drm/i915: Use atomic state in intel_ddi_crtc_get_new_encoder()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32 u32 trans1; /* balance leg enable, de-emph level */
33 u32 trans2; /* vref sel, vswing */
34 };
35
36 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
37 * them for both DP and FDI transports, allowing those ports to
38 * automatically adapt to HDMI connections as well
39 */
40 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
41 { 0x00FFFFFF, 0x0006000E },
42 { 0x00D75FFF, 0x0005000A },
43 { 0x00C30FFF, 0x00040006 },
44 { 0x80AAAFFF, 0x000B0000 },
45 { 0x00FFFFFF, 0x0005000A },
46 { 0x00D75FFF, 0x000C0004 },
47 { 0x80C30FFF, 0x000B0000 },
48 { 0x00FFFFFF, 0x00040006 },
49 { 0x80D75FFF, 0x000B0000 },
50 };
51
52 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
53 { 0x00FFFFFF, 0x0007000E },
54 { 0x00D75FFF, 0x000F000A },
55 { 0x00C30FFF, 0x00060006 },
56 { 0x00AAAFFF, 0x001E0000 },
57 { 0x00FFFFFF, 0x000F000A },
58 { 0x00D75FFF, 0x00160004 },
59 { 0x00C30FFF, 0x001E0000 },
60 { 0x00FFFFFF, 0x00060006 },
61 { 0x00D75FFF, 0x001E0000 },
62 };
63
64 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
65 /* Idx NT mV d T mV d db */
66 { 0x00FFFFFF, 0x0006000E }, /* 0: 400 400 0 */
67 { 0x00E79FFF, 0x000E000C }, /* 1: 400 500 2 */
68 { 0x00D75FFF, 0x0005000A }, /* 2: 400 600 3.5 */
69 { 0x00FFFFFF, 0x0005000A }, /* 3: 600 600 0 */
70 { 0x00E79FFF, 0x001D0007 }, /* 4: 600 750 2 */
71 { 0x00D75FFF, 0x000C0004 }, /* 5: 600 900 3.5 */
72 { 0x00FFFFFF, 0x00040006 }, /* 6: 800 800 0 */
73 { 0x80E79FFF, 0x00030002 }, /* 7: 800 1000 2 */
74 { 0x00FFFFFF, 0x00140005 }, /* 8: 850 850 0 */
75 { 0x00FFFFFF, 0x000C0004 }, /* 9: 900 900 0 */
76 { 0x00FFFFFF, 0x001C0003 }, /* 10: 950 950 0 */
77 { 0x80FFFFFF, 0x00030002 }, /* 11: 1000 1000 0 */
78 };
79
80 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
81 { 0x00FFFFFF, 0x00000012 },
82 { 0x00EBAFFF, 0x00020011 },
83 { 0x00C71FFF, 0x0006000F },
84 { 0x00AAAFFF, 0x000E000A },
85 { 0x00FFFFFF, 0x00020011 },
86 { 0x00DB6FFF, 0x0005000F },
87 { 0x00BEEFFF, 0x000A000C },
88 { 0x00FFFFFF, 0x0005000F },
89 { 0x00DB6FFF, 0x000A000C },
90 };
91
92 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
93 { 0x00FFFFFF, 0x0007000E },
94 { 0x00D75FFF, 0x000E000A },
95 { 0x00BEFFFF, 0x00140006 },
96 { 0x80B2CFFF, 0x001B0002 },
97 { 0x00FFFFFF, 0x000E000A },
98 { 0x00DB6FFF, 0x00160005 },
99 { 0x80C71FFF, 0x001A0002 },
100 { 0x00F7DFFF, 0x00180004 },
101 { 0x80D75FFF, 0x001B0002 },
102 };
103
104 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
105 { 0x00FFFFFF, 0x0001000E },
106 { 0x00D75FFF, 0x0004000A },
107 { 0x00C30FFF, 0x00070006 },
108 { 0x00AAAFFF, 0x000C0000 },
109 { 0x00FFFFFF, 0x0004000A },
110 { 0x00D75FFF, 0x00090004 },
111 { 0x00C30FFF, 0x000C0000 },
112 { 0x00FFFFFF, 0x00070006 },
113 { 0x00D75FFF, 0x000C0000 },
114 };
115
116 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
117 /* Idx NT mV d T mV df db */
118 { 0x00FFFFFF, 0x0007000E }, /* 0: 400 400 0 */
119 { 0x00D75FFF, 0x000E000A }, /* 1: 400 600 3.5 */
120 { 0x00BEFFFF, 0x00140006 }, /* 2: 400 800 6 */
121 { 0x00FFFFFF, 0x0009000D }, /* 3: 450 450 0 */
122 { 0x00FFFFFF, 0x000E000A }, /* 4: 600 600 0 */
123 { 0x00D7FFFF, 0x00140006 }, /* 5: 600 800 2.5 */
124 { 0x80CB2FFF, 0x001B0002 }, /* 6: 600 1000 4.5 */
125 { 0x00FFFFFF, 0x00140006 }, /* 7: 800 800 0 */
126 { 0x80E79FFF, 0x001B0002 }, /* 8: 800 1000 2 */
127 { 0x80FFFFFF, 0x001B0002 }, /* 9: 1000 1000 0 */
128 };
129
130 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
131 { 0x00000018, 0x000000a2 },
132 { 0x00004014, 0x0000009B },
133 { 0x00006012, 0x00000088 },
134 { 0x00008010, 0x00000087 },
135 { 0x00000018, 0x0000009B },
136 { 0x00004014, 0x00000088 },
137 { 0x00006012, 0x00000087 },
138 { 0x00000018, 0x00000088 },
139 { 0x00004014, 0x00000087 },
140 };
141
142 /* eDP 1.4 low vswing translation parameters */
143 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
144 { 0x00000018, 0x000000a8 },
145 { 0x00002016, 0x000000ab },
146 { 0x00006012, 0x000000a2 },
147 { 0x00008010, 0x00000088 },
148 { 0x00000018, 0x000000ab },
149 { 0x00004014, 0x000000a2 },
150 { 0x00006012, 0x000000a6 },
151 { 0x00000018, 0x000000a2 },
152 { 0x00005013, 0x0000009c },
153 { 0x00000018, 0x00000088 },
154 };
155
156
157 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
158 /* Idx NT mV T mV db */
159 { 0x00004014, 0x00000087 }, /* 0: 800 1000 2 */
160 };
161
162 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
163 {
164 struct drm_encoder *encoder = &intel_encoder->base;
165 int type = intel_encoder->type;
166
167 if (type == INTEL_OUTPUT_DP_MST) {
168 struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
169 return intel_dig_port->port;
170 } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
171 type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
172 struct intel_digital_port *intel_dig_port =
173 enc_to_dig_port(encoder);
174 return intel_dig_port->port;
175
176 } else if (type == INTEL_OUTPUT_ANALOG) {
177 return PORT_E;
178
179 } else {
180 DRM_ERROR("Invalid DDI encoder type %d\n", type);
181 BUG();
182 }
183 }
184
185 /*
186 * Starting with Haswell, DDI port buffers must be programmed with correct
187 * values in advance. The buffer values are different for FDI and DP modes,
188 * but the HDMI/DVI fields are shared among those. So we program the DDI
189 * in either FDI or DP modes only, as HDMI connections will work with both
190 * of those
191 */
192 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 u32 reg;
196 int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
197 size;
198 int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
199 const struct ddi_buf_trans *ddi_translations_fdi;
200 const struct ddi_buf_trans *ddi_translations_dp;
201 const struct ddi_buf_trans *ddi_translations_edp;
202 const struct ddi_buf_trans *ddi_translations_hdmi;
203 const struct ddi_buf_trans *ddi_translations;
204
205 if (IS_SKYLAKE(dev)) {
206 ddi_translations_fdi = NULL;
207 ddi_translations_dp = skl_ddi_translations_dp;
208 n_dp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
209 if (dev_priv->vbt.edp_low_vswing) {
210 ddi_translations_edp = skl_ddi_translations_edp;
211 n_edp_entries = ARRAY_SIZE(skl_ddi_translations_edp);
212 } else {
213 ddi_translations_edp = skl_ddi_translations_dp;
214 n_edp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
215 }
216
217 /*
218 * On SKL, the recommendation from the hw team is to always use
219 * a certain type of level shifter (and thus the corresponding
220 * 800mV+2dB entry). Given that's the only validated entry, we
221 * override what is in the VBT, at least until further notice.
