drm/i915/skl: Update the cached CDCLK at the end of set_cdclk()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_crtc *crtc,
90 struct drm_atomic_state *state);
91 static int intel_framebuffer_init(struct drm_device *dev,
92 struct intel_framebuffer *ifb,
93 struct drm_mode_fb_cmd2 *mode_cmd,
94 struct drm_i915_gem_object *obj);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n,
99 struct intel_link_m_n *m2_n2);
100 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
101 static void haswell_set_pipeconf(struct drm_crtc *crtc);
102 static void intel_set_pipe_csc(struct drm_crtc *crtc);
103 static void vlv_prepare_pll(struct intel_crtc *crtc,
104 const struct intel_crtc_state *pipe_config);
105 static void chv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
108 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
109 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
110 struct intel_crtc_state *crtc_state);
111 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
112 int num_connectors);
113 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
114 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
115
116 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
117 {
118 if (!connector->mst_port)
119 return connector->encoder;
120 else
121 return &connector->mst_port->mst_encoders[pipe]->base;
122 }
123
124 typedef struct {
125 int min, max;
126 } intel_range_t;
127
128 typedef struct {
129 int dot_limit;
130 int p2_slow, p2_fast;
131 } intel_p2_t;
132
133 typedef struct intel_limit intel_limit_t;
134 struct intel_limit {
135 intel_range_t dot, vco, n, m, m1, m2, p, p1;
136 intel_p2_t p2;
137 };
138
139 int
140 intel_pch_rawclk(struct drm_device *dev)
141 {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143
144 WARN_ON(!HAS_PCH_SPLIT(dev));
145
146 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
147 }
148
149 static inline u32 /* units of 100MHz */
150 intel_fdi_link_freq(struct drm_device *dev)
151 {
152 if (IS_GEN5(dev)) {
153 struct drm_i915_private *dev_priv = dev->dev_private;
154 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
155 } else
156 return 27;
157 }
158
159 static const intel_limit_t intel_limits_i8xx_dac = {
160 .dot = { .min = 25000, .max = 350000 },
161 .vco = { .min = 908000, .max = 1512000 },
162 .n = { .min = 2, .max = 16 },
163 .m = { .min = 96, .max = 140 },
164 .m1 = { .min = 18, .max = 26 },
165 .m2 = { .min = 6, .max = 16 },
166 .p = { .min = 4, .max = 128 },
167 .p1 = { .min = 2, .max = 33 },
168 .p2 = { .dot_limit = 165000,
169 .p2_slow = 4, .p2_fast = 2 },
170 };
171
172 static const intel_limit_t intel_limits_i8xx_dvo = {
173 .dot = { .min = 25000, .max = 350000 },
174 .vco = { .min = 908000, .max = 1512000 },
175 .n = { .min = 2, .max = 16 },
176 .m = { .min = 96, .max = 140 },
177 .m1 = { .min = 18, .max = 26 },
178 .m2 = { .min = 6, .max = 16 },
179 .p = { .min = 4, .max = 128 },
180 .p1 = { .min = 2, .max = 33 },
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 4, .p2_fast = 4 },
183 };
184
185 static const intel_limit_t intel_limits_i8xx_lvds = {
186 .dot = { .min = 25000, .max = 350000 },
187 .vco = { .min = 908000, .max = 1512000 },
188 .n = { .min = 2, .max = 16 },
189 .m = { .min = 96, .max = 140 },
190 .m1 = { .min = 18, .max = 26 },
191 .m2 = { .min = 6, .max = 16 },
192 .p = { .min = 4, .max = 128 },
193 .p1 = { .min = 1, .max = 6 },
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 14, .p2_fast = 7 },
196 };
197
198 static const intel_limit_t intel_limits_i9xx_sdvo = {
199 .dot = { .min = 20000, .max = 400000 },
200 .vco = { .min = 1400000, .max = 2800000 },
201 .n = { .min = 1, .max = 6 },
202 .m = { .min = 70, .max = 120 },
203 .m1 = { .min = 8, .max = 18 },
204 .m2 = { .min = 3, .max = 7 },
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
207 .p2 = { .dot_limit = 200000,
208 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const intel_limit_t intel_limits_i9xx_lvds = {
212 .dot = { .min = 20000, .max = 400000 },
213 .vco = { .min = 1400000, .max = 2800000 },
214 .n = { .min = 1, .max = 6 },
215 .m = { .min = 70, .max = 120 },
216 .m1 = { .min = 8, .max = 18 },
217 .m2 = { .min = 3, .max = 7 },
218 .p = { .min = 7, .max = 98 },
219 .p1 = { .min = 1, .max = 8 },
220 .p2 = { .dot_limit = 112000,
221 .p2_slow = 14, .p2_fast = 7 },
222 };
223
224
225 static const intel_limit_t intel_limits_g4x_sdvo = {
226 .dot = { .min = 25000, .max = 270000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 4 },
229 .m = { .min = 104, .max = 138 },
230 .m1 = { .min = 17, .max = 23 },
231 .m2 = { .min = 5, .max = 11 },
232 .p = { .min = 10, .max = 30 },
233 .p1 = { .min = 1, .max = 3},
234 .p2 = { .dot_limit = 270000,
235 .p2_slow = 10,
236 .p2_fast = 10
237 },
238 };
239
240 static const intel_limit_t intel_limits_g4x_hdmi = {
241 .dot = { .min = 22000, .max = 400000 },
242 .vco = { .min = 1750000, .max = 3500000},
243 .n = { .min = 1, .max = 4 },
244 .m = { .min = 104, .max = 138 },
245 .m1 = { .min = 16, .max = 23 },
246 .m2 = { .min = 5, .max = 11 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8},
249 .p2 = { .dot_limit = 165000,
250 .p2_slow = 10, .p2_fast = 5 },
251 };
252
253 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
254 .dot = { .min = 20000, .max = 115000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 28, .max = 112 },
261 .p1 = { .min = 2, .max = 8 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 14, .p2_fast = 14
264 },
265 };
266
267 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
268 .dot = { .min = 80000, .max = 224000 },
269 .vco = { .min = 1750000, .max = 3500000 },
270 .n = { .min = 1, .max = 3 },
271 .m = { .min = 104, .max = 138 },
272 .m1 = { .min = 17, .max = 23 },
273 .m2 = { .min = 5, .max = 11 },
274 .p = { .min = 14, .max = 42 },
275 .p1 = { .min = 2, .max = 6 },
276 .p2 = { .dot_limit = 0,
277 .p2_slow = 7, .p2_fast = 7
278 },
279 };
280
281 static const intel_limit_t intel_limits_pineview_sdvo = {
282 .dot = { .min = 20000, .max = 400000},
283 .vco = { .min = 1700000, .max = 3500000 },
284 /* Pineview's Ncounter is a ring counter */
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 /* Pineview only has one combined m divider, which we treat as m2. */
288 .m1 = { .min = 0, .max = 0 },
289 .m2 = { .min = 0, .max = 254 },
290 .p = { .min = 5, .max = 80 },
291 .p1 = { .min = 1, .max = 8 },
292 .p2 = { .dot_limit = 200000,
293 .p2_slow = 10, .p2_fast = 5 },
294 };
295
296 static const intel_limit_t intel_limits_pineview_lvds = {
297 .dot = { .min = 20000, .max = 400000 },
298 .vco = { .min = 1700000, .max = 3500000 },
299 .n = { .min = 3, .max = 6 },
300 .m = { .min = 2, .max = 256 },
301 .m1 = { .min = 0, .max = 0 },
302 .m2 = { .min = 0, .max = 254 },
303 .p = { .min = 7, .max = 112 },
304 .p1 = { .min = 1, .max = 8 },
305 .p2 = { .dot_limit = 112000,
306 .p2_slow = 14, .p2_fast = 14 },
307 };
308
309 /* Ironlake / Sandybridge
310 *
311 * We calculate clock using (register_value + 2) for N/M1/M2, so here
312 * the range value for them is (actual_value - 2).
313 */
314 static const intel_limit_t intel_limits_ironlake_dac = {
315 .dot = { .min = 25000, .max = 350000 },
316 .vco = { .min = 1760000, .max = 3510000 },
317 .n = { .min = 1, .max = 5 },
318 .m = { .min = 79, .max = 127 },
319 .m1 = { .min = 12, .max = 22 },
320 .m2 = { .min = 5, .max = 9 },
321 .p = { .min = 5, .max = 80 },
322 .p1 = { .min = 1, .max = 8 },
323 .p2 = { .dot_limit = 225000,
324 .p2_slow = 10, .p2_fast = 5 },
325 };
326
327 static const intel_limit_t intel_limits_ironlake_single_lvds = {
328 .dot = { .min = 25000, .max = 350000 },
329 .vco = { .min = 1760000, .max = 3510000 },
330 .n = { .min = 1, .max = 3 },
331 .m = { .min = 79, .max = 118 },
332 .m1 = { .min = 12, .max = 22 },
333 .m2 = { .min = 5, .max = 9 },
334 .p = { .min = 28, .max = 112 },
335 .p1 = { .min = 2, .max = 8 },
336 .p2 = { .dot_limit = 225000,
337 .p2_slow = 14, .p2_fast = 14 },
338 };
339
340 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 3 },
344 .m = { .min = 79, .max = 127 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 14, .max = 56 },
348 .p1 = { .min = 2, .max = 8 },
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 7, .p2_fast = 7 },
351 };
352
353 /* LVDS 100mhz refclk limits. */
354 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
355 .dot = { .min = 25000, .max = 350000 },
356 .vco = { .min = 1760000, .max = 3510000 },
357 .n = { .min = 1, .max = 2 },
358 .m = { .min = 79, .max = 126 },
359 .m1 = { .min = 12, .max = 22 },
360 .m2 = { .min = 5, .max = 9 },
361 .p = { .min = 28, .max = 112 },
362 .p1 = { .min = 2, .max = 8 },
363 .p2 = { .dot_limit = 225000,
364 .p2_slow = 14, .p2_fast = 14 },
365 };
366
367 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
368 .dot = { .min = 25000, .max = 350000 },
369 .vco = { .min = 1760000, .max = 3510000 },
370 .n = { .min = 1, .max = 3 },
371 .m = { .min = 79, .max = 126 },
372 .m1 = { .min = 12, .max = 22 },
373 .m2 = { .min = 5, .max = 9 },
374 .p = { .min = 14, .max = 42 },
375 .p1 = { .min = 2, .max = 6 },
376 .p2 = { .dot_limit = 225000,
377 .p2_slow = 7, .p2_fast = 7 },
378 };
379
380 static const intel_limit_t intel_limits_vlv = {
381 /*
382 * These are the data rate limits (measured in fast clocks)
383 * since those are the strictest limits we have. The fast
384 * clock and actual rate limits are more relaxed, so checking
385 * them would make no difference.
386 */
387 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
388 .vco = { .min = 4000000, .max = 6000000 },
389 .n = { .min = 1, .max = 7 },
390 .m1 = { .min = 2, .max = 3 },
391 .m2 = { .min = 11, .max = 156 },
392 .p1 = { .min = 2, .max = 3 },
393 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
394 };
395
396 static const intel_limit_t intel_limits_chv = {
397 /*
398 * These are the data rate limits (measured in fast clocks)
399 * since those are the strictest limits we have. The fast
400 * clock and actual rate limits are more relaxed, so checking
401 * them would make no difference.
402 */
403 .dot = { .min = 25000 * 5, .max = 540000 * 5},
404 .vco = { .min = 4800000, .max = 6480000 },
405 .n = { .min = 1, .max = 1 },
406 .m1 = { .min = 2, .max = 2 },
407 .m2 = { .min = 24 << 22, .max = 175 << 22 },
408 .p1 = { .min = 2, .max = 4 },
409 .p2 = { .p2_slow = 1, .p2_fast = 14 },
410 };
411
412 static const intel_limit_t intel_limits_bxt = {
413 /* FIXME: find real dot limits */
414 .dot = { .min = 0, .max = INT_MAX },
415 .vco = { .min = 4800000, .max = 6480000 },
416 .n = { .min = 1, .max = 1 },
417 .m1 = { .min = 2, .max = 2 },
418 /* FIXME: find real m2 limits */
419 .m2 = { .min = 2 << 22, .max = 255 << 22 },
420 .p1 = { .min = 2, .max = 4 },
421 .p2 = { .p2_slow = 1, .p2_fast = 20 },
422 };
423
424 static void vlv_clock(int refclk, intel_clock_t *clock)
425 {
426 clock->m = clock->m1 * clock->m2;
427 clock->p = clock->p1 * clock->p2;
428 if (WARN_ON(clock->n == 0 || clock->p == 0))
429 return;
430 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
431 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
432 }
433
434 /**
435 * Returns whether any output on the specified pipe is of the specified type
436 */
437 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
438 {
439 struct drm_device *dev = crtc->base.dev;
440 struct intel_encoder *encoder;
441
442 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
443 if (encoder->type == type)
444 return true;
445
446 return false;
447 }
448
449 /**
450 * Returns whether any output on the specified pipe will have the specified
451 * type after a staged modeset is complete, i.e., the same as
452 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
453 * encoder->crtc.
454 */
455 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
456 int type)
457 {
458 struct drm_atomic_state *state = crtc_state->base.state;
459 struct drm_connector *connector;
460 struct drm_connector_state *connector_state;
461 struct intel_encoder *encoder;
462 int i, num_connectors = 0;
463
464 for_each_connector_in_state(state, connector, connector_state, i) {
465 if (connector_state->crtc != crtc_state->base.crtc)
466 continue;
467
468 num_connectors++;
469
470 encoder = to_intel_encoder(connector_state->best_encoder);
471 if (encoder->type == type)
472 return true;
473 }
474
475 WARN_ON(num_connectors == 0);
476
477 return false;
478 }
479
480 static const intel_limit_t *
481 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
482 {
483 struct drm_device *dev = crtc_state->base.crtc->dev;
484 const intel_limit_t *limit;
485
486 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
487 if (intel_is_dual_link_lvds(dev)) {
488 if (refclk == 100000)
489 limit = &intel_limits_ironlake_dual_lvds_100m;
490 else
491 limit = &intel_limits_ironlake_dual_lvds;
492 } else {
493 if (refclk == 100000)
494 limit = &intel_limits_ironlake_single_lvds_100m;
495 else
496 limit = &intel_limits_ironlake_single_lvds;
497 }
498 } else
499 limit = &intel_limits_ironlake_dac;
500
501 return limit;
502 }
503
504 static const intel_limit_t *
505 intel_g4x_limit(struct intel_crtc_state *crtc_state)
506 {
507 struct drm_device *dev = crtc_state->base.crtc->dev;
508 const intel_limit_t *limit;
509
510 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
511 if (intel_is_dual_link_lvds(dev))
512 limit = &intel_limits_g4x_dual_channel_lvds;
513 else
514 limit = &intel_limits_g4x_single_channel_lvds;
515 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
516 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
517 limit = &intel_limits_g4x_hdmi;
518 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
519 limit = &intel_limits_g4x_sdvo;
520 } else /* The option is for other outputs */
521 limit = &intel_limits_i9xx_sdvo;
522
523 return limit;
524 }
525
526 static const intel_limit_t *
527 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
528 {
529 struct drm_device *dev = crtc_state->base.crtc->dev;
530 const intel_limit_t *limit;
531
532 if (IS_BROXTON(dev))
533 limit = &intel_limits_bxt;
534 else if (HAS_PCH_SPLIT(dev))
535 limit = intel_ironlake_limit(crtc_state, refclk);
536 else if (IS_G4X(dev)) {
537 limit = intel_g4x_limit(crtc_state);
538 } else if (IS_PINEVIEW(dev)) {
539 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
540 limit = &intel_limits_pineview_lvds;
541 else
542 limit = &intel_limits_pineview_sdvo;
543 } else if (IS_CHERRYVIEW(dev)) {
544 limit = &intel_limits_chv;
545 } else if (IS_VALLEYVIEW(dev)) {
546 limit = &intel_limits_vlv;
547 } else if (!IS_GEN2(dev)) {
548 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
549 limit = &intel_limits_i9xx_lvds;
550 else
551 limit = &intel_limits_i9xx_sdvo;
552 } else {
553 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
554 limit = &intel_limits_i8xx_lvds;
555 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
556 limit = &intel_limits_i8xx_dvo;
557 else
558 limit = &intel_limits_i8xx_dac;
559 }
560 return limit;
561 }
562
563 /* m1 is reserved as 0 in Pineview, n is a ring counter */
564 static void pineview_clock(int refclk, intel_clock_t *clock)
565 {
566 clock->m = clock->m2 + 2;
567 clock->p = clock->p1 * clock->p2;
568 if (WARN_ON(clock->n == 0 || clock->p == 0))
569 return;
570 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
571 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
572 }
573
574 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
575 {
576 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
577 }
578
579 static void i9xx_clock(int refclk, intel_clock_t *clock)
580 {
581 clock->m = i9xx_dpll_compute_m(clock);
582 clock->p = clock->p1 * clock->p2;
583 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
584 return;
585 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
586 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
587 }
588
589 static void chv_clock(int refclk, intel_clock_t *clock)
590 {
591 clock->m = clock->m1 * clock->m2;
592 clock->p = clock->p1 * clock->p2;
593 if (WARN_ON(clock->n == 0 || clock->p == 0))
594 return;
595 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
596 clock->n << 22);
597 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
598 }
599
600 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
601 /**
602 * Returns whether the given set of divisors are valid for a given refclk with
603 * the given connectors.
604 */
605
606 static bool intel_PLL_is_valid(struct drm_device *dev,
607 const intel_limit_t *limit,
608 const intel_clock_t *clock)
609 {
610 if (clock->n < limit->n.min || limit->n.max < clock->n)
611 INTELPllInvalid("n out of range\n");
612 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
613 INTELPllInvalid("p1 out of range\n");
614 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
615 INTELPllInvalid("m2 out of range\n");
616 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
617 INTELPllInvalid("m1 out of range\n");
618
619 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
620 if (clock->m1 <= clock->m2)
621 INTELPllInvalid("m1 <= m2\n");
622
623 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
624 if (clock->p < limit->p.min || limit->p.max < clock->p)
625 INTELPllInvalid("p out of range\n");
626 if (clock->m < limit->m.min || limit->m.max < clock->m)
627 INTELPllInvalid("m out of range\n");
628 }
629
630 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
631 INTELPllInvalid("vco out of range\n");
632 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
633 * connector, etc., rather than just a single range.
634 */
635 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
636 INTELPllInvalid("dot out of range\n");
637
638 return true;
639 }
640
641 static bool
642 i9xx_find_best_dpll(const intel_limit_t *limit,
643 struct intel_crtc_state *crtc_state,
644 int target, int refclk, intel_clock_t *match_clock,
645 intel_clock_t *best_clock)
646 {
647 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
648 struct drm_device *dev = crtc->base.dev;
649 intel_clock_t clock;
650 int err = target;
651
652 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
653 /*
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
657 */
658 if (intel_is_dual_link_lvds(dev))
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
669 memset(best_clock, 0, sizeof(*best_clock));
670
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
675 if (clock.m2 >= clock.m1)
676 break;
677 for (clock.n = limit->n.min;
678 clock.n <= limit->n.max; clock.n++) {
679 for (clock.p1 = limit->p1.min;
680 clock.p1 <= limit->p1.max; clock.p1++) {
681 int this_err;
682
683 i9xx_clock(refclk, &clock);
684 if (!intel_PLL_is_valid(dev, limit,
685 &clock))
686 continue;
687 if (match_clock &&
688 clock.p != match_clock->p)
689 continue;
690
691 this_err = abs(clock.dot - target);
692 if (this_err < err) {
693 *best_clock = clock;
694 err = this_err;
695 }
696 }
697 }
698 }
699 }
700
701 return (err != target);
702 }
703
704 static bool
705 pnv_find_best_dpll(const intel_limit_t *limit,
706 struct intel_crtc_state *crtc_state,
707 int target, int refclk, intel_clock_t *match_clock,
708 intel_clock_t *best_clock)
709 {
710 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
711 struct drm_device *dev = crtc->base.dev;
712 intel_clock_t clock;
713 int err = target;
714
715 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
716 /*
717 * For LVDS just rely on its current settings for dual-channel.
718 * We haven't figured out how to reliably set up different
719 * single/dual channel state, if we even can.
720 */
721 if (intel_is_dual_link_lvds(dev))
722 clock.p2 = limit->p2.p2_fast;
723 else
724 clock.p2 = limit->p2.p2_slow;
725 } else {
726 if (target < limit->p2.dot_limit)
727 clock.p2 = limit->p2.p2_slow;
728 else
729 clock.p2 = limit->p2.p2_fast;
730 }
731
732 memset(best_clock, 0, sizeof(*best_clock));
733
734 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
735 clock.m1++) {
736 for (clock.m2 = limit->m2.min;
737 clock.m2 <= limit->m2.max; clock.m2++) {
738 for (clock.n = limit->n.min;
739 clock.n <= limit->n.max; clock.n++) {
740 for (clock.p1 = limit->p1.min;
741 clock.p1 <= limit->p1.max; clock.p1++) {
742 int this_err;
743
744 pineview_clock(refclk, &clock);
745 if (!intel_PLL_is_valid(dev, limit,
746 &clock))
747 continue;
748 if (match_clock &&
749 clock.p != match_clock->p)
750 continue;
751
752 this_err = abs(clock.dot - target);
753 if (this_err < err) {
754 *best_clock = clock;
755 err = this_err;
756 }
757 }
758 }
759 }
760 }
761
762 return (err != target);
763 }
764
765 static bool
766 g4x_find_best_dpll(const intel_limit_t *limit,
767 struct intel_crtc_state *crtc_state,
768 int target, int refclk, intel_clock_t *match_clock,
769 intel_clock_t *best_clock)
770 {
771 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
772 struct drm_device *dev = crtc->base.dev;
773 intel_clock_t clock;
774 int max_n;
775 bool found;
776 /* approximately equals target * 0.00585 */
777 int err_most = (target >> 8) + (target >> 9);
778 found = false;
779
780 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
781 if (intel_is_dual_link_lvds(dev))
782 clock.p2 = limit->p2.p2_fast;
783 else
784 clock.p2 = limit->p2.p2_slow;
785 } else {
786 if (target < limit->p2.dot_limit)
787 clock.p2 = limit->p2.p2_slow;
788 else
789 clock.p2 = limit->p2.p2_fast;
790 }
791
792 memset(best_clock, 0, sizeof(*best_clock));
793 max_n = limit->n.max;
794 /* based on hardware requirement, prefer smaller n to precision */
795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796 /* based on hardware requirement, prefere larger m1,m2 */
797 for (clock.m1 = limit->m1.max;
798 clock.m1 >= limit->m1.min; clock.m1--) {
799 for (clock.m2 = limit->m2.max;
800 clock.m2 >= limit->m2.min; clock.m2--) {
801 for (clock.p1 = limit->p1.max;
802 clock.p1 >= limit->p1.min; clock.p1--) {
803 int this_err;
804
805 i9xx_clock(refclk, &clock);
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
808 continue;
809
810 this_err = abs(clock.dot - target);
811 if (this_err < err_most) {
812 *best_clock = clock;
813 err_most = this_err;
814 max_n = clock.n;
815 found = true;
816 }
817 }
818 }
819 }
820 }
821 return found;
822 }
823
824 /*
825 * Check if the calculated PLL configuration is more optimal compared to the
826 * best configuration and error found so far. Return the calculated error.
827 */
828 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
829 const intel_clock_t *calculated_clock,
830 const intel_clock_t *best_clock,
831 unsigned int best_error_ppm,
832 unsigned int *error_ppm)
833 {
834 /*
835 * For CHV ignore the error and consider only the P value.
836 * Prefer a bigger P value based on HW requirements.
837 */
838 if (IS_CHERRYVIEW(dev)) {
839 *error_ppm = 0;
840
841 return calculated_clock->p > best_clock->p;
842 }
843
844 if (WARN_ON_ONCE(!target_freq))
845 return false;
846
847 *error_ppm = div_u64(1000000ULL *
848 abs(target_freq - calculated_clock->dot),
849 target_freq);
850 /*
851 * Prefer a better P value over a better (smaller) error if the error
852 * is small. Ensure this preference for future configurations too by
853 * setting the error to 0.
854 */
855 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
856 *error_ppm = 0;
857
858 return true;
859 }
860
861 return *error_ppm + 10 < best_error_ppm;
862 }
863
864 static bool
865 vlv_find_best_dpll(const intel_limit_t *limit,
866 struct intel_crtc_state *crtc_state,
867 int target, int refclk, intel_clock_t *match_clock,
868 intel_clock_t *best_clock)
869 {
870 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
871 struct drm_device *dev = crtc->base.dev;
872 intel_clock_t clock;
873 unsigned int bestppm = 1000000;
874 /* min update 19.2 MHz */
875 int max_n = min(limit->n.max, refclk / 19200);
876 bool found = false;
877
878 target *= 5; /* fast clock */
879
880 memset(best_clock, 0, sizeof(*best_clock));
881
882 /* based on hardware requirement, prefer smaller n to precision */
883 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
884 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
885 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
886 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
887 clock.p = clock.p1 * clock.p2;
888 /* based on hardware requirement, prefer bigger m1,m2 values */
889 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
890 unsigned int ppm;
891
892 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
893 refclk * clock.m1);
894
895 vlv_clock(refclk, &clock);
896
897 if (!intel_PLL_is_valid(dev, limit,
898 &clock))
899 continue;
900
901 if (!vlv_PLL_is_optimal(dev, target,
902 &clock,
903 best_clock,
904 bestppm, &ppm))
905 continue;
906
907 *best_clock = clock;
908 bestppm = ppm;
909 found = true;
910 }
911 }
912 }
913 }
914
915 return found;
916 }
917
918 static bool
919 chv_find_best_dpll(const intel_limit_t *limit,
920 struct intel_crtc_state *crtc_state,
921 int target, int refclk, intel_clock_t *match_clock,
922 intel_clock_t *best_clock)
923 {
924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
925 struct drm_device *dev = crtc->base.dev;
926 unsigned int best_error_ppm;
927 intel_clock_t clock;
928 uint64_t m2;
929 int found = false;
930
931 memset(best_clock, 0, sizeof(*best_clock));
932 best_error_ppm = 1000000;
933
934 /*
935 * Based on hardware doc, the n always set to 1, and m1 always
936 * set to 2. If requires to support 200Mhz refclk, we need to
937 * revisit this because n may not 1 anymore.
938 */
939 clock.n = 1, clock.m1 = 2;
940 target *= 5; /* fast clock */
941
942 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
943 for (clock.p2 = limit->p2.p2_fast;
944 clock.p2 >= limit->p2.p2_slow;
945 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
946 unsigned int error_ppm;
947
948 clock.p = clock.p1 * clock.p2;
949
950 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
951 clock.n) << 22, refclk * clock.m1);
952
953 if (m2 > INT_MAX/clock.m1)
954 continue;
955
956 clock.m2 = m2;
957
958 chv_clock(refclk, &clock);
959
960 if (!intel_PLL_is_valid(dev, limit, &clock))
961 continue;
962
963 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
964 best_error_ppm, &error_ppm))
965 continue;
966
967 *best_clock = clock;
968 best_error_ppm = error_ppm;
969 found = true;
970 }
971 }
972
973 return found;
974 }
975
976 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
977 intel_clock_t *best_clock)
978 {
979 int refclk = i9xx_get_refclk(crtc_state, 0);
980
981 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
982 target_clock, refclk, NULL, best_clock);
983 }
984
985 bool intel_crtc_active(struct drm_crtc *crtc)
986 {
987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
988
989 /* Be paranoid as we can arrive here with only partial
990 * state retrieved from the hardware during setup.
991 *
992 * We can ditch the adjusted_mode.crtc_clock check as soon
993 * as Haswell has gained clock readout/fastboot support.
994 *
995 * We can ditch the crtc->primary->fb check as soon as we can
996 * properly reconstruct framebuffers.
997 *
998 * FIXME: The intel_crtc->active here should be switched to
999 * crtc->state->active once we have proper CRTC states wired up
1000 * for atomic.
1001 */
1002 return intel_crtc->active && crtc->primary->state->fb &&
1003 intel_crtc->config->base.adjusted_mode.crtc_clock;
1004 }
1005
1006 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1007 enum pipe pipe)
1008 {
1009 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011
1012 return intel_crtc->config->cpu_transcoder;
1013 }
1014
1015 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1016 {
1017 struct drm_i915_private *dev_priv = dev->dev_private;
1018 u32 reg = PIPEDSL(pipe);
1019 u32 line1, line2;
1020 u32 line_mask;
1021
1022 if (IS_GEN2(dev))
1023 line_mask = DSL_LINEMASK_GEN2;
1024 else
1025 line_mask = DSL_LINEMASK_GEN3;
1026
1027 line1 = I915_READ(reg) & line_mask;
1028 mdelay(5);
1029 line2 = I915_READ(reg) & line_mask;
1030
1031 return line1 == line2;
1032 }
1033
1034 /*
1035 * intel_wait_for_pipe_off - wait for pipe to turn off
1036 * @crtc: crtc whose pipe to wait for
1037 *
1038 * After disabling a pipe, we can't wait for vblank in the usual way,
1039 * spinning on the vblank interrupt status bit, since we won't actually
1040 * see an interrupt when the pipe is disabled.
1041 *
1042 * On Gen4 and above:
1043 * wait for the pipe register state bit to turn off
1044 *
1045 * Otherwise:
1046 * wait for the display line value to settle (it usually
1047 * ends up stopping at the start of the next frame).
1048 *
1049 */
1050 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1051 {
1052 struct drm_device *dev = crtc->base.dev;
1053 struct drm_i915_private *dev_priv = dev->dev_private;
1054 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1055 enum pipe pipe = crtc->pipe;
1056
1057 if (INTEL_INFO(dev)->gen >= 4) {
1058 int reg = PIPECONF(cpu_transcoder);
1059
1060 /* Wait for the Pipe State to go off */
1061 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1062 100))
1063 WARN(1, "pipe_off wait timed out\n");
1064 } else {
1065 /* Wait for the display line to settle */
1066 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1067 WARN(1, "pipe_off wait timed out\n");
1068 }
1069 }
1070
1071 /*
1072 * ibx_digital_port_connected - is the specified port connected?
1073 * @dev_priv: i915 private structure
1074 * @port: the port to test
1075 *
1076 * Returns true if @port is connected, false otherwise.
1077 */
1078 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1079 struct intel_digital_port *port)
1080 {
1081 u32 bit;
1082
1083 if (HAS_PCH_IBX(dev_priv->dev)) {
1084 switch (port->port) {
1085 case PORT_B:
1086 bit = SDE_PORTB_HOTPLUG;
1087 break;
1088 case PORT_C:
1089 bit = SDE_PORTC_HOTPLUG;
1090 break;
1091 case PORT_D:
1092 bit = SDE_PORTD_HOTPLUG;
1093 break;
1094 default:
1095 return true;
1096 }
1097 } else {
1098 switch (port->port) {
1099 case PORT_B:
1100 bit = SDE_PORTB_HOTPLUG_CPT;
1101 break;
1102 case PORT_C:
1103 bit = SDE_PORTC_HOTPLUG_CPT;
1104 break;
1105 case PORT_D:
1106 bit = SDE_PORTD_HOTPLUG_CPT;
1107 break;
1108 default:
1109 return true;
1110 }
1111 }
1112
1113 return I915_READ(SDEISR) & bit;
1114 }
1115
1116 static const char *state_string(bool enabled)
1117 {
1118 return enabled ? "on" : "off";
1119 }
1120
1121 /* Only for pre-ILK configs */
1122 void assert_pll(struct drm_i915_private *dev_priv,
1123 enum pipe pipe, bool state)
1124 {
1125 int reg;
1126 u32 val;
1127 bool cur_state;
1128
1129 reg = DPLL(pipe);
1130 val = I915_READ(reg);
1131 cur_state = !!(val & DPLL_VCO_ENABLE);
1132 I915_STATE_WARN(cur_state != state,
1133 "PLL state assertion failure (expected %s, current %s)\n",
1134 state_string(state), state_string(cur_state));
1135 }
1136
1137 /* XXX: the dsi pll is shared between MIPI DSI ports */
1138 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1139 {
1140 u32 val;
1141 bool cur_state;
1142
1143 mutex_lock(&dev_priv->sb_lock);
1144 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1145 mutex_unlock(&dev_priv->sb_lock);
1146
1147 cur_state = val & DSI_PLL_VCO_EN;
1148 I915_STATE_WARN(cur_state != state,
1149 "DSI PLL state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151 }
1152 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1153 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1154
1155 struct intel_shared_dpll *
1156 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1157 {
1158 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1159
1160 if (crtc->config->shared_dpll < 0)
1161 return NULL;
1162
1163 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1164 }
1165
1166 /* For ILK+ */
1167 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1168 struct intel_shared_dpll *pll,
1169 bool state)
1170 {
1171 bool cur_state;
1172 struct intel_dpll_hw_state hw_state;
1173
1174 if (WARN (!pll,
1175 "asserting DPLL %s with no DPLL\n", state_string(state)))
1176 return;
1177
1178 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1179 I915_STATE_WARN(cur_state != state,
1180 "%s assertion failure (expected %s, current %s)\n",
1181 pll->name, state_string(state), state_string(cur_state));
1182 }
1183
1184 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1185 enum pipe pipe, bool state)
1186 {
1187 int reg;
1188 u32 val;
1189 bool cur_state;
1190 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1191 pipe);
1192
1193 if (HAS_DDI(dev_priv->dev)) {
1194 /* DDI does not have a specific FDI_TX register */
1195 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1196 val = I915_READ(reg);
1197 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1198 } else {
1199 reg = FDI_TX_CTL(pipe);
1200 val = I915_READ(reg);
1201 cur_state = !!(val & FDI_TX_ENABLE);
1202 }
1203 I915_STATE_WARN(cur_state != state,
1204 "FDI TX state assertion failure (expected %s, current %s)\n",
1205 state_string(state), state_string(cur_state));
1206 }
1207 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1208 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1209
1210 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1211 enum pipe pipe, bool state)
1212 {
1213 int reg;
1214 u32 val;
1215 bool cur_state;
1216
1217 reg = FDI_RX_CTL(pipe);
1218 val = I915_READ(reg);
1219 cur_state = !!(val & FDI_RX_ENABLE);
1220 I915_STATE_WARN(cur_state != state,
1221 "FDI RX state assertion failure (expected %s, current %s)\n",
1222 state_string(state), state_string(cur_state));
1223 }
1224 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1225 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1226
1227 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1228 enum pipe pipe)
1229 {
1230 int reg;
1231 u32 val;
1232
1233 /* ILK FDI PLL is always enabled */
1234 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1235 return;
1236
1237 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1238 if (HAS_DDI(dev_priv->dev))
1239 return;
1240
1241 reg = FDI_TX_CTL(pipe);
1242 val = I915_READ(reg);
1243 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1244 }
1245
1246 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1247 enum pipe pipe, bool state)
1248 {
1249 int reg;
1250 u32 val;
1251 bool cur_state;
1252
1253 reg = FDI_RX_CTL(pipe);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1256 I915_STATE_WARN(cur_state != state,
1257 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1258 state_string(state), state_string(cur_state));
1259 }
1260
1261 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1262 enum pipe pipe)
1263 {
1264 struct drm_device *dev = dev_priv->dev;
1265 int pp_reg;
1266 u32 val;
1267 enum pipe panel_pipe = PIPE_A;
1268 bool locked = true;
1269
1270 if (WARN_ON(HAS_DDI(dev)))
1271 return;
1272
1273 if (HAS_PCH_SPLIT(dev)) {
1274 u32 port_sel;
1275
1276 pp_reg = PCH_PP_CONTROL;
1277 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1278
1279 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1280 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1281 panel_pipe = PIPE_B;
1282 /* XXX: else fix for eDP */
1283 } else if (IS_VALLEYVIEW(dev)) {
1284 /* presumably write lock depends on pipe, not port select */
1285 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1286 panel_pipe = pipe;
1287 } else {
1288 pp_reg = PP_CONTROL;
1289 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1290 panel_pipe = PIPE_B;
1291 }
1292
1293 val = I915_READ(pp_reg);
1294 if (!(val & PANEL_POWER_ON) ||
1295 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1296 locked = false;
1297
1298 I915_STATE_WARN(panel_pipe == pipe && locked,
1299 "panel assertion failure, pipe %c regs locked\n",
1300 pipe_name(pipe));
1301 }
1302
1303 static void assert_cursor(struct drm_i915_private *dev_priv,
1304 enum pipe pipe, bool state)
1305 {
1306 struct drm_device *dev = dev_priv->dev;
1307 bool cur_state;
1308
1309 if (IS_845G(dev) || IS_I865G(dev))
1310 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1311 else
1312 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1313
1314 I915_STATE_WARN(cur_state != state,
1315 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1316 pipe_name(pipe), state_string(state), state_string(cur_state));
1317 }
1318 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1319 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1320
1321 void assert_pipe(struct drm_i915_private *dev_priv,
1322 enum pipe pipe, bool state)
1323 {
1324 int reg;
1325 u32 val;
1326 bool cur_state;
1327 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1328 pipe);
1329
1330 /* if we need the pipe quirk it must be always on */
1331 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1332 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1333 state = true;
1334
1335 if (!intel_display_power_is_enabled(dev_priv,
1336 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1337 cur_state = false;
1338 } else {
1339 reg = PIPECONF(cpu_transcoder);
1340 val = I915_READ(reg);
1341 cur_state = !!(val & PIPECONF_ENABLE);
1342 }
1343
1344 I915_STATE_WARN(cur_state != state,
1345 "pipe %c assertion failure (expected %s, current %s)\n",
1346 pipe_name(pipe), state_string(state), state_string(cur_state));
1347 }
1348
1349 static void assert_plane(struct drm_i915_private *dev_priv,
1350 enum plane plane, bool state)
1351 {
1352 int reg;
1353 u32 val;
1354 bool cur_state;
1355
1356 reg = DSPCNTR(plane);
1357 val = I915_READ(reg);
1358 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1359 I915_STATE_WARN(cur_state != state,
1360 "plane %c assertion failure (expected %s, current %s)\n",
1361 plane_name(plane), state_string(state), state_string(cur_state));
1362 }
1363
1364 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1365 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1366
1367 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe)
1369 {
1370 struct drm_device *dev = dev_priv->dev;
1371 int reg, i;
1372 u32 val;
1373 int cur_pipe;
1374
1375 /* Primary planes are fixed to pipes on gen4+ */
1376 if (INTEL_INFO(dev)->gen >= 4) {
1377 reg = DSPCNTR(pipe);
1378 val = I915_READ(reg);
1379 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1380 "plane %c assertion failure, should be disabled but not\n",
1381 plane_name(pipe));
1382 return;
1383 }
1384
1385 /* Need to check both planes against the pipe */
1386 for_each_pipe(dev_priv, i) {
1387 reg = DSPCNTR(i);
1388 val = I915_READ(reg);
1389 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1390 DISPPLANE_SEL_PIPE_SHIFT;
1391 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1392 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1393 plane_name(i), pipe_name(pipe));
1394 }
1395 }
1396
1397 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399 {
1400 struct drm_device *dev = dev_priv->dev;
1401 int reg, sprite;
1402 u32 val;
1403
1404 if (INTEL_INFO(dev)->gen >= 9) {
1405 for_each_sprite(dev_priv, pipe, sprite) {
1406 val = I915_READ(PLANE_CTL(pipe, sprite));
1407 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1408 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1409 sprite, pipe_name(pipe));
1410 }
1411 } else if (IS_VALLEYVIEW(dev)) {
1412 for_each_sprite(dev_priv, pipe, sprite) {
1413 reg = SPCNTR(pipe, sprite);
1414 val = I915_READ(reg);
1415 I915_STATE_WARN(val & SP_ENABLE,
1416 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417 sprite_name(pipe, sprite), pipe_name(pipe));
1418 }
1419 } else if (INTEL_INFO(dev)->gen >= 7) {
1420 reg = SPRCTL(pipe);
1421 val = I915_READ(reg);
1422 I915_STATE_WARN(val & SPRITE_ENABLE,
1423 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1424 plane_name(pipe), pipe_name(pipe));
1425 } else if (INTEL_INFO(dev)->gen >= 5) {
1426 reg = DVSCNTR(pipe);
1427 val = I915_READ(reg);
1428 I915_STATE_WARN(val & DVS_ENABLE,
1429 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430 plane_name(pipe), pipe_name(pipe));
1431 }
1432 }
1433
1434 static void assert_vblank_disabled(struct drm_crtc *crtc)
1435 {
1436 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1437 drm_crtc_vblank_put(crtc);
1438 }
1439
1440 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1441 {
1442 u32 val;
1443 bool enabled;
1444
1445 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1446
1447 val = I915_READ(PCH_DREF_CONTROL);
1448 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1449 DREF_SUPERSPREAD_SOURCE_MASK));
1450 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1451 }
1452
1453 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe)
1455 {
1456 int reg;
1457 u32 val;
1458 bool enabled;
1459
1460 reg = PCH_TRANSCONF(pipe);
1461 val = I915_READ(reg);
1462 enabled = !!(val & TRANS_ENABLE);
1463 I915_STATE_WARN(enabled,
1464 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1465 pipe_name(pipe));
1466 }
1467
1468 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1469 enum pipe pipe, u32 port_sel, u32 val)
1470 {
1471 if ((val & DP_PORT_EN) == 0)
1472 return false;
1473
1474 if (HAS_PCH_CPT(dev_priv->dev)) {
1475 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1476 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1477 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1478 return false;
1479 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1480 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1481 return false;
1482 } else {
1483 if ((val & DP_PIPE_MASK) != (pipe << 30))
1484 return false;
1485 }
1486 return true;
1487 }
1488
1489 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1490 enum pipe pipe, u32 val)
1491 {
1492 if ((val & SDVO_ENABLE) == 0)
1493 return false;
1494
1495 if (HAS_PCH_CPT(dev_priv->dev)) {
1496 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1497 return false;
1498 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1499 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1500 return false;
1501 } else {
1502 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1503 return false;
1504 }
1505 return true;
1506 }
1507
1508 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1509 enum pipe pipe, u32 val)
1510 {
1511 if ((val & LVDS_PORT_EN) == 0)
1512 return false;
1513
1514 if (HAS_PCH_CPT(dev_priv->dev)) {
1515 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1516 return false;
1517 } else {
1518 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1519 return false;
1520 }
1521 return true;
1522 }
1523
1524 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1525 enum pipe pipe, u32 val)
1526 {
1527 if ((val & ADPA_DAC_ENABLE) == 0)
1528 return false;
1529 if (HAS_PCH_CPT(dev_priv->dev)) {
1530 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1531 return false;
1532 } else {
1533 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1534 return false;
1535 }
1536 return true;
1537 }
1538
1539 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1540 enum pipe pipe, int reg, u32 port_sel)
1541 {
1542 u32 val = I915_READ(reg);
1543 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1544 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1545 reg, pipe_name(pipe));
1546
1547 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1548 && (val & DP_PIPEB_SELECT),
1549 "IBX PCH dp port still using transcoder B\n");
1550 }
1551
1552 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1553 enum pipe pipe, int reg)
1554 {
1555 u32 val = I915_READ(reg);
1556 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1557 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1558 reg, pipe_name(pipe));
1559
1560 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1561 && (val & SDVO_PIPE_B_SELECT),
1562 "IBX PCH hdmi port still using transcoder B\n");
1563 }
1564
1565 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1566 enum pipe pipe)
1567 {
1568 int reg;
1569 u32 val;
1570
1571 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1572 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1573 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1574
1575 reg = PCH_ADPA;
1576 val = I915_READ(reg);
1577 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1578 "PCH VGA enabled on transcoder %c, should be disabled\n",
1579 pipe_name(pipe));
1580
1581 reg = PCH_LVDS;
1582 val = I915_READ(reg);
1583 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1584 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1585 pipe_name(pipe));
1586
1587 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1588 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1589 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1590 }
1591
1592 static void intel_init_dpio(struct drm_device *dev)
1593 {
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595
1596 if (!IS_VALLEYVIEW(dev))
1597 return;
1598
1599 /*
1600 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1601 * CHV x1 PHY (DP/HDMI D)
1602 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1603 */
1604 if (IS_CHERRYVIEW(dev)) {
1605 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1606 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1607 } else {
1608 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1609 }
1610 }
1611
1612 static void vlv_enable_pll(struct intel_crtc *crtc,
1613 const struct intel_crtc_state *pipe_config)
1614 {
1615 struct drm_device *dev = crtc->base.dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617 int reg = DPLL(crtc->pipe);
1618 u32 dpll = pipe_config->dpll_hw_state.dpll;
1619
1620 assert_pipe_disabled(dev_priv, crtc->pipe);
1621
1622 /* No really, not for ILK+ */
1623 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1624
1625 /* PLL is protected by panel, make sure we can write it */
1626 if (IS_MOBILE(dev_priv->dev))
1627 assert_panel_unlocked(dev_priv, crtc->pipe);
1628
1629 I915_WRITE(reg, dpll);
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1634 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1635
1636 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1637 POSTING_READ(DPLL_MD(crtc->pipe));
1638
1639 /* We do this three times for luck */
1640 I915_WRITE(reg, dpll);
1641 POSTING_READ(reg);
1642 udelay(150); /* wait for warmup */
1643 I915_WRITE(reg, dpll);
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 }
1650
1651 static void chv_enable_pll(struct intel_crtc *crtc,
1652 const struct intel_crtc_state *pipe_config)
1653 {
1654 struct drm_device *dev = crtc->base.dev;
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 int pipe = crtc->pipe;
1657 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1658 u32 tmp;
1659
1660 assert_pipe_disabled(dev_priv, crtc->pipe);
1661
1662 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1663
1664 mutex_lock(&dev_priv->sb_lock);
1665
1666 /* Enable back the 10bit clock to display controller */
1667 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1668 tmp |= DPIO_DCLKP_EN;
1669 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1670
1671 mutex_unlock(&dev_priv->sb_lock);
1672
1673 /*
1674 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1675 */
1676 udelay(1);
1677
1678 /* Enable PLL */
1679 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1680
1681 /* Check PLL is locked */
1682 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1683 DRM_ERROR("PLL %d failed to lock\n", pipe);
1684
1685 /* not sure when this should be written */
1686 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1687 POSTING_READ(DPLL_MD(pipe));
1688 }
1689
1690 static int intel_num_dvo_pipes(struct drm_device *dev)
1691 {
1692 struct intel_crtc *crtc;
1693 int count = 0;
1694
1695 for_each_intel_crtc(dev, crtc)
1696 count += crtc->active &&
1697 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1698
1699 return count;
1700 }
1701
1702 static void i9xx_enable_pll(struct intel_crtc *crtc)
1703 {
1704 struct drm_device *dev = crtc->base.dev;
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 int reg = DPLL(crtc->pipe);
1707 u32 dpll = crtc->config->dpll_hw_state.dpll;
1708
1709 assert_pipe_disabled(dev_priv, crtc->pipe);
1710
1711 /* No really, not for ILK+ */
1712 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1713
1714 /* PLL is protected by panel, make sure we can write it */
1715 if (IS_MOBILE(dev) && !IS_I830(dev))
1716 assert_panel_unlocked(dev_priv, crtc->pipe);
1717
1718 /* Enable DVO 2x clock on both PLLs if necessary */
1719 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1720 /*
1721 * It appears to be important that we don't enable this
1722 * for the current pipe before otherwise configuring the
1723 * PLL. No idea how this should be handled if multiple
1724 * DVO outputs are enabled simultaneosly.
1725 */
1726 dpll |= DPLL_DVO_2X_MODE;
1727 I915_WRITE(DPLL(!crtc->pipe),
1728 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1729 }
1730
1731 /* Wait for the clocks to stabilize. */
1732 POSTING_READ(reg);
1733 udelay(150);
1734
1735 if (INTEL_INFO(dev)->gen >= 4) {
1736 I915_WRITE(DPLL_MD(crtc->pipe),
1737 crtc->config->dpll_hw_state.dpll_md);
1738 } else {
1739 /* The pixel multiplier can only be updated once the
1740 * DPLL is enabled and the clocks are stable.
1741 *
1742 * So write it again.
1743 */
1744 I915_WRITE(reg, dpll);
1745 }
1746
1747 /* We do this three times for luck */
1748 I915_WRITE(reg, dpll);
1749 POSTING_READ(reg);
1750 udelay(150); /* wait for warmup */
1751 I915_WRITE(reg, dpll);
1752 POSTING_READ(reg);
1753 udelay(150); /* wait for warmup */
1754 I915_WRITE(reg, dpll);
1755 POSTING_READ(reg);
1756 udelay(150); /* wait for warmup */
1757 }
1758
1759 /**
1760 * i9xx_disable_pll - disable a PLL
1761 * @dev_priv: i915 private structure
1762 * @pipe: pipe PLL to disable
1763 *
1764 * Disable the PLL for @pipe, making sure the pipe is off first.
1765 *
1766 * Note! This is for pre-ILK only.
1767 */
1768 static void i9xx_disable_pll(struct intel_crtc *crtc)
1769 {
1770 struct drm_device *dev = crtc->base.dev;
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 enum pipe pipe = crtc->pipe;
1773
1774 /* Disable DVO 2x clock on both PLLs if necessary */
1775 if (IS_I830(dev) &&
1776 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1777 intel_num_dvo_pipes(dev) == 1) {
1778 I915_WRITE(DPLL(PIPE_B),
1779 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1780 I915_WRITE(DPLL(PIPE_A),
1781 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1782 }
1783
1784 /* Don't disable pipe or pipe PLLs if needed */
1785 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1786 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1787 return;
1788
1789 /* Make sure the pipe isn't still relying on us */
1790 assert_pipe_disabled(dev_priv, pipe);
1791
1792 I915_WRITE(DPLL(pipe), 0);
1793 POSTING_READ(DPLL(pipe));
1794 }
1795
1796 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1797 {
1798 u32 val = 0;
1799
1800 /* Make sure the pipe isn't still relying on us */
1801 assert_pipe_disabled(dev_priv, pipe);
1802
1803 /*
1804 * Leave integrated clock source and reference clock enabled for pipe B.
1805 * The latter is needed for VGA hotplug / manual detection.
1806 */
1807 if (pipe == PIPE_B)
1808 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1809 I915_WRITE(DPLL(pipe), val);
1810 POSTING_READ(DPLL(pipe));
1811
1812 }
1813
1814 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1815 {
1816 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1817 u32 val;
1818
1819 /* Make sure the pipe isn't still relying on us */
1820 assert_pipe_disabled(dev_priv, pipe);
1821
1822 /* Set PLL en = 0 */
1823 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1824 if (pipe != PIPE_A)
1825 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1826 I915_WRITE(DPLL(pipe), val);
1827 POSTING_READ(DPLL(pipe));
1828
1829 mutex_lock(&dev_priv->sb_lock);
1830
1831 /* Disable 10bit clock to display controller */
1832 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1833 val &= ~DPIO_DCLKP_EN;
1834 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1835
1836 /* disable left/right clock distribution */
1837 if (pipe != PIPE_B) {
1838 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1839 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1840 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1841 } else {
1842 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1843 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1844 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1845 }
1846
1847 mutex_unlock(&dev_priv->sb_lock);
1848 }
1849
1850 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1851 struct intel_digital_port *dport,
1852 unsigned int expected_mask)
1853 {
1854 u32 port_mask;
1855 int dpll_reg;
1856
1857 switch (dport->port) {
1858 case PORT_B:
1859 port_mask = DPLL_PORTB_READY_MASK;
1860 dpll_reg = DPLL(0);
1861 break;
1862 case PORT_C:
1863 port_mask = DPLL_PORTC_READY_MASK;
1864 dpll_reg = DPLL(0);
1865 expected_mask <<= 4;
1866 break;
1867 case PORT_D:
1868 port_mask = DPLL_PORTD_READY_MASK;
1869 dpll_reg = DPIO_PHY_STATUS;
1870 break;
1871 default:
1872 BUG();
1873 }
1874
1875 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1876 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1877 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1878 }
1879
1880 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1881 {
1882 struct drm_device *dev = crtc->base.dev;
1883 struct drm_i915_private *dev_priv = dev->dev_private;
1884 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1885
1886 if (WARN_ON(pll == NULL))
1887 return;
1888
1889 WARN_ON(!pll->config.crtc_mask);
1890 if (pll->active == 0) {
1891 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1892 WARN_ON(pll->on);
1893 assert_shared_dpll_disabled(dev_priv, pll);
1894
1895 pll->mode_set(dev_priv, pll);
1896 }
1897 }
1898
1899 /**
1900 * intel_enable_shared_dpll - enable PCH PLL
1901 * @dev_priv: i915 private structure
1902 * @pipe: pipe PLL to enable
1903 *
1904 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1905 * drives the transcoder clock.
1906 */
1907 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1908 {
1909 struct drm_device *dev = crtc->base.dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1912
1913 if (WARN_ON(pll == NULL))
1914 return;
1915
1916 if (WARN_ON(pll->config.crtc_mask == 0))
1917 return;
1918
1919 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1920 pll->name, pll->active, pll->on,
1921 crtc->base.base.id);
1922
1923 if (pll->active++) {
1924 WARN_ON(!pll->on);
1925 assert_shared_dpll_enabled(dev_priv, pll);
1926 return;
1927 }
1928 WARN_ON(pll->on);
1929
1930 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1931
1932 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1933 pll->enable(dev_priv, pll);
1934 pll->on = true;
1935 }
1936
1937 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1938 {
1939 struct drm_device *dev = crtc->base.dev;
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1942
1943 /* PCH only available on ILK+ */
1944 BUG_ON(INTEL_INFO(dev)->gen < 5);
1945 if (WARN_ON(pll == NULL))
1946 return;
1947
1948 if (WARN_ON(pll->config.crtc_mask == 0))
1949 return;
1950
1951 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1952 pll->name, pll->active, pll->on,
1953 crtc->base.base.id);
1954
1955 if (WARN_ON(pll->active == 0)) {
1956 assert_shared_dpll_disabled(dev_priv, pll);
1957 return;
1958 }
1959
1960 assert_shared_dpll_enabled(dev_priv, pll);
1961 WARN_ON(!pll->on);
1962 if (--pll->active)
1963 return;
1964
1965 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1966 pll->disable(dev_priv, pll);
1967 pll->on = false;
1968
1969 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1970 }
1971
1972 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1973 enum pipe pipe)
1974 {
1975 struct drm_device *dev = dev_priv->dev;
1976 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1978 uint32_t reg, val, pipeconf_val;
1979
1980 /* PCH only available on ILK+ */
1981 BUG_ON(!HAS_PCH_SPLIT(dev));
1982
1983 /* Make sure PCH DPLL is enabled */
1984 assert_shared_dpll_enabled(dev_priv,
1985 intel_crtc_to_shared_dpll(intel_crtc));
1986
1987 /* FDI must be feeding us bits for PCH ports */
1988 assert_fdi_tx_enabled(dev_priv, pipe);
1989 assert_fdi_rx_enabled(dev_priv, pipe);
1990
1991 if (HAS_PCH_CPT(dev)) {
1992 /* Workaround: Set the timing override bit before enabling the
1993 * pch transcoder. */
1994 reg = TRANS_CHICKEN2(pipe);
1995 val = I915_READ(reg);
1996 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1997 I915_WRITE(reg, val);
1998 }
1999
2000 reg = PCH_TRANSCONF(pipe);
2001 val = I915_READ(reg);
2002 pipeconf_val = I915_READ(PIPECONF(pipe));
2003
2004 if (HAS_PCH_IBX(dev_priv->dev)) {
2005 /*
2006 * make the BPC in transcoder be consistent with
2007 * that in pipeconf reg.
2008 */
2009 val &= ~PIPECONF_BPC_MASK;
2010 val |= pipeconf_val & PIPECONF_BPC_MASK;
2011 }
2012
2013 val &= ~TRANS_INTERLACE_MASK;
2014 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2015 if (HAS_PCH_IBX(dev_priv->dev) &&
2016 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2017 val |= TRANS_LEGACY_INTERLACED_ILK;
2018 else
2019 val |= TRANS_INTERLACED;
2020 else
2021 val |= TRANS_PROGRESSIVE;
2022
2023 I915_WRITE(reg, val | TRANS_ENABLE);
2024 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2025 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2026 }
2027
2028 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2029 enum transcoder cpu_transcoder)
2030 {
2031 u32 val, pipeconf_val;
2032
2033 /* PCH only available on ILK+ */
2034 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2035
2036 /* FDI must be feeding us bits for PCH ports */
2037 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2038 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2039
2040 /* Workaround: set timing override bit. */
2041 val = I915_READ(_TRANSA_CHICKEN2);
2042 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2043 I915_WRITE(_TRANSA_CHICKEN2, val);
2044
2045 val = TRANS_ENABLE;
2046 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2047
2048 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2049 PIPECONF_INTERLACED_ILK)
2050 val |= TRANS_INTERLACED;
2051 else
2052 val |= TRANS_PROGRESSIVE;
2053
2054 I915_WRITE(LPT_TRANSCONF, val);
2055 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2056 DRM_ERROR("Failed to enable PCH transcoder\n");
2057 }
2058
2059 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2060 enum pipe pipe)
2061 {
2062 struct drm_device *dev = dev_priv->dev;
2063 uint32_t reg, val;
2064
2065 /* FDI relies on the transcoder */
2066 assert_fdi_tx_disabled(dev_priv, pipe);
2067 assert_fdi_rx_disabled(dev_priv, pipe);
2068
2069 /* Ports must be off as well */
2070 assert_pch_ports_disabled(dev_priv, pipe);
2071
2072 reg = PCH_TRANSCONF(pipe);
2073 val = I915_READ(reg);
2074 val &= ~TRANS_ENABLE;
2075 I915_WRITE(reg, val);
2076 /* wait for PCH transcoder off, transcoder state */
2077 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2078 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2079
2080 if (!HAS_PCH_IBX(dev)) {
2081 /* Workaround: Clear the timing override chicken bit again. */
2082 reg = TRANS_CHICKEN2(pipe);
2083 val = I915_READ(reg);
2084 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2085 I915_WRITE(reg, val);
2086 }
2087 }
2088
2089 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2090 {
2091 u32 val;
2092
2093 val = I915_READ(LPT_TRANSCONF);
2094 val &= ~TRANS_ENABLE;
2095 I915_WRITE(LPT_TRANSCONF, val);
2096 /* wait for PCH transcoder off, transcoder state */
2097 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2098 DRM_ERROR("Failed to disable PCH transcoder\n");
2099
2100 /* Workaround: clear timing override bit. */
2101 val = I915_READ(_TRANSA_CHICKEN2);
2102 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2103 I915_WRITE(_TRANSA_CHICKEN2, val);
2104 }
2105
2106 /**
2107 * intel_enable_pipe - enable a pipe, asserting requirements
2108 * @crtc: crtc responsible for the pipe
2109 *
2110 * Enable @crtc's pipe, making sure that various hardware specific requirements
2111 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2112 */
2113 static void intel_enable_pipe(struct intel_crtc *crtc)
2114 {
2115 struct drm_device *dev = crtc->base.dev;
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117 enum pipe pipe = crtc->pipe;
2118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2119 pipe);
2120 enum pipe pch_transcoder;
2121 int reg;
2122 u32 val;
2123
2124 assert_planes_disabled(dev_priv, pipe);
2125 assert_cursor_disabled(dev_priv, pipe);
2126 assert_sprites_disabled(dev_priv, pipe);
2127
2128 if (HAS_PCH_LPT(dev_priv->dev))
2129 pch_transcoder = TRANSCODER_A;
2130 else
2131 pch_transcoder = pipe;
2132
2133 /*
2134 * A pipe without a PLL won't actually be able to drive bits from
2135 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2136 * need the check.
