007f465227cf42c58e5f429fa14b2307045658ca
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d) \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103 static void chv_prepare_pll(struct intel_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114 int min, max;
115 } intel_range_t;
116
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415 {
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424 }
425
426 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
428 {
429 struct drm_device *dev = crtc->dev;
430 const intel_limit_t *limit;
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
433 if (intel_is_dual_link_lvds(dev)) {
434 if (refclk == 100000)
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
439 if (refclk == 100000)
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
444 } else
445 limit = &intel_limits_ironlake_dac;
446
447 return limit;
448 }
449
450 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451 {
452 struct drm_device *dev = crtc->dev;
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
456 if (intel_is_dual_link_lvds(dev))
457 limit = &intel_limits_g4x_dual_channel_lvds;
458 else
459 limit = &intel_limits_g4x_single_channel_lvds;
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
462 limit = &intel_limits_g4x_hdmi;
463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
464 limit = &intel_limits_g4x_sdvo;
465 } else /* The option is for other outputs */
466 limit = &intel_limits_i9xx_sdvo;
467
468 return limit;
469 }
470
471 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
472 {
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
476 if (HAS_PCH_SPLIT(dev))
477 limit = intel_ironlake_limit(crtc, refclk);
478 else if (IS_G4X(dev)) {
479 limit = intel_g4x_limit(crtc);
480 } else if (IS_PINEVIEW(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_pineview_lvds;
483 else
484 limit = &intel_limits_pineview_sdvo;
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
487 } else if (IS_VALLEYVIEW(dev)) {
488 limit = &intel_limits_vlv;
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
496 limit = &intel_limits_i8xx_lvds;
497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
498 limit = &intel_limits_i8xx_dvo;
499 else
500 limit = &intel_limits_i8xx_dac;
501 }
502 return limit;
503 }
504
505 /* m1 is reserved as 0 in Pineview, n is a ring counter */
506 static void pineview_clock(int refclk, intel_clock_t *clock)
507 {
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
514 }
515
516 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517 {
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519 }
520
521 static void i9xx_clock(int refclk, intel_clock_t *clock)
522 {
523 clock->m = i9xx_dpll_compute_m(clock);
524 clock->p = clock->p1 * clock->p2;
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static void chv_clock(int refclk, intel_clock_t *clock)
532 {
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540 }
541
542 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
551 {
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
555 INTELPllInvalid("p1 out of range\n");
556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
557 INTELPllInvalid("m2 out of range\n");
558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
559 INTELPllInvalid("m1 out of range\n");
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
573 INTELPllInvalid("vco out of range\n");
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
578 INTELPllInvalid("dot out of range\n");
579
580 return true;
581 }
582
583 static bool
584 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
587 {
588 struct drm_device *dev = crtc->dev;
589 intel_clock_t clock;
590 int err = target;
591
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593 /*
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
597 */
598 if (intel_is_dual_link_lvds(dev))
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
609 memset(best_clock, 0, sizeof(*best_clock));
610
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
615 if (clock.m2 >= clock.m1)
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
621 int this_err;
622
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642 }
643
644 static bool
645 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
648 {
649 struct drm_device *dev = crtc->dev;
650 intel_clock_t clock;
651 int err = target;
652
653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654 /*
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
658 */
659 if (intel_is_dual_link_lvds(dev))
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
670 memset(best_clock, 0, sizeof(*best_clock));
671
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
680 int this_err;
681
682 pineview_clock(refclk, &clock);
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
685 continue;
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701 }
702
703 static bool
704 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
707 {
708 struct drm_device *dev = crtc->dev;
709 intel_clock_t clock;
710 int max_n;
711 bool found;
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
717 if (intel_is_dual_link_lvds(dev))
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
730 /* based on hardware requirement, prefer smaller n to precision */
731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732 /* based on hardware requirement, prefere larger m1,m2 */
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
741 i9xx_clock(refclk, &clock);
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
744 continue;
745
746 this_err = abs(clock.dot - target);
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
757 return found;
758 }
759
760 static bool
761 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
764 {
765 struct drm_device *dev = crtc->dev;
766 intel_clock_t clock;
767 unsigned int bestppm = 1000000;
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
770 bool found = false;
771
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
775
776 /* based on hardware requirement, prefer smaller n to precision */
777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
781 clock.p = clock.p1 * clock.p2;
782 /* based on hardware requirement, prefer bigger m1,m2 values */
783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
784 unsigned int ppm, diff;
785
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
790
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
793 continue;
794
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
799 bestppm = 0;
800 *best_clock = clock;
801 found = true;
802 }
803
804 if (bestppm >= 10 && ppm < bestppm - 10) {
805 bestppm = ppm;
806 *best_clock = clock;
807 found = true;
808 }
809 }
810 }
811 }
812 }
813
814 return found;
815 }
816
817 static bool
818 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821 {
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867 }
868
869 bool intel_crtc_active(struct drm_crtc *crtc)
870 {
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
876 * We can ditch the adjusted_mode.crtc_clock check as soon
877 * as Haswell has gained clock readout/fastboot support.
878 *
879 * We can ditch the crtc->primary->fb check as soon as we can
880 * properly reconstruct framebuffers.
881 */
882 return intel_crtc->active && crtc->primary->fb &&
883 intel_crtc->config.adjusted_mode.crtc_clock;
884 }
885
886 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888 {
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
892 return intel_crtc->config.cpu_transcoder;
893 }
894
895 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
896 {
897 struct drm_i915_private *dev_priv = dev->dev_private;
898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
903 WARN(1, "vblank wait on pipe %c timed out\n",
904 pipe_name(pipe));
905 }
906
907 /**
908 * intel_wait_for_vblank - wait for vblank on a given pipe
909 * @dev: drm device
910 * @pipe: pipe to wait for
911 *
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
913 * mode setting code.
914 */
915 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
916 {
917 struct drm_i915_private *dev_priv = dev->dev_private;
918 int pipestat_reg = PIPESTAT(pipe);
919
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
922 return;
923 }
924
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
927 *
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
934 * vblanks...
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
937 */
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
941 /* Wait for vblank interrupt bit to set */
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
944 50))
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946 pipe_name(pipe));
947 }
948
949 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
953 u32 line1, line2;
954 u32 line_mask;
955
956 if (IS_GEN2(dev))
957 line_mask = DSL_LINEMASK_GEN2;
958 else
959 line_mask = DSL_LINEMASK_GEN3;
960
961 line1 = I915_READ(reg) & line_mask;
962 mdelay(5);
963 line2 = I915_READ(reg) & line_mask;
964
965 return line1 == line2;
966 }
967
968 /*
969 * intel_wait_for_pipe_off - wait for pipe to turn off
970 * @crtc: crtc whose pipe to wait for
971 *
972 * After disabling a pipe, we can't wait for vblank in the usual way,
973 * spinning on the vblank interrupt status bit, since we won't actually
974 * see an interrupt when the pipe is disabled.
975 *
976 * On Gen4 and above:
977 * wait for the pipe register state bit to turn off
978 *
979 * Otherwise:
980 * wait for the display line value to settle (it usually
981 * ends up stopping at the start of the next frame).
982 *
983 */
984 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
985 {
986 struct drm_device *dev = crtc->base.dev;
987 struct drm_i915_private *dev_priv = dev->dev_private;
988 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989 enum pipe pipe = crtc->pipe;
990
991 if (INTEL_INFO(dev)->gen >= 4) {
992 int reg = PIPECONF(cpu_transcoder);
993
994 /* Wait for the Pipe State to go off */
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996 100))
997 WARN(1, "pipe_off wait timed out\n");
998 } else {
999 /* Wait for the display line to settle */
1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1001 WARN(1, "pipe_off wait timed out\n");
1002 }
1003 }
1004
1005 /*
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1009 *
1010 * Returns true if @port is connected, false otherwise.
1011 */
1012 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1014 {
1015 u32 bit;
1016
1017 if (HAS_PCH_IBX(dev_priv->dev)) {
1018 switch (port->port) {
1019 case PORT_B:
1020 bit = SDE_PORTB_HOTPLUG;
1021 break;
1022 case PORT_C:
1023 bit = SDE_PORTC_HOTPLUG;
1024 break;
1025 case PORT_D:
1026 bit = SDE_PORTD_HOTPLUG;
1027 break;
1028 default:
1029 return true;
1030 }
1031 } else {
1032 switch (port->port) {
1033 case PORT_B:
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1035 break;
1036 case PORT_C:
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1038 break;
1039 case PORT_D:
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1041 break;
1042 default:
1043 return true;
1044 }
1045 }
1046
1047 return I915_READ(SDEISR) & bit;
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052 return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
1058 {
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069 }
1070
1071 /* XXX: the dsi pll is shared between MIPI DSI ports */
1072 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073 {
1074 u32 val;
1075 bool cur_state;
1076
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1080
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1085 }
1086 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
1089 struct intel_shared_dpll *
1090 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091 {
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
1094 if (crtc->config.shared_dpll < 0)
1095 return NULL;
1096
1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1098 }
1099
1100 /* For ILK+ */
1101 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1103 bool state)
1104 {
1105 bool cur_state;
1106 struct intel_dpll_hw_state hw_state;
1107
1108 if (WARN (!pll,
1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
1110 return;
1111
1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1113 WARN(cur_state != state,
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
1116 }
1117
1118 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120 {
1121 int reg;
1122 u32 val;
1123 bool cur_state;
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125 pipe);
1126
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1130 val = I915_READ(reg);
1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1132 } else {
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146 {
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157 }
1158 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163 {
1164 int reg;
1165 u32 val;
1166
1167 /* ILK FDI PLL is always enabled */
1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1169 return;
1170
1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1172 if (HAS_DDI(dev_priv->dev))
1173 return;
1174
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
1182 {
1183 int reg;
1184 u32 val;
1185 bool cur_state;
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
1193 }
1194
1195 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196 enum pipe pipe)
1197 {
1198 struct drm_device *dev = dev_priv->dev;
1199 int pp_reg;
1200 u32 val;
1201 enum pipe panel_pipe = PIPE_A;
1202 bool locked = true;
1203
1204 if (WARN_ON(HAS_DDI(dev)))
1205 return;
1206
1207 if (HAS_PCH_SPLIT(dev)) {
1208 u32 port_sel;
1209
1210 pp_reg = PCH_PP_CONTROL;
1211 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216 /* XXX: else fix for eDP */
1217 } else if (IS_VALLEYVIEW(dev)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220 panel_pipe = pipe;
1221 } else {
1222 pp_reg = PP_CONTROL;
1223 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
1225 }
1226
1227 val = I915_READ(pp_reg);
1228 if (!(val & PANEL_POWER_ON) ||
1229 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1230 locked = false;
1231
1232 WARN(panel_pipe == pipe && locked,
1233 "panel assertion failure, pipe %c regs locked\n",
1234 pipe_name(pipe));
1235 }
1236
1237 static void assert_cursor(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, bool state)
1239 {
1240 struct drm_device *dev = dev_priv->dev;
1241 bool cur_state;
1242
1243 if (IS_845G(dev) || IS_I865G(dev))
1244 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1245 else
1246 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1247
1248 WARN(cur_state != state,
1249 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
1255 void assert_pipe(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, bool state)
1257 {
1258 int reg;
1259 u32 val;
1260 bool cur_state;
1261 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262 pipe);
1263
1264 /* if we need the pipe quirk it must be always on */
1265 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1266 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1267 state = true;
1268
1269 if (!intel_display_power_enabled(dev_priv,
1270 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1271 cur_state = false;
1272 } else {
1273 reg = PIPECONF(cpu_transcoder);
1274 val = I915_READ(reg);
1275 cur_state = !!(val & PIPECONF_ENABLE);
1276 }
1277
1278 WARN(cur_state != state,
1279 "pipe %c assertion failure (expected %s, current %s)\n",
1280 pipe_name(pipe), state_string(state), state_string(cur_state));
1281 }
1282
1283 static void assert_plane(struct drm_i915_private *dev_priv,
1284 enum plane plane, bool state)
1285 {
1286 int reg;
1287 u32 val;
1288 bool cur_state;
1289
1290 reg = DSPCNTR(plane);
1291 val = I915_READ(reg);
1292 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1293 WARN(cur_state != state,
1294 "plane %c assertion failure (expected %s, current %s)\n",
1295 plane_name(plane), state_string(state), state_string(cur_state));
1296 }
1297
1298 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1299 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1300
1301 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe)
1303 {
1304 struct drm_device *dev = dev_priv->dev;
1305 int reg, i;
1306 u32 val;
1307 int cur_pipe;
1308
1309 /* Primary planes are fixed to pipes on gen4+ */
1310 if (INTEL_INFO(dev)->gen >= 4) {
1311 reg = DSPCNTR(pipe);
1312 val = I915_READ(reg);
1313 WARN(val & DISPLAY_PLANE_ENABLE,
1314 "plane %c assertion failure, should be disabled but not\n",
1315 plane_name(pipe));
1316 return;
1317 }
1318
1319 /* Need to check both planes against the pipe */
1320 for_each_pipe(dev_priv, i) {
1321 reg = DSPCNTR(i);
1322 val = I915_READ(reg);
1323 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1324 DISPPLANE_SEL_PIPE_SHIFT;
1325 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1326 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1327 plane_name(i), pipe_name(pipe));
1328 }
1329 }
1330
1331 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe)
1333 {
1334 struct drm_device *dev = dev_priv->dev;
1335 int reg, sprite;
1336 u32 val;
1337
1338 if (IS_VALLEYVIEW(dev)) {
1339 for_each_sprite(pipe, sprite) {
1340 reg = SPCNTR(pipe, sprite);
1341 val = I915_READ(reg);
1342 WARN(val & SP_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 sprite_name(pipe, sprite), pipe_name(pipe));
1345 }
1346 } else if (INTEL_INFO(dev)->gen >= 7) {
1347 reg = SPRCTL(pipe);
1348 val = I915_READ(reg);
1349 WARN(val & SPRITE_ENABLE,
1350 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1351 plane_name(pipe), pipe_name(pipe));
1352 } else if (INTEL_INFO(dev)->gen >= 5) {
1353 reg = DVSCNTR(pipe);
1354 val = I915_READ(reg);
1355 WARN(val & DVS_ENABLE,
1356 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1357 plane_name(pipe), pipe_name(pipe));
1358 }
1359 }
1360
1361 static void assert_vblank_disabled(struct drm_crtc *crtc)
1362 {
1363 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1364 drm_crtc_vblank_put(crtc);
1365 }
1366
1367 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1368 {
1369 u32 val;
1370 bool enabled;
1371
1372 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1373
1374 val = I915_READ(PCH_DREF_CONTROL);
1375 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1376 DREF_SUPERSPREAD_SOURCE_MASK));
1377 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1378 }
1379
1380 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1381 enum pipe pipe)
1382 {
1383 int reg;
1384 u32 val;
1385 bool enabled;
1386
1387 reg = PCH_TRANSCONF(pipe);
1388 val = I915_READ(reg);
1389 enabled = !!(val & TRANS_ENABLE);
1390 WARN(enabled,
1391 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1392 pipe_name(pipe));
1393 }
1394
1395 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe, u32 port_sel, u32 val)
1397 {
1398 if ((val & DP_PORT_EN) == 0)
1399 return false;
1400
1401 if (HAS_PCH_CPT(dev_priv->dev)) {
1402 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1403 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1404 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1405 return false;
1406 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1407 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1408 return false;
1409 } else {
1410 if ((val & DP_PIPE_MASK) != (pipe << 30))
1411 return false;
1412 }
1413 return true;
1414 }
1415
1416 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1417 enum pipe pipe, u32 val)
1418 {
1419 if ((val & SDVO_ENABLE) == 0)
1420 return false;
1421
1422 if (HAS_PCH_CPT(dev_priv->dev)) {
1423 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1424 return false;
1425 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1426 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1427 return false;
1428 } else {
1429 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1430 return false;
1431 }
1432 return true;
1433 }
1434
1435 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1436 enum pipe pipe, u32 val)
1437 {
1438 if ((val & LVDS_PORT_EN) == 0)
1439 return false;
1440
1441 if (HAS_PCH_CPT(dev_priv->dev)) {
1442 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1443 return false;
1444 } else {
1445 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1446 return false;
1447 }
1448 return true;
1449 }
1450
1451 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, u32 val)
1453 {
1454 if ((val & ADPA_DAC_ENABLE) == 0)
1455 return false;
1456 if (HAS_PCH_CPT(dev_priv->dev)) {
1457 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458 return false;
1459 } else {
1460 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1461 return false;
1462 }
1463 return true;
1464 }
1465
1466 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe, int reg, u32 port_sel)
1468 {
1469 u32 val = I915_READ(reg);
1470 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1471 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1472 reg, pipe_name(pipe));
1473
1474 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1475 && (val & DP_PIPEB_SELECT),
1476 "IBX PCH dp port still using transcoder B\n");
1477 }
1478
1479 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, int reg)
1481 {
1482 u32 val = I915_READ(reg);
1483 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1484 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1485 reg, pipe_name(pipe));
1486
1487 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1488 && (val & SDVO_PIPE_B_SELECT),
1489 "IBX PCH hdmi port still using transcoder B\n");
1490 }
1491
1492 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1493 enum pipe pipe)
1494 {
1495 int reg;
1496 u32 val;
1497
1498 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1499 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1500 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1501
1502 reg = PCH_ADPA;
1503 val = I915_READ(reg);
1504 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1505 "PCH VGA enabled on transcoder %c, should be disabled\n",
1506 pipe_name(pipe));
1507
1508 reg = PCH_LVDS;
1509 val = I915_READ(reg);
1510 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1511 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1512 pipe_name(pipe));
1513
1514 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1515 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1516 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1517 }
1518
1519 static void intel_init_dpio(struct drm_device *dev)
1520 {
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522
1523 if (!IS_VALLEYVIEW(dev))
1524 return;
1525
1526 /*
1527 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1528 * CHV x1 PHY (DP/HDMI D)
1529 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1530 */
1531 if (IS_CHERRYVIEW(dev)) {
1532 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1533 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1534 } else {
1535 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1536 }
1537 }
1538
1539 static void vlv_enable_pll(struct intel_crtc *crtc)
1540 {
1541 struct drm_device *dev = crtc->base.dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 int reg = DPLL(crtc->pipe);
1544 u32 dpll = crtc->config.dpll_hw_state.dpll;
1545
1546 assert_pipe_disabled(dev_priv, crtc->pipe);
1547
1548 /* No really, not for ILK+ */
1549 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1550
1551 /* PLL is protected by panel, make sure we can write it */
1552 if (IS_MOBILE(dev_priv->dev))
1553 assert_panel_unlocked(dev_priv, crtc->pipe);
1554
1555 I915_WRITE(reg, dpll);
1556 POSTING_READ(reg);
1557 udelay(150);
1558
1559 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1560 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1561
1562 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1563 POSTING_READ(DPLL_MD(crtc->pipe));
1564
1565 /* We do this three times for luck */
1566 I915_WRITE(reg, dpll);
1567 POSTING_READ(reg);
1568 udelay(150); /* wait for warmup */
1569 I915_WRITE(reg, dpll);
1570 POSTING_READ(reg);
1571 udelay(150); /* wait for warmup */
1572 I915_WRITE(reg, dpll);
1573 POSTING_READ(reg);
1574 udelay(150); /* wait for warmup */
1575 }
1576
1577 static void chv_enable_pll(struct intel_crtc *crtc)
1578 {
1579 struct drm_device *dev = crtc->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 int pipe = crtc->pipe;
1582 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1583 u32 tmp;
1584
1585 assert_pipe_disabled(dev_priv, crtc->pipe);
1586
1587 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1588
1589 mutex_lock(&dev_priv->dpio_lock);
1590
1591 /* Enable back the 10bit clock to display controller */
1592 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1593 tmp |= DPIO_DCLKP_EN;
1594 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1595
1596 /*
1597 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1598 */
1599 udelay(1);
1600
1601 /* Enable PLL */
1602 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1603
1604 /* Check PLL is locked */
1605 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1606 DRM_ERROR("PLL %d failed to lock\n", pipe);
1607
1608 /* not sure when this should be written */
1609 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1610 POSTING_READ(DPLL_MD(pipe));
1611
1612 mutex_unlock(&dev_priv->dpio_lock);
1613 }
1614
1615 static int intel_num_dvo_pipes(struct drm_device *dev)
1616 {
1617 struct intel_crtc *crtc;
1618 int count = 0;
1619
1620 for_each_intel_crtc(dev, crtc)
1621 count += crtc->active &&
1622 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1623
1624 return count;
1625 }
1626
1627 static void i9xx_enable_pll(struct intel_crtc *crtc)
1628 {
1629 struct drm_device *dev = crtc->base.dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 int reg = DPLL(crtc->pipe);
1632 u32 dpll = crtc->config.dpll_hw_state.dpll;
1633
1634 assert_pipe_disabled(dev_priv, crtc->pipe);
1635
1636 /* No really, not for ILK+ */
1637 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1638
1639 /* PLL is protected by panel, make sure we can write it */
1640 if (IS_MOBILE(dev) && !IS_I830(dev))
1641 assert_panel_unlocked(dev_priv, crtc->pipe);
1642
1643 /* Enable DVO 2x clock on both PLLs if necessary */
1644 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1645 /*
1646 * It appears to be important that we don't enable this
1647 * for the current pipe before otherwise configuring the
1648 * PLL. No idea how this should be handled if multiple
1649 * DVO outputs are enabled simultaneosly.
1650 */
1651 dpll |= DPLL_DVO_2X_MODE;
1652 I915_WRITE(DPLL(!crtc->pipe),
1653 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1654 }
1655
1656 /* Wait for the clocks to stabilize. */
1657 POSTING_READ(reg);
1658 udelay(150);
1659
1660 if (INTEL_INFO(dev)->gen >= 4) {
1661 I915_WRITE(DPLL_MD(crtc->pipe),
1662 crtc->config.dpll_hw_state.dpll_md);
1663 } else {
1664 /* The pixel multiplier can only be updated once the
1665 * DPLL is enabled and the clocks are stable.
1666 *
1667 * So write it again.
1668 */
1669 I915_WRITE(reg, dpll);
1670 }
1671
1672 /* We do this three times for luck */
1673 I915_WRITE(reg, dpll);
1674 POSTING_READ(reg);
1675 udelay(150); /* wait for warmup */
1676 I915_WRITE(reg, dpll);
1677 POSTING_READ(reg);
1678 udelay(150); /* wait for warmup */
1679 I915_WRITE(reg, dpll);
1680 POSTING_READ(reg);
1681 udelay(150); /* wait for warmup */
1682 }
1683
1684 /**
1685 * i9xx_disable_pll - disable a PLL
1686 * @dev_priv: i915 private structure
1687 * @pipe: pipe PLL to disable
1688 *
1689 * Disable the PLL for @pipe, making sure the pipe is off first.
1690 *
1691 * Note! This is for pre-ILK only.
1692 */
1693 static void i9xx_disable_pll(struct intel_crtc *crtc)
1694 {
1695 struct drm_device *dev = crtc->base.dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 enum pipe pipe = crtc->pipe;
1698
1699 /* Disable DVO 2x clock on both PLLs if necessary */
1700 if (IS_I830(dev) &&
1701 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1702 intel_num_dvo_pipes(dev) == 1) {
1703 I915_WRITE(DPLL(PIPE_B),
1704 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1705 I915_WRITE(DPLL(PIPE_A),
1706 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1707 }
1708
1709 /* Don't disable pipe or pipe PLLs if needed */
1710 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1711 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1712 return;
1713
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
1716
1717 I915_WRITE(DPLL(pipe), 0);
1718 POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723 u32 val = 0;
1724
1725 /* Make sure the pipe isn't still relying on us */
1726 assert_pipe_disabled(dev_priv, pipe);
1727
1728 /*
1729 * Leave integrated clock source and reference clock enabled for pipe B.
1730 * The latter is needed for VGA hotplug / manual detection.
1731 */
1732 if (pipe == PIPE_B)
1733 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
1736
1737 }
1738
1739 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740 {
1741 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1742 u32 val;
1743
1744 /* Make sure the pipe isn't still relying on us */
1745 assert_pipe_disabled(dev_priv, pipe);
1746
1747 /* Set PLL en = 0 */
1748 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1749 if (pipe != PIPE_A)
1750 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1751 I915_WRITE(DPLL(pipe), val);
1752 POSTING_READ(DPLL(pipe));
1753
1754 mutex_lock(&dev_priv->dpio_lock);
1755
1756 /* Disable 10bit clock to display controller */
1757 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1758 val &= ~DPIO_DCLKP_EN;
1759 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1760
1761 /* disable left/right clock distribution */
1762 if (pipe != PIPE_B) {
1763 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1764 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1765 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1766 } else {
1767 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1768 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1769 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1770 }
1771
1772 mutex_unlock(&dev_priv->dpio_lock);
1773 }
1774
1775 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1776 struct intel_digital_port *dport)
1777 {
1778 u32 port_mask;
1779 int dpll_reg;
1780
1781 switch (dport->port) {
1782 case PORT_B:
1783 port_mask = DPLL_PORTB_READY_MASK;
1784 dpll_reg = DPLL(0);
1785 break;
1786 case PORT_C:
1787 port_mask = DPLL_PORTC_READY_MASK;
1788 dpll_reg = DPLL(0);
1789 break;
1790 case PORT_D:
1791 port_mask = DPLL_PORTD_READY_MASK;
1792 dpll_reg = DPIO_PHY_STATUS;
1793 break;
1794 default:
1795 BUG();
1796 }
1797
1798 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1799 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1800 port_name(dport->port), I915_READ(dpll_reg));
1801 }
1802
1803 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1804 {
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1808
1809 if (WARN_ON(pll == NULL))
1810 return;
1811
1812 WARN_ON(!pll->refcount);
1813 if (pll->active == 0) {
1814 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1815 WARN_ON(pll->on);
1816 assert_shared_dpll_disabled(dev_priv, pll);
1817
1818 pll->mode_set(dev_priv, pll);
1819 }
1820 }
1821
1822 /**
1823 * intel_enable_shared_dpll - enable PCH PLL
1824 * @dev_priv: i915 private structure
1825 * @pipe: pipe PLL to enable
1826 *
1827 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1828 * drives the transcoder clock.
1829 */
1830 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836 if (WARN_ON(pll == NULL))
1837 return;
1838
1839 if (WARN_ON(pll->refcount == 0))
1840 return;
1841
1842 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1843 pll->name, pll->active, pll->on,
1844 crtc->base.base.id);
1845
1846 if (pll->active++) {
1847 WARN_ON(!pll->on);
1848 assert_shared_dpll_enabled(dev_priv, pll);
1849 return;
1850 }
1851 WARN_ON(pll->on);
1852
1853 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1854
1855 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1856 pll->enable(dev_priv, pll);
1857 pll->on = true;
1858 }
1859
1860 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1861 {
1862 struct drm_device *dev = crtc->base.dev;
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1865
1866 /* PCH only available on ILK+ */
1867 BUG_ON(INTEL_INFO(dev)->gen < 5);
1868 if (WARN_ON(pll == NULL))
1869 return;
1870
1871 if (WARN_ON(pll->refcount == 0))
1872 return;
1873
1874 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1875 pll->name, pll->active, pll->on,
1876 crtc->base.base.id);
1877
1878 if (WARN_ON(pll->active == 0)) {
1879 assert_shared_dpll_disabled(dev_priv, pll);
1880 return;
1881 }
1882
1883 assert_shared_dpll_enabled(dev_priv, pll);
1884 WARN_ON(!pll->on);
1885 if (--pll->active)
1886 return;
1887
1888 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1889 pll->disable(dev_priv, pll);
1890 pll->on = false;
1891
1892 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1893 }
1894
1895 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1896 enum pipe pipe)
1897 {
1898 struct drm_device *dev = dev_priv->dev;
1899 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1901 uint32_t reg, val, pipeconf_val;
1902
1903 /* PCH only available on ILK+ */
1904 BUG_ON(!HAS_PCH_SPLIT(dev));
1905
1906 /* Make sure PCH DPLL is enabled */
1907 assert_shared_dpll_enabled(dev_priv,
1908 intel_crtc_to_shared_dpll(intel_crtc));
1909
1910 /* FDI must be feeding us bits for PCH ports */
1911 assert_fdi_tx_enabled(dev_priv, pipe);
1912 assert_fdi_rx_enabled(dev_priv, pipe);
1913
1914 if (HAS_PCH_CPT(dev)) {
1915 /* Workaround: Set the timing override bit before enabling the
1916 * pch transcoder. */
1917 reg = TRANS_CHICKEN2(pipe);
1918 val = I915_READ(reg);
1919 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1920 I915_WRITE(reg, val);
1921 }
1922
1923 reg = PCH_TRANSCONF(pipe);
1924 val = I915_READ(reg);
1925 pipeconf_val = I915_READ(PIPECONF(pipe));
1926
1927 if (HAS_PCH_IBX(dev_priv->dev)) {
1928 /*
1929 * make the BPC in transcoder be consistent with
1930 * that in pipeconf reg.
1931 */
1932 val &= ~PIPECONF_BPC_MASK;
1933 val |= pipeconf_val & PIPECONF_BPC_MASK;
1934 }
1935
1936 val &= ~TRANS_INTERLACE_MASK;
1937 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1938 if (HAS_PCH_IBX(dev_priv->dev) &&
1939 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1940 val |= TRANS_LEGACY_INTERLACED_ILK;
1941 else
1942 val |= TRANS_INTERLACED;
1943 else
1944 val |= TRANS_PROGRESSIVE;
1945
1946 I915_WRITE(reg, val | TRANS_ENABLE);
1947 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1948 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1949 }
1950
1951 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1952 enum transcoder cpu_transcoder)
1953 {
1954 u32 val, pipeconf_val;
1955
1956 /* PCH only available on ILK+ */
1957 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1958
1959 /* FDI must be feeding us bits for PCH ports */
1960 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1961 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1962
1963 /* Workaround: set timing override bit. */
1964 val = I915_READ(_TRANSA_CHICKEN2);
1965 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1966 I915_WRITE(_TRANSA_CHICKEN2, val);
1967
1968 val = TRANS_ENABLE;
1969 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1970
1971 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1972 PIPECONF_INTERLACED_ILK)
1973 val |= TRANS_INTERLACED;
1974 else
1975 val |= TRANS_PROGRESSIVE;
1976
1977 I915_WRITE(LPT_TRANSCONF, val);
1978 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1979 DRM_ERROR("Failed to enable PCH transcoder\n");
1980 }
1981
1982 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1983 enum pipe pipe)
1984 {
1985 struct drm_device *dev = dev_priv->dev;
1986 uint32_t reg, val;
1987
1988 /* FDI relies on the transcoder */
1989 assert_fdi_tx_disabled(dev_priv, pipe);
1990 assert_fdi_rx_disabled(dev_priv, pipe);
1991
1992 /* Ports must be off as well */
1993 assert_pch_ports_disabled(dev_priv, pipe);
1994
1995 reg = PCH_TRANSCONF(pipe);
1996 val = I915_READ(reg);
1997 val &= ~TRANS_ENABLE;
1998 I915_WRITE(reg, val);
1999 /* wait for PCH transcoder off, transcoder state */
2000 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2001 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2002
2003 if (!HAS_PCH_IBX(dev)) {
2004 /* Workaround: Clear the timing override chicken bit again. */
2005 reg = TRANS_CHICKEN2(pipe);
2006 val = I915_READ(reg);
2007 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2008 I915_WRITE(reg, val);
2009 }
2010 }
2011
2012 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2013 {
2014 u32 val;
2015
2016 val = I915_READ(LPT_TRANSCONF);
2017 val &= ~TRANS_ENABLE;
2018 I915_WRITE(LPT_TRANSCONF, val);
2019 /* wait for PCH transcoder off, transcoder state */
2020 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2021 DRM_ERROR("Failed to disable PCH transcoder\n");
2022
2023 /* Workaround: clear timing override bit. */
2024 val = I915_READ(_TRANSA_CHICKEN2);
2025 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2026 I915_WRITE(_TRANSA_CHICKEN2, val);
2027 }
2028
2029 /**
2030 * intel_enable_pipe - enable a pipe, asserting requirements
2031 * @crtc: crtc responsible for the pipe
2032 *
2033 * Enable @crtc's pipe, making sure that various hardware specific requirements
2034 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2035 */
2036 static void intel_enable_pipe(struct intel_crtc *crtc)
2037 {
2038 struct drm_device *dev = crtc->base.dev;
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040 enum pipe pipe = crtc->pipe;
2041 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2042 pipe);
2043 enum pipe pch_transcoder;
2044 int reg;
2045 u32 val;
2046
2047 assert_planes_disabled(dev_priv, pipe);
2048 assert_cursor_disabled(dev_priv, pipe);
2049 assert_sprites_disabled(dev_priv, pipe);
2050
2051 if (HAS_PCH_LPT(dev_priv->dev))
2052 pch_transcoder = TRANSCODER_A;
2053 else
2054 pch_transcoder = pipe;
2055
2056 /*
2057 * A pipe without a PLL won't actually be able to drive bits from
2058 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2059 * need the check.
2060 */
2061 if (!HAS_PCH_SPLIT(dev_priv->dev))
2062 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2063 assert_dsi_pll_enabled(dev_priv);
2064 else
2065 assert_pll_enabled(dev_priv, pipe);
2066 else {
2067 if (crtc->config.has_pch_encoder) {
2068 /* if driving the PCH, we need FDI enabled */
2069 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2070 assert_fdi_tx_pll_enabled(dev_priv,
2071 (enum pipe) cpu_transcoder);
2072 }
2073 /* FIXME: assert CPU port conditions for SNB+ */
2074 }
2075
2076 reg = PIPECONF(cpu_transcoder);
2077 val = I915_READ(reg);
2078 if (val & PIPECONF_ENABLE) {
2079 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2080 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2081 return;
2082 }
2083
2084 I915_WRITE(reg, val | PIPECONF_ENABLE);
2085 POSTING_READ(reg);
2086 }
2087
2088 /**
2089 * intel_disable_pipe - disable a pipe, asserting requirements
2090 * @crtc: crtc whose pipes is to be disabled
2091 *
2092 * Disable the pipe of @crtc, making sure that various hardware
2093 * specific requirements are met, if applicable, e.g. plane
2094 * disabled, panel fitter off, etc.
2095 *
2096 * Will wait until the pipe has shut down before returning.
2097 */
2098 static void intel_disable_pipe(struct intel_crtc *crtc)
2099 {
2100 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2101 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2102 enum pipe pipe = crtc->pipe;
2103 int reg;
2104 u32 val;
2105
2106 /*
2107 * Make sure planes won't keep trying to pump pixels to us,
2108 * or we might hang the display.
2109 */
2110 assert_planes_disabled(dev_priv, pipe);
2111 assert_cursor_disabled(dev_priv, pipe);
2112 assert_sprites_disabled(dev_priv, pipe);
2113
2114 reg = PIPECONF(cpu_transcoder);
2115 val = I915_READ(reg);
2116 if ((val & PIPECONF_ENABLE) == 0)
2117 return;
2118
2119 /*
2120 * Double wide has implications for planes
2121 * so best keep it disabled when not needed.
2122 */
2123 if (crtc->config.double_wide)
2124 val &= ~PIPECONF_DOUBLE_WIDE;
2125
2126 /* Don't disable pipe or pipe PLLs if needed */
2127 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2128 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2129 val &= ~PIPECONF_ENABLE;
2130
2131 I915_WRITE(reg, val);
2132 if ((val & PIPECONF_ENABLE) == 0)
2133 intel_wait_for_pipe_off(crtc);
2134 }
2135
2136 /*
2137 * Plane regs are double buffered, going from enabled->disabled needs a
2138 * trigger in order to latch. The display address reg provides this.
2139 */
2140 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2141 enum plane plane)
2142 {
2143 struct drm_device *dev = dev_priv->dev;
2144 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2145
2146 I915_WRITE(reg, I915_READ(reg));
2147 POSTING_READ(reg);
2148 }
2149
2150 /**
2151 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2152 * @plane: plane to be enabled
2153 * @crtc: crtc for the plane
2154 *
2155 * Enable @plane on @crtc, making sure that the pipe is running first.
2156 */
2157 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2158 struct drm_crtc *crtc)
2159 {
2160 struct drm_device *dev = plane->dev;
2161 struct drm_i915_private *dev_priv = dev->dev_private;
2162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2163
2164 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2165 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2166
2167 if (intel_crtc->primary_enabled)
2168 return;
2169
2170 intel_crtc->primary_enabled = true;
2171
2172 dev_priv->display.update_primary_plane(crtc, plane->fb,
2173 crtc->x, crtc->y);
2174
2175 /*
2176 * BDW signals flip done immediately if the plane
2177 * is disabled, even if the plane enable is already
2178 * armed to occur at the next vblank :(
2179 */
2180 if (IS_BROADWELL(dev))
2181 intel_wait_for_vblank(dev, intel_crtc->pipe);
2182 }
2183
2184 /**
2185 * intel_disable_primary_hw_plane - disable the primary hardware plane
2186 * @plane: plane to be disabled
2187 * @crtc: crtc for the plane
2188 *
2189 * Disable @plane on @crtc, making sure that the pipe is running first.
2190 */
2191 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2192 struct drm_crtc *crtc)
2193 {
2194 struct drm_device *dev = plane->dev;
2195 struct drm_i915_private *dev_priv = dev->dev_private;
2196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2199
2200 if (!intel_crtc->primary_enabled)
2201 return;
2202
2203 intel_crtc->primary_enabled = false;
2204
2205 dev_priv->display.update_primary_plane(crtc, plane->fb,
2206 crtc->x, crtc->y);
2207 }
2208
2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213 return true;
2214 #endif
2215 return false;
2216 }
2217
2218 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2219 {
2220 int tile_height;
2221
2222 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2223 return ALIGN(height, tile_height);
2224 }
2225
2226 int
2227 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2228 struct drm_i915_gem_object *obj,
2229 struct intel_engine_cs *pipelined)
2230 {
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 u32 alignment;
2233 int ret;
2234
2235 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2236
2237 switch (obj->tiling_mode) {
2238 case I915_TILING_NONE:
2239 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2240 alignment = 128 * 1024;
2241 else if (INTEL_INFO(dev)->gen >= 4)
2242 alignment = 4 * 1024;
2243 else
2244 alignment = 64 * 1024;
2245 break;
2246 case I915_TILING_X:
2247 /* pin() will align the object as required by fence */
2248 alignment = 0;
2249 break;
2250 case I915_TILING_Y:
2251 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2252 return -EINVAL;
2253 default:
2254 BUG();
2255 }
2256
2257 /* Note that the w/a also requires 64 PTE of padding following the
2258 * bo. We currently fill all unused PTE with the shadow page and so
2259 * we should always have valid PTE following the scanout preventing
2260 * the VT-d warning.
2261 */
2262 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2263 alignment = 256 * 1024;
2264
2265 /*
2266 * Global gtt pte registers are special registers which actually forward
2267 * writes to a chunk of system memory. Which means that there is no risk
2268 * that the register values disappear as soon as we call
2269 * intel_runtime_pm_put(), so it is correct to wrap only the
2270 * pin/unpin/fence and not more.
2271 */
2272 intel_runtime_pm_get(dev_priv);
2273
2274 dev_priv->mm.interruptible = false;
2275 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2276 if (ret)
2277 goto err_interruptible;
2278
2279 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2280 * fence, whereas 965+ only requires a fence if using
2281 * framebuffer compression. For simplicity, we always install
2282 * a fence as the cost is not that onerous.
2283 */
2284 ret = i915_gem_object_get_fence(obj);
2285 if (ret)
2286 goto err_unpin;
2287
2288 i915_gem_object_pin_fence(obj);
2289
2290 dev_priv->mm.interruptible = true;
2291 intel_runtime_pm_put(dev_priv);
2292 return 0;
2293
2294 err_unpin:
2295 i915_gem_object_unpin_from_display_plane(obj);
2296 err_interruptible:
2297 dev_priv->mm.interruptible = true;
2298 intel_runtime_pm_put(dev_priv);
2299 return ret;
2300 }
2301
2302 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2303 {
2304 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2305
2306 i915_gem_object_unpin_fence(obj);
2307 i915_gem_object_unpin_from_display_plane(obj);
2308 }
2309
2310 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2311 * is assumed to be a power-of-two. */
2312 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2313 unsigned int tiling_mode,
2314 unsigned int cpp,
2315 unsigned int pitch)
2316 {
2317 if (tiling_mode != I915_TILING_NONE) {
2318 unsigned int tile_rows, tiles;
2319
2320 tile_rows = *y / 8;
2321 *y %= 8;
2322
2323 tiles = *x / (512/cpp);
2324 *x %= 512/cpp;
2325
2326 return tile_rows * pitch * 8 + tiles * 4096;
2327 } else {
2328 unsigned int offset;
2329
2330 offset = *y * pitch + *x * cpp;
2331 *y = 0;
2332 *x = (offset & 4095) / cpp;
2333 return offset & -4096;
2334 }
2335 }
2336
2337 int intel_format_to_fourcc(int format)
2338 {
2339 switch (format) {
2340 case DISPPLANE_8BPP:
2341 return DRM_FORMAT_C8;
2342 case DISPPLANE_BGRX555:
2343 return DRM_FORMAT_XRGB1555;
2344 case DISPPLANE_BGRX565:
2345 return DRM_FORMAT_RGB565;
2346 default:
2347 case DISPPLANE_BGRX888:
2348 return DRM_FORMAT_XRGB8888;
2349 case DISPPLANE_RGBX888:
2350 return DRM_FORMAT_XBGR8888;
2351 case DISPPLANE_BGRX101010:
2352 return DRM_FORMAT_XRGB2101010;
2353 case DISPPLANE_RGBX101010:
2354 return DRM_FORMAT_XBGR2101010;
2355 }
2356 }
2357
2358 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2359 struct intel_plane_config *plane_config)
2360 {
2361 struct drm_device *dev = crtc->base.dev;
2362 struct drm_i915_gem_object *obj = NULL;
2363 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2364 u32 base = plane_config->base;
2365
2366 if (plane_config->size == 0)
2367 return false;
2368
2369 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2370 plane_config->size);
2371 if (!obj)
2372 return false;
2373
2374 if (plane_config->tiled) {
2375 obj->tiling_mode = I915_TILING_X;
2376 obj->stride = crtc->base.primary->fb->pitches[0];
2377 }
2378
2379 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2380 mode_cmd.width = crtc->base.primary->fb->width;
2381 mode_cmd.height = crtc->base.primary->fb->height;
2382 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2383
2384 mutex_lock(&dev->struct_mutex);
2385
2386 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2387 &mode_cmd, obj)) {
2388 DRM_DEBUG_KMS("intel fb init failed\n");
2389 goto out_unref_obj;
2390 }
2391
2392 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2393 mutex_unlock(&dev->struct_mutex);
2394
2395 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2396 return true;
2397
2398 out_unref_obj:
2399 drm_gem_object_unreference(&obj->base);
2400 mutex_unlock(&dev->struct_mutex);
2401 return false;
2402 }
2403
2404 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2405 struct intel_plane_config *plane_config)
2406 {
2407 struct drm_device *dev = intel_crtc->base.dev;
2408 struct drm_crtc *c;
2409 struct intel_crtc *i;
2410 struct drm_i915_gem_object *obj;
2411
2412 if (!intel_crtc->base.primary->fb)
2413 return;
2414
2415 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2416 return;
2417
2418 kfree(intel_crtc->base.primary->fb);
2419 intel_crtc->base.primary->fb = NULL;
2420
2421 /*
2422 * Failed to alloc the obj, check to see if we should share
2423 * an fb with another CRTC instead
2424 */
2425 for_each_crtc(dev, c) {
2426 i = to_intel_crtc(c);
2427
2428 if (c == &intel_crtc->base)
2429 continue;
2430
2431 if (!i->active)
2432 continue;
2433
2434 obj = intel_fb_obj(c->primary->fb);
2435 if (obj == NULL)
2436 continue;
2437
2438 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2439 drm_framebuffer_reference(c->primary->fb);
2440 intel_crtc->base.primary->fb = c->primary->fb;
2441 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2442 break;
2443 }
2444 }
2445 }
2446
2447 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2448 struct drm_framebuffer *fb,
2449 int x, int y)
2450 {
2451 struct drm_device *dev = crtc->dev;
2452 struct drm_i915_private *dev_priv = dev->dev_private;
2453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2454 struct drm_i915_gem_object *obj;
2455 int plane = intel_crtc->plane;
2456 unsigned long linear_offset;
2457 u32 dspcntr;
2458 u32 reg = DSPCNTR(plane);
2459 int pixel_size;
2460
2461 if (!intel_crtc->primary_enabled) {
2462 I915_WRITE(reg, 0);
2463 if (INTEL_INFO(dev)->gen >= 4)
2464 I915_WRITE(DSPSURF(plane), 0);
2465 else
2466 I915_WRITE(DSPADDR(plane), 0);
2467 POSTING_READ(reg);
2468 return;
2469 }
2470
2471 obj = intel_fb_obj(fb);
2472 if (WARN_ON(obj == NULL))
2473 return;
2474
2475 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2476
2477 dspcntr = DISPPLANE_GAMMA_ENABLE;
2478
2479 dspcntr |= DISPLAY_PLANE_ENABLE;
2480
2481 if (INTEL_INFO(dev)->gen < 4) {
2482 if (intel_crtc->pipe == PIPE_B)
2483 dspcntr |= DISPPLANE_SEL_PIPE_B;
2484
2485 /* pipesrc and dspsize control the size that is scaled from,
2486 * which should always be the user's requested size.
