Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86 assert_spin_locked(&dev_priv->irq_lock);
87
88 if (dev_priv->pc8.irqs_disabled) {
89 WARN(1, "IRQs disabled\n");
90 dev_priv->pc8.regsave.deimr &= ~mask;
91 return;
92 }
93
94 if ((dev_priv->irq_mask & mask) != 0) {
95 dev_priv->irq_mask &= ~mask;
96 I915_WRITE(DEIMR, dev_priv->irq_mask);
97 POSTING_READ(DEIMR);
98 }
99 }
100
101 static void
102 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
103 {
104 assert_spin_locked(&dev_priv->irq_lock);
105
106 if (dev_priv->pc8.irqs_disabled) {
107 WARN(1, "IRQs disabled\n");
108 dev_priv->pc8.regsave.deimr |= mask;
109 return;
110 }
111
112 if ((dev_priv->irq_mask & mask) != mask) {
113 dev_priv->irq_mask |= mask;
114 I915_WRITE(DEIMR, dev_priv->irq_mask);
115 POSTING_READ(DEIMR);
116 }
117 }
118
119 /**
120 * ilk_update_gt_irq - update GTIMR
121 * @dev_priv: driver private
122 * @interrupt_mask: mask of interrupt bits to update
123 * @enabled_irq_mask: mask of interrupt bits to enable
124 */
125 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
126 uint32_t interrupt_mask,
127 uint32_t enabled_irq_mask)
128 {
129 assert_spin_locked(&dev_priv->irq_lock);
130
131 if (dev_priv->pc8.irqs_disabled) {
132 WARN(1, "IRQs disabled\n");
133 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
134 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
135 interrupt_mask);
136 return;
137 }
138
139 dev_priv->gt_irq_mask &= ~interrupt_mask;
140 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
141 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
142 POSTING_READ(GTIMR);
143 }
144
145 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
146 {
147 ilk_update_gt_irq(dev_priv, mask, mask);
148 }
149
150 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
151 {
152 ilk_update_gt_irq(dev_priv, mask, 0);
153 }
154
155 /**
156 * snb_update_pm_irq - update GEN6_PMIMR
157 * @dev_priv: driver private
158 * @interrupt_mask: mask of interrupt bits to update
159 * @enabled_irq_mask: mask of interrupt bits to enable
160 */
161 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
162 uint32_t interrupt_mask,
163 uint32_t enabled_irq_mask)
164 {
165 uint32_t new_val;
166
167 assert_spin_locked(&dev_priv->irq_lock);
168
169 if (dev_priv->pc8.irqs_disabled) {
170 WARN(1, "IRQs disabled\n");
171 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
172 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
173 interrupt_mask);
174 return;
175 }
176
177 new_val = dev_priv->pm_irq_mask;
178 new_val &= ~interrupt_mask;
179 new_val |= (~enabled_irq_mask & interrupt_mask);
180
181 if (new_val != dev_priv->pm_irq_mask) {
182 dev_priv->pm_irq_mask = new_val;
183 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
184 POSTING_READ(GEN6_PMIMR);
185 }
186 }
187
188 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
189 {
190 snb_update_pm_irq(dev_priv, mask, mask);
191 }
192
193 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
194 {
195 snb_update_pm_irq(dev_priv, mask, 0);
196 }
197
198 static bool ivb_can_enable_err_int(struct drm_device *dev)
199 {
200 struct drm_i915_private *dev_priv = dev->dev_private;
201 struct intel_crtc *crtc;
202 enum pipe pipe;
203
204 assert_spin_locked(&dev_priv->irq_lock);
205
206 for_each_pipe(pipe) {
207 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
208
209 if (crtc->cpu_fifo_underrun_disabled)
210 return false;
211 }
212
213 return true;
214 }
215
216 static bool cpt_can_enable_serr_int(struct drm_device *dev)
217 {
218 struct drm_i915_private *dev_priv = dev->dev_private;
219 enum pipe pipe;
220 struct intel_crtc *crtc;
221
222 assert_spin_locked(&dev_priv->irq_lock);
223
224 for_each_pipe(pipe) {
225 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
226
227 if (crtc->pch_fifo_underrun_disabled)
228 return false;
229 }
230
231 return true;
232 }
233
234 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
235 enum pipe pipe, bool enable)
236 {
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
239 DE_PIPEB_FIFO_UNDERRUN;
240
241 if (enable)
242 ironlake_enable_display_irq(dev_priv, bit);
243 else
244 ironlake_disable_display_irq(dev_priv, bit);
245 }
246
247 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
248 enum pipe pipe, bool enable)
249 {
250 struct drm_i915_private *dev_priv = dev->dev_private;
251 if (enable) {
252 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
253
254 if (!ivb_can_enable_err_int(dev))
255 return;
256
257 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
258 } else {
259 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
260
261 /* Change the state _after_ we've read out the current one. */
262 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
263
264 if (!was_enabled &&
265 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
266 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
267 pipe_name(pipe));
268 }
269 }
270 }
271
272 /**
273 * ibx_display_interrupt_update - update SDEIMR
274 * @dev_priv: driver private
275 * @interrupt_mask: mask of interrupt bits to update
276 * @enabled_irq_mask: mask of interrupt bits to enable
277 */
278 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
279 uint32_t interrupt_mask,
280 uint32_t enabled_irq_mask)
281 {
282 uint32_t sdeimr = I915_READ(SDEIMR);
283 sdeimr &= ~interrupt_mask;
284 sdeimr |= (~enabled_irq_mask & interrupt_mask);
285
286 assert_spin_locked(&dev_priv->irq_lock);
287
288 if (dev_priv->pc8.irqs_disabled &&
289 (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
290 WARN(1, "IRQs disabled\n");
291 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
292 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
293 interrupt_mask);
294 return;
295 }
296
297 I915_WRITE(SDEIMR, sdeimr);
298 POSTING_READ(SDEIMR);
299 }
300 #define ibx_enable_display_interrupt(dev_priv, bits) \
301 ibx_display_interrupt_update((dev_priv), (bits), (bits))
302 #define ibx_disable_display_interrupt(dev_priv, bits) \
303 ibx_display_interrupt_update((dev_priv), (bits), 0)
304
305 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
306 enum transcoder pch_transcoder,
307 bool enable)
308 {
309 struct drm_i915_private *dev_priv = dev->dev_private;
310 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
311 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
312
313 if (enable)
314 ibx_enable_display_interrupt(dev_priv, bit);
315 else
316 ibx_disable_display_interrupt(dev_priv, bit);
317 }
318
319 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum transcoder pch_transcoder,
321 bool enable)
322 {
323 struct drm_i915_private *dev_priv = dev->dev_private;
324
325 if (enable) {
326 I915_WRITE(SERR_INT,
327 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
328
329 if (!cpt_can_enable_serr_int(dev))
330 return;
331
332 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
333 } else {
334 uint32_t tmp = I915_READ(SERR_INT);
335 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
336
337 /* Change the state _after_ we've read out the current one. */
338 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
339
340 if (!was_enabled &&
341 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
342 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
343 transcoder_name(pch_transcoder));
344 }
345 }
346 }
347
348 /**
349 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
350 * @dev: drm device
351 * @pipe: pipe
352 * @enable: true if we want to report FIFO underrun errors, false otherwise
353 *
354 * This function makes us disable or enable CPU fifo underruns for a specific
355 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
356 * reporting for one pipe may also disable all the other CPU error interruts for
357 * the other pipes, due to the fact that there's just one interrupt mask/enable
358 * bit for all the pipes.
359 *
360 * Returns the previous state of underrun reporting.
361 */
362 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
363 enum pipe pipe, bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368 unsigned long flags;
369 bool ret;
370
371 spin_lock_irqsave(&dev_priv->irq_lock, flags);
372
373 ret = !intel_crtc->cpu_fifo_underrun_disabled;
374
375 if (enable == ret)
376 goto done;
377
378 intel_crtc->cpu_fifo_underrun_disabled = !enable;
379
380 if (IS_GEN5(dev) || IS_GEN6(dev))
381 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
382 else if (IS_GEN7(dev))
383 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
384
385 done:
386 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
387 return ret;
388 }
389
390 /**
391 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
392 * @dev: drm device
393 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
394 * @enable: true if we want to report FIFO underrun errors, false otherwise
395 *
396 * This function makes us disable or enable PCH fifo underruns for a specific
397 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
398 * underrun reporting for one transcoder may also disable all the other PCH
399 * error interruts for the other transcoders, due to the fact that there's just
400 * one interrupt mask/enable bit for all the transcoders.
401 *
402 * Returns the previous state of underrun reporting.
403 */
404 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
405 enum transcoder pch_transcoder,
406 bool enable)
407 {
408 struct drm_i915_private *dev_priv = dev->dev_private;
409 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
411 unsigned long flags;
412 bool ret;
413
414 /*
415 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
416 * has only one pch transcoder A that all pipes can use. To avoid racy
417 * pch transcoder -> pipe lookups from interrupt code simply store the
418 * underrun statistics in crtc A. Since we never expose this anywhere
419 * nor use it outside of the fifo underrun code here using the "wrong"
420 * crtc on LPT won't cause issues.
421 */
422
423 spin_lock_irqsave(&dev_priv->irq_lock, flags);
424
425 ret = !intel_crtc->pch_fifo_underrun_disabled;
426
427 if (enable == ret)
428 goto done;
429
430 intel_crtc->pch_fifo_underrun_disabled = !enable;
431
432 if (HAS_PCH_IBX(dev))
433 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
434 else
435 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
436
437 done:
438 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
439 return ret;
440 }
441
442
443 void
444 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
445 {
446 u32 reg = PIPESTAT(pipe);
447 u32 pipestat = I915_READ(reg) & 0x7fff0000;
448
449 assert_spin_locked(&dev_priv->irq_lock);
450
451 if ((pipestat & mask) == mask)
452 return;
453
454 /* Enable the interrupt, clear any pending status */
455 pipestat |= mask | (mask >> 16);
456 I915_WRITE(reg, pipestat);
457 POSTING_READ(reg);
458 }
459
460 void
461 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
462 {
463 u32 reg = PIPESTAT(pipe);
464 u32 pipestat = I915_READ(reg) & 0x7fff0000;
465
466 assert_spin_locked(&dev_priv->irq_lock);
467
468 if ((pipestat & mask) == 0)
469 return;
470
471 pipestat &= ~mask;
472 I915_WRITE(reg, pipestat);
473 POSTING_READ(reg);
474 }
475
476 /**
477 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
478 */
479 static void i915_enable_asle_pipestat(struct drm_device *dev)
480 {
481 drm_i915_private_t *dev_priv = dev->dev_private;
482 unsigned long irqflags;
483
484 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
485 return;
486
487 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
488
489 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
490 if (INTEL_INFO(dev)->gen >= 4)
491 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
492
493 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
494 }
495
496 /**
497 * i915_pipe_enabled - check if a pipe is enabled
498 * @dev: DRM device
499 * @pipe: pipe to check
500 *
501 * Reading certain registers when the pipe is disabled can hang the chip.
502 * Use this routine to make sure the PLL is running and the pipe is active
503 * before reading such registers if unsure.