2137 */
2138 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2139 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2140 assert_dsi_pll_enabled(dev_priv);
2141 else
2142 assert_pll_enabled(dev_priv, pipe);
2143 else {
2144 if (crtc->config->has_pch_encoder) {
2145 /* if driving the PCH, we need FDI enabled */
2146 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2147 assert_fdi_tx_pll_enabled(dev_priv,
2148 (enum pipe) cpu_transcoder);
2149 }
2150 /* FIXME: assert CPU port conditions for SNB+ */
2151 }
2152
2153 reg = PIPECONF(cpu_transcoder);
2154 val = I915_READ(reg);
2155 if (val & PIPECONF_ENABLE) {
2156 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2157 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2158 return;
2159 }
2160
2161 I915_WRITE(reg, val | PIPECONF_ENABLE);
2162 POSTING_READ(reg);
2163 }
2164
2165 /**
2166 * intel_disable_pipe - disable a pipe, asserting requirements
2167 * @crtc: crtc whose pipes is to be disabled
2168 *
2169 * Disable the pipe of @crtc, making sure that various hardware
2170 * specific requirements are met, if applicable, e.g. plane
2171 * disabled, panel fitter off, etc.
2172 *
2173 * Will wait until the pipe has shut down before returning.
2174 */
2175 static void intel_disable_pipe(struct intel_crtc *crtc)
2176 {
2177 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2178 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2179 enum pipe pipe = crtc->pipe;
2180 int reg;
2181 u32 val;
2182
2183 /*
2184 * Make sure planes won't keep trying to pump pixels to us,
2185 * or we might hang the display.
2186 */
2187 assert_planes_disabled(dev_priv, pipe);
2188 assert_cursor_disabled(dev_priv, pipe);
2189 assert_sprites_disabled(dev_priv, pipe);
2190
2191 reg = PIPECONF(cpu_transcoder);
2192 val = I915_READ(reg);
2193 if ((val & PIPECONF_ENABLE) == 0)
2194 return;
2195
2196 /*
2197 * Double wide has implications for planes
2198 * so best keep it disabled when not needed.
2199 */
2200 if (crtc->config->double_wide)
2201 val &= ~PIPECONF_DOUBLE_WIDE;
2202
2203 /* Don't disable pipe or pipe PLLs if needed */
2204 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2205 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2206 val &= ~PIPECONF_ENABLE;
2207
2208 I915_WRITE(reg, val);
2209 if ((val & PIPECONF_ENABLE) == 0)
2210 intel_wait_for_pipe_off(crtc);
2211 }
2212
2213 /**
2214 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2215 * @plane: plane to be enabled
2216 * @crtc: crtc for the plane
2217 *
2218 * Enable @plane on @crtc, making sure that the pipe is running first.
2219 */
2220 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2221 struct drm_crtc *crtc)
2222 {
2223 struct drm_device *dev = plane->dev;
2224 struct drm_i915_private *dev_priv = dev->dev_private;
2225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2226
2227 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2228 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2229 to_intel_plane_state(plane->state)->visible = true;
2230
2231 dev_priv->display.update_primary_plane(crtc, plane->fb,
2232 crtc->x, crtc->y);
2233 }
2234
2235 static bool need_vtd_wa(struct drm_device *dev)
2236 {
2237 #ifdef CONFIG_INTEL_IOMMU
2238 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2239 return true;
2240 #endif
2241 return false;
2242 }
2243
2244 unsigned int
2245 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2246 uint64_t fb_format_modifier)
2247 {
2248 unsigned int tile_height;
2249 uint32_t pixel_bytes;
2250
2251 switch (fb_format_modifier) {
2252 case DRM_FORMAT_MOD_NONE:
2253 tile_height = 1;
2254 break;
2255 case I915_FORMAT_MOD_X_TILED:
2256 tile_height = IS_GEN2(dev) ? 16 : 8;
2257 break;
2258 case I915_FORMAT_MOD_Y_TILED:
2259 tile_height = 32;
2260 break;
2261 case I915_FORMAT_MOD_Yf_TILED:
2262 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2263 switch (pixel_bytes) {
2264 default:
2265 case 1:
2266 tile_height = 64;
2267 break;
2268 case 2:
2269 case 4:
2270 tile_height = 32;
2271 break;
2272 case 8:
2273 tile_height = 16;
2274 break;
2275 case 16:
2276 WARN_ONCE(1,
2277 "128-bit pixels are not supported for display!");
2278 tile_height = 16;
2279 break;
2280 }
2281 break;
2282 default:
2283 MISSING_CASE(fb_format_modifier);
2284 tile_height = 1;
2285 break;
2286 }
2287
2288 return tile_height;
2289 }
2290
2291 unsigned int
2292 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2293 uint32_t pixel_format, uint64_t fb_format_modifier)
2294 {
2295 return ALIGN(height, intel_tile_height(dev, pixel_format,
2296 fb_format_modifier));
2297 }
2298
2299 static int
2300 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2301 const struct drm_plane_state *plane_state)
2302 {
2303 struct intel_rotation_info *info = &view->rotation_info;
2304
2305 *view = i915_ggtt_view_normal;
2306
2307 if (!plane_state)
2308 return 0;
2309
2310 if (!intel_rotation_90_or_270(plane_state->rotation))
2311 return 0;
2312
2313 *view = i915_ggtt_view_rotated;
2314
2315 info->height = fb->height;
2316 info->pixel_format = fb->pixel_format;
2317 info->pitch = fb->pitches[0];
2318 info->fb_modifier = fb->modifier[0];
2319
2320 return 0;
2321 }
2322
2323 int
2324 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2325 struct drm_framebuffer *fb,
2326 const struct drm_plane_state *plane_state,
2327 struct intel_engine_cs *pipelined)
2328 {
2329 struct drm_device *dev = fb->dev;
2330 struct drm_i915_private *dev_priv = dev->dev_private;
2331 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2332 struct i915_ggtt_view view;
2333 u32 alignment;
2334 int ret;
2335
2336 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2337
2338 switch (fb->modifier[0]) {
2339 case DRM_FORMAT_MOD_NONE:
2340 if (INTEL_INFO(dev)->gen >= 9)
2341 alignment = 256 * 1024;
2342 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2343 alignment = 128 * 1024;
2344 else if (INTEL_INFO(dev)->gen >= 4)
2345 alignment = 4 * 1024;
2346 else
2347 alignment = 64 * 1024;
2348 break;
2349 case I915_FORMAT_MOD_X_TILED:
2350 if (INTEL_INFO(dev)->gen >= 9)
2351 alignment = 256 * 1024;
2352 else {
2353 /* pin() will align the object as required by fence */
2354 alignment = 0;
2355 }
2356 break;
2357 case I915_FORMAT_MOD_Y_TILED:
2358 case I915_FORMAT_MOD_Yf_TILED:
2359 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2360 "Y tiling bo slipped through, driver bug!\n"))
2361 return -EINVAL;
2362 alignment = 1 * 1024 * 1024;
2363 break;
2364 default:
2365 MISSING_CASE(fb->modifier[0]);
2366 return -EINVAL;
2367 }
2368
2369 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2370 if (ret)
2371 return ret;
2372
2373 /* Note that the w/a also requires 64 PTE of padding following the
2374 * bo. We currently fill all unused PTE with the shadow page and so
2375 * we should always have valid PTE following the scanout preventing
2376 * the VT-d warning.
2377 */
2378 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2379 alignment = 256 * 1024;
2380
2381 /*
2382 * Global gtt pte registers are special registers which actually forward
2383 * writes to a chunk of system memory. Which means that there is no risk
2384 * that the register values disappear as soon as we call
2385 * intel_runtime_pm_put(), so it is correct to wrap only the
2386 * pin/unpin/fence and not more.
2387 */
2388 intel_runtime_pm_get(dev_priv);
2389
2390 dev_priv->mm.interruptible = false;
2391 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2392 &view);
2393 if (ret)
2394 goto err_interruptible;
2395
2396 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2397 * fence, whereas 965+ only requires a fence if using
2398 * framebuffer compression. For simplicity, we always install
2399 * a fence as the cost is not that onerous.
2400 */
2401 ret = i915_gem_object_get_fence(obj);
2402 if (ret)
2403 goto err_unpin;
2404
2405 i915_gem_object_pin_fence(obj);
2406
2407 dev_priv->mm.interruptible = true;
2408 intel_runtime_pm_put(dev_priv);
2409 return 0;
2410
2411 err_unpin:
2412 i915_gem_object_unpin_from_display_plane(obj, &view);
2413 err_interruptible:
2414 dev_priv->mm.interruptible = true;
2415 intel_runtime_pm_put(dev_priv);
2416 return ret;
2417 }
2418
2419 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2420 const struct drm_plane_state *plane_state)
2421 {
2422 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2423 struct i915_ggtt_view view;
2424 int ret;
2425
2426 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2427
2428 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2429 WARN_ONCE(ret, "Couldn't get view from plane state!");
2430
2431 i915_gem_object_unpin_fence(obj);
2432 i915_gem_object_unpin_from_display_plane(obj, &view);
2433 }
2434
2435 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2436 * is assumed to be a power-of-two. */
2437 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2438 unsigned int tiling_mode,
2439 unsigned int cpp,
2440 unsigned int pitch)
2441 {
2442 if (tiling_mode != I915_TILING_NONE) {
2443 unsigned int tile_rows, tiles;
2444
2445 tile_rows = *y / 8;
2446 *y %= 8;
2447
2448 tiles = *x / (512/cpp);
2449 *x %= 512/cpp;
2450
2451 return tile_rows * pitch * 8 + tiles * 4096;
2452 } else {
2453 unsigned int offset;
2454
2455 offset = *y * pitch + *x * cpp;
2456 *y = 0;
2457 *x = (offset & 4095) / cpp;
2458 return offset & -4096;
2459 }
2460 }
2461
2462 static int i9xx_format_to_fourcc(int format)
2463 {
2464 switch (format) {
2465 case DISPPLANE_8BPP:
2466 return DRM_FORMAT_C8;
2467 case DISPPLANE_BGRX555:
2468 return DRM_FORMAT_XRGB1555;
2469 case DISPPLANE_BGRX565:
2470 return DRM_FORMAT_RGB565;
2471 default:
2472 case DISPPLANE_BGRX888:
2473 return DRM_FORMAT_XRGB8888;
2474 case DISPPLANE_RGBX888:
2475 return DRM_FORMAT_XBGR8888;
2476 case DISPPLANE_BGRX101010:
2477 return DRM_FORMAT_XRGB2101010;
2478 case DISPPLANE_RGBX101010:
2479 return DRM_FORMAT_XBGR2101010;
2480 }
2481 }
2482
2483 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2484 {
2485 switch (format) {
2486 case PLANE_CTL_FORMAT_RGB_565:
2487 return DRM_FORMAT_RGB565;
2488 default:
2489 case PLANE_CTL_FORMAT_XRGB_8888:
2490 if (rgb_order) {
2491 if (alpha)
2492 return DRM_FORMAT_ABGR8888;
2493 else
2494 return DRM_FORMAT_XBGR8888;
2495 } else {
2496 if (alpha)
2497 return DRM_FORMAT_ARGB8888;
2498 else
2499 return DRM_FORMAT_XRGB8888;
2500 }
2501 case PLANE_CTL_FORMAT_XRGB_2101010:
2502 if (rgb_order)
2503 return DRM_FORMAT_XBGR2101010;
2504 else
2505 return DRM_FORMAT_XRGB2101010;
2506 }
2507 }
2508
2509 static bool
2510 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2511 struct intel_initial_plane_config *plane_config)
2512 {
2513 struct drm_device *dev = crtc->base.dev;
2514 struct drm_i915_gem_object *obj = NULL;
2515 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2516 struct drm_framebuffer *fb = &plane_config->fb->base;
2517 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2518 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2519 PAGE_SIZE);
2520
2521 size_aligned -= base_aligned;
2522
2523 if (plane_config->size == 0)
2524 return false;
2525
2526 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2527 base_aligned,
2528 base_aligned,
2529 size_aligned);
2530 if (!obj)
2531 return false;
2532
2533 obj->tiling_mode = plane_config->tiling;
2534 if (obj->tiling_mode == I915_TILING_X)
2535 obj->stride = fb->pitches[0];
2536
2537 mode_cmd.pixel_format = fb->pixel_format;
2538 mode_cmd.width = fb->width;
2539 mode_cmd.height = fb->height;
2540 mode_cmd.pitches[0] = fb->pitches[0];
2541 mode_cmd.modifier[0] = fb->modifier[0];
2542 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2543
2544 mutex_lock(&dev->struct_mutex);
2545 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2546 &mode_cmd, obj)) {
2547 DRM_DEBUG_KMS("intel fb init failed\n");
2548 goto out_unref_obj;
2549 }
2550 mutex_unlock(&dev->struct_mutex);
2551
2552 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2553 return true;
2554
2555 out_unref_obj:
2556 drm_gem_object_unreference(&obj->base);
2557 mutex_unlock(&dev->struct_mutex);
2558 return false;
2559 }
2560
2561 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2562 static void
2563 update_state_fb(struct drm_plane *plane)
2564 {
2565 if (plane->fb == plane->state->fb)
2566 return;
2567
2568 if (plane->state->fb)
2569 drm_framebuffer_unreference(plane->state->fb);
2570 plane->state->fb = plane->fb;
2571 if (plane->state->fb)
2572 drm_framebuffer_reference(plane->state->fb);
2573 }
2574
2575 static void
2576 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2577 struct intel_initial_plane_config *plane_config)
2578 {
2579 struct drm_device *dev = intel_crtc->base.dev;
2580 struct drm_i915_private *dev_priv = dev->dev_private;
2581 struct drm_crtc *c;
2582 struct intel_crtc *i;
2583 struct drm_i915_gem_object *obj;
2584 struct drm_plane *primary = intel_crtc->base.primary;
2585 struct drm_framebuffer *fb;
2586
2587 if (!plane_config->fb)
2588 return;
2589
2590 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2591 fb = &plane_config->fb->base;
2592 goto valid_fb;
2593 }
2594
2595 kfree(plane_config->fb);
2596
2597 /*
2598 * Failed to alloc the obj, check to see if we should share
2599 * an fb with another CRTC instead
2600 */
2601 for_each_crtc(dev, c) {
2602 i = to_intel_crtc(c);
2603
2604 if (c == &intel_crtc->base)
2605 continue;
2606
2607 if (!i->active)
2608 continue;
2609
2610 fb = c->primary->fb;
2611 if (!fb)
2612 continue;
2613
2614 obj = intel_fb_obj(fb);
2615 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2616 drm_framebuffer_reference(fb);
2617 goto valid_fb;
2618 }
2619 }
2620
2621 return;
2622
2623 valid_fb:
2624 obj = intel_fb_obj(fb);
2625 if (obj->tiling_mode != I915_TILING_NONE)
2626 dev_priv->preserve_bios_swizzle = true;
2627
2628 primary->fb = fb;
2629 primary->state->crtc = &intel_crtc->base;
2630 primary->crtc = &intel_crtc->base;
2631 update_state_fb(primary);
2632 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2633 }
2634
2635 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2636 struct drm_framebuffer *fb,
2637 int x, int y)
2638 {
2639 struct drm_device *dev = crtc->dev;
2640 struct drm_i915_private *dev_priv = dev->dev_private;
2641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2642 struct drm_plane *primary = crtc->primary;
2643 bool visible = to_intel_plane_state(primary->state)->visible;
2644 struct drm_i915_gem_object *obj;
2645 int plane = intel_crtc->plane;
2646 unsigned long linear_offset;
2647 u32 dspcntr;
2648 u32 reg = DSPCNTR(plane);
2649 int pixel_size;
2650
2651 if (!visible || !fb) {
2652 I915_WRITE(reg, 0);
2653 if (INTEL_INFO(dev)->gen >= 4)
2654 I915_WRITE(DSPSURF(plane), 0);
2655 else
2656 I915_WRITE(DSPADDR(plane), 0);
2657 POSTING_READ(reg);
2658 return;
2659 }
2660
2661 obj = intel_fb_obj(fb);
2662 if (WARN_ON(obj == NULL))
2663 return;
2664
2665 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2666
2667 dspcntr = DISPPLANE_GAMMA_ENABLE;
2668
2669 dspcntr |= DISPLAY_PLANE_ENABLE;
2670
2671 if (INTEL_INFO(dev)->gen < 4) {
2672 if (intel_crtc->pipe == PIPE_B)
2673 dspcntr |= DISPPLANE_SEL_PIPE_B;
2674
2675 /* pipesrc and dspsize control the size that is scaled from,
2676 * which should always be the user's requested size.
2677 */
2678 I915_WRITE(DSPSIZE(plane),
2679 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2680 (intel_crtc->config->pipe_src_w - 1));
2681 I915_WRITE(DSPPOS(plane), 0);
2682 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2683 I915_WRITE(PRIMSIZE(plane),
2684 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685 (intel_crtc->config->pipe_src_w - 1));
2686 I915_WRITE(PRIMPOS(plane), 0);
2687 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2688 }
2689
2690 switch (fb->pixel_format) {
2691 case DRM_FORMAT_C8:
2692 dspcntr |= DISPPLANE_8BPP;
2693 break;
2694 case DRM_FORMAT_XRGB1555:
2695 dspcntr |= DISPPLANE_BGRX555;
2696 break;
2697 case DRM_FORMAT_RGB565:
2698 dspcntr |= DISPPLANE_BGRX565;
2699 break;
2700 case DRM_FORMAT_XRGB8888:
2701 dspcntr |= DISPPLANE_BGRX888;
2702 break;
2703 case DRM_FORMAT_XBGR8888:
2704 dspcntr |= DISPPLANE_RGBX888;
2705 break;
2706 case DRM_FORMAT_XRGB2101010:
2707 dspcntr |= DISPPLANE_BGRX101010;
2708 break;
2709 case DRM_FORMAT_XBGR2101010:
2710 dspcntr |= DISPPLANE_RGBX101010;
2711 break;
2712 default:
2713 BUG();
2714 }
2715
2716 if (INTEL_INFO(dev)->gen >= 4 &&
2717 obj->tiling_mode != I915_TILING_NONE)
2718 dspcntr |= DISPPLANE_TILED;
2719
2720 if (IS_G4X(dev))
2721 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2722
2723 linear_offset = y * fb->pitches[0] + x * pixel_size;
2724
2725 if (INTEL_INFO(dev)->gen >= 4) {
2726 intel_crtc->dspaddr_offset =
2727 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2728 pixel_size,
2729 fb->pitches[0]);
2730 linear_offset -= intel_crtc->dspaddr_offset;
2731 } else {
2732 intel_crtc->dspaddr_offset = linear_offset;
2733 }
2734
2735 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2736 dspcntr |= DISPPLANE_ROTATE_180;
2737
2738 x += (intel_crtc->config->pipe_src_w - 1);
2739 y += (intel_crtc->config->pipe_src_h - 1);
2740
2741 /* Finding the last pixel of the last line of the display
2742 data and adding to linear_offset*/
2743 linear_offset +=
2744 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2745 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2746 }
2747
2748 I915_WRITE(reg, dspcntr);
2749
2750 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2751 if (INTEL_INFO(dev)->gen >= 4) {
2752 I915_WRITE(DSPSURF(plane),
2753 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2754 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2755 I915_WRITE(DSPLINOFF(plane), linear_offset);
2756 } else
2757 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2758 POSTING_READ(reg);
2759 }
2760
2761 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2762 struct drm_framebuffer *fb,
2763 int x, int y)
2764 {
2765 struct drm_device *dev = crtc->dev;
2766 struct drm_i915_private *dev_priv = dev->dev_private;
2767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768 struct drm_plane *primary = crtc->primary;
2769 bool visible = to_intel_plane_state(primary->state)->visible;
2770 struct drm_i915_gem_object *obj;
2771 int plane = intel_crtc->plane;
2772 unsigned long linear_offset;
2773 u32 dspcntr;
2774 u32 reg = DSPCNTR(plane);
2775 int pixel_size;
2776
2777 if (!visible || !fb) {
2778 I915_WRITE(reg, 0);
2779 I915_WRITE(DSPSURF(plane), 0);
2780 POSTING_READ(reg);
2781 return;
2782 }
2783
2784 obj = intel_fb_obj(fb);
2785 if (WARN_ON(obj == NULL))
2786 return;
2787
2788 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2789
2790 dspcntr = DISPPLANE_GAMMA_ENABLE;
2791
2792 dspcntr |= DISPLAY_PLANE_ENABLE;
2793
2794 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2795 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2796
2797 switch (fb->pixel_format) {
2798 case DRM_FORMAT_C8:
2799 dspcntr |= DISPPLANE_8BPP;
2800 break;
2801 case DRM_FORMAT_RGB565:
2802 dspcntr |= DISPPLANE_BGRX565;
2803 break;
2804 case DRM_FORMAT_XRGB8888:
2805 dspcntr |= DISPPLANE_BGRX888;
2806 break;
2807 case DRM_FORMAT_XBGR8888:
2808 dspcntr |= DISPPLANE_RGBX888;
2809 break;
2810 case DRM_FORMAT_XRGB2101010:
2811 dspcntr |= DISPPLANE_BGRX101010;
2812 break;
2813 case DRM_FORMAT_XBGR2101010:
2814 dspcntr |= DISPPLANE_RGBX101010;
2815 break;
2816 default:
2817 BUG();
2818 }
2819
2820 if (obj->tiling_mode != I915_TILING_NONE)
2821 dspcntr |= DISPPLANE_TILED;
2822
2823 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2824 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2825
2826 linear_offset = y * fb->pitches[0] + x * pixel_size;
2827 intel_crtc->dspaddr_offset =
2828 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2829 pixel_size,
2830 fb->pitches[0]);
2831 linear_offset -= intel_crtc->dspaddr_offset;
2832 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2833 dspcntr |= DISPPLANE_ROTATE_180;
2834
2835 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2836 x += (intel_crtc->config->pipe_src_w - 1);
2837 y += (intel_crtc->config->pipe_src_h - 1);
2838
2839 /* Finding the last pixel of the last line of the display
2840 data and adding to linear_offset*/
2841 linear_offset +=
2842 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2843 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2844 }
2845 }
2846
2847 I915_WRITE(reg, dspcntr);
2848
2849 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2850 I915_WRITE(DSPSURF(plane),
2851 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2852 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2853 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2854 } else {
2855 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2856 I915_WRITE(DSPLINOFF(plane), linear_offset);
2857 }
2858 POSTING_READ(reg);
2859 }
2860
2861 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2862 uint32_t pixel_format)
2863 {
2864 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2865
2866 /*
2867 * The stride is either expressed as a multiple of 64 bytes
2868 * chunks for linear buffers or in number of tiles for tiled
2869 * buffers.
2870 */
2871 switch (fb_modifier) {
2872 case DRM_FORMAT_MOD_NONE:
2873 return 64;
2874 case I915_FORMAT_MOD_X_TILED:
2875 if (INTEL_INFO(dev)->gen == 2)
2876 return 128;
2877 return 512;
2878 case I915_FORMAT_MOD_Y_TILED:
2879 /* No need to check for old gens and Y tiling since this is
2880 * about the display engine and those will be blocked before
2881 * we get here.
2882 */
2883 return 128;
2884 case I915_FORMAT_MOD_Yf_TILED:
2885 if (bits_per_pixel == 8)
2886 return 64;
2887 else
2888 return 128;
2889 default:
2890 MISSING_CASE(fb_modifier);
2891 return 64;
2892 }
2893 }
2894
2895 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2896 struct drm_i915_gem_object *obj)
2897 {
2898 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2899
2900 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2901 view = &i915_ggtt_view_rotated;
2902
2903 return i915_gem_obj_ggtt_offset_view(obj, view);
2904 }
2905
2906 /*
2907 * This function detaches (aka. unbinds) unused scalers in hardware
2908 */
2909 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2910 {
2911 struct drm_device *dev;
2912 struct drm_i915_private *dev_priv;
2913 struct intel_crtc_scaler_state *scaler_state;
2914 int i;
2915
2916 if (!intel_crtc || !intel_crtc->config)
2917 return;
2918
2919 dev = intel_crtc->base.dev;
2920 dev_priv = dev->dev_private;
2921 scaler_state = &intel_crtc->config->scaler_state;
2922
2923 /* loop through and disable scalers that aren't in use */
2924 for (i = 0; i < intel_crtc->num_scalers; i++) {
2925 if (!scaler_state->scalers[i].in_use) {
2926 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2927 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2928 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2929 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2930 intel_crtc->base.base.id, intel_crtc->pipe, i);
2931 }
2932 }
2933 }
2934
2935 u32 skl_plane_ctl_format(uint32_t pixel_format)
2936 {
2937 switch (pixel_format) {
2938 case DRM_FORMAT_C8:
2939 return PLANE_CTL_FORMAT_INDEXED;
2940 case DRM_FORMAT_RGB565:
2941 return PLANE_CTL_FORMAT_RGB_565;
2942 case DRM_FORMAT_XBGR8888:
2943 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2944 case DRM_FORMAT_XRGB8888:
2945 return PLANE_CTL_FORMAT_XRGB_8888;
2946 /*
2947 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2948 * to be already pre-multiplied. We need to add a knob (or a different
2949 * DRM_FORMAT) for user-space to configure that.
2950 */
2951 case DRM_FORMAT_ABGR8888:
2952 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2953 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2954 case DRM_FORMAT_ARGB8888:
2955 return PLANE_CTL_FORMAT_XRGB_8888 |
2956 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2957 case DRM_FORMAT_XRGB2101010:
2958 return PLANE_CTL_FORMAT_XRGB_2101010;
2959 case DRM_FORMAT_XBGR2101010:
2960 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2961 case DRM_FORMAT_YUYV:
2962 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2963 case DRM_FORMAT_YVYU:
2964 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2965 case DRM_FORMAT_UYVY:
2966 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2967 case DRM_FORMAT_VYUY:
2968 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2969 default:
2970 MISSING_CASE(pixel_format);
2971 }
2972
2973 return 0;
2974 }
2975
2976 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2977 {
2978 switch (fb_modifier) {
2979 case DRM_FORMAT_MOD_NONE:
2980 break;
2981 case I915_FORMAT_MOD_X_TILED:
2982 return PLANE_CTL_TILED_X;
2983 case I915_FORMAT_MOD_Y_TILED:
2984 return PLANE_CTL_TILED_Y;
2985 case I915_FORMAT_MOD_Yf_TILED:
2986 return PLANE_CTL_TILED_YF;
2987 default:
2988 MISSING_CASE(fb_modifier);
2989 }
2990
2991 return 0;
2992 }
2993
2994 u32 skl_plane_ctl_rotation(unsigned int rotation)
2995 {
2996 switch (rotation) {
2997 case BIT(DRM_ROTATE_0):
2998 break;
2999 /*
3000 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3001 * while i915 HW rotation is clockwise, thats why this swapping.
3002 */
3003 case BIT(DRM_ROTATE_90):
3004 return PLANE_CTL_ROTATE_270;
3005 case BIT(DRM_ROTATE_180):
3006 return PLANE_CTL_ROTATE_180;
3007 case BIT(DRM_ROTATE_270):
3008 return PLANE_CTL_ROTATE_90;
3009 default:
3010 MISSING_CASE(rotation);
3011 }
3012
3013 return 0;
3014 }
3015
3016 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3017 struct drm_framebuffer *fb,
3018 int x, int y)
3019 {
3020 struct drm_device *dev = crtc->dev;
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3023 struct drm_plane *plane = crtc->primary;
3024 bool visible = to_intel_plane_state(plane->state)->visible;
3025 struct drm_i915_gem_object *obj;
3026 int pipe = intel_crtc->pipe;
3027 u32 plane_ctl, stride_div, stride;
3028 u32 tile_height, plane_offset, plane_size;
3029 unsigned int rotation;
3030 int x_offset, y_offset;
3031 unsigned long surf_addr;
3032 struct intel_crtc_state *crtc_state = intel_crtc->config;
3033 struct intel_plane_state *plane_state;
3034 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3035 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3036 int scaler_id = -1;
3037
3038 plane_state = to_intel_plane_state(plane->state);
3039
3040 if (!visible || !fb) {
3041 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3042 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3043 POSTING_READ(PLANE_CTL(pipe, 0));
3044 return;
3045 }
3046
3047 plane_ctl = PLANE_CTL_ENABLE |
3048 PLANE_CTL_PIPE_GAMMA_ENABLE |
3049 PLANE_CTL_PIPE_CSC_ENABLE;
3050
3051 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3052 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3053 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3054
3055 rotation = plane->state->rotation;
3056 plane_ctl |= skl_plane_ctl_rotation(rotation);
3057
3058 obj = intel_fb_obj(fb);
3059 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3060 fb->pixel_format);
3061 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3062
3063 /*
3064 * FIXME: intel_plane_state->src, dst aren't set when transitional
3065 * update_plane helpers are called from legacy paths.
3066 * Once full atomic crtc is available, below check can be avoided.
3067 */
3068 if (drm_rect_width(&plane_state->src)) {
3069 scaler_id = plane_state->scaler_id;
3070 src_x = plane_state->src.x1 >> 16;
3071 src_y = plane_state->src.y1 >> 16;
3072 src_w = drm_rect_width(&plane_state->src) >> 16;
3073 src_h = drm_rect_height(&plane_state->src) >> 16;
3074 dst_x = plane_state->dst.x1;
3075 dst_y = plane_state->dst.y1;
3076 dst_w = drm_rect_width(&plane_state->dst);
3077 dst_h = drm_rect_height(&plane_state->dst);
3078
3079 WARN_ON(x != src_x || y != src_y);
3080 } else {
3081 src_w = intel_crtc->config->pipe_src_w;
3082 src_h = intel_crtc->config->pipe_src_h;
3083 }
3084
3085 if (intel_rotation_90_or_270(rotation)) {
3086 /* stride = Surface height in tiles */
3087 tile_height = intel_tile_height(dev, fb->pixel_format,
3088 fb->modifier[0]);
3089 stride = DIV_ROUND_UP(fb->height, tile_height);
3090 x_offset = stride * tile_height - y - src_h;
3091 y_offset = x;
3092 plane_size = (src_w - 1) << 16 | (src_h - 1);
3093 } else {
3094 stride = fb->pitches[0] / stride_div;
3095 x_offset = x;
3096 y_offset = y;
3097 plane_size = (src_h - 1) << 16 | (src_w - 1);
3098 }
3099 plane_offset = y_offset << 16 | x_offset;
3100
3101 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3102 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3103 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3104 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3105
3106 if (scaler_id >= 0) {
3107 uint32_t ps_ctrl = 0;
3108
3109 WARN_ON(!dst_w || !dst_h);
3110 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3111 crtc_state->scaler_state.scalers[scaler_id].mode;
3112 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3113 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3114 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3115 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3116 I915_WRITE(PLANE_POS(pipe, 0), 0);
3117 } else {
3118 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3119 }
3120
3121 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3122
3123 POSTING_READ(PLANE_SURF(pipe, 0));
3124 }
3125
3126 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3127 static int
3128 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3129 int x, int y, enum mode_set_atomic state)
3130 {
3131 struct drm_device *dev = crtc->dev;
3132 struct drm_i915_private *dev_priv = dev->dev_private;
3133
3134 if (dev_priv->display.disable_fbc)
3135 dev_priv->display.disable_fbc(dev);
3136
3137 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3138
3139 return 0;
3140 }
3141
3142 static void intel_complete_page_flips(struct drm_device *dev)
3143 {
3144 struct drm_crtc *crtc;
3145
3146 for_each_crtc(dev, crtc) {
3147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3148 enum plane plane = intel_crtc->plane;
3149
3150 intel_prepare_page_flip(dev, plane);
3151 intel_finish_page_flip_plane(dev, plane);
3152 }
3153 }
3154
3155 static void intel_update_primary_planes(struct drm_device *dev)
3156 {
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct drm_crtc *crtc;
3159
3160 for_each_crtc(dev, crtc) {
3161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3162
3163 drm_modeset_lock(&crtc->mutex, NULL);
3164 /*
3165 * FIXME: Once we have proper support for primary planes (and
3166 * disabling them without disabling the entire crtc) allow again
3167 * a NULL crtc->primary->fb.
3168 */
3169 if (intel_crtc->active && crtc->primary->fb)
3170 dev_priv->display.update_primary_plane(crtc,
3171 crtc->primary->fb,
3172 crtc->x,
3173 crtc->y);
3174 drm_modeset_unlock(&crtc->mutex);
3175 }
3176 }
3177
3178 void intel_crtc_reset(struct intel_crtc *crtc)
3179 {
3180 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3181
3182 if (!crtc->active)
3183 return;
3184
3185 intel_crtc_disable_planes(&crtc->base);
3186 dev_priv->display.crtc_disable(&crtc->base);
3187 dev_priv->display.crtc_enable(&crtc->base);
3188 intel_crtc_enable_planes(&crtc->base);
3189 }
3190
3191 void intel_prepare_reset(struct drm_device *dev)
3192 {
3193 struct drm_i915_private *dev_priv = to_i915(dev);
3194 struct intel_crtc *crtc;
3195
3196 /* no reset support for gen2 */
3197 if (IS_GEN2(dev))
3198 return;
3199
3200 /* reset doesn't touch the display */
3201 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3202 return;
3203
3204 drm_modeset_lock_all(dev);
3205
3206 /*
3207 * Disabling the crtcs gracefully seems nicer. Also the
3208 * g33 docs say we should at least disable all the planes.
3209 */
3210 for_each_intel_crtc(dev, crtc) {
3211 if (!crtc->active)
3212 continue;
3213
3214 intel_crtc_disable_planes(&crtc->base);
3215 dev_priv->display.crtc_disable(&crtc->base);
3216 }
3217 }
3218
3219 void intel_finish_reset(struct drm_device *dev)
3220 {
3221 struct drm_i915_private *dev_priv = to_i915(dev);
3222
3223 /*
3224 * Flips in the rings will be nuked by the reset,
3225 * so complete all pending flips so that user space
3226 * will get its events and not get stuck.
3227 */
3228 intel_complete_page_flips(dev);
3229
3230 /* no reset support for gen2 */
3231 if (IS_GEN2(dev))
3232 return;
3233
3234 /* reset doesn't touch the display */
3235 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3236 /*
3237 * Flips in the rings have been nuked by the reset,
3238 * so update the base address of all primary
3239 * planes to the the last fb to make sure we're
3240 * showing the correct fb after a reset.
3241 */
3242 intel_update_primary_planes(dev);
3243 return;
3244 }
3245
3246 /*
3247 * The display has been reset as well,
3248 * so need a full re-initialization.
3249 */
3250 intel_runtime_pm_disable_interrupts(dev_priv);
3251 intel_runtime_pm_enable_interrupts(dev_priv);
3252
3253 intel_modeset_init_hw(dev);
3254
3255 spin_lock_irq(&dev_priv->irq_lock);
3256 if (dev_priv->display.hpd_irq_setup)
3257 dev_priv->display.hpd_irq_setup(dev);
3258 spin_unlock_irq(&dev_priv->irq_lock);
3259
3260 intel_modeset_setup_hw_state(dev, true);
3261
3262 intel_hpd_init(dev_priv);
3263
3264 drm_modeset_unlock_all(dev);
3265 }
3266
3267 static void
3268 intel_finish_fb(struct drm_framebuffer *old_fb)
3269 {
3270 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3271 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3272 bool was_interruptible = dev_priv->mm.interruptible;
3273 int ret;
3274
3275 /* Big Hammer, we also need to ensure that any pending
3276 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3277 * current scanout is retired before unpinning the old
3278 * framebuffer. Note that we rely on userspace rendering
3279 * into the buffer attached to the pipe they are waiting
3280 * on. If not, userspace generates a GPU hang with IPEHR
3281 * point to the MI_WAIT_FOR_EVENT.
3282 *
3283 * This should only fail upon a hung GPU, in which case we
3284 * can safely continue.
3285 */
3286 dev_priv->mm.interruptible = false;
3287 ret = i915_gem_object_wait_rendering(obj, true);
3288 dev_priv->mm.interruptible = was_interruptible;
3289
3290 WARN_ON(ret);
3291 }
3292
3293 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3294 {
3295 struct drm_device *dev = crtc->dev;
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3298 bool pending;
3299
3300 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3301 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3302 return false;
3303
3304 spin_lock_irq(&dev->event_lock);
3305 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3306 spin_unlock_irq(&dev->event_lock);
3307
3308 return pending;
3309 }
3310
3311 static void intel_update_pipe_size(struct intel_crtc *crtc)
3312 {
3313 struct drm_device *dev = crtc->base.dev;
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 const struct drm_display_mode *adjusted_mode;
3316
3317 if (!i915.fastboot)
3318 return;
3319
3320 /*
3321 * Update pipe size and adjust fitter if needed: the reason for this is
3322 * that in compute_mode_changes we check the native mode (not the pfit
3323 * mode) to see if we can flip rather than do a full mode set. In the
3324 * fastboot case, we'll flip, but if we don't update the pipesrc and
3325 * pfit state, we'll end up with a big fb scanned out into the wrong
3326 * sized surface.
3327 *
3328 * To fix this properly, we need to hoist the checks up into
3329 * compute_mode_changes (or above), check the actual pfit state and
3330 * whether the platform allows pfit disable with pipe active, and only
3331 * then update the pipesrc and pfit state, even on the flip path.
3332 */
3333
3334 adjusted_mode = &crtc->config->base.adjusted_mode;
3335
3336 I915_WRITE(PIPESRC(crtc->pipe),
3337 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3338 (adjusted_mode->crtc_vdisplay - 1));
3339 if (!crtc->config->pch_pfit.enabled &&
3340 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3341 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3342 I915_WRITE(PF_CTL(crtc->pipe), 0);
3343 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3344 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3345 }
3346 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3347 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3348 }
3349
3350 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3351 {
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3355 int pipe = intel_crtc->pipe;
3356 u32 reg, temp;
3357
3358 /* enable normal train */
3359 reg = FDI_TX_CTL(pipe);
3360 temp = I915_READ(reg);
3361 if (IS_IVYBRIDGE(dev)) {
3362 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3363 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3364 } else {
3365 temp &= ~FDI_LINK_TRAIN_NONE;
3366 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3367 }
3368 I915_WRITE(reg, temp);
3369
3370 reg = FDI_RX_CTL(pipe);
3371 temp = I915_READ(reg);
3372 if (HAS_PCH_CPT(dev)) {
3373 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3374 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3375 } else {
3376 temp &= ~FDI_LINK_TRAIN_NONE;
3377 temp |= FDI_LINK_TRAIN_NONE;
3378 }
3379 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3380
3381 /* wait one idle pattern time */
3382 POSTING_READ(reg);
3383 udelay(1000);
3384
3385 /* IVB wants error correction enabled */
3386 if (IS_IVYBRIDGE(dev))
3387 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3388 FDI_FE_ERRC_ENABLE);
3389 }
3390
3391 /* The FDI link training functions for ILK/Ibexpeak. */
3392 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3393 {
3394 struct drm_device *dev = crtc->dev;
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3397 int pipe = intel_crtc->pipe;
3398 u32 reg, temp, tries;
3399
3400 /* FDI needs bits from pipe first */
3401 assert_pipe_enabled(dev_priv, pipe);
3402
3403 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3404 for train result */
3405 reg = FDI_RX_IMR(pipe);
3406 temp = I915_READ(reg);
3407 temp &= ~FDI_RX_SYMBOL_LOCK;
3408 temp &= ~FDI_RX_BIT_LOCK;
3409 I915_WRITE(reg, temp);
3410 I915_READ(reg);
3411 udelay(150);
3412
3413 /* enable CPU FDI TX and PCH FDI RX */
3414 reg = FDI_TX_CTL(pipe);
3415 temp = I915_READ(reg);
3416 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3417 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3418 temp &= ~FDI_LINK_TRAIN_NONE;
3419 temp |= FDI_LINK_TRAIN_PATTERN_1;
3420 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3421
3422 reg = FDI_RX_CTL(pipe);
3423 temp = I915_READ(reg);
3424 temp &= ~FDI_LINK_TRAIN_NONE;
3425 temp |= FDI_LINK_TRAIN_PATTERN_1;
3426 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3427
3428 POSTING_READ(reg);
3429 udelay(150);
3430
3431 /* Ironlake workaround, enable clock pointer after FDI enable*/
3432 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3433 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3434 FDI_RX_PHASE_SYNC_POINTER_EN);
3435
3436 reg = FDI_RX_IIR(pipe);
3437 for (tries = 0; tries < 5; tries++) {
3438 temp = I915_READ(reg);
3439 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3440
3441 if ((temp & FDI_RX_BIT_LOCK)) {
3442 DRM_DEBUG_KMS("FDI train 1 done.\n");
3443 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3444 break;
3445 }
3446 }
3447 if (tries == 5)
3448 DRM_ERROR("FDI train 1 fail!\n");
3449
3450 /* Train 2 */
3451 reg = FDI_TX_CTL(pipe);
3452 temp = I915_READ(reg);
3453 temp &= ~FDI_LINK_TRAIN_NONE;
3454 temp |= FDI_LINK_TRAIN_PATTERN_2;
3455 I915_WRITE(reg, temp);
3456
3457 reg = FDI_RX_CTL(pipe);
3458 temp = I915_READ(reg);
3459 temp &= ~FDI_LINK_TRAIN_NONE;
3460 temp |= FDI_LINK_TRAIN_PATTERN_2;
3461 I915_WRITE(reg, temp);
3462
3463 POSTING_READ(reg);
3464 udelay(150);
3465
3466 reg = FDI_RX_IIR(pipe);
3467 for (tries = 0; tries < 5; tries++) {
3468 temp = I915_READ(reg);
3469 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3470
3471 if (temp & FDI_RX_SYMBOL_LOCK) {
3472 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3473 DRM_DEBUG_KMS("FDI train 2 done.\n");
3474 break;
3475 }
3476 }
3477 if (tries == 5)
3478 DRM_ERROR("FDI train 2 fail!\n");
3479
3480 DRM_DEBUG_KMS("FDI train done\n");
3481
3482 }
3483
3484 static const int snb_b_fdi_train_param[] = {
3485 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3486 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3487 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3488 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3489 };
3490
3491 /* The FDI link training functions for SNB/Cougarpoint. */
3492 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3493 {
3494 struct drm_device *dev = crtc->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497 int pipe = intel_crtc->pipe;
3498 u32 reg, temp, i, retry;
3499
3500 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3501 for train result */
3502 reg = FDI_RX_IMR(pipe);
3503 temp = I915_READ(reg);
3504 temp &= ~FDI_RX_SYMBOL_LOCK;
3505 temp &= ~FDI_RX_BIT_LOCK;
3506 I915_WRITE(reg, temp);
3507
3508 POSTING_READ(reg);
3509 udelay(150);
3510
3511 /* enable CPU FDI TX and PCH FDI RX */
3512 reg = FDI_TX_CTL(pipe);
3513 temp = I915_READ(reg);
3514 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3515 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3516 temp &= ~FDI_LINK_TRAIN_NONE;
3517 temp |= FDI_LINK_TRAIN_PATTERN_1;
3518 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3519 /* SNB-B */
3520 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3521 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3522
3523 I915_WRITE(FDI_RX_MISC(pipe),
3524 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3525
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
3528 if (HAS_PCH_CPT(dev)) {
3529 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3530 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3531 } else {
3532 temp &= ~FDI_LINK_TRAIN_NONE;
3533 temp |= FDI_LINK_TRAIN_PATTERN_1;
3534 }
3535 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3536
3537 POSTING_READ(reg);
3538 udelay(150);
3539
3540 for (i = 0; i < 4; i++) {
3541 reg = FDI_TX_CTL(pipe);
3542 temp = I915_READ(reg);
3543 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3544 temp |= snb_b_fdi_train_param[i];
3545 I915_WRITE(reg, temp);
3546
3547 POSTING_READ(reg);
3548 udelay(500);
3549
3550 for (retry = 0; retry < 5; retry++) {
3551 reg = FDI_RX_IIR(pipe);
3552 temp = I915_READ(reg);
3553 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3554 if (temp & FDI_RX_BIT_LOCK) {
3555 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3556 DRM_DEBUG_KMS("FDI train 1 done.\n");
3557 break;
3558 }
3559 udelay(50);
3560 }
3561 if (retry < 5)
3562 break;
3563 }
3564 if (i == 4)
3565 DRM_ERROR("FDI train 1 fail!\n");
3566
3567 /* Train 2 */
3568 reg = FDI_TX_CTL(pipe);
3569 temp = I915_READ(reg);
3570 temp &= ~FDI_LINK_TRAIN_NONE;
3571 temp |= FDI_LINK_TRAIN_PATTERN_2;
3572 if (IS_GEN6(dev)) {
3573 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3574 /* SNB-B */
3575 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3576 }
3577 I915_WRITE(reg, temp);
3578
3579 reg = FDI_RX_CTL(pipe);
3580 temp = I915_READ(reg);
3581 if (HAS_PCH_CPT(dev)) {
3582 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3583 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3584 } else {
3585 temp &= ~FDI_LINK_TRAIN_NONE;
3586 temp |= FDI_LINK_TRAIN_PATTERN_2;
3587 }
3588 I915_WRITE(reg, temp);
3589
3590 POSTING_READ(reg);
3591 udelay(150);
3592
3593 for (i = 0; i < 4; i++) {
3594 reg = FDI_TX_CTL(pipe);
3595 temp = I915_READ(reg);
3596 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3597 temp |= snb_b_fdi_train_param[i];
3598 I915_WRITE(reg, temp);
3599
3600 POSTING_READ(reg);
3601 udelay(500);
3602
3603 for (retry = 0; retry < 5; retry++) {
3604 reg = FDI_RX_IIR(pipe);
3605 temp = I915_READ(reg);
3606 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3607 if (temp & FDI_RX_SYMBOL_LOCK) {
3608 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3609 DRM_DEBUG_KMS("FDI train 2 done.\n");
3610 break;
3611 }
3612 udelay(50);
3613 }
3614 if (retry < 5)
3615 break;
3616 }
3617 if (i == 4)
3618 DRM_ERROR("FDI train 2 fail!\n");
3619
3620 DRM_DEBUG_KMS("FDI train done.\n");
3621 }
3622
3623 /* Manual link training for Ivy Bridge A0 parts */
3624 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3625 {
3626 struct drm_device *dev = crtc->dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629 int pipe = intel_crtc->pipe;
3630 u32 reg, temp, i, j;
3631
3632 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3633 for train result */
3634 reg = FDI_RX_IMR(pipe);
3635 temp = I915_READ(reg);
3636 temp &= ~FDI_RX_SYMBOL_LOCK;
3637 temp &= ~FDI_RX_BIT_LOCK;
3638 I915_WRITE(reg, temp);
3639
3640 POSTING_READ(reg);
3641 udelay(150);
3642
3643 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3644 I915_READ(FDI_RX_IIR(pipe)));
3645
3646 /* Try each vswing and preemphasis setting twice before moving on */
3647 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3648 /* disable first in case we need to retry */
3649 reg = FDI_TX_CTL(pipe);
3650 temp = I915_READ(reg);
3651 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3652 temp &= ~FDI_TX_ENABLE;
3653 I915_WRITE(reg, temp);
3654
3655 reg = FDI_RX_CTL(pipe);
3656 temp = I915_READ(reg);
3657 temp &= ~FDI_LINK_TRAIN_AUTO;
3658 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3659 temp &= ~FDI_RX_ENABLE;
3660 I915_WRITE(reg, temp);
3661
3662 /* enable CPU FDI TX and PCH FDI RX */
3663 reg = FDI_TX_CTL(pipe);
3664 temp = I915_READ(reg);
3665 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3666 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3667 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3668 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3669 temp |= snb_b_fdi_train_param[j/2];
3670 temp |= FDI_COMPOSITE_SYNC;
3671 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3672
3673 I915_WRITE(FDI_RX_MISC(pipe),
3674 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3675
3676 reg = FDI_RX_CTL(pipe);
3677 temp = I915_READ(reg);
3678 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3679 temp |= FDI_COMPOSITE_SYNC;
3680 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3681
3682 POSTING_READ(reg);
3683 udelay(1); /* should be 0.5us */
3684
3685 for (i = 0; i < 4; i++) {
3686 reg = FDI_RX_IIR(pipe);
3687 temp = I915_READ(reg);
3688 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3689
3690 if (temp & FDI_RX_BIT_LOCK ||
3691 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3692 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3693 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3694 i);
3695 break;
3696 }
3697 udelay(1); /* should be 0.5us */
3698 }
3699 if (i == 4) {
3700 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3701 continue;
3702 }
3703
3704 /* Train 2 */
3705 reg = FDI_TX_CTL(pipe);
3706 temp = I915_READ(reg);
3707 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3708 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3709 I915_WRITE(reg, temp);
3710
3711 reg = FDI_RX_CTL(pipe);
3712 temp = I915_READ(reg);
3713 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3714 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3715 I915_WRITE(reg, temp);
3716
3717 POSTING_READ(reg);
3718 udelay(2); /* should be 1.5us */
3719
3720 for (i = 0; i < 4; i++) {
3721 reg = FDI_RX_IIR(pipe);
3722 temp = I915_READ(reg);
3723 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3724
3725 if (temp & FDI_RX_SYMBOL_LOCK ||
3726 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3727 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3728 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3729 i);
3730 goto train_done;
3731 }
3732 udelay(2); /* should be 1.5us */
3733 }
3734 if (i == 4)
3735 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3736 }
3737
3738 train_done:
3739 DRM_DEBUG_KMS("FDI train done.\n");
3740 }
3741
3742 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3743 {
3744 struct drm_device *dev = intel_crtc->base.dev;
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746 int pipe = intel_crtc->pipe;
3747 u32 reg, temp;
3748
3749
3750 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3751 reg = FDI_RX_CTL(pipe);
3752 temp = I915_READ(reg);
3753 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3754 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3755 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3756 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3757
3758 POSTING_READ(reg);
3759 udelay(200);
3760
3761 /* Switch from Rawclk to PCDclk */
3762 temp = I915_READ(reg);
3763 I915_WRITE(reg, temp | FDI_PCDCLK);
3764
3765 POSTING_READ(reg);
3766 udelay(200);
3767
3768 /* Enable CPU FDI TX PLL, always on for Ironlake */
3769 reg = FDI_TX_CTL(pipe);
3770 temp = I915_READ(reg);
3771 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3772 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3773
3774 POSTING_READ(reg);
3775 udelay(100);
3776 }
3777 }
3778
3779 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3780 {
3781 struct drm_device *dev = intel_crtc->base.dev;
3782 struct drm_i915_private *dev_priv = dev->dev_private;
3783 int pipe = intel_crtc->pipe;
3784 u32 reg, temp;
3785
3786 /* Switch from PCDclk to Rawclk */
3787 reg = FDI_RX_CTL(pipe);
3788 temp = I915_READ(reg);
3789 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3790
3791 /* Disable CPU FDI TX PLL */
3792 reg = FDI_TX_CTL(pipe);
3793 temp = I915_READ(reg);
3794 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3795
3796 POSTING_READ(reg);
3797 udelay(100);
3798
3799 reg = FDI_RX_CTL(pipe);
3800 temp = I915_READ(reg);
3801 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3802
3803 /* Wait for the clocks to turn off. */
3804 POSTING_READ(reg);
3805 udelay(100);
3806 }
3807
3808 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3809 {
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3813 int pipe = intel_crtc->pipe;
3814 u32 reg, temp;
3815
3816 /* disable CPU FDI tx and PCH FDI rx */
3817 reg = FDI_TX_CTL(pipe);
3818 temp = I915_READ(reg);
3819 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3820 POSTING_READ(reg);
3821
3822 reg = FDI_RX_CTL(pipe);
3823 temp = I915_READ(reg);
3824 temp &= ~(0x7 << 16);
3825 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3826 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3827
3828 POSTING_READ(reg);
3829 udelay(100);
3830
3831 /* Ironlake workaround, disable clock pointer after downing FDI */
3832 if (HAS_PCH_IBX(dev))
3833 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3834
3835 /* still set train pattern 1 */
3836 reg = FDI_TX_CTL(pipe);
3837 temp = I915_READ(reg);
3838 temp &= ~FDI_LINK_TRAIN_NONE;
3839 temp |= FDI_LINK_TRAIN_PATTERN_1;
3840 I915_WRITE(reg, temp);
3841
3842 reg = FDI_RX_CTL(pipe);
3843 temp = I915_READ(reg);
3844 if (HAS_PCH_CPT(dev)) {
3845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3846 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3847 } else {
3848 temp &= ~FDI_LINK_TRAIN_NONE;
3849 temp |= FDI_LINK_TRAIN_PATTERN_1;
3850 }
3851 /* BPC in FDI rx is consistent with that in PIPECONF */
3852 temp &= ~(0x07 << 16);
3853 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3854 I915_WRITE(reg, temp);
3855
3856 POSTING_READ(reg);
3857 udelay(100);
3858 }
3859
3860 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3861 {
3862 struct intel_crtc *crtc;
3863
3864 /* Note that we don't need to be called with mode_config.lock here
3865 * as our list of CRTC objects is static for the lifetime of the
3866 * device and so cannot disappear as we iterate. Similarly, we can
3867 * happily treat the predicates as racy, atomic checks as userspace
3868 * cannot claim and pin a new fb without at least acquring the
3869 * struct_mutex and so serialising with us.
3870 */
3871 for_each_intel_crtc(dev, crtc) {
3872 if (atomic_read(&crtc->unpin_work_count) == 0)
3873 continue;
3874
3875 if (crtc->unpin_work)
3876 intel_wait_for_vblank(dev, crtc->pipe);
3877
3878 return true;
3879 }
3880
3881 return false;
3882 }
3883
3884 static void page_flip_completed(struct intel_crtc *intel_crtc)
3885 {
3886 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3887 struct intel_unpin_work *work = intel_crtc->unpin_work;
3888
3889 /* ensure that the unpin work is consistent wrt ->pending. */
3890 smp_rmb();
3891 intel_crtc->unpin_work = NULL;
3892
3893 if (work->event)
3894 drm_send_vblank_event(intel_crtc->base.dev,
3895 intel_crtc->pipe,
3896 work->event);
3897
3898 drm_crtc_vblank_put(&intel_crtc->base);
3899
3900 wake_up_all(&dev_priv->pending_flip_queue);
3901 queue_work(dev_priv->wq, &work->work);
3902
3903 trace_i915_flip_complete(intel_crtc->plane,
3904 work->pending_flip_obj);
3905 }
3906
3907 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3908 {
3909 struct drm_device *dev = crtc->dev;
3910 struct drm_i915_private *dev_priv = dev->dev_private;
3911
3912 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3913 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3914 !intel_crtc_has_pending_flip(crtc),
3915 60*HZ) == 0)) {
3916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3917
3918 spin_lock_irq(&dev->event_lock);
3919 if (intel_crtc->unpin_work) {
3920 WARN_ONCE(1, "Removing stuck page flip\n");
3921 page_flip_completed(intel_crtc);
3922 }
3923 spin_unlock_irq(&dev->event_lock);
3924 }
3925
3926 if (crtc->primary->fb) {
3927 mutex_lock(&dev->struct_mutex);
3928 intel_finish_fb(crtc->primary->fb);
3929 mutex_unlock(&dev->struct_mutex);
3930 }
3931 }
3932
3933 /* Program iCLKIP clock to the desired frequency */
3934 static void lpt_program_iclkip(struct drm_crtc *crtc)
3935 {
3936 struct drm_device *dev = crtc->dev;
3937 struct drm_i915_private *dev_priv = dev->dev_private;
3938 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3939 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3940 u32 temp;
3941
3942 mutex_lock(&dev_priv->sb_lock);
3943
3944 /* It is necessary to ungate the pixclk gate prior to programming
3945 * the divisors, and gate it back when it is done.
3946 */
3947 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3948
3949 /* Disable SSCCTL */
3950 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3951 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3952 SBI_SSCCTL_DISABLE,
3953 SBI_ICLK);
3954
3955 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3956 if (clock == 20000) {
3957 auxdiv = 1;
3958 divsel = 0x41;
3959 phaseinc = 0x20;
3960 } else {
3961 /* The iCLK virtual clock root frequency is in MHz,
3962 * but the adjusted_mode->crtc_clock in in KHz. To get the
3963 * divisors, it is necessary to divide one by another, so we
3964 * convert the virtual clock precision to KHz here for higher
3965 * precision.
