Merge tag 'topic/core-stuff-2015-01-23' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94 POSTING_READ(GEN8_##type##_IMR(which)); \
95 I915_WRITE(GEN8_##type##_IER(which), 0); \
96 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97 POSTING_READ(GEN8_##type##_IIR(which)); \
98 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99 POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103 I915_WRITE(type##IMR, 0xffffffff); \
104 POSTING_READ(type##IMR); \
105 I915_WRITE(type##IER, 0); \
106 I915_WRITE(type##IIR, 0xffffffff); \
107 POSTING_READ(type##IIR); \
108 I915_WRITE(type##IIR, 0xffffffff); \
109 POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114 */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116 u32 val = I915_READ(reg); \
117 if (val) { \
118 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119 (reg), val); \
120 I915_WRITE((reg), 0xffffffff); \
121 POSTING_READ(reg); \
122 I915_WRITE((reg), 0xffffffff); \
123 POSTING_READ(reg); \
124 } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131 POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136 I915_WRITE(type##IER, (ier_val)); \
137 I915_WRITE(type##IMR, (imr_val)); \
138 POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147 assert_spin_locked(&dev_priv->irq_lock);
148
149 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150 return;
151
152 if ((dev_priv->irq_mask & mask) != 0) {
153 dev_priv->irq_mask &= ~mask;
154 I915_WRITE(DEIMR, dev_priv->irq_mask);
155 POSTING_READ(DEIMR);
156 }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162 assert_spin_locked(&dev_priv->irq_lock);
163
164 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165 return;
166
167 if ((dev_priv->irq_mask & mask) != mask) {
168 dev_priv->irq_mask |= mask;
169 I915_WRITE(DEIMR, dev_priv->irq_mask);
170 POSTING_READ(DEIMR);
171 }
172 }
173
174 /**
175 * ilk_update_gt_irq - update GTIMR
176 * @dev_priv: driver private
177 * @interrupt_mask: mask of interrupt bits to update
178 * @enabled_irq_mask: mask of interrupt bits to enable
179 */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181 uint32_t interrupt_mask,
182 uint32_t enabled_irq_mask)
183 {
184 assert_spin_locked(&dev_priv->irq_lock);
185
186 WARN_ON(enabled_irq_mask & ~interrupt_mask);
187
188 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
189 return;
190
191 dev_priv->gt_irq_mask &= ~interrupt_mask;
192 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
193 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
194 POSTING_READ(GTIMR);
195 }
196
197 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198 {
199 ilk_update_gt_irq(dev_priv, mask, mask);
200 }
201
202 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
203 {
204 ilk_update_gt_irq(dev_priv, mask, 0);
205 }
206
207 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
208 {
209 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
210 }
211
212 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
213 {
214 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
215 }
216
217 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
218 {
219 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
220 }
221
222 /**
223 * snb_update_pm_irq - update GEN6_PMIMR
224 * @dev_priv: driver private
225 * @interrupt_mask: mask of interrupt bits to update
226 * @enabled_irq_mask: mask of interrupt bits to enable
227 */
228 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
229 uint32_t interrupt_mask,
230 uint32_t enabled_irq_mask)
231 {
232 uint32_t new_val;
233
234 WARN_ON(enabled_irq_mask & ~interrupt_mask);
235
236 assert_spin_locked(&dev_priv->irq_lock);
237
238 new_val = dev_priv->pm_irq_mask;
239 new_val &= ~interrupt_mask;
240 new_val |= (~enabled_irq_mask & interrupt_mask);
241
242 if (new_val != dev_priv->pm_irq_mask) {
243 dev_priv->pm_irq_mask = new_val;
244 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
245 POSTING_READ(gen6_pm_imr(dev_priv));
246 }
247 }
248
249 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
250 {
251 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
252 return;
253
254 snb_update_pm_irq(dev_priv, mask, mask);
255 }
256
257 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
258 uint32_t mask)
259 {
260 snb_update_pm_irq(dev_priv, mask, 0);
261 }
262
263 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
264 {
265 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
266 return;
267
268 __gen6_disable_pm_irq(dev_priv, mask);
269 }
270
271 void gen6_reset_rps_interrupts(struct drm_device *dev)
272 {
273 struct drm_i915_private *dev_priv = dev->dev_private;
274 uint32_t reg = gen6_pm_iir(dev_priv);
275
276 spin_lock_irq(&dev_priv->irq_lock);
277 I915_WRITE(reg, dev_priv->pm_rps_events);
278 I915_WRITE(reg, dev_priv->pm_rps_events);
279 POSTING_READ(reg);
280 spin_unlock_irq(&dev_priv->irq_lock);
281 }
282
283 void gen6_enable_rps_interrupts(struct drm_device *dev)
284 {
285 struct drm_i915_private *dev_priv = dev->dev_private;
286
287 spin_lock_irq(&dev_priv->irq_lock);
288
289 WARN_ON(dev_priv->rps.pm_iir);
290 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
291 dev_priv->rps.interrupts_enabled = true;
292 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
293 dev_priv->pm_rps_events);
294 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
295
296 spin_unlock_irq(&dev_priv->irq_lock);
297 }
298
299 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
300 {
301 /*
302 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
303 * if GEN6_PM_UP_EI_EXPIRED is masked.
304 *
305 * TODO: verify if this can be reproduced on VLV,CHV.
306 */
307 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
308 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
309
310 if (INTEL_INFO(dev_priv)->gen >= 8)
311 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
312
313 return mask;
314 }
315
316 void gen6_disable_rps_interrupts(struct drm_device *dev)
317 {
318 struct drm_i915_private *dev_priv = dev->dev_private;
319
320 spin_lock_irq(&dev_priv->irq_lock);
321 dev_priv->rps.interrupts_enabled = false;
322 spin_unlock_irq(&dev_priv->irq_lock);
323
324 cancel_work_sync(&dev_priv->rps.work);
325
326 spin_lock_irq(&dev_priv->irq_lock);
327
328 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
329
330 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
331 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
332 ~dev_priv->pm_rps_events);
333 I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
334 I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
335
336 dev_priv->rps.pm_iir = 0;
337
338 spin_unlock_irq(&dev_priv->irq_lock);
339 }
340
341 /**
342 * ibx_display_interrupt_update - update SDEIMR
343 * @dev_priv: driver private
344 * @interrupt_mask: mask of interrupt bits to update
345 * @enabled_irq_mask: mask of interrupt bits to enable
346 */
347 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
348 uint32_t interrupt_mask,
349 uint32_t enabled_irq_mask)
350 {
351 uint32_t sdeimr = I915_READ(SDEIMR);
352 sdeimr &= ~interrupt_mask;
353 sdeimr |= (~enabled_irq_mask & interrupt_mask);
354
355 WARN_ON(enabled_irq_mask & ~interrupt_mask);
356
357 assert_spin_locked(&dev_priv->irq_lock);
358
359 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
360 return;
361
362 I915_WRITE(SDEIMR, sdeimr);
363 POSTING_READ(SDEIMR);
364 }
365
366 static void
367 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
368 u32 enable_mask, u32 status_mask)
369 {
370 u32 reg = PIPESTAT(pipe);
371 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
372
373 assert_spin_locked(&dev_priv->irq_lock);
374 WARN_ON(!intel_irqs_enabled(dev_priv));
375
376 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
377 status_mask & ~PIPESTAT_INT_STATUS_MASK,
378 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
379 pipe_name(pipe), enable_mask, status_mask))
380 return;
381
382 if ((pipestat & enable_mask) == enable_mask)
383 return;
384
385 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
386
387 /* Enable the interrupt, clear any pending status */
388 pipestat |= enable_mask | status_mask;
389 I915_WRITE(reg, pipestat);
390 POSTING_READ(reg);
391 }
392
393 static void
394 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
395 u32 enable_mask, u32 status_mask)
396 {
397 u32 reg = PIPESTAT(pipe);
398 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
399
400 assert_spin_locked(&dev_priv->irq_lock);
401 WARN_ON(!intel_irqs_enabled(dev_priv));
402
403 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
404 status_mask & ~PIPESTAT_INT_STATUS_MASK,
405 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
406 pipe_name(pipe), enable_mask, status_mask))
407 return;
408
409 if ((pipestat & enable_mask) == 0)
410 return;
411
412 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
413
414 pipestat &= ~enable_mask;
415 I915_WRITE(reg, pipestat);
416 POSTING_READ(reg);
417 }
418
419 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
420 {
421 u32 enable_mask = status_mask << 16;
422
423 /*
424 * On pipe A we don't support the PSR interrupt yet,
425 * on pipe B and C the same bit MBZ.
426 */
427 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
428 return 0;
429 /*
430 * On pipe B and C we don't support the PSR interrupt yet, on pipe
431 * A the same bit is for perf counters which we don't use either.
432 */
433 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
434 return 0;
435
436 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
437 SPRITE0_FLIP_DONE_INT_EN_VLV |
438 SPRITE1_FLIP_DONE_INT_EN_VLV);
439 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
440 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
441 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
442 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
443
444 return enable_mask;
445 }
446
447 void
448 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
449 u32 status_mask)
450 {
451 u32 enable_mask;
452
453 if (IS_VALLEYVIEW(dev_priv->dev))
454 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
455 status_mask);
456 else
457 enable_mask = status_mask << 16;
458 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
459 }
460
461 void
462 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
463 u32 status_mask)
464 {
465 u32 enable_mask;
466
467 if (IS_VALLEYVIEW(dev_priv->dev))
468 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
469 status_mask);
470 else
471 enable_mask = status_mask << 16;
472 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
473 }
474
475 /**
476 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
477 */
478 static void i915_enable_asle_pipestat(struct drm_device *dev)
479 {
480 struct drm_i915_private *dev_priv = dev->dev_private;
481
482 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
483 return;
484
485 spin_lock_irq(&dev_priv->irq_lock);
486
487 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
488 if (INTEL_INFO(dev)->gen >= 4)
489 i915_enable_pipestat(dev_priv, PIPE_A,
490 PIPE_LEGACY_BLC_EVENT_STATUS);
491
492 spin_unlock_irq(&dev_priv->irq_lock);
493 }
494
495 /**
496 * i915_pipe_enabled - check if a pipe is enabled
497 * @dev: DRM device
498 * @pipe: pipe to check
499 *
500 * Reading certain registers when the pipe is disabled can hang the chip.
501 * Use this routine to make sure the PLL is running and the pipe is active
502 * before reading such registers if unsure.
503 */
504 static int
505 i915_pipe_enabled(struct drm_device *dev, int pipe)
506 {
507 struct drm_i915_private *dev_priv = dev->dev_private;
508
509 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
510 /* Locking is horribly broken here, but whatever. */
511 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
513
514 return intel_crtc->active;
515 } else {
516 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
517 }
518 }
519
520 /*
521 * This timing diagram depicts the video signal in and
522 * around the vertical blanking period.
523 *
524 * Assumptions about the fictitious mode used in this example:
525 * vblank_start >= 3
526 * vsync_start = vblank_start + 1
527 * vsync_end = vblank_start + 2
528 * vtotal = vblank_start + 3
529 *
530 * start of vblank:
531 * latch double buffered registers
532 * increment frame counter (ctg+)
533 * generate start of vblank interrupt (gen4+)
534 * |
535 * | frame start:
536 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
537 * | may be shifted forward 1-3 extra lines via PIPECONF
538 * | |
539 * | | start of vsync:
540 * | | generate vsync interrupt
541 * | | |
542 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
543 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
544 * ----va---> <-----------------vb--------------------> <--------va-------------
545 * | | <----vs-----> |
546 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
547 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
548 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
549 * | | |
550 * last visible pixel first visible pixel
551 * | increment frame counter (gen3/4)
552 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
553 *
554 * x = horizontal active
555 * _ = horizontal blanking
556 * hs = horizontal sync
557 * va = vertical active
558 * vb = vertical blanking
559 * vs = vertical sync
560 * vbs = vblank_start (number)
561 *
562 * Summary:
563 * - most events happen at the start of horizontal sync
564 * - frame start happens at the start of horizontal blank, 1-4 lines
565 * (depending on PIPECONF settings) after the start of vblank
566 * - gen3/4 pixel and frame counter are synchronized with the start
567 * of horizontal active on the first line of vertical active
568 */
569
570 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
571 {
572 /* Gen2 doesn't have a hardware frame counter */
573 return 0;
574 }
575
576 /* Called from drm generic code, passed a 'crtc', which
577 * we use as a pipe index
578 */
579 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
580 {
581 struct drm_i915_private *dev_priv = dev->dev_private;
582 unsigned long high_frame;
583 unsigned long low_frame;
584 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
585
586 if (!i915_pipe_enabled(dev, pipe)) {
587 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
588 "pipe %c\n", pipe_name(pipe));
589 return 0;
590 }
591
592 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
593 struct intel_crtc *intel_crtc =
594 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
595 const struct drm_display_mode *mode =
596 &intel_crtc->config.adjusted_mode;
597
598 htotal = mode->crtc_htotal;
599 hsync_start = mode->crtc_hsync_start;
600 vbl_start = mode->crtc_vblank_start;
601 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
602 vbl_start = DIV_ROUND_UP(vbl_start, 2);
603 } else {
604 enum transcoder cpu_transcoder = (enum transcoder) pipe;
605
606 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
607 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1;
608 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
609 if ((I915_READ(PIPECONF(cpu_transcoder)) &
610 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
611 vbl_start = DIV_ROUND_UP(vbl_start, 2);
612 }
613
614 /* Convert to pixel count */
615 vbl_start *= htotal;
616
617 /* Start of vblank event occurs at start of hsync */
618 vbl_start -= htotal - hsync_start;
619
620 high_frame = PIPEFRAME(pipe);
621 low_frame = PIPEFRAMEPIXEL(pipe);
622
623 /*
624 * High & low register fields aren't synchronized, so make sure
625 * we get a low value that's stable across two reads of the high
626 * register.
627 */
628 do {
629 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
630 low = I915_READ(low_frame);
631 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
632 } while (high1 != high2);
633
634 high1 >>= PIPE_FRAME_HIGH_SHIFT;
635 pixel = low & PIPE_PIXEL_MASK;
636 low >>= PIPE_FRAME_LOW_SHIFT;
637
638 /*
639 * The frame counter increments at beginning of active.
640 * Cook up a vblank counter by also checking the pixel
641 * counter against vblank start.
642 */
643 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
644 }
645
646 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
647 {
648 struct drm_i915_private *dev_priv = dev->dev_private;
649 int reg = PIPE_FRMCOUNT_GM45(pipe);
650
651 if (!i915_pipe_enabled(dev, pipe)) {
652 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
653 "pipe %c\n", pipe_name(pipe));
654 return 0;
655 }
656
657 return I915_READ(reg);
658 }
659
660 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
661 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
662
663 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
664 {
665 struct drm_device *dev = crtc->base.dev;
666 struct drm_i915_private *dev_priv = dev->dev_private;
667 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
668 enum pipe pipe = crtc->pipe;
669 int position, vtotal;
670
671 vtotal = mode->crtc_vtotal;
672 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
673 vtotal /= 2;
674
675 if (IS_GEN2(dev))
676 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
677 else
678 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
679
680 /*
681 * See update_scanline_offset() for the details on the
682 * scanline_offset adjustment.
683 */
684 return (position + crtc->scanline_offset) % vtotal;
685 }
686
687 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
688 unsigned int flags, int *vpos, int *hpos,
689 ktime_t *stime, ktime_t *etime)
690 {
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
694 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
695 int position;
696 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
697 bool in_vbl = true;
698 int ret = 0;
699 unsigned long irqflags;
700
701 if (!intel_crtc->active) {
702 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
703 "pipe %c\n", pipe_name(pipe));
704 return 0;
705 }
706
707 htotal = mode->crtc_htotal;
708 hsync_start = mode->crtc_hsync_start;
709 vtotal = mode->crtc_vtotal;
710 vbl_start = mode->crtc_vblank_start;
711 vbl_end = mode->crtc_vblank_end;
712
713 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
714 vbl_start = DIV_ROUND_UP(vbl_start, 2);
715 vbl_end /= 2;
716 vtotal /= 2;
717 }
718
719 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
720
721 /*
722 * Lock uncore.lock, as we will do multiple timing critical raw
723 * register reads, potentially with preemption disabled, so the
724 * following code must not block on uncore.lock.