222 */
223 hdmi_level = 0;
224 ddi_translations_hdmi = skl_ddi_translations_hdmi;
225 n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
226 hdmi_default_entry = 0;
227 } else if (IS_BROADWELL(dev)) {
228 ddi_translations_fdi = bdw_ddi_translations_fdi;
229 ddi_translations_dp = bdw_ddi_translations_dp;
230 ddi_translations_edp = bdw_ddi_translations_edp;
231 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
232 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
233 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
234 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
235 hdmi_default_entry = 7;
236 } else if (IS_HASWELL(dev)) {
237 ddi_translations_fdi = hsw_ddi_translations_fdi;
238 ddi_translations_dp = hsw_ddi_translations_dp;
239 ddi_translations_edp = hsw_ddi_translations_dp;
240 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
241 n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
242 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
243 hdmi_default_entry = 6;
244 } else {
245 WARN(1, "ddi translation table missing\n");
246 ddi_translations_edp = bdw_ddi_translations_dp;
247 ddi_translations_fdi = bdw_ddi_translations_fdi;
248 ddi_translations_dp = bdw_ddi_translations_dp;
249 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
250 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
251 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
252 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
253 hdmi_default_entry = 7;
254 }
255
256 switch (port) {
257 case PORT_A:
258 ddi_translations = ddi_translations_edp;
259 size = n_edp_entries;
260 break;
261 case PORT_B:
262 case PORT_C:
263 ddi_translations = ddi_translations_dp;
264 size = n_dp_entries;
265 break;
266 case PORT_D:
267 if (intel_dp_is_edp(dev, PORT_D)) {
268 ddi_translations = ddi_translations_edp;
269 size = n_edp_entries;
270 } else {
271 ddi_translations = ddi_translations_dp;
272 size = n_dp_entries;
273 }
274 break;
275 case PORT_E:
276 if (ddi_translations_fdi)
277 ddi_translations = ddi_translations_fdi;
278 else
279 ddi_translations = ddi_translations_dp;
280 size = n_dp_entries;
281 break;
282 default:
283 BUG();
284 }
285
286 for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
287 I915_WRITE(reg, ddi_translations[i].trans1);
288 reg += 4;
289 I915_WRITE(reg, ddi_translations[i].trans2);
290 reg += 4;
291 }
292
293 /* Choose a good default if VBT is badly populated */
294 if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
295 hdmi_level >= n_hdmi_entries)
296 hdmi_level = hdmi_default_entry;
297
298 /* Entry 9 is for HDMI: */
299 I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
300 reg += 4;
301 I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
302 reg += 4;
303 }
304
305 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
306 * mode and port E for FDI.
307 */
308 void intel_prepare_ddi(struct drm_device *dev)
309 {
310 int port;
311
312 if (!HAS_DDI(dev))
313 return;
314
315 for (port = PORT_A; port <= PORT_E; port++)
316 intel_prepare_ddi_buffers(dev, port);
317 }
318
319 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
320 enum port port)
321 {
322 uint32_t reg = DDI_BUF_CTL(port);
323 int i;
324
325 for (i = 0; i < 8; i++) {
326 udelay(1);
327 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
328 return;
329 }
330 DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
331 }
332
333 /* Starting with Haswell, different DDI ports can work in FDI mode for
334 * connection to the PCH-located connectors. For this, it is necessary to train
335 * both the DDI port and PCH receiver for the desired DDI buffer settings.
336 *
337 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
338 * please note that when FDI mode is active on DDI E, it shares 2 lines with
339 * DDI A (which is used for eDP)
340 */
341
342 void hsw_fdi_link_train(struct drm_crtc *crtc)
343 {
344 struct drm_device *dev = crtc->dev;
345 struct drm_i915_private *dev_priv = dev->dev_private;
346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
347 u32 temp, i, rx_ctl_val;
348
349 /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
350 * mode set "sequence for CRT port" document:
351 * - TP1 to TP2 time with the default value
352 * - FDI delay to 90h
353 *
354 * WaFDIAutoLinkSetTimingOverrride:hsw
355 */
356 I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
357 FDI_RX_PWRDN_LANE0_VAL(2) |
358 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
359
360 /* Enable the PCH Receiver FDI PLL */
361 rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
362 FDI_RX_PLL_ENABLE |
363 FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
364 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
365 POSTING_READ(_FDI_RXA_CTL);
366 udelay(220);
367
368 /* Switch from Rawclk to PCDclk */
369 rx_ctl_val |= FDI_PCDCLK;
370 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
371
372 /* Configure Port Clock Select */
373 I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
374 WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
375
376 /* Start the training iterating through available voltages and emphasis,
377 * testing each value twice. */
378 for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
379 /* Configure DP_TP_CTL with auto-training */
380 I915_WRITE(DP_TP_CTL(PORT_E),
381 DP_TP_CTL_FDI_AUTOTRAIN |
382 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
383 DP_TP_CTL_LINK_TRAIN_PAT1 |
384 DP_TP_CTL_ENABLE);
385
386 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
387 * DDI E does not support port reversal, the functionality is
388 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
389 * port reversal bit */
390 I915_WRITE(DDI_BUF_CTL(PORT_E),
391 DDI_BUF_CTL_ENABLE |
392 ((intel_crtc->config->fdi_lanes - 1) << 1) |
393 DDI_BUF_TRANS_SELECT(i / 2));
394 POSTING_READ(DDI_BUF_CTL(PORT_E));
395
396 udelay(600);
397
398 /* Program PCH FDI Receiver TU */
399 I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
400
401 /* Enable PCH FDI Receiver with auto-training */
402 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
403 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
404 POSTING_READ(_FDI_RXA_CTL);
405
406 /* Wait for FDI receiver lane calibration */
407 udelay(30);
408
409 /* Unset FDI_RX_MISC pwrdn lanes */
410 temp = I915_READ(_FDI_RXA_MISC);
411 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
412 I915_WRITE(_FDI_RXA_MISC, temp);
413 POSTING_READ(_FDI_RXA_MISC);
414
415 /* Wait for FDI auto training time */
416 udelay(5);
417
418 temp = I915_READ(DP_TP_STATUS(PORT_E));
419 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
420 DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
421
422 /* Enable normal pixel sending for FDI */
423 I915_WRITE(DP_TP_CTL(PORT_E),
424 DP_TP_CTL_FDI_AUTOTRAIN |
425 DP_TP_CTL_LINK_TRAIN_NORMAL |
426 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
427 DP_TP_CTL_ENABLE);
428
429 return;
430 }
431
432 temp = I915_READ(DDI_BUF_CTL(PORT_E));
433 temp &= ~DDI_BUF_CTL_ENABLE;
434 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
435 POSTING_READ(DDI_BUF_CTL(PORT_E));
436
437 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
438 temp = I915_READ(DP_TP_CTL(PORT_E));
439 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
440 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
441 I915_WRITE(DP_TP_CTL(PORT_E), temp);
442 POSTING_READ(DP_TP_CTL(PORT_E));
443
444 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
445
446 rx_ctl_val &= ~FDI_RX_ENABLE;
447 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
448 POSTING_READ(_FDI_RXA_CTL);
449
450 /* Reset FDI_RX_MISC pwrdn lanes */
451 temp = I915_READ(_FDI_RXA_MISC);
452 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
453 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
454 I915_WRITE(_FDI_RXA_MISC, temp);
455 POSTING_READ(_FDI_RXA_MISC);
456 }
457
458 DRM_ERROR("FDI link training failed!\n");
459 }
460
461 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
462 {
463 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
464 struct intel_digital_port *intel_dig_port =
465 enc_to_dig_port(&encoder->base);
466
467 intel_dp->DP = intel_dig_port->saved_port_bits |
468 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
469 intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
470
471 }
472
473 static struct intel_encoder *
474 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
475 {
476 struct drm_device *dev = crtc->dev;
477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
478 struct intel_encoder *intel_encoder, *ret = NULL;
479 int num_encoders = 0;
480
481 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
482 ret = intel_encoder;
483 num_encoders++;
484 }
485
486 if (num_encoders != 1)
487 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
488 pipe_name(intel_crtc->pipe));
489
490 BUG_ON(ret == NULL);
491 return ret;
492 }
493
494 static struct intel_encoder *
495 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
496 {
497 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
498 struct intel_encoder *ret = NULL;
499 struct drm_atomic_state *state;
500 int num_encoders = 0;
501 int i;
502
503 state = crtc_state->base.state;
504
505 for (i = 0; i < state->num_connector; i++) {
506 if (!state->connectors[i] ||
507 state->connector_states[i]->crtc != crtc_state->base.crtc)
508 continue;
509
510 ret = to_intel_encoder(state->connector_states[i]->best_encoder);
511 num_encoders++;
512 }
513
514 WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
515 pipe_name(crtc->pipe));
516
517 BUG_ON(ret == NULL);
518 return ret;
519 }
520
521 #define LC_FREQ 2700
