Merge tag 'sound-4.7-fix2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32 u32 trans1; /* balance leg enable, de-emph level */
33 u32 trans2; /* vref sel, vswing */
34 u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 };
36
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38 * them for both DP and FDI transports, allowing those ports to
39 * automatically adapt to HDMI connections as well
40 */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 { 0x00FFFFFF, 0x0006000E, 0x0 },
43 { 0x00D75FFF, 0x0005000A, 0x0 },
44 { 0x00C30FFF, 0x00040006, 0x0 },
45 { 0x80AAAFFF, 0x000B0000, 0x0 },
46 { 0x00FFFFFF, 0x0005000A, 0x0 },
47 { 0x00D75FFF, 0x000C0004, 0x0 },
48 { 0x80C30FFF, 0x000B0000, 0x0 },
49 { 0x00FFFFFF, 0x00040006, 0x0 },
50 { 0x80D75FFF, 0x000B0000, 0x0 },
51 };
52
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 { 0x00FFFFFF, 0x0007000E, 0x0 },
55 { 0x00D75FFF, 0x000F000A, 0x0 },
56 { 0x00C30FFF, 0x00060006, 0x0 },
57 { 0x00AAAFFF, 0x001E0000, 0x0 },
58 { 0x00FFFFFF, 0x000F000A, 0x0 },
59 { 0x00D75FFF, 0x00160004, 0x0 },
60 { 0x00C30FFF, 0x001E0000, 0x0 },
61 { 0x00FFFFFF, 0x00060006, 0x0 },
62 { 0x00D75FFF, 0x001E0000, 0x0 },
63 };
64
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 /* Idx NT mV d T mV d db */
67 { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
68 { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
69 { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
70 { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
71 { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
72 { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
73 { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
74 { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
75 { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
76 { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
77 { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
78 { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
79 };
80
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 { 0x00FFFFFF, 0x00000012, 0x0 },
83 { 0x00EBAFFF, 0x00020011, 0x0 },
84 { 0x00C71FFF, 0x0006000F, 0x0 },
85 { 0x00AAAFFF, 0x000E000A, 0x0 },
86 { 0x00FFFFFF, 0x00020011, 0x0 },
87 { 0x00DB6FFF, 0x0005000F, 0x0 },
88 { 0x00BEEFFF, 0x000A000C, 0x0 },
89 { 0x00FFFFFF, 0x0005000F, 0x0 },
90 { 0x00DB6FFF, 0x000A000C, 0x0 },
91 };
92
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 { 0x00FFFFFF, 0x0007000E, 0x0 },
95 { 0x00D75FFF, 0x000E000A, 0x0 },
96 { 0x00BEFFFF, 0x00140006, 0x0 },
97 { 0x80B2CFFF, 0x001B0002, 0x0 },
98 { 0x00FFFFFF, 0x000E000A, 0x0 },
99 { 0x00DB6FFF, 0x00160005, 0x0 },
100 { 0x80C71FFF, 0x001A0002, 0x0 },
101 { 0x00F7DFFF, 0x00180004, 0x0 },
102 { 0x80D75FFF, 0x001B0002, 0x0 },
103 };
104
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 { 0x00FFFFFF, 0x0001000E, 0x0 },
107 { 0x00D75FFF, 0x0004000A, 0x0 },
108 { 0x00C30FFF, 0x00070006, 0x0 },
109 { 0x00AAAFFF, 0x000C0000, 0x0 },
110 { 0x00FFFFFF, 0x0004000A, 0x0 },
111 { 0x00D75FFF, 0x00090004, 0x0 },
112 { 0x00C30FFF, 0x000C0000, 0x0 },
113 { 0x00FFFFFF, 0x00070006, 0x0 },
114 { 0x00D75FFF, 0x000C0000, 0x0 },
115 };
116
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 /* Idx NT mV d T mV df db */
119 { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
120 { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
121 { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
122 { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
123 { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
124 { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
125 { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
126 { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
127 { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
128 { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
129 };
130
131 /* Skylake H and S */
132 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 { 0x00002016, 0x000000A0, 0x0 },
134 { 0x00005012, 0x0000009B, 0x0 },
135 { 0x00007011, 0x00000088, 0x0 },
136 { 0x80009010, 0x000000C0, 0x1 },
137 { 0x00002016, 0x0000009B, 0x0 },
138 { 0x00005012, 0x00000088, 0x0 },
139 { 0x80007011, 0x000000C0, 0x1 },
140 { 0x00002016, 0x000000DF, 0x0 },
141 { 0x80005012, 0x000000C0, 0x1 },
142 };
143
144 /* Skylake U */
145 static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146 { 0x0000201B, 0x000000A2, 0x0 },
147 { 0x00005012, 0x00000088, 0x0 },
148 { 0x80007011, 0x000000CD, 0x0 },
149 { 0x80009010, 0x000000C0, 0x1 },
150 { 0x0000201B, 0x0000009D, 0x0 },
151 { 0x80005012, 0x000000C0, 0x1 },
152 { 0x80007011, 0x000000C0, 0x1 },
153 { 0x00002016, 0x00000088, 0x0 },
154 { 0x80005012, 0x000000C0, 0x1 },
155 };
156
157 /* Skylake Y */
158 static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 { 0x00000018, 0x000000A2, 0x0 },
160 { 0x00005012, 0x00000088, 0x0 },
161 { 0x80007011, 0x000000CD, 0x0 },
162 { 0x80009010, 0x000000C0, 0x3 },
163 { 0x00000018, 0x0000009D, 0x0 },
164 { 0x80005012, 0x000000C0, 0x3 },
165 { 0x80007011, 0x000000C0, 0x3 },
166 { 0x00000018, 0x00000088, 0x0 },
167 { 0x80005012, 0x000000C0, 0x3 },
168 };
169
170 /*
171 * Skylake H and S
172 * eDP 1.4 low vswing translation parameters
173 */
174 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 { 0x00000018, 0x000000A8, 0x0 },
176 { 0x00004013, 0x000000A9, 0x0 },
177 { 0x00007011, 0x000000A2, 0x0 },
178 { 0x00009010, 0x0000009C, 0x0 },
179 { 0x00000018, 0x000000A9, 0x0 },
180 { 0x00006013, 0x000000A2, 0x0 },
181 { 0x00007011, 0x000000A6, 0x0 },
182 { 0x00000018, 0x000000AB, 0x0 },
183 { 0x00007013, 0x0000009F, 0x0 },
184 { 0x00000018, 0x000000DF, 0x0 },
185 };
186
187 /*
188 * Skylake U
189 * eDP 1.4 low vswing translation parameters
190 */
191 static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
192 { 0x00000018, 0x000000A8, 0x0 },
193 { 0x00004013, 0x000000A9, 0x0 },
194 { 0x00007011, 0x000000A2, 0x0 },
195 { 0x00009010, 0x0000009C, 0x0 },
196 { 0x00000018, 0x000000A9, 0x0 },
197 { 0x00006013, 0x000000A2, 0x0 },
198 { 0x00007011, 0x000000A6, 0x0 },
199 { 0x00002016, 0x000000AB, 0x0 },
200 { 0x00005013, 0x0000009F, 0x0 },
201 { 0x00000018, 0x000000DF, 0x0 },
202 };
203
204 /*
205 * Skylake Y
206 * eDP 1.4 low vswing translation parameters
207 */
208 static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 { 0x00000018, 0x000000A8, 0x0 },
210 { 0x00004013, 0x000000AB, 0x0 },
211 { 0x00007011, 0x000000A4, 0x0 },
212 { 0x00009010, 0x000000DF, 0x0 },
213 { 0x00000018, 0x000000AA, 0x0 },
214 { 0x00006013, 0x000000A4, 0x0 },
215 { 0x00007011, 0x0000009D, 0x0 },
216 { 0x00000018, 0x000000A0, 0x0 },
217 { 0x00006012, 0x000000DF, 0x0 },
218 { 0x00000018, 0x0000008A, 0x0 },
219 };
220
221 /* Skylake U, H and S */
222 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 { 0x00000018, 0x000000AC, 0x0 },
224 { 0x00005012, 0x0000009D, 0x0 },
225 { 0x00007011, 0x00000088, 0x0 },
226 { 0x00000018, 0x000000A1, 0x0 },
227 { 0x00000018, 0x00000098, 0x0 },
228 { 0x00004013, 0x00000088, 0x0 },
229 { 0x80006012, 0x000000CD, 0x1 },
230 { 0x00000018, 0x000000DF, 0x0 },
231 { 0x80003015, 0x000000CD, 0x1 }, /* Default */
232 { 0x80003015, 0x000000C0, 0x1 },
233 { 0x80000018, 0x000000C0, 0x1 },
234 };
235
236 /* Skylake Y */
237 static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 { 0x00000018, 0x000000A1, 0x0 },
239 { 0x00005012, 0x000000DF, 0x0 },
240 { 0x80007011, 0x000000CB, 0x3 },
241 { 0x00000018, 0x000000A4, 0x0 },
242 { 0x00000018, 0x0000009D, 0x0 },
243 { 0x00004013, 0x00000080, 0x0 },
244 { 0x80006013, 0x000000C0, 0x3 },
245 { 0x00000018, 0x0000008A, 0x0 },
246 { 0x80003015, 0x000000C0, 0x3 }, /* Default */
247 { 0x80003015, 0x000000C0, 0x3 },
248 { 0x80000018, 0x000000C0, 0x3 },
249 };
250
251 struct bxt_ddi_buf_trans {
252 u32 margin; /* swing value */
253 u32 scale; /* scale value */
254 u32 enable; /* scale enable */
255 u32 deemphasis;
256 bool default_index; /* true if the entry represents default value */
257 };
258
259 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
260 /* Idx NT mV diff db */
261 { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
262 { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
263 { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
264 { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
265 { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
266 { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
267 { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
268 { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
269 { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
270 { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
271 };
272
273 static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
274 /* Idx NT mV diff db */
275 { 26, 0, 0, 128, false }, /* 0: 200 0 */
276 { 38, 0, 0, 112, false }, /* 1: 200 1.5 */
277 { 48, 0, 0, 96, false }, /* 2: 200 4 */
278 { 54, 0, 0, 69, false }, /* 3: 200 6 */
279 { 32, 0, 0, 128, false }, /* 4: 250 0 */
280 { 48, 0, 0, 104, false }, /* 5: 250 1.5 */
281 { 54, 0, 0, 85, false }, /* 6: 250 4 */
282 { 43, 0, 0, 128, false }, /* 7: 300 0 */
283 { 54, 0, 0, 101, false }, /* 8: 300 1.5 */
284 { 48, 0, 0, 128, false }, /* 9: 300 0 */
285 };
286
287 /* BSpec has 2 recommended values - entries 0 and 8.
