drm/i915: Introduce an HAS_IPS() macro
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40 [HPD_CRT] = SDE_CRT_HOTPLUG,
41 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i965[] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I965,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I965,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 static void ibx_hpd_irq_setup(struct drm_device *dev);
92 static void i915_hpd_irq_setup(struct drm_device *dev);
93
94 /* For display hotplug interrupt */
95 static void
96 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
97 {
98 if ((dev_priv->irq_mask & mask) != 0) {
99 dev_priv->irq_mask &= ~mask;
100 I915_WRITE(DEIMR, dev_priv->irq_mask);
101 POSTING_READ(DEIMR);
102 }
103 }
104
105 static void
106 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
107 {
108 if ((dev_priv->irq_mask & mask) != mask) {
109 dev_priv->irq_mask |= mask;
110 I915_WRITE(DEIMR, dev_priv->irq_mask);
111 POSTING_READ(DEIMR);
112 }
113 }
114
115 static bool ivb_can_enable_err_int(struct drm_device *dev)
116 {
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct intel_crtc *crtc;
119 enum pipe pipe;
120
121 for_each_pipe(pipe) {
122 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
123
124 if (crtc->cpu_fifo_underrun_disabled)
125 return false;
126 }
127
128 return true;
129 }
130
131 static bool cpt_can_enable_serr_int(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 enum pipe pipe;
135 struct intel_crtc *crtc;
136
137 for_each_pipe(pipe) {
138 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
139
140 if (crtc->pch_fifo_underrun_disabled)
141 return false;
142 }
143
144 return true;
145 }
146
147 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
148 enum pipe pipe, bool enable)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
152 DE_PIPEB_FIFO_UNDERRUN;
153
154 if (enable)
155 ironlake_enable_display_irq(dev_priv, bit);
156 else
157 ironlake_disable_display_irq(dev_priv, bit);
158 }
159
160 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
161 bool enable)
162 {
163 struct drm_i915_private *dev_priv = dev->dev_private;
164
165 if (enable) {
166 if (!ivb_can_enable_err_int(dev))
167 return;
168
169 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN_A |
170 ERR_INT_FIFO_UNDERRUN_B |
171 ERR_INT_FIFO_UNDERRUN_C);
172
173 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
174 } else {
175 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
176 }
177 }
178
179 static void ibx_set_fifo_underrun_reporting(struct intel_crtc *crtc,
180 bool enable)
181 {
182 struct drm_device *dev = crtc->base.dev;
183 struct drm_i915_private *dev_priv = dev->dev_private;
184 uint32_t bit = (crtc->pipe == PIPE_A) ? SDE_TRANSA_FIFO_UNDER :
185 SDE_TRANSB_FIFO_UNDER;
186
187 if (enable)
188 I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~bit);
189 else
190 I915_WRITE(SDEIMR, I915_READ(SDEIMR) | bit);
191
192 POSTING_READ(SDEIMR);
193 }
194
195 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
196 enum transcoder pch_transcoder,
197 bool enable)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200
201 if (enable) {
202 if (!cpt_can_enable_serr_int(dev))
203 return;
204
205 I915_WRITE(SERR_INT, SERR_INT_TRANS_A_FIFO_UNDERRUN |
206 SERR_INT_TRANS_B_FIFO_UNDERRUN |
207 SERR_INT_TRANS_C_FIFO_UNDERRUN);
208
209 I915_WRITE(SDEIMR, I915_READ(SDEIMR) & ~SDE_ERROR_CPT);
210 } else {
211 I915_WRITE(SDEIMR, I915_READ(SDEIMR) | SDE_ERROR_CPT);
212 }
213
214 POSTING_READ(SDEIMR);
215 }
216
217 /**
218 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
219 * @dev: drm device
220 * @pipe: pipe
221 * @enable: true if we want to report FIFO underrun errors, false otherwise
222 *
223 * This function makes us disable or enable CPU fifo underruns for a specific
224 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
225 * reporting for one pipe may also disable all the other CPU error interruts for
226 * the other pipes, due to the fact that there's just one interrupt mask/enable
227 * bit for all the pipes.
228 *
229 * Returns the previous state of underrun reporting.
230 */
231 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
232 enum pipe pipe, bool enable)
233 {
234 struct drm_i915_private *dev_priv = dev->dev_private;
235 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
237 unsigned long flags;
238 bool ret;
239
240 spin_lock_irqsave(&dev_priv->irq_lock, flags);
241
242 ret = !intel_crtc->cpu_fifo_underrun_disabled;
243
244 if (enable == ret)
245 goto done;
246
247 intel_crtc->cpu_fifo_underrun_disabled = !enable;
248
249 if (IS_GEN5(dev) || IS_GEN6(dev))
250 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
251 else if (IS_GEN7(dev))
252 ivybridge_set_fifo_underrun_reporting(dev, enable);
253
254 done:
255 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
256 return ret;
257 }
258
259 /**
260 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
261 * @dev: drm device
262 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
263 * @enable: true if we want to report FIFO underrun errors, false otherwise
264 *
265 * This function makes us disable or enable PCH fifo underruns for a specific
266 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
267 * underrun reporting for one transcoder may also disable all the other PCH
268 * error interruts for the other transcoders, due to the fact that there's just
269 * one interrupt mask/enable bit for all the transcoders.
270 *
271 * Returns the previous state of underrun reporting.
272 */
273 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
274 enum transcoder pch_transcoder,
275 bool enable)
276 {
277 struct drm_i915_private *dev_priv = dev->dev_private;
278 enum pipe p;
279 struct drm_crtc *crtc;
280 struct intel_crtc *intel_crtc;
281 unsigned long flags;
282 bool ret;
283
284 if (HAS_PCH_LPT(dev)) {
285 crtc = NULL;
286 for_each_pipe(p) {
287 struct drm_crtc *c = dev_priv->pipe_to_crtc_mapping[p];
288 if (intel_pipe_has_type(c, INTEL_OUTPUT_ANALOG)) {
289 crtc = c;
290 break;
291 }
292 }
293 if (!crtc) {
294 DRM_ERROR("PCH FIFO underrun, but no CRTC using the PCH found\n");
295 return false;
296 }
297 } else {
298 crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
299 }
300 intel_crtc = to_intel_crtc(crtc);
301
302 spin_lock_irqsave(&dev_priv->irq_lock, flags);
303
304 ret = !intel_crtc->pch_fifo_underrun_disabled;
305
306 if (enable == ret)
307 goto done;
308
309 intel_crtc->pch_fifo_underrun_disabled = !enable;
310
311 if (HAS_PCH_IBX(dev))
312 ibx_set_fifo_underrun_reporting(intel_crtc, enable);
313 else
314 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
315
316 done:
317 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
318 return ret;
319 }
320
321
322 void
323 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
324 {
325 u32 reg = PIPESTAT(pipe);
326 u32 pipestat = I915_READ(reg) & 0x7fff0000;
327
328 if ((pipestat & mask) == mask)
329 return;
330
331 /* Enable the interrupt, clear any pending status */
332 pipestat |= mask | (mask >> 16);
333 I915_WRITE(reg, pipestat);
334 POSTING_READ(reg);
335 }
336
337 void
338 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
339 {
340 u32 reg = PIPESTAT(pipe);
341 u32 pipestat = I915_READ(reg) & 0x7fff0000;
342
343 if ((pipestat & mask) == 0)
344 return;
345
346 pipestat &= ~mask;
347 I915_WRITE(reg, pipestat);
348 POSTING_READ(reg);
349 }
350
351 /**
352 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
353 */
354 static void i915_enable_asle_pipestat(struct drm_device *dev)
355 {
356 drm_i915_private_t *dev_priv = dev->dev_private;
357 unsigned long irqflags;
358
359 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
360 return;
361
362 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
363
364 i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
365 if (INTEL_INFO(dev)->gen >= 4)
366 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
367
368 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
369 }
370
371 /**
372 * i915_pipe_enabled - check if a pipe is enabled
373 * @dev: DRM device
374 * @pipe: pipe to check
375 *
376 * Reading certain registers when the pipe is disabled can hang the chip.
377 * Use this routine to make sure the PLL is running and the pipe is active
378 * before reading such registers if unsure.
379 */
380 static int
381 i915_pipe_enabled(struct drm_device *dev, int pipe)
382 {
383 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
384
385 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
386 /* Locking is horribly broken here, but whatever. */
387 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
388 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
389
390 return intel_crtc->active;
391 } else {
392 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
393 }
394 }
395
396 /* Called from drm generic code, passed a 'crtc', which
397 * we use as a pipe index
398 */
399 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
400 {
401 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
402 unsigned long high_frame;
403 unsigned long low_frame;
404 u32 high1, high2, low;
405
406 if (!i915_pipe_enabled(dev, pipe)) {
407 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
408 "pipe %c\n", pipe_name(pipe));
409 return 0;
410 }
411
412 high_frame = PIPEFRAME(pipe);
413 low_frame = PIPEFRAMEPIXEL(pipe);
414
415 /*
416 * High & low register fields aren't synchronized, so make sure
417 * we get a low value that's stable across two reads of the high
418 * register.
419 */
420 do {
421 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
422 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
423 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
424 } while (high1 != high2);
425
426 high1 >>= PIPE_FRAME_HIGH_SHIFT;
427 low >>= PIPE_FRAME_LOW_SHIFT;
428 return (high1 << 8) | low;
429 }
430
431 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
432 {
433 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
434 int reg = PIPE_FRMCOUNT_GM45(pipe);
435
436 if (!i915_pipe_enabled(dev, pipe)) {
437 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
438 "pipe %c\n", pipe_name(pipe));
439 return 0;
440 }
441
442 return I915_READ(reg);
443 }
444
445 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
446 int *vpos, int *hpos)
447 {
448 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
449 u32 vbl = 0, position = 0;
450 int vbl_start, vbl_end, htotal, vtotal;
451 bool in_vbl = true;
452 int ret = 0;
453 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
454 pipe);
455
456 if (!i915_pipe_enabled(dev, pipe)) {
457 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
458 "pipe %c\n", pipe_name(pipe));
459 return 0;
460 }
461
462 /* Get vtotal. */
463 vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
464
465 if (INTEL_INFO(dev)->gen >= 4) {
466 /* No obvious pixelcount register. Only query vertical
467 * scanout position from Display scan line register.
468 */
469 position = I915_READ(PIPEDSL(pipe));
470
471 /* Decode into vertical scanout position. Don't have
472 * horizontal scanout position.
473 */
474 *vpos = position & 0x1fff;
475 *hpos = 0;
476 } else {
477 /* Have access to pixelcount since start of frame.
478 * We can split this into vertical and horizontal
479 * scanout position.
480 */
481 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
482
483 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
484 *vpos = position / htotal;
485 *hpos = position - (*vpos * htotal);
486 }
487
488 /* Query vblank area. */
489 vbl = I915_READ(VBLANK(cpu_transcoder));
490
491 /* Test position against vblank region. */
492 vbl_start = vbl & 0x1fff;
493 vbl_end = (vbl >> 16) & 0x1fff;
494
495 if ((*vpos < vbl_start) || (*vpos > vbl_end))
496 in_vbl = false;
497
498 /* Inside "upper part" of vblank area? Apply corrective offset: */
499 if (in_vbl && (*vpos >= vbl_start))
500 *vpos = *vpos - vtotal;
501
502 /* Readouts valid? */
503 if (vbl > 0)
504 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
505
506 /* In vblank? */
507 if (in_vbl)
508 ret |= DRM_SCANOUTPOS_INVBL;
509
510 return ret;
511 }
512
513 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
514 int *max_error,
515 struct timeval *vblank_time,
516 unsigned flags)
517 {
518 struct drm_crtc *crtc;
519
520 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
521 DRM_ERROR("Invalid crtc %d\n", pipe);
522 return -EINVAL;
523 }
524
525 /* Get drm_crtc to timestamp: */
526 crtc = intel_get_crtc_for_pipe(dev, pipe);
527 if (crtc == NULL) {
528 DRM_ERROR("Invalid crtc %d\n", pipe);
529 return -EINVAL;
530 }
531
532 if (!crtc->enabled) {
533 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
534 return -EBUSY;
535 }
536
537 /* Helper routine in DRM core does all the work: */
538 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
539 vblank_time, flags,
540 crtc);
541 }
542
543 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
544 {
545 enum drm_connector_status old_status;
546
547 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
548 old_status = connector->status;
549
550 connector->status = connector->funcs->detect(connector, false);
551 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
552 connector->base.id,
553 drm_get_connector_name(connector),
554 old_status, connector->status);
555 return (old_status != connector->status);
556 }
557
558 /*
559 * Handle hotplug events outside the interrupt handler proper.
