drm/i915: unify PM interrupt preinstall sequence
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if ((dev_priv->irq_mask & mask) != 0) {
89 dev_priv->irq_mask &= ~mask;
90 I915_WRITE(DEIMR, dev_priv->irq_mask);
91 POSTING_READ(DEIMR);
92 }
93 }
94
95 static void
96 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 assert_spin_locked(&dev_priv->irq_lock);
99
100 if ((dev_priv->irq_mask & mask) != mask) {
101 dev_priv->irq_mask |= mask;
102 I915_WRITE(DEIMR, dev_priv->irq_mask);
103 POSTING_READ(DEIMR);
104 }
105 }
106
107 static bool ivb_can_enable_err_int(struct drm_device *dev)
108 {
109 struct drm_i915_private *dev_priv = dev->dev_private;
110 struct intel_crtc *crtc;
111 enum pipe pipe;
112
113 assert_spin_locked(&dev_priv->irq_lock);
114
115 for_each_pipe(pipe) {
116 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
117
118 if (crtc->cpu_fifo_underrun_disabled)
119 return false;
120 }
121
122 return true;
123 }
124
125 static bool cpt_can_enable_serr_int(struct drm_device *dev)
126 {
127 struct drm_i915_private *dev_priv = dev->dev_private;
128 enum pipe pipe;
129 struct intel_crtc *crtc;
130
131 assert_spin_locked(&dev_priv->irq_lock);
132
133 for_each_pipe(pipe) {
134 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
135
136 if (crtc->pch_fifo_underrun_disabled)
137 return false;
138 }
139
140 return true;
141 }
142
143 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
144 enum pipe pipe, bool enable)
145 {
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
148 DE_PIPEB_FIFO_UNDERRUN;
149
150 if (enable)
151 ironlake_enable_display_irq(dev_priv, bit);
152 else
153 ironlake_disable_display_irq(dev_priv, bit);
154 }
155
156 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
157 enum pipe pipe, bool enable)
158 {
159 struct drm_i915_private *dev_priv = dev->dev_private;
160 if (enable) {
161 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
162
163 if (!ivb_can_enable_err_int(dev))
164 return;
165
166 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
167 } else {
168 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
169
170 /* Change the state _after_ we've read out the current one. */
171 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
172
173 if (!was_enabled &&
174 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
175 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
176 pipe_name(pipe));
177 }
178 }
179 }
180
181 /**
182 * ibx_display_interrupt_update - update SDEIMR
183 * @dev_priv: driver private
184 * @interrupt_mask: mask of interrupt bits to update
185 * @enabled_irq_mask: mask of interrupt bits to enable
186 */
187 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
188 uint32_t interrupt_mask,
189 uint32_t enabled_irq_mask)
190 {
191 uint32_t sdeimr = I915_READ(SDEIMR);
192 sdeimr &= ~interrupt_mask;
193 sdeimr |= (~enabled_irq_mask & interrupt_mask);
194
195 assert_spin_locked(&dev_priv->irq_lock);
196
197 I915_WRITE(SDEIMR, sdeimr);
198 POSTING_READ(SDEIMR);
199 }
200 #define ibx_enable_display_interrupt(dev_priv, bits) \
201 ibx_display_interrupt_update((dev_priv), (bits), (bits))
202 #define ibx_disable_display_interrupt(dev_priv, bits) \
203 ibx_display_interrupt_update((dev_priv), (bits), 0)
204
205 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
206 enum transcoder pch_transcoder,
207 bool enable)
208 {
209 struct drm_i915_private *dev_priv = dev->dev_private;
210 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
211 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
212
213 if (enable)
214 ibx_enable_display_interrupt(dev_priv, bit);
215 else
216 ibx_disable_display_interrupt(dev_priv, bit);
217 }
218
219 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
220 enum transcoder pch_transcoder,
221 bool enable)
222 {
223 struct drm_i915_private *dev_priv = dev->dev_private;
224
225 if (enable) {
226 I915_WRITE(SERR_INT,
227 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
228
229 if (!cpt_can_enable_serr_int(dev))
230 return;
231
232 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
233 } else {
234 uint32_t tmp = I915_READ(SERR_INT);
235 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
236
237 /* Change the state _after_ we've read out the current one. */
238 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
239
240 if (!was_enabled &&
241 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
242 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
243 transcoder_name(pch_transcoder));
244 }
245 }
246 }
247
248 /**
249 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
250 * @dev: drm device
251 * @pipe: pipe
252 * @enable: true if we want to report FIFO underrun errors, false otherwise
253 *
254 * This function makes us disable or enable CPU fifo underruns for a specific
255 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
256 * reporting for one pipe may also disable all the other CPU error interruts for
257 * the other pipes, due to the fact that there's just one interrupt mask/enable
258 * bit for all the pipes.
259 *
260 * Returns the previous state of underrun reporting.
261 */
262 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
263 enum pipe pipe, bool enable)
264 {
265 struct drm_i915_private *dev_priv = dev->dev_private;
266 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
268 unsigned long flags;
269 bool ret;
270
271 spin_lock_irqsave(&dev_priv->irq_lock, flags);
272
273 ret = !intel_crtc->cpu_fifo_underrun_disabled;
274
275 if (enable == ret)
276 goto done;
277
278 intel_crtc->cpu_fifo_underrun_disabled = !enable;
279
280 if (IS_GEN5(dev) || IS_GEN6(dev))
281 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
282 else if (IS_GEN7(dev))
283 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
284
285 done:
286 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
287 return ret;
288 }
289
290 /**
291 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
292 * @dev: drm device
293 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
294 * @enable: true if we want to report FIFO underrun errors, false otherwise
295 *
296 * This function makes us disable or enable PCH fifo underruns for a specific
297 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
298 * underrun reporting for one transcoder may also disable all the other PCH
299 * error interruts for the other transcoders, due to the fact that there's just
300 * one interrupt mask/enable bit for all the transcoders.
301 *
302 * Returns the previous state of underrun reporting.
303 */
304 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
305 enum transcoder pch_transcoder,
306 bool enable)
307 {
308 struct drm_i915_private *dev_priv = dev->dev_private;
309 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
311 unsigned long flags;
312 bool ret;
313
314 /*
315 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
316 * has only one pch transcoder A that all pipes can use. To avoid racy
317 * pch transcoder -> pipe lookups from interrupt code simply store the
318 * underrun statistics in crtc A. Since we never expose this anywhere
319 * nor use it outside of the fifo underrun code here using the "wrong"
320 * crtc on LPT won't cause issues.
321 */
322
323 spin_lock_irqsave(&dev_priv->irq_lock, flags);
324
325 ret = !intel_crtc->pch_fifo_underrun_disabled;
326
327 if (enable == ret)
328 goto done;
329
330 intel_crtc->pch_fifo_underrun_disabled = !enable;
331
332 if (HAS_PCH_IBX(dev))
333 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
334 else
335 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
336
337 done:
338 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
339 return ret;
340 }
341
342
343 void
344 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
345 {
346 u32 reg = PIPESTAT(pipe);
347 u32 pipestat = I915_READ(reg) & 0x7fff0000;
348
349 assert_spin_locked(&dev_priv->irq_lock);
350
351 if ((pipestat & mask) == mask)
352 return;
353
354 /* Enable the interrupt, clear any pending status */
355 pipestat |= mask | (mask >> 16);
356 I915_WRITE(reg, pipestat);
357 POSTING_READ(reg);
358 }
359
360 void
361 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
362 {
363 u32 reg = PIPESTAT(pipe);
364 u32 pipestat = I915_READ(reg) & 0x7fff0000;
365
366 assert_spin_locked(&dev_priv->irq_lock);
367
368 if ((pipestat & mask) == 0)
369 return;
370
371 pipestat &= ~mask;
372 I915_WRITE(reg, pipestat);
373 POSTING_READ(reg);
374 }
375
376 /**
377 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
378 */
379 static void i915_enable_asle_pipestat(struct drm_device *dev)
380 {
381 drm_i915_private_t *dev_priv = dev->dev_private;
382 unsigned long irqflags;
383
384 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
385 return;
386
387 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
388
389 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
390 if (INTEL_INFO(dev)->gen >= 4)
391 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
392
393 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
394 }
395
396 /**
397 * i915_pipe_enabled - check if a pipe is enabled
398 * @dev: DRM device
399 * @pipe: pipe to check
400 *
401 * Reading certain registers when the pipe is disabled can hang the chip.
402 * Use this routine to make sure the PLL is running and the pipe is active
403 * before reading such registers if unsure.
404 */
405 static int
406 i915_pipe_enabled(struct drm_device *dev, int pipe)
407 {
408 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
409
410 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
411 /* Locking is horribly broken here, but whatever. */
412 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
414
415 return intel_crtc->active;
416 } else {
417 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
418 }
419 }
420
421 /* Called from drm generic code, passed a 'crtc', which
422 * we use as a pipe index
423 */
424 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
425 {
426 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
427 unsigned long high_frame;
428 unsigned long low_frame;
429 u32 high1, high2, low;
430
431 if (!i915_pipe_enabled(dev, pipe)) {
432 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
433 "pipe %c\n", pipe_name(pipe));
434 return 0;
435 }
436
437 high_frame = PIPEFRAME(pipe);
438 low_frame = PIPEFRAMEPIXEL(pipe);
439
440 /*
441 * High & low register fields aren't synchronized, so make sure
442 * we get a low value that's stable across two reads of the high
443 * register.
444 */
445 do {
446 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
447 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
448 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
449 } while (high1 != high2);
450
451 high1 >>= PIPE_FRAME_HIGH_SHIFT;
452 low >>= PIPE_FRAME_LOW_SHIFT;
453 return (high1 << 8) | low;
454 }
455
456 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
457 {
458 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
459 int reg = PIPE_FRMCOUNT_GM45(pipe);
460
461 if (!i915_pipe_enabled(dev, pipe)) {
462 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
463 "pipe %c\n", pipe_name(pipe));
464 return 0;
465 }
466
467 return I915_READ(reg);
468 }
469
470 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
471 int *vpos, int *hpos)
472 {
473 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
474 u32 vbl = 0, position = 0;
475 int vbl_start, vbl_end, htotal, vtotal;
476 bool in_vbl = true;
477 int ret = 0;
478 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
479 pipe);
480
481 if (!i915_pipe_enabled(dev, pipe)) {
482 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
483 "pipe %c\n", pipe_name(pipe));
484 return 0;
485 }
486
487 /* Get vtotal. */
488 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
489
490 if (INTEL_INFO(dev)->gen >= 4) {
491 /* No obvious pixelcount register. Only query vertical
492 * scanout position from Display scan line register.
493 */
494 position = I915_READ(PIPEDSL(pipe));
495
496 /* Decode into vertical scanout position. Don't have
497 * horizontal scanout position.
498 */
499 *vpos = position & 0x1fff;
500 *hpos = 0;
501 } else {
502 /* Have access to pixelcount since start of frame.
503 * We can split this into vertical and horizontal
504 * scanout position.
