Merge branch 'writable_limits' of git://decibel.fi.muni.cz/~xslaby/linux
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "drm_dp_helper.h"
38
39 #include "drm_crtc_helper.h"
40
41 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
42
43 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
44 static void intel_update_watermarks(struct drm_device *dev);
45 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc);
47
48 typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58 } intel_clock_t;
59
60 typedef struct {
61 int min, max;
62 } intel_range_t;
63
64 typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM 2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75 int, int, intel_clock_t *);
76 };
77
78 #define I8XX_DOT_MIN 25000
79 #define I8XX_DOT_MAX 350000
80 #define I8XX_VCO_MIN 930000
81 #define I8XX_VCO_MAX 1400000
82 #define I8XX_N_MIN 3
83 #define I8XX_N_MAX 16
84 #define I8XX_M_MIN 96
85 #define I8XX_M_MAX 140
86 #define I8XX_M1_MIN 18
87 #define I8XX_M1_MAX 26
88 #define I8XX_M2_MIN 6
89 #define I8XX_M2_MAX 16
90 #define I8XX_P_MIN 4
91 #define I8XX_P_MAX 128
92 #define I8XX_P1_MIN 2
93 #define I8XX_P1_MAX 33
94 #define I8XX_P1_LVDS_MIN 1
95 #define I8XX_P1_LVDS_MAX 6
96 #define I8XX_P2_SLOW 4
97 #define I8XX_P2_FAST 2
98 #define I8XX_P2_LVDS_SLOW 14
99 #define I8XX_P2_LVDS_FAST 7
100 #define I8XX_P2_SLOW_LIMIT 165000
101
102 #define I9XX_DOT_MIN 20000
103 #define I9XX_DOT_MAX 400000
104 #define I9XX_VCO_MIN 1400000
105 #define I9XX_VCO_MAX 2800000
106 #define PINEVIEW_VCO_MIN 1700000
107 #define PINEVIEW_VCO_MAX 3500000
108 #define I9XX_N_MIN 1
109 #define I9XX_N_MAX 6
110 /* Pineview's Ncounter is a ring counter */
111 #define PINEVIEW_N_MIN 3
112 #define PINEVIEW_N_MAX 6
113 #define I9XX_M_MIN 70
114 #define I9XX_M_MAX 120
115 #define PINEVIEW_M_MIN 2
116 #define PINEVIEW_M_MAX 256
117 #define I9XX_M1_MIN 10
118 #define I9XX_M1_MAX 22
119 #define I9XX_M2_MIN 5
120 #define I9XX_M2_MAX 9
121 /* Pineview M1 is reserved, and must be 0 */
122 #define PINEVIEW_M1_MIN 0
123 #define PINEVIEW_M1_MAX 0
124 #define PINEVIEW_M2_MIN 0
125 #define PINEVIEW_M2_MAX 254
126 #define I9XX_P_SDVO_DAC_MIN 5
127 #define I9XX_P_SDVO_DAC_MAX 80
128 #define I9XX_P_LVDS_MIN 7
129 #define I9XX_P_LVDS_MAX 98
130 #define PINEVIEW_P_LVDS_MIN 7
131 #define PINEVIEW_P_LVDS_MAX 112
132 #define I9XX_P1_MIN 1
133 #define I9XX_P1_MAX 8
134 #define I9XX_P2_SDVO_DAC_SLOW 10
135 #define I9XX_P2_SDVO_DAC_FAST 5
136 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
137 #define I9XX_P2_LVDS_SLOW 14
138 #define I9XX_P2_LVDS_FAST 7
139 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
140
141 /*The parameter is for SDVO on G4x platform*/
142 #define G4X_DOT_SDVO_MIN 25000
143 #define G4X_DOT_SDVO_MAX 270000
144 #define G4X_VCO_MIN 1750000
145 #define G4X_VCO_MAX 3500000
146 #define G4X_N_SDVO_MIN 1
147 #define G4X_N_SDVO_MAX 4
148 #define G4X_M_SDVO_MIN 104
149 #define G4X_M_SDVO_MAX 138
150 #define G4X_M1_SDVO_MIN 17
151 #define G4X_M1_SDVO_MAX 23
152 #define G4X_M2_SDVO_MIN 5
153 #define G4X_M2_SDVO_MAX 11
154 #define G4X_P_SDVO_MIN 10
155 #define G4X_P_SDVO_MAX 30
156 #define G4X_P1_SDVO_MIN 1
157 #define G4X_P1_SDVO_MAX 3
158 #define G4X_P2_SDVO_SLOW 10
159 #define G4X_P2_SDVO_FAST 10
160 #define G4X_P2_SDVO_LIMIT 270000
161
162 /*The parameter is for HDMI_DAC on G4x platform*/
163 #define G4X_DOT_HDMI_DAC_MIN 22000
164 #define G4X_DOT_HDMI_DAC_MAX 400000
165 #define G4X_N_HDMI_DAC_MIN 1
166 #define G4X_N_HDMI_DAC_MAX 4
167 #define G4X_M_HDMI_DAC_MIN 104
168 #define G4X_M_HDMI_DAC_MAX 138
169 #define G4X_M1_HDMI_DAC_MIN 16
170 #define G4X_M1_HDMI_DAC_MAX 23
171 #define G4X_M2_HDMI_DAC_MIN 5
172 #define G4X_M2_HDMI_DAC_MAX 11
173 #define G4X_P_HDMI_DAC_MIN 5
174 #define G4X_P_HDMI_DAC_MAX 80
175 #define G4X_P1_HDMI_DAC_MIN 1
176 #define G4X_P1_HDMI_DAC_MAX 8
177 #define G4X_P2_HDMI_DAC_SLOW 10
178 #define G4X_P2_HDMI_DAC_FAST 5
179 #define G4X_P2_HDMI_DAC_LIMIT 165000
180
181 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
199
200 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
203 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
204 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
205 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
206 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
211 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
212 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
215 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
218
219 /*The parameter is for DISPLAY PORT on G4x platform*/
220 #define G4X_DOT_DISPLAY_PORT_MIN 161670
221 #define G4X_DOT_DISPLAY_PORT_MAX 227000
222 #define G4X_N_DISPLAY_PORT_MIN 1
223 #define G4X_N_DISPLAY_PORT_MAX 2
224 #define G4X_M_DISPLAY_PORT_MIN 97
225 #define G4X_M_DISPLAY_PORT_MAX 108
226 #define G4X_M1_DISPLAY_PORT_MIN 0x10
227 #define G4X_M1_DISPLAY_PORT_MAX 0x12
228 #define G4X_M2_DISPLAY_PORT_MIN 0x05
229 #define G4X_M2_DISPLAY_PORT_MAX 0x06
230 #define G4X_P_DISPLAY_PORT_MIN 10
231 #define G4X_P_DISPLAY_PORT_MAX 20
232 #define G4X_P1_DISPLAY_PORT_MIN 1
233 #define G4X_P1_DISPLAY_PORT_MAX 2
234 #define G4X_P2_DISPLAY_PORT_SLOW 10
235 #define G4X_P2_DISPLAY_PORT_FAST 10
236 #define G4X_P2_DISPLAY_PORT_LIMIT 0
237
238 /* Ironlake / Sandybridge */
239 /* as we calculate clock using (register_value + 2) for
240 N/M1/M2, so here the range value for them is (actual_value-2).
241 */
242 #define IRONLAKE_DOT_MIN 25000
243 #define IRONLAKE_DOT_MAX 350000
244 #define IRONLAKE_VCO_MIN 1760000
245 #define IRONLAKE_VCO_MAX 3510000
246 #define IRONLAKE_M1_MIN 12
247 #define IRONLAKE_M1_MAX 22
248 #define IRONLAKE_M2_MIN 5
249 #define IRONLAKE_M2_MAX 9
250 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
251
252 /* We have parameter ranges for different type of outputs. */
253
254 /* DAC & HDMI Refclk 120Mhz */
255 #define IRONLAKE_DAC_N_MIN 1
256 #define IRONLAKE_DAC_N_MAX 5
257 #define IRONLAKE_DAC_M_MIN 79
258 #define IRONLAKE_DAC_M_MAX 127
259 #define IRONLAKE_DAC_P_MIN 5
260 #define IRONLAKE_DAC_P_MAX 80
261 #define IRONLAKE_DAC_P1_MIN 1
262 #define IRONLAKE_DAC_P1_MAX 8
263 #define IRONLAKE_DAC_P2_SLOW 10
264 #define IRONLAKE_DAC_P2_FAST 5
265
266 /* LVDS single-channel 120Mhz refclk */
267 #define IRONLAKE_LVDS_S_N_MIN 1
268 #define IRONLAKE_LVDS_S_N_MAX 3
269 #define IRONLAKE_LVDS_S_M_MIN 79
270 #define IRONLAKE_LVDS_S_M_MAX 118
271 #define IRONLAKE_LVDS_S_P_MIN 28
272 #define IRONLAKE_LVDS_S_P_MAX 112
273 #define IRONLAKE_LVDS_S_P1_MIN 2
274 #define IRONLAKE_LVDS_S_P1_MAX 8
275 #define IRONLAKE_LVDS_S_P2_SLOW 14
276 #define IRONLAKE_LVDS_S_P2_FAST 14
277
278 /* LVDS dual-channel 120Mhz refclk */
279 #define IRONLAKE_LVDS_D_N_MIN 1
280 #define IRONLAKE_LVDS_D_N_MAX 3
281 #define IRONLAKE_LVDS_D_M_MIN 79
282 #define IRONLAKE_LVDS_D_M_MAX 127
283 #define IRONLAKE_LVDS_D_P_MIN 14
284 #define IRONLAKE_LVDS_D_P_MAX 56
285 #define IRONLAKE_LVDS_D_P1_MIN 2
286 #define IRONLAKE_LVDS_D_P1_MAX 8
287 #define IRONLAKE_LVDS_D_P2_SLOW 7
288 #define IRONLAKE_LVDS_D_P2_FAST 7
289
290 /* LVDS single-channel 100Mhz refclk */
291 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
292 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
293 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
294 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
295 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
296 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
297 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
298 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
299 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
300 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
301
302 /* LVDS dual-channel 100Mhz refclk */
303 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
304 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
305 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
306 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
307 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
308 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
309 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
310 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
311 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
312 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
313
314 /* DisplayPort */
315 #define IRONLAKE_DP_N_MIN 1
316 #define IRONLAKE_DP_N_MAX 2
317 #define IRONLAKE_DP_M_MIN 81
318 #define IRONLAKE_DP_M_MAX 90
319 #define IRONLAKE_DP_P_MIN 10
320 #define IRONLAKE_DP_P_MAX 20
321 #define IRONLAKE_DP_P2_FAST 10
322 #define IRONLAKE_DP_P2_SLOW 10
323 #define IRONLAKE_DP_P2_LIMIT 0
324 #define IRONLAKE_DP_P1_MIN 1
325 #define IRONLAKE_DP_P1_MAX 2
326
327 /* FDI */
328 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
329
330 static bool
331 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
332 int target, int refclk, intel_clock_t *best_clock);
333 static bool
334 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
335 int target, int refclk, intel_clock_t *best_clock);
336
337 static bool
338 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
339 int target, int refclk, intel_clock_t *best_clock);
340 static bool
341 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
342 int target, int refclk, intel_clock_t *best_clock);
343
344 static const intel_limit_t intel_limits_i8xx_dvo = {
345 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
346 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
347 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
348 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
349 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
350 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
351 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
352 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
353 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
354 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
355 .find_pll = intel_find_best_PLL,
356 };
357
358 static const intel_limit_t intel_limits_i8xx_lvds = {
359 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
360 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
361 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
362 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
363 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
364 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
365 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
366 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
367 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
368 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
369 .find_pll = intel_find_best_PLL,
370 };
371
372 static const intel_limit_t intel_limits_i9xx_sdvo = {
373 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
374 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
375 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
376 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
377 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
378 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
379 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
380 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
381 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
382 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
383 .find_pll = intel_find_best_PLL,
384 };
385
386 static const intel_limit_t intel_limits_i9xx_lvds = {
387 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
388 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
389 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
390 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
391 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
392 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
393 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
394 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
395 /* The single-channel range is 25-112Mhz, and dual-channel
396 * is 80-224Mhz. Prefer single channel as much as possible.
397 */
398 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
399 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
400 .find_pll = intel_find_best_PLL,
401 };
402
403 /* below parameter and function is for G4X Chipset Family*/
404 static const intel_limit_t intel_limits_g4x_sdvo = {
405 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
406 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
407 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
408 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
409 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
410 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
411 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
412 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
413 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
414 .p2_slow = G4X_P2_SDVO_SLOW,
415 .p2_fast = G4X_P2_SDVO_FAST
416 },
417 .find_pll = intel_g4x_find_best_PLL,
418 };
419
420 static const intel_limit_t intel_limits_g4x_hdmi = {
421 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
422 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
423 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
424 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
425 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
426 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
427 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
428 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
429 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
430 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
431 .p2_fast = G4X_P2_HDMI_DAC_FAST
432 },
433 .find_pll = intel_g4x_find_best_PLL,
434 };
435
436 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
437 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
438 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
439 .vco = { .min = G4X_VCO_MIN,
440 .max = G4X_VCO_MAX },
441 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
442 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
443 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
444 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
445 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
446 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
447 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
448 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
449 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
450 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
451 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
452 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
453 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
454 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
455 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
456 },
457 .find_pll = intel_g4x_find_best_PLL,
458 };
459
460 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
461 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
462 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
463 .vco = { .min = G4X_VCO_MIN,
464 .max = G4X_VCO_MAX },
465 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
466 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
467 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
468 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
469 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
470 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
471 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
472 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
473 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
474 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
475 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
476 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
477 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
478 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
479 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
480 },
481 .find_pll = intel_g4x_find_best_PLL,
482 };
483
484 static const intel_limit_t intel_limits_g4x_display_port = {
485 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
486 .max = G4X_DOT_DISPLAY_PORT_MAX },
487 .vco = { .min = G4X_VCO_MIN,
488 .max = G4X_VCO_MAX},
489 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
490 .max = G4X_N_DISPLAY_PORT_MAX },
491 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
492 .max = G4X_M_DISPLAY_PORT_MAX },
493 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
494 .max = G4X_M1_DISPLAY_PORT_MAX },
495 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
496 .max = G4X_M2_DISPLAY_PORT_MAX },
497 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
498 .max = G4X_P_DISPLAY_PORT_MAX },
499 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
500 .max = G4X_P1_DISPLAY_PORT_MAX},
501 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
502 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
503 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
504 .find_pll = intel_find_pll_g4x_dp,
505 };
506
507 static const intel_limit_t intel_limits_pineview_sdvo = {
508 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
509 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
510 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
511 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
512 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
513 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
514 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
515 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
516 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
517 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
518 .find_pll = intel_find_best_PLL,
519 };
520
521 static const intel_limit_t intel_limits_pineview_lvds = {
522 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
523 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
524 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
525 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
526 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
527 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
528 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
529 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
530 /* Pineview only supports single-channel mode. */
531 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
532 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
533 .find_pll = intel_find_best_PLL,
534 };
535
536 static const intel_limit_t intel_limits_ironlake_dac = {
537 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
538 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
539 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
540 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
541 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
542 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
543 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
544 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
545 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
546 .p2_slow = IRONLAKE_DAC_P2_SLOW,
547 .p2_fast = IRONLAKE_DAC_P2_FAST },
548 .find_pll = intel_g4x_find_best_PLL,
549 };
550
551 static const intel_limit_t intel_limits_ironlake_single_lvds = {
552 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
553 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
554 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
555 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
556 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
557 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
558 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
559 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
560 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
561 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
562 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
563 .find_pll = intel_g4x_find_best_PLL,
564 };
565
566 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
567 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
568 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
569 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
570 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
571 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
572 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
573 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
574 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
575 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
576 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
577 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
578 .find_pll = intel_g4x_find_best_PLL,
579 };
580
581 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
582 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
583 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
584 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
585 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
586 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
587 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
588 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
589 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
590 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
591 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
592 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
593 .find_pll = intel_g4x_find_best_PLL,
594 };
595
596 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
597 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
598 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
599 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
600 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
601 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
602 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
603 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
604 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
605 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
606 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
607 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
608 .find_pll = intel_g4x_find_best_PLL,
609 };
610
611 static const intel_limit_t intel_limits_ironlake_display_port = {
612 .dot = { .min = IRONLAKE_DOT_MIN,
613 .max = IRONLAKE_DOT_MAX },
614 .vco = { .min = IRONLAKE_VCO_MIN,
615 .max = IRONLAKE_VCO_MAX},
616 .n = { .min = IRONLAKE_DP_N_MIN,
617 .max = IRONLAKE_DP_N_MAX },
618 .m = { .min = IRONLAKE_DP_M_MIN,
619 .max = IRONLAKE_DP_M_MAX },
620 .m1 = { .min = IRONLAKE_M1_MIN,
621 .max = IRONLAKE_M1_MAX },
622 .m2 = { .min = IRONLAKE_M2_MIN,
623 .max = IRONLAKE_M2_MAX },
624 .p = { .min = IRONLAKE_DP_P_MIN,
625 .max = IRONLAKE_DP_P_MAX },
626 .p1 = { .min = IRONLAKE_DP_P1_MIN,
627 .max = IRONLAKE_DP_P1_MAX},
628 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
629 .p2_slow = IRONLAKE_DP_P2_SLOW,
630 .p2_fast = IRONLAKE_DP_P2_FAST },
631 .find_pll = intel_find_pll_ironlake_dp,
632 };
633
634 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
635 {
636 struct drm_device *dev = crtc->dev;
637 struct drm_i915_private *dev_priv = dev->dev_private;
638 const intel_limit_t *limit;
639 int refclk = 120;
640
641 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
642 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
643 refclk = 100;
644
645 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
646 LVDS_CLKB_POWER_UP) {
647 /* LVDS dual channel */
648 if (refclk == 100)
649 limit = &intel_limits_ironlake_dual_lvds_100m;
650 else
651 limit = &intel_limits_ironlake_dual_lvds;
652 } else {
653 if (refclk == 100)
654 limit = &intel_limits_ironlake_single_lvds_100m;
655 else
656 limit = &intel_limits_ironlake_single_lvds;
657 }
658 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
659 HAS_eDP)
660 limit = &intel_limits_ironlake_display_port;
661 else
662 limit = &intel_limits_ironlake_dac;
663
664 return limit;
665 }
666
667 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
668 {
669 struct drm_device *dev = crtc->dev;
670 struct drm_i915_private *dev_priv = dev->dev_private;
671 const intel_limit_t *limit;
672
673 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
674 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
675 LVDS_CLKB_POWER_UP)
676 /* LVDS with dual channel */
677 limit = &intel_limits_g4x_dual_channel_lvds;
678 else
679 /* LVDS with dual channel */
680 limit = &intel_limits_g4x_single_channel_lvds;
681 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
682 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
683 limit = &intel_limits_g4x_hdmi;
684 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
685 limit = &intel_limits_g4x_sdvo;
686 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
687 limit = &intel_limits_g4x_display_port;
688 } else /* The option is for other outputs */
689 limit = &intel_limits_i9xx_sdvo;
690
691 return limit;
692 }
693
694 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
695 {
696 struct drm_device *dev = crtc->dev;
697 const intel_limit_t *limit;
698
699 if (HAS_PCH_SPLIT(dev))
700 limit = intel_ironlake_limit(crtc);
701 else if (IS_G4X(dev)) {
702 limit = intel_g4x_limit(crtc);
703 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
704 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705 limit = &intel_limits_i9xx_lvds;
706 else
707 limit = &intel_limits_i9xx_sdvo;
708 } else if (IS_PINEVIEW(dev)) {
709 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710 limit = &intel_limits_pineview_lvds;
711 else
712 limit = &intel_limits_pineview_sdvo;
713 } else {
714 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
715 limit = &intel_limits_i8xx_lvds;
716 else
717 limit = &intel_limits_i8xx_dvo;
718 }
719 return limit;
720 }
721
722 /* m1 is reserved as 0 in Pineview, n is a ring counter */
723 static void pineview_clock(int refclk, intel_clock_t *clock)
724 {
725 clock->m = clock->m2 + 2;
726 clock->p = clock->p1 * clock->p2;
727 clock->vco = refclk * clock->m / clock->n;
728 clock->dot = clock->vco / clock->p;
729 }
730
731 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
732 {
733 if (IS_PINEVIEW(dev)) {
734 pineview_clock(refclk, clock);
735 return;
736 }
737 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
738 clock->p = clock->p1 * clock->p2;
739 clock->vco = refclk * clock->m / (clock->n + 2);
740 clock->dot = clock->vco / clock->p;
741 }
742
743 /**
744 * Returns whether any output on the specified pipe is of the specified type
745 */
746 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
747 {
748 struct drm_device *dev = crtc->dev;
749 struct drm_mode_config *mode_config = &dev->mode_config;
750 struct drm_encoder *l_entry;
751
752 list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
753 if (l_entry && l_entry->crtc == crtc) {
754 struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
755 if (intel_encoder->type == type)
756 return true;
757 }
758 }
759 return false;
760 }
761
762 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
763 /**
764 * Returns whether the given set of divisors are valid for a given refclk with
765 * the given connectors.