288 * Using the entry with higher vswing.
289 */
290 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
291 /* Idx NT mV diff db */
292 { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
293 { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
294 { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
295 { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
296 { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
297 { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
298 { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
299 { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
300 { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
301 { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
302 };
303
304 static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
305 u32 level, enum port port, int type);
306
307 static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
308 struct intel_digital_port **dig_port,
309 enum port *port)
310 {
311 struct drm_encoder *encoder = &intel_encoder->base;
312
313 switch (intel_encoder->type) {
314 case INTEL_OUTPUT_DP_MST:
315 *dig_port = enc_to_mst(encoder)->primary;
316 *port = (*dig_port)->port;
317 break;
318 default:
319 WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
320 /* fallthrough and treat as unknown */
321 case INTEL_OUTPUT_DISPLAYPORT:
322 case INTEL_OUTPUT_EDP:
323 case INTEL_OUTPUT_HDMI:
324 case INTEL_OUTPUT_UNKNOWN:
325 *dig_port = enc_to_dig_port(encoder);
326 *port = (*dig_port)->port;
327 break;
328 case INTEL_OUTPUT_ANALOG:
329 *dig_port = NULL;
330 *port = PORT_E;
331 break;
332 }
333 }
334
335 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
336 {
337 struct intel_digital_port *dig_port;
338 enum port port;
339
340 ddi_get_encoder_port(intel_encoder, &dig_port, &port);
341
342 return port;
343 }
344
345 static const struct ddi_buf_trans *
346 skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
347 {
348 if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
349 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
350 return skl_y_ddi_translations_dp;
351 } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
352 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
353 return skl_u_ddi_translations_dp;
354 } else {
355 *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
356 return skl_ddi_translations_dp;
357 }
358 }
359
360 static const struct ddi_buf_trans *
361 skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
362 {
363 if (dev_priv->vbt.edp.low_vswing) {
364 if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
365 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
366 return skl_y_ddi_translations_edp;
367 } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
368 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
369 return skl_u_ddi_translations_edp;
370 } else {
371 *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
372 return skl_ddi_translations_edp;
373 }
374 }
375
376 return skl_get_buf_trans_dp(dev_priv, n_entries);
377 }
378
379 static const struct ddi_buf_trans *
380 skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
381 {
382 if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
383 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
384 return skl_y_ddi_translations_hdmi;
385 } else {
386 *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
387 return skl_ddi_translations_hdmi;
388 }
389 }
390
391 /*
392 * Starting with Haswell, DDI port buffers must be programmed with correct
393 * values in advance. The buffer values are different for FDI and DP modes,
394 * but the HDMI/DVI fields are shared among those. So we program the DDI
395 * in either FDI or DP modes only, as HDMI connections will work with both
396 * of those
397 */
398 void intel_prepare_ddi_buffer(struct intel_encoder *encoder)
399 {
400 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
401 u32 iboost_bit = 0;
402 int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
403 size;
404 int hdmi_level;
405 enum port port;
406 const struct ddi_buf_trans *ddi_translations_fdi;
407 const struct ddi_buf_trans *ddi_translations_dp;
408 const struct ddi_buf_trans *ddi_translations_edp;
409 const struct ddi_buf_trans *ddi_translations_hdmi;
410 const struct ddi_buf_trans *ddi_translations;
411
412 port = intel_ddi_get_encoder_port(encoder);
413 hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
414
415 if (IS_BROXTON(dev_priv)) {
416 if (encoder->type != INTEL_OUTPUT_HDMI)
417 return;
418
419 /* Vswing programming for HDMI */
420 bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
421 INTEL_OUTPUT_HDMI);
422 return;
423 }
424
425 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
426 ddi_translations_fdi = NULL;
427 ddi_translations_dp =
428 skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
429 ddi_translations_edp =
430 skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
431 ddi_translations_hdmi =
432 skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
433 hdmi_default_entry = 8;
434 /* If we're boosting the current, set bit 31 of trans1 */
435 if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
436 dev_priv->vbt.ddi_port_info[port].dp_boost_level)
437 iboost_bit = 1<<31;
438
439 if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
440 port != PORT_A && port != PORT_E &&
441 n_edp_entries > 9))
442 n_edp_entries = 9;
443 } else if (IS_BROADWELL(dev_priv)) {
444 ddi_translations_fdi = bdw_ddi_translations_fdi;
445 ddi_translations_dp = bdw_ddi_translations_dp;
446
447 if (dev_priv->vbt.edp.low_vswing) {
448 ddi_translations_edp = bdw_ddi_translations_edp;
449 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
450 } else {
451 ddi_translations_edp = bdw_ddi_translations_dp;
452 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
453 }
454
455 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
456
457 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
458 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
459 hdmi_default_entry = 7;
460 } else if (IS_HASWELL(dev_priv)) {
461 ddi_translations_fdi = hsw_ddi_translations_fdi;
462 ddi_translations_dp = hsw_ddi_translations_dp;
463 ddi_translations_edp = hsw_ddi_translations_dp;
464 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
465 n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
466 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
467 hdmi_default_entry = 6;
468 } else {
469 WARN(1, "ddi translation table missing\n");
470 ddi_translations_edp = bdw_ddi_translations_dp;
471 ddi_translations_fdi = bdw_ddi_translations_fdi;
472 ddi_translations_dp = bdw_ddi_translations_dp;
473 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
474 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
475 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
476 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
477 hdmi_default_entry = 7;
478 }
479
480 switch (encoder->type) {
481 case INTEL_OUTPUT_EDP:
482 ddi_translations = ddi_translations_edp;
483 size = n_edp_entries;
484 break;
485 case INTEL_OUTPUT_DISPLAYPORT:
486 case INTEL_OUTPUT_HDMI:
487 ddi_translations = ddi_translations_dp;
488 size = n_dp_entries;
489 break;
490 case INTEL_OUTPUT_ANALOG:
491 ddi_translations = ddi_translations_fdi;
492 size = n_dp_entries;
493 break;
494 default:
495 BUG();
496 }
497
498 for (i = 0; i < size; i++) {
499 I915_WRITE(DDI_BUF_TRANS_LO(port, i),
500 ddi_translations[i].trans1 | iboost_bit);
501 I915_WRITE(DDI_BUF_TRANS_HI(port, i),
502 ddi_translations[i].trans2);
503 }
504
505 if (encoder->type != INTEL_OUTPUT_HDMI)
506 return;
507
508 /* Choose a good default if VBT is badly populated */
509 if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
510 hdmi_level >= n_hdmi_entries)
511 hdmi_level = hdmi_default_entry;
512
513 /* Entry 9 is for HDMI: */
514 I915_WRITE(DDI_BUF_TRANS_LO(port, i),
515 ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
516 I915_WRITE(DDI_BUF_TRANS_HI(port, i),
517 ddi_translations_hdmi[hdmi_level].trans2);
518 }
519
520 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
521 enum port port)
522 {
523 i915_reg_t reg = DDI_BUF_CTL(port);
524 int i;
525
526 for (i = 0; i < 16; i++) {
527 udelay(1);
528 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
529 return;
530 }
531 DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
532 }
533
534 /* Starting with Haswell, different DDI ports can work in FDI mode for
535 * connection to the PCH-located connectors. For this, it is necessary to train
536 * both the DDI port and PCH receiver for the desired DDI buffer settings.