522 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
523
524 #define P_MIN 2
525 #define P_MAX 64
526 #define P_INC 2
527
528 /* Constraints for PLL good behavior */
529 #define REF_MIN 48
530 #define REF_MAX 400
531 #define VCO_MIN 2400
532 #define VCO_MAX 4800
533
534 #define abs_diff(a, b) ({ \
535 typeof(a) __a = (a); \
536 typeof(b) __b = (b); \
537 (void) (&__a == &__b); \
538 __a > __b ? (__a - __b) : (__b - __a); })
539
540 struct wrpll_rnp {
541 unsigned p, n2, r2;
542 };
543
544 static unsigned wrpll_get_budget_for_freq(int clock)
545 {
546 unsigned budget;
547
548 switch (clock) {
549 case 25175000:
550 case 25200000:
551 case 27000000:
552 case 27027000:
553 case 37762500:
554 case 37800000:
555 case 40500000:
556 case 40541000:
557 case 54000000:
558 case 54054000:
559 case 59341000:
560 case 59400000:
561 case 72000000:
562 case 74176000:
563 case 74250000:
564 case 81000000:
565 case 81081000:
566 case 89012000:
567 case 89100000:
568 case 108000000:
569 case 108108000:
570 case 111264000:
571 case 111375000:
572 case 148352000:
573 case 148500000:
574 case 162000000:
575 case 162162000:
576 case 222525000:
577 case 222750000:
578 case 296703000:
579 case 297000000:
580 budget = 0;
581 break;
582 case 233500000:
583 case 245250000:
584 case 247750000:
585 case 253250000:
586 case 298000000:
587 budget = 1500;
588 break;
589 case 169128000:
590 case 169500000:
591 case 179500000:
592 case 202000000:
593 budget = 2000;
594 break;
595 case 256250000:
596 case 262500000:
597 case 270000000:
598 case 272500000:
599 case 273750000:
600 case 280750000:
601 case 281250000:
602 case 286000000:
603 case 291750000:
604 budget = 4000;
605 break;
606 case 267250000:
607 case 268500000:
608 budget = 5000;
609 break;
610 default:
611 budget = 1000;
612 break;
613 }
614
615 return budget;
616 }
617
618 static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
619 unsigned r2, unsigned n2, unsigned p,
620 struct wrpll_rnp *best)
621 {
622 uint64_t a, b, c, d, diff, diff_best;
623
624 /* No best (r,n,p) yet */
625 if (best->p == 0) {
626 best->p = p;
627 best->n2 = n2;
628 best->r2 = r2;
629 return;
630 }
631
632 /*
633 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
634 * freq2k.
635 *
636 * delta = 1e6 *
637 * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
638 * freq2k;
639 *
640 * and we would like delta <= budget.
641 *
642 * If the discrepancy is above the PPM-based budget, always prefer to
643 * improve upon the previous solution. However, if you're within the
644 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
645 */
646 a = freq2k * budget * p * r2;
647 b = freq2k * budget * best->p * best->r2;
648 diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
649 diff_best = abs_diff(freq2k * best->p * best->r2,
650 LC_FREQ_2K * best->n2);
651 c = 1000000 * diff;
652 d = 1000000 * diff_best;
653
654 if (a < c && b < d) {
655 /* If both are above the budget, pick the closer */
656 if (best->p * best->r2 * diff < p * r2 * diff_best) {
657 best->p = p;
658 best->n2 = n2;
659 best->r2 = r2;
660 }
661 } else if (a >= c && b < d) {
662 /* If A is below the threshold but B is above it? Update. */
663 best->p = p;
664 best->n2 = n2;
665 best->r2 = r2;
666 } else if (a >= c && b >= d) {
667 /* Both are below the limit, so pick the higher n2/(r2*r2) */
668 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
669 best->p = p;
670 best->n2 = n2;
671 best->r2 = r2;
672 }
673 }
674 /* Otherwise a < c && b >= d, do nothing */
675 }
676
677 static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
678 int reg)
679 {
680 int refclk = LC_FREQ;
681 int n, p, r;
682 u32 wrpll;
683
684 wrpll = I915_READ(reg);
685 switch (wrpll & WRPLL_PLL_REF_MASK) {
686 case WRPLL_PLL_SSC:
687 case WRPLL_PLL_NON_SSC:
688 /*
689 * We could calculate spread here, but our checking
690 * code only cares about 5% accuracy, and spread is a max of
691 * 0.5% downspread.
692 */
693 refclk = 135;
694 break;
695 case WRPLL_PLL_LCPLL:
696 refclk = LC_FREQ;
697 break;
698 default:
699 WARN(1, "bad wrpll refclk\n");
700 return 0;
701 }
702
703 r = wrpll & WRPLL_DIVIDER_REF_MASK;
704 p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
705 n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
706
707 /* Convert to KHz, p & r have a fixed point portion */
708 return (refclk * n * 100) / (p * r);
709 }
710
711 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
712 uint32_t dpll)
713 {
714 uint32_t cfgcr1_reg, cfgcr2_reg;
715 uint32_t cfgcr1_val, cfgcr2_val;
716 uint32_t p0, p1, p2, dco_freq;
717
718 cfgcr1_reg = GET_CFG_CR1_REG(dpll);
719 cfgcr2_reg = GET_CFG_CR2_REG(dpll);
720
721 cfgcr1_val = I915_READ(cfgcr1_reg);
722 cfgcr2_val = I915_READ(cfgcr2_reg);
723
724 p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
725 p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
726
727 if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
728 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
729 else
730 p1 = 1;
731
732
733 switch (p0) {
734 case DPLL_CFGCR2_PDIV_1:
735 p0 = 1;
736 break;
737 case DPLL_CFGCR2_PDIV_2:
738 p0 = 2;
739 break;
740 case DPLL_CFGCR2_PDIV_3:
741 p0 = 3;
742 break;
743 case DPLL_CFGCR2_PDIV_7:
744 p0 = 7;
745 break;
746 }
747
748 switch (p2) {
749 case DPLL_CFGCR2_KDIV_5:
750 p2 = 5;
751 break;
752 case DPLL_CFGCR2_KDIV_2:
753 p2 = 2;
754 break;
755 case DPLL_CFGCR2_KDIV_3:
756 p2 = 3;
757 break;
758 case DPLL_CFGCR2_KDIV_1:
759 p2 = 1;
760 break;
761 }
762
763 dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
764
765 dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
766 1000) / 0x8000;
767
768 return dco_freq / (p0 * p1 * p2 * 5);
769 }
770
771
772 static void skl_ddi_clock_get(struct intel_encoder *encoder,
773 struct intel_crtc_state *pipe_config)
774 {
775 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
776 int link_clock = 0;
777 uint32_t dpll_ctl1, dpll;
778
779 dpll = pipe_config->ddi_pll_sel;
780
781 dpll_ctl1 = I915_READ(DPLL_CTRL1);
782
783 if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
784 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
785 } else {
786 link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
787 link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);
788
789 switch (link_clock) {
790 case DPLL_CRTL1_LINK_RATE_810:
791 link_clock = 81000;
792 break;
793 case DPLL_CRTL1_LINK_RATE_1080:
794 link_clock = 108000;
795 break;
796 case DPLL_CRTL1_LINK_RATE_1350:
797 link_clock = 135000;
798 break;
799 case DPLL_CRTL1_LINK_RATE_1620:
800 link_clock = 162000;
801 break;
802 case DPLL_CRTL1_LINK_RATE_2160:
803 link_clock = 216000;
804 break;
805 case DPLL_CRTL1_LINK_RATE_2700:
806 link_clock = 270000;
807 break;
808 default:
809 WARN(1, "Unsupported link rate\n");
810 break;
811 }
812 link_clock *= 2;
813 }
814
815 pipe_config->port_clock = link_clock;
816
817 if (pipe_config->has_dp_encoder)
818 pipe_config->base.adjusted_mode.crtc_clock =
819 intel_dotclock_calculate(pipe_config->port_clock,
820 &pipe_config->dp_m_n);
821 else
822 pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
823 }
824
825 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
826 struct intel_crtc_state *pipe_config)
827 {
828 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
829 int link_clock = 0;
830 u32 val, pll;
831
832 val = pipe_config->ddi_pll_sel;
833 switch (val & PORT_CLK_SEL_MASK) {
834 case PORT_CLK_SEL_LCPLL_810:
835 link_clock = 81000;
836 break;
837 case PORT_CLK_SEL_LCPLL_1350:
838 link_clock = 135000;
839 break;
840 case PORT_CLK_SEL_LCPLL_2700:
841 link_clock = 270000;
842 break;
843 case PORT_CLK_SEL_WRPLL1:
844 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
845 break;
846 case PORT_CLK_SEL_WRPLL2:
847 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
848 break;
849 case PORT_CLK_SEL_SPLL:
850 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
851 if (pll == SPLL_PLL_FREQ_810MHz)
852 link_clock = 81000;
853 else if (pll == SPLL_PLL_FREQ_1350MHz)
854 link_clock = 135000;
855 else if (pll == SPLL_PLL_FREQ_2700MHz)
856 link_clock = 270000;
857 else {
858 WARN(1, "bad spll freq\n");
859 return;
860 }
861 break;
862 default:
863 WARN(1, "bad port clock sel\n");
864 return;
865 }
866
867 pipe_config->port_clock = link_clock * 2;
868
869 if (pipe_config->has_pch_encoder)
870 pipe_config->base.adjusted_mode.crtc_clock =
871 intel_dotclock_calculate(pipe_config->port_clock,
872 &pipe_config->fdi_m_n);
873 else if (pipe_config->has_dp_encoder)
874 pipe_config->base.adjusted_mode.crtc_clock =
875 intel_dotclock_calculate(pipe_config->port_clock,
876 &pipe_config->dp_m_n);
877 else
878 pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
879 }
880
881 void intel_ddi_clock_get(struct intel_encoder *encoder,
882 struct intel_crtc_state *pipe_config)
883 {
884 struct drm_device *dev = encoder->base.dev;
885
886 if (INTEL_INFO(dev)->gen <= 8)
887 hsw_ddi_clock_get(encoder, pipe_config);
888 else
889 skl_ddi_clock_get(encoder, pipe_config);
890 }
891
892 static void
893 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
894 unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
895 {
896 uint64_t freq2k;
897 unsigned p, n2, r2;
898 struct wrpll_rnp best = { 0, 0, 0 };
899 unsigned budget;
900
901 freq2k = clock / 100;
902
903 budget = wrpll_get_budget_for_freq(clock);
904
905 /* Special case handling for 540 pixel clock: bypass WR PLL entirely
906 * and directly pass the LC PLL to it. */
907 if (freq2k == 5400000) {
908 *n2_out = 2;
909 *p_out = 1;
910 *r2_out = 2;
911 return;
912 }
913
914 /*
915 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
916 * the WR PLL.
