e6408e5583d7a88af4511c6ec2334db2b7922555
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32 u32 trans1; /* balance leg enable, de-emph level */
33 u32 trans2; /* vref sel, vswing */
34 u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 };
36
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38 * them for both DP and FDI transports, allowing those ports to
39 * automatically adapt to HDMI connections as well
40 */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 { 0x00FFFFFF, 0x0006000E, 0x0 },
43 { 0x00D75FFF, 0x0005000A, 0x0 },
44 { 0x00C30FFF, 0x00040006, 0x0 },
45 { 0x80AAAFFF, 0x000B0000, 0x0 },
46 { 0x00FFFFFF, 0x0005000A, 0x0 },
47 { 0x00D75FFF, 0x000C0004, 0x0 },
48 { 0x80C30FFF, 0x000B0000, 0x0 },
49 { 0x00FFFFFF, 0x00040006, 0x0 },
50 { 0x80D75FFF, 0x000B0000, 0x0 },
51 };
52
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 { 0x00FFFFFF, 0x0007000E, 0x0 },
55 { 0x00D75FFF, 0x000F000A, 0x0 },
56 { 0x00C30FFF, 0x00060006, 0x0 },
57 { 0x00AAAFFF, 0x001E0000, 0x0 },
58 { 0x00FFFFFF, 0x000F000A, 0x0 },
59 { 0x00D75FFF, 0x00160004, 0x0 },
60 { 0x00C30FFF, 0x001E0000, 0x0 },
61 { 0x00FFFFFF, 0x00060006, 0x0 },
62 { 0x00D75FFF, 0x001E0000, 0x0 },
63 };
64
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 /* Idx NT mV d T mV d db */
67 { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
68 { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
69 { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
70 { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
71 { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
72 { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
73 { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
74 { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
75 { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
76 { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
77 { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
78 { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
79 };
80
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 { 0x00FFFFFF, 0x00000012, 0x0 },
83 { 0x00EBAFFF, 0x00020011, 0x0 },
84 { 0x00C71FFF, 0x0006000F, 0x0 },
85 { 0x00AAAFFF, 0x000E000A, 0x0 },
86 { 0x00FFFFFF, 0x00020011, 0x0 },
87 { 0x00DB6FFF, 0x0005000F, 0x0 },
88 { 0x00BEEFFF, 0x000A000C, 0x0 },
89 { 0x00FFFFFF, 0x0005000F, 0x0 },
90 { 0x00DB6FFF, 0x000A000C, 0x0 },
91 };
92
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 { 0x00FFFFFF, 0x0007000E, 0x0 },
95 { 0x00D75FFF, 0x000E000A, 0x0 },
96 { 0x00BEFFFF, 0x00140006, 0x0 },
97 { 0x80B2CFFF, 0x001B0002, 0x0 },
98 { 0x00FFFFFF, 0x000E000A, 0x0 },
99 { 0x00DB6FFF, 0x00160005, 0x0 },
100 { 0x80C71FFF, 0x001A0002, 0x0 },
101 { 0x00F7DFFF, 0x00180004, 0x0 },
102 { 0x80D75FFF, 0x001B0002, 0x0 },
103 };
104
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 { 0x00FFFFFF, 0x0001000E, 0x0 },
107 { 0x00D75FFF, 0x0004000A, 0x0 },
108 { 0x00C30FFF, 0x00070006, 0x0 },
109 { 0x00AAAFFF, 0x000C0000, 0x0 },
110 { 0x00FFFFFF, 0x0004000A, 0x0 },
111 { 0x00D75FFF, 0x00090004, 0x0 },
112 { 0x00C30FFF, 0x000C0000, 0x0 },
113 { 0x00FFFFFF, 0x00070006, 0x0 },
114 { 0x00D75FFF, 0x000C0000, 0x0 },
115 };
116
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 /* Idx NT mV d T mV df db */
119 { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
120 { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
121 { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
122 { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
123 { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
124 { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
125 { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
126 { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
127 { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
128 { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
129 };
130
131 /* Skylake H and S */
132 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 { 0x00002016, 0x000000A0, 0x0 },
134 { 0x00005012, 0x0000009B, 0x0 },
135 { 0x00007011, 0x00000088, 0x0 },
136 { 0x80009010, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
137 { 0x00002016, 0x0000009B, 0x0 },
138 { 0x00005012, 0x00000088, 0x0 },
139 { 0x80007011, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
140 { 0x00002016, 0x000000DF, 0x0 },
141 { 0x80005012, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
142 };
143
144 /* Skylake U */
145 static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146 { 0x0000201B, 0x000000A2, 0x0 },
147 { 0x00005012, 0x00000088, 0x0 },
148 { 0x00007011, 0x00000087, 0x0 },
149 { 0x80009010, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
150 { 0x0000201B, 0x0000009D, 0x0 },
151 { 0x80005012, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
152 { 0x80007011, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
153 { 0x00002016, 0x00000088, 0x0 },
154 { 0x80005012, 0x000000C0, 0x1 }, /* Uses I_boost level 0x1 */
155 };
156
157 /* Skylake Y */
158 static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 { 0x00000018, 0x000000A2, 0x0 },
160 { 0x00005012, 0x00000088, 0x0 },
161 { 0x00007011, 0x00000087, 0x0 },
162 { 0x80009010, 0x000000C0, 0x3 }, /* Uses I_boost level 0x3 */
163 { 0x00000018, 0x0000009D, 0x0 },
164 { 0x80005012, 0x000000C0, 0x3 }, /* Uses I_boost level 0x3 */
165 { 0x80007011, 0x000000C0, 0x3 }, /* Uses I_boost level 0x3 */
166 { 0x00000018, 0x00000088, 0x0 },
167 { 0x80005012, 0x000000C0, 0x3 }, /* Uses I_boost level 0x3 */
168 };
169
170 /*
171 * Skylake H and S
172 * eDP 1.4 low vswing translation parameters
173 */
174 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 { 0x00000018, 0x000000A8, 0x0 },
176 { 0x00004013, 0x000000A9, 0x0 },
177 { 0x00007011, 0x000000A2, 0x0 },
178 { 0x00009010, 0x0000009C, 0x0 },
179 { 0x00000018, 0x000000A9, 0x0 },
180 { 0x00006013, 0x000000A2, 0x0 },
181 { 0x00007011, 0x000000A6, 0x0 },
182 { 0x00000018, 0x000000AB, 0x0 },
183 { 0x00007013, 0x0000009F, 0x0 },
184 { 0x00000018, 0x000000DF, 0x0 },
185 };
186
187 /*
188 * Skylake U
189 * eDP 1.4 low vswing translation parameters
190 */
191 static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
192 { 0x00000018, 0x000000A8, 0x0 },
193 { 0x00004013, 0x000000A9, 0x0 },
194 { 0x00007011, 0x000000A2, 0x0 },
195 { 0x00009010, 0x0000009C, 0x0 },
196 { 0x00000018, 0x000000A9, 0x0 },
197 { 0x00006013, 0x000000A2, 0x0 },
198 { 0x00007011, 0x000000A6, 0x0 },
199 { 0x00002016, 0x000000AB, 0x0 },
200 { 0x00005013, 0x0000009F, 0x0 },
201 { 0x00000018, 0x000000DF, 0x0 },
202 };
203
204 /*
205 * Skylake Y
206 * eDP 1.4 low vswing translation parameters
207 */
208 static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 { 0x00000018, 0x000000A8, 0x0 },
210 { 0x00004013, 0x000000AB, 0x0 },
211 { 0x00007011, 0x000000A4, 0x0 },
212 { 0x00009010, 0x000000DF, 0x0 },
213 { 0x00000018, 0x000000AA, 0x0 },
214 { 0x00006013, 0x000000A4, 0x0 },
215 { 0x00007011, 0x0000009D, 0x0 },
216 { 0x00000018, 0x000000A0, 0x0 },
217 { 0x00006012, 0x000000DF, 0x0 },
218 { 0x00000018, 0x0000008A, 0x0 },
219 };
220
221 /* Skylake U, H and S */
222 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 { 0x00000018, 0x000000AC, 0x0 },
224 { 0x00005012, 0x0000009D, 0x0 },
225 { 0x00007011, 0x00000088, 0x0 },
226 { 0x00000018, 0x000000A1, 0x0 },
227 { 0x00000018, 0x00000098, 0x0 },
228 { 0x00004013, 0x00000088, 0x0 },
229 { 0x00006012, 0x00000087, 0x0 },
230 { 0x00000018, 0x000000DF, 0x0 },
231 { 0x00003015, 0x00000087, 0x0 }, /* Default */
232 { 0x00003015, 0x000000C7, 0x0 },
233 { 0x00000018, 0x000000C7, 0x0 },
234 };
235
236 /* Skylake Y */
237 static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 { 0x00000018, 0x000000A1, 0x0 },
239 { 0x00005012, 0x000000DF, 0x0 },
240 { 0x00007011, 0x00000084, 0x0 },
241 { 0x00000018, 0x000000A4, 0x0 },
242 { 0x00000018, 0x0000009D, 0x0 },
243 { 0x00004013, 0x00000080, 0x0 },
244 { 0x00006013, 0x000000C7, 0x0 },
245 { 0x00000018, 0x0000008A, 0x0 },
246 { 0x00003015, 0x000000C7, 0x0 }, /* Default */
247 { 0x80003015, 0x000000C7, 0x7 }, /* Uses I_boost level 0x7 */
248 { 0x00000018, 0x000000C7, 0x0 },
249 };
250
251 struct bxt_ddi_buf_trans {
252 u32 margin; /* swing value */
253 u32 scale; /* scale value */
254 u32 enable; /* scale enable */
255 u32 deemphasis;
256 bool default_index; /* true if the entry represents default value */
257 };
258
259 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
260 /* Idx NT mV diff db */
261 { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
262 { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
263 { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
264 { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
265 { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
266 { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
267 { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
268 { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
269 { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
270 { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
271 };
272
273 static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
274 /* Idx NT mV diff db */
275 { 26, 0, 0, 128, false }, /* 0: 200 0 */
276 { 38, 0, 0, 112, false }, /* 1: 200 1.5 */
277 { 48, 0, 0, 96, false }, /* 2: 200 4 */
278 { 54, 0, 0, 69, false }, /* 3: 200 6 */
279 { 32, 0, 0, 128, false }, /* 4: 250 0 */
280 { 48, 0, 0, 104, false }, /* 5: 250 1.5 */
281 { 54, 0, 0, 85, false }, /* 6: 250 4 */
282 { 43, 0, 0, 128, false }, /* 7: 300 0 */
283 { 54, 0, 0, 101, false }, /* 8: 300 1.5 */
284 { 48, 0, 0, 128, false }, /* 9: 300 0 */
285 };
286
287 /* BSpec has 2 recommended values - entries 0 and 8.
288 * Using the entry with higher vswing.
