configure the DP short pulse
3260 * duration to 2ms (which is the minimum in the Display Port spec)
3261 *
3262 * This register is the same on all known PCH chips.
3263 */
3264 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3265 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3266 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3267 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3268 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3269 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3270 }
3271
3272 static void ibx_irq_postinstall(struct drm_device *dev)
3273 {
3274 struct drm_i915_private *dev_priv = dev->dev_private;
3275 u32 mask;
3276
3277 if (HAS_PCH_NOP(dev))
3278 return;
3279
3280 if (HAS_PCH_IBX(dev))
3281 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3282 else
3283 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3284
3285 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3286 I915_WRITE(SDEIMR, ~mask);
3287 }
3288
3289 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3290 {
3291 struct drm_i915_private *dev_priv = dev->dev_private;
3292 u32 pm_irqs, gt_irqs;
3293
3294 pm_irqs = gt_irqs = 0;
3295
3296 dev_priv->gt_irq_mask = ~0;
3297 if (HAS_L3_DPF(dev)) {
3298 /* L3 parity interrupt is always unmasked. */
3299 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3300 gt_irqs |= GT_PARITY_ERROR(dev);
3301 }
3302
3303 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3304 if (IS_GEN5(dev)) {
3305 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3306 ILK_BSD_USER_INTERRUPT;
3307 } else {
3308 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3309 }
3310
3311 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3312
3313 if (INTEL_INFO(dev)->gen >= 6) {
3314 /*
3315 * RPS interrupts will get enabled/disabled on demand when RPS
3316 * itself is enabled/disabled.
3317 */
3318 if (HAS_VEBOX(dev))
3319 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3320
3321 dev_priv->pm_irq_mask = 0xffffffff;
3322 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3323 }
3324 }
3325
3326 static int ironlake_irq_postinstall(struct drm_device *dev)
3327 {
3328 struct drm_i915_private *dev_priv = dev->dev_private;
3329 u32 display_mask, extra_mask;
3330
3331 if (INTEL_INFO(dev)->gen >= 7) {
3332 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3333 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3334 DE_PLANEB_FLIP_DONE_IVB |
3335 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3336 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3337 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3338 } else {
3339 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3340 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3341 DE_AUX_CHANNEL_A |
3342 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3343 DE_POISON);
3344 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3345 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3346 }
3347
3348 dev_priv->irq_mask = ~display_mask;
3349
3350 I915_WRITE(HWSTAM, 0xeffe);
3351
3352 ibx_irq_pre_postinstall(dev);
3353
3354 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3355
3356 gen5_gt_irq_postinstall(dev);
3357
3358 ibx_irq_postinstall(dev);
3359
3360 if (IS_IRONLAKE_M(dev)) {
3361 /* Enable PCU event interrupts
3362 *
3363 * spinlocking not required here for correctness since interrupt
3364 * setup is guaranteed to run in single-threaded context. But we
3365 * need it to make the assert_spin_locked happy. */
3366 spin_lock_irq(&dev_priv->irq_lock);
3367 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3368 spin_unlock_irq(&dev_priv->irq_lock);
3369 }
3370
3371 return 0;
3372 }
3373
3374 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3375 {
3376 u32 pipestat_mask;
3377 u32 iir_mask;
3378 enum pipe pipe;
3379
3380 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3381 PIPE_FIFO_UNDERRUN_STATUS;
3382
3383 for_each_pipe(dev_priv, pipe)
3384 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3385 POSTING_READ(PIPESTAT(PIPE_A));
3386
3387 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3388 PIPE_CRC_DONE_INTERRUPT_STATUS;
3389
3390 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3391 for_each_pipe(dev_priv, pipe)
3392 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3393
3394 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3395 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3396 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3397 if (IS_CHERRYVIEW(dev_priv))
3398 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3399 dev_priv->irq_mask &= ~iir_mask;
3400
3401 I915_WRITE(VLV_IIR, iir_mask);
3402 I915_WRITE(VLV_IIR, iir_mask);
3403 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3404 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3405 POSTING_READ(VLV_IMR);
3406 }
3407
3408 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3409 {
3410 u32 pipestat_mask;
3411 u32 iir_mask;
3412 enum pipe pipe;
3413
3414 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3415 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3416 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3417 if (IS_CHERRYVIEW(dev_priv))
3418 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3419
3420 dev_priv->irq_mask |= iir_mask;