505 */
506 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
507
508 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
509 *vpos = position / htotal;
510 *hpos = position - (*vpos * htotal);
511 }
512
513 /* Query vblank area. */
514 vbl = I915_READ(VBLANK(cpu_transcoder));
515
516 /* Test position against vblank region. */
517 vbl_start = vbl & 0x1fff;
518 vbl_end = (vbl >> 16) & 0x1fff;
519
520 if ((*vpos < vbl_start) || (*vpos > vbl_end))
521 in_vbl = false;
522
523 /* Inside "upper part" of vblank area? Apply corrective offset: */
524 if (in_vbl && (*vpos >= vbl_start))
525 *vpos = *vpos - vtotal;
526
527 /* Readouts valid? */
528 if (vbl > 0)
529 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
530
531 /* In vblank? */
532 if (in_vbl)
533 ret |= DRM_SCANOUTPOS_INVBL;
534
535 return ret;
536 }
537
538 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
539 int *max_error,
540 struct timeval *vblank_time,
541 unsigned flags)
542 {
543 struct drm_crtc *crtc;
544
545 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
546 DRM_ERROR("Invalid crtc %d\n", pipe);
547 return -EINVAL;
548 }
549
550 /* Get drm_crtc to timestamp: */
551 crtc = intel_get_crtc_for_pipe(dev, pipe);
552 if (crtc == NULL) {
553 DRM_ERROR("Invalid crtc %d\n", pipe);
554 return -EINVAL;
555 }
556
557 if (!crtc->enabled) {
558 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
559 return -EBUSY;
560 }
561
562 /* Helper routine in DRM core does all the work: */
563 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
564 vblank_time, flags,
565 crtc);
566 }
567
568 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
569 {
570 enum drm_connector_status old_status;
571
572 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
573 old_status = connector->status;
574
575 connector->status = connector->funcs->detect(connector, false);
576 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
577 connector->base.id,
578 drm_get_connector_name(connector),
579 old_status, connector->status);
580 return (old_status != connector->status);
581 }
582
583 /*
584 * Handle hotplug events outside the interrupt handler proper.
585 */
586 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
587
588 static void i915_hotplug_work_func(struct work_struct *work)
589 {
590 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
591 hotplug_work);
592 struct drm_device *dev = dev_priv->dev;
593 struct drm_mode_config *mode_config = &dev->mode_config;
594 struct intel_connector *intel_connector;
595 struct intel_encoder *intel_encoder;
596 struct drm_connector *connector;
597 unsigned long irqflags;
598 bool hpd_disabled = false;
599 bool changed = false;
600 u32 hpd_event_bits;
601
602 /* HPD irq before everything is fully set up. */
603 if (!dev_priv->enable_hotplug_processing)
604 return;
605
606 mutex_lock(&mode_config->mutex);
607 DRM_DEBUG_KMS("running encoder hotplug functions\n");
608
609 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
610
611 hpd_event_bits = dev_priv->hpd_event_bits;
612 dev_priv->hpd_event_bits = 0;
613 list_for_each_entry(connector, &mode_config->connector_list, head) {
614 intel_connector = to_intel_connector(connector);
615 intel_encoder = intel_connector->encoder;
616 if (intel_encoder->hpd_pin > HPD_NONE &&
617 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
618 connector->polled == DRM_CONNECTOR_POLL_HPD) {
619 DRM_INFO("HPD interrupt storm detected on connector %s: "
620 "switching from hotplug detection to polling\n",
621 drm_get_connector_name(connector));
622 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
623 connector->polled = DRM_CONNECTOR_POLL_CONNECT
624 | DRM_CONNECTOR_POLL_DISCONNECT;
625 hpd_disabled = true;
626 }
627 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
628 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
629 drm_get_connector_name(connector), intel_encoder->hpd_pin);
630 }
631 }
632 /* if there were no outputs to poll, poll was disabled,
633 * therefore make sure it's enabled when disabling HPD on
634 * some connectors */
635 if (hpd_disabled) {
636 drm_kms_helper_poll_enable(dev);
637 mod_timer(&dev_priv->hotplug_reenable_timer,
638 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
639 }
640
641 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
642
643 list_for_each_entry(connector, &mode_config->connector_list, head) {
644 intel_connector = to_intel_connector(connector);
645 intel_encoder = intel_connector->encoder;
646 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
647 if (intel_encoder->hot_plug)
648 intel_encoder->hot_plug(intel_encoder);
649 if (intel_hpd_irq_event(dev, connector))
650 changed = true;
651 }
652 }
653 mutex_unlock(&mode_config->mutex);
654
655 if (changed)
656 drm_kms_helper_hotplug_event(dev);
657 }
658
659 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
660 {
661 drm_i915_private_t *dev_priv = dev->dev_private;
662 u32 busy_up, busy_down, max_avg, min_avg;
663 u8 new_delay;
664
665 spin_lock(&mchdev_lock);
666
667 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
668
669 new_delay = dev_priv->ips.cur_delay;
670
671 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
672 busy_up = I915_READ(RCPREVBSYTUPAVG);
673 busy_down = I915_READ(RCPREVBSYTDNAVG);
674 max_avg = I915_READ(RCBMAXAVG);
675 min_avg = I915_READ(RCBMINAVG);
676
677 /* Handle RCS change request from hw */
678 if (busy_up > max_avg) {
679 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
680 new_delay = dev_priv->ips.cur_delay - 1;
681 if (new_delay < dev_priv->ips.max_delay)
682 new_delay = dev_priv->ips.max_delay;
683 } else if (busy_down < min_avg) {
684 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
685 new_delay = dev_priv->ips.cur_delay + 1;
686 if (new_delay > dev_priv->ips.min_delay)
687 new_delay = dev_priv->ips.min_delay;
688 }
689
690 if (ironlake_set_drps(dev, new_delay))
691 dev_priv->ips.cur_delay = new_delay;
692
693 spin_unlock(&mchdev_lock);
694
695 return;
696 }
697
698 static void notify_ring(struct drm_device *dev,
699 struct intel_ring_buffer *ring)
700 {
701 struct drm_i915_private *dev_priv = dev->dev_private;
702
703 if (ring->obj == NULL)
704 return;
705
706 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
707
708 wake_up_all(&ring->irq_queue);
709 if (i915_enable_hangcheck) {
710 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
711 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
712 }
713 }
714
715 static void gen6_pm_rps_work(struct work_struct *work)
716 {
717 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
718 rps.work);
719 u32 pm_iir, pm_imr;
720 u8 new_delay;
721
722 spin_lock_irq(&dev_priv->irq_lock);
723 pm_iir = dev_priv->rps.pm_iir;
724 dev_priv->rps.pm_iir = 0;
725 pm_imr = I915_READ(GEN6_PMIMR);
726 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
727 I915_WRITE(GEN6_PMIMR, pm_imr & ~GEN6_PM_RPS_EVENTS);
728 spin_unlock_irq(&dev_priv->irq_lock);
729
730 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
731 return;
732
733 mutex_lock(&dev_priv->rps.hw_lock);
734
735 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
736 new_delay = dev_priv->rps.cur_delay + 1;
737
738 /*
739 * For better performance, jump directly
740 * to RPe if we're below it.
741 */
742 if (IS_VALLEYVIEW(dev_priv->dev) &&
743 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
744 new_delay = dev_priv->rps.rpe_delay;
745 } else
746 new_delay = dev_priv->rps.cur_delay - 1;
747
748 /* sysfs frequency interfaces may have snuck in while servicing the
749 * interrupt
750 */
751 if (new_delay >= dev_priv->rps.min_delay &&
752 new_delay <= dev_priv->rps.max_delay) {
753 if (IS_VALLEYVIEW(dev_priv->dev))
754 valleyview_set_rps(dev_priv->dev, new_delay);
755 else
756 gen6_set_rps(dev_priv->dev, new_delay);
757 }
758
759 if (IS_VALLEYVIEW(dev_priv->dev)) {
760 /*
761 * On VLV, when we enter RC6 we may not be at the minimum
762 * voltage level, so arm a timer to check. It should only
763 * fire when there's activity or once after we've entered
764 * RC6, and then won't be re-armed until the next RPS interrupt.
765 */
766 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
767 msecs_to_jiffies(100));
768 }
769
770 mutex_unlock(&dev_priv->rps.hw_lock);
771 }
772
773
774 /**
775 * ivybridge_parity_work - Workqueue called when a parity error interrupt
776 * occurred.
777 * @work: workqueue struct
778 *
779 * Doesn't actually do anything except notify userspace. As a consequence of
780 * this event, userspace should try to remap the bad rows since statistically
781 * it is likely the same row is more likely to go bad again.
782 */
783 static void ivybridge_parity_work(struct work_struct *work)
784 {
785 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
786 l3_parity.error_work);
787 u32 error_status, row, bank, subbank;
788 char *parity_event[5];
789 uint32_t misccpctl;
790 unsigned long flags;
791
792 /* We must turn off DOP level clock gating to access the L3 registers.
793 * In order to prevent a get/put style interface, acquire struct mutex
794 * any time we access those registers.
795 */
796 mutex_lock(&dev_priv->dev->struct_mutex);
797
798 misccpctl = I915_READ(GEN7_MISCCPCTL);
799 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
800 POSTING_READ(GEN7_MISCCPCTL);
801
802 error_status = I915_READ(GEN7_L3CDERRST1);
803 row = GEN7_PARITY_ERROR_ROW(error_status);
804 bank = GEN7_PARITY_ERROR_BANK(error_status);
805 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
806
807 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
808 GEN7_L3CDERRST1_ENABLE);
809 POSTING_READ(GEN7_L3CDERRST1);
810
811 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
812
813 spin_lock_irqsave(&dev_priv->irq_lock, flags);
814 dev_priv->gt_irq_mask &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
815 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
816 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
817
818 mutex_unlock(&dev_priv->dev->struct_mutex);
819
820 parity_event[0] = "L3_PARITY_ERROR=1";
821 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
822 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
823 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
824 parity_event[4] = NULL;
825
826 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
827 KOBJ_CHANGE, parity_event);
828
829 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
830 row, bank, subbank);
831
832 kfree(parity_event[3]);
833 kfree(parity_event[2]);
834 kfree(parity_event[1]);
835 }
836
837 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
838 {
839 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
840
841 if (!HAS_L3_GPU_CACHE(dev))
842 return;
843
844 spin_lock(&dev_priv->irq_lock);
845 dev_priv->gt_irq_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
846 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
847 spin_unlock(&dev_priv->irq_lock);
848
849 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
850 }
851
852 static void snb_gt_irq_handler(struct drm_device *dev,
853 struct drm_i915_private *dev_priv,
854 u32 gt_iir)
855 {
856
857 if (gt_iir &
858 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
859 notify_ring(dev, &dev_priv->ring[RCS]);
860 if (gt_iir & GT_BSD_USER_INTERRUPT)
861 notify_ring(dev, &dev_priv->ring[VCS]);
862 if (gt_iir & GT_BLT_USER_INTERRUPT)
863 notify_ring(dev, &dev_priv->ring[BCS]);
864
865 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
866 GT_BSD_CS_ERROR_INTERRUPT |
867 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
868 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
869 i915_handle_error(dev, false);
870 }
871
872 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
873 ivybridge_parity_error_irq_handler(dev);
874 }
875
876 /* Legacy way of handling PM interrupts */
877 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv,
878 u32 pm_iir)
879 {
880 /*
881 * IIR bits should never already be set because IMR should
882 * prevent an interrupt from being shown in IIR. The warning
883 * displays a case where we've unsafely cleared
884 * dev_priv->rps.pm_iir. Although missing an interrupt of the same
885 * type is not a problem, it displays a problem in the logic.
886 *
887 * The mask bit in IMR is cleared by dev_priv->rps.work.
