drm/i915: Use GEN5_IRQ_INIT() in vlv_display_irq_postinstall()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999 if (!intel_engine_initialized(engine))
1000 return;
1001
1002 trace_i915_gem_request_notify(engine);
1003 engine->user_interrupts++;
1004
1005 wake_up_all(&engine->irq_queue);
1006 }
1007
1008 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1009 struct intel_rps_ei *ei)
1010 {
1011 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1012 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1013 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1014 }
1015
1016 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1017 const struct intel_rps_ei *old,
1018 const struct intel_rps_ei *now,
1019 int threshold)
1020 {
1021 u64 time, c0;
1022 unsigned int mul = 100;
1023
1024 if (old->cz_clock == 0)
1025 return false;
1026
1027 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1028 mul <<= 8;
1029
1030 time = now->cz_clock - old->cz_clock;
1031 time *= threshold * dev_priv->czclk_freq;
1032
1033 /* Workload can be split between render + media, e.g. SwapBuffers
1034 * being blitted in X after being rendered in mesa. To account for
1035 * this we need to combine both engines into our activity counter.
1036 */
1037 c0 = now->render_c0 - old->render_c0;
1038 c0 += now->media_c0 - old->media_c0;
1039 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1040
1041 return c0 >= time;
1042 }
1043
1044 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1045 {
1046 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1047 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1048 }
1049
1050 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1051 {
1052 struct intel_rps_ei now;
1053 u32 events = 0;
1054
1055 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1056 return 0;
1057
1058 vlv_c0_read(dev_priv, &now);
1059 if (now.cz_clock == 0)
1060 return 0;
1061
1062 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1063 if (!vlv_c0_above(dev_priv,
1064 &dev_priv->rps.down_ei, &now,
1065 dev_priv->rps.down_threshold))
1066 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1067 dev_priv->rps.down_ei = now;
1068 }
1069
1070 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1071 if (vlv_c0_above(dev_priv,
1072 &dev_priv->rps.up_ei, &now,
1073 dev_priv->rps.up_threshold))
1074 events |= GEN6_PM_RP_UP_THRESHOLD;
1075 dev_priv->rps.up_ei = now;
1076 }
1077
1078 return events;
1079 }
1080
1081 static bool any_waiters(struct drm_i915_private *dev_priv)
1082 {
1083 struct intel_engine_cs *engine;
1084
1085 for_each_engine(engine, dev_priv)
1086 if (engine->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->engine[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->engine[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->engine[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->engine[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->engine[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(engine);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 tasklet_schedule(&engine->irq_tasklet);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->engine[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 u32 pipe_stats[I915_MAX_PIPES] = { };
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654
1655 if (!dev_priv->display_irqs_enabled) {
1656 spin_unlock(&dev_priv->irq_lock);
1657 return;
1658 }
1659
1660 for_each_pipe(dev_priv, pipe) {
1661 i915_reg_t reg;
1662 u32 mask, iir_bit = 0;
1663
1664 /*
1665 * PIPESTAT bits get signalled even when the interrupt is
1666 * disabled with the mask bits, and some of the status bits do
1667 * not generate interrupts at all (like the underrun bit). Hence
1668 * we need to be careful that we only handle what we want to
1669 * handle.
1670 */
1671
1672 /* fifo underruns are filterered in the underrun handler. */
1673 mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675 switch (pipe) {
1676 case PIPE_A:
1677 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678 break;
1679 case PIPE_B:
1680 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681 break;
1682 case PIPE_C:
1683 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684 break;
1685 }
1686 if (iir & iir_bit)
1687 mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689 if (!mask)
1690 continue;
1691
1692 reg = PIPESTAT(pipe);
1693 mask |= PIPESTAT_INT_ENABLE_MASK;
1694 pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696 /*
1697 * Clear the PIPE*STAT regs before the IIR
1698 */
1699 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700 PIPESTAT_INT_STATUS_MASK))
1701 I915_WRITE(reg, pipe_stats[pipe]);
1702 }
1703 spin_unlock(&dev_priv->irq_lock);
1704
1705 for_each_pipe(dev_priv, pipe) {
1706 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707 intel_pipe_handle_vblank(dev, pipe))
1708 intel_check_page_flip(dev, pipe);
1709
1710 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711 intel_prepare_page_flip(dev, pipe);
1712 intel_finish_page_flip(dev, pipe);
1713 }
1714
1715 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716 i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720 }
1721
1722 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723 gmbus_irq_handler(dev);
1724 }
1725
1726 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727 {
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730 u32 pin_mask = 0, long_mask = 0;
1731
1732 if (!hotplug_status)
1733 return;
1734
1735 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736 /*
1737 * Make sure hotplug status is cleared before we clear IIR, or else we
1738 * may miss hotplug events.
1739 */
1740 POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745 if (hotplug_trigger) {
1746 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747 hotplug_trigger, hpd_status_g4x,
1748 i9xx_port_hotplug_long_detect);
1749
1750 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751 }
1752
1753 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754 dp_aux_irq_handler(dev);
1755 } else {
1756 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758 if (hotplug_trigger) {
1759 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760 hotplug_trigger, hpd_status_i915,
1761 i9xx_port_hotplug_long_detect);
1762 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763 }
1764 }
1765 }
1766
1767 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768 {
1769 struct drm_device *dev = arg;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 u32 iir, gt_iir, pm_iir;
1772 irqreturn_t ret = IRQ_NONE;
1773
1774 if (!intel_irqs_enabled(dev_priv))
1775 return IRQ_NONE;
1776
1777 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778 disable_rpm_wakeref_asserts(dev_priv);
1779
1780 while (true) {
1781 /* Find, clear, then process each source of interrupt */
1782
1783 gt_iir = I915_READ(GTIIR);
1784 if (gt_iir)
1785 I915_WRITE(GTIIR, gt_iir);
1786
1787 pm_iir = I915_READ(GEN6_PMIIR);
1788 if (pm_iir)
1789 I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791 iir = I915_READ(VLV_IIR);
1792 if (iir) {
1793 /* Consume port before clearing IIR or we'll miss events */
1794 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795 i9xx_hpd_irq_handler(dev);
1796 I915_WRITE(VLV_IIR, iir);
1797 }
1798
1799 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800 goto out;
1801
1802 ret = IRQ_HANDLED;
1803
1804 if (gt_iir)
1805 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806 if (pm_iir)
1807 gen6_rps_irq_handler(dev_priv, pm_iir);
1808 /* Call regardless, as some status bits might not be
1809 * signalled in iir */
1810 valleyview_pipestat_irq_handler(dev, iir);
1811 }
1812
1813 out:
1814 enable_rpm_wakeref_asserts(dev_priv);
1815
1816 return ret;
1817 }
1818
1819 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820 {
1821 struct drm_device *dev = arg;
1822 struct drm_i915_private *dev_priv = dev->dev_private;
1823 u32 master_ctl, iir;
1824 irqreturn_t ret = IRQ_NONE;
1825
1826 if (!intel_irqs_enabled(dev_priv))
1827 return IRQ_NONE;
1828
1829 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830 disable_rpm_wakeref_asserts(dev_priv);
1831
1832 do {
1833 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834 iir = I915_READ(VLV_IIR);
1835
1836 if (master_ctl == 0 && iir == 0)
1837 break;
1838
1839 ret = IRQ_HANDLED;
1840
1841 I915_WRITE(GEN8_MASTER_IRQ, 0);
1842
1843 /* Find, clear, then process each source of interrupt */
1844
1845 if (iir) {
1846 /* Consume port before clearing IIR or we'll miss events */
1847 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848 i9xx_hpd_irq_handler(dev);
1849 I915_WRITE(VLV_IIR, iir);
1850 }
1851
1852 gen8_gt_irq_handler(dev_priv, master_ctl);
1853
1854 /* Call regardless, as some status bits might not be
1855 * signalled in iir */
1856 valleyview_pipestat_irq_handler(dev, iir);
1857
1858 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859 POSTING_READ(GEN8_MASTER_IRQ);
1860 } while (0);
1861
1862 enable_rpm_wakeref_asserts(dev_priv);
1863
1864 return ret;
1865 }
1866
1867 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868 const u32 hpd[HPD_NUM_PINS])
1869 {
1870 struct drm_i915_private *dev_priv = to_i915(dev);
1871 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873 /*
1874 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875 * unless we touch the hotplug register, even if hotplug_trigger is
1876 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877 * errors.