2487 */
2488 I915_WRITE(DSPSIZE(plane),
2489 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2490 (intel_crtc->config.pipe_src_w - 1));
2491 I915_WRITE(DSPPOS(plane), 0);
2492 }
2493
2494 switch (fb->pixel_format) {
2495 case DRM_FORMAT_C8:
2496 dspcntr |= DISPPLANE_8BPP;
2497 break;
2498 case DRM_FORMAT_XRGB1555:
2499 case DRM_FORMAT_ARGB1555:
2500 dspcntr |= DISPPLANE_BGRX555;
2501 break;
2502 case DRM_FORMAT_RGB565:
2503 dspcntr |= DISPPLANE_BGRX565;
2504 break;
2505 case DRM_FORMAT_XRGB8888:
2506 case DRM_FORMAT_ARGB8888:
2507 dspcntr |= DISPPLANE_BGRX888;
2508 break;
2509 case DRM_FORMAT_XBGR8888:
2510 case DRM_FORMAT_ABGR8888:
2511 dspcntr |= DISPPLANE_RGBX888;
2512 break;
2513 case DRM_FORMAT_XRGB2101010:
2514 case DRM_FORMAT_ARGB2101010:
2515 dspcntr |= DISPPLANE_BGRX101010;
2516 break;
2517 case DRM_FORMAT_XBGR2101010:
2518 case DRM_FORMAT_ABGR2101010:
2519 dspcntr |= DISPPLANE_RGBX101010;
2520 break;
2521 default:
2522 BUG();
2523 }
2524
2525 if (INTEL_INFO(dev)->gen >= 4 &&
2526 obj->tiling_mode != I915_TILING_NONE)
2527 dspcntr |= DISPPLANE_TILED;
2528
2529 if (IS_G4X(dev))
2530 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2531
2532 linear_offset = y * fb->pitches[0] + x * pixel_size;
2533
2534 if (INTEL_INFO(dev)->gen >= 4) {
2535 intel_crtc->dspaddr_offset =
2536 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2537 pixel_size,
2538 fb->pitches[0]);
2539 linear_offset -= intel_crtc->dspaddr_offset;
2540 } else {
2541 intel_crtc->dspaddr_offset = linear_offset;
2542 }
2543
2544 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2545 dspcntr |= DISPPLANE_ROTATE_180;
2546
2547 x += (intel_crtc->config.pipe_src_w - 1);
2548 y += (intel_crtc->config.pipe_src_h - 1);
2549
2550 /* Finding the last pixel of the last line of the display
2551 data and adding to linear_offset*/
2552 linear_offset +=
2553 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2554 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2555 }
2556
2557 I915_WRITE(reg, dspcntr);
2558
2559 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2560 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2561 fb->pitches[0]);
2562 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2563 if (INTEL_INFO(dev)->gen >= 4) {
2564 I915_WRITE(DSPSURF(plane),
2565 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2566 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2567 I915_WRITE(DSPLINOFF(plane), linear_offset);
2568 } else
2569 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2570 POSTING_READ(reg);
2571 }
2572
2573 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2574 struct drm_framebuffer *fb,
2575 int x, int y)
2576 {
2577 struct drm_device *dev = crtc->dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580 struct drm_i915_gem_object *obj;
2581 int plane = intel_crtc->plane;
2582 unsigned long linear_offset;
2583 u32 dspcntr;
2584 u32 reg = DSPCNTR(plane);
2585 int pixel_size;
2586
2587 if (!intel_crtc->primary_enabled) {
2588 I915_WRITE(reg, 0);
2589 I915_WRITE(DSPSURF(plane), 0);
2590 POSTING_READ(reg);
2591 return;
2592 }
2593
2594 obj = intel_fb_obj(fb);
2595 if (WARN_ON(obj == NULL))
2596 return;
2597
2598 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2599
2600 dspcntr = DISPPLANE_GAMMA_ENABLE;
2601
2602 dspcntr |= DISPLAY_PLANE_ENABLE;
2603
2604 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2605 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2606
2607 switch (fb->pixel_format) {
2608 case DRM_FORMAT_C8:
2609 dspcntr |= DISPPLANE_8BPP;
2610 break;
2611 case DRM_FORMAT_RGB565:
2612 dspcntr |= DISPPLANE_BGRX565;
2613 break;
2614 case DRM_FORMAT_XRGB8888:
2615 case DRM_FORMAT_ARGB8888:
2616 dspcntr |= DISPPLANE_BGRX888;
2617 break;
2618 case DRM_FORMAT_XBGR8888:
2619 case DRM_FORMAT_ABGR8888:
2620 dspcntr |= DISPPLANE_RGBX888;
2621 break;
2622 case DRM_FORMAT_XRGB2101010:
2623 case DRM_FORMAT_ARGB2101010:
2624 dspcntr |= DISPPLANE_BGRX101010;
2625 break;
2626 case DRM_FORMAT_XBGR2101010:
2627 case DRM_FORMAT_ABGR2101010:
2628 dspcntr |= DISPPLANE_RGBX101010;
2629 break;
2630 default:
2631 BUG();
2632 }
2633
2634 if (obj->tiling_mode != I915_TILING_NONE)
2635 dspcntr |= DISPPLANE_TILED;
2636
2637 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2638 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2639
2640 linear_offset = y * fb->pitches[0] + x * pixel_size;
2641 intel_crtc->dspaddr_offset =
2642 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2643 pixel_size,
2644 fb->pitches[0]);
2645 linear_offset -= intel_crtc->dspaddr_offset;
2646 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2647 dspcntr |= DISPPLANE_ROTATE_180;
2648
2649 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2650 x += (intel_crtc->config.pipe_src_w - 1);
2651 y += (intel_crtc->config.pipe_src_h - 1);
2652
2653 /* Finding the last pixel of the last line of the display
2654 data and adding to linear_offset*/
2655 linear_offset +=
2656 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2657 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2658 }
2659 }
2660
2661 I915_WRITE(reg, dspcntr);
2662
2663 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2664 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2665 fb->pitches[0]);
2666 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2667 I915_WRITE(DSPSURF(plane),
2668 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2669 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2670 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2671 } else {
2672 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2673 I915_WRITE(DSPLINOFF(plane), linear_offset);
2674 }
2675 POSTING_READ(reg);
2676 }
2677
2678 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2679 static int
2680 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2681 int x, int y, enum mode_set_atomic state)
2682 {
2683 struct drm_device *dev = crtc->dev;
2684 struct drm_i915_private *dev_priv = dev->dev_private;
2685
2686 if (dev_priv->display.disable_fbc)
2687 dev_priv->display.disable_fbc(dev);
2688 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2689
2690 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2691
2692 return 0;
2693 }
2694
2695 void intel_display_handle_reset(struct drm_device *dev)
2696 {
2697 struct drm_i915_private *dev_priv = dev->dev_private;
2698 struct drm_crtc *crtc;
2699
2700 /*
2701 * Flips in the rings have been nuked by the reset,
2702 * so complete all pending flips so that user space
2703 * will get its events and not get stuck.
2704 *
2705 * Also update the base address of all primary
2706 * planes to the the last fb to make sure we're
2707 * showing the correct fb after a reset.
2708 *
2709 * Need to make two loops over the crtcs so that we
2710 * don't try to grab a crtc mutex before the
2711 * pending_flip_queue really got woken up.
2712 */
2713
2714 for_each_crtc(dev, crtc) {
2715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2716 enum plane plane = intel_crtc->plane;
2717
2718 intel_prepare_page_flip(dev, plane);
2719 intel_finish_page_flip_plane(dev, plane);
2720 }
2721
2722 for_each_crtc(dev, crtc) {
2723 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2724
2725 drm_modeset_lock(&crtc->mutex, NULL);
2726 /*
2727 * FIXME: Once we have proper support for primary planes (and
2728 * disabling them without disabling the entire crtc) allow again
2729 * a NULL crtc->primary->fb.
2730 */
2731 if (intel_crtc->active && crtc->primary->fb)
2732 dev_priv->display.update_primary_plane(crtc,
2733 crtc->primary->fb,
2734 crtc->x,
2735 crtc->y);
2736 drm_modeset_unlock(&crtc->mutex);
2737 }
2738 }
2739
2740 static int
2741 intel_finish_fb(struct drm_framebuffer *old_fb)
2742 {
2743 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2744 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2745 bool was_interruptible = dev_priv->mm.interruptible;
2746 int ret;
2747
2748 /* Big Hammer, we also need to ensure that any pending
2749 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2750 * current scanout is retired before unpinning the old
2751 * framebuffer.
2752 *
2753 * This should only fail upon a hung GPU, in which case we
2754 * can safely continue.
2755 */
2756 dev_priv->mm.interruptible = false;
2757 ret = i915_gem_object_finish_gpu(obj);
2758 dev_priv->mm.interruptible = was_interruptible;
2759
2760 return ret;
2761 }
2762
2763 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2764 {
2765 struct drm_device *dev = crtc->dev;
2766 struct drm_i915_private *dev_priv = dev->dev_private;
2767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768 unsigned long flags;
2769 bool pending;
2770
2771 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2772 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2773 return false;
2774
2775 spin_lock_irqsave(&dev->event_lock, flags);
2776 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2777 spin_unlock_irqrestore(&dev->event_lock, flags);
2778
2779 return pending;
2780 }
2781
2782 static void intel_update_pipe_size(struct intel_crtc *crtc)
2783 {
2784 struct drm_device *dev = crtc->base.dev;
2785 struct drm_i915_private *dev_priv = dev->dev_private;
2786 const struct drm_display_mode *adjusted_mode;
2787
2788 if (!i915.fastboot)
2789 return;
2790
2791 /*
2792 * Update pipe size and adjust fitter if needed: the reason for this is
2793 * that in compute_mode_changes we check the native mode (not the pfit
2794 * mode) to see if we can flip rather than do a full mode set. In the
2795 * fastboot case, we'll flip, but if we don't update the pipesrc and
2796 * pfit state, we'll end up with a big fb scanned out into the wrong
2797 * sized surface.
2798 *
2799 * To fix this properly, we need to hoist the checks up into
2800 * compute_mode_changes (or above), check the actual pfit state and
2801 * whether the platform allows pfit disable with pipe active, and only
2802 * then update the pipesrc and pfit state, even on the flip path.
2803 */
2804
2805 adjusted_mode = &crtc->config.adjusted_mode;
2806
2807 I915_WRITE(PIPESRC(crtc->pipe),
2808 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2809 (adjusted_mode->crtc_vdisplay - 1));
2810 if (!crtc->config.pch_pfit.enabled &&
2811 (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) ||
2812 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))) {
2813 I915_WRITE(PF_CTL(crtc->pipe), 0);
2814 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2815 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2816 }
2817 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2818 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2819 }
2820
2821 static int
2822 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2823 struct drm_framebuffer *fb)
2824 {
2825 struct drm_device *dev = crtc->dev;
2826 struct drm_i915_private *dev_priv = dev->dev_private;
2827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2828 enum pipe pipe = intel_crtc->pipe;
2829 struct drm_framebuffer *old_fb = crtc->primary->fb;
2830 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2831 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2832 int ret;
2833
2834 if (intel_crtc_has_pending_flip(crtc)) {
2835 DRM_ERROR("pipe is still busy with an old pageflip\n");
2836 return -EBUSY;
2837 }
2838
2839 /* no fb bound */
2840 if (!fb) {
2841 DRM_ERROR("No FB bound\n");
2842 return 0;
2843 }
2844
2845 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2846 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2847 plane_name(intel_crtc->plane),
2848 INTEL_INFO(dev)->num_pipes);
2849 return -EINVAL;
2850 }
2851
2852 mutex_lock(&dev->struct_mutex);
2853 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2854 if (ret == 0)
2855 i915_gem_track_fb(old_obj, obj,
2856 INTEL_FRONTBUFFER_PRIMARY(pipe));
2857 mutex_unlock(&dev->struct_mutex);
2858 if (ret != 0) {
2859 DRM_ERROR("pin & fence failed\n");
2860 return ret;
2861 }
2862
2863 intel_update_pipe_size(intel_crtc);
2864
2865 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2866
2867 if (intel_crtc->active)
2868 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2869
2870 crtc->primary->fb = fb;
2871 crtc->x = x;
2872 crtc->y = y;
2873
2874 if (old_fb) {
2875 if (intel_crtc->active && old_fb != fb)
2876 intel_wait_for_vblank(dev, intel_crtc->pipe);
2877 mutex_lock(&dev->struct_mutex);
2878 intel_unpin_fb_obj(old_obj);
2879 mutex_unlock(&dev->struct_mutex);
2880 }
2881
2882 mutex_lock(&dev->struct_mutex);
2883 intel_update_fbc(dev);
2884 mutex_unlock(&dev->struct_mutex);
2885
2886 return 0;
2887 }
2888
2889 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2890 {
2891 struct drm_device *dev = crtc->dev;
2892 struct drm_i915_private *dev_priv = dev->dev_private;
2893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2894 int pipe = intel_crtc->pipe;
2895 u32 reg, temp;
2896
2897 /* enable normal train */
2898 reg = FDI_TX_CTL(pipe);
2899 temp = I915_READ(reg);
2900 if (IS_IVYBRIDGE(dev)) {
2901 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2902 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2903 } else {
2904 temp &= ~FDI_LINK_TRAIN_NONE;
2905 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2906 }
2907 I915_WRITE(reg, temp);
2908
2909 reg = FDI_RX_CTL(pipe);
2910 temp = I915_READ(reg);
2911 if (HAS_PCH_CPT(dev)) {
2912 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2913 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2914 } else {
2915 temp &= ~FDI_LINK_TRAIN_NONE;
2916 temp |= FDI_LINK_TRAIN_NONE;
2917 }
2918 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2919
2920 /* wait one idle pattern time */
2921 POSTING_READ(reg);
2922 udelay(1000);
2923
2924 /* IVB wants error correction enabled */
2925 if (IS_IVYBRIDGE(dev))
2926 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2927 FDI_FE_ERRC_ENABLE);
2928 }
2929
2930 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2931 {
2932 return crtc->base.enabled && crtc->active &&
2933 crtc->config.has_pch_encoder;
2934 }
2935
2936 static void ivb_modeset_global_resources(struct drm_device *dev)
2937 {
2938 struct drm_i915_private *dev_priv = dev->dev_private;
2939 struct intel_crtc *pipe_B_crtc =
2940 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2941 struct intel_crtc *pipe_C_crtc =
2942 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2943 uint32_t temp;
2944
2945 /*
2946 * When everything is off disable fdi C so that we could enable fdi B
2947 * with all lanes. Note that we don't care about enabled pipes without
2948 * an enabled pch encoder.
2949 */
2950 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2951 !pipe_has_enabled_pch(pipe_C_crtc)) {
2952 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2953 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2954
2955 temp = I915_READ(SOUTH_CHICKEN1);
2956 temp &= ~FDI_BC_BIFURCATION_SELECT;
2957 DRM_DEBUG_KMS("disabling fdi C rx\n");
2958 I915_WRITE(SOUTH_CHICKEN1, temp);
2959 }
2960 }
2961
2962 /* The FDI link training functions for ILK/Ibexpeak. */
2963 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2964 {
2965 struct drm_device *dev = crtc->dev;
2966 struct drm_i915_private *dev_priv = dev->dev_private;
2967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2968 int pipe = intel_crtc->pipe;
2969 u32 reg, temp, tries;
2970
2971 /* FDI needs bits from pipe first */
2972 assert_pipe_enabled(dev_priv, pipe);
2973
2974 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2975 for train result */
2976 reg = FDI_RX_IMR(pipe);
2977 temp = I915_READ(reg);
2978 temp &= ~FDI_RX_SYMBOL_LOCK;
2979 temp &= ~FDI_RX_BIT_LOCK;
2980 I915_WRITE(reg, temp);
2981 I915_READ(reg);
2982 udelay(150);
2983
2984 /* enable CPU FDI TX and PCH FDI RX */
2985 reg = FDI_TX_CTL(pipe);
2986 temp = I915_READ(reg);
2987 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2988 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2989 temp &= ~FDI_LINK_TRAIN_NONE;
2990 temp |= FDI_LINK_TRAIN_PATTERN_1;
2991 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2992
2993 reg = FDI_RX_CTL(pipe);
2994 temp = I915_READ(reg);
2995 temp &= ~FDI_LINK_TRAIN_NONE;
2996 temp |= FDI_LINK_TRAIN_PATTERN_1;
2997 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2998
2999 POSTING_READ(reg);
3000 udelay(150);
3001
3002 /* Ironlake workaround, enable clock pointer after FDI enable*/
3003 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3004 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3005 FDI_RX_PHASE_SYNC_POINTER_EN);
3006
3007 reg = FDI_RX_IIR(pipe);
3008 for (tries = 0; tries < 5; tries++) {
3009 temp = I915_READ(reg);
3010 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3011
3012 if ((temp & FDI_RX_BIT_LOCK)) {
3013 DRM_DEBUG_KMS("FDI train 1 done.\n");
3014 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3015 break;
3016 }
3017 }
3018 if (tries == 5)
3019 DRM_ERROR("FDI train 1 fail!\n");
3020
3021 /* Train 2 */
3022 reg = FDI_TX_CTL(pipe);
3023 temp = I915_READ(reg);
3024 temp &= ~FDI_LINK_TRAIN_NONE;
3025 temp |= FDI_LINK_TRAIN_PATTERN_2;
3026 I915_WRITE(reg, temp);
3027
3028 reg = FDI_RX_CTL(pipe);
3029 temp = I915_READ(reg);
3030 temp &= ~FDI_LINK_TRAIN_NONE;
3031 temp |= FDI_LINK_TRAIN_PATTERN_2;
3032 I915_WRITE(reg, temp);
3033
3034 POSTING_READ(reg);
3035 udelay(150);
3036
3037 reg = FDI_RX_IIR(pipe);
3038 for (tries = 0; tries < 5; tries++) {
3039 temp = I915_READ(reg);
3040 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3041
3042 if (temp & FDI_RX_SYMBOL_LOCK) {
3043 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3044 DRM_DEBUG_KMS("FDI train 2 done.\n");
3045 break;
3046 }
3047 }
3048 if (tries == 5)
3049 DRM_ERROR("FDI train 2 fail!\n");
3050
3051 DRM_DEBUG_KMS("FDI train done\n");
3052
3053 }
3054
3055 static const int snb_b_fdi_train_param[] = {
3056 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3057 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3058 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3059 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3060 };
3061
3062 /* The FDI link training functions for SNB/Cougarpoint. */
3063 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3064 {
3065 struct drm_device *dev = crtc->dev;
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3068 int pipe = intel_crtc->pipe;
3069 u32 reg, temp, i, retry;
3070
3071 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3072 for train result */
3073 reg = FDI_RX_IMR(pipe);
3074 temp = I915_READ(reg);
3075 temp &= ~FDI_RX_SYMBOL_LOCK;
3076 temp &= ~FDI_RX_BIT_LOCK;
3077 I915_WRITE(reg, temp);
3078
3079 POSTING_READ(reg);
3080 udelay(150);
3081
3082 /* enable CPU FDI TX and PCH FDI RX */
3083 reg = FDI_TX_CTL(pipe);
3084 temp = I915_READ(reg);
3085 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3086 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3087 temp &= ~FDI_LINK_TRAIN_NONE;
3088 temp |= FDI_LINK_TRAIN_PATTERN_1;
3089 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3090 /* SNB-B */
3091 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3092 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3093
3094 I915_WRITE(FDI_RX_MISC(pipe),
3095 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3096
3097 reg = FDI_RX_CTL(pipe);
3098 temp = I915_READ(reg);
3099 if (HAS_PCH_CPT(dev)) {
3100 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3101 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3102 } else {
3103 temp &= ~FDI_LINK_TRAIN_NONE;
3104 temp |= FDI_LINK_TRAIN_PATTERN_1;
3105 }
3106 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3107
3108 POSTING_READ(reg);
3109 udelay(150);
3110
3111 for (i = 0; i < 4; i++) {
3112 reg = FDI_TX_CTL(pipe);
3113 temp = I915_READ(reg);
3114 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3115 temp |= snb_b_fdi_train_param[i];
3116 I915_WRITE(reg, temp);
3117
3118 POSTING_READ(reg);
3119 udelay(500);
3120
3121 for (retry = 0; retry < 5; retry++) {
3122 reg = FDI_RX_IIR(pipe);
3123 temp = I915_READ(reg);
3124 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3125 if (temp & FDI_RX_BIT_LOCK) {
3126 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3127 DRM_DEBUG_KMS("FDI train 1 done.\n");
3128 break;
3129 }
3130 udelay(50);
3131 }
3132 if (retry < 5)
3133 break;
3134 }
3135 if (i == 4)
3136 DRM_ERROR("FDI train 1 fail!\n");
3137
3138 /* Train 2 */
3139 reg = FDI_TX_CTL(pipe);
3140 temp = I915_READ(reg);
3141 temp &= ~FDI_LINK_TRAIN_NONE;
3142 temp |= FDI_LINK_TRAIN_PATTERN_2;
3143 if (IS_GEN6(dev)) {
3144 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3145 /* SNB-B */
3146 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3147 }
3148 I915_WRITE(reg, temp);
3149
3150 reg = FDI_RX_CTL(pipe);
3151 temp = I915_READ(reg);
3152 if (HAS_PCH_CPT(dev)) {
3153 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3154 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3155 } else {
3156 temp &= ~FDI_LINK_TRAIN_NONE;
3157 temp |= FDI_LINK_TRAIN_PATTERN_2;
3158 }
3159 I915_WRITE(reg, temp);
3160
3161 POSTING_READ(reg);
3162 udelay(150);
3163
3164 for (i = 0; i < 4; i++) {
3165 reg = FDI_TX_CTL(pipe);
3166 temp = I915_READ(reg);
3167 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3168 temp |= snb_b_fdi_train_param[i];
3169 I915_WRITE(reg, temp);
3170
3171 POSTING_READ(reg);
3172 udelay(500);
3173
3174 for (retry = 0; retry < 5; retry++) {
3175 reg = FDI_RX_IIR(pipe);
3176 temp = I915_READ(reg);
3177 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3178 if (temp & FDI_RX_SYMBOL_LOCK) {
3179 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3180 DRM_DEBUG_KMS("FDI train 2 done.\n");
3181 break;
3182 }
3183 udelay(50);
3184 }
3185 if (retry < 5)
3186 break;
3187 }
3188 if (i == 4)
3189 DRM_ERROR("FDI train 2 fail!\n");
3190
3191 DRM_DEBUG_KMS("FDI train done.\n");
3192 }
3193
3194 /* Manual link training for Ivy Bridge A0 parts */
3195 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3196 {
3197 struct drm_device *dev = crtc->dev;
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3200 int pipe = intel_crtc->pipe;
3201 u32 reg, temp, i, j;
3202
3203 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3204 for train result */
3205 reg = FDI_RX_IMR(pipe);
3206 temp = I915_READ(reg);
3207 temp &= ~FDI_RX_SYMBOL_LOCK;
3208 temp &= ~FDI_RX_BIT_LOCK;
3209 I915_WRITE(reg, temp);
3210
3211 POSTING_READ(reg);
3212 udelay(150);
3213
3214 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3215 I915_READ(FDI_RX_IIR(pipe)));
3216
3217 /* Try each vswing and preemphasis setting twice before moving on */
3218 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3219 /* disable first in case we need to retry */
3220 reg = FDI_TX_CTL(pipe);
3221 temp = I915_READ(reg);
3222 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3223 temp &= ~FDI_TX_ENABLE;
3224 I915_WRITE(reg, temp);
3225
3226 reg = FDI_RX_CTL(pipe);
3227 temp = I915_READ(reg);
3228 temp &= ~FDI_LINK_TRAIN_AUTO;
3229 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3230 temp &= ~FDI_RX_ENABLE;
3231 I915_WRITE(reg, temp);
3232
3233 /* enable CPU FDI TX and PCH FDI RX */
3234 reg = FDI_TX_CTL(pipe);
3235 temp = I915_READ(reg);
3236 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3237 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3238 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3239 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3240 temp |= snb_b_fdi_train_param[j/2];
3241 temp |= FDI_COMPOSITE_SYNC;
3242 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3243
3244 I915_WRITE(FDI_RX_MISC(pipe),
3245 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3246
3247 reg = FDI_RX_CTL(pipe);
3248 temp = I915_READ(reg);
3249 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3250 temp |= FDI_COMPOSITE_SYNC;
3251 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3252
3253 POSTING_READ(reg);
3254 udelay(1); /* should be 0.5us */
3255
3256 for (i = 0; i < 4; i++) {
3257 reg = FDI_RX_IIR(pipe);
3258 temp = I915_READ(reg);
3259 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3260
3261 if (temp & FDI_RX_BIT_LOCK ||
3262 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3263 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3264 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3265 i);
3266 break;
3267 }
3268 udelay(1); /* should be 0.5us */
3269 }
3270 if (i == 4) {
3271 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3272 continue;
3273 }
3274
3275 /* Train 2 */
3276 reg = FDI_TX_CTL(pipe);
3277 temp = I915_READ(reg);
3278 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3279 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3280 I915_WRITE(reg, temp);
3281
3282 reg = FDI_RX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3285 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3286 I915_WRITE(reg, temp);
3287
3288 POSTING_READ(reg);
3289 udelay(2); /* should be 1.5us */
3290
3291 for (i = 0; i < 4; i++) {
3292 reg = FDI_RX_IIR(pipe);
3293 temp = I915_READ(reg);
3294 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3295
3296 if (temp & FDI_RX_SYMBOL_LOCK ||
3297 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3298 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3299 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3300 i);
3301 goto train_done;
3302 }
3303 udelay(2); /* should be 1.5us */
3304 }
3305 if (i == 4)
3306 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3307 }
3308
3309 train_done:
3310 DRM_DEBUG_KMS("FDI train done.\n");
3311 }
3312
3313 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3314 {
3315 struct drm_device *dev = intel_crtc->base.dev;
3316 struct drm_i915_private *dev_priv = dev->dev_private;
3317 int pipe = intel_crtc->pipe;
3318 u32 reg, temp;
3319
3320
3321 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3322 reg = FDI_RX_CTL(pipe);
3323 temp = I915_READ(reg);
3324 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3325 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3326 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3327 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3328
3329 POSTING_READ(reg);
3330 udelay(200);
3331
3332 /* Switch from Rawclk to PCDclk */
3333 temp = I915_READ(reg);
3334 I915_WRITE(reg, temp | FDI_PCDCLK);
3335
3336 POSTING_READ(reg);
3337 udelay(200);
3338
3339 /* Enable CPU FDI TX PLL, always on for Ironlake */
3340 reg = FDI_TX_CTL(pipe);
3341 temp = I915_READ(reg);
3342 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3343 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3344
3345 POSTING_READ(reg);
3346 udelay(100);
3347 }
3348 }
3349
3350 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3351 {
3352 struct drm_device *dev = intel_crtc->base.dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 int pipe = intel_crtc->pipe;
3355 u32 reg, temp;
3356
3357 /* Switch from PCDclk to Rawclk */
3358 reg = FDI_RX_CTL(pipe);
3359 temp = I915_READ(reg);
3360 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3361
3362 /* Disable CPU FDI TX PLL */
3363 reg = FDI_TX_CTL(pipe);
3364 temp = I915_READ(reg);
3365 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3366
3367 POSTING_READ(reg);
3368 udelay(100);
3369
3370 reg = FDI_RX_CTL(pipe);
3371 temp = I915_READ(reg);
3372 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3373
3374 /* Wait for the clocks to turn off. */
3375 POSTING_READ(reg);
3376 udelay(100);
3377 }
3378
3379 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3380 {
3381 struct drm_device *dev = crtc->dev;
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3384 int pipe = intel_crtc->pipe;
3385 u32 reg, temp;
3386
3387 /* disable CPU FDI tx and PCH FDI rx */
3388 reg = FDI_TX_CTL(pipe);
3389 temp = I915_READ(reg);
3390 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3391 POSTING_READ(reg);
3392
3393 reg = FDI_RX_CTL(pipe);
3394 temp = I915_READ(reg);
3395 temp &= ~(0x7 << 16);
3396 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3397 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3398
3399 POSTING_READ(reg);
3400 udelay(100);
3401
3402 /* Ironlake workaround, disable clock pointer after downing FDI */
3403 if (HAS_PCH_IBX(dev))
3404 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3405
3406 /* still set train pattern 1 */
3407 reg = FDI_TX_CTL(pipe);
3408 temp = I915_READ(reg);
3409 temp &= ~FDI_LINK_TRAIN_NONE;
3410 temp |= FDI_LINK_TRAIN_PATTERN_1;
3411 I915_WRITE(reg, temp);
3412
3413 reg = FDI_RX_CTL(pipe);
3414 temp = I915_READ(reg);
3415 if (HAS_PCH_CPT(dev)) {
3416 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3417 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3418 } else {
3419 temp &= ~FDI_LINK_TRAIN_NONE;
3420 temp |= FDI_LINK_TRAIN_PATTERN_1;
3421 }
3422 /* BPC in FDI rx is consistent with that in PIPECONF */
3423 temp &= ~(0x07 << 16);
3424 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3425 I915_WRITE(reg, temp);
3426
3427 POSTING_READ(reg);
3428 udelay(100);
3429 }
3430
3431 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3432 {
3433 struct intel_crtc *crtc;
3434
3435 /* Note that we don't need to be called with mode_config.lock here
3436 * as our list of CRTC objects is static for the lifetime of the
3437 * device and so cannot disappear as we iterate. Similarly, we can
3438 * happily treat the predicates as racy, atomic checks as userspace
3439 * cannot claim and pin a new fb without at least acquring the
3440 * struct_mutex and so serialising with us.
3441 */
3442 for_each_intel_crtc(dev, crtc) {
3443 if (atomic_read(&crtc->unpin_work_count) == 0)
3444 continue;
3445
3446 if (crtc->unpin_work)
3447 intel_wait_for_vblank(dev, crtc->pipe);
3448
3449 return true;
3450 }
3451
3452 return false;
3453 }
3454
3455 static void page_flip_completed(struct intel_crtc *intel_crtc)
3456 {
3457 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3458 struct intel_unpin_work *work = intel_crtc->unpin_work;
3459
3460 /* ensure that the unpin work is consistent wrt ->pending. */
3461 smp_rmb();
3462 intel_crtc->unpin_work = NULL;
3463
3464 if (work->event)
3465 drm_send_vblank_event(intel_crtc->base.dev,
3466 intel_crtc->pipe,
3467 work->event);
3468
3469 drm_crtc_vblank_put(&intel_crtc->base);
3470
3471 wake_up_all(&dev_priv->pending_flip_queue);
3472 queue_work(dev_priv->wq, &work->work);
3473
3474 trace_i915_flip_complete(intel_crtc->plane,
3475 work->pending_flip_obj);
3476 }
3477
3478 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3479 {
3480 struct drm_device *dev = crtc->dev;
3481 struct drm_i915_private *dev_priv = dev->dev_private;
3482
3483 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3484 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3485 !intel_crtc_has_pending_flip(crtc),
3486 60*HZ) == 0)) {
3487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488 unsigned long flags;
3489
3490 spin_lock_irqsave(&dev->event_lock, flags);
3491 if (intel_crtc->unpin_work) {
3492 WARN_ONCE(1, "Removing stuck page flip\n");
3493 page_flip_completed(intel_crtc);
3494 }
3495 spin_unlock_irqrestore(&dev->event_lock, flags);
3496 }
3497
3498 if (crtc->primary->fb) {
3499 mutex_lock(&dev->struct_mutex);
3500 intel_finish_fb(crtc->primary->fb);
3501 mutex_unlock(&dev->struct_mutex);
3502 }
3503 }
3504
3505 /* Program iCLKIP clock to the desired frequency */
3506 static void lpt_program_iclkip(struct drm_crtc *crtc)
3507 {
3508 struct drm_device *dev = crtc->dev;
3509 struct drm_i915_private *dev_priv = dev->dev_private;
3510 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3511 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3512 u32 temp;
3513
3514 mutex_lock(&dev_priv->dpio_lock);
3515
3516 /* It is necessary to ungate the pixclk gate prior to programming
3517 * the divisors, and gate it back when it is done.
3518 */
3519 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3520
3521 /* Disable SSCCTL */
3522 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3523 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3524 SBI_SSCCTL_DISABLE,
3525 SBI_ICLK);
3526
3527 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3528 if (clock == 20000) {
3529 auxdiv = 1;
3530 divsel = 0x41;
3531 phaseinc = 0x20;
3532 } else {
3533 /* The iCLK virtual clock root frequency is in MHz,
3534 * but the adjusted_mode->crtc_clock in in KHz. To get the
3535 * divisors, it is necessary to divide one by another, so we
3536 * convert the virtual clock precision to KHz here for higher
3537 * precision.
3538 */
3539 u32 iclk_virtual_root_freq = 172800 * 1000;
3540 u32 iclk_pi_range = 64;
3541 u32 desired_divisor, msb_divisor_value, pi_value;
3542
3543 desired_divisor = (iclk_virtual_root_freq / clock);
3544 msb_divisor_value = desired_divisor / iclk_pi_range;
3545 pi_value = desired_divisor % iclk_pi_range;
3546
3547 auxdiv = 0;
3548 divsel = msb_divisor_value - 2;
3549 phaseinc = pi_value;
3550 }
3551
3552 /* This should not happen with any sane values */
3553 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3554 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3555 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3556 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3557
3558 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3559 clock,
3560 auxdiv,
3561 divsel,
3562 phasedir,
3563 phaseinc);
3564
3565 /* Program SSCDIVINTPHASE6 */
3566 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3567 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3568 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3569 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3570 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3571 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3572 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3573 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3574
3575 /* Program SSCAUXDIV */
3576 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3577 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3578 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3579 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3580
3581 /* Enable modulator and associated divider */
3582 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3583 temp &= ~SBI_SSCCTL_DISABLE;
3584 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3585
3586 /* Wait for initialization time */
3587 udelay(24);
3588
3589 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3590
3591 mutex_unlock(&dev_priv->dpio_lock);
3592 }
3593
3594 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3595 enum pipe pch_transcoder)
3596 {
3597 struct drm_device *dev = crtc->base.dev;
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3600
3601 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3602 I915_READ(HTOTAL(cpu_transcoder)));
3603 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3604 I915_READ(HBLANK(cpu_transcoder)));
3605 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3606 I915_READ(HSYNC(cpu_transcoder)));
3607
3608 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3609 I915_READ(VTOTAL(cpu_transcoder)));
3610 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3611 I915_READ(VBLANK(cpu_transcoder)));
3612 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3613 I915_READ(VSYNC(cpu_transcoder)));
3614 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3615 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3616 }
3617
3618 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3619 {
3620 struct drm_i915_private *dev_priv = dev->dev_private;
3621 uint32_t temp;
3622
3623 temp = I915_READ(SOUTH_CHICKEN1);
3624 if (temp & FDI_BC_BIFURCATION_SELECT)
3625 return;
3626
3627 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3628 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3629
3630 temp |= FDI_BC_BIFURCATION_SELECT;
3631 DRM_DEBUG_KMS("enabling fdi C rx\n");
3632 I915_WRITE(SOUTH_CHICKEN1, temp);
3633 POSTING_READ(SOUTH_CHICKEN1);
3634 }
3635
3636 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3637 {
3638 struct drm_device *dev = intel_crtc->base.dev;
3639 struct drm_i915_private *dev_priv = dev->dev_private;
3640
3641 switch (intel_crtc->pipe) {
3642 case PIPE_A:
3643 break;
3644 case PIPE_B:
3645 if (intel_crtc->config.fdi_lanes > 2)
3646 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3647 else
3648 cpt_enable_fdi_bc_bifurcation(dev);
3649
3650 break;
3651 case PIPE_C:
3652 cpt_enable_fdi_bc_bifurcation(dev);
3653
3654 break;
3655 default:
3656 BUG();
3657 }
3658 }
3659
3660 /*
3661 * Enable PCH resources required for PCH ports:
3662 * - PCH PLLs
3663 * - FDI training & RX/TX
3664 * - update transcoder timings
3665 * - DP transcoding bits
3666 * - transcoder
3667 */
3668 static void ironlake_pch_enable(struct drm_crtc *crtc)
3669 {
3670 struct drm_device *dev = crtc->dev;
3671 struct drm_i915_private *dev_priv = dev->dev_private;
3672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3673 int pipe = intel_crtc->pipe;
3674 u32 reg, temp;
3675
3676 assert_pch_transcoder_disabled(dev_priv, pipe);
3677
3678 if (IS_IVYBRIDGE(dev))
3679 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3680
3681 /* Write the TU size bits before fdi link training, so that error
3682 * detection works. */
3683 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3684 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3685
3686 /* For PCH output, training FDI link */
3687 dev_priv->display.fdi_link_train(crtc);
3688
3689 /* We need to program the right clock selection before writing the pixel
3690 * mutliplier into the DPLL. */
3691 if (HAS_PCH_CPT(dev)) {
3692 u32 sel;
3693
3694 temp = I915_READ(PCH_DPLL_SEL);
3695 temp |= TRANS_DPLL_ENABLE(pipe);
3696 sel = TRANS_DPLLB_SEL(pipe);
3697 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3698 temp |= sel;
3699 else
3700 temp &= ~sel;
3701 I915_WRITE(PCH_DPLL_SEL, temp);
3702 }
3703
3704 /* XXX: pch pll's can be enabled any time before we enable the PCH
3705 * transcoder, and we actually should do this to not upset any PCH
3706 * transcoder that already use the clock when we share it.
3707 *
3708 * Note that enable_shared_dpll tries to do the right thing, but
3709 * get_shared_dpll unconditionally resets the pll - we need that to have
3710 * the right LVDS enable sequence. */
3711 intel_enable_shared_dpll(intel_crtc);
3712
3713 /* set transcoder timing, panel must allow it */
3714 assert_panel_unlocked(dev_priv, pipe);
3715 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3716
3717 intel_fdi_normal_train(crtc);
3718
3719 /* For PCH DP, enable TRANS_DP_CTL */
3720 if (HAS_PCH_CPT(dev) &&
3721 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3722 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3723 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3724 reg = TRANS_DP_CTL(pipe);
3725 temp = I915_READ(reg);
3726 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3727 TRANS_DP_SYNC_MASK |
3728 TRANS_DP_BPC_MASK);
3729 temp |= (TRANS_DP_OUTPUT_ENABLE |
3730 TRANS_DP_ENH_FRAMING);
3731 temp |= bpc << 9; /* same format but at 11:9 */
3732
3733 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3734 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3735 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3736 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3737
3738 switch (intel_trans_dp_port_sel(crtc)) {
3739 case PCH_DP_B:
3740 temp |= TRANS_DP_PORT_SEL_B;
3741 break;
3742 case PCH_DP_C:
3743 temp |= TRANS_DP_PORT_SEL_C;
3744 break;
3745 case PCH_DP_D:
3746 temp |= TRANS_DP_PORT_SEL_D;
3747 break;
3748 default:
3749 BUG();
3750 }
3751
3752 I915_WRITE(reg, temp);
3753 }
3754
3755 ironlake_enable_pch_transcoder(dev_priv, pipe);
3756 }
3757
3758 static void lpt_pch_enable(struct drm_crtc *crtc)
3759 {
3760 struct drm_device *dev = crtc->dev;
3761 struct drm_i915_private *dev_priv = dev->dev_private;
3762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3763 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3764
3765 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3766
3767 lpt_program_iclkip(crtc);
3768
3769 /* Set transcoder timing. */
3770 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3771
3772 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3773 }
3774
3775 void intel_put_shared_dpll(struct intel_crtc *crtc)
3776 {
3777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3778
3779 if (pll == NULL)
3780 return;
3781
3782 if (pll->refcount == 0) {
3783 WARN(1, "bad %s refcount\n", pll->name);
3784 return;
3785 }
3786
3787 if (--pll->refcount == 0) {
3788 WARN_ON(pll->on);
3789 WARN_ON(pll->active);
3790 }
3791
3792 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3793 }
3794
3795 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3796 {
3797 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3798 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3799 enum intel_dpll_id i;
3800
3801 if (pll) {
3802 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3803 crtc->base.base.id, pll->name);
3804 intel_put_shared_dpll(crtc);
3805 }
3806
3807 if (HAS_PCH_IBX(dev_priv->dev)) {
3808 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3809 i = (enum intel_dpll_id) crtc->pipe;
3810 pll = &dev_priv->shared_dplls[i];
3811
3812 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3813 crtc->base.base.id, pll->name);
3814
3815 WARN_ON(pll->refcount);
3816
3817 goto found;
3818 }
3819
3820 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3821 pll = &dev_priv->shared_dplls[i];
3822
3823 /* Only want to check enabled timings first */
3824 if (pll->refcount == 0)
3825 continue;
3826
3827 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3828 sizeof(pll->hw_state)) == 0) {
3829 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3830 crtc->base.base.id,
3831 pll->name, pll->refcount, pll->active);
3832
3833 goto found;
3834 }
3835 }
3836
3837 /* Ok no matching timings, maybe there's a free one? */
3838 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3839 pll = &dev_priv->shared_dplls[i];
3840 if (pll->refcount == 0) {
3841 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3842 crtc->base.base.id, pll->name);
3843 goto found;
3844 }
3845 }
3846
3847 return NULL;
3848
3849 found:
3850 if (pll->refcount == 0)
3851 pll->hw_state = crtc->config.dpll_hw_state;
3852
3853 crtc->config.shared_dpll = i;
3854 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3855 pipe_name(crtc->pipe));
3856
3857 pll->refcount++;
3858
3859 return pll;
3860 }
3861
3862 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3863 {
3864 struct drm_i915_private *dev_priv = dev->dev_private;
3865 int dslreg = PIPEDSL(pipe);
3866 u32 temp;
3867
3868 temp = I915_READ(dslreg);
3869 udelay(500);
3870 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3871 if (wait_for(I915_READ(dslreg) != temp, 5))
3872 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3873 }
3874 }
3875
3876 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3877 {
3878 struct drm_device *dev = crtc->base.dev;
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880 int pipe = crtc->pipe;
3881
3882 if (crtc->config.pch_pfit.enabled) {
3883 /* Force use of hard-coded filter coefficients
3884 * as some pre-programmed values are broken,
3885 * e.g. x201.
3886 */
3887 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3888 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3889 PF_PIPE_SEL_IVB(pipe));
3890 else
3891 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3892 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3893 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3894 }
3895 }
3896
3897 static void intel_enable_planes(struct drm_crtc *crtc)
3898 {
3899 struct drm_device *dev = crtc->dev;
3900 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3901 struct drm_plane *plane;
3902 struct intel_plane *intel_plane;
3903
3904 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3905 intel_plane = to_intel_plane(plane);
3906 if (intel_plane->pipe == pipe)
3907 intel_plane_restore(&intel_plane->base);
3908 }
3909 }
3910
3911 static void intel_disable_planes(struct drm_crtc *crtc)
3912 {
3913 struct drm_device *dev = crtc->dev;
3914 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3915 struct drm_plane *plane;
3916 struct intel_plane *intel_plane;
3917
3918 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3919 intel_plane = to_intel_plane(plane);
3920 if (intel_plane->pipe == pipe)
3921 intel_plane_disable(&intel_plane->base);
3922 }
3923 }
3924
3925 void hsw_enable_ips(struct intel_crtc *crtc)
3926 {
3927 struct drm_device *dev = crtc->base.dev;
3928 struct drm_i915_private *dev_priv = dev->dev_private;
3929
3930 if (!crtc->config.ips_enabled)
3931 return;
3932
3933 /* We can only enable IPS after we enable a plane and wait for a vblank */
3934 intel_wait_for_vblank(dev, crtc->pipe);
3935
3936 assert_plane_enabled(dev_priv, crtc->plane);
3937 if (IS_BROADWELL(dev)) {
3938 mutex_lock(&dev_priv->rps.hw_lock);
3939 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3940 mutex_unlock(&dev_priv->rps.hw_lock);
3941 /* Quoting Art Runyan: "its not safe to expect any particular
3942 * value in IPS_CTL bit 31 after enabling IPS through the
3943 * mailbox." Moreover, the mailbox may return a bogus state,
3944 * so we need to just enable it and continue on.
3945 */
3946 } else {
3947 I915_WRITE(IPS_CTL, IPS_ENABLE);
3948 /* The bit only becomes 1 in the next vblank, so this wait here
3949 * is essentially intel_wait_for_vblank. If we don't have this
3950 * and don't wait for vblanks until the end of crtc_enable, then
3951 * the HW state readout code will complain that the expected
3952 * IPS_CTL value is not the one we read. */
3953 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3954 DRM_ERROR("Timed out waiting for IPS enable\n");
3955 }
3956 }
3957
3958 void hsw_disable_ips(struct intel_crtc *crtc)
3959 {
3960 struct drm_device *dev = crtc->base.dev;
3961 struct drm_i915_private *dev_priv = dev->dev_private;
3962
3963 if (!crtc->config.ips_enabled)
3964 return;
3965
3966 assert_plane_enabled(dev_priv, crtc->plane);
3967 if (IS_BROADWELL(dev)) {
3968 mutex_lock(&dev_priv->rps.hw_lock);
3969 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3970 mutex_unlock(&dev_priv->rps.hw_lock);
3971 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3972 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3973 DRM_ERROR("Timed out waiting for IPS disable\n");
3974 } else {
3975 I915_WRITE(IPS_CTL, 0);
3976 POSTING_READ(IPS_CTL);
3977 }
3978
3979 /* We need to wait for a vblank before we can disable the plane. */
3980 intel_wait_for_vblank(dev, crtc->pipe);
3981 }
3982
3983 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3984 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3985 {
3986 struct drm_device *dev = crtc->dev;
3987 struct drm_i915_private *dev_priv = dev->dev_private;
3988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3989 enum pipe pipe = intel_crtc->pipe;
3990 int palreg = PALETTE(pipe);
3991 int i;
3992 bool reenable_ips = false;
3993
3994 /* The clocks have to be on to load the palette. */
3995 if (!crtc->enabled || !intel_crtc->active)
3996 return;
3997
3998 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3999 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4000 assert_dsi_pll_enabled(dev_priv);
4001 else
4002 assert_pll_enabled(dev_priv, pipe);
4003 }
4004
4005 /* use legacy palette for Ironlake */
4006 if (!HAS_GMCH_DISPLAY(dev))
4007 palreg = LGC_PALETTE(pipe);
4008
4009 /* Workaround : Do not read or write the pipe palette/gamma data while
4010 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4011 */
4012 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4013 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4014 GAMMA_MODE_MODE_SPLIT)) {
4015 hsw_disable_ips(intel_crtc);
4016 reenable_ips = true;
4017 }
4018
4019 for (i = 0; i < 256; i++) {
4020 I915_WRITE(palreg + 4 * i,
4021 (intel_crtc->lut_r[i] << 16) |
4022 (intel_crtc->lut_g[i] << 8) |
4023 intel_crtc->lut_b[i]);
4024 }
4025
4026 if (reenable_ips)
4027 hsw_enable_ips(intel_crtc);
4028 }
4029
4030 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4031 {
4032 if (!enable && intel_crtc->overlay) {
4033 struct drm_device *dev = intel_crtc->base.dev;
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035
4036 mutex_lock(&dev->struct_mutex);
4037 dev_priv->mm.interruptible = false;
4038 (void) intel_overlay_switch_off(intel_crtc->overlay);
4039 dev_priv->mm.interruptible = true;
4040 mutex_unlock(&dev->struct_mutex);
4041 }
4042
4043 /* Let userspace switch the overlay on again. In most cases userspace
4044 * has to recompute where to put it anyway.
4045 */
4046 }
4047
4048 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4049 {
4050 struct drm_device *dev = crtc->dev;
4051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4052 int pipe = intel_crtc->pipe;
4053
4054 assert_vblank_disabled(crtc);
4055
4056 drm_vblank_on(dev, pipe);
4057
4058 intel_enable_primary_hw_plane(crtc->primary, crtc);
4059 intel_enable_planes(crtc);
4060 intel_crtc_update_cursor(crtc, true);
4061 intel_crtc_dpms_overlay(intel_crtc, true);
4062
4063 hsw_enable_ips(intel_crtc);
4064
4065 mutex_lock(&dev->struct_mutex);
4066 intel_update_fbc(dev);
4067 mutex_unlock(&dev->struct_mutex);
4068
4069 /*
4070 * FIXME: Once we grow proper nuclear flip support out of this we need
4071 * to compute the mask of flip planes precisely. For the time being
4072 * consider this a flip from a NULL plane.
4073 */
4074 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4075 }
4076
4077 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4078 {
4079 struct drm_device *dev = crtc->dev;
4080 struct drm_i915_private *dev_priv = dev->dev_private;
4081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4082 int pipe = intel_crtc->pipe;
4083 int plane = intel_crtc->plane;
4084
4085 intel_crtc_wait_for_pending_flips(crtc);
4086
4087 if (dev_priv->fbc.plane == plane)
4088 intel_disable_fbc(dev);
4089
4090 hsw_disable_ips(intel_crtc);
4091
4092 intel_crtc_dpms_overlay(intel_crtc, false);
4093 intel_crtc_update_cursor(crtc, false);
4094 intel_disable_planes(crtc);
4095 intel_disable_primary_hw_plane(crtc->primary, crtc);
4096
4097 /*
4098 * FIXME: Once we grow proper nuclear flip support out of this we need
4099 * to compute the mask of flip planes precisely. For the time being
4100 * consider this a flip to a NULL plane.