917 *
918 * We want R so that REF_MIN <= Ref <= REF_MAX.
919 * Injecting R2 = 2 * R gives:
920 * REF_MAX * r2 > LC_FREQ * 2 and
921 * REF_MIN * r2 < LC_FREQ * 2
922 *
923 * Which means the desired boundaries for r2 are:
924 * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
925 *
926 */
927 for (r2 = LC_FREQ * 2 / REF_MAX + 1;
928 r2 <= LC_FREQ * 2 / REF_MIN;
929 r2++) {
930
931 /*
932 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
933 *
934 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
935 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
936 * VCO_MAX * r2 > n2 * LC_FREQ and
937 * VCO_MIN * r2 < n2 * LC_FREQ)
938 *
939 * Which means the desired boundaries for n2 are:
940 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
941 */
942 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
943 n2 <= VCO_MAX * r2 / LC_FREQ;
944 n2++) {
945
946 for (p = P_MIN; p <= P_MAX; p += P_INC)
947 wrpll_update_rnp(freq2k, budget,
948 r2, n2, p, &best);
949 }
950 }
951
952 *n2_out = best.n2;
953 *p_out = best.p;
954 *r2_out = best.r2;
955 }
956
957 static bool
958 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
959 struct intel_crtc_state *crtc_state,
960 struct intel_encoder *intel_encoder,
961 int clock)
962 {
963 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
964 struct intel_shared_dpll *pll;
965 uint32_t val;
966 unsigned p, n2, r2;
967
968 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
969
970 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
971 WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
972 WRPLL_DIVIDER_POST(p);
973
974 crtc_state->dpll_hw_state.wrpll = val;
975
976 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
977 if (pll == NULL) {
978 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
979 pipe_name(intel_crtc->pipe));
980 return false;
981 }
982
983 crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
984 }
985
986 return true;
987 }
988
989 struct skl_wrpll_params {
990 uint32_t dco_fraction;
991 uint32_t dco_integer;
992 uint32_t qdiv_ratio;
993 uint32_t qdiv_mode;
994 uint32_t kdiv;
995 uint32_t pdiv;
996 uint32_t central_freq;
997 };
998
999 static void
1000 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1001 struct skl_wrpll_params *wrpll_params)
1002 {
1003 uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1004 uint64_t dco_central_freq[3] = {8400000000ULL,
1005 9000000000ULL,
1006 9600000000ULL};
1007 uint32_t min_dco_deviation = 400;
1008 uint32_t min_dco_index = 3;
1009 uint32_t P0[4] = {1, 2, 3, 7};
1010 uint32_t P2[4] = {1, 2, 3, 5};
1011 bool found = false;
1012 uint32_t candidate_p = 0;
1013 uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
1014 uint32_t candidate_p2[3] = {0};
1015 uint32_t dco_central_freq_deviation[3];
1016 uint32_t i, P1, k, dco_count;
1017 bool retry_with_odd = false;
1018 uint64_t dco_freq;
1019
1020 /* Determine P0, P1 or P2 */
1021 for (dco_count = 0; dco_count < 3; dco_count++) {
1022 found = false;
1023 candidate_p =
1024 div64_u64(dco_central_freq[dco_count], afe_clock);
1025 if (retry_with_odd == false)
1026 candidate_p = (candidate_p % 2 == 0 ?
1027 candidate_p : candidate_p + 1);
1028
1029 for (P1 = 1; P1 < candidate_p; P1++) {
1030 for (i = 0; i < 4; i++) {
1031 if (!(P0[i] != 1 || P1 == 1))
1032 continue;
1033
1034 for (k = 0; k < 4; k++) {
1035 if (P1 != 1 && P2[k] != 2)
1036 continue;
1037
1038 if (candidate_p == P0[i] * P1 * P2[k]) {
1039 /* Found possible P0, P1, P2 */
1040 found = true;
1041 candidate_p0[dco_count] = P0[i];
1042 candidate_p1[dco_count] = P1;
1043 candidate_p2[dco_count] = P2[k];
1044 goto found;
1045 }
1046
1047 }
1048 }
1049 }
1050
1051 found:
1052 if (found) {
1053 dco_central_freq_deviation[dco_count] =
1054 div64_u64(10000 *
1055 abs_diff((candidate_p * afe_clock),
1056 dco_central_freq[dco_count]),
1057 dco_central_freq[dco_count]);
1058
1059 if (dco_central_freq_deviation[dco_count] <
1060 min_dco_deviation) {
1061 min_dco_deviation =
1062 dco_central_freq_deviation[dco_count];
1063 min_dco_index = dco_count;
1064 }
1065 }
1066
1067 if (min_dco_index > 2 && dco_count == 2) {
1068 retry_with_odd = true;
1069 dco_count = 0;
1070 }
1071 }
1072
1073 if (min_dco_index > 2) {
1074 WARN(1, "No valid values found for the given pixel clock\n");
1075 } else {
1076 wrpll_params->central_freq = dco_central_freq[min_dco_index];
1077
1078 switch (dco_central_freq[min_dco_index]) {
1079 case 9600000000ULL:
1080 wrpll_params->central_freq = 0;
1081 break;
1082 case 9000000000ULL:
1083 wrpll_params->central_freq = 1;
1084 break;
1085 case 8400000000ULL:
1086 wrpll_params->central_freq = 3;
1087 }
1088
1089 switch (candidate_p0[min_dco_index]) {
1090 case 1:
1091 wrpll_params->pdiv = 0;
1092 break;
1093 case 2:
1094 wrpll_params->pdiv = 1;
1095 break;
1096 case 3:
1097 wrpll_params->pdiv = 2;
1098 break;
1099 case 7:
1100 wrpll_params->pdiv = 4;
1101 break;
1102 default:
1103 WARN(1, "Incorrect PDiv\n");
1104 }
1105
1106 switch (candidate_p2[min_dco_index]) {
1107 case 5:
1108 wrpll_params->kdiv = 0;
1109 break;
1110 case 2:
1111 wrpll_params->kdiv = 1;
1112 break;
1113 case 3:
1114 wrpll_params->kdiv = 2;
1115 break;
1116 case 1:
1117 wrpll_params->kdiv = 3;
1118 break;
1119 default:
1120 WARN(1, "Incorrect KDiv\n");
1121 }
1122
1123 wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
1124 wrpll_params->qdiv_mode =
1125 (wrpll_params->qdiv_ratio == 1) ? 0 : 1;
1126
1127 dco_freq = candidate_p0[min_dco_index] *
1128 candidate_p1[min_dco_index] *
1129 candidate_p2[min_dco_index] * afe_clock;
1130
1131 /*
1132 * Intermediate values are in Hz.