504 */
505 static int
506 i915_pipe_enabled(struct drm_device *dev, int pipe)
507 {
508 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
509
510 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
511 /* Locking is horribly broken here, but whatever. */
512 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
514
515 return intel_crtc->active;
516 } else {
517 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
518 }
519 }
520
521 /* Called from drm generic code, passed a 'crtc', which
522 * we use as a pipe index
523 */
524 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527 unsigned long high_frame;
528 unsigned long low_frame;
529 u32 high1, high2, low;
530
531 if (!i915_pipe_enabled(dev, pipe)) {
532 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
533 "pipe %c\n", pipe_name(pipe));
534 return 0;
535 }
536
537 high_frame = PIPEFRAME(pipe);
538 low_frame = PIPEFRAMEPIXEL(pipe);
539
540 /*
541 * High & low register fields aren't synchronized, so make sure
542 * we get a low value that's stable across two reads of the high
543 * register.
544 */
545 do {
546 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
547 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
548 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
549 } while (high1 != high2);
550
551 high1 >>= PIPE_FRAME_HIGH_SHIFT;
552 low >>= PIPE_FRAME_LOW_SHIFT;
553 return (high1 << 8) | low;
554 }
555
556 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
557 {
558 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
559 int reg = PIPE_FRMCOUNT_GM45(pipe);
560
561 if (!i915_pipe_enabled(dev, pipe)) {
562 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
563 "pipe %c\n", pipe_name(pipe));
564 return 0;
565 }
566
567 return I915_READ(reg);
568 }
569
570 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
571 int *vpos, int *hpos)
572 {
573 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
574 u32 vbl = 0, position = 0;
575 int vbl_start, vbl_end, htotal, vtotal;
576 bool in_vbl = true;
577 int ret = 0;
578 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
579 pipe);
580
581 if (!i915_pipe_enabled(dev, pipe)) {
582 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
583 "pipe %c\n", pipe_name(pipe));
584 return 0;
585 }
586
587 /* Get vtotal. */
588 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
589
590 if (INTEL_INFO(dev)->gen >= 4) {
591 /* No obvious pixelcount register. Only query vertical
592 * scanout position from Display scan line register.
593 */
594 position = I915_READ(PIPEDSL(pipe));
595
596 /* Decode into vertical scanout position. Don't have
597 * horizontal scanout position.
598 */
599 *vpos = position & 0x1fff;
600 *hpos = 0;
601 } else {
602 /* Have access to pixelcount since start of frame.
603 * We can split this into vertical and horizontal
604 * scanout position.
605 */
606 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
607
608 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
609 *vpos = position / htotal;
610 *hpos = position - (*vpos * htotal);
611 }
612
613 /* Query vblank area. */
614 vbl = I915_READ(VBLANK(cpu_transcoder));
615
616 /* Test position against vblank region. */
617 vbl_start = vbl & 0x1fff;
618 vbl_end = (vbl >> 16) & 0x1fff;
619
620 if ((*vpos < vbl_start) || (*vpos > vbl_end))
621 in_vbl = false;
622
623 /* Inside "upper part" of vblank area? Apply corrective offset: */
624 if (in_vbl && (*vpos >= vbl_start))
625 *vpos = *vpos - vtotal;
626
627 /* Readouts valid? */
628 if (vbl > 0)
629 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
630
631 /* In vblank? */
632 if (in_vbl)
633 ret |= DRM_SCANOUTPOS_INVBL;
634
635 return ret;
636 }
637
638 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
639 int *max_error,
640 struct timeval *vblank_time,
641 unsigned flags)
642 {
643 struct drm_crtc *crtc;
644
645 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
646 DRM_ERROR("Invalid crtc %d\n", pipe);
647 return -EINVAL;
648 }
649
650 /* Get drm_crtc to timestamp: */
651 crtc = intel_get_crtc_for_pipe(dev, pipe);
652 if (crtc == NULL) {
653 DRM_ERROR("Invalid crtc %d\n", pipe);
654 return -EINVAL;
655 }
656
657 if (!crtc->enabled) {
658 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
659 return -EBUSY;
660 }
661
662 /* Helper routine in DRM core does all the work: */
663 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
664 vblank_time, flags,
665 crtc);
666 }
667
668 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
669 {
670 enum drm_connector_status old_status;
671
672 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
673 old_status = connector->status;
674
675 connector->status = connector->funcs->detect(connector, false);
676 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
677 connector->base.id,
678 drm_get_connector_name(connector),
679 old_status, connector->status);
680 return (old_status != connector->status);
681 }
682
683 /*
684 * Handle hotplug events outside the interrupt handler proper.
685 */
686 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
687
688 static void i915_hotplug_work_func(struct work_struct *work)
689 {
690 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
691 hotplug_work);
692 struct drm_device *dev = dev_priv->dev;
693 struct drm_mode_config *mode_config = &dev->mode_config;
694 struct intel_connector *intel_connector;
695 struct intel_encoder *intel_encoder;
696 struct drm_connector *connector;
697 unsigned long irqflags;
698 bool hpd_disabled = false;
699 bool changed = false;
700 u32 hpd_event_bits;
701
702 /* HPD irq before everything is fully set up. */
703 if (!dev_priv->enable_hotplug_processing)
704 return;
705
706 mutex_lock(&mode_config->mutex);
707 DRM_DEBUG_KMS("running encoder hotplug functions\n");
708
709 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
710
711 hpd_event_bits = dev_priv->hpd_event_bits;
712 dev_priv->hpd_event_bits = 0;
713 list_for_each_entry(connector, &mode_config->connector_list, head) {
714 intel_connector = to_intel_connector(connector);
715 intel_encoder = intel_connector->encoder;
716 if (intel_encoder->hpd_pin > HPD_NONE &&
717 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
718 connector->polled == DRM_CONNECTOR_POLL_HPD) {
719 DRM_INFO("HPD interrupt storm detected on connector %s: "
720 "switching from hotplug detection to polling\n",
721 drm_get_connector_name(connector));
722 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
723 connector->polled = DRM_CONNECTOR_POLL_CONNECT
724 | DRM_CONNECTOR_POLL_DISCONNECT;
725 hpd_disabled = true;
726 }
727 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
728 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
729 drm_get_connector_name(connector), intel_encoder->hpd_pin);
730 }
731 }
732 /* if there were no outputs to poll, poll was disabled,
733 * therefore make sure it's enabled when disabling HPD on
734 * some connectors */
735 if (hpd_disabled) {
736 drm_kms_helper_poll_enable(dev);
737 mod_timer(&dev_priv->hotplug_reenable_timer,
738 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
739 }
740
741 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
742
743 list_for_each_entry(connector, &mode_config->connector_list, head) {
744 intel_connector = to_intel_connector(connector);
745 intel_encoder = intel_connector->encoder;
746 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
747 if (intel_encoder->hot_plug)
748 intel_encoder->hot_plug(intel_encoder);
749 if (intel_hpd_irq_event(dev, connector))
750 changed = true;
751 }
752 }
753 mutex_unlock(&mode_config->mutex);
754
755 if (changed)
756 drm_kms_helper_hotplug_event(dev);
757 }
758
759 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
760 {
761 drm_i915_private_t *dev_priv = dev->dev_private;
762 u32 busy_up, busy_down, max_avg, min_avg;
763 u8 new_delay;
764
765 spin_lock(&mchdev_lock);
766
767 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
768
769 new_delay = dev_priv->ips.cur_delay;
770
771 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
772 busy_up = I915_READ(RCPREVBSYTUPAVG);
773 busy_down = I915_READ(RCPREVBSYTDNAVG);
774 max_avg = I915_READ(RCBMAXAVG);
775 min_avg = I915_READ(RCBMINAVG);
776
777 /* Handle RCS change request from hw */
778 if (busy_up > max_avg) {
779 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
780 new_delay = dev_priv->ips.cur_delay - 1;
781 if (new_delay < dev_priv->ips.max_delay)
782 new_delay = dev_priv->ips.max_delay;
783 } else if (busy_down < min_avg) {
784 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
785 new_delay = dev_priv->ips.cur_delay + 1;
786 if (new_delay > dev_priv->ips.min_delay)
787 new_delay = dev_priv->ips.min_delay;
788 }
789
790 if (ironlake_set_drps(dev, new_delay))
791 dev_priv->ips.cur_delay = new_delay;
792
793 spin_unlock(&mchdev_lock);
794
795 return;
796 }
797
798 static void notify_ring(struct drm_device *dev,
799 struct intel_ring_buffer *ring)
800 {
801 if (ring->obj == NULL)
802 return;
803
804 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
805
806 wake_up_all(&ring->irq_queue);
807 i915_queue_hangcheck(dev);
808 }
809
810 static void gen6_pm_rps_work(struct work_struct *work)
811 {
812 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
813 rps.work);
814 u32 pm_iir;
815 u8 new_delay;
816
817 spin_lock_irq(&dev_priv->irq_lock);
818 pm_iir = dev_priv->rps.pm_iir;
819 dev_priv->rps.pm_iir = 0;
820 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
821 snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
822 spin_unlock_irq(&dev_priv->irq_lock);
823
824 /* Make sure we didn't queue anything we're not going to process. */
825 WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
826
827 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
828 return;
829
830 mutex_lock(&dev_priv->rps.hw_lock);
831
832 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
833 new_delay = dev_priv->rps.cur_delay + 1;
834
835 /*
836 * For better performance, jump directly
837 * to RPe if we're below it.
838 */
839 if (IS_VALLEYVIEW(dev_priv->dev) &&
840 dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
841 new_delay = dev_priv->rps.rpe_delay;
842 } else
843 new_delay = dev_priv->rps.cur_delay - 1;
844
845 /* sysfs frequency interfaces may have snuck in while servicing the
846 * interrupt
847 */
848 if (new_delay >= dev_priv->rps.min_delay &&
849 new_delay <= dev_priv->rps.max_delay) {
850 if (IS_VALLEYVIEW(dev_priv->dev))
851 valleyview_set_rps(dev_priv->dev, new_delay);
852 else
853 gen6_set_rps(dev_priv->dev, new_delay);
854 }
855
856 if (IS_VALLEYVIEW(dev_priv->dev)) {
857 /*
858 * On VLV, when we enter RC6 we may not be at the minimum
859 * voltage level, so arm a timer to check. It should only
860 * fire when there's activity or once after we've entered
861 * RC6, and then won't be re-armed until the next RPS interrupt.
862 */
863 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
864 msecs_to_jiffies(100));
865 }
866
867 mutex_unlock(&dev_priv->rps.hw_lock);
868 }
869
870
871 /**
872 * ivybridge_parity_work - Workqueue called when a parity error interrupt
873 * occurred.
874 * @work: workqueue struct
875 *
876 * Doesn't actually do anything except notify userspace. As a consequence of
877 * this event, userspace should try to remap the bad rows since statistically
878 * it is likely the same row is more likely to go bad again.
879 */
880 static void ivybridge_parity_work(struct work_struct *work)
881 {
882 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
883 l3_parity.error_work);
884 u32 error_status, row, bank, subbank;
885 char *parity_event[5];
886 uint32_t misccpctl;
887 unsigned long flags;
888
889 /* We must turn off DOP level clock gating to access the L3 registers.
890 * In order to prevent a get/put style interface, acquire struct mutex
891 * any time we access those registers.