4101 */
4102 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4103
4104 drm_vblank_off(dev, pipe);
4105
4106 assert_vblank_disabled(crtc);
4107 }
4108
4109 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4110 {
4111 struct drm_device *dev = crtc->dev;
4112 struct drm_i915_private *dev_priv = dev->dev_private;
4113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4114 struct intel_encoder *encoder;
4115 int pipe = intel_crtc->pipe;
4116
4117 WARN_ON(!crtc->enabled);
4118
4119 if (intel_crtc->active)
4120 return;
4121
4122 if (intel_crtc->config.has_pch_encoder)
4123 intel_prepare_shared_dpll(intel_crtc);
4124
4125 if (intel_crtc->config.has_dp_encoder)
4126 intel_dp_set_m_n(intel_crtc);
4127
4128 intel_set_pipe_timings(intel_crtc);
4129
4130 if (intel_crtc->config.has_pch_encoder) {
4131 intel_cpu_transcoder_set_m_n(intel_crtc,
4132 &intel_crtc->config.fdi_m_n, NULL);
4133 }
4134
4135 ironlake_set_pipeconf(crtc);
4136
4137 intel_crtc->active = true;
4138
4139 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4140 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4141
4142 for_each_encoder_on_crtc(dev, crtc, encoder)
4143 if (encoder->pre_enable)
4144 encoder->pre_enable(encoder);
4145
4146 if (intel_crtc->config.has_pch_encoder) {
4147 /* Note: FDI PLL enabling _must_ be done before we enable the
4148 * cpu pipes, hence this is separate from all the other fdi/pch
4149 * enabling. */
4150 ironlake_fdi_pll_enable(intel_crtc);
4151 } else {
4152 assert_fdi_tx_disabled(dev_priv, pipe);
4153 assert_fdi_rx_disabled(dev_priv, pipe);
4154 }
4155
4156 ironlake_pfit_enable(intel_crtc);
4157
4158 /*
4159 * On ILK+ LUT must be loaded before the pipe is running but with
4160 * clocks enabled
4161 */
4162 intel_crtc_load_lut(crtc);
4163
4164 intel_update_watermarks(crtc);
4165 intel_enable_pipe(intel_crtc);
4166
4167 if (intel_crtc->config.has_pch_encoder)
4168 ironlake_pch_enable(crtc);
4169
4170 for_each_encoder_on_crtc(dev, crtc, encoder)
4171 encoder->enable(encoder);
4172
4173 if (HAS_PCH_CPT(dev))
4174 cpt_verify_modeset(dev, intel_crtc->pipe);
4175
4176 intel_crtc_enable_planes(crtc);
4177 }
4178
4179 /* IPS only exists on ULT machines and is tied to pipe A. */
4180 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4181 {
4182 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4183 }
4184
4185 /*
4186 * This implements the workaround described in the "notes" section of the mode
4187 * set sequence documentation. When going from no pipes or single pipe to
4188 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4189 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4190 */
4191 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4192 {
4193 struct drm_device *dev = crtc->base.dev;
4194 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4195
4196 /* We want to get the other_active_crtc only if there's only 1 other
4197 * active crtc. */
4198 for_each_intel_crtc(dev, crtc_it) {
4199 if (!crtc_it->active || crtc_it == crtc)
4200 continue;
4201
4202 if (other_active_crtc)
4203 return;
4204
4205 other_active_crtc = crtc_it;
4206 }
4207 if (!other_active_crtc)
4208 return;
4209
4210 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4211 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4212 }
4213
4214 static void haswell_crtc_enable(struct drm_crtc *crtc)
4215 {
4216 struct drm_device *dev = crtc->dev;
4217 struct drm_i915_private *dev_priv = dev->dev_private;
4218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4219 struct intel_encoder *encoder;
4220 int pipe = intel_crtc->pipe;
4221
4222 WARN_ON(!crtc->enabled);
4223
4224 if (intel_crtc->active)
4225 return;
4226
4227 if (intel_crtc_to_shared_dpll(intel_crtc))
4228 intel_enable_shared_dpll(intel_crtc);
4229
4230 if (intel_crtc->config.has_dp_encoder)
4231 intel_dp_set_m_n(intel_crtc);
4232
4233 intel_set_pipe_timings(intel_crtc);
4234
4235 if (intel_crtc->config.has_pch_encoder) {
4236 intel_cpu_transcoder_set_m_n(intel_crtc,
4237 &intel_crtc->config.fdi_m_n, NULL);
4238 }
4239
4240 haswell_set_pipeconf(crtc);
4241
4242 intel_set_pipe_csc(crtc);
4243
4244 intel_crtc->active = true;
4245
4246 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4247 for_each_encoder_on_crtc(dev, crtc, encoder)
4248 if (encoder->pre_enable)
4249 encoder->pre_enable(encoder);
4250
4251 if (intel_crtc->config.has_pch_encoder) {
4252 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4253 dev_priv->display.fdi_link_train(crtc);
4254 }
4255
4256 intel_ddi_enable_pipe_clock(intel_crtc);
4257
4258 ironlake_pfit_enable(intel_crtc);
4259
4260 /*
4261 * On ILK+ LUT must be loaded before the pipe is running but with
4262 * clocks enabled
4263 */
4264 intel_crtc_load_lut(crtc);
4265
4266 intel_ddi_set_pipe_settings(crtc);
4267 intel_ddi_enable_transcoder_func(crtc);
4268
4269 intel_update_watermarks(crtc);
4270 intel_enable_pipe(intel_crtc);
4271
4272 if (intel_crtc->config.has_pch_encoder)
4273 lpt_pch_enable(crtc);
4274
4275 if (intel_crtc->config.dp_encoder_is_mst)
4276 intel_ddi_set_vc_payload_alloc(crtc, true);
4277
4278 for_each_encoder_on_crtc(dev, crtc, encoder) {
4279 encoder->enable(encoder);
4280 intel_opregion_notify_encoder(encoder, true);
4281 }
4282
4283 /* If we change the relative order between pipe/planes enabling, we need
4284 * to change the workaround. */
4285 haswell_mode_set_planes_workaround(intel_crtc);
4286 intel_crtc_enable_planes(crtc);
4287 }
4288
4289 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4290 {
4291 struct drm_device *dev = crtc->base.dev;
4292 struct drm_i915_private *dev_priv = dev->dev_private;
4293 int pipe = crtc->pipe;
4294
4295 /* To avoid upsetting the power well on haswell only disable the pfit if
4296 * it's in use. The hw state code will make sure we get this right. */
4297 if (crtc->config.pch_pfit.enabled) {
4298 I915_WRITE(PF_CTL(pipe), 0);
4299 I915_WRITE(PF_WIN_POS(pipe), 0);
4300 I915_WRITE(PF_WIN_SZ(pipe), 0);
4301 }
4302 }
4303
4304 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4305 {
4306 struct drm_device *dev = crtc->dev;
4307 struct drm_i915_private *dev_priv = dev->dev_private;
4308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4309 struct intel_encoder *encoder;
4310 int pipe = intel_crtc->pipe;
4311 u32 reg, temp;
4312
4313 if (!intel_crtc->active)
4314 return;
4315
4316 intel_crtc_disable_planes(crtc);
4317
4318 for_each_encoder_on_crtc(dev, crtc, encoder)
4319 encoder->disable(encoder);
4320
4321 if (intel_crtc->config.has_pch_encoder)
4322 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4323
4324 intel_disable_pipe(intel_crtc);
4325
4326 ironlake_pfit_disable(intel_crtc);
4327
4328 for_each_encoder_on_crtc(dev, crtc, encoder)
4329 if (encoder->post_disable)
4330 encoder->post_disable(encoder);
4331
4332 if (intel_crtc->config.has_pch_encoder) {
4333 ironlake_fdi_disable(crtc);
4334
4335 ironlake_disable_pch_transcoder(dev_priv, pipe);
4336 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4337
4338 if (HAS_PCH_CPT(dev)) {
4339 /* disable TRANS_DP_CTL */
4340 reg = TRANS_DP_CTL(pipe);
4341 temp = I915_READ(reg);
4342 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4343 TRANS_DP_PORT_SEL_MASK);
4344 temp |= TRANS_DP_PORT_SEL_NONE;
4345 I915_WRITE(reg, temp);
4346
4347 /* disable DPLL_SEL */
4348 temp = I915_READ(PCH_DPLL_SEL);
4349 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4350 I915_WRITE(PCH_DPLL_SEL, temp);
4351 }
4352
4353 /* disable PCH DPLL */
4354 intel_disable_shared_dpll(intel_crtc);
4355
4356 ironlake_fdi_pll_disable(intel_crtc);
4357 }
4358
4359 intel_crtc->active = false;
4360 intel_update_watermarks(crtc);
4361
4362 mutex_lock(&dev->struct_mutex);
4363 intel_update_fbc(dev);
4364 mutex_unlock(&dev->struct_mutex);
4365 }
4366
4367 static void haswell_crtc_disable(struct drm_crtc *crtc)
4368 {
4369 struct drm_device *dev = crtc->dev;
4370 struct drm_i915_private *dev_priv = dev->dev_private;
4371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4372 struct intel_encoder *encoder;
4373 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4374
4375 if (!intel_crtc->active)
4376 return;
4377
4378 intel_crtc_disable_planes(crtc);
4379
4380 for_each_encoder_on_crtc(dev, crtc, encoder) {
4381 intel_opregion_notify_encoder(encoder, false);
4382 encoder->disable(encoder);
4383 }
4384
4385 if (intel_crtc->config.has_pch_encoder)
4386 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4387 intel_disable_pipe(intel_crtc);
4388
4389 if (intel_crtc->config.dp_encoder_is_mst)
4390 intel_ddi_set_vc_payload_alloc(crtc, false);
4391
4392 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4393
4394 ironlake_pfit_disable(intel_crtc);
4395
4396 intel_ddi_disable_pipe_clock(intel_crtc);
4397
4398 if (intel_crtc->config.has_pch_encoder) {
4399 lpt_disable_pch_transcoder(dev_priv);
4400 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4401 intel_ddi_fdi_disable(crtc);
4402 }
4403
4404 for_each_encoder_on_crtc(dev, crtc, encoder)
4405 if (encoder->post_disable)
4406 encoder->post_disable(encoder);
4407
4408 intel_crtc->active = false;
4409 intel_update_watermarks(crtc);
4410
4411 mutex_lock(&dev->struct_mutex);
4412 intel_update_fbc(dev);
4413 mutex_unlock(&dev->struct_mutex);
4414
4415 if (intel_crtc_to_shared_dpll(intel_crtc))
4416 intel_disable_shared_dpll(intel_crtc);
4417 }
4418
4419 static void ironlake_crtc_off(struct drm_crtc *crtc)
4420 {
4421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4422 intel_put_shared_dpll(intel_crtc);
4423 }
4424
4425
4426 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4427 {
4428 struct drm_device *dev = crtc->base.dev;
4429 struct drm_i915_private *dev_priv = dev->dev_private;
4430 struct intel_crtc_config *pipe_config = &crtc->config;
4431
4432 if (!crtc->config.gmch_pfit.control)
4433 return;
4434
4435 /*
4436 * The panel fitter should only be adjusted whilst the pipe is disabled,
4437 * according to register description and PRM.
4438 */
4439 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4440 assert_pipe_disabled(dev_priv, crtc->pipe);
4441
4442 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4443 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4444
4445 /* Border color in case we don't scale up to the full screen. Black by
4446 * default, change to something else for debugging. */
4447 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4448 }
4449
4450 static enum intel_display_power_domain port_to_power_domain(enum port port)
4451 {
4452 switch (port) {
4453 case PORT_A:
4454 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4455 case PORT_B:
4456 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4457 case PORT_C:
4458 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4459 case PORT_D:
4460 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4461 default:
4462 WARN_ON_ONCE(1);
4463 return POWER_DOMAIN_PORT_OTHER;
4464 }
4465 }
4466
4467 #define for_each_power_domain(domain, mask) \
4468 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4469 if ((1 << (domain)) & (mask))
4470
4471 enum intel_display_power_domain
4472 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4473 {
4474 struct drm_device *dev = intel_encoder->base.dev;
4475 struct intel_digital_port *intel_dig_port;
4476
4477 switch (intel_encoder->type) {
4478 case INTEL_OUTPUT_UNKNOWN:
4479 /* Only DDI platforms should ever use this output type */
4480 WARN_ON_ONCE(!HAS_DDI(dev));
4481 case INTEL_OUTPUT_DISPLAYPORT:
4482 case INTEL_OUTPUT_HDMI:
4483 case INTEL_OUTPUT_EDP:
4484 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4485 return port_to_power_domain(intel_dig_port->port);
4486 case INTEL_OUTPUT_DP_MST:
4487 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4488 return port_to_power_domain(intel_dig_port->port);
4489 case INTEL_OUTPUT_ANALOG:
4490 return POWER_DOMAIN_PORT_CRT;
4491 case INTEL_OUTPUT_DSI:
4492 return POWER_DOMAIN_PORT_DSI;
4493 default:
4494 return POWER_DOMAIN_PORT_OTHER;
4495 }
4496 }
4497
4498 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4499 {
4500 struct drm_device *dev = crtc->dev;
4501 struct intel_encoder *intel_encoder;
4502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4503 enum pipe pipe = intel_crtc->pipe;
4504 unsigned long mask;
4505 enum transcoder transcoder;
4506
4507 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4508
4509 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4510 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4511 if (intel_crtc->config.pch_pfit.enabled ||
4512 intel_crtc->config.pch_pfit.force_thru)
4513 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4514
4515 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4516 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4517
4518 return mask;
4519 }
4520
4521 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4522 bool enable)
4523 {
4524 if (dev_priv->power_domains.init_power_on == enable)
4525 return;
4526
4527 if (enable)
4528 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4529 else
4530 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4531
4532 dev_priv->power_domains.init_power_on = enable;
4533 }
4534
4535 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4536 {
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4539 struct intel_crtc *crtc;
4540
4541 /*
4542 * First get all needed power domains, then put all unneeded, to avoid
4543 * any unnecessary toggling of the power wells.
4544 */
4545 for_each_intel_crtc(dev, crtc) {
4546 enum intel_display_power_domain domain;
4547
4548 if (!crtc->base.enabled)
4549 continue;
4550
4551 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4552
4553 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4554 intel_display_power_get(dev_priv, domain);
4555 }
4556
4557 for_each_intel_crtc(dev, crtc) {
4558 enum intel_display_power_domain domain;
4559
4560 for_each_power_domain(domain, crtc->enabled_power_domains)
4561 intel_display_power_put(dev_priv, domain);
4562
4563 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4564 }
4565
4566 intel_display_set_init_power(dev_priv, false);
4567 }
4568
4569 /* returns HPLL frequency in kHz */
4570 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4571 {
4572 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4573
4574 /* Obtain SKU information */
4575 mutex_lock(&dev_priv->dpio_lock);
4576 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4577 CCK_FUSE_HPLL_FREQ_MASK;
4578 mutex_unlock(&dev_priv->dpio_lock);
4579
4580 return vco_freq[hpll_freq] * 1000;
4581 }
4582
4583 static void vlv_update_cdclk(struct drm_device *dev)
4584 {
4585 struct drm_i915_private *dev_priv = dev->dev_private;
4586
4587 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4588 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4589 dev_priv->vlv_cdclk_freq);
4590
4591 /*
4592 * Program the gmbus_freq based on the cdclk frequency.
4593 * BSpec erroneously claims we should aim for 4MHz, but
4594 * in fact 1MHz is the correct frequency.
4595 */
4596 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4597 }
4598
4599 /* Adjust CDclk dividers to allow high res or save power if possible */
4600 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4601 {
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 u32 val, cmd;
4604
4605 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4606
4607 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4608 cmd = 2;
4609 else if (cdclk == 266667)
4610 cmd = 1;
4611 else
4612 cmd = 0;
4613
4614 mutex_lock(&dev_priv->rps.hw_lock);
4615 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4616 val &= ~DSPFREQGUAR_MASK;
4617 val |= (cmd << DSPFREQGUAR_SHIFT);
4618 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4619 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4620 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4621 50)) {
4622 DRM_ERROR("timed out waiting for CDclk change\n");
4623 }
4624 mutex_unlock(&dev_priv->rps.hw_lock);
4625
4626 if (cdclk == 400000) {
4627 u32 divider, vco;
4628
4629 vco = valleyview_get_vco(dev_priv);
4630 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4631
4632 mutex_lock(&dev_priv->dpio_lock);
4633 /* adjust cdclk divider */
4634 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4635 val &= ~DISPLAY_FREQUENCY_VALUES;
4636 val |= divider;
4637 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4638
4639 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4640 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4641 50))
4642 DRM_ERROR("timed out waiting for CDclk change\n");
4643 mutex_unlock(&dev_priv->dpio_lock);
4644 }
4645
4646 mutex_lock(&dev_priv->dpio_lock);
4647 /* adjust self-refresh exit latency value */
4648 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4649 val &= ~0x7f;
4650
4651 /*
4652 * For high bandwidth configs, we set a higher latency in the bunit
4653 * so that the core display fetch happens in time to avoid underruns.
4654 */
4655 if (cdclk == 400000)
4656 val |= 4500 / 250; /* 4.5 usec */
4657 else
4658 val |= 3000 / 250; /* 3.0 usec */
4659 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4660 mutex_unlock(&dev_priv->dpio_lock);
4661
4662 vlv_update_cdclk(dev);
4663 }
4664
4665 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4666 {
4667 struct drm_i915_private *dev_priv = dev->dev_private;
4668 u32 val, cmd;
4669
4670 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4671
4672 switch (cdclk) {
4673 case 400000:
4674 cmd = 3;
4675 break;
4676 case 333333:
4677 case 320000:
4678 cmd = 2;
4679 break;
4680 case 266667:
4681 cmd = 1;
4682 break;
4683 case 200000:
4684 cmd = 0;
4685 break;
4686 default:
4687 WARN_ON(1);
4688 return;
4689 }
4690
4691 mutex_lock(&dev_priv->rps.hw_lock);
4692 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4693 val &= ~DSPFREQGUAR_MASK_CHV;
4694 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4695 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4696 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4697 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4698 50)) {
4699 DRM_ERROR("timed out waiting for CDclk change\n");
4700 }
4701 mutex_unlock(&dev_priv->rps.hw_lock);
4702
4703 vlv_update_cdclk(dev);
4704 }
4705
4706 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4707 int max_pixclk)
4708 {
4709 int vco = valleyview_get_vco(dev_priv);
4710 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4711
4712 /* FIXME: Punit isn't quite ready yet */
4713 if (IS_CHERRYVIEW(dev_priv->dev))
4714 return 400000;
4715
4716 /*
4717 * Really only a few cases to deal with, as only 4 CDclks are supported:
4718 * 200MHz
4719 * 267MHz
4720 * 320/333MHz (depends on HPLL freq)
4721 * 400MHz
4722 * So we check to see whether we're above 90% of the lower bin and
4723 * adjust if needed.
4724 *
4725 * We seem to get an unstable or solid color picture at 200MHz.
4726 * Not sure what's wrong. For now use 200MHz only when all pipes
4727 * are off.
4728 */
4729 if (max_pixclk > freq_320*9/10)
4730 return 400000;
4731 else if (max_pixclk > 266667*9/10)
4732 return freq_320;
4733 else if (max_pixclk > 0)
4734 return 266667;
4735 else
4736 return 200000;
4737 }
4738
4739 /* compute the max pixel clock for new configuration */
4740 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4741 {
4742 struct drm_device *dev = dev_priv->dev;
4743 struct intel_crtc *intel_crtc;
4744 int max_pixclk = 0;
4745
4746 for_each_intel_crtc(dev, intel_crtc) {
4747 if (intel_crtc->new_enabled)
4748 max_pixclk = max(max_pixclk,
4749 intel_crtc->new_config->adjusted_mode.crtc_clock);
4750 }
4751
4752 return max_pixclk;
4753 }
4754
4755 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4756 unsigned *prepare_pipes)
4757 {
4758 struct drm_i915_private *dev_priv = dev->dev_private;
4759 struct intel_crtc *intel_crtc;
4760 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4761
4762 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4763 dev_priv->vlv_cdclk_freq)
4764 return;
4765
4766 /* disable/enable all currently active pipes while we change cdclk */
4767 for_each_intel_crtc(dev, intel_crtc)
4768 if (intel_crtc->base.enabled)
4769 *prepare_pipes |= (1 << intel_crtc->pipe);
4770 }
4771
4772 static void valleyview_modeset_global_resources(struct drm_device *dev)
4773 {
4774 struct drm_i915_private *dev_priv = dev->dev_private;
4775 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4776 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4777
4778 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4779 if (IS_CHERRYVIEW(dev))
4780 cherryview_set_cdclk(dev, req_cdclk);
4781 else
4782 valleyview_set_cdclk(dev, req_cdclk);
4783 }
4784
4785 modeset_update_crtc_power_domains(dev);
4786 }
4787
4788 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4789 {
4790 struct drm_device *dev = crtc->dev;
4791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4792 struct intel_encoder *encoder;
4793 int pipe = intel_crtc->pipe;
4794 bool is_dsi;
4795
4796 WARN_ON(!crtc->enabled);
4797
4798 if (intel_crtc->active)
4799 return;
4800
4801 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4802
4803 if (!is_dsi) {
4804 if (IS_CHERRYVIEW(dev))
4805 chv_prepare_pll(intel_crtc);
4806 else
4807 vlv_prepare_pll(intel_crtc);
4808 }
4809
4810 if (intel_crtc->config.has_dp_encoder)
4811 intel_dp_set_m_n(intel_crtc);
4812
4813 intel_set_pipe_timings(intel_crtc);
4814
4815 i9xx_set_pipeconf(intel_crtc);
4816
4817 intel_crtc->active = true;
4818
4819 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4820
4821 for_each_encoder_on_crtc(dev, crtc, encoder)
4822 if (encoder->pre_pll_enable)
4823 encoder->pre_pll_enable(encoder);
4824
4825 if (!is_dsi) {
4826 if (IS_CHERRYVIEW(dev))
4827 chv_enable_pll(intel_crtc);
4828 else
4829 vlv_enable_pll(intel_crtc);
4830 }
4831
4832 for_each_encoder_on_crtc(dev, crtc, encoder)
4833 if (encoder->pre_enable)
4834 encoder->pre_enable(encoder);
4835
4836 i9xx_pfit_enable(intel_crtc);
4837
4838 intel_crtc_load_lut(crtc);
4839
4840 intel_update_watermarks(crtc);
4841 intel_enable_pipe(intel_crtc);
4842
4843 for_each_encoder_on_crtc(dev, crtc, encoder)
4844 encoder->enable(encoder);
4845
4846 intel_crtc_enable_planes(crtc);
4847
4848 /* Underruns don't raise interrupts, so check manually. */
4849 i9xx_check_fifo_underruns(dev);
4850 }
4851
4852 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4853 {
4854 struct drm_device *dev = crtc->base.dev;
4855 struct drm_i915_private *dev_priv = dev->dev_private;
4856
4857 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4858 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4859 }
4860
4861 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4862 {
4863 struct drm_device *dev = crtc->dev;
4864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4865 struct intel_encoder *encoder;
4866 int pipe = intel_crtc->pipe;
4867
4868 WARN_ON(!crtc->enabled);
4869
4870 if (intel_crtc->active)
4871 return;
4872
4873 i9xx_set_pll_dividers(intel_crtc);
4874
4875 if (intel_crtc->config.has_dp_encoder)
4876 intel_dp_set_m_n(intel_crtc);
4877
4878 intel_set_pipe_timings(intel_crtc);
4879
4880 i9xx_set_pipeconf(intel_crtc);
4881
4882 intel_crtc->active = true;
4883
4884 if (!IS_GEN2(dev))
4885 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4886
4887 for_each_encoder_on_crtc(dev, crtc, encoder)
4888 if (encoder->pre_enable)
4889 encoder->pre_enable(encoder);
4890
4891 i9xx_enable_pll(intel_crtc);
4892
4893 i9xx_pfit_enable(intel_crtc);
4894
4895 intel_crtc_load_lut(crtc);
4896
4897 intel_update_watermarks(crtc);
4898 intel_enable_pipe(intel_crtc);
4899
4900 for_each_encoder_on_crtc(dev, crtc, encoder)
4901 encoder->enable(encoder);
4902
4903 intel_crtc_enable_planes(crtc);
4904
4905 /*
4906 * Gen2 reports pipe underruns whenever all planes are disabled.
4907 * So don't enable underrun reporting before at least some planes
4908 * are enabled.
4909 * FIXME: Need to fix the logic to work when we turn off all planes
4910 * but leave the pipe running.
4911 */
4912 if (IS_GEN2(dev))
4913 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4914
4915 /* Underruns don't raise interrupts, so check manually. */
4916 i9xx_check_fifo_underruns(dev);
4917 }
4918
4919 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4920 {
4921 struct drm_device *dev = crtc->base.dev;
4922 struct drm_i915_private *dev_priv = dev->dev_private;
4923
4924 if (!crtc->config.gmch_pfit.control)
4925 return;
4926
4927 assert_pipe_disabled(dev_priv, crtc->pipe);
4928
4929 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4930 I915_READ(PFIT_CONTROL));
4931 I915_WRITE(PFIT_CONTROL, 0);
4932 }
4933
4934 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4935 {
4936 struct drm_device *dev = crtc->dev;
4937 struct drm_i915_private *dev_priv = dev->dev_private;
4938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4939 struct intel_encoder *encoder;
4940 int pipe = intel_crtc->pipe;
4941
4942 if (!intel_crtc->active)
4943 return;
4944
4945 /*
4946 * Gen2 reports pipe underruns whenever all planes are disabled.
4947 * So diasble underrun reporting before all the planes get disabled.
4948 * FIXME: Need to fix the logic to work when we turn off all planes
4949 * but leave the pipe running.
4950 */
4951 if (IS_GEN2(dev))
4952 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4953
4954 /*
4955 * Vblank time updates from the shadow to live plane control register
4956 * are blocked if the memory self-refresh mode is active at that
4957 * moment. So to make sure the plane gets truly disabled, disable
4958 * first the self-refresh mode. The self-refresh enable bit in turn
4959 * will be checked/applied by the HW only at the next frame start
4960 * event which is after the vblank start event, so we need to have a
4961 * wait-for-vblank between disabling the plane and the pipe.
4962 */
4963 intel_set_memory_cxsr(dev_priv, false);
4964 intel_crtc_disable_planes(crtc);
4965
4966 for_each_encoder_on_crtc(dev, crtc, encoder)
4967 encoder->disable(encoder);
4968
4969 /*
4970 * On gen2 planes are double buffered but the pipe isn't, so we must
4971 * wait for planes to fully turn off before disabling the pipe.
4972 * We also need to wait on all gmch platforms because of the
4973 * self-refresh mode constraint explained above.
4974 */
4975 intel_wait_for_vblank(dev, pipe);
4976
4977 intel_disable_pipe(intel_crtc);
4978
4979 i9xx_pfit_disable(intel_crtc);
4980
4981 for_each_encoder_on_crtc(dev, crtc, encoder)
4982 if (encoder->post_disable)
4983 encoder->post_disable(encoder);
4984
4985 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4986 if (IS_CHERRYVIEW(dev))
4987 chv_disable_pll(dev_priv, pipe);
4988 else if (IS_VALLEYVIEW(dev))
4989 vlv_disable_pll(dev_priv, pipe);
4990 else
4991 i9xx_disable_pll(intel_crtc);
4992 }
4993
4994 if (!IS_GEN2(dev))
4995 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4996
4997 intel_crtc->active = false;
4998 intel_update_watermarks(crtc);
4999
5000 mutex_lock(&dev->struct_mutex);
5001 intel_update_fbc(dev);
5002 mutex_unlock(&dev->struct_mutex);
5003 }
5004
5005 static void i9xx_crtc_off(struct drm_crtc *crtc)
5006 {
5007 }
5008
5009 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5010 bool enabled)
5011 {
5012 struct drm_device *dev = crtc->dev;
5013 struct drm_i915_master_private *master_priv;
5014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5015 int pipe = intel_crtc->pipe;
5016
5017 if (!dev->primary->master)
5018 return;
5019
5020 master_priv = dev->primary->master->driver_priv;
5021 if (!master_priv->sarea_priv)
5022 return;
5023
5024 switch (pipe) {
5025 case 0:
5026 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5027 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5028 break;
5029 case 1:
5030 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5031 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5032 break;
5033 default:
5034 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5035 break;
5036 }
5037 }
5038
5039 /* Master function to enable/disable CRTC and corresponding power wells */
5040 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5041 {
5042 struct drm_device *dev = crtc->dev;
5043 struct drm_i915_private *dev_priv = dev->dev_private;
5044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5045 enum intel_display_power_domain domain;
5046 unsigned long domains;
5047
5048 if (enable) {
5049 if (!intel_crtc->active) {
5050 domains = get_crtc_power_domains(crtc);
5051 for_each_power_domain(domain, domains)
5052 intel_display_power_get(dev_priv, domain);
5053 intel_crtc->enabled_power_domains = domains;
5054
5055 dev_priv->display.crtc_enable(crtc);
5056 }
5057 } else {
5058 if (intel_crtc->active) {
5059 dev_priv->display.crtc_disable(crtc);
5060
5061 domains = intel_crtc->enabled_power_domains;
5062 for_each_power_domain(domain, domains)
5063 intel_display_power_put(dev_priv, domain);
5064 intel_crtc->enabled_power_domains = 0;
5065 }
5066 }
5067 }
5068
5069 /**
5070 * Sets the power management mode of the pipe and plane.
5071 */
5072 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5073 {
5074 struct drm_device *dev = crtc->dev;
5075 struct intel_encoder *intel_encoder;
5076 bool enable = false;
5077
5078 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5079 enable |= intel_encoder->connectors_active;
5080
5081 intel_crtc_control(crtc, enable);
5082
5083 intel_crtc_update_sarea(crtc, enable);
5084 }
5085
5086 static void intel_crtc_disable(struct drm_crtc *crtc)
5087 {
5088 struct drm_device *dev = crtc->dev;
5089 struct drm_connector *connector;
5090 struct drm_i915_private *dev_priv = dev->dev_private;
5091 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5092 enum pipe pipe = to_intel_crtc(crtc)->pipe;
5093
5094 /* crtc should still be enabled when we disable it. */
5095 WARN_ON(!crtc->enabled);
5096
5097 dev_priv->display.crtc_disable(crtc);
5098 intel_crtc_update_sarea(crtc, false);
5099 dev_priv->display.off(crtc);
5100
5101 if (crtc->primary->fb) {
5102 mutex_lock(&dev->struct_mutex);
5103 intel_unpin_fb_obj(old_obj);
5104 i915_gem_track_fb(old_obj, NULL,
5105 INTEL_FRONTBUFFER_PRIMARY(pipe));
5106 mutex_unlock(&dev->struct_mutex);
5107 crtc->primary->fb = NULL;
5108 }
5109
5110 /* Update computed state. */
5111 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5112 if (!connector->encoder || !connector->encoder->crtc)
5113 continue;
5114
5115 if (connector->encoder->crtc != crtc)
5116 continue;
5117
5118 connector->dpms = DRM_MODE_DPMS_OFF;
5119 to_intel_encoder(connector->encoder)->connectors_active = false;
5120 }
5121 }
5122
5123 void intel_encoder_destroy(struct drm_encoder *encoder)
5124 {
5125 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5126
5127 drm_encoder_cleanup(encoder);
5128 kfree(intel_encoder);
5129 }
5130
5131 /* Simple dpms helper for encoders with just one connector, no cloning and only
5132 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5133 * state of the entire output pipe. */
5134 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5135 {
5136 if (mode == DRM_MODE_DPMS_ON) {
5137 encoder->connectors_active = true;
5138
5139 intel_crtc_update_dpms(encoder->base.crtc);
5140 } else {
5141 encoder->connectors_active = false;
5142
5143 intel_crtc_update_dpms(encoder->base.crtc);
5144 }
5145 }
5146
5147 /* Cross check the actual hw state with our own modeset state tracking (and it's
5148 * internal consistency). */
5149 static void intel_connector_check_state(struct intel_connector *connector)
5150 {
5151 if (connector->get_hw_state(connector)) {
5152 struct intel_encoder *encoder = connector->encoder;
5153 struct drm_crtc *crtc;
5154 bool encoder_enabled;
5155 enum pipe pipe;
5156
5157 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5158 connector->base.base.id,
5159 connector->base.name);
5160
5161 /* there is no real hw state for MST connectors */
5162 if (connector->mst_port)
5163 return;
5164
5165 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5166 "wrong connector dpms state\n");
5167 WARN(connector->base.encoder != &encoder->base,
5168 "active connector not linked to encoder\n");
5169
5170 if (encoder) {
5171 WARN(!encoder->connectors_active,
5172 "encoder->connectors_active not set\n");
5173
5174 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5175 WARN(!encoder_enabled, "encoder not enabled\n");
5176 if (WARN_ON(!encoder->base.crtc))
5177 return;
5178
5179 crtc = encoder->base.crtc;
5180
5181 WARN(!crtc->enabled, "crtc not enabled\n");
5182 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5183 WARN(pipe != to_intel_crtc(crtc)->pipe,
5184 "encoder active on the wrong pipe\n");
5185 }
5186 }
5187 }
5188
5189 /* Even simpler default implementation, if there's really no special case to
5190 * consider. */
5191 void intel_connector_dpms(struct drm_connector *connector, int mode)
5192 {
5193 /* All the simple cases only support two dpms states. */
5194 if (mode != DRM_MODE_DPMS_ON)
5195 mode = DRM_MODE_DPMS_OFF;
5196
5197 if (mode == connector->dpms)
5198 return;
5199
5200 connector->dpms = mode;
5201
5202 /* Only need to change hw state when actually enabled */
5203 if (connector->encoder)
5204 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5205
5206 intel_modeset_check_state(connector->dev);
5207 }
5208
5209 /* Simple connector->get_hw_state implementation for encoders that support only
5210 * one connector and no cloning and hence the encoder state determines the state
5211 * of the connector. */
5212 bool intel_connector_get_hw_state(struct intel_connector *connector)
5213 {
5214 enum pipe pipe = 0;
5215 struct intel_encoder *encoder = connector->encoder;
5216
5217 return encoder->get_hw_state(encoder, &pipe);
5218 }
5219
5220 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5221 struct intel_crtc_config *pipe_config)
5222 {
5223 struct drm_i915_private *dev_priv = dev->dev_private;
5224 struct intel_crtc *pipe_B_crtc =
5225 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5226
5227 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5228 pipe_name(pipe), pipe_config->fdi_lanes);
5229 if (pipe_config->fdi_lanes > 4) {
5230 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5231 pipe_name(pipe), pipe_config->fdi_lanes);
5232 return false;
5233 }
5234
5235 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5236 if (pipe_config->fdi_lanes > 2) {
5237 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5238 pipe_config->fdi_lanes);
5239 return false;
5240 } else {
5241 return true;
5242 }
5243 }
5244
5245 if (INTEL_INFO(dev)->num_pipes == 2)
5246 return true;
5247
5248 /* Ivybridge 3 pipe is really complicated */
5249 switch (pipe) {
5250 case PIPE_A:
5251 return true;
5252 case PIPE_B:
5253 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5254 pipe_config->fdi_lanes > 2) {
5255 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5256 pipe_name(pipe), pipe_config->fdi_lanes);
5257 return false;
5258 }
5259 return true;
5260 case PIPE_C:
5261 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5262 pipe_B_crtc->config.fdi_lanes <= 2) {
5263 if (pipe_config->fdi_lanes > 2) {
5264 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5265 pipe_name(pipe), pipe_config->fdi_lanes);
5266 return false;
5267 }
5268 } else {
5269 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5270 return false;
5271 }
5272 return true;
5273 default:
5274 BUG();
5275 }
5276 }
5277
5278 #define RETRY 1
5279 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5280 struct intel_crtc_config *pipe_config)
5281 {
5282 struct drm_device *dev = intel_crtc->base.dev;
5283 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5284 int lane, link_bw, fdi_dotclock;
5285 bool setup_ok, needs_recompute = false;
5286
5287 retry:
5288 /* FDI is a binary signal running at ~2.7GHz, encoding
5289 * each output octet as 10 bits. The actual frequency
5290 * is stored as a divider into a 100MHz clock, and the
5291 * mode pixel clock is stored in units of 1KHz.
5292 * Hence the bw of each lane in terms of the mode signal
5293 * is:
5294 */
5295 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5296
5297 fdi_dotclock = adjusted_mode->crtc_clock;
5298
5299 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5300 pipe_config->pipe_bpp);
5301
5302 pipe_config->fdi_lanes = lane;
5303
5304 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5305 link_bw, &pipe_config->fdi_m_n);
5306
5307 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5308 intel_crtc->pipe, pipe_config);
5309 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5310 pipe_config->pipe_bpp -= 2*3;
5311 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5312 pipe_config->pipe_bpp);
5313 needs_recompute = true;
5314 pipe_config->bw_constrained = true;
5315
5316 goto retry;
5317 }
5318
5319 if (needs_recompute)
5320 return RETRY;
5321
5322 return setup_ok ? 0 : -EINVAL;
5323 }
5324
5325 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5326 struct intel_crtc_config *pipe_config)
5327 {
5328 pipe_config->ips_enabled = i915.enable_ips &&
5329 hsw_crtc_supports_ips(crtc) &&
5330 pipe_config->pipe_bpp <= 24;
5331 }
5332
5333 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5334 struct intel_crtc_config *pipe_config)
5335 {
5336 struct drm_device *dev = crtc->base.dev;
5337 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5338
5339 /* FIXME should check pixel clock limits on all platforms */
5340 if (INTEL_INFO(dev)->gen < 4) {
5341 struct drm_i915_private *dev_priv = dev->dev_private;
5342 int clock_limit =
5343 dev_priv->display.get_display_clock_speed(dev);
5344
5345 /*
5346 * Enable pixel doubling when the dot clock
5347 * is > 90% of the (display) core speed.
5348 *
5349 * GDG double wide on either pipe,
5350 * otherwise pipe A only.
5351 */
5352 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5353 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5354 clock_limit *= 2;
5355 pipe_config->double_wide = true;
5356 }
5357
5358 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5359 return -EINVAL;
5360 }
5361
5362 /*
5363 * Pipe horizontal size must be even in:
5364 * - DVO ganged mode
5365 * - LVDS dual channel mode
5366 * - Double wide pipe
5367 */
5368 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5369 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5370 pipe_config->pipe_src_w &= ~1;
5371
5372 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5373 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5374 */
5375 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5376 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5377 return -EINVAL;
5378
5379 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5380 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5381 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5382 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5383 * for lvds. */
5384 pipe_config->pipe_bpp = 8*3;
5385 }
5386
5387 if (HAS_IPS(dev))
5388 hsw_compute_ips_config(crtc, pipe_config);
5389
5390 /*
5391 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5392 * old clock survives for now.
5393 */
5394 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5395 pipe_config->shared_dpll = crtc->config.shared_dpll;
5396
5397 if (pipe_config->has_pch_encoder)
5398 return ironlake_fdi_compute_config(crtc, pipe_config);
5399
5400 return 0;
5401 }
5402
5403 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5404 {
5405 struct drm_i915_private *dev_priv = dev->dev_private;
5406 int vco = valleyview_get_vco(dev_priv);
5407 u32 val;
5408 int divider;
5409
5410 /* FIXME: Punit isn't quite ready yet */
5411 if (IS_CHERRYVIEW(dev))
5412 return 400000;
5413
5414 mutex_lock(&dev_priv->dpio_lock);
5415 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5416 mutex_unlock(&dev_priv->dpio_lock);
5417
5418 divider = val & DISPLAY_FREQUENCY_VALUES;
5419
5420 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5421 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5422 "cdclk change in progress\n");
5423
5424 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5425 }
5426
5427 static int i945_get_display_clock_speed(struct drm_device *dev)
5428 {
5429 return 400000;
5430 }
5431
5432 static int i915_get_display_clock_speed(struct drm_device *dev)
5433 {
5434 return 333000;
5435 }
5436
5437 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5438 {
5439 return 200000;
5440 }
5441
5442 static int pnv_get_display_clock_speed(struct drm_device *dev)
5443 {
5444 u16 gcfgc = 0;
5445
5446 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5447
5448 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5449 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5450 return 267000;
5451 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5452 return 333000;
5453 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5454 return 444000;
5455 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5456 return 200000;
5457 default:
5458 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5459 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5460 return 133000;
5461 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5462 return 167000;
5463 }
5464 }
5465
5466 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5467 {
5468 u16 gcfgc = 0;
5469
5470 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5471
5472 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5473 return 133000;
5474 else {
5475 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5476 case GC_DISPLAY_CLOCK_333_MHZ:
5477 return 333000;
5478 default:
5479 case GC_DISPLAY_CLOCK_190_200_MHZ:
5480 return 190000;
5481 }
5482 }
5483 }
5484
5485 static int i865_get_display_clock_speed(struct drm_device *dev)
5486 {
5487 return 266000;
5488 }
5489
5490 static int i855_get_display_clock_speed(struct drm_device *dev)
5491 {
5492 u16 hpllcc = 0;
5493 /* Assume that the hardware is in the high speed state. This
5494 * should be the default.
5495 */
5496 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5497 case GC_CLOCK_133_200:
5498 case GC_CLOCK_100_200:
5499 return 200000;
5500 case GC_CLOCK_166_250:
5501 return 250000;
5502 case GC_CLOCK_100_133:
5503 return 133000;
5504 }
5505
5506 /* Shouldn't happen */
5507 return 0;
5508 }
5509
5510 static int i830_get_display_clock_speed(struct drm_device *dev)
5511 {
5512 return 133000;
5513 }
5514
5515 static void
5516 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5517 {
5518 while (*num > DATA_LINK_M_N_MASK ||
5519 *den > DATA_LINK_M_N_MASK) {
5520 *num >>= 1;
5521 *den >>= 1;
5522 }
5523 }
5524
5525 static void compute_m_n(unsigned int m, unsigned int n,
5526 uint32_t *ret_m, uint32_t *ret_n)
5527 {
5528 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5529 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5530 intel_reduce_m_n_ratio(ret_m, ret_n);
5531 }
5532
5533 void
5534 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5535 int pixel_clock, int link_clock,
5536 struct intel_link_m_n *m_n)
5537 {
5538 m_n->tu = 64;
5539
5540 compute_m_n(bits_per_pixel * pixel_clock,
5541 link_clock * nlanes * 8,
5542 &m_n->gmch_m, &m_n->gmch_n);
5543
5544 compute_m_n(pixel_clock, link_clock,
5545 &m_n->link_m, &m_n->link_n);
5546 }
5547
5548 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5549 {
5550 if (i915.panel_use_ssc >= 0)
5551 return i915.panel_use_ssc != 0;
5552 return dev_priv->vbt.lvds_use_ssc
5553 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5554 }
5555
5556 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5557 {
5558 struct drm_device *dev = crtc->dev;
5559 struct drm_i915_private *dev_priv = dev->dev_private;
5560 int refclk;
5561
5562 if (IS_VALLEYVIEW(dev)) {
5563 refclk = 100000;
5564 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5565 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5566 refclk = dev_priv->vbt.lvds_ssc_freq;
5567 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5568 } else if (!IS_GEN2(dev)) {
5569 refclk = 96000;
5570 } else {
5571 refclk = 48000;
5572 }
5573
5574 return refclk;
5575 }
5576
5577 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5578 {
5579 return (1 << dpll->n) << 16 | dpll->m2;
5580 }
5581
5582 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5583 {
5584 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5585 }
5586
5587 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5588 intel_clock_t *reduced_clock)
5589 {
5590 struct drm_device *dev = crtc->base.dev;
5591 u32 fp, fp2 = 0;
5592
5593 if (IS_PINEVIEW(dev)) {
5594 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5595 if (reduced_clock)
5596 fp2 = pnv_dpll_compute_fp(reduced_clock);
5597 } else {
5598 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5599 if (reduced_clock)
5600 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5601 }
5602
5603 crtc->config.dpll_hw_state.fp0 = fp;
5604
5605 crtc->lowfreq_avail = false;
5606 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5607 reduced_clock && i915.powersave) {
5608 crtc->config.dpll_hw_state.fp1 = fp2;
5609 crtc->lowfreq_avail = true;
5610 } else {
5611 crtc->config.dpll_hw_state.fp1 = fp;
5612 }
5613 }
5614
5615 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5616 pipe)
5617 {
5618 u32 reg_val;
5619
5620 /*
5621 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5622 * and set it to a reasonable value instead.
5623 */
5624 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5625 reg_val &= 0xffffff00;
5626 reg_val |= 0x00000030;
5627 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5628
5629 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5630 reg_val &= 0x8cffffff;
5631 reg_val = 0x8c000000;
5632 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5633
5634 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5635 reg_val &= 0xffffff00;
5636 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5637
5638 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5639 reg_val &= 0x00ffffff;
5640 reg_val |= 0xb0000000;
5641 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5642 }
5643
5644 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5645 struct intel_link_m_n *m_n)
5646 {
5647 struct drm_device *dev = crtc->base.dev;
5648 struct drm_i915_private *dev_priv = dev->dev_private;
5649 int pipe = crtc->pipe;
5650
5651 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5652 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5653 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5654 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5655 }
5656
5657 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5658 struct intel_link_m_n *m_n,
5659 struct intel_link_m_n *m2_n2)
5660 {
5661 struct drm_device *dev = crtc->base.dev;
5662 struct drm_i915_private *dev_priv = dev->dev_private;
5663 int pipe = crtc->pipe;
5664 enum transcoder transcoder = crtc->config.cpu_transcoder;
5665
5666 if (INTEL_INFO(dev)->gen >= 5) {
5667 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5668 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5669 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5670 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5671 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5672 * for gen < 8) and if DRRS is supported (to make sure the
5673 * registers are not unnecessarily accessed).
5674 */
5675 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5676 crtc->config.has_drrs) {
5677 I915_WRITE(PIPE_DATA_M2(transcoder),
5678 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5679 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5680 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5681 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5682 }
5683 } else {
5684 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5685 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5686 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5687 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5688 }
5689 }
5690
5691 void intel_dp_set_m_n(struct intel_crtc *crtc)
5692 {
5693 if (crtc->config.has_pch_encoder)
5694 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5695 else
5696 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5697 &crtc->config.dp_m2_n2);
5698 }
5699
5700 static void vlv_update_pll(struct intel_crtc *crtc)
5701 {
5702 u32 dpll, dpll_md;
5703
5704 /*
5705 * Enable DPIO clock input. We should never disable the reference
5706 * clock for pipe B, since VGA hotplug / manual detection depends
5707 * on it.
5708 */
5709 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5710 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5711 /* We should never disable this, set it here for state tracking */
5712 if (crtc->pipe == PIPE_B)
5713 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5714 dpll |= DPLL_VCO_ENABLE;
5715 crtc->config.dpll_hw_state.dpll = dpll;
5716
5717 dpll_md = (crtc->config.pixel_multiplier - 1)
5718 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5719 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5720 }
5721
5722 static void vlv_prepare_pll(struct intel_crtc *crtc)
5723 {
5724 struct drm_device *dev = crtc->base.dev;
5725 struct drm_i915_private *dev_priv = dev->dev_private;
5726 int pipe = crtc->pipe;
5727 u32 mdiv;
5728 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5729 u32 coreclk, reg_val;
5730
5731 mutex_lock(&dev_priv->dpio_lock);
5732
5733 bestn = crtc->config.dpll.n;
5734 bestm1 = crtc->config.dpll.m1;
5735 bestm2 = crtc->config.dpll.m2;
5736 bestp1 = crtc->config.dpll.p1;
5737 bestp2 = crtc->config.dpll.p2;
5738
5739 /* See eDP HDMI DPIO driver vbios notes doc */
5740
5741 /* PLL B needs special handling */
5742 if (pipe == PIPE_B)
5743 vlv_pllb_recal_opamp(dev_priv, pipe);
5744
5745 /* Set up Tx target for periodic Rcomp update */
5746 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5747
5748 /* Disable target IRef on PLL */
5749 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5750 reg_val &= 0x00ffffff;
5751 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5752
5753 /* Disable fast lock */
5754 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5755
5756 /* Set idtafcrecal before PLL is enabled */
5757 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5758 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5759 mdiv |= ((bestn << DPIO_N_SHIFT));
5760 mdiv |= (1 << DPIO_K_SHIFT);
5761
5762 /*
5763 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5764 * but we don't support that).
5765 * Note: don't use the DAC post divider as it seems unstable.