1878 */
1879 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880 if (!hotplug_trigger) {
1881 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882 PORTD_HOTPLUG_STATUS_MASK |
1883 PORTC_HOTPLUG_STATUS_MASK |
1884 PORTB_HOTPLUG_STATUS_MASK;
1885 dig_hotplug_reg &= ~mask;
1886 }
1887
1888 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889 if (!hotplug_trigger)
1890 return;
1891
1892 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893 dig_hotplug_reg, hpd,
1894 pch_port_hotplug_long_detect);
1895
1896 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897 }
1898
1899 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900 {
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 int pipe;
1903 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909 SDE_AUDIO_POWER_SHIFT);
1910 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911 port_name(port));
1912 }
1913
1914 if (pch_iir & SDE_AUX_MASK)
1915 dp_aux_irq_handler(dev);
1916
1917 if (pch_iir & SDE_GMBUS)
1918 gmbus_irq_handler(dev);
1919
1920 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926 if (pch_iir & SDE_POISON)
1927 DRM_ERROR("PCH poison interrupt\n");
1928
1929 if (pch_iir & SDE_FDI_MASK)
1930 for_each_pipe(dev_priv, pipe)
1931 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1932 pipe_name(pipe),
1933 I915_READ(FDI_RX_IIR(pipe)));
1934
1935 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940
1941 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946 }
1947
1948 static void ivb_err_int_handler(struct drm_device *dev)
1949 {
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 u32 err_int = I915_READ(GEN7_ERR_INT);
1952 enum pipe pipe;
1953
1954 if (err_int & ERR_INT_POISON)
1955 DRM_ERROR("Poison interrupt\n");
1956
1957 for_each_pipe(dev_priv, pipe) {
1958 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962 if (IS_IVYBRIDGE(dev))
1963 ivb_pipe_crc_irq_handler(dev, pipe);
1964 else
1965 hsw_pipe_crc_irq_handler(dev, pipe);
1966 }
1967 }
1968
1969 I915_WRITE(GEN7_ERR_INT, err_int);
1970 }
1971
1972 static void cpt_serr_int_handler(struct drm_device *dev)
1973 {
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975 u32 serr_int = I915_READ(SERR_INT);
1976
1977 if (serr_int & SERR_INT_POISON)
1978 DRM_ERROR("PCH poison interrupt\n");
1979
1980 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988
1989 I915_WRITE(SERR_INT, serr_int);
1990 }
1991
1992 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993 {
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995 int pipe;
1996 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002 SDE_AUDIO_POWER_SHIFT_CPT);
2003 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004 port_name(port));
2005 }
2006
2007 if (pch_iir & SDE_AUX_MASK_CPT)
2008 dp_aux_irq_handler(dev);
2009
2010 if (pch_iir & SDE_GMBUS_CPT)
2011 gmbus_irq_handler(dev);
2012
2013 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019 if (pch_iir & SDE_FDI_MASK_CPT)
2020 for_each_pipe(dev_priv, pipe)
2021 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2022 pipe_name(pipe),
2023 I915_READ(FDI_RX_IIR(pipe)));
2024
2025 if (pch_iir & SDE_ERROR_CPT)
2026 cpt_serr_int_handler(dev);
2027 }
2028
2029 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030 {
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033 ~SDE_PORTE_HOTPLUG_SPT;
2034 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035 u32 pin_mask = 0, long_mask = 0;
2036
2037 if (hotplug_trigger) {
2038 u32 dig_hotplug_reg;
2039
2040 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044 dig_hotplug_reg, hpd_spt,
2045 spt_port_hotplug_long_detect);
2046 }
2047
2048 if (hotplug2_trigger) {
2049 u32 dig_hotplug_reg;
2050
2051 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053
2054 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055 dig_hotplug_reg, hpd_spt,
2056 spt_port_hotplug2_long_detect);
2057 }
2058
2059 if (pin_mask)
2060 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062 if (pch_iir & SDE_GMBUS_CPT)
2063 gmbus_irq_handler(dev);
2064 }
2065
2066 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067 const u32 hpd[HPD_NUM_PINS])
2068 {
2069 struct drm_i915_private *dev_priv = to_i915(dev);
2070 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071
2072 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074
2075 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076 dig_hotplug_reg, hpd,
2077 ilk_port_hotplug_long_detect);
2078
2079 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080 }
2081
2082 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083 {
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 enum pipe pipe;
2086 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087
2088 if (hotplug_trigger)
2089 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091 if (de_iir & DE_AUX_CHANNEL_A)
2092 dp_aux_irq_handler(dev);
2093
2094 if (de_iir & DE_GSE)
2095 intel_opregion_asle_intr(dev);
2096
2097 if (de_iir & DE_POISON)
2098 DRM_ERROR("Poison interrupt\n");
2099
2100 for_each_pipe(dev_priv, pipe) {
2101 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102 intel_pipe_handle_vblank(dev, pipe))
2103 intel_check_page_flip(dev, pipe);
2104
2105 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109 i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111 /* plane/pipes map 1:1 on ilk+ */
2112 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113 intel_prepare_page_flip(dev, pipe);
2114 intel_finish_page_flip_plane(dev, pipe);
2115 }
2116 }
2117
2118 /* check event from PCH */
2119 if (de_iir & DE_PCH_EVENT) {
2120 u32 pch_iir = I915_READ(SDEIIR);
2121
2122 if (HAS_PCH_CPT(dev))
2123 cpt_irq_handler(dev, pch_iir);
2124 else
2125 ibx_irq_handler(dev, pch_iir);
2126
2127 /* should clear PCH hotplug event before clear CPU irq */
2128 I915_WRITE(SDEIIR, pch_iir);
2129 }
2130
2131 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132 ironlake_rps_change_irq_handler(dev);
2133 }
2134
2135 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136 {
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 enum pipe pipe;
2139 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141 if (hotplug_trigger)
2142 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143
2144 if (de_iir & DE_ERR_INT_IVB)
2145 ivb_err_int_handler(dev);
2146
2147 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148 dp_aux_irq_handler(dev);
2149
2150 if (de_iir & DE_GSE_IVB)
2151 intel_opregion_asle_intr(dev);
2152
2153 for_each_pipe(dev_priv, pipe) {
2154 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155 intel_pipe_handle_vblank(dev, pipe))
2156 intel_check_page_flip(dev, pipe);
2157
2158 /* plane/pipes map 1:1 on ilk+ */
2159 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160 intel_prepare_page_flip(dev, pipe);
2161 intel_finish_page_flip_plane(dev, pipe);
2162 }
2163 }
2164
2165 /* check event from PCH */
2166 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167 u32 pch_iir = I915_READ(SDEIIR);
2168
2169 cpt_irq_handler(dev, pch_iir);
2170
2171 /* clear PCH hotplug event before clear CPU irq */
2172 I915_WRITE(SDEIIR, pch_iir);
2173 }
2174 }
2175
2176 /*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185 {
2186 struct drm_device *dev = arg;
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189 irqreturn_t ret = IRQ_NONE;
2190
2191 if (!intel_irqs_enabled(dev_priv))
2192 return IRQ_NONE;
2193
2194 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195 disable_rpm_wakeref_asserts(dev_priv);
2196
2197 /* disable master interrupt before clearing iir */
2198 de_ier = I915_READ(DEIER);
2199 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200 POSTING_READ(DEIER);
2201
2202 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2203 * interrupts will will be stored on its back queue, and then we'll be
2204 * able to process them after we restore SDEIER (as soon as we restore
2205 * it, we'll get an interrupt if SDEIIR still has something to process
2206 * due to its back queue). */
2207 if (!HAS_PCH_NOP(dev)) {
2208 sde_ier = I915_READ(SDEIER);
2209 I915_WRITE(SDEIER, 0);
2210 POSTING_READ(SDEIER);
2211 }
2212
2213 /* Find, clear, then process each source of interrupt */
2214
2215 gt_iir = I915_READ(GTIIR);
2216 if (gt_iir) {
2217 I915_WRITE(GTIIR, gt_iir);
2218 ret = IRQ_HANDLED;
2219 if (INTEL_INFO(dev)->gen >= 6)
2220 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221 else
2222 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2223 }
2224
2225 de_iir = I915_READ(DEIIR);
2226 if (de_iir) {
2227 I915_WRITE(DEIIR, de_iir);
2228 ret = IRQ_HANDLED;
2229 if (INTEL_INFO(dev)->gen >= 7)
2230 ivb_display_irq_handler(dev, de_iir);
2231 else
2232 ilk_display_irq_handler(dev, de_iir);
2233 }
2234
2235 if (INTEL_INFO(dev)->gen >= 6) {
2236 u32 pm_iir = I915_READ(GEN6_PMIIR);
2237 if (pm_iir) {
2238 I915_WRITE(GEN6_PMIIR, pm_iir);
2239 ret = IRQ_HANDLED;
2240 gen6_rps_irq_handler(dev_priv, pm_iir);
2241 }
2242 }
2243
2244 I915_WRITE(DEIER, de_ier);
2245 POSTING_READ(DEIER);
2246 if (!HAS_PCH_NOP(dev)) {
2247 I915_WRITE(SDEIER, sde_ier);
2248 POSTING_READ(SDEIER);
2249 }
2250
2251 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252 enable_rpm_wakeref_asserts(dev_priv);
2253
2254 return ret;
2255 }
2256
2257 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258 const u32 hpd[HPD_NUM_PINS])
2259 {
2260 struct drm_i915_private *dev_priv = to_i915(dev);
2261 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267 dig_hotplug_reg, hpd,
2268 bxt_port_hotplug_long_detect);
2269
2270 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2271 }
2272
2273 static irqreturn_t
2274 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275 {
2276 struct drm_device *dev = dev_priv->dev;
2277 irqreturn_t ret = IRQ_NONE;
2278 u32 iir;
2279 enum pipe pipe;
2280
2281 if (master_ctl & GEN8_DE_MISC_IRQ) {
2282 iir = I915_READ(GEN8_DE_MISC_IIR);
2283 if (iir) {
2284 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285 ret = IRQ_HANDLED;
2286 if (iir & GEN8_DE_MISC_GSE)
2287 intel_opregion_asle_intr(dev);
2288 else
2289 DRM_ERROR("Unexpected DE Misc interrupt\n");
2290 }
2291 else
2292 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2293 }
2294
2295 if (master_ctl & GEN8_DE_PORT_IRQ) {
2296 iir = I915_READ(GEN8_DE_PORT_IIR);
2297 if (iir) {
2298 u32 tmp_mask;
2299 bool found = false;
2300
2301 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302 ret = IRQ_HANDLED;
2303
2304 tmp_mask = GEN8_AUX_CHANNEL_A;
2305 if (INTEL_INFO(dev_priv)->gen >= 9)
2306 tmp_mask |= GEN9_AUX_CHANNEL_B |
2307 GEN9_AUX_CHANNEL_C |
2308 GEN9_AUX_CHANNEL_D;
2309
2310 if (iir & tmp_mask) {
2311 dp_aux_irq_handler(dev);
2312 found = true;
2313 }
2314
2315 if (IS_BROXTON(dev_priv)) {
2316 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317 if (tmp_mask) {
2318 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2319 found = true;
2320 }
2321 } else if (IS_BROADWELL(dev_priv)) {
2322 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323 if (tmp_mask) {
2324 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2325 found = true;
2326 }
2327 }
2328
2329 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330 gmbus_irq_handler(dev);
2331 found = true;
2332 }
2333
2334 if (!found)
2335 DRM_ERROR("Unexpected DE Port interrupt\n");
2336 }
2337 else
2338 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339 }
2340
2341 for_each_pipe(dev_priv, pipe) {
2342 u32 flip_done, fault_errors;
2343
2344 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345 continue;
2346
2347 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348 if (!iir) {
2349 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350 continue;
2351 }
2352
2353 ret = IRQ_HANDLED;
2354 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355
2356 if (iir & GEN8_PIPE_VBLANK &&
2357 intel_pipe_handle_vblank(dev, pipe))
2358 intel_check_page_flip(dev, pipe);
2359
2360 flip_done = iir;
2361 if (INTEL_INFO(dev_priv)->gen >= 9)
2362 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363 else
2364 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366 if (flip_done) {
2367 intel_prepare_page_flip(dev, pipe);
2368 intel_finish_page_flip_plane(dev, pipe);
2369 }
2370
2371 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372 hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376
2377 fault_errors = iir;
2378 if (INTEL_INFO(dev_priv)->gen >= 9)
2379 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380 else
2381 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383 if (fault_errors)
2384 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385 pipe_name(pipe),
2386 fault_errors);
2387 }
2388
2389 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390 master_ctl & GEN8_DE_PCH_IRQ) {
2391 /*
2392 * FIXME(BDW): Assume for now that the new interrupt handling
2393 * scheme also closed the SDE interrupt handling race we've seen
2394 * on older pch-split platforms. But this needs testing.
2395 */
2396 iir = I915_READ(SDEIIR);
2397 if (iir) {
2398 I915_WRITE(SDEIIR, iir);
2399 ret = IRQ_HANDLED;
2400
2401 if (HAS_PCH_SPT(dev_priv))
2402 spt_irq_handler(dev, iir);
2403 else
2404 cpt_irq_handler(dev, iir);
2405 } else {
2406 /*
2407 * Like on previous PCH there seems to be something
2408 * fishy going on with forwarding PCH interrupts.
2409 */
2410 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411 }
2412 }
2413
2414 return ret;
2415 }
2416
2417 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418 {
2419 struct drm_device *dev = arg;
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 u32 master_ctl;
2422 irqreturn_t ret;
2423
2424 if (!intel_irqs_enabled(dev_priv))
2425 return IRQ_NONE;
2426
2427 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429 if (!master_ctl)
2430 return IRQ_NONE;
2431
2432 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2433
2434 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435 disable_rpm_wakeref_asserts(dev_priv);
2436
2437 /* Find, clear, then process each source of interrupt */
2438 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442 POSTING_READ_FW(GEN8_MASTER_IRQ);
2443
2444 enable_rpm_wakeref_asserts(dev_priv);
2445
2446 return ret;
2447 }
2448
2449 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450 bool reset_completed)
2451 {
2452 struct intel_engine_cs *engine;
2453
2454 /*
2455 * Notify all waiters for GPU completion events that reset state has
2456 * been changed, and that they need to restart their wait after
2457 * checking for potential errors (and bail out to drop locks if there is
2458 * a gpu reset pending so that i915_error_work_func can acquire them).
2459 */
2460
2461 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2462 for_each_engine(engine, dev_priv)
2463 wake_up_all(&engine->irq_queue);
2464
2465 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2466 wake_up_all(&dev_priv->pending_flip_queue);
2467
2468 /*
2469 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2470 * reset state is cleared.
