drm/i915: Fix HDMI 12bpc and pixel repeat clock readout for DDI platforms
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32 u32 trans1; /* balance leg enable, de-emph level */
33 u32 trans2; /* vref sel, vswing */
34 u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 };
36
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38 * them for both DP and FDI transports, allowing those ports to
39 * automatically adapt to HDMI connections as well
40 */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 { 0x00FFFFFF, 0x0006000E, 0x0 },
43 { 0x00D75FFF, 0x0005000A, 0x0 },
44 { 0x00C30FFF, 0x00040006, 0x0 },
45 { 0x80AAAFFF, 0x000B0000, 0x0 },
46 { 0x00FFFFFF, 0x0005000A, 0x0 },
47 { 0x00D75FFF, 0x000C0004, 0x0 },
48 { 0x80C30FFF, 0x000B0000, 0x0 },
49 { 0x00FFFFFF, 0x00040006, 0x0 },
50 { 0x80D75FFF, 0x000B0000, 0x0 },
51 };
52
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 { 0x00FFFFFF, 0x0007000E, 0x0 },
55 { 0x00D75FFF, 0x000F000A, 0x0 },
56 { 0x00C30FFF, 0x00060006, 0x0 },
57 { 0x00AAAFFF, 0x001E0000, 0x0 },
58 { 0x00FFFFFF, 0x000F000A, 0x0 },
59 { 0x00D75FFF, 0x00160004, 0x0 },
60 { 0x00C30FFF, 0x001E0000, 0x0 },
61 { 0x00FFFFFF, 0x00060006, 0x0 },
62 { 0x00D75FFF, 0x001E0000, 0x0 },
63 };
64
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 /* Idx NT mV d T mV d db */
67 { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
68 { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
69 { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
70 { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
71 { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
72 { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
73 { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
74 { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
75 { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
76 { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
77 { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
78 { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
79 };
80
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 { 0x00FFFFFF, 0x00000012, 0x0 },
83 { 0x00EBAFFF, 0x00020011, 0x0 },
84 { 0x00C71FFF, 0x0006000F, 0x0 },
85 { 0x00AAAFFF, 0x000E000A, 0x0 },
86 { 0x00FFFFFF, 0x00020011, 0x0 },
87 { 0x00DB6FFF, 0x0005000F, 0x0 },
88 { 0x00BEEFFF, 0x000A000C, 0x0 },
89 { 0x00FFFFFF, 0x0005000F, 0x0 },
90 { 0x00DB6FFF, 0x000A000C, 0x0 },
91 };
92
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 { 0x00FFFFFF, 0x0007000E, 0x0 },
95 { 0x00D75FFF, 0x000E000A, 0x0 },
96 { 0x00BEFFFF, 0x00140006, 0x0 },
97 { 0x80B2CFFF, 0x001B0002, 0x0 },
98 { 0x00FFFFFF, 0x000E000A, 0x0 },
99 { 0x00DB6FFF, 0x00160005, 0x0 },
100 { 0x80C71FFF, 0x001A0002, 0x0 },
101 { 0x00F7DFFF, 0x00180004, 0x0 },
102 { 0x80D75FFF, 0x001B0002, 0x0 },
103 };
104
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 { 0x00FFFFFF, 0x0001000E, 0x0 },
107 { 0x00D75FFF, 0x0004000A, 0x0 },
108 { 0x00C30FFF, 0x00070006, 0x0 },
109 { 0x00AAAFFF, 0x000C0000, 0x0 },
110 { 0x00FFFFFF, 0x0004000A, 0x0 },
111 { 0x00D75FFF, 0x00090004, 0x0 },
112 { 0x00C30FFF, 0x000C0000, 0x0 },
113 { 0x00FFFFFF, 0x00070006, 0x0 },
114 { 0x00D75FFF, 0x000C0000, 0x0 },
115 };
116
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 /* Idx NT mV d T mV df db */
119 { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
120 { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
121 { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
122 { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
123 { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
124 { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
125 { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
126 { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
127 { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
128 { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
129 };
130
131 /* Skylake H, S, and Skylake Y with 0.95V VccIO */
132 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 { 0x00002016, 0x000000A0, 0x0 },
134 { 0x00005012, 0x0000009B, 0x0 },
135 { 0x00007011, 0x00000088, 0x0 },
136 { 0x00009010, 0x000000C7, 0x0 },
137 { 0x00002016, 0x0000009B, 0x0 },
138 { 0x00005012, 0x00000088, 0x0 },
139 { 0x00007011, 0x000000C7, 0x0 },
140 { 0x00002016, 0x000000DF, 0x0 },
141 { 0x00005012, 0x000000C7, 0x0 },
142 };
143
144 /* Skylake U */
145 static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146 { 0x00002016, 0x000000A2, 0x0 },
147 { 0x00005012, 0x00000088, 0x0 },
148 { 0x00007011, 0x00000087, 0x0 },
149 { 0x80009010, 0x000000C7, 0x1 }, /* Uses I_boost */
150 { 0x00002016, 0x0000009D, 0x0 },
151 { 0x00005012, 0x000000C7, 0x0 },
152 { 0x00007011, 0x000000C7, 0x0 },
153 { 0x00002016, 0x00000088, 0x0 },
154 { 0x00005012, 0x000000C7, 0x0 },
155 };
156
157 /* Skylake Y with 0.85V VccIO */
158 static const struct ddi_buf_trans skl_y_085v_ddi_translations_dp[] = {
159 { 0x00000018, 0x000000A2, 0x0 },
160 { 0x00005012, 0x00000088, 0x0 },
161 { 0x00007011, 0x00000087, 0x0 },
162 { 0x80009010, 0x000000C7, 0x1 }, /* Uses I_boost */
163 { 0x00000018, 0x0000009D, 0x0 },
164 { 0x00005012, 0x000000C7, 0x0 },
165 { 0x00007011, 0x000000C7, 0x0 },
166 { 0x00000018, 0x00000088, 0x0 },
167 { 0x00005012, 0x000000C7, 0x0 },
168 };
169
170 /*
171 * Skylake H and S, and Skylake Y with 0.95V VccIO
172 * eDP 1.4 low vswing translation parameters
173 */
174 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 { 0x00000018, 0x000000A8, 0x0 },
176 { 0x00004013, 0x000000A9, 0x0 },
177 { 0x00007011, 0x000000A2, 0x0 },
178 { 0x00009010, 0x0000009C, 0x0 },
179 { 0x00000018, 0x000000A9, 0x0 },
180 { 0x00006013, 0x000000A2, 0x0 },
181 { 0x00007011, 0x000000A6, 0x0 },
182 { 0x00000018, 0x000000AB, 0x0 },
183 { 0x00007013, 0x0000009F, 0x0 },
184 { 0x00000018, 0x000000DF, 0x0 },
185 };
186
187 /*
188 * Skylake U
189 * eDP 1.4 low vswing translation parameters
190 */
191 static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
192 { 0x00000018, 0x000000A8, 0x0 },
193 { 0x00004013, 0x000000A9, 0x0 },
194 { 0x00007011, 0x000000A2, 0x0 },
195 { 0x00009010, 0x0000009C, 0x0 },
196 { 0x00000018, 0x000000A9, 0x0 },
197 { 0x00006013, 0x000000A2, 0x0 },
198 { 0x00007011, 0x000000A6, 0x0 },
199 { 0x00002016, 0x000000AB, 0x0 },
200 { 0x00005013, 0x0000009F, 0x0 },
201 { 0x00000018, 0x000000DF, 0x0 },
202 };
203
204 /*
205 * Skylake Y with 0.95V VccIO
206 * eDP 1.4 low vswing translation parameters
207 */
208 static const struct ddi_buf_trans skl_y_085v_ddi_translations_edp[] = {
209 { 0x00000018, 0x000000A8, 0x0 },
210 { 0x00004013, 0x000000AB, 0x0 },
211 { 0x00007011, 0x000000A4, 0x0 },
212 { 0x00009010, 0x000000DF, 0x0 },
213 { 0x00000018, 0x000000AA, 0x0 },
214 { 0x00006013, 0x000000A4, 0x0 },
215 { 0x00007011, 0x0000009D, 0x0 },
216 { 0x00000018, 0x000000A0, 0x0 },
217 { 0x00006012, 0x000000DF, 0x0 },
218 { 0x00000018, 0x0000008A, 0x0 },
219 };
220
221 /* Skylake H, S and U, and Skylake Y with 0.95V VccIO */
222 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 { 0x00000018, 0x000000AC, 0x0 },
224 { 0x00005012, 0x0000009D, 0x0 },
225 { 0x00007011, 0x00000088, 0x0 },
226 { 0x00000018, 0x000000A1, 0x0 },
227 { 0x00000018, 0x00000098, 0x0 },
228 { 0x00004013, 0x00000088, 0x0 },
229 { 0x00006012, 0x00000087, 0x0 },
230 { 0x00000018, 0x000000DF, 0x0 },
231 { 0x00003015, 0x00000087, 0x0 }, /* Default */
232 { 0x00003015, 0x000000C7, 0x0 },
233 { 0x00000018, 0x000000C7, 0x0 },
234 };
235
236 /* Skylake Y with 0.85V VccIO */
237 static const struct ddi_buf_trans skl_y_085v_ddi_translations_hdmi[] = {
238 { 0x00000018, 0x000000A1, 0x0 },
239 { 0x00005012, 0x000000DF, 0x0 },
240 { 0x00007011, 0x00000084, 0x0 },
241 { 0x00000018, 0x000000A4, 0x0 },
242 { 0x00000018, 0x0000009D, 0x0 },
243 { 0x00004013, 0x00000080, 0x0 },
244 { 0x00006013, 0x000000C7, 0x0 },
245 { 0x00000018, 0x0000008A, 0x0 },
246 { 0x00003015, 0x000000C7, 0x0 }, /* Default */
247 { 0x80003015, 0x000000C7, 0x7 }, /* Uses I_boost */
248 { 0x00000018, 0x000000C7, 0x0 },
249 };
250
251 struct bxt_ddi_buf_trans {
252 u32 margin; /* swing value */
253 u32 scale; /* scale value */
254 u32 enable; /* scale enable */
255 u32 deemphasis;
256 bool default_index; /* true if the entry represents default value */
257 };
258
259 /* BSpec does not define separate vswing/pre-emphasis values for eDP.
260 * Using DP values for eDP as well.
261 */
262 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
263 /* Idx NT mV diff db */
264 { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
265 { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
266 { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
267 { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
268 { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
269 { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
270 { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
271 { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
272 { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
273 { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
274 };
275
276 /* BSpec has 2 recommended values - entries 0 and 8.
277 * Using the entry with higher vswing.