289 */
290 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
291 /* Idx NT mV diff db */
292 { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
293 { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
294 { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
295 { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
296 { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
297 { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
298 { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
299 { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
300 { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
301 { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
302 };
303
304 static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
305 enum port port, int type);
306
307 static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
308 struct intel_digital_port **dig_port,
309 enum port *port)
310 {
311 struct drm_encoder *encoder = &intel_encoder->base;
312
313 switch (intel_encoder->type) {
314 case INTEL_OUTPUT_DP_MST:
315 *dig_port = enc_to_mst(encoder)->primary;
316 *port = (*dig_port)->port;
317 break;
318 case INTEL_OUTPUT_DISPLAYPORT:
319 case INTEL_OUTPUT_EDP:
320 case INTEL_OUTPUT_HDMI:
321 case INTEL_OUTPUT_UNKNOWN:
322 *dig_port = enc_to_dig_port(encoder);
323 *port = (*dig_port)->port;
324 break;
325 case INTEL_OUTPUT_ANALOG:
326 *dig_port = NULL;
327 *port = PORT_E;
328 break;
329 default:
330 WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
331 break;
332 }
333 }
334
335 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
336 {
337 struct intel_digital_port *dig_port;
338 enum port port;
339
340 ddi_get_encoder_port(intel_encoder, &dig_port, &port);
341
342 return port;
343 }
344
345 static bool
346 intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
347 {
348 return i915_mmio_reg_valid(intel_dig_port->hdmi.hdmi_reg);
349 }
350
351 static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
352 int *n_entries)
353 {
354 const struct ddi_buf_trans *ddi_translations;
355
356 if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
357 ddi_translations = skl_y_ddi_translations_dp;
358 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
359 } else if (IS_SKL_ULT(dev) || IS_KBL_ULT(dev)) {
360 ddi_translations = skl_u_ddi_translations_dp;
361 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
362 } else {
363 ddi_translations = skl_ddi_translations_dp;
364 *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
365 }
366
367 return ddi_translations;
368 }
369
370 static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
371 int *n_entries)
372 {
373 struct drm_i915_private *dev_priv = dev->dev_private;
374 const struct ddi_buf_trans *ddi_translations;
375
376 if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
377 if (dev_priv->edp_low_vswing) {
378 ddi_translations = skl_y_ddi_translations_edp;
379 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
380 } else {
381 ddi_translations = skl_y_ddi_translations_dp;
382 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
383 }
384 } else if (IS_SKL_ULT(dev) || IS_KBL_ULT(dev)) {
385 if (dev_priv->edp_low_vswing) {
386 ddi_translations = skl_u_ddi_translations_edp;
387 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
388 } else {
389 ddi_translations = skl_u_ddi_translations_dp;
390 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
391 }
392 } else {
393 if (dev_priv->edp_low_vswing) {
394 ddi_translations = skl_ddi_translations_edp;
395 *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
396 } else {
397 ddi_translations = skl_ddi_translations_dp;
398 *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
399 }
400 }
401
402 return ddi_translations;
403 }
404
405 static const struct ddi_buf_trans *
406 skl_get_buf_trans_hdmi(struct drm_device *dev,
407 int *n_entries)
408 {
409 const struct ddi_buf_trans *ddi_translations;
410
411 if (IS_SKL_ULX(dev) || IS_KBL_ULX(dev)) {
412 ddi_translations = skl_y_ddi_translations_hdmi;
413 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
414 } else {
415 ddi_translations = skl_ddi_translations_hdmi;
416 *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
417 }
418
419 return ddi_translations;
420 }
421
422 /*
423 * Starting with Haswell, DDI port buffers must be programmed with correct
424 * values in advance. The buffer values are different for FDI and DP modes,
425 * but the HDMI/DVI fields are shared among those. So we program the DDI
426 * in either FDI or DP modes only, as HDMI connections will work with both
427 * of those
428 */
429 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
430 bool supports_hdmi)
431 {
432 struct drm_i915_private *dev_priv = dev->dev_private;
433 u32 iboost_bit = 0;
434 int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
435 size;
436 int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
437 const struct ddi_buf_trans *ddi_translations_fdi;
438 const struct ddi_buf_trans *ddi_translations_dp;
439 const struct ddi_buf_trans *ddi_translations_edp;
440 const struct ddi_buf_trans *ddi_translations_hdmi;
441 const struct ddi_buf_trans *ddi_translations;
442
443 if (IS_BROXTON(dev)) {
444 if (!supports_hdmi)
445 return;
446
447 /* Vswing programming for HDMI */
448 bxt_ddi_vswing_sequence(dev, hdmi_level, port,
449 INTEL_OUTPUT_HDMI);
450 return;
451 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
452 ddi_translations_fdi = NULL;
453 ddi_translations_dp =
454 skl_get_buf_trans_dp(dev, &n_dp_entries);
455 ddi_translations_edp =
456 skl_get_buf_trans_edp(dev, &n_edp_entries);
457 ddi_translations_hdmi =
458 skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
459 hdmi_default_entry = 8;
460 /* If we're boosting the current, set bit 31 of trans1 */
461 if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
462 dev_priv->vbt.ddi_port_info[port].dp_boost_level)
463 iboost_bit = 1<<31;
464 } else if (IS_BROADWELL(dev)) {
465 ddi_translations_fdi = bdw_ddi_translations_fdi;
466 ddi_translations_dp = bdw_ddi_translations_dp;
467 ddi_translations_edp = bdw_ddi_translations_edp;
468 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
469 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
470 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
471 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
472 hdmi_default_entry = 7;
473 } else if (IS_HASWELL(dev)) {
474 ddi_translations_fdi = hsw_ddi_translations_fdi;
475 ddi_translations_dp = hsw_ddi_translations_dp;
476 ddi_translations_edp = hsw_ddi_translations_dp;
477 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
478 n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
479 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
480 hdmi_default_entry = 6;
481 } else {
482 WARN(1, "ddi translation table missing\n");
483 ddi_translations_edp = bdw_ddi_translations_dp;
484 ddi_translations_fdi = bdw_ddi_translations_fdi;
485 ddi_translations_dp = bdw_ddi_translations_dp;
486 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
487 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
488 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
489 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
490 hdmi_default_entry = 7;
491 }
492
493 switch (port) {
494 case PORT_A:
495 ddi_translations = ddi_translations_edp;
496 size = n_edp_entries;
497 break;
498 case PORT_B:
499 case PORT_C:
500 ddi_translations = ddi_translations_dp;
501 size = n_dp_entries;
502 break;
503 case PORT_D:
504 if (intel_dp_is_edp(dev, PORT_D)) {
505 ddi_translations = ddi_translations_edp;
506 size = n_edp_entries;
507 } else {
508 ddi_translations = ddi_translations_dp;
509 size = n_dp_entries;
510 }
511 break;
512 case PORT_E:
513 if (ddi_translations_fdi)
514 ddi_translations = ddi_translations_fdi;
515 else
516 ddi_translations = ddi_translations_dp;
517 size = n_dp_entries;
518 break;
519 default:
520 BUG();
521 }
522
523 for (i = 0; i < size; i++) {
524 I915_WRITE(DDI_BUF_TRANS_LO(port, i),
525 ddi_translations[i].trans1 | iboost_bit);
526 I915_WRITE(DDI_BUF_TRANS_HI(port, i),
527 ddi_translations[i].trans2);
528 }
529
530 if (!supports_hdmi)
531 return;
532
533 /* Choose a good default if VBT is badly populated */
534 if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
535 hdmi_level >= n_hdmi_entries)
536 hdmi_level = hdmi_default_entry;
537
538 /* Entry 9 is for HDMI: */
539 I915_WRITE(DDI_BUF_TRANS_LO(port, i),
540 ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
541 I915_WRITE(DDI_BUF_TRANS_HI(port, i),
542 ddi_translations_hdmi[hdmi_level].trans2);
543 }
544
545 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
546 * mode and port E for FDI.
547 */
548 void intel_prepare_ddi(struct drm_device *dev)
549 {
550 struct intel_encoder *intel_encoder;
551 bool visited[I915_MAX_PORTS] = { 0, };
552
553 if (!HAS_DDI(dev))
554 return;
555
556 for_each_intel_encoder(dev, intel_encoder) {
557 struct intel_digital_port *intel_dig_port;
558 enum port port;
559 bool supports_hdmi;
560
561 if (intel_encoder->type == INTEL_OUTPUT_DSI)
562 continue;
563
564 ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
565 if (visited[port])
566 continue;
567
568 supports_hdmi = intel_dig_port &&
569 intel_dig_port_supports_hdmi(intel_dig_port);
570
571 intel_prepare_ddi_buffers(dev, port, supports_hdmi);
572 visited[port] = true;
573 }
574 }
575
576 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
577 enum port port)
578 {
579 i915_reg_t reg = DDI_BUF_CTL(port);
580 int i;
581
582 for (i = 0; i < 16; i++) {
583 udelay(1);
584 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
585 return;
586 }
587 DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
588 }
589
590 /* Starting with Haswell, different DDI ports can work in FDI mode for
591 * connection to the PCH-located connectors. For this, it is necessary to train
592 * both the DDI port and PCH receiver for the desired DDI buffer settings.
593 *
594 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
595 * please note that when FDI mode is active on DDI E, it shares 2 lines with
596 * DDI A (which is used for eDP)
597 */
598
599 void hsw_fdi_link_train(struct drm_crtc *crtc)
600 {
601 struct drm_device *dev = crtc->dev;
602 struct drm_i915_private *dev_priv = dev->dev_private;
603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
604 u32 temp, i, rx_ctl_val;
605
606 /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
607 * mode set "sequence for CRT port" document:
608 * - TP1 to TP2 time with the default value
609 * - FDI delay to 90h
610 *
611 * WaFDIAutoLinkSetTimingOverrride:hsw
612 */
613 I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
614 FDI_RX_PWRDN_LANE0_VAL(2) |
615 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
616
617 /* Enable the PCH Receiver FDI PLL */
618 rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
619 FDI_RX_PLL_ENABLE |
620 FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
621 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
622 POSTING_READ(FDI_RX_CTL(PIPE_A));
623 udelay(220);
624
625 /* Switch from Rawclk to PCDclk */
626 rx_ctl_val |= FDI_PCDCLK;
627 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
628
629 /* Configure Port Clock Select */
630 I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
631 WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
632
633 /* Start the training iterating through available voltages and emphasis,
634 * testing each value twice. */
635 for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
636 /* Configure DP_TP_CTL with auto-training */
637 I915_WRITE(DP_TP_CTL(PORT_E),
638 DP_TP_CTL_FDI_AUTOTRAIN |
639 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
640 DP_TP_CTL_LINK_TRAIN_PAT1 |
641 DP_TP_CTL_ENABLE);
642
643 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
644 * DDI E does not support port reversal, the functionality is
645 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
646 * port reversal bit */
647 I915_WRITE(DDI_BUF_CTL(PORT_E),
648 DDI_BUF_CTL_ENABLE |
649 ((intel_crtc->config->fdi_lanes - 1) << 1) |
650 DDI_BUF_TRANS_SELECT(i / 2));
651 POSTING_READ(DDI_BUF_CTL(PORT_E));
652
653 udelay(600);
654
655 /* Program PCH FDI Receiver TU */
656 I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
657
658 /* Enable PCH FDI Receiver with auto-training */
659 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
660 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
661 POSTING_READ(FDI_RX_CTL(PIPE_A));
662
663 /* Wait for FDI receiver lane calibration */
664 udelay(30);
665
666 /* Unset FDI_RX_MISC pwrdn lanes */
667 temp = I915_READ(FDI_RX_MISC(PIPE_A));
668 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
669 I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
670 POSTING_READ(FDI_RX_MISC(PIPE_A));
671
672 /* Wait for FDI auto training time */
673 udelay(5);
674
675 temp = I915_READ(DP_TP_STATUS(PORT_E));
676 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
677 DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
678 break;
679 }
680
681 /*
682 * Leave things enabled even if we failed to train FDI.
683 * Results in less fireworks from the state checker.