3966 */
3967 u32 iclk_virtual_root_freq = 172800 * 1000;
3968 u32 iclk_pi_range = 64;
3969 u32 desired_divisor, msb_divisor_value, pi_value;
3970
3971 desired_divisor = (iclk_virtual_root_freq / clock);
3972 msb_divisor_value = desired_divisor / iclk_pi_range;
3973 pi_value = desired_divisor % iclk_pi_range;
3974
3975 auxdiv = 0;
3976 divsel = msb_divisor_value - 2;
3977 phaseinc = pi_value;
3978 }
3979
3980 /* This should not happen with any sane values */
3981 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3982 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3983 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3984 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3985
3986 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3987 clock,
3988 auxdiv,
3989 divsel,
3990 phasedir,
3991 phaseinc);
3992
3993 /* Program SSCDIVINTPHASE6 */
3994 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3995 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3996 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3997 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3998 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3999 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4000 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4001 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4002
4003 /* Program SSCAUXDIV */
4004 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4005 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4006 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4007 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4008
4009 /* Enable modulator and associated divider */
4010 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4011 temp &= ~SBI_SSCCTL_DISABLE;
4012 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4013
4014 /* Wait for initialization time */
4015 udelay(24);
4016
4017 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4018
4019 mutex_unlock(&dev_priv->sb_lock);
4020 }
4021
4022 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4023 enum pipe pch_transcoder)
4024 {
4025 struct drm_device *dev = crtc->base.dev;
4026 struct drm_i915_private *dev_priv = dev->dev_private;
4027 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4028
4029 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4030 I915_READ(HTOTAL(cpu_transcoder)));
4031 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4032 I915_READ(HBLANK(cpu_transcoder)));
4033 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4034 I915_READ(HSYNC(cpu_transcoder)));
4035
4036 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4037 I915_READ(VTOTAL(cpu_transcoder)));
4038 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4039 I915_READ(VBLANK(cpu_transcoder)));
4040 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4041 I915_READ(VSYNC(cpu_transcoder)));
4042 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4043 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4044 }
4045
4046 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4047 {
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 uint32_t temp;
4050
4051 temp = I915_READ(SOUTH_CHICKEN1);
4052 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4053 return;
4054
4055 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4056 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4057
4058 temp &= ~FDI_BC_BIFURCATION_SELECT;
4059 if (enable)
4060 temp |= FDI_BC_BIFURCATION_SELECT;
4061
4062 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4063 I915_WRITE(SOUTH_CHICKEN1, temp);
4064 POSTING_READ(SOUTH_CHICKEN1);
4065 }
4066
4067 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4068 {
4069 struct drm_device *dev = intel_crtc->base.dev;
4070
4071 switch (intel_crtc->pipe) {
4072 case PIPE_A:
4073 break;
4074 case PIPE_B:
4075 if (intel_crtc->config->fdi_lanes > 2)
4076 cpt_set_fdi_bc_bifurcation(dev, false);
4077 else
4078 cpt_set_fdi_bc_bifurcation(dev, true);
4079
4080 break;
4081 case PIPE_C:
4082 cpt_set_fdi_bc_bifurcation(dev, true);
4083
4084 break;
4085 default:
4086 BUG();
4087 }
4088 }
4089
4090 /*
4091 * Enable PCH resources required for PCH ports:
4092 * - PCH PLLs
4093 * - FDI training & RX/TX
4094 * - update transcoder timings
4095 * - DP transcoding bits
4096 * - transcoder
4097 */
4098 static void ironlake_pch_enable(struct drm_crtc *crtc)
4099 {
4100 struct drm_device *dev = crtc->dev;
4101 struct drm_i915_private *dev_priv = dev->dev_private;
4102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4103 int pipe = intel_crtc->pipe;
4104 u32 reg, temp;
4105
4106 assert_pch_transcoder_disabled(dev_priv, pipe);
4107
4108 if (IS_IVYBRIDGE(dev))
4109 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4110
4111 /* Write the TU size bits before fdi link training, so that error
4112 * detection works. */
4113 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4114 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4115
4116 /* For PCH output, training FDI link */
4117 dev_priv->display.fdi_link_train(crtc);
4118
4119 /* We need to program the right clock selection before writing the pixel
4120 * mutliplier into the DPLL. */
4121 if (HAS_PCH_CPT(dev)) {
4122 u32 sel;
4123
4124 temp = I915_READ(PCH_DPLL_SEL);
4125 temp |= TRANS_DPLL_ENABLE(pipe);
4126 sel = TRANS_DPLLB_SEL(pipe);
4127 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4128 temp |= sel;
4129 else
4130 temp &= ~sel;
4131 I915_WRITE(PCH_DPLL_SEL, temp);
4132 }
4133
4134 /* XXX: pch pll's can be enabled any time before we enable the PCH
4135 * transcoder, and we actually should do this to not upset any PCH
4136 * transcoder that already use the clock when we share it.
4137 *
4138 * Note that enable_shared_dpll tries to do the right thing, but
4139 * get_shared_dpll unconditionally resets the pll - we need that to have
4140 * the right LVDS enable sequence. */
4141 intel_enable_shared_dpll(intel_crtc);
4142
4143 /* set transcoder timing, panel must allow it */
4144 assert_panel_unlocked(dev_priv, pipe);
4145 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4146
4147 intel_fdi_normal_train(crtc);
4148
4149 /* For PCH DP, enable TRANS_DP_CTL */
4150 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4151 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4152 reg = TRANS_DP_CTL(pipe);
4153 temp = I915_READ(reg);
4154 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4155 TRANS_DP_SYNC_MASK |
4156 TRANS_DP_BPC_MASK);
4157 temp |= TRANS_DP_OUTPUT_ENABLE;
4158 temp |= bpc << 9; /* same format but at 11:9 */
4159
4160 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4161 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4162 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4163 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4164
4165 switch (intel_trans_dp_port_sel(crtc)) {
4166 case PCH_DP_B:
4167 temp |= TRANS_DP_PORT_SEL_B;
4168 break;
4169 case PCH_DP_C:
4170 temp |= TRANS_DP_PORT_SEL_C;
4171 break;
4172 case PCH_DP_D:
4173 temp |= TRANS_DP_PORT_SEL_D;
4174 break;
4175 default:
4176 BUG();
4177 }
4178
4179 I915_WRITE(reg, temp);
4180 }
4181
4182 ironlake_enable_pch_transcoder(dev_priv, pipe);
4183 }
4184
4185 static void lpt_pch_enable(struct drm_crtc *crtc)
4186 {
4187 struct drm_device *dev = crtc->dev;
4188 struct drm_i915_private *dev_priv = dev->dev_private;
4189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4190 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4191
4192 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4193
4194 lpt_program_iclkip(crtc);
4195
4196 /* Set transcoder timing. */
4197 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4198
4199 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4200 }
4201
4202 void intel_put_shared_dpll(struct intel_crtc *crtc)
4203 {
4204 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4205
4206 if (pll == NULL)
4207 return;
4208
4209 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4210 WARN(1, "bad %s crtc mask\n", pll->name);
4211 return;
4212 }
4213
4214 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4215 if (pll->config.crtc_mask == 0) {
4216 WARN_ON(pll->on);
4217 WARN_ON(pll->active);
4218 }
4219
4220 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4221 }
4222
4223 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4224 struct intel_crtc_state *crtc_state)
4225 {
4226 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4227 struct intel_shared_dpll *pll;
4228 enum intel_dpll_id i;
4229
4230 if (HAS_PCH_IBX(dev_priv->dev)) {
4231 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4232 i = (enum intel_dpll_id) crtc->pipe;
4233 pll = &dev_priv->shared_dplls[i];
4234
4235 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4236 crtc->base.base.id, pll->name);
4237
4238 WARN_ON(pll->new_config->crtc_mask);
4239
4240 goto found;
4241 }
4242
4243 if (IS_BROXTON(dev_priv->dev)) {
4244 /* PLL is attached to port in bxt */
4245 struct intel_encoder *encoder;
4246 struct intel_digital_port *intel_dig_port;
4247
4248 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4249 if (WARN_ON(!encoder))
4250 return NULL;
4251
4252 intel_dig_port = enc_to_dig_port(&encoder->base);
4253 /* 1:1 mapping between ports and PLLs */
4254 i = (enum intel_dpll_id)intel_dig_port->port;
4255 pll = &dev_priv->shared_dplls[i];
4256 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4257 crtc->base.base.id, pll->name);
4258 WARN_ON(pll->new_config->crtc_mask);
4259
4260 goto found;
4261 }
4262
4263 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4264 pll = &dev_priv->shared_dplls[i];
4265
4266 /* Only want to check enabled timings first */
4267 if (pll->new_config->crtc_mask == 0)
4268 continue;
4269
4270 if (memcmp(&crtc_state->dpll_hw_state,
4271 &pll->new_config->hw_state,
4272 sizeof(pll->new_config->hw_state)) == 0) {
4273 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4274 crtc->base.base.id, pll->name,
4275 pll->new_config->crtc_mask,
4276 pll->active);
4277 goto found;
4278 }
4279 }
4280
4281 /* Ok no matching timings, maybe there's a free one? */
4282 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4283 pll = &dev_priv->shared_dplls[i];
4284 if (pll->new_config->crtc_mask == 0) {
4285 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4286 crtc->base.base.id, pll->name);
4287 goto found;
4288 }
4289 }
4290
4291 return NULL;
4292
4293 found:
4294 if (pll->new_config->crtc_mask == 0)
4295 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4296
4297 crtc_state->shared_dpll = i;
4298 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4299 pipe_name(crtc->pipe));
4300
4301 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4302
4303 return pll;
4304 }
4305
4306 /**
4307 * intel_shared_dpll_start_config - start a new PLL staged config
4308 * @dev_priv: DRM device
4309 * @clear_pipes: mask of pipes that will have their PLLs freed
4310 *
4311 * Starts a new PLL staged config, copying the current config but
4312 * releasing the references of pipes specified in clear_pipes.
4313 */
4314 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4315 unsigned clear_pipes)
4316 {
4317 struct intel_shared_dpll *pll;
4318 enum intel_dpll_id i;
4319
4320 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4321 pll = &dev_priv->shared_dplls[i];
4322
4323 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4324 GFP_KERNEL);
4325 if (!pll->new_config)
4326 goto cleanup;
4327
4328 pll->new_config->crtc_mask &= ~clear_pipes;
4329 }
4330
4331 return 0;
4332
4333 cleanup:
4334 while (--i >= 0) {
4335 pll = &dev_priv->shared_dplls[i];
4336 kfree(pll->new_config);
4337 pll->new_config = NULL;
4338 }
4339
4340 return -ENOMEM;
4341 }
4342
4343 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4344 {
4345 struct intel_shared_dpll *pll;
4346 enum intel_dpll_id i;
4347
4348 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4349 pll = &dev_priv->shared_dplls[i];
4350
4351 WARN_ON(pll->new_config == &pll->config);
4352
4353 pll->config = *pll->new_config;
4354 kfree(pll->new_config);
4355 pll->new_config = NULL;
4356 }
4357 }
4358
4359 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4360 {
4361 struct intel_shared_dpll *pll;
4362 enum intel_dpll_id i;
4363
4364 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4365 pll = &dev_priv->shared_dplls[i];
4366
4367 WARN_ON(pll->new_config == &pll->config);
4368
4369 kfree(pll->new_config);
4370 pll->new_config = NULL;
4371 }
4372 }
4373
4374 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4375 {
4376 struct drm_i915_private *dev_priv = dev->dev_private;
4377 int dslreg = PIPEDSL(pipe);
4378 u32 temp;
4379
4380 temp = I915_READ(dslreg);
4381 udelay(500);
4382 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4383 if (wait_for(I915_READ(dslreg) != temp, 5))
4384 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4385 }
4386 }
4387
4388 /**
4389 * skl_update_scaler_users - Stages update to crtc's scaler state
4390 * @intel_crtc: crtc
4391 * @crtc_state: crtc_state
4392 * @plane: plane (NULL indicates crtc is requesting update)
4393 * @plane_state: plane's state
4394 * @force_detach: request unconditional detachment of scaler
4395 *
4396 * This function updates scaler state for requested plane or crtc.
4397 * To request scaler usage update for a plane, caller shall pass plane pointer.
4398 * To request scaler usage update for crtc, caller shall pass plane pointer
4399 * as NULL.
4400 *
4401 * Return
4402 * 0 - scaler_usage updated successfully
4403 * error - requested scaling cannot be supported or other error condition
4404 */
4405 int
4406 skl_update_scaler_users(
4407 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4408 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4409 int force_detach)
4410 {
4411 int need_scaling;
4412 int idx;
4413 int src_w, src_h, dst_w, dst_h;
4414 int *scaler_id;
4415 struct drm_framebuffer *fb;
4416 struct intel_crtc_scaler_state *scaler_state;
4417 unsigned int rotation;
4418
4419 if (!intel_crtc || !crtc_state)
4420 return 0;
4421
4422 scaler_state = &crtc_state->scaler_state;
4423
4424 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4425 fb = intel_plane ? plane_state->base.fb : NULL;
4426
4427 if (intel_plane) {
4428 src_w = drm_rect_width(&plane_state->src) >> 16;
4429 src_h = drm_rect_height(&plane_state->src) >> 16;
4430 dst_w = drm_rect_width(&plane_state->dst);
4431 dst_h = drm_rect_height(&plane_state->dst);
4432 scaler_id = &plane_state->scaler_id;
4433 rotation = plane_state->base.rotation;
4434 } else {
4435 struct drm_display_mode *adjusted_mode =
4436 &crtc_state->base.adjusted_mode;
4437 src_w = crtc_state->pipe_src_w;
4438 src_h = crtc_state->pipe_src_h;
4439 dst_w = adjusted_mode->hdisplay;
4440 dst_h = adjusted_mode->vdisplay;
4441 scaler_id = &scaler_state->scaler_id;
4442 rotation = DRM_ROTATE_0;
4443 }
4444
4445 need_scaling = intel_rotation_90_or_270(rotation) ?
4446 (src_h != dst_w || src_w != dst_h):
4447 (src_w != dst_w || src_h != dst_h);
4448
4449 /*
4450 * if plane is being disabled or scaler is no more required or force detach
4451 * - free scaler binded to this plane/crtc
4452 * - in order to do this, update crtc->scaler_usage
4453 *
4454 * Here scaler state in crtc_state is set free so that
4455 * scaler can be assigned to other user. Actual register
4456 * update to free the scaler is done in plane/panel-fit programming.
4457 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4458 */
4459 if (force_detach || !need_scaling || (intel_plane &&
4460 (!fb || !plane_state->visible))) {
4461 if (*scaler_id >= 0) {
4462 scaler_state->scaler_users &= ~(1 << idx);
4463 scaler_state->scalers[*scaler_id].in_use = 0;
4464
4465 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4466 "crtc_state = %p scaler_users = 0x%x\n",
4467 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4468 intel_plane ? intel_plane->base.base.id :
4469 intel_crtc->base.base.id, crtc_state,
4470 scaler_state->scaler_users);
4471 *scaler_id = -1;
4472 }
4473 return 0;
4474 }
4475
4476 /* range checks */
4477 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4478 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4479
4480 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4481 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4482 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4483 "size is out of scaler range\n",
4484 intel_plane ? "PLANE" : "CRTC",
4485 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4486 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4487 return -EINVAL;
4488 }
4489
4490 /* check colorkey */
4491 if (WARN_ON(intel_plane &&
4492 intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4493 DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4494 intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
4495 return -EINVAL;
4496 }
4497
4498 /* Check src format */
4499 if (intel_plane) {
4500 switch (fb->pixel_format) {
4501 case DRM_FORMAT_RGB565:
4502 case DRM_FORMAT_XBGR8888:
4503 case DRM_FORMAT_XRGB8888:
4504 case DRM_FORMAT_ABGR8888:
4505 case DRM_FORMAT_ARGB8888:
4506 case DRM_FORMAT_XRGB2101010:
4507 case DRM_FORMAT_XBGR2101010:
4508 case DRM_FORMAT_YUYV:
4509 case DRM_FORMAT_YVYU:
4510 case DRM_FORMAT_UYVY:
4511 case DRM_FORMAT_VYUY:
4512 break;
4513 default:
4514 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4515 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4516 return -EINVAL;
4517 }
4518 }
4519
4520 /* mark this plane as a scaler user in crtc_state */
4521 scaler_state->scaler_users |= (1 << idx);
4522 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4523 "crtc_state = %p scaler_users = 0x%x\n",
4524 intel_plane ? "PLANE" : "CRTC",
4525 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4526 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4527 return 0;
4528 }
4529
4530 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4531 {
4532 struct drm_device *dev = crtc->base.dev;
4533 struct drm_i915_private *dev_priv = dev->dev_private;
4534 int pipe = crtc->pipe;
4535 struct intel_crtc_scaler_state *scaler_state =
4536 &crtc->config->scaler_state;
4537
4538 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4539
4540 /* To update pfit, first update scaler state */
4541 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4542 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4543 skl_detach_scalers(crtc);
4544 if (!enable)
4545 return;
4546
4547 if (crtc->config->pch_pfit.enabled) {
4548 int id;
4549
4550 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4551 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4552 return;
4553 }
4554
4555 id = scaler_state->scaler_id;
4556 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4557 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4558 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4559 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4560
4561 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4562 }
4563 }
4564
4565 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4566 {
4567 struct drm_device *dev = crtc->base.dev;
4568 struct drm_i915_private *dev_priv = dev->dev_private;
4569 int pipe = crtc->pipe;
4570
4571 if (crtc->config->pch_pfit.enabled) {
4572 /* Force use of hard-coded filter coefficients
4573 * as some pre-programmed values are broken,
4574 * e.g. x201.
4575 */
4576 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4577 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4578 PF_PIPE_SEL_IVB(pipe));
4579 else
4580 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4581 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4582 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4583 }
4584 }
4585
4586 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4587 {
4588 struct drm_device *dev = crtc->dev;
4589 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4590 struct drm_plane *plane;
4591 struct intel_plane *intel_plane;
4592
4593 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4594 intel_plane = to_intel_plane(plane);
4595 if (intel_plane->pipe == pipe)
4596 intel_plane_restore(&intel_plane->base);
4597 }
4598 }
4599
4600 void hsw_enable_ips(struct intel_crtc *crtc)
4601 {
4602 struct drm_device *dev = crtc->base.dev;
4603 struct drm_i915_private *dev_priv = dev->dev_private;
4604
4605 if (!crtc->config->ips_enabled)
4606 return;
4607
4608 /* We can only enable IPS after we enable a plane and wait for a vblank */
4609 intel_wait_for_vblank(dev, crtc->pipe);
4610
4611 assert_plane_enabled(dev_priv, crtc->plane);
4612 if (IS_BROADWELL(dev)) {
4613 mutex_lock(&dev_priv->rps.hw_lock);
4614 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4615 mutex_unlock(&dev_priv->rps.hw_lock);
4616 /* Quoting Art Runyan: "its not safe to expect any particular
4617 * value in IPS_CTL bit 31 after enabling IPS through the
4618 * mailbox." Moreover, the mailbox may return a bogus state,
4619 * so we need to just enable it and continue on.
4620 */
4621 } else {
4622 I915_WRITE(IPS_CTL, IPS_ENABLE);
4623 /* The bit only becomes 1 in the next vblank, so this wait here
4624 * is essentially intel_wait_for_vblank. If we don't have this
4625 * and don't wait for vblanks until the end of crtc_enable, then
4626 * the HW state readout code will complain that the expected
4627 * IPS_CTL value is not the one we read. */
4628 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4629 DRM_ERROR("Timed out waiting for IPS enable\n");
4630 }
4631 }
4632
4633 void hsw_disable_ips(struct intel_crtc *crtc)
4634 {
4635 struct drm_device *dev = crtc->base.dev;
4636 struct drm_i915_private *dev_priv = dev->dev_private;
4637
4638 if (!crtc->config->ips_enabled)
4639 return;
4640
4641 assert_plane_enabled(dev_priv, crtc->plane);
4642 if (IS_BROADWELL(dev)) {
4643 mutex_lock(&dev_priv->rps.hw_lock);
4644 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4645 mutex_unlock(&dev_priv->rps.hw_lock);
4646 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4647 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4648 DRM_ERROR("Timed out waiting for IPS disable\n");
4649 } else {
4650 I915_WRITE(IPS_CTL, 0);
4651 POSTING_READ(IPS_CTL);
4652 }
4653
4654 /* We need to wait for a vblank before we can disable the plane. */
4655 intel_wait_for_vblank(dev, crtc->pipe);
4656 }
4657
4658 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4659 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4660 {
4661 struct drm_device *dev = crtc->dev;
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4664 enum pipe pipe = intel_crtc->pipe;
4665 int palreg = PALETTE(pipe);
4666 int i;
4667 bool reenable_ips = false;
4668
4669 /* The clocks have to be on to load the palette. */
4670 if (!crtc->state->enable || !intel_crtc->active)
4671 return;
4672
4673 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4674 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4675 assert_dsi_pll_enabled(dev_priv);
4676 else
4677 assert_pll_enabled(dev_priv, pipe);
4678 }
4679
4680 /* use legacy palette for Ironlake */
4681 if (!HAS_GMCH_DISPLAY(dev))
4682 palreg = LGC_PALETTE(pipe);
4683
4684 /* Workaround : Do not read or write the pipe palette/gamma data while
4685 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4686 */
4687 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4688 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4689 GAMMA_MODE_MODE_SPLIT)) {
4690 hsw_disable_ips(intel_crtc);
4691 reenable_ips = true;
4692 }
4693
4694 for (i = 0; i < 256; i++) {
4695 I915_WRITE(palreg + 4 * i,
4696 (intel_crtc->lut_r[i] << 16) |
4697 (intel_crtc->lut_g[i] << 8) |
4698 intel_crtc->lut_b[i]);
4699 }
4700
4701 if (reenable_ips)
4702 hsw_enable_ips(intel_crtc);
4703 }
4704
4705 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4706 {
4707 if (intel_crtc->overlay) {
4708 struct drm_device *dev = intel_crtc->base.dev;
4709 struct drm_i915_private *dev_priv = dev->dev_private;
4710
4711 mutex_lock(&dev->struct_mutex);
4712 dev_priv->mm.interruptible = false;
4713 (void) intel_overlay_switch_off(intel_crtc->overlay);
4714 dev_priv->mm.interruptible = true;
4715 mutex_unlock(&dev->struct_mutex);
4716 }
4717
4718 /* Let userspace switch the overlay on again. In most cases userspace
4719 * has to recompute where to put it anyway.
4720 */
4721 }
4722
4723 /**
4724 * intel_post_enable_primary - Perform operations after enabling primary plane
4725 * @crtc: the CRTC whose primary plane was just enabled
4726 *
4727 * Performs potentially sleeping operations that must be done after the primary
4728 * plane is enabled, such as updating FBC and IPS. Note that this may be
4729 * called due to an explicit primary plane update, or due to an implicit
4730 * re-enable that is caused when a sprite plane is updated to no longer
4731 * completely hide the primary plane.
4732 */
4733 static void
4734 intel_post_enable_primary(struct drm_crtc *crtc)
4735 {
4736 struct drm_device *dev = crtc->dev;
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739 int pipe = intel_crtc->pipe;
4740
4741 /*
4742 * BDW signals flip done immediately if the plane
4743 * is disabled, even if the plane enable is already
4744 * armed to occur at the next vblank :(
4745 */
4746 if (IS_BROADWELL(dev))
4747 intel_wait_for_vblank(dev, pipe);
4748
4749 /*
4750 * FIXME IPS should be fine as long as one plane is
4751 * enabled, but in practice it seems to have problems
4752 * when going from primary only to sprite only and vice
4753 * versa.
4754 */
4755 hsw_enable_ips(intel_crtc);
4756
4757 mutex_lock(&dev->struct_mutex);
4758 intel_fbc_update(dev);
4759 mutex_unlock(&dev->struct_mutex);
4760
4761 /*
4762 * Gen2 reports pipe underruns whenever all planes are disabled.
4763 * So don't enable underrun reporting before at least some planes
4764 * are enabled.
4765 * FIXME: Need to fix the logic to work when we turn off all planes
4766 * but leave the pipe running.
4767 */
4768 if (IS_GEN2(dev))
4769 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4770
4771 /* Underruns don't raise interrupts, so check manually. */
4772 if (HAS_GMCH_DISPLAY(dev))
4773 i9xx_check_fifo_underruns(dev_priv);
4774 }
4775
4776 /**
4777 * intel_pre_disable_primary - Perform operations before disabling primary plane
4778 * @crtc: the CRTC whose primary plane is to be disabled
4779 *
4780 * Performs potentially sleeping operations that must be done before the
4781 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4782 * be called due to an explicit primary plane update, or due to an implicit
4783 * disable that is caused when a sprite plane completely hides the primary
4784 * plane.
4785 */
4786 static void
4787 intel_pre_disable_primary(struct drm_crtc *crtc)
4788 {
4789 struct drm_device *dev = crtc->dev;
4790 struct drm_i915_private *dev_priv = dev->dev_private;
4791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4792 int pipe = intel_crtc->pipe;
4793
4794 /*
4795 * Gen2 reports pipe underruns whenever all planes are disabled.
4796 * So diasble underrun reporting before all the planes get disabled.
4797 * FIXME: Need to fix the logic to work when we turn off all planes
4798 * but leave the pipe running.
4799 */
4800 if (IS_GEN2(dev))
4801 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4802
4803 /*
4804 * Vblank time updates from the shadow to live plane control register
4805 * are blocked if the memory self-refresh mode is active at that
4806 * moment. So to make sure the plane gets truly disabled, disable
4807 * first the self-refresh mode. The self-refresh enable bit in turn
4808 * will be checked/applied by the HW only at the next frame start
4809 * event which is after the vblank start event, so we need to have a
4810 * wait-for-vblank between disabling the plane and the pipe.
4811 */
4812 if (HAS_GMCH_DISPLAY(dev))
4813 intel_set_memory_cxsr(dev_priv, false);
4814
4815 mutex_lock(&dev->struct_mutex);
4816 if (dev_priv->fbc.crtc == intel_crtc)
4817 intel_fbc_disable(dev);
4818 mutex_unlock(&dev->struct_mutex);
4819
4820 /*
4821 * FIXME IPS should be fine as long as one plane is
4822 * enabled, but in practice it seems to have problems
4823 * when going from primary only to sprite only and vice
4824 * versa.
4825 */
4826 hsw_disable_ips(intel_crtc);
4827 }
4828
4829 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4830 {
4831 struct drm_device *dev = crtc->dev;
4832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4833 int pipe = intel_crtc->pipe;
4834
4835 intel_enable_primary_hw_plane(crtc->primary, crtc);
4836 intel_enable_sprite_planes(crtc);
4837 intel_crtc_update_cursor(crtc, true);
4838
4839 intel_post_enable_primary(crtc);
4840
4841 /*
4842 * FIXME: Once we grow proper nuclear flip support out of this we need
4843 * to compute the mask of flip planes precisely. For the time being
4844 * consider this a flip to a NULL plane.
4845 */
4846 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4847 }
4848
4849 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4850 {
4851 struct drm_device *dev = crtc->dev;
4852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4853 struct intel_plane *intel_plane;
4854 int pipe = intel_crtc->pipe;
4855
4856 intel_crtc_wait_for_pending_flips(crtc);
4857
4858 intel_pre_disable_primary(crtc);
4859
4860 intel_crtc_dpms_overlay_disable(intel_crtc);
4861 for_each_intel_plane(dev, intel_plane) {
4862 if (intel_plane->pipe == pipe) {
4863 struct drm_crtc *from = intel_plane->base.crtc;
4864
4865 intel_plane->disable_plane(&intel_plane->base,
4866 from ?: crtc, true);
4867 }
4868 }
4869
4870 /*
4871 * FIXME: Once we grow proper nuclear flip support out of this we need
4872 * to compute the mask of flip planes precisely. For the time being
4873 * consider this a flip to a NULL plane.
4874 */
4875 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4876 }
4877
4878 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4879 {
4880 struct drm_device *dev = crtc->dev;
4881 struct drm_i915_private *dev_priv = dev->dev_private;
4882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4883 struct intel_encoder *encoder;
4884 int pipe = intel_crtc->pipe;
4885
4886 WARN_ON(!crtc->state->enable);
4887
4888 if (intel_crtc->active)
4889 return;
4890
4891 if (intel_crtc->config->has_pch_encoder)
4892 intel_prepare_shared_dpll(intel_crtc);
4893
4894 if (intel_crtc->config->has_dp_encoder)
4895 intel_dp_set_m_n(intel_crtc, M1_N1);
4896
4897 intel_set_pipe_timings(intel_crtc);
4898
4899 if (intel_crtc->config->has_pch_encoder) {
4900 intel_cpu_transcoder_set_m_n(intel_crtc,
4901 &intel_crtc->config->fdi_m_n, NULL);
4902 }
4903
4904 ironlake_set_pipeconf(crtc);
4905
4906 intel_crtc->active = true;
4907
4908 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4909 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4910
4911 for_each_encoder_on_crtc(dev, crtc, encoder)
4912 if (encoder->pre_enable)
4913 encoder->pre_enable(encoder);
4914
4915 if (intel_crtc->config->has_pch_encoder) {
4916 /* Note: FDI PLL enabling _must_ be done before we enable the
4917 * cpu pipes, hence this is separate from all the other fdi/pch
4918 * enabling. */
4919 ironlake_fdi_pll_enable(intel_crtc);
4920 } else {
4921 assert_fdi_tx_disabled(dev_priv, pipe);
4922 assert_fdi_rx_disabled(dev_priv, pipe);
4923 }
4924
4925 ironlake_pfit_enable(intel_crtc);
4926
4927 /*
4928 * On ILK+ LUT must be loaded before the pipe is running but with
4929 * clocks enabled
4930 */
4931 intel_crtc_load_lut(crtc);
4932
4933 intel_update_watermarks(crtc);
4934 intel_enable_pipe(intel_crtc);
4935
4936 if (intel_crtc->config->has_pch_encoder)
4937 ironlake_pch_enable(crtc);
4938
4939 assert_vblank_disabled(crtc);
4940 drm_crtc_vblank_on(crtc);
4941
4942 for_each_encoder_on_crtc(dev, crtc, encoder)
4943 encoder->enable(encoder);
4944
4945 if (HAS_PCH_CPT(dev))
4946 cpt_verify_modeset(dev, intel_crtc->pipe);
4947 }
4948
4949 /* IPS only exists on ULT machines and is tied to pipe A. */
4950 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4951 {
4952 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4953 }
4954
4955 /*
4956 * This implements the workaround described in the "notes" section of the mode
4957 * set sequence documentation. When going from no pipes or single pipe to
4958 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4959 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4960 */
4961 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4962 {
4963 struct drm_device *dev = crtc->base.dev;
4964 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4965
4966 /* We want to get the other_active_crtc only if there's only 1 other
4967 * active crtc. */
4968 for_each_intel_crtc(dev, crtc_it) {
4969 if (!crtc_it->active || crtc_it == crtc)
4970 continue;
4971
4972 if (other_active_crtc)
4973 return;
4974
4975 other_active_crtc = crtc_it;
4976 }
4977 if (!other_active_crtc)
4978 return;
4979
4980 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4981 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4982 }
4983
4984 static void haswell_crtc_enable(struct drm_crtc *crtc)
4985 {
4986 struct drm_device *dev = crtc->dev;
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4989 struct intel_encoder *encoder;
4990 int pipe = intel_crtc->pipe;
4991
4992 WARN_ON(!crtc->state->enable);
4993
4994 if (intel_crtc->active)
4995 return;
4996
4997 if (intel_crtc_to_shared_dpll(intel_crtc))
4998 intel_enable_shared_dpll(intel_crtc);
4999
5000 if (intel_crtc->config->has_dp_encoder)
5001 intel_dp_set_m_n(intel_crtc, M1_N1);
5002
5003 intel_set_pipe_timings(intel_crtc);
5004
5005 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5006 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5007 intel_crtc->config->pixel_multiplier - 1);
5008 }
5009
5010 if (intel_crtc->config->has_pch_encoder) {
5011 intel_cpu_transcoder_set_m_n(intel_crtc,
5012 &intel_crtc->config->fdi_m_n, NULL);
5013 }
5014
5015 haswell_set_pipeconf(crtc);
5016
5017 intel_set_pipe_csc(crtc);
5018
5019 intel_crtc->active = true;
5020
5021 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5022 for_each_encoder_on_crtc(dev, crtc, encoder)
5023 if (encoder->pre_enable)
5024 encoder->pre_enable(encoder);
5025
5026 if (intel_crtc->config->has_pch_encoder) {
5027 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5028 true);
5029 dev_priv->display.fdi_link_train(crtc);
5030 }
5031
5032 intel_ddi_enable_pipe_clock(intel_crtc);
5033
5034 if (INTEL_INFO(dev)->gen == 9)
5035 skylake_pfit_update(intel_crtc, 1);
5036 else if (INTEL_INFO(dev)->gen < 9)
5037 ironlake_pfit_enable(intel_crtc);
5038 else
5039 MISSING_CASE(INTEL_INFO(dev)->gen);
5040
5041 /*
5042 * On ILK+ LUT must be loaded before the pipe is running but with
5043 * clocks enabled
5044 */
5045 intel_crtc_load_lut(crtc);
5046
5047 intel_ddi_set_pipe_settings(crtc);
5048 intel_ddi_enable_transcoder_func(crtc);
5049
5050 intel_update_watermarks(crtc);
5051 intel_enable_pipe(intel_crtc);
5052
5053 if (intel_crtc->config->has_pch_encoder)
5054 lpt_pch_enable(crtc);
5055
5056 if (intel_crtc->config->dp_encoder_is_mst)
5057 intel_ddi_set_vc_payload_alloc(crtc, true);
5058
5059 assert_vblank_disabled(crtc);
5060 drm_crtc_vblank_on(crtc);
5061
5062 for_each_encoder_on_crtc(dev, crtc, encoder) {
5063 encoder->enable(encoder);
5064 intel_opregion_notify_encoder(encoder, true);
5065 }
5066
5067 /* If we change the relative order between pipe/planes enabling, we need
5068 * to change the workaround. */
5069 haswell_mode_set_planes_workaround(intel_crtc);
5070 }
5071
5072 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5073 {
5074 struct drm_device *dev = crtc->base.dev;
5075 struct drm_i915_private *dev_priv = dev->dev_private;
5076 int pipe = crtc->pipe;
5077
5078 /* To avoid upsetting the power well on haswell only disable the pfit if
5079 * it's in use. The hw state code will make sure we get this right. */
5080 if (crtc->config->pch_pfit.enabled) {
5081 I915_WRITE(PF_CTL(pipe), 0);
5082 I915_WRITE(PF_WIN_POS(pipe), 0);
5083 I915_WRITE(PF_WIN_SZ(pipe), 0);
5084 }
5085 }
5086
5087 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5088 {
5089 struct drm_device *dev = crtc->dev;
5090 struct drm_i915_private *dev_priv = dev->dev_private;
5091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5092 struct intel_encoder *encoder;
5093 int pipe = intel_crtc->pipe;
5094 u32 reg, temp;
5095
5096 if (!intel_crtc->active)
5097 return;
5098
5099 for_each_encoder_on_crtc(dev, crtc, encoder)
5100 encoder->disable(encoder);
5101
5102 drm_crtc_vblank_off(crtc);
5103 assert_vblank_disabled(crtc);
5104
5105 if (intel_crtc->config->has_pch_encoder)
5106 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5107
5108 intel_disable_pipe(intel_crtc);
5109
5110 ironlake_pfit_disable(intel_crtc);
5111
5112 if (intel_crtc->config->has_pch_encoder)
5113 ironlake_fdi_disable(crtc);
5114
5115 for_each_encoder_on_crtc(dev, crtc, encoder)
5116 if (encoder->post_disable)
5117 encoder->post_disable(encoder);
5118
5119 if (intel_crtc->config->has_pch_encoder) {
5120 ironlake_disable_pch_transcoder(dev_priv, pipe);
5121
5122 if (HAS_PCH_CPT(dev)) {
5123 /* disable TRANS_DP_CTL */
5124 reg = TRANS_DP_CTL(pipe);
5125 temp = I915_READ(reg);
5126 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5127 TRANS_DP_PORT_SEL_MASK);
5128 temp |= TRANS_DP_PORT_SEL_NONE;
5129 I915_WRITE(reg, temp);
5130
5131 /* disable DPLL_SEL */
5132 temp = I915_READ(PCH_DPLL_SEL);
5133 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5134 I915_WRITE(PCH_DPLL_SEL, temp);
5135 }
5136
5137 /* disable PCH DPLL */
5138 intel_disable_shared_dpll(intel_crtc);
5139
5140 ironlake_fdi_pll_disable(intel_crtc);
5141 }
5142
5143 intel_crtc->active = false;
5144 intel_update_watermarks(crtc);
5145
5146 mutex_lock(&dev->struct_mutex);
5147 intel_fbc_update(dev);
5148 mutex_unlock(&dev->struct_mutex);
5149 }
5150
5151 static void haswell_crtc_disable(struct drm_crtc *crtc)
5152 {
5153 struct drm_device *dev = crtc->dev;
5154 struct drm_i915_private *dev_priv = dev->dev_private;
5155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5156 struct intel_encoder *encoder;
5157 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5158
5159 if (!intel_crtc->active)
5160 return;
5161
5162 for_each_encoder_on_crtc(dev, crtc, encoder) {
5163 intel_opregion_notify_encoder(encoder, false);
5164 encoder->disable(encoder);
5165 }
5166
5167 drm_crtc_vblank_off(crtc);
5168 assert_vblank_disabled(crtc);
5169
5170 if (intel_crtc->config->has_pch_encoder)
5171 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5172 false);
5173 intel_disable_pipe(intel_crtc);
5174
5175 if (intel_crtc->config->dp_encoder_is_mst)
5176 intel_ddi_set_vc_payload_alloc(crtc, false);
5177
5178 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5179
5180 if (INTEL_INFO(dev)->gen == 9)
5181 skylake_pfit_update(intel_crtc, 0);
5182 else if (INTEL_INFO(dev)->gen < 9)
5183 ironlake_pfit_disable(intel_crtc);
5184 else
5185 MISSING_CASE(INTEL_INFO(dev)->gen);
5186
5187 intel_ddi_disable_pipe_clock(intel_crtc);
5188
5189 if (intel_crtc->config->has_pch_encoder) {
5190 lpt_disable_pch_transcoder(dev_priv);
5191 intel_ddi_fdi_disable(crtc);
5192 }
5193
5194 for_each_encoder_on_crtc(dev, crtc, encoder)
5195 if (encoder->post_disable)
5196 encoder->post_disable(encoder);
5197
5198 intel_crtc->active = false;
5199 intel_update_watermarks(crtc);
5200
5201 mutex_lock(&dev->struct_mutex);
5202 intel_fbc_update(dev);
5203 mutex_unlock(&dev->struct_mutex);
5204
5205 if (intel_crtc_to_shared_dpll(intel_crtc))
5206 intel_disable_shared_dpll(intel_crtc);
5207 }
5208
5209 static void ironlake_crtc_off(struct drm_crtc *crtc)
5210 {
5211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5212 intel_put_shared_dpll(intel_crtc);
5213 }
5214
5215
5216 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5217 {
5218 struct drm_device *dev = crtc->base.dev;
5219 struct drm_i915_private *dev_priv = dev->dev_private;
5220 struct intel_crtc_state *pipe_config = crtc->config;
5221
5222 if (!pipe_config->gmch_pfit.control)
5223 return;
5224
5225 /*
5226 * The panel fitter should only be adjusted whilst the pipe is disabled,
5227 * according to register description and PRM.
5228 */
5229 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5230 assert_pipe_disabled(dev_priv, crtc->pipe);
5231
5232 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5233 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5234
5235 /* Border color in case we don't scale up to the full screen. Black by
5236 * default, change to something else for debugging. */
5237 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5238 }
5239
5240 static enum intel_display_power_domain port_to_power_domain(enum port port)
5241 {
5242 switch (port) {
5243 case PORT_A:
5244 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5245 case PORT_B:
5246 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5247 case PORT_C:
5248 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5249 case PORT_D:
5250 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5251 default:
5252 WARN_ON_ONCE(1);
5253 return POWER_DOMAIN_PORT_OTHER;
5254 }
5255 }
5256
5257 #define for_each_power_domain(domain, mask) \
5258 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5259 if ((1 << (domain)) & (mask))
5260
5261 enum intel_display_power_domain
5262 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5263 {
5264 struct drm_device *dev = intel_encoder->base.dev;
5265 struct intel_digital_port *intel_dig_port;
5266
5267 switch (intel_encoder->type) {
5268 case INTEL_OUTPUT_UNKNOWN:
5269 /* Only DDI platforms should ever use this output type */
5270 WARN_ON_ONCE(!HAS_DDI(dev));
5271 case INTEL_OUTPUT_DISPLAYPORT:
5272 case INTEL_OUTPUT_HDMI:
5273 case INTEL_OUTPUT_EDP:
5274 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5275 return port_to_power_domain(intel_dig_port->port);
5276 case INTEL_OUTPUT_DP_MST:
5277 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5278 return port_to_power_domain(intel_dig_port->port);
5279 case INTEL_OUTPUT_ANALOG:
5280 return POWER_DOMAIN_PORT_CRT;
5281 case INTEL_OUTPUT_DSI:
5282 return POWER_DOMAIN_PORT_DSI;
5283 default:
5284 return POWER_DOMAIN_PORT_OTHER;
5285 }
5286 }
5287
5288 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5289 {
5290 struct drm_device *dev = crtc->dev;
5291 struct intel_encoder *intel_encoder;
5292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5293 enum pipe pipe = intel_crtc->pipe;
5294 unsigned long mask;
5295 enum transcoder transcoder;
5296
5297 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5298
5299 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5300 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5301 if (intel_crtc->config->pch_pfit.enabled ||
5302 intel_crtc->config->pch_pfit.force_thru)
5303 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5304
5305 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5306 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5307
5308 return mask;
5309 }
5310
5311 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5312 {
5313 struct drm_device *dev = state->dev;
5314 struct drm_i915_private *dev_priv = dev->dev_private;
5315 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5316 struct intel_crtc *crtc;
5317
5318 /*
5319 * First get all needed power domains, then put all unneeded, to avoid
5320 * any unnecessary toggling of the power wells.
5321 */
5322 for_each_intel_crtc(dev, crtc) {
5323 enum intel_display_power_domain domain;
5324
5325 if (!crtc->base.state->enable)
5326 continue;
5327
5328 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5329
5330 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5331 intel_display_power_get(dev_priv, domain);
5332 }
5333
5334 if (dev_priv->display.modeset_global_resources)
5335 dev_priv->display.modeset_global_resources(state);
5336
5337 for_each_intel_crtc(dev, crtc) {
5338 enum intel_display_power_domain domain;
5339
5340 for_each_power_domain(domain, crtc->enabled_power_domains)
5341 intel_display_power_put(dev_priv, domain);
5342
5343 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5344 }
5345
5346 intel_display_set_init_power(dev_priv, false);
5347 }
5348
5349 static void intel_update_max_cdclk(struct drm_device *dev)
5350 {
5351 struct drm_i915_private *dev_priv = dev->dev_private;
5352
5353 if (IS_SKYLAKE(dev)) {
5354 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5355
5356 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5357 dev_priv->max_cdclk_freq = 675000;
5358 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5359 dev_priv->max_cdclk_freq = 540000;
5360 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5361 dev_priv->max_cdclk_freq = 450000;
5362 else
5363 dev_priv->max_cdclk_freq = 337500;
5364 } else if (IS_BROADWELL(dev)) {
5365 /*
5366 * FIXME with extra cooling we can allow
5367 * 540 MHz for ULX and 675 Mhz for ULT.
5368 * How can we know if extra cooling is
5369 * available? PCI ID, VTB, something else?
5370 */
5371 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5372 dev_priv->max_cdclk_freq = 450000;
5373 else if (IS_BDW_ULX(dev))
5374 dev_priv->max_cdclk_freq = 450000;
5375 else if (IS_BDW_ULT(dev))
5376 dev_priv->max_cdclk_freq = 540000;
5377 else
5378 dev_priv->max_cdclk_freq = 675000;
5379 } else if (IS_VALLEYVIEW(dev)) {
5380 dev_priv->max_cdclk_freq = 400000;
5381 } else {
5382 /* otherwise assume cdclk is fixed */
5383 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5384 }
5385
5386 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5387 dev_priv->max_cdclk_freq);
5388 }
5389
5390 static void intel_update_cdclk(struct drm_device *dev)
5391 {
5392 struct drm_i915_private *dev_priv = dev->dev_private;
5393
5394 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5395 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5396 dev_priv->cdclk_freq);
5397
5398 /*
5399 * Program the gmbus_freq based on the cdclk frequency.
5400 * BSpec erroneously claims we should aim for 4MHz, but
5401 * in fact 1MHz is the correct frequency.
5402 */
5403 if (IS_VALLEYVIEW(dev)) {
5404 /*
5405 * Program the gmbus_freq based on the cdclk frequency.
5406 * BSpec erroneously claims we should aim for 4MHz, but
5407 * in fact 1MHz is the correct frequency.
5408 */
5409 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5410 }
5411
5412 if (dev_priv->max_cdclk_freq == 0)
5413 intel_update_max_cdclk(dev);
5414 }
5415
5416 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5417 {
5418 struct drm_i915_private *dev_priv = dev->dev_private;
5419 uint32_t divider;
5420 uint32_t ratio;
5421 uint32_t current_freq;
5422 int ret;
5423
5424 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5425 switch (frequency) {
5426 case 144000:
5427 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5428 ratio = BXT_DE_PLL_RATIO(60);
5429 break;
5430 case 288000:
5431 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5432 ratio = BXT_DE_PLL_RATIO(60);
5433 break;
5434 case 384000:
5435 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5436 ratio = BXT_DE_PLL_RATIO(60);
5437 break;
5438 case 576000:
5439 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5440 ratio = BXT_DE_PLL_RATIO(60);
5441 break;
5442 case 624000:
5443 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5444 ratio = BXT_DE_PLL_RATIO(65);
5445 break;
5446 case 19200:
5447 /*
5448 * Bypass frequency with DE PLL disabled. Init ratio, divider
5449 * to suppress GCC warning.
5450 */
5451 ratio = 0;
5452 divider = 0;
5453 break;
5454 default:
5455 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5456
5457 return;
5458 }
5459
5460 mutex_lock(&dev_priv->rps.hw_lock);
5461 /* Inform power controller of upcoming frequency change */
5462 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5463 0x80000000);
5464 mutex_unlock(&dev_priv->rps.hw_lock);
5465
5466 if (ret) {
5467 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5468 ret, frequency);
5469 return;
5470 }
5471
5472 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5473 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5474 current_freq = current_freq * 500 + 1000;
5475
5476 /*
5477 * DE PLL has to be disabled when
5478 * - setting to 19.2MHz (bypass, PLL isn't used)
5479 * - before setting to 624MHz (PLL needs toggling)
5480 * - before setting to any frequency from 624MHz (PLL needs toggling)
5481 */
5482 if (frequency == 19200 || frequency == 624000 ||
5483 current_freq == 624000) {
5484 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5485 /* Timeout 200us */
5486 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5487 1))
5488 DRM_ERROR("timout waiting for DE PLL unlock\n");
5489 }
5490
5491 if (frequency != 19200) {
5492 uint32_t val;
5493
5494 val = I915_READ(BXT_DE_PLL_CTL);
5495 val &= ~BXT_DE_PLL_RATIO_MASK;
5496 val |= ratio;
5497 I915_WRITE(BXT_DE_PLL_CTL, val);
5498
5499 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5500 /* Timeout 200us */
5501 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5502 DRM_ERROR("timeout waiting for DE PLL lock\n");
5503
5504 val = I915_READ(CDCLK_CTL);
5505 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5506 val |= divider;
5507 /*
5508 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5509 * enable otherwise.
5510 */
5511 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5512 if (frequency >= 500000)
5513 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5514
5515 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5516 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5517 val |= (frequency - 1000) / 500;
5518 I915_WRITE(CDCLK_CTL, val);
5519 }
5520
5521 mutex_lock(&dev_priv->rps.hw_lock);
5522 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5523 DIV_ROUND_UP(frequency, 25000));
5524 mutex_unlock(&dev_priv->rps.hw_lock);
5525
5526 if (ret) {
5527 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5528 ret, frequency);
5529 return;
5530 }
5531
5532 dev_priv->cdclk_freq = frequency;
5533 }
5534
5535 void broxton_init_cdclk(struct drm_device *dev)
5536 {
5537 struct drm_i915_private *dev_priv = dev->dev_private;
5538 uint32_t val;
5539
5540 /*
5541 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5542 * or else the reset will hang because there is no PCH to respond.
5543 * Move the handshake programming to initialization sequence.
5544 * Previously was left up to BIOS.
5545 */
5546 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5547 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5548 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5549
5550 /* Enable PG1 for cdclk */
5551 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5552
5553 /* check if cd clock is enabled */
5554 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5555 DRM_DEBUG_KMS("Display already initialized\n");
5556 return;
5557 }
5558
5559 /*
5560 * FIXME:
5561 * - The initial CDCLK needs to be read from VBT.
5562 * Need to make this change after VBT has changes for BXT.
5563 * - check if setting the max (or any) cdclk freq is really necessary
5564 * here, it belongs to modeset time
5565 */
5566 broxton_set_cdclk(dev, 624000);
5567
5568 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5569 POSTING_READ(DBUF_CTL);
5570
5571 udelay(10);
5572
5573 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5574 DRM_ERROR("DBuf power enable timeout!\n");
5575 }
5576
5577 void broxton_uninit_cdclk(struct drm_device *dev)
5578 {
5579 struct drm_i915_private *dev_priv = dev->dev_private;
5580
5581 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5582 POSTING_READ(DBUF_CTL);
5583
5584 udelay(10);
5585
5586 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5587 DRM_ERROR("DBuf power disable timeout!\n");
5588
5589 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5590 broxton_set_cdclk(dev, 19200);
5591
5592 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5593 }
5594
5595 static const struct skl_cdclk_entry {
5596 unsigned int freq;
5597 unsigned int vco;
5598 } skl_cdclk_frequencies[] = {
5599 { .freq = 308570, .vco = 8640 },
5600 { .freq = 337500, .vco = 8100 },
5601 { .freq = 432000, .vco = 8640 },
5602 { .freq = 450000, .vco = 8100 },
5603 { .freq = 540000, .vco = 8100 },
5604 { .freq = 617140, .vco = 8640 },
5605 { .freq = 675000, .vco = 8100 },
5606 };
5607
5608 static unsigned int skl_cdclk_decimal(unsigned int freq)
5609 {
5610 return (freq - 1000) / 500;
5611 }
5612
5613 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5614 {
5615 unsigned int i;
5616
5617 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5618 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5619
5620 if (e->freq == freq)
5621 return e->vco;
5622 }
5623
5624 return 8100;
5625 }
5626
5627 static void
5628 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5629 {
5630 unsigned int min_freq;
5631 u32 val;
5632
5633 /* select the minimum CDCLK before enabling DPLL 0 */
5634 val = I915_READ(CDCLK_CTL);
5635 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5636 val |= CDCLK_FREQ_337_308;
5637
5638 if (required_vco == 8640)
5639 min_freq = 308570;
5640 else
5641 min_freq = 337500;
5642
5643 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5644
5645 I915_WRITE(CDCLK_CTL, val);
5646 POSTING_READ(CDCLK_CTL);
5647
5648 /*
5649 * We always enable DPLL0 with the lowest link rate possible, but still
5650 * taking into account the VCO required to operate the eDP panel at the
5651 * desired frequency. The usual DP link rates operate with a VCO of
5652 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5653 * The modeset code is responsible for the selection of the exact link
5654 * rate later on, with the constraint of choosing a frequency that
5655 * works with required_vco.
5656 */
5657 val = I915_READ(DPLL_CTRL1);
5658
5659 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5660 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5661 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5662 if (required_vco == 8640)
5663 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5664 SKL_DPLL0);
5665 else
5666 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5667 SKL_DPLL0);
5668
5669 I915_WRITE(DPLL_CTRL1, val);
5670 POSTING_READ(DPLL_CTRL1);
5671
5672 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5673
5674 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5675 DRM_ERROR("DPLL0 not locked\n");
5676 }
5677
5678 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5679 {
5680 int ret;
5681 u32 val;
5682
5683 /* inform PCU we want to change CDCLK */
5684 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5685 mutex_lock(&dev_priv->rps.hw_lock);
5686 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5687 mutex_unlock(&dev_priv->rps.hw_lock);
5688
5689 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5690 }
5691
5692 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5693 {
5694 unsigned int i;
5695
5696 for (i = 0; i < 15; i++) {
5697 if (skl_cdclk_pcu_ready(dev_priv))
5698 return true;
5699 udelay(10);
5700 }
5701
5702 return false;
5703 }
5704
5705 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5706 {
5707 struct drm_device *dev = dev_priv->dev;
5708 u32 freq_select, pcu_ack;
5709
5710 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5711
5712 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5713 DRM_ERROR("failed to inform PCU about cdclk change\n");
5714 return;
5715 }
5716
5717 /* set CDCLK_CTL */
5718 switch(freq) {
5719 case 450000:
5720 case 432000:
5721 freq_select = CDCLK_FREQ_450_432;
5722 pcu_ack = 1;
5723 break;
5724 case 540000:
5725 freq_select = CDCLK_FREQ_540;
5726 pcu_ack = 2;
5727 break;
5728 case 308570:
5729 case 337500:
5730 default:
5731 freq_select = CDCLK_FREQ_337_308;
5732 pcu_ack = 0;
5733 break;
5734 case 617140:
5735 case 675000:
5736 freq_select = CDCLK_FREQ_675_617;
5737 pcu_ack = 3;
5738 break;
5739 }
5740
5741 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5742 POSTING_READ(CDCLK_CTL);
5743
5744 /* inform PCU of the change */
5745 mutex_lock(&dev_priv->rps.hw_lock);
5746 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5747 mutex_unlock(&dev_priv->rps.hw_lock);
5748
5749 intel_update_cdclk(dev);
5750 }
5751
5752 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5753 {
5754 /* disable DBUF power */
5755 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5756 POSTING_READ(DBUF_CTL);
5757
5758 udelay(10);
5759
5760 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5761 DRM_ERROR("DBuf power disable timeout\n");
5762
5763 /* disable DPLL0 */
5764 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5765 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5766 DRM_ERROR("Couldn't disable DPLL0\n");
5767
5768 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5769 }
5770
5771 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5772 {
5773 u32 val;
5774 unsigned int required_vco;
5775
5776 /* enable PCH reset handshake */
5777 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5778 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5779
5780 /* enable PG1 and Misc I/O */
5781 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5782
5783 /* DPLL0 already enabed !? */
5784 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5785 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5786 return;
5787 }
5788
5789 /* enable DPLL0 */
5790 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5791 skl_dpll0_enable(dev_priv, required_vco);
5792
5793 /* set CDCLK to the frequency the BIOS chose */
5794 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5795
5796 /* enable DBUF power */
5797 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5798 POSTING_READ(DBUF_CTL);
5799
5800 udelay(10);
5801
5802 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5803 DRM_ERROR("DBuf power enable timeout\n");
5804 }
5805
5806 /* returns HPLL frequency in kHz */
5807 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5808 {
5809 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5810
5811 /* Obtain SKU information */
5812 mutex_lock(&dev_priv->sb_lock);
5813 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5814 CCK_FUSE_HPLL_FREQ_MASK;
5815 mutex_unlock(&dev_priv->sb_lock);
5816
5817 return vco_freq[hpll_freq] * 1000;
5818 }
5819
5820 /* Adjust CDclk dividers to allow high res or save power if possible */
5821 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5822 {
5823 struct drm_i915_private *dev_priv = dev->dev_private;
5824 u32 val, cmd;
5825
5826 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5827 != dev_priv->cdclk_freq);
5828
5829 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5830 cmd = 2;
5831 else if (cdclk == 266667)
5832 cmd = 1;
5833 else
5834 cmd = 0;
5835
5836 mutex_lock(&dev_priv->rps.hw_lock);
5837 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5838 val &= ~DSPFREQGUAR_MASK;
5839 val |= (cmd << DSPFREQGUAR_SHIFT);
5840 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5841 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5842 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5843 50)) {
5844 DRM_ERROR("timed out waiting for CDclk change\n");
5845 }
5846 mutex_unlock(&dev_priv->rps.hw_lock);
5847
5848 mutex_lock(&dev_priv->sb_lock);
5849
5850 if (cdclk == 400000) {
5851 u32 divider;
5852
5853 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5854
5855 /* adjust cdclk divider */
5856 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5857 val &= ~DISPLAY_FREQUENCY_VALUES;
5858 val |= divider;
5859 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5860
5861 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5862 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5863 50))
5864 DRM_ERROR("timed out waiting for CDclk change\n");
5865 }
5866
5867 /* adjust self-refresh exit latency value */
5868 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5869 val &= ~0x7f;
5870
5871 /*
5872 * For high bandwidth configs, we set a higher latency in the bunit
5873 * so that the core display fetch happens in time to avoid underruns.
5874 */
5875 if (cdclk == 400000)
5876 val |= 4500 / 250; /* 4.5 usec */
5877 else
5878 val |= 3000 / 250; /* 3.0 usec */
5879 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5880
5881 mutex_unlock(&dev_priv->sb_lock);
5882
5883 intel_update_cdclk(dev);
5884 }
5885
5886 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5887 {
5888 struct drm_i915_private *dev_priv = dev->dev_private;
5889 u32 val, cmd;
5890
5891 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5892 != dev_priv->cdclk_freq);
5893
5894 switch (cdclk) {
5895 case 333333:
5896 case 320000:
5897 case 266667:
5898 case 200000:
5899 break;
5900 default:
5901 MISSING_CASE(cdclk);
5902 return;
5903 }
5904
5905 /*
5906 * Specs are full of misinformation, but testing on actual
5907 * hardware has shown that we just need to write the desired
5908 * CCK divider into the Punit register.
5909 */
5910 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5911
5912 mutex_lock(&dev_priv->rps.hw_lock);
5913 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5914 val &= ~DSPFREQGUAR_MASK_CHV;
5915 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5916 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5917 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5918 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5919 50)) {
5920 DRM_ERROR("timed out waiting for CDclk change\n");
5921 }
5922 mutex_unlock(&dev_priv->rps.hw_lock);
5923
5924 intel_update_cdclk(dev);
5925 }
5926
5927 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5928 int max_pixclk)
5929 {
5930 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5931 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5932
5933 /*
5934 * Really only a few cases to deal with, as only 4 CDclks are supported:
5935 * 200MHz
5936 * 267MHz
5937 * 320/333MHz (depends on HPLL freq)
5938 * 400MHz (VLV only)
5939 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5940 * of the lower bin and adjust if needed.
5941 *
5942 * We seem to get an unstable or solid color picture at 200MHz.
5943 * Not sure what's wrong. For now use 200MHz only when all pipes
5944 * are off.
5945 */
5946 if (!IS_CHERRYVIEW(dev_priv) &&
5947 max_pixclk > freq_320*limit/100)
5948 return 400000;
5949 else if (max_pixclk > 266667*limit/100)
5950 return freq_320;
5951 else if (max_pixclk > 0)
5952 return 266667;
5953 else
5954 return 200000;
5955 }
5956
5957 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5958 int max_pixclk)
5959 {
5960 /*
5961 * FIXME:
5962 * - remove the guardband, it's not needed on BXT
5963 * - set 19.2MHz bypass frequency if there are no active pipes
5964 */
5965 if (max_pixclk > 576000*9/10)
5966 return 624000;
5967 else if (max_pixclk > 384000*9/10)
5968 return 576000;
5969 else if (max_pixclk > 288000*9/10)
5970 return 384000;
5971 else if (max_pixclk > 144000*9/10)
5972 return 288000;
5973 else
5974 return 144000;
5975 }
5976
5977 /* Compute the max pixel clock for new configuration. Uses atomic state if
5978 * that's non-NULL, look at current state otherwise. */
5979 static int intel_mode_max_pixclk(struct drm_device *dev,
5980 struct drm_atomic_state *state)
5981 {
5982 struct intel_crtc *intel_crtc;
5983 struct intel_crtc_state *crtc_state;
5984 int max_pixclk = 0;
5985
5986 for_each_intel_crtc(dev, intel_crtc) {
5987 if (state)
5988 crtc_state =
5989 intel_atomic_get_crtc_state(state, intel_crtc);
5990 else
5991 crtc_state = intel_crtc->config;
5992 if (IS_ERR(crtc_state))
5993 return PTR_ERR(crtc_state);
5994
5995 if (!crtc_state->base.enable)
5996 continue;
5997
5998 max_pixclk = max(max_pixclk,
5999 crtc_state->base.adjusted_mode.crtc_clock);
6000 }
6001
6002 return max_pixclk;
6003 }
6004
6005 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
6006 {
6007 struct drm_i915_private *dev_priv = to_i915(state->dev);
6008 struct drm_crtc *crtc;
6009 struct drm_crtc_state *crtc_state;
6010 int max_pixclk = intel_mode_max_pixclk(state->dev, state);
6011 int cdclk, i;
6012
6013 if (max_pixclk < 0)
6014 return max_pixclk;
6015
6016 if (IS_VALLEYVIEW(dev_priv))
6017 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
6018 else
6019 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
6020
6021 if (cdclk == dev_priv->cdclk_freq)
6022 return 0;
6023
6024 /* add all active pipes to the state */
6025 for_each_crtc(state->dev, crtc) {
6026 if (!crtc->state->enable)
6027 continue;
6028
6029 crtc_state = drm_atomic_get_crtc_state(state, crtc);
6030 if (IS_ERR(crtc_state))
6031 return PTR_ERR(crtc_state);
6032 }
6033
6034 /* disable/enable all currently active pipes while we change cdclk */
6035 for_each_crtc_in_state(state, crtc, crtc_state, i)
6036 if (crtc_state->enable)
6037 crtc_state->mode_changed = true;
6038
6039 return 0;
6040 }
6041
6042 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6043 {
6044 unsigned int credits, default_credits;
6045
6046 if (IS_CHERRYVIEW(dev_priv))
6047 default_credits = PFI_CREDIT(12);
6048 else
6049 default_credits = PFI_CREDIT(8);
6050
6051 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
6052 /* CHV suggested value is 31 or 63 */
6053 if (IS_CHERRYVIEW(dev_priv))
6054 credits = PFI_CREDIT_31;
6055 else
6056 credits = PFI_CREDIT(15);
6057 } else {
6058 credits = default_credits;
6059 }
6060
6061 /*
6062 * WA - write default credits before re-programming
6063 * FIXME: should we also set the resend bit here?