278 */
279 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
280 /* Idx NT mV diff db */
281 { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
282 { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
283 { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
284 { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
285 { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
286 { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
287 { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
288 { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
289 { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
290 { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
291 };
292
293 static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
294 enum port port, int type);
295
296 static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
297 struct intel_digital_port **dig_port,
298 enum port *port)
299 {
300 struct drm_encoder *encoder = &intel_encoder->base;
301 int type = intel_encoder->type;
302
303 if (type == INTEL_OUTPUT_DP_MST) {
304 *dig_port = enc_to_mst(encoder)->primary;
305 *port = (*dig_port)->port;
306 } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
307 type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
308 *dig_port = enc_to_dig_port(encoder);
309 *port = (*dig_port)->port;
310 } else if (type == INTEL_OUTPUT_ANALOG) {
311 *dig_port = NULL;
312 *port = PORT_E;
313 } else {
314 DRM_ERROR("Invalid DDI encoder type %d\n", type);
315 BUG();
316 }
317 }
318
319 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
320 {
321 struct intel_digital_port *dig_port;
322 enum port port;
323
324 ddi_get_encoder_port(intel_encoder, &dig_port, &port);
325
326 return port;
327 }
328
329 static bool
330 intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
331 {
332 return intel_dig_port->hdmi.hdmi_reg;
333 }
334
335 static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
336 int *n_entries)
337 {
338 struct drm_i915_private *dev_priv = dev->dev_private;
339 const struct ddi_buf_trans *ddi_translations;
340 static int is_095v = -1;
341
342 if (is_095v == -1) {
343 u32 spr1 = I915_READ(UAIMI_SPR1);
344
345 is_095v = spr1 & SKL_VCCIO_MASK;
346 }
347
348 if (IS_SKL_ULX(dev) && !is_095v) {
349 ddi_translations = skl_y_085v_ddi_translations_dp;
350 *n_entries = ARRAY_SIZE(skl_y_085v_ddi_translations_dp);
351 } else if (IS_SKL_ULT(dev)) {
352 ddi_translations = skl_u_ddi_translations_dp;
353 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
354 } else {
355 ddi_translations = skl_ddi_translations_dp;
356 *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
357 }
358
359 return ddi_translations;
360 }
361
362 static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
363 int *n_entries)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 const struct ddi_buf_trans *ddi_translations;
367 static int is_095v = -1;
368
369 if (is_095v == -1) {
370 u32 spr1 = I915_READ(UAIMI_SPR1);
371
372 is_095v = spr1 & SKL_VCCIO_MASK;
373 }
374
375 if (IS_SKL_ULX(dev) && !is_095v) {
376 if (dev_priv->edp_low_vswing) {
377 ddi_translations = skl_y_085v_ddi_translations_edp;
378 *n_entries =
379 ARRAY_SIZE(skl_y_085v_ddi_translations_edp);
380 } else {
381 ddi_translations = skl_y_085v_ddi_translations_dp;
382 *n_entries =
383 ARRAY_SIZE(skl_y_085v_ddi_translations_dp);
384 }
385 } else if (IS_SKL_ULT(dev)) {
386 if (dev_priv->edp_low_vswing) {
387 ddi_translations = skl_u_ddi_translations_edp;
388 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
389 } else {
390 ddi_translations = skl_u_ddi_translations_dp;
391 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
392 }
393 } else {
394 if (dev_priv->edp_low_vswing) {
395 ddi_translations = skl_ddi_translations_edp;
396 *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
397 } else {
398 ddi_translations = skl_ddi_translations_dp;
399 *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
400 }
401 }
402
403 return ddi_translations;
404 }
405
406 static const struct ddi_buf_trans *
407 skl_get_buf_trans_hdmi(struct drm_device *dev,
408 int *n_entries)
409 {
410 struct drm_i915_private *dev_priv = dev->dev_private;
411 const struct ddi_buf_trans *ddi_translations;
412 static int is_095v = -1;
413
414 if (is_095v == -1) {
415 u32 spr1 = I915_READ(UAIMI_SPR1);
416
417 is_095v = spr1 & SKL_VCCIO_MASK;
418 }
419
420 if (IS_SKL_ULX(dev) && !is_095v) {
421 ddi_translations = skl_y_085v_ddi_translations_hdmi;
422 *n_entries = ARRAY_SIZE(skl_y_085v_ddi_translations_hdmi);
423 } else {
424 ddi_translations = skl_ddi_translations_hdmi;
425 *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
426 }
427
428 return ddi_translations;
429 }
430
431 /*
432 * Starting with Haswell, DDI port buffers must be programmed with correct
433 * values in advance. The buffer values are different for FDI and DP modes,
434 * but the HDMI/DVI fields are shared among those. So we program the DDI
435 * in either FDI or DP modes only, as HDMI connections will work with both
436 * of those
437 */
438 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
439 bool supports_hdmi)
440 {
441 struct drm_i915_private *dev_priv = dev->dev_private;
442 u32 reg;
443 int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
444 size;
445 int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
446 const struct ddi_buf_trans *ddi_translations_fdi;
447 const struct ddi_buf_trans *ddi_translations_dp;
448 const struct ddi_buf_trans *ddi_translations_edp;
449 const struct ddi_buf_trans *ddi_translations_hdmi;
450 const struct ddi_buf_trans *ddi_translations;
451
452 if (IS_BROXTON(dev)) {
453 if (!supports_hdmi)
454 return;
455
456 /* Vswing programming for HDMI */
457 bxt_ddi_vswing_sequence(dev, hdmi_level, port,
458 INTEL_OUTPUT_HDMI);
459 return;
460 } else if (IS_SKYLAKE(dev)) {
461 ddi_translations_dp =
462 skl_get_buf_trans_dp(dev, &n_dp_entries);
463 ddi_translations_edp =
464 skl_get_buf_trans_edp(dev, &n_edp_entries);
465 ddi_translations_hdmi =
466 skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
467 hdmi_default_entry = 8;
468 } else if (IS_BROADWELL(dev)) {
469 ddi_translations_fdi = bdw_ddi_translations_fdi;
470 ddi_translations_dp = bdw_ddi_translations_dp;
471 ddi_translations_edp = bdw_ddi_translations_edp;
472 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
473 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
474 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
475 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
476 hdmi_default_entry = 7;
477 } else if (IS_HASWELL(dev)) {
478 ddi_translations_fdi = hsw_ddi_translations_fdi;
479 ddi_translations_dp = hsw_ddi_translations_dp;
480 ddi_translations_edp = hsw_ddi_translations_dp;
481 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
482 n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
483 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
484 hdmi_default_entry = 6;
485 } else {
486 WARN(1, "ddi translation table missing\n");
487 ddi_translations_edp = bdw_ddi_translations_dp;
488 ddi_translations_fdi = bdw_ddi_translations_fdi;
489 ddi_translations_dp = bdw_ddi_translations_dp;
490 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
491 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
492 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
493 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
494 hdmi_default_entry = 7;
495 }
496
497 switch (port) {
498 case PORT_A:
499 ddi_translations = ddi_translations_edp;
500 size = n_edp_entries;
501 break;
502 case PORT_B:
503 case PORT_C:
504 ddi_translations = ddi_translations_dp;
505 size = n_dp_entries;
506 break;
507 case PORT_D:
508 if (intel_dp_is_edp(dev, PORT_D)) {
509 ddi_translations = ddi_translations_edp;
510 size = n_edp_entries;
511 } else {
512 ddi_translations = ddi_translations_dp;
513 size = n_dp_entries;
514 }
515 break;
516 case PORT_E:
517 if (ddi_translations_fdi)
518 ddi_translations = ddi_translations_fdi;
519 else
520 ddi_translations = ddi_translations_dp;
521 size = n_dp_entries;
522 break;
523 default:
524 BUG();
525 }
526
527 for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
528 I915_WRITE(reg, ddi_translations[i].trans1);
529 reg += 4;
530 I915_WRITE(reg, ddi_translations[i].trans2);
531 reg += 4;
532 }
533
534 if (!supports_hdmi)
535 return;
536
537 /* Choose a good default if VBT is badly populated */
538 if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
539 hdmi_level >= n_hdmi_entries)
540 hdmi_level = hdmi_default_entry;
541
542 /* Entry 9 is for HDMI: */
543 I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
544 reg += 4;
545 I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
546 reg += 4;
547 }
548
549 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
550 * mode and port E for FDI.
551 */
552 void intel_prepare_ddi(struct drm_device *dev)
553 {
554 struct intel_encoder *intel_encoder;
555 bool visited[I915_MAX_PORTS] = { 0, };
556
557 if (!HAS_DDI(dev))
558 return;
559
560 for_each_intel_encoder(dev, intel_encoder) {
561 struct intel_digital_port *intel_dig_port;
562 enum port port;
563 bool supports_hdmi;
564
565 ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
566
567 if (visited[port])
568 continue;
569
570 supports_hdmi = intel_dig_port &&
571 intel_dig_port_supports_hdmi(intel_dig_port);
572
573 intel_prepare_ddi_buffers(dev, port, supports_hdmi);
574 visited[port] = true;
575 }
576 }
577
578 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
579 enum port port)
580 {
581 uint32_t reg = DDI_BUF_CTL(port);
582 int i;
583
584 for (i = 0; i < 16; i++) {
585 udelay(1);
586 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
587 return;
588 }
589 DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
590 }
591
592 /* Starting with Haswell, different DDI ports can work in FDI mode for
593 * connection to the PCH-located connectors. For this, it is necessary to train
594 * both the DDI port and PCH receiver for the desired DDI buffer settings.
595 *
596 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
597 * please note that when FDI mode is active on DDI E, it shares 2 lines with
598 * DDI A (which is used for eDP)
599 */
600
601 void hsw_fdi_link_train(struct drm_crtc *crtc)
602 {
603 struct drm_device *dev = crtc->dev;
604 struct drm_i915_private *dev_priv = dev->dev_private;
605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
606 u32 temp, i, rx_ctl_val;
607
608 /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
609 * mode set "sequence for CRT port" document:
610 * - TP1 to TP2 time with the default value
611 * - FDI delay to 90h
612 *
613 * WaFDIAutoLinkSetTimingOverrride:hsw
614 */
615 I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
616 FDI_RX_PWRDN_LANE0_VAL(2) |
617 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
618
619 /* Enable the PCH Receiver FDI PLL */
620 rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
621 FDI_RX_PLL_ENABLE |
622 FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
623 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
624 POSTING_READ(_FDI_RXA_CTL);
625 udelay(220);
626
627 /* Switch from Rawclk to PCDclk */
628 rx_ctl_val |= FDI_PCDCLK;
629 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
630
631 /* Configure Port Clock Select */
632 I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
633 WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
634
635 /* Start the training iterating through available voltages and emphasis,
636 * testing each value twice. */
637 for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
638 /* Configure DP_TP_CTL with auto-training */
639 I915_WRITE(DP_TP_CTL(PORT_E),
640 DP_TP_CTL_FDI_AUTOTRAIN |
641 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
642 DP_TP_CTL_LINK_TRAIN_PAT1 |
643 DP_TP_CTL_ENABLE);
644
645 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
646 * DDI E does not support port reversal, the functionality is
647 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
648 * port reversal bit */
649 I915_WRITE(DDI_BUF_CTL(PORT_E),
650 DDI_BUF_CTL_ENABLE |
651 ((intel_crtc->config->fdi_lanes - 1) << 1) |
652 DDI_BUF_TRANS_SELECT(i / 2));
653 POSTING_READ(DDI_BUF_CTL(PORT_E));
654
655 udelay(600);
656
657 /* Program PCH FDI Receiver TU */
658 I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
659
660 /* Enable PCH FDI Receiver with auto-training */
661 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
662 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
663 POSTING_READ(_FDI_RXA_CTL);
664
665 /* Wait for FDI receiver lane calibration */
666 udelay(30);
667
668 /* Unset FDI_RX_MISC pwrdn lanes */
669 temp = I915_READ(_FDI_RXA_MISC);
670 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
671 I915_WRITE(_FDI_RXA_MISC, temp);
672 POSTING_READ(_FDI_RXA_MISC);
673
674 /* Wait for FDI auto training time */
675 udelay(5);
676
677 temp = I915_READ(DP_TP_STATUS(PORT_E));
678 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
679 DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
680
681 /* Enable normal pixel sending for FDI */
682 I915_WRITE(DP_TP_CTL(PORT_E),
683 DP_TP_CTL_FDI_AUTOTRAIN |
684 DP_TP_CTL_LINK_TRAIN_NORMAL |
685 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
686 DP_TP_CTL_ENABLE);
687
688 return;
689 }
690
691 temp = I915_READ(DDI_BUF_CTL(PORT_E));
692 temp &= ~DDI_BUF_CTL_ENABLE;
693 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
694 POSTING_READ(DDI_BUF_CTL(PORT_E));
695
696 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
697 temp = I915_READ(DP_TP_CTL(PORT_E));
698 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