892 */
893 mutex_lock(&dev_priv->dev->struct_mutex);
894
895 misccpctl = I915_READ(GEN7_MISCCPCTL);
896 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
897 POSTING_READ(GEN7_MISCCPCTL);
898
899 error_status = I915_READ(GEN7_L3CDERRST1);
900 row = GEN7_PARITY_ERROR_ROW(error_status);
901 bank = GEN7_PARITY_ERROR_BANK(error_status);
902 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
903
904 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
905 GEN7_L3CDERRST1_ENABLE);
906 POSTING_READ(GEN7_L3CDERRST1);
907
908 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
909
910 spin_lock_irqsave(&dev_priv->irq_lock, flags);
911 ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
912 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
913
914 mutex_unlock(&dev_priv->dev->struct_mutex);
915
916 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
917 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
918 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
919 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
920 parity_event[4] = NULL;
921
922 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
923 KOBJ_CHANGE, parity_event);
924
925 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
926 row, bank, subbank);
927
928 kfree(parity_event[3]);
929 kfree(parity_event[2]);
930 kfree(parity_event[1]);
931 }
932
933 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
934 {
935 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
936
937 if (!HAS_L3_GPU_CACHE(dev))
938 return;
939
940 spin_lock(&dev_priv->irq_lock);
941 ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
942 spin_unlock(&dev_priv->irq_lock);
943
944 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
945 }
946
947 static void ilk_gt_irq_handler(struct drm_device *dev,
948 struct drm_i915_private *dev_priv,
949 u32 gt_iir)
950 {
951 if (gt_iir &
952 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
953 notify_ring(dev, &dev_priv->ring[RCS]);
954 if (gt_iir & ILK_BSD_USER_INTERRUPT)
955 notify_ring(dev, &dev_priv->ring[VCS]);
956 }
957
958 static void snb_gt_irq_handler(struct drm_device *dev,
959 struct drm_i915_private *dev_priv,
960 u32 gt_iir)
961 {
962
963 if (gt_iir &
964 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
965 notify_ring(dev, &dev_priv->ring[RCS]);
966 if (gt_iir & GT_BSD_USER_INTERRUPT)
967 notify_ring(dev, &dev_priv->ring[VCS]);
968 if (gt_iir & GT_BLT_USER_INTERRUPT)
969 notify_ring(dev, &dev_priv->ring[BCS]);
970
971 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
972 GT_BSD_CS_ERROR_INTERRUPT |
973 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
974 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
975 i915_handle_error(dev, false);
976 }
977
978 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
979 ivybridge_parity_error_irq_handler(dev);
980 }
981
982 #define HPD_STORM_DETECT_PERIOD 1000
983 #define HPD_STORM_THRESHOLD 5
984
985 static inline void intel_hpd_irq_handler(struct drm_device *dev,
986 u32 hotplug_trigger,
987 const u32 *hpd)
988 {
989 drm_i915_private_t *dev_priv = dev->dev_private;
990 int i;
991 bool storm_detected = false;
992
993 if (!hotplug_trigger)
994 return;
995
996 spin_lock(&dev_priv->irq_lock);
997 for (i = 1; i < HPD_NUM_PINS; i++) {
998
999 WARN(((hpd[i] & hotplug_trigger) &&
1000 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1001 "Received HPD interrupt although disabled\n");
1002
1003 if (!(hpd[i] & hotplug_trigger) ||
1004 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1005 continue;
1006
1007 dev_priv->hpd_event_bits |= (1 << i);
1008 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1009 dev_priv->hpd_stats[i].hpd_last_jiffies
1010 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1011 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1012 dev_priv->hpd_stats[i].hpd_cnt = 0;
1013 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1014 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1015 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1016 dev_priv->hpd_event_bits &= ~(1 << i);
1017 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1018 storm_detected = true;
1019 } else {
1020 dev_priv->hpd_stats[i].hpd_cnt++;
1021 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1022 dev_priv->hpd_stats[i].hpd_cnt);
1023 }
1024 }
1025
1026 if (storm_detected)
1027 dev_priv->display.hpd_irq_setup(dev);
1028 spin_unlock(&dev_priv->irq_lock);
1029
1030 /*
1031 * Our hotplug handler can grab modeset locks (by calling down into the
1032 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1033 * queue for otherwise the flush_work in the pageflip code will
1034 * deadlock.
1035 */
1036 schedule_work(&dev_priv->hotplug_work);
1037 }
1038
1039 static void gmbus_irq_handler(struct drm_device *dev)
1040 {
1041 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1042
1043 wake_up_all(&dev_priv->gmbus_wait_queue);
1044 }
1045
1046 static void dp_aux_irq_handler(struct drm_device *dev)
1047 {
1048 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1049
1050 wake_up_all(&dev_priv->gmbus_wait_queue);
1051 }
1052
1053 /* The RPS events need forcewake, so we add them to a work queue and mask their
1054 * IMR bits until the work is done. Other interrupts can be processed without
1055 * the work queue. */
1056 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1057 {
1058 if (pm_iir & GEN6_PM_RPS_EVENTS) {
1059 spin_lock(&dev_priv->irq_lock);
1060 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1061 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1062 spin_unlock(&dev_priv->irq_lock);
1063
1064 queue_work(dev_priv->wq, &dev_priv->rps.work);
1065 }
1066
1067 if (HAS_VEBOX(dev_priv->dev)) {
1068 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1069 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1070
1071 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1072 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1073 i915_handle_error(dev_priv->dev, false);
1074 }
1075 }
1076 }
1077
1078 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1079 {
1080 struct drm_device *dev = (struct drm_device *) arg;
1081 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1082 u32 iir, gt_iir, pm_iir;
1083 irqreturn_t ret = IRQ_NONE;
1084 unsigned long irqflags;
1085 int pipe;
1086 u32 pipe_stats[I915_MAX_PIPES];
1087
1088 atomic_inc(&dev_priv->irq_received);
1089
1090 while (true) {
1091 iir = I915_READ(VLV_IIR);
1092 gt_iir = I915_READ(GTIIR);
1093 pm_iir = I915_READ(GEN6_PMIIR);
1094
1095 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1096 goto out;
1097
1098 ret = IRQ_HANDLED;
1099
1100 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1101
1102 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1103 for_each_pipe(pipe) {
1104 int reg = PIPESTAT(pipe);
1105 pipe_stats[pipe] = I915_READ(reg);
1106
1107 /*
1108 * Clear the PIPE*STAT regs before the IIR
1109 */
1110 if (pipe_stats[pipe] & 0x8000ffff) {
1111 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1112 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1113 pipe_name(pipe));
1114 I915_WRITE(reg, pipe_stats[pipe]);
1115 }
1116 }
1117 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1118
1119 for_each_pipe(pipe) {
1120 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1121 drm_handle_vblank(dev, pipe);
1122
1123 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1124 intel_prepare_page_flip(dev, pipe);
1125 intel_finish_page_flip(dev, pipe);
1126 }
1127 }
1128
1129 /* Consume port. Then clear IIR or we'll miss events */
1130 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1131 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1132 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1133
1134 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1135 hotplug_status);
1136
1137 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1138
1139 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1140 I915_READ(PORT_HOTPLUG_STAT);
1141 }
1142
1143 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1144 gmbus_irq_handler(dev);
1145
1146 if (pm_iir)
1147 gen6_rps_irq_handler(dev_priv, pm_iir);
1148
1149 I915_WRITE(GTIIR, gt_iir);
1150 I915_WRITE(GEN6_PMIIR, pm_iir);
1151 I915_WRITE(VLV_IIR, iir);
1152 }
1153
1154 out:
1155 return ret;
1156 }
1157
1158 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1159 {
1160 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1161 int pipe;
1162 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1163
1164 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1165
1166 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1167 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1168 SDE_AUDIO_POWER_SHIFT);
1169 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1170 port_name(port));
1171 }
1172
1173 if (pch_iir & SDE_AUX_MASK)
1174 dp_aux_irq_handler(dev);
1175
1176 if (pch_iir & SDE_GMBUS)
1177 gmbus_irq_handler(dev);
1178
1179 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1180 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1181
1182 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1183 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1184
1185 if (pch_iir & SDE_POISON)
1186 DRM_ERROR("PCH poison interrupt\n");
1187
1188 if (pch_iir & SDE_FDI_MASK)
1189 for_each_pipe(pipe)
1190 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1191 pipe_name(pipe),
1192 I915_READ(FDI_RX_IIR(pipe)));
1193
1194 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1195 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1196
1197 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1198 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1199
1200 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1201 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1202 false))
1203 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1204
1205 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1206 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1207 false))
1208 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1209 }
1210
1211 static void ivb_err_int_handler(struct drm_device *dev)
1212 {
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 u32 err_int = I915_READ(GEN7_ERR_INT);
1215
1216 if (err_int & ERR_INT_POISON)
1217 DRM_ERROR("Poison interrupt\n");
1218
1219 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1220 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1221 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1222
1223 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1224 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1225 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1226
1227 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1228 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1229 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1230
1231 I915_WRITE(GEN7_ERR_INT, err_int);
1232 }
1233
1234 static void cpt_serr_int_handler(struct drm_device *dev)
1235 {
1236 struct drm_i915_private *dev_priv = dev->dev_private;
1237 u32 serr_int = I915_READ(SERR_INT);
1238
1239 if (serr_int & SERR_INT_POISON)
1240 DRM_ERROR("PCH poison interrupt\n");
1241
1242 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1243 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1244 false))
1245 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1246
1247 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1248 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1249 false))
1250 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1251
1252 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1253 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1254 false))
1255 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1256
1257 I915_WRITE(SERR_INT, serr_int);
1258 }
1259
1260 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1261 {
1262 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1263 int pipe;
1264 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1265
1266 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1267
1268 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1269 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1270 SDE_AUDIO_POWER_SHIFT_CPT);
1271 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1272 port_name(port));
1273 }
1274
1275 if (pch_iir & SDE_AUX_MASK_CPT)
1276 dp_aux_irq_handler(dev);
1277
1278 if (pch_iir & SDE_GMBUS_CPT)
1279 gmbus_irq_handler(dev);