537 *
538 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
539 * please note that when FDI mode is active on DDI E, it shares 2 lines with
540 * DDI A (which is used for eDP)
541 */
542
543 void hsw_fdi_link_train(struct drm_crtc *crtc)
544 {
545 struct drm_device *dev = crtc->dev;
546 struct drm_i915_private *dev_priv = dev->dev_private;
547 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
548 struct intel_encoder *encoder;
549 u32 temp, i, rx_ctl_val;
550
551 for_each_encoder_on_crtc(dev, crtc, encoder) {
552 WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
553 intel_prepare_ddi_buffer(encoder);
554 }
555
556 /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
557 * mode set "sequence for CRT port" document:
558 * - TP1 to TP2 time with the default value
559 * - FDI delay to 90h
560 *
561 * WaFDIAutoLinkSetTimingOverrride:hsw
562 */
563 I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
564 FDI_RX_PWRDN_LANE0_VAL(2) |
565 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
566
567 /* Enable the PCH Receiver FDI PLL */
568 rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
569 FDI_RX_PLL_ENABLE |
570 FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
571 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
572 POSTING_READ(FDI_RX_CTL(PIPE_A));
573 udelay(220);
574
575 /* Switch from Rawclk to PCDclk */
576 rx_ctl_val |= FDI_PCDCLK;
577 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
578
579 /* Configure Port Clock Select */
580 I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
581 WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
582
583 /* Start the training iterating through available voltages and emphasis,
584 * testing each value twice. */
585 for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
586 /* Configure DP_TP_CTL with auto-training */
587 I915_WRITE(DP_TP_CTL(PORT_E),
588 DP_TP_CTL_FDI_AUTOTRAIN |
589 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
590 DP_TP_CTL_LINK_TRAIN_PAT1 |
591 DP_TP_CTL_ENABLE);
592
593 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
594 * DDI E does not support port reversal, the functionality is
595 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
596 * port reversal bit */
597 I915_WRITE(DDI_BUF_CTL(PORT_E),
598 DDI_BUF_CTL_ENABLE |
599 ((intel_crtc->config->fdi_lanes - 1) << 1) |
600 DDI_BUF_TRANS_SELECT(i / 2));
601 POSTING_READ(DDI_BUF_CTL(PORT_E));
602
603 udelay(600);
604
605 /* Program PCH FDI Receiver TU */
606 I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
607
608 /* Enable PCH FDI Receiver with auto-training */
609 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
610 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
611 POSTING_READ(FDI_RX_CTL(PIPE_A));
612
613 /* Wait for FDI receiver lane calibration */
614 udelay(30);
615
616 /* Unset FDI_RX_MISC pwrdn lanes */
617 temp = I915_READ(FDI_RX_MISC(PIPE_A));
618 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
619 I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
620 POSTING_READ(FDI_RX_MISC(PIPE_A));
621
622 /* Wait for FDI auto training time */
623 udelay(5);
624
625 temp = I915_READ(DP_TP_STATUS(PORT_E));
626 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
627 DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
628 break;
629 }
630
631 /*
632 * Leave things enabled even if we failed to train FDI.
633 * Results in less fireworks from the state checker.
634 */
635 if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
636 DRM_ERROR("FDI link training failed!\n");
637 break;
638 }
639
640 rx_ctl_val &= ~FDI_RX_ENABLE;
641 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
642 POSTING_READ(FDI_RX_CTL(PIPE_A));
643
644 temp = I915_READ(DDI_BUF_CTL(PORT_E));
645 temp &= ~DDI_BUF_CTL_ENABLE;
646 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
647 POSTING_READ(DDI_BUF_CTL(PORT_E));
648
649 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
650 temp = I915_READ(DP_TP_CTL(PORT_E));
651 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
652 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
653 I915_WRITE(DP_TP_CTL(PORT_E), temp);
654 POSTING_READ(DP_TP_CTL(PORT_E));
655
656 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
657
658 /* Reset FDI_RX_MISC pwrdn lanes */
659 temp = I915_READ(FDI_RX_MISC(PIPE_A));
660 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
661 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
662 I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
663 POSTING_READ(FDI_RX_MISC(PIPE_A));
664 }
665
666 /* Enable normal pixel sending for FDI */
667 I915_WRITE(DP_TP_CTL(PORT_E),
668 DP_TP_CTL_FDI_AUTOTRAIN |
669 DP_TP_CTL_LINK_TRAIN_NORMAL |
670 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
671 DP_TP_CTL_ENABLE);
672 }
673
674 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
675 {
676 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
677 struct intel_digital_port *intel_dig_port =
678 enc_to_dig_port(&encoder->base);
679
680 intel_dp->DP = intel_dig_port->saved_port_bits |
681 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
682 intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
683 }
684
685 static struct intel_encoder *
686 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
687 {
688 struct drm_device *dev = crtc->dev;
689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
690 struct intel_encoder *intel_encoder, *ret = NULL;
691 int num_encoders = 0;
692
693 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
694 ret = intel_encoder;
695 num_encoders++;
696 }
697
698 if (num_encoders != 1)
699 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
700 pipe_name(intel_crtc->pipe));
701
702 BUG_ON(ret == NULL);
703 return ret;
704 }
705
706 struct intel_encoder *
707 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
708 {
709 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
710 struct intel_encoder *ret = NULL;
711 struct drm_atomic_state *state;
712 struct drm_connector *connector;
713 struct drm_connector_state *connector_state;
714 int num_encoders = 0;
715 int i;
716
717 state = crtc_state->base.state;
718
719 for_each_connector_in_state(state, connector, connector_state, i) {
720 if (connector_state->crtc != crtc_state->base.crtc)
721 continue;
722
723 ret = to_intel_encoder(connector_state->best_encoder);
724 num_encoders++;
725 }
726
727 WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
728 pipe_name(crtc->pipe));
729
730 BUG_ON(ret == NULL);
731 return ret;
732 }
733
734 #define LC_FREQ 2700
735
736 static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
737 i915_reg_t reg)
738 {
739 int refclk = LC_FREQ;
740 int n, p, r;
741 u32 wrpll;
742
743 wrpll = I915_READ(reg);
744 switch (wrpll & WRPLL_PLL_REF_MASK) {
745 case WRPLL_PLL_SSC:
746 case WRPLL_PLL_NON_SSC:
747 /*
748 * We could calculate spread here, but our checking
749 * code only cares about 5% accuracy, and spread is a max of
750 * 0.5% downspread.
751 */
752 refclk = 135;
753 break;
754 case WRPLL_PLL_LCPLL:
755 refclk = LC_FREQ;
756 break;
757 default:
758 WARN(1, "bad wrpll refclk\n");
759 return 0;
760 }
761
762 r = wrpll & WRPLL_DIVIDER_REF_MASK;
763 p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
764 n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
765
766 /* Convert to KHz, p & r have a fixed point portion */
767 return (refclk * n * 100) / (p * r);
768 }
769
770 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
771 uint32_t dpll)
772 {
773 i915_reg_t cfgcr1_reg, cfgcr2_reg;
774 uint32_t cfgcr1_val, cfgcr2_val;
775 uint32_t p0, p1, p2, dco_freq;
776
777 cfgcr1_reg = DPLL_CFGCR1(dpll);
778 cfgcr2_reg = DPLL_CFGCR2(dpll);
779
780 cfgcr1_val = I915_READ(cfgcr1_reg);
781 cfgcr2_val = I915_READ(cfgcr2_reg);
782
783 p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
784 p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
785
786 if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
787 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
788 else
789 p1 = 1;
790
791
792 switch (p0) {
793 case DPLL_CFGCR2_PDIV_1:
794 p0 = 1;
795 break;
796 case DPLL_CFGCR2_PDIV_2:
797 p0 = 2;
798 break;
799 case DPLL_CFGCR2_PDIV_3:
800 p0 = 3;
801 break;
802 case DPLL_CFGCR2_PDIV_7:
803 p0 = 7;
804 break;
805 }
806
807 switch (p2) {
808 case DPLL_CFGCR2_KDIV_5:
809 p2 = 5;
810 break;
811 case DPLL_CFGCR2_KDIV_2:
812 p2 = 2;
813 break;
814 case DPLL_CFGCR2_KDIV_3:
815 p2 = 3;
816 break;
817 case DPLL_CFGCR2_KDIV_1:
818 p2 = 1;
819 break;
820 }
821
822 dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
823
824 dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
825 1000) / 0x8000;
826
827 return dco_freq / (p0 * p1 * p2 * 5);
828 }
829
830 static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
831 {
832 int dotclock;
833
834 if (pipe_config->has_pch_encoder)
835 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
836 &pipe_config->fdi_m_n);
837 else if (pipe_config->has_dp_encoder)
838 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
839 &pipe_config->dp_m_n);
840 else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
841 dotclock = pipe_config->port_clock * 2 / 3;
842 else
843 dotclock = pipe_config->port_clock;