766 */
767
768 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
769 {
770 const intel_limit_t *limit = intel_limit (crtc);
771 struct drm_device *dev = crtc->dev;
772
773 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
774 INTELPllInvalid ("p1 out of range\n");
775 if (clock->p < limit->p.min || limit->p.max < clock->p)
776 INTELPllInvalid ("p out of range\n");
777 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
778 INTELPllInvalid ("m2 out of range\n");
779 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
780 INTELPllInvalid ("m1 out of range\n");
781 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
782 INTELPllInvalid ("m1 <= m2\n");
783 if (clock->m < limit->m.min || limit->m.max < clock->m)
784 INTELPllInvalid ("m out of range\n");
785 if (clock->n < limit->n.min || limit->n.max < clock->n)
786 INTELPllInvalid ("n out of range\n");
787 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
788 INTELPllInvalid ("vco out of range\n");
789 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
790 * connector, etc., rather than just a single range.
791 */
792 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
793 INTELPllInvalid ("dot out of range\n");
794
795 return true;
796 }
797
798 static bool
799 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
800 int target, int refclk, intel_clock_t *best_clock)
801
802 {
803 struct drm_device *dev = crtc->dev;
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 intel_clock_t clock;
806 int err = target;
807
808 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
809 (I915_READ(LVDS)) != 0) {
810 /*
811 * For LVDS, if the panel is on, just rely on its current
812 * settings for dual-channel. We haven't figured out how to
813 * reliably set up different single/dual channel state, if we
814 * even can.
815 */
816 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
817 LVDS_CLKB_POWER_UP)
818 clock.p2 = limit->p2.p2_fast;
819 else
820 clock.p2 = limit->p2.p2_slow;
821 } else {
822 if (target < limit->p2.dot_limit)
823 clock.p2 = limit->p2.p2_slow;
824 else
825 clock.p2 = limit->p2.p2_fast;
826 }
827
828 memset (best_clock, 0, sizeof (*best_clock));
829
830 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
831 clock.m1++) {
832 for (clock.m2 = limit->m2.min;
833 clock.m2 <= limit->m2.max; clock.m2++) {
834 /* m1 is always 0 in Pineview */
835 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
836 break;
837 for (clock.n = limit->n.min;
838 clock.n <= limit->n.max; clock.n++) {
839 for (clock.p1 = limit->p1.min;
840 clock.p1 <= limit->p1.max; clock.p1++) {
841 int this_err;
842
843 intel_clock(dev, refclk, &clock);
844
845 if (!intel_PLL_is_valid(crtc, &clock))
846 continue;
847
848 this_err = abs(clock.dot - target);
849 if (this_err < err) {
850 *best_clock = clock;
851 err = this_err;
852 }
853 }
854 }
855 }
856 }
857
858 return (err != target);
859 }
860
861 static bool
862 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *best_clock)
864 {
865 struct drm_device *dev = crtc->dev;
866 struct drm_i915_private *dev_priv = dev->dev_private;
867 intel_clock_t clock;
868 int max_n;
869 bool found;
870 /* approximately equals target * 0.00585 */
871 int err_most = (target >> 8) + (target >> 9);
872 found = false;
873
874 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
875 int lvds_reg;
876
877 if (HAS_PCH_SPLIT(dev))
878 lvds_reg = PCH_LVDS;
879 else
880 lvds_reg = LVDS;
881 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
882 LVDS_CLKB_POWER_UP)
883 clock.p2 = limit->p2.p2_fast;
884 else
885 clock.p2 = limit->p2.p2_slow;
886 } else {
887 if (target < limit->p2.dot_limit)
888 clock.p2 = limit->p2.p2_slow;
889 else
890 clock.p2 = limit->p2.p2_fast;
891 }
892
893 memset(best_clock, 0, sizeof(*best_clock));
894 max_n = limit->n.max;
895 /* based on hardware requirement, prefer smaller n to precision */
896 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
897 /* based on hardware requirement, prefere larger m1,m2 */
898 for (clock.m1 = limit->m1.max;
899 clock.m1 >= limit->m1.min; clock.m1--) {
900 for (clock.m2 = limit->m2.max;
901 clock.m2 >= limit->m2.min; clock.m2--) {
902 for (clock.p1 = limit->p1.max;
903 clock.p1 >= limit->p1.min; clock.p1--) {
904 int this_err;
905
906 intel_clock(dev, refclk, &clock);
907 if (!intel_PLL_is_valid(crtc, &clock))
908 continue;
909 this_err = abs(clock.dot - target) ;
910 if (this_err < err_most) {
911 *best_clock = clock;
912 err_most = this_err;
913 max_n = clock.n;
914 found = true;
915 }
916 }
917 }
918 }
919 }
920 return found;
921 }
922
923 static bool
924 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
925 int target, int refclk, intel_clock_t *best_clock)
926 {
927 struct drm_device *dev = crtc->dev;
928 intel_clock_t clock;
929
930 /* return directly when it is eDP */
931 if (HAS_eDP)
932 return true;
933
934 if (target < 200000) {
935 clock.n = 1;
936 clock.p1 = 2;
937 clock.p2 = 10;
938 clock.m1 = 12;
939 clock.m2 = 9;
940 } else {
941 clock.n = 2;
942 clock.p1 = 1;
943 clock.p2 = 10;
944 clock.m1 = 14;
945 clock.m2 = 8;
946 }
947 intel_clock(dev, refclk, &clock);
948 memcpy(best_clock, &clock, sizeof(intel_clock_t));
949 return true;
950 }
951
952 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
953 static bool
954 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
955 int target, int refclk, intel_clock_t *best_clock)
956 {
957 intel_clock_t clock;
958 if (target < 200000) {
959 clock.p1 = 2;
960 clock.p2 = 10;
961 clock.n = 2;
962 clock.m1 = 23;
963 clock.m2 = 8;
964 } else {
965 clock.p1 = 1;
966 clock.p2 = 10;
967 clock.n = 1;
968 clock.m1 = 14;
969 clock.m2 = 2;
970 }
971 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
972 clock.p = (clock.p1 * clock.p2);
973 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
974 clock.vco = 0;
975 memcpy(best_clock, &clock, sizeof(intel_clock_t));
976 return true;
977 }
978
979 void
980 intel_wait_for_vblank(struct drm_device *dev)
981 {
982 /* Wait for 20ms, i.e. one cycle at 50hz. */
983 if (in_dbg_master())
984 mdelay(20); /* The kernel debugger cannot call msleep() */
985 else
986 msleep(20);
987 }
988
989 /* Parameters have changed, update FBC info */
990 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
991 {
992 struct drm_device *dev = crtc->dev;
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 struct drm_framebuffer *fb = crtc->fb;
995 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
996 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
998 int plane, i;
999 u32 fbc_ctl, fbc_ctl2;
1000
1001 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1002
1003 if (fb->pitch < dev_priv->cfb_pitch)
1004 dev_priv->cfb_pitch = fb->pitch;
1005
1006 /* FBC_CTL wants 64B units */
1007 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1008 dev_priv->cfb_fence = obj_priv->fence_reg;
1009 dev_priv->cfb_plane = intel_crtc->plane;
1010 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1011
1012 /* Clear old tags */
1013 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1014 I915_WRITE(FBC_TAG + (i * 4), 0);
1015
1016 /* Set it up... */
1017 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1018 if (obj_priv->tiling_mode != I915_TILING_NONE)
1019 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1020 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1021 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1022
1023 /* enable it... */
1024 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1025 if (IS_I945GM(dev))
1026 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1027 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1028 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1029 if (obj_priv->tiling_mode != I915_TILING_NONE)
1030 fbc_ctl |= dev_priv->cfb_fence;
1031 I915_WRITE(FBC_CONTROL, fbc_ctl);
1032
1033 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1034 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1035 }
1036
1037 void i8xx_disable_fbc(struct drm_device *dev)
1038 {
1039 struct drm_i915_private *dev_priv = dev->dev_private;
1040 unsigned long timeout = jiffies + msecs_to_jiffies(1);
1041 u32 fbc_ctl;
1042
1043 if (!I915_HAS_FBC(dev))
1044 return;
1045
1046 if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1047 return; /* Already off, just return */
1048
1049 /* Disable compression */
1050 fbc_ctl = I915_READ(FBC_CONTROL);
1051 fbc_ctl &= ~FBC_CTL_EN;
1052 I915_WRITE(FBC_CONTROL, fbc_ctl);
1053
1054 /* Wait for compressing bit to clear */
1055 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1056 if (time_after(jiffies, timeout)) {
1057 DRM_DEBUG_DRIVER("FBC idle timed out\n");
1058 break;
1059 }
1060 ; /* do nothing */
1061 }
1062
1063 intel_wait_for_vblank(dev);
1064
1065 DRM_DEBUG_KMS("disabled FBC\n");
1066 }
1067
1068 static bool i8xx_fbc_enabled(struct drm_device *dev)
1069 {
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071
1072 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1073 }
1074
1075 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1076 {
1077 struct drm_device *dev = crtc->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 struct drm_framebuffer *fb = crtc->fb;
1080 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1081 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1083 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1084 DPFC_CTL_PLANEB);
1085 unsigned long stall_watermark = 200;
1086 u32 dpfc_ctl;
1087
1088 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089 dev_priv->cfb_fence = obj_priv->fence_reg;
1090 dev_priv->cfb_plane = intel_crtc->plane;
1091
1092 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1093 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1094 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1095 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1096 } else {
1097 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1098 }
1099
1100 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1101 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1102 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1103 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1104 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1105
1106 /* enable it... */
1107 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1108
1109 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1110 }
1111
1112 void g4x_disable_fbc(struct drm_device *dev)
1113 {
1114 struct drm_i915_private *dev_priv = dev->dev_private;
1115 u32 dpfc_ctl;
1116
1117 /* Disable compression */
1118 dpfc_ctl = I915_READ(DPFC_CONTROL);
1119 dpfc_ctl &= ~DPFC_CTL_EN;
1120 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1121 intel_wait_for_vblank(dev);
1122
1123 DRM_DEBUG_KMS("disabled FBC\n");
1124 }
1125
1126 static bool g4x_fbc_enabled(struct drm_device *dev)
1127 {
1128 struct drm_i915_private *dev_priv = dev->dev_private;
1129
1130 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1131 }
1132
1133 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1134 {
1135 struct drm_device *dev = crtc->dev;
1136 struct drm_i915_private *dev_priv = dev->dev_private;
1137 struct drm_framebuffer *fb = crtc->fb;
1138 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1139 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1141 int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
1142 DPFC_CTL_PLANEB;
1143 unsigned long stall_watermark = 200;
1144 u32 dpfc_ctl;
1145
1146 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1147 dev_priv->cfb_fence = obj_priv->fence_reg;
1148 dev_priv->cfb_plane = intel_crtc->plane;
1149
1150 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1151 dpfc_ctl &= DPFC_RESERVED;
1152 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1153 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1154 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1155 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1156 } else {
1157 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1158 }
1159
1160 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1161 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1162 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1163 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1164 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1165 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1166 /* enable it... */
1167 I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
1168 DPFC_CTL_EN);
1169
1170 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1171 }
1172
1173 void ironlake_disable_fbc(struct drm_device *dev)
1174 {
1175 struct drm_i915_private *dev_priv = dev->dev_private;
1176 u32 dpfc_ctl;
1177
1178 /* Disable compression */
1179 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1180 dpfc_ctl &= ~DPFC_CTL_EN;
1181 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1182 intel_wait_for_vblank(dev);
1183
1184 DRM_DEBUG_KMS("disabled FBC\n");
1185 }
1186
1187 static bool ironlake_fbc_enabled(struct drm_device *dev)
1188 {
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190
1191 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1192 }
1193
1194 bool intel_fbc_enabled(struct drm_device *dev)
1195 {
1196 struct drm_i915_private *dev_priv = dev->dev_private;
1197
1198 if (!dev_priv->display.fbc_enabled)
1199 return false;
1200
1201 return dev_priv->display.fbc_enabled(dev);
1202 }
1203
1204 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1205 {
1206 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1207
1208 if (!dev_priv->display.enable_fbc)
1209 return;
1210
1211 dev_priv->display.enable_fbc(crtc, interval);
1212 }
1213
1214 void intel_disable_fbc(struct drm_device *dev)
1215 {
1216 struct drm_i915_private *dev_priv = dev->dev_private;
1217
1218 if (!dev_priv->display.disable_fbc)
1219 return;
1220
1221 dev_priv->display.disable_fbc(dev);
1222 }
1223
1224 /**
1225 * intel_update_fbc - enable/disable FBC as needed
1226 * @crtc: CRTC to point the compressor at
1227 * @mode: mode in use
1228 *
1229 * Set up the framebuffer compression hardware at mode set time. We
1230 * enable it if possible:
1231 * - plane A only (on pre-965)
1232 * - no pixel mulitply/line duplication
1233 * - no alpha buffer discard
1234 * - no dual wide
1235 * - framebuffer <= 2048 in width, 1536 in height
1236 *
1237 * We can't assume that any compression will take place (worst case),
1238 * so the compressed buffer has to be the same size as the uncompressed
1239 * one. It also must reside (along with the line length buffer) in
1240 * stolen memory.
1241 *
1242 * We need to enable/disable FBC on a global basis.
1243 */
1244 static void intel_update_fbc(struct drm_crtc *crtc,
1245 struct drm_display_mode *mode)
1246 {
1247 struct drm_device *dev = crtc->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 struct drm_framebuffer *fb = crtc->fb;
1250 struct intel_framebuffer *intel_fb;
1251 struct drm_i915_gem_object *obj_priv;
1252 struct drm_crtc *tmp_crtc;
1253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1254 int plane = intel_crtc->plane;
1255 int crtcs_enabled = 0;
1256
1257 DRM_DEBUG_KMS("\n");
1258
1259 if (!i915_powersave)
1260 return;
1261
1262 if (!I915_HAS_FBC(dev))
1263 return;
1264
1265 if (!crtc->fb)
1266 return;
1267
1268 intel_fb = to_intel_framebuffer(fb);
1269 obj_priv = to_intel_bo(intel_fb->obj);
1270
1271 /*
1272 * If FBC is already on, we just have to verify that we can
1273 * keep it that way...
1274 * Need to disable if:
1275 * - more than one pipe is active
1276 * - changing FBC params (stride, fence, mode)
1277 * - new fb is too large to fit in compressed buffer
1278 * - going to an unsupported config (interlace, pixel multiply, etc.)