888 */
889
890 spin_lock(&dev_priv->irq_lock);
891 dev_priv->rps.pm_iir |= pm_iir;
892 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
893 POSTING_READ(GEN6_PMIMR);
894 spin_unlock(&dev_priv->irq_lock);
895
896 queue_work(dev_priv->wq, &dev_priv->rps.work);
897 }
898
899 #define HPD_STORM_DETECT_PERIOD 1000
900 #define HPD_STORM_THRESHOLD 5
901
902 static inline void intel_hpd_irq_handler(struct drm_device *dev,
903 u32 hotplug_trigger,
904 const u32 *hpd)
905 {
906 drm_i915_private_t *dev_priv = dev->dev_private;
907 int i;
908 bool storm_detected = false;
909
910 if (!hotplug_trigger)
911 return;
912
913 spin_lock(&dev_priv->irq_lock);
914 for (i = 1; i < HPD_NUM_PINS; i++) {
915
916 if (!(hpd[i] & hotplug_trigger) ||
917 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
918 continue;
919
920 dev_priv->hpd_event_bits |= (1 << i);
921 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
922 dev_priv->hpd_stats[i].hpd_last_jiffies
923 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
924 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
925 dev_priv->hpd_stats[i].hpd_cnt = 0;
926 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
927 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
928 dev_priv->hpd_event_bits &= ~(1 << i);
929 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
930 storm_detected = true;
931 } else {
932 dev_priv->hpd_stats[i].hpd_cnt++;
933 }
934 }
935
936 if (storm_detected)
937 dev_priv->display.hpd_irq_setup(dev);
938 spin_unlock(&dev_priv->irq_lock);
939
940 queue_work(dev_priv->wq,
941 &dev_priv->hotplug_work);
942 }
943
944 static void gmbus_irq_handler(struct drm_device *dev)
945 {
946 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
947
948 wake_up_all(&dev_priv->gmbus_wait_queue);
949 }
950
951 static void dp_aux_irq_handler(struct drm_device *dev)
952 {
953 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
954
955 wake_up_all(&dev_priv->gmbus_wait_queue);
956 }
957
958 /* Unlike gen6_rps_irq_handler() from which this function is originally derived,
959 * we must be able to deal with other PM interrupts. This is complicated because
960 * of the way in which we use the masks to defer the RPS work (which for
961 * posterity is necessary because of forcewake).
962 */
963 static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
964 u32 pm_iir)
965 {
966 if (pm_iir & GEN6_PM_RPS_EVENTS) {
967 spin_lock(&dev_priv->irq_lock);
968 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
969 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
970 /* never want to mask useful interrupts. (also posting read) */
971 WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
972 spin_unlock(&dev_priv->irq_lock);
973
974 queue_work(dev_priv->wq, &dev_priv->rps.work);
975 }
976
977 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
978 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
979
980 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
981 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
982 i915_handle_error(dev_priv->dev, false);
983 }
984 }
985
986 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
987 {
988 struct drm_device *dev = (struct drm_device *) arg;
989 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
990 u32 iir, gt_iir, pm_iir;
991 irqreturn_t ret = IRQ_NONE;
992 unsigned long irqflags;
993 int pipe;
994 u32 pipe_stats[I915_MAX_PIPES];
995
996 atomic_inc(&dev_priv->irq_received);
997
998 while (true) {
999 iir = I915_READ(VLV_IIR);
1000 gt_iir = I915_READ(GTIIR);
1001 pm_iir = I915_READ(GEN6_PMIIR);
1002
1003 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1004 goto out;
1005
1006 ret = IRQ_HANDLED;
1007
1008 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1009
1010 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1011 for_each_pipe(pipe) {
1012 int reg = PIPESTAT(pipe);
1013 pipe_stats[pipe] = I915_READ(reg);
1014
1015 /*
1016 * Clear the PIPE*STAT regs before the IIR
1017 */
1018 if (pipe_stats[pipe] & 0x8000ffff) {
1019 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1020 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1021 pipe_name(pipe));
1022 I915_WRITE(reg, pipe_stats[pipe]);
1023 }
1024 }
1025 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1026
1027 for_each_pipe(pipe) {
1028 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1029 drm_handle_vblank(dev, pipe);
1030
1031 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1032 intel_prepare_page_flip(dev, pipe);
1033 intel_finish_page_flip(dev, pipe);
1034 }
1035 }
1036
1037 /* Consume port. Then clear IIR or we'll miss events */
1038 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1039 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1040 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1041
1042 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1043 hotplug_status);
1044
1045 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1046
1047 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1048 I915_READ(PORT_HOTPLUG_STAT);
1049 }
1050
1051 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1052 gmbus_irq_handler(dev);
1053
1054 if (pm_iir & GEN6_PM_RPS_EVENTS)
1055 gen6_rps_irq_handler(dev_priv, pm_iir);
1056
1057 I915_WRITE(GTIIR, gt_iir);
1058 I915_WRITE(GEN6_PMIIR, pm_iir);
1059 I915_WRITE(VLV_IIR, iir);
1060 }
1061
1062 out:
1063 return ret;
1064 }
1065
1066 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1067 {
1068 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1069 int pipe;
1070 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1071
1072 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1073
1074 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1075 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1076 SDE_AUDIO_POWER_SHIFT);
1077 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1078 port_name(port));
1079 }
1080
1081 if (pch_iir & SDE_AUX_MASK)
1082 dp_aux_irq_handler(dev);
1083
1084 if (pch_iir & SDE_GMBUS)
1085 gmbus_irq_handler(dev);
1086
1087 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1088 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1089
1090 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1091 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1092
1093 if (pch_iir & SDE_POISON)
1094 DRM_ERROR("PCH poison interrupt\n");
1095
1096 if (pch_iir & SDE_FDI_MASK)
1097 for_each_pipe(pipe)
1098 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1099 pipe_name(pipe),
1100 I915_READ(FDI_RX_IIR(pipe)));
1101
1102 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1103 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1104
1105 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1106 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1107
1108 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1109 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1110 false))
1111 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1112
1113 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1114 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1115 false))
1116 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1117 }
1118
1119 static void ivb_err_int_handler(struct drm_device *dev)
1120 {
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122 u32 err_int = I915_READ(GEN7_ERR_INT);
1123
1124 if (err_int & ERR_INT_POISON)
1125 DRM_ERROR("Poison interrupt\n");
1126
1127 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1128 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1129 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1130
1131 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1132 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1133 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1134
1135 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1136 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1137 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1138
1139 I915_WRITE(GEN7_ERR_INT, err_int);
1140 }
1141
1142 static void cpt_serr_int_handler(struct drm_device *dev)
1143 {
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 u32 serr_int = I915_READ(SERR_INT);
1146
1147 if (serr_int & SERR_INT_POISON)
1148 DRM_ERROR("PCH poison interrupt\n");
1149
1150 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1151 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1152 false))
1153 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1154
1155 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1156 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1157 false))
1158 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1159
1160 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1161 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1162 false))
1163 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1164
1165 I915_WRITE(SERR_INT, serr_int);
1166 }
1167
1168 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1169 {
1170 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1171 int pipe;
1172 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1173
1174 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1175
1176 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1177 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1178 SDE_AUDIO_POWER_SHIFT_CPT);
1179 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1180 port_name(port));
1181 }
1182
1183 if (pch_iir & SDE_AUX_MASK_CPT)
1184 dp_aux_irq_handler(dev);
1185
1186 if (pch_iir & SDE_GMBUS_CPT)
1187 gmbus_irq_handler(dev);
1188
1189 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1190 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1191
1192 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1193 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1194
1195 if (pch_iir & SDE_FDI_MASK_CPT)
1196 for_each_pipe(pipe)
1197 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1198 pipe_name(pipe),
1199 I915_READ(FDI_RX_IIR(pipe)));
1200
1201 if (pch_iir & SDE_ERROR_CPT)
1202 cpt_serr_int_handler(dev);
1203 }
1204
1205 static irqreturn_t ivybridge_irq_handler(int irq, void *arg)
1206 {
1207 struct drm_device *dev = (struct drm_device *) arg;
1208 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1209 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0;
1210 irqreturn_t ret = IRQ_NONE;
1211 int i;
1212
1213 atomic_inc(&dev_priv->irq_received);
1214
1215 /* We get interrupts on unclaimed registers, so check for this before we
1216 * do any I915_{READ,WRITE}. */
1217 if (IS_HASWELL(dev) &&
1218 (I915_READ_NOTRACE(FPGA_DBG) & FPGA_DBG_RM_NOCLAIM)) {
1219 DRM_ERROR("Unclaimed register before interrupt\n");
1220 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
1221 }
1222
1223 /* disable master interrupt before clearing iir */
1224 de_ier = I915_READ(DEIER);
1225 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1226
1227 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1228 * interrupts will will be stored on its back queue, and then we'll be
1229 * able to process them after we restore SDEIER (as soon as we restore
1230 * it, we'll get an interrupt if SDEIIR still has something to process
1231 * due to its back queue). */
1232 if (!HAS_PCH_NOP(dev)) {
1233 sde_ier = I915_READ(SDEIER);
1234 I915_WRITE(SDEIER, 0);
1235 POSTING_READ(SDEIER);
1236 }
1237
1238 /* On Haswell, also mask ERR_INT because we don't want to risk
1239 * generating "unclaimed register" interrupts from inside the interrupt
1240 * handler. */
1241 if (IS_HASWELL(dev)) {
1242 spin_lock(&dev_priv->irq_lock);
1243 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1244 spin_unlock(&dev_priv->irq_lock);