1133 * Divide by MHz to match bsepc
1134 */
1135 wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
1136 wrpll_params->dco_fraction =
1137 div_u64(((div_u64(dco_freq, 24) -
1138 wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
1139
1140 }
1141 }
1142
1143
1144 static bool
1145 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1146 struct intel_crtc_state *crtc_state,
1147 struct intel_encoder *intel_encoder,
1148 int clock)
1149 {
1150 struct intel_shared_dpll *pll;
1151 uint32_t ctrl1, cfgcr1, cfgcr2;
1152
1153 /*
1154 * See comment in intel_dpll_hw_state to understand why we always use 0
1155 * as the DPLL id in this function.
1156 */
1157
1158 ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1159
1160 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1161 struct skl_wrpll_params wrpll_params = { 0, };
1162
1163 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1164
1165 skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
1166
1167 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1168 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1169 wrpll_params.dco_integer;
1170
1171 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1172 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1173 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1174 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1175 wrpll_params.central_freq;
1176 } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1177 struct drm_encoder *encoder = &intel_encoder->base;
1178 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1179
1180 switch (intel_dp->link_bw) {
1181 case DP_LINK_BW_1_62:
1182 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
1183 break;
1184 case DP_LINK_BW_2_7:
1185 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
1186 break;
1187 case DP_LINK_BW_5_4:
1188 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
1189 break;
1190 }
1191
1192 cfgcr1 = cfgcr2 = 0;
1193 } else /* eDP */
1194 return true;
1195
1196 crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1197 crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1198 crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1199
1200 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1201 if (pll == NULL) {
1202 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1203 pipe_name(intel_crtc->pipe));
1204 return false;
1205 }
1206
1207 /* shared DPLL id 0 is DPLL 1 */
1208 crtc_state->ddi_pll_sel = pll->id + 1;
1209
1210 return true;
1211 }
1212
1213 /*
1214 * Tries to find a *shared* PLL for the CRTC and store it in
1215 * intel_crtc->ddi_pll_sel.
1216 *
1217 * For private DPLLs, compute_config() should do the selection for us. This
1218 * function should be folded into compute_config() eventually.
1219 */
1220 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1221 struct intel_crtc_state *crtc_state)
1222 {
1223 struct drm_device *dev = intel_crtc->base.dev;
1224 struct intel_encoder *intel_encoder =
1225 intel_ddi_get_crtc_new_encoder(crtc_state);
1226 int clock = crtc_state->port_clock;
1227
1228 if (IS_SKYLAKE(dev))
1229 return skl_ddi_pll_select(intel_crtc, crtc_state,
1230 intel_encoder, clock);
1231 else
1232 return hsw_ddi_pll_select(intel_crtc, crtc_state,
1233 intel_encoder, clock);
1234 }
1235
1236 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1237 {
1238 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1240 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1241 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1242 int type = intel_encoder->type;
1243 uint32_t temp;
1244
1245 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1246 temp = TRANS_MSA_SYNC_CLK;
1247 switch (intel_crtc->config->pipe_bpp) {
1248 case 18:
1249 temp |= TRANS_MSA_6_BPC;
1250 break;
1251 case 24:
1252 temp |= TRANS_MSA_8_BPC;
1253 break;
1254 case 30:
1255 temp |= TRANS_MSA_10_BPC;
1256 break;
1257 case 36:
1258 temp |= TRANS_MSA_12_BPC;
1259 break;
1260 default:
1261 BUG();
1262 }
1263 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1264 }
1265 }
1266
1267 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1268 {
1269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1270 struct drm_device *dev = crtc->dev;
1271 struct drm_i915_private *dev_priv = dev->dev_private;
1272 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1273 uint32_t temp;
1274 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1275 if (state == true)
1276 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1277 else
1278 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1279 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1280 }
1281
1282 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1283 {
1284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1285 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1286 struct drm_encoder *encoder = &intel_encoder->base;
1287 struct drm_device *dev = crtc->dev;
1288 struct drm_i915_private *dev_priv = dev->dev_private;
1289 enum pipe pipe = intel_crtc->pipe;
1290 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1291 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1292 int type = intel_encoder->type;
1293 uint32_t temp;
1294
1295 /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1296 temp = TRANS_DDI_FUNC_ENABLE;
1297 temp |= TRANS_DDI_SELECT_PORT(port);
1298
1299 switch (intel_crtc->config->pipe_bpp) {
1300 case 18:
1301 temp |= TRANS_DDI_BPC_6;
1302 break;
1303 case 24:
1304 temp |= TRANS_DDI_BPC_8;
1305 break;
1306 case 30:
1307 temp |= TRANS_DDI_BPC_10;
1308 break;
1309 case 36:
1310 temp |= TRANS_DDI_BPC_12;
1311 break;
1312 default:
1313 BUG();
1314 }
1315
1316 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1317 temp |= TRANS_DDI_PVSYNC;
1318 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1319 temp |= TRANS_DDI_PHSYNC;
1320
1321 if (cpu_transcoder == TRANSCODER_EDP) {
1322 switch (pipe) {
1323 case PIPE_A:
1324 /* On Haswell, can only use the always-on power well for
1325 * eDP when not using the panel fitter, and when not
1326 * using motion blur mitigation (which we don't
1327 * support). */
1328 if (IS_HASWELL(dev) &&
1329 (intel_crtc->config->pch_pfit.enabled ||
1330 intel_crtc->config->pch_pfit.force_thru))
1331 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1332 else
1333 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1334 break;
1335 case PIPE_B:
1336 temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1337 break;
1338 case PIPE_C:
1339 temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1340 break;
1341 default:
1342 BUG();
1343 break;
1344 }
1345 }
1346
1347 if (type == INTEL_OUTPUT_HDMI) {
1348 if (intel_crtc->config->has_hdmi_sink)
1349 temp |= TRANS_DDI_MODE_SELECT_HDMI;
1350 else
1351 temp |= TRANS_DDI_MODE_SELECT_DVI;
1352
1353 } else if (type == INTEL_OUTPUT_ANALOG) {
1354 temp |= TRANS_DDI_MODE_SELECT_FDI;
1355 temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1356
1357 } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1358 type == INTEL_OUTPUT_EDP) {
1359 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1360
1361 if (intel_dp->is_mst) {
1362 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1363 } else
1364 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1365
1366 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1367 } else if (type == INTEL_OUTPUT_DP_MST) {
1368 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1369
1370 if (intel_dp->is_mst) {
1371 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1372 } else
1373 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1374
1375 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1376 } else {
1377 WARN(1, "Invalid encoder type %d for pipe %c\n",
1378 intel_encoder->type, pipe_name(pipe));
1379 }
1380
1381 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1382 }
1383
1384 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1385 enum transcoder cpu_transcoder)
1386 {
1387 uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1388 uint32_t val = I915_READ(reg);
1389
1390 val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1391 val |= TRANS_DDI_PORT_NONE;
1392 I915_WRITE(reg, val);
1393 }
1394
1395 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1396 {
1397 struct drm_device *dev = intel_connector->base.dev;
1398 struct drm_i915_private *dev_priv = dev->dev_private;
1399 struct intel_encoder *intel_encoder = intel_connector->encoder;
1400 int type = intel_connector->base.connector_type;
1401 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1402 enum pipe pipe = 0;
1403 enum transcoder cpu_transcoder;
1404 enum intel_display_power_domain power_domain;
1405 uint32_t tmp;
1406