699 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
700 I915_WRITE(DP_TP_CTL(PORT_E), temp);
701 POSTING_READ(DP_TP_CTL(PORT_E));
702
703 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
704
705 rx_ctl_val &= ~FDI_RX_ENABLE;
706 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
707 POSTING_READ(_FDI_RXA_CTL);
708
709 /* Reset FDI_RX_MISC pwrdn lanes */
710 temp = I915_READ(_FDI_RXA_MISC);
711 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
712 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
713 I915_WRITE(_FDI_RXA_MISC, temp);
714 POSTING_READ(_FDI_RXA_MISC);
715 }
716
717 DRM_ERROR("FDI link training failed!\n");
718 }
719
720 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
721 {
722 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
723 struct intel_digital_port *intel_dig_port =
724 enc_to_dig_port(&encoder->base);
725
726 intel_dp->DP = intel_dig_port->saved_port_bits |
727 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
728 intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
729
730 }
731
732 static struct intel_encoder *
733 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
734 {
735 struct drm_device *dev = crtc->dev;
736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737 struct intel_encoder *intel_encoder, *ret = NULL;
738 int num_encoders = 0;
739
740 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
741 ret = intel_encoder;
742 num_encoders++;
743 }
744
745 if (num_encoders != 1)
746 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
747 pipe_name(intel_crtc->pipe));
748
749 BUG_ON(ret == NULL);
750 return ret;
751 }
752
753 struct intel_encoder *
754 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
755 {
756 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
757 struct intel_encoder *ret = NULL;
758 struct drm_atomic_state *state;
759 struct drm_connector *connector;
760 struct drm_connector_state *connector_state;
761 int num_encoders = 0;
762 int i;
763
764 state = crtc_state->base.state;
765
766 for_each_connector_in_state(state, connector, connector_state, i) {
767 if (connector_state->crtc != crtc_state->base.crtc)
768 continue;
769
770 ret = to_intel_encoder(connector_state->best_encoder);
771 num_encoders++;
772 }
773
774 WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
775 pipe_name(crtc->pipe));
776
777 BUG_ON(ret == NULL);
778 return ret;
779 }
780
781 #define LC_FREQ 2700
782 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
783
784 #define P_MIN 2
785 #define P_MAX 64
786 #define P_INC 2
787
788 /* Constraints for PLL good behavior */
789 #define REF_MIN 48
790 #define REF_MAX 400
791 #define VCO_MIN 2400
792 #define VCO_MAX 4800
793
794 #define abs_diff(a, b) ({ \
795 typeof(a) __a = (a); \
796 typeof(b) __b = (b); \
797 (void) (&__a == &__b); \
798 __a > __b ? (__a - __b) : (__b - __a); })
799
800 struct hsw_wrpll_rnp {
801 unsigned p, n2, r2;
802 };
803
804 static unsigned hsw_wrpll_get_budget_for_freq(int clock)
805 {
806 unsigned budget;
807
808 switch (clock) {
809 case 25175000:
810 case 25200000:
811 case 27000000:
812 case 27027000:
813 case 37762500:
814 case 37800000:
815 case 40500000:
816 case 40541000:
817 case 54000000:
818 case 54054000:
819 case 59341000:
820 case 59400000:
821 case 72000000:
822 case 74176000:
823 case 74250000:
824 case 81000000:
825 case 81081000:
826 case 89012000:
827 case 89100000:
828 case 108000000:
829 case 108108000:
830 case 111264000:
831 case 111375000:
832 case 148352000:
833 case 148500000:
834 case 162000000:
835 case 162162000:
836 case 222525000:
837 case 222750000:
838 case 296703000:
839 case 297000000:
840 budget = 0;
841 break;
842 case 233500000:
843 case 245250000:
844 case 247750000:
845 case 253250000:
846 case 298000000:
847 budget = 1500;
848 break;
849 case 169128000:
850 case 169500000:
851 case 179500000:
852 case 202000000:
853 budget = 2000;
854 break;
855 case 256250000:
856 case 262500000:
857 case 270000000:
858 case 272500000:
859 case 273750000:
860 case 280750000:
861 case 281250000:
862 case 286000000:
863 case 291750000:
864 budget = 4000;
865 break;
866 case 267250000:
867 case 268500000:
868 budget = 5000;
869 break;
870 default:
871 budget = 1000;
872 break;
873 }
874
875 return budget;
876 }
877
878 static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
879 unsigned r2, unsigned n2, unsigned p,
880 struct hsw_wrpll_rnp *best)
881 {
882 uint64_t a, b, c, d, diff, diff_best;
883
884 /* No best (r,n,p) yet */
885 if (best->p == 0) {
886 best->p = p;
887 best->n2 = n2;
888 best->r2 = r2;
889 return;
890 }
891
892 /*
893 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
894 * freq2k.
895 *
896 * delta = 1e6 *
897 * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
898 * freq2k;
899 *
900 * and we would like delta <= budget.
901 *
902 * If the discrepancy is above the PPM-based budget, always prefer to
903 * improve upon the previous solution. However, if you're within the
904 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
905 */
906 a = freq2k * budget * p * r2;
907 b = freq2k * budget * best->p * best->r2;
908 diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
909 diff_best = abs_diff(freq2k * best->p * best->r2,
910 LC_FREQ_2K * best->n2);
911 c = 1000000 * diff;
912 d = 1000000 * diff_best;
913
914 if (a < c && b < d) {
915 /* If both are above the budget, pick the closer */
916 if (best->p * best->r2 * diff < p * r2 * diff_best) {
917 best->p = p;
918 best->n2 = n2;
919 best->r2 = r2;
920 }
921 } else if (a >= c && b < d) {
922 /* If A is below the threshold but B is above it? Update. */
923 best->p = p;
924 best->n2 = n2;
925 best->r2 = r2;
926 } else if (a >= c && b >= d) {
927 /* Both are below the limit, so pick the higher n2/(r2*r2) */
928 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
929 best->p = p;
930 best->n2 = n2;
931 best->r2 = r2;
932 }
933 }
934 /* Otherwise a < c && b >= d, do nothing */
935 }
936
937 static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, int reg)
938 {
939 int refclk = LC_FREQ;
940 int n, p, r;
941 u32 wrpll;
942
943 wrpll = I915_READ(reg);
944 switch (wrpll & WRPLL_PLL_REF_MASK) {
945 case WRPLL_PLL_SSC:
946 case WRPLL_PLL_NON_SSC:
947 /*
948 * We could calculate spread here, but our checking
949 * code only cares about 5% accuracy, and spread is a max of
950 * 0.5% downspread.
951 */
952 refclk = 135;
953 break;
954 case WRPLL_PLL_LCPLL:
955 refclk = LC_FREQ;
956 break;
957 default:
958 WARN(1, "bad wrpll refclk\n");
959 return 0;
960 }
961
962 r = wrpll & WRPLL_DIVIDER_REF_MASK;
963 p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
964 n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
965
966 /* Convert to KHz, p & r have a fixed point portion */
967 return (refclk * n * 100) / (p * r);
968 }
969
970 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
971 uint32_t dpll)
972 {
973 uint32_t cfgcr1_reg, cfgcr2_reg;
974 uint32_t cfgcr1_val, cfgcr2_val;
975 uint32_t p0, p1, p2, dco_freq;
976
977 cfgcr1_reg = GET_CFG_CR1_REG(dpll);
978 cfgcr2_reg = GET_CFG_CR2_REG(dpll);
979
980 cfgcr1_val = I915_READ(cfgcr1_reg);
981 cfgcr2_val = I915_READ(cfgcr2_reg);
982
983 p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
984 p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
985
986 if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
987 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
988 else
989 p1 = 1;
990
991
992 switch (p0) {
993 case DPLL_CFGCR2_PDIV_1:
994 p0 = 1;
995 break;
996 case DPLL_CFGCR2_PDIV_2:
997 p0 = 2;
998 break;
999 case DPLL_CFGCR2_PDIV_3:
1000 p0 = 3;
1001 break;
1002 case DPLL_CFGCR2_PDIV_7:
1003 p0 = 7;
1004 break;
1005 }
1006
1007 switch (p2) {
1008 case DPLL_CFGCR2_KDIV_5:
1009 p2 = 5;
1010 break;
1011 case DPLL_CFGCR2_KDIV_2:
1012 p2 = 2;
1013 break;
1014 case DPLL_CFGCR2_KDIV_3:
1015 p2 = 3;
1016 break;
1017 case DPLL_CFGCR2_KDIV_1:
1018 p2 = 1;
1019 break;
1020 }
1021
1022 dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
1023
1024 dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
1025 1000) / 0x8000;
1026
1027 return dco_freq / (p0 * p1 * p2 * 5);
1028 }
1029
1030 static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
1031 {
1032 int dotclock;
1033
1034 if (pipe_config->has_pch_encoder)
1035 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1036 &pipe_config->fdi_m_n);
1037 else if (pipe_config->has_dp_encoder)
1038 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1039 &pipe_config->dp_m_n);
1040 else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
1041 dotclock = pipe_config->port_clock * 2 / 3;
1042 else
1043 dotclock = pipe_config->port_clock;
1044
1045 if (pipe_config->pixel_multiplier)
1046 dotclock /= pipe_config->pixel_multiplier;
1047
1048 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
1049 }
1050
1051 static void skl_ddi_clock_get(struct intel_encoder *encoder,
1052 struct intel_crtc_state *pipe_config)
1053 {
1054 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1055 int link_clock = 0;
1056 uint32_t dpll_ctl1, dpll;
1057
1058 dpll = pipe_config->ddi_pll_sel;
1059
1060 dpll_ctl1 = I915_READ(DPLL_CTRL1);
1061
1062 if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
1063 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
1064 } else {
1065 link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
1066 link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1067
1068 switch (link_clock) {
1069 case DPLL_CTRL1_LINK_RATE_810:
1070 link_clock = 81000;
1071 break;
1072 case DPLL_CTRL1_LINK_RATE_1080:
1073 link_clock = 108000;
1074 break;
1075 case DPLL_CTRL1_LINK_RATE_1350:
1076 link_clock = 135000;
1077 break;
1078 case DPLL_CTRL1_LINK_RATE_1620:
1079 link_clock = 162000;
1080 break;
1081 case DPLL_CTRL1_LINK_RATE_2160:
1082 link_clock = 216000;
1083 break;
1084 case DPLL_CTRL1_LINK_RATE_2700:
1085 link_clock = 270000;
1086 break;
1087 default:
1088 WARN(1, "Unsupported link rate\n");
1089 break;
1090 }
1091 link_clock *= 2;
1092 }
1093
1094 pipe_config->port_clock = link_clock;
1095
1096 ddi_dotclock_get(pipe_config);
1097 }
1098
1099 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1100 struct intel_crtc_state *pipe_config)
1101 {
1102 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1103 int link_clock = 0;
1104 u32 val, pll;
1105
1106 val = pipe_config->ddi_pll_sel;
1107 switch (val & PORT_CLK_SEL_MASK) {
1108 case PORT_CLK_SEL_LCPLL_810:
1109 link_clock = 81000;
1110 break;
1111 case PORT_CLK_SEL_LCPLL_1350:
1112 link_clock = 135000;
1113 break;
1114 case PORT_CLK_SEL_LCPLL_2700:
1115 link_clock = 270000;
1116 break;
1117 case PORT_CLK_SEL_WRPLL1:
1118 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
1119 break;
1120 case PORT_CLK_SEL_WRPLL2:
1121 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
1122 break;
1123 case PORT_CLK_SEL_SPLL:
1124 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
1125 if (pll == SPLL_PLL_FREQ_810MHz)
1126 link_clock = 81000;
1127 else if (pll == SPLL_PLL_FREQ_1350MHz)
1128 link_clock = 135000;
1129 else if (pll == SPLL_PLL_FREQ_2700MHz)
1130 link_clock = 270000;
1131 else {
1132 WARN(1, "bad spll freq\n");
1133 return;
1134 }
1135 break;
1136 default:
1137 WARN(1, "bad port clock sel\n");
1138 return;
1139 }
1140
1141 pipe_config->port_clock = link_clock * 2;
1142
1143 ddi_dotclock_get(pipe_config);
1144 }
1145
1146 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
1147 enum intel_dpll_id dpll)
1148 {
1149 struct intel_shared_dpll *pll;
1150 struct intel_dpll_hw_state *state;
1151 intel_clock_t clock;
1152
1153 /* For DDI ports we always use a shared PLL. */
1154 if (WARN_ON(dpll == DPLL_ID_PRIVATE))
1155 return 0;
1156
1157 pll = &dev_priv->shared_dplls[dpll];
1158 state = &pll->config.hw_state;
1159
1160 clock.m1 = 2;
1161 clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
1162 if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
1163 clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
1164 clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
1165 clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
1166 clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
1167
1168 return chv_calc_dpll_params(100000, &clock);
1169 }
1170
1171 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
1172 struct intel_crtc_state *pipe_config)
1173 {
1174 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1175 enum port port = intel_ddi_get_encoder_port(encoder);
1176 uint32_t dpll = port;
1177
1178 pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1179
1180 ddi_dotclock_get(pipe_config);
1181 }
1182
1183 void intel_ddi_clock_get(struct intel_encoder *encoder,
1184 struct intel_crtc_state *pipe_config)
1185 {
1186 struct drm_device *dev = encoder->base.dev;
1187
1188 if (INTEL_INFO(dev)->gen <= 8)
1189 hsw_ddi_clock_get(encoder, pipe_config);
1190 else if (IS_SKYLAKE(dev))
1191 skl_ddi_clock_get(encoder, pipe_config);
1192 else if (IS_BROXTON(dev))
1193 bxt_ddi_clock_get(encoder, pipe_config);
1194 }
1195
1196 static void
1197 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
1198 unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1199 {
1200 uint64_t freq2k;
1201 unsigned p, n2, r2;
1202 struct hsw_wrpll_rnp best = { 0, 0, 0 };
1203 unsigned budget;
1204
1205 freq2k = clock / 100;
1206
1207 budget = hsw_wrpll_get_budget_for_freq(clock);
1208
1209 /* Special case handling for 540 pixel clock: bypass WR PLL entirely
1210 * and directly pass the LC PLL to it. */
1211 if (freq2k == 5400000) {
1212 *n2_out = 2;
1213 *p_out = 1;
1214 *r2_out = 2;
1215 return;
1216 }
1217
1218 /*
1219 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
1220 * the WR PLL.