684 */
685 if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
686 DRM_ERROR("FDI link training failed!\n");
687 break;
688 }
689
690 temp = I915_READ(DDI_BUF_CTL(PORT_E));
691 temp &= ~DDI_BUF_CTL_ENABLE;
692 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
693 POSTING_READ(DDI_BUF_CTL(PORT_E));
694
695 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
696 temp = I915_READ(DP_TP_CTL(PORT_E));
697 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
698 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
699 I915_WRITE(DP_TP_CTL(PORT_E), temp);
700 POSTING_READ(DP_TP_CTL(PORT_E));
701
702 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
703
704 rx_ctl_val &= ~FDI_RX_ENABLE;
705 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
706 POSTING_READ(FDI_RX_CTL(PIPE_A));
707
708 /* Reset FDI_RX_MISC pwrdn lanes */
709 temp = I915_READ(FDI_RX_MISC(PIPE_A));
710 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
711 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
712 I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
713 POSTING_READ(FDI_RX_MISC(PIPE_A));
714 }
715
716 /* Enable normal pixel sending for FDI */
717 I915_WRITE(DP_TP_CTL(PORT_E),
718 DP_TP_CTL_FDI_AUTOTRAIN |
719 DP_TP_CTL_LINK_TRAIN_NORMAL |
720 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
721 DP_TP_CTL_ENABLE);
722 }
723
724 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
725 {
726 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
727 struct intel_digital_port *intel_dig_port =
728 enc_to_dig_port(&encoder->base);
729
730 intel_dp->DP = intel_dig_port->saved_port_bits |
731 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
732 intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
733 }
734
735 static struct intel_encoder *
736 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
737 {
738 struct drm_device *dev = crtc->dev;
739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
740 struct intel_encoder *intel_encoder, *ret = NULL;
741 int num_encoders = 0;
742
743 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
744 ret = intel_encoder;
745 num_encoders++;
746 }
747
748 if (num_encoders != 1)
749 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
750 pipe_name(intel_crtc->pipe));
751
752 BUG_ON(ret == NULL);
753 return ret;
754 }
755
756 struct intel_encoder *
757 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
758 {
759 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
760 struct intel_encoder *ret = NULL;
761 struct drm_atomic_state *state;
762 struct drm_connector *connector;
763 struct drm_connector_state *connector_state;
764 int num_encoders = 0;
765 int i;
766
767 state = crtc_state->base.state;
768
769 for_each_connector_in_state(state, connector, connector_state, i) {
770 if (connector_state->crtc != crtc_state->base.crtc)
771 continue;
772
773 ret = to_intel_encoder(connector_state->best_encoder);
774 num_encoders++;
775 }
776
777 WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
778 pipe_name(crtc->pipe));
779
780 BUG_ON(ret == NULL);
781 return ret;
782 }
783
784 #define LC_FREQ 2700
785 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
786
787 #define P_MIN 2
788 #define P_MAX 64
789 #define P_INC 2
790
791 /* Constraints for PLL good behavior */
792 #define REF_MIN 48
793 #define REF_MAX 400
794 #define VCO_MIN 2400
795 #define VCO_MAX 4800
796
797 #define abs_diff(a, b) ({ \
798 typeof(a) __a = (a); \
799 typeof(b) __b = (b); \
800 (void) (&__a == &__b); \
801 __a > __b ? (__a - __b) : (__b - __a); })
802
803 struct hsw_wrpll_rnp {
804 unsigned p, n2, r2;
805 };
806
807 static unsigned hsw_wrpll_get_budget_for_freq(int clock)
808 {
809 unsigned budget;
810
811 switch (clock) {
812 case 25175000:
813 case 25200000:
814 case 27000000:
815 case 27027000:
816 case 37762500:
817 case 37800000:
818 case 40500000:
819 case 40541000:
820 case 54000000:
821 case 54054000:
822 case 59341000:
823 case 59400000:
824 case 72000000:
825 case 74176000:
826 case 74250000:
827 case 81000000:
828 case 81081000:
829 case 89012000:
830 case 89100000:
831 case 108000000:
832 case 108108000:
833 case 111264000:
834 case 111375000:
835 case 148352000:
836 case 148500000:
837 case 162000000:
838 case 162162000:
839 case 222525000:
840 case 222750000:
841 case 296703000:
842 case 297000000:
843 budget = 0;
844 break;
845 case 233500000:
846 case 245250000:
847 case 247750000:
848 case 253250000:
849 case 298000000:
850 budget = 1500;
851 break;
852 case 169128000:
853 case 169500000:
854 case 179500000:
855 case 202000000:
856 budget = 2000;
857 break;
858 case 256250000:
859 case 262500000:
860 case 270000000:
861 case 272500000:
862 case 273750000:
863 case 280750000:
864 case 281250000:
865 case 286000000:
866 case 291750000:
867 budget = 4000;
868 break;
869 case 267250000:
870 case 268500000:
871 budget = 5000;
872 break;
873 default:
874 budget = 1000;
875 break;
876 }
877
878 return budget;
879 }
880
881 static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
882 unsigned r2, unsigned n2, unsigned p,
883 struct hsw_wrpll_rnp *best)
884 {
885 uint64_t a, b, c, d, diff, diff_best;
886
887 /* No best (r,n,p) yet */
888 if (best->p == 0) {
889 best->p = p;
890 best->n2 = n2;
891 best->r2 = r2;
892 return;
893 }
894
895 /*
896 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
897 * freq2k.
898 *
899 * delta = 1e6 *
900 * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
901 * freq2k;
902 *
903 * and we would like delta <= budget.
904 *
905 * If the discrepancy is above the PPM-based budget, always prefer to
906 * improve upon the previous solution. However, if you're within the
907 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
908 */
909 a = freq2k * budget * p * r2;
910 b = freq2k * budget * best->p * best->r2;
911 diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
912 diff_best = abs_diff(freq2k * best->p * best->r2,
913 LC_FREQ_2K * best->n2);
914 c = 1000000 * diff;
915 d = 1000000 * diff_best;
916
917 if (a < c && b < d) {
918 /* If both are above the budget, pick the closer */
919 if (best->p * best->r2 * diff < p * r2 * diff_best) {
920 best->p = p;
921 best->n2 = n2;
922 best->r2 = r2;
923 }
924 } else if (a >= c && b < d) {
925 /* If A is below the threshold but B is above it? Update. */
926 best->p = p;
927 best->n2 = n2;
928 best->r2 = r2;
929 } else if (a >= c && b >= d) {
930 /* Both are below the limit, so pick the higher n2/(r2*r2) */
931 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
932 best->p = p;
933 best->n2 = n2;
934 best->r2 = r2;
935 }
936 }
937 /* Otherwise a < c && b >= d, do nothing */
938 }
939
940 static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
941 i915_reg_t reg)
942 {
943 int refclk = LC_FREQ;
944 int n, p, r;
945 u32 wrpll;
946
947 wrpll = I915_READ(reg);
948 switch (wrpll & WRPLL_PLL_REF_MASK) {
949 case WRPLL_PLL_SSC:
950 case WRPLL_PLL_NON_SSC:
951 /*
952 * We could calculate spread here, but our checking
953 * code only cares about 5% accuracy, and spread is a max of
954 * 0.5% downspread.
955 */
956 refclk = 135;
957 break;
958 case WRPLL_PLL_LCPLL:
959 refclk = LC_FREQ;
960 break;
961 default:
962 WARN(1, "bad wrpll refclk\n");
963 return 0;
964 }
965
966 r = wrpll & WRPLL_DIVIDER_REF_MASK;
967 p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
968 n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
969
970 /* Convert to KHz, p & r have a fixed point portion */
971 return (refclk * n * 100) / (p * r);
972 }
973
974 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
975 uint32_t dpll)
976 {
977 i915_reg_t cfgcr1_reg, cfgcr2_reg;
978 uint32_t cfgcr1_val, cfgcr2_val;
979 uint32_t p0, p1, p2, dco_freq;
980
981 cfgcr1_reg = DPLL_CFGCR1(dpll);
982 cfgcr2_reg = DPLL_CFGCR2(dpll);
983
984 cfgcr1_val = I915_READ(cfgcr1_reg);
985 cfgcr2_val = I915_READ(cfgcr2_reg);
986
987 p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
988 p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
989
990 if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
991 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
992 else
993 p1 = 1;
994
995
996 switch (p0) {
997 case DPLL_CFGCR2_PDIV_1:
998 p0 = 1;
999 break;
1000 case DPLL_CFGCR2_PDIV_2:
1001 p0 = 2;
1002 break;
1003 case DPLL_CFGCR2_PDIV_3:
1004 p0 = 3;
1005 break;
1006 case DPLL_CFGCR2_PDIV_7:
1007 p0 = 7;
1008 break;
1009 }
1010
1011 switch (p2) {
1012 case DPLL_CFGCR2_KDIV_5:
1013 p2 = 5;
1014 break;
1015 case DPLL_CFGCR2_KDIV_2:
1016 p2 = 2;
1017 break;
1018 case DPLL_CFGCR2_KDIV_3:
1019 p2 = 3;
1020 break;
1021 case DPLL_CFGCR2_KDIV_1:
1022 p2 = 1;
1023 break;
1024 }
1025
1026 dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
1027
1028 dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
1029 1000) / 0x8000;
1030
1031 return dco_freq / (p0 * p1 * p2 * 5);
1032 }
1033
1034 static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
1035 {
1036 int dotclock;
1037
1038 if (pipe_config->has_pch_encoder)
1039 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1040 &pipe_config->fdi_m_n);
1041 else if (pipe_config->has_dp_encoder)
1042 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1043 &pipe_config->dp_m_n);
1044 else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
1045 dotclock = pipe_config->port_clock * 2 / 3;
1046 else
1047 dotclock = pipe_config->port_clock;
1048
1049 if (pipe_config->pixel_multiplier)
1050 dotclock /= pipe_config->pixel_multiplier;
1051
1052 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
1053 }
1054
1055 static void skl_ddi_clock_get(struct intel_encoder *encoder,
1056 struct intel_crtc_state *pipe_config)
1057 {
1058 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1059 int link_clock = 0;
1060 uint32_t dpll_ctl1, dpll;
1061
1062 dpll = pipe_config->ddi_pll_sel;
1063
1064 dpll_ctl1 = I915_READ(DPLL_CTRL1);
1065
1066 if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
1067 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
1068 } else {
1069 link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
1070 link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1071
1072 switch (link_clock) {
1073 case DPLL_CTRL1_LINK_RATE_810:
1074 link_clock = 81000;
1075 break;
1076 case DPLL_CTRL1_LINK_RATE_1080:
1077 link_clock = 108000;
1078 break;
1079 case DPLL_CTRL1_LINK_RATE_1350:
1080 link_clock = 135000;
1081 break;
1082 case DPLL_CTRL1_LINK_RATE_1620:
1083 link_clock = 162000;
1084 break;
1085 case DPLL_CTRL1_LINK_RATE_2160:
1086 link_clock = 216000;
1087 break;
1088 case DPLL_CTRL1_LINK_RATE_2700:
1089 link_clock = 270000;
1090 break;
1091 default:
1092 WARN(1, "Unsupported link rate\n");
1093 break;
1094 }
1095 link_clock *= 2;
1096 }
1097
1098 pipe_config->port_clock = link_clock;
1099
1100 ddi_dotclock_get(pipe_config);
1101 }
1102
1103 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1104 struct intel_crtc_state *pipe_config)
1105 {
1106 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1107 int link_clock = 0;
1108 u32 val, pll;
1109
1110 val = pipe_config->ddi_pll_sel;
1111 switch (val & PORT_CLK_SEL_MASK) {
1112 case PORT_CLK_SEL_LCPLL_810:
1113 link_clock = 81000;
1114 break;
1115 case PORT_CLK_SEL_LCPLL_1350:
1116 link_clock = 135000;
1117 break;
1118 case PORT_CLK_SEL_LCPLL_2700:
1119 link_clock = 270000;
1120 break;
1121 case PORT_CLK_SEL_WRPLL1:
1122 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
1123 break;
1124 case PORT_CLK_SEL_WRPLL2:
1125 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
1126 break;
1127 case PORT_CLK_SEL_SPLL:
1128 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
1129 if (pll == SPLL_PLL_FREQ_810MHz)
1130 link_clock = 81000;
1131 else if (pll == SPLL_PLL_FREQ_1350MHz)
1132 link_clock = 135000;
1133 else if (pll == SPLL_PLL_FREQ_2700MHz)
1134 link_clock = 270000;
1135 else {
1136 WARN(1, "bad spll freq\n");
1137 return;
1138 }
1139 break;
1140 default:
1141 WARN(1, "bad port clock sel\n");
1142 return;
1143 }
1144
1145 pipe_config->port_clock = link_clock * 2;
1146
1147 ddi_dotclock_get(pipe_config);
1148 }
1149
1150 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
1151 enum intel_dpll_id dpll)
1152 {
1153 struct intel_shared_dpll *pll;
1154 struct intel_dpll_hw_state *state;
1155 intel_clock_t clock;
1156
1157 /* For DDI ports we always use a shared PLL. */
1158 if (WARN_ON(dpll == DPLL_ID_PRIVATE))
1159 return 0;
1160
1161 pll = &dev_priv->shared_dplls[dpll];
1162 state = &pll->config.hw_state;
1163
1164 clock.m1 = 2;
1165 clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
1166 if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
1167 clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
1168 clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
1169 clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
1170 clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
1171
1172 return chv_calc_dpll_params(100000, &clock);
1173 }
1174
1175 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
1176 struct intel_crtc_state *pipe_config)
1177 {
1178 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1179 enum port port = intel_ddi_get_encoder_port(encoder);
1180 uint32_t dpll = port;
1181
1182 pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1183
1184 ddi_dotclock_get(pipe_config);
1185 }
1186
1187 void intel_ddi_clock_get(struct intel_encoder *encoder,
1188 struct intel_crtc_state *pipe_config)
1189 {
1190 struct drm_device *dev = encoder->base.dev;
1191
1192 if (INTEL_INFO(dev)->gen <= 8)
1193 hsw_ddi_clock_get(encoder, pipe_config);
1194 else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1195 skl_ddi_clock_get(encoder, pipe_config);
1196 else if (IS_BROXTON(dev))
1197 bxt_ddi_clock_get(encoder, pipe_config);
1198 }
1199
1200 static void
1201 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
1202 unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1203 {
1204 uint64_t freq2k;
1205 unsigned p, n2, r2;
1206 struct hsw_wrpll_rnp best = { 0, 0, 0 };
1207 unsigned budget;
1208
1209 freq2k = clock / 100;
1210
1211 budget = hsw_wrpll_get_budget_for_freq(clock);
1212
1213 /* Special case handling for 540 pixel clock: bypass WR PLL entirely
1214 * and directly pass the LC PLL to it. */
1215 if (freq2k == 5400000) {
1216 *n2_out = 2;
1217 *p_out = 1;
1218 *r2_out = 2;
1219 return;
1220 }
1221
1222 /*
1223 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
1224 * the WR PLL.