560 */
561 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
562
563 static void i915_hotplug_work_func(struct work_struct *work)
564 {
565 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
566 hotplug_work);
567 struct drm_device *dev = dev_priv->dev;
568 struct drm_mode_config *mode_config = &dev->mode_config;
569 struct intel_connector *intel_connector;
570 struct intel_encoder *intel_encoder;
571 struct drm_connector *connector;
572 unsigned long irqflags;
573 bool hpd_disabled = false;
574 bool changed = false;
575 u32 hpd_event_bits;
576
577 /* HPD irq before everything is fully set up. */
578 if (!dev_priv->enable_hotplug_processing)
579 return;
580
581 mutex_lock(&mode_config->mutex);
582 DRM_DEBUG_KMS("running encoder hotplug functions\n");
583
584 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
585
586 hpd_event_bits = dev_priv->hpd_event_bits;
587 dev_priv->hpd_event_bits = 0;
588 list_for_each_entry(connector, &mode_config->connector_list, head) {
589 intel_connector = to_intel_connector(connector);
590 intel_encoder = intel_connector->encoder;
591 if (intel_encoder->hpd_pin > HPD_NONE &&
592 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
593 connector->polled == DRM_CONNECTOR_POLL_HPD) {
594 DRM_INFO("HPD interrupt storm detected on connector %s: "
595 "switching from hotplug detection to polling\n",
596 drm_get_connector_name(connector));
597 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
598 connector->polled = DRM_CONNECTOR_POLL_CONNECT
599 | DRM_CONNECTOR_POLL_DISCONNECT;
600 hpd_disabled = true;
601 }
602 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
603 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
604 drm_get_connector_name(connector), intel_encoder->hpd_pin);
605 }
606 }
607 /* if there were no outputs to poll, poll was disabled,
608 * therefore make sure it's enabled when disabling HPD on
609 * some connectors */
610 if (hpd_disabled) {
611 drm_kms_helper_poll_enable(dev);
612 mod_timer(&dev_priv->hotplug_reenable_timer,
613 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
614 }
615
616 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
617
618 list_for_each_entry(connector, &mode_config->connector_list, head) {
619 intel_connector = to_intel_connector(connector);
620 intel_encoder = intel_connector->encoder;
621 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
622 if (intel_encoder->hot_plug)
623 intel_encoder->hot_plug(intel_encoder);
624 if (intel_hpd_irq_event(dev, connector))
625 changed = true;
626 }
627 }
628 mutex_unlock(&mode_config->mutex);
629
630 if (changed)
631 drm_kms_helper_hotplug_event(dev);
632 }
633
634 static void ironlake_handle_rps_change(struct drm_device *dev)
635 {
636 drm_i915_private_t *dev_priv = dev->dev_private;
637 u32 busy_up, busy_down, max_avg, min_avg;
638 u8 new_delay;
639 unsigned long flags;
640
641 spin_lock_irqsave(&mchdev_lock, flags);
642
643 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
644
645 new_delay = dev_priv->ips.cur_delay;
646
647 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
648 busy_up = I915_READ(RCPREVBSYTUPAVG);
649 busy_down = I915_READ(RCPREVBSYTDNAVG);
650 max_avg = I915_READ(RCBMAXAVG);
651 min_avg = I915_READ(RCBMINAVG);
652
653 /* Handle RCS change request from hw */
654 if (busy_up > max_avg) {
655 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
656 new_delay = dev_priv->ips.cur_delay - 1;
657 if (new_delay < dev_priv->ips.max_delay)
658 new_delay = dev_priv->ips.max_delay;
659 } else if (busy_down < min_avg) {
660 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
661 new_delay = dev_priv->ips.cur_delay + 1;
662 if (new_delay > dev_priv->ips.min_delay)
663 new_delay = dev_priv->ips.min_delay;
664 }
665
666 if (ironlake_set_drps(dev, new_delay))
667 dev_priv->ips.cur_delay = new_delay;
668
669 spin_unlock_irqrestore(&mchdev_lock, flags);
670
671 return;
672 }
673
674 static void notify_ring(struct drm_device *dev,
675 struct intel_ring_buffer *ring)
676 {
677 struct drm_i915_private *dev_priv = dev->dev_private;
678
679 if (ring->obj == NULL)
680 return;
681
682 trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
683
684 wake_up_all(&ring->irq_queue);
685 if (i915_enable_hangcheck) {
686 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
687 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
688 }
689 }
690
691 static void gen6_pm_rps_work(struct work_struct *work)
692 {
693 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
694 rps.work);
695 u32 pm_iir, pm_imr;
696 u8 new_delay;
697
698 spin_lock_irq(&dev_priv->rps.lock);
699 pm_iir = dev_priv->rps.pm_iir;
700 dev_priv->rps.pm_iir = 0;
701 pm_imr = I915_READ(GEN6_PMIMR);
702 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
703 I915_WRITE(GEN6_PMIMR, pm_imr & ~GEN6_PM_RPS_EVENTS);
704 spin_unlock_irq(&dev_priv->rps.lock);
705
706 if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
707 return;
708
709 mutex_lock(&dev_priv->rps.hw_lock);
710
711 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD)
712 new_delay = dev_priv->rps.cur_delay + 1;
713 else
714 new_delay = dev_priv->rps.cur_delay - 1;
715
716 /* sysfs frequency interfaces may have snuck in while servicing the
717 * interrupt
718 */
719 if (!(new_delay > dev_priv->rps.max_delay ||
720 new_delay < dev_priv->rps.min_delay)) {
721 if (IS_VALLEYVIEW(dev_priv->dev))
722 valleyview_set_rps(dev_priv->dev, new_delay);
723 else
724 gen6_set_rps(dev_priv->dev, new_delay);
725 }
726
727 if (IS_VALLEYVIEW(dev_priv->dev)) {
728 /*
729 * On VLV, when we enter RC6 we may not be at the minimum
730 * voltage level, so arm a timer to check. It should only
731 * fire when there's activity or once after we've entered
732 * RC6, and then won't be re-armed until the next RPS interrupt.
733 */
734 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
735 msecs_to_jiffies(100));
736 }
737
738 mutex_unlock(&dev_priv->rps.hw_lock);
739 }
740
741
742 /**
743 * ivybridge_parity_work - Workqueue called when a parity error interrupt
744 * occurred.
745 * @work: workqueue struct
746 *
747 * Doesn't actually do anything except notify userspace. As a consequence of
748 * this event, userspace should try to remap the bad rows since statistically
749 * it is likely the same row is more likely to go bad again.
750 */
751 static void ivybridge_parity_work(struct work_struct *work)
752 {
753 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
754 l3_parity.error_work);
755 u32 error_status, row, bank, subbank;
756 char *parity_event[5];
757 uint32_t misccpctl;
758 unsigned long flags;
759
760 /* We must turn off DOP level clock gating to access the L3 registers.
761 * In order to prevent a get/put style interface, acquire struct mutex
762 * any time we access those registers.
763 */
764 mutex_lock(&dev_priv->dev->struct_mutex);
765
766 misccpctl = I915_READ(GEN7_MISCCPCTL);
767 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
768 POSTING_READ(GEN7_MISCCPCTL);
769
770 error_status = I915_READ(GEN7_L3CDERRST1);
771 row = GEN7_PARITY_ERROR_ROW(error_status);
772 bank = GEN7_PARITY_ERROR_BANK(error_status);
773 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
774
775 I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
776 GEN7_L3CDERRST1_ENABLE);
777 POSTING_READ(GEN7_L3CDERRST1);
778
779 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
780
781 spin_lock_irqsave(&dev_priv->irq_lock, flags);
782 dev_priv->gt_irq_mask &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
783 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
784 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
785
786 mutex_unlock(&dev_priv->dev->struct_mutex);
787
788 parity_event[0] = "L3_PARITY_ERROR=1";
789 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
790 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
791 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
792 parity_event[4] = NULL;
793
794 kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
795 KOBJ_CHANGE, parity_event);
796
797 DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
798 row, bank, subbank);
799
800 kfree(parity_event[3]);
801 kfree(parity_event[2]);
802 kfree(parity_event[1]);
803 }
804
805 static void ivybridge_handle_parity_error(struct drm_device *dev)
806 {
807 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
808 unsigned long flags;
809
810 if (!HAS_L3_GPU_CACHE(dev))
811 return;
812
813 spin_lock_irqsave(&dev_priv->irq_lock, flags);
814 dev_priv->gt_irq_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
815 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
816 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
817
818 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
819 }
820
821 static void snb_gt_irq_handler(struct drm_device *dev,
822 struct drm_i915_private *dev_priv,
823 u32 gt_iir)
824 {
825
826 if (gt_iir &
827 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
828 notify_ring(dev, &dev_priv->ring[RCS]);
829 if (gt_iir & GT_BSD_USER_INTERRUPT)
830 notify_ring(dev, &dev_priv->ring[VCS]);
831 if (gt_iir & GT_BLT_USER_INTERRUPT)
832 notify_ring(dev, &dev_priv->ring[BCS]);
833
834 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
835 GT_BSD_CS_ERROR_INTERRUPT |
836 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
837 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
838 i915_handle_error(dev, false);
839 }
840
841 if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
842 ivybridge_handle_parity_error(dev);
843 }
844
845 /* Legacy way of handling PM interrupts */
846 static void gen6_queue_rps_work(struct drm_i915_private *dev_priv,
847 u32 pm_iir)
848 {
849 unsigned long flags;
850
851 /*
852 * IIR bits should never already be set because IMR should
853 * prevent an interrupt from being shown in IIR. The warning
854 * displays a case where we've unsafely cleared
855 * dev_priv->rps.pm_iir. Although missing an interrupt of the same
856 * type is not a problem, it displays a problem in the logic.
857 *
858 * The mask bit in IMR is cleared by dev_priv->rps.work.
859 */
860
861 spin_lock_irqsave(&dev_priv->rps.lock, flags);
862 dev_priv->rps.pm_iir |= pm_iir;
863 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
864 POSTING_READ(GEN6_PMIMR);
865 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
866
867 queue_work(dev_priv->wq, &dev_priv->rps.work);
868 }
869
870 #define HPD_STORM_DETECT_PERIOD 1000
871 #define HPD_STORM_THRESHOLD 5
872
873 static inline bool hotplug_irq_storm_detect(struct drm_device *dev,
874 u32 hotplug_trigger,
875 const u32 *hpd)
876 {
877 drm_i915_private_t *dev_priv = dev->dev_private;
878 unsigned long irqflags;
879 int i;
880 bool ret = false;
881
882 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
883
884 for (i = 1; i < HPD_NUM_PINS; i++) {
885
886 if (!(hpd[i] & hotplug_trigger) ||
887 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
888 continue;
889
890 dev_priv->hpd_event_bits |= (1 << i);
891 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
892 dev_priv->hpd_stats[i].hpd_last_jiffies
893 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
894 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
895 dev_priv->hpd_stats[i].hpd_cnt = 0;
896 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
897 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
898 dev_priv->hpd_event_bits &= ~(1 << i);
899 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
900 ret = true;
901 } else {
902 dev_priv->hpd_stats[i].hpd_cnt++;
903 }
904 }
905
906 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
907
908 return ret;
909 }
910
911 static void gmbus_irq_handler(struct drm_device *dev)
912 {
913 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
914
915 wake_up_all(&dev_priv->gmbus_wait_queue);
916 }
917
918 static void dp_aux_irq_handler(struct drm_device *dev)
919 {
920 struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
921
922 wake_up_all(&dev_priv->gmbus_wait_queue);
923 }
924
925 /* Unlike gen6_queue_rps_work() from which this function is originally derived,
926 * we must be able to deal with other PM interrupts. This is complicated because
927 * of the way in which we use the masks to defer the RPS work (which for
928 * posterity is necessary because of forcewake).