1221 *
1222 * We want R so that REF_MIN <= Ref <= REF_MAX.
1223 * Injecting R2 = 2 * R gives:
1224 * REF_MAX * r2 > LC_FREQ * 2 and
1225 * REF_MIN * r2 < LC_FREQ * 2
1226 *
1227 * Which means the desired boundaries for r2 are:
1228 * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
1229 *
1230 */
1231 for (r2 = LC_FREQ * 2 / REF_MAX + 1;
1232 r2 <= LC_FREQ * 2 / REF_MIN;
1233 r2++) {
1234
1235 /*
1236 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
1237 *
1238 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
1239 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
1240 * VCO_MAX * r2 > n2 * LC_FREQ and
1241 * VCO_MIN * r2 < n2 * LC_FREQ)
1242 *
1243 * Which means the desired boundaries for n2 are:
1244 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
1245 */
1246 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
1247 n2 <= VCO_MAX * r2 / LC_FREQ;
1248 n2++) {
1249
1250 for (p = P_MIN; p <= P_MAX; p += P_INC)
1251 hsw_wrpll_update_rnp(freq2k, budget,
1252 r2, n2, p, &best);
1253 }
1254 }
1255
1256 *n2_out = best.n2;
1257 *p_out = best.p;
1258 *r2_out = best.r2;
1259 }
1260
1261 static bool
1262 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1263 struct intel_crtc_state *crtc_state,
1264 struct intel_encoder *intel_encoder,
1265 int clock)
1266 {
1267 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1268 struct intel_shared_dpll *pll;
1269 uint32_t val;
1270 unsigned p, n2, r2;
1271
1272 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
1273
1274 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
1275 WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
1276 WRPLL_DIVIDER_POST(p);
1277
1278 memset(&crtc_state->dpll_hw_state, 0,
1279 sizeof(crtc_state->dpll_hw_state));
1280
1281 crtc_state->dpll_hw_state.wrpll = val;
1282
1283 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1284 if (pll == NULL) {
1285 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1286 pipe_name(intel_crtc->pipe));
1287 return false;
1288 }
1289
1290 crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1291 }
1292
1293 return true;
1294 }
1295
1296 struct skl_wrpll_context {
1297 uint64_t min_deviation; /* current minimal deviation */
1298 uint64_t central_freq; /* chosen central freq */
1299 uint64_t dco_freq; /* chosen dco freq */
1300 unsigned int p; /* chosen divider */
1301 };
1302
1303 static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
1304 {
1305 memset(ctx, 0, sizeof(*ctx));
1306
1307 ctx->min_deviation = U64_MAX;
1308 }
1309
1310 /* DCO freq must be within +1%/-6% of the DCO central freq */
1311 #define SKL_DCO_MAX_PDEVIATION 100
1312 #define SKL_DCO_MAX_NDEVIATION 600
1313
1314 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
1315 uint64_t central_freq,
1316 uint64_t dco_freq,
1317 unsigned int divider)
1318 {
1319 uint64_t deviation;
1320
1321 deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
1322 central_freq);
1323
1324 /* positive deviation */
1325 if (dco_freq >= central_freq) {
1326 if (deviation < SKL_DCO_MAX_PDEVIATION &&
1327 deviation < ctx->min_deviation) {
1328 ctx->min_deviation = deviation;
1329 ctx->central_freq = central_freq;
1330 ctx->dco_freq = dco_freq;
1331 ctx->p = divider;
1332 }
1333 /* negative deviation */
1334 } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
1335 deviation < ctx->min_deviation) {
1336 ctx->min_deviation = deviation;
1337 ctx->central_freq = central_freq;
1338 ctx->dco_freq = dco_freq;
1339 ctx->p = divider;
1340 }
1341 }
1342
1343 static void skl_wrpll_get_multipliers(unsigned int p,
1344 unsigned int *p0 /* out */,
1345 unsigned int *p1 /* out */,
1346 unsigned int *p2 /* out */)
1347 {
1348 /* even dividers */
1349 if (p % 2 == 0) {
1350 unsigned int half = p / 2;
1351
1352 if (half == 1 || half == 2 || half == 3 || half == 5) {
1353 *p0 = 2;
1354 *p1 = 1;
1355 *p2 = half;
1356 } else if (half % 2 == 0) {
1357 *p0 = 2;
1358 *p1 = half / 2;
1359 *p2 = 2;
1360 } else if (half % 3 == 0) {
1361 *p0 = 3;
1362 *p1 = half / 3;
1363 *p2 = 2;
1364 } else if (half % 7 == 0) {
1365 *p0 = 7;
1366 *p1 = half / 7;
1367 *p2 = 2;
1368 }
1369 } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
1370 *p0 = 3;
1371 *p1 = 1;
1372 *p2 = p / 3;
1373 } else if (p == 5 || p == 7) {
1374 *p0 = p;
1375 *p1 = 1;
1376 *p2 = 1;
1377 } else if (p == 15) {
1378 *p0 = 3;
1379 *p1 = 1;
1380 *p2 = 5;
1381 } else if (p == 21) {
1382 *p0 = 7;
1383 *p1 = 1;
1384 *p2 = 3;
1385 } else if (p == 35) {
1386 *p0 = 7;
1387 *p1 = 1;
1388 *p2 = 5;
1389 }
1390 }
1391
1392 struct skl_wrpll_params {
1393 uint32_t dco_fraction;
1394 uint32_t dco_integer;
1395 uint32_t qdiv_ratio;
1396 uint32_t qdiv_mode;
1397 uint32_t kdiv;
1398 uint32_t pdiv;
1399 uint32_t central_freq;
1400 };
1401
1402 static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
1403 uint64_t afe_clock,
1404 uint64_t central_freq,
1405 uint32_t p0, uint32_t p1, uint32_t p2)
1406 {
1407 uint64_t dco_freq;
1408
1409 switch (central_freq) {
1410 case 9600000000ULL:
1411 params->central_freq = 0;
1412 break;
1413 case 9000000000ULL:
1414 params->central_freq = 1;
1415 break;
1416 case 8400000000ULL:
1417 params->central_freq = 3;
1418 }
1419
1420 switch (p0) {
1421 case 1:
1422 params->pdiv = 0;
1423 break;
1424 case 2:
1425 params->pdiv = 1;
1426 break;
1427 case 3:
1428 params->pdiv = 2;
1429 break;
1430 case 7:
1431 params->pdiv = 4;
1432 break;
1433 default:
1434 WARN(1, "Incorrect PDiv\n");
1435 }
1436
1437 switch (p2) {
1438 case 5:
1439 params->kdiv = 0;
1440 break;
1441 case 2:
1442 params->kdiv = 1;
1443 break;
1444 case 3:
1445 params->kdiv = 2;
1446 break;
1447 case 1:
1448 params->kdiv = 3;
1449 break;
1450 default:
1451 WARN(1, "Incorrect KDiv\n");
1452 }
1453
1454 params->qdiv_ratio = p1;
1455 params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
1456
1457 dco_freq = p0 * p1 * p2 * afe_clock;
1458
1459 /*
1460 * Intermediate values are in Hz.
1461 * Divide by MHz to match bsepc
1462 */
1463 params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1464 params->dco_fraction =
1465 div_u64((div_u64(dco_freq, 24) -
1466 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1467 }
1468
1469 static bool
1470 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1471 struct skl_wrpll_params *wrpll_params)
1472 {
1473 uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1474 uint64_t dco_central_freq[3] = {8400000000ULL,
1475 9000000000ULL,
1476 9600000000ULL};
1477 static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
1478 24, 28, 30, 32, 36, 40, 42, 44,
1479 48, 52, 54, 56, 60, 64, 66, 68,
1480 70, 72, 76, 78, 80, 84, 88, 90,
1481 92, 96, 98 };
1482 static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
1483 static const struct {
1484 const int *list;
1485 int n_dividers;
1486 } dividers[] = {
1487 { even_dividers, ARRAY_SIZE(even_dividers) },
1488 { odd_dividers, ARRAY_SIZE(odd_dividers) },
1489 };
1490 struct skl_wrpll_context ctx;
1491 unsigned int dco, d, i;
1492 unsigned int p0, p1, p2;
1493
1494 skl_wrpll_context_init(&ctx);
1495
1496 for (d = 0; d < ARRAY_SIZE(dividers); d++) {
1497 for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
1498 for (i = 0; i < dividers[d].n_dividers; i++) {
1499 unsigned int p = dividers[d].list[i];
1500 uint64_t dco_freq = p * afe_clock;
1501
1502 skl_wrpll_try_divider(&ctx,
1503 dco_central_freq[dco],
1504 dco_freq,
1505 p);
1506 /*
1507 * Skip the remaining dividers if we're sure to
1508 * have found the definitive divider, we can't
1509 * improve a 0 deviation.
1510 */
1511 if (ctx.min_deviation == 0)
1512 goto skip_remaining_dividers;
1513 }
1514 }
1515
1516 skip_remaining_dividers:
1517 /*
1518 * If a solution is found with an even divider, prefer
1519 * this one.
1520 */
1521 if (d == 0 && ctx.p)
1522 break;
1523 }
1524
1525 if (!ctx.p) {
1526 DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1527 return false;
1528 }
1529
1530 /*
1531 * gcc incorrectly analyses that these can be used without being
1532 * initialized. To be fair, it's hard to guess.
1533 */
1534 p0 = p1 = p2 = 0;
1535 skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
1536 skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
1537 p0, p1, p2);
1538
1539 return true;
1540 }
1541
1542 static bool
1543 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1544 struct intel_crtc_state *crtc_state,
1545 struct intel_encoder *intel_encoder,
1546 int clock)
1547 {
1548 struct intel_shared_dpll *pll;
1549 uint32_t ctrl1, cfgcr1, cfgcr2;
1550
1551 /*
1552 * See comment in intel_dpll_hw_state to understand why we always use 0
1553 * as the DPLL id in this function.