1279 */
1280 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1281 if (tmp_crtc->enabled)
1282 crtcs_enabled++;
1283 }
1284 DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
1285 if (crtcs_enabled > 1) {
1286 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1287 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1288 goto out_disable;
1289 }
1290 if (intel_fb->obj->size > dev_priv->cfb_size) {
1291 DRM_DEBUG_KMS("framebuffer too large, disabling "
1292 "compression\n");
1293 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1294 goto out_disable;
1295 }
1296 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1297 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1298 DRM_DEBUG_KMS("mode incompatible with compression, "
1299 "disabling\n");
1300 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1301 goto out_disable;
1302 }
1303 if ((mode->hdisplay > 2048) ||
1304 (mode->vdisplay > 1536)) {
1305 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1306 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1307 goto out_disable;
1308 }
1309 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1310 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1311 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1312 goto out_disable;
1313 }
1314 if (obj_priv->tiling_mode != I915_TILING_X) {
1315 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1316 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1317 goto out_disable;
1318 }
1319
1320 /* If the kernel debugger is active, always disable compression */
1321 if (in_dbg_master())
1322 goto out_disable;
1323
1324 if (intel_fbc_enabled(dev)) {
1325 /* We can re-enable it in this case, but need to update pitch */
1326 if ((fb->pitch > dev_priv->cfb_pitch) ||
1327 (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1328 (plane != dev_priv->cfb_plane))
1329 intel_disable_fbc(dev);
1330 }
1331
1332 /* Now try to turn it back on if possible */
1333 if (!intel_fbc_enabled(dev))
1334 intel_enable_fbc(crtc, 500);
1335
1336 return;
1337
1338 out_disable:
1339 /* Multiple disables should be harmless */
1340 if (intel_fbc_enabled(dev)) {
1341 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1342 intel_disable_fbc(dev);
1343 }
1344 }
1345
1346 int
1347 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1348 {
1349 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1350 u32 alignment;
1351 int ret;
1352
1353 switch (obj_priv->tiling_mode) {
1354 case I915_TILING_NONE:
1355 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1356 alignment = 128 * 1024;
1357 else if (IS_I965G(dev))
1358 alignment = 4 * 1024;
1359 else
1360 alignment = 64 * 1024;
1361 break;
1362 case I915_TILING_X:
1363 /* pin() will align the object as required by fence */
1364 alignment = 0;
1365 break;
1366 case I915_TILING_Y:
1367 /* FIXME: Is this true? */
1368 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1369 return -EINVAL;
1370 default:
1371 BUG();
1372 }
1373
1374 ret = i915_gem_object_pin(obj, alignment);
1375 if (ret != 0)
1376 return ret;
1377
1378 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1379 * fence, whereas 965+ only requires a fence if using
1380 * framebuffer compression. For simplicity, we always install
1381 * a fence as the cost is not that onerous.
1382 */
1383 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1384 obj_priv->tiling_mode != I915_TILING_NONE) {
1385 ret = i915_gem_object_get_fence_reg(obj);
1386 if (ret != 0) {
1387 i915_gem_object_unpin(obj);
1388 return ret;
1389 }
1390 }
1391
1392 return 0;
1393 }
1394
1395 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1396 static int
1397 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1398 int x, int y)
1399 {
1400 struct drm_device *dev = crtc->dev;
1401 struct drm_i915_private *dev_priv = dev->dev_private;
1402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1403 struct intel_framebuffer *intel_fb;
1404 struct drm_i915_gem_object *obj_priv;
1405 struct drm_gem_object *obj;
1406 int plane = intel_crtc->plane;
1407 unsigned long Start, Offset;
1408 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1409 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1410 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1411 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1412 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1413 u32 dspcntr;
1414
1415 switch (plane) {
1416 case 0:
1417 case 1:
1418 break;
1419 default:
1420 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1421 return -EINVAL;
1422 }
1423
1424 intel_fb = to_intel_framebuffer(fb);
1425 obj = intel_fb->obj;
1426 obj_priv = to_intel_bo(obj);
1427
1428 dspcntr = I915_READ(dspcntr_reg);
1429 /* Mask out pixel format bits in case we change it */
1430 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1431 switch (fb->bits_per_pixel) {
1432 case 8:
1433 dspcntr |= DISPPLANE_8BPP;
1434 break;
1435 case 16:
1436 if (fb->depth == 15)
1437 dspcntr |= DISPPLANE_15_16BPP;
1438 else
1439 dspcntr |= DISPPLANE_16BPP;
1440 break;
1441 case 24:
1442 case 32:
1443 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1444 break;
1445 default:
1446 DRM_ERROR("Unknown color depth\n");
1447 return -EINVAL;
1448 }
1449 if (IS_I965G(dev)) {
1450 if (obj_priv->tiling_mode != I915_TILING_NONE)
1451 dspcntr |= DISPPLANE_TILED;
1452 else
1453 dspcntr &= ~DISPPLANE_TILED;
1454 }
1455
1456 if (IS_IRONLAKE(dev))
1457 /* must disable */
1458 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1459
1460 I915_WRITE(dspcntr_reg, dspcntr);
1461
1462 Start = obj_priv->gtt_offset;
1463 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1464
1465 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1466 I915_WRITE(dspstride, fb->pitch);
1467 if (IS_I965G(dev)) {
1468 I915_WRITE(dspbase, Offset);
1469 I915_READ(dspbase);
1470 I915_WRITE(dspsurf, Start);
1471 I915_READ(dspsurf);
1472 I915_WRITE(dsptileoff, (y << 16) | x);
1473 } else {
1474 I915_WRITE(dspbase, Start + Offset);
1475 I915_READ(dspbase);
1476 }
1477
1478 if ((IS_I965G(dev) || plane == 0))
1479 intel_update_fbc(crtc, &crtc->mode);
1480
1481 intel_wait_for_vblank(dev);
1482 intel_increase_pllclock(crtc, true);
1483
1484 return 0;
1485 }
1486
1487 static int
1488 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1489 struct drm_framebuffer *old_fb)
1490 {
1491 struct drm_device *dev = crtc->dev;
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493 struct drm_i915_master_private *master_priv;
1494 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1495 struct intel_framebuffer *intel_fb;
1496 struct drm_i915_gem_object *obj_priv;
1497 struct drm_gem_object *obj;
1498 int pipe = intel_crtc->pipe;
1499 int plane = intel_crtc->plane;
1500 unsigned long Start, Offset;
1501 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1502 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1503 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1504 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1505 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1506 u32 dspcntr;
1507 int ret;
1508
1509 /* no fb bound */
1510 if (!crtc->fb) {
1511 DRM_DEBUG_KMS("No FB bound\n");
1512 return 0;
1513 }
1514
1515 switch (plane) {
1516 case 0:
1517 case 1:
1518 break;
1519 default:
1520 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1521 return -EINVAL;
1522 }
1523
1524 intel_fb = to_intel_framebuffer(crtc->fb);
1525 obj = intel_fb->obj;
1526 obj_priv = to_intel_bo(obj);
1527
1528 mutex_lock(&dev->struct_mutex);
1529 ret = intel_pin_and_fence_fb_obj(dev, obj);
1530 if (ret != 0) {
1531 mutex_unlock(&dev->struct_mutex);
1532 return ret;
1533 }
1534
1535 ret = i915_gem_object_set_to_display_plane(obj);
1536 if (ret != 0) {
1537 i915_gem_object_unpin(obj);
1538 mutex_unlock(&dev->struct_mutex);
1539 return ret;
1540 }
1541
1542 dspcntr = I915_READ(dspcntr_reg);
1543 /* Mask out pixel format bits in case we change it */
1544 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1545 switch (crtc->fb->bits_per_pixel) {
1546 case 8:
1547 dspcntr |= DISPPLANE_8BPP;
1548 break;
1549 case 16:
1550 if (crtc->fb->depth == 15)
1551 dspcntr |= DISPPLANE_15_16BPP;
1552 else
1553 dspcntr |= DISPPLANE_16BPP;
1554 break;
1555 case 24:
1556 case 32:
1557 if (crtc->fb->depth == 30)
1558 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1559 else
1560 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1561 break;
1562 default:
1563 DRM_ERROR("Unknown color depth\n");
1564 i915_gem_object_unpin(obj);
1565 mutex_unlock(&dev->struct_mutex);
1566 return -EINVAL;
1567 }
1568 if (IS_I965G(dev)) {
1569 if (obj_priv->tiling_mode != I915_TILING_NONE)
1570 dspcntr |= DISPPLANE_TILED;
1571 else
1572 dspcntr &= ~DISPPLANE_TILED;
1573 }
1574
1575 if (HAS_PCH_SPLIT(dev))
1576 /* must disable */
1577 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1578
1579 I915_WRITE(dspcntr_reg, dspcntr);
1580
1581 Start = obj_priv->gtt_offset;
1582 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1583
1584 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1585 Start, Offset, x, y, crtc->fb->pitch);
1586 I915_WRITE(dspstride, crtc->fb->pitch);
1587 if (IS_I965G(dev)) {
1588 I915_WRITE(dspbase, Offset);
1589 I915_READ(dspbase);
1590 I915_WRITE(dspsurf, Start);
1591 I915_READ(dspsurf);
1592 I915_WRITE(dsptileoff, (y << 16) | x);
1593 } else {
1594 I915_WRITE(dspbase, Start + Offset);
1595 I915_READ(dspbase);
1596 }
1597
1598 if ((IS_I965G(dev) || plane == 0))
1599 intel_update_fbc(crtc, &crtc->mode);
1600
1601 intel_wait_for_vblank(dev);
1602
1603 if (old_fb) {
1604 intel_fb = to_intel_framebuffer(old_fb);
1605 obj_priv = to_intel_bo(intel_fb->obj);
1606 i915_gem_object_unpin(intel_fb->obj);
1607 }
1608 intel_increase_pllclock(crtc, true);
1609
1610 mutex_unlock(&dev->struct_mutex);
1611
1612 if (!dev->primary->master)
1613 return 0;
1614
1615 master_priv = dev->primary->master->driver_priv;
1616 if (!master_priv->sarea_priv)
1617 return 0;
1618
1619 if (pipe) {
1620 master_priv->sarea_priv->pipeB_x = x;
1621 master_priv->sarea_priv->pipeB_y = y;
1622 } else {
1623 master_priv->sarea_priv->pipeA_x = x;
1624 master_priv->sarea_priv->pipeA_y = y;
1625 }
1626
1627 return 0;
1628 }
1629
1630 /* Disable the VGA plane that we never use */
1631 static void i915_disable_vga (struct drm_device *dev)
1632 {
1633 struct drm_i915_private *dev_priv = dev->dev_private;
1634 u8 sr1;
1635 u32 vga_reg;
1636
1637 if (HAS_PCH_SPLIT(dev))
1638 vga_reg = CPU_VGACNTRL;
1639 else
1640 vga_reg = VGACNTRL;
1641
1642 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1643 return;
1644
1645 I915_WRITE8(VGA_SR_INDEX, 1);
1646 sr1 = I915_READ8(VGA_SR_DATA);
1647 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1648 udelay(100);
1649
1650 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1651 }
1652
1653 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1654 {
1655 struct drm_device *dev = crtc->dev;
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 u32 dpa_ctl;
1658
1659 DRM_DEBUG_KMS("\n");
1660 dpa_ctl = I915_READ(DP_A);
1661 dpa_ctl &= ~DP_PLL_ENABLE;
1662 I915_WRITE(DP_A, dpa_ctl);
1663 }
1664
1665 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1666 {
1667 struct drm_device *dev = crtc->dev;
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 u32 dpa_ctl;
1670
1671 dpa_ctl = I915_READ(DP_A);
1672 dpa_ctl |= DP_PLL_ENABLE;
1673 I915_WRITE(DP_A, dpa_ctl);
1674 udelay(200);
1675 }
1676
1677
1678 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1679 {
1680 struct drm_device *dev = crtc->dev;
1681 struct drm_i915_private *dev_priv = dev->dev_private;
1682 u32 dpa_ctl;
1683
1684 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1685 dpa_ctl = I915_READ(DP_A);
1686 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1687
1688 if (clock < 200000) {
1689 u32 temp;
1690 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1691 /* workaround for 160Mhz:
1692 1) program 0x4600c bits 15:0 = 0x8124
1693 2) program 0x46010 bit 0 = 1
1694 3) program 0x46034 bit 24 = 1
1695 4) program 0x64000 bit 14 = 1
1696 */
1697 temp = I915_READ(0x4600c);
1698 temp &= 0xffff0000;
1699 I915_WRITE(0x4600c, temp | 0x8124);
1700
1701 temp = I915_READ(0x46010);
1702 I915_WRITE(0x46010, temp | 1);
1703
1704 temp = I915_READ(0x46034);
1705 I915_WRITE(0x46034, temp | (1 << 24));
1706 } else {
1707 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1708 }
1709 I915_WRITE(DP_A, dpa_ctl);
1710
1711 udelay(500);
1712 }
1713
1714 /* The FDI link training functions for ILK/Ibexpeak. */
1715 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1716 {
1717 struct drm_device *dev = crtc->dev;
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1720 int pipe = intel_crtc->pipe;
1721 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1722 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1723 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1724 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1725 u32 temp, tries = 0;
1726
1727 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1728 for train result */
1729 temp = I915_READ(fdi_rx_imr_reg);
1730 temp &= ~FDI_RX_SYMBOL_LOCK;
1731 temp &= ~FDI_RX_BIT_LOCK;
1732 I915_WRITE(fdi_rx_imr_reg, temp);
1733 I915_READ(fdi_rx_imr_reg);
1734 udelay(150);
1735
1736 /* enable CPU FDI TX and PCH FDI RX */
1737 temp = I915_READ(fdi_tx_reg);
1738 temp |= FDI_TX_ENABLE;
1739 temp &= ~(7 << 19);
1740 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1741 temp &= ~FDI_LINK_TRAIN_NONE;
1742 temp |= FDI_LINK_TRAIN_PATTERN_1;
1743 I915_WRITE(fdi_tx_reg, temp);
1744 I915_READ(fdi_tx_reg);
1745
1746 temp = I915_READ(fdi_rx_reg);
1747 temp &= ~FDI_LINK_TRAIN_NONE;
1748 temp |= FDI_LINK_TRAIN_PATTERN_1;
1749 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1750 I915_READ(fdi_rx_reg);
1751 udelay(150);
1752
1753 for (tries = 0; tries < 5; tries++) {
1754 temp = I915_READ(fdi_rx_iir_reg);
1755 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1756
1757 if ((temp & FDI_RX_BIT_LOCK)) {
1758 DRM_DEBUG_KMS("FDI train 1 done.\n");
1759 I915_WRITE(fdi_rx_iir_reg,
1760 temp | FDI_RX_BIT_LOCK);
1761 break;
1762 }
1763 }
1764 if (tries == 5)
1765 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1766
1767 /* Train 2 */
1768 temp = I915_READ(fdi_tx_reg);
1769 temp &= ~FDI_LINK_TRAIN_NONE;
1770 temp |= FDI_LINK_TRAIN_PATTERN_2;
1771 I915_WRITE(fdi_tx_reg, temp);
1772
1773 temp = I915_READ(fdi_rx_reg);
1774 temp &= ~FDI_LINK_TRAIN_NONE;
1775 temp |= FDI_LINK_TRAIN_PATTERN_2;
1776 I915_WRITE(fdi_rx_reg, temp);
1777 udelay(150);
1778
1779 tries = 0;
1780
1781 for (tries = 0; tries < 5; tries++) {
1782 temp = I915_READ(fdi_rx_iir_reg);
1783 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1784
1785 if (temp & FDI_RX_SYMBOL_LOCK) {
1786 I915_WRITE(fdi_rx_iir_reg,
1787 temp | FDI_RX_SYMBOL_LOCK);
1788 DRM_DEBUG_KMS("FDI train 2 done.\n");
1789 break;
1790 }
1791 }
1792 if (tries == 5)
1793 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1794
1795 DRM_DEBUG_KMS("FDI train done\n");
1796 }
1797
1798 static int snb_b_fdi_train_param [] = {
1799 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1800 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1801 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1802 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1803 };
1804
1805 /* The FDI link training functions for SNB/Cougarpoint. */
1806 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1807 {
1808 struct drm_device *dev = crtc->dev;
1809 struct drm_i915_private *dev_priv = dev->dev_private;
1810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1811 int pipe = intel_crtc->pipe;
1812 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1813 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1814 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1815 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1816 u32 temp, i;
1817
1818 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1819 for train result */
1820 temp = I915_READ(fdi_rx_imr_reg);
1821 temp &= ~FDI_RX_SYMBOL_LOCK;
1822 temp &= ~FDI_RX_BIT_LOCK;
1823 I915_WRITE(fdi_rx_imr_reg, temp);
1824 I915_READ(fdi_rx_imr_reg);
1825 udelay(150);
1826
1827 /* enable CPU FDI TX and PCH FDI RX */
1828 temp = I915_READ(fdi_tx_reg);
1829 temp |= FDI_TX_ENABLE;
1830 temp &= ~(7 << 19);
1831 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1832 temp &= ~FDI_LINK_TRAIN_NONE;
1833 temp |= FDI_LINK_TRAIN_PATTERN_1;
1834 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1835 /* SNB-B */
1836 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1837 I915_WRITE(fdi_tx_reg, temp);
1838 I915_READ(fdi_tx_reg);
1839
1840 temp = I915_READ(fdi_rx_reg);
1841 if (HAS_PCH_CPT(dev)) {
1842 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1843 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1844 } else {
1845 temp &= ~FDI_LINK_TRAIN_NONE;
1846 temp |= FDI_LINK_TRAIN_PATTERN_1;
1847 }
1848 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1849 I915_READ(fdi_rx_reg);
1850 udelay(150);
1851
1852 for (i = 0; i < 4; i++ ) {
1853 temp = I915_READ(fdi_tx_reg);
1854 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1855 temp |= snb_b_fdi_train_param[i];
1856 I915_WRITE(fdi_tx_reg, temp);
1857 udelay(500);
1858
1859 temp = I915_READ(fdi_rx_iir_reg);
1860 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1861
1862 if (temp & FDI_RX_BIT_LOCK) {
1863 I915_WRITE(fdi_rx_iir_reg,
1864 temp | FDI_RX_BIT_LOCK);
1865 DRM_DEBUG_KMS("FDI train 1 done.\n");
1866 break;
1867 }
1868 }
1869 if (i == 4)
1870 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1871
1872 /* Train 2 */
1873 temp = I915_READ(fdi_tx_reg);
1874 temp &= ~FDI_LINK_TRAIN_NONE;
1875 temp |= FDI_LINK_TRAIN_PATTERN_2;
1876 if (IS_GEN6(dev)) {
1877 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1878 /* SNB-B */
1879 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1880 }
1881 I915_WRITE(fdi_tx_reg, temp);
1882
1883 temp = I915_READ(fdi_rx_reg);
1884 if (HAS_PCH_CPT(dev)) {
1885 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1886 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1887 } else {
1888 temp &= ~FDI_LINK_TRAIN_NONE;
1889 temp |= FDI_LINK_TRAIN_PATTERN_2;
1890 }
1891 I915_WRITE(fdi_rx_reg, temp);
1892 udelay(150);
1893
1894 for (i = 0; i < 4; i++ ) {
1895 temp = I915_READ(fdi_tx_reg);
1896 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1897 temp |= snb_b_fdi_train_param[i];
1898 I915_WRITE(fdi_tx_reg, temp);
1899 udelay(500);
1900
1901 temp = I915_READ(fdi_rx_iir_reg);
1902 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1903
1904 if (temp & FDI_RX_SYMBOL_LOCK) {
1905 I915_WRITE(fdi_rx_iir_reg,
1906 temp | FDI_RX_SYMBOL_LOCK);
1907 DRM_DEBUG_KMS("FDI train 2 done.\n");
1908 break;
1909 }
1910 }
1911 if (i == 4)
1912 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1913
1914 DRM_DEBUG_KMS("FDI train done.\n");
1915 }
1916
1917 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1918 {
1919 struct drm_device *dev = crtc->dev;
1920 struct drm_i915_private *dev_priv = dev->dev_private;
1921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1922 int pipe = intel_crtc->pipe;
1923 int plane = intel_crtc->plane;
1924 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1925 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1926 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1927 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1928 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1929 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1930 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1931 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1932 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1933 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1934 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1935 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1936 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1937 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1938 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1939 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1940 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1941 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1942 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1943 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1944 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1945 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1946 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1947 u32 temp;
1948 int n;
1949 u32 pipe_bpc;
1950
1951 temp = I915_READ(pipeconf_reg);
1952 pipe_bpc = temp & PIPE_BPC_MASK;
1953
1954 /* XXX: When our outputs are all unaware of DPMS modes other than off
1955 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1956 */
1957 switch (mode) {
1958 case DRM_MODE_DPMS_ON:
1959 case DRM_MODE_DPMS_STANDBY:
1960 case DRM_MODE_DPMS_SUSPEND:
1961 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1962
1963 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1964 temp = I915_READ(PCH_LVDS);
1965 if ((temp & LVDS_PORT_EN) == 0) {
1966 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1967 POSTING_READ(PCH_LVDS);
1968 }
1969 }
1970
1971 if (HAS_eDP) {
1972 /* enable eDP PLL */
1973 ironlake_enable_pll_edp(crtc);
1974 } else {
1975
1976 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1977 temp = I915_READ(fdi_rx_reg);
1978 /*
1979 * make the BPC in FDI Rx be consistent with that in
1980 * pipeconf reg.