725 */
726 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
727
728 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
729
730 /* Get optional system timestamp before query. */
731 if (stime)
732 *stime = ktime_get();
733
734 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
735 /* No obvious pixelcount register. Only query vertical
736 * scanout position from Display scan line register.
737 */
738 position = __intel_get_crtc_scanline(intel_crtc);
739 } else {
740 /* Have access to pixelcount since start of frame.
741 * We can split this into vertical and horizontal
742 * scanout position.
743 */
744 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
745
746 /* convert to pixel counts */
747 vbl_start *= htotal;
748 vbl_end *= htotal;
749 vtotal *= htotal;
750
751 /*
752 * In interlaced modes, the pixel counter counts all pixels,
753 * so one field will have htotal more pixels. In order to avoid
754 * the reported position from jumping backwards when the pixel
755 * counter is beyond the length of the shorter field, just
756 * clamp the position the length of the shorter field. This
757 * matches how the scanline counter based position works since
758 * the scanline counter doesn't count the two half lines.
759 */
760 if (position >= vtotal)
761 position = vtotal - 1;
762
763 /*
764 * Start of vblank interrupt is triggered at start of hsync,
765 * just prior to the first active line of vblank. However we
766 * consider lines to start at the leading edge of horizontal
767 * active. So, should we get here before we've crossed into
768 * the horizontal active of the first line in vblank, we would
769 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
770 * always add htotal-hsync_start to the current pixel position.
771 */
772 position = (position + htotal - hsync_start) % vtotal;
773 }
774
775 /* Get optional system timestamp after query. */
776 if (etime)
777 *etime = ktime_get();
778
779 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
780
781 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782
783 in_vbl = position >= vbl_start && position < vbl_end;
784
785 /*
786 * While in vblank, position will be negative
787 * counting up towards 0 at vbl_end. And outside
788 * vblank, position will be positive counting
789 * up since vbl_end.
790 */
791 if (position >= vbl_start)
792 position -= vbl_end;
793 else
794 position += vtotal - vbl_end;
795
796 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
797 *vpos = position;
798 *hpos = 0;
799 } else {
800 *vpos = position / htotal;
801 *hpos = position - (*vpos * htotal);
802 }
803
804 /* In vblank? */
805 if (in_vbl)
806 ret |= DRM_SCANOUTPOS_IN_VBLANK;
807
808 return ret;
809 }
810
811 int intel_get_crtc_scanline(struct intel_crtc *crtc)
812 {
813 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
814 unsigned long irqflags;
815 int position;
816
817 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
818 position = __intel_get_crtc_scanline(crtc);
819 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
820
821 return position;
822 }
823
824 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
825 int *max_error,
826 struct timeval *vblank_time,
827 unsigned flags)
828 {
829 struct drm_crtc *crtc;
830
831 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
832 DRM_ERROR("Invalid crtc %d\n", pipe);
833 return -EINVAL;
834 }
835
836 /* Get drm_crtc to timestamp: */
837 crtc = intel_get_crtc_for_pipe(dev, pipe);
838 if (crtc == NULL) {
839 DRM_ERROR("Invalid crtc %d\n", pipe);
840 return -EINVAL;
841 }
842
843 if (!crtc->enabled) {
844 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
845 return -EBUSY;
846 }
847
848 /* Helper routine in DRM core does all the work: */
849 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
850 vblank_time, flags,
851 crtc,
852 &to_intel_crtc(crtc)->config.adjusted_mode);
853 }
854
855 static bool intel_hpd_irq_event(struct drm_device *dev,
856 struct drm_connector *connector)
857 {
858 enum drm_connector_status old_status;
859
860 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
861 old_status = connector->status;
862
863 connector->status = connector->funcs->detect(connector, false);
864 if (old_status == connector->status)
865 return false;
866
867 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
868 connector->base.id,
869 connector->name,
870 drm_get_connector_status_name(old_status),
871 drm_get_connector_status_name(connector->status));
872
873 return true;
874 }
875
876 static void i915_digport_work_func(struct work_struct *work)
877 {
878 struct drm_i915_private *dev_priv =
879 container_of(work, struct drm_i915_private, dig_port_work);
880 u32 long_port_mask, short_port_mask;
881 struct intel_digital_port *intel_dig_port;
882 int i, ret;
883 u32 old_bits = 0;
884
885 spin_lock_irq(&dev_priv->irq_lock);
886 long_port_mask = dev_priv->long_hpd_port_mask;
887 dev_priv->long_hpd_port_mask = 0;
888 short_port_mask = dev_priv->short_hpd_port_mask;
889 dev_priv->short_hpd_port_mask = 0;
890 spin_unlock_irq(&dev_priv->irq_lock);
891
892 for (i = 0; i < I915_MAX_PORTS; i++) {
893 bool valid = false;
894 bool long_hpd = false;
895 intel_dig_port = dev_priv->hpd_irq_port[i];
896 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
897 continue;
898
899 if (long_port_mask & (1 << i)) {
900 valid = true;
901 long_hpd = true;
902 } else if (short_port_mask & (1 << i))
903 valid = true;
904
905 if (valid) {
906 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
907 if (ret == true) {
908 /* if we get true fallback to old school hpd */
909 old_bits |= (1 << intel_dig_port->base.hpd_pin);
910 }
911 }
912 }
913
914 if (old_bits) {
915 spin_lock_irq(&dev_priv->irq_lock);
916 dev_priv->hpd_event_bits |= old_bits;
917 spin_unlock_irq(&dev_priv->irq_lock);
918 schedule_work(&dev_priv->hotplug_work);
919 }
920 }
921
922 /*
923 * Handle hotplug events outside the interrupt handler proper.
924 */
925 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
926
927 static void i915_hotplug_work_func(struct work_struct *work)
928 {
929 struct drm_i915_private *dev_priv =
930 container_of(work, struct drm_i915_private, hotplug_work);
931 struct drm_device *dev = dev_priv->dev;
932 struct drm_mode_config *mode_config = &dev->mode_config;
933 struct intel_connector *intel_connector;
934 struct intel_encoder *intel_encoder;
935 struct drm_connector *connector;
936 bool hpd_disabled = false;
937 bool changed = false;
938 u32 hpd_event_bits;
939
940 mutex_lock(&mode_config->mutex);
941 DRM_DEBUG_KMS("running encoder hotplug functions\n");
942
943 spin_lock_irq(&dev_priv->irq_lock);
944
945 hpd_event_bits = dev_priv->hpd_event_bits;
946 dev_priv->hpd_event_bits = 0;
947 list_for_each_entry(connector, &mode_config->connector_list, head) {
948 intel_connector = to_intel_connector(connector);
949 if (!intel_connector->encoder)
950 continue;
951 intel_encoder = intel_connector->encoder;
952 if (intel_encoder->hpd_pin > HPD_NONE &&
953 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
954 connector->polled == DRM_CONNECTOR_POLL_HPD) {
955 DRM_INFO("HPD interrupt storm detected on connector %s: "
956 "switching from hotplug detection to polling\n",
957 connector->name);
958 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
959 connector->polled = DRM_CONNECTOR_POLL_CONNECT
960 | DRM_CONNECTOR_POLL_DISCONNECT;
961 hpd_disabled = true;
962 }
963 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
964 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
965 connector->name, intel_encoder->hpd_pin);
966 }
967 }
968 /* if there were no outputs to poll, poll was disabled,
969 * therefore make sure it's enabled when disabling HPD on
970 * some connectors */
971 if (hpd_disabled) {
972 drm_kms_helper_poll_enable(dev);
973 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
974 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
975 }
976
977 spin_unlock_irq(&dev_priv->irq_lock);
978
979 list_for_each_entry(connector, &mode_config->connector_list, head) {
980 intel_connector = to_intel_connector(connector);
981 if (!intel_connector->encoder)
982 continue;
983 intel_encoder = intel_connector->encoder;
984 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
985 if (intel_encoder->hot_plug)
986 intel_encoder->hot_plug(intel_encoder);
987 if (intel_hpd_irq_event(dev, connector))
988 changed = true;
989 }
990 }
991 mutex_unlock(&mode_config->mutex);
992
993 if (changed)
994 drm_kms_helper_hotplug_event(dev);
995 }
996
997 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
998 {
999 struct drm_i915_private *dev_priv = dev->dev_private;
1000 u32 busy_up, busy_down, max_avg, min_avg;
1001 u8 new_delay;
1002
1003 spin_lock(&mchdev_lock);
1004
1005 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1006
1007 new_delay = dev_priv->ips.cur_delay;
1008
1009 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1010 busy_up = I915_READ(RCPREVBSYTUPAVG);
1011 busy_down = I915_READ(RCPREVBSYTDNAVG);
1012 max_avg = I915_READ(RCBMAXAVG);
1013 min_avg = I915_READ(RCBMINAVG);
1014
1015 /* Handle RCS change request from hw */
1016 if (busy_up > max_avg) {
1017 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1018 new_delay = dev_priv->ips.cur_delay - 1;
1019 if (new_delay < dev_priv->ips.max_delay)
1020 new_delay = dev_priv->ips.max_delay;
1021 } else if (busy_down < min_avg) {
1022 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1023 new_delay = dev_priv->ips.cur_delay + 1;
1024 if (new_delay > dev_priv->ips.min_delay)
1025 new_delay = dev_priv->ips.min_delay;
1026 }
1027
1028 if (ironlake_set_drps(dev, new_delay))
1029 dev_priv->ips.cur_delay = new_delay;
1030
1031 spin_unlock(&mchdev_lock);
1032
1033 return;
1034 }
1035
1036 static void notify_ring(struct drm_device *dev,
1037 struct intel_engine_cs *ring)
1038 {
1039 if (!intel_ring_initialized(ring))
1040 return;
1041
1042 trace_i915_gem_request_notify(ring);
1043
1044 wake_up_all(&ring->irq_queue);
1045 }
1046
1047 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1048 struct intel_rps_ei *rps_ei)
1049 {
1050 u32 cz_ts, cz_freq_khz;
1051 u32 render_count, media_count;
1052 u32 elapsed_render, elapsed_media, elapsed_time;
1053 u32 residency = 0;
1054
1055 cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1056 cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1057
1058 render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1059 media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1060
1061 if (rps_ei->cz_clock == 0) {
1062 rps_ei->cz_clock = cz_ts;
1063 rps_ei->render_c0 = render_count;
1064 rps_ei->media_c0 = media_count;
1065
1066 return dev_priv->rps.cur_freq;
1067 }
1068
1069 elapsed_time = cz_ts - rps_ei->cz_clock;
1070 rps_ei->cz_clock = cz_ts;
1071
1072 elapsed_render = render_count - rps_ei->render_c0;
1073 rps_ei->render_c0 = render_count;
1074
1075 elapsed_media = media_count - rps_ei->media_c0;
1076 rps_ei->media_c0 = media_count;
1077
1078 /* Convert all the counters into common unit of milli sec */
1079 elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1080 elapsed_render /= cz_freq_khz;
1081 elapsed_media /= cz_freq_khz;
1082
1083 /*
1084 * Calculate overall C0 residency percentage
1085 * only if elapsed time is non zero
1086 */
1087 if (elapsed_time) {
1088 residency =
1089 ((max(elapsed_render, elapsed_media) * 100)
1090 / elapsed_time);
1091 }
1092
1093 return residency;
1094 }
1095
1096 /**
1097 * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1098 * busy-ness calculated from C0 counters of render & media power wells
1099 * @dev_priv: DRM device private
1100 *
1101 */
1102 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1103 {
1104 u32 residency_C0_up = 0, residency_C0_down = 0;
1105 int new_delay, adj;
1106
1107 dev_priv->rps.ei_interrupt_count++;
1108
1109 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1110
1111
1112 if (dev_priv->rps.up_ei.cz_clock == 0) {
1113 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1114 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1115 return dev_priv->rps.cur_freq;
1116 }
1117
1118
1119 /*
1120 * To down throttle, C0 residency should be less than down threshold
1121 * for continous EI intervals. So calculate down EI counters
1122 * once in VLV_INT_COUNT_FOR_DOWN_EI
1123 */
1124 if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1125
1126 dev_priv->rps.ei_interrupt_count = 0;
1127
1128 residency_C0_down = vlv_c0_residency(dev_priv,
1129 &dev_priv->rps.down_ei);
1130 } else {
1131 residency_C0_up = vlv_c0_residency(dev_priv,
1132 &dev_priv->rps.up_ei);
1133 }
1134
1135 new_delay = dev_priv->rps.cur_freq;
1136
1137 adj = dev_priv->rps.last_adj;
1138 /* C0 residency is greater than UP threshold. Increase Frequency */
1139 if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1140 if (adj > 0)
1141 adj *= 2;
1142 else
1143 adj = 1;
1144
1145 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1146 new_delay = dev_priv->rps.cur_freq + adj;
1147
1148 /*
1149 * For better performance, jump directly
1150 * to RPe if we're below it.
1151 */
1152 if (new_delay < dev_priv->rps.efficient_freq)
1153 new_delay = dev_priv->rps.efficient_freq;
1154
1155 } else if (!dev_priv->rps.ei_interrupt_count &&
1156 (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1157 if (adj < 0)
1158 adj *= 2;
1159 else
1160 adj = -1;
1161 /*
1162 * This means, C0 residency is less than down threshold over
1163 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1164 */
1165 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1166 new_delay = dev_priv->rps.cur_freq + adj;
1167 }
1168
1169 return new_delay;
1170 }
1171
1172 static void gen6_pm_rps_work(struct work_struct *work)
1173 {
1174 struct drm_i915_private *dev_priv =
1175 container_of(work, struct drm_i915_private, rps.work);
1176 u32 pm_iir;
1177 int new_delay, adj;
1178
1179 spin_lock_irq(&dev_priv->irq_lock);
1180 /* Speed up work cancelation during disabling rps interrupts. */
1181 if (!dev_priv->rps.interrupts_enabled) {
1182 spin_unlock_irq(&dev_priv->irq_lock);
1183 return;
1184 }
1185 pm_iir = dev_priv->rps.pm_iir;
1186 dev_priv->rps.pm_iir = 0;
1187 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1188 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1189 spin_unlock_irq(&dev_priv->irq_lock);
1190
1191 /* Make sure we didn't queue anything we're not going to process. */
1192 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1193
1194 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1195 return;
1196
1197 mutex_lock(&dev_priv->rps.hw_lock);
1198
1199 adj = dev_priv->rps.last_adj;
1200 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1201 if (adj > 0)
1202 adj *= 2;
1203 else {
1204 /* CHV needs even encode values */
1205 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1206 }
1207 new_delay = dev_priv->rps.cur_freq + adj;
1208
1209 /*
1210 * For better performance, jump directly
1211 * to RPe if we're below it.
1212 */
1213 if (new_delay < dev_priv->rps.efficient_freq)
1214 new_delay = dev_priv->rps.efficient_freq;
1215 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1216 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1217 new_delay = dev_priv->rps.efficient_freq;
1218 else
1219 new_delay = dev_priv->rps.min_freq_softlimit;
1220 adj = 0;
1221 } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1222 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1223 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1224 if (adj < 0)
1225 adj *= 2;
1226 else {
1227 /* CHV needs even encode values */
1228 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1229 }
1230 new_delay = dev_priv->rps.cur_freq + adj;
1231 } else { /* unknown event */
1232 new_delay = dev_priv->rps.cur_freq;
1233 }
1234
1235 /* sysfs frequency interfaces may have snuck in while servicing the
1236 * interrupt
1237 */
1238 new_delay = clamp_t(int, new_delay,
1239 dev_priv->rps.min_freq_softlimit,
1240 dev_priv->rps.max_freq_softlimit);
1241
1242 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1243
1244 if (IS_VALLEYVIEW(dev_priv->dev))
1245 valleyview_set_rps(dev_priv->dev, new_delay);
1246 else
1247 gen6_set_rps(dev_priv->dev, new_delay);
1248
1249 mutex_unlock(&dev_priv->rps.hw_lock);
1250 }
1251
1252
1253 /**
1254 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1255 * occurred.
1256 * @work: workqueue struct
1257 *
1258 * Doesn't actually do anything except notify userspace. As a consequence of
1259 * this event, userspace should try to remap the bad rows since statistically
1260 * it is likely the same row is more likely to go bad again.