1554 */
1555
1556 ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1557
1558 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1559 struct skl_wrpll_params wrpll_params = { 0, };
1560
1561 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1562
1563 if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
1564 return false;
1565
1566 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1567 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1568 wrpll_params.dco_integer;
1569
1570 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1571 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1572 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1573 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1574 wrpll_params.central_freq;
1575 } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1576 struct drm_encoder *encoder = &intel_encoder->base;
1577 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1578
1579 switch (intel_dp->link_bw) {
1580 case DP_LINK_BW_1_62:
1581 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1582 break;
1583 case DP_LINK_BW_2_7:
1584 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1585 break;
1586 case DP_LINK_BW_5_4:
1587 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1588 break;
1589 }
1590
1591 cfgcr1 = cfgcr2 = 0;
1592 } else /* eDP */
1593 return true;
1594
1595 memset(&crtc_state->dpll_hw_state, 0,
1596 sizeof(crtc_state->dpll_hw_state));
1597
1598 crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1599 crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1600 crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1601
1602 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1603 if (pll == NULL) {
1604 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1605 pipe_name(intel_crtc->pipe));
1606 return false;
1607 }
1608
1609 /* shared DPLL id 0 is DPLL 1 */
1610 crtc_state->ddi_pll_sel = pll->id + 1;
1611
1612 return true;
1613 }
1614
1615 /* bxt clock parameters */
1616 struct bxt_clk_div {
1617 int clock;
1618 uint32_t p1;
1619 uint32_t p2;
1620 uint32_t m2_int;
1621 uint32_t m2_frac;
1622 bool m2_frac_en;
1623 uint32_t n;
1624 };
1625
1626 /* pre-calculated values for DP linkrates */
1627 static const struct bxt_clk_div bxt_dp_clk_val[] = {
1628 {162000, 4, 2, 32, 1677722, 1, 1},
1629 {270000, 4, 1, 27, 0, 0, 1},
1630 {540000, 2, 1, 27, 0, 0, 1},
1631 {216000, 3, 2, 32, 1677722, 1, 1},
1632 {243000, 4, 1, 24, 1258291, 1, 1},
1633 {324000, 4, 1, 32, 1677722, 1, 1},
1634 {432000, 3, 1, 32, 1677722, 1, 1}
1635 };
1636
1637 static bool
1638 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1639 struct intel_crtc_state *crtc_state,
1640 struct intel_encoder *intel_encoder,
1641 int clock)
1642 {
1643 struct intel_shared_dpll *pll;
1644 struct bxt_clk_div clk_div = {0};
1645 int vco = 0;
1646 uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1647 uint32_t dcoampovr_en_h, dco_amp, lanestagger;
1648
1649 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1650 intel_clock_t best_clock;
1651
1652 /* Calculate HDMI div */
1653 /*
1654 * FIXME: tie the following calculation into
1655 * i9xx_crtc_compute_clock
1656 */
1657 if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
1658 DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
1659 clock, pipe_name(intel_crtc->pipe));
1660 return false;
1661 }
1662
1663 clk_div.p1 = best_clock.p1;
1664 clk_div.p2 = best_clock.p2;
1665 WARN_ON(best_clock.m1 != 2);
1666 clk_div.n = best_clock.n;
1667 clk_div.m2_int = best_clock.m2 >> 22;
1668 clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
1669 clk_div.m2_frac_en = clk_div.m2_frac != 0;
1670
1671 vco = best_clock.vco;
1672 } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
1673 intel_encoder->type == INTEL_OUTPUT_EDP) {
1674 int i;
1675
1676 clk_div = bxt_dp_clk_val[0];
1677 for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
1678 if (bxt_dp_clk_val[i].clock == clock) {
1679 clk_div = bxt_dp_clk_val[i];
1680 break;
1681 }
1682 }
1683 vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
1684 }
1685
1686 dco_amp = 15;
1687 dcoampovr_en_h = 0;
1688 if (vco >= 6200000 && vco <= 6480000) {
1689 prop_coef = 4;
1690 int_coef = 9;
1691 gain_ctl = 3;
1692 targ_cnt = 8;
1693 } else if ((vco > 5400000 && vco < 6200000) ||
1694 (vco >= 4800000 && vco < 5400000)) {
1695 prop_coef = 5;
1696 int_coef = 11;
1697 gain_ctl = 3;
1698 targ_cnt = 9;
1699 if (vco >= 4800000 && vco < 5400000)
1700 dcoampovr_en_h = 1;
1701 } else if (vco == 5400000) {
1702 prop_coef = 3;
1703 int_coef = 8;
1704 gain_ctl = 1;
1705 targ_cnt = 9;
1706 } else {
1707 DRM_ERROR("Invalid VCO\n");
1708 return false;
1709 }
1710
1711 memset(&crtc_state->dpll_hw_state, 0,
1712 sizeof(crtc_state->dpll_hw_state));
1713
1714 if (clock > 270000)
1715 lanestagger = 0x18;
1716 else if (clock > 135000)
1717 lanestagger = 0x0d;
1718 else if (clock > 67000)
1719 lanestagger = 0x07;
1720 else if (clock > 33000)
1721 lanestagger = 0x04;
1722 else
1723 lanestagger = 0x02;
1724
1725 crtc_state->dpll_hw_state.ebb0 =
1726 PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
1727 crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
1728 crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
1729 crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
1730
1731 if (clk_div.m2_frac_en)
1732 crtc_state->dpll_hw_state.pll3 =
1733 PORT_PLL_M2_FRAC_ENABLE;
1734
1735 crtc_state->dpll_hw_state.pll6 =
1736 prop_coef | PORT_PLL_INT_COEFF(int_coef);
1737 crtc_state->dpll_hw_state.pll6 |=
1738 PORT_PLL_GAIN_CTL(gain_ctl);
1739
1740 crtc_state->dpll_hw_state.pll8 = targ_cnt;
1741
1742 crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
1743
1744 if (dcoampovr_en_h)
1745 crtc_state->dpll_hw_state.pll10 = PORT_PLL_DCO_AMP_OVR_EN_H;
1746
1747 crtc_state->dpll_hw_state.pll10 |= PORT_PLL_DCO_AMP(dco_amp);
1748
1749 crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
1750
1751 crtc_state->dpll_hw_state.pcsdw12 =
1752 LANESTAGGER_STRAP_OVRD | lanestagger;
1753
1754 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1755 if (pll == NULL) {
1756 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1757 pipe_name(intel_crtc->pipe));
1758 return false;
1759 }
1760
1761 /* shared DPLL id 0 is DPLL A */
1762 crtc_state->ddi_pll_sel = pll->id;
1763
1764 return true;
1765 }
1766
1767 /*
1768 * Tries to find a *shared* PLL for the CRTC and store it in
1769 * intel_crtc->ddi_pll_sel.
1770 *
1771 * For private DPLLs, compute_config() should do the selection for us. This
1772 * function should be folded into compute_config() eventually.
1773 */
1774 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1775 struct intel_crtc_state *crtc_state)
1776 {
1777 struct drm_device *dev = intel_crtc->base.dev;
1778 struct intel_encoder *intel_encoder =
1779 intel_ddi_get_crtc_new_encoder(crtc_state);
1780 int clock = crtc_state->port_clock;
1781
1782 if (IS_SKYLAKE(dev))
1783 return skl_ddi_pll_select(intel_crtc, crtc_state,
1784 intel_encoder, clock);
1785 else if (IS_BROXTON(dev))
1786 return bxt_ddi_pll_select(intel_crtc, crtc_state,
1787 intel_encoder, clock);
1788 else
1789 return hsw_ddi_pll_select(intel_crtc, crtc_state,
1790 intel_encoder, clock);
1791 }
1792
1793 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1794 {
1795 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1797 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1798 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1799 int type = intel_encoder->type;
1800 uint32_t temp;
1801
1802 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1803 temp = TRANS_MSA_SYNC_CLK;
1804 switch (intel_crtc->config->pipe_bpp) {
1805 case 18:
1806 temp |= TRANS_MSA_6_BPC;
1807 break;
1808 case 24:
1809 temp |= TRANS_MSA_8_BPC;
1810 break;
1811 case 30:
1812 temp |= TRANS_MSA_10_BPC;
1813 break;
1814 case 36:
1815 temp |= TRANS_MSA_12_BPC;
1816 break;
1817 default:
1818 BUG();
1819 }
1820 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1821 }
1822 }
1823
1824 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1825 {
1826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1827 struct drm_device *dev = crtc->dev;
1828 struct drm_i915_private *dev_priv = dev->dev_private;
1829 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1830 uint32_t temp;
1831 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1832 if (state == true)
1833 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1834 else
1835 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1836 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1837 }
1838
1839 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1840 {
1841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1842 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1843 struct drm_encoder *encoder = &intel_encoder->base;
1844 struct drm_device *dev = crtc->dev;
1845 struct drm_i915_private *dev_priv = dev->dev_private;
1846 enum pipe pipe = intel_crtc->pipe;
1847 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1848 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1849 int type = intel_encoder->type;
1850 uint32_t temp;
1851
1852 /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1853 temp = TRANS_DDI_FUNC_ENABLE;
1854 temp |= TRANS_DDI_SELECT_PORT(port);
1855
1856 switch (intel_crtc->config->pipe_bpp) {
1857 case 18:
1858 temp |= TRANS_DDI_BPC_6;
1859 break;
1860 case 24:
1861 temp |= TRANS_DDI_BPC_8;
1862 break;
1863 case 30:
1864 temp |= TRANS_DDI_BPC_10;
1865 break;
1866 case 36:
1867 temp |= TRANS_DDI_BPC_12;
1868 break;
1869 default:
1870 BUG();
1871 }
1872
1873 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1874 temp |= TRANS_DDI_PVSYNC;
1875 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1876 temp |= TRANS_DDI_PHSYNC;
1877
1878 if (cpu_transcoder == TRANSCODER_EDP) {
1879 switch (pipe) {
1880 case PIPE_A:
1881 /* On Haswell, can only use the always-on power well for
1882 * eDP when not using the panel fitter, and when not
1883 * using motion blur mitigation (which we don't
1884 * support). */
1885 if (IS_HASWELL(dev) &&
1886 (intel_crtc->config->pch_pfit.enabled ||
1887 intel_crtc->config->pch_pfit.force_thru))
1888 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1889 else
1890 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1891 break;
1892 case PIPE_B:
1893 temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1894 break;
1895 case PIPE_C:
1896 temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1897 break;
1898 default:
1899 BUG();
1900 break;
1901 }
1902 }
1903
1904 if (type == INTEL_OUTPUT_HDMI) {
1905 if (intel_crtc->config->has_hdmi_sink)
1906 temp |= TRANS_DDI_MODE_SELECT_HDMI;
1907 else
1908 temp |= TRANS_DDI_MODE_SELECT_DVI;
1909
1910 } else if (type == INTEL_OUTPUT_ANALOG) {
1911 temp |= TRANS_DDI_MODE_SELECT_FDI;
1912 temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1913
1914 } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1915 type == INTEL_OUTPUT_EDP) {
1916 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1917
1918 if (intel_dp->is_mst) {
1919 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1920 } else
1921 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1922
1923 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1924 } else if (type == INTEL_OUTPUT_DP_MST) {
1925 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1926
1927 if (intel_dp->is_mst) {
1928 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1929 } else
1930 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1931
1932 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1933 } else {
1934 WARN(1, "Invalid encoder type %d for pipe %c\n",
1935 intel_encoder->type, pipe_name(pipe));
1936 }
1937
1938 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1939 }
1940
1941 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1942 enum transcoder cpu_transcoder)
1943 {
1944 uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1945 uint32_t val = I915_READ(reg);
1946
1947 val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1948 val |= TRANS_DDI_PORT_NONE;
1949 I915_WRITE(reg, val);
1950 }
1951
1952 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1953 {
1954 struct drm_device *dev = intel_connector->base.dev;
1955 struct drm_i915_private *dev_priv = dev->dev_private;
1956 struct intel_encoder *intel_encoder = intel_connector->encoder;
1957 int type = intel_connector->base.connector_type;
1958 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1959 enum pipe pipe = 0;
1960 enum transcoder cpu_transcoder;
1961 enum intel_display_power_domain power_domain;
1962 uint32_t tmp;
1963
1964 power_domain = intel_display_port_power_domain(intel_encoder);
1965 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1966 return false;
1967
1968 if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
1969 return false;
1970
1971 if (port == PORT_A)
1972 cpu_transcoder = TRANSCODER_EDP;
1973 else
1974 cpu_transcoder = (enum transcoder) pipe;
1975