5766 */
5767 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5768 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5769
5770 mdiv |= DPIO_ENABLE_CALIBRATION;
5771 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5772
5773 /* Set HBR and RBR LPF coefficients */
5774 if (crtc->config.port_clock == 162000 ||
5775 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5776 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5777 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5778 0x009f0003);
5779 else
5780 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5781 0x00d0000f);
5782
5783 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5784 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5785 /* Use SSC source */
5786 if (pipe == PIPE_A)
5787 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5788 0x0df40000);
5789 else
5790 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5791 0x0df70000);
5792 } else { /* HDMI or VGA */
5793 /* Use bend source */
5794 if (pipe == PIPE_A)
5795 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5796 0x0df70000);
5797 else
5798 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5799 0x0df40000);
5800 }
5801
5802 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5803 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5804 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5805 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5806 coreclk |= 0x01000000;
5807 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5808
5809 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5810 mutex_unlock(&dev_priv->dpio_lock);
5811 }
5812
5813 static void chv_update_pll(struct intel_crtc *crtc)
5814 {
5815 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5816 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5817 DPLL_VCO_ENABLE;
5818 if (crtc->pipe != PIPE_A)
5819 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5820
5821 crtc->config.dpll_hw_state.dpll_md =
5822 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5823 }
5824
5825 static void chv_prepare_pll(struct intel_crtc *crtc)
5826 {
5827 struct drm_device *dev = crtc->base.dev;
5828 struct drm_i915_private *dev_priv = dev->dev_private;
5829 int pipe = crtc->pipe;
5830 int dpll_reg = DPLL(crtc->pipe);
5831 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5832 u32 loopfilter, intcoeff;
5833 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5834 int refclk;
5835
5836 bestn = crtc->config.dpll.n;
5837 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5838 bestm1 = crtc->config.dpll.m1;
5839 bestm2 = crtc->config.dpll.m2 >> 22;
5840 bestp1 = crtc->config.dpll.p1;
5841 bestp2 = crtc->config.dpll.p2;
5842
5843 /*
5844 * Enable Refclk and SSC
5845 */
5846 I915_WRITE(dpll_reg,
5847 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5848
5849 mutex_lock(&dev_priv->dpio_lock);
5850
5851 /* p1 and p2 divider */
5852 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5853 5 << DPIO_CHV_S1_DIV_SHIFT |
5854 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5855 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5856 1 << DPIO_CHV_K_DIV_SHIFT);
5857
5858 /* Feedback post-divider - m2 */
5859 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5860
5861 /* Feedback refclk divider - n and m1 */
5862 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5863 DPIO_CHV_M1_DIV_BY_2 |
5864 1 << DPIO_CHV_N_DIV_SHIFT);
5865
5866 /* M2 fraction division */
5867 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5868
5869 /* M2 fraction division enable */
5870 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5871 DPIO_CHV_FRAC_DIV_EN |
5872 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5873
5874 /* Loop filter */
5875 refclk = i9xx_get_refclk(&crtc->base, 0);
5876 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5877 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5878 if (refclk == 100000)
5879 intcoeff = 11;
5880 else if (refclk == 38400)
5881 intcoeff = 10;
5882 else
5883 intcoeff = 9;
5884 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5885 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5886
5887 /* AFC Recal */
5888 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5889 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5890 DPIO_AFC_RECAL);
5891
5892 mutex_unlock(&dev_priv->dpio_lock);
5893 }
5894
5895 static void i9xx_update_pll(struct intel_crtc *crtc,
5896 intel_clock_t *reduced_clock,
5897 int num_connectors)
5898 {
5899 struct drm_device *dev = crtc->base.dev;
5900 struct drm_i915_private *dev_priv = dev->dev_private;
5901 u32 dpll;
5902 bool is_sdvo;
5903 struct dpll *clock = &crtc->config.dpll;
5904
5905 i9xx_update_pll_dividers(crtc, reduced_clock);
5906
5907 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5908 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5909
5910 dpll = DPLL_VGA_MODE_DIS;
5911
5912 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5913 dpll |= DPLLB_MODE_LVDS;
5914 else
5915 dpll |= DPLLB_MODE_DAC_SERIAL;
5916
5917 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5918 dpll |= (crtc->config.pixel_multiplier - 1)
5919 << SDVO_MULTIPLIER_SHIFT_HIRES;
5920 }
5921
5922 if (is_sdvo)
5923 dpll |= DPLL_SDVO_HIGH_SPEED;
5924
5925 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5926 dpll |= DPLL_SDVO_HIGH_SPEED;
5927
5928 /* compute bitmask from p1 value */
5929 if (IS_PINEVIEW(dev))
5930 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5931 else {
5932 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5933 if (IS_G4X(dev) && reduced_clock)
5934 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5935 }
5936 switch (clock->p2) {
5937 case 5:
5938 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5939 break;
5940 case 7:
5941 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5942 break;
5943 case 10:
5944 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5945 break;
5946 case 14:
5947 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5948 break;
5949 }
5950 if (INTEL_INFO(dev)->gen >= 4)
5951 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5952
5953 if (crtc->config.sdvo_tv_clock)
5954 dpll |= PLL_REF_INPUT_TVCLKINBC;
5955 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5956 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5957 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5958 else
5959 dpll |= PLL_REF_INPUT_DREFCLK;
5960
5961 dpll |= DPLL_VCO_ENABLE;
5962 crtc->config.dpll_hw_state.dpll = dpll;
5963
5964 if (INTEL_INFO(dev)->gen >= 4) {
5965 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5966 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5967 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5968 }
5969 }
5970
5971 static void i8xx_update_pll(struct intel_crtc *crtc,
5972 intel_clock_t *reduced_clock,
5973 int num_connectors)
5974 {
5975 struct drm_device *dev = crtc->base.dev;
5976 struct drm_i915_private *dev_priv = dev->dev_private;
5977 u32 dpll;
5978 struct dpll *clock = &crtc->config.dpll;
5979
5980 i9xx_update_pll_dividers(crtc, reduced_clock);
5981
5982 dpll = DPLL_VGA_MODE_DIS;
5983
5984 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5985 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5986 } else {
5987 if (clock->p1 == 2)
5988 dpll |= PLL_P1_DIVIDE_BY_TWO;
5989 else
5990 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5991 if (clock->p2 == 4)
5992 dpll |= PLL_P2_DIVIDE_BY_4;
5993 }
5994
5995 if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5996 dpll |= DPLL_DVO_2X_MODE;
5997
5998 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5999 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6000 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6001 else
6002 dpll |= PLL_REF_INPUT_DREFCLK;
6003
6004 dpll |= DPLL_VCO_ENABLE;
6005 crtc->config.dpll_hw_state.dpll = dpll;
6006 }
6007
6008 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6009 {
6010 struct drm_device *dev = intel_crtc->base.dev;
6011 struct drm_i915_private *dev_priv = dev->dev_private;
6012 enum pipe pipe = intel_crtc->pipe;
6013 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6014 struct drm_display_mode *adjusted_mode =
6015 &intel_crtc->config.adjusted_mode;
6016 uint32_t crtc_vtotal, crtc_vblank_end;
6017 int vsyncshift = 0;
6018
6019 /* We need to be careful not to changed the adjusted mode, for otherwise
6020 * the hw state checker will get angry at the mismatch. */
6021 crtc_vtotal = adjusted_mode->crtc_vtotal;
6022 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6023
6024 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6025 /* the chip adds 2 halflines automatically */
6026 crtc_vtotal -= 1;
6027 crtc_vblank_end -= 1;
6028
6029 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6030 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6031 else
6032 vsyncshift = adjusted_mode->crtc_hsync_start -
6033 adjusted_mode->crtc_htotal / 2;
6034 if (vsyncshift < 0)
6035 vsyncshift += adjusted_mode->crtc_htotal;
6036 }
6037
6038 if (INTEL_INFO(dev)->gen > 3)
6039 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6040
6041 I915_WRITE(HTOTAL(cpu_transcoder),
6042 (adjusted_mode->crtc_hdisplay - 1) |
6043 ((adjusted_mode->crtc_htotal - 1) << 16));
6044 I915_WRITE(HBLANK(cpu_transcoder),
6045 (adjusted_mode->crtc_hblank_start - 1) |
6046 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6047 I915_WRITE(HSYNC(cpu_transcoder),
6048 (adjusted_mode->crtc_hsync_start - 1) |
6049 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6050
6051 I915_WRITE(VTOTAL(cpu_transcoder),
6052 (adjusted_mode->crtc_vdisplay - 1) |
6053 ((crtc_vtotal - 1) << 16));
6054 I915_WRITE(VBLANK(cpu_transcoder),
6055 (adjusted_mode->crtc_vblank_start - 1) |
6056 ((crtc_vblank_end - 1) << 16));
6057 I915_WRITE(VSYNC(cpu_transcoder),
6058 (adjusted_mode->crtc_vsync_start - 1) |
6059 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6060
6061 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6062 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6063 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6064 * bits. */
6065 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6066 (pipe == PIPE_B || pipe == PIPE_C))
6067 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6068
6069 /* pipesrc controls the size that is scaled from, which should
6070 * always be the user's requested size.
6071 */
6072 I915_WRITE(PIPESRC(pipe),
6073 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6074 (intel_crtc->config.pipe_src_h - 1));
6075 }
6076
6077 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6078 struct intel_crtc_config *pipe_config)
6079 {
6080 struct drm_device *dev = crtc->base.dev;
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6083 uint32_t tmp;
6084
6085 tmp = I915_READ(HTOTAL(cpu_transcoder));
6086 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6087 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6088 tmp = I915_READ(HBLANK(cpu_transcoder));
6089 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6090 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6091 tmp = I915_READ(HSYNC(cpu_transcoder));
6092 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6093 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6094
6095 tmp = I915_READ(VTOTAL(cpu_transcoder));
6096 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6097 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6098 tmp = I915_READ(VBLANK(cpu_transcoder));
6099 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6100 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6101 tmp = I915_READ(VSYNC(cpu_transcoder));
6102 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6103 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6104
6105 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6106 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6107 pipe_config->adjusted_mode.crtc_vtotal += 1;
6108 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6109 }
6110
6111 tmp = I915_READ(PIPESRC(crtc->pipe));
6112 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6113 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6114
6115 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6116 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6117 }
6118
6119 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6120 struct intel_crtc_config *pipe_config)
6121 {
6122 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6123 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6124 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6125 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6126
6127 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6128 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6129 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6130 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6131
6132 mode->flags = pipe_config->adjusted_mode.flags;
6133
6134 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6135 mode->flags |= pipe_config->adjusted_mode.flags;
6136 }
6137
6138 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6139 {
6140 struct drm_device *dev = intel_crtc->base.dev;
6141 struct drm_i915_private *dev_priv = dev->dev_private;
6142 uint32_t pipeconf;
6143
6144 pipeconf = 0;
6145
6146 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6147 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6148 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6149
6150 if (intel_crtc->config.double_wide)
6151 pipeconf |= PIPECONF_DOUBLE_WIDE;
6152
6153 /* only g4x and later have fancy bpc/dither controls */
6154 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6155 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6156 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6157 pipeconf |= PIPECONF_DITHER_EN |
6158 PIPECONF_DITHER_TYPE_SP;
6159
6160 switch (intel_crtc->config.pipe_bpp) {
6161 case 18:
6162 pipeconf |= PIPECONF_6BPC;
6163 break;
6164 case 24:
6165 pipeconf |= PIPECONF_8BPC;
6166 break;
6167 case 30:
6168 pipeconf |= PIPECONF_10BPC;
6169 break;
6170 default:
6171 /* Case prevented by intel_choose_pipe_bpp_dither. */
6172 BUG();
6173 }
6174 }
6175
6176 if (HAS_PIPE_CXSR(dev)) {
6177 if (intel_crtc->lowfreq_avail) {
6178 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6179 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6180 } else {
6181 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6182 }
6183 }
6184
6185 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6186 if (INTEL_INFO(dev)->gen < 4 ||
6187 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6188 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6189 else
6190 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6191 } else
6192 pipeconf |= PIPECONF_PROGRESSIVE;
6193
6194 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6195 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6196
6197 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6198 POSTING_READ(PIPECONF(intel_crtc->pipe));
6199 }
6200
6201 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6202 int x, int y,
6203 struct drm_framebuffer *fb)
6204 {
6205 struct drm_device *dev = crtc->dev;
6206 struct drm_i915_private *dev_priv = dev->dev_private;
6207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6208 int refclk, num_connectors = 0;
6209 intel_clock_t clock, reduced_clock;
6210 bool ok, has_reduced_clock = false;
6211 bool is_lvds = false, is_dsi = false;
6212 struct intel_encoder *encoder;
6213 const intel_limit_t *limit;
6214
6215 for_each_encoder_on_crtc(dev, crtc, encoder) {
6216 switch (encoder->type) {
6217 case INTEL_OUTPUT_LVDS:
6218 is_lvds = true;
6219 break;
6220 case INTEL_OUTPUT_DSI:
6221 is_dsi = true;
6222 break;
6223 }
6224
6225 num_connectors++;
6226 }
6227
6228 if (is_dsi)
6229 return 0;
6230
6231 if (!intel_crtc->config.clock_set) {
6232 refclk = i9xx_get_refclk(crtc, num_connectors);
6233
6234 /*
6235 * Returns a set of divisors for the desired target clock with
6236 * the given refclk, or FALSE. The returned values represent
6237 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6238 * 2) / p1 / p2.
6239 */
6240 limit = intel_limit(crtc, refclk);
6241 ok = dev_priv->display.find_dpll(limit, crtc,
6242 intel_crtc->config.port_clock,
6243 refclk, NULL, &clock);
6244 if (!ok) {
6245 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6246 return -EINVAL;
6247 }
6248
6249 if (is_lvds && dev_priv->lvds_downclock_avail) {
6250 /*
6251 * Ensure we match the reduced clock's P to the target
6252 * clock. If the clocks don't match, we can't switch
6253 * the display clock by using the FP0/FP1. In such case
6254 * we will disable the LVDS downclock feature.
6255 */
6256 has_reduced_clock =
6257 dev_priv->display.find_dpll(limit, crtc,
6258 dev_priv->lvds_downclock,
6259 refclk, &clock,
6260 &reduced_clock);
6261 }
6262 /* Compat-code for transition, will disappear. */
6263 intel_crtc->config.dpll.n = clock.n;
6264 intel_crtc->config.dpll.m1 = clock.m1;
6265 intel_crtc->config.dpll.m2 = clock.m2;
6266 intel_crtc->config.dpll.p1 = clock.p1;
6267 intel_crtc->config.dpll.p2 = clock.p2;
6268 }
6269
6270 if (IS_GEN2(dev)) {
6271 i8xx_update_pll(intel_crtc,
6272 has_reduced_clock ? &reduced_clock : NULL,
6273 num_connectors);
6274 } else if (IS_CHERRYVIEW(dev)) {
6275 chv_update_pll(intel_crtc);
6276 } else if (IS_VALLEYVIEW(dev)) {
6277 vlv_update_pll(intel_crtc);
6278 } else {
6279 i9xx_update_pll(intel_crtc,
6280 has_reduced_clock ? &reduced_clock : NULL,
6281 num_connectors);
6282 }
6283
6284 return 0;
6285 }
6286
6287 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6288 struct intel_crtc_config *pipe_config)
6289 {
6290 struct drm_device *dev = crtc->base.dev;
6291 struct drm_i915_private *dev_priv = dev->dev_private;
6292 uint32_t tmp;
6293
6294 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6295 return;
6296
6297 tmp = I915_READ(PFIT_CONTROL);
6298 if (!(tmp & PFIT_ENABLE))
6299 return;
6300
6301 /* Check whether the pfit is attached to our pipe. */
6302 if (INTEL_INFO(dev)->gen < 4) {
6303 if (crtc->pipe != PIPE_B)
6304 return;
6305 } else {
6306 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6307 return;
6308 }
6309
6310 pipe_config->gmch_pfit.control = tmp;
6311 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6312 if (INTEL_INFO(dev)->gen < 5)
6313 pipe_config->gmch_pfit.lvds_border_bits =
6314 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6315 }
6316
6317 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6318 struct intel_crtc_config *pipe_config)
6319 {
6320 struct drm_device *dev = crtc->base.dev;
6321 struct drm_i915_private *dev_priv = dev->dev_private;
6322 int pipe = pipe_config->cpu_transcoder;
6323 intel_clock_t clock;
6324 u32 mdiv;
6325 int refclk = 100000;
6326
6327 /* In case of MIPI DPLL will not even be used */
6328 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6329 return;
6330
6331 mutex_lock(&dev_priv->dpio_lock);
6332 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6333 mutex_unlock(&dev_priv->dpio_lock);
6334
6335 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6336 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6337 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6338 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6339 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6340
6341 vlv_clock(refclk, &clock);
6342
6343 /* clock.dot is the fast clock */
6344 pipe_config->port_clock = clock.dot / 5;
6345 }
6346
6347 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6348 struct intel_plane_config *plane_config)
6349 {
6350 struct drm_device *dev = crtc->base.dev;
6351 struct drm_i915_private *dev_priv = dev->dev_private;
6352 u32 val, base, offset;
6353 int pipe = crtc->pipe, plane = crtc->plane;
6354 int fourcc, pixel_format;
6355 int aligned_height;
6356
6357 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6358 if (!crtc->base.primary->fb) {
6359 DRM_DEBUG_KMS("failed to alloc fb\n");
6360 return;
6361 }
6362
6363 val = I915_READ(DSPCNTR(plane));
6364
6365 if (INTEL_INFO(dev)->gen >= 4)
6366 if (val & DISPPLANE_TILED)
6367 plane_config->tiled = true;
6368
6369 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6370 fourcc = intel_format_to_fourcc(pixel_format);
6371 crtc->base.primary->fb->pixel_format = fourcc;
6372 crtc->base.primary->fb->bits_per_pixel =
6373 drm_format_plane_cpp(fourcc, 0) * 8;
6374
6375 if (INTEL_INFO(dev)->gen >= 4) {
6376 if (plane_config->tiled)
6377 offset = I915_READ(DSPTILEOFF(plane));
6378 else
6379 offset = I915_READ(DSPLINOFF(plane));
6380 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6381 } else {
6382 base = I915_READ(DSPADDR(plane));
6383 }
6384 plane_config->base = base;
6385
6386 val = I915_READ(PIPESRC(pipe));
6387 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6388 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6389
6390 val = I915_READ(DSPSTRIDE(pipe));
6391 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6392
6393 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6394 plane_config->tiled);
6395
6396 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6397 aligned_height);
6398
6399 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6400 pipe, plane, crtc->base.primary->fb->width,
6401 crtc->base.primary->fb->height,
6402 crtc->base.primary->fb->bits_per_pixel, base,
6403 crtc->base.primary->fb->pitches[0],
6404 plane_config->size);
6405
6406 }
6407
6408 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6409 struct intel_crtc_config *pipe_config)
6410 {
6411 struct drm_device *dev = crtc->base.dev;
6412 struct drm_i915_private *dev_priv = dev->dev_private;
6413 int pipe = pipe_config->cpu_transcoder;
6414 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6415 intel_clock_t clock;
6416 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6417 int refclk = 100000;
6418
6419 mutex_lock(&dev_priv->dpio_lock);
6420 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6421 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6422 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6423 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6424 mutex_unlock(&dev_priv->dpio_lock);
6425
6426 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6427 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6428 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6429 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6430 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6431
6432 chv_clock(refclk, &clock);
6433
6434 /* clock.dot is the fast clock */
6435 pipe_config->port_clock = clock.dot / 5;
6436 }
6437
6438 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6439 struct intel_crtc_config *pipe_config)
6440 {
6441 struct drm_device *dev = crtc->base.dev;
6442 struct drm_i915_private *dev_priv = dev->dev_private;
6443 uint32_t tmp;
6444
6445 if (!intel_display_power_enabled(dev_priv,
6446 POWER_DOMAIN_PIPE(crtc->pipe)))
6447 return false;
6448
6449 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6450 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6451
6452 tmp = I915_READ(PIPECONF(crtc->pipe));
6453 if (!(tmp & PIPECONF_ENABLE))
6454 return false;
6455
6456 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6457 switch (tmp & PIPECONF_BPC_MASK) {
6458 case PIPECONF_6BPC:
6459 pipe_config->pipe_bpp = 18;
6460 break;
6461 case PIPECONF_8BPC:
6462 pipe_config->pipe_bpp = 24;
6463 break;
6464 case PIPECONF_10BPC:
6465 pipe_config->pipe_bpp = 30;
6466 break;
6467 default:
6468 break;
6469 }
6470 }
6471
6472 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6473 pipe_config->limited_color_range = true;
6474
6475 if (INTEL_INFO(dev)->gen < 4)
6476 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6477
6478 intel_get_pipe_timings(crtc, pipe_config);
6479
6480 i9xx_get_pfit_config(crtc, pipe_config);
6481
6482 if (INTEL_INFO(dev)->gen >= 4) {
6483 tmp = I915_READ(DPLL_MD(crtc->pipe));
6484 pipe_config->pixel_multiplier =
6485 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6486 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6487 pipe_config->dpll_hw_state.dpll_md = tmp;
6488 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6489 tmp = I915_READ(DPLL(crtc->pipe));
6490 pipe_config->pixel_multiplier =
6491 ((tmp & SDVO_MULTIPLIER_MASK)
6492 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6493 } else {
6494 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6495 * port and will be fixed up in the encoder->get_config
6496 * function. */
6497 pipe_config->pixel_multiplier = 1;
6498 }
6499 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6500 if (!IS_VALLEYVIEW(dev)) {
6501 /*
6502 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6503 * on 830. Filter it out here so that we don't
6504 * report errors due to that.
6505 */
6506 if (IS_I830(dev))
6507 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6508
6509 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6510 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6511 } else {
6512 /* Mask out read-only status bits. */
6513 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6514 DPLL_PORTC_READY_MASK |
6515 DPLL_PORTB_READY_MASK);
6516 }
6517
6518 if (IS_CHERRYVIEW(dev))
6519 chv_crtc_clock_get(crtc, pipe_config);
6520 else if (IS_VALLEYVIEW(dev))
6521 vlv_crtc_clock_get(crtc, pipe_config);
6522 else
6523 i9xx_crtc_clock_get(crtc, pipe_config);
6524
6525 return true;
6526 }
6527
6528 static void ironlake_init_pch_refclk(struct drm_device *dev)
6529 {
6530 struct drm_i915_private *dev_priv = dev->dev_private;
6531 struct intel_encoder *encoder;
6532 u32 val, final;
6533 bool has_lvds = false;
6534 bool has_cpu_edp = false;
6535 bool has_panel = false;
6536 bool has_ck505 = false;
6537 bool can_ssc = false;
6538
6539 /* We need to take the global config into account */
6540 for_each_intel_encoder(dev, encoder) {
6541 switch (encoder->type) {
6542 case INTEL_OUTPUT_LVDS:
6543 has_panel = true;
6544 has_lvds = true;
6545 break;
6546 case INTEL_OUTPUT_EDP:
6547 has_panel = true;
6548 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6549 has_cpu_edp = true;
6550 break;
6551 }
6552 }
6553
6554 if (HAS_PCH_IBX(dev)) {
6555 has_ck505 = dev_priv->vbt.display_clock_mode;
6556 can_ssc = has_ck505;
6557 } else {
6558 has_ck505 = false;
6559 can_ssc = true;
6560 }
6561
6562 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6563 has_panel, has_lvds, has_ck505);
6564
6565 /* Ironlake: try to setup display ref clock before DPLL
6566 * enabling. This is only under driver's control after
6567 * PCH B stepping, previous chipset stepping should be
6568 * ignoring this setting.
6569 */
6570 val = I915_READ(PCH_DREF_CONTROL);
6571
6572 /* As we must carefully and slowly disable/enable each source in turn,
6573 * compute the final state we want first and check if we need to
6574 * make any changes at all.
6575 */
6576 final = val;
6577 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6578 if (has_ck505)
6579 final |= DREF_NONSPREAD_CK505_ENABLE;
6580 else
6581 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6582
6583 final &= ~DREF_SSC_SOURCE_MASK;
6584 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6585 final &= ~DREF_SSC1_ENABLE;
6586
6587 if (has_panel) {
6588 final |= DREF_SSC_SOURCE_ENABLE;
6589
6590 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6591 final |= DREF_SSC1_ENABLE;
6592
6593 if (has_cpu_edp) {
6594 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6595 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6596 else
6597 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6598 } else
6599 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6600 } else {
6601 final |= DREF_SSC_SOURCE_DISABLE;
6602 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6603 }
6604
6605 if (final == val)
6606 return;
6607
6608 /* Always enable nonspread source */
6609 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6610
6611 if (has_ck505)
6612 val |= DREF_NONSPREAD_CK505_ENABLE;
6613 else
6614 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6615
6616 if (has_panel) {
6617 val &= ~DREF_SSC_SOURCE_MASK;
6618 val |= DREF_SSC_SOURCE_ENABLE;
6619
6620 /* SSC must be turned on before enabling the CPU output */
6621 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6622 DRM_DEBUG_KMS("Using SSC on panel\n");
6623 val |= DREF_SSC1_ENABLE;
6624 } else
6625 val &= ~DREF_SSC1_ENABLE;
6626
6627 /* Get SSC going before enabling the outputs */
6628 I915_WRITE(PCH_DREF_CONTROL, val);
6629 POSTING_READ(PCH_DREF_CONTROL);
6630 udelay(200);
6631
6632 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6633
6634 /* Enable CPU source on CPU attached eDP */
6635 if (has_cpu_edp) {
6636 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6637 DRM_DEBUG_KMS("Using SSC on eDP\n");
6638 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6639 } else
6640 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6641 } else
6642 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6643
6644 I915_WRITE(PCH_DREF_CONTROL, val);
6645 POSTING_READ(PCH_DREF_CONTROL);
6646 udelay(200);
6647 } else {
6648 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6649
6650 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6651
6652 /* Turn off CPU output */
6653 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6654
6655 I915_WRITE(PCH_DREF_CONTROL, val);
6656 POSTING_READ(PCH_DREF_CONTROL);
6657 udelay(200);
6658
6659 /* Turn off the SSC source */
6660 val &= ~DREF_SSC_SOURCE_MASK;
6661 val |= DREF_SSC_SOURCE_DISABLE;
6662
6663 /* Turn off SSC1 */
6664 val &= ~DREF_SSC1_ENABLE;
6665
6666 I915_WRITE(PCH_DREF_CONTROL, val);
6667 POSTING_READ(PCH_DREF_CONTROL);
6668 udelay(200);
6669 }
6670
6671 BUG_ON(val != final);
6672 }
6673
6674 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6675 {
6676 uint32_t tmp;
6677
6678 tmp = I915_READ(SOUTH_CHICKEN2);
6679 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6680 I915_WRITE(SOUTH_CHICKEN2, tmp);
6681
6682 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6683 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6684 DRM_ERROR("FDI mPHY reset assert timeout\n");
6685
6686 tmp = I915_READ(SOUTH_CHICKEN2);
6687 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6688 I915_WRITE(SOUTH_CHICKEN2, tmp);
6689
6690 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6691 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6692 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6693 }
6694
6695 /* WaMPhyProgramming:hsw */
6696 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6697 {
6698 uint32_t tmp;
6699
6700 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6701 tmp &= ~(0xFF << 24);
6702 tmp |= (0x12 << 24);
6703 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6704
6705 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6706 tmp |= (1 << 11);
6707 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6708
6709 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6710 tmp |= (1 << 11);
6711 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6712
6713 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6714 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6715 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6716
6717 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6718 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6719 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6720
6721 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6722 tmp &= ~(7 << 13);
6723 tmp |= (5 << 13);
6724 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6725
6726 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6727 tmp &= ~(7 << 13);
6728 tmp |= (5 << 13);
6729 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6730
6731 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6732 tmp &= ~0xFF;
6733 tmp |= 0x1C;
6734 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6735
6736 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6737 tmp &= ~0xFF;
6738 tmp |= 0x1C;
6739 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6740
6741 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6742 tmp &= ~(0xFF << 16);
6743 tmp |= (0x1C << 16);
6744 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6745
6746 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6747 tmp &= ~(0xFF << 16);
6748 tmp |= (0x1C << 16);
6749 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6750
6751 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6752 tmp |= (1 << 27);
6753 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6754
6755 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6756 tmp |= (1 << 27);
6757 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6758
6759 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6760 tmp &= ~(0xF << 28);
6761 tmp |= (4 << 28);
6762 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6763
6764 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6765 tmp &= ~(0xF << 28);
6766 tmp |= (4 << 28);
6767 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6768 }
6769
6770 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6771 * Programming" based on the parameters passed:
6772 * - Sequence to enable CLKOUT_DP
6773 * - Sequence to enable CLKOUT_DP without spread
6774 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6775 */
6776 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6777 bool with_fdi)
6778 {
6779 struct drm_i915_private *dev_priv = dev->dev_private;
6780 uint32_t reg, tmp;
6781
6782 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6783 with_spread = true;
6784 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6785 with_fdi, "LP PCH doesn't have FDI\n"))
6786 with_fdi = false;
6787
6788 mutex_lock(&dev_priv->dpio_lock);
6789
6790 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6791 tmp &= ~SBI_SSCCTL_DISABLE;
6792 tmp |= SBI_SSCCTL_PATHALT;
6793 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6794
6795 udelay(24);
6796
6797 if (with_spread) {
6798 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6799 tmp &= ~SBI_SSCCTL_PATHALT;
6800 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6801
6802 if (with_fdi) {
6803 lpt_reset_fdi_mphy(dev_priv);
6804 lpt_program_fdi_mphy(dev_priv);
6805 }
6806 }
6807
6808 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6809 SBI_GEN0 : SBI_DBUFF0;
6810 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6811 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6812 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6813
6814 mutex_unlock(&dev_priv->dpio_lock);
6815 }
6816
6817 /* Sequence to disable CLKOUT_DP */
6818 static void lpt_disable_clkout_dp(struct drm_device *dev)
6819 {
6820 struct drm_i915_private *dev_priv = dev->dev_private;
6821 uint32_t reg, tmp;
6822
6823 mutex_lock(&dev_priv->dpio_lock);
6824
6825 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6826 SBI_GEN0 : SBI_DBUFF0;
6827 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6828 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6829 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6830
6831 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6832 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6833 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6834 tmp |= SBI_SSCCTL_PATHALT;
6835 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6836 udelay(32);
6837 }
6838 tmp |= SBI_SSCCTL_DISABLE;
6839 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6840 }
6841
6842 mutex_unlock(&dev_priv->dpio_lock);
6843 }
6844
6845 static void lpt_init_pch_refclk(struct drm_device *dev)
6846 {
6847 struct intel_encoder *encoder;
6848 bool has_vga = false;
6849
6850 for_each_intel_encoder(dev, encoder) {
6851 switch (encoder->type) {
6852 case INTEL_OUTPUT_ANALOG:
6853 has_vga = true;
6854 break;
6855 }
6856 }
6857
6858 if (has_vga)
6859 lpt_enable_clkout_dp(dev, true, true);
6860 else
6861 lpt_disable_clkout_dp(dev);
6862 }
6863
6864 /*
6865 * Initialize reference clocks when the driver loads
6866 */
6867 void intel_init_pch_refclk(struct drm_device *dev)
6868 {
6869 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6870 ironlake_init_pch_refclk(dev);
6871 else if (HAS_PCH_LPT(dev))
6872 lpt_init_pch_refclk(dev);
6873 }
6874
6875 static int ironlake_get_refclk(struct drm_crtc *crtc)
6876 {
6877 struct drm_device *dev = crtc->dev;
6878 struct drm_i915_private *dev_priv = dev->dev_private;
6879 struct intel_encoder *encoder;
6880 int num_connectors = 0;
6881 bool is_lvds = false;
6882
6883 for_each_encoder_on_crtc(dev, crtc, encoder) {
6884 switch (encoder->type) {
6885 case INTEL_OUTPUT_LVDS:
6886 is_lvds = true;
6887 break;
6888 }
6889 num_connectors++;
6890 }
6891
6892 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6893 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6894 dev_priv->vbt.lvds_ssc_freq);
6895 return dev_priv->vbt.lvds_ssc_freq;
6896 }
6897
6898 return 120000;
6899 }
6900
6901 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6902 {
6903 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6905 int pipe = intel_crtc->pipe;
6906 uint32_t val;
6907
6908 val = 0;
6909
6910 switch (intel_crtc->config.pipe_bpp) {
6911 case 18:
6912 val |= PIPECONF_6BPC;
6913 break;
6914 case 24:
6915 val |= PIPECONF_8BPC;
6916 break;
6917 case 30:
6918 val |= PIPECONF_10BPC;
6919 break;
6920 case 36:
6921 val |= PIPECONF_12BPC;
6922 break;
6923 default:
6924 /* Case prevented by intel_choose_pipe_bpp_dither. */
6925 BUG();
6926 }
6927
6928 if (intel_crtc->config.dither)
6929 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6930
6931 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6932 val |= PIPECONF_INTERLACED_ILK;
6933 else
6934 val |= PIPECONF_PROGRESSIVE;
6935
6936 if (intel_crtc->config.limited_color_range)
6937 val |= PIPECONF_COLOR_RANGE_SELECT;
6938
6939 I915_WRITE(PIPECONF(pipe), val);
6940 POSTING_READ(PIPECONF(pipe));
6941 }
6942
6943 /*
6944 * Set up the pipe CSC unit.
6945 *
6946 * Currently only full range RGB to limited range RGB conversion
6947 * is supported, but eventually this should handle various
6948 * RGB<->YCbCr scenarios as well.
6949 */
6950 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6951 {
6952 struct drm_device *dev = crtc->dev;
6953 struct drm_i915_private *dev_priv = dev->dev_private;
6954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6955 int pipe = intel_crtc->pipe;
6956 uint16_t coeff = 0x7800; /* 1.0 */
6957
6958 /*
6959 * TODO: Check what kind of values actually come out of the pipe
6960 * with these coeff/postoff values and adjust to get the best
6961 * accuracy. Perhaps we even need to take the bpc value into
6962 * consideration.
6963 */
6964
6965 if (intel_crtc->config.limited_color_range)
6966 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6967
6968 /*
6969 * GY/GU and RY/RU should be the other way around according
6970 * to BSpec, but reality doesn't agree. Just set them up in
6971 * a way that results in the correct picture.
6972 */
6973 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6974 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6975
6976 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6977 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6978
6979 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6980 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6981
6982 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6983 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6984 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6985
6986 if (INTEL_INFO(dev)->gen > 6) {
6987 uint16_t postoff = 0;
6988
6989 if (intel_crtc->config.limited_color_range)
6990 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6991
6992 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6993 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6994 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6995
6996 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6997 } else {
6998 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6999
7000 if (intel_crtc->config.limited_color_range)
7001 mode |= CSC_BLACK_SCREEN_OFFSET;
7002
7003 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7004 }
7005 }
7006
7007 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7008 {
7009 struct drm_device *dev = crtc->dev;
7010 struct drm_i915_private *dev_priv = dev->dev_private;
7011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7012 enum pipe pipe = intel_crtc->pipe;
7013 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7014 uint32_t val;
7015
7016 val = 0;
7017
7018 if (IS_HASWELL(dev) && intel_crtc->config.dither)
7019 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7020
7021 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7022 val |= PIPECONF_INTERLACED_ILK;
7023 else
7024 val |= PIPECONF_PROGRESSIVE;
7025
7026 I915_WRITE(PIPECONF(cpu_transcoder), val);
7027 POSTING_READ(PIPECONF(cpu_transcoder));
7028
7029 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7030 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7031
7032 if (IS_BROADWELL(dev)) {
7033 val = 0;
7034
7035 switch (intel_crtc->config.pipe_bpp) {
7036 case 18:
7037 val |= PIPEMISC_DITHER_6_BPC;
7038 break;
7039 case 24:
7040 val |= PIPEMISC_DITHER_8_BPC;
7041 break;
7042 case 30:
7043 val |= PIPEMISC_DITHER_10_BPC;
7044 break;
7045 case 36:
7046 val |= PIPEMISC_DITHER_12_BPC;
7047 break;
7048 default:
7049 /* Case prevented by pipe_config_set_bpp. */
7050 BUG();
7051 }
7052
7053 if (intel_crtc->config.dither)
7054 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7055
7056 I915_WRITE(PIPEMISC(pipe), val);
7057 }
7058 }
7059
7060 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7061 intel_clock_t *clock,
7062 bool *has_reduced_clock,
7063 intel_clock_t *reduced_clock)
7064 {
7065 struct drm_device *dev = crtc->dev;
7066 struct drm_i915_private *dev_priv = dev->dev_private;
7067 struct intel_encoder *intel_encoder;
7068 int refclk;
7069 const intel_limit_t *limit;
7070 bool ret, is_lvds = false;
7071
7072 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7073 switch (intel_encoder->type) {
7074 case INTEL_OUTPUT_LVDS:
7075 is_lvds = true;
7076 break;
7077 }
7078 }
7079
7080 refclk = ironlake_get_refclk(crtc);
7081
7082 /*
7083 * Returns a set of divisors for the desired target clock with the given
7084 * refclk, or FALSE. The returned values represent the clock equation:
7085 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7086 */
7087 limit = intel_limit(crtc, refclk);
7088 ret = dev_priv->display.find_dpll(limit, crtc,
7089 to_intel_crtc(crtc)->config.port_clock,
7090 refclk, NULL, clock);
7091 if (!ret)
7092 return false;
7093
7094 if (is_lvds && dev_priv->lvds_downclock_avail) {
7095 /*
7096 * Ensure we match the reduced clock's P to the target clock.
7097 * If the clocks don't match, we can't switch the display clock
7098 * by using the FP0/FP1. In such case we will disable the LVDS
7099 * downclock feature.
7100 */
7101 *has_reduced_clock =
7102 dev_priv->display.find_dpll(limit, crtc,
7103 dev_priv->lvds_downclock,
7104 refclk, clock,
7105 reduced_clock);
7106 }
7107
7108 return true;
7109 }
7110
7111 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7112 {
7113 /*
7114 * Account for spread spectrum to avoid
7115 * oversubscribing the link. Max center spread
7116 * is 2.5%; use 5% for safety's sake.
7117 */
7118 u32 bps = target_clock * bpp * 21 / 20;
7119 return DIV_ROUND_UP(bps, link_bw * 8);
7120 }
7121
7122 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7123 {
7124 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7125 }
7126
7127 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7128 u32 *fp,
7129 intel_clock_t *reduced_clock, u32 *fp2)
7130 {
7131 struct drm_crtc *crtc = &intel_crtc->base;
7132 struct drm_device *dev = crtc->dev;
7133 struct drm_i915_private *dev_priv = dev->dev_private;
7134 struct intel_encoder *intel_encoder;
7135 uint32_t dpll;
7136 int factor, num_connectors = 0;
7137 bool is_lvds = false, is_sdvo = false;
7138
7139 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7140 switch (intel_encoder->type) {
7141 case INTEL_OUTPUT_LVDS:
7142 is_lvds = true;
7143 break;
7144 case INTEL_OUTPUT_SDVO:
7145 case INTEL_OUTPUT_HDMI:
7146 is_sdvo = true;
7147 break;
7148 }
7149
7150 num_connectors++;
7151 }
7152
7153 /* Enable autotuning of the PLL clock (if permissible) */
7154 factor = 21;
7155 if (is_lvds) {
7156 if ((intel_panel_use_ssc(dev_priv) &&
7157 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7158 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7159 factor = 25;
7160 } else if (intel_crtc->config.sdvo_tv_clock)
7161 factor = 20;
7162
7163 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7164 *fp |= FP_CB_TUNE;
7165
7166 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7167 *fp2 |= FP_CB_TUNE;
7168
7169 dpll = 0;
7170
7171 if (is_lvds)
7172 dpll |= DPLLB_MODE_LVDS;
7173 else
7174 dpll |= DPLLB_MODE_DAC_SERIAL;
7175
7176 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7177 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7178
7179 if (is_sdvo)
7180 dpll |= DPLL_SDVO_HIGH_SPEED;
7181 if (intel_crtc->config.has_dp_encoder)
7182 dpll |= DPLL_SDVO_HIGH_SPEED;
7183
7184 /* compute bitmask from p1 value */
7185 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7186 /* also FPA1 */
7187 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7188
7189 switch (intel_crtc->config.dpll.p2) {
7190 case 5:
7191 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7192 break;
7193 case 7:
7194 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7195 break;
7196 case 10:
7197 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7198 break;
7199 case 14:
7200 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7201 break;
7202 }
7203
7204 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7205 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7206 else
7207 dpll |= PLL_REF_INPUT_DREFCLK;
7208
7209 return dpll | DPLL_VCO_ENABLE;
7210 }
7211
7212 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7213 int x, int y,
7214 struct drm_framebuffer *fb)
7215 {
7216 struct drm_device *dev = crtc->dev;
7217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7218 int num_connectors = 0;
7219 intel_clock_t clock, reduced_clock;
7220 u32 dpll = 0, fp = 0, fp2 = 0;
7221 bool ok, has_reduced_clock = false;
7222 bool is_lvds = false;
7223 struct intel_encoder *encoder;
7224 struct intel_shared_dpll *pll;
7225
7226 for_each_encoder_on_crtc(dev, crtc, encoder) {
7227 switch (encoder->type) {
7228 case INTEL_OUTPUT_LVDS:
7229 is_lvds = true;
7230 break;
7231 }
7232
7233 num_connectors++;
7234 }
7235
7236 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7237 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7238
7239 ok = ironlake_compute_clocks(crtc, &clock,
7240 &has_reduced_clock, &reduced_clock);
7241 if (!ok && !intel_crtc->config.clock_set) {
7242 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7243 return -EINVAL;
7244 }
7245 /* Compat-code for transition, will disappear. */
7246 if (!intel_crtc->config.clock_set) {
7247 intel_crtc->config.dpll.n = clock.n;
7248 intel_crtc->config.dpll.m1 = clock.m1;
7249 intel_crtc->config.dpll.m2 = clock.m2;
7250 intel_crtc->config.dpll.p1 = clock.p1;
7251 intel_crtc->config.dpll.p2 = clock.p2;
7252 }
7253
7254 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7255 if (intel_crtc->config.has_pch_encoder) {
7256 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7257 if (has_reduced_clock)
7258 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7259
7260 dpll = ironlake_compute_dpll(intel_crtc,
7261 &fp, &reduced_clock,
7262 has_reduced_clock ? &fp2 : NULL);
7263
7264 intel_crtc->config.dpll_hw_state.dpll = dpll;
7265 intel_crtc->config.dpll_hw_state.fp0 = fp;
7266 if (has_reduced_clock)
7267 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7268 else
7269 intel_crtc->config.dpll_hw_state.fp1 = fp;
7270
7271 pll = intel_get_shared_dpll(intel_crtc);
7272 if (pll == NULL) {
7273 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7274 pipe_name(intel_crtc->pipe));
7275 return -EINVAL;
7276 }
7277 } else
7278 intel_put_shared_dpll(intel_crtc);
7279
7280 if (is_lvds && has_reduced_clock && i915.powersave)
7281 intel_crtc->lowfreq_avail = true;
7282 else
7283 intel_crtc->lowfreq_avail = false;
7284
7285 return 0;
7286 }
7287
7288 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7289 struct intel_link_m_n *m_n)
7290 {
7291 struct drm_device *dev = crtc->base.dev;
7292 struct drm_i915_private *dev_priv = dev->dev_private;
7293 enum pipe pipe = crtc->pipe;
7294
7295 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7296 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7297 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7298 & ~TU_SIZE_MASK;
7299 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7300 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7301 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7302 }
7303
7304 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7305 enum transcoder transcoder,
7306 struct intel_link_m_n *m_n,
7307 struct intel_link_m_n *m2_n2)
7308 {
7309 struct drm_device *dev = crtc->base.dev;
7310 struct drm_i915_private *dev_priv = dev->dev_private;
7311 enum pipe pipe = crtc->pipe;
7312
7313 if (INTEL_INFO(dev)->gen >= 5) {
7314 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7315 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7316 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7317 & ~TU_SIZE_MASK;
7318 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7319 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7320 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7321 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7322 * gen < 8) and if DRRS is supported (to make sure the
7323 * registers are not unnecessarily read).
7324 */
7325 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7326 crtc->config.has_drrs) {
7327 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7328 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7329 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7330 & ~TU_SIZE_MASK;
7331 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7332 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7333 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7334 }
7335 } else {
7336 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7337 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7338 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7339 & ~TU_SIZE_MASK;
7340 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7341 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7342 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7343 }
7344 }
7345
7346 void intel_dp_get_m_n(struct intel_crtc *crtc,
7347 struct intel_crtc_config *pipe_config)
7348 {
7349 if (crtc->config.has_pch_encoder)
7350 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7351 else
7352 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7353 &pipe_config->dp_m_n,
7354 &pipe_config->dp_m2_n2);
7355 }
7356
7357 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7358 struct intel_crtc_config *pipe_config)
7359 {
7360 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7361 &pipe_config->fdi_m_n, NULL);
7362 }
7363
7364 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7365 struct intel_crtc_config *pipe_config)
7366 {
7367 struct drm_device *dev = crtc->base.dev;
7368 struct drm_i915_private *dev_priv = dev->dev_private;
7369 uint32_t tmp;
7370
7371 tmp = I915_READ(PF_CTL(crtc->pipe));
7372
7373 if (tmp & PF_ENABLE) {
7374 pipe_config->pch_pfit.enabled = true;
7375 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7376 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7377
7378 /* We currently do not free assignements of panel fitters on
7379 * ivb/hsw (since we don't use the higher upscaling modes which
7380 * differentiates them) so just WARN about this case for now. */
7381 if (IS_GEN7(dev)) {
7382 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7383 PF_PIPE_SEL_IVB(crtc->pipe));
7384 }
7385 }
7386 }
7387
7388 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7389 struct intel_plane_config *plane_config)
7390 {
7391 struct drm_device *dev = crtc->base.dev;
7392 struct drm_i915_private *dev_priv = dev->dev_private;
7393 u32 val, base, offset;
7394 int pipe = crtc->pipe, plane = crtc->plane;
7395 int fourcc, pixel_format;
7396 int aligned_height;
7397
7398 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7399 if (!crtc->base.primary->fb) {
7400 DRM_DEBUG_KMS("failed to alloc fb\n");
7401 return;
7402 }
7403
7404 val = I915_READ(DSPCNTR(plane));
7405
7406 if (INTEL_INFO(dev)->gen >= 4)
7407 if (val & DISPPLANE_TILED)
7408 plane_config->tiled = true;
7409
7410 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7411 fourcc = intel_format_to_fourcc(pixel_format);
7412 crtc->base.primary->fb->pixel_format = fourcc;
7413 crtc->base.primary->fb->bits_per_pixel =
7414 drm_format_plane_cpp(fourcc, 0) * 8;
7415
7416 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7417 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7418 offset = I915_READ(DSPOFFSET(plane));
7419 } else {
7420 if (plane_config->tiled)
7421 offset = I915_READ(DSPTILEOFF(plane));
7422 else
7423 offset = I915_READ(DSPLINOFF(plane));
7424 }
7425 plane_config->base = base;
7426
7427 val = I915_READ(PIPESRC(pipe));
7428 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7429 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7430
7431 val = I915_READ(DSPSTRIDE(pipe));
7432 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7433
7434 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7435 plane_config->tiled);
7436
7437 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7438 aligned_height);
7439
7440 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7441 pipe, plane, crtc->base.primary->fb->width,
7442 crtc->base.primary->fb->height,
7443 crtc->base.primary->fb->bits_per_pixel, base,
7444 crtc->base.primary->fb->pitches[0],
7445 plane_config->size);
7446 }
7447
7448 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7449 struct intel_crtc_config *pipe_config)
7450 {
7451 struct drm_device *dev = crtc->base.dev;
7452 struct drm_i915_private *dev_priv = dev->dev_private;
7453 uint32_t tmp;
7454
7455 if (!intel_display_power_enabled(dev_priv,
7456 POWER_DOMAIN_PIPE(crtc->pipe)))
7457 return false;
7458
7459 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7460 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7461
7462 tmp = I915_READ(PIPECONF(crtc->pipe));
7463 if (!(tmp & PIPECONF_ENABLE))
7464 return false;
7465
7466 switch (tmp & PIPECONF_BPC_MASK) {
7467 case PIPECONF_6BPC:
7468 pipe_config->pipe_bpp = 18;
7469 break;
7470 case PIPECONF_8BPC:
7471 pipe_config->pipe_bpp = 24;
7472 break;
7473 case PIPECONF_10BPC:
7474 pipe_config->pipe_bpp = 30;
7475 break;
7476 case PIPECONF_12BPC:
7477 pipe_config->pipe_bpp = 36;
7478 break;
7479 default:
7480 break;
7481 }
7482
7483 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7484 pipe_config->limited_color_range = true;
7485
7486 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7487 struct intel_shared_dpll *pll;
7488
7489 pipe_config->has_pch_encoder = true;
7490
7491 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7492 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7493 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7494
7495 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7496
7497 if (HAS_PCH_IBX(dev_priv->dev)) {
7498 pipe_config->shared_dpll =
7499 (enum intel_dpll_id) crtc->pipe;
7500 } else {
7501 tmp = I915_READ(PCH_DPLL_SEL);
7502 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7503 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7504 else
7505 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7506 }
7507
7508 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7509
7510 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7511 &pipe_config->dpll_hw_state));
7512
7513 tmp = pipe_config->dpll_hw_state.dpll;
7514 pipe_config->pixel_multiplier =
7515 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7516 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7517
7518 ironlake_pch_clock_get(crtc, pipe_config);
7519 } else {
7520 pipe_config->pixel_multiplier = 1;
7521 }
7522
7523 intel_get_pipe_timings(crtc, pipe_config);
7524
7525 ironlake_get_pfit_config(crtc, pipe_config);
7526
7527 return true;
7528 }
7529
7530 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7531 {
7532 struct drm_device *dev = dev_priv->dev;
7533 struct intel_crtc *crtc;
7534
7535 for_each_intel_crtc(dev, crtc)
7536 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7537 pipe_name(crtc->pipe));
7538
7539 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7540 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7541 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7542 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7543 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7544 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7545 "CPU PWM1 enabled\n");
7546 if (IS_HASWELL(dev))
7547 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7548 "CPU PWM2 enabled\n");
7549 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7550 "PCH PWM1 enabled\n");
7551 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7552 "Utility pin enabled\n");
7553 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7554
7555 /*
7556 * In theory we can still leave IRQs enabled, as long as only the HPD
7557 * interrupts remain enabled. We used to check for that, but since it's
7558 * gen-specific and since we only disable LCPLL after we fully disable
7559 * the interrupts, the check below should be enough.