1981 */
1982 temp &= ~(0x7 << 16);
1983 temp |= (pipe_bpc << 11);
1984 temp &= ~(7 << 19);
1985 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1986 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1987 I915_READ(fdi_rx_reg);
1988 udelay(200);
1989
1990 /* Switch from Rawclk to PCDclk */
1991 temp = I915_READ(fdi_rx_reg);
1992 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1993 I915_READ(fdi_rx_reg);
1994 udelay(200);
1995
1996 /* Enable CPU FDI TX PLL, always on for Ironlake */
1997 temp = I915_READ(fdi_tx_reg);
1998 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1999 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
2000 I915_READ(fdi_tx_reg);
2001 udelay(100);
2002 }
2003 }
2004
2005 /* Enable panel fitting for LVDS */
2006 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)
2007 || HAS_eDP || intel_pch_has_edp(crtc)) {
2008 temp = I915_READ(pf_ctl_reg);
2009 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
2010
2011 /* currently full aspect */
2012 I915_WRITE(pf_win_pos, 0);
2013
2014 I915_WRITE(pf_win_size,
2015 (dev_priv->panel_fixed_mode->hdisplay << 16) |
2016 (dev_priv->panel_fixed_mode->vdisplay));
2017 }
2018
2019 /* Enable CPU pipe */
2020 temp = I915_READ(pipeconf_reg);
2021 if ((temp & PIPEACONF_ENABLE) == 0) {
2022 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2023 I915_READ(pipeconf_reg);
2024 udelay(100);
2025 }
2026
2027 /* configure and enable CPU plane */
2028 temp = I915_READ(dspcntr_reg);
2029 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2030 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2031 /* Flush the plane changes */
2032 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2033 }
2034
2035 if (!HAS_eDP) {
2036 /* For PCH output, training FDI link */
2037 if (IS_GEN6(dev))
2038 gen6_fdi_link_train(crtc);
2039 else
2040 ironlake_fdi_link_train(crtc);
2041
2042 /* enable PCH DPLL */
2043 temp = I915_READ(pch_dpll_reg);
2044 if ((temp & DPLL_VCO_ENABLE) == 0) {
2045 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
2046 I915_READ(pch_dpll_reg);
2047 }
2048 udelay(200);
2049
2050 if (HAS_PCH_CPT(dev)) {
2051 /* Be sure PCH DPLL SEL is set */
2052 temp = I915_READ(PCH_DPLL_SEL);
2053 if (trans_dpll_sel == 0 &&
2054 (temp & TRANSA_DPLL_ENABLE) == 0)
2055 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2056 else if (trans_dpll_sel == 1 &&
2057 (temp & TRANSB_DPLL_ENABLE) == 0)
2058 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2059 I915_WRITE(PCH_DPLL_SEL, temp);
2060 I915_READ(PCH_DPLL_SEL);
2061 }
2062
2063 /* set transcoder timing */
2064 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
2065 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
2066 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
2067
2068 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
2069 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
2070 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
2071
2072 /* enable normal train */
2073 temp = I915_READ(fdi_tx_reg);
2074 temp &= ~FDI_LINK_TRAIN_NONE;
2075 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
2076 FDI_TX_ENHANCE_FRAME_ENABLE);
2077 I915_READ(fdi_tx_reg);
2078
2079 temp = I915_READ(fdi_rx_reg);
2080 if (HAS_PCH_CPT(dev)) {
2081 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2082 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2083 } else {
2084 temp &= ~FDI_LINK_TRAIN_NONE;
2085 temp |= FDI_LINK_TRAIN_NONE;
2086 }
2087 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2088 I915_READ(fdi_rx_reg);
2089
2090 /* wait one idle pattern time */
2091 udelay(100);
2092
2093 /* For PCH DP, enable TRANS_DP_CTL */
2094 if (HAS_PCH_CPT(dev) &&
2095 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2096 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2097 int reg;
2098
2099 reg = I915_READ(trans_dp_ctl);
2100 reg &= ~TRANS_DP_PORT_SEL_MASK;
2101 reg = TRANS_DP_OUTPUT_ENABLE |
2102 TRANS_DP_ENH_FRAMING;
2103
2104 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2105 reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2106 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2107 reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2108
2109 switch (intel_trans_dp_port_sel(crtc)) {
2110 case PCH_DP_B:
2111 reg |= TRANS_DP_PORT_SEL_B;
2112 break;
2113 case PCH_DP_C:
2114 reg |= TRANS_DP_PORT_SEL_C;
2115 break;
2116 case PCH_DP_D:
2117 reg |= TRANS_DP_PORT_SEL_D;
2118 break;
2119 default:
2120 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2121 reg |= TRANS_DP_PORT_SEL_B;
2122 break;
2123 }
2124
2125 I915_WRITE(trans_dp_ctl, reg);
2126 POSTING_READ(trans_dp_ctl);
2127 }
2128
2129 /* enable PCH transcoder */
2130 temp = I915_READ(transconf_reg);
2131 /*
2132 * make the BPC in transcoder be consistent with
2133 * that in pipeconf reg.
2134 */
2135 temp &= ~PIPE_BPC_MASK;
2136 temp |= pipe_bpc;
2137 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
2138 I915_READ(transconf_reg);
2139
2140 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
2141 ;
2142
2143 }
2144
2145 intel_crtc_load_lut(crtc);
2146
2147 intel_update_fbc(crtc, &crtc->mode);
2148
2149 break;
2150 case DRM_MODE_DPMS_OFF:
2151 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
2152
2153 drm_vblank_off(dev, pipe);
2154 /* Disable display plane */
2155 temp = I915_READ(dspcntr_reg);
2156 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2157 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2158 /* Flush the plane changes */
2159 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2160 I915_READ(dspbase_reg);
2161 }
2162
2163 if (dev_priv->cfb_plane == plane &&
2164 dev_priv->display.disable_fbc)
2165 dev_priv->display.disable_fbc(dev);
2166
2167 i915_disable_vga(dev);
2168
2169 /* disable cpu pipe, disable after all planes disabled */
2170 temp = I915_READ(pipeconf_reg);
2171 if ((temp & PIPEACONF_ENABLE) != 0) {
2172 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2173 I915_READ(pipeconf_reg);
2174 n = 0;
2175 /* wait for cpu pipe off, pipe state */
2176 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
2177 n++;
2178 if (n < 60) {
2179 udelay(500);
2180 continue;
2181 } else {
2182 DRM_DEBUG_KMS("pipe %d off delay\n",
2183 pipe);
2184 break;
2185 }
2186 }
2187 } else
2188 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2189
2190 udelay(100);
2191
2192 /* Disable PF */
2193 temp = I915_READ(pf_ctl_reg);
2194 if ((temp & PF_ENABLE) != 0) {
2195 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2196 I915_READ(pf_ctl_reg);
2197 }
2198 I915_WRITE(pf_win_size, 0);
2199 POSTING_READ(pf_win_size);
2200
2201
2202 /* disable CPU FDI tx and PCH FDI rx */
2203 temp = I915_READ(fdi_tx_reg);
2204 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2205 I915_READ(fdi_tx_reg);
2206
2207 temp = I915_READ(fdi_rx_reg);
2208 /* BPC in FDI rx is consistent with that in pipeconf */
2209 temp &= ~(0x07 << 16);
2210 temp |= (pipe_bpc << 11);
2211 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2212 I915_READ(fdi_rx_reg);
2213
2214 udelay(100);
2215
2216 /* still set train pattern 1 */
2217 temp = I915_READ(fdi_tx_reg);
2218 temp &= ~FDI_LINK_TRAIN_NONE;
2219 temp |= FDI_LINK_TRAIN_PATTERN_1;
2220 I915_WRITE(fdi_tx_reg, temp);
2221 POSTING_READ(fdi_tx_reg);
2222
2223 temp = I915_READ(fdi_rx_reg);
2224 if (HAS_PCH_CPT(dev)) {
2225 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2226 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2227 } else {
2228 temp &= ~FDI_LINK_TRAIN_NONE;
2229 temp |= FDI_LINK_TRAIN_PATTERN_1;
2230 }
2231 I915_WRITE(fdi_rx_reg, temp);
2232 POSTING_READ(fdi_rx_reg);
2233
2234 udelay(100);
2235
2236 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2237 temp = I915_READ(PCH_LVDS);
2238 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2239 I915_READ(PCH_LVDS);
2240 udelay(100);
2241 }
2242
2243 /* disable PCH transcoder */
2244 temp = I915_READ(transconf_reg);
2245 if ((temp & TRANS_ENABLE) != 0) {
2246 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2247 I915_READ(transconf_reg);
2248 n = 0;
2249 /* wait for PCH transcoder off, transcoder state */
2250 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2251 n++;
2252 if (n < 60) {
2253 udelay(500);
2254 continue;
2255 } else {
2256 DRM_DEBUG_KMS("transcoder %d off "
2257 "delay\n", pipe);
2258 break;
2259 }
2260 }
2261 }
2262
2263 temp = I915_READ(transconf_reg);
2264 /* BPC in transcoder is consistent with that in pipeconf */
2265 temp &= ~PIPE_BPC_MASK;
2266 temp |= pipe_bpc;
2267 I915_WRITE(transconf_reg, temp);
2268 I915_READ(transconf_reg);
2269 udelay(100);
2270
2271 if (HAS_PCH_CPT(dev)) {
2272 /* disable TRANS_DP_CTL */
2273 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2274 int reg;
2275
2276 reg = I915_READ(trans_dp_ctl);
2277 reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2278 I915_WRITE(trans_dp_ctl, reg);
2279 POSTING_READ(trans_dp_ctl);
2280
2281 /* disable DPLL_SEL */
2282 temp = I915_READ(PCH_DPLL_SEL);
2283 if (trans_dpll_sel == 0)
2284 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2285 else
2286 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2287 I915_WRITE(PCH_DPLL_SEL, temp);
2288 I915_READ(PCH_DPLL_SEL);
2289
2290 }
2291
2292 /* disable PCH DPLL */
2293 temp = I915_READ(pch_dpll_reg);
2294 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2295 I915_READ(pch_dpll_reg);
2296
2297 if (HAS_eDP) {
2298 ironlake_disable_pll_edp(crtc);
2299 }
2300
2301 /* Switch from PCDclk to Rawclk */
2302 temp = I915_READ(fdi_rx_reg);
2303 temp &= ~FDI_SEL_PCDCLK;
2304 I915_WRITE(fdi_rx_reg, temp);
2305 I915_READ(fdi_rx_reg);
2306
2307 /* Disable CPU FDI TX PLL */
2308 temp = I915_READ(fdi_tx_reg);
2309 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2310 I915_READ(fdi_tx_reg);
2311 udelay(100);
2312
2313 temp = I915_READ(fdi_rx_reg);
2314 temp &= ~FDI_RX_PLL_ENABLE;
2315 I915_WRITE(fdi_rx_reg, temp);
2316 I915_READ(fdi_rx_reg);
2317
2318 /* Wait for the clocks to turn off. */
2319 udelay(100);
2320 break;
2321 }
2322 }
2323
2324 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2325 {
2326 struct intel_overlay *overlay;
2327 int ret;
2328
2329 if (!enable && intel_crtc->overlay) {
2330 overlay = intel_crtc->overlay;
2331 mutex_lock(&overlay->dev->struct_mutex);
2332 for (;;) {
2333 ret = intel_overlay_switch_off(overlay);
2334 if (ret == 0)
2335 break;
2336
2337 ret = intel_overlay_recover_from_interrupt(overlay, 0);
2338 if (ret != 0) {
2339 /* overlay doesn't react anymore. Usually
2340 * results in a black screen and an unkillable
2341 * X server. */
2342 BUG();
2343 overlay->hw_wedged = HW_WEDGED;
2344 break;
2345 }
2346 }
2347 mutex_unlock(&overlay->dev->struct_mutex);
2348 }
2349 /* Let userspace switch the overlay on again. In most cases userspace
2350 * has to recompute where to put it anyway. */
2351
2352 return;
2353 }
2354
2355 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2356 {
2357 struct drm_device *dev = crtc->dev;
2358 struct drm_i915_private *dev_priv = dev->dev_private;
2359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2360 int pipe = intel_crtc->pipe;
2361 int plane = intel_crtc->plane;
2362 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2363 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2364 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2365 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2366 u32 temp;
2367
2368 /* XXX: When our outputs are all unaware of DPMS modes other than off
2369 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2370 */
2371 switch (mode) {
2372 case DRM_MODE_DPMS_ON:
2373 case DRM_MODE_DPMS_STANDBY:
2374 case DRM_MODE_DPMS_SUSPEND:
2375 intel_update_watermarks(dev);
2376
2377 /* Enable the DPLL */
2378 temp = I915_READ(dpll_reg);
2379 if ((temp & DPLL_VCO_ENABLE) == 0) {
2380 I915_WRITE(dpll_reg, temp);
2381 I915_READ(dpll_reg);
2382 /* Wait for the clocks to stabilize. */
2383 udelay(150);
2384 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2385 I915_READ(dpll_reg);
2386 /* Wait for the clocks to stabilize. */
2387 udelay(150);
2388 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2389 I915_READ(dpll_reg);
2390 /* Wait for the clocks to stabilize. */
2391 udelay(150);
2392 }
2393
2394 /* Enable the pipe */
2395 temp = I915_READ(pipeconf_reg);
2396 if ((temp & PIPEACONF_ENABLE) == 0)
2397 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2398
2399 /* Enable the plane */
2400 temp = I915_READ(dspcntr_reg);
2401 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2402 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2403 /* Flush the plane changes */
2404 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2405 }
2406
2407 intel_crtc_load_lut(crtc);
2408
2409 if ((IS_I965G(dev) || plane == 0))
2410 intel_update_fbc(crtc, &crtc->mode);
2411
2412 /* Give the overlay scaler a chance to enable if it's on this pipe */
2413 intel_crtc_dpms_overlay(intel_crtc, true);
2414 break;
2415 case DRM_MODE_DPMS_OFF:
2416 intel_update_watermarks(dev);
2417
2418 /* Give the overlay scaler a chance to disable if it's on this pipe */
2419 intel_crtc_dpms_overlay(intel_crtc, false);
2420 drm_vblank_off(dev, pipe);
2421
2422 if (dev_priv->cfb_plane == plane &&
2423 dev_priv->display.disable_fbc)
2424 dev_priv->display.disable_fbc(dev);
2425
2426 /* Disable the VGA plane that we never use */
2427 i915_disable_vga(dev);
2428
2429 /* Disable display plane */
2430 temp = I915_READ(dspcntr_reg);
2431 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2432 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2433 /* Flush the plane changes */
2434 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2435 I915_READ(dspbase_reg);
2436 }
2437
2438 if (!IS_I9XX(dev)) {
2439 /* Wait for vblank for the disable to take effect */
2440 intel_wait_for_vblank(dev);
2441 }
2442
2443 /* Don't disable pipe A or pipe A PLLs if needed */
2444 if (pipeconf_reg == PIPEACONF &&
2445 (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2446 goto skip_pipe_off;
2447
2448 /* Next, disable display pipes */
2449 temp = I915_READ(pipeconf_reg);
2450 if ((temp & PIPEACONF_ENABLE) != 0) {
2451 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2452 I915_READ(pipeconf_reg);
2453 }
2454
2455 /* Wait for vblank for the disable to take effect. */
2456 intel_wait_for_vblank(dev);
2457
2458 temp = I915_READ(dpll_reg);
2459 if ((temp & DPLL_VCO_ENABLE) != 0) {
2460 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2461 I915_READ(dpll_reg);
2462 }
2463 skip_pipe_off:
2464 /* Wait for the clocks to turn off. */
2465 udelay(150);
2466 break;
2467 }
2468 }
2469
2470 /**
2471 * Sets the power management mode of the pipe and plane.