1976 tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1977
1978 switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1979 case TRANS_DDI_MODE_SELECT_HDMI:
1980 case TRANS_DDI_MODE_SELECT_DVI:
1981 return (type == DRM_MODE_CONNECTOR_HDMIA);
1982
1983 case TRANS_DDI_MODE_SELECT_DP_SST:
1984 if (type == DRM_MODE_CONNECTOR_eDP)
1985 return true;
1986 return (type == DRM_MODE_CONNECTOR_DisplayPort);
1987 case TRANS_DDI_MODE_SELECT_DP_MST:
1988 /* if the transcoder is in MST state then
1989 * connector isn't connected */
1990 return false;
1991
1992 case TRANS_DDI_MODE_SELECT_FDI:
1993 return (type == DRM_MODE_CONNECTOR_VGA);
1994
1995 default:
1996 return false;
1997 }
1998 }
1999
2000 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
2001 enum pipe *pipe)
2002 {
2003 struct drm_device *dev = encoder->base.dev;
2004 struct drm_i915_private *dev_priv = dev->dev_private;
2005 enum port port = intel_ddi_get_encoder_port(encoder);
2006 enum intel_display_power_domain power_domain;
2007 u32 tmp;
2008 int i;
2009
2010 power_domain = intel_display_port_power_domain(encoder);
2011 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2012 return false;
2013
2014 tmp = I915_READ(DDI_BUF_CTL(port));
2015
2016 if (!(tmp & DDI_BUF_CTL_ENABLE))
2017 return false;
2018
2019 if (port == PORT_A) {
2020 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
2021
2022 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
2023 case TRANS_DDI_EDP_INPUT_A_ON:
2024 case TRANS_DDI_EDP_INPUT_A_ONOFF:
2025 *pipe = PIPE_A;
2026 break;
2027 case TRANS_DDI_EDP_INPUT_B_ONOFF:
2028 *pipe = PIPE_B;
2029 break;
2030 case TRANS_DDI_EDP_INPUT_C_ONOFF:
2031 *pipe = PIPE_C;
2032 break;
2033 }
2034
2035 return true;
2036 } else {
2037 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
2038 tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
2039
2040 if ((tmp & TRANS_DDI_PORT_MASK)
2041 == TRANS_DDI_SELECT_PORT(port)) {
2042 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
2043 return false;
2044
2045 *pipe = i;
2046 return true;
2047 }
2048 }
2049 }
2050
2051 DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2052
2053 return false;
2054 }
2055
2056 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
2057 {
2058 struct drm_crtc *crtc = &intel_crtc->base;
2059 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2060 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2061 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2062 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2063
2064 if (cpu_transcoder != TRANSCODER_EDP)
2065 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
2066 TRANS_CLK_SEL_PORT(port));
2067 }
2068
2069 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
2070 {
2071 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2072 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2073
2074 if (cpu_transcoder != TRANSCODER_EDP)
2075 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
2076 TRANS_CLK_SEL_DISABLED);
2077 }
2078
2079 static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
2080 enum port port, int type)
2081 {
2082 struct drm_i915_private *dev_priv = dev->dev_private;
2083 const struct ddi_buf_trans *ddi_translations;
2084 uint8_t iboost;
2085 int n_entries;
2086 u32 reg;
2087
2088 if (type == INTEL_OUTPUT_DISPLAYPORT) {
2089 ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
2090 iboost = ddi_translations[port].i_boost;
2091 } else if (type == INTEL_OUTPUT_EDP) {
2092 ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
2093 iboost = ddi_translations[port].i_boost;
2094 } else if (type == INTEL_OUTPUT_HDMI) {
2095 ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
2096 iboost = ddi_translations[port].i_boost;
2097 } else {
2098 return;
2099 }
2100
2101 /* Make sure that the requested I_boost is valid */
2102 if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
2103 DRM_ERROR("Invalid I_boost value %u\n", iboost);
2104 return;
2105 }
2106
2107 reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
2108 reg &= ~BALANCE_LEG_MASK(port);
2109 reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
2110
2111 if (iboost)
2112 reg |= iboost << BALANCE_LEG_SHIFT(port);
2113 else
2114 reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
2115
2116 I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
2117 }
2118
2119 static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
2120 enum port port, int type)
2121 {
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 const struct bxt_ddi_buf_trans *ddi_translations;
2124 u32 n_entries, i;
2125 uint32_t val;
2126
2127 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2128 n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
2129 ddi_translations = bxt_ddi_translations_dp;
2130 } else if (type == INTEL_OUTPUT_HDMI) {
2131 n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
2132 ddi_translations = bxt_ddi_translations_hdmi;
2133 } else {
2134 DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
2135 type);
2136 return;
2137 }
2138
2139 /* Check if default value has to be used */
2140 if (level >= n_entries ||
2141 (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
2142 for (i = 0; i < n_entries; i++) {
2143 if (ddi_translations[i].default_index) {
2144 level = i;
2145 break;
2146 }
2147 }
2148 }
2149
2150 /*
2151 * While we write to the group register to program all lanes at once we
2152 * can read only lane registers and we pick lanes 0/1 for that.
2153 */
2154 val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
2155 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
2156 I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
2157
2158 val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
2159 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
2160 val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
2161 ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
2162 I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
2163
2164 val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2165 val &= ~UNIQE_TRANGE_EN_METHOD;
2166 if (ddi_translations[level].enable)
2167 val |= UNIQE_TRANGE_EN_METHOD;
2168 I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
2169
2170 val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
2171 val &= ~DE_EMPHASIS;
2172 val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
2173 I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
2174
2175 val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
2176 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
2177 I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
2178 }
2179
2180 static uint32_t translate_signal_level(int signal_levels)
2181 {
2182 uint32_t level;
2183
2184 switch (signal_levels) {
2185 default:
2186 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
2187 signal_levels);
2188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2189 level = 0;
2190 break;
2191 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2192 level = 1;
2193 break;
2194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2195 level = 2;
2196 break;
2197 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
2198 level = 3;
2199 break;
2200
2201 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2202 level = 4;
2203 break;
2204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2205 level = 5;
2206 break;
2207 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2208 level = 6;
2209 break;
2210
2211 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2212 level = 7;
2213 break;
2214 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2215 level = 8;
2216 break;
2217
2218 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2219 level = 9;
2220 break;
2221 }
2222
2223 return level;
2224 }
2225
2226 uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
2227 {
2228 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2229 struct drm_device *dev = dport->base.base.dev;
2230 struct intel_encoder *encoder = &dport->base;
2231 uint8_t train_set = intel_dp->train_set[0];
2232 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2233 DP_TRAIN_PRE_EMPHASIS_MASK);
2234 enum port port = dport->port;
2235 uint32_t level;
2236
2237 level = translate_signal_level(signal_levels);
2238
2239 if (IS_SKYLAKE(dev))
2240 skl_ddi_set_iboost(dev, level, port, encoder->type);
2241 else if (IS_BROXTON(dev))
2242 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
2243
2244 return DDI_BUF_TRANS_SELECT(level);
2245 }
2246
2247 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
2248 {
2249 struct drm_encoder *encoder = &intel_encoder->base;
2250 struct drm_device *dev = encoder->dev;
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252 struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
2253 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2254 int type = intel_encoder->type;
2255 int hdmi_level;
2256
2257 if (type == INTEL_OUTPUT_EDP) {
2258 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2259 intel_edp_panel_on(intel_dp);
2260 }
2261
2262 if (IS_SKYLAKE(dev)) {
2263 uint32_t dpll = crtc->config->ddi_pll_sel;
2264 uint32_t val;
2265
2266 /*
2267 * DPLL0 is used for eDP and is the only "private" DPLL (as
2268 * opposed to shared) on SKL
2269 */
2270 if (type == INTEL_OUTPUT_EDP) {
2271 WARN_ON(dpll != SKL_DPLL0);
2272
2273 val = I915_READ(DPLL_CTRL1);
2274
2275 val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
2276 DPLL_CTRL1_SSC(dpll) |
2277 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2278 val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
2279
2280 I915_WRITE(DPLL_CTRL1, val);
2281 POSTING_READ(DPLL_CTRL1);
2282 }
2283
2284 /* DDI -> PLL mapping */
2285 val = I915_READ(DPLL_CTRL2);
2286
2287 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
2288 DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
2289 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
2290 DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
2291
2292 I915_WRITE(DPLL_CTRL2, val);
2293
2294 } else if (INTEL_INFO(dev)->gen < 9) {
2295 WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
2296 I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
2297 }
2298
2299 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2300 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2301
2302 intel_ddi_init_dp_buf_reg(intel_encoder);
2303
2304 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2305 intel_dp_start_link_train(intel_dp);
2306 intel_dp_complete_link_train(intel_dp);
2307 if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
2308 intel_dp_stop_link_train(intel_dp);
2309 } else if (type == INTEL_OUTPUT_HDMI) {
2310 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2311
2312 if (IS_BROXTON(dev)) {
2313 hdmi_level = dev_priv->vbt.
2314 ddi_port_info[port].hdmi_level_shift;
2315 bxt_ddi_vswing_sequence(dev, hdmi_level, port,
2316 INTEL_OUTPUT_HDMI);
2317 }
2318 intel_hdmi->set_infoframes(encoder,
2319 crtc->config->has_hdmi_sink,
2320 &crtc->config->base.adjusted_mode);
2321 }
2322 }
2323
2324 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2325 {
2326 struct drm_encoder *encoder = &intel_encoder->base;
2327 struct drm_device *dev = encoder->dev;
2328 struct drm_i915_private *dev_priv = dev->dev_private;
2329 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2330 int type = intel_encoder->type;
2331 uint32_t val;
2332 bool wait = false;
2333
2334 val = I915_READ(DDI_BUF_CTL(port));
2335 if (val & DDI_BUF_CTL_ENABLE) {
2336 val &= ~DDI_BUF_CTL_ENABLE;
2337 I915_WRITE(DDI_BUF_CTL(port), val);
2338 wait = true;
2339 }
2340
2341 val = I915_READ(DP_TP_CTL(port));
2342 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2343 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2344 I915_WRITE(DP_TP_CTL(port), val);
2345
2346 if (wait)
2347 intel_wait_ddi_buf_idle(dev_priv, port);
2348
2349 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2350 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2351 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2352 intel_edp_panel_vdd_on(intel_dp);
2353 intel_edp_panel_off(intel_dp);
2354 }
2355
2356 if (IS_SKYLAKE(dev))
2357 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
2358 DPLL_CTRL2_DDI_CLK_OFF(port)));
2359 else if (INTEL_INFO(dev)->gen < 9)
2360 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2361 }
2362
2363 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2364 {
2365 struct drm_encoder *encoder = &intel_encoder->base;
2366 struct drm_crtc *crtc = encoder->crtc;
2367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368 struct drm_device *dev = encoder->dev;
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2371 int type = intel_encoder->type;
2372
2373 if (type == INTEL_OUTPUT_HDMI) {
2374 struct intel_digital_port *intel_dig_port =
2375 enc_to_dig_port(encoder);
2376
2377 /* In HDMI/DVI mode, the port width, and swing/emphasis values
2378 * are ignored so nothing special needs to be done besides
2379 * enabling the port.