2471 */
2472 if (reset_completed)
2473 wake_up_all(&dev_priv->gpu_error.reset_queue);
2474 }
2475
2476 /**
2477 * i915_reset_and_wakeup - do process context error handling work
2478 * @dev: drm device
2479 *
2480 * Fire an error uevent so userspace can see that a hang or error
2481 * was detected.
2482 */
2483 static void i915_reset_and_wakeup(struct drm_device *dev)
2484 {
2485 struct drm_i915_private *dev_priv = to_i915(dev);
2486 struct i915_gpu_error *error = &dev_priv->gpu_error;
2487 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2488 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2489 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2490 int ret;
2491
2492 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2493
2494 /*
2495 * Note that there's only one work item which does gpu resets, so we
2496 * need not worry about concurrent gpu resets potentially incrementing
2497 * error->reset_counter twice. We only need to take care of another
2498 * racing irq/hangcheck declaring the gpu dead for a second time. A
2499 * quick check for that is good enough: schedule_work ensures the
2500 * correct ordering between hang detection and this work item, and since
2501 * the reset in-progress bit is only ever set by code outside of this
2502 * work we don't need to worry about any other races.
2503 */
2504 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2505 DRM_DEBUG_DRIVER("resetting chip\n");
2506 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2507 reset_event);
2508
2509 /*
2510 * In most cases it's guaranteed that we get here with an RPM
2511 * reference held, for example because there is a pending GPU
2512 * request that won't finish until the reset is done. This
2513 * isn't the case at least when we get here by doing a
2514 * simulated reset via debugs, so get an RPM reference.
2515 */
2516 intel_runtime_pm_get(dev_priv);
2517
2518 intel_prepare_reset(dev);
2519
2520 /*
2521 * All state reset _must_ be completed before we update the
2522 * reset counter, for otherwise waiters might miss the reset
2523 * pending state and not properly drop locks, resulting in
2524 * deadlocks with the reset work.
2525 */
2526 ret = i915_reset(dev);
2527
2528 intel_finish_reset(dev);
2529
2530 intel_runtime_pm_put(dev_priv);
2531
2532 if (ret == 0) {
2533 /*
2534 * After all the gem state is reset, increment the reset
2535 * counter and wake up everyone waiting for the reset to
2536 * complete.
2537 *
2538 * Since unlock operations are a one-sided barrier only,
2539 * we need to insert a barrier here to order any seqno
2540 * updates before
2541 * the counter increment.
2542 */
2543 smp_mb__before_atomic();
2544 atomic_inc(&dev_priv->gpu_error.reset_counter);
2545
2546 kobject_uevent_env(&dev->primary->kdev->kobj,
2547 KOBJ_CHANGE, reset_done_event);
2548 } else {
2549 atomic_or(I915_WEDGED, &error->reset_counter);
2550 }
2551
2552 /*
2553 * Note: The wake_up also serves as a memory barrier so that
2554 * waiters see the update value of the reset counter atomic_t.
2555 */
2556 i915_error_wake_up(dev_priv, true);
2557 }
2558 }
2559
2560 static void i915_report_and_clear_eir(struct drm_device *dev)
2561 {
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 uint32_t instdone[I915_NUM_INSTDONE_REG];
2564 u32 eir = I915_READ(EIR);
2565 int pipe, i;
2566
2567 if (!eir)
2568 return;
2569
2570 pr_err("render error detected, EIR: 0x%08x\n", eir);
2571
2572 i915_get_extra_instdone(dev, instdone);
2573
2574 if (IS_G4X(dev)) {
2575 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2576 u32 ipeir = I915_READ(IPEIR_I965);
2577
2578 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2579 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2580 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2581 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2582 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2583 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2584 I915_WRITE(IPEIR_I965, ipeir);
2585 POSTING_READ(IPEIR_I965);
2586 }
2587 if (eir & GM45_ERROR_PAGE_TABLE) {
2588 u32 pgtbl_err = I915_READ(PGTBL_ER);
2589 pr_err("page table error\n");
2590 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2591 I915_WRITE(PGTBL_ER, pgtbl_err);
2592 POSTING_READ(PGTBL_ER);
2593 }
2594 }
2595
2596 if (!IS_GEN2(dev)) {
2597 if (eir & I915_ERROR_PAGE_TABLE) {
2598 u32 pgtbl_err = I915_READ(PGTBL_ER);
2599 pr_err("page table error\n");
2600 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2601 I915_WRITE(PGTBL_ER, pgtbl_err);
2602 POSTING_READ(PGTBL_ER);
2603 }
2604 }
2605
2606 if (eir & I915_ERROR_MEMORY_REFRESH) {
2607 pr_err("memory refresh error:\n");
2608 for_each_pipe(dev_priv, pipe)
2609 pr_err("pipe %c stat: 0x%08x\n",
2610 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2611 /* pipestat has already been acked */
2612 }
2613 if (eir & I915_ERROR_INSTRUCTION) {
2614 pr_err("instruction error\n");
2615 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2616 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2617 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2618 if (INTEL_INFO(dev)->gen < 4) {
2619 u32 ipeir = I915_READ(IPEIR);
2620
2621 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2622 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2623 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2624 I915_WRITE(IPEIR, ipeir);
2625 POSTING_READ(IPEIR);
2626 } else {
2627 u32 ipeir = I915_READ(IPEIR_I965);
2628
2629 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2630 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2631 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2632 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2633 I915_WRITE(IPEIR_I965, ipeir);
2634 POSTING_READ(IPEIR_I965);
2635 }
2636 }
2637
2638 I915_WRITE(EIR, eir);
2639 POSTING_READ(EIR);
2640 eir = I915_READ(EIR);
2641 if (eir) {
2642 /*
2643 * some errors might have become stuck,
2644 * mask them.
2645 */
2646 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2647 I915_WRITE(EMR, I915_READ(EMR) | eir);
2648 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2649 }
2650 }
2651
2652 /**
2653 * i915_handle_error - handle a gpu error
2654 * @dev: drm device
2655 * @engine_mask: mask representing engines that are hung
2656 * Do some basic checking of register state at error time and
2657 * dump it to the syslog. Also call i915_capture_error_state() to make
2658 * sure we get a record and make it available in debugfs. Fire a uevent
2659 * so userspace knows something bad happened (should trigger collection
2660 * of a ring dump etc.).
2661 */
2662 void i915_handle_error(struct drm_device *dev, u32 engine_mask,
2663 const char *fmt, ...)
2664 {
2665 struct drm_i915_private *dev_priv = dev->dev_private;
2666 va_list args;
2667 char error_msg[80];
2668
2669 va_start(args, fmt);
2670 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2671 va_end(args);
2672
2673 i915_capture_error_state(dev, engine_mask, error_msg);
2674 i915_report_and_clear_eir(dev);
2675
2676 if (engine_mask) {
2677 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2678 &dev_priv->gpu_error.reset_counter);
2679
2680 /*
2681 * Wakeup waiting processes so that the reset function
2682 * i915_reset_and_wakeup doesn't deadlock trying to grab
2683 * various locks. By bumping the reset counter first, the woken
2684 * processes will see a reset in progress and back off,
2685 * releasing their locks and then wait for the reset completion.
2686 * We must do this for _all_ gpu waiters that might hold locks
2687 * that the reset work needs to acquire.
2688 *
2689 * Note: The wake_up serves as the required memory barrier to
2690 * ensure that the waiters see the updated value of the reset
2691 * counter atomic_t.
2692 */
2693 i915_error_wake_up(dev_priv, false);
2694 }
2695
2696 i915_reset_and_wakeup(dev);
2697 }
2698
2699 /* Called from drm generic code, passed 'crtc' which
2700 * we use as a pipe index
2701 */
2702 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2703 {
2704 struct drm_i915_private *dev_priv = dev->dev_private;
2705 unsigned long irqflags;
2706
2707 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708 if (INTEL_INFO(dev)->gen >= 4)
2709 i915_enable_pipestat(dev_priv, pipe,
2710 PIPE_START_VBLANK_INTERRUPT_STATUS);
2711 else
2712 i915_enable_pipestat(dev_priv, pipe,
2713 PIPE_VBLANK_INTERRUPT_STATUS);
2714 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2715
2716 return 0;
2717 }
2718
2719 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2720 {
2721 struct drm_i915_private *dev_priv = dev->dev_private;
2722 unsigned long irqflags;
2723 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2724 DE_PIPE_VBLANK(pipe);
2725
2726 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2727 ilk_enable_display_irq(dev_priv, bit);
2728 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2729
2730 return 0;
2731 }
2732
2733 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2734 {
2735 struct drm_i915_private *dev_priv = dev->dev_private;
2736 unsigned long irqflags;
2737
2738 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2739 i915_enable_pipestat(dev_priv, pipe,
2740 PIPE_START_VBLANK_INTERRUPT_STATUS);
2741 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2742
2743 return 0;
2744 }
2745
2746 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2747 {
2748 struct drm_i915_private *dev_priv = dev->dev_private;
2749 unsigned long irqflags;
2750
2751 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2753 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754
2755 return 0;
2756 }
2757
2758 /* Called from drm generic code, passed 'crtc' which
2759 * we use as a pipe index
2760 */
2761 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2762 {
2763 struct drm_i915_private *dev_priv = dev->dev_private;
2764 unsigned long irqflags;
2765
2766 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2767 i915_disable_pipestat(dev_priv, pipe,
2768 PIPE_VBLANK_INTERRUPT_STATUS |
2769 PIPE_START_VBLANK_INTERRUPT_STATUS);
2770 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2771 }
2772
2773 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2774 {
2775 struct drm_i915_private *dev_priv = dev->dev_private;
2776 unsigned long irqflags;
2777 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2778 DE_PIPE_VBLANK(pipe);
2779
2780 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2781 ilk_disable_display_irq(dev_priv, bit);
2782 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2783 }
2784
2785 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2786 {
2787 struct drm_i915_private *dev_priv = dev->dev_private;
2788 unsigned long irqflags;
2789
2790 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2791 i915_disable_pipestat(dev_priv, pipe,
2792 PIPE_START_VBLANK_INTERRUPT_STATUS);
2793 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2794 }
2795
2796 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2797 {
2798 struct drm_i915_private *dev_priv = dev->dev_private;
2799 unsigned long irqflags;
2800
2801 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2802 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2803 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2804 }
2805
2806 static bool
2807 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2808 {
2809 return i915_seqno_passed(seqno,
2810 READ_ONCE(engine->last_submitted_seqno));
2811 }
2812
2813 static bool
2814 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2815 {
2816 if (INTEL_INFO(dev)->gen >= 8) {
2817 return (ipehr >> 23) == 0x1c;
2818 } else {
2819 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2820 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2821 MI_SEMAPHORE_REGISTER);
2822 }
2823 }
2824
2825 static struct intel_engine_cs *
2826 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2827 u64 offset)
2828 {
2829 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2830 struct intel_engine_cs *signaller;
2831
2832 if (INTEL_INFO(dev_priv)->gen >= 8) {
2833 for_each_engine(signaller, dev_priv) {
2834 if (engine == signaller)
2835 continue;
2836
2837 if (offset == signaller->semaphore.signal_ggtt[engine->id])
2838 return signaller;
2839 }
2840 } else {
2841 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2842
2843 for_each_engine(signaller, dev_priv) {
2844 if(engine == signaller)
2845 continue;
2846
2847 if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2848 return signaller;
2849 }
2850 }
2851
2852 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2853 engine->id, ipehr, offset);
2854
2855 return NULL;
2856 }
2857
2858 static struct intel_engine_cs *
2859 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2860 {
2861 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2862 u32 cmd, ipehr, head;
2863 u64 offset = 0;
2864 int i, backwards;
2865
2866 /*
2867 * This function does not support execlist mode - any attempt to
2868 * proceed further into this function will result in a kernel panic
2869 * when dereferencing ring->buffer, which is not set up in execlist
2870 * mode.