1225 *
1226 * We want R so that REF_MIN <= Ref <= REF_MAX.
1227 * Injecting R2 = 2 * R gives:
1228 * REF_MAX * r2 > LC_FREQ * 2 and
1229 * REF_MIN * r2 < LC_FREQ * 2
1230 *
1231 * Which means the desired boundaries for r2 are:
1232 * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
1233 *
1234 */
1235 for (r2 = LC_FREQ * 2 / REF_MAX + 1;
1236 r2 <= LC_FREQ * 2 / REF_MIN;
1237 r2++) {
1238
1239 /*
1240 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
1241 *
1242 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
1243 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
1244 * VCO_MAX * r2 > n2 * LC_FREQ and
1245 * VCO_MIN * r2 < n2 * LC_FREQ)
1246 *
1247 * Which means the desired boundaries for n2 are:
1248 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
1249 */
1250 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
1251 n2 <= VCO_MAX * r2 / LC_FREQ;
1252 n2++) {
1253
1254 for (p = P_MIN; p <= P_MAX; p += P_INC)
1255 hsw_wrpll_update_rnp(freq2k, budget,
1256 r2, n2, p, &best);
1257 }
1258 }
1259
1260 *n2_out = best.n2;
1261 *p_out = best.p;
1262 *r2_out = best.r2;
1263 }
1264
1265 static bool
1266 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1267 struct intel_crtc_state *crtc_state,
1268 struct intel_encoder *intel_encoder)
1269 {
1270 int clock = crtc_state->port_clock;
1271
1272 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1273 struct intel_shared_dpll *pll;
1274 uint32_t val;
1275 unsigned p, n2, r2;
1276
1277 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
1278
1279 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
1280 WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
1281 WRPLL_DIVIDER_POST(p);
1282
1283 memset(&crtc_state->dpll_hw_state, 0,
1284 sizeof(crtc_state->dpll_hw_state));
1285
1286 crtc_state->dpll_hw_state.wrpll = val;
1287
1288 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1289 if (pll == NULL) {
1290 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1291 pipe_name(intel_crtc->pipe));
1292 return false;
1293 }
1294
1295 crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1296 } else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
1297 struct drm_atomic_state *state = crtc_state->base.state;
1298 struct intel_shared_dpll_config *spll =
1299 &intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];
1300
1301 if (spll->crtc_mask &&
1302 WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
1303 return false;
1304
1305 crtc_state->shared_dpll = DPLL_ID_SPLL;
1306 spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
1307 spll->crtc_mask |= 1 << intel_crtc->pipe;
1308 }
1309
1310 return true;
1311 }
1312
1313 struct skl_wrpll_context {
1314 uint64_t min_deviation; /* current minimal deviation */
1315 uint64_t central_freq; /* chosen central freq */
1316 uint64_t dco_freq; /* chosen dco freq */
1317 unsigned int p; /* chosen divider */
1318 };
1319
1320 static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
1321 {
1322 memset(ctx, 0, sizeof(*ctx));
1323
1324 ctx->min_deviation = U64_MAX;
1325 }
1326
1327 /* DCO freq must be within +1%/-6% of the DCO central freq */
1328 #define SKL_DCO_MAX_PDEVIATION 100
1329 #define SKL_DCO_MAX_NDEVIATION 600
1330
1331 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
1332 uint64_t central_freq,
1333 uint64_t dco_freq,
1334 unsigned int divider)
1335 {
1336 uint64_t deviation;
1337
1338 deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
1339 central_freq);
1340
1341 /* positive deviation */
1342 if (dco_freq >= central_freq) {
1343 if (deviation < SKL_DCO_MAX_PDEVIATION &&
1344 deviation < ctx->min_deviation) {
1345 ctx->min_deviation = deviation;
1346 ctx->central_freq = central_freq;
1347 ctx->dco_freq = dco_freq;
1348 ctx->p = divider;
1349 }
1350 /* negative deviation */
1351 } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
1352 deviation < ctx->min_deviation) {
1353 ctx->min_deviation = deviation;
1354 ctx->central_freq = central_freq;
1355 ctx->dco_freq = dco_freq;
1356 ctx->p = divider;
1357 }
1358 }
1359
1360 static void skl_wrpll_get_multipliers(unsigned int p,
1361 unsigned int *p0 /* out */,
1362 unsigned int *p1 /* out */,
1363 unsigned int *p2 /* out */)
1364 {
1365 /* even dividers */
1366 if (p % 2 == 0) {
1367 unsigned int half = p / 2;
1368
1369 if (half == 1 || half == 2 || half == 3 || half == 5) {
1370 *p0 = 2;
1371 *p1 = 1;
1372 *p2 = half;
1373 } else if (half % 2 == 0) {
1374 *p0 = 2;
1375 *p1 = half / 2;
1376 *p2 = 2;
1377 } else if (half % 3 == 0) {
1378 *p0 = 3;
1379 *p1 = half / 3;
1380 *p2 = 2;
1381 } else if (half % 7 == 0) {
1382 *p0 = 7;
1383 *p1 = half / 7;
1384 *p2 = 2;
1385 }
1386 } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
1387 *p0 = 3;
1388 *p1 = 1;
1389 *p2 = p / 3;
1390 } else if (p == 5 || p == 7) {
1391 *p0 = p;
1392 *p1 = 1;
1393 *p2 = 1;
1394 } else if (p == 15) {
1395 *p0 = 3;
1396 *p1 = 1;
1397 *p2 = 5;
1398 } else if (p == 21) {
1399 *p0 = 7;
1400 *p1 = 1;
1401 *p2 = 3;
1402 } else if (p == 35) {
1403 *p0 = 7;
1404 *p1 = 1;
1405 *p2 = 5;
1406 }
1407 }
1408
1409 struct skl_wrpll_params {
1410 uint32_t dco_fraction;
1411 uint32_t dco_integer;
1412 uint32_t qdiv_ratio;
1413 uint32_t qdiv_mode;
1414 uint32_t kdiv;
1415 uint32_t pdiv;
1416 uint32_t central_freq;
1417 };
1418
1419 static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
1420 uint64_t afe_clock,
1421 uint64_t central_freq,
1422 uint32_t p0, uint32_t p1, uint32_t p2)
1423 {
1424 uint64_t dco_freq;
1425
1426 switch (central_freq) {
1427 case 9600000000ULL:
1428 params->central_freq = 0;
1429 break;
1430 case 9000000000ULL:
1431 params->central_freq = 1;
1432 break;
1433 case 8400000000ULL:
1434 params->central_freq = 3;
1435 }
1436
1437 switch (p0) {
1438 case 1:
1439 params->pdiv = 0;
1440 break;
1441 case 2:
1442 params->pdiv = 1;
1443 break;
1444 case 3:
1445 params->pdiv = 2;
1446 break;
1447 case 7:
1448 params->pdiv = 4;
1449 break;
1450 default:
1451 WARN(1, "Incorrect PDiv\n");
1452 }
1453
1454 switch (p2) {
1455 case 5:
1456 params->kdiv = 0;
1457 break;
1458 case 2:
1459 params->kdiv = 1;
1460 break;
1461 case 3:
1462 params->kdiv = 2;
1463 break;
1464 case 1:
1465 params->kdiv = 3;
1466 break;
1467 default:
1468 WARN(1, "Incorrect KDiv\n");
1469 }
1470
1471 params->qdiv_ratio = p1;
1472 params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
1473
1474 dco_freq = p0 * p1 * p2 * afe_clock;
1475
1476 /*
1477 * Intermediate values are in Hz.
1478 * Divide by MHz to match bsepc
1479 */
1480 params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1481 params->dco_fraction =
1482 div_u64((div_u64(dco_freq, 24) -
1483 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1484 }
1485
1486 static bool
1487 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1488 struct skl_wrpll_params *wrpll_params)
1489 {
1490 uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1491 uint64_t dco_central_freq[3] = {8400000000ULL,
1492 9000000000ULL,
1493 9600000000ULL};
1494 static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
1495 24, 28, 30, 32, 36, 40, 42, 44,
1496 48, 52, 54, 56, 60, 64, 66, 68,
1497 70, 72, 76, 78, 80, 84, 88, 90,
1498 92, 96, 98 };
1499 static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
1500 static const struct {
1501 const int *list;
1502 int n_dividers;
1503 } dividers[] = {
1504 { even_dividers, ARRAY_SIZE(even_dividers) },
1505 { odd_dividers, ARRAY_SIZE(odd_dividers) },
1506 };
1507 struct skl_wrpll_context ctx;
1508 unsigned int dco, d, i;
1509 unsigned int p0, p1, p2;
1510
1511 skl_wrpll_context_init(&ctx);
1512
1513 for (d = 0; d < ARRAY_SIZE(dividers); d++) {
1514 for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
1515 for (i = 0; i < dividers[d].n_dividers; i++) {
1516 unsigned int p = dividers[d].list[i];
1517 uint64_t dco_freq = p * afe_clock;
1518
1519 skl_wrpll_try_divider(&ctx,
1520 dco_central_freq[dco],
1521 dco_freq,
1522 p);
1523 /*
1524 * Skip the remaining dividers if we're sure to
1525 * have found the definitive divider, we can't
1526 * improve a 0 deviation.
1527 */
1528 if (ctx.min_deviation == 0)
1529 goto skip_remaining_dividers;
1530 }
1531 }
1532
1533 skip_remaining_dividers:
1534 /*
1535 * If a solution is found with an even divider, prefer
1536 * this one.
1537 */
1538 if (d == 0 && ctx.p)
1539 break;
1540 }
1541
1542 if (!ctx.p) {
1543 DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1544 return false;
1545 }
1546
1547 /*
1548 * gcc incorrectly analyses that these can be used without being
1549 * initialized. To be fair, it's hard to guess.
1550 */
1551 p0 = p1 = p2 = 0;
1552 skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
1553 skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
1554 p0, p1, p2);
1555
1556 return true;
1557 }
1558
1559 static bool
1560 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1561 struct intel_crtc_state *crtc_state,
1562 struct intel_encoder *intel_encoder)
1563 {
1564 struct intel_shared_dpll *pll;
1565 uint32_t ctrl1, cfgcr1, cfgcr2;
1566 int clock = crtc_state->port_clock;
1567
1568 /*
1569 * See comment in intel_dpll_hw_state to understand why we always use 0
1570 * as the DPLL id in this function.