6064 */
6065 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6066 default_credits);
6067
6068 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6069 credits | PFI_CREDIT_RESEND);
6070
6071 /*
6072 * FIXME is this guaranteed to clear
6073 * immediately or should we poll for it?
6074 */
6075 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6076 }
6077
6078 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
6079 {
6080 struct drm_device *dev = old_state->dev;
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
6083 int req_cdclk;
6084
6085 /* The path in intel_mode_max_pixclk() with a NULL atomic state should
6086 * never fail. */
6087 if (WARN_ON(max_pixclk < 0))
6088 return;
6089
6090 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
6091
6092 if (req_cdclk != dev_priv->cdclk_freq) {
6093 /*
6094 * FIXME: We can end up here with all power domains off, yet
6095 * with a CDCLK frequency other than the minimum. To account
6096 * for this take the PIPE-A power domain, which covers the HW
6097 * blocks needed for the following programming. This can be
6098 * removed once it's guaranteed that we get here either with
6099 * the minimum CDCLK set, or the required power domains
6100 * enabled.
6101 */
6102 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6103
6104 if (IS_CHERRYVIEW(dev))
6105 cherryview_set_cdclk(dev, req_cdclk);
6106 else
6107 valleyview_set_cdclk(dev, req_cdclk);
6108
6109 vlv_program_pfi_credits(dev_priv);
6110
6111 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6112 }
6113 }
6114
6115 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6116 {
6117 struct drm_device *dev = crtc->dev;
6118 struct drm_i915_private *dev_priv = to_i915(dev);
6119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6120 struct intel_encoder *encoder;
6121 int pipe = intel_crtc->pipe;
6122 bool is_dsi;
6123
6124 WARN_ON(!crtc->state->enable);
6125
6126 if (intel_crtc->active)
6127 return;
6128
6129 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6130
6131 if (!is_dsi) {
6132 if (IS_CHERRYVIEW(dev))
6133 chv_prepare_pll(intel_crtc, intel_crtc->config);
6134 else
6135 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6136 }
6137
6138 if (intel_crtc->config->has_dp_encoder)
6139 intel_dp_set_m_n(intel_crtc, M1_N1);
6140
6141 intel_set_pipe_timings(intel_crtc);
6142
6143 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6144 struct drm_i915_private *dev_priv = dev->dev_private;
6145
6146 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6147 I915_WRITE(CHV_CANVAS(pipe), 0);
6148 }
6149
6150 i9xx_set_pipeconf(intel_crtc);
6151
6152 intel_crtc->active = true;
6153
6154 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6155
6156 for_each_encoder_on_crtc(dev, crtc, encoder)
6157 if (encoder->pre_pll_enable)
6158 encoder->pre_pll_enable(encoder);
6159
6160 if (!is_dsi) {
6161 if (IS_CHERRYVIEW(dev))
6162 chv_enable_pll(intel_crtc, intel_crtc->config);
6163 else
6164 vlv_enable_pll(intel_crtc, intel_crtc->config);
6165 }
6166
6167 for_each_encoder_on_crtc(dev, crtc, encoder)
6168 if (encoder->pre_enable)
6169 encoder->pre_enable(encoder);
6170
6171 i9xx_pfit_enable(intel_crtc);
6172
6173 intel_crtc_load_lut(crtc);
6174
6175 intel_update_watermarks(crtc);
6176 intel_enable_pipe(intel_crtc);
6177
6178 assert_vblank_disabled(crtc);
6179 drm_crtc_vblank_on(crtc);
6180
6181 for_each_encoder_on_crtc(dev, crtc, encoder)
6182 encoder->enable(encoder);
6183 }
6184
6185 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6186 {
6187 struct drm_device *dev = crtc->base.dev;
6188 struct drm_i915_private *dev_priv = dev->dev_private;
6189
6190 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6191 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6192 }
6193
6194 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6195 {
6196 struct drm_device *dev = crtc->dev;
6197 struct drm_i915_private *dev_priv = to_i915(dev);
6198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6199 struct intel_encoder *encoder;
6200 int pipe = intel_crtc->pipe;
6201
6202 WARN_ON(!crtc->state->enable);
6203
6204 if (intel_crtc->active)
6205 return;
6206
6207 i9xx_set_pll_dividers(intel_crtc);
6208
6209 if (intel_crtc->config->has_dp_encoder)
6210 intel_dp_set_m_n(intel_crtc, M1_N1);
6211
6212 intel_set_pipe_timings(intel_crtc);
6213
6214 i9xx_set_pipeconf(intel_crtc);
6215
6216 intel_crtc->active = true;
6217
6218 if (!IS_GEN2(dev))
6219 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6220
6221 for_each_encoder_on_crtc(dev, crtc, encoder)
6222 if (encoder->pre_enable)
6223 encoder->pre_enable(encoder);
6224
6225 i9xx_enable_pll(intel_crtc);
6226
6227 i9xx_pfit_enable(intel_crtc);
6228
6229 intel_crtc_load_lut(crtc);
6230
6231 intel_update_watermarks(crtc);
6232 intel_enable_pipe(intel_crtc);
6233
6234 assert_vblank_disabled(crtc);
6235 drm_crtc_vblank_on(crtc);
6236
6237 for_each_encoder_on_crtc(dev, crtc, encoder)
6238 encoder->enable(encoder);
6239 }
6240
6241 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6242 {
6243 struct drm_device *dev = crtc->base.dev;
6244 struct drm_i915_private *dev_priv = dev->dev_private;
6245
6246 if (!crtc->config->gmch_pfit.control)
6247 return;
6248
6249 assert_pipe_disabled(dev_priv, crtc->pipe);
6250
6251 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6252 I915_READ(PFIT_CONTROL));
6253 I915_WRITE(PFIT_CONTROL, 0);
6254 }
6255
6256 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6257 {
6258 struct drm_device *dev = crtc->dev;
6259 struct drm_i915_private *dev_priv = dev->dev_private;
6260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6261 struct intel_encoder *encoder;
6262 int pipe = intel_crtc->pipe;
6263
6264 if (!intel_crtc->active)
6265 return;
6266
6267 /*
6268 * On gen2 planes are double buffered but the pipe isn't, so we must
6269 * wait for planes to fully turn off before disabling the pipe.
6270 * We also need to wait on all gmch platforms because of the
6271 * self-refresh mode constraint explained above.
6272 */
6273 intel_wait_for_vblank(dev, pipe);
6274
6275 for_each_encoder_on_crtc(dev, crtc, encoder)
6276 encoder->disable(encoder);
6277
6278 drm_crtc_vblank_off(crtc);
6279 assert_vblank_disabled(crtc);
6280
6281 intel_disable_pipe(intel_crtc);
6282
6283 i9xx_pfit_disable(intel_crtc);
6284
6285 for_each_encoder_on_crtc(dev, crtc, encoder)
6286 if (encoder->post_disable)
6287 encoder->post_disable(encoder);
6288
6289 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6290 if (IS_CHERRYVIEW(dev))
6291 chv_disable_pll(dev_priv, pipe);
6292 else if (IS_VALLEYVIEW(dev))
6293 vlv_disable_pll(dev_priv, pipe);
6294 else
6295 i9xx_disable_pll(intel_crtc);
6296 }
6297
6298 if (!IS_GEN2(dev))
6299 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6300
6301 intel_crtc->active = false;
6302 intel_update_watermarks(crtc);
6303
6304 mutex_lock(&dev->struct_mutex);
6305 intel_fbc_update(dev);
6306 mutex_unlock(&dev->struct_mutex);
6307 }
6308
6309 static void i9xx_crtc_off(struct drm_crtc *crtc)
6310 {
6311 }
6312
6313 /* Master function to enable/disable CRTC and corresponding power wells */
6314 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6315 {
6316 struct drm_device *dev = crtc->dev;
6317 struct drm_i915_private *dev_priv = dev->dev_private;
6318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6319 enum intel_display_power_domain domain;
6320 unsigned long domains;
6321
6322 if (enable) {
6323 if (!intel_crtc->active) {
6324 domains = get_crtc_power_domains(crtc);
6325 for_each_power_domain(domain, domains)
6326 intel_display_power_get(dev_priv, domain);
6327 intel_crtc->enabled_power_domains = domains;
6328
6329 dev_priv->display.crtc_enable(crtc);
6330 intel_crtc_enable_planes(crtc);
6331 }
6332 } else {
6333 if (intel_crtc->active) {
6334 intel_crtc_disable_planes(crtc);
6335 dev_priv->display.crtc_disable(crtc);
6336
6337 domains = intel_crtc->enabled_power_domains;
6338 for_each_power_domain(domain, domains)
6339 intel_display_power_put(dev_priv, domain);
6340 intel_crtc->enabled_power_domains = 0;
6341 }
6342 }
6343 }
6344
6345 /**
6346 * Sets the power management mode of the pipe and plane.
6347 */
6348 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6349 {
6350 struct drm_device *dev = crtc->dev;
6351 struct intel_encoder *intel_encoder;
6352 bool enable = false;
6353
6354 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6355 enable |= intel_encoder->connectors_active;
6356
6357 intel_crtc_control(crtc, enable);
6358
6359 crtc->state->active = enable;
6360 }
6361
6362 static void intel_crtc_disable(struct drm_crtc *crtc)
6363 {
6364 struct drm_device *dev = crtc->dev;
6365 struct drm_connector *connector;
6366 struct drm_i915_private *dev_priv = dev->dev_private;
6367
6368 /* crtc should still be enabled when we disable it. */
6369 WARN_ON(!crtc->state->enable);
6370
6371 intel_crtc_disable_planes(crtc);
6372 dev_priv->display.crtc_disable(crtc);
6373 dev_priv->display.off(crtc);
6374
6375 drm_plane_helper_disable(crtc->primary);
6376
6377 /* Update computed state. */
6378 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6379 if (!connector->encoder || !connector->encoder->crtc)
6380 continue;
6381
6382 if (connector->encoder->crtc != crtc)
6383 continue;
6384
6385 connector->dpms = DRM_MODE_DPMS_OFF;
6386 to_intel_encoder(connector->encoder)->connectors_active = false;
6387 }
6388 }
6389
6390 void intel_encoder_destroy(struct drm_encoder *encoder)
6391 {
6392 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6393
6394 drm_encoder_cleanup(encoder);
6395 kfree(intel_encoder);
6396 }
6397
6398 /* Simple dpms helper for encoders with just one connector, no cloning and only
6399 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6400 * state of the entire output pipe. */
6401 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6402 {
6403 if (mode == DRM_MODE_DPMS_ON) {
6404 encoder->connectors_active = true;
6405
6406 intel_crtc_update_dpms(encoder->base.crtc);
6407 } else {
6408 encoder->connectors_active = false;
6409
6410 intel_crtc_update_dpms(encoder->base.crtc);
6411 }
6412 }
6413
6414 /* Cross check the actual hw state with our own modeset state tracking (and it's
6415 * internal consistency). */
6416 static void intel_connector_check_state(struct intel_connector *connector)
6417 {
6418 if (connector->get_hw_state(connector)) {
6419 struct intel_encoder *encoder = connector->encoder;
6420 struct drm_crtc *crtc;
6421 bool encoder_enabled;
6422 enum pipe pipe;
6423
6424 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6425 connector->base.base.id,
6426 connector->base.name);
6427
6428 /* there is no real hw state for MST connectors */
6429 if (connector->mst_port)
6430 return;
6431
6432 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6433 "wrong connector dpms state\n");
6434 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6435 "active connector not linked to encoder\n");
6436
6437 if (encoder) {
6438 I915_STATE_WARN(!encoder->connectors_active,
6439 "encoder->connectors_active not set\n");
6440
6441 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6442 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6443 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6444 return;
6445
6446 crtc = encoder->base.crtc;
6447
6448 I915_STATE_WARN(!crtc->state->enable,
6449 "crtc not enabled\n");
6450 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6451 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6452 "encoder active on the wrong pipe\n");
6453 }
6454 }
6455 }
6456
6457 int intel_connector_init(struct intel_connector *connector)
6458 {
6459 struct drm_connector_state *connector_state;
6460
6461 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6462 if (!connector_state)
6463 return -ENOMEM;
6464
6465 connector->base.state = connector_state;
6466 return 0;
6467 }
6468
6469 struct intel_connector *intel_connector_alloc(void)
6470 {
6471 struct intel_connector *connector;
6472
6473 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6474 if (!connector)
6475 return NULL;
6476
6477 if (intel_connector_init(connector) < 0) {
6478 kfree(connector);
6479 return NULL;
6480 }
6481
6482 return connector;
6483 }
6484
6485 /* Even simpler default implementation, if there's really no special case to
6486 * consider. */
6487 void intel_connector_dpms(struct drm_connector *connector, int mode)
6488 {
6489 /* All the simple cases only support two dpms states. */
6490 if (mode != DRM_MODE_DPMS_ON)
6491 mode = DRM_MODE_DPMS_OFF;
6492
6493 if (mode == connector->dpms)
6494 return;
6495
6496 connector->dpms = mode;
6497
6498 /* Only need to change hw state when actually enabled */
6499 if (connector->encoder)
6500 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6501
6502 intel_modeset_check_state(connector->dev);
6503 }
6504
6505 /* Simple connector->get_hw_state implementation for encoders that support only
6506 * one connector and no cloning and hence the encoder state determines the state
6507 * of the connector. */
6508 bool intel_connector_get_hw_state(struct intel_connector *connector)
6509 {
6510 enum pipe pipe = 0;
6511 struct intel_encoder *encoder = connector->encoder;
6512
6513 return encoder->get_hw_state(encoder, &pipe);
6514 }
6515
6516 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6517 {
6518 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6519 return crtc_state->fdi_lanes;
6520
6521 return 0;
6522 }
6523
6524 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6525 struct intel_crtc_state *pipe_config)
6526 {
6527 struct drm_atomic_state *state = pipe_config->base.state;
6528 struct intel_crtc *other_crtc;
6529 struct intel_crtc_state *other_crtc_state;
6530
6531 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6532 pipe_name(pipe), pipe_config->fdi_lanes);
6533 if (pipe_config->fdi_lanes > 4) {
6534 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6535 pipe_name(pipe), pipe_config->fdi_lanes);
6536 return -EINVAL;
6537 }
6538
6539 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6540 if (pipe_config->fdi_lanes > 2) {
6541 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6542 pipe_config->fdi_lanes);
6543 return -EINVAL;
6544 } else {
6545 return 0;
6546 }
6547 }
6548
6549 if (INTEL_INFO(dev)->num_pipes == 2)
6550 return 0;
6551
6552 /* Ivybridge 3 pipe is really complicated */
6553 switch (pipe) {
6554 case PIPE_A:
6555 return 0;
6556 case PIPE_B:
6557 if (pipe_config->fdi_lanes <= 2)
6558 return 0;
6559
6560 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6561 other_crtc_state =
6562 intel_atomic_get_crtc_state(state, other_crtc);
6563 if (IS_ERR(other_crtc_state))
6564 return PTR_ERR(other_crtc_state);
6565
6566 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6567 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6568 pipe_name(pipe), pipe_config->fdi_lanes);
6569 return -EINVAL;
6570 }
6571 return 0;
6572 case PIPE_C:
6573 if (pipe_config->fdi_lanes > 2) {
6574 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6575 pipe_name(pipe), pipe_config->fdi_lanes);
6576 return -EINVAL;
6577 }
6578
6579 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6580 other_crtc_state =
6581 intel_atomic_get_crtc_state(state, other_crtc);
6582 if (IS_ERR(other_crtc_state))
6583 return PTR_ERR(other_crtc_state);
6584
6585 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6586 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6587 return -EINVAL;
6588 }
6589 return 0;
6590 default:
6591 BUG();
6592 }
6593 }
6594
6595 #define RETRY 1
6596 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6597 struct intel_crtc_state *pipe_config)
6598 {
6599 struct drm_device *dev = intel_crtc->base.dev;
6600 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6601 int lane, link_bw, fdi_dotclock, ret;
6602 bool needs_recompute = false;
6603
6604 retry:
6605 /* FDI is a binary signal running at ~2.7GHz, encoding
6606 * each output octet as 10 bits. The actual frequency
6607 * is stored as a divider into a 100MHz clock, and the
6608 * mode pixel clock is stored in units of 1KHz.
6609 * Hence the bw of each lane in terms of the mode signal
6610 * is:
6611 */
6612 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6613
6614 fdi_dotclock = adjusted_mode->crtc_clock;
6615
6616 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6617 pipe_config->pipe_bpp);
6618
6619 pipe_config->fdi_lanes = lane;
6620
6621 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6622 link_bw, &pipe_config->fdi_m_n);
6623
6624 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6625 intel_crtc->pipe, pipe_config);
6626 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6627 pipe_config->pipe_bpp -= 2*3;
6628 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6629 pipe_config->pipe_bpp);
6630 needs_recompute = true;
6631 pipe_config->bw_constrained = true;
6632
6633 goto retry;
6634 }
6635
6636 if (needs_recompute)
6637 return RETRY;
6638
6639 return ret;
6640 }
6641
6642 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6643 struct intel_crtc_state *pipe_config)
6644 {
6645 if (pipe_config->pipe_bpp > 24)
6646 return false;
6647
6648 /* HSW can handle pixel rate up to cdclk? */
6649 if (IS_HASWELL(dev_priv->dev))
6650 return true;
6651
6652 /*
6653 * We compare against max which means we must take
6654 * the increased cdclk requirement into account when
6655 * calculating the new cdclk.
6656 *
6657 * Should measure whether using a lower cdclk w/o IPS
6658 */
6659 return ilk_pipe_pixel_rate(pipe_config) <=
6660 dev_priv->max_cdclk_freq * 95 / 100;
6661 }
6662
6663 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6664 struct intel_crtc_state *pipe_config)
6665 {
6666 struct drm_device *dev = crtc->base.dev;
6667 struct drm_i915_private *dev_priv = dev->dev_private;
6668
6669 pipe_config->ips_enabled = i915.enable_ips &&
6670 hsw_crtc_supports_ips(crtc) &&
6671 pipe_config_supports_ips(dev_priv, pipe_config);
6672 }
6673
6674 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6675 struct intel_crtc_state *pipe_config)
6676 {
6677 struct drm_device *dev = crtc->base.dev;
6678 struct drm_i915_private *dev_priv = dev->dev_private;
6679 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6680 int ret;
6681
6682 /* FIXME should check pixel clock limits on all platforms */
6683 if (INTEL_INFO(dev)->gen < 4) {
6684 int clock_limit = dev_priv->max_cdclk_freq;
6685
6686 /*
6687 * Enable pixel doubling when the dot clock
6688 * is > 90% of the (display) core speed.
6689 *
6690 * GDG double wide on either pipe,
6691 * otherwise pipe A only.
6692 */
6693 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6694 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6695 clock_limit *= 2;
6696 pipe_config->double_wide = true;
6697 }
6698
6699 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6700 return -EINVAL;
6701 }
6702
6703 /*
6704 * Pipe horizontal size must be even in:
6705 * - DVO ganged mode
6706 * - LVDS dual channel mode
6707 * - Double wide pipe
6708 */
6709 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6710 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6711 pipe_config->pipe_src_w &= ~1;
6712
6713 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6714 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6715 */
6716 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6717 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6718 return -EINVAL;
6719
6720 if (HAS_IPS(dev))
6721 hsw_compute_ips_config(crtc, pipe_config);
6722
6723 if (pipe_config->has_pch_encoder)
6724 return ironlake_fdi_compute_config(crtc, pipe_config);
6725
6726 /* FIXME: remove below call once atomic mode set is place and all crtc
6727 * related checks called from atomic_crtc_check function */
6728 ret = 0;
6729 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6730 crtc, pipe_config->base.state);
6731 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6732
6733 return ret;
6734 }
6735
6736 static int skylake_get_display_clock_speed(struct drm_device *dev)
6737 {
6738 struct drm_i915_private *dev_priv = to_i915(dev);
6739 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6740 uint32_t cdctl = I915_READ(CDCLK_CTL);
6741 uint32_t linkrate;
6742
6743 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6744 return 24000; /* 24MHz is the cd freq with NSSC ref */
6745
6746 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6747 return 540000;
6748
6749 linkrate = (I915_READ(DPLL_CTRL1) &
6750 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6751
6752 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6753 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6754 /* vco 8640 */
6755 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6756 case CDCLK_FREQ_450_432:
6757 return 432000;
6758 case CDCLK_FREQ_337_308:
6759 return 308570;
6760 case CDCLK_FREQ_675_617:
6761 return 617140;
6762 default:
6763 WARN(1, "Unknown cd freq selection\n");
6764 }
6765 } else {
6766 /* vco 8100 */
6767 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6768 case CDCLK_FREQ_450_432:
6769 return 450000;
6770 case CDCLK_FREQ_337_308:
6771 return 337500;
6772 case CDCLK_FREQ_675_617:
6773 return 675000;
6774 default:
6775 WARN(1, "Unknown cd freq selection\n");
6776 }
6777 }
6778
6779 /* error case, do as if DPLL0 isn't enabled */
6780 return 24000;
6781 }
6782
6783 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6784 {
6785 struct drm_i915_private *dev_priv = dev->dev_private;
6786 uint32_t lcpll = I915_READ(LCPLL_CTL);
6787 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6788
6789 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6790 return 800000;
6791 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6792 return 450000;
6793 else if (freq == LCPLL_CLK_FREQ_450)
6794 return 450000;
6795 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6796 return 540000;
6797 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6798 return 337500;
6799 else
6800 return 675000;
6801 }
6802
6803 static int haswell_get_display_clock_speed(struct drm_device *dev)
6804 {
6805 struct drm_i915_private *dev_priv = dev->dev_private;
6806 uint32_t lcpll = I915_READ(LCPLL_CTL);
6807 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6808
6809 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6810 return 800000;
6811 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6812 return 450000;
6813 else if (freq == LCPLL_CLK_FREQ_450)
6814 return 450000;
6815 else if (IS_HSW_ULT(dev))
6816 return 337500;
6817 else
6818 return 540000;
6819 }
6820
6821 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6822 {
6823 struct drm_i915_private *dev_priv = dev->dev_private;
6824 u32 val;
6825 int divider;
6826
6827 if (dev_priv->hpll_freq == 0)
6828 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6829
6830 mutex_lock(&dev_priv->sb_lock);
6831 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6832 mutex_unlock(&dev_priv->sb_lock);
6833
6834 divider = val & DISPLAY_FREQUENCY_VALUES;
6835
6836 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6837 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6838 "cdclk change in progress\n");
6839
6840 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6841 }
6842
6843 static int ilk_get_display_clock_speed(struct drm_device *dev)
6844 {
6845 return 450000;
6846 }
6847
6848 static int i945_get_display_clock_speed(struct drm_device *dev)
6849 {
6850 return 400000;
6851 }
6852
6853 static int i915_get_display_clock_speed(struct drm_device *dev)
6854 {
6855 return 333333;
6856 }
6857
6858 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6859 {
6860 return 200000;
6861 }
6862
6863 static int pnv_get_display_clock_speed(struct drm_device *dev)
6864 {
6865 u16 gcfgc = 0;
6866
6867 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6868
6869 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6870 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6871 return 266667;
6872 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6873 return 333333;
6874 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6875 return 444444;
6876 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6877 return 200000;
6878 default:
6879 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6880 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6881 return 133333;
6882 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6883 return 166667;
6884 }
6885 }
6886
6887 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6888 {
6889 u16 gcfgc = 0;
6890
6891 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6892
6893 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6894 return 133333;
6895 else {
6896 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6897 case GC_DISPLAY_CLOCK_333_MHZ:
6898 return 333333;
6899 default:
6900 case GC_DISPLAY_CLOCK_190_200_MHZ:
6901 return 190000;
6902 }
6903 }
6904 }
6905
6906 static int i865_get_display_clock_speed(struct drm_device *dev)
6907 {
6908 return 266667;
6909 }
6910
6911 static int i85x_get_display_clock_speed(struct drm_device *dev)
6912 {
6913 u16 hpllcc = 0;
6914
6915 /*
6916 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6917 * encoding is different :(
6918 * FIXME is this the right way to detect 852GM/852GMV?
6919 */
6920 if (dev->pdev->revision == 0x1)
6921 return 133333;
6922
6923 pci_bus_read_config_word(dev->pdev->bus,
6924 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6925
6926 /* Assume that the hardware is in the high speed state. This
6927 * should be the default.
6928 */
6929 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6930 case GC_CLOCK_133_200:
6931 case GC_CLOCK_133_200_2:
6932 case GC_CLOCK_100_200:
6933 return 200000;
6934 case GC_CLOCK_166_250:
6935 return 250000;
6936 case GC_CLOCK_100_133:
6937 return 133333;
6938 case GC_CLOCK_133_266:
6939 case GC_CLOCK_133_266_2:
6940 case GC_CLOCK_166_266:
6941 return 266667;
6942 }
6943
6944 /* Shouldn't happen */
6945 return 0;
6946 }
6947
6948 static int i830_get_display_clock_speed(struct drm_device *dev)
6949 {
6950 return 133333;
6951 }
6952
6953 static unsigned int intel_hpll_vco(struct drm_device *dev)
6954 {
6955 struct drm_i915_private *dev_priv = dev->dev_private;
6956 static const unsigned int blb_vco[8] = {
6957 [0] = 3200000,
6958 [1] = 4000000,
6959 [2] = 5333333,
6960 [3] = 4800000,
6961 [4] = 6400000,
6962 };
6963 static const unsigned int pnv_vco[8] = {
6964 [0] = 3200000,
6965 [1] = 4000000,
6966 [2] = 5333333,
6967 [3] = 4800000,
6968 [4] = 2666667,
6969 };
6970 static const unsigned int cl_vco[8] = {
6971 [0] = 3200000,
6972 [1] = 4000000,
6973 [2] = 5333333,
6974 [3] = 6400000,
6975 [4] = 3333333,
6976 [5] = 3566667,
6977 [6] = 4266667,
6978 };
6979 static const unsigned int elk_vco[8] = {
6980 [0] = 3200000,
6981 [1] = 4000000,
6982 [2] = 5333333,
6983 [3] = 4800000,
6984 };
6985 static const unsigned int ctg_vco[8] = {
6986 [0] = 3200000,
6987 [1] = 4000000,
6988 [2] = 5333333,
6989 [3] = 6400000,
6990 [4] = 2666667,
6991 [5] = 4266667,
6992 };
6993 const unsigned int *vco_table;
6994 unsigned int vco;
6995 uint8_t tmp = 0;
6996
6997 /* FIXME other chipsets? */
6998 if (IS_GM45(dev))
6999 vco_table = ctg_vco;
7000 else if (IS_G4X(dev))
7001 vco_table = elk_vco;
7002 else if (IS_CRESTLINE(dev))
7003 vco_table = cl_vco;
7004 else if (IS_PINEVIEW(dev))
7005 vco_table = pnv_vco;
7006 else if (IS_G33(dev))
7007 vco_table = blb_vco;
7008 else
7009 return 0;
7010
7011 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7012
7013 vco = vco_table[tmp & 0x7];
7014 if (vco == 0)
7015 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7016 else
7017 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7018
7019 return vco;
7020 }
7021
7022 static int gm45_get_display_clock_speed(struct drm_device *dev)
7023 {
7024 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7025 uint16_t tmp = 0;
7026
7027 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7028
7029 cdclk_sel = (tmp >> 12) & 0x1;
7030
7031 switch (vco) {
7032 case 2666667:
7033 case 4000000:
7034 case 5333333:
7035 return cdclk_sel ? 333333 : 222222;
7036 case 3200000:
7037 return cdclk_sel ? 320000 : 228571;
7038 default:
7039 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7040 return 222222;
7041 }
7042 }
7043
7044 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7045 {
7046 static const uint8_t div_3200[] = { 16, 10, 8 };
7047 static const uint8_t div_4000[] = { 20, 12, 10 };
7048 static const uint8_t div_5333[] = { 24, 16, 14 };
7049 const uint8_t *div_table;
7050 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7051 uint16_t tmp = 0;
7052
7053 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7054
7055 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7056
7057 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7058 goto fail;
7059
7060 switch (vco) {
7061 case 3200000:
7062 div_table = div_3200;
7063 break;
7064 case 4000000:
7065 div_table = div_4000;
7066 break;
7067 case 5333333:
7068 div_table = div_5333;
7069 break;
7070 default:
7071 goto fail;
7072 }
7073
7074 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7075
7076 fail:
7077 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7078 return 200000;
7079 }
7080
7081 static int g33_get_display_clock_speed(struct drm_device *dev)
7082 {
7083 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7084 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7085 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7086 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7087 const uint8_t *div_table;
7088 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7089 uint16_t tmp = 0;
7090
7091 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7092
7093 cdclk_sel = (tmp >> 4) & 0x7;
7094
7095 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7096 goto fail;
7097
7098 switch (vco) {
7099 case 3200000:
7100 div_table = div_3200;
7101 break;
7102 case 4000000:
7103 div_table = div_4000;
7104 break;
7105 case 4800000:
7106 div_table = div_4800;
7107 break;
7108 case 5333333:
7109 div_table = div_5333;
7110 break;
7111 default:
7112 goto fail;
7113 }
7114
7115 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7116
7117 fail:
7118 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7119 return 190476;
7120 }
7121
7122 static void
7123 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7124 {
7125 while (*num > DATA_LINK_M_N_MASK ||
7126 *den > DATA_LINK_M_N_MASK) {
7127 *num >>= 1;
7128 *den >>= 1;
7129 }
7130 }
7131
7132 static void compute_m_n(unsigned int m, unsigned int n,
7133 uint32_t *ret_m, uint32_t *ret_n)
7134 {
7135 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7136 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7137 intel_reduce_m_n_ratio(ret_m, ret_n);
7138 }
7139
7140 void
7141 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7142 int pixel_clock, int link_clock,
7143 struct intel_link_m_n *m_n)
7144 {
7145 m_n->tu = 64;
7146
7147 compute_m_n(bits_per_pixel * pixel_clock,
7148 link_clock * nlanes * 8,
7149 &m_n->gmch_m, &m_n->gmch_n);
7150
7151 compute_m_n(pixel_clock, link_clock,
7152 &m_n->link_m, &m_n->link_n);
7153 }
7154
7155 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7156 {
7157 if (i915.panel_use_ssc >= 0)
7158 return i915.panel_use_ssc != 0;
7159 return dev_priv->vbt.lvds_use_ssc
7160 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7161 }
7162
7163 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7164 int num_connectors)
7165 {
7166 struct drm_device *dev = crtc_state->base.crtc->dev;
7167 struct drm_i915_private *dev_priv = dev->dev_private;
7168 int refclk;
7169
7170 WARN_ON(!crtc_state->base.state);
7171
7172 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7173 refclk = 100000;
7174 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7175 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7176 refclk = dev_priv->vbt.lvds_ssc_freq;
7177 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7178 } else if (!IS_GEN2(dev)) {
7179 refclk = 96000;
7180 } else {
7181 refclk = 48000;
7182 }
7183
7184 return refclk;
7185 }
7186
7187 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7188 {
7189 return (1 << dpll->n) << 16 | dpll->m2;
7190 }
7191
7192 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7193 {
7194 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7195 }
7196
7197 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7198 struct intel_crtc_state *crtc_state,
7199 intel_clock_t *reduced_clock)
7200 {
7201 struct drm_device *dev = crtc->base.dev;
7202 u32 fp, fp2 = 0;
7203
7204 if (IS_PINEVIEW(dev)) {
7205 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7206 if (reduced_clock)
7207 fp2 = pnv_dpll_compute_fp(reduced_clock);
7208 } else {
7209 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7210 if (reduced_clock)
7211 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7212 }
7213
7214 crtc_state->dpll_hw_state.fp0 = fp;
7215
7216 crtc->lowfreq_avail = false;
7217 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7218 reduced_clock) {
7219 crtc_state->dpll_hw_state.fp1 = fp2;
7220 crtc->lowfreq_avail = true;
7221 } else {
7222 crtc_state->dpll_hw_state.fp1 = fp;
7223 }
7224 }
7225
7226 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7227 pipe)
7228 {
7229 u32 reg_val;
7230
7231 /*
7232 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7233 * and set it to a reasonable value instead.
7234 */
7235 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7236 reg_val &= 0xffffff00;
7237 reg_val |= 0x00000030;
7238 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7239
7240 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7241 reg_val &= 0x8cffffff;
7242 reg_val = 0x8c000000;
7243 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7244
7245 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7246 reg_val &= 0xffffff00;
7247 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7248
7249 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7250 reg_val &= 0x00ffffff;
7251 reg_val |= 0xb0000000;
7252 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7253 }
7254
7255 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7256 struct intel_link_m_n *m_n)
7257 {
7258 struct drm_device *dev = crtc->base.dev;
7259 struct drm_i915_private *dev_priv = dev->dev_private;
7260 int pipe = crtc->pipe;
7261
7262 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7263 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7264 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7265 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7266 }
7267
7268 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7269 struct intel_link_m_n *m_n,
7270 struct intel_link_m_n *m2_n2)
7271 {
7272 struct drm_device *dev = crtc->base.dev;
7273 struct drm_i915_private *dev_priv = dev->dev_private;
7274 int pipe = crtc->pipe;
7275 enum transcoder transcoder = crtc->config->cpu_transcoder;
7276
7277 if (INTEL_INFO(dev)->gen >= 5) {
7278 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7279 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7280 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7281 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7282 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7283 * for gen < 8) and if DRRS is supported (to make sure the
7284 * registers are not unnecessarily accessed).
7285 */
7286 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7287 crtc->config->has_drrs) {
7288 I915_WRITE(PIPE_DATA_M2(transcoder),
7289 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7290 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7291 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7292 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7293 }
7294 } else {
7295 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7296 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7297 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7298 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7299 }
7300 }
7301
7302 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7303 {
7304 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7305
7306 if (m_n == M1_N1) {
7307 dp_m_n = &crtc->config->dp_m_n;
7308 dp_m2_n2 = &crtc->config->dp_m2_n2;
7309 } else if (m_n == M2_N2) {
7310
7311 /*
7312 * M2_N2 registers are not supported. Hence m2_n2 divider value
7313 * needs to be programmed into M1_N1.
7314 */
7315 dp_m_n = &crtc->config->dp_m2_n2;
7316 } else {
7317 DRM_ERROR("Unsupported divider value\n");
7318 return;
7319 }
7320
7321 if (crtc->config->has_pch_encoder)
7322 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7323 else
7324 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7325 }
7326
7327 static void vlv_update_pll(struct intel_crtc *crtc,
7328 struct intel_crtc_state *pipe_config)
7329 {
7330 u32 dpll, dpll_md;
7331
7332 /*
7333 * Enable DPIO clock input. We should never disable the reference
7334 * clock for pipe B, since VGA hotplug / manual detection depends
7335 * on it.
7336 */
7337 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7338 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7339 /* We should never disable this, set it here for state tracking */
7340 if (crtc->pipe == PIPE_B)
7341 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7342 dpll |= DPLL_VCO_ENABLE;
7343 pipe_config->dpll_hw_state.dpll = dpll;
7344
7345 dpll_md = (pipe_config->pixel_multiplier - 1)
7346 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7347 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7348 }
7349
7350 static void vlv_prepare_pll(struct intel_crtc *crtc,
7351 const struct intel_crtc_state *pipe_config)
7352 {
7353 struct drm_device *dev = crtc->base.dev;
7354 struct drm_i915_private *dev_priv = dev->dev_private;
7355 int pipe = crtc->pipe;
7356 u32 mdiv;
7357 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7358 u32 coreclk, reg_val;
7359
7360 mutex_lock(&dev_priv->sb_lock);
7361
7362 bestn = pipe_config->dpll.n;
7363 bestm1 = pipe_config->dpll.m1;
7364 bestm2 = pipe_config->dpll.m2;
7365 bestp1 = pipe_config->dpll.p1;
7366 bestp2 = pipe_config->dpll.p2;
7367
7368 /* See eDP HDMI DPIO driver vbios notes doc */
7369
7370 /* PLL B needs special handling */
7371 if (pipe == PIPE_B)
7372 vlv_pllb_recal_opamp(dev_priv, pipe);
7373
7374 /* Set up Tx target for periodic Rcomp update */
7375 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7376
7377 /* Disable target IRef on PLL */
7378 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7379 reg_val &= 0x00ffffff;
7380 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7381
7382 /* Disable fast lock */
7383 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7384
7385 /* Set idtafcrecal before PLL is enabled */
7386 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7387 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7388 mdiv |= ((bestn << DPIO_N_SHIFT));
7389 mdiv |= (1 << DPIO_K_SHIFT);
7390
7391 /*
7392 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7393 * but we don't support that).
7394 * Note: don't use the DAC post divider as it seems unstable.
7395 */
7396 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7397 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7398
7399 mdiv |= DPIO_ENABLE_CALIBRATION;
7400 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7401
7402 /* Set HBR and RBR LPF coefficients */
7403 if (pipe_config->port_clock == 162000 ||
7404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7405 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7406 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7407 0x009f0003);
7408 else
7409 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7410 0x00d0000f);
7411
7412 if (pipe_config->has_dp_encoder) {
7413 /* Use SSC source */
7414 if (pipe == PIPE_A)
7415 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7416 0x0df40000);
7417 else
7418 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7419 0x0df70000);
7420 } else { /* HDMI or VGA */
7421 /* Use bend source */
7422 if (pipe == PIPE_A)
7423 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7424 0x0df70000);
7425 else
7426 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7427 0x0df40000);
7428 }
7429
7430 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7431 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7433 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7434 coreclk |= 0x01000000;
7435 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7436
7437 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7438 mutex_unlock(&dev_priv->sb_lock);
7439 }
7440
7441 static void chv_update_pll(struct intel_crtc *crtc,
7442 struct intel_crtc_state *pipe_config)
7443 {
7444 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7445 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7446 DPLL_VCO_ENABLE;
7447 if (crtc->pipe != PIPE_A)
7448 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7449
7450 pipe_config->dpll_hw_state.dpll_md =
7451 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7452 }
7453
7454 static void chv_prepare_pll(struct intel_crtc *crtc,
7455 const struct intel_crtc_state *pipe_config)
7456 {
7457 struct drm_device *dev = crtc->base.dev;
7458 struct drm_i915_private *dev_priv = dev->dev_private;
7459 int pipe = crtc->pipe;
7460 int dpll_reg = DPLL(crtc->pipe);
7461 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7462 u32 loopfilter, tribuf_calcntr;
7463 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7464 u32 dpio_val;
7465 int vco;
7466
7467 bestn = pipe_config->dpll.n;
7468 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7469 bestm1 = pipe_config->dpll.m1;
7470 bestm2 = pipe_config->dpll.m2 >> 22;
7471 bestp1 = pipe_config->dpll.p1;
7472 bestp2 = pipe_config->dpll.p2;
7473 vco = pipe_config->dpll.vco;
7474 dpio_val = 0;
7475 loopfilter = 0;
7476
7477 /*
7478 * Enable Refclk and SSC
7479 */
7480 I915_WRITE(dpll_reg,
7481 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7482
7483 mutex_lock(&dev_priv->sb_lock);
7484
7485 /* p1 and p2 divider */
7486 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7487 5 << DPIO_CHV_S1_DIV_SHIFT |
7488 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7489 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7490 1 << DPIO_CHV_K_DIV_SHIFT);
7491
7492 /* Feedback post-divider - m2 */
7493 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7494
7495 /* Feedback refclk divider - n and m1 */
7496 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7497 DPIO_CHV_M1_DIV_BY_2 |
7498 1 << DPIO_CHV_N_DIV_SHIFT);
7499
7500 /* M2 fraction division */
7501 if (bestm2_frac)
7502 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7503
7504 /* M2 fraction division enable */
7505 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7506 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7507 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7508 if (bestm2_frac)
7509 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7510 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7511
7512 /* Program digital lock detect threshold */
7513 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7514 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7515 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7516 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7517 if (!bestm2_frac)
7518 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7519 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7520
7521 /* Loop filter */
7522 if (vco == 5400000) {
7523 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7524 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7525 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7526 tribuf_calcntr = 0x9;
7527 } else if (vco <= 6200000) {
7528 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7529 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7530 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7531 tribuf_calcntr = 0x9;
7532 } else if (vco <= 6480000) {
7533 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7534 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7535 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7536 tribuf_calcntr = 0x8;
7537 } else {
7538 /* Not supported. Apply the same limits as in the max case */
7539 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7540 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7541 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7542 tribuf_calcntr = 0;
7543 }
7544 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7545
7546 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7547 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7548 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7549 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7550
7551 /* AFC Recal */
7552 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7553 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7554 DPIO_AFC_RECAL);
7555
7556 mutex_unlock(&dev_priv->sb_lock);
7557 }
7558
7559 /**
7560 * vlv_force_pll_on - forcibly enable just the PLL
7561 * @dev_priv: i915 private structure
7562 * @pipe: pipe PLL to enable
7563 * @dpll: PLL configuration
7564 *
7565 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7566 * in cases where we need the PLL enabled even when @pipe is not going to
7567 * be enabled.
7568 */
7569 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7570 const struct dpll *dpll)
7571 {
7572 struct intel_crtc *crtc =
7573 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7574 struct intel_crtc_state pipe_config = {
7575 .base.crtc = &crtc->base,
7576 .pixel_multiplier = 1,
7577 .dpll = *dpll,
7578 };
7579
7580 if (IS_CHERRYVIEW(dev)) {
7581 chv_update_pll(crtc, &pipe_config);
7582 chv_prepare_pll(crtc, &pipe_config);
7583 chv_enable_pll(crtc, &pipe_config);
7584 } else {
7585 vlv_update_pll(crtc, &pipe_config);
7586 vlv_prepare_pll(crtc, &pipe_config);
7587 vlv_enable_pll(crtc, &pipe_config);
7588 }
7589 }
7590
7591 /**
7592 * vlv_force_pll_off - forcibly disable just the PLL
7593 * @dev_priv: i915 private structure
7594 * @pipe: pipe PLL to disable
7595 *
7596 * Disable the PLL for @pipe. To be used in cases where we need
7597 * the PLL enabled even when @pipe is not going to be enabled.
7598 */
7599 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7600 {
7601 if (IS_CHERRYVIEW(dev))
7602 chv_disable_pll(to_i915(dev), pipe);
7603 else
7604 vlv_disable_pll(to_i915(dev), pipe);
7605 }
7606
7607 static void i9xx_update_pll(struct intel_crtc *crtc,
7608 struct intel_crtc_state *crtc_state,
7609 intel_clock_t *reduced_clock,
7610 int num_connectors)
7611 {
7612 struct drm_device *dev = crtc->base.dev;
7613 struct drm_i915_private *dev_priv = dev->dev_private;
7614 u32 dpll;
7615 bool is_sdvo;
7616 struct dpll *clock = &crtc_state->dpll;
7617
7618 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7619
7620 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7621 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7622
7623 dpll = DPLL_VGA_MODE_DIS;
7624
7625 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7626 dpll |= DPLLB_MODE_LVDS;
7627 else
7628 dpll |= DPLLB_MODE_DAC_SERIAL;
7629
7630 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7631 dpll |= (crtc_state->pixel_multiplier - 1)
7632 << SDVO_MULTIPLIER_SHIFT_HIRES;
7633 }
7634
7635 if (is_sdvo)
7636 dpll |= DPLL_SDVO_HIGH_SPEED;
7637
7638 if (crtc_state->has_dp_encoder)
7639 dpll |= DPLL_SDVO_HIGH_SPEED;
7640
7641 /* compute bitmask from p1 value */
7642 if (IS_PINEVIEW(dev))
7643 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7644 else {
7645 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7646 if (IS_G4X(dev) && reduced_clock)
7647 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7648 }
7649 switch (clock->p2) {
7650 case 5:
7651 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7652 break;
7653 case 7:
7654 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7655 break;
7656 case 10:
7657 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7658 break;
7659 case 14:
7660 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7661 break;
7662 }
7663 if (INTEL_INFO(dev)->gen >= 4)
7664 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7665
7666 if (crtc_state->sdvo_tv_clock)
7667 dpll |= PLL_REF_INPUT_TVCLKINBC;
7668 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7669 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7670 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7671 else
7672 dpll |= PLL_REF_INPUT_DREFCLK;
7673
7674 dpll |= DPLL_VCO_ENABLE;
7675 crtc_state->dpll_hw_state.dpll = dpll;
7676
7677 if (INTEL_INFO(dev)->gen >= 4) {
7678 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7679 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7680 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7681 }
7682 }
7683
7684 static void i8xx_update_pll(struct intel_crtc *crtc,
7685 struct intel_crtc_state *crtc_state,
7686 intel_clock_t *reduced_clock,
7687 int num_connectors)
7688 {
7689 struct drm_device *dev = crtc->base.dev;
7690 struct drm_i915_private *dev_priv = dev->dev_private;
7691 u32 dpll;
7692 struct dpll *clock = &crtc_state->dpll;
7693
7694 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7695
7696 dpll = DPLL_VGA_MODE_DIS;
7697
7698 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7699 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7700 } else {
7701 if (clock->p1 == 2)
7702 dpll |= PLL_P1_DIVIDE_BY_TWO;
7703 else
7704 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7705 if (clock->p2 == 4)
7706 dpll |= PLL_P2_DIVIDE_BY_4;
7707 }
7708
7709 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7710 dpll |= DPLL_DVO_2X_MODE;
7711
7712 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7713 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7714 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7715 else
7716 dpll |= PLL_REF_INPUT_DREFCLK;
7717
7718 dpll |= DPLL_VCO_ENABLE;
7719 crtc_state->dpll_hw_state.dpll = dpll;
7720 }
7721
7722 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7723 {
7724 struct drm_device *dev = intel_crtc->base.dev;
7725 struct drm_i915_private *dev_priv = dev->dev_private;
7726 enum pipe pipe = intel_crtc->pipe;
7727 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7728 struct drm_display_mode *adjusted_mode =
7729 &intel_crtc->config->base.adjusted_mode;
7730 uint32_t crtc_vtotal, crtc_vblank_end;
7731 int vsyncshift = 0;
7732
7733 /* We need to be careful not to changed the adjusted mode, for otherwise
7734 * the hw state checker will get angry at the mismatch. */
7735 crtc_vtotal = adjusted_mode->crtc_vtotal;
7736 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7737
7738 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7739 /* the chip adds 2 halflines automatically */
7740 crtc_vtotal -= 1;
7741 crtc_vblank_end -= 1;
7742
7743 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7744 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7745 else
7746 vsyncshift = adjusted_mode->crtc_hsync_start -
7747 adjusted_mode->crtc_htotal / 2;
7748 if (vsyncshift < 0)
7749 vsyncshift += adjusted_mode->crtc_htotal;
7750 }
7751
7752 if (INTEL_INFO(dev)->gen > 3)
7753 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7754
7755 I915_WRITE(HTOTAL(cpu_transcoder),
7756 (adjusted_mode->crtc_hdisplay - 1) |
7757 ((adjusted_mode->crtc_htotal - 1) << 16));
7758 I915_WRITE(HBLANK(cpu_transcoder),
7759 (adjusted_mode->crtc_hblank_start - 1) |
7760 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7761 I915_WRITE(HSYNC(cpu_transcoder),
7762 (adjusted_mode->crtc_hsync_start - 1) |
7763 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7764
7765 I915_WRITE(VTOTAL(cpu_transcoder),
7766 (adjusted_mode->crtc_vdisplay - 1) |
7767 ((crtc_vtotal - 1) << 16));
7768 I915_WRITE(VBLANK(cpu_transcoder),
7769 (adjusted_mode->crtc_vblank_start - 1) |
7770 ((crtc_vblank_end - 1) << 16));
7771 I915_WRITE(VSYNC(cpu_transcoder),
7772 (adjusted_mode->crtc_vsync_start - 1) |
7773 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7774
7775 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7776 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7777 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7778 * bits. */
7779 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7780 (pipe == PIPE_B || pipe == PIPE_C))
7781 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7782
7783 /* pipesrc controls the size that is scaled from, which should
7784 * always be the user's requested size.
7785 */
7786 I915_WRITE(PIPESRC(pipe),
7787 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7788 (intel_crtc->config->pipe_src_h - 1));
7789 }
7790
7791 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7792 struct intel_crtc_state *pipe_config)
7793 {
7794 struct drm_device *dev = crtc->base.dev;
7795 struct drm_i915_private *dev_priv = dev->dev_private;
7796 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7797 uint32_t tmp;
7798
7799 tmp = I915_READ(HTOTAL(cpu_transcoder));
7800 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7801 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7802 tmp = I915_READ(HBLANK(cpu_transcoder));
7803 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7804 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7805 tmp = I915_READ(HSYNC(cpu_transcoder));
7806 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7807 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7808
7809 tmp = I915_READ(VTOTAL(cpu_transcoder));
7810 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7811 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7812 tmp = I915_READ(VBLANK(cpu_transcoder));
7813 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7814 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7815 tmp = I915_READ(VSYNC(cpu_transcoder));
7816 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7817 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7818
7819 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7820 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7821 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7822 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7823 }
7824
7825 tmp = I915_READ(PIPESRC(crtc->pipe));
7826 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7827 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7828
7829 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7830 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7831 }
7832
7833 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7834 struct intel_crtc_state *pipe_config)
7835 {
7836 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7837 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7838 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7839 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7840
7841 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7842 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7843 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7844 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7845
7846 mode->flags = pipe_config->base.adjusted_mode.flags;
7847
7848 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7849 mode->flags |= pipe_config->base.adjusted_mode.flags;
7850 }
7851
7852 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7853 {
7854 struct drm_device *dev = intel_crtc->base.dev;
7855 struct drm_i915_private *dev_priv = dev->dev_private;
7856 uint32_t pipeconf;
7857
7858 pipeconf = 0;
7859
7860 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7861 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7862 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7863
7864 if (intel_crtc->config->double_wide)
7865 pipeconf |= PIPECONF_DOUBLE_WIDE;
7866
7867 /* only g4x and later have fancy bpc/dither controls */
7868 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7869 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7870 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7871 pipeconf |= PIPECONF_DITHER_EN |
7872 PIPECONF_DITHER_TYPE_SP;
7873
7874 switch (intel_crtc->config->pipe_bpp) {
7875 case 18:
7876 pipeconf |= PIPECONF_6BPC;
7877 break;
7878 case 24:
7879 pipeconf |= PIPECONF_8BPC;
7880 break;
7881 case 30:
7882 pipeconf |= PIPECONF_10BPC;
7883 break;
7884 default:
7885 /* Case prevented by intel_choose_pipe_bpp_dither. */
7886 BUG();
7887 }
7888 }
7889
7890 if (HAS_PIPE_CXSR(dev)) {
7891 if (intel_crtc->lowfreq_avail) {
7892 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7893 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7894 } else {
7895 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7896 }
7897 }
7898
7899 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7900 if (INTEL_INFO(dev)->gen < 4 ||
7901 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7902 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7903 else
7904 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7905 } else
7906 pipeconf |= PIPECONF_PROGRESSIVE;
7907
7908 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7909 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7910
7911 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7912 POSTING_READ(PIPECONF(intel_crtc->pipe));
7913 }
7914
7915 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7916 struct intel_crtc_state *crtc_state)
7917 {
7918 struct drm_device *dev = crtc->base.dev;
7919 struct drm_i915_private *dev_priv = dev->dev_private;
7920 int refclk, num_connectors = 0;
7921 intel_clock_t clock, reduced_clock;
7922 bool ok, has_reduced_clock = false;
7923 bool is_lvds = false, is_dsi = false;
7924 struct intel_encoder *encoder;
7925 const intel_limit_t *limit;
7926 struct drm_atomic_state *state = crtc_state->base.state;
7927 struct drm_connector *connector;
7928 struct drm_connector_state *connector_state;
7929 int i;
7930
7931 memset(&crtc_state->dpll_hw_state, 0,
7932 sizeof(crtc_state->dpll_hw_state));
7933
7934 for_each_connector_in_state(state, connector, connector_state, i) {
7935 if (connector_state->crtc != &crtc->base)
7936 continue;
7937
7938 encoder = to_intel_encoder(connector_state->best_encoder);
7939
7940 switch (encoder->type) {
7941 case INTEL_OUTPUT_LVDS:
7942 is_lvds = true;
7943 break;
7944 case INTEL_OUTPUT_DSI:
7945 is_dsi = true;
7946 break;
7947 default:
7948 break;
7949 }
7950
7951 num_connectors++;
7952 }
7953
7954 if (is_dsi)
7955 return 0;
7956
7957 if (!crtc_state->clock_set) {
7958 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7959
7960 /*
7961 * Returns a set of divisors for the desired target clock with
7962 * the given refclk, or FALSE. The returned values represent
7963 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7964 * 2) / p1 / p2.
7965 */
7966 limit = intel_limit(crtc_state, refclk);
7967 ok = dev_priv->display.find_dpll(limit, crtc_state,
7968 crtc_state->port_clock,
7969 refclk, NULL, &clock);
7970 if (!ok) {
7971 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7972 return -EINVAL;
7973 }
7974
7975 if (is_lvds && dev_priv->lvds_downclock_avail) {
7976 /*
7977 * Ensure we match the reduced clock's P to the target
7978 * clock. If the clocks don't match, we can't switch
7979 * the display clock by using the FP0/FP1. In such case
7980 * we will disable the LVDS downclock feature.
7981 */
7982 has_reduced_clock =
7983 dev_priv->display.find_dpll(limit, crtc_state,
7984 dev_priv->lvds_downclock,
7985 refclk, &clock,
7986 &reduced_clock);
7987 }
7988 /* Compat-code for transition, will disappear. */
7989 crtc_state->dpll.n = clock.n;
7990 crtc_state->dpll.m1 = clock.m1;
7991 crtc_state->dpll.m2 = clock.m2;
7992 crtc_state->dpll.p1 = clock.p1;
7993 crtc_state->dpll.p2 = clock.p2;
7994 }
7995
7996 if (IS_GEN2(dev)) {
7997 i8xx_update_pll(crtc, crtc_state,
7998 has_reduced_clock ? &reduced_clock : NULL,
7999 num_connectors);
8000 } else if (IS_CHERRYVIEW(dev)) {
8001 chv_update_pll(crtc, crtc_state);
8002 } else if (IS_VALLEYVIEW(dev)) {
8003 vlv_update_pll(crtc, crtc_state);
8004 } else {
8005 i9xx_update_pll(crtc, crtc_state,
8006 has_reduced_clock ? &reduced_clock : NULL,
8007 num_connectors);
8008 }
8009
8010 return 0;
8011 }
8012
8013 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8014 struct intel_crtc_state *pipe_config)
8015 {
8016 struct drm_device *dev = crtc->base.dev;
8017 struct drm_i915_private *dev_priv = dev->dev_private;
8018 uint32_t tmp;
8019
8020 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8021 return;
8022
8023 tmp = I915_READ(PFIT_CONTROL);
8024 if (!(tmp & PFIT_ENABLE))
8025 return;
8026
8027 /* Check whether the pfit is attached to our pipe. */
8028 if (INTEL_INFO(dev)->gen < 4) {
8029 if (crtc->pipe != PIPE_B)
8030 return;
8031 } else {
8032 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8033 return;
8034 }
8035
8036 pipe_config->gmch_pfit.control = tmp;
8037 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8038 if (INTEL_INFO(dev)->gen < 5)
8039 pipe_config->gmch_pfit.lvds_border_bits =
8040 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8041 }
8042
8043 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8044 struct intel_crtc_state *pipe_config)
8045 {
8046 struct drm_device *dev = crtc->base.dev;
8047 struct drm_i915_private *dev_priv = dev->dev_private;
8048 int pipe = pipe_config->cpu_transcoder;
8049 intel_clock_t clock;
8050 u32 mdiv;
8051 int refclk = 100000;
8052
8053 /* In case of MIPI DPLL will not even be used */
8054 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8055 return;
8056
8057 mutex_lock(&dev_priv->sb_lock);
8058 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8059 mutex_unlock(&dev_priv->sb_lock);
8060
8061 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8062 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8063 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8064 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8065 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8066
8067 vlv_clock(refclk, &clock);
8068
8069 /* clock.dot is the fast clock */
8070 pipe_config->port_clock = clock.dot / 5;
8071 }
8072
8073 static void
8074 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8075 struct intel_initial_plane_config *plane_config)
8076 {
8077 struct drm_device *dev = crtc->base.dev;
8078 struct drm_i915_private *dev_priv = dev->dev_private;
8079 u32 val, base, offset;
8080 int pipe = crtc->pipe, plane = crtc->plane;
8081 int fourcc, pixel_format;
8082 unsigned int aligned_height;
8083 struct drm_framebuffer *fb;
8084 struct intel_framebuffer *intel_fb;
8085
8086 val = I915_READ(DSPCNTR(plane));
8087 if (!(val & DISPLAY_PLANE_ENABLE))
8088 return;
8089
8090 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8091 if (!intel_fb) {
8092 DRM_DEBUG_KMS("failed to alloc fb\n");
8093 return;
8094 }
8095
8096 fb = &intel_fb->base;
8097
8098 if (INTEL_INFO(dev)->gen >= 4) {
8099 if (val & DISPPLANE_TILED) {
8100 plane_config->tiling = I915_TILING_X;
8101 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8102 }
8103 }
8104
8105 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8106 fourcc = i9xx_format_to_fourcc(pixel_format);
8107 fb->pixel_format = fourcc;
8108 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8109
8110 if (INTEL_INFO(dev)->gen >= 4) {
8111 if (plane_config->tiling)
8112 offset = I915_READ(DSPTILEOFF(plane));
8113 else
8114 offset = I915_READ(DSPLINOFF(plane));
8115 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8116 } else {
8117 base = I915_READ(DSPADDR(plane));
8118 }
8119 plane_config->base = base;
8120
8121 val = I915_READ(PIPESRC(pipe));
8122 fb->width = ((val >> 16) & 0xfff) + 1;
8123 fb->height = ((val >> 0) & 0xfff) + 1;
8124
8125 val = I915_READ(DSPSTRIDE(pipe));
8126 fb->pitches[0] = val & 0xffffffc0;
8127
8128 aligned_height = intel_fb_align_height(dev, fb->height,
8129 fb->pixel_format,
8130 fb->modifier[0]);
8131
8132 plane_config->size = fb->pitches[0] * aligned_height;
8133
8134 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8135 pipe_name(pipe), plane, fb->width, fb->height,
8136 fb->bits_per_pixel, base, fb->pitches[0],
8137 plane_config->size);
8138
8139 plane_config->fb = intel_fb;
8140 }
8141
8142 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8143 struct intel_crtc_state *pipe_config)
8144 {
8145 struct drm_device *dev = crtc->base.dev;
8146 struct drm_i915_private *dev_priv = dev->dev_private;
8147 int pipe = pipe_config->cpu_transcoder;
8148 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8149 intel_clock_t clock;
8150 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
8151 int refclk = 100000;
8152
8153 mutex_lock(&dev_priv->sb_lock);
8154 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8155 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8156 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8157 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8158 mutex_unlock(&dev_priv->sb_lock);
8159
8160 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8161 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
8162 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8163 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8164 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8165
8166 chv_clock(refclk, &clock);
8167
8168 /* clock.dot is the fast clock */
8169 pipe_config->port_clock = clock.dot / 5;
8170 }
8171
8172 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8173 struct intel_crtc_state *pipe_config)
8174 {
8175 struct drm_device *dev = crtc->base.dev;
8176 struct drm_i915_private *dev_priv = dev->dev_private;
8177 uint32_t tmp;
8178
8179 if (!intel_display_power_is_enabled(dev_priv,
8180 POWER_DOMAIN_PIPE(crtc->pipe)))
8181 return false;
8182
8183 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8184 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8185
8186 tmp = I915_READ(PIPECONF(crtc->pipe));
8187 if (!(tmp & PIPECONF_ENABLE))
8188 return false;
8189
8190 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8191 switch (tmp & PIPECONF_BPC_MASK) {
8192 case PIPECONF_6BPC:
8193 pipe_config->pipe_bpp = 18;
8194 break;
8195 case PIPECONF_8BPC:
8196 pipe_config->pipe_bpp = 24;
8197 break;
8198 case PIPECONF_10BPC:
8199 pipe_config->pipe_bpp = 30;
8200 break;
8201 default:
8202 break;
8203 }
8204 }
8205
8206 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8207 pipe_config->limited_color_range = true;
8208
8209 if (INTEL_INFO(dev)->gen < 4)
8210 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8211
8212 intel_get_pipe_timings(crtc, pipe_config);
8213
8214 i9xx_get_pfit_config(crtc, pipe_config);
8215
8216 if (INTEL_INFO(dev)->gen >= 4) {
8217 tmp = I915_READ(DPLL_MD(crtc->pipe));
8218 pipe_config->pixel_multiplier =
8219 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8220 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8221 pipe_config->dpll_hw_state.dpll_md = tmp;
8222 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8223 tmp = I915_READ(DPLL(crtc->pipe));
8224 pipe_config->pixel_multiplier =
8225 ((tmp & SDVO_MULTIPLIER_MASK)
8226 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8227 } else {
8228 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8229 * port and will be fixed up in the encoder->get_config
8230 * function. */
8231 pipe_config->pixel_multiplier = 1;
8232 }
8233 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8234 if (!IS_VALLEYVIEW(dev)) {
8235 /*
8236 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8237 * on 830. Filter it out here so that we don't
8238 * report errors due to that.