2472 *
2473 * This code should probably grow support for turning the cursor off and back
2474 * on appropriately at the same time as we're turning the pipe off/on.
2475 */
2476 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2477 {
2478 struct drm_device *dev = crtc->dev;
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct drm_i915_master_private *master_priv;
2481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2482 int pipe = intel_crtc->pipe;
2483 bool enabled;
2484
2485 dev_priv->display.dpms(crtc, mode);
2486
2487 intel_crtc->dpms_mode = mode;
2488
2489 if (!dev->primary->master)
2490 return;
2491
2492 master_priv = dev->primary->master->driver_priv;
2493 if (!master_priv->sarea_priv)
2494 return;
2495
2496 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2497
2498 switch (pipe) {
2499 case 0:
2500 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2501 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2502 break;
2503 case 1:
2504 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2505 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2506 break;
2507 default:
2508 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2509 break;
2510 }
2511 }
2512
2513 static void intel_crtc_prepare (struct drm_crtc *crtc)
2514 {
2515 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2516 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2517 }
2518
2519 static void intel_crtc_commit (struct drm_crtc *crtc)
2520 {
2521 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2522 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2523 }
2524
2525 void intel_encoder_prepare (struct drm_encoder *encoder)
2526 {
2527 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2528 /* lvds has its own version of prepare see intel_lvds_prepare */
2529 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2530 }
2531
2532 void intel_encoder_commit (struct drm_encoder *encoder)
2533 {
2534 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2535 /* lvds has its own version of commit see intel_lvds_commit */
2536 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2537 }
2538
2539 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2540 struct drm_display_mode *mode,
2541 struct drm_display_mode *adjusted_mode)
2542 {
2543 struct drm_device *dev = crtc->dev;
2544 if (HAS_PCH_SPLIT(dev)) {
2545 /* FDI link clock is fixed at 2.7G */
2546 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2547 return false;
2548 }
2549 return true;
2550 }
2551
2552 static int i945_get_display_clock_speed(struct drm_device *dev)
2553 {
2554 return 400000;
2555 }
2556
2557 static int i915_get_display_clock_speed(struct drm_device *dev)
2558 {
2559 return 333000;
2560 }
2561
2562 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2563 {
2564 return 200000;
2565 }
2566
2567 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2568 {
2569 u16 gcfgc = 0;
2570
2571 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2572
2573 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2574 return 133000;
2575 else {
2576 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2577 case GC_DISPLAY_CLOCK_333_MHZ:
2578 return 333000;
2579 default:
2580 case GC_DISPLAY_CLOCK_190_200_MHZ:
2581 return 190000;
2582 }
2583 }
2584 }
2585
2586 static int i865_get_display_clock_speed(struct drm_device *dev)
2587 {
2588 return 266000;
2589 }
2590
2591 static int i855_get_display_clock_speed(struct drm_device *dev)
2592 {
2593 u16 hpllcc = 0;
2594 /* Assume that the hardware is in the high speed state. This
2595 * should be the default.
2596 */
2597 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2598 case GC_CLOCK_133_200:
2599 case GC_CLOCK_100_200:
2600 return 200000;
2601 case GC_CLOCK_166_250:
2602 return 250000;
2603 case GC_CLOCK_100_133:
2604 return 133000;
2605 }
2606
2607 /* Shouldn't happen */
2608 return 0;
2609 }
2610
2611 static int i830_get_display_clock_speed(struct drm_device *dev)
2612 {
2613 return 133000;
2614 }
2615
2616 /**
2617 * Return the pipe currently connected to the panel fitter,
2618 * or -1 if the panel fitter is not present or not in use
2619 */
2620 int intel_panel_fitter_pipe (struct drm_device *dev)
2621 {
2622 struct drm_i915_private *dev_priv = dev->dev_private;
2623 u32 pfit_control;
2624
2625 /* i830 doesn't have a panel fitter */
2626 if (IS_I830(dev))
2627 return -1;
2628
2629 pfit_control = I915_READ(PFIT_CONTROL);
2630
2631 /* See if the panel fitter is in use */
2632 if ((pfit_control & PFIT_ENABLE) == 0)
2633 return -1;
2634
2635 /* 965 can place panel fitter on either pipe */
2636 if (IS_I965G(dev))
2637 return (pfit_control >> 29) & 0x3;
2638
2639 /* older chips can only use pipe 1 */
2640 return 1;
2641 }
2642
2643 struct fdi_m_n {
2644 u32 tu;
2645 u32 gmch_m;
2646 u32 gmch_n;
2647 u32 link_m;
2648 u32 link_n;
2649 };
2650
2651 static void
2652 fdi_reduce_ratio(u32 *num, u32 *den)
2653 {
2654 while (*num > 0xffffff || *den > 0xffffff) {
2655 *num >>= 1;
2656 *den >>= 1;
2657 }
2658 }
2659
2660 #define DATA_N 0x800000
2661 #define LINK_N 0x80000
2662
2663 static void
2664 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2665 int link_clock, struct fdi_m_n *m_n)
2666 {
2667 u64 temp;
2668
2669 m_n->tu = 64; /* default size */
2670
2671 temp = (u64) DATA_N * pixel_clock;
2672 temp = div_u64(temp, link_clock);
2673 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2674 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2675 m_n->gmch_n = DATA_N;
2676 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2677
2678 temp = (u64) LINK_N * pixel_clock;
2679 m_n->link_m = div_u64(temp, link_clock);
2680 m_n->link_n = LINK_N;
2681 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2682 }
2683
2684
2685 struct intel_watermark_params {
2686 unsigned long fifo_size;
2687 unsigned long max_wm;
2688 unsigned long default_wm;
2689 unsigned long guard_size;
2690 unsigned long cacheline_size;
2691 };
2692
2693 /* Pineview has different values for various configs */
2694 static struct intel_watermark_params pineview_display_wm = {
2695 PINEVIEW_DISPLAY_FIFO,
2696 PINEVIEW_MAX_WM,
2697 PINEVIEW_DFT_WM,
2698 PINEVIEW_GUARD_WM,
2699 PINEVIEW_FIFO_LINE_SIZE
2700 };
2701 static struct intel_watermark_params pineview_display_hplloff_wm = {
2702 PINEVIEW_DISPLAY_FIFO,
2703 PINEVIEW_MAX_WM,
2704 PINEVIEW_DFT_HPLLOFF_WM,
2705 PINEVIEW_GUARD_WM,
2706 PINEVIEW_FIFO_LINE_SIZE
2707 };
2708 static struct intel_watermark_params pineview_cursor_wm = {
2709 PINEVIEW_CURSOR_FIFO,
2710 PINEVIEW_CURSOR_MAX_WM,
2711 PINEVIEW_CURSOR_DFT_WM,
2712 PINEVIEW_CURSOR_GUARD_WM,
2713 PINEVIEW_FIFO_LINE_SIZE,
2714 };
2715 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2716 PINEVIEW_CURSOR_FIFO,
2717 PINEVIEW_CURSOR_MAX_WM,
2718 PINEVIEW_CURSOR_DFT_WM,
2719 PINEVIEW_CURSOR_GUARD_WM,
2720 PINEVIEW_FIFO_LINE_SIZE
2721 };
2722 static struct intel_watermark_params g4x_wm_info = {
2723 G4X_FIFO_SIZE,
2724 G4X_MAX_WM,
2725 G4X_MAX_WM,
2726 2,
2727 G4X_FIFO_LINE_SIZE,
2728 };
2729 static struct intel_watermark_params g4x_cursor_wm_info = {
2730 I965_CURSOR_FIFO,
2731 I965_CURSOR_MAX_WM,
2732 I965_CURSOR_DFT_WM,
2733 2,
2734 G4X_FIFO_LINE_SIZE,
2735 };
2736 static struct intel_watermark_params i965_cursor_wm_info = {
2737 I965_CURSOR_FIFO,
2738 I965_CURSOR_MAX_WM,
2739 I965_CURSOR_DFT_WM,
2740 2,
2741 I915_FIFO_LINE_SIZE,
2742 };
2743 static struct intel_watermark_params i945_wm_info = {
2744 I945_FIFO_SIZE,
2745 I915_MAX_WM,
2746 1,
2747 2,
2748 I915_FIFO_LINE_SIZE
2749 };
2750 static struct intel_watermark_params i915_wm_info = {
2751 I915_FIFO_SIZE,
2752 I915_MAX_WM,
2753 1,
2754 2,
2755 I915_FIFO_LINE_SIZE
2756 };
2757 static struct intel_watermark_params i855_wm_info = {
2758 I855GM_FIFO_SIZE,
2759 I915_MAX_WM,
2760 1,
2761 2,
2762 I830_FIFO_LINE_SIZE
2763 };
2764 static struct intel_watermark_params i830_wm_info = {
2765 I830_FIFO_SIZE,
2766 I915_MAX_WM,
2767 1,
2768 2,
2769 I830_FIFO_LINE_SIZE
2770 };
2771
2772 static struct intel_watermark_params ironlake_display_wm_info = {
2773 ILK_DISPLAY_FIFO,
2774 ILK_DISPLAY_MAXWM,
2775 ILK_DISPLAY_DFTWM,
2776 2,
2777 ILK_FIFO_LINE_SIZE
2778 };
2779
2780 static struct intel_watermark_params ironlake_cursor_wm_info = {
2781 ILK_CURSOR_FIFO,
2782 ILK_CURSOR_MAXWM,
2783 ILK_CURSOR_DFTWM,
2784 2,
2785 ILK_FIFO_LINE_SIZE
2786 };
2787
2788 static struct intel_watermark_params ironlake_display_srwm_info = {
2789 ILK_DISPLAY_SR_FIFO,
2790 ILK_DISPLAY_MAX_SRWM,
2791 ILK_DISPLAY_DFT_SRWM,
2792 2,
2793 ILK_FIFO_LINE_SIZE
2794 };
2795
2796 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2797 ILK_CURSOR_SR_FIFO,
2798 ILK_CURSOR_MAX_SRWM,
2799 ILK_CURSOR_DFT_SRWM,
2800 2,
2801 ILK_FIFO_LINE_SIZE
2802 };
2803
2804 /**
2805 * intel_calculate_wm - calculate watermark level
2806 * @clock_in_khz: pixel clock
2807 * @wm: chip FIFO params
2808 * @pixel_size: display pixel size
2809 * @latency_ns: memory latency for the platform
2810 *
2811 * Calculate the watermark level (the level at which the display plane will
2812 * start fetching from memory again). Each chip has a different display
2813 * FIFO size and allocation, so the caller needs to figure that out and pass
2814 * in the correct intel_watermark_params structure.
2815 *
2816 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2817 * on the pixel size. When it reaches the watermark level, it'll start
2818 * fetching FIFO line sized based chunks from memory until the FIFO fills
2819 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2820 * will occur, and a display engine hang could result.
2821 */
2822 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2823 struct intel_watermark_params *wm,
2824 int pixel_size,
2825 unsigned long latency_ns)
2826 {
2827 long entries_required, wm_size;
2828
2829 /*
2830 * Note: we need to make sure we don't overflow for various clock &
2831 * latency values.
2832 * clocks go from a few thousand to several hundred thousand.
2833 * latency is usually a few thousand
2834 */
2835 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2836 1000;
2837 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2838
2839 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2840
2841 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2842
2843 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2844
2845 /* Don't promote wm_size to unsigned... */
2846 if (wm_size > (long)wm->max_wm)
2847 wm_size = wm->max_wm;
2848 if (wm_size <= 0) {
2849 wm_size = wm->default_wm;
2850 DRM_ERROR("Insufficient FIFO for plane, expect flickering:"
2851 " entries required = %ld, available = %lu.\n",
2852 entries_required + wm->guard_size,
2853 wm->fifo_size);
2854 }
2855
2856 return wm_size;
2857 }
2858
2859 struct cxsr_latency {
2860 int is_desktop;
2861 int is_ddr3;
2862 unsigned long fsb_freq;
2863 unsigned long mem_freq;
2864 unsigned long display_sr;
2865 unsigned long display_hpll_disable;
2866 unsigned long cursor_sr;
2867 unsigned long cursor_hpll_disable;
2868 };
2869
2870 static struct cxsr_latency cxsr_latency_table[] = {
2871 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2872 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2873 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2874 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2875 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2876
2877 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2878 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2879 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2880 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2881 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2882
2883 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2884 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2885 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2886 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2887 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2888
2889 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2890 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2891 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2892 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2893 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2894
2895 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2896 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2897 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2898 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2899 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2900
2901 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2902 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2903 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2904 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2905 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2906 };
2907
2908 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
2909 int fsb, int mem)
2910 {
2911 int i;
2912 struct cxsr_latency *latency;
2913
2914 if (fsb == 0 || mem == 0)
2915 return NULL;
2916
2917 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2918 latency = &cxsr_latency_table[i];
2919 if (is_desktop == latency->is_desktop &&
2920 is_ddr3 == latency->is_ddr3 &&
2921 fsb == latency->fsb_freq && mem == latency->mem_freq)
2922 return latency;
2923 }
2924
2925 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2926
2927 return NULL;
2928 }
2929
2930 static void pineview_disable_cxsr(struct drm_device *dev)
2931 {
2932 struct drm_i915_private *dev_priv = dev->dev_private;
2933 u32 reg;
2934
2935 /* deactivate cxsr */
2936 reg = I915_READ(DSPFW3);
2937 reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2938 I915_WRITE(DSPFW3, reg);
2939 DRM_INFO("Big FIFO is disabled\n");
2940 }
2941
2942 /*
2943 * Latency for FIFO fetches is dependent on several factors:
2944 * - memory configuration (speed, channels)
2945 * - chipset
2946 * - current MCH state
2947 * It can be fairly high in some situations, so here we assume a fairly
2948 * pessimal value. It's a tradeoff between extra memory fetches (if we
2949 * set this value too high, the FIFO will fetch frequently to stay full)
2950 * and power consumption (set it too low to save power and we might see
2951 * FIFO underruns and display "flicker").
2952 *
2953 * A value of 5us seems to be a good balance; safe for very low end
2954 * platforms but not overly aggressive on lower latency configs.
2955 */
2956 static const int latency_ns = 5000;
2957
2958 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2959 {
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 uint32_t dsparb = I915_READ(DSPARB);
2962 int size;
2963
2964 size = dsparb & 0x7f;
2965 if (plane)
2966 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2967
2968 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2969 plane ? "B" : "A", size);
2970
2971 return size;
2972 }
2973
2974 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2975 {
2976 struct drm_i915_private *dev_priv = dev->dev_private;
2977 uint32_t dsparb = I915_READ(DSPARB);
2978 int size;
2979
2980 size = dsparb & 0x1ff;
2981 if (plane)
2982 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
2983 size >>= 1; /* Convert to cachelines */
2984
2985 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2986 plane ? "B" : "A", size);
2987
2988 return size;
2989 }
2990
2991 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2992 {
2993 struct drm_i915_private *dev_priv = dev->dev_private;
2994 uint32_t dsparb = I915_READ(DSPARB);
2995 int size;
2996
2997 size = dsparb & 0x7f;
2998 size >>= 2; /* Convert to cachelines */
2999
3000 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3001 plane ? "B" : "A",
3002 size);
3003
3004 return size;
3005 }
3006
3007 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3008 {
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010 uint32_t dsparb = I915_READ(DSPARB);
3011 int size;
3012
3013 size = dsparb & 0x7f;
3014 size >>= 1; /* Convert to cachelines */
3015
3016 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3017 plane ? "B" : "A", size);
3018
3019 return size;
3020 }
3021
3022 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3023 int planeb_clock, int sr_hdisplay, int unused,
3024 int pixel_size)
3025 {
3026 struct drm_i915_private *dev_priv = dev->dev_private;
3027 u32 reg;
3028 unsigned long wm;
3029 struct cxsr_latency *latency;
3030 int sr_clock;
3031
3032 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3033 dev_priv->fsb_freq, dev_priv->mem_freq);
3034 if (!latency) {
3035 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3036 pineview_disable_cxsr(dev);
3037 return;
3038 }
3039
3040 if (!planea_clock || !planeb_clock) {
3041 sr_clock = planea_clock ? planea_clock : planeb_clock;
3042
3043 /* Display SR */
3044 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3045 pixel_size, latency->display_sr);
3046 reg = I915_READ(DSPFW1);
3047 reg &= ~DSPFW_SR_MASK;
3048 reg |= wm << DSPFW_SR_SHIFT;
3049 I915_WRITE(DSPFW1, reg);
3050 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3051
3052 /* cursor SR */
3053 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3054 pixel_size, latency->cursor_sr);
3055 reg = I915_READ(DSPFW3);
3056 reg &= ~DSPFW_CURSOR_SR_MASK;
3057 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3058 I915_WRITE(DSPFW3, reg);
3059
3060 /* Display HPLL off SR */
3061 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3062 pixel_size, latency->display_hpll_disable);
3063 reg = I915_READ(DSPFW3);
3064 reg &= ~DSPFW_HPLL_SR_MASK;
3065 reg |= wm & DSPFW_HPLL_SR_MASK;
3066 I915_WRITE(DSPFW3, reg);
3067
3068 /* cursor HPLL off SR */
3069 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3070 pixel_size, latency->cursor_hpll_disable);
3071 reg = I915_READ(DSPFW3);
3072 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3073 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3074 I915_WRITE(DSPFW3, reg);
3075 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3076
3077 /* activate cxsr */
3078 reg = I915_READ(DSPFW3);
3079 reg |= PINEVIEW_SELF_REFRESH_EN;
3080 I915_WRITE(DSPFW3, reg);
3081 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3082 } else {
3083 pineview_disable_cxsr(dev);
3084 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3085 }
3086 }
3087
3088 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3089 int planeb_clock, int sr_hdisplay, int sr_htotal,
3090 int pixel_size)
3091 {
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 int total_size, cacheline_size;
3094 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3095 struct intel_watermark_params planea_params, planeb_params;
3096 unsigned long line_time_us;
3097 int sr_clock, sr_entries = 0, entries_required;
3098
3099 /* Create copies of the base settings for each pipe */
3100 planea_params = planeb_params = g4x_wm_info;
3101
3102 /* Grab a couple of global values before we overwrite them */
3103 total_size = planea_params.fifo_size;
3104 cacheline_size = planea_params.cacheline_size;
3105
3106 /*
3107 * Note: we need to make sure we don't overflow for various clock &
3108 * latency values.