3421 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3422 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3423 I915_WRITE(VLV_IIR, iir_mask);
3424 I915_WRITE(VLV_IIR, iir_mask);
3425 POSTING_READ(VLV_IIR);
3426
3427 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3428 PIPE_CRC_DONE_INTERRUPT_STATUS;
3429
3430 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3431 for_each_pipe(dev_priv, pipe)
3432 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3433
3434 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3435 PIPE_FIFO_UNDERRUN_STATUS;
3436
3437 for_each_pipe(dev_priv, pipe)
3438 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3439 POSTING_READ(PIPESTAT(PIPE_A));
3440 }
3441
3442 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3443 {
3444 assert_spin_locked(&dev_priv->irq_lock);
3445
3446 if (dev_priv->display_irqs_enabled)
3447 return;
3448
3449 dev_priv->display_irqs_enabled = true;
3450
3451 if (intel_irqs_enabled(dev_priv))
3452 valleyview_display_irqs_install(dev_priv);
3453 }
3454
3455 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3456 {
3457 assert_spin_locked(&dev_priv->irq_lock);
3458
3459 if (!dev_priv->display_irqs_enabled)
3460 return;
3461
3462 dev_priv->display_irqs_enabled = false;
3463
3464 if (intel_irqs_enabled(dev_priv))
3465 valleyview_display_irqs_uninstall(dev_priv);
3466 }
3467
3468 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3469 {
3470 dev_priv->irq_mask = ~0;
3471
3472 I915_WRITE(PORT_HOTPLUG_EN, 0);
3473 POSTING_READ(PORT_HOTPLUG_EN);
3474
3475 I915_WRITE(VLV_IIR, 0xffffffff);
3476 I915_WRITE(VLV_IIR, 0xffffffff);
3477 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3478 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3479 POSTING_READ(VLV_IMR);
3480
3481 /* Interrupt setup is already guaranteed to be single-threaded, this is
3482 * just to make the assert_spin_locked check happy. */
3483 spin_lock_irq(&dev_priv->irq_lock);
3484 if (dev_priv->display_irqs_enabled)
3485 valleyview_display_irqs_install(dev_priv);
3486 spin_unlock_irq(&dev_priv->irq_lock);
3487 }
3488
3489 static int valleyview_irq_postinstall(struct drm_device *dev)
3490 {
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492
3493 vlv_display_irq_postinstall(dev_priv);
3494
3495 gen5_gt_irq_postinstall(dev);
3496
3497 /* ack & enable invalid PTE error interrupts */
3498 #if 0 /* FIXME: add support to irq handler for checking these bits */
3499 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3500 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3501 #endif
3502
3503 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3504
3505 return 0;
3506 }
3507
3508 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3509 {
3510 /* These are interrupts we'll toggle with the ring mask register */
3511 uint32_t gt_interrupts[] = {
3512 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3513 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3514 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3515 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3516 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3517 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3518 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3519 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3520 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3521 0,
3522 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3523 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3524 };
3525
3526 dev_priv->pm_irq_mask = 0xffffffff;
3527 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3528 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3529 /*
3530 * RPS interrupts will get enabled/disabled on demand when RPS itself
3531 * is enabled/disabled.
3532 */
3533 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3534 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3535 }
3536
3537 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3538 {
3539 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3540 uint32_t de_pipe_enables;
3541 int pipe;
3542 u32 aux_en = GEN8_AUX_CHANNEL_A;
3543
3544 if (IS_GEN9(dev_priv)) {
3545 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3546 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3547 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3548 GEN9_AUX_CHANNEL_D;
3549 } else
3550 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3551 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3552
3553 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3554 GEN8_PIPE_FIFO_UNDERRUN;
3555
3556 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3557 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3558 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3559
3560 for_each_pipe(dev_priv, pipe)
3561 if (intel_display_power_is_enabled(dev_priv,
3562 POWER_DOMAIN_PIPE(pipe)))
3563 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3564 dev_priv->de_irq_mask[pipe],
3565 de_pipe_enables);
3566
3567 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3568 }
3569
3570 static int gen8_irq_postinstall(struct drm_device *dev)
3571 {
3572 struct drm_i915_private *dev_priv = dev->dev_private;
3573
3574 ibx_irq_pre_postinstall(dev);
3575
3576 gen8_gt_irq_postinstall(dev_priv);
3577 gen8_de_irq_postinstall(dev_priv);
3578
3579 ibx_irq_postinstall(dev);
3580