1571 */
1572
1573 ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1574
1575 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1576 struct skl_wrpll_params wrpll_params = { 0, };
1577
1578 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1579
1580 if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
1581 return false;
1582
1583 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1584 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1585 wrpll_params.dco_integer;
1586
1587 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1588 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1589 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1590 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1591 wrpll_params.central_freq;
1592 } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1593 switch (crtc_state->port_clock / 2) {
1594 case 81000:
1595 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1596 break;
1597 case 135000:
1598 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1599 break;
1600 case 270000:
1601 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1602 break;
1603 }
1604
1605 cfgcr1 = cfgcr2 = 0;
1606 } else /* eDP */
1607 return true;
1608
1609 memset(&crtc_state->dpll_hw_state, 0,
1610 sizeof(crtc_state->dpll_hw_state));
1611
1612 crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1613 crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1614 crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1615
1616 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1617 if (pll == NULL) {
1618 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1619 pipe_name(intel_crtc->pipe));
1620 return false;
1621 }
1622
1623 /* shared DPLL id 0 is DPLL 1 */
1624 crtc_state->ddi_pll_sel = pll->id + 1;
1625
1626 return true;
1627 }
1628
1629 /* bxt clock parameters */
1630 struct bxt_clk_div {
1631 int clock;
1632 uint32_t p1;
1633 uint32_t p2;
1634 uint32_t m2_int;
1635 uint32_t m2_frac;
1636 bool m2_frac_en;
1637 uint32_t n;
1638 };
1639
1640 /* pre-calculated values for DP linkrates */
1641 static const struct bxt_clk_div bxt_dp_clk_val[] = {
1642 {162000, 4, 2, 32, 1677722, 1, 1},
1643 {270000, 4, 1, 27, 0, 0, 1},
1644 {540000, 2, 1, 27, 0, 0, 1},
1645 {216000, 3, 2, 32, 1677722, 1, 1},
1646 {243000, 4, 1, 24, 1258291, 1, 1},
1647 {324000, 4, 1, 32, 1677722, 1, 1},
1648 {432000, 3, 1, 32, 1677722, 1, 1}
1649 };
1650
1651 static bool
1652 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1653 struct intel_crtc_state *crtc_state,
1654 struct intel_encoder *intel_encoder)
1655 {
1656 struct intel_shared_dpll *pll;
1657 struct bxt_clk_div clk_div = {0};
1658 int vco = 0;
1659 uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1660 uint32_t lanestagger;
1661 int clock = crtc_state->port_clock;
1662
1663 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1664 intel_clock_t best_clock;
1665
1666 /* Calculate HDMI div */
1667 /*
1668 * FIXME: tie the following calculation into
1669 * i9xx_crtc_compute_clock
1670 */
1671 if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
1672 DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
1673 clock, pipe_name(intel_crtc->pipe));
1674 return false;
1675 }
1676
1677 clk_div.p1 = best_clock.p1;
1678 clk_div.p2 = best_clock.p2;
1679 WARN_ON(best_clock.m1 != 2);
1680 clk_div.n = best_clock.n;
1681 clk_div.m2_int = best_clock.m2 >> 22;
1682 clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
1683 clk_div.m2_frac_en = clk_div.m2_frac != 0;
1684
1685 vco = best_clock.vco;
1686 } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
1687 intel_encoder->type == INTEL_OUTPUT_EDP) {
1688 int i;
1689
1690 clk_div = bxt_dp_clk_val[0];
1691 for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
1692 if (bxt_dp_clk_val[i].clock == clock) {
1693 clk_div = bxt_dp_clk_val[i];
1694 break;
1695 }
1696 }
1697 vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
1698 }
1699
1700 if (vco >= 6200000 && vco <= 6700000) {
1701 prop_coef = 4;
1702 int_coef = 9;
1703 gain_ctl = 3;
1704 targ_cnt = 8;
1705 } else if ((vco > 5400000 && vco < 6200000) ||
1706 (vco >= 4800000 && vco < 5400000)) {
1707 prop_coef = 5;
1708 int_coef = 11;
1709 gain_ctl = 3;
1710 targ_cnt = 9;
1711 } else if (vco == 5400000) {
1712 prop_coef = 3;
1713 int_coef = 8;
1714 gain_ctl = 1;
1715 targ_cnt = 9;
1716 } else {
1717 DRM_ERROR("Invalid VCO\n");
1718 return false;
1719 }
1720
1721 memset(&crtc_state->dpll_hw_state, 0,
1722 sizeof(crtc_state->dpll_hw_state));
1723
1724 if (clock > 270000)
1725 lanestagger = 0x18;
1726 else if (clock > 135000)
1727 lanestagger = 0x0d;
1728 else if (clock > 67000)
1729 lanestagger = 0x07;
1730 else if (clock > 33000)
1731 lanestagger = 0x04;
1732 else
1733 lanestagger = 0x02;
1734
1735 crtc_state->dpll_hw_state.ebb0 =
1736 PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
1737 crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
1738 crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
1739 crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
1740
1741 if (clk_div.m2_frac_en)
1742 crtc_state->dpll_hw_state.pll3 =
1743 PORT_PLL_M2_FRAC_ENABLE;
1744
1745 crtc_state->dpll_hw_state.pll6 =
1746 prop_coef | PORT_PLL_INT_COEFF(int_coef);
1747 crtc_state->dpll_hw_state.pll6 |=
1748 PORT_PLL_GAIN_CTL(gain_ctl);
1749
1750 crtc_state->dpll_hw_state.pll8 = targ_cnt;
1751
1752 crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
1753
1754 crtc_state->dpll_hw_state.pll10 =
1755 PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
1756 | PORT_PLL_DCO_AMP_OVR_EN_H;
1757
1758 crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
1759
1760 crtc_state->dpll_hw_state.pcsdw12 =
1761 LANESTAGGER_STRAP_OVRD | lanestagger;
1762
1763 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1764 if (pll == NULL) {
1765 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1766 pipe_name(intel_crtc->pipe));
1767 return false;
1768 }
1769
1770 /* shared DPLL id 0 is DPLL A */
1771 crtc_state->ddi_pll_sel = pll->id;
1772
1773 return true;
1774 }
1775
1776 /*
1777 * Tries to find a *shared* PLL for the CRTC and store it in
1778 * intel_crtc->ddi_pll_sel.
1779 *
1780 * For private DPLLs, compute_config() should do the selection for us. This
1781 * function should be folded into compute_config() eventually.
1782 */
1783 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1784 struct intel_crtc_state *crtc_state)
1785 {
1786 struct drm_device *dev = intel_crtc->base.dev;
1787 struct intel_encoder *intel_encoder =
1788 intel_ddi_get_crtc_new_encoder(crtc_state);
1789
1790 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1791 return skl_ddi_pll_select(intel_crtc, crtc_state,
1792 intel_encoder);
1793 else if (IS_BROXTON(dev))
1794 return bxt_ddi_pll_select(intel_crtc, crtc_state,
1795 intel_encoder);
1796 else
1797 return hsw_ddi_pll_select(intel_crtc, crtc_state,
1798 intel_encoder);
1799 }
1800
1801 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1802 {
1803 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1805 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1806 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1807 int type = intel_encoder->type;
1808 uint32_t temp;
1809
1810 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1811 temp = TRANS_MSA_SYNC_CLK;
1812 switch (intel_crtc->config->pipe_bpp) {
1813 case 18:
1814 temp |= TRANS_MSA_6_BPC;
1815 break;
1816 case 24:
1817 temp |= TRANS_MSA_8_BPC;
1818 break;
1819 case 30:
1820 temp |= TRANS_MSA_10_BPC;
1821 break;
1822 case 36:
1823 temp |= TRANS_MSA_12_BPC;
1824 break;
1825 default:
1826 BUG();
1827 }
1828 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1829 }
1830 }
1831
1832 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1833 {
1834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1835 struct drm_device *dev = crtc->dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
1837 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1838 uint32_t temp;
1839 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1840 if (state == true)
1841 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1842 else
1843 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1844 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1845 }
1846
1847 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1848 {
1849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1850 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1851 struct drm_encoder *encoder = &intel_encoder->base;
1852 struct drm_device *dev = crtc->dev;
1853 struct drm_i915_private *dev_priv = dev->dev_private;
1854 enum pipe pipe = intel_crtc->pipe;
1855 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1856 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1857 int type = intel_encoder->type;
1858 uint32_t temp;
1859
1860 /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1861 temp = TRANS_DDI_FUNC_ENABLE;
1862 temp |= TRANS_DDI_SELECT_PORT(port);
1863
1864 switch (intel_crtc->config->pipe_bpp) {
1865 case 18:
1866 temp |= TRANS_DDI_BPC_6;
1867 break;
1868 case 24:
1869 temp |= TRANS_DDI_BPC_8;
1870 break;
1871 case 30:
1872 temp |= TRANS_DDI_BPC_10;
1873 break;
1874 case 36:
1875 temp |= TRANS_DDI_BPC_12;
1876 break;
1877 default:
1878 BUG();
1879 }
1880
1881 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1882 temp |= TRANS_DDI_PVSYNC;
1883 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1884 temp |= TRANS_DDI_PHSYNC;
1885
1886 if (cpu_transcoder == TRANSCODER_EDP) {
1887 switch (pipe) {
1888 case PIPE_A:
1889 /* On Haswell, can only use the always-on power well for
1890 * eDP when not using the panel fitter, and when not
1891 * using motion blur mitigation (which we don't
1892 * support). */
1893 if (IS_HASWELL(dev) &&
1894 (intel_crtc->config->pch_pfit.enabled ||
1895 intel_crtc->config->pch_pfit.force_thru))
1896 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1897 else
1898 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1899 break;
1900 case PIPE_B:
1901 temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1902 break;
1903 case PIPE_C:
1904 temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1905 break;
1906 default:
1907 BUG();
1908 break;
1909 }
1910 }
1911
1912 if (type == INTEL_OUTPUT_HDMI) {
1913 if (intel_crtc->config->has_hdmi_sink)
1914 temp |= TRANS_DDI_MODE_SELECT_HDMI;
1915 else
1916 temp |= TRANS_DDI_MODE_SELECT_DVI;
1917
1918 } else if (type == INTEL_OUTPUT_ANALOG) {
1919 temp |= TRANS_DDI_MODE_SELECT_FDI;
1920 temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1921
1922 } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1923 type == INTEL_OUTPUT_EDP) {
1924 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1925
1926 if (intel_dp->is_mst) {
1927 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1928 } else
1929 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1930
1931 temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1932 } else if (type == INTEL_OUTPUT_DP_MST) {
1933 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1934
1935 if (intel_dp->is_mst) {
1936 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1937 } else
1938 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1939
1940 temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1941 } else {
1942 WARN(1, "Invalid encoder type %d for pipe %c\n",
1943 intel_encoder->type, pipe_name(pipe));
1944 }
1945
1946 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1947 }
1948
1949 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1950 enum transcoder cpu_transcoder)
1951 {
1952 i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1953 uint32_t val = I915_READ(reg);
1954
1955 val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1956 val |= TRANS_DDI_PORT_NONE;
1957 I915_WRITE(reg, val);
1958 }
1959
1960 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1961 {
1962 struct drm_device *dev = intel_connector->base.dev;
1963 struct drm_i915_private *dev_priv = dev->dev_private;
1964 struct intel_encoder *intel_encoder = intel_connector->encoder;
1965 int type = intel_connector->base.connector_type;
1966 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1967 enum pipe pipe = 0;
1968 enum transcoder cpu_transcoder;
1969 enum intel_display_power_domain power_domain;
1970 uint32_t tmp;
1971
1972 power_domain = intel_display_port_power_domain(intel_encoder);
1973 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1974 return false;
1975
1976 if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1977 return false;
1978
1979 if (port == PORT_A)
1980 cpu_transcoder = TRANSCODER_EDP;
1981 else
1982 cpu_transcoder = (enum transcoder) pipe;
1983
1984 tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1985
1986 switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1987 case TRANS_DDI_MODE_SELECT_HDMI:
1988 case TRANS_DDI_MODE_SELECT_DVI:
1989 return (type == DRM_MODE_CONNECTOR_HDMIA);
1990
1991 case TRANS_DDI_MODE_SELECT_DP_SST:
1992 if (type == DRM_MODE_CONNECTOR_eDP)
1993 return true;
1994 return (type == DRM_MODE_CONNECTOR_DisplayPort);
1995 case TRANS_DDI_MODE_SELECT_DP_MST:
1996 /* if the transcoder is in MST state then
1997 * connector isn't connected */
1998 return false;
1999
2000 case TRANS_DDI_MODE_SELECT_FDI:
2001 return (type == DRM_MODE_CONNECTOR_VGA);
2002
2003 default:
2004 return false;
2005 }
2006 }
2007
2008 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
2009 enum pipe *pipe)
2010 {
2011 struct drm_device *dev = encoder->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum port port = intel_ddi_get_encoder_port(encoder);
2014 enum intel_display_power_domain power_domain;
2015 u32 tmp;
2016 int i;
2017
2018 power_domain = intel_display_port_power_domain(encoder);
2019 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2020 return false;
2021
2022 tmp = I915_READ(DDI_BUF_CTL(port));
2023
2024 if (!(tmp & DDI_BUF_CTL_ENABLE))
2025 return false;
2026
2027 if (port == PORT_A) {
2028 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
2029
2030 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
2031 case TRANS_DDI_EDP_INPUT_A_ON:
2032 case TRANS_DDI_EDP_INPUT_A_ONOFF:
2033 *pipe = PIPE_A;
2034 break;
2035 case TRANS_DDI_EDP_INPUT_B_ONOFF:
2036 *pipe = PIPE_B;
2037 break;
2038 case TRANS_DDI_EDP_INPUT_C_ONOFF:
2039 *pipe = PIPE_C;
2040 break;
2041 }
2042
2043 return true;
2044 } else {
2045 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
2046 tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
2047
2048 if ((tmp & TRANS_DDI_PORT_MASK)
2049 == TRANS_DDI_SELECT_PORT(port)) {
2050 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
2051 return false;
2052
2053 *pipe = i;
2054 return true;
2055 }
2056 }
2057 }
2058
2059 DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2060
2061 return false;
2062 }
2063
2064 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
2065 {
2066 struct drm_crtc *crtc = &intel_crtc->base;
2067 struct drm_device *dev = crtc->dev;
2068 struct drm_i915_private *dev_priv = dev->dev_private;
2069 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2070 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2071 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2072
2073 if (cpu_transcoder != TRANSCODER_EDP)
2074 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
2075 TRANS_CLK_SEL_PORT(port));
2076 }
2077
2078 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
2079 {
2080 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2081 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2082
2083 if (cpu_transcoder != TRANSCODER_EDP)
2084 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
2085 TRANS_CLK_SEL_DISABLED);
2086 }
2087
2088 static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
2089 enum port port, int type)
2090 {
2091 struct drm_i915_private *dev_priv = dev->dev_private;
2092 const struct ddi_buf_trans *ddi_translations;
2093 uint8_t iboost;
2094 uint8_t dp_iboost, hdmi_iboost;
2095 int n_entries;
2096 u32 reg;
2097
2098 /* VBT may override standard boost values */
2099 dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
2100 hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
2101
2102 if (type == INTEL_OUTPUT_DISPLAYPORT) {
2103 if (dp_iboost) {
2104 iboost = dp_iboost;
2105 } else {
2106 ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
2107 iboost = ddi_translations[level].i_boost;
2108 }
2109 } else if (type == INTEL_OUTPUT_EDP) {
2110 if (dp_iboost) {
2111 iboost = dp_iboost;
2112 } else {
2113 ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
2114 iboost = ddi_translations[level].i_boost;
2115 }
2116 } else if (type == INTEL_OUTPUT_HDMI) {
2117 if (hdmi_iboost) {
2118 iboost = hdmi_iboost;
2119 } else {
2120 ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
2121 iboost = ddi_translations[level].i_boost;
2122 }
2123 } else {
2124 return;
2125 }
2126
2127 /* Make sure that the requested I_boost is valid */
2128 if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
2129 DRM_ERROR("Invalid I_boost value %u\n", iboost);
2130 return;
2131 }
2132
2133 reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
2134 reg &= ~BALANCE_LEG_MASK(port);
2135 reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
2136
2137 if (iboost)
2138 reg |= iboost << BALANCE_LEG_SHIFT(port);
2139 else
2140 reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
2141
2142 I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
2143 }
2144
2145 static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
2146 enum port port, int type)
2147 {
2148 struct drm_i915_private *dev_priv = dev->dev_private;
2149 const struct bxt_ddi_buf_trans *ddi_translations;
2150 u32 n_entries, i;
2151 uint32_t val;
2152
2153 if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
2154 n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
2155 ddi_translations = bxt_ddi_translations_edp;
2156 } else if (type == INTEL_OUTPUT_DISPLAYPORT
2157 || type == INTEL_OUTPUT_EDP) {
2158 n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
2159 ddi_translations = bxt_ddi_translations_dp;
2160 } else if (type == INTEL_OUTPUT_HDMI) {
2161 n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
2162 ddi_translations = bxt_ddi_translations_hdmi;
2163 } else {
2164 DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
2165 type);
2166 return;
2167 }
2168
2169 /* Check if default value has to be used */
2170 if (level >= n_entries ||
2171 (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
2172 for (i = 0; i < n_entries; i++) {
2173 if (ddi_translations[i].default_index) {
2174 level = i;
2175 break;
2176 }
2177 }
2178 }
2179
2180 /*
2181 * While we write to the group register to program all lanes at once we
2182 * can read only lane registers and we pick lanes 0/1 for that.