8239 */
8240 if (IS_I830(dev))
8241 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8242
8243 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8244 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8245 } else {
8246 /* Mask out read-only status bits. */
8247 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8248 DPLL_PORTC_READY_MASK |
8249 DPLL_PORTB_READY_MASK);
8250 }
8251
8252 if (IS_CHERRYVIEW(dev))
8253 chv_crtc_clock_get(crtc, pipe_config);
8254 else if (IS_VALLEYVIEW(dev))
8255 vlv_crtc_clock_get(crtc, pipe_config);
8256 else
8257 i9xx_crtc_clock_get(crtc, pipe_config);
8258
8259 return true;
8260 }
8261
8262 static void ironlake_init_pch_refclk(struct drm_device *dev)
8263 {
8264 struct drm_i915_private *dev_priv = dev->dev_private;
8265 struct intel_encoder *encoder;
8266 u32 val, final;
8267 bool has_lvds = false;
8268 bool has_cpu_edp = false;
8269 bool has_panel = false;
8270 bool has_ck505 = false;
8271 bool can_ssc = false;
8272
8273 /* We need to take the global config into account */
8274 for_each_intel_encoder(dev, encoder) {
8275 switch (encoder->type) {
8276 case INTEL_OUTPUT_LVDS:
8277 has_panel = true;
8278 has_lvds = true;
8279 break;
8280 case INTEL_OUTPUT_EDP:
8281 has_panel = true;
8282 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8283 has_cpu_edp = true;
8284 break;
8285 default:
8286 break;
8287 }
8288 }
8289
8290 if (HAS_PCH_IBX(dev)) {
8291 has_ck505 = dev_priv->vbt.display_clock_mode;
8292 can_ssc = has_ck505;
8293 } else {
8294 has_ck505 = false;
8295 can_ssc = true;
8296 }
8297
8298 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8299 has_panel, has_lvds, has_ck505);
8300
8301 /* Ironlake: try to setup display ref clock before DPLL
8302 * enabling. This is only under driver's control after
8303 * PCH B stepping, previous chipset stepping should be
8304 * ignoring this setting.
8305 */
8306 val = I915_READ(PCH_DREF_CONTROL);
8307
8308 /* As we must carefully and slowly disable/enable each source in turn,
8309 * compute the final state we want first and check if we need to
8310 * make any changes at all.
8311 */
8312 final = val;
8313 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8314 if (has_ck505)
8315 final |= DREF_NONSPREAD_CK505_ENABLE;
8316 else
8317 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8318
8319 final &= ~DREF_SSC_SOURCE_MASK;
8320 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8321 final &= ~DREF_SSC1_ENABLE;
8322
8323 if (has_panel) {
8324 final |= DREF_SSC_SOURCE_ENABLE;
8325
8326 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8327 final |= DREF_SSC1_ENABLE;
8328
8329 if (has_cpu_edp) {
8330 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8331 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8332 else
8333 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8334 } else
8335 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8336 } else {
8337 final |= DREF_SSC_SOURCE_DISABLE;
8338 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8339 }
8340
8341 if (final == val)
8342 return;
8343
8344 /* Always enable nonspread source */
8345 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8346
8347 if (has_ck505)
8348 val |= DREF_NONSPREAD_CK505_ENABLE;
8349 else
8350 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8351
8352 if (has_panel) {
8353 val &= ~DREF_SSC_SOURCE_MASK;
8354 val |= DREF_SSC_SOURCE_ENABLE;
8355
8356 /* SSC must be turned on before enabling the CPU output */
8357 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8358 DRM_DEBUG_KMS("Using SSC on panel\n");
8359 val |= DREF_SSC1_ENABLE;
8360 } else
8361 val &= ~DREF_SSC1_ENABLE;
8362
8363 /* Get SSC going before enabling the outputs */
8364 I915_WRITE(PCH_DREF_CONTROL, val);
8365 POSTING_READ(PCH_DREF_CONTROL);
8366 udelay(200);
8367
8368 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8369
8370 /* Enable CPU source on CPU attached eDP */
8371 if (has_cpu_edp) {
8372 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8373 DRM_DEBUG_KMS("Using SSC on eDP\n");
8374 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8375 } else
8376 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8377 } else
8378 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8379
8380 I915_WRITE(PCH_DREF_CONTROL, val);
8381 POSTING_READ(PCH_DREF_CONTROL);
8382 udelay(200);
8383 } else {
8384 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8385
8386 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8387
8388 /* Turn off CPU output */
8389 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8390
8391 I915_WRITE(PCH_DREF_CONTROL, val);
8392 POSTING_READ(PCH_DREF_CONTROL);
8393 udelay(200);
8394
8395 /* Turn off the SSC source */
8396 val &= ~DREF_SSC_SOURCE_MASK;
8397 val |= DREF_SSC_SOURCE_DISABLE;
8398
8399 /* Turn off SSC1 */
8400 val &= ~DREF_SSC1_ENABLE;
8401
8402 I915_WRITE(PCH_DREF_CONTROL, val);
8403 POSTING_READ(PCH_DREF_CONTROL);
8404 udelay(200);
8405 }
8406
8407 BUG_ON(val != final);
8408 }
8409
8410 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8411 {
8412 uint32_t tmp;
8413
8414 tmp = I915_READ(SOUTH_CHICKEN2);
8415 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8416 I915_WRITE(SOUTH_CHICKEN2, tmp);
8417
8418 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8419 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8420 DRM_ERROR("FDI mPHY reset assert timeout\n");
8421
8422 tmp = I915_READ(SOUTH_CHICKEN2);
8423 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8424 I915_WRITE(SOUTH_CHICKEN2, tmp);
8425
8426 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8427 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8428 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8429 }
8430
8431 /* WaMPhyProgramming:hsw */
8432 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8433 {
8434 uint32_t tmp;
8435
8436 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8437 tmp &= ~(0xFF << 24);
8438 tmp |= (0x12 << 24);
8439 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8440
8441 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8442 tmp |= (1 << 11);
8443 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8444
8445 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8446 tmp |= (1 << 11);
8447 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8448
8449 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8450 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8451 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8452
8453 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8454 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8455 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8456
8457 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8458 tmp &= ~(7 << 13);
8459 tmp |= (5 << 13);
8460 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8461
8462 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8463 tmp &= ~(7 << 13);
8464 tmp |= (5 << 13);
8465 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8466
8467 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8468 tmp &= ~0xFF;
8469 tmp |= 0x1C;
8470 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8471
8472 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8473 tmp &= ~0xFF;
8474 tmp |= 0x1C;
8475 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8476
8477 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8478 tmp &= ~(0xFF << 16);
8479 tmp |= (0x1C << 16);
8480 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8481
8482 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8483 tmp &= ~(0xFF << 16);
8484 tmp |= (0x1C << 16);
8485 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8486
8487 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8488 tmp |= (1 << 27);
8489 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8490
8491 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8492 tmp |= (1 << 27);
8493 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8494
8495 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8496 tmp &= ~(0xF << 28);
8497 tmp |= (4 << 28);
8498 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8499
8500 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8501 tmp &= ~(0xF << 28);
8502 tmp |= (4 << 28);
8503 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8504 }
8505
8506 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8507 * Programming" based on the parameters passed:
8508 * - Sequence to enable CLKOUT_DP
8509 * - Sequence to enable CLKOUT_DP without spread
8510 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8511 */
8512 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8513 bool with_fdi)
8514 {
8515 struct drm_i915_private *dev_priv = dev->dev_private;
8516 uint32_t reg, tmp;
8517
8518 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8519 with_spread = true;
8520 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8521 with_fdi, "LP PCH doesn't have FDI\n"))
8522 with_fdi = false;
8523
8524 mutex_lock(&dev_priv->sb_lock);
8525
8526 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8527 tmp &= ~SBI_SSCCTL_DISABLE;
8528 tmp |= SBI_SSCCTL_PATHALT;
8529 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8530
8531 udelay(24);
8532
8533 if (with_spread) {
8534 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8535 tmp &= ~SBI_SSCCTL_PATHALT;
8536 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8537
8538 if (with_fdi) {
8539 lpt_reset_fdi_mphy(dev_priv);
8540 lpt_program_fdi_mphy(dev_priv);
8541 }
8542 }
8543
8544 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8545 SBI_GEN0 : SBI_DBUFF0;
8546 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8547 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8548 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8549
8550 mutex_unlock(&dev_priv->sb_lock);
8551 }
8552
8553 /* Sequence to disable CLKOUT_DP */
8554 static void lpt_disable_clkout_dp(struct drm_device *dev)
8555 {
8556 struct drm_i915_private *dev_priv = dev->dev_private;
8557 uint32_t reg, tmp;
8558
8559 mutex_lock(&dev_priv->sb_lock);
8560
8561 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8562 SBI_GEN0 : SBI_DBUFF0;
8563 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8564 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8565 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8566
8567 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8568 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8569 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8570 tmp |= SBI_SSCCTL_PATHALT;
8571 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8572 udelay(32);
8573 }
8574 tmp |= SBI_SSCCTL_DISABLE;
8575 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8576 }
8577
8578 mutex_unlock(&dev_priv->sb_lock);
8579 }
8580
8581 static void lpt_init_pch_refclk(struct drm_device *dev)
8582 {
8583 struct intel_encoder *encoder;
8584 bool has_vga = false;
8585
8586 for_each_intel_encoder(dev, encoder) {
8587 switch (encoder->type) {
8588 case INTEL_OUTPUT_ANALOG:
8589 has_vga = true;
8590 break;
8591 default:
8592 break;
8593 }
8594 }
8595
8596 if (has_vga)
8597 lpt_enable_clkout_dp(dev, true, true);
8598 else
8599 lpt_disable_clkout_dp(dev);
8600 }
8601
8602 /*
8603 * Initialize reference clocks when the driver loads
8604 */
8605 void intel_init_pch_refclk(struct drm_device *dev)
8606 {
8607 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8608 ironlake_init_pch_refclk(dev);
8609 else if (HAS_PCH_LPT(dev))
8610 lpt_init_pch_refclk(dev);
8611 }
8612
8613 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8614 {
8615 struct drm_device *dev = crtc_state->base.crtc->dev;
8616 struct drm_i915_private *dev_priv = dev->dev_private;
8617 struct drm_atomic_state *state = crtc_state->base.state;
8618 struct drm_connector *connector;
8619 struct drm_connector_state *connector_state;
8620 struct intel_encoder *encoder;
8621 int num_connectors = 0, i;
8622 bool is_lvds = false;
8623
8624 for_each_connector_in_state(state, connector, connector_state, i) {
8625 if (connector_state->crtc != crtc_state->base.crtc)
8626 continue;
8627
8628 encoder = to_intel_encoder(connector_state->best_encoder);
8629
8630 switch (encoder->type) {
8631 case INTEL_OUTPUT_LVDS:
8632 is_lvds = true;
8633 break;
8634 default:
8635 break;
8636 }
8637 num_connectors++;
8638 }
8639
8640 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8641 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8642 dev_priv->vbt.lvds_ssc_freq);
8643 return dev_priv->vbt.lvds_ssc_freq;
8644 }
8645
8646 return 120000;
8647 }
8648
8649 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8650 {
8651 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8653 int pipe = intel_crtc->pipe;
8654 uint32_t val;
8655
8656 val = 0;
8657
8658 switch (intel_crtc->config->pipe_bpp) {
8659 case 18:
8660 val |= PIPECONF_6BPC;
8661 break;
8662 case 24:
8663 val |= PIPECONF_8BPC;
8664 break;
8665 case 30:
8666 val |= PIPECONF_10BPC;
8667 break;
8668 case 36:
8669 val |= PIPECONF_12BPC;
8670 break;
8671 default:
8672 /* Case prevented by intel_choose_pipe_bpp_dither. */
8673 BUG();
8674 }
8675
8676 if (intel_crtc->config->dither)
8677 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8678
8679 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8680 val |= PIPECONF_INTERLACED_ILK;
8681 else
8682 val |= PIPECONF_PROGRESSIVE;
8683
8684 if (intel_crtc->config->limited_color_range)
8685 val |= PIPECONF_COLOR_RANGE_SELECT;
8686
8687 I915_WRITE(PIPECONF(pipe), val);
8688 POSTING_READ(PIPECONF(pipe));
8689 }
8690
8691 /*
8692 * Set up the pipe CSC unit.
8693 *
8694 * Currently only full range RGB to limited range RGB conversion
8695 * is supported, but eventually this should handle various
8696 * RGB<->YCbCr scenarios as well.
8697 */
8698 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8699 {
8700 struct drm_device *dev = crtc->dev;
8701 struct drm_i915_private *dev_priv = dev->dev_private;
8702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8703 int pipe = intel_crtc->pipe;
8704 uint16_t coeff = 0x7800; /* 1.0 */
8705
8706 /*
8707 * TODO: Check what kind of values actually come out of the pipe
8708 * with these coeff/postoff values and adjust to get the best
8709 * accuracy. Perhaps we even need to take the bpc value into
8710 * consideration.
8711 */
8712
8713 if (intel_crtc->config->limited_color_range)
8714 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8715
8716 /*
8717 * GY/GU and RY/RU should be the other way around according
8718 * to BSpec, but reality doesn't agree. Just set them up in
8719 * a way that results in the correct picture.
8720 */
8721 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8722 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8723
8724 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8725 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8726
8727 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8728 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8729
8730 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8731 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8732 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8733
8734 if (INTEL_INFO(dev)->gen > 6) {
8735 uint16_t postoff = 0;
8736
8737 if (intel_crtc->config->limited_color_range)
8738 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8739
8740 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8741 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8742 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8743
8744 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8745 } else {
8746 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8747
8748 if (intel_crtc->config->limited_color_range)
8749 mode |= CSC_BLACK_SCREEN_OFFSET;
8750
8751 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8752 }
8753 }
8754
8755 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8756 {
8757 struct drm_device *dev = crtc->dev;
8758 struct drm_i915_private *dev_priv = dev->dev_private;
8759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8760 enum pipe pipe = intel_crtc->pipe;
8761 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8762 uint32_t val;
8763
8764 val = 0;
8765
8766 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8767 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8768
8769 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8770 val |= PIPECONF_INTERLACED_ILK;
8771 else
8772 val |= PIPECONF_PROGRESSIVE;
8773
8774 I915_WRITE(PIPECONF(cpu_transcoder), val);
8775 POSTING_READ(PIPECONF(cpu_transcoder));
8776
8777 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8778 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8779
8780 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8781 val = 0;
8782
8783 switch (intel_crtc->config->pipe_bpp) {
8784 case 18:
8785 val |= PIPEMISC_DITHER_6_BPC;
8786 break;
8787 case 24:
8788 val |= PIPEMISC_DITHER_8_BPC;
8789 break;
8790 case 30:
8791 val |= PIPEMISC_DITHER_10_BPC;
8792 break;
8793 case 36:
8794 val |= PIPEMISC_DITHER_12_BPC;
8795 break;
8796 default:
8797 /* Case prevented by pipe_config_set_bpp. */
8798 BUG();
8799 }
8800
8801 if (intel_crtc->config->dither)
8802 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8803
8804 I915_WRITE(PIPEMISC(pipe), val);
8805 }
8806 }
8807
8808 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8809 struct intel_crtc_state *crtc_state,
8810 intel_clock_t *clock,
8811 bool *has_reduced_clock,
8812 intel_clock_t *reduced_clock)
8813 {
8814 struct drm_device *dev = crtc->dev;
8815 struct drm_i915_private *dev_priv = dev->dev_private;
8816 int refclk;
8817 const intel_limit_t *limit;
8818 bool ret, is_lvds = false;
8819
8820 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8821
8822 refclk = ironlake_get_refclk(crtc_state);
8823
8824 /*
8825 * Returns a set of divisors for the desired target clock with the given
8826 * refclk, or FALSE. The returned values represent the clock equation:
8827 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8828 */
8829 limit = intel_limit(crtc_state, refclk);
8830 ret = dev_priv->display.find_dpll(limit, crtc_state,
8831 crtc_state->port_clock,
8832 refclk, NULL, clock);
8833 if (!ret)
8834 return false;
8835
8836 if (is_lvds && dev_priv->lvds_downclock_avail) {
8837 /*
8838 * Ensure we match the reduced clock's P to the target clock.
8839 * If the clocks don't match, we can't switch the display clock
8840 * by using the FP0/FP1. In such case we will disable the LVDS
8841 * downclock feature.
8842 */
8843 *has_reduced_clock =
8844 dev_priv->display.find_dpll(limit, crtc_state,
8845 dev_priv->lvds_downclock,
8846 refclk, clock,
8847 reduced_clock);
8848 }
8849
8850 return true;
8851 }
8852
8853 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8854 {
8855 /*
8856 * Account for spread spectrum to avoid
8857 * oversubscribing the link. Max center spread
8858 * is 2.5%; use 5% for safety's sake.
8859 */
8860 u32 bps = target_clock * bpp * 21 / 20;
8861 return DIV_ROUND_UP(bps, link_bw * 8);
8862 }
8863
8864 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8865 {
8866 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8867 }
8868
8869 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8870 struct intel_crtc_state *crtc_state,
8871 u32 *fp,
8872 intel_clock_t *reduced_clock, u32 *fp2)
8873 {
8874 struct drm_crtc *crtc = &intel_crtc->base;
8875 struct drm_device *dev = crtc->dev;
8876 struct drm_i915_private *dev_priv = dev->dev_private;
8877 struct drm_atomic_state *state = crtc_state->base.state;
8878 struct drm_connector *connector;
8879 struct drm_connector_state *connector_state;
8880 struct intel_encoder *encoder;
8881 uint32_t dpll;
8882 int factor, num_connectors = 0, i;
8883 bool is_lvds = false, is_sdvo = false;
8884
8885 for_each_connector_in_state(state, connector, connector_state, i) {
8886 if (connector_state->crtc != crtc_state->base.crtc)
8887 continue;
8888
8889 encoder = to_intel_encoder(connector_state->best_encoder);
8890
8891 switch (encoder->type) {
8892 case INTEL_OUTPUT_LVDS:
8893 is_lvds = true;
8894 break;
8895 case INTEL_OUTPUT_SDVO:
8896 case INTEL_OUTPUT_HDMI:
8897 is_sdvo = true;
8898 break;
8899 default:
8900 break;
8901 }
8902
8903 num_connectors++;
8904 }
8905
8906 /* Enable autotuning of the PLL clock (if permissible) */
8907 factor = 21;
8908 if (is_lvds) {
8909 if ((intel_panel_use_ssc(dev_priv) &&
8910 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8911 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8912 factor = 25;
8913 } else if (crtc_state->sdvo_tv_clock)
8914 factor = 20;
8915
8916 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8917 *fp |= FP_CB_TUNE;
8918
8919 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8920 *fp2 |= FP_CB_TUNE;
8921
8922 dpll = 0;
8923
8924 if (is_lvds)
8925 dpll |= DPLLB_MODE_LVDS;
8926 else
8927 dpll |= DPLLB_MODE_DAC_SERIAL;
8928
8929 dpll |= (crtc_state->pixel_multiplier - 1)
8930 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8931
8932 if (is_sdvo)
8933 dpll |= DPLL_SDVO_HIGH_SPEED;
8934 if (crtc_state->has_dp_encoder)
8935 dpll |= DPLL_SDVO_HIGH_SPEED;
8936
8937 /* compute bitmask from p1 value */
8938 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8939 /* also FPA1 */
8940 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8941
8942 switch (crtc_state->dpll.p2) {
8943 case 5:
8944 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8945 break;
8946 case 7:
8947 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8948 break;
8949 case 10:
8950 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8951 break;
8952 case 14:
8953 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8954 break;
8955 }
8956
8957 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8958 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8959 else
8960 dpll |= PLL_REF_INPUT_DREFCLK;
8961
8962 return dpll | DPLL_VCO_ENABLE;
8963 }
8964
8965 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8966 struct intel_crtc_state *crtc_state)
8967 {
8968 struct drm_device *dev = crtc->base.dev;
8969 intel_clock_t clock, reduced_clock;
8970 u32 dpll = 0, fp = 0, fp2 = 0;
8971 bool ok, has_reduced_clock = false;
8972 bool is_lvds = false;
8973 struct intel_shared_dpll *pll;
8974
8975 memset(&crtc_state->dpll_hw_state, 0,
8976 sizeof(crtc_state->dpll_hw_state));
8977
8978 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8979
8980 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8981 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8982
8983 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8984 &has_reduced_clock, &reduced_clock);
8985 if (!ok && !crtc_state->clock_set) {
8986 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8987 return -EINVAL;
8988 }
8989 /* Compat-code for transition, will disappear. */
8990 if (!crtc_state->clock_set) {
8991 crtc_state->dpll.n = clock.n;
8992 crtc_state->dpll.m1 = clock.m1;
8993 crtc_state->dpll.m2 = clock.m2;
8994 crtc_state->dpll.p1 = clock.p1;
8995 crtc_state->dpll.p2 = clock.p2;
8996 }
8997
8998 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8999 if (crtc_state->has_pch_encoder) {
9000 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9001 if (has_reduced_clock)
9002 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9003
9004 dpll = ironlake_compute_dpll(crtc, crtc_state,
9005 &fp, &reduced_clock,
9006 has_reduced_clock ? &fp2 : NULL);
9007
9008 crtc_state->dpll_hw_state.dpll = dpll;
9009 crtc_state->dpll_hw_state.fp0 = fp;
9010 if (has_reduced_clock)
9011 crtc_state->dpll_hw_state.fp1 = fp2;
9012 else
9013 crtc_state->dpll_hw_state.fp1 = fp;
9014
9015 pll = intel_get_shared_dpll(crtc, crtc_state);
9016 if (pll == NULL) {
9017 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9018 pipe_name(crtc->pipe));
9019 return -EINVAL;
9020 }
9021 }
9022
9023 if (is_lvds && has_reduced_clock)
9024 crtc->lowfreq_avail = true;
9025 else
9026 crtc->lowfreq_avail = false;
9027
9028 return 0;
9029 }
9030
9031 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9032 struct intel_link_m_n *m_n)
9033 {
9034 struct drm_device *dev = crtc->base.dev;
9035 struct drm_i915_private *dev_priv = dev->dev_private;
9036 enum pipe pipe = crtc->pipe;
9037
9038 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9039 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9040 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9041 & ~TU_SIZE_MASK;
9042 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9043 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9044 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9045 }
9046
9047 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9048 enum transcoder transcoder,
9049 struct intel_link_m_n *m_n,
9050 struct intel_link_m_n *m2_n2)
9051 {
9052 struct drm_device *dev = crtc->base.dev;
9053 struct drm_i915_private *dev_priv = dev->dev_private;
9054 enum pipe pipe = crtc->pipe;
9055
9056 if (INTEL_INFO(dev)->gen >= 5) {
9057 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9058 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9059 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9060 & ~TU_SIZE_MASK;
9061 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9062 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9063 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9064 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9065 * gen < 8) and if DRRS is supported (to make sure the
9066 * registers are not unnecessarily read).
9067 */
9068 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9069 crtc->config->has_drrs) {
9070 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9071 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9072 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9073 & ~TU_SIZE_MASK;
9074 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9075 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9076 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9077 }
9078 } else {
9079 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9080 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9081 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9082 & ~TU_SIZE_MASK;
9083 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9084 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9085 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9086 }
9087 }
9088
9089 void intel_dp_get_m_n(struct intel_crtc *crtc,
9090 struct intel_crtc_state *pipe_config)
9091 {
9092 if (pipe_config->has_pch_encoder)
9093 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9094 else
9095 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9096 &pipe_config->dp_m_n,
9097 &pipe_config->dp_m2_n2);
9098 }
9099
9100 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9101 struct intel_crtc_state *pipe_config)
9102 {
9103 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9104 &pipe_config->fdi_m_n, NULL);
9105 }
9106
9107 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9108 struct intel_crtc_state *pipe_config)
9109 {
9110 struct drm_device *dev = crtc->base.dev;
9111 struct drm_i915_private *dev_priv = dev->dev_private;
9112 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9113 uint32_t ps_ctrl = 0;
9114 int id = -1;
9115 int i;
9116
9117 /* find scaler attached to this pipe */
9118 for (i = 0; i < crtc->num_scalers; i++) {
9119 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9120 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9121 id = i;
9122 pipe_config->pch_pfit.enabled = true;
9123 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9124 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9125 break;
9126 }
9127 }
9128
9129 scaler_state->scaler_id = id;
9130 if (id >= 0) {
9131 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9132 } else {
9133 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9134 }
9135 }
9136
9137 static void
9138 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9139 struct intel_initial_plane_config *plane_config)
9140 {
9141 struct drm_device *dev = crtc->base.dev;
9142 struct drm_i915_private *dev_priv = dev->dev_private;
9143 u32 val, base, offset, stride_mult, tiling;
9144 int pipe = crtc->pipe;
9145 int fourcc, pixel_format;
9146 unsigned int aligned_height;
9147 struct drm_framebuffer *fb;
9148 struct intel_framebuffer *intel_fb;
9149
9150 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9151 if (!intel_fb) {
9152 DRM_DEBUG_KMS("failed to alloc fb\n");
9153 return;
9154 }
9155
9156 fb = &intel_fb->base;
9157
9158 val = I915_READ(PLANE_CTL(pipe, 0));
9159 if (!(val & PLANE_CTL_ENABLE))
9160 goto error;
9161
9162 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9163 fourcc = skl_format_to_fourcc(pixel_format,
9164 val & PLANE_CTL_ORDER_RGBX,
9165 val & PLANE_CTL_ALPHA_MASK);
9166 fb->pixel_format = fourcc;
9167 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9168
9169 tiling = val & PLANE_CTL_TILED_MASK;
9170 switch (tiling) {
9171 case PLANE_CTL_TILED_LINEAR:
9172 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9173 break;
9174 case PLANE_CTL_TILED_X:
9175 plane_config->tiling = I915_TILING_X;
9176 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9177 break;
9178 case PLANE_CTL_TILED_Y:
9179 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9180 break;
9181 case PLANE_CTL_TILED_YF:
9182 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9183 break;
9184 default:
9185 MISSING_CASE(tiling);
9186 goto error;
9187 }
9188
9189 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9190 plane_config->base = base;
9191
9192 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9193
9194 val = I915_READ(PLANE_SIZE(pipe, 0));
9195 fb->height = ((val >> 16) & 0xfff) + 1;
9196 fb->width = ((val >> 0) & 0x1fff) + 1;
9197
9198 val = I915_READ(PLANE_STRIDE(pipe, 0));
9199 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9200 fb->pixel_format);
9201 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9202
9203 aligned_height = intel_fb_align_height(dev, fb->height,
9204 fb->pixel_format,
9205 fb->modifier[0]);
9206
9207 plane_config->size = fb->pitches[0] * aligned_height;
9208
9209 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9210 pipe_name(pipe), fb->width, fb->height,
9211 fb->bits_per_pixel, base, fb->pitches[0],
9212 plane_config->size);
9213
9214 plane_config->fb = intel_fb;
9215 return;
9216
9217 error:
9218 kfree(fb);
9219 }
9220
9221 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9222 struct intel_crtc_state *pipe_config)
9223 {
9224 struct drm_device *dev = crtc->base.dev;
9225 struct drm_i915_private *dev_priv = dev->dev_private;
9226 uint32_t tmp;
9227
9228 tmp = I915_READ(PF_CTL(crtc->pipe));
9229
9230 if (tmp & PF_ENABLE) {
9231 pipe_config->pch_pfit.enabled = true;
9232 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9233 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9234
9235 /* We currently do not free assignements of panel fitters on
9236 * ivb/hsw (since we don't use the higher upscaling modes which
9237 * differentiates them) so just WARN about this case for now. */
9238 if (IS_GEN7(dev)) {
9239 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9240 PF_PIPE_SEL_IVB(crtc->pipe));
9241 }
9242 }
9243 }
9244
9245 static void
9246 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9247 struct intel_initial_plane_config *plane_config)
9248 {
9249 struct drm_device *dev = crtc->base.dev;
9250 struct drm_i915_private *dev_priv = dev->dev_private;
9251 u32 val, base, offset;
9252 int pipe = crtc->pipe;
9253 int fourcc, pixel_format;
9254 unsigned int aligned_height;
9255 struct drm_framebuffer *fb;
9256 struct intel_framebuffer *intel_fb;
9257
9258 val = I915_READ(DSPCNTR(pipe));
9259 if (!(val & DISPLAY_PLANE_ENABLE))
9260 return;
9261
9262 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9263 if (!intel_fb) {
9264 DRM_DEBUG_KMS("failed to alloc fb\n");
9265 return;
9266 }
9267
9268 fb = &intel_fb->base;
9269
9270 if (INTEL_INFO(dev)->gen >= 4) {
9271 if (val & DISPPLANE_TILED) {
9272 plane_config->tiling = I915_TILING_X;
9273 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9274 }
9275 }
9276
9277 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9278 fourcc = i9xx_format_to_fourcc(pixel_format);
9279 fb->pixel_format = fourcc;
9280 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9281
9282 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9283 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9284 offset = I915_READ(DSPOFFSET(pipe));
9285 } else {
9286 if (plane_config->tiling)
9287 offset = I915_READ(DSPTILEOFF(pipe));
9288 else
9289 offset = I915_READ(DSPLINOFF(pipe));
9290 }
9291 plane_config->base = base;
9292
9293 val = I915_READ(PIPESRC(pipe));
9294 fb->width = ((val >> 16) & 0xfff) + 1;
9295 fb->height = ((val >> 0) & 0xfff) + 1;
9296
9297 val = I915_READ(DSPSTRIDE(pipe));
9298 fb->pitches[0] = val & 0xffffffc0;
9299
9300 aligned_height = intel_fb_align_height(dev, fb->height,
9301 fb->pixel_format,
9302 fb->modifier[0]);
9303
9304 plane_config->size = fb->pitches[0] * aligned_height;
9305
9306 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9307 pipe_name(pipe), fb->width, fb->height,
9308 fb->bits_per_pixel, base, fb->pitches[0],
9309 plane_config->size);
9310
9311 plane_config->fb = intel_fb;
9312 }
9313
9314 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9315 struct intel_crtc_state *pipe_config)
9316 {
9317 struct drm_device *dev = crtc->base.dev;
9318 struct drm_i915_private *dev_priv = dev->dev_private;
9319 uint32_t tmp;
9320
9321 if (!intel_display_power_is_enabled(dev_priv,
9322 POWER_DOMAIN_PIPE(crtc->pipe)))
9323 return false;
9324
9325 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9326 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9327
9328 tmp = I915_READ(PIPECONF(crtc->pipe));
9329 if (!(tmp & PIPECONF_ENABLE))
9330 return false;
9331
9332 switch (tmp & PIPECONF_BPC_MASK) {
9333 case PIPECONF_6BPC:
9334 pipe_config->pipe_bpp = 18;
9335 break;
9336 case PIPECONF_8BPC:
9337 pipe_config->pipe_bpp = 24;
9338 break;
9339 case PIPECONF_10BPC:
9340 pipe_config->pipe_bpp = 30;
9341 break;
9342 case PIPECONF_12BPC:
9343 pipe_config->pipe_bpp = 36;
9344 break;
9345 default:
9346 break;
9347 }
9348
9349 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9350 pipe_config->limited_color_range = true;
9351
9352 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9353 struct intel_shared_dpll *pll;
9354
9355 pipe_config->has_pch_encoder = true;
9356
9357 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9358 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9359 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9360
9361 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9362
9363 if (HAS_PCH_IBX(dev_priv->dev)) {
9364 pipe_config->shared_dpll =
9365 (enum intel_dpll_id) crtc->pipe;
9366 } else {
9367 tmp = I915_READ(PCH_DPLL_SEL);
9368 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9369 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9370 else
9371 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9372 }
9373
9374 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9375
9376 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9377 &pipe_config->dpll_hw_state));
9378
9379 tmp = pipe_config->dpll_hw_state.dpll;
9380 pipe_config->pixel_multiplier =
9381 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9382 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9383
9384 ironlake_pch_clock_get(crtc, pipe_config);
9385 } else {
9386 pipe_config->pixel_multiplier = 1;
9387 }
9388
9389 intel_get_pipe_timings(crtc, pipe_config);
9390
9391 ironlake_get_pfit_config(crtc, pipe_config);
9392
9393 return true;
9394 }
9395
9396 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9397 {
9398 struct drm_device *dev = dev_priv->dev;
9399 struct intel_crtc *crtc;
9400
9401 for_each_intel_crtc(dev, crtc)
9402 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9403 pipe_name(crtc->pipe));
9404
9405 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9406 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9407 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9408 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9409 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9410 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9411 "CPU PWM1 enabled\n");
9412 if (IS_HASWELL(dev))
9413 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9414 "CPU PWM2 enabled\n");
9415 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9416 "PCH PWM1 enabled\n");
9417 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9418 "Utility pin enabled\n");
9419 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9420
9421 /*
9422 * In theory we can still leave IRQs enabled, as long as only the HPD
9423 * interrupts remain enabled. We used to check for that, but since it's
9424 * gen-specific and since we only disable LCPLL after we fully disable
9425 * the interrupts, the check below should be enough.
9426 */
9427 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9428 }
9429
9430 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9431 {
9432 struct drm_device *dev = dev_priv->dev;
9433
9434 if (IS_HASWELL(dev))
9435 return I915_READ(D_COMP_HSW);
9436 else
9437 return I915_READ(D_COMP_BDW);
9438 }
9439
9440 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9441 {
9442 struct drm_device *dev = dev_priv->dev;
9443
9444 if (IS_HASWELL(dev)) {
9445 mutex_lock(&dev_priv->rps.hw_lock);
9446 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9447 val))
9448 DRM_ERROR("Failed to write to D_COMP\n");
9449 mutex_unlock(&dev_priv->rps.hw_lock);
9450 } else {
9451 I915_WRITE(D_COMP_BDW, val);
9452 POSTING_READ(D_COMP_BDW);
9453 }
9454 }
9455
9456 /*
9457 * This function implements pieces of two sequences from BSpec:
9458 * - Sequence for display software to disable LCPLL
9459 * - Sequence for display software to allow package C8+
9460 * The steps implemented here are just the steps that actually touch the LCPLL
9461 * register. Callers should take care of disabling all the display engine
9462 * functions, doing the mode unset, fixing interrupts, etc.
9463 */
9464 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9465 bool switch_to_fclk, bool allow_power_down)
9466 {
9467 uint32_t val;
9468
9469 assert_can_disable_lcpll(dev_priv);
9470
9471 val = I915_READ(LCPLL_CTL);
9472
9473 if (switch_to_fclk) {
9474 val |= LCPLL_CD_SOURCE_FCLK;
9475 I915_WRITE(LCPLL_CTL, val);
9476
9477 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9478 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9479 DRM_ERROR("Switching to FCLK failed\n");
9480
9481 val = I915_READ(LCPLL_CTL);
9482 }
9483
9484 val |= LCPLL_PLL_DISABLE;
9485 I915_WRITE(LCPLL_CTL, val);
9486 POSTING_READ(LCPLL_CTL);
9487
9488 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9489 DRM_ERROR("LCPLL still locked\n");
9490
9491 val = hsw_read_dcomp(dev_priv);
9492 val |= D_COMP_COMP_DISABLE;
9493 hsw_write_dcomp(dev_priv, val);
9494 ndelay(100);
9495
9496 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9497 1))
9498 DRM_ERROR("D_COMP RCOMP still in progress\n");
9499
9500 if (allow_power_down) {
9501 val = I915_READ(LCPLL_CTL);
9502 val |= LCPLL_POWER_DOWN_ALLOW;
9503 I915_WRITE(LCPLL_CTL, val);
9504 POSTING_READ(LCPLL_CTL);
9505 }
9506 }
9507
9508 /*
9509 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9510 * source.
9511 */
9512 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9513 {
9514 uint32_t val;
9515
9516 val = I915_READ(LCPLL_CTL);
9517
9518 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9519 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9520 return;
9521
9522 /*
9523 * Make sure we're not on PC8 state before disabling PC8, otherwise
9524 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9525 */
9526 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9527
9528 if (val & LCPLL_POWER_DOWN_ALLOW) {
9529 val &= ~LCPLL_POWER_DOWN_ALLOW;
9530 I915_WRITE(LCPLL_CTL, val);
9531 POSTING_READ(LCPLL_CTL);
9532 }
9533
9534 val = hsw_read_dcomp(dev_priv);
9535 val |= D_COMP_COMP_FORCE;
9536 val &= ~D_COMP_COMP_DISABLE;
9537 hsw_write_dcomp(dev_priv, val);
9538
9539 val = I915_READ(LCPLL_CTL);
9540 val &= ~LCPLL_PLL_DISABLE;
9541 I915_WRITE(LCPLL_CTL, val);
9542
9543 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9544 DRM_ERROR("LCPLL not locked yet\n");
9545
9546 if (val & LCPLL_CD_SOURCE_FCLK) {
9547 val = I915_READ(LCPLL_CTL);
9548 val &= ~LCPLL_CD_SOURCE_FCLK;
9549 I915_WRITE(LCPLL_CTL, val);
9550
9551 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9552 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9553 DRM_ERROR("Switching back to LCPLL failed\n");
9554 }
9555
9556 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9557 intel_update_cdclk(dev_priv->dev);
9558 }
9559
9560 /*
9561 * Package states C8 and deeper are really deep PC states that can only be
9562 * reached when all the devices on the system allow it, so even if the graphics
9563 * device allows PC8+, it doesn't mean the system will actually get to these
9564 * states. Our driver only allows PC8+ when going into runtime PM.
9565 *
9566 * The requirements for PC8+ are that all the outputs are disabled, the power
9567 * well is disabled and most interrupts are disabled, and these are also
9568 * requirements for runtime PM. When these conditions are met, we manually do
9569 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9570 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9571 * hang the machine.
9572 *
9573 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9574 * the state of some registers, so when we come back from PC8+ we need to
9575 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9576 * need to take care of the registers kept by RC6. Notice that this happens even
9577 * if we don't put the device in PCI D3 state (which is what currently happens
9578 * because of the runtime PM support).
9579 *
9580 * For more, read "Display Sequences for Package C8" on the hardware
9581 * documentation.
9582 */
9583 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9584 {
9585 struct drm_device *dev = dev_priv->dev;
9586 uint32_t val;
9587
9588 DRM_DEBUG_KMS("Enabling package C8+\n");
9589
9590 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9591 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9592 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9593 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9594 }
9595
9596 lpt_disable_clkout_dp(dev);
9597 hsw_disable_lcpll(dev_priv, true, true);
9598 }
9599
9600 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9601 {
9602 struct drm_device *dev = dev_priv->dev;
9603 uint32_t val;
9604
9605 DRM_DEBUG_KMS("Disabling package C8+\n");
9606
9607 hsw_restore_lcpll(dev_priv);
9608 lpt_init_pch_refclk(dev);
9609
9610 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9611 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9612 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9613 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9614 }
9615
9616 intel_prepare_ddi(dev);
9617 }
9618
9619 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9620 {
9621 struct drm_device *dev = old_state->dev;
9622 struct drm_i915_private *dev_priv = dev->dev_private;
9623 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9624 int req_cdclk;
9625
9626 /* see the comment in valleyview_modeset_global_resources */
9627 if (WARN_ON(max_pixclk < 0))
9628 return;
9629
9630 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9631
9632 if (req_cdclk != dev_priv->cdclk_freq)
9633 broxton_set_cdclk(dev, req_cdclk);
9634 }
9635
9636 /* compute the max rate for new configuration */
9637 static int ilk_max_pixel_rate(struct drm_i915_private *dev_priv)
9638 {
9639 struct drm_device *dev = dev_priv->dev;
9640 struct intel_crtc *intel_crtc;
9641 struct drm_crtc *crtc;
9642 int max_pixel_rate = 0;
9643 int pixel_rate;
9644
9645 for_each_crtc(dev, crtc) {
9646 if (!crtc->state->enable)
9647 continue;
9648
9649 intel_crtc = to_intel_crtc(crtc);
9650 pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
9651
9652 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9653 if (IS_BROADWELL(dev) && intel_crtc->config->ips_enabled)
9654 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9655
9656 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9657 }
9658
9659 return max_pixel_rate;
9660 }
9661
9662 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9663 {
9664 struct drm_i915_private *dev_priv = dev->dev_private;
9665 uint32_t val, data;
9666 int ret;
9667
9668 if (WARN((I915_READ(LCPLL_CTL) &
9669 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9670 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9671 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9672 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9673 "trying to change cdclk frequency with cdclk not enabled\n"))
9674 return;
9675
9676 mutex_lock(&dev_priv->rps.hw_lock);
9677 ret = sandybridge_pcode_write(dev_priv,
9678 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9679 mutex_unlock(&dev_priv->rps.hw_lock);
9680 if (ret) {
9681 DRM_ERROR("failed to inform pcode about cdclk change\n");
9682 return;
9683 }
9684
9685 val = I915_READ(LCPLL_CTL);
9686 val |= LCPLL_CD_SOURCE_FCLK;
9687 I915_WRITE(LCPLL_CTL, val);
9688
9689 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9690 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9691 DRM_ERROR("Switching to FCLK failed\n");
9692
9693 val = I915_READ(LCPLL_CTL);
9694 val &= ~LCPLL_CLK_FREQ_MASK;
9695
9696 switch (cdclk) {
9697 case 450000:
9698 val |= LCPLL_CLK_FREQ_450;
9699 data = 0;
9700 break;
9701 case 540000:
9702 val |= LCPLL_CLK_FREQ_54O_BDW;
9703 data = 1;
9704 break;
9705 case 337500:
9706 val |= LCPLL_CLK_FREQ_337_5_BDW;
9707 data = 2;
9708 break;
9709 case 675000:
9710 val |= LCPLL_CLK_FREQ_675_BDW;
9711 data = 3;
9712 break;
9713 default:
9714 WARN(1, "invalid cdclk frequency\n");
9715 return;
9716 }
9717
9718 I915_WRITE(LCPLL_CTL, val);
9719
9720 val = I915_READ(LCPLL_CTL);
9721 val &= ~LCPLL_CD_SOURCE_FCLK;
9722 I915_WRITE(LCPLL_CTL, val);
9723
9724 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9725 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9726 DRM_ERROR("Switching back to LCPLL failed\n");
9727
9728 mutex_lock(&dev_priv->rps.hw_lock);
9729 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9730 mutex_unlock(&dev_priv->rps.hw_lock);
9731
9732 intel_update_cdclk(dev);
9733
9734 WARN(cdclk != dev_priv->cdclk_freq,
9735 "cdclk requested %d kHz but got %d kHz\n",
9736 cdclk, dev_priv->cdclk_freq);
9737 }
9738
9739 static int broadwell_calc_cdclk(struct drm_i915_private *dev_priv,
9740 int max_pixel_rate)
9741 {
9742 int cdclk;
9743
9744 /*
9745 * FIXME should also account for plane ratio
9746 * once 64bpp pixel formats are supported.
9747 */
9748 if (max_pixel_rate > 540000)
9749 cdclk = 675000;
9750 else if (max_pixel_rate > 450000)
9751 cdclk = 540000;
9752 else if (max_pixel_rate > 337500)
9753 cdclk = 450000;
9754 else
9755 cdclk = 337500;
9756
9757 /*
9758 * FIXME move the cdclk caclulation to
9759 * compute_config() so we can fail gracegully.
9760 */
9761 if (cdclk > dev_priv->max_cdclk_freq) {
9762 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9763 cdclk, dev_priv->max_cdclk_freq);
9764 cdclk = dev_priv->max_cdclk_freq;
9765 }
9766
9767 return cdclk;
9768 }
9769
9770 static int broadwell_modeset_global_pipes(struct drm_atomic_state *state)
9771 {
9772 struct drm_i915_private *dev_priv = to_i915(state->dev);
9773 struct drm_crtc *crtc;
9774 struct drm_crtc_state *crtc_state;
9775 int max_pixclk = ilk_max_pixel_rate(dev_priv);
9776 int cdclk, i;
9777
9778 cdclk = broadwell_calc_cdclk(dev_priv, max_pixclk);
9779
9780 if (cdclk == dev_priv->cdclk_freq)
9781 return 0;
9782
9783 /* add all active pipes to the state */
9784 for_each_crtc(state->dev, crtc) {
9785 if (!crtc->state->enable)
9786 continue;
9787
9788 crtc_state = drm_atomic_get_crtc_state(state, crtc);
9789 if (IS_ERR(crtc_state))
9790 return PTR_ERR(crtc_state);
9791 }
9792
9793 /* disable/enable all currently active pipes while we change cdclk */
9794 for_each_crtc_in_state(state, crtc, crtc_state, i)
9795 if (crtc_state->enable)
9796 crtc_state->mode_changed = true;
9797
9798 return 0;
9799 }
9800
9801 static void broadwell_modeset_global_resources(struct drm_atomic_state *state)
9802 {
9803 struct drm_device *dev = state->dev;
9804 struct drm_i915_private *dev_priv = dev->dev_private;
9805 int max_pixel_rate = ilk_max_pixel_rate(dev_priv);
9806 int req_cdclk = broadwell_calc_cdclk(dev_priv, max_pixel_rate);
9807
9808 if (req_cdclk != dev_priv->cdclk_freq)
9809 broadwell_set_cdclk(dev, req_cdclk);
9810 }
9811
9812 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9813 struct intel_crtc_state *crtc_state)
9814 {
9815 if (!intel_ddi_pll_select(crtc, crtc_state))
9816 return -EINVAL;
9817
9818 crtc->lowfreq_avail = false;
9819
9820 return 0;
9821 }
9822
9823 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9824 enum port port,
9825 struct intel_crtc_state *pipe_config)
9826 {
9827 switch (port) {
9828 case PORT_A:
9829 pipe_config->ddi_pll_sel = SKL_DPLL0;
9830 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9831 break;
9832 case PORT_B:
9833 pipe_config->ddi_pll_sel = SKL_DPLL1;
9834 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9835 break;
9836 case PORT_C:
9837 pipe_config->ddi_pll_sel = SKL_DPLL2;
9838 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9839 break;
9840 default:
9841 DRM_ERROR("Incorrect port type\n");
9842 }
9843 }
9844
9845 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9846 enum port port,
9847 struct intel_crtc_state *pipe_config)
9848 {
9849 u32 temp, dpll_ctl1;
9850
9851 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9852 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9853
9854 switch (pipe_config->ddi_pll_sel) {
9855 case SKL_DPLL0:
9856 /*
9857 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9858 * of the shared DPLL framework and thus needs to be read out
9859 * separately
9860 */
9861 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9862 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9863 break;
9864 case SKL_DPLL1:
9865 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9866 break;
9867 case SKL_DPLL2:
9868 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9869 break;
9870 case SKL_DPLL3:
9871 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9872 break;
9873 }
9874 }
9875
9876 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9877 enum port port,
9878 struct intel_crtc_state *pipe_config)
9879 {
9880 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9881
9882 switch (pipe_config->ddi_pll_sel) {
9883 case PORT_CLK_SEL_WRPLL1:
9884 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9885 break;
9886 case PORT_CLK_SEL_WRPLL2:
9887 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9888 break;
9889 }
9890 }
9891
9892 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9893 struct intel_crtc_state *pipe_config)
9894 {
9895 struct drm_device *dev = crtc->base.dev;
9896 struct drm_i915_private *dev_priv = dev->dev_private;
9897 struct intel_shared_dpll *pll;
9898 enum port port;
9899 uint32_t tmp;
9900
9901 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9902
9903 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9904
9905 if (IS_SKYLAKE(dev))
9906 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9907 else if (IS_BROXTON(dev))
9908 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9909 else
9910 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9911
9912 if (pipe_config->shared_dpll >= 0) {
9913 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9914
9915 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9916 &pipe_config->dpll_hw_state));
9917 }
9918
9919 /*
9920 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9921 * DDI E. So just check whether this pipe is wired to DDI E and whether
9922 * the PCH transcoder is on.
9923 */
9924 if (INTEL_INFO(dev)->gen < 9 &&
9925 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9926 pipe_config->has_pch_encoder = true;
9927
9928 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9929 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9930 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9931
9932 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9933 }
9934 }
9935
9936 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9937 struct intel_crtc_state *pipe_config)
9938 {
9939 struct drm_device *dev = crtc->base.dev;
9940 struct drm_i915_private *dev_priv = dev->dev_private;
9941 enum intel_display_power_domain pfit_domain;
9942 uint32_t tmp;
9943
9944 if (!intel_display_power_is_enabled(dev_priv,
9945 POWER_DOMAIN_PIPE(crtc->pipe)))
9946 return false;
9947
9948 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9949 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9950
9951 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9952 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9953 enum pipe trans_edp_pipe;
9954 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9955 default:
9956 WARN(1, "unknown pipe linked to edp transcoder\n");
9957 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9958 case TRANS_DDI_EDP_INPUT_A_ON:
9959 trans_edp_pipe = PIPE_A;
9960 break;
9961 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9962 trans_edp_pipe = PIPE_B;
9963 break;
9964 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9965 trans_edp_pipe = PIPE_C;
9966 break;
9967 }
9968
9969 if (trans_edp_pipe == crtc->pipe)
9970 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9971 }
9972
9973 if (!intel_display_power_is_enabled(dev_priv,
9974 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9975 return false;
9976
9977 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9978 if (!(tmp & PIPECONF_ENABLE))
9979 return false;
9980
9981 haswell_get_ddi_port_state(crtc, pipe_config);
9982
9983 intel_get_pipe_timings(crtc, pipe_config);
9984
9985 if (INTEL_INFO(dev)->gen >= 9) {
9986 skl_init_scalers(dev, crtc, pipe_config);
9987 }
9988
9989 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9990
9991 if (INTEL_INFO(dev)->gen >= 9) {
9992 pipe_config->scaler_state.scaler_id = -1;
9993 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9994 }
9995
9996 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9997 if (INTEL_INFO(dev)->gen == 9)
9998 skylake_get_pfit_config(crtc, pipe_config);
9999 else if (INTEL_INFO(dev)->gen < 9)
10000 ironlake_get_pfit_config(crtc, pipe_config);
10001 else
10002 MISSING_CASE(INTEL_INFO(dev)->gen);
10003 }
10004
10005 if (IS_HASWELL(dev))
10006 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10007 (I915_READ(IPS_CTL) & IPS_ENABLE);
10008
10009 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10010 pipe_config->pixel_multiplier =
10011 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10012 } else {
10013 pipe_config->pixel_multiplier = 1;
10014 }
10015
10016 return true;
10017 }
10018
10019 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
10020 {
10021 struct drm_device *dev = crtc->dev;
10022 struct drm_i915_private *dev_priv = dev->dev_private;
10023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10024 uint32_t cntl = 0, size = 0;
10025
10026 if (base) {
10027 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
10028 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
10029 unsigned int stride = roundup_pow_of_two(width) * 4;
10030
10031 switch (stride) {
10032 default:
10033 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10034 width, stride);
10035 stride = 256;
10036 /* fallthrough */
10037 case 256:
10038 case 512:
10039 case 1024:
10040 case 2048:
10041 break;
10042 }
10043
10044 cntl |= CURSOR_ENABLE |
10045 CURSOR_GAMMA_ENABLE |
10046 CURSOR_FORMAT_ARGB |
10047 CURSOR_STRIDE(stride);
10048
10049 size = (height << 12) | width;
10050 }
10051
10052 if (intel_crtc->cursor_cntl != 0 &&
10053 (intel_crtc->cursor_base != base ||
10054 intel_crtc->cursor_size != size ||
10055 intel_crtc->cursor_cntl != cntl)) {
10056 /* On these chipsets we can only modify the base/size/stride
10057 * whilst the cursor is disabled.
10058 */
10059 I915_WRITE(_CURACNTR, 0);
10060 POSTING_READ(_CURACNTR);
10061 intel_crtc->cursor_cntl = 0;
10062 }
10063
10064 if (intel_crtc->cursor_base != base) {
10065 I915_WRITE(_CURABASE, base);
10066 intel_crtc->cursor_base = base;
10067 }
10068
10069 if (intel_crtc->cursor_size != size) {
10070 I915_WRITE(CURSIZE, size);
10071 intel_crtc->cursor_size = size;
10072 }
10073
10074 if (intel_crtc->cursor_cntl != cntl) {
10075 I915_WRITE(_CURACNTR, cntl);
10076 POSTING_READ(_CURACNTR);
10077 intel_crtc->cursor_cntl = cntl;
10078 }
10079 }
10080
10081 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
10082 {
10083 struct drm_device *dev = crtc->dev;
10084 struct drm_i915_private *dev_priv = dev->dev_private;
10085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10086 int pipe = intel_crtc->pipe;
10087 uint32_t cntl;
10088
10089 cntl = 0;
10090 if (base) {
10091 cntl = MCURSOR_GAMMA_ENABLE;
10092 switch (intel_crtc->base.cursor->state->crtc_w) {
10093 case 64:
10094 cntl |= CURSOR_MODE_64_ARGB_AX;
10095 break;
10096 case 128:
10097 cntl |= CURSOR_MODE_128_ARGB_AX;
10098 break;
10099 case 256:
10100 cntl |= CURSOR_MODE_256_ARGB_AX;
10101 break;
10102 default:
10103 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10104 return;
10105 }
10106 cntl |= pipe << 28; /* Connect to correct pipe */
10107
10108 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10109 cntl |= CURSOR_PIPE_CSC_ENABLE;
10110 }
10111
10112 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10113 cntl |= CURSOR_ROTATE_180;
10114
10115 if (intel_crtc->cursor_cntl != cntl) {
10116 I915_WRITE(CURCNTR(pipe), cntl);
10117 POSTING_READ(CURCNTR(pipe));
10118 intel_crtc->cursor_cntl = cntl;
10119 }
10120
10121 /* and commit changes on next vblank */
10122 I915_WRITE(CURBASE(pipe), base);
10123 POSTING_READ(CURBASE(pipe));
10124
10125 intel_crtc->cursor_base = base;
10126 }
10127
10128 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10129 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10130 bool on)
10131 {
10132 struct drm_device *dev = crtc->dev;
10133 struct drm_i915_private *dev_priv = dev->dev_private;
10134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10135 int pipe = intel_crtc->pipe;
10136 int x = crtc->cursor_x;
10137 int y = crtc->cursor_y;
10138 u32 base = 0, pos = 0;
10139
10140 if (on)
10141 base = intel_crtc->cursor_addr;
10142
10143 if (x >= intel_crtc->config->pipe_src_w)
10144 base = 0;
10145
10146 if (y >= intel_crtc->config->pipe_src_h)
10147 base = 0;
10148
10149 if (x < 0) {
10150 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
10151 base = 0;
10152
10153 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10154 x = -x;
10155 }
10156 pos |= x << CURSOR_X_SHIFT;
10157
10158 if (y < 0) {
10159 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
10160 base = 0;
10161
10162 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10163 y = -y;
10164 }
10165 pos |= y << CURSOR_Y_SHIFT;
10166
10167 if (base == 0 && intel_crtc->cursor_base == 0)
10168 return;
10169
10170 I915_WRITE(CURPOS(pipe), pos);
10171
10172 /* ILK+ do this automagically */
10173 if (HAS_GMCH_DISPLAY(dev) &&
10174 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10175 base += (intel_crtc->base.cursor->state->crtc_h *
10176 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
10177 }
10178
10179 if (IS_845G(dev) || IS_I865G(dev))
10180 i845_update_cursor(crtc, base);
10181 else
10182 i9xx_update_cursor(crtc, base);
10183 }
10184
10185 static bool cursor_size_ok(struct drm_device *dev,
10186 uint32_t width, uint32_t height)
10187 {
10188 if (width == 0 || height == 0)
10189 return false;
10190
10191 /*
10192 * 845g/865g are special in that they are only limited by
10193 * the width of their cursors, the height is arbitrary up to
10194 * the precision of the register. Everything else requires
10195 * square cursors, limited to a few power-of-two sizes.