3581 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3582 POSTING_READ(GEN8_MASTER_IRQ);
3583
3584 return 0;
3585 }
3586
3587 static int cherryview_irq_postinstall(struct drm_device *dev)
3588 {
3589 struct drm_i915_private *dev_priv = dev->dev_private;
3590
3591 vlv_display_irq_postinstall(dev_priv);
3592
3593 gen8_gt_irq_postinstall(dev_priv);
3594
3595 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3596 POSTING_READ(GEN8_MASTER_IRQ);
3597
3598 return 0;
3599 }
3600
3601 static void gen8_irq_uninstall(struct drm_device *dev)
3602 {
3603 struct drm_i915_private *dev_priv = dev->dev_private;
3604
3605 if (!dev_priv)
3606 return;
3607
3608 gen8_irq_reset(dev);
3609 }
3610
3611 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3612 {
3613 /* Interrupt setup is already guaranteed to be single-threaded, this is
3614 * just to make the assert_spin_locked check happy. */
3615 spin_lock_irq(&dev_priv->irq_lock);
3616 if (dev_priv->display_irqs_enabled)
3617 valleyview_display_irqs_uninstall(dev_priv);
3618 spin_unlock_irq(&dev_priv->irq_lock);
3619
3620 vlv_display_irq_reset(dev_priv);
3621
3622 dev_priv->irq_mask = ~0;
3623 }
3624
3625 static void valleyview_irq_uninstall(struct drm_device *dev)
3626 {
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628
3629 if (!dev_priv)
3630 return;
3631
3632 I915_WRITE(VLV_MASTER_IER, 0);
3633
3634 gen5_gt_irq_reset(dev);
3635
3636 I915_WRITE(HWSTAM, 0xffffffff);
3637
3638 vlv_display_irq_uninstall(dev_priv);
3639 }
3640
3641 static void cherryview_irq_uninstall(struct drm_device *dev)
3642 {
3643 struct drm_i915_private *dev_priv = dev->dev_private;
3644
3645 if (!dev_priv)
3646 return;
3647
3648 I915_WRITE(GEN8_MASTER_IRQ, 0);
3649 POSTING_READ(GEN8_MASTER_IRQ);
3650
3651 gen8_gt_irq_reset(dev_priv);
3652
3653 GEN5_IRQ_RESET(GEN8_PCU_);
3654
3655 vlv_display_irq_uninstall(dev_priv);
3656 }
3657
3658 static void ironlake_irq_uninstall(struct drm_device *dev)
3659 {
3660 struct drm_i915_private *dev_priv = dev->dev_private;
3661
3662 if (!dev_priv)
3663 return;
3664
3665 ironlake_irq_reset(dev);
3666 }
3667
3668 static void i8xx_irq_preinstall(struct drm_device * dev)
3669 {
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 int pipe;
3672
3673 for_each_pipe(dev_priv, pipe)
3674 I915_WRITE(PIPESTAT(pipe), 0);
3675 I915_WRITE16(IMR, 0xffff);
3676 I915_WRITE16(IER, 0x0);
3677 POSTING_READ16(IER);
3678 }
3679
3680 static int i8xx_irq_postinstall(struct drm_device *dev)
3681 {
3682 struct drm_i915_private *dev_priv = dev->dev_private;
3683
3684 I915_WRITE16(EMR,
3685 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3686
3687 /* Unmask the interrupts that we always want on. */
3688 dev_priv->irq_mask =
3689 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3690 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3691 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3692 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3693 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3694 I915_WRITE16(IMR, dev_priv->irq_mask);
3695
3696 I915_WRITE16(IER,
3697 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3698 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3699 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3700 I915_USER_INTERRUPT);
3701 POSTING_READ16(IER);
3702
3703 /* Interrupt setup is already guaranteed to be single-threaded, this is
3704 * just to make the assert_spin_locked check happy. */
3705 spin_lock_irq(&dev_priv->irq_lock);
3706 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3707 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3708 spin_unlock_irq(&dev_priv->irq_lock);
3709
3710 return 0;
3711 }
3712
3713 /*
3714 * Returns true when a page flip has completed.
3715 */
3716 static bool i8xx_handle_vblank(struct drm_device *dev,
3717 int plane, int pipe, u32 iir)
3718 {
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3721
3722 if (!intel_pipe_handle_vblank(dev, pipe))
3723 return false;
3724
3725 if ((iir & flip_pending) == 0)
3726 goto check_page_flip;
3727
3728 intel_prepare_page_flip(dev, plane);
3729
3730 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3731 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3732 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3733 * the flip is completed (no longer pending). Since this doesn't raise
3734 * an interrupt per se, we watch for the change at vblank.
3735 */
3736 if (I915_READ16(ISR) & flip_pending)
3737 goto check_page_flip;
3738
3739 intel_finish_page_flip(dev, pipe);
3740 return true;
3741
3742 check_page_flip:
3743 intel_check_page_flip(dev, pipe);
3744 return false;
3745 }
3746
3747 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3748 {
3749 struct drm_device *dev = arg;
3750 struct drm_i915_private *dev_priv = dev->dev_private;
3751 u16 iir, new_iir;
3752 u32 pipe_stats[2];
3753 int pipe;
3754 u16 flip_mask =
3755 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3756 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3757
3758 iir = I915_READ16(IIR);
3759 if (iir == 0)
3760 return IRQ_NONE;
3761
3762 while (iir & ~flip_mask) {
3763 /* Can't rely on pipestat interrupt bit in iir as it might
3764 * have been cleared after the pipestat interrupt was received.
3765 * It doesn't set the bit in iir again, but it still produces
3766 * interrupts (for non-MSI).