3109 * clocks go from a few thousand to several hundred thousand.
3110 * latency is usually a few thousand
3111 */
3112 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3113 1000;
3114 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3115 planea_wm = entries_required + planea_params.guard_size;
3116
3117 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3118 1000;
3119 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3120 planeb_wm = entries_required + planeb_params.guard_size;
3121
3122 cursora_wm = cursorb_wm = 16;
3123 cursor_sr = 32;
3124
3125 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3126
3127 /* Calc sr entries for one plane configs */
3128 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3129 /* self-refresh has much higher latency */
3130 static const int sr_latency_ns = 12000;
3131
3132 sr_clock = planea_clock ? planea_clock : planeb_clock;
3133 line_time_us = ((sr_htotal * 1000) / sr_clock);
3134
3135 /* Use ns/us then divide to preserve precision */
3136 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3137 pixel_size * sr_hdisplay;
3138 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3139
3140 entries_required = (((sr_latency_ns / line_time_us) +
3141 1000) / 1000) * pixel_size * 64;
3142 entries_required = DIV_ROUND_UP(entries_required,
3143 g4x_cursor_wm_info.cacheline_size);
3144 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3145
3146 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3147 cursor_sr = g4x_cursor_wm_info.max_wm;
3148 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3149 "cursor %d\n", sr_entries, cursor_sr);
3150
3151 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3152 } else {
3153 /* Turn off self refresh if both pipes are enabled */
3154 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3155 & ~FW_BLC_SELF_EN);
3156 }
3157
3158 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3159 planea_wm, planeb_wm, sr_entries);
3160
3161 planea_wm &= 0x3f;
3162 planeb_wm &= 0x3f;
3163
3164 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3165 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3166 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3167 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3168 (cursora_wm << DSPFW_CURSORA_SHIFT));
3169 /* HPLL off in SR has some issues on G4x... disable it */
3170 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3171 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3172 }
3173
3174 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3175 int planeb_clock, int sr_hdisplay, int sr_htotal,
3176 int pixel_size)
3177 {
3178 struct drm_i915_private *dev_priv = dev->dev_private;
3179 unsigned long line_time_us;
3180 int sr_clock, sr_entries, srwm = 1;
3181 int cursor_sr = 16;
3182
3183 /* Calc sr entries for one plane configs */
3184 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3185 /* self-refresh has much higher latency */
3186 static const int sr_latency_ns = 12000;
3187
3188 sr_clock = planea_clock ? planea_clock : planeb_clock;
3189 line_time_us = ((sr_htotal * 1000) / sr_clock);
3190
3191 /* Use ns/us then divide to preserve precision */
3192 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3193 pixel_size * sr_hdisplay;
3194 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3195 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3196 srwm = I965_FIFO_SIZE - sr_entries;
3197 if (srwm < 0)
3198 srwm = 1;
3199 srwm &= 0x1ff;
3200
3201 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3202 pixel_size * 64;
3203 sr_entries = DIV_ROUND_UP(sr_entries,
3204 i965_cursor_wm_info.cacheline_size);
3205 cursor_sr = i965_cursor_wm_info.fifo_size -
3206 (sr_entries + i965_cursor_wm_info.guard_size);
3207
3208 if (cursor_sr > i965_cursor_wm_info.max_wm)
3209 cursor_sr = i965_cursor_wm_info.max_wm;
3210
3211 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3212 "cursor %d\n", srwm, cursor_sr);
3213
3214 if (IS_I965GM(dev))
3215 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3216 } else {
3217 /* Turn off self refresh if both pipes are enabled */
3218 if (IS_I965GM(dev))
3219 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3220 & ~FW_BLC_SELF_EN);
3221 }
3222
3223 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3224 srwm);
3225
3226 /* 965 has limitations... */
3227 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3228 (8 << 0));
3229 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3230 /* update cursor SR watermark */
3231 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3232 }
3233
3234 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3235 int planeb_clock, int sr_hdisplay, int sr_htotal,
3236 int pixel_size)
3237 {
3238 struct drm_i915_private *dev_priv = dev->dev_private;
3239 uint32_t fwater_lo;
3240 uint32_t fwater_hi;
3241 int total_size, cacheline_size, cwm, srwm = 1;
3242 int planea_wm, planeb_wm;
3243 struct intel_watermark_params planea_params, planeb_params;
3244 unsigned long line_time_us;
3245 int sr_clock, sr_entries = 0;
3246
3247 /* Create copies of the base settings for each pipe */
3248 if (IS_I965GM(dev) || IS_I945GM(dev))
3249 planea_params = planeb_params = i945_wm_info;
3250 else if (IS_I9XX(dev))
3251 planea_params = planeb_params = i915_wm_info;
3252 else
3253 planea_params = planeb_params = i855_wm_info;
3254
3255 /* Grab a couple of global values before we overwrite them */
3256 total_size = planea_params.fifo_size;
3257 cacheline_size = planea_params.cacheline_size;
3258
3259 /* Update per-plane FIFO sizes */
3260 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3261 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3262
3263 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3264 pixel_size, latency_ns);
3265 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3266 pixel_size, latency_ns);
3267 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3268
3269 /*
3270 * Overlay gets an aggressive default since video jitter is bad.
3271 */
3272 cwm = 2;
3273
3274 /* Calc sr entries for one plane configs */
3275 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3276 (!planea_clock || !planeb_clock)) {
3277 /* self-refresh has much higher latency */
3278 static const int sr_latency_ns = 6000;
3279
3280 sr_clock = planea_clock ? planea_clock : planeb_clock;
3281 line_time_us = ((sr_htotal * 1000) / sr_clock);
3282
3283 /* Use ns/us then divide to preserve precision */
3284 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3285 pixel_size * sr_hdisplay;
3286 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3287 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3288 srwm = total_size - sr_entries;
3289 if (srwm < 0)
3290 srwm = 1;
3291
3292 if (IS_I945G(dev) || IS_I945GM(dev))
3293 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3294 else if (IS_I915GM(dev)) {
3295 /* 915M has a smaller SRWM field */
3296 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3297 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3298 }
3299 } else {
3300 /* Turn off self refresh if both pipes are enabled */
3301 if (IS_I945G(dev) || IS_I945GM(dev)) {
3302 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3303 & ~FW_BLC_SELF_EN);
3304 } else if (IS_I915GM(dev)) {
3305 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3306 }
3307 }
3308
3309 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3310 planea_wm, planeb_wm, cwm, srwm);
3311
3312 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3313 fwater_hi = (cwm & 0x1f);
3314
3315 /* Set request length to 8 cachelines per fetch */
3316 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3317 fwater_hi = fwater_hi | (1 << 8);
3318
3319 I915_WRITE(FW_BLC, fwater_lo);
3320 I915_WRITE(FW_BLC2, fwater_hi);
3321 }
3322
3323 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3324 int unused2, int unused3, int pixel_size)
3325 {
3326 struct drm_i915_private *dev_priv = dev->dev_private;
3327 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3328 int planea_wm;
3329
3330 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3331
3332 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3333 pixel_size, latency_ns);
3334 fwater_lo |= (3<<8) | planea_wm;
3335
3336 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3337
3338 I915_WRITE(FW_BLC, fwater_lo);
3339 }
3340
3341 #define ILK_LP0_PLANE_LATENCY 700
3342 #define ILK_LP0_CURSOR_LATENCY 1300
3343
3344 static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
3345 int planeb_clock, int sr_hdisplay, int sr_htotal,
3346 int pixel_size)
3347 {
3348 struct drm_i915_private *dev_priv = dev->dev_private;
3349 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3350 int sr_wm, cursor_wm;
3351 unsigned long line_time_us;
3352 int sr_clock, entries_required;
3353 u32 reg_value;
3354 int line_count;
3355 int planea_htotal = 0, planeb_htotal = 0;
3356 struct drm_crtc *crtc;
3357 struct intel_crtc *intel_crtc;
3358
3359 /* Need htotal for all active display plane */
3360 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3361 intel_crtc = to_intel_crtc(crtc);
3362 if (crtc->enabled) {
3363 if (intel_crtc->plane == 0)
3364 planea_htotal = crtc->mode.htotal;
3365 else
3366 planeb_htotal = crtc->mode.htotal;
3367 }
3368 }
3369
3370 /* Calculate and update the watermark for plane A */
3371 if (planea_clock) {
3372 entries_required = ((planea_clock / 1000) * pixel_size *
3373 ILK_LP0_PLANE_LATENCY) / 1000;
3374 entries_required = DIV_ROUND_UP(entries_required,
3375 ironlake_display_wm_info.cacheline_size);
3376 planea_wm = entries_required +
3377 ironlake_display_wm_info.guard_size;
3378
3379 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3380 planea_wm = ironlake_display_wm_info.max_wm;
3381
3382 /* Use the large buffer method to calculate cursor watermark */
3383 line_time_us = (planea_htotal * 1000) / planea_clock;
3384
3385 /* Use ns/us then divide to preserve precision */
3386 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3387
3388 /* calculate the cursor watermark for cursor A */
3389 entries_required = line_count * 64 * pixel_size;
3390 entries_required = DIV_ROUND_UP(entries_required,
3391 ironlake_cursor_wm_info.cacheline_size);
3392 cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3393 if (cursora_wm > ironlake_cursor_wm_info.max_wm)
3394 cursora_wm = ironlake_cursor_wm_info.max_wm;
3395
3396 reg_value = I915_READ(WM0_PIPEA_ILK);
3397 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3398 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3399 (cursora_wm & WM0_PIPE_CURSOR_MASK);
3400 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3401 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3402 "cursor: %d\n", planea_wm, cursora_wm);
3403 }
3404 /* Calculate and update the watermark for plane B */
3405 if (planeb_clock) {
3406 entries_required = ((planeb_clock / 1000) * pixel_size *
3407 ILK_LP0_PLANE_LATENCY) / 1000;
3408 entries_required = DIV_ROUND_UP(entries_required,
3409 ironlake_display_wm_info.cacheline_size);
3410 planeb_wm = entries_required +
3411 ironlake_display_wm_info.guard_size;
3412
3413 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3414 planeb_wm = ironlake_display_wm_info.max_wm;
3415
3416 /* Use the large buffer method to calculate cursor watermark */
3417 line_time_us = (planeb_htotal * 1000) / planeb_clock;
3418
3419 /* Use ns/us then divide to preserve precision */
3420 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3421
3422 /* calculate the cursor watermark for cursor B */
3423 entries_required = line_count * 64 * pixel_size;
3424 entries_required = DIV_ROUND_UP(entries_required,
3425 ironlake_cursor_wm_info.cacheline_size);
3426 cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
3427 if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
3428 cursorb_wm = ironlake_cursor_wm_info.max_wm;
3429
3430 reg_value = I915_READ(WM0_PIPEB_ILK);
3431 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3432 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3433 (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3434 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3435 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3436 "cursor: %d\n", planeb_wm, cursorb_wm);
3437 }
3438
3439 /*
3440 * Calculate and update the self-refresh watermark only when one
3441 * display plane is used.
3442 */
3443 if (!planea_clock || !planeb_clock) {
3444
3445 /* Read the self-refresh latency. The unit is 0.5us */
3446 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3447
3448 sr_clock = planea_clock ? planea_clock : planeb_clock;
3449 line_time_us = ((sr_htotal * 1000) / sr_clock);
3450
3451 /* Use ns/us then divide to preserve precision */
3452 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3453 / 1000;
3454
3455 /* calculate the self-refresh watermark for display plane */
3456 entries_required = line_count * sr_hdisplay * pixel_size;
3457 entries_required = DIV_ROUND_UP(entries_required,
3458 ironlake_display_srwm_info.cacheline_size);
3459 sr_wm = entries_required +
3460 ironlake_display_srwm_info.guard_size;
3461
3462 /* calculate the self-refresh watermark for display cursor */
3463 entries_required = line_count * pixel_size * 64;
3464 entries_required = DIV_ROUND_UP(entries_required,
3465 ironlake_cursor_srwm_info.cacheline_size);
3466 cursor_wm = entries_required +
3467 ironlake_cursor_srwm_info.guard_size;
3468
3469 /* configure watermark and enable self-refresh */
3470 reg_value = I915_READ(WM1_LP_ILK);
3471 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3472 WM1_LP_CURSOR_MASK);
3473 reg_value |= WM1_LP_SR_EN |
3474 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3475 (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3476
3477 I915_WRITE(WM1_LP_ILK, reg_value);
3478 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3479 "cursor %d\n", sr_wm, cursor_wm);
3480
3481 } else {
3482 /* Turn off self refresh if both pipes are enabled */
3483 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3484 }
3485 }
3486 /**
3487 * intel_update_watermarks - update FIFO watermark values based on current modes
3488 *
3489 * Calculate watermark values for the various WM regs based on current mode
3490 * and plane configuration.
3491 *
3492 * There are several cases to deal with here:
3493 * - normal (i.e. non-self-refresh)
3494 * - self-refresh (SR) mode
3495 * - lines are large relative to FIFO size (buffer can hold up to 2)
3496 * - lines are small relative to FIFO size (buffer can hold more than 2
3497 * lines), so need to account for TLB latency
3498 *
3499 * The normal calculation is:
3500 * watermark = dotclock * bytes per pixel * latency
3501 * where latency is platform & configuration dependent (we assume pessimal
3502 * values here).
3503 *
3504 * The SR calculation is:
3505 * watermark = (trunc(latency/line time)+1) * surface width *
3506 * bytes per pixel
3507 * where
3508 * line time = htotal / dotclock
3509 * surface width = hdisplay for normal plane and 64 for cursor
3510 * and latency is assumed to be high, as above.
3511 *
3512 * The final value programmed to the register should always be rounded up,
3513 * and include an extra 2 entries to account for clock crossings.
3514 *
3515 * We don't use the sprite, so we can ignore that. And on Crestline we have
3516 * to set the non-SR watermarks to 8.
3517 */
3518 static void intel_update_watermarks(struct drm_device *dev)
3519 {
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 struct drm_crtc *crtc;
3522 struct intel_crtc *intel_crtc;
3523 int sr_hdisplay = 0;
3524 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3525 int enabled = 0, pixel_size = 0;
3526 int sr_htotal = 0;
3527
3528 if (!dev_priv->display.update_wm)
3529 return;
3530
3531 /* Get the clock config from both planes */
3532 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3533 intel_crtc = to_intel_crtc(crtc);
3534 if (crtc->enabled) {
3535 enabled++;
3536 if (intel_crtc->plane == 0) {
3537 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3538 intel_crtc->pipe, crtc->mode.clock);
3539 planea_clock = crtc->mode.clock;
3540 } else {
3541 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3542 intel_crtc->pipe, crtc->mode.clock);
3543 planeb_clock = crtc->mode.clock;
3544 }
3545 sr_hdisplay = crtc->mode.hdisplay;
3546 sr_clock = crtc->mode.clock;
3547 sr_htotal = crtc->mode.htotal;
3548 if (crtc->fb)
3549 pixel_size = crtc->fb->bits_per_pixel / 8;
3550 else
3551 pixel_size = 4; /* by default */
3552 }
3553 }
3554
3555 if (enabled <= 0)
3556 return;
3557
3558 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3559 sr_hdisplay, sr_htotal, pixel_size);
3560 }
3561
3562 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3563 struct drm_display_mode *mode,
3564 struct drm_display_mode *adjusted_mode,
3565 int x, int y,
3566 struct drm_framebuffer *old_fb)
3567 {
3568 struct drm_device *dev = crtc->dev;
3569 struct drm_i915_private *dev_priv = dev->dev_private;
3570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571 int pipe = intel_crtc->pipe;
3572 int plane = intel_crtc->plane;
3573 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3574 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3575 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3576 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3577 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3578 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3579 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3580 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3581 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3582 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3583 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3584 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3585 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3586 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3587 int refclk, num_connectors = 0;
3588 intel_clock_t clock, reduced_clock;
3589 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3590 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3591 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3592 bool is_edp = false;
3593 struct drm_mode_config *mode_config = &dev->mode_config;
3594 struct drm_encoder *encoder;
3595 struct intel_encoder *intel_encoder = NULL;
3596 const intel_limit_t *limit;
3597 int ret;
3598 struct fdi_m_n m_n = {0};
3599 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3600 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3601 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3602 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3603 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3604 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3605 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3606 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3607 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3608 int lvds_reg = LVDS;
3609 u32 temp;
3610 int sdvo_pixel_multiply;
3611 int target_clock;
3612
3613 drm_vblank_pre_modeset(dev, pipe);
3614
3615 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3616
3617 if (!encoder || encoder->crtc != crtc)
3618 continue;
3619
3620 intel_encoder = enc_to_intel_encoder(encoder);
3621
3622 switch (intel_encoder->type) {
3623 case INTEL_OUTPUT_LVDS:
3624 is_lvds = true;
3625 break;
3626 case INTEL_OUTPUT_SDVO:
3627 case INTEL_OUTPUT_HDMI:
3628 is_sdvo = true;
3629 if (intel_encoder->needs_tv_clock)
3630 is_tv = true;
3631 break;
3632 case INTEL_OUTPUT_DVO:
3633 is_dvo = true;
3634 break;
3635 case INTEL_OUTPUT_TVOUT:
3636 is_tv = true;
3637 break;
3638 case INTEL_OUTPUT_ANALOG:
3639 is_crt = true;
3640 break;
3641 case INTEL_OUTPUT_DISPLAYPORT:
3642 is_dp = true;
3643 break;
3644 case INTEL_OUTPUT_EDP:
3645 is_edp = true;
3646 break;
3647 }
3648
3649 num_connectors++;
3650 }
3651
3652 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3653 refclk = dev_priv->lvds_ssc_freq * 1000;
3654 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3655 refclk / 1000);
3656 } else if (IS_I9XX(dev)) {
3657 refclk = 96000;
3658 if (HAS_PCH_SPLIT(dev))
3659 refclk = 120000; /* 120Mhz refclk */
3660 } else {
3661 refclk = 48000;
3662 }
3663
3664
3665 /*
3666 * Returns a set of divisors for the desired target clock with the given
3667 * refclk, or FALSE. The returned values represent the clock equation:
3668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3669 */
3670 limit = intel_limit(crtc);
3671 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3672 if (!ok) {
3673 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3674 drm_vblank_post_modeset(dev, pipe);
3675 return -EINVAL;
3676 }
3677
3678 /* Ensure that the cursor is valid for the new mode before changing... */
3679 intel_crtc_update_cursor(crtc);
3680
3681 if (is_lvds && dev_priv->lvds_downclock_avail) {
3682 has_reduced_clock = limit->find_pll(limit, crtc,
3683 dev_priv->lvds_downclock,
3684 refclk,
3685 &reduced_clock);
3686 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3687 /*
3688 * If the different P is found, it means that we can't
3689 * switch the display clock by using the FP0/FP1.