1245 }
1246
1247 gt_iir = I915_READ(GTIIR);
1248 if (gt_iir) {
1249 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1250 I915_WRITE(GTIIR, gt_iir);
1251 ret = IRQ_HANDLED;
1252 }
1253
1254 de_iir = I915_READ(DEIIR);
1255 if (de_iir) {
1256 if (de_iir & DE_ERR_INT_IVB)
1257 ivb_err_int_handler(dev);
1258
1259 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1260 dp_aux_irq_handler(dev);
1261
1262 if (de_iir & DE_GSE_IVB)
1263 intel_opregion_asle_intr(dev);
1264
1265 for (i = 0; i < 3; i++) {
1266 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1267 drm_handle_vblank(dev, i);
1268 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1269 intel_prepare_page_flip(dev, i);
1270 intel_finish_page_flip_plane(dev, i);
1271 }
1272 }
1273
1274 /* check event from PCH */
1275 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1276 u32 pch_iir = I915_READ(SDEIIR);
1277
1278 cpt_irq_handler(dev, pch_iir);
1279
1280 /* clear PCH hotplug event before clear CPU irq */
1281 I915_WRITE(SDEIIR, pch_iir);
1282 }
1283
1284 I915_WRITE(DEIIR, de_iir);
1285 ret = IRQ_HANDLED;
1286 }
1287
1288 pm_iir = I915_READ(GEN6_PMIIR);
1289 if (pm_iir) {
1290 if (IS_HASWELL(dev))
1291 hsw_pm_irq_handler(dev_priv, pm_iir);
1292 else if (pm_iir & GEN6_PM_RPS_EVENTS)
1293 gen6_rps_irq_handler(dev_priv, pm_iir);
1294 I915_WRITE(GEN6_PMIIR, pm_iir);
1295 ret = IRQ_HANDLED;
1296 }
1297
1298 if (IS_HASWELL(dev)) {
1299 spin_lock(&dev_priv->irq_lock);
1300 if (ivb_can_enable_err_int(dev))
1301 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1302 spin_unlock(&dev_priv->irq_lock);
1303 }
1304
1305 I915_WRITE(DEIER, de_ier);
1306 POSTING_READ(DEIER);
1307 if (!HAS_PCH_NOP(dev)) {
1308 I915_WRITE(SDEIER, sde_ier);
1309 POSTING_READ(SDEIER);
1310 }
1311
1312 return ret;
1313 }
1314
1315 static void ilk_gt_irq_handler(struct drm_device *dev,
1316 struct drm_i915_private *dev_priv,
1317 u32 gt_iir)
1318 {
1319 if (gt_iir &
1320 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1321 notify_ring(dev, &dev_priv->ring[RCS]);
1322 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1323 notify_ring(dev, &dev_priv->ring[VCS]);
1324 }
1325
1326 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1327 {
1328 struct drm_device *dev = (struct drm_device *) arg;
1329 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1330 int ret = IRQ_NONE;
1331 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier;
1332
1333 atomic_inc(&dev_priv->irq_received);
1334
1335 /* disable master interrupt before clearing iir */
1336 de_ier = I915_READ(DEIER);
1337 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1338 POSTING_READ(DEIER);
1339
1340 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1341 * interrupts will will be stored on its back queue, and then we'll be
1342 * able to process them after we restore SDEIER (as soon as we restore
1343 * it, we'll get an interrupt if SDEIIR still has something to process
1344 * due to its back queue). */
1345 sde_ier = I915_READ(SDEIER);
1346 I915_WRITE(SDEIER, 0);
1347 POSTING_READ(SDEIER);
1348
1349 de_iir = I915_READ(DEIIR);
1350 gt_iir = I915_READ(GTIIR);
1351 pm_iir = I915_READ(GEN6_PMIIR);
1352
1353 if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0))
1354 goto done;
1355
1356 ret = IRQ_HANDLED;
1357
1358 if (IS_GEN5(dev))
1359 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1360 else
1361 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1362
1363 if (de_iir & DE_AUX_CHANNEL_A)
1364 dp_aux_irq_handler(dev);
1365
1366 if (de_iir & DE_GSE)
1367 intel_opregion_asle_intr(dev);
1368
1369 if (de_iir & DE_PIPEA_VBLANK)
1370 drm_handle_vblank(dev, 0);
1371
1372 if (de_iir & DE_PIPEB_VBLANK)
1373 drm_handle_vblank(dev, 1);
1374
1375 if (de_iir & DE_POISON)
1376 DRM_ERROR("Poison interrupt\n");
1377
1378 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1379 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1380 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1381
1382 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1383 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1384 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1385
1386 if (de_iir & DE_PLANEA_FLIP_DONE) {
1387 intel_prepare_page_flip(dev, 0);
1388 intel_finish_page_flip_plane(dev, 0);
1389 }
1390
1391 if (de_iir & DE_PLANEB_FLIP_DONE) {
1392 intel_prepare_page_flip(dev, 1);
1393 intel_finish_page_flip_plane(dev, 1);
1394 }
1395
1396 /* check event from PCH */
1397 if (de_iir & DE_PCH_EVENT) {
1398 u32 pch_iir = I915_READ(SDEIIR);
1399
1400 if (HAS_PCH_CPT(dev))
1401 cpt_irq_handler(dev, pch_iir);
1402 else
1403 ibx_irq_handler(dev, pch_iir);
1404
1405 /* should clear PCH hotplug event before clear CPU irq */
1406 I915_WRITE(SDEIIR, pch_iir);
1407 }
1408
1409 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1410 ironlake_rps_change_irq_handler(dev);
1411
1412 if (IS_GEN6(dev) && pm_iir & GEN6_PM_RPS_EVENTS)
1413 gen6_rps_irq_handler(dev_priv, pm_iir);
1414
1415 I915_WRITE(GTIIR, gt_iir);
1416 I915_WRITE(DEIIR, de_iir);
1417 I915_WRITE(GEN6_PMIIR, pm_iir);
1418
1419 done:
1420 I915_WRITE(DEIER, de_ier);
1421 POSTING_READ(DEIER);
1422 I915_WRITE(SDEIER, sde_ier);
1423 POSTING_READ(SDEIER);
1424
1425 return ret;
1426 }
1427
1428 /**
1429 * i915_error_work_func - do process context error handling work
1430 * @work: work struct
1431 *
1432 * Fire an error uevent so userspace can see that a hang or error
1433 * was detected.
1434 */
1435 static void i915_error_work_func(struct work_struct *work)
1436 {
1437 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1438 work);
1439 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1440 gpu_error);
1441 struct drm_device *dev = dev_priv->dev;
1442 struct intel_ring_buffer *ring;
1443 char *error_event[] = { "ERROR=1", NULL };
1444 char *reset_event[] = { "RESET=1", NULL };
1445 char *reset_done_event[] = { "ERROR=0", NULL };
1446 int i, ret;
1447
1448 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1449
1450 /*
1451 * Note that there's only one work item which does gpu resets, so we
1452 * need not worry about concurrent gpu resets potentially incrementing
1453 * error->reset_counter twice. We only need to take care of another
1454 * racing irq/hangcheck declaring the gpu dead for a second time. A
1455 * quick check for that is good enough: schedule_work ensures the
1456 * correct ordering between hang detection and this work item, and since
1457 * the reset in-progress bit is only ever set by code outside of this
1458 * work we don't need to worry about any other races.
1459 */
1460 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1461 DRM_DEBUG_DRIVER("resetting chip\n");
1462 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1463 reset_event);
1464
1465 ret = i915_reset(dev);
1466
1467 if (ret == 0) {
1468 /*
1469 * After all the gem state is reset, increment the reset
1470 * counter and wake up everyone waiting for the reset to
1471 * complete.
1472 *
1473 * Since unlock operations are a one-sided barrier only,
1474 * we need to insert a barrier here to order any seqno
1475 * updates before
1476 * the counter increment.
1477 */
1478 smp_mb__before_atomic_inc();
1479 atomic_inc(&dev_priv->gpu_error.reset_counter);
1480
1481 kobject_uevent_env(&dev->primary->kdev.kobj,
1482 KOBJ_CHANGE, reset_done_event);
1483 } else {
1484 atomic_set(&error->reset_counter, I915_WEDGED);
1485 }
1486
1487 for_each_ring(ring, dev_priv, i)
1488 wake_up_all(&ring->irq_queue);
1489
1490 intel_display_handle_reset(dev);
1491
1492 wake_up_all(&dev_priv->gpu_error.reset_queue);
1493 }
1494 }
1495
1496 static void i915_report_and_clear_eir(struct drm_device *dev)
1497 {
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 uint32_t instdone[I915_NUM_INSTDONE_REG];
1500 u32 eir = I915_READ(EIR);
1501 int pipe, i;
1502
1503 if (!eir)
1504 return;
1505
1506 pr_err("render error detected, EIR: 0x%08x\n", eir);
1507
1508 i915_get_extra_instdone(dev, instdone);
1509
1510 if (IS_G4X(dev)) {
1511 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1512 u32 ipeir = I915_READ(IPEIR_I965);
1513
1514 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1515 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1516 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1517 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1518 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1519 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1520 I915_WRITE(IPEIR_I965, ipeir);
1521 POSTING_READ(IPEIR_I965);
1522 }
1523 if (eir & GM45_ERROR_PAGE_TABLE) {
1524 u32 pgtbl_err = I915_READ(PGTBL_ER);
1525 pr_err("page table error\n");
1526 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1527 I915_WRITE(PGTBL_ER, pgtbl_err);
1528 POSTING_READ(PGTBL_ER);
1529 }
1530 }
1531
1532 if (!IS_GEN2(dev)) {
1533 if (eir & I915_ERROR_PAGE_TABLE) {
1534 u32 pgtbl_err = I915_READ(PGTBL_ER);
1535 pr_err("page table error\n");
1536 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1537 I915_WRITE(PGTBL_ER, pgtbl_err);
1538 POSTING_READ(PGTBL_ER);
1539 }
1540 }
1541
1542 if (eir & I915_ERROR_MEMORY_REFRESH) {
1543 pr_err("memory refresh error:\n");
1544 for_each_pipe(pipe)
1545 pr_err("pipe %c stat: 0x%08x\n",
1546 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1547 /* pipestat has already been acked */
1548 }
1549 if (eir & I915_ERROR_INSTRUCTION) {
1550 pr_err("instruction error\n");
1551 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1552 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1553 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1554 if (INTEL_INFO(dev)->gen < 4) {
1555 u32 ipeir = I915_READ(IPEIR);
1556
1557 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1558 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1559 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1560 I915_WRITE(IPEIR, ipeir);
1561 POSTING_READ(IPEIR);
1562 } else {
1563 u32 ipeir = I915_READ(IPEIR_I965);
1564
1565 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1566 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1567 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1568 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1569 I915_WRITE(IPEIR_I965, ipeir);
1570 POSTING_READ(IPEIR_I965);
1571 }
1572 }
1573
1574 I915_WRITE(EIR, eir);
1575 POSTING_READ(EIR);
1576 eir = I915_READ(EIR);
1577 if (eir) {
1578 /*
1579 * some errors might have become stuck,
1580 * mask them.
1581 */
1582 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1583 I915_WRITE(EMR, I915_READ(EMR) | eir);
1584 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1585 }
1586 }
1587
1588 /**
1589 * i915_handle_error - handle an error interrupt
1590 * @dev: drm device
1591 *
1592 * Do some basic checking of regsiter state at error interrupt time and
1593 * dump it to the syslog. Also call i915_capture_error_state() to make
1594 * sure we get a record and make it available in debugfs. Fire a uevent
1595 * so userspace knows something bad happened (should trigger collection
1596 * of a ring dump etc.).
1597 */
1598 void i915_handle_error(struct drm_device *dev, bool wedged)
1599 {
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 struct intel_ring_buffer *ring;
1602 int i;
1603
1604 i915_capture_error_state(dev);
1605 i915_report_and_clear_eir(dev);
1606
1607 if (wedged) {
1608 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1609 &dev_priv->gpu_error.reset_counter);
1610
1611 /*
1612 * Wakeup waiting processes so that the reset work item
1613 * doesn't deadlock trying to grab various locks.