1280
1281 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1282 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1283
1284 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1285 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1286
1287 if (pch_iir & SDE_FDI_MASK_CPT)
1288 for_each_pipe(pipe)
1289 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1290 pipe_name(pipe),
1291 I915_READ(FDI_RX_IIR(pipe)));
1292
1293 if (pch_iir & SDE_ERROR_CPT)
1294 cpt_serr_int_handler(dev);
1295 }
1296
1297 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1298 {
1299 struct drm_i915_private *dev_priv = dev->dev_private;
1300
1301 if (de_iir & DE_AUX_CHANNEL_A)
1302 dp_aux_irq_handler(dev);
1303
1304 if (de_iir & DE_GSE)
1305 intel_opregion_asle_intr(dev);
1306
1307 if (de_iir & DE_PIPEA_VBLANK)
1308 drm_handle_vblank(dev, 0);
1309
1310 if (de_iir & DE_PIPEB_VBLANK)
1311 drm_handle_vblank(dev, 1);
1312
1313 if (de_iir & DE_POISON)
1314 DRM_ERROR("Poison interrupt\n");
1315
1316 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1317 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1318 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1319
1320 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1321 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1322 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1323
1324 if (de_iir & DE_PLANEA_FLIP_DONE) {
1325 intel_prepare_page_flip(dev, 0);
1326 intel_finish_page_flip_plane(dev, 0);
1327 }
1328
1329 if (de_iir & DE_PLANEB_FLIP_DONE) {
1330 intel_prepare_page_flip(dev, 1);
1331 intel_finish_page_flip_plane(dev, 1);
1332 }
1333
1334 /* check event from PCH */
1335 if (de_iir & DE_PCH_EVENT) {
1336 u32 pch_iir = I915_READ(SDEIIR);
1337
1338 if (HAS_PCH_CPT(dev))
1339 cpt_irq_handler(dev, pch_iir);
1340 else
1341 ibx_irq_handler(dev, pch_iir);
1342
1343 /* should clear PCH hotplug event before clear CPU irq */
1344 I915_WRITE(SDEIIR, pch_iir);
1345 }
1346
1347 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1348 ironlake_rps_change_irq_handler(dev);
1349 }
1350
1351 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1352 {
1353 struct drm_i915_private *dev_priv = dev->dev_private;
1354 int i;
1355
1356 if (de_iir & DE_ERR_INT_IVB)
1357 ivb_err_int_handler(dev);
1358
1359 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1360 dp_aux_irq_handler(dev);
1361
1362 if (de_iir & DE_GSE_IVB)
1363 intel_opregion_asle_intr(dev);
1364
1365 for (i = 0; i < 3; i++) {
1366 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1367 drm_handle_vblank(dev, i);
1368 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1369 intel_prepare_page_flip(dev, i);
1370 intel_finish_page_flip_plane(dev, i);
1371 }
1372 }
1373
1374 /* check event from PCH */
1375 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1376 u32 pch_iir = I915_READ(SDEIIR);
1377
1378 cpt_irq_handler(dev, pch_iir);
1379
1380 /* clear PCH hotplug event before clear CPU irq */
1381 I915_WRITE(SDEIIR, pch_iir);
1382 }
1383 }
1384
1385 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1386 {
1387 struct drm_device *dev = (struct drm_device *) arg;
1388 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1389 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1390 irqreturn_t ret = IRQ_NONE;
1391 bool err_int_reenable = false;
1392
1393 atomic_inc(&dev_priv->irq_received);
1394
1395 /* We get interrupts on unclaimed registers, so check for this before we
1396 * do any I915_{READ,WRITE}. */
1397 intel_uncore_check_errors(dev);
1398
1399 /* disable master interrupt before clearing iir */
1400 de_ier = I915_READ(DEIER);
1401 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1402 POSTING_READ(DEIER);
1403
1404 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1405 * interrupts will will be stored on its back queue, and then we'll be
1406 * able to process them after we restore SDEIER (as soon as we restore
1407 * it, we'll get an interrupt if SDEIIR still has something to process
1408 * due to its back queue). */
1409 if (!HAS_PCH_NOP(dev)) {
1410 sde_ier = I915_READ(SDEIER);
1411 I915_WRITE(SDEIER, 0);
1412 POSTING_READ(SDEIER);
1413 }
1414
1415 /* On Haswell, also mask ERR_INT because we don't want to risk
1416 * generating "unclaimed register" interrupts from inside the interrupt
1417 * handler. */
1418 if (IS_HASWELL(dev)) {
1419 spin_lock(&dev_priv->irq_lock);
1420 err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
1421 if (err_int_reenable)
1422 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1423 spin_unlock(&dev_priv->irq_lock);
1424 }
1425
1426 gt_iir = I915_READ(GTIIR);
1427 if (gt_iir) {
1428 if (INTEL_INFO(dev)->gen >= 6)
1429 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1430 else
1431 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1432 I915_WRITE(GTIIR, gt_iir);
1433 ret = IRQ_HANDLED;
1434 }
1435
1436 de_iir = I915_READ(DEIIR);
1437 if (de_iir) {
1438 if (INTEL_INFO(dev)->gen >= 7)
1439 ivb_display_irq_handler(dev, de_iir);
1440 else
1441 ilk_display_irq_handler(dev, de_iir);
1442 I915_WRITE(DEIIR, de_iir);
1443 ret = IRQ_HANDLED;
1444 }
1445
1446 if (INTEL_INFO(dev)->gen >= 6) {
1447 u32 pm_iir = I915_READ(GEN6_PMIIR);
1448 if (pm_iir) {
1449 gen6_rps_irq_handler(dev_priv, pm_iir);
1450 I915_WRITE(GEN6_PMIIR, pm_iir);
1451 ret = IRQ_HANDLED;
1452 }
1453 }
1454
1455 if (err_int_reenable) {
1456 spin_lock(&dev_priv->irq_lock);
1457 if (ivb_can_enable_err_int(dev))
1458 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1459 spin_unlock(&dev_priv->irq_lock);
1460 }
1461
1462 I915_WRITE(DEIER, de_ier);
1463 POSTING_READ(DEIER);
1464 if (!HAS_PCH_NOP(dev)) {
1465 I915_WRITE(SDEIER, sde_ier);
1466 POSTING_READ(SDEIER);
1467 }
1468
1469 return ret;
1470 }
1471
1472 /**
1473 * i915_error_work_func - do process context error handling work
1474 * @work: work struct
1475 *
1476 * Fire an error uevent so userspace can see that a hang or error
1477 * was detected.
1478 */
1479 static void i915_error_work_func(struct work_struct *work)
1480 {
1481 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1482 work);
1483 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1484 gpu_error);
1485 struct drm_device *dev = dev_priv->dev;
1486 struct intel_ring_buffer *ring;
1487 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1488 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1489 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1490 int i, ret;
1491
1492 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1493
1494 /*
1495 * Note that there's only one work item which does gpu resets, so we
1496 * need not worry about concurrent gpu resets potentially incrementing
1497 * error->reset_counter twice. We only need to take care of another
1498 * racing irq/hangcheck declaring the gpu dead for a second time. A
1499 * quick check for that is good enough: schedule_work ensures the
1500 * correct ordering between hang detection and this work item, and since
1501 * the reset in-progress bit is only ever set by code outside of this
1502 * work we don't need to worry about any other races.
1503 */
1504 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1505 DRM_DEBUG_DRIVER("resetting chip\n");
1506 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1507 reset_event);
1508
1509 ret = i915_reset(dev);
1510
1511 if (ret == 0) {
1512 /*
1513 * After all the gem state is reset, increment the reset
1514 * counter and wake up everyone waiting for the reset to
1515 * complete.
1516 *
1517 * Since unlock operations are a one-sided barrier only,
1518 * we need to insert a barrier here to order any seqno
1519 * updates before
1520 * the counter increment.
1521 */
1522 smp_mb__before_atomic_inc();
1523 atomic_inc(&dev_priv->gpu_error.reset_counter);
1524
1525 kobject_uevent_env(&dev->primary->kdev.kobj,
1526 KOBJ_CHANGE, reset_done_event);
1527 } else {
1528 atomic_set(&error->reset_counter, I915_WEDGED);
1529 }
1530
1531 for_each_ring(ring, dev_priv, i)
1532 wake_up_all(&ring->irq_queue);
1533
1534 intel_display_handle_reset(dev);
1535
1536 wake_up_all(&dev_priv->gpu_error.reset_queue);
1537 }
1538 }
1539
1540 static void i915_report_and_clear_eir(struct drm_device *dev)
1541 {
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 uint32_t instdone[I915_NUM_INSTDONE_REG];
1544 u32 eir = I915_READ(EIR);
1545 int pipe, i;
1546
1547 if (!eir)
1548 return;
1549
1550 pr_err("render error detected, EIR: 0x%08x\n", eir);
1551
1552 i915_get_extra_instdone(dev, instdone);
1553
1554 if (IS_G4X(dev)) {
1555 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1556 u32 ipeir = I915_READ(IPEIR_I965);
1557
1558 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1559 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1560 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1561 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1562 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1563 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1564 I915_WRITE(IPEIR_I965, ipeir);
1565 POSTING_READ(IPEIR_I965);
1566 }
1567 if (eir & GM45_ERROR_PAGE_TABLE) {
1568 u32 pgtbl_err = I915_READ(PGTBL_ER);
1569 pr_err("page table error\n");
1570 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1571 I915_WRITE(PGTBL_ER, pgtbl_err);
1572 POSTING_READ(PGTBL_ER);
1573 }
1574 }
1575
1576 if (!IS_GEN2(dev)) {
1577 if (eir & I915_ERROR_PAGE_TABLE) {
1578 u32 pgtbl_err = I915_READ(PGTBL_ER);
1579 pr_err("page table error\n");
1580 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
1581 I915_WRITE(PGTBL_ER, pgtbl_err);
1582 POSTING_READ(PGTBL_ER);
1583 }
1584 }
1585
1586 if (eir & I915_ERROR_MEMORY_REFRESH) {
1587 pr_err("memory refresh error:\n");
1588 for_each_pipe(pipe)
1589 pr_err("pipe %c stat: 0x%08x\n",
1590 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1591 /* pipestat has already been acked */
1592 }
1593 if (eir & I915_ERROR_INSTRUCTION) {
1594 pr_err("instruction error\n");
1595 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
1596 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1597 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1598 if (INTEL_INFO(dev)->gen < 4) {
1599 u32 ipeir = I915_READ(IPEIR);
1600
1601 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
1602 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
1603 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
1604 I915_WRITE(IPEIR, ipeir);
1605 POSTING_READ(IPEIR);
1606 } else {
1607 u32 ipeir = I915_READ(IPEIR_I965);
1608
1609 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1610 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1611 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
1612 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1613 I915_WRITE(IPEIR_I965, ipeir);
1614 POSTING_READ(IPEIR_I965);
1615 }
1616 }
1617
1618 I915_WRITE(EIR, eir);
1619 POSTING_READ(EIR);
1620 eir = I915_READ(EIR);
1621 if (eir) {
1622 /*
1623 * some errors might have become stuck,
1624 * mask them.
1625 */
1626 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1627 I915_WRITE(EMR, I915_READ(EMR) | eir);
1628 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1629 }
1630 }
1631
1632 /**
1633 * i915_handle_error - handle an error interrupt
1634 * @dev: drm device
1635 *
1636 * Do some basic checking of regsiter state at error interrupt time and
1637 * dump it to the syslog. Also call i915_capture_error_state() to make
1638 * sure we get a record and make it available in debugfs. Fire a uevent
1639 * so userspace knows something bad happened (should trigger collection
1640 * of a ring dump etc.).
1641 */
1642 void i915_handle_error(struct drm_device *dev, bool wedged)
1643 {
1644 struct drm_i915_private *dev_priv = dev->dev_private;
1645 struct intel_ring_buffer *ring;
1646 int i;
1647
1648 i915_capture_error_state(dev);
1649 i915_report_and_clear_eir(dev);
1650
1651 if (wedged) {
1652 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1653 &dev_priv->gpu_error.reset_counter);
1654
1655 /*
1656 * Wakeup waiting processes so that the reset work item
1657 * doesn't deadlock trying to grab various locks.
1658 */
1659 for_each_ring(ring, dev_priv, i)
1660 wake_up_all(&ring->irq_queue);
1661 }
1662
1663 /*
1664 * Our reset work can grab modeset locks (since it needs to reset the
1665 * state of outstanding pagelips). Hence it must not be run on our own
1666 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1667 * code will deadlock.