1407 power_domain = intel_display_port_power_domain(intel_encoder);
1408 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1409 return false;
1410
1411 if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1412 return false;
1413
1414 if (port == PORT_A)
1415 cpu_transcoder = TRANSCODER_EDP;
1416 else
1417 cpu_transcoder = (enum transcoder) pipe;
1418
1419 tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1420
1421 switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1422 case TRANS_DDI_MODE_SELECT_HDMI:
1423 case TRANS_DDI_MODE_SELECT_DVI:
1424 return (type == DRM_MODE_CONNECTOR_HDMIA);
1425
1426 case TRANS_DDI_MODE_SELECT_DP_SST:
1427 if (type == DRM_MODE_CONNECTOR_eDP)
1428 return true;
1429 return (type == DRM_MODE_CONNECTOR_DisplayPort);
1430 case TRANS_DDI_MODE_SELECT_DP_MST:
1431 /* if the transcoder is in MST state then
1432 * connector isn't connected */
1433 return false;
1434
1435 case TRANS_DDI_MODE_SELECT_FDI:
1436 return (type == DRM_MODE_CONNECTOR_VGA);
1437
1438 default:
1439 return false;
1440 }
1441 }
1442
1443 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1444 enum pipe *pipe)
1445 {
1446 struct drm_device *dev = encoder->base.dev;
1447 struct drm_i915_private *dev_priv = dev->dev_private;
1448 enum port port = intel_ddi_get_encoder_port(encoder);
1449 enum intel_display_power_domain power_domain;
1450 u32 tmp;
1451 int i;
1452
1453 power_domain = intel_display_port_power_domain(encoder);
1454 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1455 return false;
1456
1457 tmp = I915_READ(DDI_BUF_CTL(port));
1458
1459 if (!(tmp & DDI_BUF_CTL_ENABLE))
1460 return false;
1461
1462 if (port == PORT_A) {
1463 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1464
1465 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1466 case TRANS_DDI_EDP_INPUT_A_ON:
1467 case TRANS_DDI_EDP_INPUT_A_ONOFF:
1468 *pipe = PIPE_A;
1469 break;
1470 case TRANS_DDI_EDP_INPUT_B_ONOFF:
1471 *pipe = PIPE_B;
1472 break;
1473 case TRANS_DDI_EDP_INPUT_C_ONOFF:
1474 *pipe = PIPE_C;
1475 break;
1476 }
1477
1478 return true;
1479 } else {
1480 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1481 tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1482
1483 if ((tmp & TRANS_DDI_PORT_MASK)
1484 == TRANS_DDI_SELECT_PORT(port)) {
1485 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
1486 return false;
1487
1488 *pipe = i;
1489 return true;
1490 }
1491 }
1492 }
1493
1494 DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1495
1496 return false;
1497 }
1498
1499 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1500 {
1501 struct drm_crtc *crtc = &intel_crtc->base;
1502 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1503 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1504 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1505 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1506
1507 if (cpu_transcoder != TRANSCODER_EDP)
1508 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1509 TRANS_CLK_SEL_PORT(port));
1510 }
1511
1512 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1513 {
1514 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1515 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1516
1517 if (cpu_transcoder != TRANSCODER_EDP)
1518 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1519 TRANS_CLK_SEL_DISABLED);
1520 }
1521
1522 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1523 {
1524 struct drm_encoder *encoder = &intel_encoder->base;
1525 struct drm_device *dev = encoder->dev;
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527 struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1528 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1529 int type = intel_encoder->type;
1530
1531 if (type == INTEL_OUTPUT_EDP) {
1532 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1533 intel_edp_panel_on(intel_dp);
1534 }
1535
1536 if (IS_SKYLAKE(dev)) {
1537 uint32_t dpll = crtc->config->ddi_pll_sel;
1538 uint32_t val;
1539
1540 /*
1541 * DPLL0 is used for eDP and is the only "private" DPLL (as
1542 * opposed to shared) on SKL
1543 */
1544 if (type == INTEL_OUTPUT_EDP) {
1545 WARN_ON(dpll != SKL_DPLL0);
1546
1547 val = I915_READ(DPLL_CTRL1);
1548
1549 val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
1550 DPLL_CTRL1_SSC(dpll) |
1551 DPLL_CRTL1_LINK_RATE_MASK(dpll));
1552 val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
1553
1554 I915_WRITE(DPLL_CTRL1, val);
1555 POSTING_READ(DPLL_CTRL1);
1556 }
1557
1558 /* DDI -> PLL mapping */
1559 val = I915_READ(DPLL_CTRL2);
1560
1561 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
1562 DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
1563 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
1564 DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
1565
1566 I915_WRITE(DPLL_CTRL2, val);
1567
1568 } else {
1569 WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
1570 I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
1571 }
1572
1573 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1574 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1575
1576 intel_ddi_init_dp_buf_reg(intel_encoder);
1577
1578 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1579 intel_dp_start_link_train(intel_dp);
1580 intel_dp_complete_link_train(intel_dp);
1581 if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1582 intel_dp_stop_link_train(intel_dp);
1583 } else if (type == INTEL_OUTPUT_HDMI) {
1584 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1585
1586 intel_hdmi->set_infoframes(encoder,
1587 crtc->config->has_hdmi_sink,
1588 &crtc->config->base.adjusted_mode);
1589 }
1590 }
1591
1592 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1593 {
1594 struct drm_encoder *encoder = &intel_encoder->base;
1595 struct drm_device *dev = encoder->dev;
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1598 int type = intel_encoder->type;
1599 uint32_t val;
1600 bool wait = false;
1601
1602 val = I915_READ(DDI_BUF_CTL(port));
1603 if (val & DDI_BUF_CTL_ENABLE) {
1604 val &= ~DDI_BUF_CTL_ENABLE;
1605 I915_WRITE(DDI_BUF_CTL(port), val);
1606 wait = true;
1607 }
1608
1609 val = I915_READ(DP_TP_CTL(port));
1610 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1611 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1612 I915_WRITE(DP_TP_CTL(port), val);
1613
1614 if (wait)
1615 intel_wait_ddi_buf_idle(dev_priv, port);
1616
1617 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1618 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1619 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1620 intel_edp_panel_vdd_on(intel_dp);
1621 intel_edp_panel_off(intel_dp);
1622 }
1623
1624 if (IS_SKYLAKE(dev))
1625 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
1626 DPLL_CTRL2_DDI_CLK_OFF(port)));
1627 else
1628 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1629 }
1630
1631 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1632 {
1633 struct drm_encoder *encoder = &intel_encoder->base;
1634 struct drm_crtc *crtc = encoder->crtc;
1635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636 struct drm_device *dev = encoder->dev;
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1639 int type = intel_encoder->type;
1640
1641 if (type == INTEL_OUTPUT_HDMI) {
1642 struct intel_digital_port *intel_dig_port =
1643 enc_to_dig_port(encoder);
1644
1645 /* In HDMI/DVI mode, the port width, and swing/emphasis values
1646 * are ignored so nothing special needs to be done besides
1647 * enabling the port.
1648 */
1649 I915_WRITE(DDI_BUF_CTL(port),
1650 intel_dig_port->saved_port_bits |
1651 DDI_BUF_CTL_ENABLE);
1652 } else if (type == INTEL_OUTPUT_EDP) {
1653 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1654
1655 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1656 intel_dp_stop_link_train(intel_dp);
1657
1658 intel_edp_backlight_on(intel_dp);
1659 intel_psr_enable(intel_dp);
1660 intel_edp_drrs_enable(intel_dp);
1661 }
1662
1663 if (intel_crtc->config->has_audio) {
1664 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1665 intel_audio_codec_enable(intel_encoder);
1666 }
1667 }
1668
1669 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1670 {
1671 struct drm_encoder *encoder = &intel_encoder->base;
1672 struct drm_crtc *crtc = encoder->crtc;
1673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1674 int type = intel_encoder->type;
1675 struct drm_device *dev = encoder->dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677
1678 if (intel_crtc->config->has_audio) {
1679 intel_audio_codec_disable(intel_encoder);
1680 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1681 }
1682
1683 if (type == INTEL_OUTPUT_EDP) {