844
845 if (pipe_config->pixel_multiplier)
846 dotclock /= pipe_config->pixel_multiplier;
847
848 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
849 }
850
851 static void skl_ddi_clock_get(struct intel_encoder *encoder,
852 struct intel_crtc_state *pipe_config)
853 {
854 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
855 int link_clock = 0;
856 uint32_t dpll_ctl1, dpll;
857
858 dpll = pipe_config->ddi_pll_sel;
859
860 dpll_ctl1 = I915_READ(DPLL_CTRL1);
861
862 if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
863 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
864 } else {
865 link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
866 link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
867
868 switch (link_clock) {
869 case DPLL_CTRL1_LINK_RATE_810:
870 link_clock = 81000;
871 break;
872 case DPLL_CTRL1_LINK_RATE_1080:
873 link_clock = 108000;
874 break;
875 case DPLL_CTRL1_LINK_RATE_1350:
876 link_clock = 135000;
877 break;
878 case DPLL_CTRL1_LINK_RATE_1620:
879 link_clock = 162000;
880 break;
881 case DPLL_CTRL1_LINK_RATE_2160:
882 link_clock = 216000;
883 break;
884 case DPLL_CTRL1_LINK_RATE_2700:
885 link_clock = 270000;
886 break;
887 default:
888 WARN(1, "Unsupported link rate\n");
889 break;
890 }
891 link_clock *= 2;
892 }
893
894 pipe_config->port_clock = link_clock;
895
896 ddi_dotclock_get(pipe_config);
897 }
898
899 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
900 struct intel_crtc_state *pipe_config)
901 {
902 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
903 int link_clock = 0;
904 u32 val, pll;
905
906 val = pipe_config->ddi_pll_sel;
907 switch (val & PORT_CLK_SEL_MASK) {
908 case PORT_CLK_SEL_LCPLL_810:
909 link_clock = 81000;
910 break;
911 case PORT_CLK_SEL_LCPLL_1350:
912 link_clock = 135000;
913 break;
914 case PORT_CLK_SEL_LCPLL_2700:
915 link_clock = 270000;
916 break;
917 case PORT_CLK_SEL_WRPLL1:
918 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
919 break;
920 case PORT_CLK_SEL_WRPLL2:
921 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
922 break;
923 case PORT_CLK_SEL_SPLL:
924 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
925 if (pll == SPLL_PLL_FREQ_810MHz)
926 link_clock = 81000;
927 else if (pll == SPLL_PLL_FREQ_1350MHz)
928 link_clock = 135000;
929 else if (pll == SPLL_PLL_FREQ_2700MHz)
930 link_clock = 270000;
931 else {
932 WARN(1, "bad spll freq\n");
933 return;
934 }
935 break;
936 default:
937 WARN(1, "bad port clock sel\n");
938 return;
939 }
940
941 pipe_config->port_clock = link_clock * 2;
942
943 ddi_dotclock_get(pipe_config);
944 }
945
946 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
947 enum intel_dpll_id dpll)
948 {
949 struct intel_shared_dpll *pll;
950 struct intel_dpll_hw_state *state;
951 intel_clock_t clock;
952
953 /* For DDI ports we always use a shared PLL. */
954 if (WARN_ON(dpll == DPLL_ID_PRIVATE))
955 return 0;
956
957 pll = &dev_priv->shared_dplls[dpll];
958 state = &pll->config.hw_state;
959
960 clock.m1 = 2;
961 clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
962 if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
963 clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
964 clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
965 clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
966 clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
967
968 return chv_calc_dpll_params(100000, &clock);
969 }
970
971 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
972 struct intel_crtc_state *pipe_config)
973 {
974 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
975 enum port port = intel_ddi_get_encoder_port(encoder);
976 uint32_t dpll = port;
977
978 pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
979
980 ddi_dotclock_get(pipe_config);
981 }
982
983 void intel_ddi_clock_get(struct intel_encoder *encoder,
984 struct intel_crtc_state *pipe_config)
985 {
986 struct drm_device *dev = encoder->base.dev;
987
988 if (INTEL_INFO(dev)->gen <= 8)
989 hsw_ddi_clock_get(encoder, pipe_config);
990 else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
991 skl_ddi_clock_get(encoder, pipe_config);
992 else if (IS_BROXTON(dev))
993 bxt_ddi_clock_get(encoder, pipe_config);
994 }
995
996 static bool
997 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
998 struct intel_crtc_state *crtc_state,
999 struct intel_encoder *intel_encoder)
1000 {
1001 struct intel_shared_dpll *pll;
1002
1003 pll = intel_get_shared_dpll(intel_crtc, crtc_state,
1004 intel_encoder);
1005 if (!pll)
1006 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1007 pipe_name(intel_crtc->pipe));
1008
1009 return pll;
1010 }
1011
1012 static bool
1013 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1014 struct intel_crtc_state *crtc_state,
1015 struct intel_encoder *intel_encoder)
1016 {
1017 struct intel_shared_dpll *pll;
1018
1019 pll = intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
1020 if (pll == NULL) {
1021 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1022 pipe_name(intel_crtc->pipe));
1023 return false;
1024 }
1025
1026 return true;
1027 }
1028
1029 static bool
1030 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1031 struct intel_crtc_state *crtc_state,
1032 struct intel_encoder *intel_encoder)
1033 {
1034 return !!intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
1035 }
1036
1037 /*
1038 * Tries to find a *shared* PLL for the CRTC and store it in
1039 * intel_crtc->ddi_pll_sel.
1040 *
1041 * For private DPLLs, compute_config() should do the selection for us. This
1042 * function should be folded into compute_config() eventually.
1043 */
1044 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1045 struct intel_crtc_state *crtc_state)
1046 {
1047 struct drm_device *dev = intel_crtc->base.dev;
1048 struct intel_encoder *intel_encoder =
1049 intel_ddi_get_crtc_new_encoder(crtc_state);
1050
1051 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1052 return skl_ddi_pll_select(intel_crtc, crtc_state,
1053 intel_encoder);
1054 else if (IS_BROXTON(dev))
1055 return bxt_ddi_pll_select(intel_crtc, crtc_state,
1056 intel_encoder);
1057 else
1058 return hsw_ddi_pll_select(intel_crtc, crtc_state,
1059 intel_encoder);
1060 }
1061
1062 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1063 {
1064 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1066 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1067 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1068 int type = intel_encoder->type;
1069 uint32_t temp;
1070
1071 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1072 WARN_ON(transcoder_is_dsi(cpu_transcoder));
1073
1074 temp = TRANS_MSA_SYNC_CLK;
1075 switch (intel_crtc->config->pipe_bpp) {
1076 case 18:
1077 temp |= TRANS_MSA_6_BPC;
1078 break;
1079 case 24:
1080 temp |= TRANS_MSA_8_BPC;
1081 break;
1082 case 30:
1083 temp |= TRANS_MSA_10_BPC;
1084 break;
1085 case 36:
1086 temp |= TRANS_MSA_12_BPC;
1087 break;
1088 default:
1089 BUG();
1090 }
1091 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1092 }
1093 }
1094
1095 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1096 {
1097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1098 struct drm_device *dev = crtc->dev;
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1101 uint32_t temp;
1102 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1103 if (state == true)
1104 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1105 else
1106 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1107 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1108 }
1109
1110 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1111 {
1112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1113 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1114 struct drm_encoder *encoder = &intel_encoder->base;
1115 struct drm_device *dev = crtc->dev;
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1117 enum pipe pipe = intel_crtc->pipe;
1118 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1119 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1120 int type = intel_encoder->type;
1121 uint32_t temp;
1122
1123 /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1124 temp = TRANS_DDI_FUNC_ENABLE;
1125 temp |= TRANS_DDI_SELECT_PORT(port);
1126
1127 switch (intel_crtc->config->pipe_bpp) {
1128 case 18:
1129 temp |= TRANS_DDI_BPC_6;
1130 break;
1131 case 24:
1132 temp |= TRANS_DDI_BPC_8;
1133 break;
1134 case 30:
1135 temp |= TRANS_DDI_BPC_10;
1136 break;
1137 case 36:
1138 temp |= TRANS_DDI_BPC_12;
1139 break;
1140 default:
1141 BUG();
1142 }
1143
1144 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1145 temp |= TRANS_DDI_PVSYNC;
1146 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1147 temp |= TRANS_DDI_PHSYNC;
1148
1149 if (cpu_transcoder == TRANSCODER_EDP) {
1150 switch (pipe) {
1151 case PIPE_A:
1152 /* On Haswell, can only use the always-on power well for
1153 * eDP when not using the panel fitter, and when not
1154 * using motion blur mitigation (which we don't
1155 * support). */
1156 if (IS_HASWELL(dev) &&
1157 (intel_crtc->config->pch_pfit.enabled ||
1158 intel_crtc->config->pch_pfit.force_thru))
1159 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1160 else