929 */
930 static void hsw_pm_irq_handler(struct drm_i915_private *dev_priv,
931 u32 pm_iir)
932 {
933 unsigned long flags;
934
935 spin_lock_irqsave(&dev_priv->rps.lock, flags);
936 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
937 if (dev_priv->rps.pm_iir) {
938 I915_WRITE(GEN6_PMIMR, dev_priv->rps.pm_iir);
939 /* never want to mask useful interrupts. (also posting read) */
940 WARN_ON(I915_READ_NOTRACE(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
941 /* TODO: if queue_work is slow, move it out of the spinlock */
942 queue_work(dev_priv->wq, &dev_priv->rps.work);
943 }
944 spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
945
946 if (pm_iir & ~GEN6_PM_RPS_EVENTS) {
947 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
948 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
949
950 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
951 DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
952 i915_handle_error(dev_priv->dev, false);
953 }
954 }
955 }
956
957 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
958 {
959 struct drm_device *dev = (struct drm_device *) arg;
960 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
961 u32 iir, gt_iir, pm_iir;
962 irqreturn_t ret = IRQ_NONE;
963 unsigned long irqflags;
964 int pipe;
965 u32 pipe_stats[I915_MAX_PIPES];
966
967 atomic_inc(&dev_priv->irq_received);
968
969 while (true) {
970 iir = I915_READ(VLV_IIR);
971 gt_iir = I915_READ(GTIIR);
972 pm_iir = I915_READ(GEN6_PMIIR);
973
974 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
975 goto out;
976
977 ret = IRQ_HANDLED;
978
979 snb_gt_irq_handler(dev, dev_priv, gt_iir);
980
981 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
982 for_each_pipe(pipe) {
983 int reg = PIPESTAT(pipe);
984 pipe_stats[pipe] = I915_READ(reg);
985
986 /*
987 * Clear the PIPE*STAT regs before the IIR
988 */
989 if (pipe_stats[pipe] & 0x8000ffff) {
990 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
991 DRM_DEBUG_DRIVER("pipe %c underrun\n",
992 pipe_name(pipe));
993 I915_WRITE(reg, pipe_stats[pipe]);
994 }
995 }
996 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
997
998 for_each_pipe(pipe) {
999 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1000 drm_handle_vblank(dev, pipe);
1001
1002 if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1003 intel_prepare_page_flip(dev, pipe);
1004 intel_finish_page_flip(dev, pipe);
1005 }
1006 }
1007
1008 /* Consume port. Then clear IIR or we'll miss events */
1009 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1010 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1011 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1012
1013 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1014 hotplug_status);
1015 if (hotplug_trigger) {
1016 if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_status_i915))
1017 i915_hpd_irq_setup(dev);
1018 queue_work(dev_priv->wq,
1019 &dev_priv->hotplug_work);
1020 }
1021 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1022 I915_READ(PORT_HOTPLUG_STAT);
1023 }
1024
1025 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1026 gmbus_irq_handler(dev);
1027
1028 if (pm_iir & GEN6_PM_RPS_EVENTS)
1029 gen6_queue_rps_work(dev_priv, pm_iir);
1030
1031 I915_WRITE(GTIIR, gt_iir);
1032 I915_WRITE(GEN6_PMIIR, pm_iir);
1033 I915_WRITE(VLV_IIR, iir);
1034 }
1035
1036 out:
1037 return ret;
1038 }
1039
1040 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1041 {
1042 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1043 int pipe;
1044 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1045
1046 if (hotplug_trigger) {
1047 if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_ibx))
1048 ibx_hpd_irq_setup(dev);
1049 queue_work(dev_priv->wq, &dev_priv->hotplug_work);
1050 }
1051 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1052 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1053 SDE_AUDIO_POWER_SHIFT);
1054 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1055 port_name(port));
1056 }
1057
1058 if (pch_iir & SDE_AUX_MASK)
1059 dp_aux_irq_handler(dev);
1060
1061 if (pch_iir & SDE_GMBUS)
1062 gmbus_irq_handler(dev);
1063
1064 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1065 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1066
1067 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1068 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1069
1070 if (pch_iir & SDE_POISON)
1071 DRM_ERROR("PCH poison interrupt\n");
1072
1073 if (pch_iir & SDE_FDI_MASK)
1074 for_each_pipe(pipe)
1075 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1076 pipe_name(pipe),
1077 I915_READ(FDI_RX_IIR(pipe)));
1078
1079 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1080 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1081
1082 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1083 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1084
1085 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1086 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1087 false))
1088 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1089
1090 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1091 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1092 false))
1093 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1094 }
1095
1096 static void ivb_err_int_handler(struct drm_device *dev)
1097 {
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 u32 err_int = I915_READ(GEN7_ERR_INT);
1100
1101 if (err_int & ERR_INT_POISON)
1102 DRM_ERROR("Poison interrupt\n");
1103
1104 if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1105 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1106 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1107
1108 if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1109 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1110 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1111
1112 if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1113 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1114 DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1115
1116 I915_WRITE(GEN7_ERR_INT, err_int);
1117 }
1118
1119 static void cpt_serr_int_handler(struct drm_device *dev)
1120 {
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122 u32 serr_int = I915_READ(SERR_INT);
1123
1124 if (serr_int & SERR_INT_POISON)
1125 DRM_ERROR("PCH poison interrupt\n");
1126
1127 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1128 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1129 false))
1130 DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1131
1132 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1133 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1134 false))
1135 DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1136
1137 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1138 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1139 false))
1140 DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1141
1142 I915_WRITE(SERR_INT, serr_int);
1143 }
1144
1145 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1146 {
1147 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1148 int pipe;
1149 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1150
1151 if (hotplug_trigger) {
1152 if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_cpt))
1153 ibx_hpd_irq_setup(dev);
1154 queue_work(dev_priv->wq, &dev_priv->hotplug_work);
1155 }
1156 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1157 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1158 SDE_AUDIO_POWER_SHIFT_CPT);
1159 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1160 port_name(port));
1161 }
1162
1163 if (pch_iir & SDE_AUX_MASK_CPT)
1164 dp_aux_irq_handler(dev);
1165
1166 if (pch_iir & SDE_GMBUS_CPT)
1167 gmbus_irq_handler(dev);
1168
1169 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1170 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1171
1172 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1173 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1174
1175 if (pch_iir & SDE_FDI_MASK_CPT)
1176 for_each_pipe(pipe)
1177 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1178 pipe_name(pipe),
1179 I915_READ(FDI_RX_IIR(pipe)));
1180
1181 if (pch_iir & SDE_ERROR_CPT)
1182 cpt_serr_int_handler(dev);
1183 }
1184
1185 static irqreturn_t ivybridge_irq_handler(int irq, void *arg)
1186 {
1187 struct drm_device *dev = (struct drm_device *) arg;
1188 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1189 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier = 0;
1190 irqreturn_t ret = IRQ_NONE;
1191 int i;
1192
1193 atomic_inc(&dev_priv->irq_received);
1194
1195 /* We get interrupts on unclaimed registers, so check for this before we
1196 * do any I915_{READ,WRITE}. */
1197 if (IS_HASWELL(dev) &&
1198 (I915_READ_NOTRACE(FPGA_DBG) & FPGA_DBG_RM_NOCLAIM)) {
1199 DRM_ERROR("Unclaimed register before interrupt\n");
1200 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
1201 }
1202
1203 /* disable master interrupt before clearing iir */
1204 de_ier = I915_READ(DEIER);
1205 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1206
1207 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1208 * interrupts will will be stored on its back queue, and then we'll be
1209 * able to process them after we restore SDEIER (as soon as we restore
1210 * it, we'll get an interrupt if SDEIIR still has something to process
1211 * due to its back queue). */
1212 if (!HAS_PCH_NOP(dev)) {
1213 sde_ier = I915_READ(SDEIER);
1214 I915_WRITE(SDEIER, 0);
1215 POSTING_READ(SDEIER);
1216 }
1217
1218 /* On Haswell, also mask ERR_INT because we don't want to risk
1219 * generating "unclaimed register" interrupts from inside the interrupt
1220 * handler. */
1221 if (IS_HASWELL(dev))
1222 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1223
1224 gt_iir = I915_READ(GTIIR);
1225 if (gt_iir) {
1226 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1227 I915_WRITE(GTIIR, gt_iir);
1228 ret = IRQ_HANDLED;
1229 }
1230
1231 de_iir = I915_READ(DEIIR);
1232 if (de_iir) {
1233 if (de_iir & DE_ERR_INT_IVB)
1234 ivb_err_int_handler(dev);
1235
1236 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1237 dp_aux_irq_handler(dev);
1238
1239 if (de_iir & DE_GSE_IVB)
1240 intel_opregion_asle_intr(dev);
1241
1242 for (i = 0; i < 3; i++) {
1243 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1244 drm_handle_vblank(dev, i);
1245 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1246 intel_prepare_page_flip(dev, i);
1247 intel_finish_page_flip_plane(dev, i);
1248 }
1249 }
1250
1251 /* check event from PCH */
1252 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1253 u32 pch_iir = I915_READ(SDEIIR);
1254
1255 cpt_irq_handler(dev, pch_iir);
1256
1257 /* clear PCH hotplug event before clear CPU irq */
1258 I915_WRITE(SDEIIR, pch_iir);
1259 }
1260
1261 I915_WRITE(DEIIR, de_iir);
1262 ret = IRQ_HANDLED;
1263 }
1264
1265 pm_iir = I915_READ(GEN6_PMIIR);
1266 if (pm_iir) {
1267 if (IS_HASWELL(dev))
1268 hsw_pm_irq_handler(dev_priv, pm_iir);
1269 else if (pm_iir & GEN6_PM_RPS_EVENTS)
1270 gen6_queue_rps_work(dev_priv, pm_iir);
1271 I915_WRITE(GEN6_PMIIR, pm_iir);
1272 ret = IRQ_HANDLED;
1273 }
1274
1275 if (IS_HASWELL(dev) && ivb_can_enable_err_int(dev))
1276 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1277
1278 I915_WRITE(DEIER, de_ier);
1279 POSTING_READ(DEIER);
1280 if (!HAS_PCH_NOP(dev)) {
1281 I915_WRITE(SDEIER, sde_ier);
1282 POSTING_READ(SDEIER);
1283 }
1284
1285 return ret;
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(dev, &dev_priv->ring[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(dev, &dev_priv->ring[VCS]);
1297 }
1298
1299 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1300 {
1301 struct drm_device *dev = (struct drm_device *) arg;
1302 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1303 int ret = IRQ_NONE;
1304 u32 de_iir, gt_iir, de_ier, pm_iir, sde_ier;
1305
1306 atomic_inc(&dev_priv->irq_received);
1307
1308 /* disable master interrupt before clearing iir */
1309 de_ier = I915_READ(DEIER);
1310 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1311 POSTING_READ(DEIER);
1312
1313 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1314 * interrupts will will be stored on its back queue, and then we'll be
1315 * able to process them after we restore SDEIER (as soon as we restore
1316 * it, we'll get an interrupt if SDEIIR still has something to process
1317 * due to its back queue). */
1318 sde_ier = I915_READ(SDEIER);
1319 I915_WRITE(SDEIER, 0);
1320 POSTING_READ(SDEIER);
1321
1322 de_iir = I915_READ(DEIIR);
1323 gt_iir = I915_READ(GTIIR);
1324 pm_iir = I915_READ(GEN6_PMIIR);
1325
1326 if (de_iir == 0 && gt_iir == 0 && (!IS_GEN6(dev) || pm_iir == 0))
1327 goto done;
1328
1329 ret = IRQ_HANDLED;
1330
1331 if (IS_GEN5(dev))
1332 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1333 else
1334 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1335
1336 if (de_iir & DE_AUX_CHANNEL_A)
1337 dp_aux_irq_handler(dev);
1338
1339 if (de_iir & DE_GSE)
1340 intel_opregion_asle_intr(dev);
1341
1342 if (de_iir & DE_PIPEA_VBLANK)
1343 drm_handle_vblank(dev, 0);
1344
1345 if (de_iir & DE_PIPEB_VBLANK)
1346 drm_handle_vblank(dev, 1);
1347
1348 if (de_iir & DE_POISON)
1349 DRM_ERROR("Poison interrupt\n");
1350
1351 if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1352 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1353 DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1354
1355 if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1356 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1357 DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1358
1359 if (de_iir & DE_PLANEA_FLIP_DONE) {
1360 intel_prepare_page_flip(dev, 0);
1361 intel_finish_page_flip_plane(dev, 0);
1362 }
1363
1364 if (de_iir & DE_PLANEB_FLIP_DONE) {
1365 intel_prepare_page_flip(dev, 1);
1366 intel_finish_page_flip_plane(dev, 1);
1367 }
1368
1369 /* check event from PCH */
1370 if (de_iir & DE_PCH_EVENT) {
1371 u32 pch_iir = I915_READ(SDEIIR);
1372
1373 if (HAS_PCH_CPT(dev))
1374 cpt_irq_handler(dev, pch_iir);
1375 else
1376 ibx_irq_handler(dev, pch_iir);
1377
1378 /* should clear PCH hotplug event before clear CPU irq */
1379 I915_WRITE(SDEIIR, pch_iir);
1380 }
1381
1382 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1383 ironlake_handle_rps_change(dev);
1384
1385 if (IS_GEN6(dev) && pm_iir & GEN6_PM_RPS_EVENTS)
1386 gen6_queue_rps_work(dev_priv, pm_iir);
1387
1388 I915_WRITE(GTIIR, gt_iir);
1389 I915_WRITE(DEIIR, de_iir);
1390 I915_WRITE(GEN6_PMIIR, pm_iir);
1391
1392 done:
1393 I915_WRITE(DEIER, de_ier);
1394 POSTING_READ(DEIER);
1395 I915_WRITE(SDEIER, sde_ier);
1396 POSTING_READ(SDEIER);
1397
1398 return ret;
1399 }
1400
1401 /**
1402 * i915_error_work_func - do process context error handling work
1403 * @work: work struct
1404 *
1405 * Fire an error uevent so userspace can see that a hang or error
1406 * was detected.
1407 */
1408 static void i915_error_work_func(struct work_struct *work)
1409 {
1410 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1411 work);
1412 drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1413 gpu_error);
1414 struct drm_device *dev = dev_priv->dev;
1415 struct intel_ring_buffer *ring;
1416 char *error_event[] = { "ERROR=1", NULL };
1417 char *reset_event[] = { "RESET=1", NULL };
1418 char *reset_done_event[] = { "ERROR=0", NULL };
1419 int i, ret;
1420
1421 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1422
1423 /*
1424 * Note that there's only one work item which does gpu resets, so we
1425 * need not worry about concurrent gpu resets potentially incrementing
1426 * error->reset_counter twice. We only need to take care of another
1427 * racing irq/hangcheck declaring the gpu dead for a second time. A
1428 * quick check for that is good enough: schedule_work ensures the
1429 * correct ordering between hang detection and this work item, and since
1430 * the reset in-progress bit is only ever set by code outside of this
1431 * work we don't need to worry about any other races.
1432 */
1433 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1434 DRM_DEBUG_DRIVER("resetting chip\n");
1435 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1436 reset_event);
1437
1438 ret = i915_reset(dev);
1439
1440 if (ret == 0) {
1441 /*
1442 * After all the gem state is reset, increment the reset
1443 * counter and wake up everyone waiting for the reset to
1444 * complete.
1445 *
1446 * Since unlock operations are a one-sided barrier only,
1447 * we need to insert a barrier here to order any seqno
1448 * updates before
1449 * the counter increment.
1450 */
1451 smp_mb__before_atomic_inc();
1452 atomic_inc(&dev_priv->gpu_error.reset_counter);
1453
1454 kobject_uevent_env(&dev->primary->kdev.kobj,
1455 KOBJ_CHANGE, reset_done_event);
1456 } else {
1457 atomic_set(&error->reset_counter, I915_WEDGED);
1458 }
1459
1460 for_each_ring(ring, dev_priv, i)
1461 wake_up_all(&ring->irq_queue);
1462
1463 intel_display_handle_reset(dev);
1464
1465 wake_up_all(&dev_priv->gpu_error.reset_queue);
1466 }
1467 }
1468
1469 /* NB: please notice the memset */
1470 static void i915_get_extra_instdone(struct drm_device *dev,
1471 uint32_t *instdone)
1472 {
1473 struct drm_i915_private *dev_priv = dev->dev_private;
1474 memset(instdone, 0, sizeof(*instdone) * I915_NUM_INSTDONE_REG);
1475
1476 switch(INTEL_INFO(dev)->gen) {
1477 case 2:
1478 case 3:
1479 instdone[0] = I915_READ(INSTDONE);
1480 break;
1481 case 4:
1482 case 5:
1483 case 6:
1484 instdone[0] = I915_READ(INSTDONE_I965);
1485 instdone[1] = I915_READ(INSTDONE1);
1486 break;
1487 default:
1488 WARN_ONCE(1, "Unsupported platform\n");
1489 case 7:
1490 instdone[0] = I915_READ(GEN7_INSTDONE_1);
1491 instdone[1] = I915_READ(GEN7_SC_INSTDONE);
1492 instdone[2] = I915_READ(GEN7_SAMPLER_INSTDONE);
1493 instdone[3] = I915_READ(GEN7_ROW_INSTDONE);
1494 break;
1495 }
1496 }
1497
1498 #ifdef CONFIG_DEBUG_FS
1499 static struct drm_i915_error_object *
1500 i915_error_object_create_sized(struct drm_i915_private *dev_priv,
1501 struct drm_i915_gem_object *src,
1502 const int num_pages)
1503 {
1504 struct drm_i915_error_object *dst;
1505 int i;
1506 u32 reloc_offset;
1507
1508 if (src == NULL || src->pages == NULL)
1509 return NULL;
1510
1511 dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), GFP_ATOMIC);
1512 if (dst == NULL)
1513 return NULL;
1514
1515 reloc_offset = src->gtt_offset;
1516 for (i = 0; i < num_pages; i++) {
1517 unsigned long flags;
1518 void *d;
1519
1520 d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
1521 if (d == NULL)
1522 goto unwind;
1523
1524 local_irq_save(flags);
1525 if (reloc_offset < dev_priv->gtt.mappable_end &&
1526 src->has_global_gtt_mapping) {
1527 void __iomem *s;
1528
1529 /* Simply ignore tiling or any overlapping fence.