1668 */
1669 schedule_work(&dev_priv->gpu_error.work);
1670 }
1671
1672 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1673 {
1674 drm_i915_private_t *dev_priv = dev->dev_private;
1675 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1677 struct drm_i915_gem_object *obj;
1678 struct intel_unpin_work *work;
1679 unsigned long flags;
1680 bool stall_detected;
1681
1682 /* Ignore early vblank irqs */
1683 if (intel_crtc == NULL)
1684 return;
1685
1686 spin_lock_irqsave(&dev->event_lock, flags);
1687 work = intel_crtc->unpin_work;
1688
1689 if (work == NULL ||
1690 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1691 !work->enable_stall_check) {
1692 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1693 spin_unlock_irqrestore(&dev->event_lock, flags);
1694 return;
1695 }
1696
1697 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1698 obj = work->pending_flip_obj;
1699 if (INTEL_INFO(dev)->gen >= 4) {
1700 int dspsurf = DSPSURF(intel_crtc->plane);
1701 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1702 i915_gem_obj_ggtt_offset(obj);
1703 } else {
1704 int dspaddr = DSPADDR(intel_crtc->plane);
1705 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1706 crtc->y * crtc->fb->pitches[0] +
1707 crtc->x * crtc->fb->bits_per_pixel/8);
1708 }
1709
1710 spin_unlock_irqrestore(&dev->event_lock, flags);
1711
1712 if (stall_detected) {
1713 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1714 intel_prepare_page_flip(dev, intel_crtc->plane);
1715 }
1716 }
1717
1718 /* Called from drm generic code, passed 'crtc' which
1719 * we use as a pipe index
1720 */
1721 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1722 {
1723 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1724 unsigned long irqflags;
1725
1726 if (!i915_pipe_enabled(dev, pipe))
1727 return -EINVAL;
1728
1729 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1730 if (INTEL_INFO(dev)->gen >= 4)
1731 i915_enable_pipestat(dev_priv, pipe,
1732 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1733 else
1734 i915_enable_pipestat(dev_priv, pipe,
1735 PIPE_VBLANK_INTERRUPT_ENABLE);
1736
1737 /* maintain vblank delivery even in deep C-states */
1738 if (dev_priv->info->gen == 3)
1739 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1740 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1741
1742 return 0;
1743 }
1744
1745 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1746 {
1747 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1748 unsigned long irqflags;
1749 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1750 DE_PIPE_VBLANK_ILK(pipe);
1751
1752 if (!i915_pipe_enabled(dev, pipe))
1753 return -EINVAL;
1754
1755 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1756 ironlake_enable_display_irq(dev_priv, bit);
1757 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1758
1759 return 0;
1760 }
1761
1762 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1763 {
1764 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1765 unsigned long irqflags;
1766 u32 imr;
1767
1768 if (!i915_pipe_enabled(dev, pipe))
1769 return -EINVAL;
1770
1771 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1772 imr = I915_READ(VLV_IMR);
1773 if (pipe == 0)
1774 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1775 else
1776 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1777 I915_WRITE(VLV_IMR, imr);
1778 i915_enable_pipestat(dev_priv, pipe,
1779 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1780 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1781
1782 return 0;
1783 }
1784
1785 /* Called from drm generic code, passed 'crtc' which
1786 * we use as a pipe index
1787 */
1788 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1789 {
1790 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1791 unsigned long irqflags;
1792
1793 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1794 if (dev_priv->info->gen == 3)
1795 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1796
1797 i915_disable_pipestat(dev_priv, pipe,
1798 PIPE_VBLANK_INTERRUPT_ENABLE |
1799 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1800 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1801 }
1802
1803 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1804 {
1805 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1806 unsigned long irqflags;
1807 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1808 DE_PIPE_VBLANK_ILK(pipe);
1809
1810 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1811 ironlake_disable_display_irq(dev_priv, bit);
1812 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1813 }
1814
1815 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1816 {
1817 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1818 unsigned long irqflags;
1819 u32 imr;
1820
1821 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1822 i915_disable_pipestat(dev_priv, pipe,
1823 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1824 imr = I915_READ(VLV_IMR);
1825 if (pipe == 0)
1826 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1827 else
1828 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1829 I915_WRITE(VLV_IMR, imr);
1830 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1831 }
1832
1833 static u32
1834 ring_last_seqno(struct intel_ring_buffer *ring)
1835 {
1836 return list_entry(ring->request_list.prev,
1837 struct drm_i915_gem_request, list)->seqno;
1838 }
1839
1840 static bool
1841 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1842 {
1843 return (list_empty(&ring->request_list) ||
1844 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1845 }
1846
1847 static struct intel_ring_buffer *
1848 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1849 {
1850 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1851 u32 cmd, ipehr, acthd, acthd_min;
1852
1853 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1854 if ((ipehr & ~(0x3 << 16)) !=
1855 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1856 return NULL;
1857
1858 /* ACTHD is likely pointing to the dword after the actual command,
1859 * so scan backwards until we find the MBOX.
1860 */
1861 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1862 acthd_min = max((int)acthd - 3 * 4, 0);
1863 do {
1864 cmd = ioread32(ring->virtual_start + acthd);
1865 if (cmd == ipehr)
1866 break;
1867
1868 acthd -= 4;
1869 if (acthd < acthd_min)
1870 return NULL;
1871 } while (1);
1872
1873 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1874 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1875 }
1876
1877 static int semaphore_passed(struct intel_ring_buffer *ring)
1878 {
1879 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1880 struct intel_ring_buffer *signaller;
1881 u32 seqno, ctl;
1882
1883 ring->hangcheck.deadlock = true;
1884
1885 signaller = semaphore_waits_for(ring, &seqno);
1886 if (signaller == NULL || signaller->hangcheck.deadlock)
1887 return -1;
1888
1889 /* cursory check for an unkickable deadlock */
1890 ctl = I915_READ_CTL(signaller);
1891 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1892 return -1;
1893
1894 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1895 }
1896
1897 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1898 {
1899 struct intel_ring_buffer *ring;
1900 int i;
1901
1902 for_each_ring(ring, dev_priv, i)
1903 ring->hangcheck.deadlock = false;
1904 }
1905
1906 static enum intel_ring_hangcheck_action
1907 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1908 {
1909 struct drm_device *dev = ring->dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 u32 tmp;
1912
1913 if (ring->hangcheck.acthd != acthd)
1914 return HANGCHECK_ACTIVE;
1915
1916 if (IS_GEN2(dev))
1917 return HANGCHECK_HUNG;
1918
1919 /* Is the chip hanging on a WAIT_FOR_EVENT?
1920 * If so we can simply poke the RB_WAIT bit
1921 * and break the hang. This should work on
1922 * all but the second generation chipsets.
1923 */
1924 tmp = I915_READ_CTL(ring);
1925 if (tmp & RING_WAIT) {
1926 DRM_ERROR("Kicking stuck wait on %s\n",
1927 ring->name);
1928 I915_WRITE_CTL(ring, tmp);
1929 return HANGCHECK_KICK;
1930 }
1931
1932 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1933 switch (semaphore_passed(ring)) {
1934 default:
1935 return HANGCHECK_HUNG;
1936 case 1:
1937 DRM_ERROR("Kicking stuck semaphore on %s\n",
1938 ring->name);
1939 I915_WRITE_CTL(ring, tmp);
1940 return HANGCHECK_KICK;
1941 case 0:
1942 return HANGCHECK_WAIT;
1943 }
1944 }
1945
1946 return HANGCHECK_HUNG;
1947 }
1948
1949 /**
1950 * This is called when the chip hasn't reported back with completed
1951 * batchbuffers in a long time. We keep track per ring seqno progress and
1952 * if there are no progress, hangcheck score for that ring is increased.
1953 * Further, acthd is inspected to see if the ring is stuck. On stuck case
1954 * we kick the ring. If we see no progress on three subsequent calls
1955 * we assume chip is wedged and try to fix it by resetting the chip.
1956 */
1957 static void i915_hangcheck_elapsed(unsigned long data)
1958 {
1959 struct drm_device *dev = (struct drm_device *)data;
1960 drm_i915_private_t *dev_priv = dev->dev_private;
1961 struct intel_ring_buffer *ring;
1962 int i;
1963 int busy_count = 0, rings_hung = 0;
1964 bool stuck[I915_NUM_RINGS] = { 0 };
1965 #define BUSY 1
1966 #define KICK 5
1967 #define HUNG 20
1968 #define FIRE 30
1969
1970 if (!i915_enable_hangcheck)
1971 return;
1972
1973 for_each_ring(ring, dev_priv, i) {
1974 u32 seqno, acthd;
1975 bool busy = true;
1976
1977 semaphore_clear_deadlocks(dev_priv);
1978
1979 seqno = ring->get_seqno(ring, false);
1980 acthd = intel_ring_get_active_head(ring);
1981
1982 if (ring->hangcheck.seqno == seqno) {
1983 if (ring_idle(ring, seqno)) {
1984 if (waitqueue_active(&ring->irq_queue)) {
1985 /* Issue a wake-up to catch stuck h/w. */
1986 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
1987 ring->name);
1988 wake_up_all(&ring->irq_queue);
1989 ring->hangcheck.score += HUNG;
1990 } else
1991 busy = false;
1992 } else {
1993 /* We always increment the hangcheck score
1994 * if the ring is busy and still processing
1995 * the same request, so that no single request
1996 * can run indefinitely (such as a chain of
1997 * batches). The only time we do not increment
1998 * the hangcheck score on this ring, if this
1999 * ring is in a legitimate wait for another
2000 * ring. In that case the waiting ring is a
2001 * victim and we want to be sure we catch the
2002 * right culprit. Then every time we do kick
2003 * the ring, add a small increment to the
2004 * score so that we can catch a batch that is
2005 * being repeatedly kicked and so responsible
2006 * for stalling the machine.
2007 */
2008 ring->hangcheck.action = ring_stuck(ring,
2009 acthd);
2010
2011 switch (ring->hangcheck.action) {
2012 case HANGCHECK_WAIT:
2013 break;
2014 case HANGCHECK_ACTIVE:
2015 ring->hangcheck.score += BUSY;
2016 break;
2017 case HANGCHECK_KICK:
2018 ring->hangcheck.score += KICK;
2019 break;
2020 case HANGCHECK_HUNG:
2021 ring->hangcheck.score += HUNG;
2022 stuck[i] = true;
2023 break;
2024 }
2025 }
2026 } else {
2027 /* Gradually reduce the count so that we catch DoS
2028 * attempts across multiple batches.
2029 */
2030 if (ring->hangcheck.score > 0)
2031 ring->hangcheck.score--;
2032 }
2033
2034 ring->hangcheck.seqno = seqno;
2035 ring->hangcheck.acthd = acthd;
2036 busy_count += busy;
2037 }
2038
2039 for_each_ring(ring, dev_priv, i) {
2040 if (ring->hangcheck.score > FIRE) {
2041 DRM_INFO("%s on %s\n",
2042 stuck[i] ? "stuck" : "no progress",
2043 ring->name);
2044 rings_hung++;
2045 }
2046 }
2047
2048 if (rings_hung)
2049 return i915_handle_error(dev, true);
2050
2051 if (busy_count)
2052 /* Reset timer case chip hangs without another request
2053 * being added */
2054 i915_queue_hangcheck(dev);
2055 }
2056
2057 void i915_queue_hangcheck(struct drm_device *dev)
2058 {
2059 struct drm_i915_private *dev_priv = dev->dev_private;
2060 if (!i915_enable_hangcheck)
2061 return;
2062
2063 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2064 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2065 }
2066
2067 static void ibx_irq_preinstall(struct drm_device *dev)
2068 {
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070
2071 if (HAS_PCH_NOP(dev))
2072 return;
2073
2074 /* south display irq */
2075 I915_WRITE(SDEIMR, 0xffffffff);
2076 /*
2077 * SDEIER is also touched by the interrupt handler to work around missed
2078 * PCH interrupts. Hence we can't update it after the interrupt handler
2079 * is enabled - instead we unconditionally enable all PCH interrupt
2080 * sources here, but then only unmask them as needed with SDEIMR.