1261 */
1262 static void ivybridge_parity_work(struct work_struct *work)
1263 {
1264 struct drm_i915_private *dev_priv =
1265 container_of(work, struct drm_i915_private, l3_parity.error_work);
1266 u32 error_status, row, bank, subbank;
1267 char *parity_event[6];
1268 uint32_t misccpctl;
1269 uint8_t slice = 0;
1270
1271 /* We must turn off DOP level clock gating to access the L3 registers.
1272 * In order to prevent a get/put style interface, acquire struct mutex
1273 * any time we access those registers.
1274 */
1275 mutex_lock(&dev_priv->dev->struct_mutex);
1276
1277 /* If we've screwed up tracking, just let the interrupt fire again */
1278 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1279 goto out;
1280
1281 misccpctl = I915_READ(GEN7_MISCCPCTL);
1282 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1283 POSTING_READ(GEN7_MISCCPCTL);
1284
1285 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1286 u32 reg;
1287
1288 slice--;
1289 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1290 break;
1291
1292 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1293
1294 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1295
1296 error_status = I915_READ(reg);
1297 row = GEN7_PARITY_ERROR_ROW(error_status);
1298 bank = GEN7_PARITY_ERROR_BANK(error_status);
1299 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1300
1301 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1302 POSTING_READ(reg);
1303
1304 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1305 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1306 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1307 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1308 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1309 parity_event[5] = NULL;
1310
1311 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1312 KOBJ_CHANGE, parity_event);
1313
1314 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1315 slice, row, bank, subbank);
1316
1317 kfree(parity_event[4]);
1318 kfree(parity_event[3]);
1319 kfree(parity_event[2]);
1320 kfree(parity_event[1]);
1321 }
1322
1323 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1324
1325 out:
1326 WARN_ON(dev_priv->l3_parity.which_slice);
1327 spin_lock_irq(&dev_priv->irq_lock);
1328 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1329 spin_unlock_irq(&dev_priv->irq_lock);
1330
1331 mutex_unlock(&dev_priv->dev->struct_mutex);
1332 }
1333
1334 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1335 {
1336 struct drm_i915_private *dev_priv = dev->dev_private;
1337
1338 if (!HAS_L3_DPF(dev))
1339 return;
1340
1341 spin_lock(&dev_priv->irq_lock);
1342 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1343 spin_unlock(&dev_priv->irq_lock);
1344
1345 iir &= GT_PARITY_ERROR(dev);
1346 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1347 dev_priv->l3_parity.which_slice |= 1 << 1;
1348
1349 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1350 dev_priv->l3_parity.which_slice |= 1 << 0;
1351
1352 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1353 }
1354
1355 static void ilk_gt_irq_handler(struct drm_device *dev,
1356 struct drm_i915_private *dev_priv,
1357 u32 gt_iir)
1358 {
1359 if (gt_iir &
1360 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1361 notify_ring(dev, &dev_priv->ring[RCS]);
1362 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1363 notify_ring(dev, &dev_priv->ring[VCS]);
1364 }
1365
1366 static void snb_gt_irq_handler(struct drm_device *dev,
1367 struct drm_i915_private *dev_priv,
1368 u32 gt_iir)
1369 {
1370
1371 if (gt_iir &
1372 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1373 notify_ring(dev, &dev_priv->ring[RCS]);
1374 if (gt_iir & GT_BSD_USER_INTERRUPT)
1375 notify_ring(dev, &dev_priv->ring[VCS]);
1376 if (gt_iir & GT_BLT_USER_INTERRUPT)
1377 notify_ring(dev, &dev_priv->ring[BCS]);
1378
1379 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1380 GT_BSD_CS_ERROR_INTERRUPT |
1381 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1382 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1383
1384 if (gt_iir & GT_PARITY_ERROR(dev))
1385 ivybridge_parity_error_irq_handler(dev, gt_iir);
1386 }
1387
1388 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1389 struct drm_i915_private *dev_priv,
1390 u32 master_ctl)
1391 {
1392 struct intel_engine_cs *ring;
1393 u32 rcs, bcs, vcs;
1394 uint32_t tmp = 0;
1395 irqreturn_t ret = IRQ_NONE;
1396
1397 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1398 tmp = I915_READ(GEN8_GT_IIR(0));
1399 if (tmp) {
1400 I915_WRITE(GEN8_GT_IIR(0), tmp);
1401 ret = IRQ_HANDLED;
1402
1403 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1404 ring = &dev_priv->ring[RCS];
1405 if (rcs & GT_RENDER_USER_INTERRUPT)
1406 notify_ring(dev, ring);
1407 if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1408 intel_lrc_irq_handler(ring);
1409
1410 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1411 ring = &dev_priv->ring[BCS];
1412 if (bcs & GT_RENDER_USER_INTERRUPT)
1413 notify_ring(dev, ring);
1414 if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1415 intel_lrc_irq_handler(ring);
1416 } else
1417 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1418 }
1419
1420 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1421 tmp = I915_READ(GEN8_GT_IIR(1));
1422 if (tmp) {
1423 I915_WRITE(GEN8_GT_IIR(1), tmp);
1424 ret = IRQ_HANDLED;
1425
1426 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1427 ring = &dev_priv->ring[VCS];
1428 if (vcs & GT_RENDER_USER_INTERRUPT)
1429 notify_ring(dev, ring);
1430 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1431 intel_lrc_irq_handler(ring);
1432
1433 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1434 ring = &dev_priv->ring[VCS2];
1435 if (vcs & GT_RENDER_USER_INTERRUPT)
1436 notify_ring(dev, ring);
1437 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1438 intel_lrc_irq_handler(ring);
1439 } else
1440 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1441 }
1442
1443 if (master_ctl & GEN8_GT_PM_IRQ) {
1444 tmp = I915_READ(GEN8_GT_IIR(2));
1445 if (tmp & dev_priv->pm_rps_events) {
1446 I915_WRITE(GEN8_GT_IIR(2),
1447 tmp & dev_priv->pm_rps_events);
1448 ret = IRQ_HANDLED;
1449 gen6_rps_irq_handler(dev_priv, tmp);
1450 } else
1451 DRM_ERROR("The master control interrupt lied (PM)!\n");
1452 }
1453
1454 if (master_ctl & GEN8_GT_VECS_IRQ) {
1455 tmp = I915_READ(GEN8_GT_IIR(3));
1456 if (tmp) {
1457 I915_WRITE(GEN8_GT_IIR(3), tmp);
1458 ret = IRQ_HANDLED;
1459
1460 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1461 ring = &dev_priv->ring[VECS];
1462 if (vcs & GT_RENDER_USER_INTERRUPT)
1463 notify_ring(dev, ring);
1464 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1465 intel_lrc_irq_handler(ring);
1466 } else
1467 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1468 }
1469
1470 return ret;
1471 }
1472
1473 #define HPD_STORM_DETECT_PERIOD 1000
1474 #define HPD_STORM_THRESHOLD 5
1475
1476 static int pch_port_to_hotplug_shift(enum port port)
1477 {
1478 switch (port) {
1479 case PORT_A:
1480 case PORT_E:
1481 default:
1482 return -1;
1483 case PORT_B:
1484 return 0;
1485 case PORT_C:
1486 return 8;
1487 case PORT_D:
1488 return 16;
1489 }
1490 }
1491
1492 static int i915_port_to_hotplug_shift(enum port port)
1493 {
1494 switch (port) {
1495 case PORT_A:
1496 case PORT_E:
1497 default:
1498 return -1;
1499 case PORT_B:
1500 return 17;
1501 case PORT_C:
1502 return 19;
1503 case PORT_D:
1504 return 21;
1505 }
1506 }
1507
1508 static inline enum port get_port_from_pin(enum hpd_pin pin)
1509 {
1510 switch (pin) {
1511 case HPD_PORT_B:
1512 return PORT_B;
1513 case HPD_PORT_C:
1514 return PORT_C;
1515 case HPD_PORT_D:
1516 return PORT_D;
1517 default:
1518 return PORT_A; /* no hpd */
1519 }
1520 }
1521
1522 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1523 u32 hotplug_trigger,
1524 u32 dig_hotplug_reg,
1525 const u32 *hpd)
1526 {
1527 struct drm_i915_private *dev_priv = dev->dev_private;
1528 int i;
1529 enum port port;
1530 bool storm_detected = false;
1531 bool queue_dig = false, queue_hp = false;
1532 u32 dig_shift;
1533 u32 dig_port_mask = 0;
1534
1535 if (!hotplug_trigger)
1536 return;
1537
1538 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1539 hotplug_trigger, dig_hotplug_reg);
1540
1541 spin_lock(&dev_priv->irq_lock);
1542 for (i = 1; i < HPD_NUM_PINS; i++) {
1543 if (!(hpd[i] & hotplug_trigger))
1544 continue;
1545
1546 port = get_port_from_pin(i);
1547 if (port && dev_priv->hpd_irq_port[port]) {
1548 bool long_hpd;
1549
1550 if (HAS_PCH_SPLIT(dev)) {
1551 dig_shift = pch_port_to_hotplug_shift(port);
1552 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1553 } else {
1554 dig_shift = i915_port_to_hotplug_shift(port);
1555 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1556 }
1557
1558 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1559 port_name(port),
1560 long_hpd ? "long" : "short");
1561 /* for long HPD pulses we want to have the digital queue happen,
1562 but we still want HPD storm detection to function. */
1563 if (long_hpd) {
1564 dev_priv->long_hpd_port_mask |= (1 << port);
1565 dig_port_mask |= hpd[i];
1566 } else {
1567 /* for short HPD just trigger the digital queue */
1568 dev_priv->short_hpd_port_mask |= (1 << port);
1569 hotplug_trigger &= ~hpd[i];
1570 }
1571 queue_dig = true;
1572 }
1573 }
1574
1575 for (i = 1; i < HPD_NUM_PINS; i++) {
1576 if (hpd[i] & hotplug_trigger &&
1577 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1578 /*
1579 * On GMCH platforms the interrupt mask bits only
1580 * prevent irq generation, not the setting of the
1581 * hotplug bits itself. So only WARN about unexpected
1582 * interrupts on saner platforms.
1583 */
1584 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1585 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1586 hotplug_trigger, i, hpd[i]);
1587
1588 continue;
1589 }
1590
1591 if (!(hpd[i] & hotplug_trigger) ||
1592 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1593 continue;
1594
1595 if (!(dig_port_mask & hpd[i])) {
1596 dev_priv->hpd_event_bits |= (1 << i);
1597 queue_hp = true;
1598 }
1599
1600 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1601 dev_priv->hpd_stats[i].hpd_last_jiffies
1602 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1603 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1604 dev_priv->hpd_stats[i].hpd_cnt = 0;
1605 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1606 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1607 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1608 dev_priv->hpd_event_bits &= ~(1 << i);
1609 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1610 storm_detected = true;
1611 } else {
1612 dev_priv->hpd_stats[i].hpd_cnt++;
1613 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1614 dev_priv->hpd_stats[i].hpd_cnt);
1615 }
1616 }
1617
1618 if (storm_detected)
1619 dev_priv->display.hpd_irq_setup(dev);
1620 spin_unlock(&dev_priv->irq_lock);
1621
1622 /*
1623 * Our hotplug handler can grab modeset locks (by calling down into the
1624 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1625 * queue for otherwise the flush_work in the pageflip code will
1626 * deadlock.
1627 */
1628 if (queue_dig)
1629 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1630 if (queue_hp)
1631 schedule_work(&dev_priv->hotplug_work);
1632 }
1633
1634 static void gmbus_irq_handler(struct drm_device *dev)
1635 {
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637
1638 wake_up_all(&dev_priv->gmbus_wait_queue);
1639 }
1640
1641 static void dp_aux_irq_handler(struct drm_device *dev)
1642 {
1643 struct drm_i915_private *dev_priv = dev->dev_private;
1644
1645 wake_up_all(&dev_priv->gmbus_wait_queue);
1646 }
1647
1648 #if defined(CONFIG_DEBUG_FS)
1649 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1650 uint32_t crc0, uint32_t crc1,
1651 uint32_t crc2, uint32_t crc3,
1652 uint32_t crc4)
1653 {
1654 struct drm_i915_private *dev_priv = dev->dev_private;
1655 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1656 struct intel_pipe_crc_entry *entry;
1657 int head, tail;
1658
1659 spin_lock(&pipe_crc->lock);
1660
1661 if (!pipe_crc->entries) {
1662 spin_unlock(&pipe_crc->lock);
1663 DRM_DEBUG_KMS("spurious interrupt\n");
1664 return;
1665 }
1666
1667 head = pipe_crc->head;
1668 tail = pipe_crc->tail;
1669
1670 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1671 spin_unlock(&pipe_crc->lock);
1672 DRM_ERROR("CRC buffer overflowing\n");
1673 return;
1674 }
1675
1676 entry = &pipe_crc->entries[head];
1677
1678 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1679 entry->crc[0] = crc0;
1680 entry->crc[1] = crc1;
1681 entry->crc[2] = crc2;
1682 entry->crc[3] = crc3;
1683 entry->crc[4] = crc4;
1684
1685 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1686 pipe_crc->head = head;
1687
1688 spin_unlock(&pipe_crc->lock);
1689
1690 wake_up_interruptible(&pipe_crc->wq);
1691 }
1692 #else
1693 static inline void
1694 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1695 uint32_t crc0, uint32_t crc1,
1696 uint32_t crc2, uint32_t crc3,
1697 uint32_t crc4) {}
1698 #endif
1699
1700
1701 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1702 {
1703 struct drm_i915_private *dev_priv = dev->dev_private;
1704
1705 display_pipe_crc_irq_handler(dev, pipe,
1706 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1707 0, 0, 0, 0);
1708 }
1709
1710 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1711 {
1712 struct drm_i915_private *dev_priv = dev->dev_private;
1713
1714 display_pipe_crc_irq_handler(dev, pipe,
1715 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1716 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1717 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1718 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1719 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1720 }
1721
1722 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1723 {
1724 struct drm_i915_private *dev_priv = dev->dev_private;
1725 uint32_t res1, res2;
1726
1727 if (INTEL_INFO(dev)->gen >= 3)
1728 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1729 else
1730 res1 = 0;
1731
1732 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1733 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1734 else
1735 res2 = 0;
1736
1737 display_pipe_crc_irq_handler(dev, pipe,
1738 I915_READ(PIPE_CRC_RES_RED(pipe)),
1739 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1740 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1741 res1, res2);
1742 }
1743
1744 /* The RPS events need forcewake, so we add them to a work queue and mask their
1745 * IMR bits until the work is done. Other interrupts can be processed without
1746 * the work queue. */
1747 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1748 {
1749 /* TODO: RPS on GEN9+ is not supported yet. */
1750 if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1751 "GEN9+: unexpected RPS IRQ\n"))
1752 return;
1753
1754 if (pm_iir & dev_priv->pm_rps_events) {
1755 spin_lock(&dev_priv->irq_lock);
1756 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1757 if (dev_priv->rps.interrupts_enabled) {
1758 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1759 queue_work(dev_priv->wq, &dev_priv->rps.work);
1760 }
1761 spin_unlock(&dev_priv->irq_lock);
1762 }
1763
1764 if (INTEL_INFO(dev_priv)->gen >= 8)
1765 return;
1766
1767 if (HAS_VEBOX(dev_priv->dev)) {
1768 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1769 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1770
1771 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1772 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1773 }
1774 }
1775
1776 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1777 {
1778 if (!drm_handle_vblank(dev, pipe))
1779 return false;
1780
1781 return true;
1782 }
1783
1784 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1785 {
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787 u32 pipe_stats[I915_MAX_PIPES] = { };
1788 int pipe;
1789
1790 spin_lock(&dev_priv->irq_lock);
1791 for_each_pipe(dev_priv, pipe) {
1792 int reg;
1793 u32 mask, iir_bit = 0;
1794
1795 /*
1796 * PIPESTAT bits get signalled even when the interrupt is
1797 * disabled with the mask bits, and some of the status bits do
1798 * not generate interrupts at all (like the underrun bit). Hence
1799 * we need to be careful that we only handle what we want to
1800 * handle.