3767 */
3768 spin_lock(&dev_priv->irq_lock);
3769 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3770 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3771
3772 for_each_pipe(dev_priv, pipe) {
3773 int reg = PIPESTAT(pipe);
3774 pipe_stats[pipe] = I915_READ(reg);
3775
3776 /*
3777 * Clear the PIPE*STAT regs before the IIR
3778 */
3779 if (pipe_stats[pipe] & 0x8000ffff)
3780 I915_WRITE(reg, pipe_stats[pipe]);
3781 }
3782 spin_unlock(&dev_priv->irq_lock);
3783
3784 I915_WRITE16(IIR, iir & ~flip_mask);
3785 new_iir = I915_READ16(IIR); /* Flush posted writes */
3786
3787 if (iir & I915_USER_INTERRUPT)
3788 notify_ring(dev, &dev_priv->ring[RCS]);
3789
3790 for_each_pipe(dev_priv, pipe) {
3791 int plane = pipe;
3792 if (HAS_FBC(dev))
3793 plane = !plane;
3794
3795 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3796 i8xx_handle_vblank(dev, plane, pipe, iir))
3797 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3798
3799 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3800 i9xx_pipe_crc_irq_handler(dev, pipe);
3801
3802 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3803 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3804 pipe);
3805 }
3806
3807 iir = new_iir;
3808 }
3809
3810 return IRQ_HANDLED;
3811 }
3812
3813 static void i8xx_irq_uninstall(struct drm_device * dev)
3814 {
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816 int pipe;
3817
3818 for_each_pipe(dev_priv, pipe) {
3819 /* Clear enable bits; then clear status bits */
3820 I915_WRITE(PIPESTAT(pipe), 0);
3821 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3822 }
3823 I915_WRITE16(IMR, 0xffff);
3824 I915_WRITE16(IER, 0x0);
3825 I915_WRITE16(IIR, I915_READ16(IIR));
3826 }
3827
3828 static void i915_irq_preinstall(struct drm_device * dev)
3829 {
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831 int pipe;
3832
3833 if (I915_HAS_HOTPLUG(dev)) {
3834 I915_WRITE(PORT_HOTPLUG_EN, 0);
3835 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3836 }
3837
3838 I915_WRITE16(HWSTAM, 0xeffe);
3839 for_each_pipe(dev_priv, pipe)
3840 I915_WRITE(PIPESTAT(pipe), 0);
3841 I915_WRITE(IMR, 0xffffffff);
3842 I915_WRITE(IER, 0x0);
3843 POSTING_READ(IER);
3844 }
3845
3846 static int i915_irq_postinstall(struct drm_device *dev)
3847 {
3848 struct drm_i915_private *dev_priv = dev->dev_private;
3849 u32 enable_mask;
3850
3851 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3852
3853 /* Unmask the interrupts that we always want on. */
3854 dev_priv->irq_mask =
3855 ~(I915_ASLE_INTERRUPT |
3856 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3857 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3858 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3859 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3860 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3861
3862 enable_mask =
3863 I915_ASLE_INTERRUPT |
3864 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3865 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3866 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3867 I915_USER_INTERRUPT;
3868
3869 if (I915_HAS_HOTPLUG(dev)) {
3870 I915_WRITE(PORT_HOTPLUG_EN, 0);
3871 POSTING_READ(PORT_HOTPLUG_EN);
3872
3873 /* Enable in IER... */
3874 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3875 /* and unmask in IMR */
3876 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3877 }
3878
3879 I915_WRITE(IMR, dev_priv->irq_mask);
3880 I915_WRITE(IER, enable_mask);
3881 POSTING_READ(IER);
3882
3883 i915_enable_asle_pipestat(dev);
3884
3885 /* Interrupt setup is already guaranteed to be single-threaded, this is
3886 * just to make the assert_spin_locked check happy. */
3887 spin_lock_irq(&dev_priv->irq_lock);
3888 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3889 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3890 spin_unlock_irq(&dev_priv->irq_lock);
3891
3892 return 0;
3893 }
3894
3895 /*
3896 * Returns true when a page flip has completed.
3897 */
3898 static bool i915_handle_vblank(struct drm_device *dev,
3899 int plane, int pipe, u32 iir)
3900 {
3901 struct drm_i915_private *dev_priv = dev->dev_private;
3902 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3903
3904 if (!intel_pipe_handle_vblank(dev, pipe))
3905 return false;
3906
3907 if ((iir & flip_pending) == 0)
3908 goto check_page_flip;
3909
3910 intel_prepare_page_flip(dev, plane);
3911
3912 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3913 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3914 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3915 * the flip is completed (no longer pending). Since this doesn't raise
3916 * an interrupt per se, we watch for the change at vblank.
3917 */
3918 if (I915_READ(ISR) & flip_pending)
3919 goto check_page_flip;
3920
3921 intel_finish_page_flip(dev, pipe);
3922 return true;
3923
3924 check_page_flip:
3925 intel_check_page_flip(dev, pipe);
3926 return false;
3927 }
3928
3929 static irqreturn_t i915_irq_handler(int irq, void *arg)
3930 {
3931 struct drm_device *dev = arg;
3932 struct drm_i915_private *dev_priv = dev->dev_private;
3933 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3934 u32 flip_mask =
3935 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3936 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3937 int pipe, ret = IRQ_NONE;
3938
3939 iir = I915_READ(IIR);
3940 do {
3941 bool irq_received = (iir & ~flip_mask) != 0;
3942 bool blc_event = false;
3943
3944 /* Can't rely on pipestat interrupt bit in iir as it might
3945 * have been cleared after the pipestat interrupt was received.