1161 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1162 break;
1163 case PIPE_B:
1164 temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1165 break;
1166 case PIPE_C:
1167 temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1168 break;
1169 default:
1170 BUG();
1171 break;
1172 }
1173 }
1174
1175 if (type == INTEL_OUTPUT_HDMI) {
1176 if (intel_crtc->config->has_hdmi_sink)
1177 temp |= TRANS_DDI_MODE_SELECT_HDMI;
1178 else
1179 temp |= TRANS_DDI_MODE_SELECT_DVI;
1180
1181 } else if (type == INTEL_OUTPUT_ANALOG) {
1182 temp |= TRANS_DDI_MODE_SELECT_FDI;
1183 temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1184
1185 } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1186 type == INTEL_OUTPUT_EDP) {
1187 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1188
1189 if (intel_dp->is_mst) {
1190 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1191 } else
1192 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1193
1194 temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1195 } else if (type == INTEL_OUTPUT_DP_MST) {
1196 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1197
1198 if (intel_dp->is_mst) {
1199 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1200 } else
1201 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1202
1203 temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1204 } else {
1205 WARN(1, "Invalid encoder type %d for pipe %c\n",
1206 intel_encoder->type, pipe_name(pipe));
1207 }
1208
1209 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1210 }
1211
1212 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1213 enum transcoder cpu_transcoder)
1214 {
1215 i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1216 uint32_t val = I915_READ(reg);
1217
1218 val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1219 val |= TRANS_DDI_PORT_NONE;
1220 I915_WRITE(reg, val);
1221 }
1222
1223 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1224 {
1225 struct drm_device *dev = intel_connector->base.dev;
1226 struct drm_i915_private *dev_priv = dev->dev_private;
1227 struct intel_encoder *intel_encoder = intel_connector->encoder;
1228 int type = intel_connector->base.connector_type;
1229 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1230 enum pipe pipe = 0;
1231 enum transcoder cpu_transcoder;
1232 enum intel_display_power_domain power_domain;
1233 uint32_t tmp;
1234 bool ret;
1235
1236 power_domain = intel_display_port_power_domain(intel_encoder);
1237 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
1238 return false;
1239
1240 if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
1241 ret = false;
1242 goto out;
1243 }
1244
1245 if (port == PORT_A)
1246 cpu_transcoder = TRANSCODER_EDP;
1247 else
1248 cpu_transcoder = (enum transcoder) pipe;
1249
1250 tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1251
1252 switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1253 case TRANS_DDI_MODE_SELECT_HDMI:
1254 case TRANS_DDI_MODE_SELECT_DVI:
1255 ret = type == DRM_MODE_CONNECTOR_HDMIA;
1256 break;
1257
1258 case TRANS_DDI_MODE_SELECT_DP_SST:
1259 ret = type == DRM_MODE_CONNECTOR_eDP ||
1260 type == DRM_MODE_CONNECTOR_DisplayPort;
1261 break;
1262
1263 case TRANS_DDI_MODE_SELECT_DP_MST:
1264 /* if the transcoder is in MST state then
1265 * connector isn't connected */
1266 ret = false;
1267 break;
1268
1269 case TRANS_DDI_MODE_SELECT_FDI:
1270 ret = type == DRM_MODE_CONNECTOR_VGA;
1271 break;
1272
1273 default:
1274 ret = false;
1275 break;
1276 }
1277
1278 out:
1279 intel_display_power_put(dev_priv, power_domain);
1280
1281 return ret;
1282 }
1283
1284 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1285 enum pipe *pipe)
1286 {
1287 struct drm_device *dev = encoder->base.dev;
1288 struct drm_i915_private *dev_priv = dev->dev_private;
1289 enum port port = intel_ddi_get_encoder_port(encoder);
1290 enum intel_display_power_domain power_domain;
1291 u32 tmp;
1292 int i;
1293 bool ret;
1294
1295 power_domain = intel_display_port_power_domain(encoder);
1296 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
1297 return false;
1298
1299 ret = false;
1300
1301 tmp = I915_READ(DDI_BUF_CTL(port));
1302
1303 if (!(tmp & DDI_BUF_CTL_ENABLE))
1304 goto out;
1305
1306 if (port == PORT_A) {
1307 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1308
1309 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1310 case TRANS_DDI_EDP_INPUT_A_ON:
1311 case TRANS_DDI_EDP_INPUT_A_ONOFF:
1312 *pipe = PIPE_A;
1313 break;
1314 case TRANS_DDI_EDP_INPUT_B_ONOFF:
1315 *pipe = PIPE_B;
1316 break;
1317 case TRANS_DDI_EDP_INPUT_C_ONOFF:
1318 *pipe = PIPE_C;
1319 break;
1320 }
1321
1322 ret = true;
1323
1324 goto out;
1325 }
1326
1327 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1328 tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1329
1330 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
1331 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
1332 TRANS_DDI_MODE_SELECT_DP_MST)
1333 goto out;
1334
1335 *pipe = i;
1336 ret = true;
1337
1338 goto out;
1339 }
1340 }
1341
1342 DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1343
1344 out:
1345 intel_display_power_put(dev_priv, power_domain);
1346
1347 return ret;
1348 }
1349
1350 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1351 {
1352 struct drm_crtc *crtc = &intel_crtc->base;
1353 struct drm_device *dev = crtc->dev;
1354 struct drm_i915_private *dev_priv = dev->dev_private;
1355 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1356 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1357 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1358
1359 if (cpu_transcoder != TRANSCODER_EDP)
1360 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1361 TRANS_CLK_SEL_PORT(port));
1362 }
1363
1364 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1365 {
1366 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1367 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1368
1369 if (cpu_transcoder != TRANSCODER_EDP)
1370 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1371 TRANS_CLK_SEL_DISABLED);
1372 }
1373
1374 static void skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
1375 u32 level, enum port port, int type)
1376 {
1377 const struct ddi_buf_trans *ddi_translations;
1378 uint8_t iboost;
1379 uint8_t dp_iboost, hdmi_iboost;
1380 int n_entries;
1381 u32 reg;
1382
1383 /* VBT may override standard boost values */
1384 dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
1385 hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
1386
1387 if (type == INTEL_OUTPUT_DISPLAYPORT) {
1388 if (dp_iboost) {
1389 iboost = dp_iboost;
1390 } else {
1391 ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
1392 iboost = ddi_translations[level].i_boost;
1393 }
1394 } else if (type == INTEL_OUTPUT_EDP) {
1395 if (dp_iboost) {
1396 iboost = dp_iboost;
1397 } else {
1398 ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
1399
1400 if (WARN_ON(port != PORT_A &&
1401 port != PORT_E && n_entries > 9))
1402 n_entries = 9;
1403
1404 iboost = ddi_translations[level].i_boost;
1405 }
1406 } else if (type == INTEL_OUTPUT_HDMI) {
1407 if (hdmi_iboost) {
1408 iboost = hdmi_iboost;
1409 } else {
1410 ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
1411 iboost = ddi_translations[level].i_boost;
1412 }
1413 } else {
1414 return;
1415 }
1416
1417 /* Make sure that the requested I_boost is valid */
1418 if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
1419 DRM_ERROR("Invalid I_boost value %u\n", iboost);
1420 return;
1421 }
1422
1423 reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
1424 reg &= ~BALANCE_LEG_MASK(port);
1425 reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
1426
1427 if (iboost)
1428 reg |= iboost << BALANCE_LEG_SHIFT(port);
1429 else
1430 reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
1431
1432 I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
1433 }
1434
1435 static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
1436 u32 level, enum port port, int type)
1437 {
1438 const struct bxt_ddi_buf_trans *ddi_translations;
1439 u32 n_entries, i;
1440 uint32_t val;
1441
1442 if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
1443 n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
1444 ddi_translations = bxt_ddi_translations_edp;
1445 } else if (type == INTEL_OUTPUT_DISPLAYPORT
1446 || type == INTEL_OUTPUT_EDP) {
1447 n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
1448 ddi_translations = bxt_ddi_translations_dp;
1449 } else if (type == INTEL_OUTPUT_HDMI) {
1450 n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
1451 ddi_translations = bxt_ddi_translations_hdmi;
1452 } else {
1453 DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
1454 type);
1455 return;
1456 }
1457
1458 /* Check if default value has to be used */
1459 if (level >= n_entries ||
1460 (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
1461 for (i = 0; i < n_entries; i++) {
1462 if (ddi_translations[i].default_index) {
1463 level = i;
1464 break;
1465 }
1466 }
1467 }
1468
1469 /*
1470 * While we write to the group register to program all lanes at once we
1471 * can read only lane registers and we pick lanes 0/1 for that.