1801 */
1802
1803 /* fifo underruns are filterered in the underrun handler. */
1804 mask = PIPE_FIFO_UNDERRUN_STATUS;
1805
1806 switch (pipe) {
1807 case PIPE_A:
1808 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1809 break;
1810 case PIPE_B:
1811 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1812 break;
1813 case PIPE_C:
1814 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1815 break;
1816 }
1817 if (iir & iir_bit)
1818 mask |= dev_priv->pipestat_irq_mask[pipe];
1819
1820 if (!mask)
1821 continue;
1822
1823 reg = PIPESTAT(pipe);
1824 mask |= PIPESTAT_INT_ENABLE_MASK;
1825 pipe_stats[pipe] = I915_READ(reg) & mask;
1826
1827 /*
1828 * Clear the PIPE*STAT regs before the IIR
1829 */
1830 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1831 PIPESTAT_INT_STATUS_MASK))
1832 I915_WRITE(reg, pipe_stats[pipe]);
1833 }
1834 spin_unlock(&dev_priv->irq_lock);
1835
1836 for_each_pipe(dev_priv, pipe) {
1837 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1838 intel_pipe_handle_vblank(dev, pipe))
1839 intel_check_page_flip(dev, pipe);
1840
1841 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1842 intel_prepare_page_flip(dev, pipe);
1843 intel_finish_page_flip(dev, pipe);
1844 }
1845
1846 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1847 i9xx_pipe_crc_irq_handler(dev, pipe);
1848
1849 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1850 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1851 }
1852
1853 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1854 gmbus_irq_handler(dev);
1855 }
1856
1857 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1858 {
1859 struct drm_i915_private *dev_priv = dev->dev_private;
1860 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1861
1862 if (hotplug_status) {
1863 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1864 /*
1865 * Make sure hotplug status is cleared before we clear IIR, or else we
1866 * may miss hotplug events.
1867 */
1868 POSTING_READ(PORT_HOTPLUG_STAT);
1869
1870 if (IS_G4X(dev)) {
1871 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1872
1873 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1874 } else {
1875 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1876
1877 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1878 }
1879
1880 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1881 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1882 dp_aux_irq_handler(dev);
1883 }
1884 }
1885
1886 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1887 {
1888 struct drm_device *dev = arg;
1889 struct drm_i915_private *dev_priv = dev->dev_private;
1890 u32 iir, gt_iir, pm_iir;
1891 irqreturn_t ret = IRQ_NONE;
1892
1893 while (true) {
1894 /* Find, clear, then process each source of interrupt */
1895
1896 gt_iir = I915_READ(GTIIR);
1897 if (gt_iir)
1898 I915_WRITE(GTIIR, gt_iir);
1899
1900 pm_iir = I915_READ(GEN6_PMIIR);
1901 if (pm_iir)
1902 I915_WRITE(GEN6_PMIIR, pm_iir);
1903
1904 iir = I915_READ(VLV_IIR);
1905 if (iir) {
1906 /* Consume port before clearing IIR or we'll miss events */
1907 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1908 i9xx_hpd_irq_handler(dev);
1909 I915_WRITE(VLV_IIR, iir);
1910 }
1911
1912 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1913 goto out;
1914
1915 ret = IRQ_HANDLED;
1916
1917 if (gt_iir)
1918 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1919 if (pm_iir)
1920 gen6_rps_irq_handler(dev_priv, pm_iir);
1921 /* Call regardless, as some status bits might not be
1922 * signalled in iir */
1923 valleyview_pipestat_irq_handler(dev, iir);
1924 }
1925
1926 out:
1927 return ret;
1928 }
1929
1930 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1931 {
1932 struct drm_device *dev = arg;
1933 struct drm_i915_private *dev_priv = dev->dev_private;
1934 u32 master_ctl, iir;
1935 irqreturn_t ret = IRQ_NONE;
1936
1937 for (;;) {
1938 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1939 iir = I915_READ(VLV_IIR);
1940
1941 if (master_ctl == 0 && iir == 0)
1942 break;
1943
1944 ret = IRQ_HANDLED;
1945
1946 I915_WRITE(GEN8_MASTER_IRQ, 0);
1947
1948 /* Find, clear, then process each source of interrupt */
1949
1950 if (iir) {
1951 /* Consume port before clearing IIR or we'll miss events */
1952 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1953 i9xx_hpd_irq_handler(dev);
1954 I915_WRITE(VLV_IIR, iir);
1955 }
1956
1957 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1958
1959 /* Call regardless, as some status bits might not be
1960 * signalled in iir */
1961 valleyview_pipestat_irq_handler(dev, iir);
1962
1963 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1964 POSTING_READ(GEN8_MASTER_IRQ);
1965 }
1966
1967 return ret;
1968 }
1969
1970 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1971 {
1972 struct drm_i915_private *dev_priv = dev->dev_private;
1973 int pipe;
1974 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1975 u32 dig_hotplug_reg;
1976
1977 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1978 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1979
1980 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1981
1982 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1983 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1984 SDE_AUDIO_POWER_SHIFT);
1985 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1986 port_name(port));
1987 }
1988
1989 if (pch_iir & SDE_AUX_MASK)
1990 dp_aux_irq_handler(dev);
1991
1992 if (pch_iir & SDE_GMBUS)
1993 gmbus_irq_handler(dev);
1994
1995 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1996 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1997
1998 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1999 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2000
2001 if (pch_iir & SDE_POISON)
2002 DRM_ERROR("PCH poison interrupt\n");
2003
2004 if (pch_iir & SDE_FDI_MASK)
2005 for_each_pipe(dev_priv, pipe)
2006 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2007 pipe_name(pipe),
2008 I915_READ(FDI_RX_IIR(pipe)));
2009
2010 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2011 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2012
2013 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2014 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2015
2016 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2017 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2018
2019 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2020 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2021 }
2022
2023 static void ivb_err_int_handler(struct drm_device *dev)
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 u32 err_int = I915_READ(GEN7_ERR_INT);
2027 enum pipe pipe;
2028
2029 if (err_int & ERR_INT_POISON)
2030 DRM_ERROR("Poison interrupt\n");
2031
2032 for_each_pipe(dev_priv, pipe) {
2033 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2034 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2035
2036 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2037 if (IS_IVYBRIDGE(dev))
2038 ivb_pipe_crc_irq_handler(dev, pipe);
2039 else
2040 hsw_pipe_crc_irq_handler(dev, pipe);
2041 }
2042 }
2043
2044 I915_WRITE(GEN7_ERR_INT, err_int);
2045 }
2046
2047 static void cpt_serr_int_handler(struct drm_device *dev)
2048 {
2049 struct drm_i915_private *dev_priv = dev->dev_private;
2050 u32 serr_int = I915_READ(SERR_INT);
2051
2052 if (serr_int & SERR_INT_POISON)
2053 DRM_ERROR("PCH poison interrupt\n");
2054
2055 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2056 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2057
2058 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2059 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2060
2061 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2062 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2063
2064 I915_WRITE(SERR_INT, serr_int);
2065 }
2066
2067 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2068 {
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070 int pipe;
2071 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2072 u32 dig_hotplug_reg;
2073
2074 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2075 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2076
2077 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2078
2079 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2080 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2081 SDE_AUDIO_POWER_SHIFT_CPT);
2082 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2083 port_name(port));
2084 }
2085
2086 if (pch_iir & SDE_AUX_MASK_CPT)
2087 dp_aux_irq_handler(dev);
2088
2089 if (pch_iir & SDE_GMBUS_CPT)
2090 gmbus_irq_handler(dev);
2091
2092 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2093 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2094
2095 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2096 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2097
2098 if (pch_iir & SDE_FDI_MASK_CPT)
2099 for_each_pipe(dev_priv, pipe)
2100 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2101 pipe_name(pipe),
2102 I915_READ(FDI_RX_IIR(pipe)));
2103
2104 if (pch_iir & SDE_ERROR_CPT)
2105 cpt_serr_int_handler(dev);
2106 }
2107
2108 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2109 {
2110 struct drm_i915_private *dev_priv = dev->dev_private;
2111 enum pipe pipe;
2112
2113 if (de_iir & DE_AUX_CHANNEL_A)
2114 dp_aux_irq_handler(dev);
2115
2116 if (de_iir & DE_GSE)
2117 intel_opregion_asle_intr(dev);
2118
2119 if (de_iir & DE_POISON)
2120 DRM_ERROR("Poison interrupt\n");
2121
2122 for_each_pipe(dev_priv, pipe) {
2123 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2124 intel_pipe_handle_vblank(dev, pipe))
2125 intel_check_page_flip(dev, pipe);
2126
2127 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2128 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2129
2130 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2131 i9xx_pipe_crc_irq_handler(dev, pipe);
2132
2133 /* plane/pipes map 1:1 on ilk+ */
2134 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2135 intel_prepare_page_flip(dev, pipe);
2136 intel_finish_page_flip_plane(dev, pipe);
2137 }
2138 }
2139
2140 /* check event from PCH */
2141 if (de_iir & DE_PCH_EVENT) {
2142 u32 pch_iir = I915_READ(SDEIIR);
2143
2144 if (HAS_PCH_CPT(dev))
2145 cpt_irq_handler(dev, pch_iir);
2146 else
2147 ibx_irq_handler(dev, pch_iir);
2148
2149 /* should clear PCH hotplug event before clear CPU irq */
2150 I915_WRITE(SDEIIR, pch_iir);
2151 }
2152
2153 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2154 ironlake_rps_change_irq_handler(dev);
2155 }
2156
2157 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2158 {
2159 struct drm_i915_private *dev_priv = dev->dev_private;
2160 enum pipe pipe;
2161
2162 if (de_iir & DE_ERR_INT_IVB)
2163 ivb_err_int_handler(dev);
2164
2165 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2166 dp_aux_irq_handler(dev);
2167
2168 if (de_iir & DE_GSE_IVB)
2169 intel_opregion_asle_intr(dev);
2170
2171 for_each_pipe(dev_priv, pipe) {
2172 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2173 intel_pipe_handle_vblank(dev, pipe))
2174 intel_check_page_flip(dev, pipe);
2175
2176 /* plane/pipes map 1:1 on ilk+ */
2177 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2178 intel_prepare_page_flip(dev, pipe);
2179 intel_finish_page_flip_plane(dev, pipe);
2180 }
2181 }
2182
2183 /* check event from PCH */
2184 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2185 u32 pch_iir = I915_READ(SDEIIR);
2186
2187 cpt_irq_handler(dev, pch_iir);
2188
2189 /* clear PCH hotplug event before clear CPU irq */
2190 I915_WRITE(SDEIIR, pch_iir);
2191 }
2192 }
2193
2194 /*
2195 * To handle irqs with the minimum potential races with fresh interrupts, we:
2196 * 1 - Disable Master Interrupt Control.
2197 * 2 - Find the source(s) of the interrupt.
2198 * 3 - Clear the Interrupt Identity bits (IIR).
2199 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2200 * 5 - Re-enable Master Interrupt Control.
2201 */
2202 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2203 {
2204 struct drm_device *dev = arg;
2205 struct drm_i915_private *dev_priv = dev->dev_private;
2206 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2207 irqreturn_t ret = IRQ_NONE;
2208
2209 /* We get interrupts on unclaimed registers, so check for this before we
2210 * do any I915_{READ,WRITE}. */
2211 intel_uncore_check_errors(dev);
2212
2213 /* disable master interrupt before clearing iir */
2214 de_ier = I915_READ(DEIER);
2215 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2216 POSTING_READ(DEIER);
2217
2218 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2219 * interrupts will will be stored on its back queue, and then we'll be
2220 * able to process them after we restore SDEIER (as soon as we restore
2221 * it, we'll get an interrupt if SDEIIR still has something to process
2222 * due to its back queue). */
2223 if (!HAS_PCH_NOP(dev)) {
2224 sde_ier = I915_READ(SDEIER);
2225 I915_WRITE(SDEIER, 0);
2226 POSTING_READ(SDEIER);
2227 }
2228
2229 /* Find, clear, then process each source of interrupt */
2230
2231 gt_iir = I915_READ(GTIIR);
2232 if (gt_iir) {
2233 I915_WRITE(GTIIR, gt_iir);
2234 ret = IRQ_HANDLED;
2235 if (INTEL_INFO(dev)->gen >= 6)
2236 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2237 else
2238 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2239 }
2240
2241 de_iir = I915_READ(DEIIR);
2242 if (de_iir) {
2243 I915_WRITE(DEIIR, de_iir);
2244 ret = IRQ_HANDLED;
2245 if (INTEL_INFO(dev)->gen >= 7)
2246 ivb_display_irq_handler(dev, de_iir);
2247 else
2248 ilk_display_irq_handler(dev, de_iir);
2249 }
2250
2251 if (INTEL_INFO(dev)->gen >= 6) {
2252 u32 pm_iir = I915_READ(GEN6_PMIIR);
2253 if (pm_iir) {
2254 I915_WRITE(GEN6_PMIIR, pm_iir);
2255 ret = IRQ_HANDLED;
2256 gen6_rps_irq_handler(dev_priv, pm_iir);
2257 }
2258 }
2259
2260 I915_WRITE(DEIER, de_ier);
2261 POSTING_READ(DEIER);
2262 if (!HAS_PCH_NOP(dev)) {
2263 I915_WRITE(SDEIER, sde_ier);
2264 POSTING_READ(SDEIER);
2265 }
2266
2267 return ret;
2268 }
2269
2270 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2271 {
2272 struct drm_device *dev = arg;
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2274 u32 master_ctl;
2275 irqreturn_t ret = IRQ_NONE;
2276 uint32_t tmp = 0;
2277 enum pipe pipe;
2278 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2279
2280 if (IS_GEN9(dev))
2281 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2282 GEN9_AUX_CHANNEL_D;
2283
2284 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2285 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2286 if (!master_ctl)
2287 return IRQ_NONE;
2288
2289 I915_WRITE(GEN8_MASTER_IRQ, 0);
2290 POSTING_READ(GEN8_MASTER_IRQ);
2291
2292 /* Find, clear, then process each source of interrupt */
2293
2294 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2295
2296 if (master_ctl & GEN8_DE_MISC_IRQ) {
2297 tmp = I915_READ(GEN8_DE_MISC_IIR);
2298 if (tmp) {
2299 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2300 ret = IRQ_HANDLED;
2301 if (tmp & GEN8_DE_MISC_GSE)
2302 intel_opregion_asle_intr(dev);
2303 else
2304 DRM_ERROR("Unexpected DE Misc interrupt\n");
2305 }
2306 else
2307 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2308 }
2309
2310 if (master_ctl & GEN8_DE_PORT_IRQ) {
2311 tmp = I915_READ(GEN8_DE_PORT_IIR);
2312 if (tmp) {
2313 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2314 ret = IRQ_HANDLED;
2315
2316 if (tmp & aux_mask)
2317 dp_aux_irq_handler(dev);
2318 else
2319 DRM_ERROR("Unexpected DE Port interrupt\n");
2320 }
2321 else
2322 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2323 }
2324
2325 for_each_pipe(dev_priv, pipe) {
2326 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2327
2328 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2329 continue;
2330
2331 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2332 if (pipe_iir) {
2333 ret = IRQ_HANDLED;
2334 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2335
2336 if (pipe_iir & GEN8_PIPE_VBLANK &&
2337 intel_pipe_handle_vblank(dev, pipe))
2338 intel_check_page_flip(dev, pipe);
2339
2340 if (IS_GEN9(dev))
2341 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2342 else
2343 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2344
2345 if (flip_done) {
2346 intel_prepare_page_flip(dev, pipe);
2347 intel_finish_page_flip_plane(dev, pipe);
2348 }
2349
2350 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2351 hsw_pipe_crc_irq_handler(dev, pipe);
2352
2353 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2354 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2355 pipe);
2356
2357
2358 if (IS_GEN9(dev))
2359 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2360 else
2361 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2362
2363 if (fault_errors)
2364 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2365 pipe_name(pipe),
2366 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2367 } else
2368 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2369 }
2370
2371 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2372 /*
2373 * FIXME(BDW): Assume for now that the new interrupt handling
2374 * scheme also closed the SDE interrupt handling race we've seen
2375 * on older pch-split platforms. But this needs testing.
2376 */
2377 u32 pch_iir = I915_READ(SDEIIR);
2378 if (pch_iir) {
2379 I915_WRITE(SDEIIR, pch_iir);
2380 ret = IRQ_HANDLED;
2381 cpt_irq_handler(dev, pch_iir);
2382 } else
2383 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2384
2385 }
2386
2387 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2388 POSTING_READ(GEN8_MASTER_IRQ);
2389
2390 return ret;
2391 }
2392
2393 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2394 bool reset_completed)
2395 {
2396 struct intel_engine_cs *ring;
2397 int i;
2398
2399 /*
2400 * Notify all waiters for GPU completion events that reset state has
2401 * been changed, and that they need to restart their wait after
2402 * checking for potential errors (and bail out to drop locks if there is
2403 * a gpu reset pending so that i915_error_work_func can acquire them).