3690 * In such case we will disable the LVDS downclock
3691 * feature.
3692 */
3693 DRM_DEBUG_KMS("Different P is found for "
3694 "LVDS clock/downclock\n");
3695 has_reduced_clock = 0;
3696 }
3697 }
3698 /* SDVO TV has fixed PLL values depend on its clock range,
3699 this mirrors vbios setting. */
3700 if (is_sdvo && is_tv) {
3701 if (adjusted_mode->clock >= 100000
3702 && adjusted_mode->clock < 140500) {
3703 clock.p1 = 2;
3704 clock.p2 = 10;
3705 clock.n = 3;
3706 clock.m1 = 16;
3707 clock.m2 = 8;
3708 } else if (adjusted_mode->clock >= 140500
3709 && adjusted_mode->clock <= 200000) {
3710 clock.p1 = 1;
3711 clock.p2 = 10;
3712 clock.n = 6;
3713 clock.m1 = 12;
3714 clock.m2 = 8;
3715 }
3716 }
3717
3718 /* FDI link */
3719 if (HAS_PCH_SPLIT(dev)) {
3720 int lane = 0, link_bw, bpp;
3721 /* eDP doesn't require FDI link, so just set DP M/N
3722 according to current link config */
3723 if (is_edp) {
3724 target_clock = mode->clock;
3725 intel_edp_link_config(intel_encoder,
3726 &lane, &link_bw);
3727 } else {
3728 /* DP over FDI requires target mode clock
3729 instead of link clock */
3730 if (is_dp)
3731 target_clock = mode->clock;
3732 else
3733 target_clock = adjusted_mode->clock;
3734 link_bw = 270000;
3735 }
3736
3737 /* determine panel color depth */
3738 temp = I915_READ(pipeconf_reg);
3739 temp &= ~PIPE_BPC_MASK;
3740 if (is_lvds) {
3741 int lvds_reg = I915_READ(PCH_LVDS);
3742 /* the BPC will be 6 if it is 18-bit LVDS panel */
3743 if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3744 temp |= PIPE_8BPC;
3745 else
3746 temp |= PIPE_6BPC;
3747 } else if (is_edp || (is_dp && intel_pch_has_edp(crtc))) {
3748 switch (dev_priv->edp_bpp/3) {
3749 case 8:
3750 temp |= PIPE_8BPC;
3751 break;
3752 case 10:
3753 temp |= PIPE_10BPC;
3754 break;
3755 case 6:
3756 temp |= PIPE_6BPC;
3757 break;
3758 case 12:
3759 temp |= PIPE_12BPC;
3760 break;
3761 }
3762 } else
3763 temp |= PIPE_8BPC;
3764 I915_WRITE(pipeconf_reg, temp);
3765 I915_READ(pipeconf_reg);
3766
3767 switch (temp & PIPE_BPC_MASK) {
3768 case PIPE_8BPC:
3769 bpp = 24;
3770 break;
3771 case PIPE_10BPC:
3772 bpp = 30;
3773 break;
3774 case PIPE_6BPC:
3775 bpp = 18;
3776 break;
3777 case PIPE_12BPC:
3778 bpp = 36;
3779 break;
3780 default:
3781 DRM_ERROR("unknown pipe bpc value\n");
3782 bpp = 24;
3783 }
3784
3785 if (!lane) {
3786 /*
3787 * Account for spread spectrum to avoid
3788 * oversubscribing the link. Max center spread
3789 * is 2.5%; use 5% for safety's sake.
3790 */
3791 u32 bps = target_clock * bpp * 21 / 20;
3792 lane = bps / (link_bw * 8) + 1;
3793 }
3794
3795 intel_crtc->fdi_lanes = lane;
3796
3797 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3798 }
3799
3800 /* Ironlake: try to setup display ref clock before DPLL
3801 * enabling. This is only under driver's control after
3802 * PCH B stepping, previous chipset stepping should be
3803 * ignoring this setting.
3804 */
3805 if (HAS_PCH_SPLIT(dev)) {
3806 temp = I915_READ(PCH_DREF_CONTROL);
3807 /* Always enable nonspread source */
3808 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3809 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3810 I915_WRITE(PCH_DREF_CONTROL, temp);
3811 POSTING_READ(PCH_DREF_CONTROL);
3812
3813 temp &= ~DREF_SSC_SOURCE_MASK;
3814 temp |= DREF_SSC_SOURCE_ENABLE;
3815 I915_WRITE(PCH_DREF_CONTROL, temp);
3816 POSTING_READ(PCH_DREF_CONTROL);
3817
3818 udelay(200);
3819
3820 if (is_edp) {
3821 if (dev_priv->lvds_use_ssc) {
3822 temp |= DREF_SSC1_ENABLE;
3823 I915_WRITE(PCH_DREF_CONTROL, temp);
3824 POSTING_READ(PCH_DREF_CONTROL);
3825
3826 udelay(200);
3827
3828 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3829 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3830 I915_WRITE(PCH_DREF_CONTROL, temp);
3831 POSTING_READ(PCH_DREF_CONTROL);
3832 } else {
3833 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3834 I915_WRITE(PCH_DREF_CONTROL, temp);
3835 POSTING_READ(PCH_DREF_CONTROL);
3836 }
3837 }
3838 }
3839
3840 if (IS_PINEVIEW(dev)) {
3841 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3842 if (has_reduced_clock)
3843 fp2 = (1 << reduced_clock.n) << 16 |
3844 reduced_clock.m1 << 8 | reduced_clock.m2;
3845 } else {
3846 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3847 if (has_reduced_clock)
3848 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3849 reduced_clock.m2;
3850 }
3851
3852 if (!HAS_PCH_SPLIT(dev))
3853 dpll = DPLL_VGA_MODE_DIS;
3854
3855 if (IS_I9XX(dev)) {
3856 if (is_lvds)
3857 dpll |= DPLLB_MODE_LVDS;
3858 else
3859 dpll |= DPLLB_MODE_DAC_SERIAL;
3860 if (is_sdvo) {
3861 dpll |= DPLL_DVO_HIGH_SPEED;
3862 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3863 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3864 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3865 else if (HAS_PCH_SPLIT(dev))
3866 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3867 }
3868 if (is_dp)
3869 dpll |= DPLL_DVO_HIGH_SPEED;
3870
3871 /* compute bitmask from p1 value */
3872 if (IS_PINEVIEW(dev))
3873 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3874 else {
3875 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3876 /* also FPA1 */
3877 if (HAS_PCH_SPLIT(dev))
3878 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3879 if (IS_G4X(dev) && has_reduced_clock)
3880 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3881 }
3882 switch (clock.p2) {
3883 case 5:
3884 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3885 break;
3886 case 7:
3887 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3888 break;
3889 case 10:
3890 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3891 break;
3892 case 14:
3893 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3894 break;
3895 }
3896 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3897 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3898 } else {
3899 if (is_lvds) {
3900 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3901 } else {
3902 if (clock.p1 == 2)
3903 dpll |= PLL_P1_DIVIDE_BY_TWO;
3904 else
3905 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3906 if (clock.p2 == 4)
3907 dpll |= PLL_P2_DIVIDE_BY_4;
3908 }
3909 }
3910
3911 if (is_sdvo && is_tv)
3912 dpll |= PLL_REF_INPUT_TVCLKINBC;
3913 else if (is_tv)
3914 /* XXX: just matching BIOS for now */
3915 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3916 dpll |= 3;
3917 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3918 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3919 else
3920 dpll |= PLL_REF_INPUT_DREFCLK;
3921
3922 /* setup pipeconf */
3923 pipeconf = I915_READ(pipeconf_reg);
3924
3925 /* Set up the display plane register */
3926 dspcntr = DISPPLANE_GAMMA_ENABLE;
3927
3928 /* Ironlake's plane is forced to pipe, bit 24 is to
3929 enable color space conversion */
3930 if (!HAS_PCH_SPLIT(dev)) {
3931 if (pipe == 0)
3932 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3933 else
3934 dspcntr |= DISPPLANE_SEL_PIPE_B;
3935 }
3936
3937 if (pipe == 0 && !IS_I965G(dev)) {
3938 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3939 * core speed.
3940 *
3941 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3942 * pipe == 0 check?
3943 */
3944 if (mode->clock >
3945 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3946 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3947 else
3948 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3949 }
3950
3951 dspcntr |= DISPLAY_PLANE_ENABLE;
3952 pipeconf |= PIPEACONF_ENABLE;
3953 dpll |= DPLL_VCO_ENABLE;
3954
3955
3956 /* Disable the panel fitter if it was on our pipe */
3957 if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3958 I915_WRITE(PFIT_CONTROL, 0);
3959
3960 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3961 drm_mode_debug_printmodeline(mode);
3962
3963 /* assign to Ironlake registers */
3964 if (HAS_PCH_SPLIT(dev)) {
3965 fp_reg = pch_fp_reg;
3966 dpll_reg = pch_dpll_reg;
3967 }
3968
3969 if (is_edp) {
3970 ironlake_disable_pll_edp(crtc);
3971 } else if ((dpll & DPLL_VCO_ENABLE)) {
3972 I915_WRITE(fp_reg, fp);
3973 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3974 I915_READ(dpll_reg);
3975 udelay(150);
3976 }
3977
3978 /* enable transcoder DPLL */
3979 if (HAS_PCH_CPT(dev)) {
3980 temp = I915_READ(PCH_DPLL_SEL);
3981 if (trans_dpll_sel == 0)
3982 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3983 else
3984 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3985 I915_WRITE(PCH_DPLL_SEL, temp);
3986 I915_READ(PCH_DPLL_SEL);
3987 udelay(150);
3988 }
3989
3990 if (HAS_PCH_SPLIT(dev)) {
3991 pipeconf &= ~PIPE_ENABLE_DITHER;
3992 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3993 }
3994
3995 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3996 * This is an exception to the general rule that mode_set doesn't turn
3997 * things on.
3998 */
3999 if (is_lvds) {
4000 u32 lvds;
4001
4002 if (HAS_PCH_SPLIT(dev))
4003 lvds_reg = PCH_LVDS;
4004
4005 lvds = I915_READ(lvds_reg);
4006 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4007 if (pipe == 1) {
4008 if (HAS_PCH_CPT(dev))
4009 lvds |= PORT_TRANS_B_SEL_CPT;
4010 else
4011 lvds |= LVDS_PIPEB_SELECT;
4012 } else {
4013 if (HAS_PCH_CPT(dev))
4014 lvds &= ~PORT_TRANS_SEL_MASK;
4015 else
4016 lvds &= ~LVDS_PIPEB_SELECT;
4017 }
4018 /* set the corresponsding LVDS_BORDER bit */
4019 lvds |= dev_priv->lvds_border_bits;
4020 /* Set the B0-B3 data pairs corresponding to whether we're going to
4021 * set the DPLLs for dual-channel mode or not.
4022 */
4023 if (clock.p2 == 7)
4024 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4025 else
4026 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4027
4028 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4029 * appropriately here, but we need to look more thoroughly into how
4030 * panels behave in the two modes.
4031 */
4032 /* set the dithering flag */
4033 if (IS_I965G(dev)) {
4034 if (dev_priv->lvds_dither) {
4035 if (HAS_PCH_SPLIT(dev)) {
4036 pipeconf |= PIPE_ENABLE_DITHER;
4037 pipeconf |= PIPE_DITHER_TYPE_ST01;
4038 } else
4039 lvds |= LVDS_ENABLE_DITHER;
4040 } else {
4041 if (!HAS_PCH_SPLIT(dev)) {
4042 lvds &= ~LVDS_ENABLE_DITHER;
4043 }
4044 }
4045 }
4046 I915_WRITE(lvds_reg, lvds);
4047 I915_READ(lvds_reg);
4048 }
4049 if (is_dp)
4050 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4051 else if (HAS_PCH_SPLIT(dev)) {
4052 /* For non-DP output, clear any trans DP clock recovery setting.*/
4053 if (pipe == 0) {
4054 I915_WRITE(TRANSA_DATA_M1, 0);
4055 I915_WRITE(TRANSA_DATA_N1, 0);
4056 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4057 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4058 } else {
4059 I915_WRITE(TRANSB_DATA_M1, 0);
4060 I915_WRITE(TRANSB_DATA_N1, 0);
4061 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4062 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4063 }
4064 }
4065
4066 if (!is_edp) {
4067 I915_WRITE(fp_reg, fp);
4068 I915_WRITE(dpll_reg, dpll);
4069 I915_READ(dpll_reg);
4070 /* Wait for the clocks to stabilize. */
4071 udelay(150);
4072
4073 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
4074 if (is_sdvo) {
4075 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
4076 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
4077 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
4078 } else
4079 I915_WRITE(dpll_md_reg, 0);
4080 } else {
4081 /* write it again -- the BIOS does, after all */
4082 I915_WRITE(dpll_reg, dpll);
4083 }
4084 I915_READ(dpll_reg);
4085 /* Wait for the clocks to stabilize. */
4086 udelay(150);
4087 }
4088
4089 if (is_lvds && has_reduced_clock && i915_powersave) {
4090 I915_WRITE(fp_reg + 4, fp2);
4091 intel_crtc->lowfreq_avail = true;
4092 if (HAS_PIPE_CXSR(dev)) {
4093 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4094 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4095 }
4096 } else {
4097 I915_WRITE(fp_reg + 4, fp);
4098 intel_crtc->lowfreq_avail = false;
4099 if (HAS_PIPE_CXSR(dev)) {
4100 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4101 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4102 }
4103 }
4104
4105 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4106 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4107 /* the chip adds 2 halflines automatically */
4108 adjusted_mode->crtc_vdisplay -= 1;
4109 adjusted_mode->crtc_vtotal -= 1;
4110 adjusted_mode->crtc_vblank_start -= 1;
4111 adjusted_mode->crtc_vblank_end -= 1;
4112 adjusted_mode->crtc_vsync_end -= 1;
4113 adjusted_mode->crtc_vsync_start -= 1;
4114 } else
4115 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4116
4117 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
4118 ((adjusted_mode->crtc_htotal - 1) << 16));
4119 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
4120 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4121 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
4122 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4123 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
4124 ((adjusted_mode->crtc_vtotal - 1) << 16));
4125 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
4126 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4127 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
4128 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4129 /* pipesrc and dspsize control the size that is scaled from, which should
4130 * always be the user's requested size.