2183 */
2184 val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
2185 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
2186 I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
2187
2188 val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
2189 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
2190 val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
2191 ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
2192 I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
2193
2194 val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2195 val &= ~SCALE_DCOMP_METHOD;
2196 if (ddi_translations[level].enable)
2197 val |= SCALE_DCOMP_METHOD;
2198
2199 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
2200 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
2201
2202 I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
2203
2204 val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
2205 val &= ~DE_EMPHASIS;
2206 val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
2207 I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
2208
2209 val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
2210 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
2211 I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
2212 }
2213
2214 static uint32_t translate_signal_level(int signal_levels)
2215 {
2216 uint32_t level;
2217
2218 switch (signal_levels) {
2219 default:
2220 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
2221 signal_levels);
2222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2223 level = 0;
2224 break;
2225 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2226 level = 1;
2227 break;
2228 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2229 level = 2;
2230 break;
2231 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
2232 level = 3;
2233 break;
2234
2235 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2236 level = 4;
2237 break;
2238 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2239 level = 5;
2240 break;
2241 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2242 level = 6;
2243 break;
2244
2245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2246 level = 7;
2247 break;
2248 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2249 level = 8;
2250 break;
2251
2252 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2253 level = 9;
2254 break;
2255 }
2256
2257 return level;
2258 }
2259
2260 uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
2261 {
2262 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2263 struct drm_device *dev = dport->base.base.dev;
2264 struct intel_encoder *encoder = &dport->base;
2265 uint8_t train_set = intel_dp->train_set[0];
2266 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2267 DP_TRAIN_PRE_EMPHASIS_MASK);
2268 enum port port = dport->port;
2269 uint32_t level;
2270
2271 level = translate_signal_level(signal_levels);
2272
2273 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2274 skl_ddi_set_iboost(dev, level, port, encoder->type);
2275 else if (IS_BROXTON(dev))
2276 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
2277
2278 return DDI_BUF_TRANS_SELECT(level);
2279 }
2280
2281 void intel_ddi_clk_select(struct intel_encoder *encoder,
2282 const struct intel_crtc_state *pipe_config)
2283 {
2284 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2285 enum port port = intel_ddi_get_encoder_port(encoder);
2286
2287 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2288 uint32_t dpll = pipe_config->ddi_pll_sel;
2289 uint32_t val;
2290
2291 /*
2292 * DPLL0 is used for eDP and is the only "private" DPLL (as
2293 * opposed to shared) on SKL
2294 */
2295 if (encoder->type == INTEL_OUTPUT_EDP) {
2296 WARN_ON(dpll != SKL_DPLL0);
2297
2298 val = I915_READ(DPLL_CTRL1);
2299
2300 val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
2301 DPLL_CTRL1_SSC(dpll) |
2302 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2303 val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
2304
2305 I915_WRITE(DPLL_CTRL1, val);
2306 POSTING_READ(DPLL_CTRL1);
2307 }
2308
2309 /* DDI -> PLL mapping */
2310 val = I915_READ(DPLL_CTRL2);
2311
2312 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
2313 DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
2314 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
2315 DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
2316
2317 I915_WRITE(DPLL_CTRL2, val);
2318
2319 } else if (INTEL_INFO(dev_priv)->gen < 9) {
2320 WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
2321 I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
2322 }
2323 }
2324
2325 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
2326 {
2327 struct drm_encoder *encoder = &intel_encoder->base;
2328 struct drm_device *dev = encoder->dev;
2329 struct drm_i915_private *dev_priv = dev->dev_private;
2330 struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
2331 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2332 int type = intel_encoder->type;
2333 int hdmi_level;
2334
2335 if (type == INTEL_OUTPUT_EDP) {
2336 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2337 intel_edp_panel_on(intel_dp);
2338 }
2339
2340 intel_ddi_clk_select(intel_encoder, crtc->config);
2341
2342 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2343 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2344
2345 intel_dp_set_link_params(intel_dp, crtc->config);
2346
2347 intel_ddi_init_dp_buf_reg(intel_encoder);
2348
2349 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2350 intel_dp_start_link_train(intel_dp);
2351 if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
2352 intel_dp_stop_link_train(intel_dp);
2353 } else if (type == INTEL_OUTPUT_HDMI) {
2354 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2355
2356 if (IS_BROXTON(dev)) {
2357 hdmi_level = dev_priv->vbt.
2358 ddi_port_info[port].hdmi_level_shift;
2359 bxt_ddi_vswing_sequence(dev, hdmi_level, port,
2360 INTEL_OUTPUT_HDMI);
2361 }
2362 intel_hdmi->set_infoframes(encoder,
2363 crtc->config->has_hdmi_sink,
2364 &crtc->config->base.adjusted_mode);
2365 }
2366 }
2367
2368 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2369 {
2370 struct drm_encoder *encoder = &intel_encoder->base;
2371 struct drm_device *dev = encoder->dev;
2372 struct drm_i915_private *dev_priv = dev->dev_private;
2373 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2374 int type = intel_encoder->type;
2375 uint32_t val;
2376 bool wait = false;
2377
2378 val = I915_READ(DDI_BUF_CTL(port));
2379 if (val & DDI_BUF_CTL_ENABLE) {
2380 val &= ~DDI_BUF_CTL_ENABLE;
2381 I915_WRITE(DDI_BUF_CTL(port), val);
2382 wait = true;
2383 }
2384
2385 val = I915_READ(DP_TP_CTL(port));
2386 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2387 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2388 I915_WRITE(DP_TP_CTL(port), val);
2389
2390 if (wait)
2391 intel_wait_ddi_buf_idle(dev_priv, port);
2392
2393 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2394 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2395 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2396 intel_edp_panel_vdd_on(intel_dp);
2397 intel_edp_panel_off(intel_dp);
2398 }
2399
2400 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2401 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
2402 DPLL_CTRL2_DDI_CLK_OFF(port)));
2403 else if (INTEL_INFO(dev)->gen < 9)
2404 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2405 }
2406
2407 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2408 {
2409 struct drm_encoder *encoder = &intel_encoder->base;
2410 struct drm_crtc *crtc = encoder->crtc;
2411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412 struct drm_device *dev = encoder->dev;
2413 struct drm_i915_private *dev_priv = dev->dev_private;
2414 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2415 int type = intel_encoder->type;
2416
2417 if (type == INTEL_OUTPUT_HDMI) {
2418 struct intel_digital_port *intel_dig_port =
2419 enc_to_dig_port(encoder);
2420
2421 /* In HDMI/DVI mode, the port width, and swing/emphasis values
2422 * are ignored so nothing special needs to be done besides
2423 * enabling the port.