7560 */
7561 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7562 }
7563
7564 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7565 {
7566 struct drm_device *dev = dev_priv->dev;
7567
7568 if (IS_HASWELL(dev))
7569 return I915_READ(D_COMP_HSW);
7570 else
7571 return I915_READ(D_COMP_BDW);
7572 }
7573
7574 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7575 {
7576 struct drm_device *dev = dev_priv->dev;
7577
7578 if (IS_HASWELL(dev)) {
7579 mutex_lock(&dev_priv->rps.hw_lock);
7580 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7581 val))
7582 DRM_ERROR("Failed to write to D_COMP\n");
7583 mutex_unlock(&dev_priv->rps.hw_lock);
7584 } else {
7585 I915_WRITE(D_COMP_BDW, val);
7586 POSTING_READ(D_COMP_BDW);
7587 }
7588 }
7589
7590 /*
7591 * This function implements pieces of two sequences from BSpec:
7592 * - Sequence for display software to disable LCPLL
7593 * - Sequence for display software to allow package C8+
7594 * The steps implemented here are just the steps that actually touch the LCPLL
7595 * register. Callers should take care of disabling all the display engine
7596 * functions, doing the mode unset, fixing interrupts, etc.
7597 */
7598 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7599 bool switch_to_fclk, bool allow_power_down)
7600 {
7601 uint32_t val;
7602
7603 assert_can_disable_lcpll(dev_priv);
7604
7605 val = I915_READ(LCPLL_CTL);
7606
7607 if (switch_to_fclk) {
7608 val |= LCPLL_CD_SOURCE_FCLK;
7609 I915_WRITE(LCPLL_CTL, val);
7610
7611 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7612 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7613 DRM_ERROR("Switching to FCLK failed\n");
7614
7615 val = I915_READ(LCPLL_CTL);
7616 }
7617
7618 val |= LCPLL_PLL_DISABLE;
7619 I915_WRITE(LCPLL_CTL, val);
7620 POSTING_READ(LCPLL_CTL);
7621
7622 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7623 DRM_ERROR("LCPLL still locked\n");
7624
7625 val = hsw_read_dcomp(dev_priv);
7626 val |= D_COMP_COMP_DISABLE;
7627 hsw_write_dcomp(dev_priv, val);
7628 ndelay(100);
7629
7630 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7631 1))
7632 DRM_ERROR("D_COMP RCOMP still in progress\n");
7633
7634 if (allow_power_down) {
7635 val = I915_READ(LCPLL_CTL);
7636 val |= LCPLL_POWER_DOWN_ALLOW;
7637 I915_WRITE(LCPLL_CTL, val);
7638 POSTING_READ(LCPLL_CTL);
7639 }
7640 }
7641
7642 /*
7643 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7644 * source.
7645 */
7646 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7647 {
7648 uint32_t val;
7649 unsigned long irqflags;
7650
7651 val = I915_READ(LCPLL_CTL);
7652
7653 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7654 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7655 return;
7656
7657 /*
7658 * Make sure we're not on PC8 state before disabling PC8, otherwise
7659 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7660 *
7661 * The other problem is that hsw_restore_lcpll() is called as part of
7662 * the runtime PM resume sequence, so we can't just call
7663 * gen6_gt_force_wake_get() because that function calls
7664 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7665 * while we are on the resume sequence. So to solve this problem we have
7666 * to call special forcewake code that doesn't touch runtime PM and
7667 * doesn't enable the forcewake delayed work.
7668 */
7669 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7670 if (dev_priv->uncore.forcewake_count++ == 0)
7671 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7672 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7673
7674 if (val & LCPLL_POWER_DOWN_ALLOW) {
7675 val &= ~LCPLL_POWER_DOWN_ALLOW;
7676 I915_WRITE(LCPLL_CTL, val);
7677 POSTING_READ(LCPLL_CTL);
7678 }
7679
7680 val = hsw_read_dcomp(dev_priv);
7681 val |= D_COMP_COMP_FORCE;
7682 val &= ~D_COMP_COMP_DISABLE;
7683 hsw_write_dcomp(dev_priv, val);
7684
7685 val = I915_READ(LCPLL_CTL);
7686 val &= ~LCPLL_PLL_DISABLE;
7687 I915_WRITE(LCPLL_CTL, val);
7688
7689 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7690 DRM_ERROR("LCPLL not locked yet\n");
7691
7692 if (val & LCPLL_CD_SOURCE_FCLK) {
7693 val = I915_READ(LCPLL_CTL);
7694 val &= ~LCPLL_CD_SOURCE_FCLK;
7695 I915_WRITE(LCPLL_CTL, val);
7696
7697 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7698 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7699 DRM_ERROR("Switching back to LCPLL failed\n");
7700 }
7701
7702 /* See the big comment above. */
7703 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7704 if (--dev_priv->uncore.forcewake_count == 0)
7705 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7706 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7707 }
7708
7709 /*
7710 * Package states C8 and deeper are really deep PC states that can only be
7711 * reached when all the devices on the system allow it, so even if the graphics
7712 * device allows PC8+, it doesn't mean the system will actually get to these
7713 * states. Our driver only allows PC8+ when going into runtime PM.
7714 *
7715 * The requirements for PC8+ are that all the outputs are disabled, the power
7716 * well is disabled and most interrupts are disabled, and these are also
7717 * requirements for runtime PM. When these conditions are met, we manually do
7718 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7719 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7720 * hang the machine.
7721 *
7722 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7723 * the state of some registers, so when we come back from PC8+ we need to
7724 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7725 * need to take care of the registers kept by RC6. Notice that this happens even
7726 * if we don't put the device in PCI D3 state (which is what currently happens
7727 * because of the runtime PM support).
7728 *
7729 * For more, read "Display Sequences for Package C8" on the hardware
7730 * documentation.
7731 */
7732 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7733 {
7734 struct drm_device *dev = dev_priv->dev;
7735 uint32_t val;
7736
7737 DRM_DEBUG_KMS("Enabling package C8+\n");
7738
7739 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7740 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7741 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7742 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7743 }
7744
7745 lpt_disable_clkout_dp(dev);
7746 hsw_disable_lcpll(dev_priv, true, true);
7747 }
7748
7749 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7750 {
7751 struct drm_device *dev = dev_priv->dev;
7752 uint32_t val;
7753
7754 DRM_DEBUG_KMS("Disabling package C8+\n");
7755
7756 hsw_restore_lcpll(dev_priv);
7757 lpt_init_pch_refclk(dev);
7758
7759 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7760 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7761 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7762 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7763 }
7764
7765 intel_prepare_ddi(dev);
7766 }
7767
7768 static void snb_modeset_global_resources(struct drm_device *dev)
7769 {
7770 modeset_update_crtc_power_domains(dev);
7771 }
7772
7773 static void haswell_modeset_global_resources(struct drm_device *dev)
7774 {
7775 modeset_update_crtc_power_domains(dev);
7776 }
7777
7778 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7779 int x, int y,
7780 struct drm_framebuffer *fb)
7781 {
7782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7783
7784 if (!intel_ddi_pll_select(intel_crtc))
7785 return -EINVAL;
7786
7787 intel_crtc->lowfreq_avail = false;
7788
7789 return 0;
7790 }
7791
7792 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7793 enum port port,
7794 struct intel_crtc_config *pipe_config)
7795 {
7796 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7797
7798 switch (pipe_config->ddi_pll_sel) {
7799 case PORT_CLK_SEL_WRPLL1:
7800 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7801 break;
7802 case PORT_CLK_SEL_WRPLL2:
7803 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7804 break;
7805 }
7806 }
7807
7808 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7809 struct intel_crtc_config *pipe_config)
7810 {
7811 struct drm_device *dev = crtc->base.dev;
7812 struct drm_i915_private *dev_priv = dev->dev_private;
7813 struct intel_shared_dpll *pll;
7814 enum port port;
7815 uint32_t tmp;
7816
7817 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7818
7819 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7820
7821 haswell_get_ddi_pll(dev_priv, port, pipe_config);
7822
7823 if (pipe_config->shared_dpll >= 0) {
7824 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7825
7826 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7827 &pipe_config->dpll_hw_state));
7828 }
7829
7830 /*
7831 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7832 * DDI E. So just check whether this pipe is wired to DDI E and whether
7833 * the PCH transcoder is on.
7834 */
7835 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7836 pipe_config->has_pch_encoder = true;
7837
7838 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7839 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7840 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7841
7842 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7843 }
7844 }
7845
7846 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7847 struct intel_crtc_config *pipe_config)
7848 {
7849 struct drm_device *dev = crtc->base.dev;
7850 struct drm_i915_private *dev_priv = dev->dev_private;
7851 enum intel_display_power_domain pfit_domain;
7852 uint32_t tmp;
7853
7854 if (!intel_display_power_enabled(dev_priv,
7855 POWER_DOMAIN_PIPE(crtc->pipe)))
7856 return false;
7857
7858 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7859 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7860
7861 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7862 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7863 enum pipe trans_edp_pipe;
7864 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7865 default:
7866 WARN(1, "unknown pipe linked to edp transcoder\n");
7867 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7868 case TRANS_DDI_EDP_INPUT_A_ON:
7869 trans_edp_pipe = PIPE_A;
7870 break;
7871 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7872 trans_edp_pipe = PIPE_B;
7873 break;
7874 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7875 trans_edp_pipe = PIPE_C;
7876 break;
7877 }
7878
7879 if (trans_edp_pipe == crtc->pipe)
7880 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7881 }
7882
7883 if (!intel_display_power_enabled(dev_priv,
7884 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7885 return false;
7886
7887 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7888 if (!(tmp & PIPECONF_ENABLE))
7889 return false;
7890
7891 haswell_get_ddi_port_state(crtc, pipe_config);
7892
7893 intel_get_pipe_timings(crtc, pipe_config);
7894
7895 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7896 if (intel_display_power_enabled(dev_priv, pfit_domain))
7897 ironlake_get_pfit_config(crtc, pipe_config);
7898
7899 if (IS_HASWELL(dev))
7900 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7901 (I915_READ(IPS_CTL) & IPS_ENABLE);
7902
7903 pipe_config->pixel_multiplier = 1;
7904
7905 return true;
7906 }
7907
7908 static struct {
7909 int clock;
7910 u32 config;
7911 } hdmi_audio_clock[] = {
7912 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7913 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7914 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7915 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7916 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7917 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7918 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7919 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7920 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7921 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7922 };
7923
7924 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7925 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7926 {
7927 int i;
7928
7929 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7930 if (mode->clock == hdmi_audio_clock[i].clock)
7931 break;
7932 }
7933
7934 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7935 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7936 i = 1;
7937 }
7938
7939 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7940 hdmi_audio_clock[i].clock,
7941 hdmi_audio_clock[i].config);
7942
7943 return hdmi_audio_clock[i].config;
7944 }
7945
7946 static bool intel_eld_uptodate(struct drm_connector *connector,
7947 int reg_eldv, uint32_t bits_eldv,
7948 int reg_elda, uint32_t bits_elda,
7949 int reg_edid)
7950 {
7951 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7952 uint8_t *eld = connector->eld;
7953 uint32_t i;
7954
7955 i = I915_READ(reg_eldv);
7956 i &= bits_eldv;
7957
7958 if (!eld[0])
7959 return !i;
7960
7961 if (!i)
7962 return false;
7963
7964 i = I915_READ(reg_elda);
7965 i &= ~bits_elda;
7966 I915_WRITE(reg_elda, i);
7967
7968 for (i = 0; i < eld[2]; i++)
7969 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7970 return false;
7971
7972 return true;
7973 }
7974
7975 static void g4x_write_eld(struct drm_connector *connector,
7976 struct drm_crtc *crtc,
7977 struct drm_display_mode *mode)
7978 {
7979 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7980 uint8_t *eld = connector->eld;
7981 uint32_t eldv;
7982 uint32_t len;
7983 uint32_t i;
7984
7985 i = I915_READ(G4X_AUD_VID_DID);
7986
7987 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7988 eldv = G4X_ELDV_DEVCL_DEVBLC;
7989 else
7990 eldv = G4X_ELDV_DEVCTG;
7991
7992 if (intel_eld_uptodate(connector,
7993 G4X_AUD_CNTL_ST, eldv,
7994 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7995 G4X_HDMIW_HDMIEDID))
7996 return;
7997
7998 i = I915_READ(G4X_AUD_CNTL_ST);
7999 i &= ~(eldv | G4X_ELD_ADDR);
8000 len = (i >> 9) & 0x1f; /* ELD buffer size */
8001 I915_WRITE(G4X_AUD_CNTL_ST, i);
8002
8003 if (!eld[0])
8004 return;
8005
8006 len = min_t(uint8_t, eld[2], len);
8007 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8008 for (i = 0; i < len; i++)
8009 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8010
8011 i = I915_READ(G4X_AUD_CNTL_ST);
8012 i |= eldv;
8013 I915_WRITE(G4X_AUD_CNTL_ST, i);
8014 }
8015
8016 static void haswell_write_eld(struct drm_connector *connector,
8017 struct drm_crtc *crtc,
8018 struct drm_display_mode *mode)
8019 {
8020 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8021 uint8_t *eld = connector->eld;
8022 uint32_t eldv;
8023 uint32_t i;
8024 int len;
8025 int pipe = to_intel_crtc(crtc)->pipe;
8026 int tmp;
8027
8028 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8029 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8030 int aud_config = HSW_AUD_CFG(pipe);
8031 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8032
8033 /* Audio output enable */
8034 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8035 tmp = I915_READ(aud_cntrl_st2);
8036 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8037 I915_WRITE(aud_cntrl_st2, tmp);
8038 POSTING_READ(aud_cntrl_st2);
8039
8040 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
8041
8042 /* Set ELD valid state */
8043 tmp = I915_READ(aud_cntrl_st2);
8044 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
8045 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8046 I915_WRITE(aud_cntrl_st2, tmp);
8047 tmp = I915_READ(aud_cntrl_st2);
8048 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
8049
8050 /* Enable HDMI mode */
8051 tmp = I915_READ(aud_config);
8052 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
8053 /* clear N_programing_enable and N_value_index */
8054 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8055 I915_WRITE(aud_config, tmp);
8056
8057 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8058
8059 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8060
8061 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8062 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8063 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8064 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8065 } else {
8066 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8067 }
8068
8069 if (intel_eld_uptodate(connector,
8070 aud_cntrl_st2, eldv,
8071 aud_cntl_st, IBX_ELD_ADDRESS,
8072 hdmiw_hdmiedid))
8073 return;
8074
8075 i = I915_READ(aud_cntrl_st2);
8076 i &= ~eldv;
8077 I915_WRITE(aud_cntrl_st2, i);
8078
8079 if (!eld[0])
8080 return;
8081
8082 i = I915_READ(aud_cntl_st);
8083 i &= ~IBX_ELD_ADDRESS;
8084 I915_WRITE(aud_cntl_st, i);
8085 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
8086 DRM_DEBUG_DRIVER("port num:%d\n", i);
8087
8088 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8089 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8090 for (i = 0; i < len; i++)
8091 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8092
8093 i = I915_READ(aud_cntrl_st2);
8094 i |= eldv;
8095 I915_WRITE(aud_cntrl_st2, i);
8096
8097 }
8098
8099 static void ironlake_write_eld(struct drm_connector *connector,
8100 struct drm_crtc *crtc,
8101 struct drm_display_mode *mode)
8102 {
8103 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8104 uint8_t *eld = connector->eld;
8105 uint32_t eldv;
8106 uint32_t i;
8107 int len;
8108 int hdmiw_hdmiedid;
8109 int aud_config;
8110 int aud_cntl_st;
8111 int aud_cntrl_st2;
8112 int pipe = to_intel_crtc(crtc)->pipe;
8113
8114 if (HAS_PCH_IBX(connector->dev)) {
8115 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8116 aud_config = IBX_AUD_CFG(pipe);
8117 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
8118 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
8119 } else if (IS_VALLEYVIEW(connector->dev)) {
8120 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8121 aud_config = VLV_AUD_CFG(pipe);
8122 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8123 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
8124 } else {
8125 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8126 aud_config = CPT_AUD_CFG(pipe);
8127 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
8128 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
8129 }
8130
8131 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8132
8133 if (IS_VALLEYVIEW(connector->dev)) {
8134 struct intel_encoder *intel_encoder;
8135 struct intel_digital_port *intel_dig_port;
8136
8137 intel_encoder = intel_attached_encoder(connector);
8138 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8139 i = intel_dig_port->port;
8140 } else {
8141 i = I915_READ(aud_cntl_st);
8142 i = (i >> 29) & DIP_PORT_SEL_MASK;
8143 /* DIP_Port_Select, 0x1 = PortB */
8144 }
8145
8146 if (!i) {
8147 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8148 /* operate blindly on all ports */
8149 eldv = IBX_ELD_VALIDB;
8150 eldv |= IBX_ELD_VALIDB << 4;
8151 eldv |= IBX_ELD_VALIDB << 8;
8152 } else {
8153 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8154 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8155 }
8156
8157 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8158 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8159 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8160 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8161 } else {
8162 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8163 }
8164
8165 if (intel_eld_uptodate(connector,
8166 aud_cntrl_st2, eldv,
8167 aud_cntl_st, IBX_ELD_ADDRESS,
8168 hdmiw_hdmiedid))
8169 return;
8170
8171 i = I915_READ(aud_cntrl_st2);
8172 i &= ~eldv;
8173 I915_WRITE(aud_cntrl_st2, i);
8174
8175 if (!eld[0])
8176 return;
8177
8178 i = I915_READ(aud_cntl_st);
8179 i &= ~IBX_ELD_ADDRESS;
8180 I915_WRITE(aud_cntl_st, i);
8181
8182 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8183 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8184 for (i = 0; i < len; i++)
8185 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8186
8187 i = I915_READ(aud_cntrl_st2);
8188 i |= eldv;
8189 I915_WRITE(aud_cntrl_st2, i);
8190 }
8191
8192 void intel_write_eld(struct drm_encoder *encoder,
8193 struct drm_display_mode *mode)
8194 {
8195 struct drm_crtc *crtc = encoder->crtc;
8196 struct drm_connector *connector;
8197 struct drm_device *dev = encoder->dev;
8198 struct drm_i915_private *dev_priv = dev->dev_private;
8199
8200 connector = drm_select_eld(encoder, mode);
8201 if (!connector)
8202 return;
8203
8204 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8205 connector->base.id,
8206 connector->name,
8207 connector->encoder->base.id,
8208 connector->encoder->name);
8209
8210 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8211
8212 if (dev_priv->display.write_eld)
8213 dev_priv->display.write_eld(connector, crtc, mode);
8214 }
8215
8216 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8217 {
8218 struct drm_device *dev = crtc->dev;
8219 struct drm_i915_private *dev_priv = dev->dev_private;
8220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8221 uint32_t cntl = 0, size = 0;
8222
8223 if (base) {
8224 unsigned int width = intel_crtc->cursor_width;
8225 unsigned int height = intel_crtc->cursor_height;
8226 unsigned int stride = roundup_pow_of_two(width) * 4;
8227
8228 switch (stride) {
8229 default:
8230 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8231 width, stride);
8232 stride = 256;
8233 /* fallthrough */
8234 case 256:
8235 case 512:
8236 case 1024:
8237 case 2048:
8238 break;
8239 }
8240
8241 cntl |= CURSOR_ENABLE |
8242 CURSOR_GAMMA_ENABLE |
8243 CURSOR_FORMAT_ARGB |
8244 CURSOR_STRIDE(stride);
8245
8246 size = (height << 12) | width;
8247 }
8248
8249 if (intel_crtc->cursor_cntl != 0 &&
8250 (intel_crtc->cursor_base != base ||
8251 intel_crtc->cursor_size != size ||
8252 intel_crtc->cursor_cntl != cntl)) {
8253 /* On these chipsets we can only modify the base/size/stride
8254 * whilst the cursor is disabled.
8255 */
8256 I915_WRITE(_CURACNTR, 0);
8257 POSTING_READ(_CURACNTR);
8258 intel_crtc->cursor_cntl = 0;
8259 }
8260
8261 if (intel_crtc->cursor_base != base) {
8262 I915_WRITE(_CURABASE, base);
8263 intel_crtc->cursor_base = base;
8264 }
8265
8266 if (intel_crtc->cursor_size != size) {
8267 I915_WRITE(CURSIZE, size);
8268 intel_crtc->cursor_size = size;
8269 }
8270
8271 if (intel_crtc->cursor_cntl != cntl) {
8272 I915_WRITE(_CURACNTR, cntl);
8273 POSTING_READ(_CURACNTR);
8274 intel_crtc->cursor_cntl = cntl;
8275 }
8276 }
8277
8278 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8279 {
8280 struct drm_device *dev = crtc->dev;
8281 struct drm_i915_private *dev_priv = dev->dev_private;
8282 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8283 int pipe = intel_crtc->pipe;
8284 uint32_t cntl;
8285
8286 cntl = 0;
8287 if (base) {
8288 cntl = MCURSOR_GAMMA_ENABLE;
8289 switch (intel_crtc->cursor_width) {
8290 case 64:
8291 cntl |= CURSOR_MODE_64_ARGB_AX;
8292 break;
8293 case 128:
8294 cntl |= CURSOR_MODE_128_ARGB_AX;
8295 break;
8296 case 256:
8297 cntl |= CURSOR_MODE_256_ARGB_AX;
8298 break;
8299 default:
8300 WARN_ON(1);
8301 return;
8302 }
8303 cntl |= pipe << 28; /* Connect to correct pipe */
8304
8305 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8306 cntl |= CURSOR_PIPE_CSC_ENABLE;
8307 }
8308
8309 if (intel_crtc->cursor_cntl != cntl) {
8310 I915_WRITE(CURCNTR(pipe), cntl);
8311 POSTING_READ(CURCNTR(pipe));
8312 intel_crtc->cursor_cntl = cntl;
8313 }
8314
8315 /* and commit changes on next vblank */
8316 I915_WRITE(CURBASE(pipe), base);
8317 POSTING_READ(CURBASE(pipe));
8318
8319 intel_crtc->cursor_base = base;
8320 }
8321
8322 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8323 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8324 bool on)
8325 {
8326 struct drm_device *dev = crtc->dev;
8327 struct drm_i915_private *dev_priv = dev->dev_private;
8328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8329 int pipe = intel_crtc->pipe;
8330 int x = crtc->cursor_x;
8331 int y = crtc->cursor_y;
8332 u32 base = 0, pos = 0;
8333
8334 if (on)
8335 base = intel_crtc->cursor_addr;
8336
8337 if (x >= intel_crtc->config.pipe_src_w)
8338 base = 0;
8339
8340 if (y >= intel_crtc->config.pipe_src_h)
8341 base = 0;
8342
8343 if (x < 0) {
8344 if (x + intel_crtc->cursor_width <= 0)
8345 base = 0;
8346
8347 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8348 x = -x;
8349 }
8350 pos |= x << CURSOR_X_SHIFT;
8351
8352 if (y < 0) {
8353 if (y + intel_crtc->cursor_height <= 0)
8354 base = 0;
8355
8356 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8357 y = -y;
8358 }
8359 pos |= y << CURSOR_Y_SHIFT;
8360
8361 if (base == 0 && intel_crtc->cursor_base == 0)
8362 return;
8363
8364 I915_WRITE(CURPOS(pipe), pos);
8365
8366 if (IS_845G(dev) || IS_I865G(dev))
8367 i845_update_cursor(crtc, base);
8368 else
8369 i9xx_update_cursor(crtc, base);
8370 }
8371
8372 static bool cursor_size_ok(struct drm_device *dev,
8373 uint32_t width, uint32_t height)
8374 {
8375 if (width == 0 || height == 0)
8376 return false;
8377
8378 /*
8379 * 845g/865g are special in that they are only limited by
8380 * the width of their cursors, the height is arbitrary up to
8381 * the precision of the register. Everything else requires
8382 * square cursors, limited to a few power-of-two sizes.
8383 */
8384 if (IS_845G(dev) || IS_I865G(dev)) {
8385 if ((width & 63) != 0)
8386 return false;
8387
8388 if (width > (IS_845G(dev) ? 64 : 512))
8389 return false;
8390
8391 if (height > 1023)
8392 return false;
8393 } else {
8394 switch (width | height) {
8395 case 256:
8396 case 128:
8397 if (IS_GEN2(dev))
8398 return false;
8399 case 64:
8400 break;
8401 default:
8402 return false;
8403 }
8404 }
8405
8406 return true;
8407 }
8408
8409 /*
8410 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8411 *
8412 * Note that the object's reference will be consumed if the update fails. If
8413 * the update succeeds, the reference of the old object (if any) will be
8414 * consumed.
8415 */
8416 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8417 struct drm_i915_gem_object *obj,
8418 uint32_t width, uint32_t height)
8419 {
8420 struct drm_device *dev = crtc->dev;
8421 struct drm_i915_private *dev_priv = dev->dev_private;
8422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8423 enum pipe pipe = intel_crtc->pipe;
8424 unsigned old_width, stride;
8425 uint32_t addr;
8426 int ret;
8427
8428 /* if we want to turn off the cursor ignore width and height */
8429 if (!obj) {
8430 DRM_DEBUG_KMS("cursor off\n");
8431 addr = 0;
8432 mutex_lock(&dev->struct_mutex);
8433 goto finish;
8434 }
8435
8436 /* Check for which cursor types we support */
8437 if (!cursor_size_ok(dev, width, height)) {
8438 DRM_DEBUG("Cursor dimension not supported\n");
8439 return -EINVAL;
8440 }
8441
8442 stride = roundup_pow_of_two(width) * 4;
8443 if (obj->base.size < stride * height) {
8444 DRM_DEBUG_KMS("buffer is too small\n");
8445 ret = -ENOMEM;
8446 goto fail;
8447 }
8448
8449 /* we only need to pin inside GTT if cursor is non-phy */
8450 mutex_lock(&dev->struct_mutex);
8451 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8452 unsigned alignment;
8453
8454 if (obj->tiling_mode) {
8455 DRM_DEBUG_KMS("cursor cannot be tiled\n");
8456 ret = -EINVAL;
8457 goto fail_locked;
8458 }
8459
8460 /*
8461 * Global gtt pte registers are special registers which actually
8462 * forward writes to a chunk of system memory. Which means that
8463 * there is no risk that the register values disappear as soon
8464 * as we call intel_runtime_pm_put(), so it is correct to wrap
8465 * only the pin/unpin/fence and not more.
8466 */
8467 intel_runtime_pm_get(dev_priv);
8468
8469 /* Note that the w/a also requires 2 PTE of padding following
8470 * the bo. We currently fill all unused PTE with the shadow
8471 * page and so we should always have valid PTE following the
8472 * cursor preventing the VT-d warning.
8473 */
8474 alignment = 0;
8475 if (need_vtd_wa(dev))
8476 alignment = 64*1024;
8477
8478 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8479 if (ret) {
8480 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8481 intel_runtime_pm_put(dev_priv);
8482 goto fail_locked;
8483 }
8484
8485 ret = i915_gem_object_put_fence(obj);
8486 if (ret) {
8487 DRM_DEBUG_KMS("failed to release fence for cursor");
8488 intel_runtime_pm_put(dev_priv);
8489 goto fail_unpin;
8490 }
8491
8492 addr = i915_gem_obj_ggtt_offset(obj);
8493
8494 intel_runtime_pm_put(dev_priv);
8495 } else {
8496 int align = IS_I830(dev) ? 16 * 1024 : 256;
8497 ret = i915_gem_object_attach_phys(obj, align);
8498 if (ret) {
8499 DRM_DEBUG_KMS("failed to attach phys object\n");
8500 goto fail_locked;
8501 }
8502 addr = obj->phys_handle->busaddr;
8503 }
8504
8505 finish:
8506 if (intel_crtc->cursor_bo) {
8507 if (!INTEL_INFO(dev)->cursor_needs_physical)
8508 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8509 }
8510
8511 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8512 INTEL_FRONTBUFFER_CURSOR(pipe));
8513 mutex_unlock(&dev->struct_mutex);
8514
8515 old_width = intel_crtc->cursor_width;
8516
8517 intel_crtc->cursor_addr = addr;
8518 intel_crtc->cursor_bo = obj;
8519 intel_crtc->cursor_width = width;
8520 intel_crtc->cursor_height = height;
8521
8522 if (intel_crtc->active) {
8523 if (old_width != width)
8524 intel_update_watermarks(crtc);
8525 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8526 }
8527
8528 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8529
8530 return 0;
8531 fail_unpin:
8532 i915_gem_object_unpin_from_display_plane(obj);
8533 fail_locked:
8534 mutex_unlock(&dev->struct_mutex);
8535 fail:
8536 drm_gem_object_unreference_unlocked(&obj->base);
8537 return ret;
8538 }
8539
8540 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8541 u16 *blue, uint32_t start, uint32_t size)
8542 {
8543 int end = (start + size > 256) ? 256 : start + size, i;
8544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8545
8546 for (i = start; i < end; i++) {
8547 intel_crtc->lut_r[i] = red[i] >> 8;
8548 intel_crtc->lut_g[i] = green[i] >> 8;
8549 intel_crtc->lut_b[i] = blue[i] >> 8;
8550 }
8551
8552 intel_crtc_load_lut(crtc);
8553 }
8554
8555 /* VESA 640x480x72Hz mode to set on the pipe */
8556 static struct drm_display_mode load_detect_mode = {
8557 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8558 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8559 };
8560
8561 struct drm_framebuffer *
8562 __intel_framebuffer_create(struct drm_device *dev,
8563 struct drm_mode_fb_cmd2 *mode_cmd,
8564 struct drm_i915_gem_object *obj)
8565 {
8566 struct intel_framebuffer *intel_fb;
8567 int ret;
8568
8569 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8570 if (!intel_fb) {
8571 drm_gem_object_unreference_unlocked(&obj->base);
8572 return ERR_PTR(-ENOMEM);
8573 }
8574
8575 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8576 if (ret)
8577 goto err;
8578
8579 return &intel_fb->base;
8580 err:
8581 drm_gem_object_unreference_unlocked(&obj->base);
8582 kfree(intel_fb);
8583
8584 return ERR_PTR(ret);
8585 }
8586
8587 static struct drm_framebuffer *
8588 intel_framebuffer_create(struct drm_device *dev,
8589 struct drm_mode_fb_cmd2 *mode_cmd,
8590 struct drm_i915_gem_object *obj)
8591 {
8592 struct drm_framebuffer *fb;
8593 int ret;
8594
8595 ret = i915_mutex_lock_interruptible(dev);
8596 if (ret)
8597 return ERR_PTR(ret);
8598 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8599 mutex_unlock(&dev->struct_mutex);
8600
8601 return fb;
8602 }
8603
8604 static u32
8605 intel_framebuffer_pitch_for_width(int width, int bpp)
8606 {
8607 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8608 return ALIGN(pitch, 64);
8609 }
8610
8611 static u32
8612 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8613 {
8614 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8615 return PAGE_ALIGN(pitch * mode->vdisplay);
8616 }
8617
8618 static struct drm_framebuffer *
8619 intel_framebuffer_create_for_mode(struct drm_device *dev,
8620 struct drm_display_mode *mode,
8621 int depth, int bpp)
8622 {
8623 struct drm_i915_gem_object *obj;
8624 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8625
8626 obj = i915_gem_alloc_object(dev,
8627 intel_framebuffer_size_for_mode(mode, bpp));
8628 if (obj == NULL)
8629 return ERR_PTR(-ENOMEM);
8630
8631 mode_cmd.width = mode->hdisplay;
8632 mode_cmd.height = mode->vdisplay;
8633 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8634 bpp);
8635 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8636
8637 return intel_framebuffer_create(dev, &mode_cmd, obj);
8638 }
8639
8640 static struct drm_framebuffer *
8641 mode_fits_in_fbdev(struct drm_device *dev,
8642 struct drm_display_mode *mode)
8643 {
8644 #ifdef CONFIG_DRM_I915_FBDEV
8645 struct drm_i915_private *dev_priv = dev->dev_private;
8646 struct drm_i915_gem_object *obj;
8647 struct drm_framebuffer *fb;
8648
8649 if (!dev_priv->fbdev)
8650 return NULL;
8651
8652 if (!dev_priv->fbdev->fb)
8653 return NULL;
8654
8655 obj = dev_priv->fbdev->fb->obj;
8656 BUG_ON(!obj);
8657
8658 fb = &dev_priv->fbdev->fb->base;
8659 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8660 fb->bits_per_pixel))
8661 return NULL;
8662
8663 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8664 return NULL;
8665
8666 return fb;
8667 #else
8668 return NULL;
8669 #endif
8670 }
8671
8672 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8673 struct drm_display_mode *mode,
8674 struct intel_load_detect_pipe *old,
8675 struct drm_modeset_acquire_ctx *ctx)
8676 {
8677 struct intel_crtc *intel_crtc;
8678 struct intel_encoder *intel_encoder =
8679 intel_attached_encoder(connector);
8680 struct drm_crtc *possible_crtc;
8681 struct drm_encoder *encoder = &intel_encoder->base;
8682 struct drm_crtc *crtc = NULL;
8683 struct drm_device *dev = encoder->dev;
8684 struct drm_framebuffer *fb;
8685 struct drm_mode_config *config = &dev->mode_config;
8686 int ret, i = -1;
8687
8688 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8689 connector->base.id, connector->name,
8690 encoder->base.id, encoder->name);
8691
8692 retry:
8693 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8694 if (ret)
8695 goto fail_unlock;
8696
8697 /*
8698 * Algorithm gets a little messy:
8699 *
8700 * - if the connector already has an assigned crtc, use it (but make
8701 * sure it's on first)
8702 *
8703 * - try to find the first unused crtc that can drive this connector,
8704 * and use that if we find one
8705 */
8706
8707 /* See if we already have a CRTC for this connector */
8708 if (encoder->crtc) {
8709 crtc = encoder->crtc;
8710
8711 ret = drm_modeset_lock(&crtc->mutex, ctx);
8712 if (ret)
8713 goto fail_unlock;
8714
8715 old->dpms_mode = connector->dpms;
8716 old->load_detect_temp = false;
8717
8718 /* Make sure the crtc and connector are running */
8719 if (connector->dpms != DRM_MODE_DPMS_ON)
8720 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8721
8722 return true;
8723 }
8724
8725 /* Find an unused one (if possible) */
8726 for_each_crtc(dev, possible_crtc) {
8727 i++;
8728 if (!(encoder->possible_crtcs & (1 << i)))
8729 continue;
8730 if (possible_crtc->enabled)
8731 continue;
8732 /* This can occur when applying the pipe A quirk on resume. */
8733 if (to_intel_crtc(possible_crtc)->new_enabled)
8734 continue;
8735
8736 crtc = possible_crtc;
8737 break;
8738 }
8739
8740 /*
8741 * If we didn't find an unused CRTC, don't use any.
8742 */
8743 if (!crtc) {
8744 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8745 goto fail_unlock;
8746 }
8747
8748 ret = drm_modeset_lock(&crtc->mutex, ctx);
8749 if (ret)
8750 goto fail_unlock;
8751 intel_encoder->new_crtc = to_intel_crtc(crtc);
8752 to_intel_connector(connector)->new_encoder = intel_encoder;
8753
8754 intel_crtc = to_intel_crtc(crtc);
8755 intel_crtc->new_enabled = true;
8756 intel_crtc->new_config = &intel_crtc->config;
8757 old->dpms_mode = connector->dpms;
8758 old->load_detect_temp = true;
8759 old->release_fb = NULL;
8760
8761 if (!mode)
8762 mode = &load_detect_mode;
8763
8764 /* We need a framebuffer large enough to accommodate all accesses
8765 * that the plane may generate whilst we perform load detection.
8766 * We can not rely on the fbcon either being present (we get called
8767 * during its initialisation to detect all boot displays, or it may
8768 * not even exist) or that it is large enough to satisfy the
8769 * requested mode.
8770 */
8771 fb = mode_fits_in_fbdev(dev, mode);
8772 if (fb == NULL) {
8773 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8774 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8775 old->release_fb = fb;
8776 } else
8777 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8778 if (IS_ERR(fb)) {
8779 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8780 goto fail;
8781 }
8782
8783 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8784 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8785 if (old->release_fb)
8786 old->release_fb->funcs->destroy(old->release_fb);
8787 goto fail;
8788 }
8789
8790 /* let the connector get through one full cycle before testing */
8791 intel_wait_for_vblank(dev, intel_crtc->pipe);
8792 return true;
8793
8794 fail:
8795 intel_crtc->new_enabled = crtc->enabled;
8796 if (intel_crtc->new_enabled)
8797 intel_crtc->new_config = &intel_crtc->config;
8798 else
8799 intel_crtc->new_config = NULL;
8800 fail_unlock:
8801 if (ret == -EDEADLK) {
8802 drm_modeset_backoff(ctx);
8803 goto retry;
8804 }
8805
8806 return false;
8807 }
8808
8809 void intel_release_load_detect_pipe(struct drm_connector *connector,
8810 struct intel_load_detect_pipe *old)
8811 {
8812 struct intel_encoder *intel_encoder =
8813 intel_attached_encoder(connector);
8814 struct drm_encoder *encoder = &intel_encoder->base;
8815 struct drm_crtc *crtc = encoder->crtc;
8816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8817
8818 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8819 connector->base.id, connector->name,
8820 encoder->base.id, encoder->name);
8821
8822 if (old->load_detect_temp) {
8823 to_intel_connector(connector)->new_encoder = NULL;
8824 intel_encoder->new_crtc = NULL;
8825 intel_crtc->new_enabled = false;
8826 intel_crtc->new_config = NULL;
8827 intel_set_mode(crtc, NULL, 0, 0, NULL);
8828
8829 if (old->release_fb) {
8830 drm_framebuffer_unregister_private(old->release_fb);
8831 drm_framebuffer_unreference(old->release_fb);
8832 }
8833
8834 return;
8835 }
8836
8837 /* Switch crtc and encoder back off if necessary */
8838 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8839 connector->funcs->dpms(connector, old->dpms_mode);
8840 }
8841
8842 static int i9xx_pll_refclk(struct drm_device *dev,
8843 const struct intel_crtc_config *pipe_config)
8844 {
8845 struct drm_i915_private *dev_priv = dev->dev_private;
8846 u32 dpll = pipe_config->dpll_hw_state.dpll;
8847
8848 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8849 return dev_priv->vbt.lvds_ssc_freq;
8850 else if (HAS_PCH_SPLIT(dev))
8851 return 120000;
8852 else if (!IS_GEN2(dev))
8853 return 96000;
8854 else
8855 return 48000;
8856 }
8857
8858 /* Returns the clock of the currently programmed mode of the given pipe. */
8859 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8860 struct intel_crtc_config *pipe_config)
8861 {
8862 struct drm_device *dev = crtc->base.dev;
8863 struct drm_i915_private *dev_priv = dev->dev_private;
8864 int pipe = pipe_config->cpu_transcoder;
8865 u32 dpll = pipe_config->dpll_hw_state.dpll;
8866 u32 fp;
8867 intel_clock_t clock;
8868 int refclk = i9xx_pll_refclk(dev, pipe_config);
8869
8870 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8871 fp = pipe_config->dpll_hw_state.fp0;
8872 else
8873 fp = pipe_config->dpll_hw_state.fp1;
8874
8875 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8876 if (IS_PINEVIEW(dev)) {
8877 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8878 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8879 } else {
8880 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8881 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8882 }
8883
8884 if (!IS_GEN2(dev)) {
8885 if (IS_PINEVIEW(dev))
8886 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8887 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8888 else
8889 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8890 DPLL_FPA01_P1_POST_DIV_SHIFT);
8891
8892 switch (dpll & DPLL_MODE_MASK) {
8893 case DPLLB_MODE_DAC_SERIAL:
8894 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8895 5 : 10;
8896 break;
8897 case DPLLB_MODE_LVDS:
8898 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8899 7 : 14;
8900 break;
8901 default:
8902 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8903 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8904 return;
8905 }
8906
8907 if (IS_PINEVIEW(dev))
8908 pineview_clock(refclk, &clock);
8909 else
8910 i9xx_clock(refclk, &clock);
8911 } else {
8912 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8913 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8914
8915 if (is_lvds) {
8916 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8917 DPLL_FPA01_P1_POST_DIV_SHIFT);
8918
8919 if (lvds & LVDS_CLKB_POWER_UP)
8920 clock.p2 = 7;
8921 else
8922 clock.p2 = 14;
8923 } else {
8924 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8925 clock.p1 = 2;
8926 else {
8927 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8928 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8929 }
8930 if (dpll & PLL_P2_DIVIDE_BY_4)
8931 clock.p2 = 4;
8932 else
8933 clock.p2 = 2;
8934 }
8935
8936 i9xx_clock(refclk, &clock);
8937 }
8938
8939 /*
8940 * This value includes pixel_multiplier. We will use
8941 * port_clock to compute adjusted_mode.crtc_clock in the
8942 * encoder's get_config() function.
8943 */
8944 pipe_config->port_clock = clock.dot;
8945 }
8946
8947 int intel_dotclock_calculate(int link_freq,
8948 const struct intel_link_m_n *m_n)
8949 {
8950 /*
8951 * The calculation for the data clock is:
8952 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8953 * But we want to avoid losing precison if possible, so:
8954 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8955 *
8956 * and the link clock is simpler:
8957 * link_clock = (m * link_clock) / n
8958 */
8959
8960 if (!m_n->link_n)
8961 return 0;
8962
8963 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8964 }
8965
8966 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8967 struct intel_crtc_config *pipe_config)
8968 {
8969 struct drm_device *dev = crtc->base.dev;
8970
8971 /* read out port_clock from the DPLL */
8972 i9xx_crtc_clock_get(crtc, pipe_config);
8973
8974 /*
8975 * This value does not include pixel_multiplier.
8976 * We will check that port_clock and adjusted_mode.crtc_clock
8977 * agree once we know their relationship in the encoder's
8978 * get_config() function.
8979 */
8980 pipe_config->adjusted_mode.crtc_clock =
8981 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8982 &pipe_config->fdi_m_n);
8983 }
8984
8985 /** Returns the currently programmed mode of the given pipe. */
8986 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8987 struct drm_crtc *crtc)
8988 {
8989 struct drm_i915_private *dev_priv = dev->dev_private;
8990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8991 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8992 struct drm_display_mode *mode;
8993 struct intel_crtc_config pipe_config;
8994 int htot = I915_READ(HTOTAL(cpu_transcoder));
8995 int hsync = I915_READ(HSYNC(cpu_transcoder));
8996 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8997 int vsync = I915_READ(VSYNC(cpu_transcoder));
8998 enum pipe pipe = intel_crtc->pipe;
8999
9000 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9001 if (!mode)
9002 return NULL;
9003
9004 /*
9005 * Construct a pipe_config sufficient for getting the clock info
9006 * back out of crtc_clock_get.
9007 *
9008 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9009 * to use a real value here instead.
9010 */
9011 pipe_config.cpu_transcoder = (enum transcoder) pipe;
9012 pipe_config.pixel_multiplier = 1;
9013 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9014 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9015 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9016 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9017
9018 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9019 mode->hdisplay = (htot & 0xffff) + 1;
9020 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9021 mode->hsync_start = (hsync & 0xffff) + 1;
9022 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9023 mode->vdisplay = (vtot & 0xffff) + 1;
9024 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9025 mode->vsync_start = (vsync & 0xffff) + 1;
9026 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9027
9028 drm_mode_set_name(mode);
9029
9030 return mode;
9031 }
9032
9033 static void intel_increase_pllclock(struct drm_device *dev,
9034 enum pipe pipe)
9035 {
9036 struct drm_i915_private *dev_priv = dev->dev_private;
9037 int dpll_reg = DPLL(pipe);
9038 int dpll;
9039
9040 if (!HAS_GMCH_DISPLAY(dev))
9041 return;
9042
9043 if (!dev_priv->lvds_downclock_avail)
9044 return;
9045
9046 dpll = I915_READ(dpll_reg);
9047 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
9048 DRM_DEBUG_DRIVER("upclocking LVDS\n");
9049
9050 assert_panel_unlocked(dev_priv, pipe);
9051
9052 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9053 I915_WRITE(dpll_reg, dpll);
9054 intel_wait_for_vblank(dev, pipe);
9055
9056 dpll = I915_READ(dpll_reg);
9057 if (dpll & DISPLAY_RATE_SELECT_FPA1)
9058 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
9059 }
9060 }
9061
9062 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9063 {
9064 struct drm_device *dev = crtc->dev;
9065 struct drm_i915_private *dev_priv = dev->dev_private;
9066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9067
9068 if (!HAS_GMCH_DISPLAY(dev))
9069 return;
9070
9071 if (!dev_priv->lvds_downclock_avail)
9072 return;
9073
9074 /*
9075 * Since this is called by a timer, we should never get here in
9076 * the manual case.