2871 *
2872 * The correct way of doing it would be to derive the currently
2873 * executing ring buffer from the current context, which is derived
2874 * from the currently running request. Unfortunately, to get the
2875 * current request we would have to grab the struct_mutex before doing
2876 * anything else, which would be ill-advised since some other thread
2877 * might have grabbed it already and managed to hang itself, causing
2878 * the hang checker to deadlock.
2879 *
2880 * Therefore, this function does not support execlist mode in its
2881 * current form. Just return NULL and move on.
2882 */
2883 if (engine->buffer == NULL)
2884 return NULL;
2885
2886 ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2887 if (!ipehr_is_semaphore_wait(engine->dev, ipehr))
2888 return NULL;
2889
2890 /*
2891 * HEAD is likely pointing to the dword after the actual command,
2892 * so scan backwards until we find the MBOX. But limit it to just 3
2893 * or 4 dwords depending on the semaphore wait command size.
2894 * Note that we don't care about ACTHD here since that might
2895 * point at at batch, and semaphores are always emitted into the
2896 * ringbuffer itself.
2897 */
2898 head = I915_READ_HEAD(engine) & HEAD_ADDR;
2899 backwards = (INTEL_INFO(engine->dev)->gen >= 8) ? 5 : 4;
2900
2901 for (i = backwards; i; --i) {
2902 /*
2903 * Be paranoid and presume the hw has gone off into the wild -
2904 * our ring is smaller than what the hardware (and hence
2905 * HEAD_ADDR) allows. Also handles wrap-around.
2906 */
2907 head &= engine->buffer->size - 1;
2908
2909 /* This here seems to blow up */
2910 cmd = ioread32(engine->buffer->virtual_start + head);
2911 if (cmd == ipehr)
2912 break;
2913
2914 head -= 4;
2915 }
2916
2917 if (!i)
2918 return NULL;
2919
2920 *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2921 if (INTEL_INFO(engine->dev)->gen >= 8) {
2922 offset = ioread32(engine->buffer->virtual_start + head + 12);
2923 offset <<= 32;
2924 offset = ioread32(engine->buffer->virtual_start + head + 8);
2925 }
2926 return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2927 }
2928
2929 static int semaphore_passed(struct intel_engine_cs *engine)
2930 {
2931 struct drm_i915_private *dev_priv = engine->dev->dev_private;
2932 struct intel_engine_cs *signaller;
2933 u32 seqno;
2934
2935 engine->hangcheck.deadlock++;
2936
2937 signaller = semaphore_waits_for(engine, &seqno);
2938 if (signaller == NULL)
2939 return -1;
2940
2941 /* Prevent pathological recursion due to driver bugs */
2942 if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2943 return -1;
2944
2945 if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2946 return 1;
2947
2948 /* cursory check for an unkickable deadlock */
2949 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2950 semaphore_passed(signaller) < 0)
2951 return -1;
2952
2953 return 0;
2954 }
2955
2956 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2957 {
2958 struct intel_engine_cs *engine;
2959
2960 for_each_engine(engine, dev_priv)
2961 engine->hangcheck.deadlock = 0;
2962 }
2963
2964 static bool subunits_stuck(struct intel_engine_cs *engine)
2965 {
2966 u32 instdone[I915_NUM_INSTDONE_REG];
2967 bool stuck;
2968 int i;
2969
2970 if (engine->id != RCS)
2971 return true;
2972
2973 i915_get_extra_instdone(engine->dev, instdone);
2974
2975 /* There might be unstable subunit states even when
2976 * actual head is not moving. Filter out the unstable ones by
2977 * accumulating the undone -> done transitions and only
2978 * consider those as progress.
2979 */
2980 stuck = true;
2981 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2982 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2983
2984 if (tmp != engine->hangcheck.instdone[i])
2985 stuck = false;
2986
2987 engine->hangcheck.instdone[i] |= tmp;
2988 }
2989
2990 return stuck;
2991 }
2992
2993 static enum intel_ring_hangcheck_action
2994 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2995 {
2996 if (acthd != engine->hangcheck.acthd) {
2997
2998 /* Clear subunit states on head movement */
2999 memset(engine->hangcheck.instdone, 0,
3000 sizeof(engine->hangcheck.instdone));
3001
3002 return HANGCHECK_ACTIVE;
3003 }
3004
3005 if (!subunits_stuck(engine))
3006 return HANGCHECK_ACTIVE;
3007
3008 return HANGCHECK_HUNG;
3009 }
3010
3011 static enum intel_ring_hangcheck_action
3012 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3013 {
3014 struct drm_device *dev = engine->dev;
3015 struct drm_i915_private *dev_priv = dev->dev_private;
3016 enum intel_ring_hangcheck_action ha;
3017 u32 tmp;
3018
3019 ha = head_stuck(engine, acthd);
3020 if (ha != HANGCHECK_HUNG)
3021 return ha;
3022
3023 if (IS_GEN2(dev))
3024 return HANGCHECK_HUNG;
3025
3026 /* Is the chip hanging on a WAIT_FOR_EVENT?
3027 * If so we can simply poke the RB_WAIT bit
3028 * and break the hang. This should work on
3029 * all but the second generation chipsets.
3030 */
3031 tmp = I915_READ_CTL(engine);
3032 if (tmp & RING_WAIT) {
3033 i915_handle_error(dev, 0,
3034 "Kicking stuck wait on %s",
3035 engine->name);
3036 I915_WRITE_CTL(engine, tmp);
3037 return HANGCHECK_KICK;
3038 }
3039
3040 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3041 switch (semaphore_passed(engine)) {
3042 default:
3043 return HANGCHECK_HUNG;
3044 case 1:
3045 i915_handle_error(dev, 0,
3046 "Kicking stuck semaphore on %s",
3047 engine->name);
3048 I915_WRITE_CTL(engine, tmp);
3049 return HANGCHECK_KICK;
3050 case 0:
3051 return HANGCHECK_WAIT;
3052 }
3053 }
3054
3055 return HANGCHECK_HUNG;
3056 }
3057
3058 static unsigned kick_waiters(struct intel_engine_cs *engine)
3059 {
3060 struct drm_i915_private *i915 = to_i915(engine->dev);
3061 unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3062
3063 if (engine->hangcheck.user_interrupts == user_interrupts &&
3064 !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3065 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3066 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3067 engine->name);
3068 else
3069 DRM_INFO("Fake missed irq on %s\n",
3070 engine->name);
3071 wake_up_all(&engine->irq_queue);
3072 }
3073
3074 return user_interrupts;
3075 }
3076 /*
3077 * This is called when the chip hasn't reported back with completed
3078 * batchbuffers in a long time. We keep track per ring seqno progress and
3079 * if there are no progress, hangcheck score for that ring is increased.
3080 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3081 * we kick the ring. If we see no progress on three subsequent calls
3082 * we assume chip is wedged and try to fix it by resetting the chip.
3083 */
3084 static void i915_hangcheck_elapsed(struct work_struct *work)
3085 {
3086 struct drm_i915_private *dev_priv =
3087 container_of(work, typeof(*dev_priv),
3088 gpu_error.hangcheck_work.work);
3089 struct drm_device *dev = dev_priv->dev;
3090 struct intel_engine_cs *engine;
3091 enum intel_engine_id id;
3092 int busy_count = 0, rings_hung = 0;
3093 bool stuck[I915_NUM_ENGINES] = { 0 };
3094 #define BUSY 1
3095 #define KICK 5
3096 #define HUNG 20
3097 #define ACTIVE_DECAY 15
3098
3099 if (!i915.enable_hangcheck)
3100 return;
3101
3102 /*
3103 * The hangcheck work is synced during runtime suspend, we don't
3104 * require a wakeref. TODO: instead of disabling the asserts make
3105 * sure that we hold a reference when this work is running.
3106 */
3107 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3108
3109 /* As enabling the GPU requires fairly extensive mmio access,
3110 * periodically arm the mmio checker to see if we are triggering
3111 * any invalid access.
3112 */
3113 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3114
3115 for_each_engine_id(engine, dev_priv, id) {
3116 u64 acthd;
3117 u32 seqno;
3118 unsigned user_interrupts;
3119 bool busy = true;
3120
3121 semaphore_clear_deadlocks(dev_priv);
3122
3123 /* We don't strictly need an irq-barrier here, as we are not
3124 * serving an interrupt request, be paranoid in case the
3125 * barrier has side-effects (such as preventing a broken
3126 * cacheline snoop) and so be sure that we can see the seqno
3127 * advance. If the seqno should stick, due to a stale
3128 * cacheline, we would erroneously declare the GPU hung.
3129 */
3130 if (engine->irq_seqno_barrier)
3131 engine->irq_seqno_barrier(engine);
3132
3133 acthd = intel_ring_get_active_head(engine);
3134 seqno = engine->get_seqno(engine);
3135
3136 /* Reset stuck interrupts between batch advances */
3137 user_interrupts = 0;
3138
3139 if (engine->hangcheck.seqno == seqno) {
3140 if (ring_idle(engine, seqno)) {
3141 engine->hangcheck.action = HANGCHECK_IDLE;
3142 if (waitqueue_active(&engine->irq_queue)) {
3143 /* Safeguard against driver failure */
3144 user_interrupts = kick_waiters(engine);
3145 engine->hangcheck.score += BUSY;
3146 } else
3147 busy = false;
3148 } else {
3149 /* We always increment the hangcheck score
3150 * if the ring is busy and still processing
3151 * the same request, so that no single request
3152 * can run indefinitely (such as a chain of
3153 * batches). The only time we do not increment
3154 * the hangcheck score on this ring, if this
3155 * ring is in a legitimate wait for another
3156 * ring. In that case the waiting ring is a
3157 * victim and we want to be sure we catch the
3158 * right culprit. Then every time we do kick
3159 * the ring, add a small increment to the
3160 * score so that we can catch a batch that is
3161 * being repeatedly kicked and so responsible
3162 * for stalling the machine.
3163 */
3164 engine->hangcheck.action = ring_stuck(engine,
3165 acthd);
3166
3167 switch (engine->hangcheck.action) {
3168 case HANGCHECK_IDLE:
3169 case HANGCHECK_WAIT:
3170 break;
3171 case HANGCHECK_ACTIVE:
3172 engine->hangcheck.score += BUSY;
3173 break;
3174 case HANGCHECK_KICK:
3175 engine->hangcheck.score += KICK;
3176 break;
3177 case HANGCHECK_HUNG:
3178 engine->hangcheck.score += HUNG;
3179 stuck[id] = true;
3180 break;
3181 }
3182 }
3183 } else {
3184 engine->hangcheck.action = HANGCHECK_ACTIVE;
3185
3186 /* Gradually reduce the count so that we catch DoS
3187 * attempts across multiple batches.