1614 */
1615 for_each_ring(ring, dev_priv, i)
1616 wake_up_all(&ring->irq_queue);
1617 }
1618
1619 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
1620 }
1621
1622 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1623 {
1624 drm_i915_private_t *dev_priv = dev->dev_private;
1625 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1626 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1627 struct drm_i915_gem_object *obj;
1628 struct intel_unpin_work *work;
1629 unsigned long flags;
1630 bool stall_detected;
1631
1632 /* Ignore early vblank irqs */
1633 if (intel_crtc == NULL)
1634 return;
1635
1636 spin_lock_irqsave(&dev->event_lock, flags);
1637 work = intel_crtc->unpin_work;
1638
1639 if (work == NULL ||
1640 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1641 !work->enable_stall_check) {
1642 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1643 spin_unlock_irqrestore(&dev->event_lock, flags);
1644 return;
1645 }
1646
1647 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1648 obj = work->pending_flip_obj;
1649 if (INTEL_INFO(dev)->gen >= 4) {
1650 int dspsurf = DSPSURF(intel_crtc->plane);
1651 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1652 i915_gem_obj_ggtt_offset(obj);
1653 } else {
1654 int dspaddr = DSPADDR(intel_crtc->plane);
1655 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1656 crtc->y * crtc->fb->pitches[0] +
1657 crtc->x * crtc->fb->bits_per_pixel/8);
1658 }
1659
1660 spin_unlock_irqrestore(&dev->event_lock, flags);
1661
1662 if (stall_detected) {
1663 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1664 intel_prepare_page_flip(dev, intel_crtc->plane);
1665 }
1666 }
1667
1668 /* Called from drm generic code, passed 'crtc' which
1669 * we use as a pipe index
1670 */
1671 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1672 {
1673 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1674 unsigned long irqflags;
1675
1676 if (!i915_pipe_enabled(dev, pipe))
1677 return -EINVAL;
1678
1679 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1680 if (INTEL_INFO(dev)->gen >= 4)
1681 i915_enable_pipestat(dev_priv, pipe,
1682 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1683 else
1684 i915_enable_pipestat(dev_priv, pipe,
1685 PIPE_VBLANK_INTERRUPT_ENABLE);
1686
1687 /* maintain vblank delivery even in deep C-states */
1688 if (dev_priv->info->gen == 3)
1689 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1690 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1691
1692 return 0;
1693 }
1694
1695 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1696 {
1697 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1698 unsigned long irqflags;
1699
1700 if (!i915_pipe_enabled(dev, pipe))
1701 return -EINVAL;
1702
1703 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1704 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1705 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
1706 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1707
1708 return 0;
1709 }
1710
1711 static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
1712 {
1713 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1714 unsigned long irqflags;
1715
1716 if (!i915_pipe_enabled(dev, pipe))
1717 return -EINVAL;
1718
1719 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1720 ironlake_enable_display_irq(dev_priv,
1721 DE_PIPEA_VBLANK_IVB << (5 * pipe));
1722 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1723
1724 return 0;
1725 }
1726
1727 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1728 {
1729 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1730 unsigned long irqflags;
1731 u32 imr;
1732
1733 if (!i915_pipe_enabled(dev, pipe))
1734 return -EINVAL;
1735
1736 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1737 imr = I915_READ(VLV_IMR);
1738 if (pipe == 0)
1739 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1740 else
1741 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1742 I915_WRITE(VLV_IMR, imr);
1743 i915_enable_pipestat(dev_priv, pipe,
1744 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1745 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1746
1747 return 0;
1748 }
1749
1750 /* Called from drm generic code, passed 'crtc' which
1751 * we use as a pipe index
1752 */
1753 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1754 {
1755 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1756 unsigned long irqflags;
1757
1758 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1759 if (dev_priv->info->gen == 3)
1760 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1761
1762 i915_disable_pipestat(dev_priv, pipe,
1763 PIPE_VBLANK_INTERRUPT_ENABLE |
1764 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1765 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1766 }
1767
1768 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1769 {
1770 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1771 unsigned long irqflags;
1772
1773 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1774 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1775 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
1776 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1777 }
1778
1779 static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1780 {
1781 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1782 unsigned long irqflags;
1783
1784 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1785 ironlake_disable_display_irq(dev_priv,
1786 DE_PIPEA_VBLANK_IVB << (pipe * 5));
1787 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1788 }
1789
1790 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1791 {
1792 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1793 unsigned long irqflags;
1794 u32 imr;
1795
1796 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1797 i915_disable_pipestat(dev_priv, pipe,
1798 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1799 imr = I915_READ(VLV_IMR);
1800 if (pipe == 0)
1801 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1802 else
1803 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1804 I915_WRITE(VLV_IMR, imr);
1805 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1806 }
1807
1808 static u32
1809 ring_last_seqno(struct intel_ring_buffer *ring)
1810 {
1811 return list_entry(ring->request_list.prev,
1812 struct drm_i915_gem_request, list)->seqno;
1813 }
1814
1815 static bool
1816 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1817 {
1818 return (list_empty(&ring->request_list) ||
1819 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1820 }
1821
1822 static struct intel_ring_buffer *
1823 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1824 {
1825 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1826 u32 cmd, ipehr, acthd, acthd_min;
1827
1828 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1829 if ((ipehr & ~(0x3 << 16)) !=
1830 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1831 return NULL;
1832
1833 /* ACTHD is likely pointing to the dword after the actual command,
1834 * so scan backwards until we find the MBOX.
1835 */
1836 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1837 acthd_min = max((int)acthd - 3 * 4, 0);
1838 do {
1839 cmd = ioread32(ring->virtual_start + acthd);
1840 if (cmd == ipehr)
1841 break;
1842
1843 acthd -= 4;
1844 if (acthd < acthd_min)
1845 return NULL;
1846 } while (1);
1847
1848 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1849 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1850 }
1851
1852 static int semaphore_passed(struct intel_ring_buffer *ring)
1853 {
1854 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1855 struct intel_ring_buffer *signaller;
1856 u32 seqno, ctl;
1857
1858 ring->hangcheck.deadlock = true;
1859
1860 signaller = semaphore_waits_for(ring, &seqno);
1861 if (signaller == NULL || signaller->hangcheck.deadlock)
1862 return -1;
1863
1864 /* cursory check for an unkickable deadlock */
1865 ctl = I915_READ_CTL(signaller);
1866 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1867 return -1;
1868
1869 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1870 }
1871
1872 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1873 {
1874 struct intel_ring_buffer *ring;
1875 int i;
1876
1877 for_each_ring(ring, dev_priv, i)
1878 ring->hangcheck.deadlock = false;
1879 }
1880
1881 static enum intel_ring_hangcheck_action
1882 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1883 {
1884 struct drm_device *dev = ring->dev;
1885 struct drm_i915_private *dev_priv = dev->dev_private;
1886 u32 tmp;
1887
1888 if (ring->hangcheck.acthd != acthd)
1889 return active;
1890
1891 if (IS_GEN2(dev))
1892 return hung;
1893
1894 /* Is the chip hanging on a WAIT_FOR_EVENT?
1895 * If so we can simply poke the RB_WAIT bit
1896 * and break the hang. This should work on
1897 * all but the second generation chipsets.
1898 */
1899 tmp = I915_READ_CTL(ring);
1900 if (tmp & RING_WAIT) {
1901 DRM_ERROR("Kicking stuck wait on %s\n",
1902 ring->name);
1903 I915_WRITE_CTL(ring, tmp);
1904 return kick;
1905 }
1906
1907 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1908 switch (semaphore_passed(ring)) {
1909 default:
1910 return hung;
1911 case 1:
1912 DRM_ERROR("Kicking stuck semaphore on %s\n",
1913 ring->name);
1914 I915_WRITE_CTL(ring, tmp);
1915 return kick;
1916 case 0:
1917 return wait;
1918 }
1919 }
1920
1921 return hung;
1922 }
1923
1924 /**
1925 * This is called when the chip hasn't reported back with completed
1926 * batchbuffers in a long time. We keep track per ring seqno progress and
1927 * if there are no progress, hangcheck score for that ring is increased.
1928 * Further, acthd is inspected to see if the ring is stuck. On stuck case
1929 * we kick the ring. If we see no progress on three subsequent calls
1930 * we assume chip is wedged and try to fix it by resetting the chip.
1931 */
1932 void i915_hangcheck_elapsed(unsigned long data)
1933 {
1934 struct drm_device *dev = (struct drm_device *)data;
1935 drm_i915_private_t *dev_priv = dev->dev_private;
1936 struct intel_ring_buffer *ring;
1937 int i;
1938 int busy_count = 0, rings_hung = 0;
1939 bool stuck[I915_NUM_RINGS] = { 0 };
1940 #define BUSY 1
1941 #define KICK 5
1942 #define HUNG 20
1943 #define FIRE 30
1944
1945 if (!i915_enable_hangcheck)
1946 return;
1947
1948 for_each_ring(ring, dev_priv, i) {
1949 u32 seqno, acthd;
1950 bool busy = true;
1951
1952 semaphore_clear_deadlocks(dev_priv);
1953
1954 seqno = ring->get_seqno(ring, false);
1955 acthd = intel_ring_get_active_head(ring);
1956
1957 if (ring->hangcheck.seqno == seqno) {
1958 if (ring_idle(ring, seqno)) {
1959 if (waitqueue_active(&ring->irq_queue)) {
1960 /* Issue a wake-up to catch stuck h/w. */
1961 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1962 ring->name);
1963 wake_up_all(&ring->irq_queue);
1964 ring->hangcheck.score += HUNG;
1965 } else
1966 busy = false;
1967 } else {
1968 int score;
1969
1970 /* We always increment the hangcheck score
1971 * if the ring is busy and still processing
1972 * the same request, so that no single request
1973 * can run indefinitely (such as a chain of
1974 * batches). The only time we do not increment
1975 * the hangcheck score on this ring, if this
1976 * ring is in a legitimate wait for another
1977 * ring. In that case the waiting ring is a
1978 * victim and we want to be sure we catch the
1979 * right culprit. Then every time we do kick
1980 * the ring, add a small increment to the
1981 * score so that we can catch a batch that is
1982 * being repeatedly kicked and so responsible
1983 * for stalling the machine.
1984 */
1985 ring->hangcheck.action = ring_stuck(ring,
1986 acthd);
1987
1988 switch (ring->hangcheck.action) {
1989 case wait:
1990 score = 0;
1991 break;
1992 case active:
1993 score = BUSY;
1994 break;
1995 case kick:
1996 score = KICK;
1997 break;
1998 case hung:
1999 score = HUNG;
2000 stuck[i] = true;
2001 break;
2002 }
2003 ring->hangcheck.score += score;
2004 }
2005 } else {
2006 /* Gradually reduce the count so that we catch DoS
2007 * attempts across multiple batches.
2008 */
2009 if (ring->hangcheck.score > 0)
2010 ring->hangcheck.score--;
2011 }
2012
2013 ring->hangcheck.seqno = seqno;
2014 ring->hangcheck.acthd = acthd;
2015 busy_count += busy;
2016 }
2017
2018 for_each_ring(ring, dev_priv, i) {
2019 if (ring->hangcheck.score > FIRE) {
2020 DRM_ERROR("%s on %s\n",
2021 stuck[i] ? "stuck" : "no progress",
2022 ring->name);
2023 rings_hung++;
2024 }
2025 }
2026
2027 if (rings_hung)
2028 return i915_handle_error(dev, true);
2029
2030 if (busy_count)
2031 /* Reset timer case chip hangs without another request
2032 * being added */
2033 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2034 round_jiffies_up(jiffies +
2035 DRM_I915_HANGCHECK_JIFFIES));
2036 }
2037
2038 static void ibx_irq_preinstall(struct drm_device *dev)
2039 {
2040 struct drm_i915_private *dev_priv = dev->dev_private;
2041
2042 if (HAS_PCH_NOP(dev))
2043 return;
2044
2045 /* south display irq */
2046 I915_WRITE(SDEIMR, 0xffffffff);
2047 /*
2048 * SDEIER is also touched by the interrupt handler to work around missed
2049 * PCH interrupts. Hence we can't update it after the interrupt handler
2050 * is enabled - instead we unconditionally enable all PCH interrupt
2051 * sources here, but then only unmask them as needed with SDEIMR.