2081 */
2082 I915_WRITE(SDEIER, 0xffffffff);
2083 POSTING_READ(SDEIER);
2084 }
2085
2086 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2087 {
2088 struct drm_i915_private *dev_priv = dev->dev_private;
2089
2090 /* and GT */
2091 I915_WRITE(GTIMR, 0xffffffff);
2092 I915_WRITE(GTIER, 0x0);
2093 POSTING_READ(GTIER);
2094
2095 if (INTEL_INFO(dev)->gen >= 6) {
2096 /* and PM */
2097 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2098 I915_WRITE(GEN6_PMIER, 0x0);
2099 POSTING_READ(GEN6_PMIER);
2100 }
2101 }
2102
2103 /* drm_dma.h hooks
2104 */
2105 static void ironlake_irq_preinstall(struct drm_device *dev)
2106 {
2107 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2108
2109 atomic_set(&dev_priv->irq_received, 0);
2110
2111 I915_WRITE(HWSTAM, 0xeffe);
2112
2113 I915_WRITE(DEIMR, 0xffffffff);
2114 I915_WRITE(DEIER, 0x0);
2115 POSTING_READ(DEIER);
2116
2117 gen5_gt_irq_preinstall(dev);
2118
2119 ibx_irq_preinstall(dev);
2120 }
2121
2122 static void valleyview_irq_preinstall(struct drm_device *dev)
2123 {
2124 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2125 int pipe;
2126
2127 atomic_set(&dev_priv->irq_received, 0);
2128
2129 /* VLV magic */
2130 I915_WRITE(VLV_IMR, 0);
2131 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2132 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2133 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2134
2135 /* and GT */
2136 I915_WRITE(GTIIR, I915_READ(GTIIR));
2137 I915_WRITE(GTIIR, I915_READ(GTIIR));
2138
2139 gen5_gt_irq_preinstall(dev);
2140
2141 I915_WRITE(DPINVGTT, 0xff);
2142
2143 I915_WRITE(PORT_HOTPLUG_EN, 0);
2144 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2145 for_each_pipe(pipe)
2146 I915_WRITE(PIPESTAT(pipe), 0xffff);
2147 I915_WRITE(VLV_IIR, 0xffffffff);
2148 I915_WRITE(VLV_IMR, 0xffffffff);
2149 I915_WRITE(VLV_IER, 0x0);
2150 POSTING_READ(VLV_IER);
2151 }
2152
2153 static void ibx_hpd_irq_setup(struct drm_device *dev)
2154 {
2155 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2156 struct drm_mode_config *mode_config = &dev->mode_config;
2157 struct intel_encoder *intel_encoder;
2158 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2159
2160 if (HAS_PCH_IBX(dev)) {
2161 hotplug_irqs = SDE_HOTPLUG_MASK;
2162 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2163 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2164 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2165 } else {
2166 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2167 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2168 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2169 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2170 }
2171
2172 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2173
2174 /*
2175 * Enable digital hotplug on the PCH, and configure the DP short pulse
2176 * duration to 2ms (which is the minimum in the Display Port spec)
2177 *
2178 * This register is the same on all known PCH chips.
2179 */
2180 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2181 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2182 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2183 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2184 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2185 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2186 }
2187
2188 static void ibx_irq_postinstall(struct drm_device *dev)
2189 {
2190 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2191 u32 mask;
2192
2193 if (HAS_PCH_NOP(dev))
2194 return;
2195
2196 if (HAS_PCH_IBX(dev)) {
2197 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2198 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2199 } else {
2200 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2201
2202 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2203 }
2204
2205 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2206 I915_WRITE(SDEIMR, ~mask);
2207 }
2208
2209 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2210 {
2211 struct drm_i915_private *dev_priv = dev->dev_private;
2212 u32 pm_irqs, gt_irqs;
2213
2214 pm_irqs = gt_irqs = 0;
2215
2216 dev_priv->gt_irq_mask = ~0;
2217 if (HAS_L3_GPU_CACHE(dev)) {
2218 /* L3 parity interrupt is always unmasked. */
2219 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2220 gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2221 }
2222
2223 gt_irqs |= GT_RENDER_USER_INTERRUPT;
2224 if (IS_GEN5(dev)) {
2225 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2226 ILK_BSD_USER_INTERRUPT;
2227 } else {
2228 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2229 }
2230
2231 I915_WRITE(GTIIR, I915_READ(GTIIR));
2232 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2233 I915_WRITE(GTIER, gt_irqs);
2234 POSTING_READ(GTIER);
2235
2236 if (INTEL_INFO(dev)->gen >= 6) {
2237 pm_irqs |= GEN6_PM_RPS_EVENTS;
2238
2239 if (HAS_VEBOX(dev))
2240 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2241
2242 dev_priv->pm_irq_mask = 0xffffffff;
2243 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2244 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2245 I915_WRITE(GEN6_PMIER, pm_irqs);
2246 POSTING_READ(GEN6_PMIER);
2247 }
2248 }
2249
2250 static int ironlake_irq_postinstall(struct drm_device *dev)
2251 {
2252 unsigned long irqflags;
2253 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2254 u32 display_mask, extra_mask;
2255
2256 if (INTEL_INFO(dev)->gen >= 7) {
2257 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2258 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2259 DE_PLANEB_FLIP_DONE_IVB |
2260 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2261 DE_ERR_INT_IVB);
2262 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2263 DE_PIPEA_VBLANK_IVB);
2264
2265 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2266 } else {
2267 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2268 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2269 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2270 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2271 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2272 }
2273
2274 dev_priv->irq_mask = ~display_mask;
2275
2276 /* should always can generate irq */
2277 I915_WRITE(DEIIR, I915_READ(DEIIR));
2278 I915_WRITE(DEIMR, dev_priv->irq_mask);
2279 I915_WRITE(DEIER, display_mask | extra_mask);
2280 POSTING_READ(DEIER);
2281
2282 gen5_gt_irq_postinstall(dev);
2283
2284 ibx_irq_postinstall(dev);
2285
2286 if (IS_IRONLAKE_M(dev)) {
2287 /* Enable PCU event interrupts
2288 *
2289 * spinlocking not required here for correctness since interrupt
2290 * setup is guaranteed to run in single-threaded context. But we
2291 * need it to make the assert_spin_locked happy. */
2292 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2293 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2294 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2295 }
2296
2297 return 0;
2298 }
2299
2300 static int valleyview_irq_postinstall(struct drm_device *dev)
2301 {
2302 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2303 u32 enable_mask;
2304 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2305 unsigned long irqflags;
2306
2307 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2308 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2309 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2310 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2311 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2312
2313 /*
2314 *Leave vblank interrupts masked initially. enable/disable will
2315 * toggle them based on usage.
2316 */
2317 dev_priv->irq_mask = (~enable_mask) |
2318 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2319 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2320
2321 I915_WRITE(PORT_HOTPLUG_EN, 0);
2322 POSTING_READ(PORT_HOTPLUG_EN);
2323
2324 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2325 I915_WRITE(VLV_IER, enable_mask);
2326 I915_WRITE(VLV_IIR, 0xffffffff);
2327 I915_WRITE(PIPESTAT(0), 0xffff);
2328 I915_WRITE(PIPESTAT(1), 0xffff);
2329 POSTING_READ(VLV_IER);
2330
2331 /* Interrupt setup is already guaranteed to be single-threaded, this is
2332 * just to make the assert_spin_locked check happy. */
2333 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2334 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2335 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2336 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2337 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2338
2339 I915_WRITE(VLV_IIR, 0xffffffff);
2340 I915_WRITE(VLV_IIR, 0xffffffff);
2341
2342 gen5_gt_irq_postinstall(dev);
2343
2344 /* ack & enable invalid PTE error interrupts */
2345 #if 0 /* FIXME: add support to irq handler for checking these bits */
2346 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2347 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2348 #endif
2349
2350 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2351
2352 return 0;
2353 }
2354
2355 static void valleyview_irq_uninstall(struct drm_device *dev)
2356 {
2357 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2358 int pipe;
2359
2360 if (!dev_priv)
2361 return;
2362
2363 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2364
2365 for_each_pipe(pipe)
2366 I915_WRITE(PIPESTAT(pipe), 0xffff);
2367
2368 I915_WRITE(HWSTAM, 0xffffffff);
2369 I915_WRITE(PORT_HOTPLUG_EN, 0);
2370 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2371 for_each_pipe(pipe)
2372 I915_WRITE(PIPESTAT(pipe), 0xffff);
2373 I915_WRITE(VLV_IIR, 0xffffffff);
2374 I915_WRITE(VLV_IMR, 0xffffffff);
2375 I915_WRITE(VLV_IER, 0x0);
2376 POSTING_READ(VLV_IER);
2377 }
2378
2379 static void ironlake_irq_uninstall(struct drm_device *dev)
2380 {
2381 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2382
2383 if (!dev_priv)
2384 return;
2385
2386 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2387
2388 I915_WRITE(HWSTAM, 0xffffffff);
2389
2390 I915_WRITE(DEIMR, 0xffffffff);
2391 I915_WRITE(DEIER, 0x0);
2392 I915_WRITE(DEIIR, I915_READ(DEIIR));
2393 if (IS_GEN7(dev))
2394 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2395
2396 I915_WRITE(GTIMR, 0xffffffff);
2397 I915_WRITE(GTIER, 0x0);
2398 I915_WRITE(GTIIR, I915_READ(GTIIR));
2399
2400 if (HAS_PCH_NOP(dev))
2401 return;
2402
2403 I915_WRITE(SDEIMR, 0xffffffff);
2404 I915_WRITE(SDEIER, 0x0);
2405 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2406 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2407 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2408 }
2409
2410 static void i8xx_irq_preinstall(struct drm_device * dev)
2411 {
2412 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2413 int pipe;
2414
2415 atomic_set(&dev_priv->irq_received, 0);
2416
2417 for_each_pipe(pipe)
2418 I915_WRITE(PIPESTAT(pipe), 0);
2419 I915_WRITE16(IMR, 0xffff);
2420 I915_WRITE16(IER, 0x0);
2421 POSTING_READ16(IER);
2422 }
2423
2424 static int i8xx_irq_postinstall(struct drm_device *dev)
2425 {
2426 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2427
2428 I915_WRITE16(EMR,
2429 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2430
2431 /* Unmask the interrupts that we always want on. */
2432 dev_priv->irq_mask =
2433 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2434 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2435 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2436 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2437 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2438 I915_WRITE16(IMR, dev_priv->irq_mask);
2439
2440 I915_WRITE16(IER,
2441 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2442 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2443 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2444 I915_USER_INTERRUPT);
2445 POSTING_READ16(IER);
2446
2447 return 0;
2448 }
2449
2450 /*
2451 * Returns true when a page flip has completed.
2452 */
2453 static bool i8xx_handle_vblank(struct drm_device *dev,
2454 int pipe, u16 iir)
2455 {
2456 drm_i915_private_t *dev_priv = dev->dev_private;
2457 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2458
2459 if (!drm_handle_vblank(dev, pipe))
2460 return false;
2461
2462 if ((iir & flip_pending) == 0)
2463 return false;
2464
2465 intel_prepare_page_flip(dev, pipe);
2466
2467 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2468 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2469 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2470 * the flip is completed (no longer pending). Since this doesn't raise
2471 * an interrupt per se, we watch for the change at vblank.