3188 */
3189 if (engine->hangcheck.score > 0)
3190 engine->hangcheck.score -= ACTIVE_DECAY;
3191 if (engine->hangcheck.score < 0)
3192 engine->hangcheck.score = 0;
3193
3194 /* Clear head and subunit states on seqno movement */
3195 acthd = 0;
3196
3197 memset(engine->hangcheck.instdone, 0,
3198 sizeof(engine->hangcheck.instdone));
3199 }
3200
3201 engine->hangcheck.seqno = seqno;
3202 engine->hangcheck.acthd = acthd;
3203 engine->hangcheck.user_interrupts = user_interrupts;
3204 busy_count += busy;
3205 }
3206
3207 for_each_engine_id(engine, dev_priv, id) {
3208 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3209 DRM_INFO("%s on %s\n",
3210 stuck[id] ? "stuck" : "no progress",
3211 engine->name);
3212 rings_hung |= intel_engine_flag(engine);
3213 }
3214 }
3215
3216 if (rings_hung) {
3217 i915_handle_error(dev, rings_hung, "Engine(s) hung");
3218 goto out;
3219 }
3220
3221 if (busy_count)
3222 /* Reset timer case chip hangs without another request
3223 * being added */
3224 i915_queue_hangcheck(dev);
3225
3226 out:
3227 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3228 }
3229
3230 void i915_queue_hangcheck(struct drm_device *dev)
3231 {
3232 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3233
3234 if (!i915.enable_hangcheck)
3235 return;
3236
3237 /* Don't continually defer the hangcheck so that it is always run at
3238 * least once after work has been scheduled on any ring. Otherwise,
3239 * we will ignore a hung ring if a second ring is kept busy.
3240 */
3241
3242 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3243 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3244 }
3245
3246 static void ibx_irq_reset(struct drm_device *dev)
3247 {
3248 struct drm_i915_private *dev_priv = dev->dev_private;
3249
3250 if (HAS_PCH_NOP(dev))
3251 return;
3252
3253 GEN5_IRQ_RESET(SDE);
3254
3255 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3256 I915_WRITE(SERR_INT, 0xffffffff);
3257 }
3258
3259 /*
3260 * SDEIER is also touched by the interrupt handler to work around missed PCH
3261 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3262 * instead we unconditionally enable all PCH interrupt sources here, but then
3263 * only unmask them as needed with SDEIMR.
3264 *
3265 * This function needs to be called before interrupts are enabled.
3266 */
3267 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3268 {
3269 struct drm_i915_private *dev_priv = dev->dev_private;
3270
3271 if (HAS_PCH_NOP(dev))
3272 return;
3273
3274 WARN_ON(I915_READ(SDEIER) != 0);
3275 I915_WRITE(SDEIER, 0xffffffff);
3276 POSTING_READ(SDEIER);
3277 }
3278
3279 static void gen5_gt_irq_reset(struct drm_device *dev)
3280 {
3281 struct drm_i915_private *dev_priv = dev->dev_private;
3282
3283 GEN5_IRQ_RESET(GT);
3284 if (INTEL_INFO(dev)->gen >= 6)
3285 GEN5_IRQ_RESET(GEN6_PM);
3286 }
3287
3288 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3289 {
3290 enum pipe pipe;
3291
3292 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3293 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3294
3295 for_each_pipe(dev_priv, pipe) {
3296 I915_WRITE(PIPESTAT(pipe),
3297 PIPE_FIFO_UNDERRUN_STATUS |
3298 PIPESTAT_INT_STATUS_MASK);
3299 dev_priv->pipestat_irq_mask[pipe] = 0;
3300 }
3301
3302 GEN5_IRQ_RESET(VLV_);
3303 dev_priv->irq_mask = ~0;
3304 }
3305
3306 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3307 {
3308 u32 pipestat_mask;
3309 u32 enable_mask;
3310 enum pipe pipe;
3311
3312 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3313 PIPE_CRC_DONE_INTERRUPT_STATUS;
3314
3315 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3316 for_each_pipe(dev_priv, pipe)
3317 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3318
3319 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3320 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3321 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3322 if (IS_CHERRYVIEW(dev_priv))
3323 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3324 dev_priv->irq_mask = ~enable_mask;
3325
3326 GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3327 }
3328
3329 /* drm_dma.h hooks
3330 */
3331 static void ironlake_irq_reset(struct drm_device *dev)
3332 {
3333 struct drm_i915_private *dev_priv = dev->dev_private;
3334
3335 I915_WRITE(HWSTAM, 0xffffffff);
3336
3337 GEN5_IRQ_RESET(DE);
3338 if (IS_GEN7(dev))
3339 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3340
3341 gen5_gt_irq_reset(dev);
3342
3343 ibx_irq_reset(dev);
3344 }
3345
3346 static void valleyview_irq_preinstall(struct drm_device *dev)
3347 {
3348 struct drm_i915_private *dev_priv = dev->dev_private;
3349
3350 gen5_gt_irq_reset(dev);
3351
3352 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3353
3354 spin_lock_irq(&dev_priv->irq_lock);
3355 if (dev_priv->display_irqs_enabled)
3356 vlv_display_irq_reset(dev_priv);
3357 spin_unlock_irq(&dev_priv->irq_lock);
3358 }
3359
3360 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3361 {
3362 GEN8_IRQ_RESET_NDX(GT, 0);
3363 GEN8_IRQ_RESET_NDX(GT, 1);
3364 GEN8_IRQ_RESET_NDX(GT, 2);
3365 GEN8_IRQ_RESET_NDX(GT, 3);
3366 }
3367
3368 static void gen8_irq_reset(struct drm_device *dev)
3369 {
3370 struct drm_i915_private *dev_priv = dev->dev_private;
3371 int pipe;
3372
3373 I915_WRITE(GEN8_MASTER_IRQ, 0);
3374 POSTING_READ(GEN8_MASTER_IRQ);
3375
3376 gen8_gt_irq_reset(dev_priv);
3377
3378 for_each_pipe(dev_priv, pipe)
3379 if (intel_display_power_is_enabled(dev_priv,
3380 POWER_DOMAIN_PIPE(pipe)))
3381 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3382
3383 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3384 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3385 GEN5_IRQ_RESET(GEN8_PCU_);
3386
3387 if (HAS_PCH_SPLIT(dev))
3388 ibx_irq_reset(dev);
3389 }
3390
3391 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3392 unsigned int pipe_mask)
3393 {
3394 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3395 enum pipe pipe;
3396
3397 spin_lock_irq(&dev_priv->irq_lock);
3398 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3399 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3400 dev_priv->de_irq_mask[pipe],
3401 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3402 spin_unlock_irq(&dev_priv->irq_lock);
3403 }
3404
3405 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3406 unsigned int pipe_mask)
3407 {
3408 enum pipe pipe;
3409
3410 spin_lock_irq(&dev_priv->irq_lock);
3411 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3412 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3413 spin_unlock_irq(&dev_priv->irq_lock);
3414
3415 /* make sure we're done processing display irqs */
3416 synchronize_irq(dev_priv->dev->irq);
3417 }
3418
3419 static void cherryview_irq_preinstall(struct drm_device *dev)
3420 {
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422
3423 I915_WRITE(GEN8_MASTER_IRQ, 0);
3424 POSTING_READ(GEN8_MASTER_IRQ);
3425
3426 gen8_gt_irq_reset(dev_priv);
3427
3428 GEN5_IRQ_RESET(GEN8_PCU_);
3429
3430 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3431
3432 spin_lock_irq(&dev_priv->irq_lock);
3433 if (dev_priv->display_irqs_enabled)
3434 vlv_display_irq_reset(dev_priv);
3435 spin_unlock_irq(&dev_priv->irq_lock);
3436 }
3437
3438 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3439 const u32 hpd[HPD_NUM_PINS])
3440 {
3441 struct drm_i915_private *dev_priv = to_i915(dev);
3442 struct intel_encoder *encoder;
3443 u32 enabled_irqs = 0;
3444
3445 for_each_intel_encoder(dev, encoder)
3446 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3447 enabled_irqs |= hpd[encoder->hpd_pin];
3448
3449 return enabled_irqs;
3450 }
3451
3452 static void ibx_hpd_irq_setup(struct drm_device *dev)
3453 {
3454 struct drm_i915_private *dev_priv = dev->dev_private;
3455 u32 hotplug_irqs, hotplug, enabled_irqs;
3456
3457 if (HAS_PCH_IBX(dev)) {
3458 hotplug_irqs = SDE_HOTPLUG_MASK;
3459 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3460 } else {
3461 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3462 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3463 }
3464
3465 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3466
3467 /*
3468 * Enable digital hotplug on the PCH, and configure the DP short pulse
3469 * duration to 2ms (which is the minimum in the Display Port spec).
3470 * The pulse duration bits are reserved on LPT+.
3471 */
3472 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3473 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3474 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3475 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3476 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3477 /*
3478 * When CPU and PCH are on the same package, port A
3479 * HPD must be enabled in both north and south.
3480 */
3481 if (HAS_PCH_LPT_LP(dev))
3482 hotplug |= PORTA_HOTPLUG_ENABLE;
3483 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3484 }
3485
3486 static void spt_hpd_irq_setup(struct drm_device *dev)
3487 {
3488 struct drm_i915_private *dev_priv = dev->dev_private;
3489 u32 hotplug_irqs, hotplug, enabled_irqs;
3490
3491 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3492 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3493
3494 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3495
3496 /* Enable digital hotplug on the PCH */
3497 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3498 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3499 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3500 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3501
3502 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3503 hotplug |= PORTE_HOTPLUG_ENABLE;
3504 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3505 }
3506
3507 static void ilk_hpd_irq_setup(struct drm_device *dev)
3508 {
3509 struct drm_i915_private *dev_priv = dev->dev_private;
3510 u32 hotplug_irqs, hotplug, enabled_irqs;
3511
3512 if (INTEL_INFO(dev)->gen >= 8) {
3513 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3514 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3515
3516 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3517 } else if (INTEL_INFO(dev)->gen >= 7) {
3518 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3519 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3520
3521 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3522 } else {
3523 hotplug_irqs = DE_DP_A_HOTPLUG;
3524 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3525
3526 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3527 }
3528
3529 /*
3530 * Enable digital hotplug on the CPU, and configure the DP short pulse
3531 * duration to 2ms (which is the minimum in the Display Port spec)
3532 * The pulse duration bits are reserved on HSW+.
3533 */
3534 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3535 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3536 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3537 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3538
3539 ibx_hpd_irq_setup(dev);
3540 }
3541
3542 static void bxt_hpd_irq_setup(struct drm_device *dev)
3543 {
3544 struct drm_i915_private *dev_priv = dev->dev_private;
3545 u32 hotplug_irqs, hotplug, enabled_irqs;
3546
3547 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3548 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3549
3550 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3551
3552 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3553 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3554 PORTA_HOTPLUG_ENABLE;
3555
3556 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3557 hotplug, enabled_irqs);
3558 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3559
3560 /*
3561 * For BXT invert bit has to be set based on AOB design
3562 * for HPD detection logic, update it based on VBT fields.
3563 */
3564
3565 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3566 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3567 hotplug |= BXT_DDIA_HPD_INVERT;
3568 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3569 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3570 hotplug |= BXT_DDIB_HPD_INVERT;
3571 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3572 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3573 hotplug |= BXT_DDIC_HPD_INVERT;
3574
3575 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3576 }
3577
3578 static void ibx_irq_postinstall(struct drm_device *dev)
3579 {
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581 u32 mask;
3582
3583 if (HAS_PCH_NOP(dev))
3584 return;
3585
3586 if (HAS_PCH_IBX(dev))
3587 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3588 else
3589 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3590
3591 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3592 I915_WRITE(SDEIMR, ~mask);
3593 }
3594
3595 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3596 {
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598 u32 pm_irqs, gt_irqs;
3599
3600 pm_irqs = gt_irqs = 0;
3601
3602 dev_priv->gt_irq_mask = ~0;
3603 if (HAS_L3_DPF(dev)) {
3604 /* L3 parity interrupt is always unmasked. */
3605 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3606 gt_irqs |= GT_PARITY_ERROR(dev);
3607 }
3608
3609 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3610 if (IS_GEN5(dev)) {
3611 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3612 ILK_BSD_USER_INTERRUPT;
3613 } else {
3614 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3615 }
3616
3617 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3618
3619 if (INTEL_INFO(dev)->gen >= 6) {
3620 /*
3621 * RPS interrupts will get enabled/disabled on demand when RPS
3622 * itself is enabled/disabled.