10196 */
10197 if (IS_845G(dev) || IS_I865G(dev)) {
10198 if ((width & 63) != 0)
10199 return false;
10200
10201 if (width > (IS_845G(dev) ? 64 : 512))
10202 return false;
10203
10204 if (height > 1023)
10205 return false;
10206 } else {
10207 switch (width | height) {
10208 case 256:
10209 case 128:
10210 if (IS_GEN2(dev))
10211 return false;
10212 case 64:
10213 break;
10214 default:
10215 return false;
10216 }
10217 }
10218
10219 return true;
10220 }
10221
10222 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10223 u16 *blue, uint32_t start, uint32_t size)
10224 {
10225 int end = (start + size > 256) ? 256 : start + size, i;
10226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10227
10228 for (i = start; i < end; i++) {
10229 intel_crtc->lut_r[i] = red[i] >> 8;
10230 intel_crtc->lut_g[i] = green[i] >> 8;
10231 intel_crtc->lut_b[i] = blue[i] >> 8;
10232 }
10233
10234 intel_crtc_load_lut(crtc);
10235 }
10236
10237 /* VESA 640x480x72Hz mode to set on the pipe */
10238 static struct drm_display_mode load_detect_mode = {
10239 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10240 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10241 };
10242
10243 struct drm_framebuffer *
10244 __intel_framebuffer_create(struct drm_device *dev,
10245 struct drm_mode_fb_cmd2 *mode_cmd,
10246 struct drm_i915_gem_object *obj)
10247 {
10248 struct intel_framebuffer *intel_fb;
10249 int ret;
10250
10251 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10252 if (!intel_fb) {
10253 drm_gem_object_unreference(&obj->base);
10254 return ERR_PTR(-ENOMEM);
10255 }
10256
10257 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10258 if (ret)
10259 goto err;
10260
10261 return &intel_fb->base;
10262 err:
10263 drm_gem_object_unreference(&obj->base);
10264 kfree(intel_fb);
10265
10266 return ERR_PTR(ret);
10267 }
10268
10269 static struct drm_framebuffer *
10270 intel_framebuffer_create(struct drm_device *dev,
10271 struct drm_mode_fb_cmd2 *mode_cmd,
10272 struct drm_i915_gem_object *obj)
10273 {
10274 struct drm_framebuffer *fb;
10275 int ret;
10276
10277 ret = i915_mutex_lock_interruptible(dev);
10278 if (ret)
10279 return ERR_PTR(ret);
10280 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10281 mutex_unlock(&dev->struct_mutex);
10282
10283 return fb;
10284 }
10285
10286 static u32
10287 intel_framebuffer_pitch_for_width(int width, int bpp)
10288 {
10289 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10290 return ALIGN(pitch, 64);
10291 }
10292
10293 static u32
10294 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10295 {
10296 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10297 return PAGE_ALIGN(pitch * mode->vdisplay);
10298 }
10299
10300 static struct drm_framebuffer *
10301 intel_framebuffer_create_for_mode(struct drm_device *dev,
10302 struct drm_display_mode *mode,
10303 int depth, int bpp)
10304 {
10305 struct drm_i915_gem_object *obj;
10306 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10307
10308 obj = i915_gem_alloc_object(dev,
10309 intel_framebuffer_size_for_mode(mode, bpp));
10310 if (obj == NULL)
10311 return ERR_PTR(-ENOMEM);
10312
10313 mode_cmd.width = mode->hdisplay;
10314 mode_cmd.height = mode->vdisplay;
10315 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10316 bpp);
10317 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10318
10319 return intel_framebuffer_create(dev, &mode_cmd, obj);
10320 }
10321
10322 static struct drm_framebuffer *
10323 mode_fits_in_fbdev(struct drm_device *dev,
10324 struct drm_display_mode *mode)
10325 {
10326 #ifdef CONFIG_DRM_I915_FBDEV
10327 struct drm_i915_private *dev_priv = dev->dev_private;
10328 struct drm_i915_gem_object *obj;
10329 struct drm_framebuffer *fb;
10330
10331 if (!dev_priv->fbdev)
10332 return NULL;
10333
10334 if (!dev_priv->fbdev->fb)
10335 return NULL;
10336
10337 obj = dev_priv->fbdev->fb->obj;
10338 BUG_ON(!obj);
10339
10340 fb = &dev_priv->fbdev->fb->base;
10341 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10342 fb->bits_per_pixel))
10343 return NULL;
10344
10345 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10346 return NULL;
10347
10348 return fb;
10349 #else
10350 return NULL;
10351 #endif
10352 }
10353
10354 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10355 struct drm_crtc *crtc,
10356 struct drm_display_mode *mode,
10357 struct drm_framebuffer *fb,
10358 int x, int y)
10359 {
10360 struct drm_plane_state *plane_state;
10361 int hdisplay, vdisplay;
10362 int ret;
10363
10364 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10365 if (IS_ERR(plane_state))
10366 return PTR_ERR(plane_state);
10367
10368 if (mode)
10369 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10370 else
10371 hdisplay = vdisplay = 0;
10372
10373 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10374 if (ret)
10375 return ret;
10376 drm_atomic_set_fb_for_plane(plane_state, fb);
10377 plane_state->crtc_x = 0;
10378 plane_state->crtc_y = 0;
10379 plane_state->crtc_w = hdisplay;
10380 plane_state->crtc_h = vdisplay;
10381 plane_state->src_x = x << 16;
10382 plane_state->src_y = y << 16;
10383 plane_state->src_w = hdisplay << 16;
10384 plane_state->src_h = vdisplay << 16;
10385
10386 return 0;
10387 }
10388
10389 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10390 struct drm_display_mode *mode,
10391 struct intel_load_detect_pipe *old,
10392 struct drm_modeset_acquire_ctx *ctx)
10393 {
10394 struct intel_crtc *intel_crtc;
10395 struct intel_encoder *intel_encoder =
10396 intel_attached_encoder(connector);
10397 struct drm_crtc *possible_crtc;
10398 struct drm_encoder *encoder = &intel_encoder->base;
10399 struct drm_crtc *crtc = NULL;
10400 struct drm_device *dev = encoder->dev;
10401 struct drm_framebuffer *fb;
10402 struct drm_mode_config *config = &dev->mode_config;
10403 struct drm_atomic_state *state = NULL;
10404 struct drm_connector_state *connector_state;
10405 struct intel_crtc_state *crtc_state;
10406 int ret, i = -1;
10407
10408 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10409 connector->base.id, connector->name,
10410 encoder->base.id, encoder->name);
10411
10412 retry:
10413 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10414 if (ret)
10415 goto fail_unlock;
10416
10417 /*
10418 * Algorithm gets a little messy:
10419 *
10420 * - if the connector already has an assigned crtc, use it (but make
10421 * sure it's on first)
10422 *
10423 * - try to find the first unused crtc that can drive this connector,
10424 * and use that if we find one
10425 */
10426
10427 /* See if we already have a CRTC for this connector */
10428 if (encoder->crtc) {
10429 crtc = encoder->crtc;
10430
10431 ret = drm_modeset_lock(&crtc->mutex, ctx);
10432 if (ret)
10433 goto fail_unlock;
10434 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10435 if (ret)
10436 goto fail_unlock;
10437
10438 old->dpms_mode = connector->dpms;
10439 old->load_detect_temp = false;
10440
10441 /* Make sure the crtc and connector are running */
10442 if (connector->dpms != DRM_MODE_DPMS_ON)
10443 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10444
10445 return true;
10446 }
10447
10448 /* Find an unused one (if possible) */
10449 for_each_crtc(dev, possible_crtc) {
10450 i++;
10451 if (!(encoder->possible_crtcs & (1 << i)))
10452 continue;
10453 if (possible_crtc->state->enable)
10454 continue;
10455 /* This can occur when applying the pipe A quirk on resume. */
10456 if (to_intel_crtc(possible_crtc)->new_enabled)
10457 continue;
10458
10459 crtc = possible_crtc;
10460 break;
10461 }
10462
10463 /*
10464 * If we didn't find an unused CRTC, don't use any.
10465 */
10466 if (!crtc) {
10467 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10468 goto fail_unlock;
10469 }
10470
10471 ret = drm_modeset_lock(&crtc->mutex, ctx);
10472 if (ret)
10473 goto fail_unlock;
10474 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10475 if (ret)
10476 goto fail_unlock;
10477 intel_encoder->new_crtc = to_intel_crtc(crtc);
10478 to_intel_connector(connector)->new_encoder = intel_encoder;
10479
10480 intel_crtc = to_intel_crtc(crtc);
10481 intel_crtc->new_enabled = true;
10482 old->dpms_mode = connector->dpms;
10483 old->load_detect_temp = true;
10484 old->release_fb = NULL;
10485
10486 state = drm_atomic_state_alloc(dev);
10487 if (!state)
10488 return false;
10489
10490 state->acquire_ctx = ctx;
10491
10492 connector_state = drm_atomic_get_connector_state(state, connector);
10493 if (IS_ERR(connector_state)) {
10494 ret = PTR_ERR(connector_state);
10495 goto fail;
10496 }
10497
10498 connector_state->crtc = crtc;
10499 connector_state->best_encoder = &intel_encoder->base;
10500
10501 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10502 if (IS_ERR(crtc_state)) {
10503 ret = PTR_ERR(crtc_state);
10504 goto fail;
10505 }
10506
10507 crtc_state->base.active = crtc_state->base.enable = true;
10508
10509 if (!mode)
10510 mode = &load_detect_mode;
10511
10512 /* We need a framebuffer large enough to accommodate all accesses
10513 * that the plane may generate whilst we perform load detection.
10514 * We can not rely on the fbcon either being present (we get called
10515 * during its initialisation to detect all boot displays, or it may
10516 * not even exist) or that it is large enough to satisfy the
10517 * requested mode.
10518 */
10519 fb = mode_fits_in_fbdev(dev, mode);
10520 if (fb == NULL) {
10521 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10522 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10523 old->release_fb = fb;
10524 } else
10525 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10526 if (IS_ERR(fb)) {
10527 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10528 goto fail;
10529 }
10530
10531 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10532 if (ret)
10533 goto fail;
10534
10535 drm_mode_copy(&crtc_state->base.mode, mode);
10536
10537 if (intel_set_mode(crtc, state)) {
10538 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10539 if (old->release_fb)
10540 old->release_fb->funcs->destroy(old->release_fb);
10541 goto fail;
10542 }
10543 crtc->primary->crtc = crtc;
10544
10545 /* let the connector get through one full cycle before testing */
10546 intel_wait_for_vblank(dev, intel_crtc->pipe);
10547 return true;
10548
10549 fail:
10550 intel_crtc->new_enabled = crtc->state->enable;
10551 fail_unlock:
10552 drm_atomic_state_free(state);
10553 state = NULL;
10554
10555 if (ret == -EDEADLK) {
10556 drm_modeset_backoff(ctx);
10557 goto retry;
10558 }
10559
10560 return false;
10561 }
10562
10563 void intel_release_load_detect_pipe(struct drm_connector *connector,
10564 struct intel_load_detect_pipe *old,
10565 struct drm_modeset_acquire_ctx *ctx)
10566 {
10567 struct drm_device *dev = connector->dev;
10568 struct intel_encoder *intel_encoder =
10569 intel_attached_encoder(connector);
10570 struct drm_encoder *encoder = &intel_encoder->base;
10571 struct drm_crtc *crtc = encoder->crtc;
10572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10573 struct drm_atomic_state *state;
10574 struct drm_connector_state *connector_state;
10575 struct intel_crtc_state *crtc_state;
10576 int ret;
10577
10578 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10579 connector->base.id, connector->name,
10580 encoder->base.id, encoder->name);
10581
10582 if (old->load_detect_temp) {
10583 state = drm_atomic_state_alloc(dev);
10584 if (!state)
10585 goto fail;
10586
10587 state->acquire_ctx = ctx;
10588
10589 connector_state = drm_atomic_get_connector_state(state, connector);
10590 if (IS_ERR(connector_state))
10591 goto fail;
10592
10593 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10594 if (IS_ERR(crtc_state))
10595 goto fail;
10596
10597 to_intel_connector(connector)->new_encoder = NULL;
10598 intel_encoder->new_crtc = NULL;
10599 intel_crtc->new_enabled = false;
10600
10601 connector_state->best_encoder = NULL;
10602 connector_state->crtc = NULL;
10603
10604 crtc_state->base.enable = crtc_state->base.active = false;
10605
10606 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10607 0, 0);
10608 if (ret)
10609 goto fail;
10610
10611 ret = intel_set_mode(crtc, state);
10612 if (ret)
10613 goto fail;
10614
10615 if (old->release_fb) {
10616 drm_framebuffer_unregister_private(old->release_fb);
10617 drm_framebuffer_unreference(old->release_fb);
10618 }
10619
10620 return;
10621 }
10622
10623 /* Switch crtc and encoder back off if necessary */
10624 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10625 connector->funcs->dpms(connector, old->dpms_mode);
10626
10627 return;
10628 fail:
10629 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10630 drm_atomic_state_free(state);
10631 }
10632
10633 static int i9xx_pll_refclk(struct drm_device *dev,
10634 const struct intel_crtc_state *pipe_config)
10635 {
10636 struct drm_i915_private *dev_priv = dev->dev_private;
10637 u32 dpll = pipe_config->dpll_hw_state.dpll;
10638
10639 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10640 return dev_priv->vbt.lvds_ssc_freq;
10641 else if (HAS_PCH_SPLIT(dev))
10642 return 120000;
10643 else if (!IS_GEN2(dev))
10644 return 96000;
10645 else
10646 return 48000;
10647 }
10648
10649 /* Returns the clock of the currently programmed mode of the given pipe. */
10650 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10651 struct intel_crtc_state *pipe_config)
10652 {
10653 struct drm_device *dev = crtc->base.dev;
10654 struct drm_i915_private *dev_priv = dev->dev_private;
10655 int pipe = pipe_config->cpu_transcoder;
10656 u32 dpll = pipe_config->dpll_hw_state.dpll;
10657 u32 fp;
10658 intel_clock_t clock;
10659 int refclk = i9xx_pll_refclk(dev, pipe_config);
10660
10661 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10662 fp = pipe_config->dpll_hw_state.fp0;
10663 else
10664 fp = pipe_config->dpll_hw_state.fp1;
10665
10666 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10667 if (IS_PINEVIEW(dev)) {
10668 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10669 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10670 } else {
10671 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10672 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10673 }
10674
10675 if (!IS_GEN2(dev)) {
10676 if (IS_PINEVIEW(dev))
10677 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10678 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10679 else
10680 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10681 DPLL_FPA01_P1_POST_DIV_SHIFT);
10682
10683 switch (dpll & DPLL_MODE_MASK) {
10684 case DPLLB_MODE_DAC_SERIAL:
10685 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10686 5 : 10;
10687 break;
10688 case DPLLB_MODE_LVDS:
10689 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10690 7 : 14;
10691 break;
10692 default:
10693 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10694 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10695 return;
10696 }
10697
10698 if (IS_PINEVIEW(dev))
10699 pineview_clock(refclk, &clock);
10700 else
10701 i9xx_clock(refclk, &clock);
10702 } else {
10703 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10704 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10705
10706 if (is_lvds) {
10707 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10708 DPLL_FPA01_P1_POST_DIV_SHIFT);
10709
10710 if (lvds & LVDS_CLKB_POWER_UP)
10711 clock.p2 = 7;
10712 else
10713 clock.p2 = 14;
10714 } else {
10715 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10716 clock.p1 = 2;
10717 else {
10718 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10719 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10720 }
10721 if (dpll & PLL_P2_DIVIDE_BY_4)
10722 clock.p2 = 4;
10723 else
10724 clock.p2 = 2;
10725 }
10726
10727 i9xx_clock(refclk, &clock);
10728 }
10729
10730 /*
10731 * This value includes pixel_multiplier. We will use
10732 * port_clock to compute adjusted_mode.crtc_clock in the
10733 * encoder's get_config() function.
10734 */
10735 pipe_config->port_clock = clock.dot;
10736 }
10737
10738 int intel_dotclock_calculate(int link_freq,
10739 const struct intel_link_m_n *m_n)
10740 {
10741 /*
10742 * The calculation for the data clock is:
10743 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10744 * But we want to avoid losing precison if possible, so:
10745 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10746 *
10747 * and the link clock is simpler:
10748 * link_clock = (m * link_clock) / n
10749 */
10750
10751 if (!m_n->link_n)
10752 return 0;
10753
10754 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10755 }
10756
10757 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10758 struct intel_crtc_state *pipe_config)
10759 {
10760 struct drm_device *dev = crtc->base.dev;
10761
10762 /* read out port_clock from the DPLL */
10763 i9xx_crtc_clock_get(crtc, pipe_config);
10764
10765 /*
10766 * This value does not include pixel_multiplier.
10767 * We will check that port_clock and adjusted_mode.crtc_clock
10768 * agree once we know their relationship in the encoder's
10769 * get_config() function.
10770 */
10771 pipe_config->base.adjusted_mode.crtc_clock =
10772 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10773 &pipe_config->fdi_m_n);
10774 }
10775
10776 /** Returns the currently programmed mode of the given pipe. */
10777 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10778 struct drm_crtc *crtc)
10779 {
10780 struct drm_i915_private *dev_priv = dev->dev_private;
10781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10782 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10783 struct drm_display_mode *mode;
10784 struct intel_crtc_state pipe_config;
10785 int htot = I915_READ(HTOTAL(cpu_transcoder));
10786 int hsync = I915_READ(HSYNC(cpu_transcoder));
10787 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10788 int vsync = I915_READ(VSYNC(cpu_transcoder));
10789 enum pipe pipe = intel_crtc->pipe;
10790
10791 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10792 if (!mode)
10793 return NULL;
10794
10795 /*
10796 * Construct a pipe_config sufficient for getting the clock info
10797 * back out of crtc_clock_get.
10798 *
10799 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10800 * to use a real value here instead.
10801 */
10802 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10803 pipe_config.pixel_multiplier = 1;
10804 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10805 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10806 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10807 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10808
10809 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10810 mode->hdisplay = (htot & 0xffff) + 1;
10811 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10812 mode->hsync_start = (hsync & 0xffff) + 1;
10813 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10814 mode->vdisplay = (vtot & 0xffff) + 1;
10815 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10816 mode->vsync_start = (vsync & 0xffff) + 1;
10817 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10818
10819 drm_mode_set_name(mode);
10820
10821 return mode;
10822 }
10823
10824 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10825 {
10826 struct drm_device *dev = crtc->dev;
10827 struct drm_i915_private *dev_priv = dev->dev_private;
10828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10829
10830 if (!HAS_GMCH_DISPLAY(dev))
10831 return;
10832
10833 if (!dev_priv->lvds_downclock_avail)
10834 return;
10835
10836 /*
10837 * Since this is called by a timer, we should never get here in
10838 * the manual case.
10839 */
10840 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10841 int pipe = intel_crtc->pipe;
10842 int dpll_reg = DPLL(pipe);
10843 int dpll;
10844
10845 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10846
10847 assert_panel_unlocked(dev_priv, pipe);
10848
10849 dpll = I915_READ(dpll_reg);
10850 dpll |= DISPLAY_RATE_SELECT_FPA1;
10851 I915_WRITE(dpll_reg, dpll);
10852 intel_wait_for_vblank(dev, pipe);
10853 dpll = I915_READ(dpll_reg);
10854 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10855 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10856 }
10857
10858 }
10859
10860 void intel_mark_busy(struct drm_device *dev)
10861 {
10862 struct drm_i915_private *dev_priv = dev->dev_private;
10863
10864 if (dev_priv->mm.busy)
10865 return;
10866
10867 intel_runtime_pm_get(dev_priv);
10868 i915_update_gfx_val(dev_priv);
10869 if (INTEL_INFO(dev)->gen >= 6)
10870 gen6_rps_busy(dev_priv);
10871 dev_priv->mm.busy = true;
10872 }
10873
10874 void intel_mark_idle(struct drm_device *dev)
10875 {
10876 struct drm_i915_private *dev_priv = dev->dev_private;
10877 struct drm_crtc *crtc;
10878
10879 if (!dev_priv->mm.busy)
10880 return;
10881
10882 dev_priv->mm.busy = false;
10883
10884 for_each_crtc(dev, crtc) {
10885 if (!crtc->primary->fb)
10886 continue;
10887
10888 intel_decrease_pllclock(crtc);
10889 }
10890
10891 if (INTEL_INFO(dev)->gen >= 6)
10892 gen6_rps_idle(dev->dev_private);
10893
10894 intel_runtime_pm_put(dev_priv);
10895 }
10896
10897 static void intel_crtc_destroy(struct drm_crtc *crtc)
10898 {
10899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10900 struct drm_device *dev = crtc->dev;
10901 struct intel_unpin_work *work;
10902
10903 spin_lock_irq(&dev->event_lock);
10904 work = intel_crtc->unpin_work;
10905 intel_crtc->unpin_work = NULL;
10906 spin_unlock_irq(&dev->event_lock);
10907
10908 if (work) {
10909 cancel_work_sync(&work->work);
10910 kfree(work);
10911 }
10912
10913 drm_crtc_cleanup(crtc);
10914
10915 kfree(intel_crtc);
10916 }
10917
10918 static void intel_unpin_work_fn(struct work_struct *__work)
10919 {
10920 struct intel_unpin_work *work =
10921 container_of(__work, struct intel_unpin_work, work);
10922 struct drm_device *dev = work->crtc->dev;
10923 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10924
10925 mutex_lock(&dev->struct_mutex);
10926 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10927 drm_gem_object_unreference(&work->pending_flip_obj->base);
10928
10929 intel_fbc_update(dev);
10930
10931 if (work->flip_queued_req)
10932 i915_gem_request_assign(&work->flip_queued_req, NULL);
10933 mutex_unlock(&dev->struct_mutex);
10934
10935 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10936 drm_framebuffer_unreference(work->old_fb);
10937
10938 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10939 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10940
10941 kfree(work);
10942 }
10943
10944 static void do_intel_finish_page_flip(struct drm_device *dev,
10945 struct drm_crtc *crtc)
10946 {
10947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10948 struct intel_unpin_work *work;
10949 unsigned long flags;
10950
10951 /* Ignore early vblank irqs */
10952 if (intel_crtc == NULL)
10953 return;
10954
10955 /*
10956 * This is called both by irq handlers and the reset code (to complete
10957 * lost pageflips) so needs the full irqsave spinlocks.
10958 */
10959 spin_lock_irqsave(&dev->event_lock, flags);
10960 work = intel_crtc->unpin_work;
10961
10962 /* Ensure we don't miss a work->pending update ... */
10963 smp_rmb();
10964
10965 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10966 spin_unlock_irqrestore(&dev->event_lock, flags);
10967 return;
10968 }
10969
10970 page_flip_completed(intel_crtc);
10971
10972 spin_unlock_irqrestore(&dev->event_lock, flags);
10973 }
10974
10975 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10976 {
10977 struct drm_i915_private *dev_priv = dev->dev_private;
10978 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10979
10980 do_intel_finish_page_flip(dev, crtc);
10981 }
10982
10983 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10984 {
10985 struct drm_i915_private *dev_priv = dev->dev_private;
10986 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10987
10988 do_intel_finish_page_flip(dev, crtc);
10989 }
10990
10991 /* Is 'a' after or equal to 'b'? */
10992 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10993 {
10994 return !((a - b) & 0x80000000);
10995 }
10996
10997 static bool page_flip_finished(struct intel_crtc *crtc)
10998 {
10999 struct drm_device *dev = crtc->base.dev;
11000 struct drm_i915_private *dev_priv = dev->dev_private;
11001
11002 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
11003 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
11004 return true;
11005
11006 /*
11007 * The relevant registers doen't exist on pre-ctg.
11008 * As the flip done interrupt doesn't trigger for mmio
11009 * flips on gmch platforms, a flip count check isn't
11010 * really needed there. But since ctg has the registers,
11011 * include it in the check anyway.
11012 */
11013 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11014 return true;
11015
11016 /*
11017 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11018 * used the same base address. In that case the mmio flip might
11019 * have completed, but the CS hasn't even executed the flip yet.
11020 *
11021 * A flip count check isn't enough as the CS might have updated
11022 * the base address just after start of vblank, but before we
11023 * managed to process the interrupt. This means we'd complete the
11024 * CS flip too soon.
11025 *
11026 * Combining both checks should get us a good enough result. It may
11027 * still happen that the CS flip has been executed, but has not
11028 * yet actually completed. But in case the base address is the same
11029 * anyway, we don't really care.
11030 */
11031 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11032 crtc->unpin_work->gtt_offset &&
11033 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
11034 crtc->unpin_work->flip_count);
11035 }
11036
11037 void intel_prepare_page_flip(struct drm_device *dev, int plane)
11038 {
11039 struct drm_i915_private *dev_priv = dev->dev_private;
11040 struct intel_crtc *intel_crtc =
11041 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
11042 unsigned long flags;
11043
11044
11045 /*
11046 * This is called both by irq handlers and the reset code (to complete
11047 * lost pageflips) so needs the full irqsave spinlocks.
11048 *
11049 * NB: An MMIO update of the plane base pointer will also
11050 * generate a page-flip completion irq, i.e. every modeset
11051 * is also accompanied by a spurious intel_prepare_page_flip().
11052 */
11053 spin_lock_irqsave(&dev->event_lock, flags);
11054 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11055 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11056 spin_unlock_irqrestore(&dev->event_lock, flags);
11057 }
11058
11059 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
11060 {
11061 /* Ensure that the work item is consistent when activating it ... */
11062 smp_wmb();
11063 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
11064 /* and that it is marked active as soon as the irq could fire. */
11065 smp_wmb();
11066 }
11067
11068 static int intel_gen2_queue_flip(struct drm_device *dev,
11069 struct drm_crtc *crtc,
11070 struct drm_framebuffer *fb,
11071 struct drm_i915_gem_object *obj,
11072 struct intel_engine_cs *ring,
11073 uint32_t flags)
11074 {
11075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11076 u32 flip_mask;
11077 int ret;
11078
11079 ret = intel_ring_begin(ring, 6);
11080 if (ret)
11081 return ret;
11082
11083 /* Can't queue multiple flips, so wait for the previous
11084 * one to finish before executing the next.
11085 */
11086 if (intel_crtc->plane)
11087 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11088 else
11089 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11090 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11091 intel_ring_emit(ring, MI_NOOP);
11092 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11093 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11094 intel_ring_emit(ring, fb->pitches[0]);
11095 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11096 intel_ring_emit(ring, 0); /* aux display base address, unused */
11097
11098 intel_mark_page_flip_active(intel_crtc);
11099 __intel_ring_advance(ring);
11100 return 0;
11101 }
11102
11103 static int intel_gen3_queue_flip(struct drm_device *dev,
11104 struct drm_crtc *crtc,
11105 struct drm_framebuffer *fb,
11106 struct drm_i915_gem_object *obj,
11107 struct intel_engine_cs *ring,
11108 uint32_t flags)
11109 {
11110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11111 u32 flip_mask;
11112 int ret;
11113
11114 ret = intel_ring_begin(ring, 6);
11115 if (ret)
11116 return ret;
11117
11118 if (intel_crtc->plane)
11119 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11120 else
11121 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11122 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11123 intel_ring_emit(ring, MI_NOOP);
11124 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11125 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11126 intel_ring_emit(ring, fb->pitches[0]);
11127 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11128 intel_ring_emit(ring, MI_NOOP);
11129
11130 intel_mark_page_flip_active(intel_crtc);
11131 __intel_ring_advance(ring);
11132 return 0;
11133 }
11134
11135 static int intel_gen4_queue_flip(struct drm_device *dev,
11136 struct drm_crtc *crtc,
11137 struct drm_framebuffer *fb,
11138 struct drm_i915_gem_object *obj,
11139 struct intel_engine_cs *ring,
11140 uint32_t flags)
11141 {
11142 struct drm_i915_private *dev_priv = dev->dev_private;
11143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11144 uint32_t pf, pipesrc;
11145 int ret;
11146
11147 ret = intel_ring_begin(ring, 4);
11148 if (ret)
11149 return ret;
11150
11151 /* i965+ uses the linear or tiled offsets from the
11152 * Display Registers (which do not change across a page-flip)
11153 * so we need only reprogram the base address.
11154 */
11155 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11156 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11157 intel_ring_emit(ring, fb->pitches[0]);
11158 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11159 obj->tiling_mode);
11160
11161 /* XXX Enabling the panel-fitter across page-flip is so far
11162 * untested on non-native modes, so ignore it for now.
11163 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11164 */
11165 pf = 0;
11166 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11167 intel_ring_emit(ring, pf | pipesrc);
11168
11169 intel_mark_page_flip_active(intel_crtc);
11170 __intel_ring_advance(ring);
11171 return 0;
11172 }
11173
11174 static int intel_gen6_queue_flip(struct drm_device *dev,
11175 struct drm_crtc *crtc,
11176 struct drm_framebuffer *fb,
11177 struct drm_i915_gem_object *obj,
11178 struct intel_engine_cs *ring,
11179 uint32_t flags)
11180 {
11181 struct drm_i915_private *dev_priv = dev->dev_private;
11182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11183 uint32_t pf, pipesrc;
11184 int ret;
11185
11186 ret = intel_ring_begin(ring, 4);
11187 if (ret)
11188 return ret;
11189
11190 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11191 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11192 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11193 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11194
11195 /* Contrary to the suggestions in the documentation,
11196 * "Enable Panel Fitter" does not seem to be required when page
11197 * flipping with a non-native mode, and worse causes a normal
11198 * modeset to fail.
11199 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11200 */
11201 pf = 0;
11202 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11203 intel_ring_emit(ring, pf | pipesrc);
11204
11205 intel_mark_page_flip_active(intel_crtc);
11206 __intel_ring_advance(ring);
11207 return 0;
11208 }
11209
11210 static int intel_gen7_queue_flip(struct drm_device *dev,
11211 struct drm_crtc *crtc,
11212 struct drm_framebuffer *fb,
11213 struct drm_i915_gem_object *obj,
11214 struct intel_engine_cs *ring,
11215 uint32_t flags)
11216 {
11217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11218 uint32_t plane_bit = 0;
11219 int len, ret;
11220
11221 switch (intel_crtc->plane) {
11222 case PLANE_A:
11223 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11224 break;
11225 case PLANE_B:
11226 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11227 break;
11228 case PLANE_C:
11229 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11230 break;
11231 default:
11232 WARN_ONCE(1, "unknown plane in flip command\n");
11233 return -ENODEV;
11234 }
11235
11236 len = 4;
11237 if (ring->id == RCS) {
11238 len += 6;
11239 /*
11240 * On Gen 8, SRM is now taking an extra dword to accommodate
11241 * 48bits addresses, and we need a NOOP for the batch size to
11242 * stay even.
11243 */
11244 if (IS_GEN8(dev))
11245 len += 2;
11246 }
11247
11248 /*
11249 * BSpec MI_DISPLAY_FLIP for IVB:
11250 * "The full packet must be contained within the same cache line."
11251 *
11252 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11253 * cacheline, if we ever start emitting more commands before
11254 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11255 * then do the cacheline alignment, and finally emit the
11256 * MI_DISPLAY_FLIP.
11257 */
11258 ret = intel_ring_cacheline_align(ring);
11259 if (ret)
11260 return ret;
11261
11262 ret = intel_ring_begin(ring, len);
11263 if (ret)
11264 return ret;
11265
11266 /* Unmask the flip-done completion message. Note that the bspec says that
11267 * we should do this for both the BCS and RCS, and that we must not unmask
11268 * more than one flip event at any time (or ensure that one flip message
11269 * can be sent by waiting for flip-done prior to queueing new flips).
11270 * Experimentation says that BCS works despite DERRMR masking all
11271 * flip-done completion events and that unmasking all planes at once
11272 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11273 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11274 */
11275 if (ring->id == RCS) {
11276 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11277 intel_ring_emit(ring, DERRMR);
11278 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11279 DERRMR_PIPEB_PRI_FLIP_DONE |
11280 DERRMR_PIPEC_PRI_FLIP_DONE));
11281 if (IS_GEN8(dev))
11282 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11283 MI_SRM_LRM_GLOBAL_GTT);
11284 else
11285 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11286 MI_SRM_LRM_GLOBAL_GTT);
11287 intel_ring_emit(ring, DERRMR);
11288 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11289 if (IS_GEN8(dev)) {
11290 intel_ring_emit(ring, 0);
11291 intel_ring_emit(ring, MI_NOOP);
11292 }
11293 }
11294
11295 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11296 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11297 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11298 intel_ring_emit(ring, (MI_NOOP));
11299
11300 intel_mark_page_flip_active(intel_crtc);
11301 __intel_ring_advance(ring);
11302 return 0;
11303 }
11304
11305 static bool use_mmio_flip(struct intel_engine_cs *ring,
11306 struct drm_i915_gem_object *obj)
11307 {
11308 /*
11309 * This is not being used for older platforms, because
11310 * non-availability of flip done interrupt forces us to use
11311 * CS flips. Older platforms derive flip done using some clever
11312 * tricks involving the flip_pending status bits and vblank irqs.
11313 * So using MMIO flips there would disrupt this mechanism.
11314 */
11315
11316 if (ring == NULL)
11317 return true;
11318
11319 if (INTEL_INFO(ring->dev)->gen < 5)
11320 return false;
11321
11322 if (i915.use_mmio_flip < 0)
11323 return false;
11324 else if (i915.use_mmio_flip > 0)
11325 return true;
11326 else if (i915.enable_execlists)
11327 return true;
11328 else
11329 return ring != i915_gem_request_get_ring(obj->last_write_req);
11330 }
11331
11332 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11333 {
11334 struct drm_device *dev = intel_crtc->base.dev;
11335 struct drm_i915_private *dev_priv = dev->dev_private;
11336 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11337 const enum pipe pipe = intel_crtc->pipe;
11338 u32 ctl, stride;
11339
11340 ctl = I915_READ(PLANE_CTL(pipe, 0));
11341 ctl &= ~PLANE_CTL_TILED_MASK;
11342 switch (fb->modifier[0]) {
11343 case DRM_FORMAT_MOD_NONE:
11344 break;
11345 case I915_FORMAT_MOD_X_TILED:
11346 ctl |= PLANE_CTL_TILED_X;
11347 break;
11348 case I915_FORMAT_MOD_Y_TILED:
11349 ctl |= PLANE_CTL_TILED_Y;
11350 break;
11351 case I915_FORMAT_MOD_Yf_TILED:
11352 ctl |= PLANE_CTL_TILED_YF;
11353 break;
11354 default:
11355 MISSING_CASE(fb->modifier[0]);
11356 }
11357
11358 /*
11359 * The stride is either expressed as a multiple of 64 bytes chunks for
11360 * linear buffers or in number of tiles for tiled buffers.
11361 */
11362 stride = fb->pitches[0] /
11363 intel_fb_stride_alignment(dev, fb->modifier[0],
11364 fb->pixel_format);
11365
11366 /*
11367 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11368 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11369 */
11370 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11371 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11372
11373 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11374 POSTING_READ(PLANE_SURF(pipe, 0));
11375 }
11376
11377 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11378 {
11379 struct drm_device *dev = intel_crtc->base.dev;
11380 struct drm_i915_private *dev_priv = dev->dev_private;
11381 struct intel_framebuffer *intel_fb =
11382 to_intel_framebuffer(intel_crtc->base.primary->fb);
11383 struct drm_i915_gem_object *obj = intel_fb->obj;
11384 u32 dspcntr;
11385 u32 reg;
11386
11387 reg = DSPCNTR(intel_crtc->plane);
11388 dspcntr = I915_READ(reg);
11389
11390 if (obj->tiling_mode != I915_TILING_NONE)
11391 dspcntr |= DISPPLANE_TILED;
11392 else
11393 dspcntr &= ~DISPPLANE_TILED;
11394
11395 I915_WRITE(reg, dspcntr);
11396
11397 I915_WRITE(DSPSURF(intel_crtc->plane),
11398 intel_crtc->unpin_work->gtt_offset);
11399 POSTING_READ(DSPSURF(intel_crtc->plane));
11400
11401 }
11402
11403 /*
11404 * XXX: This is the temporary way to update the plane registers until we get
11405 * around to using the usual plane update functions for MMIO flips
11406 */
11407 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11408 {
11409 struct drm_device *dev = intel_crtc->base.dev;
11410 bool atomic_update;
11411 u32 start_vbl_count;
11412
11413 intel_mark_page_flip_active(intel_crtc);
11414
11415 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
11416
11417 if (INTEL_INFO(dev)->gen >= 9)
11418 skl_do_mmio_flip(intel_crtc);
11419 else
11420 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11421 ilk_do_mmio_flip(intel_crtc);
11422
11423 if (atomic_update)
11424 intel_pipe_update_end(intel_crtc, start_vbl_count);
11425 }
11426
11427 static void intel_mmio_flip_work_func(struct work_struct *work)
11428 {
11429 struct intel_mmio_flip *mmio_flip =
11430 container_of(work, struct intel_mmio_flip, work);
11431
11432 if (mmio_flip->req)
11433 WARN_ON(__i915_wait_request(mmio_flip->req,
11434 mmio_flip->crtc->reset_counter,
11435 false, NULL,
11436 &mmio_flip->i915->rps.mmioflips));
11437
11438 intel_do_mmio_flip(mmio_flip->crtc);
11439
11440 i915_gem_request_unreference__unlocked(mmio_flip->req);
11441 kfree(mmio_flip);
11442 }
11443
11444 static int intel_queue_mmio_flip(struct drm_device *dev,
11445 struct drm_crtc *crtc,
11446 struct drm_framebuffer *fb,
11447 struct drm_i915_gem_object *obj,
11448 struct intel_engine_cs *ring,
11449 uint32_t flags)
11450 {
11451 struct intel_mmio_flip *mmio_flip;
11452
11453 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11454 if (mmio_flip == NULL)
11455 return -ENOMEM;
11456
11457 mmio_flip->i915 = to_i915(dev);
11458 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11459 mmio_flip->crtc = to_intel_crtc(crtc);
11460
11461 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11462 schedule_work(&mmio_flip->work);
11463
11464 return 0;
11465 }
11466
11467 static int intel_default_queue_flip(struct drm_device *dev,
11468 struct drm_crtc *crtc,
11469 struct drm_framebuffer *fb,
11470 struct drm_i915_gem_object *obj,
11471 struct intel_engine_cs *ring,
11472 uint32_t flags)
11473 {
11474 return -ENODEV;
11475 }
11476
11477 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11478 struct drm_crtc *crtc)
11479 {
11480 struct drm_i915_private *dev_priv = dev->dev_private;
11481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11482 struct intel_unpin_work *work = intel_crtc->unpin_work;
11483 u32 addr;
11484
11485 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11486 return true;
11487
11488 if (!work->enable_stall_check)
11489 return false;
11490
11491 if (work->flip_ready_vblank == 0) {
11492 if (work->flip_queued_req &&
11493 !i915_gem_request_completed(work->flip_queued_req, true))
11494 return false;
11495
11496 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11497 }
11498
11499 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11500 return false;
11501
11502 /* Potential stall - if we see that the flip has happened,
11503 * assume a missed interrupt. */
11504 if (INTEL_INFO(dev)->gen >= 4)
11505 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11506 else
11507 addr = I915_READ(DSPADDR(intel_crtc->plane));
11508
11509 /* There is a potential issue here with a false positive after a flip
11510 * to the same address. We could address this by checking for a
11511 * non-incrementing frame counter.
11512 */
11513 return addr == work->gtt_offset;
11514 }
11515
11516 void intel_check_page_flip(struct drm_device *dev, int pipe)
11517 {
11518 struct drm_i915_private *dev_priv = dev->dev_private;
11519 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11521 struct intel_unpin_work *work;
11522
11523 WARN_ON(!in_interrupt());
11524
11525 if (crtc == NULL)
11526 return;
11527
11528 spin_lock(&dev->event_lock);
11529 work = intel_crtc->unpin_work;
11530 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11531 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11532 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11533 page_flip_completed(intel_crtc);
11534 work = NULL;
11535 }
11536 if (work != NULL &&
11537 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11538 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11539 spin_unlock(&dev->event_lock);
11540 }
11541
11542 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11543 struct drm_framebuffer *fb,
11544 struct drm_pending_vblank_event *event,
11545 uint32_t page_flip_flags)
11546 {
11547 struct drm_device *dev = crtc->dev;
11548 struct drm_i915_private *dev_priv = dev->dev_private;
11549 struct drm_framebuffer *old_fb = crtc->primary->fb;
11550 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11552 struct drm_plane *primary = crtc->primary;
11553 enum pipe pipe = intel_crtc->pipe;
11554 struct intel_unpin_work *work;
11555 struct intel_engine_cs *ring;
11556 bool mmio_flip;
11557 int ret;
11558
11559 /*
11560 * drm_mode_page_flip_ioctl() should already catch this, but double
11561 * check to be safe. In the future we may enable pageflipping from
11562 * a disabled primary plane.
11563 */
11564 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11565 return -EBUSY;
11566
11567 /* Can't change pixel format via MI display flips. */
11568 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11569 return -EINVAL;
11570
11571 /*
11572 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11573 * Note that pitch changes could also affect these register.
11574 */
11575 if (INTEL_INFO(dev)->gen > 3 &&
11576 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11577 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11578 return -EINVAL;
11579
11580 if (i915_terminally_wedged(&dev_priv->gpu_error))
11581 goto out_hang;
11582
11583 work = kzalloc(sizeof(*work), GFP_KERNEL);
11584 if (work == NULL)
11585 return -ENOMEM;
11586
11587 work->event = event;
11588 work->crtc = crtc;
11589 work->old_fb = old_fb;
11590 INIT_WORK(&work->work, intel_unpin_work_fn);
11591
11592 ret = drm_crtc_vblank_get(crtc);
11593 if (ret)
11594 goto free_work;
11595
11596 /* We borrow the event spin lock for protecting unpin_work */
11597 spin_lock_irq(&dev->event_lock);
11598 if (intel_crtc->unpin_work) {
11599 /* Before declaring the flip queue wedged, check if
11600 * the hardware completed the operation behind our backs.
11601 */
11602 if (__intel_pageflip_stall_check(dev, crtc)) {
11603 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11604 page_flip_completed(intel_crtc);
11605 } else {
11606 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11607 spin_unlock_irq(&dev->event_lock);
11608
11609 drm_crtc_vblank_put(crtc);
11610 kfree(work);
11611 return -EBUSY;
11612 }
11613 }
11614 intel_crtc->unpin_work = work;
11615 spin_unlock_irq(&dev->event_lock);
11616
11617 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11618 flush_workqueue(dev_priv->wq);
11619
11620 /* Reference the objects for the scheduled work. */
11621 drm_framebuffer_reference(work->old_fb);
11622 drm_gem_object_reference(&obj->base);
11623
11624 crtc->primary->fb = fb;
11625 update_state_fb(crtc->primary);
11626
11627 work->pending_flip_obj = obj;
11628
11629 ret = i915_mutex_lock_interruptible(dev);
11630 if (ret)
11631 goto cleanup;
11632
11633 atomic_inc(&intel_crtc->unpin_work_count);
11634 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11635
11636 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11637 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11638
11639 if (IS_VALLEYVIEW(dev)) {
11640 ring = &dev_priv->ring[BCS];
11641 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11642 /* vlv: DISPLAY_FLIP fails to change tiling */
11643 ring = NULL;
11644 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11645 ring = &dev_priv->ring[BCS];
11646 } else if (INTEL_INFO(dev)->gen >= 7) {
11647 ring = i915_gem_request_get_ring(obj->last_write_req);
11648 if (ring == NULL || ring->id != RCS)
11649 ring = &dev_priv->ring[BCS];
11650 } else {
11651 ring = &dev_priv->ring[RCS];
11652 }
11653
11654 mmio_flip = use_mmio_flip(ring, obj);
11655
11656 /* When using CS flips, we want to emit semaphores between rings.
11657 * However, when using mmio flips we will create a task to do the
11658 * synchronisation, so all we want here is to pin the framebuffer
11659 * into the display plane and skip any waits.
11660 */
11661 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11662 crtc->primary->state,
11663 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
11664 if (ret)
11665 goto cleanup_pending;
11666
11667 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11668 + intel_crtc->dspaddr_offset;
11669
11670 if (mmio_flip) {
11671 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11672 page_flip_flags);
11673 if (ret)
11674 goto cleanup_unpin;
11675
11676 i915_gem_request_assign(&work->flip_queued_req,
11677 obj->last_write_req);
11678 } else {
11679 if (obj->last_write_req) {
11680 ret = i915_gem_check_olr(obj->last_write_req);
11681 if (ret)
11682 goto cleanup_unpin;
11683 }
11684
11685 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11686 page_flip_flags);
11687 if (ret)
11688 goto cleanup_unpin;
11689
11690 i915_gem_request_assign(&work->flip_queued_req,
11691 intel_ring_get_request(ring));
11692 }
11693
11694 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11695 work->enable_stall_check = true;
11696
11697 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11698 INTEL_FRONTBUFFER_PRIMARY(pipe));
11699
11700 intel_fbc_disable(dev);
11701 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11702 mutex_unlock(&dev->struct_mutex);
11703
11704 trace_i915_flip_request(intel_crtc->plane, obj);
11705
11706 return 0;
11707
11708 cleanup_unpin:
11709 intel_unpin_fb_obj(fb, crtc->primary->state);
11710 cleanup_pending:
11711 atomic_dec(&intel_crtc->unpin_work_count);
11712 mutex_unlock(&dev->struct_mutex);
11713 cleanup:
11714 crtc->primary->fb = old_fb;
11715 update_state_fb(crtc->primary);
11716
11717 drm_gem_object_unreference_unlocked(&obj->base);
11718 drm_framebuffer_unreference(work->old_fb);
11719
11720 spin_lock_irq(&dev->event_lock);
11721 intel_crtc->unpin_work = NULL;
11722 spin_unlock_irq(&dev->event_lock);
11723
11724 drm_crtc_vblank_put(crtc);
11725 free_work:
11726 kfree(work);
11727
11728 if (ret == -EIO) {
11729 out_hang:
11730 ret = intel_plane_restore(primary);
11731 if (ret == 0 && event) {
11732 spin_lock_irq(&dev->event_lock);
11733 drm_send_vblank_event(dev, pipe, event);
11734 spin_unlock_irq(&dev->event_lock);
11735 }
11736 }
11737 return ret;
11738 }
11739
11740 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11741 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11742 .load_lut = intel_crtc_load_lut,
11743 .atomic_begin = intel_begin_crtc_commit,
11744 .atomic_flush = intel_finish_crtc_commit,
11745 };
11746
11747 /**
11748 * intel_modeset_update_staged_output_state
11749 *
11750 * Updates the staged output configuration state, e.g. after we've read out the
11751 * current hw state.
11752 */
11753 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11754 {
11755 struct intel_crtc *crtc;
11756 struct intel_encoder *encoder;
11757 struct intel_connector *connector;
11758
11759 for_each_intel_connector(dev, connector) {
11760 connector->new_encoder =
11761 to_intel_encoder(connector->base.encoder);
11762 }
11763
11764 for_each_intel_encoder(dev, encoder) {
11765 encoder->new_crtc =
11766 to_intel_crtc(encoder->base.crtc);
11767 }
11768
11769 for_each_intel_crtc(dev, crtc) {
11770 crtc->new_enabled = crtc->base.state->enable;
11771 }
11772 }
11773
11774 /* Transitional helper to copy current connector/encoder state to
11775 * connector->state. This is needed so that code that is partially
11776 * converted to atomic does the right thing.
11777 */
11778 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11779 {
11780 struct intel_connector *connector;
11781
11782 for_each_intel_connector(dev, connector) {
11783 if (connector->base.encoder) {
11784 connector->base.state->best_encoder =
11785 connector->base.encoder;
11786 connector->base.state->crtc =
11787 connector->base.encoder->crtc;
11788 } else {
11789 connector->base.state->best_encoder = NULL;
11790 connector->base.state->crtc = NULL;
11791 }
11792 }
11793 }
11794
11795 /* Fixup legacy state after an atomic state swap.
11796 */
11797 static void intel_modeset_fixup_state(struct drm_atomic_state *state)
11798 {
11799 struct intel_crtc *crtc;
11800 struct intel_encoder *encoder;
11801 struct intel_connector *connector;
11802
11803 for_each_intel_connector(state->dev, connector) {
11804 connector->base.encoder = connector->base.state->best_encoder;
11805 if (connector->base.encoder)
11806 connector->base.encoder->crtc =
11807 connector->base.state->crtc;
11808 }
11809
11810 /* Update crtc of disabled encoders */
11811 for_each_intel_encoder(state->dev, encoder) {
11812 int num_connectors = 0;
11813
11814 for_each_intel_connector(state->dev, connector)
11815 if (connector->base.encoder == &encoder->base)
11816 num_connectors++;
11817
11818 if (num_connectors == 0)
11819 encoder->base.crtc = NULL;
11820 }
11821
11822 for_each_intel_crtc(state->dev, crtc) {
11823 crtc->base.enabled = crtc->base.state->enable;
11824 crtc->config = to_intel_crtc_state(crtc->base.state);
11825 }
11826
11827 /* Copy the new configuration to the staged state, to keep the few
11828 * pieces of code that haven't been converted yet happy */
11829 intel_modeset_update_staged_output_state(state->dev);
11830 }
11831
11832 static void
11833 connected_sink_compute_bpp(struct intel_connector *connector,
11834 struct intel_crtc_state *pipe_config)
11835 {
11836 int bpp = pipe_config->pipe_bpp;
11837
11838 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11839 connector->base.base.id,
11840 connector->base.name);
11841
11842 /* Don't use an invalid EDID bpc value */
11843 if (connector->base.display_info.bpc &&
11844 connector->base.display_info.bpc * 3 < bpp) {
11845 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11846 bpp, connector->base.display_info.bpc*3);
11847 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11848 }
11849
11850 /* Clamp bpp to 8 on screens without EDID 1.4 */
11851 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11852 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11853 bpp);
11854 pipe_config->pipe_bpp = 24;
11855 }
11856 }
11857
11858 static int
11859 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11860 struct intel_crtc_state *pipe_config)
11861 {
11862 struct drm_device *dev = crtc->base.dev;
11863 struct drm_atomic_state *state;
11864 struct drm_connector *connector;
11865 struct drm_connector_state *connector_state;
11866 int bpp, i;
11867
11868 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11869 bpp = 10*3;
11870 else if (INTEL_INFO(dev)->gen >= 5)
11871 bpp = 12*3;
11872 else
11873 bpp = 8*3;
11874
11875
11876 pipe_config->pipe_bpp = bpp;
11877
11878 state = pipe_config->base.state;
11879
11880 /* Clamp display bpp to EDID value */
11881 for_each_connector_in_state(state, connector, connector_state, i) {
11882 if (connector_state->crtc != &crtc->base)
11883 continue;
11884
11885 connected_sink_compute_bpp(to_intel_connector(connector),
11886 pipe_config);
11887 }
11888
11889 return bpp;
11890 }
11891
11892 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11893 {
11894 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11895 "type: 0x%x flags: 0x%x\n",
11896 mode->crtc_clock,
11897 mode->crtc_hdisplay, mode->crtc_hsync_start,
11898 mode->crtc_hsync_end, mode->crtc_htotal,
11899 mode->crtc_vdisplay, mode->crtc_vsync_start,
11900 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11901 }
11902
11903 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11904 struct intel_crtc_state *pipe_config,
11905 const char *context)
11906 {
11907 struct drm_device *dev = crtc->base.dev;
11908 struct drm_plane *plane;
11909 struct intel_plane *intel_plane;
11910 struct intel_plane_state *state;
11911 struct drm_framebuffer *fb;
11912
11913 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11914 context, pipe_config, pipe_name(crtc->pipe));
11915
11916 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11917 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11918 pipe_config->pipe_bpp, pipe_config->dither);
11919 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11920 pipe_config->has_pch_encoder,
11921 pipe_config->fdi_lanes,
11922 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11923 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11924 pipe_config->fdi_m_n.tu);
11925 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11926 pipe_config->has_dp_encoder,
11927 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11928 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11929 pipe_config->dp_m_n.tu);
11930
11931 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11932 pipe_config->has_dp_encoder,
11933 pipe_config->dp_m2_n2.gmch_m,
11934 pipe_config->dp_m2_n2.gmch_n,
11935 pipe_config->dp_m2_n2.link_m,
11936 pipe_config->dp_m2_n2.link_n,
11937 pipe_config->dp_m2_n2.tu);
11938
11939 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11940 pipe_config->has_audio,
11941 pipe_config->has_infoframe);
11942
11943 DRM_DEBUG_KMS("requested mode:\n");
11944 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11945 DRM_DEBUG_KMS("adjusted mode:\n");
11946 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11947 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11948 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11949 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11950 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11951 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11952 crtc->num_scalers,
11953 pipe_config->scaler_state.scaler_users,
11954 pipe_config->scaler_state.scaler_id);
11955 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11956 pipe_config->gmch_pfit.control,
11957 pipe_config->gmch_pfit.pgm_ratios,
11958 pipe_config->gmch_pfit.lvds_border_bits);
11959 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11960 pipe_config->pch_pfit.pos,
11961 pipe_config->pch_pfit.size,
11962 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11963 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11964 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11965
11966 if (IS_BROXTON(dev)) {
11967 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11968 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11969 "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11970 pipe_config->ddi_pll_sel,
11971 pipe_config->dpll_hw_state.ebb0,
11972 pipe_config->dpll_hw_state.pll0,
11973 pipe_config->dpll_hw_state.pll1,
11974 pipe_config->dpll_hw_state.pll2,
11975 pipe_config->dpll_hw_state.pll3,
11976 pipe_config->dpll_hw_state.pll6,
11977 pipe_config->dpll_hw_state.pll8,
11978 pipe_config->dpll_hw_state.pcsdw12);
11979 } else if (IS_SKYLAKE(dev)) {
11980 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11981 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11982 pipe_config->ddi_pll_sel,
11983 pipe_config->dpll_hw_state.ctrl1,
11984 pipe_config->dpll_hw_state.cfgcr1,
11985 pipe_config->dpll_hw_state.cfgcr2);
11986 } else if (HAS_DDI(dev)) {
11987 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11988 pipe_config->ddi_pll_sel,
11989 pipe_config->dpll_hw_state.wrpll);
11990 } else {
11991 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11992 "fp0: 0x%x, fp1: 0x%x\n",
11993 pipe_config->dpll_hw_state.dpll,
11994 pipe_config->dpll_hw_state.dpll_md,
11995 pipe_config->dpll_hw_state.fp0,
11996 pipe_config->dpll_hw_state.fp1);
11997 }
11998
11999 DRM_DEBUG_KMS("planes on this crtc\n");
12000 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12001 intel_plane = to_intel_plane(plane);
12002 if (intel_plane->pipe != crtc->pipe)
12003 continue;
12004
12005 state = to_intel_plane_state(plane->state);
12006 fb = state->base.fb;
12007 if (!fb) {
12008 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12009 "disabled, scaler_id = %d\n",
12010 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12011 plane->base.id, intel_plane->pipe,
12012 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12013 drm_plane_index(plane), state->scaler_id);
12014 continue;
12015 }
12016
12017 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12018 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12019 plane->base.id, intel_plane->pipe,
12020 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12021 drm_plane_index(plane));
12022 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12023 fb->base.id, fb->width, fb->height, fb->pixel_format);
12024 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12025 state->scaler_id,
12026 state->src.x1 >> 16, state->src.y1 >> 16,
12027 drm_rect_width(&state->src) >> 16,
12028 drm_rect_height(&state->src) >> 16,
12029 state->dst.x1, state->dst.y1,
12030 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12031 }
12032 }
12033
12034 static bool encoders_cloneable(const struct intel_encoder *a,
12035 const struct intel_encoder *b)
12036 {
12037 /* masks could be asymmetric, so check both ways */
12038 return a == b || (a->cloneable & (1 << b->type) &&
12039 b->cloneable & (1 << a->type));
12040 }
12041
12042 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12043 struct intel_crtc *crtc,
12044 struct intel_encoder *encoder)
12045 {
12046 struct intel_encoder *source_encoder;
12047 struct drm_connector *connector;
12048 struct drm_connector_state *connector_state;
12049 int i;
12050
12051 for_each_connector_in_state(state, connector, connector_state, i) {
12052 if (connector_state->crtc != &crtc->base)
12053 continue;
12054
12055 source_encoder =
12056 to_intel_encoder(connector_state->best_encoder);
12057 if (!encoders_cloneable(encoder, source_encoder))
12058 return false;
12059 }
12060
12061 return true;
12062 }
12063
12064 static bool check_encoder_cloning(struct drm_atomic_state *state,
12065 struct intel_crtc *crtc)
12066 {
12067 struct intel_encoder *encoder;
12068 struct drm_connector *connector;
12069 struct drm_connector_state *connector_state;
12070 int i;
12071
12072 for_each_connector_in_state(state, connector, connector_state, i) {
12073 if (connector_state->crtc != &crtc->base)
12074 continue;
12075
12076 encoder = to_intel_encoder(connector_state->best_encoder);
12077 if (!check_single_encoder_cloning(state, crtc, encoder))
12078 return false;
12079 }
12080
12081 return true;
12082 }
12083
12084 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12085 {
12086 struct drm_device *dev = state->dev;
12087 struct intel_encoder *encoder;
12088 struct drm_connector *connector;
12089 struct drm_connector_state *connector_state;
12090 unsigned int used_ports = 0;
12091 int i;
12092
12093 /*
12094 * Walk the connector list instead of the encoder
12095 * list to detect the problem on ddi platforms
12096 * where there's just one encoder per digital port.