2052 */
2053 I915_WRITE(SDEIER, 0xffffffff);
2054 POSTING_READ(SDEIER);
2055 }
2056
2057 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2058 {
2059 struct drm_i915_private *dev_priv = dev->dev_private;
2060
2061 /* and GT */
2062 I915_WRITE(GTIMR, 0xffffffff);
2063 I915_WRITE(GTIER, 0x0);
2064 POSTING_READ(GTIER);
2065
2066 if (INTEL_INFO(dev)->gen >= 6) {
2067 /* and PM */
2068 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2069 I915_WRITE(GEN6_PMIER, 0x0);
2070 POSTING_READ(GEN6_PMIER);
2071 }
2072 }
2073
2074 /* drm_dma.h hooks
2075 */
2076 static void ironlake_irq_preinstall(struct drm_device *dev)
2077 {
2078 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2079
2080 atomic_set(&dev_priv->irq_received, 0);
2081
2082 I915_WRITE(HWSTAM, 0xeffe);
2083
2084 I915_WRITE(DEIMR, 0xffffffff);
2085 I915_WRITE(DEIER, 0x0);
2086 POSTING_READ(DEIER);
2087
2088 gen5_gt_irq_preinstall(dev);
2089
2090 ibx_irq_preinstall(dev);
2091 }
2092
2093 static void ivybridge_irq_preinstall(struct drm_device *dev)
2094 {
2095 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2096
2097 atomic_set(&dev_priv->irq_received, 0);
2098
2099 I915_WRITE(HWSTAM, 0xeffe);
2100
2101 /* XXX hotplug from PCH */
2102
2103 I915_WRITE(DEIMR, 0xffffffff);
2104 I915_WRITE(DEIER, 0x0);
2105 POSTING_READ(DEIER);
2106
2107 gen5_gt_irq_preinstall(dev);
2108
2109 ibx_irq_preinstall(dev);
2110 }
2111
2112 static void valleyview_irq_preinstall(struct drm_device *dev)
2113 {
2114 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2115 int pipe;
2116
2117 atomic_set(&dev_priv->irq_received, 0);
2118
2119 /* VLV magic */
2120 I915_WRITE(VLV_IMR, 0);
2121 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2122 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2123 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2124
2125 /* and GT */
2126 I915_WRITE(GTIIR, I915_READ(GTIIR));
2127 I915_WRITE(GTIIR, I915_READ(GTIIR));
2128
2129 gen5_gt_irq_preinstall(dev);
2130
2131 I915_WRITE(DPINVGTT, 0xff);
2132
2133 I915_WRITE(PORT_HOTPLUG_EN, 0);
2134 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2135 for_each_pipe(pipe)
2136 I915_WRITE(PIPESTAT(pipe), 0xffff);
2137 I915_WRITE(VLV_IIR, 0xffffffff);
2138 I915_WRITE(VLV_IMR, 0xffffffff);
2139 I915_WRITE(VLV_IER, 0x0);
2140 POSTING_READ(VLV_IER);
2141 }
2142
2143 static void ibx_hpd_irq_setup(struct drm_device *dev)
2144 {
2145 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2146 struct drm_mode_config *mode_config = &dev->mode_config;
2147 struct intel_encoder *intel_encoder;
2148 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2149
2150 if (HAS_PCH_IBX(dev)) {
2151 hotplug_irqs = SDE_HOTPLUG_MASK;
2152 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2153 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2154 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2155 } else {
2156 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2157 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2158 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2159 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2160 }
2161
2162 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2163
2164 /*
2165 * Enable digital hotplug on the PCH, and configure the DP short pulse
2166 * duration to 2ms (which is the minimum in the Display Port spec)
2167 *
2168 * This register is the same on all known PCH chips.
2169 */
2170 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2171 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2172 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2173 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2174 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2175 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2176 }
2177
2178 static void ibx_irq_postinstall(struct drm_device *dev)
2179 {
2180 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2181 u32 mask;
2182
2183 if (HAS_PCH_NOP(dev))
2184 return;
2185
2186 if (HAS_PCH_IBX(dev)) {
2187 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2188 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2189 } else {
2190 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2191
2192 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2193 }
2194
2195 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2196 I915_WRITE(SDEIMR, ~mask);
2197 }
2198
2199 static int ironlake_irq_postinstall(struct drm_device *dev)
2200 {
2201 unsigned long irqflags;
2202
2203 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2204 /* enable kind of interrupts always enabled */
2205 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2206 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2207 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2208 DE_PIPEA_FIFO_UNDERRUN | DE_POISON;
2209 u32 gt_irqs;
2210
2211 dev_priv->irq_mask = ~display_mask;
2212
2213 /* should always can generate irq */
2214 I915_WRITE(DEIIR, I915_READ(DEIIR));
2215 I915_WRITE(DEIMR, dev_priv->irq_mask);
2216 I915_WRITE(DEIER, display_mask |
2217 DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT);
2218 POSTING_READ(DEIER);
2219
2220 dev_priv->gt_irq_mask = ~0;
2221
2222 I915_WRITE(GTIIR, I915_READ(GTIIR));
2223 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2224
2225 gt_irqs = GT_RENDER_USER_INTERRUPT;
2226
2227 if (IS_GEN6(dev))
2228 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2229 else
2230 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2231 ILK_BSD_USER_INTERRUPT;
2232
2233 I915_WRITE(GTIER, gt_irqs);
2234 POSTING_READ(GTIER);
2235
2236 ibx_irq_postinstall(dev);
2237
2238 if (IS_IRONLAKE_M(dev)) {
2239 /* Enable PCU event interrupts
2240 *
2241 * spinlocking not required here for correctness since interrupt
2242 * setup is guaranteed to run in single-threaded context. But we
2243 * need it to make the assert_spin_locked happy. */
2244 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2245 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2246 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2247 }
2248
2249 return 0;
2250 }
2251
2252 static int ivybridge_irq_postinstall(struct drm_device *dev)
2253 {
2254 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2255 /* enable kind of interrupts always enabled */
2256 u32 display_mask =
2257 DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
2258 DE_PLANEC_FLIP_DONE_IVB |
2259 DE_PLANEB_FLIP_DONE_IVB |
2260 DE_PLANEA_FLIP_DONE_IVB |
2261 DE_AUX_CHANNEL_A_IVB |
2262 DE_ERR_INT_IVB;
2263 u32 pm_irqs = GEN6_PM_RPS_EVENTS;
2264 u32 gt_irqs;
2265
2266 dev_priv->irq_mask = ~display_mask;
2267
2268 /* should always can generate irq */
2269 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2270 I915_WRITE(DEIIR, I915_READ(DEIIR));
2271 I915_WRITE(DEIMR, dev_priv->irq_mask);
2272 I915_WRITE(DEIER,
2273 display_mask |
2274 DE_PIPEC_VBLANK_IVB |
2275 DE_PIPEB_VBLANK_IVB |
2276 DE_PIPEA_VBLANK_IVB);
2277 POSTING_READ(DEIER);
2278
2279 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2280
2281 I915_WRITE(GTIIR, I915_READ(GTIIR));
2282 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2283
2284 gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2285 GT_BLT_USER_INTERRUPT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2286 I915_WRITE(GTIER, gt_irqs);
2287 POSTING_READ(GTIER);
2288
2289 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2290 if (HAS_VEBOX(dev))
2291 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2292
2293 /* Our enable/disable rps functions may touch these registers so
2294 * make sure to set a known state for only the non-RPS bits.
2295 * The RMW is extra paranoia since this should be called after being set
2296 * to a known state in preinstall.
2297 * */
2298 I915_WRITE(GEN6_PMIMR,
2299 (I915_READ(GEN6_PMIMR) | ~GEN6_PM_RPS_EVENTS) & ~pm_irqs);
2300 I915_WRITE(GEN6_PMIER,
2301 (I915_READ(GEN6_PMIER) & GEN6_PM_RPS_EVENTS) | pm_irqs);
2302 POSTING_READ(GEN6_PMIER);
2303
2304 ibx_irq_postinstall(dev);
2305
2306 return 0;
2307 }
2308
2309 static int valleyview_irq_postinstall(struct drm_device *dev)
2310 {
2311 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2312 u32 gt_irqs;
2313 u32 enable_mask;
2314 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2315 unsigned long irqflags;
2316
2317 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2318 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2319 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2320 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2321 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2322
2323 /*
2324 *Leave vblank interrupts masked initially. enable/disable will
2325 * toggle them based on usage.
2326 */
2327 dev_priv->irq_mask = (~enable_mask) |
2328 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2329 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2330
2331 I915_WRITE(PORT_HOTPLUG_EN, 0);
2332 POSTING_READ(PORT_HOTPLUG_EN);
2333
2334 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2335 I915_WRITE(VLV_IER, enable_mask);
2336 I915_WRITE(VLV_IIR, 0xffffffff);
2337 I915_WRITE(PIPESTAT(0), 0xffff);
2338 I915_WRITE(PIPESTAT(1), 0xffff);
2339 POSTING_READ(VLV_IER);
2340
2341 /* Interrupt setup is already guaranteed to be single-threaded, this is
2342 * just to make the assert_spin_locked check happy. */
2343 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2344 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2345 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2346 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2347 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2348
2349 I915_WRITE(VLV_IIR, 0xffffffff);
2350 I915_WRITE(VLV_IIR, 0xffffffff);
2351
2352 I915_WRITE(GTIIR, I915_READ(GTIIR));
2353 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2354
2355 gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2356 GT_BLT_USER_INTERRUPT;
2357 I915_WRITE(GTIER, gt_irqs);
2358 POSTING_READ(GTIER);
2359
2360 /* ack & enable invalid PTE error interrupts */
2361 #if 0 /* FIXME: add support to irq handler for checking these bits */
2362 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2363 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2364 #endif
2365
2366 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2367
2368 return 0;
2369 }
2370
2371 static void valleyview_irq_uninstall(struct drm_device *dev)
2372 {
2373 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2374 int pipe;
2375
2376 if (!dev_priv)
2377 return;
2378
2379 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2380
2381 for_each_pipe(pipe)
2382 I915_WRITE(PIPESTAT(pipe), 0xffff);
2383
2384 I915_WRITE(HWSTAM, 0xffffffff);
2385 I915_WRITE(PORT_HOTPLUG_EN, 0);
2386 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2387 for_each_pipe(pipe)
2388 I915_WRITE(PIPESTAT(pipe), 0xffff);
2389 I915_WRITE(VLV_IIR, 0xffffffff);
2390 I915_WRITE(VLV_IMR, 0xffffffff);
2391 I915_WRITE(VLV_IER, 0x0);
2392 POSTING_READ(VLV_IER);
2393 }
2394
2395 static void ironlake_irq_uninstall(struct drm_device *dev)
2396 {
2397 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2398
2399 if (!dev_priv)
2400 return;
2401
2402 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2403
2404 I915_WRITE(HWSTAM, 0xffffffff);
2405
2406 I915_WRITE(DEIMR, 0xffffffff);
2407 I915_WRITE(DEIER, 0x0);
2408 I915_WRITE(DEIIR, I915_READ(DEIIR));
2409 if (IS_GEN7(dev))
2410 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2411
2412 I915_WRITE(GTIMR, 0xffffffff);
2413 I915_WRITE(GTIER, 0x0);
2414 I915_WRITE(GTIIR, I915_READ(GTIIR));
2415
2416 if (HAS_PCH_NOP(dev))
2417 return;
2418
2419 I915_WRITE(SDEIMR, 0xffffffff);
2420 I915_WRITE(SDEIER, 0x0);
2421 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2422 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2423 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2424 }
2425
2426 static void i8xx_irq_preinstall(struct drm_device * dev)
2427 {
2428 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2429 int pipe;
2430
2431 atomic_set(&dev_priv->irq_received, 0);
2432
2433 for_each_pipe(pipe)
2434 I915_WRITE(PIPESTAT(pipe), 0);
2435 I915_WRITE16(IMR, 0xffff);
2436 I915_WRITE16(IER, 0x0);
2437 POSTING_READ16(IER);
2438 }
2439
2440 static int i8xx_irq_postinstall(struct drm_device *dev)
2441 {
2442 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2443
2444 I915_WRITE16(EMR,
2445 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2446
2447 /* Unmask the interrupts that we always want on. */
2448 dev_priv->irq_mask =
2449 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2450 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2451 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2452 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2453 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2454 I915_WRITE16(IMR, dev_priv->irq_mask);
2455
2456 I915_WRITE16(IER,
2457 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2458 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2459 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2460 I915_USER_INTERRUPT);
2461 POSTING_READ16(IER);
2462
2463 return 0;
2464 }
2465
2466 /*
2467 * Returns true when a page flip has completed.