9077 */
9078 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9079 int pipe = intel_crtc->pipe;
9080 int dpll_reg = DPLL(pipe);
9081 int dpll;
9082
9083 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9084
9085 assert_panel_unlocked(dev_priv, pipe);
9086
9087 dpll = I915_READ(dpll_reg);
9088 dpll |= DISPLAY_RATE_SELECT_FPA1;
9089 I915_WRITE(dpll_reg, dpll);
9090 intel_wait_for_vblank(dev, pipe);
9091 dpll = I915_READ(dpll_reg);
9092 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9093 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9094 }
9095
9096 }
9097
9098 void intel_mark_busy(struct drm_device *dev)
9099 {
9100 struct drm_i915_private *dev_priv = dev->dev_private;
9101
9102 if (dev_priv->mm.busy)
9103 return;
9104
9105 intel_runtime_pm_get(dev_priv);
9106 i915_update_gfx_val(dev_priv);
9107 dev_priv->mm.busy = true;
9108 }
9109
9110 void intel_mark_idle(struct drm_device *dev)
9111 {
9112 struct drm_i915_private *dev_priv = dev->dev_private;
9113 struct drm_crtc *crtc;
9114
9115 if (!dev_priv->mm.busy)
9116 return;
9117
9118 dev_priv->mm.busy = false;
9119
9120 if (!i915.powersave)
9121 goto out;
9122
9123 for_each_crtc(dev, crtc) {
9124 if (!crtc->primary->fb)
9125 continue;
9126
9127 intel_decrease_pllclock(crtc);
9128 }
9129
9130 if (INTEL_INFO(dev)->gen >= 6)
9131 gen6_rps_idle(dev->dev_private);
9132
9133 out:
9134 intel_runtime_pm_put(dev_priv);
9135 }
9136
9137
9138 /**
9139 * intel_mark_fb_busy - mark given planes as busy
9140 * @dev: DRM device
9141 * @frontbuffer_bits: bits for the affected planes
9142 * @ring: optional ring for asynchronous commands
9143 *
9144 * This function gets called every time the screen contents change. It can be
9145 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9146 */
9147 static void intel_mark_fb_busy(struct drm_device *dev,
9148 unsigned frontbuffer_bits,
9149 struct intel_engine_cs *ring)
9150 {
9151 struct drm_i915_private *dev_priv = dev->dev_private;
9152 enum pipe pipe;
9153
9154 if (!i915.powersave)
9155 return;
9156
9157 for_each_pipe(dev_priv, pipe) {
9158 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9159 continue;
9160
9161 intel_increase_pllclock(dev, pipe);
9162 if (ring && intel_fbc_enabled(dev))
9163 ring->fbc_dirty = true;
9164 }
9165 }
9166
9167 /**
9168 * intel_fb_obj_invalidate - invalidate frontbuffer object
9169 * @obj: GEM object to invalidate
9170 * @ring: set for asynchronous rendering
9171 *
9172 * This function gets called every time rendering on the given object starts and
9173 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9174 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9175 * until the rendering completes or a flip on this frontbuffer plane is
9176 * scheduled.
9177 */
9178 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9179 struct intel_engine_cs *ring)
9180 {
9181 struct drm_device *dev = obj->base.dev;
9182 struct drm_i915_private *dev_priv = dev->dev_private;
9183
9184 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9185
9186 if (!obj->frontbuffer_bits)
9187 return;
9188
9189 if (ring) {
9190 mutex_lock(&dev_priv->fb_tracking.lock);
9191 dev_priv->fb_tracking.busy_bits
9192 |= obj->frontbuffer_bits;
9193 dev_priv->fb_tracking.flip_bits
9194 &= ~obj->frontbuffer_bits;
9195 mutex_unlock(&dev_priv->fb_tracking.lock);
9196 }
9197
9198 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9199
9200 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9201 }
9202
9203 /**
9204 * intel_frontbuffer_flush - flush frontbuffer
9205 * @dev: DRM device
9206 * @frontbuffer_bits: frontbuffer plane tracking bits
9207 *
9208 * This function gets called every time rendering on the given planes has
9209 * completed and frontbuffer caching can be started again. Flushes will get
9210 * delayed if they're blocked by some oustanding asynchronous rendering.
9211 *
9212 * Can be called without any locks held.
9213 */
9214 void intel_frontbuffer_flush(struct drm_device *dev,
9215 unsigned frontbuffer_bits)
9216 {
9217 struct drm_i915_private *dev_priv = dev->dev_private;
9218
9219 /* Delay flushing when rings are still busy.*/
9220 mutex_lock(&dev_priv->fb_tracking.lock);
9221 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9222 mutex_unlock(&dev_priv->fb_tracking.lock);
9223
9224 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9225
9226 intel_edp_psr_flush(dev, frontbuffer_bits);
9227
9228 /*
9229 * FIXME: Unconditional fbc flushing here is a rather gross hack and
9230 * needs to be reworked into a proper frontbuffer tracking scheme like
9231 * psr employs.
9232 */
9233 if (IS_BROADWELL(dev))
9234 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
9235 }
9236
9237 /**
9238 * intel_fb_obj_flush - flush frontbuffer object
9239 * @obj: GEM object to flush
9240 * @retire: set when retiring asynchronous rendering
9241 *
9242 * This function gets called every time rendering on the given object has
9243 * completed and frontbuffer caching can be started again. If @retire is true
9244 * then any delayed flushes will be unblocked.
9245 */
9246 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9247 bool retire)
9248 {
9249 struct drm_device *dev = obj->base.dev;
9250 struct drm_i915_private *dev_priv = dev->dev_private;
9251 unsigned frontbuffer_bits;
9252
9253 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9254
9255 if (!obj->frontbuffer_bits)
9256 return;
9257
9258 frontbuffer_bits = obj->frontbuffer_bits;
9259
9260 if (retire) {
9261 mutex_lock(&dev_priv->fb_tracking.lock);
9262 /* Filter out new bits since rendering started. */
9263 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9264
9265 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9266 mutex_unlock(&dev_priv->fb_tracking.lock);
9267 }
9268
9269 intel_frontbuffer_flush(dev, frontbuffer_bits);
9270 }
9271
9272 /**
9273 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9274 * @dev: DRM device
9275 * @frontbuffer_bits: frontbuffer plane tracking bits
9276 *
9277 * This function gets called after scheduling a flip on @obj. The actual
9278 * frontbuffer flushing will be delayed until completion is signalled with
9279 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9280 * flush will be cancelled.
9281 *
9282 * Can be called without any locks held.
9283 */
9284 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9285 unsigned frontbuffer_bits)
9286 {
9287 struct drm_i915_private *dev_priv = dev->dev_private;
9288
9289 mutex_lock(&dev_priv->fb_tracking.lock);
9290 dev_priv->fb_tracking.flip_bits
9291 |= frontbuffer_bits;
9292 mutex_unlock(&dev_priv->fb_tracking.lock);
9293 }
9294
9295 /**
9296 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9297 * @dev: DRM device
9298 * @frontbuffer_bits: frontbuffer plane tracking bits
9299 *
9300 * This function gets called after the flip has been latched and will complete
9301 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9302 *
9303 * Can be called without any locks held.
9304 */
9305 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9306 unsigned frontbuffer_bits)
9307 {
9308 struct drm_i915_private *dev_priv = dev->dev_private;
9309
9310 mutex_lock(&dev_priv->fb_tracking.lock);
9311 /* Mask any cancelled flips. */
9312 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9313 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9314 mutex_unlock(&dev_priv->fb_tracking.lock);
9315
9316 intel_frontbuffer_flush(dev, frontbuffer_bits);
9317 }
9318
9319 static void intel_crtc_destroy(struct drm_crtc *crtc)
9320 {
9321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9322 struct drm_device *dev = crtc->dev;
9323 struct intel_unpin_work *work;
9324 unsigned long flags;
9325
9326 spin_lock_irqsave(&dev->event_lock, flags);
9327 work = intel_crtc->unpin_work;
9328 intel_crtc->unpin_work = NULL;
9329 spin_unlock_irqrestore(&dev->event_lock, flags);
9330
9331 if (work) {
9332 cancel_work_sync(&work->work);
9333 kfree(work);
9334 }
9335
9336 drm_crtc_cleanup(crtc);
9337
9338 kfree(intel_crtc);
9339 }
9340
9341 static void intel_unpin_work_fn(struct work_struct *__work)
9342 {
9343 struct intel_unpin_work *work =
9344 container_of(__work, struct intel_unpin_work, work);
9345 struct drm_device *dev = work->crtc->dev;
9346 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9347
9348 mutex_lock(&dev->struct_mutex);
9349 intel_unpin_fb_obj(work->old_fb_obj);
9350 drm_gem_object_unreference(&work->pending_flip_obj->base);
9351 drm_gem_object_unreference(&work->old_fb_obj->base);
9352
9353 intel_update_fbc(dev);
9354 mutex_unlock(&dev->struct_mutex);
9355
9356 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9357
9358 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9359 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9360
9361 kfree(work);
9362 }
9363
9364 static void do_intel_finish_page_flip(struct drm_device *dev,
9365 struct drm_crtc *crtc)
9366 {
9367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9368 struct intel_unpin_work *work;
9369 unsigned long flags;
9370
9371 /* Ignore early vblank irqs */
9372 if (intel_crtc == NULL)
9373 return;
9374
9375 spin_lock_irqsave(&dev->event_lock, flags);
9376 work = intel_crtc->unpin_work;
9377
9378 /* Ensure we don't miss a work->pending update ... */
9379 smp_rmb();
9380
9381 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9382 spin_unlock_irqrestore(&dev->event_lock, flags);
9383 return;
9384 }
9385
9386 page_flip_completed(intel_crtc);
9387
9388 spin_unlock_irqrestore(&dev->event_lock, flags);
9389 }
9390
9391 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9392 {
9393 struct drm_i915_private *dev_priv = dev->dev_private;
9394 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9395
9396 do_intel_finish_page_flip(dev, crtc);
9397 }
9398
9399 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9400 {
9401 struct drm_i915_private *dev_priv = dev->dev_private;
9402 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9403
9404 do_intel_finish_page_flip(dev, crtc);
9405 }
9406
9407 /* Is 'a' after or equal to 'b'? */
9408 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9409 {
9410 return !((a - b) & 0x80000000);
9411 }
9412
9413 static bool page_flip_finished(struct intel_crtc *crtc)
9414 {
9415 struct drm_device *dev = crtc->base.dev;
9416 struct drm_i915_private *dev_priv = dev->dev_private;
9417
9418 /*
9419 * The relevant registers doen't exist on pre-ctg.
9420 * As the flip done interrupt doesn't trigger for mmio
9421 * flips on gmch platforms, a flip count check isn't
9422 * really needed there. But since ctg has the registers,
9423 * include it in the check anyway.
9424 */
9425 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9426 return true;
9427
9428 /*
9429 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9430 * used the same base address. In that case the mmio flip might
9431 * have completed, but the CS hasn't even executed the flip yet.
9432 *
9433 * A flip count check isn't enough as the CS might have updated
9434 * the base address just after start of vblank, but before we
9435 * managed to process the interrupt. This means we'd complete the
9436 * CS flip too soon.
9437 *
9438 * Combining both checks should get us a good enough result. It may
9439 * still happen that the CS flip has been executed, but has not
9440 * yet actually completed. But in case the base address is the same
9441 * anyway, we don't really care.
9442 */
9443 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9444 crtc->unpin_work->gtt_offset &&
9445 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9446 crtc->unpin_work->flip_count);
9447 }
9448
9449 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9450 {
9451 struct drm_i915_private *dev_priv = dev->dev_private;
9452 struct intel_crtc *intel_crtc =
9453 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9454 unsigned long flags;
9455
9456 /* NB: An MMIO update of the plane base pointer will also
9457 * generate a page-flip completion irq, i.e. every modeset
9458 * is also accompanied by a spurious intel_prepare_page_flip().
9459 */
9460 spin_lock_irqsave(&dev->event_lock, flags);
9461 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9462 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9463 spin_unlock_irqrestore(&dev->event_lock, flags);
9464 }
9465
9466 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9467 {
9468 /* Ensure that the work item is consistent when activating it ... */
9469 smp_wmb();
9470 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9471 /* and that it is marked active as soon as the irq could fire. */
9472 smp_wmb();
9473 }
9474
9475 static int intel_gen2_queue_flip(struct drm_device *dev,
9476 struct drm_crtc *crtc,
9477 struct drm_framebuffer *fb,
9478 struct drm_i915_gem_object *obj,
9479 struct intel_engine_cs *ring,
9480 uint32_t flags)
9481 {
9482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9483 u32 flip_mask;
9484 int ret;
9485
9486 ret = intel_ring_begin(ring, 6);
9487 if (ret)
9488 return ret;
9489
9490 /* Can't queue multiple flips, so wait for the previous
9491 * one to finish before executing the next.
9492 */
9493 if (intel_crtc->plane)
9494 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9495 else
9496 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9497 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9498 intel_ring_emit(ring, MI_NOOP);
9499 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9500 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9501 intel_ring_emit(ring, fb->pitches[0]);
9502 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9503 intel_ring_emit(ring, 0); /* aux display base address, unused */
9504
9505 intel_mark_page_flip_active(intel_crtc);
9506 __intel_ring_advance(ring);
9507 return 0;
9508 }
9509
9510 static int intel_gen3_queue_flip(struct drm_device *dev,
9511 struct drm_crtc *crtc,
9512 struct drm_framebuffer *fb,
9513 struct drm_i915_gem_object *obj,
9514 struct intel_engine_cs *ring,
9515 uint32_t flags)
9516 {
9517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9518 u32 flip_mask;
9519 int ret;
9520
9521 ret = intel_ring_begin(ring, 6);
9522 if (ret)
9523 return ret;
9524
9525 if (intel_crtc->plane)
9526 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9527 else
9528 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9529 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9530 intel_ring_emit(ring, MI_NOOP);
9531 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9532 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9533 intel_ring_emit(ring, fb->pitches[0]);
9534 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9535 intel_ring_emit(ring, MI_NOOP);
9536
9537 intel_mark_page_flip_active(intel_crtc);
9538 __intel_ring_advance(ring);
9539 return 0;
9540 }
9541
9542 static int intel_gen4_queue_flip(struct drm_device *dev,
9543 struct drm_crtc *crtc,
9544 struct drm_framebuffer *fb,
9545 struct drm_i915_gem_object *obj,
9546 struct intel_engine_cs *ring,
9547 uint32_t flags)
9548 {
9549 struct drm_i915_private *dev_priv = dev->dev_private;
9550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9551 uint32_t pf, pipesrc;
9552 int ret;
9553
9554 ret = intel_ring_begin(ring, 4);
9555 if (ret)
9556 return ret;
9557
9558 /* i965+ uses the linear or tiled offsets from the
9559 * Display Registers (which do not change across a page-flip)
9560 * so we need only reprogram the base address.
9561 */
9562 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9563 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9564 intel_ring_emit(ring, fb->pitches[0]);
9565 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9566 obj->tiling_mode);
9567
9568 /* XXX Enabling the panel-fitter across page-flip is so far
9569 * untested on non-native modes, so ignore it for now.
9570 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9571 */
9572 pf = 0;
9573 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9574 intel_ring_emit(ring, pf | pipesrc);
9575
9576 intel_mark_page_flip_active(intel_crtc);
9577 __intel_ring_advance(ring);
9578 return 0;
9579 }
9580
9581 static int intel_gen6_queue_flip(struct drm_device *dev,
9582 struct drm_crtc *crtc,
9583 struct drm_framebuffer *fb,
9584 struct drm_i915_gem_object *obj,
9585 struct intel_engine_cs *ring,
9586 uint32_t flags)
9587 {
9588 struct drm_i915_private *dev_priv = dev->dev_private;
9589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9590 uint32_t pf, pipesrc;
9591 int ret;
9592
9593 ret = intel_ring_begin(ring, 4);
9594 if (ret)
9595 return ret;
9596
9597 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9598 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9599 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9600 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9601
9602 /* Contrary to the suggestions in the documentation,
9603 * "Enable Panel Fitter" does not seem to be required when page
9604 * flipping with a non-native mode, and worse causes a normal
9605 * modeset to fail.
9606 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9607 */
9608 pf = 0;
9609 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9610 intel_ring_emit(ring, pf | pipesrc);
9611
9612 intel_mark_page_flip_active(intel_crtc);
9613 __intel_ring_advance(ring);
9614 return 0;
9615 }
9616
9617 static int intel_gen7_queue_flip(struct drm_device *dev,
9618 struct drm_crtc *crtc,
9619 struct drm_framebuffer *fb,
9620 struct drm_i915_gem_object *obj,
9621 struct intel_engine_cs *ring,
9622 uint32_t flags)
9623 {
9624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9625 uint32_t plane_bit = 0;
9626 int len, ret;
9627
9628 switch (intel_crtc->plane) {
9629 case PLANE_A:
9630 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9631 break;
9632 case PLANE_B:
9633 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9634 break;
9635 case PLANE_C:
9636 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9637 break;
9638 default:
9639 WARN_ONCE(1, "unknown plane in flip command\n");
9640 return -ENODEV;
9641 }
9642
9643 len = 4;
9644 if (ring->id == RCS) {
9645 len += 6;
9646 /*
9647 * On Gen 8, SRM is now taking an extra dword to accommodate
9648 * 48bits addresses, and we need a NOOP for the batch size to
9649 * stay even.
9650 */
9651 if (IS_GEN8(dev))
9652 len += 2;
9653 }
9654
9655 /*
9656 * BSpec MI_DISPLAY_FLIP for IVB:
9657 * "The full packet must be contained within the same cache line."
9658 *
9659 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9660 * cacheline, if we ever start emitting more commands before
9661 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9662 * then do the cacheline alignment, and finally emit the
9663 * MI_DISPLAY_FLIP.
9664 */
9665 ret = intel_ring_cacheline_align(ring);
9666 if (ret)
9667 return ret;
9668
9669 ret = intel_ring_begin(ring, len);
9670 if (ret)
9671 return ret;
9672
9673 /* Unmask the flip-done completion message. Note that the bspec says that
9674 * we should do this for both the BCS and RCS, and that we must not unmask
9675 * more than one flip event at any time (or ensure that one flip message
9676 * can be sent by waiting for flip-done prior to queueing new flips).
9677 * Experimentation says that BCS works despite DERRMR masking all
9678 * flip-done completion events and that unmasking all planes at once
9679 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9680 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9681 */
9682 if (ring->id == RCS) {
9683 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9684 intel_ring_emit(ring, DERRMR);
9685 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9686 DERRMR_PIPEB_PRI_FLIP_DONE |
9687 DERRMR_PIPEC_PRI_FLIP_DONE));
9688 if (IS_GEN8(dev))
9689 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9690 MI_SRM_LRM_GLOBAL_GTT);
9691 else
9692 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9693 MI_SRM_LRM_GLOBAL_GTT);
9694 intel_ring_emit(ring, DERRMR);
9695 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9696 if (IS_GEN8(dev)) {
9697 intel_ring_emit(ring, 0);
9698 intel_ring_emit(ring, MI_NOOP);
9699 }
9700 }
9701
9702 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9703 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9704 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9705 intel_ring_emit(ring, (MI_NOOP));
9706
9707 intel_mark_page_flip_active(intel_crtc);
9708 __intel_ring_advance(ring);
9709 return 0;
9710 }
9711
9712 static bool use_mmio_flip(struct intel_engine_cs *ring,
9713 struct drm_i915_gem_object *obj)
9714 {
9715 /*
9716 * This is not being used for older platforms, because
9717 * non-availability of flip done interrupt forces us to use
9718 * CS flips. Older platforms derive flip done using some clever
9719 * tricks involving the flip_pending status bits and vblank irqs.
9720 * So using MMIO flips there would disrupt this mechanism.
9721 */
9722
9723 if (ring == NULL)
9724 return true;
9725
9726 if (INTEL_INFO(ring->dev)->gen < 5)
9727 return false;
9728
9729 if (i915.use_mmio_flip < 0)
9730 return false;
9731 else if (i915.use_mmio_flip > 0)
9732 return true;
9733 else if (i915.enable_execlists)
9734 return true;
9735 else
9736 return ring != obj->ring;
9737 }
9738
9739 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9740 {
9741 struct drm_device *dev = intel_crtc->base.dev;
9742 struct drm_i915_private *dev_priv = dev->dev_private;
9743 struct intel_framebuffer *intel_fb =
9744 to_intel_framebuffer(intel_crtc->base.primary->fb);
9745 struct drm_i915_gem_object *obj = intel_fb->obj;
9746 u32 dspcntr;
9747 u32 reg;
9748
9749 intel_mark_page_flip_active(intel_crtc);
9750
9751 reg = DSPCNTR(intel_crtc->plane);
9752 dspcntr = I915_READ(reg);
9753
9754 if (INTEL_INFO(dev)->gen >= 4) {
9755 if (obj->tiling_mode != I915_TILING_NONE)
9756 dspcntr |= DISPPLANE_TILED;
9757 else
9758 dspcntr &= ~DISPPLANE_TILED;
9759 }
9760 I915_WRITE(reg, dspcntr);
9761
9762 I915_WRITE(DSPSURF(intel_crtc->plane),
9763 intel_crtc->unpin_work->gtt_offset);
9764 POSTING_READ(DSPSURF(intel_crtc->plane));
9765 }
9766
9767 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9768 {
9769 struct intel_engine_cs *ring;
9770 int ret;
9771
9772 lockdep_assert_held(&obj->base.dev->struct_mutex);
9773
9774 if (!obj->last_write_seqno)
9775 return 0;
9776
9777 ring = obj->ring;
9778
9779 if (i915_seqno_passed(ring->get_seqno(ring, true),
9780 obj->last_write_seqno))
9781 return 0;
9782
9783 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9784 if (ret)
9785 return ret;
9786
9787 if (WARN_ON(!ring->irq_get(ring)))
9788 return 0;
9789
9790 return 1;
9791 }
9792
9793 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9794 {
9795 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9796 struct intel_crtc *intel_crtc;
9797 unsigned long irq_flags;
9798 u32 seqno;
9799
9800 seqno = ring->get_seqno(ring, false);
9801
9802 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9803 for_each_intel_crtc(ring->dev, intel_crtc) {
9804 struct intel_mmio_flip *mmio_flip;
9805
9806 mmio_flip = &intel_crtc->mmio_flip;
9807 if (mmio_flip->seqno == 0)
9808 continue;
9809
9810 if (ring->id != mmio_flip->ring_id)
9811 continue;
9812
9813 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9814 intel_do_mmio_flip(intel_crtc);
9815 mmio_flip->seqno = 0;
9816 ring->irq_put(ring);
9817 }
9818 }
9819 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9820 }
9821
9822 static int intel_queue_mmio_flip(struct drm_device *dev,
9823 struct drm_crtc *crtc,
9824 struct drm_framebuffer *fb,
9825 struct drm_i915_gem_object *obj,
9826 struct intel_engine_cs *ring,
9827 uint32_t flags)
9828 {
9829 struct drm_i915_private *dev_priv = dev->dev_private;
9830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9831 unsigned long irq_flags;
9832 int ret;
9833
9834 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9835 return -EBUSY;
9836
9837 ret = intel_postpone_flip(obj);
9838 if (ret < 0)
9839 return ret;
9840 if (ret == 0) {
9841 intel_do_mmio_flip(intel_crtc);
9842 return 0;
9843 }
9844
9845 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9846 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9847 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9848 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9849
9850 /*
9851 * Double check to catch cases where irq fired before
9852 * mmio flip data was ready
9853 */
9854 intel_notify_mmio_flip(obj->ring);
9855 return 0;
9856 }
9857
9858 static int intel_default_queue_flip(struct drm_device *dev,
9859 struct drm_crtc *crtc,
9860 struct drm_framebuffer *fb,
9861 struct drm_i915_gem_object *obj,
9862 struct intel_engine_cs *ring,
9863 uint32_t flags)
9864 {
9865 return -ENODEV;
9866 }
9867
9868 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9869 struct drm_crtc *crtc)
9870 {
9871 struct drm_i915_private *dev_priv = dev->dev_private;
9872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9873 struct intel_unpin_work *work = intel_crtc->unpin_work;
9874 u32 addr;
9875
9876 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9877 return true;
9878
9879 if (!work->enable_stall_check)
9880 return false;
9881
9882 if (work->flip_ready_vblank == 0) {
9883 if (work->flip_queued_ring &&
9884 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9885 work->flip_queued_seqno))
9886 return false;
9887
9888 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9889 }
9890
9891 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9892 return false;
9893
9894 /* Potential stall - if we see that the flip has happened,
9895 * assume a missed interrupt. */
9896 if (INTEL_INFO(dev)->gen >= 4)
9897 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9898 else
9899 addr = I915_READ(DSPADDR(intel_crtc->plane));
9900
9901 /* There is a potential issue here with a false positive after a flip
9902 * to the same address. We could address this by checking for a
9903 * non-incrementing frame counter.
9904 */
9905 return addr == work->gtt_offset;
9906 }
9907
9908 void intel_check_page_flip(struct drm_device *dev, int pipe)
9909 {
9910 struct drm_i915_private *dev_priv = dev->dev_private;
9911 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9913 unsigned long flags;
9914
9915 if (crtc == NULL)
9916 return;
9917
9918 spin_lock_irqsave(&dev->event_lock, flags);
9919 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9920 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9921 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9922 page_flip_completed(intel_crtc);
9923 }
9924 spin_unlock_irqrestore(&dev->event_lock, flags);
9925 }
9926
9927 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9928 struct drm_framebuffer *fb,
9929 struct drm_pending_vblank_event *event,
9930 uint32_t page_flip_flags)
9931 {
9932 struct drm_device *dev = crtc->dev;
9933 struct drm_i915_private *dev_priv = dev->dev_private;
9934 struct drm_framebuffer *old_fb = crtc->primary->fb;
9935 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9937 enum pipe pipe = intel_crtc->pipe;
9938 struct intel_unpin_work *work;
9939 struct intel_engine_cs *ring;
9940 unsigned long flags;
9941 int ret;
9942
9943 //trigger software GT busyness calculation
9944 gen8_flip_interrupt(dev);
9945
9946 /*
9947 * drm_mode_page_flip_ioctl() should already catch this, but double
9948 * check to be safe. In the future we may enable pageflipping from
9949 * a disabled primary plane.
9950 */
9951 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9952 return -EBUSY;
9953
9954 /* Can't change pixel format via MI display flips. */
9955 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9956 return -EINVAL;
9957
9958 /*
9959 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9960 * Note that pitch changes could also affect these register.
9961 */
9962 if (INTEL_INFO(dev)->gen > 3 &&
9963 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9964 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9965 return -EINVAL;
9966
9967 if (i915_terminally_wedged(&dev_priv->gpu_error))
9968 goto out_hang;
9969
9970 work = kzalloc(sizeof(*work), GFP_KERNEL);
9971 if (work == NULL)
9972 return -ENOMEM;
9973
9974 work->event = event;
9975 work->crtc = crtc;
9976 work->old_fb_obj = intel_fb_obj(old_fb);
9977 INIT_WORK(&work->work, intel_unpin_work_fn);
9978
9979 ret = drm_crtc_vblank_get(crtc);
9980 if (ret)
9981 goto free_work;
9982
9983 /* We borrow the event spin lock for protecting unpin_work */
9984 spin_lock_irqsave(&dev->event_lock, flags);
9985 if (intel_crtc->unpin_work) {
9986 /* Before declaring the flip queue wedged, check if
9987 * the hardware completed the operation behind our backs.
9988 */
9989 if (__intel_pageflip_stall_check(dev, crtc)) {
9990 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9991 page_flip_completed(intel_crtc);
9992 } else {
9993 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9994 spin_unlock_irqrestore(&dev->event_lock, flags);
9995
9996 drm_crtc_vblank_put(crtc);
9997 kfree(work);
9998 return -EBUSY;
9999 }
10000 }
10001 intel_crtc->unpin_work = work;
10002 spin_unlock_irqrestore(&dev->event_lock, flags);
10003
10004 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10005 flush_workqueue(dev_priv->wq);
10006
10007 ret = i915_mutex_lock_interruptible(dev);
10008 if (ret)
10009 goto cleanup;
10010
10011 /* Reference the objects for the scheduled work. */
10012 drm_gem_object_reference(&work->old_fb_obj->base);
10013 drm_gem_object_reference(&obj->base);
10014
10015 crtc->primary->fb = fb;
10016
10017 work->pending_flip_obj = obj;
10018
10019 atomic_inc(&intel_crtc->unpin_work_count);
10020 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10021
10022 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10023 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10024
10025 if (IS_VALLEYVIEW(dev)) {
10026 ring = &dev_priv->ring[BCS];
10027 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
10028 /* vlv: DISPLAY_FLIP fails to change tiling */
10029 ring = NULL;
10030 } else if (IS_IVYBRIDGE(dev)) {
10031 ring = &dev_priv->ring[BCS];
10032 } else if (INTEL_INFO(dev)->gen >= 7) {
10033 ring = obj->ring;
10034 if (ring == NULL || ring->id != RCS)
10035 ring = &dev_priv->ring[BCS];
10036 } else {
10037 ring = &dev_priv->ring[RCS];
10038 }
10039
10040 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
10041 if (ret)
10042 goto cleanup_pending;
10043
10044 work->gtt_offset =
10045 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10046
10047 if (use_mmio_flip(ring, obj)) {
10048 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10049 page_flip_flags);
10050 if (ret)
10051 goto cleanup_unpin;
10052
10053 work->flip_queued_seqno = obj->last_write_seqno;
10054 work->flip_queued_ring = obj->ring;
10055 } else {
10056 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10057 page_flip_flags);
10058 if (ret)
10059 goto cleanup_unpin;
10060
10061 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10062 work->flip_queued_ring = ring;
10063 }
10064
10065 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10066 work->enable_stall_check = true;
10067
10068 i915_gem_track_fb(work->old_fb_obj, obj,
10069 INTEL_FRONTBUFFER_PRIMARY(pipe));
10070
10071 intel_disable_fbc(dev);
10072 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10073 mutex_unlock(&dev->struct_mutex);
10074
10075 trace_i915_flip_request(intel_crtc->plane, obj);
10076
10077 return 0;
10078
10079 cleanup_unpin:
10080 intel_unpin_fb_obj(obj);
10081 cleanup_pending:
10082 atomic_dec(&intel_crtc->unpin_work_count);
10083 crtc->primary->fb = old_fb;
10084 drm_gem_object_unreference(&work->old_fb_obj->base);
10085 drm_gem_object_unreference(&obj->base);
10086 mutex_unlock(&dev->struct_mutex);
10087
10088 cleanup:
10089 spin_lock_irqsave(&dev->event_lock, flags);
10090 intel_crtc->unpin_work = NULL;
10091 spin_unlock_irqrestore(&dev->event_lock, flags);
10092
10093 drm_crtc_vblank_put(crtc);
10094 free_work:
10095 kfree(work);
10096
10097 if (ret == -EIO) {
10098 out_hang:
10099 intel_crtc_wait_for_pending_flips(crtc);
10100 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10101 if (ret == 0 && event) {
10102 spin_lock_irqsave(&dev->event_lock, flags);
10103 drm_send_vblank_event(dev, pipe, event);
10104 spin_unlock_irqrestore(&dev->event_lock, flags);
10105 }
10106 }
10107 return ret;
10108 }
10109
10110 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10111 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10112 .load_lut = intel_crtc_load_lut,
10113 };
10114
10115 /**
10116 * intel_modeset_update_staged_output_state
10117 *
10118 * Updates the staged output configuration state, e.g. after we've read out the
10119 * current hw state.
10120 */
10121 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10122 {
10123 struct intel_crtc *crtc;
10124 struct intel_encoder *encoder;
10125 struct intel_connector *connector;
10126
10127 list_for_each_entry(connector, &dev->mode_config.connector_list,
10128 base.head) {
10129 connector->new_encoder =
10130 to_intel_encoder(connector->base.encoder);
10131 }
10132
10133 for_each_intel_encoder(dev, encoder) {
10134 encoder->new_crtc =
10135 to_intel_crtc(encoder->base.crtc);
10136 }
10137
10138 for_each_intel_crtc(dev, crtc) {
10139 crtc->new_enabled = crtc->base.enabled;
10140
10141 if (crtc->new_enabled)
10142 crtc->new_config = &crtc->config;
10143 else
10144 crtc->new_config = NULL;
10145 }
10146 }
10147
10148 /**
10149 * intel_modeset_commit_output_state
10150 *
10151 * This function copies the stage display pipe configuration to the real one.
10152 */
10153 static void intel_modeset_commit_output_state(struct drm_device *dev)
10154 {
10155 struct intel_crtc *crtc;
10156 struct intel_encoder *encoder;
10157 struct intel_connector *connector;
10158
10159 list_for_each_entry(connector, &dev->mode_config.connector_list,
10160 base.head) {
10161 connector->base.encoder = &connector->new_encoder->base;
10162 }
10163
10164 for_each_intel_encoder(dev, encoder) {
10165 encoder->base.crtc = &encoder->new_crtc->base;
10166 }
10167
10168 for_each_intel_crtc(dev, crtc) {
10169 crtc->base.enabled = crtc->new_enabled;
10170 }
10171 }
10172
10173 static void
10174 connected_sink_compute_bpp(struct intel_connector *connector,
10175 struct intel_crtc_config *pipe_config)
10176 {
10177 int bpp = pipe_config->pipe_bpp;
10178
10179 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10180 connector->base.base.id,
10181 connector->base.name);
10182
10183 /* Don't use an invalid EDID bpc value */
10184 if (connector->base.display_info.bpc &&
10185 connector->base.display_info.bpc * 3 < bpp) {
10186 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10187 bpp, connector->base.display_info.bpc*3);
10188 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10189 }
10190
10191 /* Clamp bpp to 8 on screens without EDID 1.4 */
10192 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10193 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10194 bpp);
10195 pipe_config->pipe_bpp = 24;
10196 }
10197 }
10198
10199 static int
10200 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10201 struct drm_framebuffer *fb,
10202 struct intel_crtc_config *pipe_config)
10203 {
10204 struct drm_device *dev = crtc->base.dev;
10205 struct intel_connector *connector;
10206 int bpp;
10207
10208 switch (fb->pixel_format) {
10209 case DRM_FORMAT_C8:
10210 bpp = 8*3; /* since we go through a colormap */
10211 break;
10212 case DRM_FORMAT_XRGB1555:
10213 case DRM_FORMAT_ARGB1555:
10214 /* checked in intel_framebuffer_init already */
10215 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10216 return -EINVAL;
10217 case DRM_FORMAT_RGB565:
10218 bpp = 6*3; /* min is 18bpp */
10219 break;
10220 case DRM_FORMAT_XBGR8888:
10221 case DRM_FORMAT_ABGR8888:
10222 /* checked in intel_framebuffer_init already */
10223 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10224 return -EINVAL;
10225 case DRM_FORMAT_XRGB8888:
10226 case DRM_FORMAT_ARGB8888:
10227 bpp = 8*3;
10228 break;
10229 case DRM_FORMAT_XRGB2101010:
10230 case DRM_FORMAT_ARGB2101010:
10231 case DRM_FORMAT_XBGR2101010:
10232 case DRM_FORMAT_ABGR2101010:
10233 /* checked in intel_framebuffer_init already */
10234 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10235 return -EINVAL;
10236 bpp = 10*3;
10237 break;
10238 /* TODO: gen4+ supports 16 bpc floating point, too. */
10239 default:
10240 DRM_DEBUG_KMS("unsupported depth\n");
10241 return -EINVAL;
10242 }
10243
10244 pipe_config->pipe_bpp = bpp;
10245
10246 /* Clamp display bpp to EDID value */
10247 list_for_each_entry(connector, &dev->mode_config.connector_list,
10248 base.head) {
10249 if (!connector->new_encoder ||
10250 connector->new_encoder->new_crtc != crtc)
10251 continue;
10252
10253 connected_sink_compute_bpp(connector, pipe_config);
10254 }
10255
10256 return bpp;
10257 }
10258
10259 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10260 {
10261 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10262 "type: 0x%x flags: 0x%x\n",
10263 mode->crtc_clock,
10264 mode->crtc_hdisplay, mode->crtc_hsync_start,
10265 mode->crtc_hsync_end, mode->crtc_htotal,
10266 mode->crtc_vdisplay, mode->crtc_vsync_start,
10267 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10268 }
10269
10270 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10271 struct intel_crtc_config *pipe_config,
10272 const char *context)
10273 {
10274 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10275 context, pipe_name(crtc->pipe));
10276
10277 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10278 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10279 pipe_config->pipe_bpp, pipe_config->dither);
10280 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10281 pipe_config->has_pch_encoder,
10282 pipe_config->fdi_lanes,
10283 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10284 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10285 pipe_config->fdi_m_n.tu);
10286 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10287 pipe_config->has_dp_encoder,
10288 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10289 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10290 pipe_config->dp_m_n.tu);
10291
10292 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10293 pipe_config->has_dp_encoder,
10294 pipe_config->dp_m2_n2.gmch_m,
10295 pipe_config->dp_m2_n2.gmch_n,
10296 pipe_config->dp_m2_n2.link_m,
10297 pipe_config->dp_m2_n2.link_n,
10298 pipe_config->dp_m2_n2.tu);
10299
10300 DRM_DEBUG_KMS("requested mode:\n");
10301 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10302 DRM_DEBUG_KMS("adjusted mode:\n");
10303 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10304 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10305 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10306 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10307 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10308 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10309 pipe_config->gmch_pfit.control,
10310 pipe_config->gmch_pfit.pgm_ratios,
10311 pipe_config->gmch_pfit.lvds_border_bits);
10312 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10313 pipe_config->pch_pfit.pos,
10314 pipe_config->pch_pfit.size,
10315 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10316 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10317 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10318 }
10319
10320 static bool encoders_cloneable(const struct intel_encoder *a,
10321 const struct intel_encoder *b)
10322 {
10323 /* masks could be asymmetric, so check both ways */
10324 return a == b || (a->cloneable & (1 << b->type) &&
10325 b->cloneable & (1 << a->type));
10326 }
10327
10328 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10329 struct intel_encoder *encoder)
10330 {
10331 struct drm_device *dev = crtc->base.dev;
10332 struct intel_encoder *source_encoder;
10333
10334 for_each_intel_encoder(dev, source_encoder) {
10335 if (source_encoder->new_crtc != crtc)
10336 continue;
10337
10338 if (!encoders_cloneable(encoder, source_encoder))
10339 return false;
10340 }
10341
10342 return true;
10343 }
10344
10345 static bool check_encoder_cloning(struct intel_crtc *crtc)
10346 {
10347 struct drm_device *dev = crtc->base.dev;
10348 struct intel_encoder *encoder;
10349
10350 for_each_intel_encoder(dev, encoder) {
10351 if (encoder->new_crtc != crtc)
10352 continue;
10353
10354 if (!check_single_encoder_cloning(crtc, encoder))
10355 return false;
10356 }
10357
10358 return true;
10359 }
10360
10361 static struct intel_crtc_config *
10362 intel_modeset_pipe_config(struct drm_crtc *crtc,
10363 struct drm_framebuffer *fb,
10364 struct drm_display_mode *mode)
10365 {
10366 struct drm_device *dev = crtc->dev;
10367 struct intel_encoder *encoder;
10368 struct intel_crtc_config *pipe_config;
10369 int plane_bpp, ret = -EINVAL;
10370 bool retry = true;
10371
10372 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10373 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10374 return ERR_PTR(-EINVAL);
10375 }
10376
10377 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10378 if (!pipe_config)
10379 return ERR_PTR(-ENOMEM);
10380
10381 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10382 drm_mode_copy(&pipe_config->requested_mode, mode);
10383
10384 pipe_config->cpu_transcoder =
10385 (enum transcoder) to_intel_crtc(crtc)->pipe;
10386 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10387
10388 /*
10389 * Sanitize sync polarity flags based on requested ones. If neither
10390 * positive or negative polarity is requested, treat this as meaning
10391 * negative polarity.
10392 */
10393 if (!(pipe_config->adjusted_mode.flags &
10394 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10395 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10396
10397 if (!(pipe_config->adjusted_mode.flags &
10398 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10399 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10400
10401 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10402 * plane pixel format and any sink constraints into account. Returns the
10403 * source plane bpp so that dithering can be selected on mismatches
10404 * after encoders and crtc also have had their say. */
10405 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10406 fb, pipe_config);
10407 if (plane_bpp < 0)
10408 goto fail;
10409
10410 /*
10411 * Determine the real pipe dimensions. Note that stereo modes can
10412 * increase the actual pipe size due to the frame doubling and
10413 * insertion of additional space for blanks between the frame. This
10414 * is stored in the crtc timings. We use the requested mode to do this
10415 * computation to clearly distinguish it from the adjusted mode, which
10416 * can be changed by the connectors in the below retry loop.
10417 */
10418 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10419 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10420 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10421
10422 encoder_retry:
10423 /* Ensure the port clock defaults are reset when retrying. */
10424 pipe_config->port_clock = 0;
10425 pipe_config->pixel_multiplier = 1;
10426
10427 /* Fill in default crtc timings, allow encoders to overwrite them. */
10428 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10429
10430 /* Pass our mode to the connectors and the CRTC to give them a chance to
10431 * adjust it according to limitations or connector properties, and also
10432 * a chance to reject the mode entirely.
10433 */
10434 for_each_intel_encoder(dev, encoder) {
10435
10436 if (&encoder->new_crtc->base != crtc)
10437 continue;
10438
10439 if (!(encoder->compute_config(encoder, pipe_config))) {
10440 DRM_DEBUG_KMS("Encoder config failure\n");
10441 goto fail;
10442 }
10443 }
10444
10445 /* Set default port clock if not overwritten by the encoder. Needs to be
10446 * done afterwards in case the encoder adjusts the mode. */
10447 if (!pipe_config->port_clock)
10448 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10449 * pipe_config->pixel_multiplier;
10450
10451 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10452 if (ret < 0) {
10453 DRM_DEBUG_KMS("CRTC fixup failed\n");
10454 goto fail;
10455 }
10456
10457 if (ret == RETRY) {
10458 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10459 ret = -EINVAL;
10460 goto fail;
10461 }
10462
10463 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10464 retry = false;
10465 goto encoder_retry;
10466 }
10467
10468 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10469 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10470 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10471
10472 return pipe_config;
10473 fail:
10474 kfree(pipe_config);
10475 return ERR_PTR(ret);
10476 }
10477
10478 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10479 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10480 static void
10481 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10482 unsigned *prepare_pipes, unsigned *disable_pipes)
10483 {
10484 struct intel_crtc *intel_crtc;
10485 struct drm_device *dev = crtc->dev;
10486 struct intel_encoder *encoder;
10487 struct intel_connector *connector;
10488 struct drm_crtc *tmp_crtc;
10489
10490 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10491
10492 /* Check which crtcs have changed outputs connected to them, these need
10493 * to be part of the prepare_pipes mask. We don't (yet) support global
10494 * modeset across multiple crtcs, so modeset_pipes will only have one
10495 * bit set at most. */
10496 list_for_each_entry(connector, &dev->mode_config.connector_list,
10497 base.head) {
10498 if (connector->base.encoder == &connector->new_encoder->base)
10499 continue;
10500
10501 if (connector->base.encoder) {
10502 tmp_crtc = connector->base.encoder->crtc;
10503
10504 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10505 }
10506
10507 if (connector->new_encoder)
10508 *prepare_pipes |=
10509 1 << connector->new_encoder->new_crtc->pipe;
10510 }
10511
10512 for_each_intel_encoder(dev, encoder) {
10513 if (encoder->base.crtc == &encoder->new_crtc->base)
10514 continue;
10515
10516 if (encoder->base.crtc) {
10517 tmp_crtc = encoder->base.crtc;
10518
10519 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10520 }
10521
10522 if (encoder->new_crtc)
10523 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10524 }
10525
10526 /* Check for pipes that will be enabled/disabled ... */
10527 for_each_intel_crtc(dev, intel_crtc) {
10528 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10529 continue;
10530
10531 if (!intel_crtc->new_enabled)
10532 *disable_pipes |= 1 << intel_crtc->pipe;
10533 else
10534 *prepare_pipes |= 1 << intel_crtc->pipe;
10535 }
10536
10537
10538 /* set_mode is also used to update properties on life display pipes. */
10539 intel_crtc = to_intel_crtc(crtc);
10540 if (intel_crtc->new_enabled)
10541 *prepare_pipes |= 1 << intel_crtc->pipe;
10542
10543 /*
10544 * For simplicity do a full modeset on any pipe where the output routing
10545 * changed. We could be more clever, but that would require us to be
10546 * more careful with calling the relevant encoder->mode_set functions.
10547 */
10548 if (*prepare_pipes)
10549 *modeset_pipes = *prepare_pipes;
10550
10551 /* ... and mask these out. */
10552 *modeset_pipes &= ~(*disable_pipes);
10553 *prepare_pipes &= ~(*disable_pipes);
10554
10555 /*
10556 * HACK: We don't (yet) fully support global modesets. intel_set_config
10557 * obies this rule, but the modeset restore mode of
10558 * intel_modeset_setup_hw_state does not.
10559 */
10560 *modeset_pipes &= 1 << intel_crtc->pipe;
10561 *prepare_pipes &= 1 << intel_crtc->pipe;
10562
10563 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10564 *modeset_pipes, *prepare_pipes, *disable_pipes);
10565 }
10566
10567 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10568 {
10569 struct drm_encoder *encoder;
10570 struct drm_device *dev = crtc->dev;
10571
10572 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10573 if (encoder->crtc == crtc)
10574 return true;
10575
10576 return false;
10577 }
10578
10579 static void
10580 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10581 {
10582 struct intel_encoder *intel_encoder;
10583 struct intel_crtc *intel_crtc;
10584 struct drm_connector *connector;
10585
10586 for_each_intel_encoder(dev, intel_encoder) {
10587 if (!intel_encoder->base.crtc)
10588 continue;
10589
10590 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10591
10592 if (prepare_pipes & (1 << intel_crtc->pipe))
10593 intel_encoder->connectors_active = false;
10594 }
10595
10596 intel_modeset_commit_output_state(dev);
10597
10598 /* Double check state. */
10599 for_each_intel_crtc(dev, intel_crtc) {
10600 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10601 WARN_ON(intel_crtc->new_config &&
10602 intel_crtc->new_config != &intel_crtc->config);
10603 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10604 }
10605
10606 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10607 if (!connector->encoder || !connector->encoder->crtc)
10608 continue;
10609
10610 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10611
10612 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10613 struct drm_property *dpms_property =
10614 dev->mode_config.dpms_property;
10615
10616 connector->dpms = DRM_MODE_DPMS_ON;
10617 drm_object_property_set_value(&connector->base,
10618 dpms_property,
10619 DRM_MODE_DPMS_ON);
10620
10621 intel_encoder = to_intel_encoder(connector->encoder);
10622 intel_encoder->connectors_active = true;
10623 }
10624 }
10625
10626 }
10627
10628 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10629 {
10630 int diff;
10631
10632 if (clock1 == clock2)
10633 return true;
10634
10635 if (!clock1 || !clock2)
10636 return false;
10637
10638 diff = abs(clock1 - clock2);
10639
10640 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10641 return true;
10642
10643 return false;
10644 }
10645
10646 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10647 list_for_each_entry((intel_crtc), \
10648 &(dev)->mode_config.crtc_list, \
10649 base.head) \
10650 if (mask & (1 <<(intel_crtc)->pipe))
10651
10652 static bool
10653 intel_pipe_config_compare(struct drm_device *dev,
10654 struct intel_crtc_config *current_config,
10655 struct intel_crtc_config *pipe_config)
10656 {
10657 #define PIPE_CONF_CHECK_X(name) \
10658 if (current_config->name != pipe_config->name) { \
10659 DRM_ERROR("mismatch in " #name " " \
10660 "(expected 0x%08x, found 0x%08x)\n", \
10661 current_config->name, \
10662 pipe_config->name); \
10663 return false; \
10664 }
10665
10666 #define PIPE_CONF_CHECK_I(name) \
10667 if (current_config->name != pipe_config->name) { \
10668 DRM_ERROR("mismatch in " #name " " \
10669 "(expected %i, found %i)\n", \
10670 current_config->name, \
10671 pipe_config->name); \
10672 return false; \
10673 }
10674
10675 /* This is required for BDW+ where there is only one set of registers for
10676 * switching between high and low RR.
10677 * This macro can be used whenever a comparison has to be made between one
10678 * hw state and multiple sw state variables.