1472 */
1473 val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1474 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
1475 I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1476
1477 val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
1478 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
1479 val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
1480 ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
1481 I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
1482
1483 val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
1484 val &= ~SCALE_DCOMP_METHOD;
1485 if (ddi_translations[level].enable)
1486 val |= SCALE_DCOMP_METHOD;
1487
1488 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
1489 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
1490
1491 I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
1492
1493 val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
1494 val &= ~DE_EMPHASIS;
1495 val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
1496 I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
1497
1498 val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
1499 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
1500 I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
1501 }
1502
1503 static uint32_t translate_signal_level(int signal_levels)
1504 {
1505 uint32_t level;
1506
1507 switch (signal_levels) {
1508 default:
1509 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
1510 signal_levels);
1511 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1512 level = 0;
1513 break;
1514 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1515 level = 1;
1516 break;
1517 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
1518 level = 2;
1519 break;
1520 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
1521 level = 3;
1522 break;
1523
1524 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1525 level = 4;
1526 break;
1527 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1528 level = 5;
1529 break;
1530 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
1531 level = 6;
1532 break;
1533
1534 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1535 level = 7;
1536 break;
1537 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
1538 level = 8;
1539 break;
1540
1541 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
1542 level = 9;
1543 break;
1544 }
1545
1546 return level;
1547 }
1548
1549 uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
1550 {
1551 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1552 struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
1553 struct intel_encoder *encoder = &dport->base;
1554 uint8_t train_set = intel_dp->train_set[0];
1555 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1556 DP_TRAIN_PRE_EMPHASIS_MASK);
1557 enum port port = dport->port;
1558 uint32_t level;
1559
1560 level = translate_signal_level(signal_levels);
1561
1562 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1563 skl_ddi_set_iboost(dev_priv, level, port, encoder->type);
1564 else if (IS_BROXTON(dev_priv))
1565 bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
1566
1567 return DDI_BUF_TRANS_SELECT(level);
1568 }
1569
1570 void intel_ddi_clk_select(struct intel_encoder *encoder,
1571 const struct intel_crtc_state *pipe_config)
1572 {
1573 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1574 enum port port = intel_ddi_get_encoder_port(encoder);
1575
1576 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1577 uint32_t dpll = pipe_config->ddi_pll_sel;
1578 uint32_t val;
1579
1580 /* DDI -> PLL mapping */
1581 val = I915_READ(DPLL_CTRL2);
1582
1583 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1584 DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1585 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1586 DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1587
1588 I915_WRITE(DPLL_CTRL2, val);
1589
1590 } else if (INTEL_INFO(dev_priv)->gen < 9) {
1591 WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1592 I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
1593 }
1594 }
1595
1596 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1597 {
1598 struct drm_encoder *encoder = &intel_encoder->base;
1599 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
1600 struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1601 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1602 int type = intel_encoder->type;
1603
1604 if (type == INTEL_OUTPUT_HDMI) {
1605 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1606
1607 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
1608 }
1609
1610 intel_prepare_ddi_buffer(intel_encoder);
1611
1612 if (type == INTEL_OUTPUT_EDP) {
1613 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1614 intel_edp_panel_on(intel_dp);
1615 }
1616
1617 intel_ddi_clk_select(intel_encoder, crtc->config);
1618
1619 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1620 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1621
1622 intel_dp_set_link_params(intel_dp, crtc->config);
1623
1624 intel_ddi_init_dp_buf_reg(intel_encoder);
1625
1626 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1627 intel_dp_start_link_train(intel_dp);
1628 if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
1629 intel_dp_stop_link_train(intel_dp);
1630 } else if (type == INTEL_OUTPUT_HDMI) {
1631 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1632
1633 intel_hdmi->set_infoframes(encoder,
1634 crtc->config->has_hdmi_sink,
1635 &crtc->config->base.adjusted_mode);
1636 }
1637 }
1638
1639 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1640 {
1641 struct drm_encoder *encoder = &intel_encoder->base;
1642 struct drm_device *dev = encoder->dev;
1643 struct drm_i915_private *dev_priv = dev->dev_private;
1644 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1645 int type = intel_encoder->type;
1646 uint32_t val;
1647 bool wait = false;
1648
1649 val = I915_READ(DDI_BUF_CTL(port));
1650 if (val & DDI_BUF_CTL_ENABLE) {
1651 val &= ~DDI_BUF_CTL_ENABLE;
1652 I915_WRITE(DDI_BUF_CTL(port), val);
1653 wait = true;
1654 }
1655
1656 val = I915_READ(DP_TP_CTL(port));
1657 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1658 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1659 I915_WRITE(DP_TP_CTL(port), val);
1660
1661 if (wait)
1662 intel_wait_ddi_buf_idle(dev_priv, port);
1663
1664 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1665 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1666 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1667 intel_edp_panel_vdd_on(intel_dp);
1668 intel_edp_panel_off(intel_dp);
1669 }
1670
1671 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1672 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1673 DPLL_CTRL2_DDI_CLK_OFF(port)));
1674 else if (INTEL_INFO(dev)->gen < 9)
1675 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1676
1677 if (type == INTEL_OUTPUT_HDMI) {
1678 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1679
1680 intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
1681 }
1682 }
1683
1684 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1685 {
1686 struct drm_encoder *encoder = &intel_encoder->base;
1687 struct drm_crtc *crtc = encoder->crtc;
1688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1689 struct drm_device *dev = encoder->dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1692 int type = intel_encoder->type;
1693
1694 if (type == INTEL_OUTPUT_HDMI) {
1695 struct intel_digital_port *intel_dig_port =
1696 enc_to_dig_port(encoder);
1697
1698 /* In HDMI/DVI mode, the port width, and swing/emphasis values
1699 * are ignored so nothing special needs to be done besides
1700 * enabling the port.
1701 */
1702 I915_WRITE(DDI_BUF_CTL(port),
1703 intel_dig_port->saved_port_bits |
1704 DDI_BUF_CTL_ENABLE);
1705 } else if (type == INTEL_OUTPUT_EDP) {
1706 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1707
1708 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1709 intel_dp_stop_link_train(intel_dp);
1710
1711 intel_edp_backlight_on(intel_dp);
1712 intel_psr_enable(intel_dp);
1713 intel_edp_drrs_enable(intel_dp);
1714 }
1715
1716 if (intel_crtc->config->has_audio) {
1717 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1718 intel_audio_codec_enable(intel_encoder);
1719 }
1720 }
1721
1722 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1723 {
1724 struct drm_encoder *encoder = &intel_encoder->base;
1725 struct drm_crtc *crtc = encoder->crtc;
1726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1727 int type = intel_encoder->type;
1728 struct drm_device *dev = encoder->dev;
1729 struct drm_i915_private *dev_priv = dev->dev_private;
1730
1731 if (intel_crtc->config->has_audio) {
1732 intel_audio_codec_disable(intel_encoder);
1733 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1734 }
1735
1736 if (type == INTEL_OUTPUT_EDP) {
1737 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1738
1739 intel_edp_drrs_disable(intel_dp);
1740 intel_psr_disable(intel_dp);
1741 intel_edp_backlight_off(intel_dp);
1742 }
1743 }
1744
1745 static bool broxton_phy_is_enabled(struct drm_i915_private *dev_priv,
1746 enum dpio_phy phy)
1747 {
1748 if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & GT_DISPLAY_POWER_ON(phy)))
1749 return false;
1750
1751 if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
1752 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
1753 DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
1754 phy);
1755
1756 return false;
1757 }
1758
1759 if (phy == DPIO_PHY1 &&
1760 !(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE)) {
1761 DRM_DEBUG_DRIVER("DDI PHY 1 powered, but GRC isn't done\n");
1762
1763 return false;
1764 }
1765
1766 if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
1767 DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
1768 phy);
1769
1770 return false;
1771 }
1772
1773 return true;
1774 }
1775
1776 static u32 broxton_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
1777 {
1778 u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
1779
1780 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
1781 }
1782
1783 static void broxton_phy_wait_grc_done(struct drm_i915_private *dev_priv,
1784 enum dpio_phy phy)
1785 {
1786 if (wait_for(I915_READ(BXT_PORT_REF_DW3(phy)) & GRC_DONE, 10))
1787 DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
1788 }
1789
1790 static bool broxton_phy_verify_state(struct drm_i915_private *dev_priv,
1791 enum dpio_phy phy);
1792
1793 static void broxton_phy_init(struct drm_i915_private *dev_priv,
1794 enum dpio_phy phy)
1795 {
1796 enum port port;
1797 u32 ports, val;
1798
1799 if (broxton_phy_is_enabled(dev_priv, phy)) {
1800 /* Still read out the GRC value for state verification */
1801 if (phy == DPIO_PHY0)
1802 dev_priv->bxt_phy_grc = broxton_get_grc(dev_priv, phy);
1803
1804 if (broxton_phy_verify_state(dev_priv, phy)) {
1805 DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
1806 "won't reprogram it\n", phy);
1807
1808 return;
1809 }
1810
1811 DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
1812 "force reprogramming it\n", phy);
1813 } else {
1814 DRM_DEBUG_DRIVER("DDI PHY %d not enabled, enabling it\n", phy);
1815 }
1816
1817 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
1818 val |= GT_DISPLAY_POWER_ON(phy);
1819 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
1820
1821 /*
1822 * The PHY registers start out inaccessible and respond to reads with
1823 * all 1s. Eventually they become accessible as they power up, then
1824 * the reserved bit will give the default 0. Poll on the reserved bit
1825 * becoming 0 to find when the PHY is accessible.
1826 * HW team confirmed that the time to reach phypowergood status is
1827 * anywhere between 50 us and 100us.