1684 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1685
1686 intel_edp_drrs_disable(intel_dp);
1687 intel_psr_disable(intel_dp);
1688 intel_edp_backlight_off(intel_dp);
1689 }
1690 }
1691
1692 static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
1693 {
1694 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
1695 uint32_t cdctl = I915_READ(CDCLK_CTL);
1696 uint32_t linkrate;
1697
1698 if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
1699 WARN(1, "LCPLL1 not enabled\n");
1700 return 24000; /* 24MHz is the cd freq with NSSC ref */
1701 }
1702
1703 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
1704 return 540000;
1705
1706 linkrate = (I915_READ(DPLL_CTRL1) &
1707 DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1708
1709 if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
1710 linkrate == DPLL_CRTL1_LINK_RATE_1080) {
1711 /* vco 8640 */
1712 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1713 case CDCLK_FREQ_450_432:
1714 return 432000;
1715 case CDCLK_FREQ_337_308:
1716 return 308570;
1717 case CDCLK_FREQ_675_617:
1718 return 617140;
1719 default:
1720 WARN(1, "Unknown cd freq selection\n");
1721 }
1722 } else {
1723 /* vco 8100 */
1724 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1725 case CDCLK_FREQ_450_432:
1726 return 450000;
1727 case CDCLK_FREQ_337_308:
1728 return 337500;
1729 case CDCLK_FREQ_675_617:
1730 return 675000;
1731 default:
1732 WARN(1, "Unknown cd freq selection\n");
1733 }
1734 }
1735
1736 /* error case, do as if DPLL0 isn't enabled */
1737 return 24000;
1738 }
1739
1740 static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1741 {
1742 uint32_t lcpll = I915_READ(LCPLL_CTL);
1743 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1744
1745 if (lcpll & LCPLL_CD_SOURCE_FCLK)
1746 return 800000;
1747 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1748 return 450000;
1749 else if (freq == LCPLL_CLK_FREQ_450)
1750 return 450000;
1751 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
1752 return 540000;
1753 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
1754 return 337500;
1755 else
1756 return 675000;
1757 }
1758
1759 static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1760 {
1761 struct drm_device *dev = dev_priv->dev;
1762 uint32_t lcpll = I915_READ(LCPLL_CTL);
1763 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1764
1765 if (lcpll & LCPLL_CD_SOURCE_FCLK)
1766 return 800000;
1767 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1768 return 450000;
1769 else if (freq == LCPLL_CLK_FREQ_450)
1770 return 450000;
1771 else if (IS_HSW_ULT(dev))
1772 return 337500;
1773 else
1774 return 540000;
1775 }
1776
1777 int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
1778 {
1779 struct drm_device *dev = dev_priv->dev;
1780
1781 if (IS_SKYLAKE(dev))
1782 return skl_get_cdclk_freq(dev_priv);
1783
1784 if (IS_BROADWELL(dev))
1785 return bdw_get_cdclk_freq(dev_priv);
1786
1787 /* Haswell */
1788 return hsw_get_cdclk_freq(dev_priv);
1789 }
1790
1791 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
1792 struct intel_shared_dpll *pll)
1793 {
1794 I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
1795 POSTING_READ(WRPLL_CTL(pll->id));
1796 udelay(20);
1797 }
1798
1799 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
1800 struct intel_shared_dpll *pll)
1801 {
1802 uint32_t val;
1803
1804 val = I915_READ(WRPLL_CTL(pll->id));
1805 I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
1806 POSTING_READ(WRPLL_CTL(pll->id));
1807 }
1808
1809 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1810 struct intel_shared_dpll *pll,
1811 struct intel_dpll_hw_state *hw_state)
1812 {
1813 uint32_t val;
1814
1815 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1816 return false;
1817
1818 val = I915_READ(WRPLL_CTL(pll->id));
1819 hw_state->wrpll = val;
1820
1821 return val & WRPLL_PLL_ENABLE;
1822 }
1823
1824 static const char * const hsw_ddi_pll_names[] = {
1825 "WRPLL 1",
1826 "WRPLL 2",
1827 };
1828
1829 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
1830 {
1831 int i;
1832
1833 dev_priv->num_shared_dpll = 2;
1834
1835 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1836 dev_priv->shared_dplls[i].id = i;
1837 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
1838 dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
1839 dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
1840 dev_priv->shared_dplls[i].get_hw_state =
1841 hsw_ddi_pll_get_hw_state;
1842 }
1843 }
1844
1845 static const char * const skl_ddi_pll_names[] = {
1846 "DPLL 1",
1847 "DPLL 2",
1848 "DPLL 3",
1849 };
1850
1851 struct skl_dpll_regs {
1852 u32 ctl, cfgcr1, cfgcr2;
1853 };
1854
1855 /* this array is indexed by the *shared* pll id */
1856 static const struct skl_dpll_regs skl_dpll_regs[3] = {
1857 {
1858 /* DPLL 1 */
1859 .ctl = LCPLL2_CTL,
1860 .cfgcr1 = DPLL1_CFGCR1,
1861 .cfgcr2 = DPLL1_CFGCR2,
1862 },
1863 {
1864 /* DPLL 2 */
1865 .ctl = WRPLL_CTL1,
1866 .cfgcr1 = DPLL2_CFGCR1,
1867 .cfgcr2 = DPLL2_CFGCR2,
1868 },
1869 {
1870 /* DPLL 3 */
1871 .ctl = WRPLL_CTL2,
1872 .cfgcr1 = DPLL3_CFGCR1,
1873 .cfgcr2 = DPLL3_CFGCR2,
1874 },
1875 };
1876
1877 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
1878 struct intel_shared_dpll *pll)
1879 {
1880 uint32_t val;
1881 unsigned int dpll;
1882 const struct skl_dpll_regs *regs = skl_dpll_regs;
1883
1884 /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1885 dpll = pll->id + 1;
1886
1887 val = I915_READ(DPLL_CTRL1);
1888
1889 val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
1890 DPLL_CRTL1_LINK_RATE_MASK(dpll));
1891 val |= pll->config.hw_state.ctrl1 << (dpll * 6);
1892
1893 I915_WRITE(DPLL_CTRL1, val);
1894 POSTING_READ(DPLL_CTRL1);
1895
1896 I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
1897 I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
1898 POSTING_READ(regs[pll->id].cfgcr1);
1899 POSTING_READ(regs[pll->id].cfgcr2);
1900
1901 /* the enable bit is always bit 31 */
1902 I915_WRITE(regs[pll->id].ctl,
1903 I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
1904
1905 if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
1906 DRM_ERROR("DPLL %d not locked\n", dpll);
1907 }
1908
1909 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
1910 struct intel_shared_dpll *pll)
1911 {
1912 const struct skl_dpll_regs *regs = skl_dpll_regs;
1913
1914 /* the enable bit is always bit 31 */
1915 I915_WRITE(regs[pll->id].ctl,
1916 I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
1917 POSTING_READ(regs[pll->id].ctl);
1918 }
1919
1920 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1921 struct intel_shared_dpll *pll,
1922 struct intel_dpll_hw_state *hw_state)
1923 {
1924 uint32_t val;
1925 unsigned int dpll;
1926 const struct skl_dpll_regs *regs = skl_dpll_regs;
1927
1928 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1929 return false;
1930
1931 /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
1932 dpll = pll->id + 1;
1933
1934 val = I915_READ(regs[pll->id].ctl);
1935 if (!(val & LCPLL_PLL_ENABLE))
1936 return false;
1937
1938 val = I915_READ(DPLL_CTRL1);
1939 hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
1940
1941 /* avoid reading back stale values if HDMI mode is not enabled */
1942 if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
1943 hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
1944 hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
1945 }
1946
1947 return true;
1948 }
1949
1950 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
1951 {
1952 int i;
1953
1954 dev_priv->num_shared_dpll = 3;
1955
1956 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1957 dev_priv->shared_dplls[i].id = i;
1958 dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
1959 dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
1960 dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
1961 dev_priv->shared_dplls[i].get_hw_state =
1962 skl_ddi_pll_get_hw_state;
1963 }
1964 }
1965
1966 void intel_ddi_pll_init(struct drm_device *dev)
1967 {
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 uint32_t val = I915_READ(LCPLL_CTL);
1970
1971 if (IS_SKYLAKE(dev))
1972 skl_shared_dplls_init(dev_priv);
1973 else
1974 hsw_shared_dplls_init(dev_priv);
1975
1976 DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
1977 intel_ddi_get_cdclk_freq(dev_priv));
1978
1979 if (IS_SKYLAKE(dev)) {
1980 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
1981 DRM_ERROR("LCPLL1 is disabled\n");
1982 } else {
1983 /*
1984 * The LCPLL register should be turned on by the BIOS. For now
1985 * let's just check its state and print errors in case
1986 * something is wrong. Don't even try to turn it on.