10679 */
10680 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10681 if ((current_config->name != pipe_config->name) && \
10682 (current_config->alt_name != pipe_config->name)) { \
10683 DRM_ERROR("mismatch in " #name " " \
10684 "(expected %i or %i, found %i)\n", \
10685 current_config->name, \
10686 current_config->alt_name, \
10687 pipe_config->name); \
10688 return false; \
10689 }
10690
10691 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10692 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10693 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10694 "(expected %i, found %i)\n", \
10695 current_config->name & (mask), \
10696 pipe_config->name & (mask)); \
10697 return false; \
10698 }
10699
10700 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10701 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10702 DRM_ERROR("mismatch in " #name " " \
10703 "(expected %i, found %i)\n", \
10704 current_config->name, \
10705 pipe_config->name); \
10706 return false; \
10707 }
10708
10709 #define PIPE_CONF_QUIRK(quirk) \
10710 ((current_config->quirks | pipe_config->quirks) & (quirk))
10711
10712 PIPE_CONF_CHECK_I(cpu_transcoder);
10713
10714 PIPE_CONF_CHECK_I(has_pch_encoder);
10715 PIPE_CONF_CHECK_I(fdi_lanes);
10716 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10717 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10718 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10719 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10720 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10721
10722 PIPE_CONF_CHECK_I(has_dp_encoder);
10723
10724 if (INTEL_INFO(dev)->gen < 8) {
10725 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10726 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10727 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10728 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10729 PIPE_CONF_CHECK_I(dp_m_n.tu);
10730
10731 if (current_config->has_drrs) {
10732 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10733 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10734 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10735 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10736 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10737 }
10738 } else {
10739 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10740 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10741 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10742 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10743 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10744 }
10745
10746 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10747 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10748 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10749 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10750 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10751 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10752
10753 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10754 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10755 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10756 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10757 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10758 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10759
10760 PIPE_CONF_CHECK_I(pixel_multiplier);
10761 PIPE_CONF_CHECK_I(has_hdmi_sink);
10762 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10763 IS_VALLEYVIEW(dev))
10764 PIPE_CONF_CHECK_I(limited_color_range);
10765
10766 PIPE_CONF_CHECK_I(has_audio);
10767
10768 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10769 DRM_MODE_FLAG_INTERLACE);
10770
10771 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10772 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10773 DRM_MODE_FLAG_PHSYNC);
10774 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10775 DRM_MODE_FLAG_NHSYNC);
10776 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10777 DRM_MODE_FLAG_PVSYNC);
10778 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10779 DRM_MODE_FLAG_NVSYNC);
10780 }
10781
10782 PIPE_CONF_CHECK_I(pipe_src_w);
10783 PIPE_CONF_CHECK_I(pipe_src_h);
10784
10785 /*
10786 * FIXME: BIOS likes to set up a cloned config with lvds+external
10787 * screen. Since we don't yet re-compute the pipe config when moving
10788 * just the lvds port away to another pipe the sw tracking won't match.
10789 *
10790 * Proper atomic modesets with recomputed global state will fix this.
10791 * Until then just don't check gmch state for inherited modes.
10792 */
10793 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10794 PIPE_CONF_CHECK_I(gmch_pfit.control);
10795 /* pfit ratios are autocomputed by the hw on gen4+ */
10796 if (INTEL_INFO(dev)->gen < 4)
10797 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10798 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10799 }
10800
10801 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10802 if (current_config->pch_pfit.enabled) {
10803 PIPE_CONF_CHECK_I(pch_pfit.pos);
10804 PIPE_CONF_CHECK_I(pch_pfit.size);
10805 }
10806
10807 /* BDW+ don't expose a synchronous way to read the state */
10808 if (IS_HASWELL(dev))
10809 PIPE_CONF_CHECK_I(ips_enabled);
10810
10811 PIPE_CONF_CHECK_I(double_wide);
10812
10813 PIPE_CONF_CHECK_X(ddi_pll_sel);
10814
10815 PIPE_CONF_CHECK_I(shared_dpll);
10816 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10817 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10818 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10819 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10820 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10821
10822 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10823 PIPE_CONF_CHECK_I(pipe_bpp);
10824
10825 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10826 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10827
10828 #undef PIPE_CONF_CHECK_X
10829 #undef PIPE_CONF_CHECK_I
10830 #undef PIPE_CONF_CHECK_I_ALT
10831 #undef PIPE_CONF_CHECK_FLAGS
10832 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10833 #undef PIPE_CONF_QUIRK
10834
10835 return true;
10836 }
10837
10838 static void
10839 check_connector_state(struct drm_device *dev)
10840 {
10841 struct intel_connector *connector;
10842
10843 list_for_each_entry(connector, &dev->mode_config.connector_list,
10844 base.head) {
10845 /* This also checks the encoder/connector hw state with the
10846 * ->get_hw_state callbacks. */
10847 intel_connector_check_state(connector);
10848
10849 WARN(&connector->new_encoder->base != connector->base.encoder,
10850 "connector's staged encoder doesn't match current encoder\n");
10851 }
10852 }
10853
10854 static void
10855 check_encoder_state(struct drm_device *dev)
10856 {
10857 struct intel_encoder *encoder;
10858 struct intel_connector *connector;
10859
10860 for_each_intel_encoder(dev, encoder) {
10861 bool enabled = false;
10862 bool active = false;
10863 enum pipe pipe, tracked_pipe;
10864
10865 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10866 encoder->base.base.id,
10867 encoder->base.name);
10868
10869 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10870 "encoder's stage crtc doesn't match current crtc\n");
10871 WARN(encoder->connectors_active && !encoder->base.crtc,
10872 "encoder's active_connectors set, but no crtc\n");
10873
10874 list_for_each_entry(connector, &dev->mode_config.connector_list,
10875 base.head) {
10876 if (connector->base.encoder != &encoder->base)
10877 continue;
10878 enabled = true;
10879 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10880 active = true;
10881 }
10882 /*
10883 * for MST connectors if we unplug the connector is gone
10884 * away but the encoder is still connected to a crtc
10885 * until a modeset happens in response to the hotplug.
10886 */
10887 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10888 continue;
10889
10890 WARN(!!encoder->base.crtc != enabled,
10891 "encoder's enabled state mismatch "
10892 "(expected %i, found %i)\n",
10893 !!encoder->base.crtc, enabled);
10894 WARN(active && !encoder->base.crtc,
10895 "active encoder with no crtc\n");
10896
10897 WARN(encoder->connectors_active != active,
10898 "encoder's computed active state doesn't match tracked active state "
10899 "(expected %i, found %i)\n", active, encoder->connectors_active);
10900
10901 active = encoder->get_hw_state(encoder, &pipe);
10902 WARN(active != encoder->connectors_active,
10903 "encoder's hw state doesn't match sw tracking "
10904 "(expected %i, found %i)\n",
10905 encoder->connectors_active, active);
10906
10907 if (!encoder->base.crtc)
10908 continue;
10909
10910 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10911 WARN(active && pipe != tracked_pipe,
10912 "active encoder's pipe doesn't match"
10913 "(expected %i, found %i)\n",
10914 tracked_pipe, pipe);
10915
10916 }
10917 }
10918
10919 static void
10920 check_crtc_state(struct drm_device *dev)
10921 {
10922 struct drm_i915_private *dev_priv = dev->dev_private;
10923 struct intel_crtc *crtc;
10924 struct intel_encoder *encoder;
10925 struct intel_crtc_config pipe_config;
10926
10927 for_each_intel_crtc(dev, crtc) {
10928 bool enabled = false;
10929 bool active = false;
10930
10931 memset(&pipe_config, 0, sizeof(pipe_config));
10932
10933 DRM_DEBUG_KMS("[CRTC:%d]\n",
10934 crtc->base.base.id);
10935
10936 WARN(crtc->active && !crtc->base.enabled,
10937 "active crtc, but not enabled in sw tracking\n");
10938
10939 for_each_intel_encoder(dev, encoder) {
10940 if (encoder->base.crtc != &crtc->base)
10941 continue;
10942 enabled = true;
10943 if (encoder->connectors_active)
10944 active = true;
10945 }
10946
10947 WARN(active != crtc->active,
10948 "crtc's computed active state doesn't match tracked active state "
10949 "(expected %i, found %i)\n", active, crtc->active);
10950 WARN(enabled != crtc->base.enabled,
10951 "crtc's computed enabled state doesn't match tracked enabled state "
10952 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10953
10954 active = dev_priv->display.get_pipe_config(crtc,
10955 &pipe_config);
10956
10957 /* hw state is inconsistent with the pipe quirk */
10958 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10959 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10960 active = crtc->active;
10961
10962 for_each_intel_encoder(dev, encoder) {
10963 enum pipe pipe;
10964 if (encoder->base.crtc != &crtc->base)
10965 continue;
10966 if (encoder->get_hw_state(encoder, &pipe))
10967 encoder->get_config(encoder, &pipe_config);
10968 }
10969
10970 WARN(crtc->active != active,
10971 "crtc active state doesn't match with hw state "
10972 "(expected %i, found %i)\n", crtc->active, active);
10973
10974 if (active &&
10975 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10976 WARN(1, "pipe state doesn't match!\n");
10977 intel_dump_pipe_config(crtc, &pipe_config,
10978 "[hw state]");
10979 intel_dump_pipe_config(crtc, &crtc->config,
10980 "[sw state]");
10981 }
10982 }
10983 }
10984
10985 static void
10986 check_shared_dpll_state(struct drm_device *dev)
10987 {
10988 struct drm_i915_private *dev_priv = dev->dev_private;
10989 struct intel_crtc *crtc;
10990 struct intel_dpll_hw_state dpll_hw_state;
10991 int i;
10992
10993 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10994 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10995 int enabled_crtcs = 0, active_crtcs = 0;
10996 bool active;
10997
10998 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10999
11000 DRM_DEBUG_KMS("%s\n", pll->name);
11001
11002 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11003
11004 WARN(pll->active > pll->refcount,
11005 "more active pll users than references: %i vs %i\n",
11006 pll->active, pll->refcount);
11007 WARN(pll->active && !pll->on,
11008 "pll in active use but not on in sw tracking\n");
11009 WARN(pll->on && !pll->active,
11010 "pll in on but not on in use in sw tracking\n");
11011 WARN(pll->on != active,
11012 "pll on state mismatch (expected %i, found %i)\n",
11013 pll->on, active);
11014
11015 for_each_intel_crtc(dev, crtc) {
11016 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
11017 enabled_crtcs++;
11018 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11019 active_crtcs++;
11020 }
11021 WARN(pll->active != active_crtcs,
11022 "pll active crtcs mismatch (expected %i, found %i)\n",
11023 pll->active, active_crtcs);
11024 WARN(pll->refcount != enabled_crtcs,
11025 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11026 pll->refcount, enabled_crtcs);
11027
11028 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
11029 sizeof(dpll_hw_state)),
11030 "pll hw state mismatch\n");
11031 }
11032 }
11033
11034 void
11035 intel_modeset_check_state(struct drm_device *dev)
11036 {
11037 check_connector_state(dev);
11038 check_encoder_state(dev);
11039 check_crtc_state(dev);
11040 check_shared_dpll_state(dev);
11041 }
11042
11043 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11044 int dotclock)
11045 {
11046 /*
11047 * FDI already provided one idea for the dotclock.
11048 * Yell if the encoder disagrees.
11049 */
11050 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
11051 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11052 pipe_config->adjusted_mode.crtc_clock, dotclock);
11053 }
11054
11055 static void update_scanline_offset(struct intel_crtc *crtc)
11056 {
11057 struct drm_device *dev = crtc->base.dev;
11058
11059 /*
11060 * The scanline counter increments at the leading edge of hsync.
11061 *
11062 * On most platforms it starts counting from vtotal-1 on the
11063 * first active line. That means the scanline counter value is
11064 * always one less than what we would expect. Ie. just after
11065 * start of vblank, which also occurs at start of hsync (on the
11066 * last active line), the scanline counter will read vblank_start-1.
11067 *
11068 * On gen2 the scanline counter starts counting from 1 instead
11069 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11070 * to keep the value positive), instead of adding one.
11071 *
11072 * On HSW+ the behaviour of the scanline counter depends on the output
11073 * type. For DP ports it behaves like most other platforms, but on HDMI
11074 * there's an extra 1 line difference. So we need to add two instead of
11075 * one to the value.
11076 */
11077 if (IS_GEN2(dev)) {
11078 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11079 int vtotal;
11080
11081 vtotal = mode->crtc_vtotal;
11082 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11083 vtotal /= 2;
11084
11085 crtc->scanline_offset = vtotal - 1;
11086 } else if (HAS_DDI(dev) &&
11087 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11088 crtc->scanline_offset = 2;
11089 } else
11090 crtc->scanline_offset = 1;
11091 }
11092
11093 static int __intel_set_mode(struct drm_crtc *crtc,
11094 struct drm_display_mode *mode,
11095 int x, int y, struct drm_framebuffer *fb)
11096 {
11097 struct drm_device *dev = crtc->dev;
11098 struct drm_i915_private *dev_priv = dev->dev_private;
11099 struct drm_display_mode *saved_mode;
11100 struct intel_crtc_config *pipe_config = NULL;
11101 struct intel_crtc *intel_crtc;
11102 unsigned disable_pipes, prepare_pipes, modeset_pipes;
11103 int ret = 0;
11104
11105 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11106 if (!saved_mode)
11107 return -ENOMEM;
11108
11109 intel_modeset_affected_pipes(crtc, &modeset_pipes,
11110 &prepare_pipes, &disable_pipes);
11111
11112 *saved_mode = crtc->mode;
11113
11114 /* Hack: Because we don't (yet) support global modeset on multiple
11115 * crtcs, we don't keep track of the new mode for more than one crtc.
11116 * Hence simply check whether any bit is set in modeset_pipes in all the
11117 * pieces of code that are not yet converted to deal with mutliple crtcs
11118 * changing their mode at the same time. */
11119 if (modeset_pipes) {
11120 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11121 if (IS_ERR(pipe_config)) {
11122 ret = PTR_ERR(pipe_config);
11123 pipe_config = NULL;
11124
11125 goto out;
11126 }
11127 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11128 "[modeset]");
11129 to_intel_crtc(crtc)->new_config = pipe_config;
11130 }
11131
11132 /*
11133 * See if the config requires any additional preparation, e.g.
11134 * to adjust global state with pipes off. We need to do this
11135 * here so we can get the modeset_pipe updated config for the new
11136 * mode set on this crtc. For other crtcs we need to use the
11137 * adjusted_mode bits in the crtc directly.
11138 */
11139 if (IS_VALLEYVIEW(dev)) {
11140 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11141
11142 /* may have added more to prepare_pipes than we should */
11143 prepare_pipes &= ~disable_pipes;
11144 }
11145
11146 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11147 intel_crtc_disable(&intel_crtc->base);
11148
11149 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11150 if (intel_crtc->base.enabled)
11151 dev_priv->display.crtc_disable(&intel_crtc->base);
11152 }
11153
11154 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11155 * to set it here already despite that we pass it down the callchain.
11156 */
11157 if (modeset_pipes) {
11158 crtc->mode = *mode;
11159 /* mode_set/enable/disable functions rely on a correct pipe
11160 * config. */
11161 to_intel_crtc(crtc)->config = *pipe_config;
11162 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11163
11164 /*
11165 * Calculate and store various constants which
11166 * are later needed by vblank and swap-completion
11167 * timestamping. They are derived from true hwmode.
11168 */
11169 drm_calc_timestamping_constants(crtc,
11170 &pipe_config->adjusted_mode);
11171 }
11172
11173 /* Only after disabling all output pipelines that will be changed can we
11174 * update the the output configuration. */
11175 intel_modeset_update_state(dev, prepare_pipes);
11176
11177 if (dev_priv->display.modeset_global_resources)
11178 dev_priv->display.modeset_global_resources(dev);
11179
11180 /* Set up the DPLL and any encoders state that needs to adjust or depend
11181 * on the DPLL.
11182 */
11183 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11184 struct drm_framebuffer *old_fb = crtc->primary->fb;
11185 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11186 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11187
11188 mutex_lock(&dev->struct_mutex);
11189 ret = intel_pin_and_fence_fb_obj(dev,
11190 obj,
11191 NULL);
11192 if (ret != 0) {
11193 DRM_ERROR("pin & fence failed\n");
11194 mutex_unlock(&dev->struct_mutex);
11195 goto done;
11196 }
11197 if (old_fb)
11198 intel_unpin_fb_obj(old_obj);
11199 i915_gem_track_fb(old_obj, obj,
11200 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11201 mutex_unlock(&dev->struct_mutex);
11202
11203 crtc->primary->fb = fb;
11204 crtc->x = x;
11205 crtc->y = y;
11206
11207 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11208 x, y, fb);
11209 if (ret)
11210 goto done;
11211 }
11212
11213 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11214 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11215 update_scanline_offset(intel_crtc);
11216
11217 dev_priv->display.crtc_enable(&intel_crtc->base);
11218 }
11219
11220 /* FIXME: add subpixel order */
11221 done:
11222 if (ret && crtc->enabled)
11223 crtc->mode = *saved_mode;
11224
11225 out:
11226 kfree(pipe_config);
11227 kfree(saved_mode);
11228 return ret;
11229 }
11230
11231 static int intel_set_mode(struct drm_crtc *crtc,
11232 struct drm_display_mode *mode,
11233 int x, int y, struct drm_framebuffer *fb)
11234 {
11235 int ret;
11236
11237 ret = __intel_set_mode(crtc, mode, x, y, fb);
11238
11239 if (ret == 0)
11240 intel_modeset_check_state(crtc->dev);
11241
11242 return ret;
11243 }
11244
11245 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11246 {
11247 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11248 }
11249
11250 #undef for_each_intel_crtc_masked
11251
11252 static void intel_set_config_free(struct intel_set_config *config)
11253 {
11254 if (!config)
11255 return;
11256
11257 kfree(config->save_connector_encoders);
11258 kfree(config->save_encoder_crtcs);
11259 kfree(config->save_crtc_enabled);
11260 kfree(config);
11261 }
11262
11263 static int intel_set_config_save_state(struct drm_device *dev,
11264 struct intel_set_config *config)
11265 {
11266 struct drm_crtc *crtc;
11267 struct drm_encoder *encoder;
11268 struct drm_connector *connector;
11269 int count;
11270
11271 config->save_crtc_enabled =
11272 kcalloc(dev->mode_config.num_crtc,
11273 sizeof(bool), GFP_KERNEL);
11274 if (!config->save_crtc_enabled)
11275 return -ENOMEM;
11276
11277 config->save_encoder_crtcs =
11278 kcalloc(dev->mode_config.num_encoder,
11279 sizeof(struct drm_crtc *), GFP_KERNEL);
11280 if (!config->save_encoder_crtcs)
11281 return -ENOMEM;
11282
11283 config->save_connector_encoders =
11284 kcalloc(dev->mode_config.num_connector,
11285 sizeof(struct drm_encoder *), GFP_KERNEL);
11286 if (!config->save_connector_encoders)
11287 return -ENOMEM;
11288
11289 /* Copy data. Note that driver private data is not affected.
11290 * Should anything bad happen only the expected state is
11291 * restored, not the drivers personal bookkeeping.
11292 */
11293 count = 0;
11294 for_each_crtc(dev, crtc) {
11295 config->save_crtc_enabled[count++] = crtc->enabled;
11296 }
11297
11298 count = 0;
11299 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11300 config->save_encoder_crtcs[count++] = encoder->crtc;
11301 }
11302
11303 count = 0;
11304 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11305 config->save_connector_encoders[count++] = connector->encoder;
11306 }
11307
11308 return 0;
11309 }
11310
11311 static void intel_set_config_restore_state(struct drm_device *dev,
11312 struct intel_set_config *config)
11313 {
11314 struct intel_crtc *crtc;
11315 struct intel_encoder *encoder;
11316 struct intel_connector *connector;
11317 int count;
11318
11319 count = 0;
11320 for_each_intel_crtc(dev, crtc) {
11321 crtc->new_enabled = config->save_crtc_enabled[count++];
11322
11323 if (crtc->new_enabled)
11324 crtc->new_config = &crtc->config;
11325 else
11326 crtc->new_config = NULL;
11327 }
11328
11329 count = 0;
11330 for_each_intel_encoder(dev, encoder) {
11331 encoder->new_crtc =
11332 to_intel_crtc(config->save_encoder_crtcs[count++]);
11333 }
11334
11335 count = 0;
11336 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11337 connector->new_encoder =
11338 to_intel_encoder(config->save_connector_encoders[count++]);
11339 }
11340 }
11341
11342 static bool
11343 is_crtc_connector_off(struct drm_mode_set *set)
11344 {
11345 int i;
11346
11347 if (set->num_connectors == 0)
11348 return false;
11349
11350 if (WARN_ON(set->connectors == NULL))
11351 return false;
11352
11353 for (i = 0; i < set->num_connectors; i++)
11354 if (set->connectors[i]->encoder &&
11355 set->connectors[i]->encoder->crtc == set->crtc &&
11356 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11357 return true;
11358
11359 return false;
11360 }
11361
11362 static void
11363 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11364 struct intel_set_config *config)
11365 {
11366
11367 /* We should be able to check here if the fb has the same properties
11368 * and then just flip_or_move it */
11369 if (is_crtc_connector_off(set)) {
11370 config->mode_changed = true;
11371 } else if (set->crtc->primary->fb != set->fb) {
11372 /*
11373 * If we have no fb, we can only flip as long as the crtc is
11374 * active, otherwise we need a full mode set. The crtc may
11375 * be active if we've only disabled the primary plane, or
11376 * in fastboot situations.
11377 */
11378 if (set->crtc->primary->fb == NULL) {
11379 struct intel_crtc *intel_crtc =
11380 to_intel_crtc(set->crtc);
11381
11382 if (intel_crtc->active) {
11383 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11384 config->fb_changed = true;
11385 } else {
11386 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11387 config->mode_changed = true;
11388 }
11389 } else if (set->fb == NULL) {
11390 config->mode_changed = true;
11391 } else if (set->fb->pixel_format !=
11392 set->crtc->primary->fb->pixel_format) {
11393 config->mode_changed = true;
11394 } else {
11395 config->fb_changed = true;
11396 }
11397 }
11398
11399 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11400 config->fb_changed = true;
11401
11402 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11403 DRM_DEBUG_KMS("modes are different, full mode set\n");
11404 drm_mode_debug_printmodeline(&set->crtc->mode);
11405 drm_mode_debug_printmodeline(set->mode);
11406 config->mode_changed = true;
11407 }
11408
11409 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11410 set->crtc->base.id, config->mode_changed, config->fb_changed);
11411 }
11412
11413 static int
11414 intel_modeset_stage_output_state(struct drm_device *dev,
11415 struct drm_mode_set *set,
11416 struct intel_set_config *config)
11417 {
11418 struct intel_connector *connector;
11419 struct intel_encoder *encoder;
11420 struct intel_crtc *crtc;
11421 int ro;
11422
11423 /* The upper layers ensure that we either disable a crtc or have a list
11424 * of connectors. For paranoia, double-check this. */
11425 WARN_ON(!set->fb && (set->num_connectors != 0));
11426 WARN_ON(set->fb && (set->num_connectors == 0));
11427
11428 list_for_each_entry(connector, &dev->mode_config.connector_list,
11429 base.head) {
11430 /* Otherwise traverse passed in connector list and get encoders
11431 * for them. */
11432 for (ro = 0; ro < set->num_connectors; ro++) {
11433 if (set->connectors[ro] == &connector->base) {
11434 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11435 break;
11436 }
11437 }
11438
11439 /* If we disable the crtc, disable all its connectors. Also, if
11440 * the connector is on the changing crtc but not on the new
11441 * connector list, disable it. */
11442 if ((!set->fb || ro == set->num_connectors) &&
11443 connector->base.encoder &&
11444 connector->base.encoder->crtc == set->crtc) {
11445 connector->new_encoder = NULL;
11446
11447 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11448 connector->base.base.id,
11449 connector->base.name);
11450 }
11451
11452
11453 if (&connector->new_encoder->base != connector->base.encoder) {
11454 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11455 config->mode_changed = true;
11456 }
11457 }
11458 /* connector->new_encoder is now updated for all connectors. */
11459
11460 /* Update crtc of enabled connectors. */
11461 list_for_each_entry(connector, &dev->mode_config.connector_list,
11462 base.head) {
11463 struct drm_crtc *new_crtc;
11464
11465 if (!connector->new_encoder)
11466 continue;
11467
11468 new_crtc = connector->new_encoder->base.crtc;
11469
11470 for (ro = 0; ro < set->num_connectors; ro++) {
11471 if (set->connectors[ro] == &connector->base)
11472 new_crtc = set->crtc;
11473 }
11474
11475 /* Make sure the new CRTC will work with the encoder */
11476 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11477 new_crtc)) {
11478 return -EINVAL;
11479 }
11480 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11481
11482 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11483 connector->base.base.id,
11484 connector->base.name,
11485 new_crtc->base.id);
11486 }
11487
11488 /* Check for any encoders that needs to be disabled. */
11489 for_each_intel_encoder(dev, encoder) {
11490 int num_connectors = 0;
11491 list_for_each_entry(connector,
11492 &dev->mode_config.connector_list,
11493 base.head) {
11494 if (connector->new_encoder == encoder) {
11495 WARN_ON(!connector->new_encoder->new_crtc);
11496 num_connectors++;
11497 }
11498 }
11499
11500 if (num_connectors == 0)
11501 encoder->new_crtc = NULL;
11502 else if (num_connectors > 1)
11503 return -EINVAL;
11504
11505 /* Only now check for crtc changes so we don't miss encoders
11506 * that will be disabled. */
11507 if (&encoder->new_crtc->base != encoder->base.crtc) {
11508 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11509 config->mode_changed = true;
11510 }
11511 }
11512 /* Now we've also updated encoder->new_crtc for all encoders. */
11513 list_for_each_entry(connector, &dev->mode_config.connector_list,
11514 base.head) {
11515 if (connector->new_encoder)
11516 if (connector->new_encoder != connector->encoder)
11517 connector->encoder = connector->new_encoder;
11518 }
11519 for_each_intel_crtc(dev, crtc) {
11520 crtc->new_enabled = false;
11521
11522 for_each_intel_encoder(dev, encoder) {
11523 if (encoder->new_crtc == crtc) {
11524 crtc->new_enabled = true;
11525 break;
11526 }
11527 }
11528
11529 if (crtc->new_enabled != crtc->base.enabled) {
11530 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11531 crtc->new_enabled ? "en" : "dis");
11532 config->mode_changed = true;
11533 }
11534
11535 if (crtc->new_enabled)
11536 crtc->new_config = &crtc->config;
11537 else
11538 crtc->new_config = NULL;
11539 }
11540
11541 return 0;
11542 }
11543
11544 static void disable_crtc_nofb(struct intel_crtc *crtc)
11545 {
11546 struct drm_device *dev = crtc->base.dev;
11547 struct intel_encoder *encoder;
11548 struct intel_connector *connector;
11549
11550 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11551 pipe_name(crtc->pipe));
11552
11553 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11554 if (connector->new_encoder &&
11555 connector->new_encoder->new_crtc == crtc)
11556 connector->new_encoder = NULL;
11557 }
11558
11559 for_each_intel_encoder(dev, encoder) {
11560 if (encoder->new_crtc == crtc)
11561 encoder->new_crtc = NULL;
11562 }
11563
11564 crtc->new_enabled = false;
11565 crtc->new_config = NULL;
11566 }
11567
11568 static int intel_crtc_set_config(struct drm_mode_set *set)
11569 {
11570 struct drm_device *dev;
11571 struct drm_mode_set save_set;
11572 struct intel_set_config *config;
11573 int ret;
11574
11575 BUG_ON(!set);
11576 BUG_ON(!set->crtc);
11577 BUG_ON(!set->crtc->helper_private);
11578
11579 /* Enforce sane interface api - has been abused by the fb helper. */
11580 BUG_ON(!set->mode && set->fb);
11581 BUG_ON(set->fb && set->num_connectors == 0);
11582
11583 if (set->fb) {
11584 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11585 set->crtc->base.id, set->fb->base.id,
11586 (int)set->num_connectors, set->x, set->y);
11587 } else {
11588 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11589 }
11590
11591 dev = set->crtc->dev;
11592
11593 ret = -ENOMEM;
11594 config = kzalloc(sizeof(*config), GFP_KERNEL);
11595 if (!config)
11596 goto out_config;
11597
11598 ret = intel_set_config_save_state(dev, config);
11599 if (ret)
11600 goto out_config;
11601
11602 save_set.crtc = set->crtc;
11603 save_set.mode = &set->crtc->mode;
11604 save_set.x = set->crtc->x;
11605 save_set.y = set->crtc->y;
11606 save_set.fb = set->crtc->primary->fb;
11607
11608 /* Compute whether we need a full modeset, only an fb base update or no
11609 * change at all. In the future we might also check whether only the
11610 * mode changed, e.g. for LVDS where we only change the panel fitter in
11611 * such cases. */
11612 intel_set_config_compute_mode_changes(set, config);
11613
11614 ret = intel_modeset_stage_output_state(dev, set, config);
11615 if (ret)
11616 goto fail;
11617
11618 if (config->mode_changed) {
11619 ret = intel_set_mode(set->crtc, set->mode,
11620 set->x, set->y, set->fb);
11621 } else if (config->fb_changed) {
11622 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11623
11624 intel_crtc_wait_for_pending_flips(set->crtc);
11625
11626 ret = intel_pipe_set_base(set->crtc,
11627 set->x, set->y, set->fb);
11628
11629 /*
11630 * We need to make sure the primary plane is re-enabled if it
11631 * has previously been turned off.
11632 */
11633 if (!intel_crtc->primary_enabled && ret == 0) {
11634 WARN_ON(!intel_crtc->active);
11635 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11636 }
11637
11638 /*
11639 * In the fastboot case this may be our only check of the
11640 * state after boot. It would be better to only do it on
11641 * the first update, but we don't have a nice way of doing that
11642 * (and really, set_config isn't used much for high freq page
11643 * flipping, so increasing its cost here shouldn't be a big
11644 * deal).
11645 */
11646 if (i915.fastboot && ret == 0)
11647 intel_modeset_check_state(set->crtc->dev);
11648 }
11649
11650 if (ret) {
11651 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11652 set->crtc->base.id, ret);
11653 fail:
11654 intel_set_config_restore_state(dev, config);
11655
11656 /*
11657 * HACK: if the pipe was on, but we didn't have a framebuffer,
11658 * force the pipe off to avoid oopsing in the modeset code
11659 * due to fb==NULL. This should only happen during boot since
11660 * we don't yet reconstruct the FB from the hardware state.
11661 */
11662 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11663 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11664
11665 /* Try to restore the config */
11666 if (config->mode_changed &&
11667 intel_set_mode(save_set.crtc, save_set.mode,
11668 save_set.x, save_set.y, save_set.fb))
11669 DRM_ERROR("failed to restore config after modeset failure\n");
11670 }
11671
11672 out_config:
11673 intel_set_config_free(config);
11674 return ret;
11675 }
11676
11677 static const struct drm_crtc_funcs intel_crtc_funcs = {
11678 .gamma_set = intel_crtc_gamma_set,
11679 .set_config = intel_crtc_set_config,
11680 .destroy = intel_crtc_destroy,
11681 .page_flip = intel_crtc_page_flip,
11682 };
11683
11684 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11685 struct intel_shared_dpll *pll,
11686 struct intel_dpll_hw_state *hw_state)
11687 {
11688 uint32_t val;
11689
11690 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11691 return false;
11692
11693 val = I915_READ(PCH_DPLL(pll->id));
11694 hw_state->dpll = val;
11695 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11696 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11697
11698 return val & DPLL_VCO_ENABLE;
11699 }
11700
11701 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11702 struct intel_shared_dpll *pll)
11703 {
11704 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11705 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11706 }
11707
11708 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11709 struct intel_shared_dpll *pll)
11710 {
11711 /* PCH refclock must be enabled first */
11712 ibx_assert_pch_refclk_enabled(dev_priv);
11713
11714 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11715
11716 /* Wait for the clocks to stabilize. */
11717 POSTING_READ(PCH_DPLL(pll->id));
11718 udelay(150);
11719
11720 /* The pixel multiplier can only be updated once the
11721 * DPLL is enabled and the clocks are stable.
11722 *
11723 * So write it again.
11724 */
11725 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11726 POSTING_READ(PCH_DPLL(pll->id));
11727 udelay(200);
11728 }
11729
11730 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11731 struct intel_shared_dpll *pll)
11732 {
11733 struct drm_device *dev = dev_priv->dev;
11734 struct intel_crtc *crtc;
11735
11736 /* Make sure no transcoder isn't still depending on us. */
11737 for_each_intel_crtc(dev, crtc) {
11738 if (intel_crtc_to_shared_dpll(crtc) == pll)
11739 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11740 }
11741
11742 I915_WRITE(PCH_DPLL(pll->id), 0);
11743 POSTING_READ(PCH_DPLL(pll->id));
11744 udelay(200);
11745 }
11746
11747 static char *ibx_pch_dpll_names[] = {
11748 "PCH DPLL A",
11749 "PCH DPLL B",
11750 };
11751
11752 static void ibx_pch_dpll_init(struct drm_device *dev)
11753 {
11754 struct drm_i915_private *dev_priv = dev->dev_private;
11755 int i;
11756
11757 dev_priv->num_shared_dpll = 2;
11758
11759 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11760 dev_priv->shared_dplls[i].id = i;
11761 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11762 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11763 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11764 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11765 dev_priv->shared_dplls[i].get_hw_state =
11766 ibx_pch_dpll_get_hw_state;
11767 }
11768 }
11769
11770 static void intel_shared_dpll_init(struct drm_device *dev)
11771 {
11772 struct drm_i915_private *dev_priv = dev->dev_private;
11773
11774 if (HAS_DDI(dev))
11775 intel_ddi_pll_init(dev);
11776 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11777 ibx_pch_dpll_init(dev);
11778 else
11779 dev_priv->num_shared_dpll = 0;
11780
11781 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11782 }
11783
11784 static int
11785 intel_primary_plane_disable(struct drm_plane *plane)
11786 {
11787 struct drm_device *dev = plane->dev;
11788 struct intel_crtc *intel_crtc;
11789
11790 if (!plane->fb)
11791 return 0;
11792
11793 BUG_ON(!plane->crtc);
11794
11795 intel_crtc = to_intel_crtc(plane->crtc);
11796
11797 /*
11798 * Even though we checked plane->fb above, it's still possible that
11799 * the primary plane has been implicitly disabled because the crtc
11800 * coordinates given weren't visible, or because we detected
11801 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11802 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11803 * In either case, we need to unpin the FB and let the fb pointer get
11804 * updated, but otherwise we don't need to touch the hardware.
11805 */
11806 if (!intel_crtc->primary_enabled)
11807 goto disable_unpin;
11808
11809 intel_crtc_wait_for_pending_flips(plane->crtc);
11810 intel_disable_primary_hw_plane(plane, plane->crtc);
11811
11812 disable_unpin:
11813 mutex_lock(&dev->struct_mutex);
11814 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11815 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11816 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11817 mutex_unlock(&dev->struct_mutex);
11818 plane->fb = NULL;
11819
11820 return 0;
11821 }
11822
11823 static int
11824 intel_check_primary_plane(struct drm_plane *plane,
11825 struct intel_plane_state *state)
11826 {
11827 struct drm_crtc *crtc = state->crtc;
11828 struct drm_framebuffer *fb = state->fb;
11829 struct drm_rect *dest = &state->dst;
11830 struct drm_rect *src = &state->src;
11831 const struct drm_rect *clip = &state->clip;
11832
11833 return drm_plane_helper_check_update(plane, crtc, fb,
11834 src, dest, clip,
11835 DRM_PLANE_HELPER_NO_SCALING,
11836 DRM_PLANE_HELPER_NO_SCALING,
11837 false, true, &state->visible);
11838 }
11839
11840 static int
11841 intel_commit_primary_plane(struct drm_plane *plane,
11842 struct intel_plane_state *state)
11843 {
11844 struct drm_crtc *crtc = state->crtc;
11845 struct drm_framebuffer *fb = state->fb;
11846 struct drm_device *dev = crtc->dev;
11847 struct drm_i915_private *dev_priv = dev->dev_private;
11848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11849 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11850 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11851 struct intel_plane *intel_plane = to_intel_plane(plane);
11852 struct drm_rect *src = &state->src;
11853 int ret;
11854
11855 intel_crtc_wait_for_pending_flips(crtc);
11856
11857 /*
11858 * If clipping results in a non-visible primary plane, we'll disable
11859 * the primary plane. Note that this is a bit different than what
11860 * happens if userspace explicitly disables the plane by passing fb=0
11861 * because plane->fb still gets set and pinned.
11862 */
11863 if (!state->visible) {
11864 mutex_lock(&dev->struct_mutex);
11865
11866 /*
11867 * Try to pin the new fb first so that we can bail out if we
11868 * fail.
11869 */
11870 if (plane->fb != fb) {
11871 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11872 if (ret) {
11873 mutex_unlock(&dev->struct_mutex);
11874 return ret;
11875 }
11876 }
11877
11878 i915_gem_track_fb(old_obj, obj,
11879 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11880
11881 if (intel_crtc->primary_enabled)
11882 intel_disable_primary_hw_plane(plane, crtc);
11883
11884
11885 if (plane->fb != fb)
11886 if (plane->fb)
11887 intel_unpin_fb_obj(old_obj);
11888
11889 mutex_unlock(&dev->struct_mutex);
11890
11891 } else {
11892 if (intel_crtc && intel_crtc->active &&
11893 intel_crtc->primary_enabled) {
11894 /*
11895 * FBC does not work on some platforms for rotated
11896 * planes, so disable it when rotation is not 0 and
11897 * update it when rotation is set back to 0.
11898 *
11899 * FIXME: This is redundant with the fbc update done in
11900 * the primary plane enable function except that that
11901 * one is done too late. We eventually need to unify
11902 * this.