2404 */
2405
2406 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2407 for_each_ring(ring, dev_priv, i)
2408 wake_up_all(&ring->irq_queue);
2409
2410 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2411 wake_up_all(&dev_priv->pending_flip_queue);
2412
2413 /*
2414 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2415 * reset state is cleared.
2416 */
2417 if (reset_completed)
2418 wake_up_all(&dev_priv->gpu_error.reset_queue);
2419 }
2420
2421 /**
2422 * i915_error_work_func - do process context error handling work
2423 * @work: work struct
2424 *
2425 * Fire an error uevent so userspace can see that a hang or error
2426 * was detected.
2427 */
2428 static void i915_error_work_func(struct work_struct *work)
2429 {
2430 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2431 work);
2432 struct drm_i915_private *dev_priv =
2433 container_of(error, struct drm_i915_private, gpu_error);
2434 struct drm_device *dev = dev_priv->dev;
2435 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2436 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2437 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2438 int ret;
2439
2440 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2441
2442 /*
2443 * Note that there's only one work item which does gpu resets, so we
2444 * need not worry about concurrent gpu resets potentially incrementing
2445 * error->reset_counter twice. We only need to take care of another
2446 * racing irq/hangcheck declaring the gpu dead for a second time. A
2447 * quick check for that is good enough: schedule_work ensures the
2448 * correct ordering between hang detection and this work item, and since
2449 * the reset in-progress bit is only ever set by code outside of this
2450 * work we don't need to worry about any other races.
2451 */
2452 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2453 DRM_DEBUG_DRIVER("resetting chip\n");
2454 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2455 reset_event);
2456
2457 /*
2458 * In most cases it's guaranteed that we get here with an RPM
2459 * reference held, for example because there is a pending GPU
2460 * request that won't finish until the reset is done. This
2461 * isn't the case at least when we get here by doing a
2462 * simulated reset via debugs, so get an RPM reference.
2463 */
2464 intel_runtime_pm_get(dev_priv);
2465
2466 intel_prepare_reset(dev);
2467
2468 /*
2469 * All state reset _must_ be completed before we update the
2470 * reset counter, for otherwise waiters might miss the reset
2471 * pending state and not properly drop locks, resulting in
2472 * deadlocks with the reset work.
2473 */
2474 ret = i915_reset(dev);
2475
2476 intel_finish_reset(dev);
2477
2478 intel_runtime_pm_put(dev_priv);
2479
2480 if (ret == 0) {
2481 /*
2482 * After all the gem state is reset, increment the reset
2483 * counter and wake up everyone waiting for the reset to
2484 * complete.
2485 *
2486 * Since unlock operations are a one-sided barrier only,
2487 * we need to insert a barrier here to order any seqno
2488 * updates before
2489 * the counter increment.
2490 */
2491 smp_mb__before_atomic();
2492 atomic_inc(&dev_priv->gpu_error.reset_counter);
2493
2494 kobject_uevent_env(&dev->primary->kdev->kobj,
2495 KOBJ_CHANGE, reset_done_event);
2496 } else {
2497 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2498 }
2499
2500 /*
2501 * Note: The wake_up also serves as a memory barrier so that
2502 * waiters see the update value of the reset counter atomic_t.
2503 */
2504 i915_error_wake_up(dev_priv, true);
2505 }
2506 }
2507
2508 static void i915_report_and_clear_eir(struct drm_device *dev)
2509 {
2510 struct drm_i915_private *dev_priv = dev->dev_private;
2511 uint32_t instdone[I915_NUM_INSTDONE_REG];
2512 u32 eir = I915_READ(EIR);
2513 int pipe, i;
2514
2515 if (!eir)
2516 return;
2517
2518 pr_err("render error detected, EIR: 0x%08x\n", eir);
2519
2520 i915_get_extra_instdone(dev, instdone);
2521
2522 if (IS_G4X(dev)) {
2523 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2524 u32 ipeir = I915_READ(IPEIR_I965);
2525
2526 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2527 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2528 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2529 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2530 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2531 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2532 I915_WRITE(IPEIR_I965, ipeir);
2533 POSTING_READ(IPEIR_I965);
2534 }
2535 if (eir & GM45_ERROR_PAGE_TABLE) {
2536 u32 pgtbl_err = I915_READ(PGTBL_ER);
2537 pr_err("page table error\n");
2538 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2539 I915_WRITE(PGTBL_ER, pgtbl_err);
2540 POSTING_READ(PGTBL_ER);
2541 }
2542 }
2543
2544 if (!IS_GEN2(dev)) {
2545 if (eir & I915_ERROR_PAGE_TABLE) {
2546 u32 pgtbl_err = I915_READ(PGTBL_ER);
2547 pr_err("page table error\n");
2548 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2549 I915_WRITE(PGTBL_ER, pgtbl_err);
2550 POSTING_READ(PGTBL_ER);
2551 }
2552 }
2553
2554 if (eir & I915_ERROR_MEMORY_REFRESH) {
2555 pr_err("memory refresh error:\n");
2556 for_each_pipe(dev_priv, pipe)
2557 pr_err("pipe %c stat: 0x%08x\n",
2558 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2559 /* pipestat has already been acked */
2560 }
2561 if (eir & I915_ERROR_INSTRUCTION) {
2562 pr_err("instruction error\n");
2563 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2564 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2565 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2566 if (INTEL_INFO(dev)->gen < 4) {
2567 u32 ipeir = I915_READ(IPEIR);
2568
2569 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2570 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2571 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2572 I915_WRITE(IPEIR, ipeir);
2573 POSTING_READ(IPEIR);
2574 } else {
2575 u32 ipeir = I915_READ(IPEIR_I965);
2576
2577 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2578 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2579 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2580 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2581 I915_WRITE(IPEIR_I965, ipeir);
2582 POSTING_READ(IPEIR_I965);
2583 }
2584 }
2585
2586 I915_WRITE(EIR, eir);
2587 POSTING_READ(EIR);
2588 eir = I915_READ(EIR);
2589 if (eir) {
2590 /*
2591 * some errors might have become stuck,
2592 * mask them.
2593 */
2594 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2595 I915_WRITE(EMR, I915_READ(EMR) | eir);
2596 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2597 }
2598 }
2599
2600 /**
2601 * i915_handle_error - handle an error interrupt
2602 * @dev: drm device
2603 *
2604 * Do some basic checking of regsiter state at error interrupt time and
2605 * dump it to the syslog. Also call i915_capture_error_state() to make
2606 * sure we get a record and make it available in debugfs. Fire a uevent
2607 * so userspace knows something bad happened (should trigger collection
2608 * of a ring dump etc.).
2609 */
2610 void i915_handle_error(struct drm_device *dev, bool wedged,
2611 const char *fmt, ...)
2612 {
2613 struct drm_i915_private *dev_priv = dev->dev_private;
2614 va_list args;
2615 char error_msg[80];
2616
2617 va_start(args, fmt);
2618 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2619 va_end(args);
2620
2621 i915_capture_error_state(dev, wedged, error_msg);
2622 i915_report_and_clear_eir(dev);
2623
2624 if (wedged) {
2625 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2626 &dev_priv->gpu_error.reset_counter);
2627
2628 /*
2629 * Wakeup waiting processes so that the reset work function
2630 * i915_error_work_func doesn't deadlock trying to grab various
2631 * locks. By bumping the reset counter first, the woken
2632 * processes will see a reset in progress and back off,
2633 * releasing their locks and then wait for the reset completion.
2634 * We must do this for _all_ gpu waiters that might hold locks
2635 * that the reset work needs to acquire.
2636 *
2637 * Note: The wake_up serves as the required memory barrier to
2638 * ensure that the waiters see the updated value of the reset
2639 * counter atomic_t.
2640 */
2641 i915_error_wake_up(dev_priv, false);
2642 }
2643
2644 /*
2645 * Our reset work can grab modeset locks (since it needs to reset the
2646 * state of outstanding pagelips). Hence it must not be run on our own
2647 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2648 * code will deadlock.
2649 */
2650 schedule_work(&dev_priv->gpu_error.work);
2651 }
2652
2653 /* Called from drm generic code, passed 'crtc' which
2654 * we use as a pipe index
2655 */
2656 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2657 {
2658 struct drm_i915_private *dev_priv = dev->dev_private;
2659 unsigned long irqflags;
2660
2661 if (!i915_pipe_enabled(dev, pipe))
2662 return -EINVAL;
2663
2664 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2665 if (INTEL_INFO(dev)->gen >= 4)
2666 i915_enable_pipestat(dev_priv, pipe,
2667 PIPE_START_VBLANK_INTERRUPT_STATUS);
2668 else
2669 i915_enable_pipestat(dev_priv, pipe,
2670 PIPE_VBLANK_INTERRUPT_STATUS);
2671 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2672
2673 return 0;
2674 }
2675
2676 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2677 {
2678 struct drm_i915_private *dev_priv = dev->dev_private;
2679 unsigned long irqflags;
2680 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2681 DE_PIPE_VBLANK(pipe);
2682
2683 if (!i915_pipe_enabled(dev, pipe))
2684 return -EINVAL;
2685
2686 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2687 ironlake_enable_display_irq(dev_priv, bit);
2688 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2689
2690 return 0;
2691 }
2692
2693 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2694 {
2695 struct drm_i915_private *dev_priv = dev->dev_private;
2696 unsigned long irqflags;
2697
2698 if (!i915_pipe_enabled(dev, pipe))
2699 return -EINVAL;
2700
2701 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2702 i915_enable_pipestat(dev_priv, pipe,
2703 PIPE_START_VBLANK_INTERRUPT_STATUS);
2704 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2705
2706 return 0;
2707 }
2708
2709 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2710 {
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 unsigned long irqflags;
2713
2714 if (!i915_pipe_enabled(dev, pipe))
2715 return -EINVAL;
2716
2717 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2719 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2720 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2721 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2722 return 0;
2723 }
2724
2725 /* Called from drm generic code, passed 'crtc' which
2726 * we use as a pipe index
2727 */
2728 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2729 {
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 unsigned long irqflags;
2732
2733 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2734 i915_disable_pipestat(dev_priv, pipe,
2735 PIPE_VBLANK_INTERRUPT_STATUS |
2736 PIPE_START_VBLANK_INTERRUPT_STATUS);
2737 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2738 }
2739
2740 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2741 {
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 unsigned long irqflags;
2744 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2745 DE_PIPE_VBLANK(pipe);
2746
2747 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2748 ironlake_disable_display_irq(dev_priv, bit);
2749 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2750 }
2751
2752 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2753 {
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 unsigned long irqflags;
2756
2757 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2758 i915_disable_pipestat(dev_priv, pipe,
2759 PIPE_START_VBLANK_INTERRUPT_STATUS);
2760 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2761 }
2762
2763 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2764 {
2765 struct drm_i915_private *dev_priv = dev->dev_private;
2766 unsigned long irqflags;
2767
2768 if (!i915_pipe_enabled(dev, pipe))
2769 return;
2770
2771 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2772 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2773 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2774 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2775 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2776 }
2777
2778 static struct drm_i915_gem_request *
2779 ring_last_request(struct intel_engine_cs *ring)
2780 {
2781 return list_entry(ring->request_list.prev,
2782 struct drm_i915_gem_request, list);
2783 }
2784
2785 static bool
2786 ring_idle(struct intel_engine_cs *ring)
2787 {
2788 return (list_empty(&ring->request_list) ||
2789 i915_gem_request_completed(ring_last_request(ring), false));
2790 }
2791
2792 static bool
2793 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2794 {
2795 if (INTEL_INFO(dev)->gen >= 8) {
2796 return (ipehr >> 23) == 0x1c;
2797 } else {
2798 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2799 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2800 MI_SEMAPHORE_REGISTER);
2801 }
2802 }
2803
2804 static struct intel_engine_cs *
2805 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2806 {
2807 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2808 struct intel_engine_cs *signaller;
2809 int i;
2810
2811 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2812 for_each_ring(signaller, dev_priv, i) {
2813 if (ring == signaller)
2814 continue;
2815
2816 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2817 return signaller;
2818 }
2819 } else {
2820 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2821
2822 for_each_ring(signaller, dev_priv, i) {
2823 if(ring == signaller)
2824 continue;
2825
2826 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2827 return signaller;
2828 }
2829 }
2830
2831 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2832 ring->id, ipehr, offset);
2833
2834 return NULL;
2835 }
2836
2837 static struct intel_engine_cs *
2838 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2839 {
2840 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2841 u32 cmd, ipehr, head;
2842 u64 offset = 0;
2843 int i, backwards;
2844
2845 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2846 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2847 return NULL;
2848
2849 /*
2850 * HEAD is likely pointing to the dword after the actual command,
2851 * so scan backwards until we find the MBOX. But limit it to just 3
2852 * or 4 dwords depending on the semaphore wait command size.
2853 * Note that we don't care about ACTHD here since that might
2854 * point at at batch, and semaphores are always emitted into the
2855 * ringbuffer itself.
2856 */
2857 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2858 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2859
2860 for (i = backwards; i; --i) {
2861 /*
2862 * Be paranoid and presume the hw has gone off into the wild -
2863 * our ring is smaller than what the hardware (and hence
2864 * HEAD_ADDR) allows. Also handles wrap-around.
2865 */
2866 head &= ring->buffer->size - 1;
2867
2868 /* This here seems to blow up */
2869 cmd = ioread32(ring->buffer->virtual_start + head);
2870 if (cmd == ipehr)
2871 break;
2872
2873 head -= 4;
2874 }
2875
2876 if (!i)
2877 return NULL;
2878
2879 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2880 if (INTEL_INFO(ring->dev)->gen >= 8) {
2881 offset = ioread32(ring->buffer->virtual_start + head + 12);
2882 offset <<= 32;
2883 offset = ioread32(ring->buffer->virtual_start + head + 8);
2884 }
2885 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2886 }
2887
2888 static int semaphore_passed(struct intel_engine_cs *ring)
2889 {
2890 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2891 struct intel_engine_cs *signaller;
2892 u32 seqno;
2893
2894 ring->hangcheck.deadlock++;
2895
2896 signaller = semaphore_waits_for(ring, &seqno);
2897 if (signaller == NULL)
2898 return -1;
2899
2900 /* Prevent pathological recursion due to driver bugs */
2901 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2902 return -1;
2903
2904 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2905 return 1;
2906
2907 /* cursory check for an unkickable deadlock */
2908 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2909 semaphore_passed(signaller) < 0)
2910 return -1;
2911
2912 return 0;
2913 }
2914
2915 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2916 {
2917 struct intel_engine_cs *ring;
2918 int i;
2919
2920 for_each_ring(ring, dev_priv, i)
2921 ring->hangcheck.deadlock = 0;
2922 }
2923
2924 static enum intel_ring_hangcheck_action
2925 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2926 {
2927 struct drm_device *dev = ring->dev;
2928 struct drm_i915_private *dev_priv = dev->dev_private;
2929 u32 tmp;
2930
2931 if (acthd != ring->hangcheck.acthd) {
2932 if (acthd > ring->hangcheck.max_acthd) {
2933 ring->hangcheck.max_acthd = acthd;
2934 return HANGCHECK_ACTIVE;
2935 }
2936
2937 return HANGCHECK_ACTIVE_LOOP;
2938 }
2939
2940 if (IS_GEN2(dev))
2941 return HANGCHECK_HUNG;
2942
2943 /* Is the chip hanging on a WAIT_FOR_EVENT?
2944 * If so we can simply poke the RB_WAIT bit
2945 * and break the hang. This should work on
2946 * all but the second generation chipsets.
2947 */
2948 tmp = I915_READ_CTL(ring);
2949 if (tmp & RING_WAIT) {
2950 i915_handle_error(dev, false,
2951 "Kicking stuck wait on %s",
2952 ring->name);
2953 I915_WRITE_CTL(ring, tmp);
2954 return HANGCHECK_KICK;
2955 }
2956
2957 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2958 switch (semaphore_passed(ring)) {
2959 default:
2960 return HANGCHECK_HUNG;
2961 case 1:
2962 i915_handle_error(dev, false,
2963 "Kicking stuck semaphore on %s",
2964 ring->name);
2965 I915_WRITE_CTL(ring, tmp);
2966 return HANGCHECK_KICK;
2967 case 0:
2968 return HANGCHECK_WAIT;
2969 }
2970 }
2971
2972 return HANGCHECK_HUNG;
2973 }
2974
2975 /**
2976 * This is called when the chip hasn't reported back with completed
2977 * batchbuffers in a long time. We keep track per ring seqno progress and
2978 * if there are no progress, hangcheck score for that ring is increased.