3946 * It doesn't set the bit in iir again, but it still produces
3947 * interrupts (for non-MSI).
3948 */
3949 spin_lock(&dev_priv->irq_lock);
3950 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3951 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3952
3953 for_each_pipe(dev_priv, pipe) {
3954 int reg = PIPESTAT(pipe);
3955 pipe_stats[pipe] = I915_READ(reg);
3956
3957 /* Clear the PIPE*STAT regs before the IIR */
3958 if (pipe_stats[pipe] & 0x8000ffff) {
3959 I915_WRITE(reg, pipe_stats[pipe]);
3960 irq_received = true;
3961 }
3962 }
3963 spin_unlock(&dev_priv->irq_lock);
3964
3965 if (!irq_received)
3966 break;
3967
3968 /* Consume port. Then clear IIR or we'll miss events */
3969 if (I915_HAS_HOTPLUG(dev) &&
3970 iir & I915_DISPLAY_PORT_INTERRUPT)
3971 i9xx_hpd_irq_handler(dev);
3972
3973 I915_WRITE(IIR, iir & ~flip_mask);
3974 new_iir = I915_READ(IIR); /* Flush posted writes */
3975
3976 if (iir & I915_USER_INTERRUPT)
3977 notify_ring(dev, &dev_priv->ring[RCS]);
3978
3979 for_each_pipe(dev_priv, pipe) {
3980 int plane = pipe;
3981 if (HAS_FBC(dev))
3982 plane = !plane;
3983
3984 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3985 i915_handle_vblank(dev, plane, pipe, iir))
3986 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3987
3988 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3989 blc_event = true;
3990
3991 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3992 i9xx_pipe_crc_irq_handler(dev, pipe);
3993
3994 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3995 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3996 pipe);
3997 }
3998
3999 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4000 intel_opregion_asle_intr(dev);
4001
4002 /* With MSI, interrupts are only generated when iir
4003 * transitions from zero to nonzero. If another bit got
4004 * set while we were handling the existing iir bits, then
4005 * we would never get another interrupt.
4006 *
4007 * This is fine on non-MSI as well, as if we hit this path
4008 * we avoid exiting the interrupt handler only to generate
4009 * another one.
4010 *
4011 * Note that for MSI this could cause a stray interrupt report
4012 * if an interrupt landed in the time between writing IIR and
4013 * the posting read. This should be rare enough to never
4014 * trigger the 99% of 100,000 interrupts test for disabling
4015 * stray interrupts.
4016 */
4017 ret = IRQ_HANDLED;
4018 iir = new_iir;
4019 } while (iir & ~flip_mask);
4020
4021 return ret;
4022 }
4023
4024 static void i915_irq_uninstall(struct drm_device * dev)
4025 {
4026 struct drm_i915_private *dev_priv = dev->dev_private;
4027 int pipe;
4028
4029 if (I915_HAS_HOTPLUG(dev)) {
4030 I915_WRITE(PORT_HOTPLUG_EN, 0);
4031 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4032 }
4033
4034 I915_WRITE16(HWSTAM, 0xffff);
4035 for_each_pipe(dev_priv, pipe) {
4036 /* Clear enable bits; then clear status bits */
4037 I915_WRITE(PIPESTAT(pipe), 0);
4038 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4039 }
4040 I915_WRITE(IMR, 0xffffffff);
4041 I915_WRITE(IER, 0x0);
4042
4043 I915_WRITE(IIR, I915_READ(IIR));
4044 }
4045
4046 static void i965_irq_preinstall(struct drm_device * dev)
4047 {
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 int pipe;
4050
4051 I915_WRITE(PORT_HOTPLUG_EN, 0);
4052 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4053
4054 I915_WRITE(HWSTAM, 0xeffe);
4055 for_each_pipe(dev_priv, pipe)
4056 I915_WRITE(PIPESTAT(pipe), 0);
4057 I915_WRITE(IMR, 0xffffffff);
4058 I915_WRITE(IER, 0x0);
4059 POSTING_READ(IER);
4060 }
4061
4062 static int i965_irq_postinstall(struct drm_device *dev)
4063 {
4064 struct drm_i915_private *dev_priv = dev->dev_private;
4065 u32 enable_mask;
4066 u32 error_mask;
4067
4068 /* Unmask the interrupts that we always want on. */
4069 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4070 I915_DISPLAY_PORT_INTERRUPT |
4071 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4072 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4073 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4074 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4075 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4076
4077 enable_mask = ~dev_priv->irq_mask;
4078 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4079 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4080 enable_mask |= I915_USER_INTERRUPT;
4081
4082 if (IS_G4X(dev))
4083 enable_mask |= I915_BSD_USER_INTERRUPT;
4084
4085 /* Interrupt setup is already guaranteed to be single-threaded, this is
4086 * just to make the assert_spin_locked check happy. */
4087 spin_lock_irq(&dev_priv->irq_lock);
4088 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4089 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4090 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4091 spin_unlock_irq(&dev_priv->irq_lock);
4092
4093 /*
4094 * Enable some error detection, note the instruction error mask
4095 * bit is reserved, so we leave it masked.