3623 */
3624 if (HAS_VEBOX(dev))
3625 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3626
3627 dev_priv->pm_irq_mask = 0xffffffff;
3628 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3629 }
3630 }
3631
3632 static int ironlake_irq_postinstall(struct drm_device *dev)
3633 {
3634 struct drm_i915_private *dev_priv = dev->dev_private;
3635 u32 display_mask, extra_mask;
3636
3637 if (INTEL_INFO(dev)->gen >= 7) {
3638 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3639 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3640 DE_PLANEB_FLIP_DONE_IVB |
3641 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3642 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3643 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3644 DE_DP_A_HOTPLUG_IVB);
3645 } else {
3646 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3647 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3648 DE_AUX_CHANNEL_A |
3649 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3650 DE_POISON);
3651 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3652 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3653 DE_DP_A_HOTPLUG);
3654 }
3655
3656 dev_priv->irq_mask = ~display_mask;
3657
3658 I915_WRITE(HWSTAM, 0xeffe);
3659
3660 ibx_irq_pre_postinstall(dev);
3661
3662 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3663
3664 gen5_gt_irq_postinstall(dev);
3665
3666 ibx_irq_postinstall(dev);
3667
3668 if (IS_IRONLAKE_M(dev)) {
3669 /* Enable PCU event interrupts
3670 *
3671 * spinlocking not required here for correctness since interrupt
3672 * setup is guaranteed to run in single-threaded context. But we
3673 * need it to make the assert_spin_locked happy. */
3674 spin_lock_irq(&dev_priv->irq_lock);
3675 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3676 spin_unlock_irq(&dev_priv->irq_lock);
3677 }
3678
3679 return 0;
3680 }
3681
3682 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3683 {
3684 assert_spin_locked(&dev_priv->irq_lock);
3685
3686 if (dev_priv->display_irqs_enabled)
3687 return;
3688
3689 dev_priv->display_irqs_enabled = true;
3690
3691 if (intel_irqs_enabled(dev_priv)) {
3692 vlv_display_irq_reset(dev_priv);
3693 vlv_display_irq_postinstall(dev_priv);
3694 }
3695 }
3696
3697 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3698 {
3699 assert_spin_locked(&dev_priv->irq_lock);
3700
3701 if (!dev_priv->display_irqs_enabled)
3702 return;
3703
3704 dev_priv->display_irqs_enabled = false;
3705
3706 if (intel_irqs_enabled(dev_priv))
3707 vlv_display_irq_reset(dev_priv);
3708 }
3709
3710
3711 static int valleyview_irq_postinstall(struct drm_device *dev)
3712 {
3713 struct drm_i915_private *dev_priv = dev->dev_private;
3714
3715 gen5_gt_irq_postinstall(dev);
3716
3717 /* ack & enable invalid PTE error interrupts */
3718 #if 0 /* FIXME: add support to irq handler for checking these bits */
3719 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3720 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3721 #endif
3722
3723 spin_lock_irq(&dev_priv->irq_lock);
3724 if (dev_priv->display_irqs_enabled)
3725 vlv_display_irq_postinstall(dev_priv);
3726 spin_unlock_irq(&dev_priv->irq_lock);
3727
3728 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3729
3730 return 0;
3731 }
3732
3733 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3734 {
3735 /* These are interrupts we'll toggle with the ring mask register */
3736 uint32_t gt_interrupts[] = {
3737 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3738 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3739 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3740 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3741 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3742 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3743 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3744 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3745 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3746 0,
3747 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3748 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3749 };
3750
3751 dev_priv->pm_irq_mask = 0xffffffff;
3752 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3753 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3754 /*
3755 * RPS interrupts will get enabled/disabled on demand when RPS itself
3756 * is enabled/disabled.
3757 */
3758 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3759 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3760 }
3761
3762 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3763 {
3764 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3765 uint32_t de_pipe_enables;
3766 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3767 u32 de_port_enables;
3768 enum pipe pipe;
3769
3770 if (INTEL_INFO(dev_priv)->gen >= 9) {
3771 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3772 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3773 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3774 GEN9_AUX_CHANNEL_D;
3775 if (IS_BROXTON(dev_priv))
3776 de_port_masked |= BXT_DE_PORT_GMBUS;
3777 } else {
3778 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3779 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780 }
3781
3782 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3783 GEN8_PIPE_FIFO_UNDERRUN;
3784
3785 de_port_enables = de_port_masked;
3786 if (IS_BROXTON(dev_priv))
3787 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3788 else if (IS_BROADWELL(dev_priv))
3789 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3790
3791 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3792 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3793 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3794
3795 for_each_pipe(dev_priv, pipe)
3796 if (intel_display_power_is_enabled(dev_priv,
3797 POWER_DOMAIN_PIPE(pipe)))
3798 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3799 dev_priv->de_irq_mask[pipe],
3800 de_pipe_enables);
3801
3802 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3803 }
3804
3805 static int gen8_irq_postinstall(struct drm_device *dev)
3806 {
3807 struct drm_i915_private *dev_priv = dev->dev_private;
3808
3809 if (HAS_PCH_SPLIT(dev))
3810 ibx_irq_pre_postinstall(dev);
3811
3812 gen8_gt_irq_postinstall(dev_priv);
3813 gen8_de_irq_postinstall(dev_priv);
3814
3815 if (HAS_PCH_SPLIT(dev))
3816 ibx_irq_postinstall(dev);
3817
3818 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3819 POSTING_READ(GEN8_MASTER_IRQ);
3820
3821 return 0;
3822 }
3823
3824 static int cherryview_irq_postinstall(struct drm_device *dev)
3825 {
3826 struct drm_i915_private *dev_priv = dev->dev_private;
3827
3828 gen8_gt_irq_postinstall(dev_priv);
3829
3830 spin_lock_irq(&dev_priv->irq_lock);
3831 if (dev_priv->display_irqs_enabled)
3832 vlv_display_irq_postinstall(dev_priv);
3833 spin_unlock_irq(&dev_priv->irq_lock);
3834
3835 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3836 POSTING_READ(GEN8_MASTER_IRQ);
3837
3838 return 0;
3839 }
3840
3841 static void gen8_irq_uninstall(struct drm_device *dev)
3842 {
3843 struct drm_i915_private *dev_priv = dev->dev_private;
3844
3845 if (!dev_priv)
3846 return;
3847
3848 gen8_irq_reset(dev);
3849 }
3850
3851 static void valleyview_irq_uninstall(struct drm_device *dev)
3852 {
3853 struct drm_i915_private *dev_priv = dev->dev_private;
3854
3855 if (!dev_priv)
3856 return;
3857
3858 I915_WRITE(VLV_MASTER_IER, 0);
3859
3860 gen5_gt_irq_reset(dev);
3861
3862 I915_WRITE(HWSTAM, 0xffffffff);
3863
3864 spin_lock_irq(&dev_priv->irq_lock);
3865 if (dev_priv->display_irqs_enabled)
3866 vlv_display_irq_reset(dev_priv);
3867 spin_unlock_irq(&dev_priv->irq_lock);
3868 }
3869
3870 static void cherryview_irq_uninstall(struct drm_device *dev)
3871 {
3872 struct drm_i915_private *dev_priv = dev->dev_private;
3873
3874 if (!dev_priv)
3875 return;
3876
3877 I915_WRITE(GEN8_MASTER_IRQ, 0);
3878 POSTING_READ(GEN8_MASTER_IRQ);
3879
3880 gen8_gt_irq_reset(dev_priv);
3881
3882 GEN5_IRQ_RESET(GEN8_PCU_);
3883
3884 spin_lock_irq(&dev_priv->irq_lock);
3885 if (dev_priv->display_irqs_enabled)
3886 vlv_display_irq_reset(dev_priv);
3887 spin_unlock_irq(&dev_priv->irq_lock);
3888 }
3889
3890 static void ironlake_irq_uninstall(struct drm_device *dev)
3891 {
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893
3894 if (!dev_priv)
3895 return;
3896
3897 ironlake_irq_reset(dev);
3898 }
3899
3900 static void i8xx_irq_preinstall(struct drm_device * dev)
3901 {
3902 struct drm_i915_private *dev_priv = dev->dev_private;
3903 int pipe;
3904
3905 for_each_pipe(dev_priv, pipe)
3906 I915_WRITE(PIPESTAT(pipe), 0);
3907 I915_WRITE16(IMR, 0xffff);
3908 I915_WRITE16(IER, 0x0);
3909 POSTING_READ16(IER);
3910 }
3911
3912 static int i8xx_irq_postinstall(struct drm_device *dev)
3913 {
3914 struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916 I915_WRITE16(EMR,
3917 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3918
3919 /* Unmask the interrupts that we always want on. */
3920 dev_priv->irq_mask =
3921 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3924 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3925 I915_WRITE16(IMR, dev_priv->irq_mask);
3926
3927 I915_WRITE16(IER,
3928 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3929 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3930 I915_USER_INTERRUPT);
3931 POSTING_READ16(IER);
3932
3933 /* Interrupt setup is already guaranteed to be single-threaded, this is
3934 * just to make the assert_spin_locked check happy. */
3935 spin_lock_irq(&dev_priv->irq_lock);
3936 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3937 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3938 spin_unlock_irq(&dev_priv->irq_lock);
3939
3940 return 0;
3941 }
3942
3943 /*
3944 * Returns true when a page flip has completed.
3945 */
3946 static bool i8xx_handle_vblank(struct drm_device *dev,
3947 int plane, int pipe, u32 iir)
3948 {
3949 struct drm_i915_private *dev_priv = dev->dev_private;
3950 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3951
3952 if (!intel_pipe_handle_vblank(dev, pipe))
3953 return false;
3954
3955 if ((iir & flip_pending) == 0)
3956 goto check_page_flip;
3957
3958 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3959 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3960 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3961 * the flip is completed (no longer pending). Since this doesn't raise
3962 * an interrupt per se, we watch for the change at vblank.
3963 */
3964 if (I915_READ16(ISR) & flip_pending)
3965 goto check_page_flip;
3966
3967 intel_prepare_page_flip(dev, plane);
3968 intel_finish_page_flip(dev, pipe);
3969 return true;
3970
3971 check_page_flip:
3972 intel_check_page_flip(dev, pipe);
3973 return false;
3974 }
3975
3976 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3977 {
3978 struct drm_device *dev = arg;
3979 struct drm_i915_private *dev_priv = dev->dev_private;
3980 u16 iir, new_iir;
3981 u32 pipe_stats[2];
3982 int pipe;
3983 u16 flip_mask =
3984 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3985 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3986 irqreturn_t ret;
3987
3988 if (!intel_irqs_enabled(dev_priv))
3989 return IRQ_NONE;
3990
3991 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3992 disable_rpm_wakeref_asserts(dev_priv);
3993
3994 ret = IRQ_NONE;
3995 iir = I915_READ16(IIR);
3996 if (iir == 0)
3997 goto out;
3998
3999 while (iir & ~flip_mask) {
4000 /* Can't rely on pipestat interrupt bit in iir as it might
4001 * have been cleared after the pipestat interrupt was received.