2979 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2980 * we kick the ring. If we see no progress on three subsequent calls
2981 * we assume chip is wedged and try to fix it by resetting the chip.
2982 */
2983 static void i915_hangcheck_elapsed(unsigned long data)
2984 {
2985 struct drm_device *dev = (struct drm_device *)data;
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987 struct intel_engine_cs *ring;
2988 int i;
2989 int busy_count = 0, rings_hung = 0;
2990 bool stuck[I915_NUM_RINGS] = { 0 };
2991 #define BUSY 1
2992 #define KICK 5
2993 #define HUNG 20
2994
2995 if (!i915.enable_hangcheck)
2996 return;
2997
2998 for_each_ring(ring, dev_priv, i) {
2999 u64 acthd;
3000 u32 seqno;
3001 bool busy = true;
3002
3003 semaphore_clear_deadlocks(dev_priv);
3004
3005 seqno = ring->get_seqno(ring, false);
3006 acthd = intel_ring_get_active_head(ring);
3007
3008 if (ring->hangcheck.seqno == seqno) {
3009 if (ring_idle(ring)) {
3010 ring->hangcheck.action = HANGCHECK_IDLE;
3011
3012 if (waitqueue_active(&ring->irq_queue)) {
3013 /* Issue a wake-up to catch stuck h/w. */
3014 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3015 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3016 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3017 ring->name);
3018 else
3019 DRM_INFO("Fake missed irq on %s\n",
3020 ring->name);
3021 wake_up_all(&ring->irq_queue);
3022 }
3023 /* Safeguard against driver failure */
3024 ring->hangcheck.score += BUSY;
3025 } else
3026 busy = false;
3027 } else {
3028 /* We always increment the hangcheck score
3029 * if the ring is busy and still processing
3030 * the same request, so that no single request
3031 * can run indefinitely (such as a chain of
3032 * batches). The only time we do not increment
3033 * the hangcheck score on this ring, if this
3034 * ring is in a legitimate wait for another
3035 * ring. In that case the waiting ring is a
3036 * victim and we want to be sure we catch the
3037 * right culprit. Then every time we do kick
3038 * the ring, add a small increment to the
3039 * score so that we can catch a batch that is
3040 * being repeatedly kicked and so responsible
3041 * for stalling the machine.
3042 */
3043 ring->hangcheck.action = ring_stuck(ring,
3044 acthd);
3045
3046 switch (ring->hangcheck.action) {
3047 case HANGCHECK_IDLE:
3048 case HANGCHECK_WAIT:
3049 case HANGCHECK_ACTIVE:
3050 break;
3051 case HANGCHECK_ACTIVE_LOOP:
3052 ring->hangcheck.score += BUSY;
3053 break;
3054 case HANGCHECK_KICK:
3055 ring->hangcheck.score += KICK;
3056 break;
3057 case HANGCHECK_HUNG:
3058 ring->hangcheck.score += HUNG;
3059 stuck[i] = true;
3060 break;
3061 }
3062 }
3063 } else {
3064 ring->hangcheck.action = HANGCHECK_ACTIVE;
3065
3066 /* Gradually reduce the count so that we catch DoS
3067 * attempts across multiple batches.
3068 */
3069 if (ring->hangcheck.score > 0)
3070 ring->hangcheck.score--;
3071
3072 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3073 }
3074
3075 ring->hangcheck.seqno = seqno;
3076 ring->hangcheck.acthd = acthd;
3077 busy_count += busy;
3078 }
3079
3080 for_each_ring(ring, dev_priv, i) {
3081 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3082 DRM_INFO("%s on %s\n",
3083 stuck[i] ? "stuck" : "no progress",
3084 ring->name);
3085 rings_hung++;
3086 }
3087 }
3088
3089 if (rings_hung)
3090 return i915_handle_error(dev, true, "Ring hung");
3091
3092 if (busy_count)
3093 /* Reset timer case chip hangs without another request
3094 * being added */
3095 i915_queue_hangcheck(dev);
3096 }
3097
3098 void i915_queue_hangcheck(struct drm_device *dev)
3099 {
3100 struct drm_i915_private *dev_priv = dev->dev_private;
3101 struct timer_list *timer = &dev_priv->gpu_error.hangcheck_timer;
3102
3103 if (!i915.enable_hangcheck)
3104 return;
3105
3106 /* Don't continually defer the hangcheck, but make sure it is active */
3107 if (timer_pending(timer))
3108 return;
3109 mod_timer(timer,
3110 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3111 }
3112
3113 static void ibx_irq_reset(struct drm_device *dev)
3114 {
3115 struct drm_i915_private *dev_priv = dev->dev_private;
3116
3117 if (HAS_PCH_NOP(dev))
3118 return;
3119
3120 GEN5_IRQ_RESET(SDE);
3121
3122 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3123 I915_WRITE(SERR_INT, 0xffffffff);
3124 }
3125
3126 /*
3127 * SDEIER is also touched by the interrupt handler to work around missed PCH
3128 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3129 * instead we unconditionally enable all PCH interrupt sources here, but then
3130 * only unmask them as needed with SDEIMR.
3131 *
3132 * This function needs to be called before interrupts are enabled.
3133 */
3134 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3135 {
3136 struct drm_i915_private *dev_priv = dev->dev_private;
3137
3138 if (HAS_PCH_NOP(dev))
3139 return;
3140
3141 WARN_ON(I915_READ(SDEIER) != 0);
3142 I915_WRITE(SDEIER, 0xffffffff);
3143 POSTING_READ(SDEIER);
3144 }
3145
3146 static void gen5_gt_irq_reset(struct drm_device *dev)
3147 {
3148 struct drm_i915_private *dev_priv = dev->dev_private;
3149
3150 GEN5_IRQ_RESET(GT);
3151 if (INTEL_INFO(dev)->gen >= 6)
3152 GEN5_IRQ_RESET(GEN6_PM);
3153 }
3154
3155 /* drm_dma.h hooks
3156 */
3157 static void ironlake_irq_reset(struct drm_device *dev)
3158 {
3159 struct drm_i915_private *dev_priv = dev->dev_private;
3160
3161 I915_WRITE(HWSTAM, 0xffffffff);
3162
3163 GEN5_IRQ_RESET(DE);
3164 if (IS_GEN7(dev))
3165 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3166
3167 gen5_gt_irq_reset(dev);
3168
3169 ibx_irq_reset(dev);
3170 }
3171
3172 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3173 {
3174 enum pipe pipe;
3175
3176 I915_WRITE(PORT_HOTPLUG_EN, 0);
3177 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3178
3179 for_each_pipe(dev_priv, pipe)
3180 I915_WRITE(PIPESTAT(pipe), 0xffff);
3181
3182 GEN5_IRQ_RESET(VLV_);
3183 }
3184
3185 static void valleyview_irq_preinstall(struct drm_device *dev)
3186 {
3187 struct drm_i915_private *dev_priv = dev->dev_private;
3188
3189 /* VLV magic */
3190 I915_WRITE(VLV_IMR, 0);
3191 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3192 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3193 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3194
3195 gen5_gt_irq_reset(dev);
3196
3197 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3198
3199 vlv_display_irq_reset(dev_priv);
3200 }
3201
3202 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3203 {
3204 GEN8_IRQ_RESET_NDX(GT, 0);
3205 GEN8_IRQ_RESET_NDX(GT, 1);
3206 GEN8_IRQ_RESET_NDX(GT, 2);
3207 GEN8_IRQ_RESET_NDX(GT, 3);
3208 }
3209
3210 static void gen8_irq_reset(struct drm_device *dev)
3211 {
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 int pipe;
3214
3215 I915_WRITE(GEN8_MASTER_IRQ, 0);
3216 POSTING_READ(GEN8_MASTER_IRQ);
3217
3218 gen8_gt_irq_reset(dev_priv);
3219
3220 for_each_pipe(dev_priv, pipe)
3221 if (intel_display_power_is_enabled(dev_priv,
3222 POWER_DOMAIN_PIPE(pipe)))
3223 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3224
3225 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3226 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3227 GEN5_IRQ_RESET(GEN8_PCU_);
3228
3229 ibx_irq_reset(dev);
3230 }
3231
3232 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3233 {
3234 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3235
3236 spin_lock_irq(&dev_priv->irq_lock);
3237 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3238 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3239 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3240 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3241 spin_unlock_irq(&dev_priv->irq_lock);
3242 }
3243
3244 static void cherryview_irq_preinstall(struct drm_device *dev)
3245 {
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247
3248 I915_WRITE(GEN8_MASTER_IRQ, 0);
3249 POSTING_READ(GEN8_MASTER_IRQ);
3250
3251 gen8_gt_irq_reset(dev_priv);
3252
3253 GEN5_IRQ_RESET(GEN8_PCU_);
3254
3255 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3256
3257 vlv_display_irq_reset(dev_priv);
3258 }
3259
3260 static void ibx_hpd_irq_setup(struct drm_device *dev)
3261 {
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 struct intel_encoder *intel_encoder;
3264 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3265
3266 if (HAS_PCH_IBX(dev)) {
3267 hotplug_irqs = SDE_HOTPLUG_MASK;
3268 for_each_intel_encoder(dev, intel_encoder)
3269 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3270 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3271 } else {
3272 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3273 for_each_intel_encoder(dev, intel_encoder)
3274 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3275 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3276 }
3277
3278 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3279
3280 /*
3281 * Enable digital hotplug on the PCH, and configure the DP short pulse
3282 * duration to 2ms (which is the minimum in the Display Port spec)
3283 *
3284 * This register is the same on all known PCH chips.
3285 */
3286 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3287 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3288 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3289 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3290 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3291 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3292 }
3293
3294 static void ibx_irq_postinstall(struct drm_device *dev)
3295 {
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297 u32 mask;
3298
3299 if (HAS_PCH_NOP(dev))
3300 return;
3301
3302 if (HAS_PCH_IBX(dev))
3303 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3304 else
3305 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3306
3307 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3308 I915_WRITE(SDEIMR, ~mask);
3309 }
3310
3311 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3312 {
3313 struct drm_i915_private *dev_priv = dev->dev_private;
3314 u32 pm_irqs, gt_irqs;
3315
3316 pm_irqs = gt_irqs = 0;
3317
3318 dev_priv->gt_irq_mask = ~0;
3319 if (HAS_L3_DPF(dev)) {
3320 /* L3 parity interrupt is always unmasked. */
3321 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3322 gt_irqs |= GT_PARITY_ERROR(dev);
3323 }
3324
3325 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3326 if (IS_GEN5(dev)) {
3327 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3328 ILK_BSD_USER_INTERRUPT;
3329 } else {
3330 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3331 }
3332
3333 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3334
3335 if (INTEL_INFO(dev)->gen >= 6) {
3336 /*
3337 * RPS interrupts will get enabled/disabled on demand when RPS
3338 * itself is enabled/disabled.
3339 */
3340 if (HAS_VEBOX(dev))
3341 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3342
3343 dev_priv->pm_irq_mask = 0xffffffff;
3344 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3345 }
3346 }
3347
3348 static int ironlake_irq_postinstall(struct drm_device *dev)
3349 {
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3351 u32 display_mask, extra_mask;
3352
3353 if (INTEL_INFO(dev)->gen >= 7) {
3354 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3355 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3356 DE_PLANEB_FLIP_DONE_IVB |
3357 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3358 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3359 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3360 } else {
3361 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3362 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3363 DE_AUX_CHANNEL_A |
3364 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3365 DE_POISON);
3366 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3367 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3368 }
3369
3370 dev_priv->irq_mask = ~display_mask;
3371
3372 I915_WRITE(HWSTAM, 0xeffe);
3373
3374 ibx_irq_pre_postinstall(dev);
3375
3376 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3377
3378 gen5_gt_irq_postinstall(dev);
3379
3380 ibx_irq_postinstall(dev);
3381
3382 if (IS_IRONLAKE_M(dev)) {
3383 /* Enable PCU event interrupts
3384 *
3385 * spinlocking not required here for correctness since interrupt
3386 * setup is guaranteed to run in single-threaded context. But we
3387 * need it to make the assert_spin_locked happy. */
3388 spin_lock_irq(&dev_priv->irq_lock);
3389 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3390 spin_unlock_irq(&dev_priv->irq_lock);
3391 }
3392
3393 return 0;
3394 }
3395
3396 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3397 {
3398 u32 pipestat_mask;
3399 u32 iir_mask;
3400 enum pipe pipe;
3401
3402 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3403 PIPE_FIFO_UNDERRUN_STATUS;
3404
3405 for_each_pipe(dev_priv, pipe)
3406 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3407 POSTING_READ(PIPESTAT(PIPE_A));
3408
3409 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3410 PIPE_CRC_DONE_INTERRUPT_STATUS;
3411
3412 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3413 for_each_pipe(dev_priv, pipe)
3414 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3415
3416 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3417 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3418 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3419 if (IS_CHERRYVIEW(dev_priv))
3420 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3421 dev_priv->irq_mask &= ~iir_mask;
3422
3423 I915_WRITE(VLV_IIR, iir_mask);
3424 I915_WRITE(VLV_IIR, iir_mask);
3425 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3426 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3427 POSTING_READ(VLV_IMR);
3428 }
3429
3430 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3431 {
3432 u32 pipestat_mask;
3433 u32 iir_mask;
3434 enum pipe pipe;
3435
3436 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3437 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3438 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3439 if (IS_CHERRYVIEW(dev_priv))
3440 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3441
3442 dev_priv->irq_mask |= iir_mask;
3443 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3444 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3445 I915_WRITE(VLV_IIR, iir_mask);
3446 I915_WRITE(VLV_IIR, iir_mask);
3447 POSTING_READ(VLV_IIR);
3448
3449 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3450 PIPE_CRC_DONE_INTERRUPT_STATUS;
3451
3452 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3453 for_each_pipe(dev_priv, pipe)
3454 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3455
3456 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3457 PIPE_FIFO_UNDERRUN_STATUS;
3458
3459 for_each_pipe(dev_priv, pipe)
3460 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3461 POSTING_READ(PIPESTAT(PIPE_A));
3462 }
3463
3464 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3465 {
3466 assert_spin_locked(&dev_priv->irq_lock);
3467
3468 if (dev_priv->display_irqs_enabled)
3469 return;
3470
3471 dev_priv->display_irqs_enabled = true;
3472
3473 if (intel_irqs_enabled(dev_priv))
3474 valleyview_display_irqs_install(dev_priv);
3475 }
3476
3477 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3478 {
3479 assert_spin_locked(&dev_priv->irq_lock);
3480
3481 if (!dev_priv->display_irqs_enabled)
3482 return;
3483
3484 dev_priv->display_irqs_enabled = false;
3485
3486 if (intel_irqs_enabled(dev_priv))
3487 valleyview_display_irqs_uninstall(dev_priv);
3488 }
3489
3490 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3491 {
3492 dev_priv->irq_mask = ~0;
3493
3494 I915_WRITE(PORT_HOTPLUG_EN, 0);
3495 POSTING_READ(PORT_HOTPLUG_EN);
3496
3497 I915_WRITE(VLV_IIR, 0xffffffff);
3498 I915_WRITE(VLV_IIR, 0xffffffff);
3499 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3500 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3501 POSTING_READ(VLV_IMR);
3502
3503 /* Interrupt setup is already guaranteed to be single-threaded, this is
3504 * just to make the assert_spin_locked check happy. */
3505 spin_lock_irq(&dev_priv->irq_lock);
3506 if (dev_priv->display_irqs_enabled)
3507 valleyview_display_irqs_install(dev_priv);
3508 spin_unlock_irq(&dev_priv->irq_lock);
3509 }
3510
3511 static int valleyview_irq_postinstall(struct drm_device *dev)
3512 {
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514
3515 vlv_display_irq_postinstall(dev_priv);
3516
3517 gen5_gt_irq_postinstall(dev);
3518
3519 /* ack & enable invalid PTE error interrupts */
3520 #if 0 /* FIXME: add support to irq handler for checking these bits */
3521 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3522 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3523 #endif
3524
3525 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3526
3527 return 0;
3528 }
3529
3530 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3531 {
3532 /* These are interrupts we'll toggle with the ring mask register */
3533 uint32_t gt_interrupts[] = {
3534 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3535 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3536 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3537 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3538 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3539 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3540 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3541 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3542 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3543 0,
3544 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3545 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3546 };
3547
3548 dev_priv->pm_irq_mask = 0xffffffff;
3549 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3550 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3551 /*
3552 * RPS interrupts will get enabled/disabled on demand when RPS itself
3553 * is enabled/disabled.