2380 */
2381 I915_WRITE(DDI_BUF_CTL(port),
2382 intel_dig_port->saved_port_bits |
2383 DDI_BUF_CTL_ENABLE);
2384 } else if (type == INTEL_OUTPUT_EDP) {
2385 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2386
2387 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2388 intel_dp_stop_link_train(intel_dp);
2389
2390 intel_edp_backlight_on(intel_dp);
2391 intel_psr_enable(intel_dp);
2392 intel_edp_drrs_enable(intel_dp);
2393 }
2394
2395 if (intel_crtc->config->has_audio) {
2396 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2397 intel_audio_codec_enable(intel_encoder);
2398 }
2399 }
2400
2401 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2402 {
2403 struct drm_encoder *encoder = &intel_encoder->base;
2404 struct drm_crtc *crtc = encoder->crtc;
2405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2406 int type = intel_encoder->type;
2407 struct drm_device *dev = encoder->dev;
2408 struct drm_i915_private *dev_priv = dev->dev_private;
2409
2410 if (intel_crtc->config->has_audio) {
2411 intel_audio_codec_disable(intel_encoder);
2412 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
2413 }
2414
2415 if (type == INTEL_OUTPUT_EDP) {
2416 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2417
2418 intel_edp_drrs_disable(intel_dp);
2419 intel_psr_disable(intel_dp);
2420 intel_edp_backlight_off(intel_dp);
2421 }
2422 }
2423
2424 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
2425 struct intel_shared_dpll *pll)
2426 {
2427 I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2428 POSTING_READ(WRPLL_CTL(pll->id));
2429 udelay(20);
2430 }
2431
2432 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
2433 struct intel_shared_dpll *pll)
2434 {
2435 uint32_t val;
2436
2437 val = I915_READ(WRPLL_CTL(pll->id));
2438 I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
2439 POSTING_READ(WRPLL_CTL(pll->id));
2440 }
2441
2442 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2443 struct intel_shared_dpll *pll,
2444 struct intel_dpll_hw_state *hw_state)
2445 {
2446 uint32_t val;
2447
2448 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2449 return false;
2450
2451 val = I915_READ(WRPLL_CTL(pll->id));
2452 hw_state->wrpll = val;
2453
2454 return val & WRPLL_PLL_ENABLE;
2455 }
2456
2457 static const char * const hsw_ddi_pll_names[] = {
2458 "WRPLL 1",
2459 "WRPLL 2",
2460 };
2461
2462 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
2463 {
2464 int i;
2465
2466 dev_priv->num_shared_dpll = 2;
2467
2468 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2469 dev_priv->shared_dplls[i].id = i;
2470 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2471 dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
2472 dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
2473 dev_priv->shared_dplls[i].get_hw_state =
2474 hsw_ddi_pll_get_hw_state;
2475 }
2476 }
2477
2478 static const char * const skl_ddi_pll_names[] = {
2479 "DPLL 1",
2480 "DPLL 2",
2481 "DPLL 3",
2482 };
2483
2484 struct skl_dpll_regs {
2485 u32 ctl, cfgcr1, cfgcr2;
2486 };
2487
2488 /* this array is indexed by the *shared* pll id */
2489 static const struct skl_dpll_regs skl_dpll_regs[3] = {
2490 {
2491 /* DPLL 1 */
2492 .ctl = LCPLL2_CTL,
2493 .cfgcr1 = DPLL1_CFGCR1,
2494 .cfgcr2 = DPLL1_CFGCR2,
2495 },
2496 {
2497 /* DPLL 2 */
2498 .ctl = WRPLL_CTL1,
2499 .cfgcr1 = DPLL2_CFGCR1,
2500 .cfgcr2 = DPLL2_CFGCR2,
2501 },
2502 {
2503 /* DPLL 3 */
2504 .ctl = WRPLL_CTL2,
2505 .cfgcr1 = DPLL3_CFGCR1,
2506 .cfgcr2 = DPLL3_CFGCR2,
2507 },
2508 };
2509
2510 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
2511 struct intel_shared_dpll *pll)
2512 {
2513 uint32_t val;
2514 unsigned int dpll;
2515 const struct skl_dpll_regs *regs = skl_dpll_regs;
2516
2517 /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2518 dpll = pll->id + 1;
2519
2520 val = I915_READ(DPLL_CTRL1);
2521
2522 val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2523 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2524 val |= pll->config.hw_state.ctrl1 << (dpll * 6);
2525
2526 I915_WRITE(DPLL_CTRL1, val);
2527 POSTING_READ(DPLL_CTRL1);
2528
2529 I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
2530 I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
2531 POSTING_READ(regs[pll->id].cfgcr1);
2532 POSTING_READ(regs[pll->id].cfgcr2);
2533
2534 /* the enable bit is always bit 31 */
2535 I915_WRITE(regs[pll->id].ctl,
2536 I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
2537
2538 if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
2539 DRM_ERROR("DPLL %d not locked\n", dpll);
2540 }
2541
2542 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
2543 struct intel_shared_dpll *pll)
2544 {
2545 const struct skl_dpll_regs *regs = skl_dpll_regs;
2546
2547 /* the enable bit is always bit 31 */
2548 I915_WRITE(regs[pll->id].ctl,
2549 I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
2550 POSTING_READ(regs[pll->id].ctl);
2551 }
2552
2553 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2554 struct intel_shared_dpll *pll,
2555 struct intel_dpll_hw_state *hw_state)
2556 {
2557 uint32_t val;
2558 unsigned int dpll;
2559 const struct skl_dpll_regs *regs = skl_dpll_regs;
2560
2561 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2562 return false;
2563
2564 /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2565 dpll = pll->id + 1;
2566
2567 val = I915_READ(regs[pll->id].ctl);
2568 if (!(val & LCPLL_PLL_ENABLE))
2569 return false;
2570
2571 val = I915_READ(DPLL_CTRL1);
2572 hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
2573
2574 /* avoid reading back stale values if HDMI mode is not enabled */
2575 if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
2576 hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
2577 hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
2578 }
2579
2580 return true;
2581 }
2582
2583 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
2584 {
2585 int i;
2586
2587 dev_priv->num_shared_dpll = 3;
2588
2589 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2590 dev_priv->shared_dplls[i].id = i;
2591 dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
2592 dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
2593 dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
2594 dev_priv->shared_dplls[i].get_hw_state =
2595 skl_ddi_pll_get_hw_state;
2596 }
2597 }
2598
2599 static void broxton_phy_init(struct drm_i915_private *dev_priv,
2600 enum dpio_phy phy)
2601 {
2602 enum port port;
2603 uint32_t val;
2604
2605 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
2606 val |= GT_DISPLAY_POWER_ON(phy);
2607 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
2608
2609 /* Considering 10ms timeout until BSpec is updated */
2610 if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
2611 DRM_ERROR("timeout during PHY%d power on\n", phy);
2612
2613 for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
2614 port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
2615 int lane;
2616
2617 for (lane = 0; lane < 4; lane++) {
2618 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
2619 /*
2620 * Note that on CHV this flag is called UPAR, but has
2621 * the same function.
2622 */
2623 val &= ~LATENCY_OPTIM;
2624 if (lane != 1)
2625 val |= LATENCY_OPTIM;
2626
2627 I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
2628 }
2629 }
2630
2631 /* Program PLL Rcomp code offset */
2632 val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
2633 val &= ~IREF0RC_OFFSET_MASK;
2634 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
2635 I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
2636
2637 val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
2638 val &= ~IREF1RC_OFFSET_MASK;
2639 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
2640 I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
2641
2642 /* Program power gating */
2643 val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
2644 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
2645 SUS_CLK_CONFIG;
2646 I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
2647
2648 if (phy == DPIO_PHY0) {
2649 val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
2650 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
2651 I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
2652 }
2653
2654 val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
2655 val &= ~OCL2_LDOFUSE_PWR_DIS;
2656 /*
2657 * On PHY1 disable power on the second channel, since no port is
2658 * connected there. On PHY0 both channels have a port, so leave it
2659 * enabled.
2660 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
2661 * power down the second channel on PHY0 as well.
2662 */
2663 if (phy == DPIO_PHY1)
2664 val |= OCL2_LDOFUSE_PWR_DIS;
2665 I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
2666
2667 if (phy == DPIO_PHY0) {
2668 uint32_t grc_code;
2669 /*
2670 * PHY0 isn't connected to an RCOMP resistor so copy over
2671 * the corresponding calibrated value from PHY1, and disable
2672 * the automatic calibration on PHY0.
2673 */
2674 if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
2675 10))
2676 DRM_ERROR("timeout waiting for PHY1 GRC\n");
2677
2678 val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
2679 val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
2680 grc_code = val << GRC_CODE_FAST_SHIFT |
2681 val << GRC_CODE_SLOW_SHIFT |
2682 val;
2683 I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
2684
2685 val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
2686 val |= GRC_DIS | GRC_RDY_OVRD;
2687 I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
2688 }
2689
2690 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2691 val |= COMMON_RESET_DIS;
2692 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2693 }
2694
2695 void broxton_ddi_phy_init(struct drm_device *dev)
2696 {
2697 /* Enable PHY1 first since it provides Rcomp for PHY0 */
2698 broxton_phy_init(dev->dev_private, DPIO_PHY1);
2699 broxton_phy_init(dev->dev_private, DPIO_PHY0);
2700 }
2701
2702 static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
2703 enum dpio_phy phy)
2704 {
2705 uint32_t val;
2706
2707 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2708 val &= ~COMMON_RESET_DIS;
2709 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2710 }
2711
2712 void broxton_ddi_phy_uninit(struct drm_device *dev)
2713 {
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715
2716 broxton_phy_uninit(dev_priv, DPIO_PHY1);
2717 broxton_phy_uninit(dev_priv, DPIO_PHY0);
2718
2719 /* FIXME: do this in broxton_phy_uninit per phy */
2720 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
2721 }
2722
2723 static const char * const bxt_ddi_pll_names[] = {
2724 "PORT PLL A",
2725 "PORT PLL B",
2726 "PORT PLL C",
2727 };
2728
2729 static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
2730 struct intel_shared_dpll *pll)
2731 {
2732 uint32_t temp;
2733 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2734
2735 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2736 temp &= ~PORT_PLL_REF_SEL;
2737 /* Non-SSC reference */
2738 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2739
2740 /* Disable 10 bit clock */
2741 temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2742 temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2743 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2744
2745 /* Write P1 & P2 */
2746 temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
2747 temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
2748 temp |= pll->config.hw_state.ebb0;
2749 I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
2750
2751 /* Write M2 integer */
2752 temp = I915_READ(BXT_PORT_PLL(port, 0));
2753 temp &= ~PORT_PLL_M2_MASK;
2754 temp |= pll->config.hw_state.pll0;
2755 I915_WRITE(BXT_PORT_PLL(port, 0), temp);
2756
2757 /* Write N */
2758 temp = I915_READ(BXT_PORT_PLL(port, 1));
2759 temp &= ~PORT_PLL_N_MASK;
2760 temp |= pll->config.hw_state.pll1;
2761 I915_WRITE(BXT_PORT_PLL(port, 1), temp);
2762
2763 /* Write M2 fraction */
2764 temp = I915_READ(BXT_PORT_PLL(port, 2));
2765 temp &= ~PORT_PLL_M2_FRAC_MASK;
2766 temp |= pll->config.hw_state.pll2;
2767 I915_WRITE(BXT_PORT_PLL(port, 2), temp);
2768
2769 /* Write M2 fraction enable */
2770 temp = I915_READ(BXT_PORT_PLL(port, 3));
2771 temp &= ~PORT_PLL_M2_FRAC_ENABLE;
2772 temp |= pll->config.hw_state.pll3;
2773 I915_WRITE(BXT_PORT_PLL(port, 3), temp);
2774
2775 /* Write coeff */
2776 temp = I915_READ(BXT_PORT_PLL(port, 6));
2777 temp &= ~PORT_PLL_PROP_COEFF_MASK;
2778 temp &= ~PORT_PLL_INT_COEFF_MASK;
2779 temp &= ~PORT_PLL_GAIN_CTL_MASK;
2780 temp |= pll->config.hw_state.pll6;
2781 I915_WRITE(BXT_PORT_PLL(port, 6), temp);
2782
2783 /* Write calibration val */
2784 temp = I915_READ(BXT_PORT_PLL(port, 8));
2785 temp &= ~PORT_PLL_TARGET_CNT_MASK;
2786 temp |= pll->config.hw_state.pll8;
2787 I915_WRITE(BXT_PORT_PLL(port, 8), temp);
2788
2789 temp = I915_READ(BXT_PORT_PLL(port, 9));
2790 temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2791 temp |= pll->config.hw_state.pll9;
2792 I915_WRITE(BXT_PORT_PLL(port, 9), temp);
2793
2794 temp = I915_READ(BXT_PORT_PLL(port, 10));
2795 temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
2796 temp &= ~PORT_PLL_DCO_AMP_MASK;
2797 temp |= pll->config.hw_state.pll10;
2798 I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2799
2800 /* Recalibrate with new settings */
2801 temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2802 temp |= PORT_PLL_RECALIBRATE;
2803 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2804 temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2805 temp |= pll->config.hw_state.ebb4;
2806 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2807
2808 /* Enable PLL */
2809 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2810 temp |= PORT_PLL_ENABLE;
2811 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2812 POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2813
2814 if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
2815 PORT_PLL_LOCK), 200))
2816 DRM_ERROR("PLL %d not locked\n", port);
2817
2818 /*
2819 * While we write to the group register to program all lanes at once we
2820 * can read only lane registers and we pick lanes 0/1 for that.