2424 */
2425 I915_WRITE(DDI_BUF_CTL(port),
2426 intel_dig_port->saved_port_bits |
2427 DDI_BUF_CTL_ENABLE);
2428 } else if (type == INTEL_OUTPUT_EDP) {
2429 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2430
2431 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2432 intel_dp_stop_link_train(intel_dp);
2433
2434 intel_edp_backlight_on(intel_dp);
2435 intel_psr_enable(intel_dp);
2436 intel_edp_drrs_enable(intel_dp);
2437 }
2438
2439 if (intel_crtc->config->has_audio) {
2440 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2441 intel_audio_codec_enable(intel_encoder);
2442 }
2443 }
2444
2445 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2446 {
2447 struct drm_encoder *encoder = &intel_encoder->base;
2448 struct drm_crtc *crtc = encoder->crtc;
2449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2450 int type = intel_encoder->type;
2451 struct drm_device *dev = encoder->dev;
2452 struct drm_i915_private *dev_priv = dev->dev_private;
2453
2454 if (intel_crtc->config->has_audio) {
2455 intel_audio_codec_disable(intel_encoder);
2456 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
2457 }
2458
2459 if (type == INTEL_OUTPUT_EDP) {
2460 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2461
2462 intel_edp_drrs_disable(intel_dp);
2463 intel_psr_disable(intel_dp);
2464 intel_edp_backlight_off(intel_dp);
2465 }
2466 }
2467
2468 static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
2469 struct intel_shared_dpll *pll)
2470 {
2471 I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2472 POSTING_READ(WRPLL_CTL(pll->id));
2473 udelay(20);
2474 }
2475
2476 static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
2477 struct intel_shared_dpll *pll)
2478 {
2479 I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
2480 POSTING_READ(SPLL_CTL);
2481 udelay(20);
2482 }
2483
2484 static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
2485 struct intel_shared_dpll *pll)
2486 {
2487 uint32_t val;
2488
2489 val = I915_READ(WRPLL_CTL(pll->id));
2490 I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
2491 POSTING_READ(WRPLL_CTL(pll->id));
2492 }
2493
2494 static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
2495 struct intel_shared_dpll *pll)
2496 {
2497 uint32_t val;
2498
2499 val = I915_READ(SPLL_CTL);
2500 I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
2501 POSTING_READ(SPLL_CTL);
2502 }
2503
2504 static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
2505 struct intel_shared_dpll *pll,
2506 struct intel_dpll_hw_state *hw_state)
2507 {
2508 uint32_t val;
2509
2510 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2511 return false;
2512
2513 val = I915_READ(WRPLL_CTL(pll->id));
2514 hw_state->wrpll = val;
2515
2516 return val & WRPLL_PLL_ENABLE;
2517 }
2518
2519 static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
2520 struct intel_shared_dpll *pll,
2521 struct intel_dpll_hw_state *hw_state)
2522 {
2523 uint32_t val;
2524
2525 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2526 return false;
2527
2528 val = I915_READ(SPLL_CTL);
2529 hw_state->spll = val;
2530
2531 return val & SPLL_PLL_ENABLE;
2532 }
2533
2534
2535 static const char * const hsw_ddi_pll_names[] = {
2536 "WRPLL 1",
2537 "WRPLL 2",
2538 "SPLL"
2539 };
2540
2541 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
2542 {
2543 int i;
2544
2545 dev_priv->num_shared_dpll = 3;
2546
2547 for (i = 0; i < 2; i++) {
2548 dev_priv->shared_dplls[i].id = i;
2549 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2550 dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
2551 dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
2552 dev_priv->shared_dplls[i].get_hw_state =
2553 hsw_ddi_wrpll_get_hw_state;
2554 }
2555
2556 /* SPLL is special, but needs to be initialized anyway.. */
2557 dev_priv->shared_dplls[i].id = i;
2558 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2559 dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
2560 dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
2561 dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;
2562
2563 }
2564
2565 static const char * const skl_ddi_pll_names[] = {
2566 "DPLL 1",
2567 "DPLL 2",
2568 "DPLL 3",
2569 };
2570
2571 struct skl_dpll_regs {
2572 i915_reg_t ctl, cfgcr1, cfgcr2;
2573 };
2574
2575 /* this array is indexed by the *shared* pll id */
2576 static const struct skl_dpll_regs skl_dpll_regs[3] = {
2577 {
2578 /* DPLL 1 */
2579 .ctl = LCPLL2_CTL,
2580 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
2581 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
2582 },
2583 {
2584 /* DPLL 2 */
2585 .ctl = WRPLL_CTL(0),
2586 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
2587 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
2588 },
2589 {
2590 /* DPLL 3 */
2591 .ctl = WRPLL_CTL(1),
2592 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
2593 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
2594 },
2595 };
2596
2597 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
2598 struct intel_shared_dpll *pll)
2599 {
2600 uint32_t val;
2601 unsigned int dpll;
2602 const struct skl_dpll_regs *regs = skl_dpll_regs;
2603
2604 /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2605 dpll = pll->id + 1;
2606
2607 val = I915_READ(DPLL_CTRL1);
2608
2609 val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2610 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2611 val |= pll->config.hw_state.ctrl1 << (dpll * 6);
2612
2613 I915_WRITE(DPLL_CTRL1, val);
2614 POSTING_READ(DPLL_CTRL1);
2615
2616 I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
2617 I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
2618 POSTING_READ(regs[pll->id].cfgcr1);
2619 POSTING_READ(regs[pll->id].cfgcr2);
2620
2621 /* the enable bit is always bit 31 */
2622 I915_WRITE(regs[pll->id].ctl,
2623 I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
2624
2625 if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
2626 DRM_ERROR("DPLL %d not locked\n", dpll);
2627 }
2628
2629 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
2630 struct intel_shared_dpll *pll)
2631 {
2632 const struct skl_dpll_regs *regs = skl_dpll_regs;
2633
2634 /* the enable bit is always bit 31 */
2635 I915_WRITE(regs[pll->id].ctl,
2636 I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
2637 POSTING_READ(regs[pll->id].ctl);
2638 }
2639
2640 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2641 struct intel_shared_dpll *pll,
2642 struct intel_dpll_hw_state *hw_state)
2643 {
2644 uint32_t val;
2645 unsigned int dpll;
2646 const struct skl_dpll_regs *regs = skl_dpll_regs;
2647
2648 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2649 return false;
2650
2651 /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2652 dpll = pll->id + 1;
2653
2654 val = I915_READ(regs[pll->id].ctl);
2655 if (!(val & LCPLL_PLL_ENABLE))
2656 return false;
2657
2658 val = I915_READ(DPLL_CTRL1);
2659 hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
2660
2661 /* avoid reading back stale values if HDMI mode is not enabled */
2662 if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
2663 hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
2664 hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
2665 }
2666
2667 return true;
2668 }
2669
2670 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
2671 {
2672 int i;
2673
2674 dev_priv->num_shared_dpll = 3;
2675
2676 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2677 dev_priv->shared_dplls[i].id = i;
2678 dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
2679 dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
2680 dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
2681 dev_priv->shared_dplls[i].get_hw_state =
2682 skl_ddi_pll_get_hw_state;
2683 }
2684 }
2685
2686 static void broxton_phy_init(struct drm_i915_private *dev_priv,
2687 enum dpio_phy phy)
2688 {
2689 enum port port;
2690 uint32_t val;
2691
2692 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
2693 val |= GT_DISPLAY_POWER_ON(phy);
2694 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
2695
2696 /* Considering 10ms timeout until BSpec is updated */
2697 if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
2698 DRM_ERROR("timeout during PHY%d power on\n", phy);
2699
2700 for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
2701 port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
2702 int lane;
2703
2704 for (lane = 0; lane < 4; lane++) {
2705 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
2706 /*
2707 * Note that on CHV this flag is called UPAR, but has
2708 * the same function.
2709 */
2710 val &= ~LATENCY_OPTIM;
2711 if (lane != 1)
2712 val |= LATENCY_OPTIM;
2713
2714 I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
2715 }
2716 }
2717
2718 /* Program PLL Rcomp code offset */
2719 val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
2720 val &= ~IREF0RC_OFFSET_MASK;
2721 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
2722 I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
2723
2724 val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
2725 val &= ~IREF1RC_OFFSET_MASK;
2726 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
2727 I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
2728
2729 /* Program power gating */
2730 val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
2731 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
2732 SUS_CLK_CONFIG;
2733 I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
2734
2735 if (phy == DPIO_PHY0) {
2736 val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
2737 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
2738 I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
2739 }
2740
2741 val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
2742 val &= ~OCL2_LDOFUSE_PWR_DIS;
2743 /*
2744 * On PHY1 disable power on the second channel, since no port is
2745 * connected there. On PHY0 both channels have a port, so leave it
2746 * enabled.
2747 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
2748 * power down the second channel on PHY0 as well.
2749 */
2750 if (phy == DPIO_PHY1)
2751 val |= OCL2_LDOFUSE_PWR_DIS;
2752 I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
2753
2754 if (phy == DPIO_PHY0) {
2755 uint32_t grc_code;
2756 /*
2757 * PHY0 isn't connected to an RCOMP resistor so copy over
2758 * the corresponding calibrated value from PHY1, and disable
2759 * the automatic calibration on PHY0.
2760 */
2761 if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
2762 10))
2763 DRM_ERROR("timeout waiting for PHY1 GRC\n");
2764
2765 val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
2766 val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
2767 grc_code = val << GRC_CODE_FAST_SHIFT |
2768 val << GRC_CODE_SLOW_SHIFT |
2769 val;
2770 I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
2771
2772 val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
2773 val |= GRC_DIS | GRC_RDY_OVRD;
2774 I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
2775 }
2776
2777 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2778 val |= COMMON_RESET_DIS;
2779 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2780 }
2781
2782 void broxton_ddi_phy_init(struct drm_device *dev)
2783 {
2784 /* Enable PHY1 first since it provides Rcomp for PHY0 */
2785 broxton_phy_init(dev->dev_private, DPIO_PHY1);
2786 broxton_phy_init(dev->dev_private, DPIO_PHY0);
2787 }
2788
2789 static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
2790 enum dpio_phy phy)
2791 {
2792 uint32_t val;
2793
2794 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2795 val &= ~COMMON_RESET_DIS;
2796 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2797 }
2798
2799 void broxton_ddi_phy_uninit(struct drm_device *dev)
2800 {
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802
2803 broxton_phy_uninit(dev_priv, DPIO_PHY1);
2804 broxton_phy_uninit(dev_priv, DPIO_PHY0);
2805
2806 /* FIXME: do this in broxton_phy_uninit per phy */
2807 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
2808 }
2809
2810 static const char * const bxt_ddi_pll_names[] = {
2811 "PORT PLL A",
2812 "PORT PLL B",
2813 "PORT PLL C",
2814 };
2815
2816 static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
2817 struct intel_shared_dpll *pll)
2818 {
2819 uint32_t temp;
2820 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2821
2822 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2823 temp &= ~PORT_PLL_REF_SEL;
2824 /* Non-SSC reference */
2825 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2826
2827 /* Disable 10 bit clock */
2828 temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2829 temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2830 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2831
2832 /* Write P1 & P2 */
2833 temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
2834 temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
2835 temp |= pll->config.hw_state.ebb0;
2836 I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
2837
2838 /* Write M2 integer */
2839 temp = I915_READ(BXT_PORT_PLL(port, 0));
2840 temp &= ~PORT_PLL_M2_MASK;
2841 temp |= pll->config.hw_state.pll0;
2842 I915_WRITE(BXT_PORT_PLL(port, 0), temp);
2843
2844 /* Write N */
2845 temp = I915_READ(BXT_PORT_PLL(port, 1));
2846 temp &= ~PORT_PLL_N_MASK;
2847 temp |= pll->config.hw_state.pll1;
2848 I915_WRITE(BXT_PORT_PLL(port, 1), temp);
2849
2850 /* Write M2 fraction */
2851 temp = I915_READ(BXT_PORT_PLL(port, 2));
2852 temp &= ~PORT_PLL_M2_FRAC_MASK;
2853 temp |= pll->config.hw_state.pll2;
2854 I915_WRITE(BXT_PORT_PLL(port, 2), temp);
2855
2856 /* Write M2 fraction enable */
2857 temp = I915_READ(BXT_PORT_PLL(port, 3));
2858 temp &= ~PORT_PLL_M2_FRAC_ENABLE;
2859 temp |= pll->config.hw_state.pll3;
2860 I915_WRITE(BXT_PORT_PLL(port, 3), temp);
2861
2862 /* Write coeff */
2863 temp = I915_READ(BXT_PORT_PLL(port, 6));
2864 temp &= ~PORT_PLL_PROP_COEFF_MASK;
2865 temp &= ~PORT_PLL_INT_COEFF_MASK;
2866 temp &= ~PORT_PLL_GAIN_CTL_MASK;
2867 temp |= pll->config.hw_state.pll6;
2868 I915_WRITE(BXT_PORT_PLL(port, 6), temp);
2869
2870 /* Write calibration val */
2871 temp = I915_READ(BXT_PORT_PLL(port, 8));
2872 temp &= ~PORT_PLL_TARGET_CNT_MASK;
2873 temp |= pll->config.hw_state.pll8;
2874 I915_WRITE(BXT_PORT_PLL(port, 8), temp);
2875
2876 temp = I915_READ(BXT_PORT_PLL(port, 9));
2877 temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2878 temp |= pll->config.hw_state.pll9;
2879 I915_WRITE(BXT_PORT_PLL(port, 9), temp);
2880
2881 temp = I915_READ(BXT_PORT_PLL(port, 10));
2882 temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
2883 temp &= ~PORT_PLL_DCO_AMP_MASK;
2884 temp |= pll->config.hw_state.pll10;
2885 I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2886
2887 /* Recalibrate with new settings */
2888 temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2889 temp |= PORT_PLL_RECALIBRATE;
2890 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2891 temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2892 temp |= pll->config.hw_state.ebb4;
2893 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2894
2895 /* Enable PLL */
2896 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2897 temp |= PORT_PLL_ENABLE;
2898 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2899 POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2900
2901 if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
2902 PORT_PLL_LOCK), 200))
2903 DRM_ERROR("PLL %d not locked\n", port);
2904
2905 /*
2906 * While we write to the group register to program all lanes at once we
2907 * can read only lane registers and we pick lanes 0/1 for that.