1987 */
1988
1989 if (val & LCPLL_CD_SOURCE_FCLK)
1990 DRM_ERROR("CDCLK source is not LCPLL\n");
1991
1992 if (val & LCPLL_PLL_DISABLE)
1993 DRM_ERROR("LCPLL is disabled\n");
1994 }
1995 }
1996
1997 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
1998 {
1999 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2000 struct intel_dp *intel_dp = &intel_dig_port->dp;
2001 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
2002 enum port port = intel_dig_port->port;
2003 uint32_t val;
2004 bool wait = false;
2005
2006 if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
2007 val = I915_READ(DDI_BUF_CTL(port));
2008 if (val & DDI_BUF_CTL_ENABLE) {
2009 val &= ~DDI_BUF_CTL_ENABLE;
2010 I915_WRITE(DDI_BUF_CTL(port), val);
2011 wait = true;
2012 }
2013
2014 val = I915_READ(DP_TP_CTL(port));
2015 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2016 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2017 I915_WRITE(DP_TP_CTL(port), val);
2018 POSTING_READ(DP_TP_CTL(port));
2019
2020 if (wait)
2021 intel_wait_ddi_buf_idle(dev_priv, port);
2022 }
2023
2024 val = DP_TP_CTL_ENABLE |
2025 DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2026 if (intel_dp->is_mst)
2027 val |= DP_TP_CTL_MODE_MST;
2028 else {
2029 val |= DP_TP_CTL_MODE_SST;
2030 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2031 val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
2032 }
2033 I915_WRITE(DP_TP_CTL(port), val);
2034 POSTING_READ(DP_TP_CTL(port));
2035
2036 intel_dp->DP |= DDI_BUF_CTL_ENABLE;
2037 I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
2038 POSTING_READ(DDI_BUF_CTL(port));
2039
2040 udelay(600);
2041 }
2042
2043 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
2044 {
2045 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2046 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2047 uint32_t val;
2048
2049 intel_ddi_post_disable(intel_encoder);
2050
2051 val = I915_READ(_FDI_RXA_CTL);
2052 val &= ~FDI_RX_ENABLE;
2053 I915_WRITE(_FDI_RXA_CTL, val);
2054
2055 val = I915_READ(_FDI_RXA_MISC);
2056 val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
2057 val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
2058 I915_WRITE(_FDI_RXA_MISC, val);
2059
2060 val = I915_READ(_FDI_RXA_CTL);
2061 val &= ~FDI_PCDCLK;
2062 I915_WRITE(_FDI_RXA_CTL, val);
2063
2064 val = I915_READ(_FDI_RXA_CTL);
2065 val &= ~FDI_RX_PLL_ENABLE;
2066 I915_WRITE(_FDI_RXA_CTL, val);
2067 }
2068
2069 static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
2070 {
2071 struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
2072 int type = intel_dig_port->base.type;
2073
2074 if (type != INTEL_OUTPUT_DISPLAYPORT &&
2075 type != INTEL_OUTPUT_EDP &&
2076 type != INTEL_OUTPUT_UNKNOWN) {
2077 return;
2078 }
2079
2080 intel_dp_hot_plug(intel_encoder);
2081 }
2082
2083 void intel_ddi_get_config(struct intel_encoder *encoder,
2084 struct intel_crtc_state *pipe_config)
2085 {
2086 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
2087 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2088 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2089 struct intel_hdmi *intel_hdmi;
2090 u32 temp, flags = 0;
2091
2092 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
2093 if (temp & TRANS_DDI_PHSYNC)
2094 flags |= DRM_MODE_FLAG_PHSYNC;
2095 else
2096 flags |= DRM_MODE_FLAG_NHSYNC;
2097 if (temp & TRANS_DDI_PVSYNC)
2098 flags |= DRM_MODE_FLAG_PVSYNC;
2099 else
2100 flags |= DRM_MODE_FLAG_NVSYNC;
2101
2102 pipe_config->base.adjusted_mode.flags |= flags;
2103
2104 switch (temp & TRANS_DDI_BPC_MASK) {
2105 case TRANS_DDI_BPC_6:
2106 pipe_config->pipe_bpp = 18;
2107 break;
2108 case TRANS_DDI_BPC_8:
2109 pipe_config->pipe_bpp = 24;
2110 break;
2111 case TRANS_DDI_BPC_10:
2112 pipe_config->pipe_bpp = 30;
2113 break;
2114 case TRANS_DDI_BPC_12:
2115 pipe_config->pipe_bpp = 36;
2116 break;
2117 default:
2118 break;
2119 }
2120
2121 switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
2122 case TRANS_DDI_MODE_SELECT_HDMI:
2123 pipe_config->has_hdmi_sink = true;
2124 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
2125
2126 if (intel_hdmi->infoframe_enabled(&encoder->base))
2127 pipe_config->has_infoframe = true;
2128 break;
2129 case TRANS_DDI_MODE_SELECT_DVI:
2130 case TRANS_DDI_MODE_SELECT_FDI:
2131 break;
2132 case TRANS_DDI_MODE_SELECT_DP_SST:
2133 case TRANS_DDI_MODE_SELECT_DP_MST:
2134 pipe_config->has_dp_encoder = true;
2135 intel_dp_get_m_n(intel_crtc, pipe_config);
2136 break;
2137 default:
2138 break;
2139 }
2140
2141 if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2142 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2143 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2144 pipe_config->has_audio = true;
2145 }
2146
2147 if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
2148 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2149 /*
2150 * This is a big fat ugly hack.
2151 *
2152 * Some machines in UEFI boot mode provide us a VBT that has 18
2153 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2154 * unknown we fail to light up. Yet the same BIOS boots up with
2155 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2156 * max, not what it tells us to use.
2157 *
2158 * Note: This will still be broken if the eDP panel is not lit
2159 * up by the BIOS, and thus we can't get the mode at module
2160 * load.
2161 */
2162 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2163 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2164 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2165 }
2166
2167 intel_ddi_clock_get(encoder, pipe_config);
2168 }
2169
2170 static void intel_ddi_destroy(struct drm_encoder *encoder)
2171 {
2172 /* HDMI has nothing special to destroy, so we can go with this. */
2173 intel_dp_encoder_destroy(encoder);
2174 }
2175
2176 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2177 struct intel_crtc_state *pipe_config)
2178 {
2179 int type = encoder->type;
2180 int port = intel_ddi_get_encoder_port(encoder);
2181
2182 WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
2183
2184 if (port == PORT_A)
2185 pipe_config->cpu_transcoder = TRANSCODER_EDP;
2186
2187 if (type == INTEL_OUTPUT_HDMI)
2188 return intel_hdmi_compute_config(encoder, pipe_config);
2189 else
2190 return intel_dp_compute_config(encoder, pipe_config);
2191 }
2192
2193 static const struct drm_encoder_funcs intel_ddi_funcs = {
2194 .destroy = intel_ddi_destroy,
2195 };
2196
2197 static struct intel_connector *
2198 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
2199 {
2200 struct intel_connector *connector;
2201 enum port port = intel_dig_port->port;
2202
2203 connector = kzalloc(sizeof(*connector), GFP_KERNEL);
2204 if (!connector)
2205 return NULL;
2206
2207 intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
2208 if (!intel_dp_init_connector(intel_dig_port, connector)) {
2209 kfree(connector);
2210 return NULL;
2211 }
2212
2213 return connector;
2214 }
2215
2216 static struct intel_connector *
2217 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
2218 {
2219 struct intel_connector *connector;
2220 enum port port = intel_dig_port->port;
2221
2222 connector = kzalloc(sizeof(*connector), GFP_KERNEL);
2223 if (!connector)
2224 return NULL;
2225
2226 intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
2227 intel_hdmi_init_connector(intel_dig_port, connector);
2228
2229 return connector;
2230 }
2231
2232 void intel_ddi_init(struct drm_device *dev, enum port port)
2233 {
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235 struct intel_digital_port *intel_dig_port;
2236 struct intel_encoder *intel_encoder;
2237 struct drm_encoder *encoder;
2238 bool init_hdmi, init_dp;
2239
2240 init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
2241 dev_priv->vbt.ddi_port_info[port].supports_hdmi);
2242 init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
2243 if (!init_dp && !init_hdmi) {
2244 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2245 port_name(port));
2246 init_hdmi = true;
2247 init_dp = true;
2248 }
2249
2250 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2251 if (!intel_dig_port)
2252 return;
2253
2254 intel_encoder = &intel_dig_port->base;
2255 encoder = &intel_encoder->base;
2256
2257 drm_encoder_init(dev, encoder, &intel_ddi_funcs,
2258 DRM_MODE_ENCODER_TMDS);
2259
2260 intel_encoder->compute_config = intel_ddi_compute_config;
2261 intel_encoder->enable = intel_enable_ddi;
2262 intel_encoder->pre_enable = intel_ddi_pre_enable;
2263 intel_encoder->disable = intel_disable_ddi;
2264 intel_encoder->post_disable = intel_ddi_post_disable;
2265 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2266 intel_encoder->get_config = intel_ddi_get_config;
2267
2268 intel_dig_port->port = port;
2269 intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
2270 (DDI_BUF_PORT_REVERSAL |
2271 DDI_A_4_LANES);
2272
2273 intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2274 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2275 intel_encoder->cloneable = 0;
2276 intel_encoder->hot_plug = intel_ddi_hot_plug;
2277
2278 if (init_dp) {
2279 if (!intel_ddi_init_dp_connector(intel_dig_port))
2280 goto err;
2281
2282 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2283 dev_priv->hpd_irq_port[port] = intel_dig_port;
2284 }
2285
2286 /* In theory we don't need the encoder->type check, but leave it just in
2287 * case we have some really bad VBTs... */
2288 if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
2289 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
2290 goto err;
2291 }
2292
2293 return;
2294
2295 err:
2296 drm_encoder_cleanup(encoder);
2297 kfree(intel_dig_port);
2298 }
This page took 0.079301 seconds and 5 git commands to generate.