4096 */
4097 if (IS_G4X(dev)) {
4098 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4099 GM45_ERROR_MEM_PRIV |
4100 GM45_ERROR_CP_PRIV |
4101 I915_ERROR_MEMORY_REFRESH);
4102 } else {
4103 error_mask = ~(I915_ERROR_PAGE_TABLE |
4104 I915_ERROR_MEMORY_REFRESH);
4105 }
4106 I915_WRITE(EMR, error_mask);
4107
4108 I915_WRITE(IMR, dev_priv->irq_mask);
4109 I915_WRITE(IER, enable_mask);
4110 POSTING_READ(IER);
4111
4112 I915_WRITE(PORT_HOTPLUG_EN, 0);
4113 POSTING_READ(PORT_HOTPLUG_EN);
4114
4115 i915_enable_asle_pipestat(dev);
4116
4117 return 0;
4118 }
4119
4120 static void i915_hpd_irq_setup(struct drm_device *dev)
4121 {
4122 struct drm_i915_private *dev_priv = dev->dev_private;
4123 struct intel_encoder *intel_encoder;
4124 u32 hotplug_en;
4125
4126 assert_spin_locked(&dev_priv->irq_lock);
4127
4128 if (I915_HAS_HOTPLUG(dev)) {
4129 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4130 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4131 /* Note HDMI and DP share hotplug bits */
4132 /* enable bits are the same for all generations */
4133 for_each_intel_encoder(dev, intel_encoder)
4134 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4135 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4136 /* Programming the CRT detection parameters tends
4137 to generate a spurious hotplug event about three
4138 seconds later. So just do it once.
4139 */
4140 if (IS_G4X(dev))
4141 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4142 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4143 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4144
4145 /* Ignore TV since it's buggy */
4146 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4147 }
4148 }
4149
4150 static irqreturn_t i965_irq_handler(int irq, void *arg)
4151 {
4152 struct drm_device *dev = arg;
4153 struct drm_i915_private *dev_priv = dev->dev_private;
4154 u32 iir, new_iir;
4155 u32 pipe_stats[I915_MAX_PIPES];
4156 int ret = IRQ_NONE, pipe;
4157 u32 flip_mask =
4158 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4159 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4160
4161 iir = I915_READ(IIR);
4162
4163 for (;;) {
4164 bool irq_received = (iir & ~flip_mask) != 0;
4165 bool blc_event = false;
4166
4167 /* Can't rely on pipestat interrupt bit in iir as it might
4168 * have been cleared after the pipestat interrupt was received.
4169 * It doesn't set the bit in iir again, but it still produces
4170 * interrupts (for non-MSI).
4171 */
4172 spin_lock(&dev_priv->irq_lock);
4173 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4174 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4175
4176 for_each_pipe(dev_priv, pipe) {
4177 int reg = PIPESTAT(pipe);
4178 pipe_stats[pipe] = I915_READ(reg);
4179
4180 /*
4181 * Clear the PIPE*STAT regs before the IIR
4182 */
4183 if (pipe_stats[pipe] & 0x8000ffff) {
4184 I915_WRITE(reg, pipe_stats[pipe]);
4185 irq_received = true;
4186 }
4187 }
4188 spin_unlock(&dev_priv->irq_lock);
4189
4190 if (!irq_received)
4191 break;
4192
4193 ret = IRQ_HANDLED;
4194
4195 /* Consume port. Then clear IIR or we'll miss events */
4196 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4197 i9xx_hpd_irq_handler(dev);
4198
4199 I915_WRITE(IIR, iir & ~flip_mask);
4200 new_iir = I915_READ(IIR); /* Flush posted writes */
4201
4202 if (iir & I915_USER_INTERRUPT)
4203 notify_ring(dev, &dev_priv->ring[RCS]);
4204 if (iir & I915_BSD_USER_INTERRUPT)
4205 notify_ring(dev, &dev_priv->ring[VCS]);
4206
4207 for_each_pipe(dev_priv, pipe) {
4208 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4209 i915_handle_vblank(dev, pipe, pipe, iir))
4210 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4211
4212 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4213 blc_event = true;
4214
4215 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4216 i9xx_pipe_crc_irq_handler(dev, pipe);
4217
4218 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4219 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4220 }
4221
4222 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4223 intel_opregion_asle_intr(dev);
4224
4225 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4226 gmbus_irq_handler(dev);
4227
4228 /* With MSI, interrupts are only generated when iir
4229 * transitions from zero to nonzero. If another bit got
4230 * set while we were handling the existing iir bits, then
4231 * we would never get another interrupt.
4232 *
4233 * This is fine on non-MSI as well, as if we hit this path
4234 * we avoid exiting the interrupt handler only to generate
4235 * another one.