2472 */
2473 if (I915_READ16(ISR) & flip_pending)
2474 return false;
2475
2476 intel_finish_page_flip(dev, pipe);
2477
2478 return true;
2479 }
2480
2481 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2482 {
2483 struct drm_device *dev = (struct drm_device *) arg;
2484 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2485 u16 iir, new_iir;
2486 u32 pipe_stats[2];
2487 unsigned long irqflags;
2488 int pipe;
2489 u16 flip_mask =
2490 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2491 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2492
2493 atomic_inc(&dev_priv->irq_received);
2494
2495 iir = I915_READ16(IIR);
2496 if (iir == 0)
2497 return IRQ_NONE;
2498
2499 while (iir & ~flip_mask) {
2500 /* Can't rely on pipestat interrupt bit in iir as it might
2501 * have been cleared after the pipestat interrupt was received.
2502 * It doesn't set the bit in iir again, but it still produces
2503 * interrupts (for non-MSI).
2504 */
2505 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2506 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2507 i915_handle_error(dev, false);
2508
2509 for_each_pipe(pipe) {
2510 int reg = PIPESTAT(pipe);
2511 pipe_stats[pipe] = I915_READ(reg);
2512
2513 /*
2514 * Clear the PIPE*STAT regs before the IIR
2515 */
2516 if (pipe_stats[pipe] & 0x8000ffff) {
2517 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2518 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2519 pipe_name(pipe));
2520 I915_WRITE(reg, pipe_stats[pipe]);
2521 }
2522 }
2523 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2524
2525 I915_WRITE16(IIR, iir & ~flip_mask);
2526 new_iir = I915_READ16(IIR); /* Flush posted writes */
2527
2528 i915_update_dri1_breadcrumb(dev);
2529
2530 if (iir & I915_USER_INTERRUPT)
2531 notify_ring(dev, &dev_priv->ring[RCS]);
2532
2533 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2534 i8xx_handle_vblank(dev, 0, iir))
2535 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2536
2537 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2538 i8xx_handle_vblank(dev, 1, iir))
2539 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2540
2541 iir = new_iir;
2542 }
2543
2544 return IRQ_HANDLED;
2545 }
2546
2547 static void i8xx_irq_uninstall(struct drm_device * dev)
2548 {
2549 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2550 int pipe;
2551
2552 for_each_pipe(pipe) {
2553 /* Clear enable bits; then clear status bits */
2554 I915_WRITE(PIPESTAT(pipe), 0);
2555 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2556 }
2557 I915_WRITE16(IMR, 0xffff);
2558 I915_WRITE16(IER, 0x0);
2559 I915_WRITE16(IIR, I915_READ16(IIR));
2560 }
2561
2562 static void i915_irq_preinstall(struct drm_device * dev)
2563 {
2564 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2565 int pipe;
2566
2567 atomic_set(&dev_priv->irq_received, 0);
2568
2569 if (I915_HAS_HOTPLUG(dev)) {
2570 I915_WRITE(PORT_HOTPLUG_EN, 0);
2571 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2572 }
2573
2574 I915_WRITE16(HWSTAM, 0xeffe);
2575 for_each_pipe(pipe)
2576 I915_WRITE(PIPESTAT(pipe), 0);
2577 I915_WRITE(IMR, 0xffffffff);
2578 I915_WRITE(IER, 0x0);
2579 POSTING_READ(IER);
2580 }
2581
2582 static int i915_irq_postinstall(struct drm_device *dev)
2583 {
2584 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2585 u32 enable_mask;
2586
2587 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2588
2589 /* Unmask the interrupts that we always want on. */
2590 dev_priv->irq_mask =
2591 ~(I915_ASLE_INTERRUPT |
2592 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2593 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2594 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2595 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2596 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2597
2598 enable_mask =
2599 I915_ASLE_INTERRUPT |
2600 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2601 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2602 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2603 I915_USER_INTERRUPT;
2604
2605 if (I915_HAS_HOTPLUG(dev)) {
2606 I915_WRITE(PORT_HOTPLUG_EN, 0);
2607 POSTING_READ(PORT_HOTPLUG_EN);
2608
2609 /* Enable in IER... */
2610 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2611 /* and unmask in IMR */
2612 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2613 }
2614
2615 I915_WRITE(IMR, dev_priv->irq_mask);
2616 I915_WRITE(IER, enable_mask);
2617 POSTING_READ(IER);
2618
2619 i915_enable_asle_pipestat(dev);
2620
2621 return 0;
2622 }
2623
2624 /*
2625 * Returns true when a page flip has completed.
2626 */
2627 static bool i915_handle_vblank(struct drm_device *dev,
2628 int plane, int pipe, u32 iir)
2629 {
2630 drm_i915_private_t *dev_priv = dev->dev_private;
2631 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2632
2633 if (!drm_handle_vblank(dev, pipe))
2634 return false;
2635
2636 if ((iir & flip_pending) == 0)
2637 return false;
2638
2639 intel_prepare_page_flip(dev, plane);
2640
2641 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2642 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2643 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2644 * the flip is completed (no longer pending). Since this doesn't raise
2645 * an interrupt per se, we watch for the change at vblank.
2646 */
2647 if (I915_READ(ISR) & flip_pending)
2648 return false;
2649
2650 intel_finish_page_flip(dev, pipe);
2651
2652 return true;
2653 }
2654
2655 static irqreturn_t i915_irq_handler(int irq, void *arg)
2656 {
2657 struct drm_device *dev = (struct drm_device *) arg;
2658 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2659 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2660 unsigned long irqflags;
2661 u32 flip_mask =
2662 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2663 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2664 int pipe, ret = IRQ_NONE;
2665
2666 atomic_inc(&dev_priv->irq_received);
2667
2668 iir = I915_READ(IIR);
2669 do {
2670 bool irq_received = (iir & ~flip_mask) != 0;
2671 bool blc_event = false;
2672
2673 /* Can't rely on pipestat interrupt bit in iir as it might
2674 * have been cleared after the pipestat interrupt was received.
2675 * It doesn't set the bit in iir again, but it still produces
2676 * interrupts (for non-MSI).
2677 */
2678 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2679 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2680 i915_handle_error(dev, false);
2681
2682 for_each_pipe(pipe) {
2683 int reg = PIPESTAT(pipe);
2684 pipe_stats[pipe] = I915_READ(reg);
2685
2686 /* Clear the PIPE*STAT regs before the IIR */
2687 if (pipe_stats[pipe] & 0x8000ffff) {
2688 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2689 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2690 pipe_name(pipe));
2691 I915_WRITE(reg, pipe_stats[pipe]);
2692 irq_received = true;
2693 }
2694 }
2695 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2696
2697 if (!irq_received)
2698 break;
2699
2700 /* Consume port. Then clear IIR or we'll miss events */
2701 if ((I915_HAS_HOTPLUG(dev)) &&
2702 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2703 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2704 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2705
2706 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2707 hotplug_status);
2708
2709 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2710
2711 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2712 POSTING_READ(PORT_HOTPLUG_STAT);
2713 }
2714
2715 I915_WRITE(IIR, iir & ~flip_mask);
2716 new_iir = I915_READ(IIR); /* Flush posted writes */
2717
2718 if (iir & I915_USER_INTERRUPT)
2719 notify_ring(dev, &dev_priv->ring[RCS]);
2720
2721 for_each_pipe(pipe) {
2722 int plane = pipe;
2723 if (IS_MOBILE(dev))
2724 plane = !plane;
2725
2726 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2727 i915_handle_vblank(dev, plane, pipe, iir))
2728 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2729
2730 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2731 blc_event = true;
2732 }
2733
2734 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2735 intel_opregion_asle_intr(dev);
2736
2737 /* With MSI, interrupts are only generated when iir
2738 * transitions from zero to nonzero. If another bit got
2739 * set while we were handling the existing iir bits, then
2740 * we would never get another interrupt.
2741 *
2742 * This is fine on non-MSI as well, as if we hit this path
2743 * we avoid exiting the interrupt handler only to generate
2744 * another one.
2745 *
2746 * Note that for MSI this could cause a stray interrupt report
2747 * if an interrupt landed in the time between writing IIR and
2748 * the posting read. This should be rare enough to never
2749 * trigger the 99% of 100,000 interrupts test for disabling
2750 * stray interrupts.
2751 */
2752 ret = IRQ_HANDLED;
2753 iir = new_iir;
2754 } while (iir & ~flip_mask);
2755
2756 i915_update_dri1_breadcrumb(dev);
2757
2758 return ret;
2759 }
2760
2761 static void i915_irq_uninstall(struct drm_device * dev)
2762 {
2763 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2764 int pipe;
2765
2766 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2767
2768 if (I915_HAS_HOTPLUG(dev)) {
2769 I915_WRITE(PORT_HOTPLUG_EN, 0);
2770 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2771 }
2772
2773 I915_WRITE16(HWSTAM, 0xffff);
2774 for_each_pipe(pipe) {
2775 /* Clear enable bits; then clear status bits */
2776 I915_WRITE(PIPESTAT(pipe), 0);
2777 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2778 }
2779 I915_WRITE(IMR, 0xffffffff);
2780 I915_WRITE(IER, 0x0);
2781
2782 I915_WRITE(IIR, I915_READ(IIR));
2783 }
2784
2785 static void i965_irq_preinstall(struct drm_device * dev)
2786 {
2787 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2788 int pipe;
2789
2790 atomic_set(&dev_priv->irq_received, 0);
2791
2792 I915_WRITE(PORT_HOTPLUG_EN, 0);
2793 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2794
2795 I915_WRITE(HWSTAM, 0xeffe);
2796 for_each_pipe(pipe)
2797 I915_WRITE(PIPESTAT(pipe), 0);
2798 I915_WRITE(IMR, 0xffffffff);
2799 I915_WRITE(IER, 0x0);
2800 POSTING_READ(IER);
2801 }
2802
2803 static int i965_irq_postinstall(struct drm_device *dev)
2804 {
2805 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2806 u32 enable_mask;
2807 u32 error_mask;
2808 unsigned long irqflags;
2809
2810 /* Unmask the interrupts that we always want on. */
2811 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2812 I915_DISPLAY_PORT_INTERRUPT |
2813 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2814 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2815 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2816 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2817 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2818
2819 enable_mask = ~dev_priv->irq_mask;
2820 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2821 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2822 enable_mask |= I915_USER_INTERRUPT;
2823
2824 if (IS_G4X(dev))
2825 enable_mask |= I915_BSD_USER_INTERRUPT;
2826
2827 /* Interrupt setup is already guaranteed to be single-threaded, this is
2828 * just to make the assert_spin_locked check happy. */
2829 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2830 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2831 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2832
2833 /*
2834 * Enable some error detection, note the instruction error mask
2835 * bit is reserved, so we leave it masked.