1530 * It's part of the error state, and this hopefully
1531 * captures what the GPU read.
1532 */
1533
1534 s = io_mapping_map_atomic_wc(dev_priv->gtt.mappable,
1535 reloc_offset);
1536 memcpy_fromio(d, s, PAGE_SIZE);
1537 io_mapping_unmap_atomic(s);
1538 } else if (src->stolen) {
1539 unsigned long offset;
1540
1541 offset = dev_priv->mm.stolen_base;
1542 offset += src->stolen->start;
1543 offset += i << PAGE_SHIFT;
1544
1545 memcpy_fromio(d, (void __iomem *) offset, PAGE_SIZE);
1546 } else {
1547 struct page *page;
1548 void *s;
1549
1550 page = i915_gem_object_get_page(src, i);
1551
1552 drm_clflush_pages(&page, 1);
1553
1554 s = kmap_atomic(page);
1555 memcpy(d, s, PAGE_SIZE);
1556 kunmap_atomic(s);
1557
1558 drm_clflush_pages(&page, 1);
1559 }
1560 local_irq_restore(flags);
1561
1562 dst->pages[i] = d;
1563
1564 reloc_offset += PAGE_SIZE;
1565 }
1566 dst->page_count = num_pages;
1567 dst->gtt_offset = src->gtt_offset;
1568
1569 return dst;
1570
1571 unwind:
1572 while (i--)
1573 kfree(dst->pages[i]);
1574 kfree(dst);
1575 return NULL;
1576 }
1577 #define i915_error_object_create(dev_priv, src) \
1578 i915_error_object_create_sized((dev_priv), (src), \
1579 (src)->base.size>>PAGE_SHIFT)
1580
1581 static void
1582 i915_error_object_free(struct drm_i915_error_object *obj)
1583 {
1584 int page;
1585
1586 if (obj == NULL)
1587 return;
1588
1589 for (page = 0; page < obj->page_count; page++)
1590 kfree(obj->pages[page]);
1591
1592 kfree(obj);
1593 }
1594
1595 void
1596 i915_error_state_free(struct kref *error_ref)
1597 {
1598 struct drm_i915_error_state *error = container_of(error_ref,
1599 typeof(*error), ref);
1600 int i;
1601
1602 for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
1603 i915_error_object_free(error->ring[i].batchbuffer);
1604 i915_error_object_free(error->ring[i].ringbuffer);
1605 i915_error_object_free(error->ring[i].ctx);
1606 kfree(error->ring[i].requests);
1607 }
1608
1609 kfree(error->active_bo);
1610 kfree(error->overlay);
1611 kfree(error->display);
1612 kfree(error);
1613 }
1614 static void capture_bo(struct drm_i915_error_buffer *err,
1615 struct drm_i915_gem_object *obj)
1616 {
1617 err->size = obj->base.size;
1618 err->name = obj->base.name;
1619 err->rseqno = obj->last_read_seqno;
1620 err->wseqno = obj->last_write_seqno;
1621 err->gtt_offset = obj->gtt_offset;
1622 err->read_domains = obj->base.read_domains;
1623 err->write_domain = obj->base.write_domain;
1624 err->fence_reg = obj->fence_reg;
1625 err->pinned = 0;
1626 if (obj->pin_count > 0)
1627 err->pinned = 1;
1628 if (obj->user_pin_count > 0)
1629 err->pinned = -1;
1630 err->tiling = obj->tiling_mode;
1631 err->dirty = obj->dirty;
1632 err->purgeable = obj->madv != I915_MADV_WILLNEED;
1633 err->ring = obj->ring ? obj->ring->id : -1;
1634 err->cache_level = obj->cache_level;
1635 }
1636
1637 static u32 capture_active_bo(struct drm_i915_error_buffer *err,
1638 int count, struct list_head *head)
1639 {
1640 struct drm_i915_gem_object *obj;
1641 int i = 0;
1642
1643 list_for_each_entry(obj, head, mm_list) {
1644 capture_bo(err++, obj);
1645 if (++i == count)
1646 break;
1647 }
1648
1649 return i;
1650 }
1651
1652 static u32 capture_pinned_bo(struct drm_i915_error_buffer *err,
1653 int count, struct list_head *head)
1654 {
1655 struct drm_i915_gem_object *obj;
1656 int i = 0;
1657
1658 list_for_each_entry(obj, head, global_list) {
1659 if (obj->pin_count == 0)
1660 continue;
1661
1662 capture_bo(err++, obj);
1663 if (++i == count)
1664 break;
1665 }
1666
1667 return i;
1668 }
1669
1670 static void i915_gem_record_fences(struct drm_device *dev,
1671 struct drm_i915_error_state *error)
1672 {
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 int i;
1675
1676 /* Fences */
1677 switch (INTEL_INFO(dev)->gen) {
1678 case 7:
1679 case 6:
1680 for (i = 0; i < dev_priv->num_fence_regs; i++)
1681 error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
1682 break;
1683 case 5:
1684 case 4:
1685 for (i = 0; i < 16; i++)
1686 error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
1687 break;
1688 case 3:
1689 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
1690 for (i = 0; i < 8; i++)
1691 error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
1692 case 2:
1693 for (i = 0; i < 8; i++)
1694 error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
1695 break;
1696
1697 default:
1698 BUG();
1699 }
1700 }
1701
1702 static struct drm_i915_error_object *
1703 i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
1704 struct intel_ring_buffer *ring)
1705 {
1706 struct drm_i915_gem_object *obj;
1707 u32 seqno;
1708
1709 if (!ring->get_seqno)
1710 return NULL;
1711
1712 if (HAS_BROKEN_CS_TLB(dev_priv->dev)) {
1713 u32 acthd = I915_READ(ACTHD);
1714
1715 if (WARN_ON(ring->id != RCS))
1716 return NULL;
1717
1718 obj = ring->private;
1719 if (acthd >= obj->gtt_offset &&
1720 acthd < obj->gtt_offset + obj->base.size)
1721 return i915_error_object_create(dev_priv, obj);
1722 }
1723
1724 seqno = ring->get_seqno(ring, false);
1725 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
1726 if (obj->ring != ring)
1727 continue;
1728
1729 if (i915_seqno_passed(seqno, obj->last_read_seqno))
1730 continue;
1731
1732 if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
1733 continue;
1734
1735 /* We need to copy these to an anonymous buffer as the simplest
1736 * method to avoid being overwritten by userspace.
1737 */
1738 return i915_error_object_create(dev_priv, obj);
1739 }
1740
1741 return NULL;
1742 }
1743
1744 static void i915_record_ring_state(struct drm_device *dev,
1745 struct drm_i915_error_state *error,
1746 struct intel_ring_buffer *ring)
1747 {
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749
1750 if (INTEL_INFO(dev)->gen >= 6) {
1751 error->rc_psmi[ring->id] = I915_READ(ring->mmio_base + 0x50);
1752 error->fault_reg[ring->id] = I915_READ(RING_FAULT_REG(ring));
1753 error->semaphore_mboxes[ring->id][0]
1754 = I915_READ(RING_SYNC_0(ring->mmio_base));
1755 error->semaphore_mboxes[ring->id][1]
1756 = I915_READ(RING_SYNC_1(ring->mmio_base));
1757 error->semaphore_seqno[ring->id][0] = ring->sync_seqno[0];
1758 error->semaphore_seqno[ring->id][1] = ring->sync_seqno[1];
1759 }
1760
1761 if (INTEL_INFO(dev)->gen >= 4) {
1762 error->faddr[ring->id] = I915_READ(RING_DMA_FADD(ring->mmio_base));
1763 error->ipeir[ring->id] = I915_READ(RING_IPEIR(ring->mmio_base));
1764 error->ipehr[ring->id] = I915_READ(RING_IPEHR(ring->mmio_base));
1765 error->instdone[ring->id] = I915_READ(RING_INSTDONE(ring->mmio_base));
1766 error->instps[ring->id] = I915_READ(RING_INSTPS(ring->mmio_base));
1767 if (ring->id == RCS)
1768 error->bbaddr = I915_READ64(BB_ADDR);
1769 } else {
1770 error->faddr[ring->id] = I915_READ(DMA_FADD_I8XX);
1771 error->ipeir[ring->id] = I915_READ(IPEIR);
1772 error->ipehr[ring->id] = I915_READ(IPEHR);
1773 error->instdone[ring->id] = I915_READ(INSTDONE);
1774 }
1775
1776 error->waiting[ring->id] = waitqueue_active(&ring->irq_queue);
1777 error->instpm[ring->id] = I915_READ(RING_INSTPM(ring->mmio_base));
1778 error->seqno[ring->id] = ring->get_seqno(ring, false);
1779 error->acthd[ring->id] = intel_ring_get_active_head(ring);
1780 error->head[ring->id] = I915_READ_HEAD(ring);
1781 error->tail[ring->id] = I915_READ_TAIL(ring);
1782 error->ctl[ring->id] = I915_READ_CTL(ring);
1783
1784 error->cpu_ring_head[ring->id] = ring->head;
1785 error->cpu_ring_tail[ring->id] = ring->tail;
1786 }
1787
1788
1789 static void i915_gem_record_active_context(struct intel_ring_buffer *ring,
1790 struct drm_i915_error_state *error,
1791 struct drm_i915_error_ring *ering)
1792 {
1793 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1794 struct drm_i915_gem_object *obj;
1795
1796 /* Currently render ring is the only HW context user */
1797 if (ring->id != RCS || !error->ccid)
1798 return;
1799
1800 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1801 if ((error->ccid & PAGE_MASK) == obj->gtt_offset) {
1802 ering->ctx = i915_error_object_create_sized(dev_priv,
1803 obj, 1);
1804 }
1805 }
1806 }
1807
1808 static void i915_gem_record_rings(struct drm_device *dev,
1809 struct drm_i915_error_state *error)
1810 {
1811 struct drm_i915_private *dev_priv = dev->dev_private;
1812 struct intel_ring_buffer *ring;
1813 struct drm_i915_gem_request *request;
1814 int i, count;
1815
1816 for_each_ring(ring, dev_priv, i) {
1817 i915_record_ring_state(dev, error, ring);
1818
1819 error->ring[i].batchbuffer =
1820 i915_error_first_batchbuffer(dev_priv, ring);
1821
1822 error->ring[i].ringbuffer =
1823 i915_error_object_create(dev_priv, ring->obj);
1824
1825
1826 i915_gem_record_active_context(ring, error, &error->ring[i]);
1827
1828 count = 0;
1829 list_for_each_entry(request, &ring->request_list, list)
1830 count++;
1831
1832 error->ring[i].num_requests = count;
1833 error->ring[i].requests =
1834 kmalloc(count*sizeof(struct drm_i915_error_request),
1835 GFP_ATOMIC);
1836 if (error->ring[i].requests == NULL) {
1837 error->ring[i].num_requests = 0;
1838 continue;
1839 }
1840
1841 count = 0;
1842 list_for_each_entry(request, &ring->request_list, list) {
1843 struct drm_i915_error_request *erq;
1844
1845 erq = &error->ring[i].requests[count++];
1846 erq->seqno = request->seqno;
1847 erq->jiffies = request->emitted_jiffies;
1848 erq->tail = request->tail;
1849 }
1850 }
1851 }
1852
1853 /**
1854 * i915_capture_error_state - capture an error record for later analysis
1855 * @dev: drm device
1856 *
1857 * Should be called when an error is detected (either a hang or an error
1858 * interrupt) to capture error state from the time of the error. Fills
1859 * out a structure which becomes available in debugfs for user level tools
1860 * to pick up.