2908 */
2909 temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2910 temp &= ~LANE_STAGGER_MASK;
2911 temp &= ~LANESTAGGER_STRAP_OVRD;
2912 temp |= pll->config.hw_state.pcsdw12;
2913 I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
2914 }
2915
2916 static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
2917 struct intel_shared_dpll *pll)
2918 {
2919 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2920 uint32_t temp;
2921
2922 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2923 temp &= ~PORT_PLL_ENABLE;
2924 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2925 POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2926 }
2927
2928 static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2929 struct intel_shared_dpll *pll,
2930 struct intel_dpll_hw_state *hw_state)
2931 {
2932 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2933 uint32_t val;
2934
2935 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2936 return false;
2937
2938 val = I915_READ(BXT_PORT_PLL_ENABLE(port));
2939 if (!(val & PORT_PLL_ENABLE))
2940 return false;
2941
2942 hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2943 hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
2944
2945 hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
2946 hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
2947
2948 hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2949 hw_state->pll0 &= PORT_PLL_M2_MASK;
2950
2951 hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2952 hw_state->pll1 &= PORT_PLL_N_MASK;
2953
2954 hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2955 hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
2956
2957 hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2958 hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
2959
2960 hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2961 hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
2962 PORT_PLL_INT_COEFF_MASK |
2963 PORT_PLL_GAIN_CTL_MASK;
2964
2965 hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2966 hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
2967
2968 hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
2969 hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
2970
2971 hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2972 hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
2973 PORT_PLL_DCO_AMP_MASK;
2974
2975 /*
2976 * While we write to the group register to program all lanes at once we
2977 * can read only lane registers. We configure all lanes the same way, so
2978 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
2979 */
2980 hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2981 if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
2982 DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
2983 hw_state->pcsdw12,
2984 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2985 hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2986
2987 return true;
2988 }
2989
2990 static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
2991 {
2992 int i;
2993
2994 dev_priv->num_shared_dpll = 3;
2995
2996 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2997 dev_priv->shared_dplls[i].id = i;
2998 dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
2999 dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
3000 dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
3001 dev_priv->shared_dplls[i].get_hw_state =
3002 bxt_ddi_pll_get_hw_state;
3003 }
3004 }
3005
3006 void intel_ddi_pll_init(struct drm_device *dev)
3007 {
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 uint32_t val = I915_READ(LCPLL_CTL);
3010
3011 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
3012 skl_shared_dplls_init(dev_priv);
3013 else if (IS_BROXTON(dev))
3014 bxt_shared_dplls_init(dev_priv);
3015 else
3016 hsw_shared_dplls_init(dev_priv);
3017
3018 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
3019 int cdclk_freq;
3020
3021 cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
3022 dev_priv->skl_boot_cdclk = cdclk_freq;
3023 if (skl_sanitize_cdclk(dev_priv))
3024 DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
3025 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
3026 DRM_ERROR("LCPLL1 is disabled\n");
3027 } else if (IS_BROXTON(dev)) {
3028 broxton_init_cdclk(dev);
3029 broxton_ddi_phy_init(dev);
3030 } else {
3031 /*
3032 * The LCPLL register should be turned on by the BIOS. For now
3033 * let's just check its state and print errors in case
3034 * something is wrong. Don't even try to turn it on.
3035 */
3036
3037 if (val & LCPLL_CD_SOURCE_FCLK)
3038 DRM_ERROR("CDCLK source is not LCPLL\n");
3039
3040 if (val & LCPLL_PLL_DISABLE)
3041 DRM_ERROR("LCPLL is disabled\n");
3042 }
3043 }
3044
3045 void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
3046 {
3047 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3048 struct drm_i915_private *dev_priv =
3049 to_i915(intel_dig_port->base.base.dev);
3050 enum port port = intel_dig_port->port;
3051 uint32_t val;
3052 bool wait = false;
3053
3054 if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
3055 val = I915_READ(DDI_BUF_CTL(port));
3056 if (val & DDI_BUF_CTL_ENABLE) {
3057 val &= ~DDI_BUF_CTL_ENABLE;
3058 I915_WRITE(DDI_BUF_CTL(port), val);
3059 wait = true;
3060 }
3061
3062 val = I915_READ(DP_TP_CTL(port));
3063 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
3064 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
3065 I915_WRITE(DP_TP_CTL(port), val);
3066 POSTING_READ(DP_TP_CTL(port));
3067
3068 if (wait)
3069 intel_wait_ddi_buf_idle(dev_priv, port);
3070 }
3071
3072 val = DP_TP_CTL_ENABLE |
3073 DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
3074 if (intel_dp->is_mst)
3075 val |= DP_TP_CTL_MODE_MST;
3076 else {
3077 val |= DP_TP_CTL_MODE_SST;
3078 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3079 val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
3080 }
3081 I915_WRITE(DP_TP_CTL(port), val);
3082 POSTING_READ(DP_TP_CTL(port));
3083
3084 intel_dp->DP |= DDI_BUF_CTL_ENABLE;
3085 I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
3086 POSTING_READ(DDI_BUF_CTL(port));
3087
3088 udelay(600);
3089 }
3090
3091 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
3092 {
3093 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3094 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
3095 uint32_t val;
3096
3097 intel_ddi_post_disable(intel_encoder);
3098
3099 val = I915_READ(FDI_RX_CTL(PIPE_A));
3100 val &= ~FDI_RX_ENABLE;
3101 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3102
3103 val = I915_READ(FDI_RX_MISC(PIPE_A));
3104 val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
3105 val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3106 I915_WRITE(FDI_RX_MISC(PIPE_A), val);
3107
3108 val = I915_READ(FDI_RX_CTL(PIPE_A));
3109 val &= ~FDI_PCDCLK;
3110 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3111
3112 val = I915_READ(FDI_RX_CTL(PIPE_A));
3113 val &= ~FDI_RX_PLL_ENABLE;
3114 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3115 }
3116
3117 bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
3118 struct intel_crtc *intel_crtc)
3119 {
3120 u32 temp;
3121
3122 if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
3123 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
3124 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
3125 return true;
3126 }
3127 return false;
3128 }
3129
3130 void intel_ddi_get_config(struct intel_encoder *encoder,
3131 struct intel_crtc_state *pipe_config)
3132 {
3133 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
3134 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3135 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3136 struct intel_hdmi *intel_hdmi;
3137 u32 temp, flags = 0;
3138
3139 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
3140 if (temp & TRANS_DDI_PHSYNC)
3141 flags |= DRM_MODE_FLAG_PHSYNC;
3142 else
3143 flags |= DRM_MODE_FLAG_NHSYNC;
3144 if (temp & TRANS_DDI_PVSYNC)
3145 flags |= DRM_MODE_FLAG_PVSYNC;
3146 else
3147 flags |= DRM_MODE_FLAG_NVSYNC;
3148
3149 pipe_config->base.adjusted_mode.flags |= flags;
3150
3151 switch (temp & TRANS_DDI_BPC_MASK) {
3152 case TRANS_DDI_BPC_6:
3153 pipe_config->pipe_bpp = 18;
3154 break;
3155 case TRANS_DDI_BPC_8:
3156 pipe_config->pipe_bpp = 24;
3157 break;
3158 case TRANS_DDI_BPC_10:
3159 pipe_config->pipe_bpp = 30;
3160 break;
3161 case TRANS_DDI_BPC_12:
3162 pipe_config->pipe_bpp = 36;
3163 break;
3164 default:
3165 break;
3166 }
3167
3168 switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
3169 case TRANS_DDI_MODE_SELECT_HDMI:
3170 pipe_config->has_hdmi_sink = true;
3171 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
3172
3173 if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
3174 pipe_config->has_infoframe = true;
3175 break;
3176 case TRANS_DDI_MODE_SELECT_DVI:
3177 case TRANS_DDI_MODE_SELECT_FDI:
3178 break;
3179 case TRANS_DDI_MODE_SELECT_DP_SST:
3180 case TRANS_DDI_MODE_SELECT_DP_MST:
3181 pipe_config->has_dp_encoder = true;
3182 pipe_config->lane_count =
3183 ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
3184 intel_dp_get_m_n(intel_crtc, pipe_config);
3185 break;
3186 default:
3187 break;
3188 }
3189
3190 pipe_config->has_audio =
3191 intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
3192
3193 if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
3194 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
3195 /*
3196 * This is a big fat ugly hack.
3197 *
3198 * Some machines in UEFI boot mode provide us a VBT that has 18
3199 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3200 * unknown we fail to light up. Yet the same BIOS boots up with
3201 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3202 * max, not what it tells us to use.
3203 *
3204 * Note: This will still be broken if the eDP panel is not lit
3205 * up by the BIOS, and thus we can't get the mode at module
3206 * load.
3207 */
3208 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3209 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
3210 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
3211 }
3212
3213 intel_ddi_clock_get(encoder, pipe_config);
3214 }
3215
3216 static void intel_ddi_destroy(struct drm_encoder *encoder)
3217 {
3218 /* HDMI has nothing special to destroy, so we can go with this. */
3219 intel_dp_encoder_destroy(encoder);
3220 }
3221
3222 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3223 struct intel_crtc_state *pipe_config)
3224 {
3225 int type = encoder->type;
3226 int port = intel_ddi_get_encoder_port(encoder);
3227
3228 WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
3229
3230 if (port == PORT_A)
3231 pipe_config->cpu_transcoder = TRANSCODER_EDP;
3232
3233 if (type == INTEL_OUTPUT_HDMI)
3234 return intel_hdmi_compute_config(encoder, pipe_config);
3235 else
3236 return intel_dp_compute_config(encoder, pipe_config);
3237 }
3238
3239 static const struct drm_encoder_funcs intel_ddi_funcs = {
3240 .destroy = intel_ddi_destroy,
3241 };
3242
3243 static struct intel_connector *
3244 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
3245 {
3246 struct intel_connector *connector;
3247 enum port port = intel_dig_port->port;
3248
3249 connector = intel_connector_alloc();
3250 if (!connector)
3251 return NULL;
3252
3253 intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
3254 if (!intel_dp_init_connector(intel_dig_port, connector)) {
3255 kfree(connector);
3256 return NULL;
3257 }
3258
3259 return connector;
3260 }
3261
3262 static struct intel_connector *
3263 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
3264 {
3265 struct intel_connector *connector;
3266 enum port port = intel_dig_port->port;
3267
3268 connector = intel_connector_alloc();
3269 if (!connector)
3270 return NULL;
3271
3272 intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
3273 intel_hdmi_init_connector(intel_dig_port, connector);
3274
3275 return connector;
3276 }
3277
3278 void intel_ddi_init(struct drm_device *dev, enum port port)
3279 {
3280 struct drm_i915_private *dev_priv = dev->dev_private;
3281 struct intel_digital_port *intel_dig_port;
3282 struct intel_encoder *intel_encoder;
3283 struct drm_encoder *encoder;
3284 bool init_hdmi, init_dp;
3285
3286 init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
3287 dev_priv->vbt.ddi_port_info[port].supports_hdmi);
3288 init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
3289 if (!init_dp && !init_hdmi) {
3290 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
3291 port_name(port));
3292 return;
3293 }
3294
3295 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3296 if (!intel_dig_port)
3297 return;
3298
3299 intel_encoder = &intel_dig_port->base;
3300 encoder = &intel_encoder->base;
3301
3302 drm_encoder_init(dev, encoder, &intel_ddi_funcs,
3303 DRM_MODE_ENCODER_TMDS, NULL);
3304
3305 intel_encoder->compute_config = intel_ddi_compute_config;
3306 intel_encoder->enable = intel_enable_ddi;
3307 intel_encoder->pre_enable = intel_ddi_pre_enable;
3308 intel_encoder->disable = intel_disable_ddi;
3309 intel_encoder->post_disable = intel_ddi_post_disable;
3310 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3311 intel_encoder->get_config = intel_ddi_get_config;
3312
3313 intel_dig_port->port = port;
3314 dev_priv->dig_port_map[port] = intel_encoder;
3315 intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
3316 (DDI_BUF_PORT_REVERSAL |
3317 DDI_A_4_LANES);
3318
3319 /*
3320 * Bspec says that DDI_A_4_LANES is the only supported configuration
3321 * for Broxton. Yet some BIOS fail to set this bit on port A if eDP
3322 * wasn't lit up at boot. Force this bit on in our internal
3323 * configuration so that we use the proper lane count for our
3324 * calculations.
3325 */
3326 if (IS_BROXTON(dev) && port == PORT_A) {
3327 if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
3328 DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
3329 intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
3330 }
3331 }
3332
3333 intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3334 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3335 intel_encoder->cloneable = 0;
3336
3337 if (init_dp) {
3338 if (!intel_ddi_init_dp_connector(intel_dig_port))
3339 goto err;
3340
3341 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3342 /*
3343 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
3344 * interrupts to check the external panel connection.
3345 */
3346 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
3347 dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
3348 else
3349 dev_priv->hotplug.irq_port[port] = intel_dig_port;
3350 }
3351
3352 /* In theory we don't need the encoder->type check, but leave it just in
3353 * case we have some really bad VBTs... */
3354 if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
3355 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
3356 goto err;
3357 }
3358
3359 return;
3360
3361 err:
3362 drm_encoder_cleanup(encoder);
3363 kfree(intel_dig_port);
3364 }
This page took 0.09593 seconds and 4 git commands to generate.