12097 */
12098 for_each_connector_in_state(state, connector, connector_state, i) {
12099 if (!connector_state->best_encoder)
12100 continue;
12101
12102 encoder = to_intel_encoder(connector_state->best_encoder);
12103
12104 WARN_ON(!connector_state->crtc);
12105
12106 switch (encoder->type) {
12107 unsigned int port_mask;
12108 case INTEL_OUTPUT_UNKNOWN:
12109 if (WARN_ON(!HAS_DDI(dev)))
12110 break;
12111 case INTEL_OUTPUT_DISPLAYPORT:
12112 case INTEL_OUTPUT_HDMI:
12113 case INTEL_OUTPUT_EDP:
12114 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12115
12116 /* the same port mustn't appear more than once */
12117 if (used_ports & port_mask)
12118 return false;
12119
12120 used_ports |= port_mask;
12121 default:
12122 break;
12123 }
12124 }
12125
12126 return true;
12127 }
12128
12129 static void
12130 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12131 {
12132 struct drm_crtc_state tmp_state;
12133 struct intel_crtc_scaler_state scaler_state;
12134 struct intel_dpll_hw_state dpll_hw_state;
12135 enum intel_dpll_id shared_dpll;
12136 uint32_t ddi_pll_sel;
12137
12138 /* FIXME: before the switch to atomic started, a new pipe_config was
12139 * kzalloc'd. Code that depends on any field being zero should be
12140 * fixed, so that the crtc_state can be safely duplicated. For now,
12141 * only fields that are know to not cause problems are preserved. */
12142
12143 tmp_state = crtc_state->base;
12144 scaler_state = crtc_state->scaler_state;
12145 shared_dpll = crtc_state->shared_dpll;
12146 dpll_hw_state = crtc_state->dpll_hw_state;
12147 ddi_pll_sel = crtc_state->ddi_pll_sel;
12148
12149 memset(crtc_state, 0, sizeof *crtc_state);
12150
12151 crtc_state->base = tmp_state;
12152 crtc_state->scaler_state = scaler_state;
12153 crtc_state->shared_dpll = shared_dpll;
12154 crtc_state->dpll_hw_state = dpll_hw_state;
12155 crtc_state->ddi_pll_sel = ddi_pll_sel;
12156 }
12157
12158 static int
12159 intel_modeset_pipe_config(struct drm_crtc *crtc,
12160 struct drm_atomic_state *state,
12161 struct intel_crtc_state *pipe_config)
12162 {
12163 struct intel_encoder *encoder;
12164 struct drm_connector *connector;
12165 struct drm_connector_state *connector_state;
12166 int base_bpp, ret = -EINVAL;
12167 int i;
12168 bool retry = true;
12169
12170 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
12171 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12172 return -EINVAL;
12173 }
12174
12175 if (!check_digital_port_conflicts(state)) {
12176 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12177 return -EINVAL;
12178 }
12179
12180 clear_intel_crtc_state(pipe_config);
12181
12182 pipe_config->cpu_transcoder =
12183 (enum transcoder) to_intel_crtc(crtc)->pipe;
12184
12185 /*
12186 * Sanitize sync polarity flags based on requested ones. If neither
12187 * positive or negative polarity is requested, treat this as meaning
12188 * negative polarity.
12189 */
12190 if (!(pipe_config->base.adjusted_mode.flags &
12191 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12192 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12193
12194 if (!(pipe_config->base.adjusted_mode.flags &
12195 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12196 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12197
12198 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12199 * plane pixel format and any sink constraints into account. Returns the
12200 * source plane bpp so that dithering can be selected on mismatches
12201 * after encoders and crtc also have had their say. */
12202 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12203 pipe_config);
12204 if (base_bpp < 0)
12205 goto fail;
12206
12207 /*
12208 * Determine the real pipe dimensions. Note that stereo modes can
12209 * increase the actual pipe size due to the frame doubling and
12210 * insertion of additional space for blanks between the frame. This
12211 * is stored in the crtc timings. We use the requested mode to do this
12212 * computation to clearly distinguish it from the adjusted mode, which
12213 * can be changed by the connectors in the below retry loop.
12214 */
12215 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12216 &pipe_config->pipe_src_w,
12217 &pipe_config->pipe_src_h);
12218
12219 encoder_retry:
12220 /* Ensure the port clock defaults are reset when retrying. */
12221 pipe_config->port_clock = 0;
12222 pipe_config->pixel_multiplier = 1;
12223
12224 /* Fill in default crtc timings, allow encoders to overwrite them. */
12225 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12226 CRTC_STEREO_DOUBLE);
12227
12228 /* Pass our mode to the connectors and the CRTC to give them a chance to
12229 * adjust it according to limitations or connector properties, and also
12230 * a chance to reject the mode entirely.
12231 */
12232 for_each_connector_in_state(state, connector, connector_state, i) {
12233 if (connector_state->crtc != crtc)
12234 continue;
12235
12236 encoder = to_intel_encoder(connector_state->best_encoder);
12237
12238 if (!(encoder->compute_config(encoder, pipe_config))) {
12239 DRM_DEBUG_KMS("Encoder config failure\n");
12240 goto fail;
12241 }
12242 }
12243
12244 /* Set default port clock if not overwritten by the encoder. Needs to be
12245 * done afterwards in case the encoder adjusts the mode. */
12246 if (!pipe_config->port_clock)
12247 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12248 * pipe_config->pixel_multiplier;
12249
12250 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12251 if (ret < 0) {
12252 DRM_DEBUG_KMS("CRTC fixup failed\n");
12253 goto fail;
12254 }
12255
12256 if (ret == RETRY) {
12257 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12258 ret = -EINVAL;
12259 goto fail;
12260 }
12261
12262 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12263 retry = false;
12264 goto encoder_retry;
12265 }
12266
12267 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12268 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12269 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12270
12271 return 0;
12272 fail:
12273 return ret;
12274 }
12275
12276 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12277 {
12278 struct drm_encoder *encoder;
12279 struct drm_device *dev = crtc->dev;
12280
12281 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12282 if (encoder->crtc == crtc)
12283 return true;
12284
12285 return false;
12286 }
12287
12288 static bool
12289 needs_modeset(struct drm_crtc_state *state)
12290 {
12291 return state->mode_changed || state->active_changed;
12292 }
12293
12294 static void
12295 intel_modeset_update_state(struct drm_atomic_state *state)
12296 {
12297 struct drm_device *dev = state->dev;
12298 struct drm_i915_private *dev_priv = dev->dev_private;
12299 struct intel_encoder *intel_encoder;
12300 struct drm_crtc *crtc;
12301 struct drm_crtc_state *crtc_state;
12302 struct drm_connector *connector;
12303 int i;
12304
12305 intel_shared_dpll_commit(dev_priv);
12306
12307 for_each_intel_encoder(dev, intel_encoder) {
12308 if (!intel_encoder->base.crtc)
12309 continue;
12310
12311 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12312 if (crtc != intel_encoder->base.crtc)
12313 continue;
12314
12315 if (crtc_state->enable && needs_modeset(crtc_state))
12316 intel_encoder->connectors_active = false;
12317
12318 break;
12319 }
12320 }
12321
12322 drm_atomic_helper_swap_state(state->dev, state);
12323 intel_modeset_fixup_state(state);
12324
12325 /* Double check state. */
12326 for_each_crtc(dev, crtc) {
12327 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12328 }
12329
12330 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12331 if (!connector->encoder || !connector->encoder->crtc)
12332 continue;
12333
12334 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12335 if (crtc != connector->encoder->crtc)
12336 continue;
12337
12338 if (crtc->state->enable && needs_modeset(crtc->state)) {
12339 struct drm_property *dpms_property =
12340 dev->mode_config.dpms_property;
12341
12342 connector->dpms = DRM_MODE_DPMS_ON;
12343 drm_object_property_set_value(&connector->base,
12344 dpms_property,
12345 DRM_MODE_DPMS_ON);
12346
12347 intel_encoder = to_intel_encoder(connector->encoder);
12348 intel_encoder->connectors_active = true;
12349 }
12350
12351 break;
12352 }
12353 }
12354
12355 }
12356
12357 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12358 {
12359 int diff;
12360
12361 if (clock1 == clock2)
12362 return true;
12363
12364 if (!clock1 || !clock2)
12365 return false;
12366
12367 diff = abs(clock1 - clock2);
12368
12369 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12370 return true;
12371
12372 return false;
12373 }
12374
12375 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12376 list_for_each_entry((intel_crtc), \
12377 &(dev)->mode_config.crtc_list, \
12378 base.head) \
12379 if (mask & (1 <<(intel_crtc)->pipe))
12380
12381 static bool
12382 intel_pipe_config_compare(struct drm_device *dev,
12383 struct intel_crtc_state *current_config,
12384 struct intel_crtc_state *pipe_config)
12385 {
12386 #define PIPE_CONF_CHECK_X(name) \
12387 if (current_config->name != pipe_config->name) { \
12388 DRM_ERROR("mismatch in " #name " " \
12389 "(expected 0x%08x, found 0x%08x)\n", \
12390 current_config->name, \
12391 pipe_config->name); \
12392 return false; \
12393 }
12394
12395 #define PIPE_CONF_CHECK_I(name) \
12396 if (current_config->name != pipe_config->name) { \
12397 DRM_ERROR("mismatch in " #name " " \
12398 "(expected %i, found %i)\n", \
12399 current_config->name, \
12400 pipe_config->name); \
12401 return false; \
12402 }
12403
12404 /* This is required for BDW+ where there is only one set of registers for
12405 * switching between high and low RR.
12406 * This macro can be used whenever a comparison has to be made between one
12407 * hw state and multiple sw state variables.
12408 */
12409 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12410 if ((current_config->name != pipe_config->name) && \
12411 (current_config->alt_name != pipe_config->name)) { \
12412 DRM_ERROR("mismatch in " #name " " \
12413 "(expected %i or %i, found %i)\n", \
12414 current_config->name, \
12415 current_config->alt_name, \
12416 pipe_config->name); \
12417 return false; \
12418 }
12419
12420 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12421 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12422 DRM_ERROR("mismatch in " #name "(" #mask ") " \
12423 "(expected %i, found %i)\n", \
12424 current_config->name & (mask), \
12425 pipe_config->name & (mask)); \
12426 return false; \
12427 }
12428
12429 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12430 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12431 DRM_ERROR("mismatch in " #name " " \
12432 "(expected %i, found %i)\n", \
12433 current_config->name, \
12434 pipe_config->name); \
12435 return false; \
12436 }
12437
12438 #define PIPE_CONF_QUIRK(quirk) \
12439 ((current_config->quirks | pipe_config->quirks) & (quirk))
12440
12441 PIPE_CONF_CHECK_I(cpu_transcoder);
12442
12443 PIPE_CONF_CHECK_I(has_pch_encoder);
12444 PIPE_CONF_CHECK_I(fdi_lanes);
12445 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12446 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12447 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12448 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12449 PIPE_CONF_CHECK_I(fdi_m_n.tu);
12450
12451 PIPE_CONF_CHECK_I(has_dp_encoder);
12452
12453 if (INTEL_INFO(dev)->gen < 8) {
12454 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12455 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12456 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12457 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12458 PIPE_CONF_CHECK_I(dp_m_n.tu);
12459
12460 if (current_config->has_drrs) {
12461 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12462 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12463 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12464 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12465 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12466 }
12467 } else {
12468 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12469 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12470 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12471 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12472 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12473 }
12474
12475 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12476 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12477 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12478 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12479 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12480 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12481
12482 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12483 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12484 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12485 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12486 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12487 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12488
12489 PIPE_CONF_CHECK_I(pixel_multiplier);
12490 PIPE_CONF_CHECK_I(has_hdmi_sink);
12491 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12492 IS_VALLEYVIEW(dev))
12493 PIPE_CONF_CHECK_I(limited_color_range);
12494 PIPE_CONF_CHECK_I(has_infoframe);
12495
12496 PIPE_CONF_CHECK_I(has_audio);
12497
12498 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12499 DRM_MODE_FLAG_INTERLACE);
12500
12501 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12502 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12503 DRM_MODE_FLAG_PHSYNC);
12504 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12505 DRM_MODE_FLAG_NHSYNC);
12506 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12507 DRM_MODE_FLAG_PVSYNC);
12508 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12509 DRM_MODE_FLAG_NVSYNC);
12510 }
12511
12512 PIPE_CONF_CHECK_I(pipe_src_w);
12513 PIPE_CONF_CHECK_I(pipe_src_h);
12514
12515 /*
12516 * FIXME: BIOS likes to set up a cloned config with lvds+external
12517 * screen. Since we don't yet re-compute the pipe config when moving
12518 * just the lvds port away to another pipe the sw tracking won't match.
12519 *
12520 * Proper atomic modesets with recomputed global state will fix this.
12521 * Until then just don't check gmch state for inherited modes.
12522 */
12523 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12524 PIPE_CONF_CHECK_I(gmch_pfit.control);
12525 /* pfit ratios are autocomputed by the hw on gen4+ */
12526 if (INTEL_INFO(dev)->gen < 4)
12527 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12528 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12529 }
12530
12531 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12532 if (current_config->pch_pfit.enabled) {
12533 PIPE_CONF_CHECK_I(pch_pfit.pos);
12534 PIPE_CONF_CHECK_I(pch_pfit.size);
12535 }
12536
12537 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12538
12539 /* BDW+ don't expose a synchronous way to read the state */
12540 if (IS_HASWELL(dev))
12541 PIPE_CONF_CHECK_I(ips_enabled);
12542
12543 PIPE_CONF_CHECK_I(double_wide);
12544
12545 PIPE_CONF_CHECK_X(ddi_pll_sel);
12546
12547 PIPE_CONF_CHECK_I(shared_dpll);
12548 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12549 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12550 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12551 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12552 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12553 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12554 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12555 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12556
12557 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12558 PIPE_CONF_CHECK_I(pipe_bpp);
12559
12560 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12561 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12562
12563 #undef PIPE_CONF_CHECK_X
12564 #undef PIPE_CONF_CHECK_I
12565 #undef PIPE_CONF_CHECK_I_ALT
12566 #undef PIPE_CONF_CHECK_FLAGS
12567 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12568 #undef PIPE_CONF_QUIRK
12569
12570 return true;
12571 }
12572
12573 static void check_wm_state(struct drm_device *dev)
12574 {
12575 struct drm_i915_private *dev_priv = dev->dev_private;
12576 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12577 struct intel_crtc *intel_crtc;
12578 int plane;
12579
12580 if (INTEL_INFO(dev)->gen < 9)
12581 return;
12582
12583 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12584 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12585
12586 for_each_intel_crtc(dev, intel_crtc) {
12587 struct skl_ddb_entry *hw_entry, *sw_entry;
12588 const enum pipe pipe = intel_crtc->pipe;
12589
12590 if (!intel_crtc->active)
12591 continue;
12592
12593 /* planes */
12594 for_each_plane(dev_priv, pipe, plane) {
12595 hw_entry = &hw_ddb.plane[pipe][plane];
12596 sw_entry = &sw_ddb->plane[pipe][plane];
12597
12598 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12599 continue;
12600
12601 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12602 "(expected (%u,%u), found (%u,%u))\n",
12603 pipe_name(pipe), plane + 1,
12604 sw_entry->start, sw_entry->end,
12605 hw_entry->start, hw_entry->end);
12606 }
12607
12608 /* cursor */
12609 hw_entry = &hw_ddb.cursor[pipe];
12610 sw_entry = &sw_ddb->cursor[pipe];
12611
12612 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12613 continue;
12614
12615 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12616 "(expected (%u,%u), found (%u,%u))\n",
12617 pipe_name(pipe),
12618 sw_entry->start, sw_entry->end,
12619 hw_entry->start, hw_entry->end);
12620 }
12621 }
12622
12623 static void
12624 check_connector_state(struct drm_device *dev)
12625 {
12626 struct intel_connector *connector;
12627
12628 for_each_intel_connector(dev, connector) {
12629 /* This also checks the encoder/connector hw state with the
12630 * ->get_hw_state callbacks. */
12631 intel_connector_check_state(connector);
12632
12633 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12634 "connector's staged encoder doesn't match current encoder\n");
12635 }
12636 }
12637
12638 static void
12639 check_encoder_state(struct drm_device *dev)
12640 {
12641 struct intel_encoder *encoder;
12642 struct intel_connector *connector;
12643
12644 for_each_intel_encoder(dev, encoder) {
12645 bool enabled = false;
12646 bool active = false;
12647 enum pipe pipe, tracked_pipe;
12648
12649 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12650 encoder->base.base.id,
12651 encoder->base.name);
12652
12653 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12654 "encoder's stage crtc doesn't match current crtc\n");
12655 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12656 "encoder's active_connectors set, but no crtc\n");
12657
12658 for_each_intel_connector(dev, connector) {
12659 if (connector->base.encoder != &encoder->base)
12660 continue;
12661 enabled = true;
12662 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12663 active = true;
12664 }
12665 /*
12666 * for MST connectors if we unplug the connector is gone
12667 * away but the encoder is still connected to a crtc
12668 * until a modeset happens in response to the hotplug.
12669 */
12670 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12671 continue;
12672
12673 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12674 "encoder's enabled state mismatch "
12675 "(expected %i, found %i)\n",
12676 !!encoder->base.crtc, enabled);
12677 I915_STATE_WARN(active && !encoder->base.crtc,
12678 "active encoder with no crtc\n");
12679
12680 I915_STATE_WARN(encoder->connectors_active != active,
12681 "encoder's computed active state doesn't match tracked active state "
12682 "(expected %i, found %i)\n", active, encoder->connectors_active);
12683
12684 active = encoder->get_hw_state(encoder, &pipe);
12685 I915_STATE_WARN(active != encoder->connectors_active,
12686 "encoder's hw state doesn't match sw tracking "
12687 "(expected %i, found %i)\n",
12688 encoder->connectors_active, active);
12689
12690 if (!encoder->base.crtc)
12691 continue;
12692
12693 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12694 I915_STATE_WARN(active && pipe != tracked_pipe,
12695 "active encoder's pipe doesn't match"
12696 "(expected %i, found %i)\n",
12697 tracked_pipe, pipe);
12698
12699 }
12700 }
12701
12702 static void
12703 check_crtc_state(struct drm_device *dev)
12704 {
12705 struct drm_i915_private *dev_priv = dev->dev_private;
12706 struct intel_crtc *crtc;
12707 struct intel_encoder *encoder;
12708 struct intel_crtc_state pipe_config;
12709
12710 for_each_intel_crtc(dev, crtc) {
12711 bool enabled = false;
12712 bool active = false;
12713
12714 memset(&pipe_config, 0, sizeof(pipe_config));
12715
12716 DRM_DEBUG_KMS("[CRTC:%d]\n",
12717 crtc->base.base.id);
12718
12719 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12720 "active crtc, but not enabled in sw tracking\n");
12721
12722 for_each_intel_encoder(dev, encoder) {
12723 if (encoder->base.crtc != &crtc->base)
12724 continue;
12725 enabled = true;
12726 if (encoder->connectors_active)
12727 active = true;
12728 }
12729
12730 I915_STATE_WARN(active != crtc->active,
12731 "crtc's computed active state doesn't match tracked active state "
12732 "(expected %i, found %i)\n", active, crtc->active);
12733 I915_STATE_WARN(enabled != crtc->base.state->enable,
12734 "crtc's computed enabled state doesn't match tracked enabled state "
12735 "(expected %i, found %i)\n", enabled,
12736 crtc->base.state->enable);
12737
12738 active = dev_priv->display.get_pipe_config(crtc,
12739 &pipe_config);
12740
12741 /* hw state is inconsistent with the pipe quirk */
12742 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12743 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12744 active = crtc->active;
12745
12746 for_each_intel_encoder(dev, encoder) {
12747 enum pipe pipe;
12748 if (encoder->base.crtc != &crtc->base)
12749 continue;
12750 if (encoder->get_hw_state(encoder, &pipe))
12751 encoder->get_config(encoder, &pipe_config);
12752 }
12753
12754 I915_STATE_WARN(crtc->active != active,
12755 "crtc active state doesn't match with hw state "
12756 "(expected %i, found %i)\n", crtc->active, active);
12757
12758 if (active &&
12759 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12760 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12761 intel_dump_pipe_config(crtc, &pipe_config,
12762 "[hw state]");
12763 intel_dump_pipe_config(crtc, crtc->config,
12764 "[sw state]");
12765 }
12766 }
12767 }
12768
12769 static void
12770 check_shared_dpll_state(struct drm_device *dev)
12771 {
12772 struct drm_i915_private *dev_priv = dev->dev_private;
12773 struct intel_crtc *crtc;
12774 struct intel_dpll_hw_state dpll_hw_state;
12775 int i;
12776
12777 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12778 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12779 int enabled_crtcs = 0, active_crtcs = 0;
12780 bool active;
12781
12782 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12783
12784 DRM_DEBUG_KMS("%s\n", pll->name);
12785
12786 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12787
12788 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12789 "more active pll users than references: %i vs %i\n",
12790 pll->active, hweight32(pll->config.crtc_mask));
12791 I915_STATE_WARN(pll->active && !pll->on,
12792 "pll in active use but not on in sw tracking\n");
12793 I915_STATE_WARN(pll->on && !pll->active,
12794 "pll in on but not on in use in sw tracking\n");
12795 I915_STATE_WARN(pll->on != active,
12796 "pll on state mismatch (expected %i, found %i)\n",
12797 pll->on, active);
12798
12799 for_each_intel_crtc(dev, crtc) {
12800 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12801 enabled_crtcs++;
12802 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12803 active_crtcs++;
12804 }
12805 I915_STATE_WARN(pll->active != active_crtcs,
12806 "pll active crtcs mismatch (expected %i, found %i)\n",
12807 pll->active, active_crtcs);
12808 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12809 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12810 hweight32(pll->config.crtc_mask), enabled_crtcs);
12811
12812 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12813 sizeof(dpll_hw_state)),
12814 "pll hw state mismatch\n");
12815 }
12816 }
12817
12818 void
12819 intel_modeset_check_state(struct drm_device *dev)
12820 {
12821 check_wm_state(dev);
12822 check_connector_state(dev);
12823 check_encoder_state(dev);
12824 check_crtc_state(dev);
12825 check_shared_dpll_state(dev);
12826 }
12827
12828 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12829 int dotclock)
12830 {
12831 /*
12832 * FDI already provided one idea for the dotclock.
12833 * Yell if the encoder disagrees.
12834 */
12835 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12836 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12837 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12838 }
12839
12840 static void update_scanline_offset(struct intel_crtc *crtc)
12841 {
12842 struct drm_device *dev = crtc->base.dev;
12843
12844 /*
12845 * The scanline counter increments at the leading edge of hsync.
12846 *
12847 * On most platforms it starts counting from vtotal-1 on the
12848 * first active line. That means the scanline counter value is
12849 * always one less than what we would expect. Ie. just after
12850 * start of vblank, which also occurs at start of hsync (on the
12851 * last active line), the scanline counter will read vblank_start-1.
12852 *
12853 * On gen2 the scanline counter starts counting from 1 instead
12854 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12855 * to keep the value positive), instead of adding one.
12856 *
12857 * On HSW+ the behaviour of the scanline counter depends on the output
12858 * type. For DP ports it behaves like most other platforms, but on HDMI
12859 * there's an extra 1 line difference. So we need to add two instead of
12860 * one to the value.
12861 */
12862 if (IS_GEN2(dev)) {
12863 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12864 int vtotal;
12865
12866 vtotal = mode->crtc_vtotal;
12867 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12868 vtotal /= 2;
12869
12870 crtc->scanline_offset = vtotal - 1;
12871 } else if (HAS_DDI(dev) &&
12872 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12873 crtc->scanline_offset = 2;
12874 } else
12875 crtc->scanline_offset = 1;
12876 }
12877
12878 static struct intel_crtc_state *
12879 intel_modeset_compute_config(struct drm_crtc *crtc,
12880 struct drm_atomic_state *state)
12881 {
12882 struct intel_crtc_state *pipe_config;
12883 int ret = 0;
12884
12885 ret = drm_atomic_add_affected_connectors(state, crtc);
12886 if (ret)
12887 return ERR_PTR(ret);
12888
12889 ret = drm_atomic_helper_check_modeset(state->dev, state);
12890 if (ret)
12891 return ERR_PTR(ret);
12892
12893 /*
12894 * Note this needs changes when we start tracking multiple modes
12895 * and crtcs. At that point we'll need to compute the whole config
12896 * (i.e. one pipe_config for each crtc) rather than just the one
12897 * for this crtc.
12898 */
12899 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12900 if (IS_ERR(pipe_config))
12901 return pipe_config;
12902
12903 if (!pipe_config->base.enable)
12904 return pipe_config;
12905
12906 ret = intel_modeset_pipe_config(crtc, state, pipe_config);
12907 if (ret)
12908 return ERR_PTR(ret);
12909
12910 /* Check things that can only be changed through modeset */
12911 if (pipe_config->has_audio !=
12912 to_intel_crtc(crtc)->config->has_audio)
12913 pipe_config->base.mode_changed = true;
12914
12915 /*
12916 * Note we have an issue here with infoframes: current code
12917 * only updates them on the full mode set path per hw
12918 * requirements. So here we should be checking for any
12919 * required changes and forcing a mode set.
12920 */
12921
12922 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
12923
12924 ret = drm_atomic_helper_check_planes(state->dev, state);
12925 if (ret)
12926 return ERR_PTR(ret);
12927
12928 return pipe_config;
12929 }
12930
12931 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
12932 {
12933 struct drm_device *dev = state->dev;
12934 struct drm_i915_private *dev_priv = to_i915(dev);
12935 unsigned clear_pipes = 0;
12936 struct intel_crtc *intel_crtc;
12937 struct intel_crtc_state *intel_crtc_state;
12938 struct drm_crtc *crtc;
12939 struct drm_crtc_state *crtc_state;
12940 int ret = 0;
12941 int i;
12942
12943 if (!dev_priv->display.crtc_compute_clock)
12944 return 0;
12945
12946 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12947 intel_crtc = to_intel_crtc(crtc);
12948 intel_crtc_state = to_intel_crtc_state(crtc_state);
12949
12950 if (needs_modeset(crtc_state)) {
12951 clear_pipes |= 1 << intel_crtc->pipe;
12952 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12953 }
12954 }
12955
12956 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12957 if (ret)
12958 goto done;
12959
12960 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12961 if (!needs_modeset(crtc_state) || !crtc_state->enable)
12962 continue;
12963
12964 intel_crtc = to_intel_crtc(crtc);
12965 intel_crtc_state = to_intel_crtc_state(crtc_state);
12966
12967 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12968 intel_crtc_state);
12969 if (ret) {
12970 intel_shared_dpll_abort_config(dev_priv);
12971 goto done;
12972 }
12973 }
12974
12975 done:
12976 return ret;
12977 }
12978
12979 /* Code that should eventually be part of atomic_check() */
12980 static int __intel_set_mode_checks(struct drm_atomic_state *state)
12981 {
12982 struct drm_device *dev = state->dev;
12983 int ret;
12984
12985 /*
12986 * See if the config requires any additional preparation, e.g.
12987 * to adjust global state with pipes off. We need to do this
12988 * here so we can get the modeset_pipe updated config for the new
12989 * mode set on this crtc. For other crtcs we need to use the
12990 * adjusted_mode bits in the crtc directly.
12991 */
12992 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev) || IS_BROADWELL(dev)) {
12993 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev))
12994 ret = valleyview_modeset_global_pipes(state);
12995 else
12996 ret = broadwell_modeset_global_pipes(state);
12997
12998 if (ret)
12999 return ret;
13000 }
13001
13002 ret = __intel_set_mode_setup_plls(state);
13003 if (ret)
13004 return ret;
13005
13006 return 0;
13007 }
13008
13009 static int __intel_set_mode(struct drm_crtc *modeset_crtc,
13010 struct intel_crtc_state *pipe_config)
13011 {
13012 struct drm_device *dev = modeset_crtc->dev;
13013 struct drm_i915_private *dev_priv = dev->dev_private;
13014 struct drm_atomic_state *state = pipe_config->base.state;
13015 struct drm_crtc *crtc;
13016 struct drm_crtc_state *crtc_state;
13017 int ret = 0;
13018 int i;
13019
13020 ret = __intel_set_mode_checks(state);
13021 if (ret < 0)
13022 return ret;
13023
13024 ret = drm_atomic_helper_prepare_planes(dev, state);
13025 if (ret)
13026 return ret;
13027
13028 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13029 if (!needs_modeset(crtc_state))
13030 continue;
13031
13032 if (!crtc_state->enable) {
13033 intel_crtc_disable(crtc);
13034 } else if (crtc->state->enable) {
13035 intel_crtc_disable_planes(crtc);
13036 dev_priv->display.crtc_disable(crtc);
13037 }
13038 }
13039
13040 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
13041 * to set it here already despite that we pass it down the callchain.
13042 *
13043 * Note we'll need to fix this up when we start tracking multiple
13044 * pipes; here we assume a single modeset_pipe and only track the
13045 * single crtc and mode.
13046 */
13047 if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
13048 modeset_crtc->mode = pipe_config->base.mode;
13049
13050 /*
13051 * Calculate and store various constants which
13052 * are later needed by vblank and swap-completion
13053 * timestamping. They are derived from true hwmode.
13054 */
13055 drm_calc_timestamping_constants(modeset_crtc,
13056 &pipe_config->base.adjusted_mode);
13057 }
13058
13059 /* Only after disabling all output pipelines that will be changed can we
13060 * update the the output configuration. */
13061 intel_modeset_update_state(state);
13062
13063 /* The state has been swaped above, so state actually contains the
13064 * old state now. */
13065
13066 modeset_update_crtc_power_domains(state);
13067
13068 drm_atomic_helper_commit_planes(dev, state);
13069
13070 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13071 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13072 if (!needs_modeset(crtc->state) || !crtc->state->enable)
13073 continue;
13074
13075 update_scanline_offset(to_intel_crtc(crtc));
13076
13077 dev_priv->display.crtc_enable(crtc);
13078 intel_crtc_enable_planes(crtc);
13079 }
13080
13081 /* FIXME: add subpixel order */
13082
13083 drm_atomic_helper_cleanup_planes(dev, state);
13084
13085 drm_atomic_state_free(state);
13086
13087 return 0;
13088 }
13089
13090 static int intel_set_mode_with_config(struct drm_crtc *crtc,
13091 struct intel_crtc_state *pipe_config)
13092 {
13093 int ret;
13094
13095 ret = __intel_set_mode(crtc, pipe_config);
13096
13097 if (ret == 0)
13098 intel_modeset_check_state(crtc->dev);
13099
13100 return ret;
13101 }
13102
13103 static int intel_set_mode(struct drm_crtc *crtc,
13104 struct drm_atomic_state *state)
13105 {
13106 struct intel_crtc_state *pipe_config;
13107 int ret = 0;
13108
13109 pipe_config = intel_modeset_compute_config(crtc, state);
13110 if (IS_ERR(pipe_config)) {
13111 ret = PTR_ERR(pipe_config);
13112 goto out;
13113 }
13114
13115 ret = intel_set_mode_with_config(crtc, pipe_config);
13116 if (ret)
13117 goto out;
13118
13119 out:
13120 return ret;
13121 }
13122
13123 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13124 {
13125 struct drm_device *dev = crtc->dev;
13126 struct drm_atomic_state *state;
13127 struct intel_crtc *intel_crtc;
13128 struct intel_encoder *encoder;
13129 struct intel_connector *connector;
13130 struct drm_connector_state *connector_state;
13131 struct intel_crtc_state *crtc_state;
13132 int ret;
13133
13134 state = drm_atomic_state_alloc(dev);
13135 if (!state) {
13136 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
13137 crtc->base.id);
13138 return;
13139 }
13140
13141 state->acquire_ctx = dev->mode_config.acquire_ctx;
13142
13143 /* The force restore path in the HW readout code relies on the staged
13144 * config still keeping the user requested config while the actual
13145 * state has been overwritten by the configuration read from HW. We
13146 * need to copy the staged config to the atomic state, otherwise the
13147 * mode set will just reapply the state the HW is already in. */
13148 for_each_intel_encoder(dev, encoder) {
13149 if (&encoder->new_crtc->base != crtc)
13150 continue;
13151
13152 for_each_intel_connector(dev, connector) {
13153 if (connector->new_encoder != encoder)
13154 continue;
13155
13156 connector_state = drm_atomic_get_connector_state(state, &connector->base);
13157 if (IS_ERR(connector_state)) {
13158 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
13159 connector->base.base.id,
13160 connector->base.name,
13161 PTR_ERR(connector_state));
13162 continue;
13163 }
13164
13165 connector_state->crtc = crtc;
13166 connector_state->best_encoder = &encoder->base;
13167 }
13168 }
13169
13170 for_each_intel_crtc(dev, intel_crtc) {
13171 if (intel_crtc->new_enabled == intel_crtc->base.enabled)
13172 continue;
13173
13174 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
13175 if (IS_ERR(crtc_state)) {
13176 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
13177 intel_crtc->base.base.id,
13178 PTR_ERR(crtc_state));
13179 continue;
13180 }
13181
13182 crtc_state->base.active = crtc_state->base.enable =
13183 intel_crtc->new_enabled;
13184
13185 if (&intel_crtc->base == crtc)
13186 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
13187 }
13188
13189 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
13190 crtc->primary->fb, crtc->x, crtc->y);
13191
13192 ret = intel_set_mode(crtc, state);
13193 if (ret)
13194 drm_atomic_state_free(state);
13195 }
13196
13197 #undef for_each_intel_crtc_masked
13198
13199 static bool intel_connector_in_mode_set(struct intel_connector *connector,
13200 struct drm_mode_set *set)
13201 {
13202 int ro;
13203
13204 for (ro = 0; ro < set->num_connectors; ro++)
13205 if (set->connectors[ro] == &connector->base)
13206 return true;
13207
13208 return false;
13209 }
13210
13211 static int
13212 intel_modeset_stage_output_state(struct drm_device *dev,
13213 struct drm_mode_set *set,
13214 struct drm_atomic_state *state)
13215 {
13216 struct intel_connector *connector;
13217 struct drm_connector *drm_connector;
13218 struct drm_connector_state *connector_state;
13219 struct drm_crtc *crtc;
13220 struct drm_crtc_state *crtc_state;
13221 int i, ret;
13222
13223 /* The upper layers ensure that we either disable a crtc or have a list
13224 * of connectors. For paranoia, double-check this. */
13225 WARN_ON(!set->fb && (set->num_connectors != 0));
13226 WARN_ON(set->fb && (set->num_connectors == 0));
13227
13228 for_each_intel_connector(dev, connector) {
13229 bool in_mode_set = intel_connector_in_mode_set(connector, set);
13230
13231 if (!in_mode_set && connector->base.state->crtc != set->crtc)
13232 continue;
13233
13234 connector_state =
13235 drm_atomic_get_connector_state(state, &connector->base);
13236 if (IS_ERR(connector_state))
13237 return PTR_ERR(connector_state);
13238
13239 if (in_mode_set) {
13240 int pipe = to_intel_crtc(set->crtc)->pipe;
13241 connector_state->best_encoder =
13242 &intel_find_encoder(connector, pipe)->base;
13243 }
13244
13245 if (connector->base.state->crtc != set->crtc)
13246 continue;
13247
13248 /* If we disable the crtc, disable all its connectors. Also, if
13249 * the connector is on the changing crtc but not on the new
13250 * connector list, disable it. */
13251 if (!set->fb || !in_mode_set) {
13252 connector_state->best_encoder = NULL;
13253
13254 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
13255 connector->base.base.id,
13256 connector->base.name);
13257 }
13258 }
13259 /* connector->new_encoder is now updated for all connectors. */
13260
13261 for_each_connector_in_state(state, drm_connector, connector_state, i) {
13262 connector = to_intel_connector(drm_connector);
13263
13264 if (!connector_state->best_encoder) {
13265 ret = drm_atomic_set_crtc_for_connector(connector_state,
13266 NULL);
13267 if (ret)
13268 return ret;
13269
13270 continue;
13271 }
13272
13273 if (intel_connector_in_mode_set(connector, set)) {
13274 struct drm_crtc *crtc = connector->base.state->crtc;
13275
13276 /* If this connector was in a previous crtc, add it
13277 * to the state. We might need to disable it. */
13278 if (crtc) {
13279 crtc_state =
13280 drm_atomic_get_crtc_state(state, crtc);
13281 if (IS_ERR(crtc_state))
13282 return PTR_ERR(crtc_state);
13283 }
13284
13285 ret = drm_atomic_set_crtc_for_connector(connector_state,
13286 set->crtc);
13287 if (ret)
13288 return ret;
13289 }
13290
13291 /* Make sure the new CRTC will work with the encoder */
13292 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
13293 connector_state->crtc)) {
13294 return -EINVAL;
13295 }
13296
13297 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
13298 connector->base.base.id,
13299 connector->base.name,
13300 connector_state->crtc->base.id);
13301
13302 if (connector_state->best_encoder != &connector->encoder->base)
13303 connector->encoder =
13304 to_intel_encoder(connector_state->best_encoder);
13305 }
13306
13307 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13308 bool has_connectors;
13309
13310 ret = drm_atomic_add_affected_connectors(state, crtc);
13311 if (ret)
13312 return ret;
13313
13314 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
13315 if (has_connectors != crtc_state->enable)
13316 crtc_state->enable =
13317 crtc_state->active = has_connectors;
13318 }
13319
13320 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
13321 set->fb, set->x, set->y);
13322 if (ret)
13323 return ret;
13324
13325 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
13326 if (IS_ERR(crtc_state))
13327 return PTR_ERR(crtc_state);
13328
13329 if (set->mode)
13330 drm_mode_copy(&crtc_state->mode, set->mode);
13331
13332 if (set->num_connectors)
13333 crtc_state->active = true;
13334
13335 return 0;
13336 }
13337
13338 static bool primary_plane_visible(struct drm_crtc *crtc)
13339 {
13340 struct intel_plane_state *plane_state =
13341 to_intel_plane_state(crtc->primary->state);
13342
13343 return plane_state->visible;
13344 }
13345
13346 static int intel_crtc_set_config(struct drm_mode_set *set)
13347 {
13348 struct drm_device *dev;
13349 struct drm_atomic_state *state = NULL;
13350 struct intel_crtc_state *pipe_config;
13351 bool primary_plane_was_visible;
13352 int ret;
13353
13354 BUG_ON(!set);
13355 BUG_ON(!set->crtc);
13356 BUG_ON(!set->crtc->helper_private);
13357
13358 /* Enforce sane interface api - has been abused by the fb helper. */
13359 BUG_ON(!set->mode && set->fb);
13360 BUG_ON(set->fb && set->num_connectors == 0);
13361
13362 if (set->fb) {
13363 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
13364 set->crtc->base.id, set->fb->base.id,
13365 (int)set->num_connectors, set->x, set->y);
13366 } else {
13367 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
13368 }
13369
13370 dev = set->crtc->dev;
13371
13372 state = drm_atomic_state_alloc(dev);
13373 if (!state)
13374 return -ENOMEM;
13375
13376 state->acquire_ctx = dev->mode_config.acquire_ctx;
13377
13378 ret = intel_modeset_stage_output_state(dev, set, state);
13379 if (ret)
13380 goto out;
13381
13382 pipe_config = intel_modeset_compute_config(set->crtc, state);
13383 if (IS_ERR(pipe_config)) {
13384 ret = PTR_ERR(pipe_config);
13385 goto out;
13386 }
13387
13388 intel_update_pipe_size(to_intel_crtc(set->crtc));
13389
13390 primary_plane_was_visible = primary_plane_visible(set->crtc);
13391
13392 ret = intel_set_mode_with_config(set->crtc, pipe_config);
13393
13394 if (ret == 0 &&
13395 pipe_config->base.enable &&
13396 pipe_config->base.planes_changed &&
13397 !needs_modeset(&pipe_config->base)) {
13398 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
13399
13400 /*
13401 * We need to make sure the primary plane is re-enabled if it
13402 * has previously been turned off.
13403 */
13404 if (ret == 0 && !primary_plane_was_visible &&
13405 primary_plane_visible(set->crtc)) {
13406 WARN_ON(!intel_crtc->active);
13407 intel_post_enable_primary(set->crtc);
13408 }
13409
13410 /*
13411 * In the fastboot case this may be our only check of the
13412 * state after boot. It would be better to only do it on
13413 * the first update, but we don't have a nice way of doing that
13414 * (and really, set_config isn't used much for high freq page
13415 * flipping, so increasing its cost here shouldn't be a big
13416 * deal).
13417 */
13418 if (i915.fastboot && ret == 0)
13419 intel_modeset_check_state(set->crtc->dev);
13420 }
13421
13422 if (ret) {
13423 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
13424 set->crtc->base.id, ret);
13425 }
13426
13427 out:
13428 if (ret)
13429 drm_atomic_state_free(state);
13430 return ret;
13431 }
13432
13433 static const struct drm_crtc_funcs intel_crtc_funcs = {
13434 .gamma_set = intel_crtc_gamma_set,
13435 .set_config = intel_crtc_set_config,
13436 .destroy = intel_crtc_destroy,
13437 .page_flip = intel_crtc_page_flip,
13438 .atomic_duplicate_state = intel_crtc_duplicate_state,
13439 .atomic_destroy_state = intel_crtc_destroy_state,
13440 };
13441
13442 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13443 struct intel_shared_dpll *pll,
13444 struct intel_dpll_hw_state *hw_state)
13445 {
13446 uint32_t val;
13447
13448 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13449 return false;
13450
13451 val = I915_READ(PCH_DPLL(pll->id));
13452 hw_state->dpll = val;
13453 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13454 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13455
13456 return val & DPLL_VCO_ENABLE;
13457 }
13458
13459 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13460 struct intel_shared_dpll *pll)
13461 {
13462 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13463 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13464 }
13465
13466 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13467 struct intel_shared_dpll *pll)
13468 {
13469 /* PCH refclock must be enabled first */
13470 ibx_assert_pch_refclk_enabled(dev_priv);
13471
13472 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13473
13474 /* Wait for the clocks to stabilize. */
13475 POSTING_READ(PCH_DPLL(pll->id));
13476 udelay(150);
13477
13478 /* The pixel multiplier can only be updated once the
13479 * DPLL is enabled and the clocks are stable.
13480 *
13481 * So write it again.
13482 */
13483 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13484 POSTING_READ(PCH_DPLL(pll->id));
13485 udelay(200);
13486 }
13487
13488 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13489 struct intel_shared_dpll *pll)
13490 {
13491 struct drm_device *dev = dev_priv->dev;
13492 struct intel_crtc *crtc;
13493
13494 /* Make sure no transcoder isn't still depending on us. */
13495 for_each_intel_crtc(dev, crtc) {
13496 if (intel_crtc_to_shared_dpll(crtc) == pll)
13497 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13498 }
13499
13500 I915_WRITE(PCH_DPLL(pll->id), 0);
13501 POSTING_READ(PCH_DPLL(pll->id));
13502 udelay(200);
13503 }
13504
13505 static char *ibx_pch_dpll_names[] = {
13506 "PCH DPLL A",
13507 "PCH DPLL B",
13508 };
13509
13510 static void ibx_pch_dpll_init(struct drm_device *dev)
13511 {
13512 struct drm_i915_private *dev_priv = dev->dev_private;
13513 int i;
13514
13515 dev_priv->num_shared_dpll = 2;
13516
13517 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13518 dev_priv->shared_dplls[i].id = i;
13519 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13520 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13521 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13522 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13523 dev_priv->shared_dplls[i].get_hw_state =
13524 ibx_pch_dpll_get_hw_state;
13525 }
13526 }
13527
13528 static void intel_shared_dpll_init(struct drm_device *dev)
13529 {
13530 struct drm_i915_private *dev_priv = dev->dev_private;
13531
13532 intel_update_cdclk(dev);
13533
13534 if (HAS_DDI(dev))
13535 intel_ddi_pll_init(dev);
13536 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13537 ibx_pch_dpll_init(dev);
13538 else
13539 dev_priv->num_shared_dpll = 0;
13540
13541 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13542 }
13543
13544 /**
13545 * intel_wm_need_update - Check whether watermarks need updating
13546 * @plane: drm plane
13547 * @state: new plane state
13548 *
13549 * Check current plane state versus the new one to determine whether
13550 * watermarks need to be recalculated.
13551 *
13552 * Returns true or false.
13553 */
13554 bool intel_wm_need_update(struct drm_plane *plane,
13555 struct drm_plane_state *state)
13556 {
13557 /* Update watermarks on tiling changes. */
13558 if (!plane->state->fb || !state->fb ||
13559 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13560 plane->state->rotation != state->rotation)
13561 return true;
13562
13563 return false;
13564 }
13565
13566 /**
13567 * intel_prepare_plane_fb - Prepare fb for usage on plane
13568 * @plane: drm plane to prepare for
13569 * @fb: framebuffer to prepare for presentation
13570 *
13571 * Prepares a framebuffer for usage on a display plane. Generally this
13572 * involves pinning the underlying object and updating the frontbuffer tracking
13573 * bits. Some older platforms need special physical address handling for
13574 * cursor planes.
13575 *
13576 * Returns 0 on success, negative error code on failure.
13577 */
13578 int
13579 intel_prepare_plane_fb(struct drm_plane *plane,
13580 struct drm_framebuffer *fb,
13581 const struct drm_plane_state *new_state)
13582 {
13583 struct drm_device *dev = plane->dev;
13584 struct intel_plane *intel_plane = to_intel_plane(plane);
13585 enum pipe pipe = intel_plane->pipe;
13586 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13587 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13588 unsigned frontbuffer_bits = 0;
13589 int ret = 0;
13590
13591 if (!obj)
13592 return 0;
13593
13594 switch (plane->type) {
13595 case DRM_PLANE_TYPE_PRIMARY:
13596 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13597 break;
13598 case DRM_PLANE_TYPE_CURSOR:
13599 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13600 break;
13601 case DRM_PLANE_TYPE_OVERLAY:
13602 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13603 break;
13604 }
13605
13606 mutex_lock(&dev->struct_mutex);
13607
13608 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13609 INTEL_INFO(dev)->cursor_needs_physical) {
13610 int align = IS_I830(dev) ? 16 * 1024 : 256;
13611 ret = i915_gem_object_attach_phys(obj, align);
13612 if (ret)
13613 DRM_DEBUG_KMS("failed to attach phys object\n");
13614 } else {
13615 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13616 }
13617
13618 if (ret == 0)
13619 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13620
13621 mutex_unlock(&dev->struct_mutex);
13622
13623 return ret;
13624 }
13625
13626 /**
13627 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13628 * @plane: drm plane to clean up for
13629 * @fb: old framebuffer that was on plane
13630 *
13631 * Cleans up a framebuffer that has just been removed from a plane.
13632 */
13633 void
13634 intel_cleanup_plane_fb(struct drm_plane *plane,
13635 struct drm_framebuffer *fb,
13636 const struct drm_plane_state *old_state)
13637 {
13638 struct drm_device *dev = plane->dev;
13639 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13640
13641 if (WARN_ON(!obj))
13642 return;
13643
13644 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13645 !INTEL_INFO(dev)->cursor_needs_physical) {
13646 mutex_lock(&dev->struct_mutex);
13647 intel_unpin_fb_obj(fb, old_state);
13648 mutex_unlock(&dev->struct_mutex);
13649 }
13650 }
13651
13652 int
13653 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13654 {
13655 int max_scale;
13656 struct drm_device *dev;
13657 struct drm_i915_private *dev_priv;
13658 int crtc_clock, cdclk;
13659
13660 if (!intel_crtc || !crtc_state)
13661 return DRM_PLANE_HELPER_NO_SCALING;
13662
13663 dev = intel_crtc->base.dev;
13664 dev_priv = dev->dev_private;
13665 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13666 cdclk = dev_priv->display.get_display_clock_speed(dev);
13667
13668 if (!crtc_clock || !cdclk)
13669 return DRM_PLANE_HELPER_NO_SCALING;
13670
13671 /*
13672 * skl max scale is lower of:
13673 * close to 3 but not 3, -1 is for that purpose
13674 * or
13675 * cdclk/crtc_clock
13676 */
13677 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13678
13679 return max_scale;
13680 }
13681
13682 static int
13683 intel_check_primary_plane(struct drm_plane *plane,
13684 struct intel_plane_state *state)
13685 {
13686 struct drm_device *dev = plane->dev;
13687 struct drm_i915_private *dev_priv = dev->dev_private;
13688 struct drm_crtc *crtc = state->base.crtc;
13689 struct intel_crtc *intel_crtc;
13690 struct intel_crtc_state *crtc_state;
13691 struct drm_framebuffer *fb = state->base.fb;
13692 struct drm_rect *dest = &state->dst;
13693 struct drm_rect *src = &state->src;
13694 const struct drm_rect *clip = &state->clip;
13695 bool can_position = false;
13696 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13697 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13698 int ret;
13699
13700 crtc = crtc ? crtc : plane->crtc;
13701 intel_crtc = to_intel_crtc(crtc);
13702 crtc_state = state->base.state ?
13703 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13704
13705 if (INTEL_INFO(dev)->gen >= 9) {
13706 /* use scaler when colorkey is not required */
13707 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13708 min_scale = 1;
13709 max_scale = skl_max_scale(intel_crtc, crtc_state);
13710 }
13711 can_position = true;
13712 }
13713
13714 ret = drm_plane_helper_check_update(plane, crtc, fb,
13715 src, dest, clip,
13716 min_scale,
13717 max_scale,
13718 can_position, true,
13719 &state->visible);
13720 if (ret)
13721 return ret;
13722
13723 if (intel_crtc->active) {
13724 struct intel_plane_state *old_state =
13725 to_intel_plane_state(plane->state);
13726
13727 intel_crtc->atomic.wait_for_flips = true;
13728
13729 /*
13730 * FBC does not work on some platforms for rotated
13731 * planes, so disable it when rotation is not 0 and
13732 * update it when rotation is set back to 0.
13733 *
13734 * FIXME: This is redundant with the fbc update done in
13735 * the primary plane enable function except that that
13736 * one is done too late. We eventually need to unify
13737 * this.
13738 */
13739 if (state->visible &&
13740 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13741 dev_priv->fbc.crtc == intel_crtc &&
13742 state->base.rotation != BIT(DRM_ROTATE_0)) {
13743 intel_crtc->atomic.disable_fbc = true;
13744 }
13745
13746 if (state->visible && !old_state->visible) {
13747 /*
13748 * BDW signals flip done immediately if the plane
13749 * is disabled, even if the plane enable is already
13750 * armed to occur at the next vblank :(
13751 */
13752 if (IS_BROADWELL(dev))
13753 intel_crtc->atomic.wait_vblank = true;
13754 }
13755
13756 intel_crtc->atomic.fb_bits |=
13757 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13758
13759 intel_crtc->atomic.update_fbc = true;
13760
13761 if (intel_wm_need_update(plane, &state->base))
13762 intel_crtc->atomic.update_wm = true;
13763 }
13764
13765 if (INTEL_INFO(dev)->gen >= 9) {
13766 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13767 to_intel_plane(plane), state, 0);
13768 if (ret)
13769 return ret;
13770 }
13771
13772 return 0;
13773 }
13774
13775 static void
13776 intel_commit_primary_plane(struct drm_plane *plane,
13777 struct intel_plane_state *state)
13778 {
13779 struct drm_crtc *crtc = state->base.crtc;
13780 struct drm_framebuffer *fb = state->base.fb;
13781 struct drm_device *dev = plane->dev;
13782 struct drm_i915_private *dev_priv = dev->dev_private;
13783 struct intel_crtc *intel_crtc;
13784 struct drm_rect *src = &state->src;
13785
13786 crtc = crtc ? crtc : plane->crtc;
13787 intel_crtc = to_intel_crtc(crtc);
13788
13789 plane->fb = fb;
13790 crtc->x = src->x1 >> 16;
13791 crtc->y = src->y1 >> 16;
13792
13793 if (intel_crtc->active) {
13794 if (state->visible)
13795 /* FIXME: kill this fastboot hack */
13796 intel_update_pipe_size(intel_crtc);
13797
13798 dev_priv->display.update_primary_plane(crtc, plane->fb,
13799 crtc->x, crtc->y);
13800 }
13801 }
13802
13803 static void
13804 intel_disable_primary_plane(struct drm_plane *plane,
13805 struct drm_crtc *crtc,
13806 bool force)
13807 {
13808 struct drm_device *dev = plane->dev;
13809 struct drm_i915_private *dev_priv = dev->dev_private;
13810
13811 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13812 }
13813
13814 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13815 {
13816 struct drm_device *dev = crtc->dev;
13817 struct drm_i915_private *dev_priv = dev->dev_private;
13818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13819 struct intel_plane *intel_plane;
13820 struct drm_plane *p;
13821 unsigned fb_bits = 0;
13822
13823 /* Track fb's for any planes being disabled */
13824 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13825 intel_plane = to_intel_plane(p);
13826
13827 if (intel_crtc->atomic.disabled_planes &
13828 (1 << drm_plane_index(p))) {
13829 switch (p->type) {
13830 case DRM_PLANE_TYPE_PRIMARY:
13831 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13832 break;
13833 case DRM_PLANE_TYPE_CURSOR:
13834 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13835 break;
13836 case DRM_PLANE_TYPE_OVERLAY:
13837 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13838 break;
13839 }
13840
13841 mutex_lock(&dev->struct_mutex);
13842 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13843 mutex_unlock(&dev->struct_mutex);
13844 }
13845 }
13846
13847 if (intel_crtc->atomic.wait_for_flips)
13848 intel_crtc_wait_for_pending_flips(crtc);
13849
13850 if (intel_crtc->atomic.disable_fbc)
13851 intel_fbc_disable(dev);
13852
13853 if (intel_crtc->atomic.pre_disable_primary)
13854 intel_pre_disable_primary(crtc);
13855
13856 if (intel_crtc->atomic.update_wm)
13857 intel_update_watermarks(crtc);
13858
13859 intel_runtime_pm_get(dev_priv);
13860
13861 /* Perform vblank evasion around commit operation */
13862 if (intel_crtc->active)
13863 intel_crtc->atomic.evade =
13864 intel_pipe_update_start(intel_crtc,
13865 &intel_crtc->atomic.start_vbl_count);
13866 }
13867
13868 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13869 {
13870 struct drm_device *dev = crtc->dev;
13871 struct drm_i915_private *dev_priv = dev->dev_private;
13872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13873 struct drm_plane *p;
13874
13875 if (intel_crtc->atomic.evade)
13876 intel_pipe_update_end(intel_crtc,
13877 intel_crtc->atomic.start_vbl_count);
13878
13879 intel_runtime_pm_put(dev_priv);
13880
13881 if (intel_crtc->atomic.wait_vblank)
13882 intel_wait_for_vblank(dev, intel_crtc->pipe);
13883
13884 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13885
13886 if (intel_crtc->atomic.update_fbc) {
13887 mutex_lock(&dev->struct_mutex);
13888 intel_fbc_update(dev);
13889 mutex_unlock(&dev->struct_mutex);
13890 }
13891
13892 if (intel_crtc->atomic.post_enable_primary)
13893 intel_post_enable_primary(crtc);
13894
13895 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13896 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13897 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13898 false, false);
13899
13900 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13901 }
13902
13903 /**
13904 * intel_plane_destroy - destroy a plane
13905 * @plane: plane to destroy
13906 *
13907 * Common destruction function for all types of planes (primary, cursor,
13908 * sprite).