1861 */
1862 static void i915_capture_error_state(struct drm_device *dev)
1863 {
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 struct drm_i915_gem_object *obj;
1866 struct drm_i915_error_state *error;
1867 unsigned long flags;
1868 int i, pipe;
1869
1870 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1871 error = dev_priv->gpu_error.first_error;
1872 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1873 if (error)
1874 return;
1875
1876 /* Account for pipe specific data like PIPE*STAT */
1877 error = kzalloc(sizeof(*error), GFP_ATOMIC);
1878 if (!error) {
1879 DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
1880 return;
1881 }
1882
1883 DRM_INFO("capturing error event; look for more information in "
1884 "/sys/kernel/debug/dri/%d/i915_error_state\n",
1885 dev->primary->index);
1886
1887 kref_init(&error->ref);
1888 error->eir = I915_READ(EIR);
1889 error->pgtbl_er = I915_READ(PGTBL_ER);
1890 if (HAS_HW_CONTEXTS(dev))
1891 error->ccid = I915_READ(CCID);
1892
1893 if (HAS_PCH_SPLIT(dev))
1894 error->ier = I915_READ(DEIER) | I915_READ(GTIER);
1895 else if (IS_VALLEYVIEW(dev))
1896 error->ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1897 else if (IS_GEN2(dev))
1898 error->ier = I915_READ16(IER);
1899 else
1900 error->ier = I915_READ(IER);
1901
1902 if (INTEL_INFO(dev)->gen >= 6)
1903 error->derrmr = I915_READ(DERRMR);
1904
1905 if (IS_VALLEYVIEW(dev))
1906 error->forcewake = I915_READ(FORCEWAKE_VLV);
1907 else if (INTEL_INFO(dev)->gen >= 7)
1908 error->forcewake = I915_READ(FORCEWAKE_MT);
1909 else if (INTEL_INFO(dev)->gen == 6)
1910 error->forcewake = I915_READ(FORCEWAKE);
1911
1912 if (!HAS_PCH_SPLIT(dev))
1913 for_each_pipe(pipe)
1914 error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
1915
1916 if (INTEL_INFO(dev)->gen >= 6) {
1917 error->error = I915_READ(ERROR_GEN6);
1918 error->done_reg = I915_READ(DONE_REG);
1919 }
1920
1921 if (INTEL_INFO(dev)->gen == 7)
1922 error->err_int = I915_READ(GEN7_ERR_INT);
1923
1924 i915_get_extra_instdone(dev, error->extra_instdone);
1925
1926 i915_gem_record_fences(dev, error);
1927 i915_gem_record_rings(dev, error);
1928
1929 /* Record buffers on the active and pinned lists. */
1930 error->active_bo = NULL;
1931 error->pinned_bo = NULL;
1932
1933 i = 0;
1934 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
1935 i++;
1936 error->active_bo_count = i;
1937 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1938 if (obj->pin_count)
1939 i++;
1940 error->pinned_bo_count = i - error->active_bo_count;
1941
1942 error->active_bo = NULL;
1943 error->pinned_bo = NULL;
1944 if (i) {
1945 error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
1946 GFP_ATOMIC);
1947 if (error->active_bo)
1948 error->pinned_bo =
1949 error->active_bo + error->active_bo_count;
1950 }
1951
1952 if (error->active_bo)
1953 error->active_bo_count =
1954 capture_active_bo(error->active_bo,
1955 error->active_bo_count,
1956 &dev_priv->mm.active_list);
1957
1958 if (error->pinned_bo)
1959 error->pinned_bo_count =
1960 capture_pinned_bo(error->pinned_bo,
1961 error->pinned_bo_count,
1962 &dev_priv->mm.bound_list);
1963
1964 do_gettimeofday(&error->time);
1965
1966 error->overlay = intel_overlay_capture_error_state(dev);
1967 error->display = intel_display_capture_error_state(dev);
1968
1969 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1970 if (dev_priv->gpu_error.first_error == NULL) {
1971 dev_priv->gpu_error.first_error = error;
1972 error = NULL;
1973 }
1974 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1975
1976 if (error)
1977 i915_error_state_free(&error->ref);
1978 }
1979
1980 void i915_destroy_error_state(struct drm_device *dev)
1981 {
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 struct drm_i915_error_state *error;
1984 unsigned long flags;
1985
1986 spin_lock_irqsave(&dev_priv->gpu_error.lock, flags);
1987 error = dev_priv->gpu_error.first_error;
1988 dev_priv->gpu_error.first_error = NULL;
1989 spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags);
1990
1991 if (error)
1992 kref_put(&error->ref, i915_error_state_free);
1993 }
1994 #else
1995 #define i915_capture_error_state(x)
1996 #endif
1997
1998 static void i915_report_and_clear_eir(struct drm_device *dev)
1999 {
2000 struct drm_i915_private *dev_priv = dev->dev_private;
2001 uint32_t instdone[I915_NUM_INSTDONE_REG];
2002 u32 eir = I915_READ(EIR);
2003 int pipe, i;
2004
2005 if (!eir)
2006 return;
2007
2008 pr_err("render error detected, EIR: 0x%08x\n", eir);
2009
2010 i915_get_extra_instdone(dev, instdone);
2011
2012 if (IS_G4X(dev)) {
2013 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2014 u32 ipeir = I915_READ(IPEIR_I965);
2015
2016 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2017 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2018 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2019 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2020 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2021 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2022 I915_WRITE(IPEIR_I965, ipeir);
2023 POSTING_READ(IPEIR_I965);
2024 }
2025 if (eir & GM45_ERROR_PAGE_TABLE) {
2026 u32 pgtbl_err = I915_READ(PGTBL_ER);
2027 pr_err("page table error\n");
2028 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2029 I915_WRITE(PGTBL_ER, pgtbl_err);
2030 POSTING_READ(PGTBL_ER);
2031 }
2032 }
2033
2034 if (!IS_GEN2(dev)) {
2035 if (eir & I915_ERROR_PAGE_TABLE) {
2036 u32 pgtbl_err = I915_READ(PGTBL_ER);
2037 pr_err("page table error\n");
2038 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2039 I915_WRITE(PGTBL_ER, pgtbl_err);
2040 POSTING_READ(PGTBL_ER);
2041 }
2042 }
2043
2044 if (eir & I915_ERROR_MEMORY_REFRESH) {
2045 pr_err("memory refresh error:\n");
2046 for_each_pipe(pipe)
2047 pr_err("pipe %c stat: 0x%08x\n",
2048 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2049 /* pipestat has already been acked */
2050 }
2051 if (eir & I915_ERROR_INSTRUCTION) {
2052 pr_err("instruction error\n");
2053 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2054 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2055 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2056 if (INTEL_INFO(dev)->gen < 4) {
2057 u32 ipeir = I915_READ(IPEIR);
2058
2059 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2060 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2061 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2062 I915_WRITE(IPEIR, ipeir);
2063 POSTING_READ(IPEIR);
2064 } else {
2065 u32 ipeir = I915_READ(IPEIR_I965);
2066
2067 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2068 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2069 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2070 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2071 I915_WRITE(IPEIR_I965, ipeir);
2072 POSTING_READ(IPEIR_I965);
2073 }
2074 }
2075
2076 I915_WRITE(EIR, eir);
2077 POSTING_READ(EIR);
2078 eir = I915_READ(EIR);
2079 if (eir) {
2080 /*
2081 * some errors might have become stuck,
2082 * mask them.
2083 */
2084 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2085 I915_WRITE(EMR, I915_READ(EMR) | eir);
2086 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2087 }
2088 }
2089
2090 /**
2091 * i915_handle_error - handle an error interrupt
2092 * @dev: drm device
2093 *
2094 * Do some basic checking of regsiter state at error interrupt time and
2095 * dump it to the syslog. Also call i915_capture_error_state() to make
2096 * sure we get a record and make it available in debugfs. Fire a uevent
2097 * so userspace knows something bad happened (should trigger collection
2098 * of a ring dump etc.).
2099 */
2100 void i915_handle_error(struct drm_device *dev, bool wedged)
2101 {
2102 struct drm_i915_private *dev_priv = dev->dev_private;
2103 struct intel_ring_buffer *ring;
2104 int i;
2105
2106 i915_capture_error_state(dev);
2107 i915_report_and_clear_eir(dev);
2108
2109 if (wedged) {
2110 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2111 &dev_priv->gpu_error.reset_counter);
2112
2113 /*
2114 * Wakeup waiting processes so that the reset work item
2115 * doesn't deadlock trying to grab various locks.
2116 */
2117 for_each_ring(ring, dev_priv, i)
2118 wake_up_all(&ring->irq_queue);
2119 }
2120
2121 queue_work(dev_priv->wq, &dev_priv->gpu_error.work);
2122 }
2123
2124 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2125 {
2126 drm_i915_private_t *dev_priv = dev->dev_private;
2127 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2129 struct drm_i915_gem_object *obj;
2130 struct intel_unpin_work *work;
2131 unsigned long flags;
2132 bool stall_detected;
2133
2134 /* Ignore early vblank irqs */
2135 if (intel_crtc == NULL)
2136 return;
2137
2138 spin_lock_irqsave(&dev->event_lock, flags);
2139 work = intel_crtc->unpin_work;
2140
2141 if (work == NULL ||
2142 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2143 !work->enable_stall_check) {
2144 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2145 spin_unlock_irqrestore(&dev->event_lock, flags);
2146 return;
2147 }
2148
2149 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2150 obj = work->pending_flip_obj;
2151 if (INTEL_INFO(dev)->gen >= 4) {
2152 int dspsurf = DSPSURF(intel_crtc->plane);
2153 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2154 obj->gtt_offset;
2155 } else {
2156 int dspaddr = DSPADDR(intel_crtc->plane);
2157 stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
2158 crtc->y * crtc->fb->pitches[0] +
2159 crtc->x * crtc->fb->bits_per_pixel/8);
2160 }
2161
2162 spin_unlock_irqrestore(&dev->event_lock, flags);
2163
2164 if (stall_detected) {
2165 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2166 intel_prepare_page_flip(dev, intel_crtc->plane);
2167 }
2168 }
2169
2170 /* Called from drm generic code, passed 'crtc' which
2171 * we use as a pipe index
2172 */
2173 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2174 {
2175 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2176 unsigned long irqflags;
2177
2178 if (!i915_pipe_enabled(dev, pipe))
2179 return -EINVAL;
2180
2181 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2182 if (INTEL_INFO(dev)->gen >= 4)
2183 i915_enable_pipestat(dev_priv, pipe,
2184 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2185 else
2186 i915_enable_pipestat(dev_priv, pipe,
2187 PIPE_VBLANK_INTERRUPT_ENABLE);
2188
2189 /* maintain vblank delivery even in deep C-states */
2190 if (dev_priv->info->gen == 3)
2191 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2192 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2193
2194 return 0;
2195 }
2196
2197 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2198 {
2199 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2200 unsigned long irqflags;
2201
2202 if (!i915_pipe_enabled(dev, pipe))
2203 return -EINVAL;
2204
2205 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2206 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
2207 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
2208 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2209
2210 return 0;
2211 }
2212
2213 static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
2214 {
2215 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2216 unsigned long irqflags;
2217
2218 if (!i915_pipe_enabled(dev, pipe))
2219 return -EINVAL;
2220
2221 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2222 ironlake_enable_display_irq(dev_priv,
2223 DE_PIPEA_VBLANK_IVB << (5 * pipe));
2224 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2225
2226 return 0;
2227 }
2228
2229 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2230 {
2231 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2232 unsigned long irqflags;
2233 u32 imr;
2234
2235 if (!i915_pipe_enabled(dev, pipe))
2236 return -EINVAL;
2237
2238 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2239 imr = I915_READ(VLV_IMR);
2240 if (pipe == 0)
2241 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2242 else
2243 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2244 I915_WRITE(VLV_IMR, imr);
2245 i915_enable_pipestat(dev_priv, pipe,
2246 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2247 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2248
2249 return 0;
2250 }
2251
2252 /* Called from drm generic code, passed 'crtc' which
2253 * we use as a pipe index
2254 */
2255 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2256 {
2257 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2258 unsigned long irqflags;
2259
2260 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2261 if (dev_priv->info->gen == 3)
2262 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2263
2264 i915_disable_pipestat(dev_priv, pipe,
2265 PIPE_VBLANK_INTERRUPT_ENABLE |
2266 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2267 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2268 }
2269
2270 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2271 {
2272 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2273 unsigned long irqflags;
2274
2275 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2276 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
2277 DE_PIPEA_VBLANK : DE_PIPEB_VBLANK);
2278 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2279 }
2280
2281 static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
2282 {
2283 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2284 unsigned long irqflags;
2285
2286 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2287 ironlake_disable_display_irq(dev_priv,
2288 DE_PIPEA_VBLANK_IVB << (pipe * 5));
2289 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2290 }
2291
2292 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2293 {
2294 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2295 unsigned long irqflags;
2296 u32 imr;
2297
2298 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2299 i915_disable_pipestat(dev_priv, pipe,
2300 PIPE_START_VBLANK_INTERRUPT_ENABLE);
2301 imr = I915_READ(VLV_IMR);
2302 if (pipe == 0)
2303 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
2304 else
2305 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2306 I915_WRITE(VLV_IMR, imr);
2307 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2308 }
2309
2310 static u32
2311 ring_last_seqno(struct intel_ring_buffer *ring)
2312 {
2313 return list_entry(ring->request_list.prev,
2314 struct drm_i915_gem_request, list)->seqno;
2315 }
2316
2317 static bool
2318 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2319 {
2320 return (list_empty(&ring->request_list) ||
2321 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2322 }
2323
2324 static struct intel_ring_buffer *
2325 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2326 {
2327 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2328 u32 cmd, ipehr, acthd, acthd_min;
2329
2330 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2331 if ((ipehr & ~(0x3 << 16)) !=
2332 (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2333 return NULL;
2334
2335 /* ACTHD is likely pointing to the dword after the actual command,
2336 * so scan backwards until we find the MBOX.
2337 */
2338 acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
2339 acthd_min = max((int)acthd - 3 * 4, 0);
2340 do {
2341 cmd = ioread32(ring->virtual_start + acthd);
2342 if (cmd == ipehr)
2343 break;
2344
2345 acthd -= 4;
2346 if (acthd < acthd_min)
2347 return NULL;
2348 } while (1);
2349
2350 *seqno = ioread32(ring->virtual_start+acthd+4)+1;
2351 return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2352 }
2353
2354 static int semaphore_passed(struct intel_ring_buffer *ring)
2355 {
2356 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2357 struct intel_ring_buffer *signaller;
2358 u32 seqno, ctl;
2359
2360 ring->hangcheck.deadlock = true;
2361
2362 signaller = semaphore_waits_for(ring, &seqno);
2363 if (signaller == NULL || signaller->hangcheck.deadlock)
2364 return -1;
2365
2366 /* cursory check for an unkickable deadlock */
2367 ctl = I915_READ_CTL(signaller);
2368 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2369 return -1;
2370
2371 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2372 }
2373
2374 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2375 {
2376 struct intel_ring_buffer *ring;
2377 int i;
2378
2379 for_each_ring(ring, dev_priv, i)
2380 ring->hangcheck.deadlock = false;
2381 }
2382
2383 static enum intel_ring_hangcheck_action
2384 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
2385 {
2386 struct drm_device *dev = ring->dev;
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 u32 tmp;
2389
2390 if (ring->hangcheck.acthd != acthd)
2391 return active;
2392
2393 if (IS_GEN2(dev))
2394 return hung;
2395
2396 /* Is the chip hanging on a WAIT_FOR_EVENT?