3554 */
3555 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3556 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3557 }
3558
3559 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3560 {
3561 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3562 uint32_t de_pipe_enables;
3563 int pipe;
3564 u32 aux_en = GEN8_AUX_CHANNEL_A;
3565
3566 if (IS_GEN9(dev_priv)) {
3567 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3568 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3569 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3570 GEN9_AUX_CHANNEL_D;
3571 } else
3572 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3573 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3574
3575 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3576 GEN8_PIPE_FIFO_UNDERRUN;
3577
3578 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3579 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3580 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3581
3582 for_each_pipe(dev_priv, pipe)
3583 if (intel_display_power_is_enabled(dev_priv,
3584 POWER_DOMAIN_PIPE(pipe)))
3585 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3586 dev_priv->de_irq_mask[pipe],
3587 de_pipe_enables);
3588
3589 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3590 }
3591
3592 static int gen8_irq_postinstall(struct drm_device *dev)
3593 {
3594 struct drm_i915_private *dev_priv = dev->dev_private;
3595
3596 ibx_irq_pre_postinstall(dev);
3597
3598 gen8_gt_irq_postinstall(dev_priv);
3599 gen8_de_irq_postinstall(dev_priv);
3600
3601 ibx_irq_postinstall(dev);
3602
3603 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3604 POSTING_READ(GEN8_MASTER_IRQ);
3605
3606 return 0;
3607 }
3608
3609 static int cherryview_irq_postinstall(struct drm_device *dev)
3610 {
3611 struct drm_i915_private *dev_priv = dev->dev_private;
3612
3613 vlv_display_irq_postinstall(dev_priv);
3614
3615 gen8_gt_irq_postinstall(dev_priv);
3616
3617 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3618 POSTING_READ(GEN8_MASTER_IRQ);
3619
3620 return 0;
3621 }
3622
3623 static void gen8_irq_uninstall(struct drm_device *dev)
3624 {
3625 struct drm_i915_private *dev_priv = dev->dev_private;
3626
3627 if (!dev_priv)
3628 return;
3629
3630 gen8_irq_reset(dev);
3631 }
3632
3633 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3634 {
3635 /* Interrupt setup is already guaranteed to be single-threaded, this is
3636 * just to make the assert_spin_locked check happy. */
3637 spin_lock_irq(&dev_priv->irq_lock);
3638 if (dev_priv->display_irqs_enabled)
3639 valleyview_display_irqs_uninstall(dev_priv);
3640 spin_unlock_irq(&dev_priv->irq_lock);
3641
3642 vlv_display_irq_reset(dev_priv);
3643
3644 dev_priv->irq_mask = ~0;
3645 }
3646
3647 static void valleyview_irq_uninstall(struct drm_device *dev)
3648 {
3649 struct drm_i915_private *dev_priv = dev->dev_private;
3650
3651 if (!dev_priv)
3652 return;
3653
3654 I915_WRITE(VLV_MASTER_IER, 0);
3655
3656 gen5_gt_irq_reset(dev);
3657
3658 I915_WRITE(HWSTAM, 0xffffffff);
3659
3660 vlv_display_irq_uninstall(dev_priv);
3661 }
3662
3663 static void cherryview_irq_uninstall(struct drm_device *dev)
3664 {
3665 struct drm_i915_private *dev_priv = dev->dev_private;
3666
3667 if (!dev_priv)
3668 return;
3669
3670 I915_WRITE(GEN8_MASTER_IRQ, 0);
3671 POSTING_READ(GEN8_MASTER_IRQ);
3672
3673 gen8_gt_irq_reset(dev_priv);
3674
3675 GEN5_IRQ_RESET(GEN8_PCU_);
3676
3677 vlv_display_irq_uninstall(dev_priv);
3678 }
3679
3680 static void ironlake_irq_uninstall(struct drm_device *dev)
3681 {
3682 struct drm_i915_private *dev_priv = dev->dev_private;
3683
3684 if (!dev_priv)
3685 return;
3686
3687 ironlake_irq_reset(dev);
3688 }
3689
3690 static void i8xx_irq_preinstall(struct drm_device * dev)
3691 {
3692 struct drm_i915_private *dev_priv = dev->dev_private;
3693 int pipe;
3694
3695 for_each_pipe(dev_priv, pipe)
3696 I915_WRITE(PIPESTAT(pipe), 0);
3697 I915_WRITE16(IMR, 0xffff);
3698 I915_WRITE16(IER, 0x0);
3699 POSTING_READ16(IER);
3700 }
3701
3702 static int i8xx_irq_postinstall(struct drm_device *dev)
3703 {
3704 struct drm_i915_private *dev_priv = dev->dev_private;
3705
3706 I915_WRITE16(EMR,
3707 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3708
3709 /* Unmask the interrupts that we always want on. */
3710 dev_priv->irq_mask =
3711 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3712 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3713 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3714 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3715 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3716 I915_WRITE16(IMR, dev_priv->irq_mask);
3717
3718 I915_WRITE16(IER,
3719 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3720 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3721 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3722 I915_USER_INTERRUPT);
3723 POSTING_READ16(IER);
3724
3725 /* Interrupt setup is already guaranteed to be single-threaded, this is
3726 * just to make the assert_spin_locked check happy. */
3727 spin_lock_irq(&dev_priv->irq_lock);
3728 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3729 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3730 spin_unlock_irq(&dev_priv->irq_lock);
3731
3732 return 0;
3733 }
3734
3735 /*
3736 * Returns true when a page flip has completed.
3737 */
3738 static bool i8xx_handle_vblank(struct drm_device *dev,
3739 int plane, int pipe, u32 iir)
3740 {
3741 struct drm_i915_private *dev_priv = dev->dev_private;
3742 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3743
3744 if (!intel_pipe_handle_vblank(dev, pipe))
3745 return false;
3746
3747 if ((iir & flip_pending) == 0)
3748 goto check_page_flip;
3749
3750 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3751 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3752 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3753 * the flip is completed (no longer pending). Since this doesn't raise
3754 * an interrupt per se, we watch for the change at vblank.
3755 */
3756 if (I915_READ16(ISR) & flip_pending)
3757 goto check_page_flip;
3758
3759 intel_prepare_page_flip(dev, plane);
3760 intel_finish_page_flip(dev, pipe);
3761 return true;
3762
3763 check_page_flip:
3764 intel_check_page_flip(dev, pipe);
3765 return false;
3766 }
3767
3768 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3769 {
3770 struct drm_device *dev = arg;
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772 u16 iir, new_iir;
3773 u32 pipe_stats[2];
3774 int pipe;
3775 u16 flip_mask =
3776 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3777 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3778
3779 iir = I915_READ16(IIR);
3780 if (iir == 0)
3781 return IRQ_NONE;
3782
3783 while (iir & ~flip_mask) {
3784 /* Can't rely on pipestat interrupt bit in iir as it might
3785 * have been cleared after the pipestat interrupt was received.
3786 * It doesn't set the bit in iir again, but it still produces
3787 * interrupts (for non-MSI).
3788 */
3789 spin_lock(&dev_priv->irq_lock);
3790 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3791 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3792
3793 for_each_pipe(dev_priv, pipe) {
3794 int reg = PIPESTAT(pipe);
3795 pipe_stats[pipe] = I915_READ(reg);
3796
3797 /*
3798 * Clear the PIPE*STAT regs before the IIR
3799 */
3800 if (pipe_stats[pipe] & 0x8000ffff)
3801 I915_WRITE(reg, pipe_stats[pipe]);
3802 }
3803 spin_unlock(&dev_priv->irq_lock);
3804
3805 I915_WRITE16(IIR, iir & ~flip_mask);
3806 new_iir = I915_READ16(IIR); /* Flush posted writes */
3807
3808 if (iir & I915_USER_INTERRUPT)
3809 notify_ring(dev, &dev_priv->ring[RCS]);
3810
3811 for_each_pipe(dev_priv, pipe) {
3812 int plane = pipe;
3813 if (HAS_FBC(dev))
3814 plane = !plane;
3815
3816 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3817 i8xx_handle_vblank(dev, plane, pipe, iir))
3818 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3819
3820 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3821 i9xx_pipe_crc_irq_handler(dev, pipe);
3822
3823 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3824 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3825 pipe);
3826 }
3827
3828 iir = new_iir;
3829 }
3830
3831 return IRQ_HANDLED;
3832 }
3833
3834 static void i8xx_irq_uninstall(struct drm_device * dev)
3835 {
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 int pipe;
3838
3839 for_each_pipe(dev_priv, pipe) {
3840 /* Clear enable bits; then clear status bits */
3841 I915_WRITE(PIPESTAT(pipe), 0);
3842 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3843 }
3844 I915_WRITE16(IMR, 0xffff);
3845 I915_WRITE16(IER, 0x0);
3846 I915_WRITE16(IIR, I915_READ16(IIR));
3847 }
3848
3849 static void i915_irq_preinstall(struct drm_device * dev)
3850 {
3851 struct drm_i915_private *dev_priv = dev->dev_private;
3852 int pipe;
3853
3854 if (I915_HAS_HOTPLUG(dev)) {
3855 I915_WRITE(PORT_HOTPLUG_EN, 0);
3856 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3857 }
3858
3859 I915_WRITE16(HWSTAM, 0xeffe);
3860 for_each_pipe(dev_priv, pipe)
3861 I915_WRITE(PIPESTAT(pipe), 0);
3862 I915_WRITE(IMR, 0xffffffff);
3863 I915_WRITE(IER, 0x0);
3864 POSTING_READ(IER);
3865 }
3866
3867 static int i915_irq_postinstall(struct drm_device *dev)
3868 {
3869 struct drm_i915_private *dev_priv = dev->dev_private;
3870 u32 enable_mask;
3871
3872 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3873
3874 /* Unmask the interrupts that we always want on. */
3875 dev_priv->irq_mask =
3876 ~(I915_ASLE_INTERRUPT |
3877 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3878 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3879 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3880 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3881 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3882
3883 enable_mask =
3884 I915_ASLE_INTERRUPT |
3885 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3886 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3887 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3888 I915_USER_INTERRUPT;
3889
3890 if (I915_HAS_HOTPLUG(dev)) {
3891 I915_WRITE(PORT_HOTPLUG_EN, 0);
3892 POSTING_READ(PORT_HOTPLUG_EN);
3893
3894 /* Enable in IER... */
3895 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3896 /* and unmask in IMR */
3897 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3898 }
3899
3900 I915_WRITE(IMR, dev_priv->irq_mask);
3901 I915_WRITE(IER, enable_mask);
3902 POSTING_READ(IER);
3903
3904 i915_enable_asle_pipestat(dev);
3905
3906 /* Interrupt setup is already guaranteed to be single-threaded, this is
3907 * just to make the assert_spin_locked check happy. */
3908 spin_lock_irq(&dev_priv->irq_lock);
3909 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3911 spin_unlock_irq(&dev_priv->irq_lock);
3912
3913 return 0;
3914 }
3915
3916 /*
3917 * Returns true when a page flip has completed.
3918 */
3919 static bool i915_handle_vblank(struct drm_device *dev,
3920 int plane, int pipe, u32 iir)
3921 {
3922 struct drm_i915_private *dev_priv = dev->dev_private;
3923 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3924
3925 if (!intel_pipe_handle_vblank(dev, pipe))
3926 return false;
3927
3928 if ((iir & flip_pending) == 0)
3929 goto check_page_flip;
3930
3931 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3932 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3933 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3934 * the flip is completed (no longer pending). Since this doesn't raise
3935 * an interrupt per se, we watch for the change at vblank.
3936 */
3937 if (I915_READ(ISR) & flip_pending)
3938 goto check_page_flip;
3939
3940 intel_prepare_page_flip(dev, plane);
3941 intel_finish_page_flip(dev, pipe);
3942 return true;
3943
3944 check_page_flip:
3945 intel_check_page_flip(dev, pipe);
3946 return false;
3947 }
3948
3949 static irqreturn_t i915_irq_handler(int irq, void *arg)
3950 {
3951 struct drm_device *dev = arg;
3952 struct drm_i915_private *dev_priv = dev->dev_private;
3953 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3954 u32 flip_mask =
3955 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3956 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3957 int pipe, ret = IRQ_NONE;
3958
3959 iir = I915_READ(IIR);
3960 do {
3961 bool irq_received = (iir & ~flip_mask) != 0;
3962 bool blc_event = false;
3963
3964 /* Can't rely on pipestat interrupt bit in iir as it might
3965 * have been cleared after the pipestat interrupt was received.
3966 * It doesn't set the bit in iir again, but it still produces
3967 * interrupts (for non-MSI).
3968 */
3969 spin_lock(&dev_priv->irq_lock);
3970 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3971 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3972
3973 for_each_pipe(dev_priv, pipe) {
3974 int reg = PIPESTAT(pipe);
3975 pipe_stats[pipe] = I915_READ(reg);
3976
3977 /* Clear the PIPE*STAT regs before the IIR */
3978 if (pipe_stats[pipe] & 0x8000ffff) {
3979 I915_WRITE(reg, pipe_stats[pipe]);
3980 irq_received = true;
3981 }
3982 }
3983 spin_unlock(&dev_priv->irq_lock);
3984
3985 if (!irq_received)
3986 break;
3987
3988 /* Consume port. Then clear IIR or we'll miss events */
3989 if (I915_HAS_HOTPLUG(dev) &&
3990 iir & I915_DISPLAY_PORT_INTERRUPT)
3991 i9xx_hpd_irq_handler(dev);
3992
3993 I915_WRITE(IIR, iir & ~flip_mask);
3994 new_iir = I915_READ(IIR); /* Flush posted writes */
3995
3996 if (iir & I915_USER_INTERRUPT)
3997 notify_ring(dev, &dev_priv->ring[RCS]);
3998
3999 for_each_pipe(dev_priv, pipe) {
4000 int plane = pipe;
4001 if (HAS_FBC(dev))
4002 plane = !plane;
4003
4004 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4005 i915_handle_vblank(dev, plane, pipe, iir))
4006 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4007
4008 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4009 blc_event = true;
4010
4011 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4012 i9xx_pipe_crc_irq_handler(dev, pipe);
4013
4014 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4015 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4016 pipe);
4017 }
4018
4019 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4020 intel_opregion_asle_intr(dev);
4021
4022 /* With MSI, interrupts are only generated when iir
4023 * transitions from zero to nonzero. If another bit got
4024 * set while we were handling the existing iir bits, then
4025 * we would never get another interrupt.
4026 *
4027 * This is fine on non-MSI as well, as if we hit this path
4028 * we avoid exiting the interrupt handler only to generate
4029 * another one.
4030 *
4031 * Note that for MSI this could cause a stray interrupt report
4032 * if an interrupt landed in the time between writing IIR and
4033 * the posting read. This should be rare enough to never
4034 * trigger the 99% of 100,000 interrupts test for disabling
4035 * stray interrupts.