2468 */
2469 static bool i8xx_handle_vblank(struct drm_device *dev,
2470 int pipe, u16 iir)
2471 {
2472 drm_i915_private_t *dev_priv = dev->dev_private;
2473 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2474
2475 if (!drm_handle_vblank(dev, pipe))
2476 return false;
2477
2478 if ((iir & flip_pending) == 0)
2479 return false;
2480
2481 intel_prepare_page_flip(dev, pipe);
2482
2483 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2484 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2485 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2486 * the flip is completed (no longer pending). Since this doesn't raise
2487 * an interrupt per se, we watch for the change at vblank.
2488 */
2489 if (I915_READ16(ISR) & flip_pending)
2490 return false;
2491
2492 intel_finish_page_flip(dev, pipe);
2493
2494 return true;
2495 }
2496
2497 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2498 {
2499 struct drm_device *dev = (struct drm_device *) arg;
2500 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2501 u16 iir, new_iir;
2502 u32 pipe_stats[2];
2503 unsigned long irqflags;
2504 int irq_received;
2505 int pipe;
2506 u16 flip_mask =
2507 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2508 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2509
2510 atomic_inc(&dev_priv->irq_received);
2511
2512 iir = I915_READ16(IIR);
2513 if (iir == 0)
2514 return IRQ_NONE;
2515
2516 while (iir & ~flip_mask) {
2517 /* Can't rely on pipestat interrupt bit in iir as it might
2518 * have been cleared after the pipestat interrupt was received.
2519 * It doesn't set the bit in iir again, but it still produces
2520 * interrupts (for non-MSI).
2521 */
2522 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2523 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2524 i915_handle_error(dev, false);
2525
2526 for_each_pipe(pipe) {
2527 int reg = PIPESTAT(pipe);
2528 pipe_stats[pipe] = I915_READ(reg);
2529
2530 /*
2531 * Clear the PIPE*STAT regs before the IIR
2532 */
2533 if (pipe_stats[pipe] & 0x8000ffff) {
2534 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2535 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2536 pipe_name(pipe));
2537 I915_WRITE(reg, pipe_stats[pipe]);
2538 irq_received = 1;
2539 }
2540 }
2541 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2542
2543 I915_WRITE16(IIR, iir & ~flip_mask);
2544 new_iir = I915_READ16(IIR); /* Flush posted writes */
2545
2546 i915_update_dri1_breadcrumb(dev);
2547
2548 if (iir & I915_USER_INTERRUPT)
2549 notify_ring(dev, &dev_priv->ring[RCS]);
2550
2551 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2552 i8xx_handle_vblank(dev, 0, iir))
2553 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2554
2555 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2556 i8xx_handle_vblank(dev, 1, iir))
2557 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2558
2559 iir = new_iir;
2560 }
2561
2562 return IRQ_HANDLED;
2563 }
2564
2565 static void i8xx_irq_uninstall(struct drm_device * dev)
2566 {
2567 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2568 int pipe;
2569
2570 for_each_pipe(pipe) {
2571 /* Clear enable bits; then clear status bits */
2572 I915_WRITE(PIPESTAT(pipe), 0);
2573 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2574 }
2575 I915_WRITE16(IMR, 0xffff);
2576 I915_WRITE16(IER, 0x0);
2577 I915_WRITE16(IIR, I915_READ16(IIR));
2578 }
2579
2580 static void i915_irq_preinstall(struct drm_device * dev)
2581 {
2582 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2583 int pipe;
2584
2585 atomic_set(&dev_priv->irq_received, 0);
2586
2587 if (I915_HAS_HOTPLUG(dev)) {
2588 I915_WRITE(PORT_HOTPLUG_EN, 0);
2589 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2590 }
2591
2592 I915_WRITE16(HWSTAM, 0xeffe);
2593 for_each_pipe(pipe)
2594 I915_WRITE(PIPESTAT(pipe), 0);
2595 I915_WRITE(IMR, 0xffffffff);
2596 I915_WRITE(IER, 0x0);
2597 POSTING_READ(IER);
2598 }
2599
2600 static int i915_irq_postinstall(struct drm_device *dev)
2601 {
2602 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2603 u32 enable_mask;
2604
2605 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2606
2607 /* Unmask the interrupts that we always want on. */
2608 dev_priv->irq_mask =
2609 ~(I915_ASLE_INTERRUPT |
2610 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2611 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2612 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2613 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2614 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2615
2616 enable_mask =
2617 I915_ASLE_INTERRUPT |
2618 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2619 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2620 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2621 I915_USER_INTERRUPT;
2622
2623 if (I915_HAS_HOTPLUG(dev)) {
2624 I915_WRITE(PORT_HOTPLUG_EN, 0);
2625 POSTING_READ(PORT_HOTPLUG_EN);
2626
2627 /* Enable in IER... */
2628 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2629 /* and unmask in IMR */
2630 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2631 }
2632
2633 I915_WRITE(IMR, dev_priv->irq_mask);
2634 I915_WRITE(IER, enable_mask);
2635 POSTING_READ(IER);
2636
2637 i915_enable_asle_pipestat(dev);
2638
2639 return 0;
2640 }
2641
2642 /*
2643 * Returns true when a page flip has completed.
2644 */
2645 static bool i915_handle_vblank(struct drm_device *dev,
2646 int plane, int pipe, u32 iir)
2647 {
2648 drm_i915_private_t *dev_priv = dev->dev_private;
2649 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2650
2651 if (!drm_handle_vblank(dev, pipe))
2652 return false;
2653
2654 if ((iir & flip_pending) == 0)
2655 return false;
2656
2657 intel_prepare_page_flip(dev, plane);
2658
2659 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2660 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2661 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2662 * the flip is completed (no longer pending). Since this doesn't raise
2663 * an interrupt per se, we watch for the change at vblank.
2664 */
2665 if (I915_READ(ISR) & flip_pending)
2666 return false;
2667
2668 intel_finish_page_flip(dev, pipe);
2669
2670 return true;
2671 }
2672
2673 static irqreturn_t i915_irq_handler(int irq, void *arg)
2674 {
2675 struct drm_device *dev = (struct drm_device *) arg;
2676 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2677 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2678 unsigned long irqflags;
2679 u32 flip_mask =
2680 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2681 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2682 int pipe, ret = IRQ_NONE;
2683
2684 atomic_inc(&dev_priv->irq_received);
2685
2686 iir = I915_READ(IIR);
2687 do {
2688 bool irq_received = (iir & ~flip_mask) != 0;
2689 bool blc_event = false;
2690
2691 /* Can't rely on pipestat interrupt bit in iir as it might
2692 * have been cleared after the pipestat interrupt was received.
2693 * It doesn't set the bit in iir again, but it still produces
2694 * interrupts (for non-MSI).
2695 */
2696 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2697 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2698 i915_handle_error(dev, false);
2699
2700 for_each_pipe(pipe) {
2701 int reg = PIPESTAT(pipe);
2702 pipe_stats[pipe] = I915_READ(reg);
2703
2704 /* Clear the PIPE*STAT regs before the IIR */
2705 if (pipe_stats[pipe] & 0x8000ffff) {
2706 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2707 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2708 pipe_name(pipe));
2709 I915_WRITE(reg, pipe_stats[pipe]);
2710 irq_received = true;
2711 }
2712 }
2713 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2714
2715 if (!irq_received)
2716 break;
2717
2718 /* Consume port. Then clear IIR or we'll miss events */
2719 if ((I915_HAS_HOTPLUG(dev)) &&
2720 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2721 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2722 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2723
2724 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2725 hotplug_status);
2726
2727 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2728
2729 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2730 POSTING_READ(PORT_HOTPLUG_STAT);
2731 }
2732
2733 I915_WRITE(IIR, iir & ~flip_mask);
2734 new_iir = I915_READ(IIR); /* Flush posted writes */
2735
2736 if (iir & I915_USER_INTERRUPT)
2737 notify_ring(dev, &dev_priv->ring[RCS]);
2738
2739 for_each_pipe(pipe) {
2740 int plane = pipe;
2741 if (IS_MOBILE(dev))
2742 plane = !plane;
2743
2744 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2745 i915_handle_vblank(dev, plane, pipe, iir))
2746 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2747
2748 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2749 blc_event = true;
2750 }
2751
2752 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2753 intel_opregion_asle_intr(dev);
2754
2755 /* With MSI, interrupts are only generated when iir
2756 * transitions from zero to nonzero. If another bit got
2757 * set while we were handling the existing iir bits, then
2758 * we would never get another interrupt.
2759 *
2760 * This is fine on non-MSI as well, as if we hit this path
2761 * we avoid exiting the interrupt handler only to generate
2762 * another one.
2763 *
2764 * Note that for MSI this could cause a stray interrupt report
2765 * if an interrupt landed in the time between writing IIR and
2766 * the posting read. This should be rare enough to never
2767 * trigger the 99% of 100,000 interrupts test for disabling
2768 * stray interrupts.
2769 */
2770 ret = IRQ_HANDLED;
2771 iir = new_iir;
2772 } while (iir & ~flip_mask);
2773
2774 i915_update_dri1_breadcrumb(dev);
2775
2776 return ret;
2777 }
2778
2779 static void i915_irq_uninstall(struct drm_device * dev)
2780 {
2781 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2782 int pipe;
2783
2784 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2785
2786 if (I915_HAS_HOTPLUG(dev)) {
2787 I915_WRITE(PORT_HOTPLUG_EN, 0);
2788 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2789 }
2790
2791 I915_WRITE16(HWSTAM, 0xffff);
2792 for_each_pipe(pipe) {
2793 /* Clear enable bits; then clear status bits */
2794 I915_WRITE(PIPESTAT(pipe), 0);
2795 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2796 }
2797 I915_WRITE(IMR, 0xffffffff);
2798 I915_WRITE(IER, 0x0);
2799
2800 I915_WRITE(IIR, I915_READ(IIR));
2801 }
2802
2803 static void i965_irq_preinstall(struct drm_device * dev)
2804 {
2805 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2806 int pipe;
2807
2808 atomic_set(&dev_priv->irq_received, 0);
2809
2810 I915_WRITE(PORT_HOTPLUG_EN, 0);
2811 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2812
2813 I915_WRITE(HWSTAM, 0xeffe);
2814 for_each_pipe(pipe)
2815 I915_WRITE(PIPESTAT(pipe), 0);
2816 I915_WRITE(IMR, 0xffffffff);
2817 I915_WRITE(IER, 0x0);
2818 POSTING_READ(IER);
2819 }
2820
2821 static int i965_irq_postinstall(struct drm_device *dev)
2822 {
2823 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2824 u32 enable_mask;
2825 u32 error_mask;
2826 unsigned long irqflags;
2827
2828 /* Unmask the interrupts that we always want on. */
2829 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2830 I915_DISPLAY_PORT_INTERRUPT |
2831 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2832 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2833 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2834 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2835 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2836
2837 enable_mask = ~dev_priv->irq_mask;
2838 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2839 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2840 enable_mask |= I915_USER_INTERRUPT;
2841
2842 if (IS_G4X(dev))
2843 enable_mask |= I915_BSD_USER_INTERRUPT;
2844
2845 /* Interrupt setup is already guaranteed to be single-threaded, this is
2846 * just to make the assert_spin_locked check happy. */
2847 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2848 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2849 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2850
2851 /*
2852 * Enable some error detection, note the instruction error mask
2853 * bit is reserved, so we leave it masked.