13909 */
13910 void intel_plane_destroy(struct drm_plane *plane)
13911 {
13912 struct intel_plane *intel_plane = to_intel_plane(plane);
13913 drm_plane_cleanup(plane);
13914 kfree(intel_plane);
13915 }
13916
13917 const struct drm_plane_funcs intel_plane_funcs = {
13918 .update_plane = drm_atomic_helper_update_plane,
13919 .disable_plane = drm_atomic_helper_disable_plane,
13920 .destroy = intel_plane_destroy,
13921 .set_property = drm_atomic_helper_plane_set_property,
13922 .atomic_get_property = intel_plane_atomic_get_property,
13923 .atomic_set_property = intel_plane_atomic_set_property,
13924 .atomic_duplicate_state = intel_plane_duplicate_state,
13925 .atomic_destroy_state = intel_plane_destroy_state,
13926
13927 };
13928
13929 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13930 int pipe)
13931 {
13932 struct intel_plane *primary;
13933 struct intel_plane_state *state;
13934 const uint32_t *intel_primary_formats;
13935 int num_formats;
13936
13937 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13938 if (primary == NULL)
13939 return NULL;
13940
13941 state = intel_create_plane_state(&primary->base);
13942 if (!state) {
13943 kfree(primary);
13944 return NULL;
13945 }
13946 primary->base.state = &state->base;
13947
13948 primary->can_scale = false;
13949 primary->max_downscale = 1;
13950 if (INTEL_INFO(dev)->gen >= 9) {
13951 primary->can_scale = true;
13952 state->scaler_id = -1;
13953 }
13954 primary->pipe = pipe;
13955 primary->plane = pipe;
13956 primary->check_plane = intel_check_primary_plane;
13957 primary->commit_plane = intel_commit_primary_plane;
13958 primary->disable_plane = intel_disable_primary_plane;
13959 primary->ckey.flags = I915_SET_COLORKEY_NONE;
13960 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13961 primary->plane = !pipe;
13962
13963 if (INTEL_INFO(dev)->gen >= 9) {
13964 intel_primary_formats = skl_primary_formats;
13965 num_formats = ARRAY_SIZE(skl_primary_formats);
13966 } else if (INTEL_INFO(dev)->gen >= 4) {
13967 intel_primary_formats = i965_primary_formats;
13968 num_formats = ARRAY_SIZE(i965_primary_formats);
13969 } else {
13970 intel_primary_formats = i8xx_primary_formats;
13971 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13972 }
13973
13974 drm_universal_plane_init(dev, &primary->base, 0,
13975 &intel_plane_funcs,
13976 intel_primary_formats, num_formats,
13977 DRM_PLANE_TYPE_PRIMARY);
13978
13979 if (INTEL_INFO(dev)->gen >= 4)
13980 intel_create_rotation_property(dev, primary);
13981
13982 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13983
13984 return &primary->base;
13985 }
13986
13987 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13988 {
13989 if (!dev->mode_config.rotation_property) {
13990 unsigned long flags = BIT(DRM_ROTATE_0) |
13991 BIT(DRM_ROTATE_180);
13992
13993 if (INTEL_INFO(dev)->gen >= 9)
13994 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13995
13996 dev->mode_config.rotation_property =
13997 drm_mode_create_rotation_property(dev, flags);
13998 }
13999 if (dev->mode_config.rotation_property)
14000 drm_object_attach_property(&plane->base.base,
14001 dev->mode_config.rotation_property,
14002 plane->base.state->rotation);
14003 }
14004
14005 static int
14006 intel_check_cursor_plane(struct drm_plane *plane,
14007 struct intel_plane_state *state)
14008 {
14009 struct drm_crtc *crtc = state->base.crtc;
14010 struct drm_device *dev = plane->dev;
14011 struct drm_framebuffer *fb = state->base.fb;
14012 struct drm_rect *dest = &state->dst;
14013 struct drm_rect *src = &state->src;
14014 const struct drm_rect *clip = &state->clip;
14015 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14016 struct intel_crtc *intel_crtc;
14017 unsigned stride;
14018 int ret;
14019
14020 crtc = crtc ? crtc : plane->crtc;
14021 intel_crtc = to_intel_crtc(crtc);
14022
14023 ret = drm_plane_helper_check_update(plane, crtc, fb,
14024 src, dest, clip,
14025 DRM_PLANE_HELPER_NO_SCALING,
14026 DRM_PLANE_HELPER_NO_SCALING,
14027 true, true, &state->visible);
14028 if (ret)
14029 return ret;
14030
14031
14032 /* if we want to turn off the cursor ignore width and height */
14033 if (!obj)
14034 goto finish;
14035
14036 /* Check for which cursor types we support */
14037 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
14038 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14039 state->base.crtc_w, state->base.crtc_h);
14040 return -EINVAL;
14041 }
14042
14043 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14044 if (obj->base.size < stride * state->base.crtc_h) {
14045 DRM_DEBUG_KMS("buffer is too small\n");
14046 return -ENOMEM;
14047 }
14048
14049 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14050 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14051 ret = -EINVAL;
14052 }
14053
14054 finish:
14055 if (intel_crtc->active) {
14056 if (plane->state->crtc_w != state->base.crtc_w)
14057 intel_crtc->atomic.update_wm = true;
14058
14059 intel_crtc->atomic.fb_bits |=
14060 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
14061 }
14062
14063 return ret;
14064 }
14065
14066 static void
14067 intel_disable_cursor_plane(struct drm_plane *plane,
14068 struct drm_crtc *crtc,
14069 bool force)
14070 {
14071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14072
14073 if (!force) {
14074 plane->fb = NULL;
14075 intel_crtc->cursor_bo = NULL;
14076 intel_crtc->cursor_addr = 0;
14077 }
14078
14079 intel_crtc_update_cursor(crtc, false);
14080 }
14081
14082 static void
14083 intel_commit_cursor_plane(struct drm_plane *plane,
14084 struct intel_plane_state *state)
14085 {
14086 struct drm_crtc *crtc = state->base.crtc;
14087 struct drm_device *dev = plane->dev;
14088 struct intel_crtc *intel_crtc;
14089 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14090 uint32_t addr;
14091
14092 crtc = crtc ? crtc : plane->crtc;
14093 intel_crtc = to_intel_crtc(crtc);
14094
14095 plane->fb = state->base.fb;
14096 crtc->cursor_x = state->base.crtc_x;
14097 crtc->cursor_y = state->base.crtc_y;
14098
14099 if (intel_crtc->cursor_bo == obj)
14100 goto update;
14101
14102 if (!obj)
14103 addr = 0;
14104 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14105 addr = i915_gem_obj_ggtt_offset(obj);
14106 else
14107 addr = obj->phys_handle->busaddr;
14108
14109 intel_crtc->cursor_addr = addr;
14110 intel_crtc->cursor_bo = obj;
14111 update:
14112
14113 if (intel_crtc->active)
14114 intel_crtc_update_cursor(crtc, state->visible);
14115 }
14116
14117 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14118 int pipe)
14119 {
14120 struct intel_plane *cursor;
14121 struct intel_plane_state *state;
14122
14123 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14124 if (cursor == NULL)
14125 return NULL;
14126
14127 state = intel_create_plane_state(&cursor->base);
14128 if (!state) {
14129 kfree(cursor);
14130 return NULL;
14131 }
14132 cursor->base.state = &state->base;
14133
14134 cursor->can_scale = false;
14135 cursor->max_downscale = 1;
14136 cursor->pipe = pipe;
14137 cursor->plane = pipe;
14138 cursor->check_plane = intel_check_cursor_plane;
14139 cursor->commit_plane = intel_commit_cursor_plane;
14140 cursor->disable_plane = intel_disable_cursor_plane;
14141
14142 drm_universal_plane_init(dev, &cursor->base, 0,
14143 &intel_plane_funcs,
14144 intel_cursor_formats,
14145 ARRAY_SIZE(intel_cursor_formats),
14146 DRM_PLANE_TYPE_CURSOR);
14147
14148 if (INTEL_INFO(dev)->gen >= 4) {
14149 if (!dev->mode_config.rotation_property)
14150 dev->mode_config.rotation_property =
14151 drm_mode_create_rotation_property(dev,
14152 BIT(DRM_ROTATE_0) |
14153 BIT(DRM_ROTATE_180));
14154 if (dev->mode_config.rotation_property)
14155 drm_object_attach_property(&cursor->base.base,
14156 dev->mode_config.rotation_property,
14157 state->base.rotation);
14158 }
14159
14160 if (INTEL_INFO(dev)->gen >=9)
14161 state->scaler_id = -1;
14162
14163 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14164
14165 return &cursor->base;
14166 }
14167
14168 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14169 struct intel_crtc_state *crtc_state)
14170 {
14171 int i;
14172 struct intel_scaler *intel_scaler;
14173 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14174
14175 for (i = 0; i < intel_crtc->num_scalers; i++) {
14176 intel_scaler = &scaler_state->scalers[i];
14177 intel_scaler->in_use = 0;
14178 intel_scaler->id = i;
14179
14180 intel_scaler->mode = PS_SCALER_MODE_DYN;
14181 }
14182
14183 scaler_state->scaler_id = -1;
14184 }
14185
14186 static void intel_crtc_init(struct drm_device *dev, int pipe)
14187 {
14188 struct drm_i915_private *dev_priv = dev->dev_private;
14189 struct intel_crtc *intel_crtc;
14190 struct intel_crtc_state *crtc_state = NULL;
14191 struct drm_plane *primary = NULL;
14192 struct drm_plane *cursor = NULL;
14193 int i, ret;
14194
14195 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14196 if (intel_crtc == NULL)
14197 return;
14198
14199 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14200 if (!crtc_state)
14201 goto fail;
14202 intel_crtc->config = crtc_state;
14203 intel_crtc->base.state = &crtc_state->base;
14204 crtc_state->base.crtc = &intel_crtc->base;
14205
14206 /* initialize shared scalers */
14207 if (INTEL_INFO(dev)->gen >= 9) {
14208 if (pipe == PIPE_C)
14209 intel_crtc->num_scalers = 1;
14210 else
14211 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14212
14213 skl_init_scalers(dev, intel_crtc, crtc_state);
14214 }
14215
14216 primary = intel_primary_plane_create(dev, pipe);
14217 if (!primary)
14218 goto fail;
14219
14220 cursor = intel_cursor_plane_create(dev, pipe);
14221 if (!cursor)
14222 goto fail;
14223
14224 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14225 cursor, &intel_crtc_funcs);
14226 if (ret)
14227 goto fail;
14228
14229 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14230 for (i = 0; i < 256; i++) {
14231 intel_crtc->lut_r[i] = i;
14232 intel_crtc->lut_g[i] = i;
14233 intel_crtc->lut_b[i] = i;
14234 }
14235
14236 /*
14237 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14238 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14239 */
14240 intel_crtc->pipe = pipe;
14241 intel_crtc->plane = pipe;
14242 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14243 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14244 intel_crtc->plane = !pipe;
14245 }
14246
14247 intel_crtc->cursor_base = ~0;
14248 intel_crtc->cursor_cntl = ~0;
14249 intel_crtc->cursor_size = ~0;
14250
14251 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14252 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14253 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14254 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14255
14256 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14257
14258 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14259 return;
14260
14261 fail:
14262 if (primary)
14263 drm_plane_cleanup(primary);
14264 if (cursor)
14265 drm_plane_cleanup(cursor);
14266 kfree(crtc_state);
14267 kfree(intel_crtc);
14268 }
14269
14270 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14271 {
14272 struct drm_encoder *encoder = connector->base.encoder;
14273 struct drm_device *dev = connector->base.dev;
14274
14275 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14276
14277 if (!encoder || WARN_ON(!encoder->crtc))
14278 return INVALID_PIPE;
14279
14280 return to_intel_crtc(encoder->crtc)->pipe;
14281 }
14282
14283 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14284 struct drm_file *file)
14285 {
14286 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14287 struct drm_crtc *drmmode_crtc;
14288 struct intel_crtc *crtc;
14289
14290 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14291
14292 if (!drmmode_crtc) {
14293 DRM_ERROR("no such CRTC id\n");
14294 return -ENOENT;
14295 }
14296
14297 crtc = to_intel_crtc(drmmode_crtc);
14298 pipe_from_crtc_id->pipe = crtc->pipe;
14299
14300 return 0;
14301 }
14302
14303 static int intel_encoder_clones(struct intel_encoder *encoder)
14304 {
14305 struct drm_device *dev = encoder->base.dev;
14306 struct intel_encoder *source_encoder;
14307 int index_mask = 0;
14308 int entry = 0;
14309
14310 for_each_intel_encoder(dev, source_encoder) {
14311 if (encoders_cloneable(encoder, source_encoder))
14312 index_mask |= (1 << entry);
14313
14314 entry++;
14315 }
14316
14317 return index_mask;
14318 }
14319
14320 static bool has_edp_a(struct drm_device *dev)
14321 {
14322 struct drm_i915_private *dev_priv = dev->dev_private;
14323
14324 if (!IS_MOBILE(dev))
14325 return false;
14326
14327 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14328 return false;
14329
14330 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14331 return false;
14332
14333 return true;
14334 }
14335
14336 static bool intel_crt_present(struct drm_device *dev)
14337 {
14338 struct drm_i915_private *dev_priv = dev->dev_private;
14339
14340 if (INTEL_INFO(dev)->gen >= 9)
14341 return false;
14342
14343 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14344 return false;
14345
14346 if (IS_CHERRYVIEW(dev))
14347 return false;
14348
14349 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14350 return false;
14351
14352 return true;
14353 }
14354
14355 static void intel_setup_outputs(struct drm_device *dev)
14356 {
14357 struct drm_i915_private *dev_priv = dev->dev_private;
14358 struct intel_encoder *encoder;
14359 bool dpd_is_edp = false;
14360
14361 intel_lvds_init(dev);
14362
14363 if (intel_crt_present(dev))
14364 intel_crt_init(dev);
14365
14366 if (IS_BROXTON(dev)) {
14367 /*
14368 * FIXME: Broxton doesn't support port detection via the
14369 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14370 * detect the ports.
14371 */
14372 intel_ddi_init(dev, PORT_A);
14373 intel_ddi_init(dev, PORT_B);
14374 intel_ddi_init(dev, PORT_C);
14375 } else if (HAS_DDI(dev)) {
14376 int found;
14377
14378 /*
14379 * Haswell uses DDI functions to detect digital outputs.
14380 * On SKL pre-D0 the strap isn't connected, so we assume
14381 * it's there.
14382 */
14383 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14384 /* WaIgnoreDDIAStrap: skl */
14385 if (found ||
14386 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14387 intel_ddi_init(dev, PORT_A);
14388
14389 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14390 * register */
14391 found = I915_READ(SFUSE_STRAP);
14392
14393 if (found & SFUSE_STRAP_DDIB_DETECTED)
14394 intel_ddi_init(dev, PORT_B);
14395 if (found & SFUSE_STRAP_DDIC_DETECTED)
14396 intel_ddi_init(dev, PORT_C);
14397 if (found & SFUSE_STRAP_DDID_DETECTED)
14398 intel_ddi_init(dev, PORT_D);
14399 } else if (HAS_PCH_SPLIT(dev)) {
14400 int found;
14401 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14402
14403 if (has_edp_a(dev))
14404 intel_dp_init(dev, DP_A, PORT_A);
14405
14406 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14407 /* PCH SDVOB multiplex with HDMIB */
14408 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14409 if (!found)
14410 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14411 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14412 intel_dp_init(dev, PCH_DP_B, PORT_B);
14413 }
14414
14415 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14416 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14417
14418 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14419 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14420
14421 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14422 intel_dp_init(dev, PCH_DP_C, PORT_C);
14423
14424 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14425 intel_dp_init(dev, PCH_DP_D, PORT_D);
14426 } else if (IS_VALLEYVIEW(dev)) {
14427 /*
14428 * The DP_DETECTED bit is the latched state of the DDC
14429 * SDA pin at boot. However since eDP doesn't require DDC
14430 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14431 * eDP ports may have been muxed to an alternate function.
14432 * Thus we can't rely on the DP_DETECTED bit alone to detect
14433 * eDP ports. Consult the VBT as well as DP_DETECTED to
14434 * detect eDP ports.
14435 */
14436 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14437 !intel_dp_is_edp(dev, PORT_B))
14438 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14439 PORT_B);
14440 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14441 intel_dp_is_edp(dev, PORT_B))
14442 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14443
14444 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14445 !intel_dp_is_edp(dev, PORT_C))
14446 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14447 PORT_C);
14448 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14449 intel_dp_is_edp(dev, PORT_C))
14450 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14451
14452 if (IS_CHERRYVIEW(dev)) {
14453 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14454 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14455 PORT_D);
14456 /* eDP not supported on port D, so don't check VBT */
14457 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14458 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14459 }
14460
14461 intel_dsi_init(dev);
14462 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14463 bool found = false;
14464
14465 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14466 DRM_DEBUG_KMS("probing SDVOB\n");
14467 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14468 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14469 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14470 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14471 }
14472
14473 if (!found && SUPPORTS_INTEGRATED_DP(dev))
14474 intel_dp_init(dev, DP_B, PORT_B);
14475 }
14476
14477 /* Before G4X SDVOC doesn't have its own detect register */
14478
14479 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14480 DRM_DEBUG_KMS("probing SDVOC\n");
14481 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14482 }
14483
14484 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14485
14486 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14487 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14488 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14489 }
14490 if (SUPPORTS_INTEGRATED_DP(dev))
14491 intel_dp_init(dev, DP_C, PORT_C);
14492 }
14493
14494 if (SUPPORTS_INTEGRATED_DP(dev) &&
14495 (I915_READ(DP_D) & DP_DETECTED))
14496 intel_dp_init(dev, DP_D, PORT_D);
14497 } else if (IS_GEN2(dev))
14498 intel_dvo_init(dev);
14499
14500 if (SUPPORTS_TV(dev))
14501 intel_tv_init(dev);
14502
14503 intel_psr_init(dev);
14504
14505 for_each_intel_encoder(dev, encoder) {
14506 encoder->base.possible_crtcs = encoder->crtc_mask;
14507 encoder->base.possible_clones =
14508 intel_encoder_clones(encoder);
14509 }
14510
14511 intel_init_pch_refclk(dev);
14512
14513 drm_helper_move_panel_connectors_to_head(dev);
14514 }
14515
14516 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14517 {
14518 struct drm_device *dev = fb->dev;
14519 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14520
14521 drm_framebuffer_cleanup(fb);
14522 mutex_lock(&dev->struct_mutex);
14523 WARN_ON(!intel_fb->obj->framebuffer_references--);
14524 drm_gem_object_unreference(&intel_fb->obj->base);
14525 mutex_unlock(&dev->struct_mutex);
14526 kfree(intel_fb);
14527 }
14528
14529 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14530 struct drm_file *file,
14531 unsigned int *handle)
14532 {
14533 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14534 struct drm_i915_gem_object *obj = intel_fb->obj;
14535
14536 return drm_gem_handle_create(file, &obj->base, handle);
14537 }
14538
14539 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14540 .destroy = intel_user_framebuffer_destroy,
14541 .create_handle = intel_user_framebuffer_create_handle,
14542 };
14543
14544 static
14545 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14546 uint32_t pixel_format)
14547 {
14548 u32 gen = INTEL_INFO(dev)->gen;
14549
14550 if (gen >= 9) {
14551 /* "The stride in bytes must not exceed the of the size of 8K
14552 * pixels and 32K bytes."
14553 */
14554 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14555 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14556 return 32*1024;
14557 } else if (gen >= 4) {
14558 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14559 return 16*1024;
14560 else
14561 return 32*1024;
14562 } else if (gen >= 3) {
14563 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14564 return 8*1024;
14565 else
14566 return 16*1024;
14567 } else {
14568 /* XXX DSPC is limited to 4k tiled */
14569 return 8*1024;
14570 }
14571 }
14572
14573 static int intel_framebuffer_init(struct drm_device *dev,
14574 struct intel_framebuffer *intel_fb,
14575 struct drm_mode_fb_cmd2 *mode_cmd,
14576 struct drm_i915_gem_object *obj)
14577 {
14578 unsigned int aligned_height;
14579 int ret;
14580 u32 pitch_limit, stride_alignment;
14581
14582 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14583
14584 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14585 /* Enforce that fb modifier and tiling mode match, but only for
14586 * X-tiled. This is needed for FBC. */
14587 if (!!(obj->tiling_mode == I915_TILING_X) !=
14588 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14589 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14590 return -EINVAL;
14591 }
14592 } else {
14593 if (obj->tiling_mode == I915_TILING_X)
14594 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14595 else if (obj->tiling_mode == I915_TILING_Y) {
14596 DRM_DEBUG("No Y tiling for legacy addfb\n");
14597 return -EINVAL;
14598 }
14599 }
14600
14601 /* Passed in modifier sanity checking. */
14602 switch (mode_cmd->modifier[0]) {
14603 case I915_FORMAT_MOD_Y_TILED:
14604 case I915_FORMAT_MOD_Yf_TILED:
14605 if (INTEL_INFO(dev)->gen < 9) {
14606 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14607 mode_cmd->modifier[0]);
14608 return -EINVAL;
14609 }
14610 case DRM_FORMAT_MOD_NONE:
14611 case I915_FORMAT_MOD_X_TILED:
14612 break;
14613 default:
14614 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14615 mode_cmd->modifier[0]);
14616 return -EINVAL;
14617 }
14618
14619 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14620 mode_cmd->pixel_format);
14621 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14622 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14623 mode_cmd->pitches[0], stride_alignment);
14624 return -EINVAL;
14625 }
14626
14627 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14628 mode_cmd->pixel_format);
14629 if (mode_cmd->pitches[0] > pitch_limit) {
14630 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14631 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14632 "tiled" : "linear",
14633 mode_cmd->pitches[0], pitch_limit);
14634 return -EINVAL;
14635 }
14636
14637 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14638 mode_cmd->pitches[0] != obj->stride) {
14639 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14640 mode_cmd->pitches[0], obj->stride);
14641 return -EINVAL;
14642 }
14643
14644 /* Reject formats not supported by any plane early. */
14645 switch (mode_cmd->pixel_format) {
14646 case DRM_FORMAT_C8:
14647 case DRM_FORMAT_RGB565:
14648 case DRM_FORMAT_XRGB8888:
14649 case DRM_FORMAT_ARGB8888:
14650 break;
14651 case DRM_FORMAT_XRGB1555:
14652 if (INTEL_INFO(dev)->gen > 3) {
14653 DRM_DEBUG("unsupported pixel format: %s\n",
14654 drm_get_format_name(mode_cmd->pixel_format));
14655 return -EINVAL;
14656 }
14657 break;
14658 case DRM_FORMAT_ABGR8888:
14659 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14660 DRM_DEBUG("unsupported pixel format: %s\n",
14661 drm_get_format_name(mode_cmd->pixel_format));
14662 return -EINVAL;
14663 }
14664 break;
14665 case DRM_FORMAT_XBGR8888:
14666 case DRM_FORMAT_XRGB2101010:
14667 case DRM_FORMAT_XBGR2101010:
14668 if (INTEL_INFO(dev)->gen < 4) {
14669 DRM_DEBUG("unsupported pixel format: %s\n",
14670 drm_get_format_name(mode_cmd->pixel_format));
14671 return -EINVAL;
14672 }
14673 break;
14674 case DRM_FORMAT_ABGR2101010:
14675 if (!IS_VALLEYVIEW(dev)) {
14676 DRM_DEBUG("unsupported pixel format: %s\n",
14677 drm_get_format_name(mode_cmd->pixel_format));
14678 return -EINVAL;
14679 }
14680 break;
14681 case DRM_FORMAT_YUYV:
14682 case DRM_FORMAT_UYVY:
14683 case DRM_FORMAT_YVYU:
14684 case DRM_FORMAT_VYUY:
14685 if (INTEL_INFO(dev)->gen < 5) {
14686 DRM_DEBUG("unsupported pixel format: %s\n",
14687 drm_get_format_name(mode_cmd->pixel_format));
14688 return -EINVAL;
14689 }
14690 break;
14691 default:
14692 DRM_DEBUG("unsupported pixel format: %s\n",
14693 drm_get_format_name(mode_cmd->pixel_format));
14694 return -EINVAL;
14695 }
14696
14697 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14698 if (mode_cmd->offsets[0] != 0)
14699 return -EINVAL;
14700
14701 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14702 mode_cmd->pixel_format,
14703 mode_cmd->modifier[0]);
14704 /* FIXME drm helper for size checks (especially planar formats)? */
14705 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14706 return -EINVAL;
14707
14708 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14709 intel_fb->obj = obj;
14710 intel_fb->obj->framebuffer_references++;
14711
14712 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14713 if (ret) {
14714 DRM_ERROR("framebuffer init failed %d\n", ret);
14715 return ret;
14716 }
14717
14718 return 0;
14719 }
14720
14721 static struct drm_framebuffer *
14722 intel_user_framebuffer_create(struct drm_device *dev,
14723 struct drm_file *filp,
14724 struct drm_mode_fb_cmd2 *mode_cmd)
14725 {
14726 struct drm_i915_gem_object *obj;
14727
14728 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14729 mode_cmd->handles[0]));
14730 if (&obj->base == NULL)
14731 return ERR_PTR(-ENOENT);
14732
14733 return intel_framebuffer_create(dev, mode_cmd, obj);
14734 }
14735
14736 #ifndef CONFIG_DRM_I915_FBDEV
14737 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14738 {
14739 }
14740 #endif
14741
14742 static const struct drm_mode_config_funcs intel_mode_funcs = {
14743 .fb_create = intel_user_framebuffer_create,
14744 .output_poll_changed = intel_fbdev_output_poll_changed,
14745 .atomic_check = intel_atomic_check,
14746 .atomic_commit = intel_atomic_commit,
14747 };
14748
14749 /* Set up chip specific display functions */
14750 static void intel_init_display(struct drm_device *dev)
14751 {
14752 struct drm_i915_private *dev_priv = dev->dev_private;
14753
14754 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14755 dev_priv->display.find_dpll = g4x_find_best_dpll;
14756 else if (IS_CHERRYVIEW(dev))
14757 dev_priv->display.find_dpll = chv_find_best_dpll;
14758 else if (IS_VALLEYVIEW(dev))
14759 dev_priv->display.find_dpll = vlv_find_best_dpll;
14760 else if (IS_PINEVIEW(dev))
14761 dev_priv->display.find_dpll = pnv_find_best_dpll;
14762 else
14763 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14764
14765 if (INTEL_INFO(dev)->gen >= 9) {
14766 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14767 dev_priv->display.get_initial_plane_config =
14768 skylake_get_initial_plane_config;
14769 dev_priv->display.crtc_compute_clock =
14770 haswell_crtc_compute_clock;
14771 dev_priv->display.crtc_enable = haswell_crtc_enable;
14772 dev_priv->display.crtc_disable = haswell_crtc_disable;
14773 dev_priv->display.off = ironlake_crtc_off;
14774 dev_priv->display.update_primary_plane =
14775 skylake_update_primary_plane;
14776 } else if (HAS_DDI(dev)) {
14777 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14778 dev_priv->display.get_initial_plane_config =
14779 ironlake_get_initial_plane_config;
14780 dev_priv->display.crtc_compute_clock =
14781 haswell_crtc_compute_clock;
14782 dev_priv->display.crtc_enable = haswell_crtc_enable;
14783 dev_priv->display.crtc_disable = haswell_crtc_disable;
14784 dev_priv->display.off = ironlake_crtc_off;
14785 dev_priv->display.update_primary_plane =
14786 ironlake_update_primary_plane;
14787 } else if (HAS_PCH_SPLIT(dev)) {
14788 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14789 dev_priv->display.get_initial_plane_config =
14790 ironlake_get_initial_plane_config;
14791 dev_priv->display.crtc_compute_clock =
14792 ironlake_crtc_compute_clock;
14793 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14794 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14795 dev_priv->display.off = ironlake_crtc_off;
14796 dev_priv->display.update_primary_plane =
14797 ironlake_update_primary_plane;
14798 } else if (IS_VALLEYVIEW(dev)) {
14799 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14800 dev_priv->display.get_initial_plane_config =
14801 i9xx_get_initial_plane_config;
14802 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14803 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14804 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14805 dev_priv->display.off = i9xx_crtc_off;
14806 dev_priv->display.update_primary_plane =
14807 i9xx_update_primary_plane;
14808 } else {
14809 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14810 dev_priv->display.get_initial_plane_config =
14811 i9xx_get_initial_plane_config;
14812 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14813 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14814 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14815 dev_priv->display.off = i9xx_crtc_off;
14816 dev_priv->display.update_primary_plane =
14817 i9xx_update_primary_plane;
14818 }
14819
14820 /* Returns the core display clock speed */
14821 if (IS_SKYLAKE(dev))
14822 dev_priv->display.get_display_clock_speed =
14823 skylake_get_display_clock_speed;
14824 else if (IS_BROADWELL(dev))
14825 dev_priv->display.get_display_clock_speed =
14826 broadwell_get_display_clock_speed;
14827 else if (IS_HASWELL(dev))
14828 dev_priv->display.get_display_clock_speed =
14829 haswell_get_display_clock_speed;
14830 else if (IS_VALLEYVIEW(dev))
14831 dev_priv->display.get_display_clock_speed =
14832 valleyview_get_display_clock_speed;
14833 else if (IS_GEN5(dev))
14834 dev_priv->display.get_display_clock_speed =
14835 ilk_get_display_clock_speed;
14836 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14837 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14838 dev_priv->display.get_display_clock_speed =
14839 i945_get_display_clock_speed;
14840 else if (IS_GM45(dev))
14841 dev_priv->display.get_display_clock_speed =
14842 gm45_get_display_clock_speed;
14843 else if (IS_CRESTLINE(dev))
14844 dev_priv->display.get_display_clock_speed =
14845 i965gm_get_display_clock_speed;
14846 else if (IS_PINEVIEW(dev))
14847 dev_priv->display.get_display_clock_speed =
14848 pnv_get_display_clock_speed;
14849 else if (IS_G33(dev) || IS_G4X(dev))
14850 dev_priv->display.get_display_clock_speed =
14851 g33_get_display_clock_speed;
14852 else if (IS_I915G(dev))
14853 dev_priv->display.get_display_clock_speed =
14854 i915_get_display_clock_speed;
14855 else if (IS_I945GM(dev) || IS_845G(dev))
14856 dev_priv->display.get_display_clock_speed =
14857 i9xx_misc_get_display_clock_speed;
14858 else if (IS_PINEVIEW(dev))
14859 dev_priv->display.get_display_clock_speed =
14860 pnv_get_display_clock_speed;
14861 else if (IS_I915GM(dev))
14862 dev_priv->display.get_display_clock_speed =
14863 i915gm_get_display_clock_speed;
14864 else if (IS_I865G(dev))
14865 dev_priv->display.get_display_clock_speed =
14866 i865_get_display_clock_speed;
14867 else if (IS_I85X(dev))
14868 dev_priv->display.get_display_clock_speed =
14869 i85x_get_display_clock_speed;
14870 else { /* 830 */
14871 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14872 dev_priv->display.get_display_clock_speed =
14873 i830_get_display_clock_speed;
14874 }
14875
14876 if (IS_GEN5(dev)) {
14877 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14878 } else if (IS_GEN6(dev)) {
14879 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14880 } else if (IS_IVYBRIDGE(dev)) {
14881 /* FIXME: detect B0+ stepping and use auto training */
14882 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14883 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14884 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14885 if (IS_BROADWELL(dev))
14886 dev_priv->display.modeset_global_resources =
14887 broadwell_modeset_global_resources;
14888 } else if (IS_VALLEYVIEW(dev)) {
14889 dev_priv->display.modeset_global_resources =
14890 valleyview_modeset_global_resources;
14891 } else if (IS_BROXTON(dev)) {
14892 dev_priv->display.modeset_global_resources =
14893 broxton_modeset_global_resources;
14894 }
14895
14896 switch (INTEL_INFO(dev)->gen) {
14897 case 2:
14898 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14899 break;
14900
14901 case 3:
14902 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14903 break;
14904
14905 case 4:
14906 case 5:
14907 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14908 break;
14909
14910 case 6:
14911 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14912 break;
14913 case 7:
14914 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14915 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14916 break;
14917 case 9:
14918 /* Drop through - unsupported since execlist only. */
14919 default:
14920 /* Default just returns -ENODEV to indicate unsupported */
14921 dev_priv->display.queue_flip = intel_default_queue_flip;
14922 }
14923
14924 intel_panel_init_backlight_funcs(dev);
14925
14926 mutex_init(&dev_priv->pps_mutex);
14927 }
14928
14929 /*
14930 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14931 * resume, or other times. This quirk makes sure that's the case for
14932 * affected systems.
14933 */
14934 static void quirk_pipea_force(struct drm_device *dev)
14935 {
14936 struct drm_i915_private *dev_priv = dev->dev_private;
14937
14938 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14939 DRM_INFO("applying pipe a force quirk\n");
14940 }
14941
14942 static void quirk_pipeb_force(struct drm_device *dev)
14943 {
14944 struct drm_i915_private *dev_priv = dev->dev_private;
14945
14946 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14947 DRM_INFO("applying pipe b force quirk\n");
14948 }
14949
14950 /*
14951 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14952 */
14953 static void quirk_ssc_force_disable(struct drm_device *dev)
14954 {
14955 struct drm_i915_private *dev_priv = dev->dev_private;
14956 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14957 DRM_INFO("applying lvds SSC disable quirk\n");
14958 }
14959
14960 /*
14961 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14962 * brightness value
14963 */
14964 static void quirk_invert_brightness(struct drm_device *dev)
14965 {
14966 struct drm_i915_private *dev_priv = dev->dev_private;
14967 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14968 DRM_INFO("applying inverted panel brightness quirk\n");
14969 }
14970
14971 /* Some VBT's incorrectly indicate no backlight is present */
14972 static void quirk_backlight_present(struct drm_device *dev)
14973 {
14974 struct drm_i915_private *dev_priv = dev->dev_private;
14975 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14976 DRM_INFO("applying backlight present quirk\n");
14977 }
14978
14979 struct intel_quirk {
14980 int device;
14981 int subsystem_vendor;
14982 int subsystem_device;
14983 void (*hook)(struct drm_device *dev);
14984 };
14985
14986 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14987 struct intel_dmi_quirk {
14988 void (*hook)(struct drm_device *dev);
14989 const struct dmi_system_id (*dmi_id_list)[];
14990 };
14991
14992 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14993 {
14994 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14995 return 1;
14996 }
14997
14998 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14999 {
15000 .dmi_id_list = &(const struct dmi_system_id[]) {
15001 {
15002 .callback = intel_dmi_reverse_brightness,
15003 .ident = "NCR Corporation",
15004 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15005 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15006 },
15007 },
15008 { } /* terminating entry */
15009 },
15010 .hook = quirk_invert_brightness,
15011 },
15012 };
15013
15014 static struct intel_quirk intel_quirks[] = {
15015 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15016 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15017
15018 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15019 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15020
15021 /* 830 needs to leave pipe A & dpll A up */
15022 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15023
15024 /* 830 needs to leave pipe B & dpll B up */
15025 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15026
15027 /* Lenovo U160 cannot use SSC on LVDS */
15028 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15029
15030 /* Sony Vaio Y cannot use SSC on LVDS */
15031 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15032
15033 /* Acer Aspire 5734Z must invert backlight brightness */
15034 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15035
15036 /* Acer/eMachines G725 */
15037 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15038
15039 /* Acer/eMachines e725 */
15040 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15041
15042 /* Acer/Packard Bell NCL20 */
15043 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15044
15045 /* Acer Aspire 4736Z */
15046 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15047
15048 /* Acer Aspire 5336 */
15049 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15050
15051 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15052 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15053
15054 /* Acer C720 Chromebook (Core i3 4005U) */
15055 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15056
15057 /* Apple Macbook 2,1 (Core 2 T7400) */
15058 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15059
15060 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15061 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15062
15063 /* HP Chromebook 14 (Celeron 2955U) */
15064 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15065
15066 /* Dell Chromebook 11 */
15067 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15068 };
15069
15070 static void intel_init_quirks(struct drm_device *dev)
15071 {
15072 struct pci_dev *d = dev->pdev;
15073 int i;
15074
15075 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15076 struct intel_quirk *q = &intel_quirks[i];
15077
15078 if (d->device == q->device &&
15079 (d->subsystem_vendor == q->subsystem_vendor ||
15080 q->subsystem_vendor == PCI_ANY_ID) &&
15081 (d->subsystem_device == q->subsystem_device ||
15082 q->subsystem_device == PCI_ANY_ID))
15083 q->hook(dev);
15084 }
15085 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15086 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15087 intel_dmi_quirks[i].hook(dev);
15088 }
15089 }
15090
15091 /* Disable the VGA plane that we never use */
15092 static void i915_disable_vga(struct drm_device *dev)
15093 {
15094 struct drm_i915_private *dev_priv = dev->dev_private;
15095 u8 sr1;
15096 u32 vga_reg = i915_vgacntrl_reg(dev);
15097
15098 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15099 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15100 outb(SR01, VGA_SR_INDEX);
15101 sr1 = inb(VGA_SR_DATA);
15102 outb(sr1 | 1<<5, VGA_SR_DATA);
15103 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15104 udelay(300);
15105
15106 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15107 POSTING_READ(vga_reg);
15108 }
15109
15110 void intel_modeset_init_hw(struct drm_device *dev)
15111 {
15112 intel_update_cdclk(dev);
15113 intel_prepare_ddi(dev);
15114 intel_init_clock_gating(dev);
15115 intel_enable_gt_powersave(dev);
15116 }
15117
15118 void intel_modeset_init(struct drm_device *dev)
15119 {
15120 struct drm_i915_private *dev_priv = dev->dev_private;
15121 int sprite, ret;
15122 enum pipe pipe;
15123 struct intel_crtc *crtc;
15124
15125 drm_mode_config_init(dev);
15126
15127 dev->mode_config.min_width = 0;
15128 dev->mode_config.min_height = 0;
15129
15130 dev->mode_config.preferred_depth = 24;
15131 dev->mode_config.prefer_shadow = 1;
15132
15133 dev->mode_config.allow_fb_modifiers = true;
15134
15135 dev->mode_config.funcs = &intel_mode_funcs;
15136
15137 intel_init_quirks(dev);
15138
15139 intel_init_pm(dev);
15140
15141 if (INTEL_INFO(dev)->num_pipes == 0)
15142 return;
15143
15144 intel_init_display(dev);
15145 intel_init_audio(dev);
15146
15147 if (IS_GEN2(dev)) {
15148 dev->mode_config.max_width = 2048;
15149 dev->mode_config.max_height = 2048;
15150 } else if (IS_GEN3(dev)) {
15151 dev->mode_config.max_width = 4096;
15152 dev->mode_config.max_height = 4096;
15153 } else {
15154 dev->mode_config.max_width = 8192;
15155 dev->mode_config.max_height = 8192;
15156 }
15157
15158 if (IS_845G(dev) || IS_I865G(dev)) {
15159 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15160 dev->mode_config.cursor_height = 1023;
15161 } else if (IS_GEN2(dev)) {
15162 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15163 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15164 } else {
15165 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15166 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15167 }
15168
15169 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15170
15171 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15172 INTEL_INFO(dev)->num_pipes,
15173 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15174
15175 for_each_pipe(dev_priv, pipe) {
15176 intel_crtc_init(dev, pipe);
15177 for_each_sprite(dev_priv, pipe, sprite) {
15178 ret = intel_plane_init(dev, pipe, sprite);
15179 if (ret)
15180 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15181 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15182 }
15183 }
15184
15185 intel_init_dpio(dev);
15186
15187 intel_shared_dpll_init(dev);
15188
15189 /* Just disable it once at startup */
15190 i915_disable_vga(dev);
15191 intel_setup_outputs(dev);
15192
15193 /* Just in case the BIOS is doing something questionable. */
15194 intel_fbc_disable(dev);
15195
15196 drm_modeset_lock_all(dev);
15197 intel_modeset_setup_hw_state(dev, false);
15198 drm_modeset_unlock_all(dev);
15199
15200 for_each_intel_crtc(dev, crtc) {
15201 if (!crtc->active)
15202 continue;
15203
15204 /*
15205 * Note that reserving the BIOS fb up front prevents us
15206 * from stuffing other stolen allocations like the ring
15207 * on top. This prevents some ugliness at boot time, and
15208 * can even allow for smooth boot transitions if the BIOS
15209 * fb is large enough for the active pipe configuration.
15210 */
15211 if (dev_priv->display.get_initial_plane_config) {
15212 dev_priv->display.get_initial_plane_config(crtc,
15213 &crtc->plane_config);
15214 /*
15215 * If the fb is shared between multiple heads, we'll
15216 * just get the first one.
15217 */
15218 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
15219 }
15220 }
15221 }
15222
15223 static void intel_enable_pipe_a(struct drm_device *dev)
15224 {
15225 struct intel_connector *connector;
15226 struct drm_connector *crt = NULL;
15227 struct intel_load_detect_pipe load_detect_temp;
15228 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15229
15230 /* We can't just switch on the pipe A, we need to set things up with a
15231 * proper mode and output configuration. As a gross hack, enable pipe A
15232 * by enabling the load detect pipe once. */
15233 for_each_intel_connector(dev, connector) {
15234 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15235 crt = &connector->base;
15236 break;
15237 }
15238 }
15239
15240 if (!crt)
15241 return;
15242
15243 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15244 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15245 }
15246
15247 static bool
15248 intel_check_plane_mapping(struct intel_crtc *crtc)
15249 {
15250 struct drm_device *dev = crtc->base.dev;
15251 struct drm_i915_private *dev_priv = dev->dev_private;
15252 u32 reg, val;
15253
15254 if (INTEL_INFO(dev)->num_pipes == 1)
15255 return true;
15256
15257 reg = DSPCNTR(!crtc->plane);
15258 val = I915_READ(reg);
15259
15260 if ((val & DISPLAY_PLANE_ENABLE) &&
15261 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15262 return false;
15263
15264 return true;
15265 }
15266
15267 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15268 {
15269 struct drm_device *dev = crtc->base.dev;
15270 struct drm_i915_private *dev_priv = dev->dev_private;
15271 u32 reg;
15272
15273 /* Clear any frame start delays used for debugging left by the BIOS */
15274 reg = PIPECONF(crtc->config->cpu_transcoder);
15275 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15276
15277 /* restore vblank interrupts to correct state */
15278 drm_crtc_vblank_reset(&crtc->base);
15279 if (crtc->active) {
15280 update_scanline_offset(crtc);
15281 drm_crtc_vblank_on(&crtc->base);
15282 }
15283
15284 /* We need to sanitize the plane -> pipe mapping first because this will
15285 * disable the crtc (and hence change the state) if it is wrong. Note
15286 * that gen4+ has a fixed plane -> pipe mapping. */
15287 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15288 struct intel_connector *connector;
15289 bool plane;
15290
15291 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15292 crtc->base.base.id);
15293
15294 /* Pipe has the wrong plane attached and the plane is active.
15295 * Temporarily change the plane mapping and disable everything
15296 * ... */
15297 plane = crtc->plane;
15298 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15299 crtc->plane = !plane;
15300 intel_crtc_disable_planes(&crtc->base);
15301 dev_priv->display.crtc_disable(&crtc->base);
15302 crtc->plane = plane;
15303
15304 /* ... and break all links. */
15305 for_each_intel_connector(dev, connector) {
15306 if (connector->encoder->base.crtc != &crtc->base)
15307 continue;
15308
15309 connector->base.dpms = DRM_MODE_DPMS_OFF;
15310 connector->base.encoder = NULL;
15311 }
15312 /* multiple connectors may have the same encoder:
15313 * handle them and break crtc link separately */
15314 for_each_intel_connector(dev, connector)
15315 if (connector->encoder->base.crtc == &crtc->base) {
15316 connector->encoder->base.crtc = NULL;
15317 connector->encoder->connectors_active = false;
15318 }
15319
15320 WARN_ON(crtc->active);
15321 crtc->base.state->enable = false;
15322 crtc->base.state->active = false;
15323 crtc->base.enabled = false;
15324 }
15325
15326 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15327 crtc->pipe == PIPE_A && !crtc->active) {
15328 /* BIOS forgot to enable pipe A, this mostly happens after
15329 * resume. Force-enable the pipe to fix this, the update_dpms
15330 * call below we restore the pipe to the right state, but leave
15331 * the required bits on. */
15332 intel_enable_pipe_a(dev);
15333 }
15334
15335 /* Adjust the state of the output pipe according to whether we
15336 * have active connectors/encoders. */
15337 intel_crtc_update_dpms(&crtc->base);
15338
15339 if (crtc->active != crtc->base.state->enable) {
15340 struct intel_encoder *encoder;
15341
15342 /* This can happen either due to bugs in the get_hw_state
15343 * functions or because the pipe is force-enabled due to the
15344 * pipe A quirk. */
15345 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15346 crtc->base.base.id,
15347 crtc->base.state->enable ? "enabled" : "disabled",
15348 crtc->active ? "enabled" : "disabled");
15349
15350 crtc->base.state->enable = crtc->active;
15351 crtc->base.state->active = crtc->active;
15352 crtc->base.enabled = crtc->active;
15353
15354 /* Because we only establish the connector -> encoder ->
15355 * crtc links if something is active, this means the
15356 * crtc is now deactivated. Break the links. connector
15357 * -> encoder links are only establish when things are
15358 * actually up, hence no need to break them. */
15359 WARN_ON(crtc->active);
15360
15361 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15362 WARN_ON(encoder->connectors_active);
15363 encoder->base.crtc = NULL;
15364 }
15365 }
15366
15367 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15368 /*
15369 * We start out with underrun reporting disabled to avoid races.
15370 * For correct bookkeeping mark this on active crtcs.
15371 *
15372 * Also on gmch platforms we dont have any hardware bits to
15373 * disable the underrun reporting. Which means we need to start
15374 * out with underrun reporting disabled also on inactive pipes,
15375 * since otherwise we'll complain about the garbage we read when
15376 * e.g. coming up after runtime pm.
15377 *
15378 * No protection against concurrent access is required - at
15379 * worst a fifo underrun happens which also sets this to false.
15380 */
15381 crtc->cpu_fifo_underrun_disabled = true;
15382 crtc->pch_fifo_underrun_disabled = true;
15383 }
15384 }
15385
15386 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15387 {
15388 struct intel_connector *connector;
15389 struct drm_device *dev = encoder->base.dev;
15390
15391 /* We need to check both for a crtc link (meaning that the
15392 * encoder is active and trying to read from a pipe) and the
15393 * pipe itself being active. */
15394 bool has_active_crtc = encoder->base.crtc &&
15395 to_intel_crtc(encoder->base.crtc)->active;
15396
15397 if (encoder->connectors_active && !has_active_crtc) {
15398 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15399 encoder->base.base.id,
15400 encoder->base.name);
15401
15402 /* Connector is active, but has no active pipe. This is
15403 * fallout from our resume register restoring. Disable
15404 * the encoder manually again. */
15405 if (encoder->base.crtc) {
15406 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15407 encoder->base.base.id,
15408 encoder->base.name);
15409 encoder->disable(encoder);
15410 if (encoder->post_disable)
15411 encoder->post_disable(encoder);
15412 }
15413 encoder->base.crtc = NULL;
15414 encoder->connectors_active = false;
15415
15416 /* Inconsistent output/port/pipe state happens presumably due to
15417 * a bug in one of the get_hw_state functions. Or someplace else
15418 * in our code, like the register restore mess on resume. Clamp
15419 * things to off as a safer default. */
15420 for_each_intel_connector(dev, connector) {
15421 if (connector->encoder != encoder)
15422 continue;
15423 connector->base.dpms = DRM_MODE_DPMS_OFF;
15424 connector->base.encoder = NULL;
15425 }
15426 }
15427 /* Enabled encoders without active connectors will be fixed in
15428 * the crtc fixup. */
15429 }
15430
15431 void i915_redisable_vga_power_on(struct drm_device *dev)
15432 {
15433 struct drm_i915_private *dev_priv = dev->dev_private;
15434 u32 vga_reg = i915_vgacntrl_reg(dev);
15435
15436 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15437 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15438 i915_disable_vga(dev);
15439 }
15440 }
15441
15442 void i915_redisable_vga(struct drm_device *dev)
15443 {
15444 struct drm_i915_private *dev_priv = dev->dev_private;
15445
15446 /* This function can be called both from intel_modeset_setup_hw_state or
15447 * at a very early point in our resume sequence, where the power well
15448 * structures are not yet restored. Since this function is at a very
15449 * paranoid "someone might have enabled VGA while we were not looking"
15450 * level, just check if the power well is enabled instead of trying to
15451 * follow the "don't touch the power well if we don't need it" policy
15452 * the rest of the driver uses. */
15453 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15454 return;
15455
15456 i915_redisable_vga_power_on(dev);
15457 }
15458
15459 static bool primary_get_hw_state(struct intel_crtc *crtc)
15460 {
15461 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15462
15463 if (!crtc->active)
15464 return false;
15465
15466 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15467 }
15468
15469 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15470 {
15471 struct drm_i915_private *dev_priv = dev->dev_private;
15472 enum pipe pipe;
15473 struct intel_crtc *crtc;
15474 struct intel_encoder *encoder;
15475 struct intel_connector *connector;
15476 int i;
15477
15478 for_each_intel_crtc(dev, crtc) {
15479 struct drm_plane *primary = crtc->base.primary;
15480 struct intel_plane_state *plane_state;
15481
15482 memset(crtc->config, 0, sizeof(*crtc->config));
15483
15484 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15485
15486 crtc->active = dev_priv->display.get_pipe_config(crtc,
15487 crtc->config);
15488
15489 crtc->base.state->enable = crtc->active;
15490 crtc->base.state->active = crtc->active;
15491 crtc->base.enabled = crtc->active;
15492
15493 plane_state = to_intel_plane_state(primary->state);
15494 plane_state->visible = primary_get_hw_state(crtc);
15495
15496 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15497 crtc->base.base.id,
15498 crtc->active ? "enabled" : "disabled");
15499 }
15500
15501 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15502 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15503
15504 pll->on = pll->get_hw_state(dev_priv, pll,
15505 &pll->config.hw_state);
15506 pll->active = 0;
15507 pll->config.crtc_mask = 0;
15508 for_each_intel_crtc(dev, crtc) {
15509 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15510 pll->active++;
15511 pll->config.crtc_mask |= 1 << crtc->pipe;
15512 }
15513 }
15514
15515 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15516 pll->name, pll->config.crtc_mask, pll->on);
15517
15518 if (pll->config.crtc_mask)
15519 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15520 }
15521
15522 for_each_intel_encoder(dev, encoder) {
15523 pipe = 0;
15524
15525 if (encoder->get_hw_state(encoder, &pipe)) {
15526 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15527 encoder->base.crtc = &crtc->base;
15528 encoder->get_config(encoder, crtc->config);
15529 } else {
15530 encoder->base.crtc = NULL;
15531 }
15532
15533 encoder->connectors_active = false;
15534 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15535 encoder->base.base.id,
15536 encoder->base.name,
15537 encoder->base.crtc ? "enabled" : "disabled",
15538 pipe_name(pipe));
15539 }
15540
15541 for_each_intel_connector(dev, connector) {
15542 if (connector->get_hw_state(connector)) {
15543 connector->base.dpms = DRM_MODE_DPMS_ON;
15544 connector->encoder->connectors_active = true;
15545 connector->base.encoder = &connector->encoder->base;
15546 } else {
15547 connector->base.dpms = DRM_MODE_DPMS_OFF;
15548 connector->base.encoder = NULL;
15549 }
15550 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15551 connector->base.base.id,
15552 connector->base.name,
15553 connector->base.encoder ? "enabled" : "disabled");
15554 }
15555 }
15556
15557 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15558 * and i915 state tracking structures. */
15559 void intel_modeset_setup_hw_state(struct drm_device *dev,
15560 bool force_restore)
15561 {
15562 struct drm_i915_private *dev_priv = dev->dev_private;
15563 enum pipe pipe;
15564 struct intel_crtc *crtc;
15565 struct intel_encoder *encoder;
15566 int i;
15567
15568 intel_modeset_readout_hw_state(dev);
15569
15570 /*
15571 * Now that we have the config, copy it to each CRTC struct
15572 * Note that this could go away if we move to using crtc_config
15573 * checking everywhere.
15574 */
15575 for_each_intel_crtc(dev, crtc) {
15576 if (crtc->active && i915.fastboot) {
15577 intel_mode_from_pipe_config(&crtc->base.mode,
15578 crtc->config);
15579 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15580 crtc->base.base.id);
15581 drm_mode_debug_printmodeline(&crtc->base.mode);
15582 }
15583 }
15584
15585 /* HW state is read out, now we need to sanitize this mess. */
15586 for_each_intel_encoder(dev, encoder) {
15587 intel_sanitize_encoder(encoder);
15588 }
15589
15590 for_each_pipe(dev_priv, pipe) {
15591 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15592 intel_sanitize_crtc(crtc);
15593 intel_dump_pipe_config(crtc, crtc->config,
15594 "[setup_hw_state]");
15595 }
15596
15597 intel_modeset_update_connector_atomic_state(dev);
15598
15599 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15600 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15601
15602 if (!pll->on || pll->active)
15603 continue;
15604
15605 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15606
15607 pll->disable(dev_priv, pll);
15608 pll->on = false;
15609 }
15610
15611 if (IS_GEN9(dev))
15612 skl_wm_get_hw_state(dev);
15613 else if (HAS_PCH_SPLIT(dev))
15614 ilk_wm_get_hw_state(dev);
15615
15616 if (force_restore) {
15617 i915_redisable_vga(dev);
15618
15619 /*
15620 * We need to use raw interfaces for restoring state to avoid
15621 * checking (bogus) intermediate states.
15622 */
15623 for_each_pipe(dev_priv, pipe) {
15624 struct drm_crtc *crtc =
15625 dev_priv->pipe_to_crtc_mapping[pipe];
15626
15627 intel_crtc_restore_mode(crtc);
15628 }
15629 } else {
15630 intel_modeset_update_staged_output_state(dev);
15631 }
15632
15633 intel_modeset_check_state(dev);
15634 }
15635
15636 void intel_modeset_gem_init(struct drm_device *dev)
15637 {
15638 struct drm_i915_private *dev_priv = dev->dev_private;
15639 struct drm_crtc *c;
15640 struct drm_i915_gem_object *obj;
15641 int ret;
15642
15643 mutex_lock(&dev->struct_mutex);
15644 intel_init_gt_powersave(dev);
15645 mutex_unlock(&dev->struct_mutex);
15646
15647 /*
15648 * There may be no VBT; and if the BIOS enabled SSC we can
15649 * just keep using it to avoid unnecessary flicker. Whereas if the
15650 * BIOS isn't using it, don't assume it will work even if the VBT
15651 * indicates as much.
15652 */
15653 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15654 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15655 DREF_SSC1_ENABLE);
15656
15657 intel_modeset_init_hw(dev);
15658
15659 intel_setup_overlay(dev);
15660
15661 /*
15662 * Make sure any fbs we allocated at startup are properly
15663 * pinned & fenced. When we do the allocation it's too early
15664 * for this.
15665 */
15666 for_each_crtc(dev, c) {
15667 obj = intel_fb_obj(c->primary->fb);
15668 if (obj == NULL)
15669 continue;
15670
15671 mutex_lock(&dev->struct_mutex);
15672 ret = intel_pin_and_fence_fb_obj(c->primary,
15673 c->primary->fb,
15674 c->primary->state,
15675 NULL);
15676 mutex_unlock(&dev->struct_mutex);
15677 if (ret) {
15678 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15679 to_intel_crtc(c)->pipe);
15680 drm_framebuffer_unreference(c->primary->fb);
15681 c->primary->fb = NULL;
15682 update_state_fb(c->primary);
15683 }
15684 }
15685
15686 intel_backlight_register(dev);
15687 }
15688
15689 void intel_connector_unregister(struct intel_connector *intel_connector)
15690 {
15691 struct drm_connector *connector = &intel_connector->base;
15692
15693 intel_panel_destroy_backlight(connector);
15694 drm_connector_unregister(connector);
15695 }
15696
15697 void intel_modeset_cleanup(struct drm_device *dev)
15698 {
15699 struct drm_i915_private *dev_priv = dev->dev_private;
15700 struct drm_connector *connector;
15701
15702 intel_disable_gt_powersave(dev);
15703
15704 intel_backlight_unregister(dev);
15705
15706 /*
15707 * Interrupts and polling as the first thing to avoid creating havoc.
15708 * Too much stuff here (turning of connectors, ...) would
15709 * experience fancy races otherwise.
15710 */
15711 intel_irq_uninstall(dev_priv);
15712
15713 /*
15714 * Due to the hpd irq storm handling the hotplug work can re-arm the
15715 * poll handlers. Hence disable polling after hpd handling is shut down.
15716 */
15717 drm_kms_helper_poll_fini(dev);
15718
15719 mutex_lock(&dev->struct_mutex);
15720
15721 intel_unregister_dsm_handler();
15722
15723 intel_fbc_disable(dev);
15724
15725 mutex_unlock(&dev->struct_mutex);
15726
15727 /* flush any delayed tasks or pending work */
15728 flush_scheduled_work();
15729
15730 /* destroy the backlight and sysfs files before encoders/connectors */
15731 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15732 struct intel_connector *intel_connector;
15733
15734 intel_connector = to_intel_connector(connector);
15735 intel_connector->unregister(intel_connector);
15736 }
15737
15738 drm_mode_config_cleanup(dev);
15739
15740 intel_cleanup_overlay(dev);
15741
15742 mutex_lock(&dev->struct_mutex);
15743 intel_cleanup_gt_powersave(dev);
15744 mutex_unlock(&dev->struct_mutex);
15745 }
15746
15747 /*
15748 * Return which encoder is currently attached for connector.
15749 */
15750 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15751 {
15752 return &intel_attached_encoder(connector)->base;
15753 }
15754
15755 void intel_connector_attach_encoder(struct intel_connector *connector,
15756 struct intel_encoder *encoder)
15757 {
15758 connector->encoder = encoder;
15759 drm_mode_connector_attach_encoder(&connector->base,
15760 &encoder->base);
15761 }
15762
15763 /*
15764 * set vga decode state - true == enable VGA decode
15765 */
15766 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15767 {
15768 struct drm_i915_private *dev_priv = dev->dev_private;
15769 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15770 u16 gmch_ctrl;
15771
15772 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15773 DRM_ERROR("failed to read control word\n");
15774 return -EIO;
15775 }
15776
15777 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15778 return 0;
15779
15780 if (state)
15781 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15782 else
15783 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15784
15785 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15786 DRM_ERROR("failed to write control word\n");
15787 return -EIO;
15788 }
15789
15790 return 0;
15791 }
15792
15793 struct intel_display_error_state {
15794
15795 u32 power_well_driver;
15796
15797 int num_transcoders;
15798
15799 struct intel_cursor_error_state {
15800 u32 control;
15801 u32 position;
15802 u32 base;
15803 u32 size;
15804 } cursor[I915_MAX_PIPES];
15805
15806 struct intel_pipe_error_state {
15807 bool power_domain_on;
15808 u32 source;
15809 u32 stat;
15810 } pipe[I915_MAX_PIPES];
15811
15812 struct intel_plane_error_state {
15813 u32 control;
15814 u32 stride;
15815 u32 size;
15816 u32 pos;
15817 u32 addr;
15818 u32 surface;
15819 u32 tile_offset;
15820 } plane[I915_MAX_PIPES];
15821
15822 struct intel_transcoder_error_state {
15823 bool power_domain_on;
15824 enum transcoder cpu_transcoder;
15825
15826 u32 conf;
15827
15828 u32 htotal;
15829 u32 hblank;
15830 u32 hsync;
15831 u32 vtotal;
15832 u32 vblank;
15833 u32 vsync;
15834 } transcoder[4];
15835 };
15836
15837 struct intel_display_error_state *
15838 intel_display_capture_error_state(struct drm_device *dev)
15839 {
15840 struct drm_i915_private *dev_priv = dev->dev_private;
15841 struct intel_display_error_state *error;
15842 int transcoders[] = {
15843 TRANSCODER_A,
15844 TRANSCODER_B,
15845 TRANSCODER_C,
15846 TRANSCODER_EDP,
15847 };
15848 int i;
15849
15850 if (INTEL_INFO(dev)->num_pipes == 0)
15851 return NULL;
15852
15853 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15854 if (error == NULL)
15855 return NULL;
15856
15857 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15858 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15859
15860 for_each_pipe(dev_priv, i) {
15861 error->pipe[i].power_domain_on =
15862 __intel_display_power_is_enabled(dev_priv,
15863 POWER_DOMAIN_PIPE(i));
15864 if (!error->pipe[i].power_domain_on)
15865 continue;
15866
15867 error->cursor[i].control = I915_READ(CURCNTR(i));
15868 error->cursor[i].position = I915_READ(CURPOS(i));
15869 error->cursor[i].base = I915_READ(CURBASE(i));
15870
15871 error->plane[i].control = I915_READ(DSPCNTR(i));
15872 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15873 if (INTEL_INFO(dev)->gen <= 3) {
15874 error->plane[i].size = I915_READ(DSPSIZE(i));
15875 error->plane[i].pos = I915_READ(DSPPOS(i));
15876 }
15877 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15878 error->plane[i].addr = I915_READ(DSPADDR(i));
15879 if (INTEL_INFO(dev)->gen >= 4) {
15880 error->plane[i].surface = I915_READ(DSPSURF(i));
15881 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15882 }
15883
15884 error->pipe[i].source = I915_READ(PIPESRC(i));
15885
15886 if (HAS_GMCH_DISPLAY(dev))
15887 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15888 }
15889
15890 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15891 if (HAS_DDI(dev_priv->dev))
15892 error->num_transcoders++; /* Account for eDP. */
15893
15894 for (i = 0; i < error->num_transcoders; i++) {
15895 enum transcoder cpu_transcoder = transcoders[i];
15896
15897 error->transcoder[i].power_domain_on =
15898 __intel_display_power_is_enabled(dev_priv,
15899 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15900 if (!error->transcoder[i].power_domain_on)
15901 continue;
15902
15903 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15904
15905 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15906 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15907 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15908 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15909 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15910 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15911 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15912 }
15913
15914 return error;
15915 }
15916
15917 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15918
15919 void
15920 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15921 struct drm_device *dev,
15922 struct intel_display_error_state *error)
15923 {
15924 struct drm_i915_private *dev_priv = dev->dev_private;
15925 int i;
15926
15927 if (!error)
15928 return;
15929
15930 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15931 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15932 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15933 error->power_well_driver);
15934 for_each_pipe(dev_priv, i) {
15935 err_printf(m, "Pipe [%d]:\n", i);
15936 err_printf(m, " Power: %s\n",
15937 error->pipe[i].power_domain_on ? "on" : "off");
15938 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15939 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15940
15941 err_printf(m, "Plane [%d]:\n", i);
15942 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15943 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15944 if (INTEL_INFO(dev)->gen <= 3) {
15945 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15946 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15947 }
15948 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15949 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15950 if (INTEL_INFO(dev)->gen >= 4) {
15951 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15952 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15953 }
15954
15955 err_printf(m, "Cursor [%d]:\n", i);
15956 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15957 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15958 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15959 }
15960
15961 for (i = 0; i < error->num_transcoders; i++) {
15962 err_printf(m, "CPU transcoder: %c\n",
15963 transcoder_name(error->transcoder[i].cpu_transcoder));
15964 err_printf(m, " Power: %s\n",
15965 error->transcoder[i].power_domain_on ? "on" : "off");
15966 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15967 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15968 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15969 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15970 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15971 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15972 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15973 }
15974 }
15975
15976 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15977 {
15978 struct intel_crtc *crtc;
15979
15980 for_each_intel_crtc(dev, crtc) {
15981 struct intel_unpin_work *work;
15982
15983 spin_lock_irq(&dev->event_lock);
15984
15985 work = crtc->unpin_work;
15986
15987 if (work && work->event &&
15988 work->event->base.file_priv == file) {
15989 kfree(work->event);
15990 work->event = NULL;
15991 }
15992
15993 spin_unlock_irq(&dev->event_lock);
15994 }
15995 }
This page took 0.432495 seconds and 5 git commands to generate.