2821 */
2822 temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2823 temp &= ~LANE_STAGGER_MASK;
2824 temp &= ~LANESTAGGER_STRAP_OVRD;
2825 temp |= pll->config.hw_state.pcsdw12;
2826 I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
2827 }
2828
2829 static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
2830 struct intel_shared_dpll *pll)
2831 {
2832 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2833 uint32_t temp;
2834
2835 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2836 temp &= ~PORT_PLL_ENABLE;
2837 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2838 POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2839 }
2840
2841 static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2842 struct intel_shared_dpll *pll,
2843 struct intel_dpll_hw_state *hw_state)
2844 {
2845 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2846 uint32_t val;
2847
2848 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2849 return false;
2850
2851 val = I915_READ(BXT_PORT_PLL_ENABLE(port));
2852 if (!(val & PORT_PLL_ENABLE))
2853 return false;
2854
2855 hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2856 hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
2857
2858 hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
2859 hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
2860
2861 hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2862 hw_state->pll0 &= PORT_PLL_M2_MASK;
2863
2864 hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2865 hw_state->pll1 &= PORT_PLL_N_MASK;
2866
2867 hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2868 hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
2869
2870 hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2871 hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
2872
2873 hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2874 hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
2875 PORT_PLL_INT_COEFF_MASK |
2876 PORT_PLL_GAIN_CTL_MASK;
2877
2878 hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2879 hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
2880
2881 hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
2882 hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
2883
2884 hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2885 hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
2886 PORT_PLL_DCO_AMP_MASK;
2887
2888 /*
2889 * While we write to the group register to program all lanes at once we
2890 * can read only lane registers. We configure all lanes the same way, so
2891 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
2892 */
2893 hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2894 if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
2895 DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
2896 hw_state->pcsdw12,
2897 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2898 hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2899
2900 return true;
2901 }
2902
2903 static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
2904 {
2905 int i;
2906
2907 dev_priv->num_shared_dpll = 3;
2908
2909 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2910 dev_priv->shared_dplls[i].id = i;
2911 dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
2912 dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
2913 dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
2914 dev_priv->shared_dplls[i].get_hw_state =
2915 bxt_ddi_pll_get_hw_state;
2916 }
2917 }
2918
2919 void intel_ddi_pll_init(struct drm_device *dev)
2920 {
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 uint32_t val = I915_READ(LCPLL_CTL);
2923
2924 if (IS_SKYLAKE(dev))
2925 skl_shared_dplls_init(dev_priv);
2926 else if (IS_BROXTON(dev))
2927 bxt_shared_dplls_init(dev_priv);
2928 else
2929 hsw_shared_dplls_init(dev_priv);
2930
2931 if (IS_SKYLAKE(dev)) {
2932 int cdclk_freq;
2933
2934 cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
2935 dev_priv->skl_boot_cdclk = cdclk_freq;
2936 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
2937 DRM_ERROR("LCPLL1 is disabled\n");
2938 else
2939 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
2940 } else if (IS_BROXTON(dev)) {
2941 broxton_init_cdclk(dev);
2942 broxton_ddi_phy_init(dev);
2943 } else {
2944 /*
2945 * The LCPLL register should be turned on by the BIOS. For now
2946 * let's just check its state and print errors in case
2947 * something is wrong. Don't even try to turn it on.
2948 */
2949
2950 if (val & LCPLL_CD_SOURCE_FCLK)
2951 DRM_ERROR("CDCLK source is not LCPLL\n");
2952
2953 if (val & LCPLL_PLL_DISABLE)
2954 DRM_ERROR("LCPLL is disabled\n");
2955 }
2956 }
2957
2958 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
2959 {
2960 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2961 struct intel_dp *intel_dp = &intel_dig_port->dp;
2962 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
2963 enum port port = intel_dig_port->port;
2964 uint32_t val;
2965 bool wait = false;
2966
2967 if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
2968 val = I915_READ(DDI_BUF_CTL(port));
2969 if (val & DDI_BUF_CTL_ENABLE) {
2970 val &= ~DDI_BUF_CTL_ENABLE;
2971 I915_WRITE(DDI_BUF_CTL(port), val);
2972 wait = true;
2973 }
2974
2975 val = I915_READ(DP_TP_CTL(port));
2976 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2977 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2978 I915_WRITE(DP_TP_CTL(port), val);
2979 POSTING_READ(DP_TP_CTL(port));
2980
2981 if (wait)
2982 intel_wait_ddi_buf_idle(dev_priv, port);
2983 }
2984
2985 val = DP_TP_CTL_ENABLE |
2986 DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2987 if (intel_dp->is_mst)
2988 val |= DP_TP_CTL_MODE_MST;
2989 else {
2990 val |= DP_TP_CTL_MODE_SST;
2991 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2992 val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
2993 }
2994 I915_WRITE(DP_TP_CTL(port), val);
2995 POSTING_READ(DP_TP_CTL(port));
2996
2997 intel_dp->DP |= DDI_BUF_CTL_ENABLE;
2998 I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
2999 POSTING_READ(DDI_BUF_CTL(port));
3000
3001 udelay(600);
3002 }
3003
3004 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
3005 {
3006 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3007 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
3008 uint32_t val;
3009
3010 intel_ddi_post_disable(intel_encoder);
3011
3012 val = I915_READ(_FDI_RXA_CTL);
3013 val &= ~FDI_RX_ENABLE;
3014 I915_WRITE(_FDI_RXA_CTL, val);
3015
3016 val = I915_READ(_FDI_RXA_MISC);
3017 val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
3018 val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3019 I915_WRITE(_FDI_RXA_MISC, val);
3020
3021 val = I915_READ(_FDI_RXA_CTL);
3022 val &= ~FDI_PCDCLK;
3023 I915_WRITE(_FDI_RXA_CTL, val);
3024
3025 val = I915_READ(_FDI_RXA_CTL);
3026 val &= ~FDI_RX_PLL_ENABLE;
3027 I915_WRITE(_FDI_RXA_CTL, val);
3028 }
3029
3030 void intel_ddi_get_config(struct intel_encoder *encoder,
3031 struct intel_crtc_state *pipe_config)
3032 {
3033 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
3034 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3035 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3036 struct intel_hdmi *intel_hdmi;
3037 u32 temp, flags = 0;
3038
3039 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
3040 if (temp & TRANS_DDI_PHSYNC)
3041 flags |= DRM_MODE_FLAG_PHSYNC;
3042 else
3043 flags |= DRM_MODE_FLAG_NHSYNC;
3044 if (temp & TRANS_DDI_PVSYNC)
3045 flags |= DRM_MODE_FLAG_PVSYNC;
3046 else
3047 flags |= DRM_MODE_FLAG_NVSYNC;
3048
3049 pipe_config->base.adjusted_mode.flags |= flags;
3050
3051 switch (temp & TRANS_DDI_BPC_MASK) {
3052 case TRANS_DDI_BPC_6:
3053 pipe_config->pipe_bpp = 18;
3054 break;
3055 case TRANS_DDI_BPC_8:
3056 pipe_config->pipe_bpp = 24;
3057 break;
3058 case TRANS_DDI_BPC_10:
3059 pipe_config->pipe_bpp = 30;
3060 break;
3061 case TRANS_DDI_BPC_12:
3062 pipe_config->pipe_bpp = 36;
3063 break;
3064 default:
3065 break;
3066 }
3067
3068 switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
3069 case TRANS_DDI_MODE_SELECT_HDMI:
3070 pipe_config->has_hdmi_sink = true;
3071 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
3072
3073 if (intel_hdmi->infoframe_enabled(&encoder->base))
3074 pipe_config->has_infoframe = true;
3075 break;
3076 case TRANS_DDI_MODE_SELECT_DVI:
3077 case TRANS_DDI_MODE_SELECT_FDI:
3078 break;
3079 case TRANS_DDI_MODE_SELECT_DP_SST:
3080 case TRANS_DDI_MODE_SELECT_DP_MST:
3081 pipe_config->has_dp_encoder = true;
3082 intel_dp_get_m_n(intel_crtc, pipe_config);
3083 break;
3084 default:
3085 break;
3086 }
3087
3088 if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
3089 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
3090 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
3091 pipe_config->has_audio = true;
3092 }
3093
3094 if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
3095 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
3096 /*
3097 * This is a big fat ugly hack.
3098 *
3099 * Some machines in UEFI boot mode provide us a VBT that has 18
3100 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3101 * unknown we fail to light up. Yet the same BIOS boots up with
3102 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3103 * max, not what it tells us to use.
3104 *
3105 * Note: This will still be broken if the eDP panel is not lit
3106 * up by the BIOS, and thus we can't get the mode at module
3107 * load.
3108 */
3109 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3110 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
3111 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
3112 }
3113
3114 intel_ddi_clock_get(encoder, pipe_config);
3115 }
3116
3117 static void intel_ddi_destroy(struct drm_encoder *encoder)
3118 {
3119 /* HDMI has nothing special to destroy, so we can go with this. */
3120 intel_dp_encoder_destroy(encoder);
3121 }
3122
3123 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3124 struct intel_crtc_state *pipe_config)
3125 {
3126 int type = encoder->type;
3127 int port = intel_ddi_get_encoder_port(encoder);
3128
3129 WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
3130
3131 if (port == PORT_A)
3132 pipe_config->cpu_transcoder = TRANSCODER_EDP;
3133
3134 if (type == INTEL_OUTPUT_HDMI)
3135 return intel_hdmi_compute_config(encoder, pipe_config);
3136 else
3137 return intel_dp_compute_config(encoder, pipe_config);
3138 }
3139
3140 static const struct drm_encoder_funcs intel_ddi_funcs = {
3141 .destroy = intel_ddi_destroy,
3142 };
3143
3144 static struct intel_connector *
3145 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
3146 {
3147 struct intel_connector *connector;
3148 enum port port = intel_dig_port->port;
3149
3150 connector = intel_connector_alloc();
3151 if (!connector)
3152 return NULL;
3153
3154 intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
3155 if (!intel_dp_init_connector(intel_dig_port, connector)) {
3156 kfree(connector);
3157 return NULL;
3158 }
3159
3160 return connector;
3161 }
3162
3163 static struct intel_connector *
3164 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
3165 {
3166 struct intel_connector *connector;
3167 enum port port = intel_dig_port->port;
3168
3169 connector = intel_connector_alloc();
3170 if (!connector)
3171 return NULL;
3172
3173 intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
3174 intel_hdmi_init_connector(intel_dig_port, connector);
3175
3176 return connector;
3177 }
3178
3179 void intel_ddi_init(struct drm_device *dev, enum port port)
3180 {
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 struct intel_digital_port *intel_dig_port;
3183 struct intel_encoder *intel_encoder;
3184 struct drm_encoder *encoder;
3185 bool init_hdmi, init_dp;
3186
3187 init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
3188 dev_priv->vbt.ddi_port_info[port].supports_hdmi);
3189 init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
3190 if (!init_dp && !init_hdmi) {
3191 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
3192 port_name(port));
3193 init_hdmi = true;
3194 init_dp = true;
3195 }
3196
3197 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3198 if (!intel_dig_port)
3199 return;
3200
3201 intel_encoder = &intel_dig_port->base;
3202 encoder = &intel_encoder->base;
3203
3204 drm_encoder_init(dev, encoder, &intel_ddi_funcs,
3205 DRM_MODE_ENCODER_TMDS);
3206
3207 intel_encoder->compute_config = intel_ddi_compute_config;
3208 intel_encoder->enable = intel_enable_ddi;
3209 intel_encoder->pre_enable = intel_ddi_pre_enable;
3210 intel_encoder->disable = intel_disable_ddi;
3211 intel_encoder->post_disable = intel_ddi_post_disable;
3212 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3213 intel_encoder->get_config = intel_ddi_get_config;
3214
3215 intel_dig_port->port = port;
3216 intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
3217 (DDI_BUF_PORT_REVERSAL |
3218 DDI_A_4_LANES);
3219
3220 intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3221 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3222 intel_encoder->cloneable = 0;
3223
3224 if (init_dp) {
3225 if (!intel_ddi_init_dp_connector(intel_dig_port))
3226 goto err;
3227
3228 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3229 dev_priv->hotplug.irq_port[port] = intel_dig_port;
3230 }
3231
3232 /* In theory we don't need the encoder->type check, but leave it just in
3233 * case we have some really bad VBTs... */
3234 if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
3235 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
3236 goto err;
3237 }
3238
3239 return;
3240
3241 err:
3242 drm_encoder_cleanup(encoder);
3243 kfree(intel_dig_port);
3244 }
This page took 0.099743 seconds and 6 git commands to generate.