2397 * If so we can simply poke the RB_WAIT bit
2398 * and break the hang. This should work on
2399 * all but the second generation chipsets.
2400 */
2401 tmp = I915_READ_CTL(ring);
2402 if (tmp & RING_WAIT) {
2403 DRM_ERROR("Kicking stuck wait on %s\n",
2404 ring->name);
2405 I915_WRITE_CTL(ring, tmp);
2406 return kick;
2407 }
2408
2409 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2410 switch (semaphore_passed(ring)) {
2411 default:
2412 return hung;
2413 case 1:
2414 DRM_ERROR("Kicking stuck semaphore on %s\n",
2415 ring->name);
2416 I915_WRITE_CTL(ring, tmp);
2417 return kick;
2418 case 0:
2419 return wait;
2420 }
2421 }
2422
2423 return hung;
2424 }
2425
2426 /**
2427 * This is called when the chip hasn't reported back with completed
2428 * batchbuffers in a long time. We keep track per ring seqno progress and
2429 * if there are no progress, hangcheck score for that ring is increased.
2430 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2431 * we kick the ring. If we see no progress on three subsequent calls
2432 * we assume chip is wedged and try to fix it by resetting the chip.
2433 */
2434 void i915_hangcheck_elapsed(unsigned long data)
2435 {
2436 struct drm_device *dev = (struct drm_device *)data;
2437 drm_i915_private_t *dev_priv = dev->dev_private;
2438 struct intel_ring_buffer *ring;
2439 int i;
2440 int busy_count = 0, rings_hung = 0;
2441 bool stuck[I915_NUM_RINGS] = { 0 };
2442 #define BUSY 1
2443 #define KICK 5
2444 #define HUNG 20
2445 #define FIRE 30
2446
2447 if (!i915_enable_hangcheck)
2448 return;
2449
2450 for_each_ring(ring, dev_priv, i) {
2451 u32 seqno, acthd;
2452 bool busy = true;
2453
2454 semaphore_clear_deadlocks(dev_priv);
2455
2456 seqno = ring->get_seqno(ring, false);
2457 acthd = intel_ring_get_active_head(ring);
2458
2459 if (ring->hangcheck.seqno == seqno) {
2460 if (ring_idle(ring, seqno)) {
2461 if (waitqueue_active(&ring->irq_queue)) {
2462 /* Issue a wake-up to catch stuck h/w. */
2463 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2464 ring->name);
2465 wake_up_all(&ring->irq_queue);
2466 ring->hangcheck.score += HUNG;
2467 } else
2468 busy = false;
2469 } else {
2470 int score;
2471
2472 /* We always increment the hangcheck score
2473 * if the ring is busy and still processing
2474 * the same request, so that no single request
2475 * can run indefinitely (such as a chain of
2476 * batches). The only time we do not increment
2477 * the hangcheck score on this ring, if this
2478 * ring is in a legitimate wait for another
2479 * ring. In that case the waiting ring is a
2480 * victim and we want to be sure we catch the
2481 * right culprit. Then every time we do kick
2482 * the ring, add a small increment to the
2483 * score so that we can catch a batch that is
2484 * being repeatedly kicked and so responsible
2485 * for stalling the machine.
2486 */
2487 ring->hangcheck.action = ring_stuck(ring,
2488 acthd);
2489
2490 switch (ring->hangcheck.action) {
2491 case wait:
2492 score = 0;
2493 break;
2494 case active:
2495 score = BUSY;
2496 break;
2497 case kick:
2498 score = KICK;
2499 break;
2500 case hung:
2501 score = HUNG;
2502 stuck[i] = true;
2503 break;
2504 }
2505 ring->hangcheck.score += score;
2506 }
2507 } else {
2508 /* Gradually reduce the count so that we catch DoS
2509 * attempts across multiple batches.
2510 */
2511 if (ring->hangcheck.score > 0)
2512 ring->hangcheck.score--;
2513 }
2514
2515 ring->hangcheck.seqno = seqno;
2516 ring->hangcheck.acthd = acthd;
2517 busy_count += busy;
2518 }
2519
2520 for_each_ring(ring, dev_priv, i) {
2521 if (ring->hangcheck.score > FIRE) {
2522 DRM_ERROR("%s on %s\n",
2523 stuck[i] ? "stuck" : "no progress",
2524 ring->name);
2525 rings_hung++;
2526 }
2527 }
2528
2529 if (rings_hung)
2530 return i915_handle_error(dev, true);
2531
2532 if (busy_count)
2533 /* Reset timer case chip hangs without another request
2534 * being added */
2535 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2536 round_jiffies_up(jiffies +
2537 DRM_I915_HANGCHECK_JIFFIES));
2538 }
2539
2540 static void ibx_irq_preinstall(struct drm_device *dev)
2541 {
2542 struct drm_i915_private *dev_priv = dev->dev_private;
2543
2544 if (HAS_PCH_NOP(dev))
2545 return;
2546
2547 /* south display irq */
2548 I915_WRITE(SDEIMR, 0xffffffff);
2549 /*
2550 * SDEIER is also touched by the interrupt handler to work around missed
2551 * PCH interrupts. Hence we can't update it after the interrupt handler
2552 * is enabled - instead we unconditionally enable all PCH interrupt
2553 * sources here, but then only unmask them as needed with SDEIMR.
2554 */
2555 I915_WRITE(SDEIER, 0xffffffff);
2556 POSTING_READ(SDEIER);
2557 }
2558
2559 /* drm_dma.h hooks
2560 */
2561 static void ironlake_irq_preinstall(struct drm_device *dev)
2562 {
2563 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2564
2565 atomic_set(&dev_priv->irq_received, 0);
2566
2567 I915_WRITE(HWSTAM, 0xeffe);
2568
2569 /* XXX hotplug from PCH */
2570
2571 I915_WRITE(DEIMR, 0xffffffff);
2572 I915_WRITE(DEIER, 0x0);
2573 POSTING_READ(DEIER);
2574
2575 /* and GT */
2576 I915_WRITE(GTIMR, 0xffffffff);
2577 I915_WRITE(GTIER, 0x0);
2578 POSTING_READ(GTIER);
2579
2580 ibx_irq_preinstall(dev);
2581 }
2582
2583 static void ivybridge_irq_preinstall(struct drm_device *dev)
2584 {
2585 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2586
2587 atomic_set(&dev_priv->irq_received, 0);
2588
2589 I915_WRITE(HWSTAM, 0xeffe);
2590
2591 /* XXX hotplug from PCH */
2592
2593 I915_WRITE(DEIMR, 0xffffffff);
2594 I915_WRITE(DEIER, 0x0);
2595 POSTING_READ(DEIER);
2596
2597 /* and GT */
2598 I915_WRITE(GTIMR, 0xffffffff);
2599 I915_WRITE(GTIER, 0x0);
2600 POSTING_READ(GTIER);
2601
2602 /* Power management */
2603 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2604 I915_WRITE(GEN6_PMIER, 0x0);
2605 POSTING_READ(GEN6_PMIER);
2606
2607 ibx_irq_preinstall(dev);
2608 }
2609
2610 static void valleyview_irq_preinstall(struct drm_device *dev)
2611 {
2612 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2613 int pipe;
2614
2615 atomic_set(&dev_priv->irq_received, 0);
2616
2617 /* VLV magic */
2618 I915_WRITE(VLV_IMR, 0);
2619 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2620 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2621 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2622
2623 /* and GT */
2624 I915_WRITE(GTIIR, I915_READ(GTIIR));
2625 I915_WRITE(GTIIR, I915_READ(GTIIR));
2626 I915_WRITE(GTIMR, 0xffffffff);
2627 I915_WRITE(GTIER, 0x0);
2628 POSTING_READ(GTIER);
2629
2630 I915_WRITE(DPINVGTT, 0xff);
2631
2632 I915_WRITE(PORT_HOTPLUG_EN, 0);
2633 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2634 for_each_pipe(pipe)
2635 I915_WRITE(PIPESTAT(pipe), 0xffff);
2636 I915_WRITE(VLV_IIR, 0xffffffff);
2637 I915_WRITE(VLV_IMR, 0xffffffff);
2638 I915_WRITE(VLV_IER, 0x0);
2639 POSTING_READ(VLV_IER);
2640 }
2641
2642 static void ibx_hpd_irq_setup(struct drm_device *dev)
2643 {
2644 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2645 struct drm_mode_config *mode_config = &dev->mode_config;
2646 struct intel_encoder *intel_encoder;
2647 u32 mask = ~I915_READ(SDEIMR);
2648 u32 hotplug;
2649
2650 if (HAS_PCH_IBX(dev)) {
2651 mask &= ~SDE_HOTPLUG_MASK;
2652 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2653 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2654 mask |= hpd_ibx[intel_encoder->hpd_pin];
2655 } else {
2656 mask &= ~SDE_HOTPLUG_MASK_CPT;
2657 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2658 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2659 mask |= hpd_cpt[intel_encoder->hpd_pin];
2660 }
2661
2662 I915_WRITE(SDEIMR, ~mask);
2663
2664 /*
2665 * Enable digital hotplug on the PCH, and configure the DP short pulse
2666 * duration to 2ms (which is the minimum in the Display Port spec)
2667 *
2668 * This register is the same on all known PCH chips.
2669 */
2670 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2671 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2672 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2673 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2674 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2675 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2676 }
2677
2678 static void ibx_irq_postinstall(struct drm_device *dev)
2679 {
2680 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2681 u32 mask;
2682
2683 if (HAS_PCH_NOP(dev))
2684 return;
2685
2686 if (HAS_PCH_IBX(dev)) {
2687 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2688 SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2689 } else {
2690 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2691
2692 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2693 }
2694
2695 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2696 I915_WRITE(SDEIMR, ~mask);
2697 }
2698
2699 static int ironlake_irq_postinstall(struct drm_device *dev)
2700 {
2701 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2702 /* enable kind of interrupts always enabled */
2703 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2704 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2705 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2706 DE_PIPEA_FIFO_UNDERRUN | DE_POISON;
2707 u32 gt_irqs;
2708
2709 dev_priv->irq_mask = ~display_mask;
2710
2711 /* should always can generate irq */
2712 I915_WRITE(DEIIR, I915_READ(DEIIR));
2713 I915_WRITE(DEIMR, dev_priv->irq_mask);
2714 I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
2715 POSTING_READ(DEIER);
2716
2717 dev_priv->gt_irq_mask = ~0;
2718
2719 I915_WRITE(GTIIR, I915_READ(GTIIR));
2720 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2721
2722 gt_irqs = GT_RENDER_USER_INTERRUPT;
2723
2724 if (IS_GEN6(dev))
2725 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2726 else
2727 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2728 ILK_BSD_USER_INTERRUPT;
2729
2730 I915_WRITE(GTIER, gt_irqs);
2731 POSTING_READ(GTIER);
2732
2733 ibx_irq_postinstall(dev);
2734
2735 if (IS_IRONLAKE_M(dev)) {
2736 /* Clear & enable PCU event interrupts */
2737 I915_WRITE(DEIIR, DE_PCU_EVENT);
2738 I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
2739 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2740 }
2741
2742 return 0;
2743 }
2744
2745 static int ivybridge_irq_postinstall(struct drm_device *dev)
2746 {
2747 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2748 /* enable kind of interrupts always enabled */
2749 u32 display_mask =
2750 DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB |
2751 DE_PLANEC_FLIP_DONE_IVB |
2752 DE_PLANEB_FLIP_DONE_IVB |
2753 DE_PLANEA_FLIP_DONE_IVB |
2754 DE_AUX_CHANNEL_A_IVB |
2755 DE_ERR_INT_IVB;
2756 u32 pm_irqs = GEN6_PM_RPS_EVENTS;
2757 u32 gt_irqs;
2758
2759 dev_priv->irq_mask = ~display_mask;
2760
2761 /* should always can generate irq */
2762 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2763 I915_WRITE(DEIIR, I915_READ(DEIIR));
2764 I915_WRITE(DEIMR, dev_priv->irq_mask);
2765 I915_WRITE(DEIER,
2766 display_mask |
2767 DE_PIPEC_VBLANK_IVB |
2768 DE_PIPEB_VBLANK_IVB |
2769 DE_PIPEA_VBLANK_IVB);
2770 POSTING_READ(DEIER);
2771
2772 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2773
2774 I915_WRITE(GTIIR, I915_READ(GTIIR));
2775 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2776
2777 gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2778 GT_BLT_USER_INTERRUPT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2779 I915_WRITE(GTIER, gt_irqs);
2780 POSTING_READ(GTIER);
2781
2782 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2783 if (HAS_VEBOX(dev))
2784 pm_irqs |= PM_VEBOX_USER_INTERRUPT |
2785 PM_VEBOX_CS_ERROR_INTERRUPT;
2786
2787 /* Our enable/disable rps functions may touch these registers so
2788 * make sure to set a known state for only the non-RPS bits.
2789 * The RMW is extra paranoia since this should be called after being set
2790 * to a known state in preinstall.