4036 */
4037 ret = IRQ_HANDLED;
4038 iir = new_iir;
4039 } while (iir & ~flip_mask);
4040
4041 return ret;
4042 }
4043
4044 static void i915_irq_uninstall(struct drm_device * dev)
4045 {
4046 struct drm_i915_private *dev_priv = dev->dev_private;
4047 int pipe;
4048
4049 if (I915_HAS_HOTPLUG(dev)) {
4050 I915_WRITE(PORT_HOTPLUG_EN, 0);
4051 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4052 }
4053
4054 I915_WRITE16(HWSTAM, 0xffff);
4055 for_each_pipe(dev_priv, pipe) {
4056 /* Clear enable bits; then clear status bits */
4057 I915_WRITE(PIPESTAT(pipe), 0);
4058 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4059 }
4060 I915_WRITE(IMR, 0xffffffff);
4061 I915_WRITE(IER, 0x0);
4062
4063 I915_WRITE(IIR, I915_READ(IIR));
4064 }
4065
4066 static void i965_irq_preinstall(struct drm_device * dev)
4067 {
4068 struct drm_i915_private *dev_priv = dev->dev_private;
4069 int pipe;
4070
4071 I915_WRITE(PORT_HOTPLUG_EN, 0);
4072 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4073
4074 I915_WRITE(HWSTAM, 0xeffe);
4075 for_each_pipe(dev_priv, pipe)
4076 I915_WRITE(PIPESTAT(pipe), 0);
4077 I915_WRITE(IMR, 0xffffffff);
4078 I915_WRITE(IER, 0x0);
4079 POSTING_READ(IER);
4080 }
4081
4082 static int i965_irq_postinstall(struct drm_device *dev)
4083 {
4084 struct drm_i915_private *dev_priv = dev->dev_private;
4085 u32 enable_mask;
4086 u32 error_mask;
4087
4088 /* Unmask the interrupts that we always want on. */
4089 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4090 I915_DISPLAY_PORT_INTERRUPT |
4091 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4092 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4093 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4094 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4095 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4096
4097 enable_mask = ~dev_priv->irq_mask;
4098 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4099 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4100 enable_mask |= I915_USER_INTERRUPT;
4101
4102 if (IS_G4X(dev))
4103 enable_mask |= I915_BSD_USER_INTERRUPT;
4104
4105 /* Interrupt setup is already guaranteed to be single-threaded, this is
4106 * just to make the assert_spin_locked check happy. */
4107 spin_lock_irq(&dev_priv->irq_lock);
4108 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4109 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4110 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4111 spin_unlock_irq(&dev_priv->irq_lock);
4112
4113 /*
4114 * Enable some error detection, note the instruction error mask
4115 * bit is reserved, so we leave it masked.
4116 */
4117 if (IS_G4X(dev)) {
4118 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4119 GM45_ERROR_MEM_PRIV |
4120 GM45_ERROR_CP_PRIV |
4121 I915_ERROR_MEMORY_REFRESH);
4122 } else {
4123 error_mask = ~(I915_ERROR_PAGE_TABLE |
4124 I915_ERROR_MEMORY_REFRESH);
4125 }
4126 I915_WRITE(EMR, error_mask);
4127
4128 I915_WRITE(IMR, dev_priv->irq_mask);
4129 I915_WRITE(IER, enable_mask);
4130 POSTING_READ(IER);
4131
4132 I915_WRITE(PORT_HOTPLUG_EN, 0);
4133 POSTING_READ(PORT_HOTPLUG_EN);
4134
4135 i915_enable_asle_pipestat(dev);
4136
4137 return 0;
4138 }
4139
4140 static void i915_hpd_irq_setup(struct drm_device *dev)
4141 {
4142 struct drm_i915_private *dev_priv = dev->dev_private;
4143 struct intel_encoder *intel_encoder;
4144 u32 hotplug_en;
4145
4146 assert_spin_locked(&dev_priv->irq_lock);
4147
4148 if (I915_HAS_HOTPLUG(dev)) {
4149 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4150 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4151 /* Note HDMI and DP share hotplug bits */
4152 /* enable bits are the same for all generations */
4153 for_each_intel_encoder(dev, intel_encoder)
4154 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4155 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4156 /* Programming the CRT detection parameters tends
4157 to generate a spurious hotplug event about three
4158 seconds later. So just do it once.
4159 */
4160 if (IS_G4X(dev))
4161 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4162 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4163 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4164
4165 /* Ignore TV since it's buggy */
4166 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4167 }
4168 }
4169
4170 static irqreturn_t i965_irq_handler(int irq, void *arg)
4171 {
4172 struct drm_device *dev = arg;
4173 struct drm_i915_private *dev_priv = dev->dev_private;
4174 u32 iir, new_iir;
4175 u32 pipe_stats[I915_MAX_PIPES];
4176 int ret = IRQ_NONE, pipe;
4177 u32 flip_mask =
4178 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4179 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4180
4181 iir = I915_READ(IIR);
4182
4183 for (;;) {
4184 bool irq_received = (iir & ~flip_mask) != 0;
4185 bool blc_event = false;
4186
4187 /* Can't rely on pipestat interrupt bit in iir as it might
4188 * have been cleared after the pipestat interrupt was received.
4189 * It doesn't set the bit in iir again, but it still produces
4190 * interrupts (for non-MSI).
4191 */
4192 spin_lock(&dev_priv->irq_lock);
4193 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4194 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4195
4196 for_each_pipe(dev_priv, pipe) {
4197 int reg = PIPESTAT(pipe);
4198 pipe_stats[pipe] = I915_READ(reg);
4199
4200 /*
4201 * Clear the PIPE*STAT regs before the IIR
4202 */
4203 if (pipe_stats[pipe] & 0x8000ffff) {
4204 I915_WRITE(reg, pipe_stats[pipe]);
4205 irq_received = true;
4206 }
4207 }
4208 spin_unlock(&dev_priv->irq_lock);
4209
4210 if (!irq_received)
4211 break;
4212
4213 ret = IRQ_HANDLED;
4214
4215 /* Consume port. Then clear IIR or we'll miss events */
4216 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4217 i9xx_hpd_irq_handler(dev);
4218
4219 I915_WRITE(IIR, iir & ~flip_mask);
4220 new_iir = I915_READ(IIR); /* Flush posted writes */
4221
4222 if (iir & I915_USER_INTERRUPT)
4223 notify_ring(dev, &dev_priv->ring[RCS]);
4224 if (iir & I915_BSD_USER_INTERRUPT)
4225 notify_ring(dev, &dev_priv->ring[VCS]);
4226
4227 for_each_pipe(dev_priv, pipe) {
4228 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4229 i915_handle_vblank(dev, pipe, pipe, iir))
4230 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4231
4232 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4233 blc_event = true;
4234
4235 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4236 i9xx_pipe_crc_irq_handler(dev, pipe);
4237
4238 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4239 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4240 }
4241
4242 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4243 intel_opregion_asle_intr(dev);
4244
4245 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4246 gmbus_irq_handler(dev);
4247
4248 /* With MSI, interrupts are only generated when iir
4249 * transitions from zero to nonzero. If another bit got
4250 * set while we were handling the existing iir bits, then
4251 * we would never get another interrupt.
4252 *
4253 * This is fine on non-MSI as well, as if we hit this path
4254 * we avoid exiting the interrupt handler only to generate
4255 * another one.
4256 *
4257 * Note that for MSI this could cause a stray interrupt report
4258 * if an interrupt landed in the time between writing IIR and
4259 * the posting read. This should be rare enough to never
4260 * trigger the 99% of 100,000 interrupts test for disabling
4261 * stray interrupts.
4262 */
4263 iir = new_iir;
4264 }
4265
4266 return ret;
4267 }
4268
4269 static void i965_irq_uninstall(struct drm_device * dev)
4270 {
4271 struct drm_i915_private *dev_priv = dev->dev_private;
4272 int pipe;
4273
4274 if (!dev_priv)
4275 return;
4276
4277 I915_WRITE(PORT_HOTPLUG_EN, 0);
4278 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4279
4280 I915_WRITE(HWSTAM, 0xffffffff);
4281 for_each_pipe(dev_priv, pipe)
4282 I915_WRITE(PIPESTAT(pipe), 0);
4283 I915_WRITE(IMR, 0xffffffff);
4284 I915_WRITE(IER, 0x0);
4285
4286 for_each_pipe(dev_priv, pipe)
4287 I915_WRITE(PIPESTAT(pipe),
4288 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4289 I915_WRITE(IIR, I915_READ(IIR));
4290 }
4291
4292 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4293 {
4294 struct drm_i915_private *dev_priv =
4295 container_of(work, typeof(*dev_priv),
4296 hotplug_reenable_work.work);
4297 struct drm_device *dev = dev_priv->dev;
4298 struct drm_mode_config *mode_config = &dev->mode_config;
4299 int i;
4300
4301 intel_runtime_pm_get(dev_priv);
4302
4303 spin_lock_irq(&dev_priv->irq_lock);
4304 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4305 struct drm_connector *connector;
4306
4307 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4308 continue;
4309
4310 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4311
4312 list_for_each_entry(connector, &mode_config->connector_list, head) {
4313 struct intel_connector *intel_connector = to_intel_connector(connector);
4314
4315 if (intel_connector->encoder->hpd_pin == i) {
4316 if (connector->polled != intel_connector->polled)
4317 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4318 connector->name);
4319 connector->polled = intel_connector->polled;
4320 if (!connector->polled)
4321 connector->polled = DRM_CONNECTOR_POLL_HPD;
4322 }
4323 }
4324 }
4325 if (dev_priv->display.hpd_irq_setup)
4326 dev_priv->display.hpd_irq_setup(dev);
4327 spin_unlock_irq(&dev_priv->irq_lock);
4328
4329 intel_runtime_pm_put(dev_priv);
4330 }
4331
4332 /**
4333 * intel_irq_init - initializes irq support
4334 * @dev_priv: i915 device instance
4335 *
4336 * This function initializes all the irq support including work items, timers
4337 * and all the vtables. It does not setup the interrupt itself though.
4338 */
4339 void intel_irq_init(struct drm_i915_private *dev_priv)
4340 {
4341 struct drm_device *dev = dev_priv->dev;
4342
4343 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4344 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4345 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4346 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4347 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4348
4349 /* Let's track the enabled rps events */
4350 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4351 /* WaGsvRC0ResidencyMethod:vlv */
4352 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4353 else
4354 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4355
4356 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4357 i915_hangcheck_elapsed,
4358 (unsigned long) dev);
4359 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4360 intel_hpd_irq_reenable_work);
4361
4362 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4363
4364 if (IS_GEN2(dev_priv)) {
4365 dev->max_vblank_count = 0;
4366 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4367 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4368 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4369 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4370 } else {
4371 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4372 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4373 }
4374
4375 /*
4376 * Opt out of the vblank disable timer on everything except gen2.
4377 * Gen2 doesn't have a hardware frame counter and so depends on
4378 * vblank interrupts to produce sane vblank seuquence numbers.
4379 */
4380 if (!IS_GEN2(dev_priv))
4381 dev->vblank_disable_immediate = true;
4382
4383 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4384 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4385 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4386 }
4387
4388 if (IS_CHERRYVIEW(dev_priv)) {
4389 dev->driver->irq_handler = cherryview_irq_handler;
4390 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4391 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4392 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4393 dev->driver->enable_vblank = valleyview_enable_vblank;
4394 dev->driver->disable_vblank = valleyview_disable_vblank;
4395 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4396 } else if (IS_VALLEYVIEW(dev_priv)) {
4397 dev->driver->irq_handler = valleyview_irq_handler;
4398 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4399 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4400 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4401 dev->driver->enable_vblank = valleyview_enable_vblank;
4402 dev->driver->disable_vblank = valleyview_disable_vblank;
4403 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4404 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4405 dev->driver->irq_handler = gen8_irq_handler;
4406 dev->driver->irq_preinstall = gen8_irq_reset;
4407 dev->driver->irq_postinstall = gen8_irq_postinstall;
4408 dev->driver->irq_uninstall = gen8_irq_uninstall;
4409 dev->driver->enable_vblank = gen8_enable_vblank;
4410 dev->driver->disable_vblank = gen8_disable_vblank;
4411 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4412 } else if (HAS_PCH_SPLIT(dev)) {
4413 dev->driver->irq_handler = ironlake_irq_handler;
4414 dev->driver->irq_preinstall = ironlake_irq_reset;
4415 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4416 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4417 dev->driver->enable_vblank = ironlake_enable_vblank;
4418 dev->driver->disable_vblank = ironlake_disable_vblank;
4419 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4420 } else {
4421 if (INTEL_INFO(dev_priv)->gen == 2) {
4422 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4423 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4424 dev->driver->irq_handler = i8xx_irq_handler;
4425 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4426 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4427 dev->driver->irq_preinstall = i915_irq_preinstall;
4428 dev->driver->irq_postinstall = i915_irq_postinstall;
4429 dev->driver->irq_uninstall = i915_irq_uninstall;
4430 dev->driver->irq_handler = i915_irq_handler;
4431 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4432 } else {
4433 dev->driver->irq_preinstall = i965_irq_preinstall;
4434 dev->driver->irq_postinstall = i965_irq_postinstall;
4435 dev->driver->irq_uninstall = i965_irq_uninstall;
4436 dev->driver->irq_handler = i965_irq_handler;
4437 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4438 }
4439 dev->driver->enable_vblank = i915_enable_vblank;
4440 dev->driver->disable_vblank = i915_disable_vblank;
4441 }
4442 }
4443
4444 /**
4445 * intel_hpd_init - initializes and enables hpd support
4446 * @dev_priv: i915 device instance
4447 *
4448 * This function enables the hotplug support. It requires that interrupts have
4449 * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4450 * poll request can run concurrently to other code, so locking rules must be
4451 * obeyed.
4452 *
4453 * This is a separate step from interrupt enabling to simplify the locking rules
4454 * in the driver load and resume code.
4455 */
4456 void intel_hpd_init(struct drm_i915_private *dev_priv)
4457 {
4458 struct drm_device *dev = dev_priv->dev;
4459 struct drm_mode_config *mode_config = &dev->mode_config;
4460 struct drm_connector *connector;
4461 int i;
4462
4463 for (i = 1; i < HPD_NUM_PINS; i++) {
4464 dev_priv->hpd_stats[i].hpd_cnt = 0;
4465 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4466 }
4467 list_for_each_entry(connector, &mode_config->connector_list, head) {
4468 struct intel_connector *intel_connector = to_intel_connector(connector);
4469 connector->polled = intel_connector->polled;
4470 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4471 connector->polled = DRM_CONNECTOR_POLL_HPD;
4472 if (intel_connector->mst_port)
4473 connector->polled = DRM_CONNECTOR_POLL_HPD;
4474 }
4475
4476 /* Interrupt setup is already guaranteed to be single-threaded, this is
4477 * just to make the assert_spin_locked checks happy. */
4478 spin_lock_irq(&dev_priv->irq_lock);
4479 if (dev_priv->display.hpd_irq_setup)
4480 dev_priv->display.hpd_irq_setup(dev);
4481 spin_unlock_irq(&dev_priv->irq_lock);
4482 }
4483
4484 /**
4485 * intel_irq_install - enables the hardware interrupt
4486 * @dev_priv: i915 device instance
4487 *
4488 * This function enables the hardware interrupt handling, but leaves the hotplug
4489 * handling still disabled. It is called after intel_irq_init().
4490 *
4491 * In the driver load and resume code we need working interrupts in a few places
4492 * but don't want to deal with the hassle of concurrent probe and hotplug
4493 * workers. Hence the split into this two-stage approach.
4494 */
4495 int intel_irq_install(struct drm_i915_private *dev_priv)
4496 {
4497 /*
4498 * We enable some interrupt sources in our postinstall hooks, so mark
4499 * interrupts as enabled _before_ actually enabling them to avoid
4500 * special cases in our ordering checks.
4501 */
4502 dev_priv->pm.irqs_enabled = true;
4503
4504 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4505 }
4506
4507 /**
4508 * intel_irq_uninstall - finilizes all irq handling
4509 * @dev_priv: i915 device instance
4510 *
4511 * This stops interrupt and hotplug handling and unregisters and frees all
4512 * resources acquired in the init functions.
4513 */
4514 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4515 {
4516 drm_irq_uninstall(dev_priv->dev);
4517 intel_hpd_cancel_work(dev_priv);
4518 dev_priv->pm.irqs_enabled = false;
4519 }
4520
4521 /**
4522 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4523 * @dev_priv: i915 device instance
4524 *
4525 * This function is used to disable interrupts at runtime, both in the runtime
4526 * pm and the system suspend/resume code.
4527 */
4528 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4529 {
4530 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4531 dev_priv->pm.irqs_enabled = false;
4532 }
4533
4534 /**
4535 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4536 * @dev_priv: i915 device instance
4537 *
4538 * This function is used to enable interrupts at runtime, both in the runtime
4539 * pm and the system suspend/resume code.
4540 */
4541 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4542 {
4543 dev_priv->pm.irqs_enabled = true;
4544 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4545 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4546 }
This page took 0.125167 seconds and 6 git commands to generate.