1828 */
1829 if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
1830 (PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
1831 DRM_ERROR("timeout during PHY%d power on\n", phy);
1832 }
1833
1834 if (phy == DPIO_PHY0)
1835 ports = BIT(PORT_B) | BIT(PORT_C);
1836 else
1837 ports = BIT(PORT_A);
1838
1839 for_each_port_masked(port, ports) {
1840 int lane;
1841
1842 for (lane = 0; lane < 4; lane++) {
1843 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
1844 /*
1845 * Note that on CHV this flag is called UPAR, but has
1846 * the same function.
1847 */
1848 val &= ~LATENCY_OPTIM;
1849 if (lane != 1)
1850 val |= LATENCY_OPTIM;
1851
1852 I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
1853 }
1854 }
1855
1856 /* Program PLL Rcomp code offset */
1857 val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
1858 val &= ~IREF0RC_OFFSET_MASK;
1859 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
1860 I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
1861
1862 val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
1863 val &= ~IREF1RC_OFFSET_MASK;
1864 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
1865 I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
1866
1867 /* Program power gating */
1868 val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
1869 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
1870 SUS_CLK_CONFIG;
1871 I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
1872
1873 if (phy == DPIO_PHY0) {
1874 val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
1875 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
1876 I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
1877 }
1878
1879 val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
1880 val &= ~OCL2_LDOFUSE_PWR_DIS;
1881 /*
1882 * On PHY1 disable power on the second channel, since no port is
1883 * connected there. On PHY0 both channels have a port, so leave it
1884 * enabled.
1885 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
1886 * power down the second channel on PHY0 as well.
1887 *
1888 * FIXME: Clarify programming of the following, the register is
1889 * read-only with bit 6 fixed at 0 at least in stepping A.
1890 */
1891 if (phy == DPIO_PHY1)
1892 val |= OCL2_LDOFUSE_PWR_DIS;
1893 I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
1894
1895 if (phy == DPIO_PHY0) {
1896 uint32_t grc_code;
1897 /*
1898 * PHY0 isn't connected to an RCOMP resistor so copy over
1899 * the corresponding calibrated value from PHY1, and disable
1900 * the automatic calibration on PHY0.
1901 */
1902 broxton_phy_wait_grc_done(dev_priv, DPIO_PHY1);
1903
1904 val = dev_priv->bxt_phy_grc = broxton_get_grc(dev_priv,
1905 DPIO_PHY1);
1906 grc_code = val << GRC_CODE_FAST_SHIFT |
1907 val << GRC_CODE_SLOW_SHIFT |
1908 val;
1909 I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
1910
1911 val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
1912 val |= GRC_DIS | GRC_RDY_OVRD;
1913 I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
1914 }
1915 /*
1916 * During PHY1 init delay waiting for GRC calibration to finish, since
1917 * it can happen in parallel with the subsequent PHY0 init.
1918 */
1919
1920 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
1921 val |= COMMON_RESET_DIS;
1922 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
1923 }
1924
1925 void broxton_ddi_phy_init(struct drm_i915_private *dev_priv)
1926 {
1927 /* Enable PHY1 first since it provides Rcomp for PHY0 */
1928 broxton_phy_init(dev_priv, DPIO_PHY1);
1929 broxton_phy_init(dev_priv, DPIO_PHY0);
1930
1931 /*
1932 * If BIOS enabled only PHY0 and not PHY1, we skipped waiting for the
1933 * PHY1 GRC calibration to finish, so wait for it here.
1934 */
1935 broxton_phy_wait_grc_done(dev_priv, DPIO_PHY1);
1936 }
1937
1938 static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
1939 enum dpio_phy phy)
1940 {
1941 uint32_t val;
1942
1943 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
1944 val &= ~COMMON_RESET_DIS;
1945 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
1946
1947 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
1948 val &= ~GT_DISPLAY_POWER_ON(phy);
1949 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
1950 }
1951
1952 void broxton_ddi_phy_uninit(struct drm_i915_private *dev_priv)
1953 {
1954 broxton_phy_uninit(dev_priv, DPIO_PHY1);
1955 broxton_phy_uninit(dev_priv, DPIO_PHY0);
1956 }
1957
1958 static bool __printf(6, 7)
1959 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1960 i915_reg_t reg, u32 mask, u32 expected,
1961 const char *reg_fmt, ...)
1962 {
1963 struct va_format vaf;
1964 va_list args;
1965 u32 val;
1966
1967 val = I915_READ(reg);
1968 if ((val & mask) == expected)
1969 return true;
1970
1971 va_start(args, reg_fmt);
1972 vaf.fmt = reg_fmt;
1973 vaf.va = &args;
1974
1975 DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
1976 "current %08x, expected %08x (mask %08x)\n",
1977 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
1978 mask);
1979
1980 va_end(args);
1981
1982 return false;
1983 }
1984
1985 static bool broxton_phy_verify_state(struct drm_i915_private *dev_priv,
1986 enum dpio_phy phy)
1987 {
1988 enum port port;
1989 u32 ports;
1990 uint32_t mask;
1991 bool ok;
1992
1993 #define _CHK(reg, mask, exp, fmt, ...) \
1994 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
1995 ## __VA_ARGS__)
1996
1997 /* We expect the PHY to be always enabled */
1998 if (!broxton_phy_is_enabled(dev_priv, phy))
1999 return false;
2000
2001 ok = true;
2002
2003 if (phy == DPIO_PHY0)
2004 ports = BIT(PORT_B) | BIT(PORT_C);
2005 else
2006 ports = BIT(PORT_A);
2007
2008 for_each_port_masked(port, ports) {
2009 int lane;
2010
2011 for (lane = 0; lane < 4; lane++)
2012 ok &= _CHK(BXT_PORT_TX_DW14_LN(port, lane),
2013 LATENCY_OPTIM,
2014 lane != 1 ? LATENCY_OPTIM : 0,
2015 "BXT_PORT_TX_DW14_LN(%d, %d)", port, lane);
2016 }
2017
2018 /* PLL Rcomp code offset */
2019 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
2020 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
2021 "BXT_PORT_CL1CM_DW9(%d)", phy);
2022 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
2023 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
2024 "BXT_PORT_CL1CM_DW10(%d)", phy);
2025
2026 /* Power gating */
2027 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
2028 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
2029 "BXT_PORT_CL1CM_DW28(%d)", phy);
2030
2031 if (phy == DPIO_PHY0)
2032 ok &= _CHK(BXT_PORT_CL2CM_DW6_BC,
2033 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
2034 "BXT_PORT_CL2CM_DW6_BC");
2035
2036 /*
2037 * TODO: Verify BXT_PORT_CL1CM_DW30 bit OCL2_LDOFUSE_PWR_DIS,
2038 * at least on stepping A this bit is read-only and fixed at 0.
2039 */
2040
2041 if (phy == DPIO_PHY0) {
2042 u32 grc_code = dev_priv->bxt_phy_grc;
2043
2044 grc_code = grc_code << GRC_CODE_FAST_SHIFT |
2045 grc_code << GRC_CODE_SLOW_SHIFT |
2046 grc_code;
2047 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
2048 GRC_CODE_NOM_MASK;
2049 ok &= _CHK(BXT_PORT_REF_DW6(DPIO_PHY0), mask, grc_code,
2050 "BXT_PORT_REF_DW6(%d)", DPIO_PHY0);
2051
2052 mask = GRC_DIS | GRC_RDY_OVRD;
2053 ok &= _CHK(BXT_PORT_REF_DW8(DPIO_PHY0), mask, mask,
2054 "BXT_PORT_REF_DW8(%d)", DPIO_PHY0);
2055 }
2056
2057 return ok;
2058 #undef _CHK
2059 }
2060
2061 void broxton_ddi_phy_verify_state(struct drm_i915_private *dev_priv)
2062 {
2063 if (!broxton_phy_verify_state(dev_priv, DPIO_PHY0) ||
2064 !broxton_phy_verify_state(dev_priv, DPIO_PHY1))
2065 i915_report_error(dev_priv, "DDI PHY state mismatch\n");
2066 }
2067
2068 void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
2069 {
2070 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2071 struct drm_i915_private *dev_priv =
2072 to_i915(intel_dig_port->base.base.dev);
2073 enum port port = intel_dig_port->port;
2074 uint32_t val;
2075 bool wait = false;
2076
2077 if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
2078 val = I915_READ(DDI_BUF_CTL(port));
2079 if (val & DDI_BUF_CTL_ENABLE) {
2080 val &= ~DDI_BUF_CTL_ENABLE;
2081 I915_WRITE(DDI_BUF_CTL(port), val);
2082 wait = true;
2083 }
2084
2085 val = I915_READ(DP_TP_CTL(port));
2086 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2087 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2088 I915_WRITE(DP_TP_CTL(port), val);
2089 POSTING_READ(DP_TP_CTL(port));
2090
2091 if (wait)
2092 intel_wait_ddi_buf_idle(dev_priv, port);
2093 }
2094
2095 val = DP_TP_CTL_ENABLE |
2096 DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2097 if (intel_dp->is_mst)
2098 val |= DP_TP_CTL_MODE_MST;
2099 else {
2100 val |= DP_TP_CTL_MODE_SST;
2101 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2102 val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
2103 }
2104 I915_WRITE(DP_TP_CTL(port), val);
2105 POSTING_READ(DP_TP_CTL(port));
2106
2107 intel_dp->DP |= DDI_BUF_CTL_ENABLE;
2108 I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
2109 POSTING_READ(DDI_BUF_CTL(port));
2110
2111 udelay(600);
2112 }
2113
2114 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
2115 {
2116 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2117 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2118 uint32_t val;
2119
2120 /*
2121 * Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
2122 * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
2123 * step 13 is the correct place for it. Step 18 is where it was
2124 * originally before the BUN.