11903 */
11904 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11905 dev_priv->fbc.plane == intel_crtc->plane &&
11906 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11907 intel_disable_fbc(dev);
11908 }
11909 }
11910 ret = intel_pipe_set_base(crtc, src->x1, src->y1, fb);
11911 if (ret)
11912 return ret;
11913
11914 if (!intel_crtc->primary_enabled)
11915 intel_enable_primary_hw_plane(plane, crtc);
11916 }
11917
11918 intel_plane->crtc_x = state->orig_dst.x1;
11919 intel_plane->crtc_y = state->orig_dst.y1;
11920 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11921 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11922 intel_plane->src_x = state->orig_src.x1;
11923 intel_plane->src_y = state->orig_src.y1;
11924 intel_plane->src_w = drm_rect_width(&state->orig_src);
11925 intel_plane->src_h = drm_rect_height(&state->orig_src);
11926 intel_plane->obj = obj;
11927
11928 return 0;
11929 }
11930
11931 static int
11932 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11933 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11934 unsigned int crtc_w, unsigned int crtc_h,
11935 uint32_t src_x, uint32_t src_y,
11936 uint32_t src_w, uint32_t src_h)
11937 {
11938 struct intel_plane_state state;
11939 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11940 int ret;
11941
11942 state.crtc = crtc;
11943 state.fb = fb;
11944
11945 /* sample coordinates in 16.16 fixed point */
11946 state.src.x1 = src_x;
11947 state.src.x2 = src_x + src_w;
11948 state.src.y1 = src_y;
11949 state.src.y2 = src_y + src_h;
11950
11951 /* integer pixels */
11952 state.dst.x1 = crtc_x;
11953 state.dst.x2 = crtc_x + crtc_w;
11954 state.dst.y1 = crtc_y;
11955 state.dst.y2 = crtc_y + crtc_h;
11956
11957 state.clip.x1 = 0;
11958 state.clip.y1 = 0;
11959 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11960 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11961
11962 state.orig_src = state.src;
11963 state.orig_dst = state.dst;
11964
11965 ret = intel_check_primary_plane(plane, &state);
11966 if (ret)
11967 return ret;
11968
11969 intel_commit_primary_plane(plane, &state);
11970
11971 return 0;
11972 }
11973
11974 /* Common destruction function for both primary and cursor planes */
11975 static void intel_plane_destroy(struct drm_plane *plane)
11976 {
11977 struct intel_plane *intel_plane = to_intel_plane(plane);
11978 drm_plane_cleanup(plane);
11979 kfree(intel_plane);
11980 }
11981
11982 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11983 .update_plane = intel_primary_plane_setplane,
11984 .disable_plane = intel_primary_plane_disable,
11985 .destroy = intel_plane_destroy,
11986 .set_property = intel_plane_set_property
11987 };
11988
11989 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11990 int pipe)
11991 {
11992 struct intel_plane *primary;
11993 const uint32_t *intel_primary_formats;
11994 int num_formats;
11995
11996 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11997 if (primary == NULL)
11998 return NULL;
11999
12000 primary->can_scale = false;
12001 primary->max_downscale = 1;
12002 primary->pipe = pipe;
12003 primary->plane = pipe;
12004 primary->rotation = BIT(DRM_ROTATE_0);
12005 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12006 primary->plane = !pipe;
12007
12008 if (INTEL_INFO(dev)->gen <= 3) {
12009 intel_primary_formats = intel_primary_formats_gen2;
12010 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12011 } else {
12012 intel_primary_formats = intel_primary_formats_gen4;
12013 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12014 }
12015
12016 drm_universal_plane_init(dev, &primary->base, 0,
12017 &intel_primary_plane_funcs,
12018 intel_primary_formats, num_formats,
12019 DRM_PLANE_TYPE_PRIMARY);
12020
12021 if (INTEL_INFO(dev)->gen >= 4) {
12022 if (!dev->mode_config.rotation_property)
12023 dev->mode_config.rotation_property =
12024 drm_mode_create_rotation_property(dev,
12025 BIT(DRM_ROTATE_0) |
12026 BIT(DRM_ROTATE_180));
12027 if (dev->mode_config.rotation_property)
12028 drm_object_attach_property(&primary->base.base,
12029 dev->mode_config.rotation_property,
12030 primary->rotation);
12031 }
12032
12033 return &primary->base;
12034 }
12035
12036 static int
12037 intel_cursor_plane_disable(struct drm_plane *plane)
12038 {
12039 if (!plane->fb)
12040 return 0;
12041
12042 BUG_ON(!plane->crtc);
12043
12044 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12045 }
12046
12047 static int
12048 intel_check_cursor_plane(struct drm_plane *plane,
12049 struct intel_plane_state *state)
12050 {
12051 struct drm_crtc *crtc = state->crtc;
12052 struct drm_framebuffer *fb = state->fb;
12053 struct drm_rect *dest = &state->dst;
12054 struct drm_rect *src = &state->src;
12055 const struct drm_rect *clip = &state->clip;
12056
12057 return drm_plane_helper_check_update(plane, crtc, fb,
12058 src, dest, clip,
12059 DRM_PLANE_HELPER_NO_SCALING,
12060 DRM_PLANE_HELPER_NO_SCALING,
12061 true, true, &state->visible);
12062 }
12063
12064 static int
12065 intel_commit_cursor_plane(struct drm_plane *plane,
12066 struct intel_plane_state *state)
12067 {
12068 struct drm_crtc *crtc = state->crtc;
12069 struct drm_framebuffer *fb = state->fb;
12070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12071 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12072 struct drm_i915_gem_object *obj = intel_fb->obj;
12073 int crtc_w, crtc_h;
12074
12075 crtc->cursor_x = state->orig_dst.x1;
12076 crtc->cursor_y = state->orig_dst.y1;
12077 if (fb != crtc->cursor->fb) {
12078 crtc_w = drm_rect_width(&state->orig_dst);
12079 crtc_h = drm_rect_height(&state->orig_dst);
12080 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12081 } else {
12082 intel_crtc_update_cursor(crtc, state->visible);
12083
12084 intel_frontbuffer_flip(crtc->dev,
12085 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12086
12087 return 0;
12088 }
12089 }
12090
12091 static int
12092 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12093 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12094 unsigned int crtc_w, unsigned int crtc_h,
12095 uint32_t src_x, uint32_t src_y,
12096 uint32_t src_w, uint32_t src_h)
12097 {
12098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12099 struct intel_plane_state state;
12100 int ret;
12101
12102 state.crtc = crtc;
12103 state.fb = fb;
12104
12105 /* sample coordinates in 16.16 fixed point */
12106 state.src.x1 = src_x;
12107 state.src.x2 = src_x + src_w;
12108 state.src.y1 = src_y;
12109 state.src.y2 = src_y + src_h;
12110
12111 /* integer pixels */
12112 state.dst.x1 = crtc_x;
12113 state.dst.x2 = crtc_x + crtc_w;
12114 state.dst.y1 = crtc_y;
12115 state.dst.y2 = crtc_y + crtc_h;
12116
12117 state.clip.x1 = 0;
12118 state.clip.y1 = 0;
12119 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12120 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12121
12122 state.orig_src = state.src;
12123 state.orig_dst = state.dst;
12124
12125 ret = intel_check_cursor_plane(plane, &state);
12126 if (ret)
12127 return ret;
12128
12129 return intel_commit_cursor_plane(plane, &state);
12130 }
12131
12132 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12133 .update_plane = intel_cursor_plane_update,
12134 .disable_plane = intel_cursor_plane_disable,
12135 .destroy = intel_plane_destroy,
12136 };
12137
12138 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12139 int pipe)
12140 {
12141 struct intel_plane *cursor;
12142
12143 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12144 if (cursor == NULL)
12145 return NULL;
12146
12147 cursor->can_scale = false;
12148 cursor->max_downscale = 1;
12149 cursor->pipe = pipe;
12150 cursor->plane = pipe;
12151
12152 drm_universal_plane_init(dev, &cursor->base, 0,
12153 &intel_cursor_plane_funcs,
12154 intel_cursor_formats,
12155 ARRAY_SIZE(intel_cursor_formats),
12156 DRM_PLANE_TYPE_CURSOR);
12157 return &cursor->base;
12158 }
12159
12160 static void intel_crtc_init(struct drm_device *dev, int pipe)
12161 {
12162 struct drm_i915_private *dev_priv = dev->dev_private;
12163 struct intel_crtc *intel_crtc;
12164 struct drm_plane *primary = NULL;
12165 struct drm_plane *cursor = NULL;
12166 int i, ret;
12167
12168 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12169 if (intel_crtc == NULL)
12170 return;
12171
12172 primary = intel_primary_plane_create(dev, pipe);
12173 if (!primary)
12174 goto fail;
12175
12176 cursor = intel_cursor_plane_create(dev, pipe);
12177 if (!cursor)
12178 goto fail;
12179
12180 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12181 cursor, &intel_crtc_funcs);
12182 if (ret)
12183 goto fail;
12184
12185 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12186 for (i = 0; i < 256; i++) {
12187 intel_crtc->lut_r[i] = i;
12188 intel_crtc->lut_g[i] = i;
12189 intel_crtc->lut_b[i] = i;
12190 }
12191
12192 /*
12193 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12194 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12195 */
12196 intel_crtc->pipe = pipe;
12197 intel_crtc->plane = pipe;
12198 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12199 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12200 intel_crtc->plane = !pipe;
12201 }
12202
12203 intel_crtc->cursor_base = ~0;
12204 intel_crtc->cursor_cntl = ~0;
12205 intel_crtc->cursor_size = ~0;
12206
12207 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12208 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12209 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12210 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12211
12212 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12213
12214 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12215 return;
12216
12217 fail:
12218 if (primary)
12219 drm_plane_cleanup(primary);
12220 if (cursor)
12221 drm_plane_cleanup(cursor);
12222 kfree(intel_crtc);
12223 }
12224
12225 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12226 {
12227 struct drm_encoder *encoder = connector->base.encoder;
12228 struct drm_device *dev = connector->base.dev;
12229
12230 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12231
12232 if (!encoder)
12233 return INVALID_PIPE;
12234
12235 return to_intel_crtc(encoder->crtc)->pipe;
12236 }
12237
12238 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12239 struct drm_file *file)
12240 {
12241 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12242 struct drm_crtc *drmmode_crtc;
12243 struct intel_crtc *crtc;
12244
12245 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12246 return -ENODEV;
12247
12248 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12249
12250 if (!drmmode_crtc) {
12251 DRM_ERROR("no such CRTC id\n");
12252 return -ENOENT;
12253 }
12254
12255 crtc = to_intel_crtc(drmmode_crtc);
12256 pipe_from_crtc_id->pipe = crtc->pipe;
12257
12258 return 0;
12259 }
12260
12261 static int intel_encoder_clones(struct intel_encoder *encoder)
12262 {
12263 struct drm_device *dev = encoder->base.dev;
12264 struct intel_encoder *source_encoder;
12265 int index_mask = 0;
12266 int entry = 0;
12267
12268 for_each_intel_encoder(dev, source_encoder) {
12269 if (encoders_cloneable(encoder, source_encoder))
12270 index_mask |= (1 << entry);
12271
12272 entry++;
12273 }
12274
12275 return index_mask;
12276 }
12277
12278 static bool has_edp_a(struct drm_device *dev)
12279 {
12280 struct drm_i915_private *dev_priv = dev->dev_private;
12281
12282 if (!IS_MOBILE(dev))
12283 return false;
12284
12285 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12286 return false;
12287
12288 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12289 return false;
12290
12291 return true;
12292 }
12293
12294 const char *intel_output_name(int output)
12295 {
12296 static const char *names[] = {
12297 [INTEL_OUTPUT_UNUSED] = "Unused",
12298 [INTEL_OUTPUT_ANALOG] = "Analog",
12299 [INTEL_OUTPUT_DVO] = "DVO",
12300 [INTEL_OUTPUT_SDVO] = "SDVO",
12301 [INTEL_OUTPUT_LVDS] = "LVDS",
12302 [INTEL_OUTPUT_TVOUT] = "TV",
12303 [INTEL_OUTPUT_HDMI] = "HDMI",
12304 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12305 [INTEL_OUTPUT_EDP] = "eDP",
12306 [INTEL_OUTPUT_DSI] = "DSI",
12307 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12308 };
12309
12310 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12311 return "Invalid";
12312
12313 return names[output];
12314 }
12315
12316 static bool intel_crt_present(struct drm_device *dev)
12317 {
12318 struct drm_i915_private *dev_priv = dev->dev_private;
12319
12320 if (IS_ULT(dev))
12321 return false;
12322
12323 if (IS_CHERRYVIEW(dev))
12324 return false;
12325
12326 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12327 return false;
12328
12329 return true;
12330 }
12331
12332 static void intel_setup_outputs(struct drm_device *dev)
12333 {
12334 struct drm_i915_private *dev_priv = dev->dev_private;
12335 struct intel_encoder *encoder;
12336 bool dpd_is_edp = false;
12337
12338 intel_lvds_init(dev);
12339
12340 if (intel_crt_present(dev))
12341 intel_crt_init(dev);
12342
12343 if (HAS_DDI(dev)) {
12344 int found;
12345
12346 /* Haswell uses DDI functions to detect digital outputs */
12347 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12348 /* DDI A only supports eDP */
12349 if (found)
12350 intel_ddi_init(dev, PORT_A);
12351
12352 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12353 * register */
12354 found = I915_READ(SFUSE_STRAP);
12355
12356 if (found & SFUSE_STRAP_DDIB_DETECTED)
12357 intel_ddi_init(dev, PORT_B);
12358 if (found & SFUSE_STRAP_DDIC_DETECTED)
12359 intel_ddi_init(dev, PORT_C);
12360 if (found & SFUSE_STRAP_DDID_DETECTED)
12361 intel_ddi_init(dev, PORT_D);
12362 } else if (HAS_PCH_SPLIT(dev)) {
12363 int found;
12364 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12365
12366 if (has_edp_a(dev))
12367 intel_dp_init(dev, DP_A, PORT_A);
12368
12369 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12370 /* PCH SDVOB multiplex with HDMIB */
12371 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12372 if (!found)
12373 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12374 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12375 intel_dp_init(dev, PCH_DP_B, PORT_B);
12376 }
12377
12378 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12379 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12380
12381 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12382 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12383
12384 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12385 intel_dp_init(dev, PCH_DP_C, PORT_C);
12386
12387 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12388 intel_dp_init(dev, PCH_DP_D, PORT_D);
12389 } else if (IS_VALLEYVIEW(dev)) {
12390 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12391 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12392 PORT_B);
12393 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12394 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12395 }
12396
12397 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12398 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12399 PORT_C);
12400 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12401 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12402 }
12403
12404 if (IS_CHERRYVIEW(dev)) {
12405 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12406 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12407 PORT_D);
12408 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12409 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12410 }
12411 }
12412
12413 intel_dsi_init(dev);
12414 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12415 bool found = false;
12416
12417 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12418 DRM_DEBUG_KMS("probing SDVOB\n");
12419 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12420 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12421 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12422 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12423 }
12424
12425 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12426 intel_dp_init(dev, DP_B, PORT_B);
12427 }
12428
12429 /* Before G4X SDVOC doesn't have its own detect register */
12430
12431 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12432 DRM_DEBUG_KMS("probing SDVOC\n");
12433 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12434 }
12435
12436 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12437
12438 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12439 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12440 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12441 }
12442 if (SUPPORTS_INTEGRATED_DP(dev))
12443 intel_dp_init(dev, DP_C, PORT_C);
12444 }
12445
12446 if (SUPPORTS_INTEGRATED_DP(dev) &&
12447 (I915_READ(DP_D) & DP_DETECTED))
12448 intel_dp_init(dev, DP_D, PORT_D);
12449 } else if (IS_GEN2(dev))
12450 intel_dvo_init(dev);
12451
12452 if (SUPPORTS_TV(dev))
12453 intel_tv_init(dev);
12454
12455 intel_edp_psr_init(dev);
12456
12457 for_each_intel_encoder(dev, encoder) {
12458 encoder->base.possible_crtcs = encoder->crtc_mask;
12459 encoder->base.possible_clones =
12460 intel_encoder_clones(encoder);
12461 }
12462
12463 intel_init_pch_refclk(dev);
12464
12465 drm_helper_move_panel_connectors_to_head(dev);
12466 }
12467
12468 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12469 {
12470 struct drm_device *dev = fb->dev;
12471 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12472
12473 drm_framebuffer_cleanup(fb);
12474 mutex_lock(&dev->struct_mutex);
12475 WARN_ON(!intel_fb->obj->framebuffer_references--);
12476 drm_gem_object_unreference(&intel_fb->obj->base);
12477 mutex_unlock(&dev->struct_mutex);
12478 kfree(intel_fb);
12479 }
12480
12481 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12482 struct drm_file *file,
12483 unsigned int *handle)
12484 {
12485 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12486 struct drm_i915_gem_object *obj = intel_fb->obj;
12487
12488 return drm_gem_handle_create(file, &obj->base, handle);
12489 }
12490
12491 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12492 .destroy = intel_user_framebuffer_destroy,
12493 .create_handle = intel_user_framebuffer_create_handle,
12494 };
12495
12496 static int intel_framebuffer_init(struct drm_device *dev,
12497 struct intel_framebuffer *intel_fb,
12498 struct drm_mode_fb_cmd2 *mode_cmd,
12499 struct drm_i915_gem_object *obj)
12500 {
12501 int aligned_height;
12502 int pitch_limit;
12503 int ret;
12504
12505 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12506
12507 if (obj->tiling_mode == I915_TILING_Y) {
12508 DRM_DEBUG("hardware does not support tiling Y\n");
12509 return -EINVAL;
12510 }
12511
12512 if (mode_cmd->pitches[0] & 63) {
12513 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12514 mode_cmd->pitches[0]);
12515 return -EINVAL;
12516 }
12517
12518 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12519 pitch_limit = 32*1024;
12520 } else if (INTEL_INFO(dev)->gen >= 4) {
12521 if (obj->tiling_mode)
12522 pitch_limit = 16*1024;
12523 else
12524 pitch_limit = 32*1024;
12525 } else if (INTEL_INFO(dev)->gen >= 3) {
12526 if (obj->tiling_mode)
12527 pitch_limit = 8*1024;
12528 else
12529 pitch_limit = 16*1024;
12530 } else
12531 /* XXX DSPC is limited to 4k tiled */
12532 pitch_limit = 8*1024;
12533
12534 if (mode_cmd->pitches[0] > pitch_limit) {
12535 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12536 obj->tiling_mode ? "tiled" : "linear",
12537 mode_cmd->pitches[0], pitch_limit);
12538 return -EINVAL;
12539 }
12540
12541 if (obj->tiling_mode != I915_TILING_NONE &&
12542 mode_cmd->pitches[0] != obj->stride) {
12543 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12544 mode_cmd->pitches[0], obj->stride);
12545 return -EINVAL;
12546 }
12547
12548 /* Reject formats not supported by any plane early. */
12549 switch (mode_cmd->pixel_format) {
12550 case DRM_FORMAT_C8:
12551 case DRM_FORMAT_RGB565:
12552 case DRM_FORMAT_XRGB8888:
12553 case DRM_FORMAT_ARGB8888:
12554 break;
12555 case DRM_FORMAT_XRGB1555:
12556 case DRM_FORMAT_ARGB1555:
12557 if (INTEL_INFO(dev)->gen > 3) {
12558 DRM_DEBUG("unsupported pixel format: %s\n",
12559 drm_get_format_name(mode_cmd->pixel_format));
12560 return -EINVAL;
12561 }
12562 break;
12563 case DRM_FORMAT_XBGR8888:
12564 case DRM_FORMAT_ABGR8888:
12565 case DRM_FORMAT_XRGB2101010:
12566 case DRM_FORMAT_ARGB2101010:
12567 case DRM_FORMAT_XBGR2101010:
12568 case DRM_FORMAT_ABGR2101010:
12569 if (INTEL_INFO(dev)->gen < 4) {
12570 DRM_DEBUG("unsupported pixel format: %s\n",
12571 drm_get_format_name(mode_cmd->pixel_format));
12572 return -EINVAL;
12573 }
12574 break;
12575 case DRM_FORMAT_YUYV:
12576 case DRM_FORMAT_UYVY:
12577 case DRM_FORMAT_YVYU:
12578 case DRM_FORMAT_VYUY:
12579 if (INTEL_INFO(dev)->gen < 5) {
12580 DRM_DEBUG("unsupported pixel format: %s\n",
12581 drm_get_format_name(mode_cmd->pixel_format));
12582 return -EINVAL;
12583 }
12584 break;
12585 default:
12586 DRM_DEBUG("unsupported pixel format: %s\n",
12587 drm_get_format_name(mode_cmd->pixel_format));
12588 return -EINVAL;
12589 }
12590
12591 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12592 if (mode_cmd->offsets[0] != 0)
12593 return -EINVAL;
12594
12595 aligned_height = intel_align_height(dev, mode_cmd->height,
12596 obj->tiling_mode);
12597 /* FIXME drm helper for size checks (especially planar formats)? */
12598 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12599 return -EINVAL;
12600
12601 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12602 intel_fb->obj = obj;
12603 intel_fb->obj->framebuffer_references++;
12604
12605 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12606 if (ret) {
12607 DRM_ERROR("framebuffer init failed %d\n", ret);
12608 return ret;
12609 }
12610
12611 return 0;
12612 }
12613
12614 static struct drm_framebuffer *
12615 intel_user_framebuffer_create(struct drm_device *dev,
12616 struct drm_file *filp,
12617 struct drm_mode_fb_cmd2 *mode_cmd)
12618 {
12619 struct drm_i915_gem_object *obj;
12620
12621 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12622 mode_cmd->handles[0]));
12623 if (&obj->base == NULL)
12624 return ERR_PTR(-ENOENT);
12625
12626 return intel_framebuffer_create(dev, mode_cmd, obj);
12627 }
12628
12629 #ifndef CONFIG_DRM_I915_FBDEV
12630 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12631 {
12632 }
12633 #endif
12634
12635 static const struct drm_mode_config_funcs intel_mode_funcs = {
12636 .fb_create = intel_user_framebuffer_create,
12637 .output_poll_changed = intel_fbdev_output_poll_changed,
12638 };
12639
12640 /* Set up chip specific display functions */
12641 static void intel_init_display(struct drm_device *dev)
12642 {
12643 struct drm_i915_private *dev_priv = dev->dev_private;
12644
12645 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12646 dev_priv->display.find_dpll = g4x_find_best_dpll;
12647 else if (IS_CHERRYVIEW(dev))
12648 dev_priv->display.find_dpll = chv_find_best_dpll;
12649 else if (IS_VALLEYVIEW(dev))
12650 dev_priv->display.find_dpll = vlv_find_best_dpll;
12651 else if (IS_PINEVIEW(dev))
12652 dev_priv->display.find_dpll = pnv_find_best_dpll;
12653 else
12654 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12655
12656 if (HAS_DDI(dev)) {
12657 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12658 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12659 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12660 dev_priv->display.crtc_enable = haswell_crtc_enable;
12661 dev_priv->display.crtc_disable = haswell_crtc_disable;
12662 dev_priv->display.off = ironlake_crtc_off;
12663 dev_priv->display.update_primary_plane =
12664 ironlake_update_primary_plane;
12665 } else if (HAS_PCH_SPLIT(dev)) {
12666 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12667 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12668 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12669 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12670 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12671 dev_priv->display.off = ironlake_crtc_off;
12672 dev_priv->display.update_primary_plane =
12673 ironlake_update_primary_plane;
12674 } else if (IS_VALLEYVIEW(dev)) {
12675 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12676 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12677 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12678 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12679 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12680 dev_priv->display.off = i9xx_crtc_off;
12681 dev_priv->display.update_primary_plane =
12682 i9xx_update_primary_plane;
12683 } else {
12684 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12685 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12686 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12687 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12688 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12689 dev_priv->display.off = i9xx_crtc_off;
12690 dev_priv->display.update_primary_plane =
12691 i9xx_update_primary_plane;
12692 }
12693
12694 /* Returns the core display clock speed */
12695 if (IS_VALLEYVIEW(dev))
12696 dev_priv->display.get_display_clock_speed =
12697 valleyview_get_display_clock_speed;
12698 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12699 dev_priv->display.get_display_clock_speed =
12700 i945_get_display_clock_speed;
12701 else if (IS_I915G(dev))
12702 dev_priv->display.get_display_clock_speed =
12703 i915_get_display_clock_speed;
12704 else if (IS_I945GM(dev) || IS_845G(dev))
12705 dev_priv->display.get_display_clock_speed =
12706 i9xx_misc_get_display_clock_speed;
12707 else if (IS_PINEVIEW(dev))
12708 dev_priv->display.get_display_clock_speed =
12709 pnv_get_display_clock_speed;
12710 else if (IS_I915GM(dev))
12711 dev_priv->display.get_display_clock_speed =
12712 i915gm_get_display_clock_speed;
12713 else if (IS_I865G(dev))
12714 dev_priv->display.get_display_clock_speed =
12715 i865_get_display_clock_speed;
12716 else if (IS_I85X(dev))
12717 dev_priv->display.get_display_clock_speed =
12718 i855_get_display_clock_speed;
12719 else /* 852, 830 */
12720 dev_priv->display.get_display_clock_speed =
12721 i830_get_display_clock_speed;
12722
12723 if (IS_G4X(dev)) {
12724 dev_priv->display.write_eld = g4x_write_eld;
12725 } else if (IS_GEN5(dev)) {
12726 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12727 dev_priv->display.write_eld = ironlake_write_eld;
12728 } else if (IS_GEN6(dev)) {
12729 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12730 dev_priv->display.write_eld = ironlake_write_eld;
12731 dev_priv->display.modeset_global_resources =
12732 snb_modeset_global_resources;
12733 } else if (IS_IVYBRIDGE(dev)) {
12734 /* FIXME: detect B0+ stepping and use auto training */
12735 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12736 dev_priv->display.write_eld = ironlake_write_eld;
12737 dev_priv->display.modeset_global_resources =
12738 ivb_modeset_global_resources;
12739 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12740 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12741 dev_priv->display.write_eld = haswell_write_eld;
12742 dev_priv->display.modeset_global_resources =
12743 haswell_modeset_global_resources;
12744 } else if (IS_VALLEYVIEW(dev)) {
12745 dev_priv->display.modeset_global_resources =
12746 valleyview_modeset_global_resources;
12747 dev_priv->display.write_eld = ironlake_write_eld;
12748 }
12749
12750 /* Default just returns -ENODEV to indicate unsupported */
12751 dev_priv->display.queue_flip = intel_default_queue_flip;
12752
12753 switch (INTEL_INFO(dev)->gen) {
12754 case 2:
12755 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12756 break;
12757
12758 case 3:
12759 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12760 break;
12761
12762 case 4:
12763 case 5:
12764 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12765 break;
12766
12767 case 6:
12768 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12769 break;
12770 case 7:
12771 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12772 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12773 break;
12774 }
12775
12776 intel_panel_init_backlight_funcs(dev);
12777
12778 mutex_init(&dev_priv->pps_mutex);
12779 }
12780
12781 /*
12782 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12783 * resume, or other times. This quirk makes sure that's the case for
12784 * affected systems.
12785 */
12786 static void quirk_pipea_force(struct drm_device *dev)
12787 {
12788 struct drm_i915_private *dev_priv = dev->dev_private;
12789
12790 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12791 DRM_INFO("applying pipe a force quirk\n");
12792 }
12793
12794 static void quirk_pipeb_force(struct drm_device *dev)
12795 {
12796 struct drm_i915_private *dev_priv = dev->dev_private;
12797
12798 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12799 DRM_INFO("applying pipe b force quirk\n");
12800 }
12801
12802 /*
12803 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12804 */
12805 static void quirk_ssc_force_disable(struct drm_device *dev)
12806 {
12807 struct drm_i915_private *dev_priv = dev->dev_private;
12808 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12809 DRM_INFO("applying lvds SSC disable quirk\n");
12810 }
12811
12812 /*
12813 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12814 * brightness value
12815 */
12816 static void quirk_invert_brightness(struct drm_device *dev)
12817 {
12818 struct drm_i915_private *dev_priv = dev->dev_private;
12819 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12820 DRM_INFO("applying inverted panel brightness quirk\n");
12821 }
12822
12823 /* Some VBT's incorrectly indicate no backlight is present */
12824 static void quirk_backlight_present(struct drm_device *dev)
12825 {
12826 struct drm_i915_private *dev_priv = dev->dev_private;
12827 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12828 DRM_INFO("applying backlight present quirk\n");
12829 }
12830
12831 struct intel_quirk {
12832 int device;
12833 int subsystem_vendor;
12834 int subsystem_device;
12835 void (*hook)(struct drm_device *dev);
12836 };
12837
12838 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12839 struct intel_dmi_quirk {
12840 void (*hook)(struct drm_device *dev);
12841 const struct dmi_system_id (*dmi_id_list)[];
12842 };
12843
12844 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12845 {
12846 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12847 return 1;
12848 }
12849
12850 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12851 {
12852 .dmi_id_list = &(const struct dmi_system_id[]) {
12853 {
12854 .callback = intel_dmi_reverse_brightness,
12855 .ident = "NCR Corporation",
12856 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12857 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12858 },
12859 },
12860 { } /* terminating entry */
12861 },
12862 .hook = quirk_invert_brightness,
12863 },
12864 };
12865
12866 static struct intel_quirk intel_quirks[] = {
12867 /* HP Mini needs pipe A force quirk (LP: #322104) */
12868 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12869
12870 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12871 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12872
12873 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12874 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12875
12876 /* 830 needs to leave pipe A & dpll A up */
12877 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12878
12879 /* 830 needs to leave pipe B & dpll B up */
12880 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12881
12882 /* Lenovo U160 cannot use SSC on LVDS */
12883 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12884
12885 /* Sony Vaio Y cannot use SSC on LVDS */
12886 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12887
12888 /* Acer Aspire 5734Z must invert backlight brightness */
12889 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12890
12891 /* Acer/eMachines G725 */
12892 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12893
12894 /* Acer/eMachines e725 */
12895 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12896
12897 /* Acer/Packard Bell NCL20 */
12898 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12899
12900 /* Acer Aspire 4736Z */
12901 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12902
12903 /* Acer Aspire 5336 */
12904 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12905
12906 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12907 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12908
12909 /* Acer C720 Chromebook (Core i3 4005U) */
12910 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12911
12912 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12913 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12914
12915 /* HP Chromebook 14 (Celeron 2955U) */
12916 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12917 };
12918
12919 static void intel_init_quirks(struct drm_device *dev)
12920 {
12921 struct pci_dev *d = dev->pdev;
12922 int i;
12923
12924 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12925 struct intel_quirk *q = &intel_quirks[i];
12926
12927 if (d->device == q->device &&
12928 (d->subsystem_vendor == q->subsystem_vendor ||
12929 q->subsystem_vendor == PCI_ANY_ID) &&
12930 (d->subsystem_device == q->subsystem_device ||
12931 q->subsystem_device == PCI_ANY_ID))
12932 q->hook(dev);
12933 }
12934 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12935 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12936 intel_dmi_quirks[i].hook(dev);
12937 }
12938 }
12939
12940 /* Disable the VGA plane that we never use */
12941 static void i915_disable_vga(struct drm_device *dev)
12942 {
12943 struct drm_i915_private *dev_priv = dev->dev_private;
12944 u8 sr1;
12945 u32 vga_reg = i915_vgacntrl_reg(dev);
12946
12947 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12948 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12949 outb(SR01, VGA_SR_INDEX);
12950 sr1 = inb(VGA_SR_DATA);
12951 outb(sr1 | 1<<5, VGA_SR_DATA);
12952 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12953 udelay(300);
12954
12955 /*
12956 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12957 * from S3 without preserving (some of?) the other bits.
12958 */
12959 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12960 POSTING_READ(vga_reg);
12961 }
12962
12963 void intel_modeset_init_hw(struct drm_device *dev)
12964 {
12965 intel_prepare_ddi(dev);
12966
12967 if (IS_VALLEYVIEW(dev))
12968 vlv_update_cdclk(dev);
12969
12970 intel_init_clock_gating(dev);
12971
12972 intel_enable_gt_powersave(dev);
12973 }
12974
12975 void intel_modeset_suspend_hw(struct drm_device *dev)
12976 {
12977 intel_suspend_hw(dev);
12978 }
12979
12980 void intel_modeset_init(struct drm_device *dev)
12981 {
12982 struct drm_i915_private *dev_priv = dev->dev_private;
12983 int sprite, ret;
12984 enum pipe pipe;
12985 struct intel_crtc *crtc;
12986
12987 drm_mode_config_init(dev);
12988
12989 dev->mode_config.min_width = 0;
12990 dev->mode_config.min_height = 0;
12991
12992 dev->mode_config.preferred_depth = 24;
12993 dev->mode_config.prefer_shadow = 1;
12994
12995 dev->mode_config.funcs = &intel_mode_funcs;
12996
12997 intel_init_quirks(dev);
12998
12999 intel_init_pm(dev);
13000
13001 if (INTEL_INFO(dev)->num_pipes == 0)
13002 return;
13003
13004 intel_init_display(dev);
13005
13006 if (IS_GEN2(dev)) {
13007 dev->mode_config.max_width = 2048;
13008 dev->mode_config.max_height = 2048;
13009 } else if (IS_GEN3(dev)) {
13010 dev->mode_config.max_width = 4096;
13011 dev->mode_config.max_height = 4096;
13012 } else {
13013 dev->mode_config.max_width = 8192;
13014 dev->mode_config.max_height = 8192;
13015 }
13016
13017 if (IS_845G(dev) || IS_I865G(dev)) {
13018 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13019 dev->mode_config.cursor_height = 1023;
13020 } else if (IS_GEN2(dev)) {
13021 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13022 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13023 } else {
13024 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13025 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13026 }
13027
13028 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13029
13030 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13031 INTEL_INFO(dev)->num_pipes,
13032 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13033
13034 for_each_pipe(dev_priv, pipe) {
13035 intel_crtc_init(dev, pipe);
13036 for_each_sprite(pipe, sprite) {
13037 ret = intel_plane_init(dev, pipe, sprite);
13038 if (ret)
13039 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13040 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13041 }
13042 }
13043
13044 intel_init_dpio(dev);
13045
13046 intel_shared_dpll_init(dev);
13047
13048 /* save the BIOS value before clobbering it */
13049 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13050 /* Just disable it once at startup */
13051 i915_disable_vga(dev);
13052 intel_setup_outputs(dev);
13053
13054 /* Just in case the BIOS is doing something questionable. */
13055 intel_disable_fbc(dev);
13056
13057 drm_modeset_lock_all(dev);
13058 intel_modeset_setup_hw_state(dev, false);
13059 drm_modeset_unlock_all(dev);
13060
13061 for_each_intel_crtc(dev, crtc) {
13062 if (!crtc->active)
13063 continue;
13064
13065 /*
13066 * Note that reserving the BIOS fb up front prevents us
13067 * from stuffing other stolen allocations like the ring
13068 * on top. This prevents some ugliness at boot time, and
13069 * can even allow for smooth boot transitions if the BIOS
13070 * fb is large enough for the active pipe configuration.
13071 */
13072 if (dev_priv->display.get_plane_config) {
13073 dev_priv->display.get_plane_config(crtc,
13074 &crtc->plane_config);
13075 /*
13076 * If the fb is shared between multiple heads, we'll
13077 * just get the first one.
13078 */
13079 intel_find_plane_obj(crtc, &crtc->plane_config);
13080 }
13081 }
13082 }
13083
13084 static void intel_enable_pipe_a(struct drm_device *dev)
13085 {
13086 struct intel_connector *connector;
13087 struct drm_connector *crt = NULL;
13088 struct intel_load_detect_pipe load_detect_temp;
13089 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13090
13091 /* We can't just switch on the pipe A, we need to set things up with a
13092 * proper mode and output configuration. As a gross hack, enable pipe A
13093 * by enabling the load detect pipe once. */
13094 list_for_each_entry(connector,
13095 &dev->mode_config.connector_list,
13096 base.head) {
13097 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13098 crt = &connector->base;
13099 break;
13100 }
13101 }
13102
13103 if (!crt)
13104 return;
13105
13106 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13107 intel_release_load_detect_pipe(crt, &load_detect_temp);
13108 }
13109
13110 static bool
13111 intel_check_plane_mapping(struct intel_crtc *crtc)
13112 {
13113 struct drm_device *dev = crtc->base.dev;
13114 struct drm_i915_private *dev_priv = dev->dev_private;
13115 u32 reg, val;
13116
13117 if (INTEL_INFO(dev)->num_pipes == 1)
13118 return true;
13119
13120 reg = DSPCNTR(!crtc->plane);
13121 val = I915_READ(reg);
13122
13123 if ((val & DISPLAY_PLANE_ENABLE) &&
13124 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13125 return false;
13126
13127 return true;
13128 }
13129
13130 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13131 {
13132 struct drm_device *dev = crtc->base.dev;
13133 struct drm_i915_private *dev_priv = dev->dev_private;
13134 u32 reg;
13135
13136 /* Clear any frame start delays used for debugging left by the BIOS */
13137 reg = PIPECONF(crtc->config.cpu_transcoder);
13138 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13139
13140 /* restore vblank interrupts to correct state */
13141 if (crtc->active) {
13142 update_scanline_offset(crtc);
13143 drm_vblank_on(dev, crtc->pipe);
13144 } else
13145 drm_vblank_off(dev, crtc->pipe);
13146
13147 /* We need to sanitize the plane -> pipe mapping first because this will
13148 * disable the crtc (and hence change the state) if it is wrong. Note
13149 * that gen4+ has a fixed plane -> pipe mapping. */
13150 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13151 struct intel_connector *connector;
13152 bool plane;
13153
13154 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13155 crtc->base.base.id);
13156
13157 /* Pipe has the wrong plane attached and the plane is active.
13158 * Temporarily change the plane mapping and disable everything
13159 * ... */
13160 plane = crtc->plane;
13161 crtc->plane = !plane;
13162 crtc->primary_enabled = true;
13163 dev_priv->display.crtc_disable(&crtc->base);
13164 crtc->plane = plane;
13165
13166 /* ... and break all links. */
13167 list_for_each_entry(connector, &dev->mode_config.connector_list,
13168 base.head) {
13169 if (connector->encoder->base.crtc != &crtc->base)
13170 continue;
13171
13172 connector->base.dpms = DRM_MODE_DPMS_OFF;
13173 connector->base.encoder = NULL;
13174 }
13175 /* multiple connectors may have the same encoder:
13176 * handle them and break crtc link separately */
13177 list_for_each_entry(connector, &dev->mode_config.connector_list,
13178 base.head)
13179 if (connector->encoder->base.crtc == &crtc->base) {
13180 connector->encoder->base.crtc = NULL;
13181 connector->encoder->connectors_active = false;
13182 }
13183
13184 WARN_ON(crtc->active);
13185 crtc->base.enabled = false;
13186 }
13187
13188 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13189 crtc->pipe == PIPE_A && !crtc->active) {
13190 /* BIOS forgot to enable pipe A, this mostly happens after
13191 * resume. Force-enable the pipe to fix this, the update_dpms
13192 * call below we restore the pipe to the right state, but leave
13193 * the required bits on. */
13194 intel_enable_pipe_a(dev);
13195 }
13196
13197 /* Adjust the state of the output pipe according to whether we
13198 * have active connectors/encoders. */
13199 intel_crtc_update_dpms(&crtc->base);
13200
13201 if (crtc->active != crtc->base.enabled) {
13202 struct intel_encoder *encoder;
13203
13204 /* This can happen either due to bugs in the get_hw_state
13205 * functions or because the pipe is force-enabled due to the
13206 * pipe A quirk. */
13207 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13208 crtc->base.base.id,
13209 crtc->base.enabled ? "enabled" : "disabled",
13210 crtc->active ? "enabled" : "disabled");
13211
13212 crtc->base.enabled = crtc->active;
13213
13214 /* Because we only establish the connector -> encoder ->
13215 * crtc links if something is active, this means the
13216 * crtc is now deactivated. Break the links. connector
13217 * -> encoder links are only establish when things are
13218 * actually up, hence no need to break them. */
13219 WARN_ON(crtc->active);
13220
13221 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13222 WARN_ON(encoder->connectors_active);
13223 encoder->base.crtc = NULL;
13224 }
13225 }
13226
13227 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13228 /*
13229 * We start out with underrun reporting disabled to avoid races.
13230 * For correct bookkeeping mark this on active crtcs.
13231 *
13232 * Also on gmch platforms we dont have any hardware bits to
13233 * disable the underrun reporting. Which means we need to start
13234 * out with underrun reporting disabled also on inactive pipes,
13235 * since otherwise we'll complain about the garbage we read when
13236 * e.g. coming up after runtime pm.
13237 *
13238 * No protection against concurrent access is required - at
13239 * worst a fifo underrun happens which also sets this to false.
13240 */
13241 crtc->cpu_fifo_underrun_disabled = true;
13242 crtc->pch_fifo_underrun_disabled = true;
13243 }
13244 }
13245
13246 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13247 {
13248 struct intel_connector *connector;
13249 struct drm_device *dev = encoder->base.dev;
13250
13251 /* We need to check both for a crtc link (meaning that the
13252 * encoder is active and trying to read from a pipe) and the
13253 * pipe itself being active. */
13254 bool has_active_crtc = encoder->base.crtc &&
13255 to_intel_crtc(encoder->base.crtc)->active;
13256
13257 if (encoder->connectors_active && !has_active_crtc) {
13258 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13259 encoder->base.base.id,
13260 encoder->base.name);
13261
13262 /* Connector is active, but has no active pipe. This is
13263 * fallout from our resume register restoring. Disable
13264 * the encoder manually again. */
13265 if (encoder->base.crtc) {
13266 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13267 encoder->base.base.id,
13268 encoder->base.name);
13269 encoder->disable(encoder);
13270 if (encoder->post_disable)
13271 encoder->post_disable(encoder);
13272 }
13273 encoder->base.crtc = NULL;
13274 encoder->connectors_active = false;
13275
13276 /* Inconsistent output/port/pipe state happens presumably due to
13277 * a bug in one of the get_hw_state functions. Or someplace else
13278 * in our code, like the register restore mess on resume. Clamp
13279 * things to off as a safer default. */
13280 list_for_each_entry(connector,
13281 &dev->mode_config.connector_list,
13282 base.head) {
13283 if (connector->encoder != encoder)
13284 continue;
13285 connector->base.dpms = DRM_MODE_DPMS_OFF;
13286 connector->base.encoder = NULL;
13287 }
13288 }
13289 /* Enabled encoders without active connectors will be fixed in
13290 * the crtc fixup. */
13291 }
13292
13293 void i915_redisable_vga_power_on(struct drm_device *dev)
13294 {
13295 struct drm_i915_private *dev_priv = dev->dev_private;
13296 u32 vga_reg = i915_vgacntrl_reg(dev);
13297
13298 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13299 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13300 i915_disable_vga(dev);
13301 }
13302 }
13303
13304 void i915_redisable_vga(struct drm_device *dev)
13305 {
13306 struct drm_i915_private *dev_priv = dev->dev_private;
13307
13308 /* This function can be called both from intel_modeset_setup_hw_state or
13309 * at a very early point in our resume sequence, where the power well
13310 * structures are not yet restored. Since this function is at a very
13311 * paranoid "someone might have enabled VGA while we were not looking"
13312 * level, just check if the power well is enabled instead of trying to
13313 * follow the "don't touch the power well if we don't need it" policy
13314 * the rest of the driver uses. */
13315 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
13316 return;
13317
13318 i915_redisable_vga_power_on(dev);
13319 }
13320
13321 static bool primary_get_hw_state(struct intel_crtc *crtc)
13322 {
13323 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13324
13325 if (!crtc->active)
13326 return false;
13327
13328 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13329 }
13330
13331 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13332 {
13333 struct drm_i915_private *dev_priv = dev->dev_private;
13334 enum pipe pipe;
13335 struct intel_crtc *crtc;
13336 struct intel_encoder *encoder;
13337 struct intel_connector *connector;
13338 int i;
13339
13340 for_each_intel_crtc(dev, crtc) {
13341 memset(&crtc->config, 0, sizeof(crtc->config));
13342
13343 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13344
13345 crtc->active = dev_priv->display.get_pipe_config(crtc,
13346 &crtc->config);
13347
13348 crtc->base.enabled = crtc->active;
13349 crtc->primary_enabled = primary_get_hw_state(crtc);
13350
13351 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13352 crtc->base.base.id,
13353 crtc->active ? "enabled" : "disabled");
13354 }
13355
13356 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13357 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13358
13359 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13360 pll->active = 0;
13361 for_each_intel_crtc(dev, crtc) {
13362 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13363 pll->active++;
13364 }
13365 pll->refcount = pll->active;
13366
13367 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13368 pll->name, pll->refcount, pll->on);
13369
13370 if (pll->refcount)
13371 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13372 }
13373
13374 for_each_intel_encoder(dev, encoder) {
13375 pipe = 0;
13376
13377 if (encoder->get_hw_state(encoder, &pipe)) {
13378 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13379 encoder->base.crtc = &crtc->base;
13380 encoder->get_config(encoder, &crtc->config);
13381 } else {
13382 encoder->base.crtc = NULL;
13383 }
13384
13385 encoder->connectors_active = false;
13386 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13387 encoder->base.base.id,
13388 encoder->base.name,
13389 encoder->base.crtc ? "enabled" : "disabled",
13390 pipe_name(pipe));
13391 }
13392
13393 list_for_each_entry(connector, &dev->mode_config.connector_list,
13394 base.head) {
13395 if (connector->get_hw_state(connector)) {
13396 connector->base.dpms = DRM_MODE_DPMS_ON;
13397 connector->encoder->connectors_active = true;
13398 connector->base.encoder = &connector->encoder->base;
13399 } else {
13400 connector->base.dpms = DRM_MODE_DPMS_OFF;
13401 connector->base.encoder = NULL;
13402 }
13403 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13404 connector->base.base.id,
13405 connector->base.name,
13406 connector->base.encoder ? "enabled" : "disabled");
13407 }
13408 }
13409
13410 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13411 * and i915 state tracking structures. */
13412 void intel_modeset_setup_hw_state(struct drm_device *dev,
13413 bool force_restore)
13414 {
13415 struct drm_i915_private *dev_priv = dev->dev_private;
13416 enum pipe pipe;
13417 struct intel_crtc *crtc;
13418 struct intel_encoder *encoder;
13419 int i;
13420
13421 intel_modeset_readout_hw_state(dev);
13422
13423 /*
13424 * Now that we have the config, copy it to each CRTC struct
13425 * Note that this could go away if we move to using crtc_config
13426 * checking everywhere.
13427 */
13428 for_each_intel_crtc(dev, crtc) {
13429 if (crtc->active && i915.fastboot) {
13430 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13431 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13432 crtc->base.base.id);
13433 drm_mode_debug_printmodeline(&crtc->base.mode);
13434 }
13435 }
13436
13437 /* HW state is read out, now we need to sanitize this mess. */
13438 for_each_intel_encoder(dev, encoder) {
13439 intel_sanitize_encoder(encoder);
13440 }
13441
13442 for_each_pipe(dev_priv, pipe) {
13443 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13444 intel_sanitize_crtc(crtc);
13445 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13446 }
13447
13448 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13449 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13450
13451 if (!pll->on || pll->active)
13452 continue;
13453
13454 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13455
13456 pll->disable(dev_priv, pll);
13457 pll->on = false;
13458 }
13459
13460 if (HAS_PCH_SPLIT(dev))
13461 ilk_wm_get_hw_state(dev);
13462
13463 if (force_restore) {
13464 i915_redisable_vga(dev);
13465
13466 /*
13467 * We need to use raw interfaces for restoring state to avoid
13468 * checking (bogus) intermediate states.
13469 */
13470 for_each_pipe(dev_priv, pipe) {
13471 struct drm_crtc *crtc =
13472 dev_priv->pipe_to_crtc_mapping[pipe];
13473
13474 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13475 crtc->primary->fb);
13476 }
13477 } else {
13478 intel_modeset_update_staged_output_state(dev);
13479 }
13480
13481 intel_modeset_check_state(dev);
13482 }
13483
13484 void intel_modeset_gem_init(struct drm_device *dev)
13485 {
13486 struct drm_crtc *c;
13487 struct drm_i915_gem_object *obj;
13488
13489 mutex_lock(&dev->struct_mutex);
13490 intel_init_gt_powersave(dev);
13491 mutex_unlock(&dev->struct_mutex);
13492
13493 intel_modeset_init_hw(dev);
13494
13495 intel_setup_overlay(dev);
13496
13497 /*
13498 * Make sure any fbs we allocated at startup are properly
13499 * pinned & fenced. When we do the allocation it's too early
13500 * for this.
13501 */
13502 mutex_lock(&dev->struct_mutex);
13503 for_each_crtc(dev, c) {
13504 obj = intel_fb_obj(c->primary->fb);
13505 if (obj == NULL)
13506 continue;
13507
13508 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13509 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13510 to_intel_crtc(c)->pipe);
13511 drm_framebuffer_unreference(c->primary->fb);
13512 c->primary->fb = NULL;
13513 }
13514 }
13515 mutex_unlock(&dev->struct_mutex);
13516 }
13517
13518 void intel_connector_unregister(struct intel_connector *intel_connector)
13519 {
13520 struct drm_connector *connector = &intel_connector->base;
13521
13522 intel_panel_destroy_backlight(connector);
13523 drm_connector_unregister(connector);
13524 }
13525
13526 void intel_modeset_cleanup(struct drm_device *dev)
13527 {
13528 struct drm_i915_private *dev_priv = dev->dev_private;
13529 struct drm_connector *connector;
13530
13531 /*
13532 * Interrupts and polling as the first thing to avoid creating havoc.
13533 * Too much stuff here (turning of rps, connectors, ...) would
13534 * experience fancy races otherwise.
13535 */
13536 drm_irq_uninstall(dev);
13537 intel_hpd_cancel_work(dev_priv);
13538 dev_priv->pm._irqs_disabled = true;
13539
13540 /*
13541 * Due to the hpd irq storm handling the hotplug work can re-arm the
13542 * poll handlers. Hence disable polling after hpd handling is shut down.
13543 */
13544 drm_kms_helper_poll_fini(dev);
13545
13546 mutex_lock(&dev->struct_mutex);
13547
13548 intel_unregister_dsm_handler();
13549
13550 intel_disable_fbc(dev);
13551
13552 intel_disable_gt_powersave(dev);
13553
13554 ironlake_teardown_rc6(dev);
13555
13556 mutex_unlock(&dev->struct_mutex);
13557
13558 /* flush any delayed tasks or pending work */
13559 flush_scheduled_work();
13560
13561 /* destroy the backlight and sysfs files before encoders/connectors */
13562 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13563 struct intel_connector *intel_connector;
13564
13565 intel_connector = to_intel_connector(connector);
13566 intel_connector->unregister(intel_connector);
13567 }
13568
13569 drm_mode_config_cleanup(dev);
13570
13571 intel_cleanup_overlay(dev);
13572
13573 mutex_lock(&dev->struct_mutex);
13574 intel_cleanup_gt_powersave(dev);
13575 mutex_unlock(&dev->struct_mutex);
13576 }
13577
13578 /*
13579 * Return which encoder is currently attached for connector.
13580 */
13581 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13582 {
13583 return &intel_attached_encoder(connector)->base;
13584 }
13585
13586 void intel_connector_attach_encoder(struct intel_connector *connector,
13587 struct intel_encoder *encoder)
13588 {
13589 connector->encoder = encoder;
13590 drm_mode_connector_attach_encoder(&connector->base,
13591 &encoder->base);
13592 }
13593
13594 /*
13595 * set vga decode state - true == enable VGA decode
13596 */
13597 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13598 {
13599 struct drm_i915_private *dev_priv = dev->dev_private;
13600 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13601 u16 gmch_ctrl;
13602
13603 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13604 DRM_ERROR("failed to read control word\n");
13605 return -EIO;
13606 }
13607
13608 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13609 return 0;
13610
13611 if (state)
13612 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13613 else
13614 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13615
13616 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13617 DRM_ERROR("failed to write control word\n");
13618 return -EIO;
13619 }
13620
13621 return 0;
13622 }
13623
13624 struct intel_display_error_state {
13625
13626 u32 power_well_driver;
13627
13628 int num_transcoders;
13629
13630 struct intel_cursor_error_state {
13631 u32 control;
13632 u32 position;
13633 u32 base;
13634 u32 size;
13635 } cursor[I915_MAX_PIPES];
13636
13637 struct intel_pipe_error_state {
13638 bool power_domain_on;
13639 u32 source;
13640 u32 stat;
13641 } pipe[I915_MAX_PIPES];
13642
13643 struct intel_plane_error_state {
13644 u32 control;
13645 u32 stride;
13646 u32 size;
13647 u32 pos;
13648 u32 addr;
13649 u32 surface;
13650 u32 tile_offset;
13651 } plane[I915_MAX_PIPES];
13652
13653 struct intel_transcoder_error_state {
13654 bool power_domain_on;
13655 enum transcoder cpu_transcoder;
13656
13657 u32 conf;
13658
13659 u32 htotal;
13660 u32 hblank;
13661 u32 hsync;
13662 u32 vtotal;
13663 u32 vblank;
13664 u32 vsync;
13665 } transcoder[4];
13666 };
13667
13668 struct intel_display_error_state *
13669 intel_display_capture_error_state(struct drm_device *dev)
13670 {
13671 struct drm_i915_private *dev_priv = dev->dev_private;
13672 struct intel_display_error_state *error;
13673 int transcoders[] = {
13674 TRANSCODER_A,
13675 TRANSCODER_B,
13676 TRANSCODER_C,
13677 TRANSCODER_EDP,
13678 };
13679 int i;
13680
13681 if (INTEL_INFO(dev)->num_pipes == 0)
13682 return NULL;
13683
13684 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13685 if (error == NULL)
13686 return NULL;
13687
13688 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13689 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13690
13691 for_each_pipe(dev_priv, i) {
13692 error->pipe[i].power_domain_on =
13693 intel_display_power_enabled_unlocked(dev_priv,
13694 POWER_DOMAIN_PIPE(i));
13695 if (!error->pipe[i].power_domain_on)
13696 continue;
13697
13698 error->cursor[i].control = I915_READ(CURCNTR(i));
13699 error->cursor[i].position = I915_READ(CURPOS(i));
13700 error->cursor[i].base = I915_READ(CURBASE(i));
13701
13702 error->plane[i].control = I915_READ(DSPCNTR(i));
13703 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13704 if (INTEL_INFO(dev)->gen <= 3) {
13705 error->plane[i].size = I915_READ(DSPSIZE(i));
13706 error->plane[i].pos = I915_READ(DSPPOS(i));
13707 }
13708 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13709 error->plane[i].addr = I915_READ(DSPADDR(i));
13710 if (INTEL_INFO(dev)->gen >= 4) {
13711 error->plane[i].surface = I915_READ(DSPSURF(i));
13712 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13713 }
13714
13715 error->pipe[i].source = I915_READ(PIPESRC(i));
13716
13717 if (HAS_GMCH_DISPLAY(dev))
13718 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13719 }
13720
13721 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13722 if (HAS_DDI(dev_priv->dev))
13723 error->num_transcoders++; /* Account for eDP. */
13724
13725 for (i = 0; i < error->num_transcoders; i++) {
13726 enum transcoder cpu_transcoder = transcoders[i];
13727
13728 error->transcoder[i].power_domain_on =
13729 intel_display_power_enabled_unlocked(dev_priv,
13730 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13731 if (!error->transcoder[i].power_domain_on)
13732 continue;
13733
13734 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13735
13736 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13737 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13738 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13739 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13740 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13741 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13742 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13743 }
13744
13745 return error;
13746 }
13747
13748 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13749
13750 void
13751 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13752 struct drm_device *dev,
13753 struct intel_display_error_state *error)
13754 {
13755 struct drm_i915_private *dev_priv = dev->dev_private;
13756 int i;
13757
13758 if (!error)
13759 return;
13760
13761 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13762 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13763 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13764 error->power_well_driver);
13765 for_each_pipe(dev_priv, i) {
13766 err_printf(m, "Pipe [%d]:\n", i);
13767 err_printf(m, " Power: %s\n",
13768 error->pipe[i].power_domain_on ? "on" : "off");
13769 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13770 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13771
13772 err_printf(m, "Plane [%d]:\n", i);
13773 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13774 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13775 if (INTEL_INFO(dev)->gen <= 3) {
13776 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13777 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13778 }
13779 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13780 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13781 if (INTEL_INFO(dev)->gen >= 4) {
13782 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13783 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13784 }
13785
13786 err_printf(m, "Cursor [%d]:\n", i);
13787 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13788 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13789 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13790 }
13791
13792 for (i = 0; i < error->num_transcoders; i++) {
13793 err_printf(m, "CPU transcoder: %c\n",
13794 transcoder_name(error->transcoder[i].cpu_transcoder));
13795 err_printf(m, " Power: %s\n",
13796 error->transcoder[i].power_domain_on ? "on" : "off");
13797 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13798 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13799 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13800 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13801 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13802 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13803 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13804 }
13805 }
13806
13807 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13808 {
13809 struct intel_crtc *crtc;
13810
13811 for_each_intel_crtc(dev, crtc) {
13812 struct intel_unpin_work *work;
13813 unsigned long irqflags;
13814
13815 spin_lock_irqsave(&dev->event_lock, irqflags);
13816
13817 work = crtc->unpin_work;
13818
13819 if (work && work->event &&
13820 work->event->base.file_priv == file) {
13821 kfree(work->event);
13822 work->event = NULL;
13823 }
13824
13825 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13826 }
13827 }
This page took 0.674627 seconds and 5 git commands to generate.