2791 * */
2792 I915_WRITE(GEN6_PMIMR,
2793 (I915_READ(GEN6_PMIMR) | ~GEN6_PM_RPS_EVENTS) & ~pm_irqs);
2794 I915_WRITE(GEN6_PMIER,
2795 (I915_READ(GEN6_PMIER) & GEN6_PM_RPS_EVENTS) | pm_irqs);
2796 POSTING_READ(GEN6_PMIER);
2797
2798 ibx_irq_postinstall(dev);
2799
2800 return 0;
2801 }
2802
2803 static int valleyview_irq_postinstall(struct drm_device *dev)
2804 {
2805 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2806 u32 gt_irqs;
2807 u32 enable_mask;
2808 u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2809
2810 enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2811 enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2812 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2813 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2814 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2815
2816 /*
2817 *Leave vblank interrupts masked initially. enable/disable will
2818 * toggle them based on usage.
2819 */
2820 dev_priv->irq_mask = (~enable_mask) |
2821 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2822 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2823
2824 I915_WRITE(PORT_HOTPLUG_EN, 0);
2825 POSTING_READ(PORT_HOTPLUG_EN);
2826
2827 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2828 I915_WRITE(VLV_IER, enable_mask);
2829 I915_WRITE(VLV_IIR, 0xffffffff);
2830 I915_WRITE(PIPESTAT(0), 0xffff);
2831 I915_WRITE(PIPESTAT(1), 0xffff);
2832 POSTING_READ(VLV_IER);
2833
2834 i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2835 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2836 i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2837
2838 I915_WRITE(VLV_IIR, 0xffffffff);
2839 I915_WRITE(VLV_IIR, 0xffffffff);
2840
2841 I915_WRITE(GTIIR, I915_READ(GTIIR));
2842 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2843
2844 gt_irqs = GT_RENDER_USER_INTERRUPT | GT_BSD_USER_INTERRUPT |
2845 GT_BLT_USER_INTERRUPT;
2846 I915_WRITE(GTIER, gt_irqs);
2847 POSTING_READ(GTIER);
2848
2849 /* ack & enable invalid PTE error interrupts */
2850 #if 0 /* FIXME: add support to irq handler for checking these bits */
2851 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2852 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2853 #endif
2854
2855 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2856
2857 return 0;
2858 }
2859
2860 static void valleyview_irq_uninstall(struct drm_device *dev)
2861 {
2862 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2863 int pipe;
2864
2865 if (!dev_priv)
2866 return;
2867
2868 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2869
2870 for_each_pipe(pipe)
2871 I915_WRITE(PIPESTAT(pipe), 0xffff);
2872
2873 I915_WRITE(HWSTAM, 0xffffffff);
2874 I915_WRITE(PORT_HOTPLUG_EN, 0);
2875 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2876 for_each_pipe(pipe)
2877 I915_WRITE(PIPESTAT(pipe), 0xffff);
2878 I915_WRITE(VLV_IIR, 0xffffffff);
2879 I915_WRITE(VLV_IMR, 0xffffffff);
2880 I915_WRITE(VLV_IER, 0x0);
2881 POSTING_READ(VLV_IER);
2882 }
2883
2884 static void ironlake_irq_uninstall(struct drm_device *dev)
2885 {
2886 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2887
2888 if (!dev_priv)
2889 return;
2890
2891 del_timer_sync(&dev_priv->hotplug_reenable_timer);
2892
2893 I915_WRITE(HWSTAM, 0xffffffff);
2894
2895 I915_WRITE(DEIMR, 0xffffffff);
2896 I915_WRITE(DEIER, 0x0);
2897 I915_WRITE(DEIIR, I915_READ(DEIIR));
2898 if (IS_GEN7(dev))
2899 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2900
2901 I915_WRITE(GTIMR, 0xffffffff);
2902 I915_WRITE(GTIER, 0x0);
2903 I915_WRITE(GTIIR, I915_READ(GTIIR));
2904
2905 if (HAS_PCH_NOP(dev))
2906 return;
2907
2908 I915_WRITE(SDEIMR, 0xffffffff);
2909 I915_WRITE(SDEIER, 0x0);
2910 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2911 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2912 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2913 }
2914
2915 static void i8xx_irq_preinstall(struct drm_device * dev)
2916 {
2917 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2918 int pipe;
2919
2920 atomic_set(&dev_priv->irq_received, 0);
2921
2922 for_each_pipe(pipe)
2923 I915_WRITE(PIPESTAT(pipe), 0);
2924 I915_WRITE16(IMR, 0xffff);
2925 I915_WRITE16(IER, 0x0);
2926 POSTING_READ16(IER);
2927 }
2928
2929 static int i8xx_irq_postinstall(struct drm_device *dev)
2930 {
2931 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2932
2933 I915_WRITE16(EMR,
2934 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2935
2936 /* Unmask the interrupts that we always want on. */
2937 dev_priv->irq_mask =
2938 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2939 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2940 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2941 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2942 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2943 I915_WRITE16(IMR, dev_priv->irq_mask);
2944
2945 I915_WRITE16(IER,
2946 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2947 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2948 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2949 I915_USER_INTERRUPT);
2950 POSTING_READ16(IER);
2951
2952 return 0;
2953 }
2954
2955 /*
2956 * Returns true when a page flip has completed.
2957 */
2958 static bool i8xx_handle_vblank(struct drm_device *dev,
2959 int pipe, u16 iir)
2960 {
2961 drm_i915_private_t *dev_priv = dev->dev_private;
2962 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2963
2964 if (!drm_handle_vblank(dev, pipe))
2965 return false;
2966
2967 if ((iir & flip_pending) == 0)
2968 return false;
2969
2970 intel_prepare_page_flip(dev, pipe);
2971
2972 /* We detect FlipDone by looking for the change in PendingFlip from '1'
2973 * to '0' on the following vblank, i.e. IIR has the Pendingflip
2974 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2975 * the flip is completed (no longer pending). Since this doesn't raise
2976 * an interrupt per se, we watch for the change at vblank.
2977 */
2978 if (I915_READ16(ISR) & flip_pending)
2979 return false;
2980
2981 intel_finish_page_flip(dev, pipe);
2982
2983 return true;
2984 }
2985
2986 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2987 {
2988 struct drm_device *dev = (struct drm_device *) arg;
2989 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2990 u16 iir, new_iir;
2991 u32 pipe_stats[2];
2992 unsigned long irqflags;
2993 int irq_received;
2994 int pipe;
2995 u16 flip_mask =
2996 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2997 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2998
2999 atomic_inc(&dev_priv->irq_received);
3000
3001 iir = I915_READ16(IIR);
3002 if (iir == 0)
3003 return IRQ_NONE;
3004
3005 while (iir & ~flip_mask) {
3006 /* Can't rely on pipestat interrupt bit in iir as it might
3007 * have been cleared after the pipestat interrupt was received.
3008 * It doesn't set the bit in iir again, but it still produces
3009 * interrupts (for non-MSI).
3010 */
3011 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3012 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3013 i915_handle_error(dev, false);
3014
3015 for_each_pipe(pipe) {
3016 int reg = PIPESTAT(pipe);
3017 pipe_stats[pipe] = I915_READ(reg);
3018
3019 /*
3020 * Clear the PIPE*STAT regs before the IIR
3021 */
3022 if (pipe_stats[pipe] & 0x8000ffff) {
3023 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3024 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3025 pipe_name(pipe));
3026 I915_WRITE(reg, pipe_stats[pipe]);
3027 irq_received = 1;
3028 }
3029 }
3030 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031
3032 I915_WRITE16(IIR, iir & ~flip_mask);
3033 new_iir = I915_READ16(IIR); /* Flush posted writes */
3034
3035 i915_update_dri1_breadcrumb(dev);
3036
3037 if (iir & I915_USER_INTERRUPT)
3038 notify_ring(dev, &dev_priv->ring[RCS]);
3039
3040 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
3041 i8xx_handle_vblank(dev, 0, iir))
3042 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
3043
3044 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
3045 i8xx_handle_vblank(dev, 1, iir))
3046 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
3047
3048 iir = new_iir;
3049 }
3050
3051 return IRQ_HANDLED;
3052 }
3053
3054 static void i8xx_irq_uninstall(struct drm_device * dev)
3055 {
3056 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3057 int pipe;
3058
3059 for_each_pipe(pipe) {
3060 /* Clear enable bits; then clear status bits */
3061 I915_WRITE(PIPESTAT(pipe), 0);
3062 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3063 }
3064 I915_WRITE16(IMR, 0xffff);
3065 I915_WRITE16(IER, 0x0);
3066 I915_WRITE16(IIR, I915_READ16(IIR));
3067 }
3068
3069 static void i915_irq_preinstall(struct drm_device * dev)
3070 {
3071 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3072 int pipe;
3073
3074 atomic_set(&dev_priv->irq_received, 0);
3075
3076 if (I915_HAS_HOTPLUG(dev)) {
3077 I915_WRITE(PORT_HOTPLUG_EN, 0);
3078 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3079 }
3080
3081 I915_WRITE16(HWSTAM, 0xeffe);
3082 for_each_pipe(pipe)
3083 I915_WRITE(PIPESTAT(pipe), 0);
3084 I915_WRITE(IMR, 0xffffffff);
3085 I915_WRITE(IER, 0x0);
3086 POSTING_READ(IER);
3087 }
3088
3089 static int i915_irq_postinstall(struct drm_device *dev)
3090 {
3091 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3092 u32 enable_mask;
3093
3094 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3095
3096 /* Unmask the interrupts that we always want on. */
3097 dev_priv->irq_mask =
3098 ~(I915_ASLE_INTERRUPT |
3099 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3100 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3101 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3102 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3103 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3104
3105 enable_mask =
3106 I915_ASLE_INTERRUPT |
3107 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3108 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3109 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3110 I915_USER_INTERRUPT;
3111
3112 if (I915_HAS_HOTPLUG(dev)) {
3113 I915_WRITE(PORT_HOTPLUG_EN, 0);
3114 POSTING_READ(PORT_HOTPLUG_EN);
3115
3116 /* Enable in IER... */
3117 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3118 /* and unmask in IMR */
3119 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3120 }
3121
3122 I915_WRITE(IMR, dev_priv->irq_mask);
3123 I915_WRITE(IER, enable_mask);
3124 POSTING_READ(IER);
3125
3126 i915_enable_asle_pipestat(dev);
3127
3128 return 0;
3129 }
3130
3131 /*
3132 * Returns true when a page flip has completed.
3133 */
3134 static bool i915_handle_vblank(struct drm_device *dev,
3135 int plane, int pipe, u32 iir)
3136 {
3137 drm_i915_private_t *dev_priv = dev->dev_private;
3138 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3139
3140 if (!drm_handle_vblank(dev, pipe))
3141 return false;
3142
3143 if ((iir & flip_pending) == 0)
3144 return false;
3145
3146 intel_prepare_page_flip(dev, plane);
3147
3148 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3149 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3150 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3151 * the flip is completed (no longer pending). Since this doesn't raise
3152 * an interrupt per se, we watch for the change at vblank.
3153 */
3154 if (I915_READ(ISR) & flip_pending)
3155 return false;
3156
3157 intel_finish_page_flip(dev, pipe);
3158
3159 return true;
3160 }
3161
3162 static irqreturn_t i915_irq_handler(int irq, void *arg)
3163 {
3164 struct drm_device *dev = (struct drm_device *) arg;
3165 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3166 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3167 unsigned long irqflags;
3168 u32 flip_mask =
3169 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3170 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3171 int pipe, ret = IRQ_NONE;
3172
3173 atomic_inc(&dev_priv->irq_received);
3174
3175 iir = I915_READ(IIR);
3176 do {
3177 bool irq_received = (iir & ~flip_mask) != 0;
3178 bool blc_event = false;
3179
3180 /* Can't rely on pipestat interrupt bit in iir as it might
3181 * have been cleared after the pipestat interrupt was received.
3182 * It doesn't set the bit in iir again, but it still produces
3183 * interrupts (for non-MSI).
3184 */
3185 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3186 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3187 i915_handle_error(dev, false);
3188
3189 for_each_pipe(pipe) {
3190 int reg = PIPESTAT(pipe);
3191 pipe_stats[pipe] = I915_READ(reg);
3192
3193 /* Clear the PIPE*STAT regs before the IIR */
3194 if (pipe_stats[pipe] & 0x8000ffff) {
3195 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3196 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3197 pipe_name(pipe));
3198 I915_WRITE(reg, pipe_stats[pipe]);
3199 irq_received = true;
3200 }
3201 }
3202 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3203
3204 if (!irq_received)
3205 break;
3206
3207 /* Consume port. Then clear IIR or we'll miss events */
3208 if ((I915_HAS_HOTPLUG(dev)) &&
3209 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3210 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3211 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3212
3213 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3214 hotplug_status);
3215 if (hotplug_trigger) {
3216 if (hotplug_irq_storm_detect(dev, hotplug_trigger, hpd_status_i915))
3217 i915_hpd_irq_setup(dev);
3218 queue_work(dev_priv->wq,
3219 &dev_priv->hotplug_work);
3220 }
3221 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3222 POSTING_READ(PORT_HOTPLUG_STAT);
3223 }
3224
3225 I915_WRITE(IIR, iir & ~flip_mask);
3226 new_iir = I915_READ(IIR); /* Flush posted writes */
3227
3228 if (iir & I915_USER_INTERRUPT)
3229 notify_ring(dev, &dev_priv->ring[RCS]);
3230
3231 for_each_pipe(pipe) {
3232 int plane = pipe;
3233 if (IS_MOBILE(dev))
3234 plane = !plane;
3235
3236 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3237 i915_handle_vblank(dev, plane, pipe, iir))
3238 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3239
3240 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3241 blc_event = true;
3242 }
3243
3244 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3245 intel_opregion_asle_intr(dev);
3246
3247 /* With MSI, interrupts are only generated when iir
3248 * transitions from zero to nonzero. If another bit got
3249 * set while we were handling the existing iir bits, then
3250 * we would never get another interrupt.