2125 */
2126 val = I915_READ(FDI_RX_CTL(PIPE_A));
2127 val &= ~FDI_RX_ENABLE;
2128 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2129
2130 intel_ddi_post_disable(intel_encoder);
2131
2132 val = I915_READ(FDI_RX_MISC(PIPE_A));
2133 val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2134 val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2135 I915_WRITE(FDI_RX_MISC(PIPE_A), val);
2136
2137 val = I915_READ(FDI_RX_CTL(PIPE_A));
2138 val &= ~FDI_PCDCLK;
2139 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2140
2141 val = I915_READ(FDI_RX_CTL(PIPE_A));
2142 val &= ~FDI_RX_PLL_ENABLE;
2143 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
2144 }
2145
2146 void intel_ddi_get_config(struct intel_encoder *encoder,
2147 struct intel_crtc_state *pipe_config)
2148 {
2149 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2150 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2151 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2152 struct intel_hdmi *intel_hdmi;
2153 u32 temp, flags = 0;
2154
2155 /* XXX: DSI transcoder paranoia */
2156 if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
2157 return;
2158
2159 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2160 if (temp & TRANS_DDI_PHSYNC)
2161 flags |= DRM_MODE_FLAG_PHSYNC;
2162 else
2163 flags |= DRM_MODE_FLAG_NHSYNC;
2164 if (temp & TRANS_DDI_PVSYNC)
2165 flags |= DRM_MODE_FLAG_PVSYNC;
2166 else
2167 flags |= DRM_MODE_FLAG_NVSYNC;
2168
2169 pipe_config->base.adjusted_mode.flags |= flags;
2170
2171 switch (temp & TRANS_DDI_BPC_MASK) {
2172 case TRANS_DDI_BPC_6:
2173 pipe_config->pipe_bpp = 18;
2174 break;
2175 case TRANS_DDI_BPC_8:
2176 pipe_config->pipe_bpp = 24;
2177 break;
2178 case TRANS_DDI_BPC_10:
2179 pipe_config->pipe_bpp = 30;
2180 break;
2181 case TRANS_DDI_BPC_12:
2182 pipe_config->pipe_bpp = 36;
2183 break;
2184 default:
2185 break;
2186 }
2187
2188 switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2189 case TRANS_DDI_MODE_SELECT_HDMI:
2190 pipe_config->has_hdmi_sink = true;
2191 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2192
2193 if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
2194 pipe_config->has_infoframe = true;
2195 /* fall through */
2196 case TRANS_DDI_MODE_SELECT_DVI:
2197 pipe_config->lane_count = 4;
2198 break;
2199 case TRANS_DDI_MODE_SELECT_FDI:
2200 break;
2201 case TRANS_DDI_MODE_SELECT_DP_SST:
2202 case TRANS_DDI_MODE_SELECT_DP_MST:
2203 pipe_config->has_dp_encoder = true;
2204 pipe_config->lane_count =
2205 ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
2206 intel_dp_get_m_n(intel_crtc, pipe_config);
2207 break;
2208 default:
2209 break;
2210 }
2211
2212 if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2213 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2214 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2215 pipe_config->has_audio = true;
2216 }
2217
2218 if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
2219 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2220 /*
2221 * This is a big fat ugly hack.
2222 *
2223 * Some machines in UEFI boot mode provide us a VBT that has 18
2224 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2225 * unknown we fail to light up. Yet the same BIOS boots up with
2226 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2227 * max, not what it tells us to use.
2228 *
2229 * Note: This will still be broken if the eDP panel is not lit
2230 * up by the BIOS, and thus we can't get the mode at module
2231 * load.
2232 */
2233 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2234 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2235 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2236 }
2237
2238 intel_ddi_clock_get(encoder, pipe_config);
2239 }
2240
2241 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2242 struct intel_crtc_state *pipe_config)
2243 {
2244 int type = encoder->type;
2245 int port = intel_ddi_get_encoder_port(encoder);
2246
2247 WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2248
2249 if (port == PORT_A)
2250 pipe_config->cpu_transcoder = TRANSCODER_EDP;
2251
2252 if (type == INTEL_OUTPUT_HDMI)
2253 return intel_hdmi_compute_config(encoder, pipe_config);
2254 else
2255 return intel_dp_compute_config(encoder, pipe_config);
2256 }
2257
2258 static const struct drm_encoder_funcs intel_ddi_funcs = {
2259 .reset = intel_dp_encoder_reset,
2260 .destroy = intel_dp_encoder_destroy,
2261 };
2262
2263 static struct intel_connector *
2264 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2265 {
2266 struct intel_connector *connector;
2267 enum port port = intel_dig_port->port;
2268
2269 connector = intel_connector_alloc();
2270 if (!connector)
2271 return NULL;
2272
2273 intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2274 if (!intel_dp_init_connector(intel_dig_port, connector)) {
2275 kfree(connector);
2276 return NULL;
2277 }
2278
2279 return connector;
2280 }
2281
2282 static struct intel_connector *
2283 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2284 {
2285 struct intel_connector *connector;
2286 enum port port = intel_dig_port->port;
2287
2288 connector = intel_connector_alloc();
2289 if (!connector)
2290 return NULL;
2291
2292 intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2293 intel_hdmi_init_connector(intel_dig_port, connector);
2294
2295 return connector;
2296 }
2297
2298 void intel_ddi_init(struct drm_device *dev, enum port port)
2299 {
2300 struct drm_i915_private *dev_priv = dev->dev_private;
2301 struct intel_digital_port *intel_dig_port;
2302 struct intel_encoder *intel_encoder;
2303 struct drm_encoder *encoder;
2304 bool init_hdmi, init_dp;
2305 int max_lanes;
2306
2307 if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
2308 switch (port) {
2309 case PORT_A:
2310 max_lanes = 4;
2311 break;
2312 case PORT_E:
2313 max_lanes = 0;
2314 break;
2315 default:
2316 max_lanes = 4;
2317 break;
2318 }
2319 } else {
2320 switch (port) {
2321 case PORT_A:
2322 max_lanes = 2;
2323 break;
2324 case PORT_E:
2325 max_lanes = 2;
2326 break;
2327 default:
2328 max_lanes = 4;
2329 break;
2330 }
2331 }
2332
2333 init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2334 dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2335 init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2336 if (!init_dp && !init_hdmi) {
2337 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
2338 port_name(port));
2339 return;
2340 }
2341
2342 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2343 if (!intel_dig_port)
2344 return;
2345
2346 intel_encoder = &intel_dig_port->base;
2347 encoder = &intel_encoder->base;
2348
2349 drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2350 DRM_MODE_ENCODER_TMDS, NULL);
2351
2352 intel_encoder->compute_config = intel_ddi_compute_config;
2353 intel_encoder->enable = intel_enable_ddi;
2354 intel_encoder->pre_enable = intel_ddi_pre_enable;
2355 intel_encoder->disable = intel_disable_ddi;
2356 intel_encoder->post_disable = intel_ddi_post_disable;
2357 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2358 intel_encoder->get_config = intel_ddi_get_config;
2359 intel_encoder->suspend = intel_dp_encoder_suspend;
2360
2361 intel_dig_port->port = port;
2362 intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2363 (DDI_BUF_PORT_REVERSAL |
2364 DDI_A_4_LANES);
2365
2366 /*
2367 * Bspec says that DDI_A_4_LANES is the only supported configuration
2368 * for Broxton. Yet some BIOS fail to set this bit on port A if eDP
2369 * wasn't lit up at boot. Force this bit on in our internal
2370 * configuration so that we use the proper lane count for our
2371 * calculations.
2372 */
2373 if (IS_BROXTON(dev) && port == PORT_A) {
2374 if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
2375 DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
2376 intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
2377 max_lanes = 4;
2378 }
2379 }
2380
2381 intel_dig_port->max_lanes = max_lanes;
2382
2383 intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2384 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2385 intel_encoder->cloneable = 0;
2386
2387 if (init_dp) {
2388 if (!intel_ddi_init_dp_connector(intel_dig_port))
2389 goto err;
2390
2391 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2392 /*
2393 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
2394 * interrupts to check the external panel connection.
2395 */
2396 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
2397 dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
2398 else
2399 dev_priv->hotplug.irq_port[port] = intel_dig_port;
2400 }
2401
2402 /* In theory we don't need the encoder->type check, but leave it just in
2403 * case we have some really bad VBTs... */
2404 if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2405 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2406 goto err;
2407 }
2408
2409 return;
2410
2411 err:
2412 drm_encoder_cleanup(encoder);
2413 kfree(intel_dig_port);
2414 }
This page took 0.087322 seconds and 5 git commands to generate.