2854 */
2855 if (IS_G4X(dev)) {
2856 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2857 GM45_ERROR_MEM_PRIV |
2858 GM45_ERROR_CP_PRIV |
2859 I915_ERROR_MEMORY_REFRESH);
2860 } else {
2861 error_mask = ~(I915_ERROR_PAGE_TABLE |
2862 I915_ERROR_MEMORY_REFRESH);
2863 }
2864 I915_WRITE(EMR, error_mask);
2865
2866 I915_WRITE(IMR, dev_priv->irq_mask);
2867 I915_WRITE(IER, enable_mask);
2868 POSTING_READ(IER);
2869
2870 I915_WRITE(PORT_HOTPLUG_EN, 0);
2871 POSTING_READ(PORT_HOTPLUG_EN);
2872
2873 i915_enable_asle_pipestat(dev);
2874
2875 return 0;
2876 }
2877
2878 static void i915_hpd_irq_setup(struct drm_device *dev)
2879 {
2880 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2881 struct drm_mode_config *mode_config = &dev->mode_config;
2882 struct intel_encoder *intel_encoder;
2883 u32 hotplug_en;
2884
2885 assert_spin_locked(&dev_priv->irq_lock);
2886
2887 if (I915_HAS_HOTPLUG(dev)) {
2888 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2889 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2890 /* Note HDMI and DP share hotplug bits */
2891 /* enable bits are the same for all generations */
2892 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2893 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2894 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2895 /* Programming the CRT detection parameters tends
2896 to generate a spurious hotplug event about three
2897 seconds later. So just do it once.
2898 */
2899 if (IS_G4X(dev))
2900 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2901 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2902 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2903
2904 /* Ignore TV since it's buggy */
2905 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2906 }
2907 }
2908
2909 static irqreturn_t i965_irq_handler(int irq, void *arg)
2910 {
2911 struct drm_device *dev = (struct drm_device *) arg;
2912 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2913 u32 iir, new_iir;
2914 u32 pipe_stats[I915_MAX_PIPES];
2915 unsigned long irqflags;
2916 int irq_received;
2917 int ret = IRQ_NONE, pipe;
2918 u32 flip_mask =
2919 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2920 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2921
2922 atomic_inc(&dev_priv->irq_received);
2923
2924 iir = I915_READ(IIR);
2925
2926 for (;;) {
2927 bool blc_event = false;
2928
2929 irq_received = (iir & ~flip_mask) != 0;
2930
2931 /* Can't rely on pipestat interrupt bit in iir as it might
2932 * have been cleared after the pipestat interrupt was received.
2933 * It doesn't set the bit in iir again, but it still produces
2934 * interrupts (for non-MSI).
2935 */
2936 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2937 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2938 i915_handle_error(dev, false);
2939
2940 for_each_pipe(pipe) {
2941 int reg = PIPESTAT(pipe);
2942 pipe_stats[pipe] = I915_READ(reg);
2943
2944 /*
2945 * Clear the PIPE*STAT regs before the IIR
2946 */
2947 if (pipe_stats[pipe] & 0x8000ffff) {
2948 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2949 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2950 pipe_name(pipe));
2951 I915_WRITE(reg, pipe_stats[pipe]);
2952 irq_received = 1;
2953 }
2954 }
2955 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2956
2957 if (!irq_received)
2958 break;
2959
2960 ret = IRQ_HANDLED;
2961
2962 /* Consume port. Then clear IIR or we'll miss events */
2963 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2964 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2965 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2966 HOTPLUG_INT_STATUS_G4X :
2967 HOTPLUG_INT_STATUS_I915);
2968
2969 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2970 hotplug_status);
2971
2972 intel_hpd_irq_handler(dev, hotplug_trigger,
2973 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2974
2975 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2976 I915_READ(PORT_HOTPLUG_STAT);
2977 }
2978
2979 I915_WRITE(IIR, iir & ~flip_mask);
2980 new_iir = I915_READ(IIR); /* Flush posted writes */
2981
2982 if (iir & I915_USER_INTERRUPT)
2983 notify_ring(dev, &dev_priv->ring[RCS]);
2984 if (iir & I915_BSD_USER_INTERRUPT)
2985 notify_ring(dev, &dev_priv->ring[VCS]);
2986
2987 for_each_pipe(pipe) {
2988 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2989 i915_handle_vblank(dev, pipe, pipe, iir))
2990 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
2991
2992 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2993 blc_event = true;
2994 }
2995
2996
2997 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2998 intel_opregion_asle_intr(dev);
2999
3000 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3001 gmbus_irq_handler(dev);
3002
3003 /* With MSI, interrupts are only generated when iir
3004 * transitions from zero to nonzero. If another bit got
3005 * set while we were handling the existing iir bits, then
3006 * we would never get another interrupt.
3007 *
3008 * This is fine on non-MSI as well, as if we hit this path
3009 * we avoid exiting the interrupt handler only to generate
3010 * another one.
3011 *
3012 * Note that for MSI this could cause a stray interrupt report
3013 * if an interrupt landed in the time between writing IIR and
3014 * the posting read. This should be rare enough to never
3015 * trigger the 99% of 100,000 interrupts test for disabling
3016 * stray interrupts.
3017 */
3018 iir = new_iir;
3019 }
3020
3021 i915_update_dri1_breadcrumb(dev);
3022
3023 return ret;
3024 }
3025
3026 static void i965_irq_uninstall(struct drm_device * dev)
3027 {
3028 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3029 int pipe;
3030
3031 if (!dev_priv)
3032 return;
3033
3034 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3035
3036 I915_WRITE(PORT_HOTPLUG_EN, 0);
3037 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3038
3039 I915_WRITE(HWSTAM, 0xffffffff);
3040 for_each_pipe(pipe)
3041 I915_WRITE(PIPESTAT(pipe), 0);
3042 I915_WRITE(IMR, 0xffffffff);
3043 I915_WRITE(IER, 0x0);
3044
3045 for_each_pipe(pipe)
3046 I915_WRITE(PIPESTAT(pipe),
3047 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3048 I915_WRITE(IIR, I915_READ(IIR));
3049 }
3050
3051 static void i915_reenable_hotplug_timer_func(unsigned long data)
3052 {
3053 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3054 struct drm_device *dev = dev_priv->dev;
3055 struct drm_mode_config *mode_config = &dev->mode_config;
3056 unsigned long irqflags;
3057 int i;
3058
3059 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3060 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3061 struct drm_connector *connector;
3062
3063 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3064 continue;
3065
3066 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3067
3068 list_for_each_entry(connector, &mode_config->connector_list, head) {
3069 struct intel_connector *intel_connector = to_intel_connector(connector);
3070
3071 if (intel_connector->encoder->hpd_pin == i) {
3072 if (connector->polled != intel_connector->polled)
3073 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3074 drm_get_connector_name(connector));
3075 connector->polled = intel_connector->polled;
3076 if (!connector->polled)
3077 connector->polled = DRM_CONNECTOR_POLL_HPD;
3078 }
3079 }
3080 }
3081 if (dev_priv->display.hpd_irq_setup)
3082 dev_priv->display.hpd_irq_setup(dev);
3083 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3084 }
3085
3086 void intel_irq_init(struct drm_device *dev)
3087 {
3088 struct drm_i915_private *dev_priv = dev->dev_private;
3089
3090 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3091 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3092 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3093 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3094
3095 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3096 i915_hangcheck_elapsed,
3097 (unsigned long) dev);
3098 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3099 (unsigned long) dev_priv);
3100
3101 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3102
3103 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3104 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3105 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3106 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3107 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3108 }
3109
3110 if (drm_core_check_feature(dev, DRIVER_MODESET))
3111 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3112 else
3113 dev->driver->get_vblank_timestamp = NULL;
3114 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3115
3116 if (IS_VALLEYVIEW(dev)) {
3117 dev->driver->irq_handler = valleyview_irq_handler;
3118 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3119 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3120 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3121 dev->driver->enable_vblank = valleyview_enable_vblank;
3122 dev->driver->disable_vblank = valleyview_disable_vblank;
3123 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3124 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3125 /* Share uninstall handlers with ILK/SNB */
3126 dev->driver->irq_handler = ivybridge_irq_handler;
3127 dev->driver->irq_preinstall = ivybridge_irq_preinstall;
3128 dev->driver->irq_postinstall = ivybridge_irq_postinstall;
3129 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3130 dev->driver->enable_vblank = ivybridge_enable_vblank;
3131 dev->driver->disable_vblank = ivybridge_disable_vblank;
3132 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3133 } else if (HAS_PCH_SPLIT(dev)) {
3134 dev->driver->irq_handler = ironlake_irq_handler;
3135 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3136 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3137 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3138 dev->driver->enable_vblank = ironlake_enable_vblank;
3139 dev->driver->disable_vblank = ironlake_disable_vblank;
3140 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3141 } else {
3142 if (INTEL_INFO(dev)->gen == 2) {
3143 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3144 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3145 dev->driver->irq_handler = i8xx_irq_handler;
3146 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3147 } else if (INTEL_INFO(dev)->gen == 3) {
3148 dev->driver->irq_preinstall = i915_irq_preinstall;
3149 dev->driver->irq_postinstall = i915_irq_postinstall;
3150 dev->driver->irq_uninstall = i915_irq_uninstall;
3151 dev->driver->irq_handler = i915_irq_handler;
3152 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3153 } else {
3154 dev->driver->irq_preinstall = i965_irq_preinstall;
3155 dev->driver->irq_postinstall = i965_irq_postinstall;
3156 dev->driver->irq_uninstall = i965_irq_uninstall;
3157 dev->driver->irq_handler = i965_irq_handler;
3158 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3159 }
3160 dev->driver->enable_vblank = i915_enable_vblank;
3161 dev->driver->disable_vblank = i915_disable_vblank;
3162 }
3163 }
3164
3165 void intel_hpd_init(struct drm_device *dev)
3166 {
3167 struct drm_i915_private *dev_priv = dev->dev_private;
3168 struct drm_mode_config *mode_config = &dev->mode_config;
3169 struct drm_connector *connector;
3170 unsigned long irqflags;
3171 int i;
3172
3173 for (i = 1; i < HPD_NUM_PINS; i++) {
3174 dev_priv->hpd_stats[i].hpd_cnt = 0;
3175 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3176 }
3177 list_for_each_entry(connector, &mode_config->connector_list, head) {
3178 struct intel_connector *intel_connector = to_intel_connector(connector);
3179 connector->polled = intel_connector->polled;
3180 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3181 connector->polled = DRM_CONNECTOR_POLL_HPD;
3182 }
3183
3184 /* Interrupt setup is already guaranteed to be single-threaded, this is
3185 * just to make the assert_spin_locked checks happy. */
3186 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3187 if (dev_priv->display.hpd_irq_setup)
3188 dev_priv->display.hpd_irq_setup(dev);
3189 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3190 }
This page took 0.112174 seconds and 6 git commands to generate.