3251 *
3252 * This is fine on non-MSI as well, as if we hit this path
3253 * we avoid exiting the interrupt handler only to generate
3254 * another one.
3255 *
3256 * Note that for MSI this could cause a stray interrupt report
3257 * if an interrupt landed in the time between writing IIR and
3258 * the posting read. This should be rare enough to never
3259 * trigger the 99% of 100,000 interrupts test for disabling
3260 * stray interrupts.
3261 */
3262 ret = IRQ_HANDLED;
3263 iir = new_iir;
3264 } while (iir & ~flip_mask);
3265
3266 i915_update_dri1_breadcrumb(dev);
3267
3268 return ret;
3269 }
3270
3271 static void i915_irq_uninstall(struct drm_device * dev)
3272 {
3273 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3274 int pipe;
3275
3276 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3277
3278 if (I915_HAS_HOTPLUG(dev)) {
3279 I915_WRITE(PORT_HOTPLUG_EN, 0);
3280 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3281 }
3282
3283 I915_WRITE16(HWSTAM, 0xffff);
3284 for_each_pipe(pipe) {
3285 /* Clear enable bits; then clear status bits */
3286 I915_WRITE(PIPESTAT(pipe), 0);
3287 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3288 }
3289 I915_WRITE(IMR, 0xffffffff);
3290 I915_WRITE(IER, 0x0);
3291
3292 I915_WRITE(IIR, I915_READ(IIR));
3293 }
3294
3295 static void i965_irq_preinstall(struct drm_device * dev)
3296 {
3297 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3298 int pipe;
3299
3300 atomic_set(&dev_priv->irq_received, 0);
3301
3302 I915_WRITE(PORT_HOTPLUG_EN, 0);
3303 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3304
3305 I915_WRITE(HWSTAM, 0xeffe);
3306 for_each_pipe(pipe)
3307 I915_WRITE(PIPESTAT(pipe), 0);
3308 I915_WRITE(IMR, 0xffffffff);
3309 I915_WRITE(IER, 0x0);
3310 POSTING_READ(IER);
3311 }
3312
3313 static int i965_irq_postinstall(struct drm_device *dev)
3314 {
3315 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3316 u32 enable_mask;
3317 u32 error_mask;
3318
3319 /* Unmask the interrupts that we always want on. */
3320 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3321 I915_DISPLAY_PORT_INTERRUPT |
3322 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3323 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3324 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3325 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3326 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3327
3328 enable_mask = ~dev_priv->irq_mask;
3329 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3330 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3331 enable_mask |= I915_USER_INTERRUPT;
3332
3333 if (IS_G4X(dev))
3334 enable_mask |= I915_BSD_USER_INTERRUPT;
3335
3336 i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
3337
3338 /*
3339 * Enable some error detection, note the instruction error mask
3340 * bit is reserved, so we leave it masked.
3341 */
3342 if (IS_G4X(dev)) {
3343 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3344 GM45_ERROR_MEM_PRIV |
3345 GM45_ERROR_CP_PRIV |
3346 I915_ERROR_MEMORY_REFRESH);
3347 } else {
3348 error_mask = ~(I915_ERROR_PAGE_TABLE |
3349 I915_ERROR_MEMORY_REFRESH);
3350 }
3351 I915_WRITE(EMR, error_mask);
3352
3353 I915_WRITE(IMR, dev_priv->irq_mask);
3354 I915_WRITE(IER, enable_mask);
3355 POSTING_READ(IER);
3356
3357 I915_WRITE(PORT_HOTPLUG_EN, 0);
3358 POSTING_READ(PORT_HOTPLUG_EN);
3359
3360 i915_enable_asle_pipestat(dev);
3361
3362 return 0;
3363 }
3364
3365 static void i915_hpd_irq_setup(struct drm_device *dev)
3366 {
3367 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3368 struct drm_mode_config *mode_config = &dev->mode_config;
3369 struct intel_encoder *intel_encoder;
3370 u32 hotplug_en;
3371
3372 if (I915_HAS_HOTPLUG(dev)) {
3373 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3374 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3375 /* Note HDMI and DP share hotplug bits */
3376 /* enable bits are the same for all generations */
3377 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3378 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3379 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3380 /* Programming the CRT detection parameters tends
3381 to generate a spurious hotplug event about three
3382 seconds later. So just do it once.
3383 */
3384 if (IS_G4X(dev))
3385 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3386 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3387 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3388
3389 /* Ignore TV since it's buggy */
3390 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3391 }
3392 }
3393
3394 static irqreturn_t i965_irq_handler(int irq, void *arg)
3395 {
3396 struct drm_device *dev = (struct drm_device *) arg;
3397 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3398 u32 iir, new_iir;
3399 u32 pipe_stats[I915_MAX_PIPES];
3400 unsigned long irqflags;
3401 int irq_received;
3402 int ret = IRQ_NONE, pipe;
3403 u32 flip_mask =
3404 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3405 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3406
3407 atomic_inc(&dev_priv->irq_received);
3408
3409 iir = I915_READ(IIR);
3410
3411 for (;;) {
3412 bool blc_event = false;
3413
3414 irq_received = (iir & ~flip_mask) != 0;
3415
3416 /* Can't rely on pipestat interrupt bit in iir as it might
3417 * have been cleared after the pipestat interrupt was received.
3418 * It doesn't set the bit in iir again, but it still produces
3419 * interrupts (for non-MSI).
3420 */
3421 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3422 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3423 i915_handle_error(dev, false);
3424
3425 for_each_pipe(pipe) {
3426 int reg = PIPESTAT(pipe);
3427 pipe_stats[pipe] = I915_READ(reg);
3428
3429 /*
3430 * Clear the PIPE*STAT regs before the IIR
3431 */
3432 if (pipe_stats[pipe] & 0x8000ffff) {
3433 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3434 DRM_DEBUG_DRIVER("pipe %c underrun\n",
3435 pipe_name(pipe));
3436 I915_WRITE(reg, pipe_stats[pipe]);
3437 irq_received = 1;
3438 }
3439 }
3440 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3441
3442 if (!irq_received)
3443 break;
3444
3445 ret = IRQ_HANDLED;
3446
3447 /* Consume port. Then clear IIR or we'll miss events */
3448 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3449 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3450 u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3451 HOTPLUG_INT_STATUS_G4X :
3452 HOTPLUG_INT_STATUS_I965);
3453
3454 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
3455 hotplug_status);
3456 if (hotplug_trigger) {
3457 if (hotplug_irq_storm_detect(dev, hotplug_trigger,
3458 IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i965))
3459 i915_hpd_irq_setup(dev);
3460 queue_work(dev_priv->wq,
3461 &dev_priv->hotplug_work);
3462 }
3463 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3464 I915_READ(PORT_HOTPLUG_STAT);
3465 }
3466
3467 I915_WRITE(IIR, iir & ~flip_mask);
3468 new_iir = I915_READ(IIR); /* Flush posted writes */
3469
3470 if (iir & I915_USER_INTERRUPT)
3471 notify_ring(dev, &dev_priv->ring[RCS]);
3472 if (iir & I915_BSD_USER_INTERRUPT)
3473 notify_ring(dev, &dev_priv->ring[VCS]);
3474
3475 for_each_pipe(pipe) {
3476 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3477 i915_handle_vblank(dev, pipe, pipe, iir))
3478 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3479
3480 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3481 blc_event = true;
3482 }
3483
3484
3485 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3486 intel_opregion_asle_intr(dev);
3487
3488 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3489 gmbus_irq_handler(dev);
3490
3491 /* With MSI, interrupts are only generated when iir
3492 * transitions from zero to nonzero. If another bit got
3493 * set while we were handling the existing iir bits, then
3494 * we would never get another interrupt.
3495 *
3496 * This is fine on non-MSI as well, as if we hit this path
3497 * we avoid exiting the interrupt handler only to generate
3498 * another one.
3499 *
3500 * Note that for MSI this could cause a stray interrupt report
3501 * if an interrupt landed in the time between writing IIR and
3502 * the posting read. This should be rare enough to never
3503 * trigger the 99% of 100,000 interrupts test for disabling
3504 * stray interrupts.
3505 */
3506 iir = new_iir;
3507 }
3508
3509 i915_update_dri1_breadcrumb(dev);
3510
3511 return ret;
3512 }
3513
3514 static void i965_irq_uninstall(struct drm_device * dev)
3515 {
3516 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3517 int pipe;
3518
3519 if (!dev_priv)
3520 return;
3521
3522 del_timer_sync(&dev_priv->hotplug_reenable_timer);
3523
3524 I915_WRITE(PORT_HOTPLUG_EN, 0);
3525 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3526
3527 I915_WRITE(HWSTAM, 0xffffffff);
3528 for_each_pipe(pipe)
3529 I915_WRITE(PIPESTAT(pipe), 0);
3530 I915_WRITE(IMR, 0xffffffff);
3531 I915_WRITE(IER, 0x0);
3532
3533 for_each_pipe(pipe)
3534 I915_WRITE(PIPESTAT(pipe),
3535 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3536 I915_WRITE(IIR, I915_READ(IIR));
3537 }
3538
3539 static void i915_reenable_hotplug_timer_func(unsigned long data)
3540 {
3541 drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3542 struct drm_device *dev = dev_priv->dev;
3543 struct drm_mode_config *mode_config = &dev->mode_config;
3544 unsigned long irqflags;
3545 int i;
3546
3547 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3548 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3549 struct drm_connector *connector;
3550
3551 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3552 continue;
3553
3554 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3555
3556 list_for_each_entry(connector, &mode_config->connector_list, head) {
3557 struct intel_connector *intel_connector = to_intel_connector(connector);
3558
3559 if (intel_connector->encoder->hpd_pin == i) {
3560 if (connector->polled != intel_connector->polled)
3561 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3562 drm_get_connector_name(connector));
3563 connector->polled = intel_connector->polled;
3564 if (!connector->polled)
3565 connector->polled = DRM_CONNECTOR_POLL_HPD;
3566 }
3567 }
3568 }
3569 if (dev_priv->display.hpd_irq_setup)
3570 dev_priv->display.hpd_irq_setup(dev);
3571 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3572 }
3573
3574 void intel_irq_init(struct drm_device *dev)
3575 {
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577
3578 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3579 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3580 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3581 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3582
3583 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3584 i915_hangcheck_elapsed,
3585 (unsigned long) dev);
3586 setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3587 (unsigned long) dev_priv);
3588
3589 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3590
3591 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3592 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3593 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3594 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3595 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3596 }
3597
3598 if (drm_core_check_feature(dev, DRIVER_MODESET))
3599 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3600 else
3601 dev->driver->get_vblank_timestamp = NULL;
3602 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3603
3604 if (IS_VALLEYVIEW(dev)) {
3605 dev->driver->irq_handler = valleyview_irq_handler;
3606 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3607 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3608 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3609 dev->driver->enable_vblank = valleyview_enable_vblank;
3610 dev->driver->disable_vblank = valleyview_disable_vblank;
3611 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3612 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3613 /* Share uninstall handlers with ILK/SNB */
3614 dev->driver->irq_handler = ivybridge_irq_handler;
3615 dev->driver->irq_preinstall = ivybridge_irq_preinstall;
3616 dev->driver->irq_postinstall = ivybridge_irq_postinstall;
3617 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3618 dev->driver->enable_vblank = ivybridge_enable_vblank;
3619 dev->driver->disable_vblank = ivybridge_disable_vblank;
3620 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3621 } else if (HAS_PCH_SPLIT(dev)) {
3622 dev->driver->irq_handler = ironlake_irq_handler;
3623 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3624 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3625 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3626 dev->driver->enable_vblank = ironlake_enable_vblank;
3627 dev->driver->disable_vblank = ironlake_disable_vblank;
3628 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3629 } else {
3630 if (INTEL_INFO(dev)->gen == 2) {
3631 dev->driver->irq_preinstall = i8xx_irq_preinstall;
3632 dev->driver->irq_postinstall = i8xx_irq_postinstall;
3633 dev->driver->irq_handler = i8xx_irq_handler;
3634 dev->driver->irq_uninstall = i8xx_irq_uninstall;
3635 } else if (INTEL_INFO(dev)->gen == 3) {
3636 dev->driver->irq_preinstall = i915_irq_preinstall;
3637 dev->driver->irq_postinstall = i915_irq_postinstall;
3638 dev->driver->irq_uninstall = i915_irq_uninstall;
3639 dev->driver->irq_handler = i915_irq_handler;
3640 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3641 } else {
3642 dev->driver->irq_preinstall = i965_irq_preinstall;
3643 dev->driver->irq_postinstall = i965_irq_postinstall;
3644 dev->driver->irq_uninstall = i965_irq_uninstall;
3645 dev->driver->irq_handler = i965_irq_handler;
3646 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3647 }
3648 dev->driver->enable_vblank = i915_enable_vblank;
3649 dev->driver->disable_vblank = i915_disable_vblank;
3650 }
3651 }
3652
3653 void intel_hpd_init(struct drm_device *dev)
3654 {
3655 struct drm_i915_private *dev_priv = dev->dev_private;
3656 struct drm_mode_config *mode_config = &dev->mode_config;
3657 struct drm_connector *connector;
3658 int i;
3659
3660 for (i = 1; i < HPD_NUM_PINS; i++) {
3661 dev_priv->hpd_stats[i].hpd_cnt = 0;
3662 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3663 }
3664 list_for_each_entry(connector, &mode_config->connector_list, head) {
3665 struct intel_connector *intel_connector = to_intel_connector(connector);
3666 connector->polled = intel_connector->polled;
3667 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3668 connector->polled = DRM_CONNECTOR_POLL_HPD;
3669 }
3670 if (dev_priv->display.hpd_irq_setup)
3671 dev_priv->display.hpd_irq_setup(dev);
3672 }
This page took 0.223782 seconds and 6 git commands to generate.