4236 *
4237 * Note that for MSI this could cause a stray interrupt report
4238 * if an interrupt landed in the time between writing IIR and
4239 * the posting read. This should be rare enough to never
4240 * trigger the 99% of 100,000 interrupts test for disabling
4241 * stray interrupts.
4242 */
4243 iir = new_iir;
4244 }
4245
4246 return ret;
4247 }
4248
4249 static void i965_irq_uninstall(struct drm_device * dev)
4250 {
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 int pipe;
4253
4254 if (!dev_priv)
4255 return;
4256
4257 I915_WRITE(PORT_HOTPLUG_EN, 0);
4258 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4259
4260 I915_WRITE(HWSTAM, 0xffffffff);
4261 for_each_pipe(dev_priv, pipe)
4262 I915_WRITE(PIPESTAT(pipe), 0);
4263 I915_WRITE(IMR, 0xffffffff);
4264 I915_WRITE(IER, 0x0);
4265
4266 for_each_pipe(dev_priv, pipe)
4267 I915_WRITE(PIPESTAT(pipe),
4268 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4269 I915_WRITE(IIR, I915_READ(IIR));
4270 }
4271
4272 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4273 {
4274 struct drm_i915_private *dev_priv =
4275 container_of(work, typeof(*dev_priv),
4276 hotplug_reenable_work.work);
4277 struct drm_device *dev = dev_priv->dev;
4278 struct drm_mode_config *mode_config = &dev->mode_config;
4279 int i;
4280
4281 intel_runtime_pm_get(dev_priv);
4282
4283 spin_lock_irq(&dev_priv->irq_lock);
4284 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4285 struct drm_connector *connector;
4286
4287 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4288 continue;
4289
4290 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4291
4292 list_for_each_entry(connector, &mode_config->connector_list, head) {
4293 struct intel_connector *intel_connector = to_intel_connector(connector);
4294
4295 if (intel_connector->encoder->hpd_pin == i) {
4296 if (connector->polled != intel_connector->polled)
4297 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4298 connector->name);
4299 connector->polled = intel_connector->polled;
4300 if (!connector->polled)
4301 connector->polled = DRM_CONNECTOR_POLL_HPD;
4302 }
4303 }
4304 }
4305 if (dev_priv->display.hpd_irq_setup)
4306 dev_priv->display.hpd_irq_setup(dev);
4307 spin_unlock_irq(&dev_priv->irq_lock);
4308
4309 intel_runtime_pm_put(dev_priv);
4310 }
4311
4312 /**
4313 * intel_irq_init - initializes irq support
4314 * @dev_priv: i915 device instance
4315 *
4316 * This function initializes all the irq support including work items, timers
4317 * and all the vtables. It does not setup the interrupt itself though.
4318 */
4319 void intel_irq_init(struct drm_i915_private *dev_priv)
4320 {
4321 struct drm_device *dev = dev_priv->dev;
4322
4323 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4324 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4325 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4326 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4327 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4328
4329 /* Let's track the enabled rps events */
4330 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4331 /* WaGsvRC0ResidencyMethod:vlv */
4332 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4333 else
4334 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4335
4336 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4337 i915_hangcheck_elapsed,
4338 (unsigned long) dev);
4339 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4340 intel_hpd_irq_reenable_work);
4341
4342 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4343
4344 if (IS_GEN2(dev_priv)) {
4345 dev->max_vblank_count = 0;
4346 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4347 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4348 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4349 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4350 } else {
4351 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4352 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4353 }
4354
4355 /*
4356 * Opt out of the vblank disable timer on everything except gen2.
4357 * Gen2 doesn't have a hardware frame counter and so depends on
4358 * vblank interrupts to produce sane vblank seuquence numbers.