4002 * It doesn't set the bit in iir again, but it still produces
4003 * interrupts (for non-MSI).
4004 */
4005 spin_lock(&dev_priv->irq_lock);
4006 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4007 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4008
4009 for_each_pipe(dev_priv, pipe) {
4010 i915_reg_t reg = PIPESTAT(pipe);
4011 pipe_stats[pipe] = I915_READ(reg);
4012
4013 /*
4014 * Clear the PIPE*STAT regs before the IIR
4015 */
4016 if (pipe_stats[pipe] & 0x8000ffff)
4017 I915_WRITE(reg, pipe_stats[pipe]);
4018 }
4019 spin_unlock(&dev_priv->irq_lock);
4020
4021 I915_WRITE16(IIR, iir & ~flip_mask);
4022 new_iir = I915_READ16(IIR); /* Flush posted writes */
4023
4024 if (iir & I915_USER_INTERRUPT)
4025 notify_ring(&dev_priv->engine[RCS]);
4026
4027 for_each_pipe(dev_priv, pipe) {
4028 int plane = pipe;
4029 if (HAS_FBC(dev))
4030 plane = !plane;
4031
4032 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4033 i8xx_handle_vblank(dev, plane, pipe, iir))
4034 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4035
4036 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4037 i9xx_pipe_crc_irq_handler(dev, pipe);
4038
4039 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4040 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4041 pipe);
4042 }
4043
4044 iir = new_iir;
4045 }
4046 ret = IRQ_HANDLED;
4047
4048 out:
4049 enable_rpm_wakeref_asserts(dev_priv);
4050
4051 return ret;
4052 }
4053
4054 static void i8xx_irq_uninstall(struct drm_device * dev)
4055 {
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 int pipe;
4058
4059 for_each_pipe(dev_priv, pipe) {
4060 /* Clear enable bits; then clear status bits */
4061 I915_WRITE(PIPESTAT(pipe), 0);
4062 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4063 }
4064 I915_WRITE16(IMR, 0xffff);
4065 I915_WRITE16(IER, 0x0);
4066 I915_WRITE16(IIR, I915_READ16(IIR));
4067 }
4068
4069 static void i915_irq_preinstall(struct drm_device * dev)
4070 {
4071 struct drm_i915_private *dev_priv = dev->dev_private;
4072 int pipe;
4073
4074 if (I915_HAS_HOTPLUG(dev)) {
4075 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4076 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4077 }
4078
4079 I915_WRITE16(HWSTAM, 0xeffe);
4080 for_each_pipe(dev_priv, pipe)
4081 I915_WRITE(PIPESTAT(pipe), 0);
4082 I915_WRITE(IMR, 0xffffffff);
4083 I915_WRITE(IER, 0x0);
4084 POSTING_READ(IER);
4085 }
4086
4087 static int i915_irq_postinstall(struct drm_device *dev)
4088 {
4089 struct drm_i915_private *dev_priv = dev->dev_private;
4090 u32 enable_mask;
4091
4092 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4093
4094 /* Unmask the interrupts that we always want on. */
4095 dev_priv->irq_mask =
4096 ~(I915_ASLE_INTERRUPT |
4097 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4098 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4099 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4100 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4101
4102 enable_mask =
4103 I915_ASLE_INTERRUPT |
4104 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4105 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4106 I915_USER_INTERRUPT;
4107
4108 if (I915_HAS_HOTPLUG(dev)) {
4109 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4110 POSTING_READ(PORT_HOTPLUG_EN);
4111
4112 /* Enable in IER... */
4113 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4114 /* and unmask in IMR */
4115 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4116 }
4117
4118 I915_WRITE(IMR, dev_priv->irq_mask);
4119 I915_WRITE(IER, enable_mask);
4120 POSTING_READ(IER);
4121
4122 i915_enable_asle_pipestat(dev);
4123
4124 /* Interrupt setup is already guaranteed to be single-threaded, this is
4125 * just to make the assert_spin_locked check happy. */
4126 spin_lock_irq(&dev_priv->irq_lock);
4127 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4128 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4129 spin_unlock_irq(&dev_priv->irq_lock);
4130
4131 return 0;
4132 }
4133
4134 /*
4135 * Returns true when a page flip has completed.
4136 */
4137 static bool i915_handle_vblank(struct drm_device *dev,
4138 int plane, int pipe, u32 iir)
4139 {
4140 struct drm_i915_private *dev_priv = dev->dev_private;
4141 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4142
4143 if (!intel_pipe_handle_vblank(dev, pipe))
4144 return false;
4145
4146 if ((iir & flip_pending) == 0)
4147 goto check_page_flip;
4148
4149 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4150 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4151 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4152 * the flip is completed (no longer pending). Since this doesn't raise
4153 * an interrupt per se, we watch for the change at vblank.
4154 */
4155 if (I915_READ(ISR) & flip_pending)
4156 goto check_page_flip;
4157
4158 intel_prepare_page_flip(dev, plane);
4159 intel_finish_page_flip(dev, pipe);
4160 return true;
4161
4162 check_page_flip:
4163 intel_check_page_flip(dev, pipe);
4164 return false;
4165 }
4166
4167 static irqreturn_t i915_irq_handler(int irq, void *arg)
4168 {
4169 struct drm_device *dev = arg;
4170 struct drm_i915_private *dev_priv = dev->dev_private;
4171 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4172 u32 flip_mask =
4173 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4174 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4175 int pipe, ret = IRQ_NONE;
4176
4177 if (!intel_irqs_enabled(dev_priv))
4178 return IRQ_NONE;
4179
4180 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4181 disable_rpm_wakeref_asserts(dev_priv);
4182
4183 iir = I915_READ(IIR);
4184 do {
4185 bool irq_received = (iir & ~flip_mask) != 0;
4186 bool blc_event = false;
4187
4188 /* Can't rely on pipestat interrupt bit in iir as it might
4189 * have been cleared after the pipestat interrupt was received.
4190 * It doesn't set the bit in iir again, but it still produces
4191 * interrupts (for non-MSI).
4192 */
4193 spin_lock(&dev_priv->irq_lock);
4194 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4195 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4196
4197 for_each_pipe(dev_priv, pipe) {
4198 i915_reg_t reg = PIPESTAT(pipe);
4199 pipe_stats[pipe] = I915_READ(reg);
4200
4201 /* Clear the PIPE*STAT regs before the IIR */
4202 if (pipe_stats[pipe] & 0x8000ffff) {
4203 I915_WRITE(reg, pipe_stats[pipe]);
4204 irq_received = true;
4205 }
4206 }
4207 spin_unlock(&dev_priv->irq_lock);
4208
4209 if (!irq_received)
4210 break;
4211
4212 /* Consume port. Then clear IIR or we'll miss events */
4213 if (I915_HAS_HOTPLUG(dev) &&
4214 iir & I915_DISPLAY_PORT_INTERRUPT)
4215 i9xx_hpd_irq_handler(dev);
4216
4217 I915_WRITE(IIR, iir & ~flip_mask);
4218 new_iir = I915_READ(IIR); /* Flush posted writes */
4219
4220 if (iir & I915_USER_INTERRUPT)
4221 notify_ring(&dev_priv->engine[RCS]);
4222
4223 for_each_pipe(dev_priv, pipe) {
4224 int plane = pipe;
4225 if (HAS_FBC(dev))
4226 plane = !plane;
4227
4228 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4229 i915_handle_vblank(dev, plane, pipe, iir))
4230 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4231
4232 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4233 blc_event = true;
4234
4235 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4236 i9xx_pipe_crc_irq_handler(dev, pipe);
4237
4238 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4239 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4240 pipe);
4241 }
4242
4243 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4244 intel_opregion_asle_intr(dev);
4245
4246 /* With MSI, interrupts are only generated when iir
4247 * transitions from zero to nonzero. If another bit got
4248 * set while we were handling the existing iir bits, then
4249 * we would never get another interrupt.
4250 *
4251 * This is fine on non-MSI as well, as if we hit this path
4252 * we avoid exiting the interrupt handler only to generate
4253 * another one.
4254 *
4255 * Note that for MSI this could cause a stray interrupt report
4256 * if an interrupt landed in the time between writing IIR and
4257 * the posting read. This should be rare enough to never
4258 * trigger the 99% of 100,000 interrupts test for disabling
4259 * stray interrupts.
4260 */
4261 ret = IRQ_HANDLED;
4262 iir = new_iir;
4263 } while (iir & ~flip_mask);
4264
4265 enable_rpm_wakeref_asserts(dev_priv);
4266
4267 return ret;
4268 }
4269
4270 static void i915_irq_uninstall(struct drm_device * dev)
4271 {
4272 struct drm_i915_private *dev_priv = dev->dev_private;
4273 int pipe;
4274
4275 if (I915_HAS_HOTPLUG(dev)) {
4276 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4277 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4278 }
4279
4280 I915_WRITE16(HWSTAM, 0xffff);
4281 for_each_pipe(dev_priv, pipe) {
4282 /* Clear enable bits; then clear status bits */
4283 I915_WRITE(PIPESTAT(pipe), 0);
4284 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4285 }
4286 I915_WRITE(IMR, 0xffffffff);
4287 I915_WRITE(IER, 0x0);
4288
4289 I915_WRITE(IIR, I915_READ(IIR));
4290 }
4291
4292 static void i965_irq_preinstall(struct drm_device * dev)
4293 {
4294 struct drm_i915_private *dev_priv = dev->dev_private;
4295 int pipe;
4296
4297 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4298 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4299
4300 I915_WRITE(HWSTAM, 0xeffe);
4301 for_each_pipe(dev_priv, pipe)
4302 I915_WRITE(PIPESTAT(pipe), 0);
4303 I915_WRITE(IMR, 0xffffffff);
4304 I915_WRITE(IER, 0x0);
4305 POSTING_READ(IER);
4306 }
4307
4308 static int i965_irq_postinstall(struct drm_device *dev)
4309 {
4310 struct drm_i915_private *dev_priv = dev->dev_private;
4311 u32 enable_mask;
4312 u32 error_mask;
4313
4314 /* Unmask the interrupts that we always want on. */
4315 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4316 I915_DISPLAY_PORT_INTERRUPT |
4317 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4318 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4319 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4320 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4321 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4322
4323 enable_mask = ~dev_priv->irq_mask;
4324 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4325 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4326 enable_mask |= I915_USER_INTERRUPT;
4327
4328 if (IS_G4X(dev))
4329 enable_mask |= I915_BSD_USER_INTERRUPT;
4330
4331 /* Interrupt setup is already guaranteed to be single-threaded, this is
4332 * just to make the assert_spin_locked check happy. */
4333 spin_lock_irq(&dev_priv->irq_lock);
4334 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4335 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4336 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4337 spin_unlock_irq(&dev_priv->irq_lock);
4338
4339 /*
4340 * Enable some error detection, note the instruction error mask
4341 * bit is reserved, so we leave it masked.