2836 */
2837 if (IS_G4X(dev)) {
2838 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2839 GM45_ERROR_MEM_PRIV |
2840 GM45_ERROR_CP_PRIV |
2841 I915_ERROR_MEMORY_REFRESH);
2842 } else {
2843 error_mask = ~(I915_ERROR_PAGE_TABLE |
2844 I915_ERROR_MEMORY_REFRESH);
2845 }
2846 I915_WRITE(EMR, error_mask);
2847
2848 I915_WRITE(IMR, dev_priv->irq_mask);
2849 I915_WRITE(IER, enable_mask);
2850 POSTING_READ(IER);
2851
2852 I915_WRITE(PORT_HOTPLUG_EN, 0);
2853 POSTING_READ(PORT_HOTPLUG_EN);
2854
2855 i915_enable_asle_pipestat(dev);
2856
2857 return 0;
2858 }
2859
2860 static void i915_hpd_irq_setup(struct drm_device *dev)
2861 {
2862 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2863 struct drm_mode_config *mode_config = &dev->mode_config;
2864 struct intel_encoder *intel_encoder;
2865 u32 hotplug_en;
2866
2867 assert_spin_locked(&dev_priv->irq_lock);
2868
2869 if (I915_HAS_HOTPLUG(dev)) {
2870 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2871 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2872 /* Note HDMI and DP share hotplug bits */
2873 /* enable bits are the same for all generations */
2874 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2875 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2876 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2877 /* Programming the CRT detection parameters tends
2878 to generate a spurious hotplug event about three
2879 seconds later. So just do it once.
2880 */
2881 if (IS_G4X(dev))
2882 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2883 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2884 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2885
2886 /* Ignore TV since it's buggy */
2887 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2888 }
2889 }
2890
2891 static irqreturn_t i965_irq_handler(int irq, void *arg)
2892 {
2893 struct drm_device *dev = (struct drm_device *) arg;
2894 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2895 u32 iir, new_iir;
2896 u32 pipe_stats[I915_MAX_PIPES];
2897 unsigned long irqflags;
2898 int irq_received;
2899 int ret = IRQ_NONE, pipe;
2900 u32 flip_mask =
2901 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2902 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2903
2904 atomic_inc(&dev_priv->irq_received);
2905
2906 iir = I915_READ(IIR);
2907
2908 for (;;) {
2909 bool blc_event = false;
2910
2911 irq_received = (iir & ~flip_mask) != 0;
2912
2913 /* Can't rely on pipestat interrupt bit in iir as it might
2914 * have been cleared after the pipestat interrupt was received.
2915 * It doesn't set the bit in iir again, but it still produces
2916 * interrupts (for non-MSI).
2917 */
2918 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2919 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2920 i915_handle_error(dev, false);
2921
2922 for_each_pipe(pipe) {
2923 int reg = PIPESTAT(pipe);
2924 pipe_stats[pipe] = I915_READ(reg);
2925
2926 /*
2927 * Clear the PIPE*STAT regs before the IIR
2928 */
2929 if (pipe_stats[pipe] & 0x8000ffff) {
2930 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2931 DRM_DEBUG_DRIVER("pipe %c underrun\n",
2932 pipe_name(pipe));
2933 I915_WRITE(reg, pipe_stats[pipe]);
2934 irq_received = 1;
2935 }
2936 }
2937 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2938
2939 if (!irq_received)
2940 break;
2941
2942 ret = IRQ_HANDLED;
2943
2944 /* Consume port. Then clear IIR or we'll miss events */
2945 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2946 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2947 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2948 HOTPLUG_INT_STATUS_G4X :
2949 HOTPLUG_INT_STATUS_I915);
2950
2951 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2952 hotplug_status);
2953
2954 intel_hpd_irq_handler(dev, hotplug_trigger,
2955 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2956
2957 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2958 I915_READ(PORT_HOTPLUG_STAT);
2959 }
2960
2961 I915_WRITE(IIR, iir & ~flip_mask);
2962 new_iir = I915_READ(IIR); /* Flush posted writes */
2963
2964 if (iir & I915_USER_INTERRUPT)
2965 notify_ring(dev, &dev_priv->ring[RCS]);
2966 if (iir & I915_BSD_USER_INTERRUPT)
2967 notify_ring(dev, &dev_priv->ring[VCS]);
2968
2969 for_each_pipe(pipe) {
2970 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2971 i915_handle_vblank(dev, pipe, pipe, iir))
2972 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
2973
2974 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2975 blc_event = true;
2976 }
2977
2978
2979 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2980 intel_opregion_asle_intr(dev);
2981
2982 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2983 gmbus_irq_handler(dev);
2984
2985 /* With MSI, interrupts are only generated when iir
2986 * transitions from zero to nonzero. If another bit got
2987 * set while we were handling the existing iir bits, then
2988 * we would never get another interrupt.
2989 *
2990 * This is fine on non-MSI as well, as if we hit this path
2991 * we avoid exiting the interrupt handler only to generate
2992 * another one.
2993 *
2994 * Note that for MSI this could cause a stray interrupt report
2995 * if an interrupt landed in the time between writing IIR and
2996 * the posting read. This should be rare enough to never
2997 * trigger the 99% of 100,000 interrupts test for disabling
2998 * stray interrupts.
2999 */
3000 iir = new_iir;
3001 }
3002
3003 i915_update_dri1_breadcrumb(dev);
3004
3005 return ret;
3006 }
3007
3008 static void i965_irq_uninstall(struct drm_device * dev)
3009 {
3010 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3011 int pipe;
3012
3013 if (!dev_priv)
3014 return;
3015
3016 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3017
3018 I915_WRITE(PORT_HOTPLUG_EN, 0);
3019 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3020
3021 I915_WRITE(HWSTAM, 0xffffffff);
3022 for_each_pipe(pipe)
3023 I915_WRITE(PIPESTAT(pipe), 0);
3024 I915_WRITE(IMR, 0xffffffff);
3025 I915_WRITE(IER, 0x0);
3026
3027 for_each_pipe(pipe)
3028 I915_WRITE(PIPESTAT(pipe),
3029 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3030 I915_WRITE(IIR, I915_READ(IIR));
3031 }
3032
3033 static void i915_reenable_hotplug_timer_func(unsigned long data)
3034 {
3035 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3036 struct drm_device *dev = dev_priv->dev;
3037 struct drm_mode_config *mode_config = &dev->mode_config;
3038 unsigned long irqflags;
3039 int i;
3040
3041 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3042 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3043 struct drm_connector *connector;
3044
3045 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3046 continue;
3047
3048 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3049
3050 list_for_each_entry(connector, &mode_config->connector_list, head) {
3051 struct intel_connector *intel_connector = to_intel_connector(connector);
3052
3053 if (intel_connector->encoder->hpd_pin == i) {
3054 if (connector->polled != intel_connector->polled)
3055 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3056 drm_get_connector_name(connector));
3057 connector->polled = intel_connector->polled;
3058 if (!connector->polled)
3059 connector->polled = DRM_CONNECTOR_POLL_HPD;
3060 }
3061 }
3062 }
3063 if (dev_priv->display.hpd_irq_setup)
3064 dev_priv->display.hpd_irq_setup(dev);
3065 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066 }
3067
3068 void intel_irq_init(struct drm_device *dev)
3069 {
3070 struct drm_i915_private *dev_priv = dev->dev_private;
3071
3072 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3073 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3074 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3075 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3076
3077 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3078 i915_hangcheck_elapsed,
3079 (unsigned long) dev);
3080 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3081 (unsigned long) dev_priv);
3082
3083 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3084
3085 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3086 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3087 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3088 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3089 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3090 }
3091
3092 if (drm_core_check_feature(dev, DRIVER_MODESET))
3093 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3094 else
3095 dev->driver->get_vblank_timestamp = NULL;
3096 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3097
3098 if (IS_VALLEYVIEW(dev)) {
3099 dev->driver->irq_handler = valleyview_irq_handler;
3100 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3101 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3102 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3103 dev->driver->enable_vblank = valleyview_enable_vblank;
3104 dev->driver->disable_vblank = valleyview_disable_vblank;
3105 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3106 } else if (HAS_PCH_SPLIT(dev)) {
3107 dev->driver->irq_handler = ironlake_irq_handler;
3108 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3109 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3110 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3111 dev->driver->enable_vblank = ironlake_enable_vblank;
3112 dev->driver->disable_vblank = ironlake_disable_vblank;
3113 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3114 } else {
3115 if (INTEL_INFO(dev)->gen == 2) {
3116 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3117 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3118 dev->driver->irq_handler = i8xx_irq_handler;
3119 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3120 } else if (INTEL_INFO(dev)->gen == 3) {
3121 dev->driver->irq_preinstall = i915_irq_preinstall;
3122 dev->driver->irq_postinstall = i915_irq_postinstall;
3123 dev->driver->irq_uninstall = i915_irq_uninstall;
3124 dev->driver->irq_handler = i915_irq_handler;
3125 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3126 } else {
3127 dev->driver->irq_preinstall = i965_irq_preinstall;
3128 dev->driver->irq_postinstall = i965_irq_postinstall;
3129 dev->driver->irq_uninstall = i965_irq_uninstall;
3130 dev->driver->irq_handler = i965_irq_handler;
3131 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3132 }
3133 dev->driver->enable_vblank = i915_enable_vblank;
3134 dev->driver->disable_vblank = i915_disable_vblank;
3135 }
3136 }
3137
3138 void intel_hpd_init(struct drm_device *dev)
3139 {
3140 struct drm_i915_private *dev_priv = dev->dev_private;
3141 struct drm_mode_config *mode_config = &dev->mode_config;
3142 struct drm_connector *connector;
3143 unsigned long irqflags;
3144 int i;
3145
3146 for (i = 1; i < HPD_NUM_PINS; i++) {
3147 dev_priv->hpd_stats[i].hpd_cnt = 0;
3148 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3149 }
3150 list_for_each_entry(connector, &mode_config->connector_list, head) {
3151 struct intel_connector *intel_connector = to_intel_connector(connector);
3152 connector->polled = intel_connector->polled;
3153 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3154 connector->polled = DRM_CONNECTOR_POLL_HPD;
3155 }
3156
3157 /* Interrupt setup is already guaranteed to be single-threaded, this is
3158 * just to make the assert_spin_locked checks happy. */
3159 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3160 if (dev_priv->display.hpd_irq_setup)
3161 dev_priv->display.hpd_irq_setup(dev);
3162 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3163 }
3164
3165 /* Disable interrupts so we can allow Package C8+. */
3166 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3167 {
3168 struct drm_i915_private *dev_priv = dev->dev_private;
3169 unsigned long irqflags;
3170
3171 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3172
3173 dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3174 dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3175 dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3176 dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3177 dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3178
3179 ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3180 ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3181 ilk_disable_gt_irq(dev_priv, 0xffffffff);
3182 snb_disable_pm_irq(dev_priv, 0xffffffff);
3183
3184 dev_priv->pc8.irqs_disabled = true;
3185
3186 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3187 }
3188
3189 /* Restore interrupts so we can recover from Package C8+. */
3190 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3191 {
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 unsigned long irqflags;
3194 uint32_t val, expected;
3195
3196 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3197
3198 val = I915_READ(DEIMR);
3199 expected = ~DE_PCH_EVENT_IVB;
3200 WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3201
3202 val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3203 expected = ~SDE_HOTPLUG_MASK_CPT;
3204 WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3205 val, expected);
3206
3207 val = I915_READ(GTIMR);
3208 expected = 0xffffffff;
3209 WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3210
3211 val = I915_READ(GEN6_PMIMR);
3212 expected = 0xffffffff;
3213 WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3214 expected);
3215
3216 dev_priv->pc8.irqs_disabled = false;
3217
3218 ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3219 ibx_enable_display_interrupt(dev_priv,
3220 ~dev_priv->pc8.regsave.sdeimr &
3221 ~SDE_HOTPLUG_MASK_CPT);
3222 ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3223 snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3224 I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3225
3226 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3227 }
This page took 0.128059 seconds and 6 git commands to generate.