4359 */
4360 if (!IS_GEN2(dev_priv))
4361 dev->vblank_disable_immediate = true;
4362
4363 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4364 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4365 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4366 }
4367
4368 if (IS_CHERRYVIEW(dev_priv)) {
4369 dev->driver->irq_handler = cherryview_irq_handler;
4370 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4371 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4372 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4373 dev->driver->enable_vblank = valleyview_enable_vblank;
4374 dev->driver->disable_vblank = valleyview_disable_vblank;
4375 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4376 } else if (IS_VALLEYVIEW(dev_priv)) {
4377 dev->driver->irq_handler = valleyview_irq_handler;
4378 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4379 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4380 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4381 dev->driver->enable_vblank = valleyview_enable_vblank;
4382 dev->driver->disable_vblank = valleyview_disable_vblank;
4383 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4384 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4385 dev->driver->irq_handler = gen8_irq_handler;
4386 dev->driver->irq_preinstall = gen8_irq_reset;
4387 dev->driver->irq_postinstall = gen8_irq_postinstall;
4388 dev->driver->irq_uninstall = gen8_irq_uninstall;
4389 dev->driver->enable_vblank = gen8_enable_vblank;
4390 dev->driver->disable_vblank = gen8_disable_vblank;
4391 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4392 } else if (HAS_PCH_SPLIT(dev)) {
4393 dev->driver->irq_handler = ironlake_irq_handler;
4394 dev->driver->irq_preinstall = ironlake_irq_reset;
4395 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4396 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4397 dev->driver->enable_vblank = ironlake_enable_vblank;
4398 dev->driver->disable_vblank = ironlake_disable_vblank;
4399 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4400 } else {
4401 if (INTEL_INFO(dev_priv)->gen == 2) {
4402 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4403 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4404 dev->driver->irq_handler = i8xx_irq_handler;
4405 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4406 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4407 dev->driver->irq_preinstall = i915_irq_preinstall;
4408 dev->driver->irq_postinstall = i915_irq_postinstall;
4409 dev->driver->irq_uninstall = i915_irq_uninstall;
4410 dev->driver->irq_handler = i915_irq_handler;
4411 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4412 } else {
4413 dev->driver->irq_preinstall = i965_irq_preinstall;
4414 dev->driver->irq_postinstall = i965_irq_postinstall;
4415 dev->driver->irq_uninstall = i965_irq_uninstall;
4416 dev->driver->irq_handler = i965_irq_handler;
4417 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4418 }
4419 dev->driver->enable_vblank = i915_enable_vblank;
4420 dev->driver->disable_vblank = i915_disable_vblank;
4421 }
4422 }
4423
4424 /**
4425 * intel_hpd_init - initializes and enables hpd support
4426 * @dev_priv: i915 device instance
4427 *
4428 * This function enables the hotplug support. It requires that interrupts have
4429 * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4430 * poll request can run concurrently to other code, so locking rules must be
4431 * obeyed.
4432 *
4433 * This is a separate step from interrupt enabling to simplify the locking rules
4434 * in the driver load and resume code.
4435 */
4436 void intel_hpd_init(struct drm_i915_private *dev_priv)
4437 {
4438 struct drm_device *dev = dev_priv->dev;
4439 struct drm_mode_config *mode_config = &dev->mode_config;
4440 struct drm_connector *connector;
4441 int i;
4442
4443 for (i = 1; i < HPD_NUM_PINS; i++) {
4444 dev_priv->hpd_stats[i].hpd_cnt = 0;
4445 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4446 }
4447 list_for_each_entry(connector, &mode_config->connector_list, head) {
4448 struct intel_connector *intel_connector = to_intel_connector(connector);
4449 connector->polled = intel_connector->polled;
4450 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4451 connector->polled = DRM_CONNECTOR_POLL_HPD;
4452 if (intel_connector->mst_port)
4453 connector->polled = DRM_CONNECTOR_POLL_HPD;
4454 }
4455
4456 /* Interrupt setup is already guaranteed to be single-threaded, this is
4457 * just to make the assert_spin_locked checks happy. */
4458 spin_lock_irq(&dev_priv->irq_lock);
4459 if (dev_priv->display.hpd_irq_setup)
4460 dev_priv->display.hpd_irq_setup(dev);
4461 spin_unlock_irq(&dev_priv->irq_lock);
4462 }
4463
4464 /**
4465 * intel_irq_install - enables the hardware interrupt
4466 * @dev_priv: i915 device instance
4467 *
4468 * This function enables the hardware interrupt handling, but leaves the hotplug
4469 * handling still disabled. It is called after intel_irq_init().
4470 *
4471 * In the driver load and resume code we need working interrupts in a few places
4472 * but don't want to deal with the hassle of concurrent probe and hotplug
4473 * workers. Hence the split into this two-stage approach.
4474 */
4475 int intel_irq_install(struct drm_i915_private *dev_priv)
4476 {
4477 /*
4478 * We enable some interrupt sources in our postinstall hooks, so mark
4479 * interrupts as enabled _before_ actually enabling them to avoid
4480 * special cases in our ordering checks.
4481 */
4482 dev_priv->pm.irqs_enabled = true;
4483
4484 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4485 }
4486
4487 /**
4488 * intel_irq_uninstall - finilizes all irq handling
4489 * @dev_priv: i915 device instance
4490 *
4491 * This stops interrupt and hotplug handling and unregisters and frees all
4492 * resources acquired in the init functions.
4493 */
4494 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4495 {
4496 drm_irq_uninstall(dev_priv->dev);
4497 intel_hpd_cancel_work(dev_priv);
4498 dev_priv->pm.irqs_enabled = false;
4499 }
4500
4501 /**
4502 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4503 * @dev_priv: i915 device instance
4504 *
4505 * This function is used to disable interrupts at runtime, both in the runtime
4506 * pm and the system suspend/resume code.
4507 */
4508 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4509 {
4510 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4511 dev_priv->pm.irqs_enabled = false;
4512 }
4513
4514 /**
4515 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4516 * @dev_priv: i915 device instance
4517 *
4518 * This function is used to enable interrupts at runtime, both in the runtime
4519 * pm and the system suspend/resume code.
4520 */
4521 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4522 {
4523 dev_priv->pm.irqs_enabled = true;
4524 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4525 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4526 }
This page took 0.121418 seconds and 6 git commands to generate.