4342 */
4343 if (IS_G4X(dev)) {
4344 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4345 GM45_ERROR_MEM_PRIV |
4346 GM45_ERROR_CP_PRIV |
4347 I915_ERROR_MEMORY_REFRESH);
4348 } else {
4349 error_mask = ~(I915_ERROR_PAGE_TABLE |
4350 I915_ERROR_MEMORY_REFRESH);
4351 }
4352 I915_WRITE(EMR, error_mask);
4353
4354 I915_WRITE(IMR, dev_priv->irq_mask);
4355 I915_WRITE(IER, enable_mask);
4356 POSTING_READ(IER);
4357
4358 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4359 POSTING_READ(PORT_HOTPLUG_EN);
4360
4361 i915_enable_asle_pipestat(dev);
4362
4363 return 0;
4364 }
4365
4366 static void i915_hpd_irq_setup(struct drm_device *dev)
4367 {
4368 struct drm_i915_private *dev_priv = dev->dev_private;
4369 u32 hotplug_en;
4370
4371 assert_spin_locked(&dev_priv->irq_lock);
4372
4373 /* Note HDMI and DP share hotplug bits */
4374 /* enable bits are the same for all generations */
4375 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4376 /* Programming the CRT detection parameters tends
4377 to generate a spurious hotplug event about three
4378 seconds later. So just do it once.
4379 */
4380 if (IS_G4X(dev))
4381 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4382 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4383
4384 /* Ignore TV since it's buggy */
4385 i915_hotplug_interrupt_update_locked(dev_priv,
4386 HOTPLUG_INT_EN_MASK |
4387 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4388 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4389 hotplug_en);
4390 }
4391
4392 static irqreturn_t i965_irq_handler(int irq, void *arg)
4393 {
4394 struct drm_device *dev = arg;
4395 struct drm_i915_private *dev_priv = dev->dev_private;
4396 u32 iir, new_iir;
4397 u32 pipe_stats[I915_MAX_PIPES];
4398 int ret = IRQ_NONE, pipe;
4399 u32 flip_mask =
4400 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4401 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4402
4403 if (!intel_irqs_enabled(dev_priv))
4404 return IRQ_NONE;
4405
4406 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4407 disable_rpm_wakeref_asserts(dev_priv);
4408
4409 iir = I915_READ(IIR);
4410
4411 for (;;) {
4412 bool irq_received = (iir & ~flip_mask) != 0;
4413 bool blc_event = false;
4414
4415 /* Can't rely on pipestat interrupt bit in iir as it might
4416 * have been cleared after the pipestat interrupt was received.
4417 * It doesn't set the bit in iir again, but it still produces
4418 * interrupts (for non-MSI).
4419 */
4420 spin_lock(&dev_priv->irq_lock);
4421 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4422 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4423
4424 for_each_pipe(dev_priv, pipe) {
4425 i915_reg_t reg = PIPESTAT(pipe);
4426 pipe_stats[pipe] = I915_READ(reg);
4427
4428 /*
4429 * Clear the PIPE*STAT regs before the IIR
4430 */
4431 if (pipe_stats[pipe] & 0x8000ffff) {
4432 I915_WRITE(reg, pipe_stats[pipe]);
4433 irq_received = true;
4434 }
4435 }
4436 spin_unlock(&dev_priv->irq_lock);
4437
4438 if (!irq_received)
4439 break;
4440
4441 ret = IRQ_HANDLED;
4442
4443 /* Consume port. Then clear IIR or we'll miss events */
4444 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4445 i9xx_hpd_irq_handler(dev);
4446
4447 I915_WRITE(IIR, iir & ~flip_mask);
4448 new_iir = I915_READ(IIR); /* Flush posted writes */
4449
4450 if (iir & I915_USER_INTERRUPT)
4451 notify_ring(&dev_priv->engine[RCS]);
4452 if (iir & I915_BSD_USER_INTERRUPT)
4453 notify_ring(&dev_priv->engine[VCS]);
4454
4455 for_each_pipe(dev_priv, pipe) {
4456 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4457 i915_handle_vblank(dev, pipe, pipe, iir))
4458 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4459
4460 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4461 blc_event = true;
4462
4463 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4464 i9xx_pipe_crc_irq_handler(dev, pipe);
4465
4466 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4467 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4468 }
4469
4470 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4471 intel_opregion_asle_intr(dev);
4472
4473 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4474 gmbus_irq_handler(dev);
4475
4476 /* With MSI, interrupts are only generated when iir
4477 * transitions from zero to nonzero. If another bit got
4478 * set while we were handling the existing iir bits, then
4479 * we would never get another interrupt.
4480 *
4481 * This is fine on non-MSI as well, as if we hit this path
4482 * we avoid exiting the interrupt handler only to generate
4483 * another one.
4484 *
4485 * Note that for MSI this could cause a stray interrupt report
4486 * if an interrupt landed in the time between writing IIR and
4487 * the posting read. This should be rare enough to never
4488 * trigger the 99% of 100,000 interrupts test for disabling
4489 * stray interrupts.
4490 */
4491 iir = new_iir;
4492 }
4493
4494 enable_rpm_wakeref_asserts(dev_priv);
4495
4496 return ret;
4497 }
4498
4499 static void i965_irq_uninstall(struct drm_device * dev)
4500 {
4501 struct drm_i915_private *dev_priv = dev->dev_private;
4502 int pipe;
4503
4504 if (!dev_priv)
4505 return;
4506
4507 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4508 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4509
4510 I915_WRITE(HWSTAM, 0xffffffff);
4511 for_each_pipe(dev_priv, pipe)
4512 I915_WRITE(PIPESTAT(pipe), 0);
4513 I915_WRITE(IMR, 0xffffffff);
4514 I915_WRITE(IER, 0x0);
4515
4516 for_each_pipe(dev_priv, pipe)
4517 I915_WRITE(PIPESTAT(pipe),
4518 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4519 I915_WRITE(IIR, I915_READ(IIR));
4520 }
4521
4522 /**
4523 * intel_irq_init - initializes irq support
4524 * @dev_priv: i915 device instance
4525 *
4526 * This function initializes all the irq support including work items, timers
4527 * and all the vtables. It does not setup the interrupt itself though.
4528 */
4529 void intel_irq_init(struct drm_i915_private *dev_priv)
4530 {
4531 struct drm_device *dev = dev_priv->dev;
4532
4533 intel_hpd_init_work(dev_priv);
4534
4535 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4536 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4537
4538 /* Let's track the enabled rps events */
4539 if (IS_VALLEYVIEW(dev_priv))
4540 /* WaGsvRC0ResidencyMethod:vlv */
4541 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4542 else
4543 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4544
4545 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4546 i915_hangcheck_elapsed);
4547
4548 if (IS_GEN2(dev_priv)) {
4549 dev->max_vblank_count = 0;
4550 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4551 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4552 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4553 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4554 } else {
4555 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4556 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4557 }
4558
4559 /*
4560 * Opt out of the vblank disable timer on everything except gen2.
4561 * Gen2 doesn't have a hardware frame counter and so depends on
4562 * vblank interrupts to produce sane vblank seuquence numbers.
4563 */
4564 if (!IS_GEN2(dev_priv))
4565 dev->vblank_disable_immediate = true;
4566
4567 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4568 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4569
4570 if (IS_CHERRYVIEW(dev_priv)) {
4571 dev->driver->irq_handler = cherryview_irq_handler;
4572 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4573 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4574 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4575 dev->driver->enable_vblank = valleyview_enable_vblank;
4576 dev->driver->disable_vblank = valleyview_disable_vblank;
4577 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4578 } else if (IS_VALLEYVIEW(dev_priv)) {
4579 dev->driver->irq_handler = valleyview_irq_handler;
4580 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4581 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4582 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4583 dev->driver->enable_vblank = valleyview_enable_vblank;
4584 dev->driver->disable_vblank = valleyview_disable_vblank;
4585 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4586 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4587 dev->driver->irq_handler = gen8_irq_handler;
4588 dev->driver->irq_preinstall = gen8_irq_reset;
4589 dev->driver->irq_postinstall = gen8_irq_postinstall;
4590 dev->driver->irq_uninstall = gen8_irq_uninstall;
4591 dev->driver->enable_vblank = gen8_enable_vblank;
4592 dev->driver->disable_vblank = gen8_disable_vblank;
4593 if (IS_BROXTON(dev))
4594 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4595 else if (HAS_PCH_SPT(dev))
4596 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4597 else
4598 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4599 } else if (HAS_PCH_SPLIT(dev)) {
4600 dev->driver->irq_handler = ironlake_irq_handler;
4601 dev->driver->irq_preinstall = ironlake_irq_reset;
4602 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4603 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4604 dev->driver->enable_vblank = ironlake_enable_vblank;
4605 dev->driver->disable_vblank = ironlake_disable_vblank;
4606 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4607 } else {
4608 if (INTEL_INFO(dev_priv)->gen == 2) {
4609 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4610 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4611 dev->driver->irq_handler = i8xx_irq_handler;
4612 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4613 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4614 dev->driver->irq_preinstall = i915_irq_preinstall;
4615 dev->driver->irq_postinstall = i915_irq_postinstall;
4616 dev->driver->irq_uninstall = i915_irq_uninstall;
4617 dev->driver->irq_handler = i915_irq_handler;
4618 } else {
4619 dev->driver->irq_preinstall = i965_irq_preinstall;
4620 dev->driver->irq_postinstall = i965_irq_postinstall;
4621 dev->driver->irq_uninstall = i965_irq_uninstall;
4622 dev->driver->irq_handler = i965_irq_handler;
4623 }
4624 if (I915_HAS_HOTPLUG(dev_priv))
4625 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4626 dev->driver->enable_vblank = i915_enable_vblank;
4627 dev->driver->disable_vblank = i915_disable_vblank;
4628 }
4629 }
4630
4631 /**
4632 * intel_irq_install - enables the hardware interrupt
4633 * @dev_priv: i915 device instance
4634 *
4635 * This function enables the hardware interrupt handling, but leaves the hotplug
4636 * handling still disabled. It is called after intel_irq_init().
4637 *
4638 * In the driver load and resume code we need working interrupts in a few places
4639 * but don't want to deal with the hassle of concurrent probe and hotplug
4640 * workers. Hence the split into this two-stage approach.
4641 */
4642 int intel_irq_install(struct drm_i915_private *dev_priv)
4643 {
4644 /*
4645 * We enable some interrupt sources in our postinstall hooks, so mark
4646 * interrupts as enabled _before_ actually enabling them to avoid
4647 * special cases in our ordering checks.
4648 */
4649 dev_priv->pm.irqs_enabled = true;
4650
4651 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4652 }
4653
4654 /**
4655 * intel_irq_uninstall - finilizes all irq handling
4656 * @dev_priv: i915 device instance
4657 *
4658 * This stops interrupt and hotplug handling and unregisters and frees all
4659 * resources acquired in the init functions.
4660 */
4661 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4662 {
4663 drm_irq_uninstall(dev_priv->dev);
4664 intel_hpd_cancel_work(dev_priv);
4665 dev_priv->pm.irqs_enabled = false;
4666 }
4667
4668 /**
4669 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4670 * @dev_priv: i915 device instance
4671 *
4672 * This function is used to disable interrupts at runtime, both in the runtime
4673 * pm and the system suspend/resume code.
4674 */
4675 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4676 {
4677 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4678 dev_priv->pm.irqs_enabled = false;
4679 synchronize_irq(dev_priv->dev->irq);
4680 }
4681
4682 /**
4683 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4684 * @dev_priv: i915 device instance
4685 *
4686 * This function is used to enable interrupts at runtime, both in the runtime
4687 * pm and the system suspend/resume code.
4688 */
4689 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4690 {
4691 dev_priv->pm.irqs_enabled = true;
4692 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4693 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4694 }
This page took 0.217439 seconds and 6 git commands to generate.