4131 */
4132 if (!HAS_PCH_SPLIT(dev)) {
4133 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
4134 (mode->hdisplay - 1));
4135 I915_WRITE(dsppos_reg, 0);
4136 }
4137 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4138
4139 if (HAS_PCH_SPLIT(dev)) {
4140 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
4141 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
4142 I915_WRITE(link_m1_reg, m_n.link_m);
4143 I915_WRITE(link_n1_reg, m_n.link_n);
4144
4145 if (is_edp) {
4146 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4147 } else {
4148 /* enable FDI RX PLL too */
4149 temp = I915_READ(fdi_rx_reg);
4150 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
4151 I915_READ(fdi_rx_reg);
4152 udelay(200);
4153
4154 /* enable FDI TX PLL too */
4155 temp = I915_READ(fdi_tx_reg);
4156 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
4157 I915_READ(fdi_tx_reg);
4158
4159 /* enable FDI RX PCDCLK */
4160 temp = I915_READ(fdi_rx_reg);
4161 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
4162 I915_READ(fdi_rx_reg);
4163 udelay(200);
4164 }
4165 }
4166
4167 I915_WRITE(pipeconf_reg, pipeconf);
4168 I915_READ(pipeconf_reg);
4169
4170 intel_wait_for_vblank(dev);
4171
4172 if (IS_IRONLAKE(dev)) {
4173 /* enable address swizzle for tiling buffer */
4174 temp = I915_READ(DISP_ARB_CTL);
4175 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4176 }
4177
4178 I915_WRITE(dspcntr_reg, dspcntr);
4179
4180 /* Flush the plane changes */
4181 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4182
4183 if ((IS_I965G(dev) || plane == 0))
4184 intel_update_fbc(crtc, &crtc->mode);
4185
4186 intel_update_watermarks(dev);
4187
4188 drm_vblank_post_modeset(dev, pipe);
4189
4190 return ret;
4191 }
4192
4193 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4194 void intel_crtc_load_lut(struct drm_crtc *crtc)
4195 {
4196 struct drm_device *dev = crtc->dev;
4197 struct drm_i915_private *dev_priv = dev->dev_private;
4198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4199 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4200 int i;
4201
4202 /* The clocks have to be on to load the palette. */
4203 if (!crtc->enabled)
4204 return;
4205
4206 /* use legacy palette for Ironlake */
4207 if (HAS_PCH_SPLIT(dev))
4208 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4209 LGC_PALETTE_B;
4210
4211 for (i = 0; i < 256; i++) {
4212 I915_WRITE(palreg + 4 * i,
4213 (intel_crtc->lut_r[i] << 16) |
4214 (intel_crtc->lut_g[i] << 8) |
4215 intel_crtc->lut_b[i]);
4216 }
4217 }
4218
4219 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4220 static void intel_crtc_update_cursor(struct drm_crtc *crtc)
4221 {
4222 struct drm_device *dev = crtc->dev;
4223 struct drm_i915_private *dev_priv = dev->dev_private;
4224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4225 int pipe = intel_crtc->pipe;
4226 int x = intel_crtc->cursor_x;
4227 int y = intel_crtc->cursor_y;
4228 uint32_t base, pos;
4229 bool visible;
4230
4231 pos = 0;
4232
4233 if (crtc->fb) {
4234 base = intel_crtc->cursor_addr;
4235 if (x > (int) crtc->fb->width)
4236 base = 0;
4237
4238 if (y > (int) crtc->fb->height)
4239 base = 0;
4240 } else
4241 base = 0;
4242
4243 if (x < 0) {
4244 if (x + intel_crtc->cursor_width < 0)
4245 base = 0;
4246
4247 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4248 x = -x;
4249 }
4250 pos |= x << CURSOR_X_SHIFT;
4251
4252 if (y < 0) {
4253 if (y + intel_crtc->cursor_height < 0)
4254 base = 0;
4255
4256 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4257 y = -y;
4258 }
4259 pos |= y << CURSOR_Y_SHIFT;
4260
4261 visible = base != 0;
4262 if (!visible && !intel_crtc->cursor_visble)
4263 return;
4264
4265 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4266 if (intel_crtc->cursor_visble != visible) {
4267 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4268 if (base) {
4269 /* Hooray for CUR*CNTR differences */
4270 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
4271 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4272 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4273 cntl |= pipe << 28; /* Connect to correct pipe */
4274 } else {
4275 cntl &= ~(CURSOR_FORMAT_MASK);
4276 cntl |= CURSOR_ENABLE;
4277 cntl |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
4278 }
4279 } else {
4280 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
4281 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4282 cntl |= CURSOR_MODE_DISABLE;
4283 } else {
4284 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4285 }
4286 }
4287 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4288
4289 intel_crtc->cursor_visble = visible;
4290 }
4291 /* and commit changes on next vblank */
4292 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4293
4294 if (visible)
4295 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4296 }
4297
4298 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4299 struct drm_file *file_priv,
4300 uint32_t handle,
4301 uint32_t width, uint32_t height)
4302 {
4303 struct drm_device *dev = crtc->dev;
4304 struct drm_i915_private *dev_priv = dev->dev_private;
4305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4306 struct drm_gem_object *bo;
4307 struct drm_i915_gem_object *obj_priv;
4308 uint32_t addr;
4309 int ret;
4310
4311 DRM_DEBUG_KMS("\n");
4312
4313 /* if we want to turn off the cursor ignore width and height */
4314 if (!handle) {
4315 DRM_DEBUG_KMS("cursor off\n");
4316 addr = 0;
4317 bo = NULL;
4318 mutex_lock(&dev->struct_mutex);
4319 goto finish;
4320 }
4321
4322 /* Currently we only support 64x64 cursors */
4323 if (width != 64 || height != 64) {
4324 DRM_ERROR("we currently only support 64x64 cursors\n");
4325 return -EINVAL;
4326 }
4327
4328 bo = drm_gem_object_lookup(dev, file_priv, handle);
4329 if (!bo)
4330 return -ENOENT;
4331
4332 obj_priv = to_intel_bo(bo);
4333
4334 if (bo->size < width * height * 4) {
4335 DRM_ERROR("buffer is to small\n");
4336 ret = -ENOMEM;
4337 goto fail;
4338 }
4339
4340 /* we only need to pin inside GTT if cursor is non-phy */
4341 mutex_lock(&dev->struct_mutex);
4342 if (!dev_priv->info->cursor_needs_physical) {
4343 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4344 if (ret) {
4345 DRM_ERROR("failed to pin cursor bo\n");
4346 goto fail_locked;
4347 }
4348
4349 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4350 if (ret) {
4351 DRM_ERROR("failed to move cursor bo into the GTT\n");
4352 goto fail_unpin;
4353 }
4354
4355 addr = obj_priv->gtt_offset;
4356 } else {
4357 ret = i915_gem_attach_phys_object(dev, bo,
4358 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
4359 if (ret) {
4360 DRM_ERROR("failed to attach phys object\n");
4361 goto fail_locked;
4362 }
4363 addr = obj_priv->phys_obj->handle->busaddr;
4364 }
4365
4366 if (!IS_I9XX(dev))
4367 I915_WRITE(CURSIZE, (height << 12) | width);
4368
4369 finish:
4370 if (intel_crtc->cursor_bo) {
4371 if (dev_priv->info->cursor_needs_physical) {
4372 if (intel_crtc->cursor_bo != bo)
4373 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4374 } else
4375 i915_gem_object_unpin(intel_crtc->cursor_bo);
4376 drm_gem_object_unreference(intel_crtc->cursor_bo);
4377 }
4378
4379 mutex_unlock(&dev->struct_mutex);
4380
4381 intel_crtc->cursor_addr = addr;
4382 intel_crtc->cursor_bo = bo;
4383 intel_crtc->cursor_width = width;
4384 intel_crtc->cursor_height = height;
4385
4386 intel_crtc_update_cursor(crtc);
4387
4388 return 0;
4389 fail_unpin:
4390 i915_gem_object_unpin(bo);
4391 fail_locked:
4392 mutex_unlock(&dev->struct_mutex);
4393 fail:
4394 drm_gem_object_unreference_unlocked(bo);
4395 return ret;
4396 }
4397
4398 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4399 {
4400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4401
4402 intel_crtc->cursor_x = x;
4403 intel_crtc->cursor_y = y;
4404
4405 intel_crtc_update_cursor(crtc);
4406
4407 return 0;
4408 }
4409
4410 /** Sets the color ramps on behalf of RandR */
4411 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4412 u16 blue, int regno)
4413 {
4414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4415
4416 intel_crtc->lut_r[regno] = red >> 8;
4417 intel_crtc->lut_g[regno] = green >> 8;
4418 intel_crtc->lut_b[regno] = blue >> 8;
4419 }
4420
4421 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4422 u16 *blue, int regno)
4423 {
4424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4425
4426 *red = intel_crtc->lut_r[regno] << 8;
4427 *green = intel_crtc->lut_g[regno] << 8;
4428 *blue = intel_crtc->lut_b[regno] << 8;
4429 }
4430
4431 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4432 u16 *blue, uint32_t size)
4433 {
4434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4435 int i;
4436
4437 if (size != 256)
4438 return;
4439
4440 for (i = 0; i < 256; i++) {
4441 intel_crtc->lut_r[i] = red[i] >> 8;
4442 intel_crtc->lut_g[i] = green[i] >> 8;
4443 intel_crtc->lut_b[i] = blue[i] >> 8;
4444 }
4445
4446 intel_crtc_load_lut(crtc);
4447 }
4448
4449 /**
4450 * Get a pipe with a simple mode set on it for doing load-based monitor
4451 * detection.
4452 *
4453 * It will be up to the load-detect code to adjust the pipe as appropriate for
4454 * its requirements. The pipe will be connected to no other encoders.
4455 *
4456 * Currently this code will only succeed if there is a pipe with no encoders
4457 * configured for it. In the future, it could choose to temporarily disable
4458 * some outputs to free up a pipe for its use.
4459 *
4460 * \return crtc, or NULL if no pipes are available.
4461 */
4462
4463 /* VESA 640x480x72Hz mode to set on the pipe */
4464 static struct drm_display_mode load_detect_mode = {
4465 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4466 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4467 };
4468
4469 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4470 struct drm_connector *connector,
4471 struct drm_display_mode *mode,
4472 int *dpms_mode)
4473 {
4474 struct intel_crtc *intel_crtc;
4475 struct drm_crtc *possible_crtc;
4476 struct drm_crtc *supported_crtc =NULL;
4477 struct drm_encoder *encoder = &intel_encoder->enc;
4478 struct drm_crtc *crtc = NULL;
4479 struct drm_device *dev = encoder->dev;
4480 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4481 struct drm_crtc_helper_funcs *crtc_funcs;
4482 int i = -1;
4483
4484 /*
4485 * Algorithm gets a little messy:
4486 * - if the connector already has an assigned crtc, use it (but make
4487 * sure it's on first)
4488 * - try to find the first unused crtc that can drive this connector,
4489 * and use that if we find one
4490 * - if there are no unused crtcs available, try to use the first
4491 * one we found that supports the connector
4492 */
4493
4494 /* See if we already have a CRTC for this connector */
4495 if (encoder->crtc) {
4496 crtc = encoder->crtc;
4497 /* Make sure the crtc and connector are running */
4498 intel_crtc = to_intel_crtc(crtc);
4499 *dpms_mode = intel_crtc->dpms_mode;
4500 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4501 crtc_funcs = crtc->helper_private;
4502 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4503 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4504 }
4505 return crtc;
4506 }
4507
4508 /* Find an unused one (if possible) */
4509 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4510 i++;
4511 if (!(encoder->possible_crtcs & (1 << i)))
4512 continue;
4513 if (!possible_crtc->enabled) {
4514 crtc = possible_crtc;
4515 break;
4516 }
4517 if (!supported_crtc)
4518 supported_crtc = possible_crtc;
4519 }
4520
4521 /*
4522 * If we didn't find an unused CRTC, don't use any.
4523 */
4524 if (!crtc) {
4525 return NULL;
4526 }
4527
4528 encoder->crtc = crtc;
4529 connector->encoder = encoder;
4530 intel_encoder->load_detect_temp = true;
4531
4532 intel_crtc = to_intel_crtc(crtc);
4533 *dpms_mode = intel_crtc->dpms_mode;
4534
4535 if (!crtc->enabled) {
4536 if (!mode)
4537 mode = &load_detect_mode;
4538 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4539 } else {
4540 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4541 crtc_funcs = crtc->helper_private;
4542 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4543 }
4544
4545 /* Add this connector to the crtc */
4546 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4547 encoder_funcs->commit(encoder);
4548 }
4549 /* let the connector get through one full cycle before testing */
4550 intel_wait_for_vblank(dev);
4551
4552 return crtc;
4553 }
4554
4555 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4556 struct drm_connector *connector, int dpms_mode)
4557 {
4558 struct drm_encoder *encoder = &intel_encoder->enc;
4559 struct drm_device *dev = encoder->dev;
4560 struct drm_crtc *crtc = encoder->crtc;
4561 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4562 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4563
4564 if (intel_encoder->load_detect_temp) {
4565 encoder->crtc = NULL;
4566 connector->encoder = NULL;
4567 intel_encoder->load_detect_temp = false;
4568 crtc->enabled = drm_helper_crtc_in_use(crtc);
4569 drm_helper_disable_unused_functions(dev);
4570 }
4571
4572 /* Switch crtc and encoder back off if necessary */
4573 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4574 if (encoder->crtc == crtc)
4575 encoder_funcs->dpms(encoder, dpms_mode);
4576 crtc_funcs->dpms(crtc, dpms_mode);
4577 }
4578 }
4579
4580 /* Returns the clock of the currently programmed mode of the given pipe. */
4581 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4582 {
4583 struct drm_i915_private *dev_priv = dev->dev_private;
4584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4585 int pipe = intel_crtc->pipe;
4586 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4587 u32 fp;
4588 intel_clock_t clock;
4589
4590 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4591 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4592 else
4593 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4594
4595 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4596 if (IS_PINEVIEW(dev)) {
4597 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4598 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4599 } else {
4600 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4601 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4602 }
4603
4604 if (IS_I9XX(dev)) {
4605 if (IS_PINEVIEW(dev))
4606 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4607 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4608 else
4609 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4610 DPLL_FPA01_P1_POST_DIV_SHIFT);
4611
4612 switch (dpll & DPLL_MODE_MASK) {
4613 case DPLLB_MODE_DAC_SERIAL:
4614 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4615 5 : 10;
4616 break;
4617 case DPLLB_MODE_LVDS:
4618 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4619 7 : 14;
4620 break;
4621 default:
4622 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4623 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4624 return 0;
4625 }
4626
4627 /* XXX: Handle the 100Mhz refclk */
4628 intel_clock(dev, 96000, &clock);
4629 } else {
4630 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4631
4632 if (is_lvds) {
4633 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4634 DPLL_FPA01_P1_POST_DIV_SHIFT);
4635 clock.p2 = 14;
4636
4637 if ((dpll & PLL_REF_INPUT_MASK) ==
4638 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4639 /* XXX: might not be 66MHz */
4640 intel_clock(dev, 66000, &clock);
4641 } else
4642 intel_clock(dev, 48000, &clock);
4643 } else {
4644 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4645 clock.p1 = 2;
4646 else {
4647 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4648 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4649 }
4650 if (dpll & PLL_P2_DIVIDE_BY_4)
4651 clock.p2 = 4;
4652 else
4653 clock.p2 = 2;
4654
4655 intel_clock(dev, 48000, &clock);
4656 }
4657 }
4658
4659 /* XXX: It would be nice to validate the clocks, but we can't reuse
4660 * i830PllIsValid() because it relies on the xf86_config connector
4661 * configuration being accurate, which it isn't necessarily.
4662 */
4663
4664 return clock.dot;
4665 }
4666
4667 /** Returns the currently programmed mode of the given pipe. */
4668 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4669 struct drm_crtc *crtc)
4670 {
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4673 int pipe = intel_crtc->pipe;
4674 struct drm_display_mode *mode;
4675 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4676 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4677 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4678 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4679
4680 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4681 if (!mode)
4682 return NULL;
4683
4684 mode->clock = intel_crtc_clock_get(dev, crtc);
4685 mode->hdisplay = (htot & 0xffff) + 1;
4686 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4687 mode->hsync_start = (hsync & 0xffff) + 1;
4688 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4689 mode->vdisplay = (vtot & 0xffff) + 1;
4690 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4691 mode->vsync_start = (vsync & 0xffff) + 1;
4692 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4693
4694 drm_mode_set_name(mode);
4695 drm_mode_set_crtcinfo(mode, 0);
4696
4697 return mode;
4698 }
4699
4700 #define GPU_IDLE_TIMEOUT 500 /* ms */
4701
4702 /* When this timer fires, we've been idle for awhile */
4703 static void intel_gpu_idle_timer(unsigned long arg)
4704 {
4705 struct drm_device *dev = (struct drm_device *)arg;
4706 drm_i915_private_t *dev_priv = dev->dev_private;
4707
4708 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4709
4710 dev_priv->busy = false;
4711
4712 queue_work(dev_priv->wq, &dev_priv->idle_work);
4713 }
4714
4715 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4716
4717 static void intel_crtc_idle_timer(unsigned long arg)
4718 {
4719 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4720 struct drm_crtc *crtc = &intel_crtc->base;
4721 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4722
4723 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4724
4725 intel_crtc->busy = false;
4726
4727 queue_work(dev_priv->wq, &dev_priv->idle_work);
4728 }
4729
4730 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4731 {
4732 struct drm_device *dev = crtc->dev;
4733 drm_i915_private_t *dev_priv = dev->dev_private;
4734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4735 int pipe = intel_crtc->pipe;
4736 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4737 int dpll = I915_READ(dpll_reg);
4738
4739 if (HAS_PCH_SPLIT(dev))
4740 return;
4741
4742 if (!dev_priv->lvds_downclock_avail)
4743 return;
4744
4745 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4746 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4747
4748 /* Unlock panel regs */
4749 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4750 PANEL_UNLOCK_REGS);
4751
4752 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4753 I915_WRITE(dpll_reg, dpll);
4754 dpll = I915_READ(dpll_reg);
4755 intel_wait_for_vblank(dev);
4756 dpll = I915_READ(dpll_reg);
4757 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4758 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4759
4760 /* ...and lock them again */
4761 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4762 }
4763
4764 /* Schedule downclock */
4765 if (schedule)
4766 mod_timer(&intel_crtc->idle_timer, jiffies +
4767 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4768 }
4769
4770 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4771 {
4772 struct drm_device *dev = crtc->dev;
4773 drm_i915_private_t *dev_priv = dev->dev_private;
4774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4775 int pipe = intel_crtc->pipe;
4776 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4777 int dpll = I915_READ(dpll_reg);
4778
4779 if (HAS_PCH_SPLIT(dev))
4780 return;
4781
4782 if (!dev_priv->lvds_downclock_avail)
4783 return;
4784
4785 /*
4786 * Since this is called by a timer, we should never get here in
4787 * the manual case.
4788 */
4789 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4790 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4791
4792 /* Unlock panel regs */
4793 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4794 PANEL_UNLOCK_REGS);
4795
4796 dpll |= DISPLAY_RATE_SELECT_FPA1;
4797 I915_WRITE(dpll_reg, dpll);
4798 dpll = I915_READ(dpll_reg);
4799 intel_wait_for_vblank(dev);
4800 dpll = I915_READ(dpll_reg);
4801 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4802 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4803
4804 /* ...and lock them again */
4805 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4806 }
4807
4808 }
4809
4810 /**
4811 * intel_idle_update - adjust clocks for idleness
4812 * @work: work struct
4813 *
4814 * Either the GPU or display (or both) went idle. Check the busy status
4815 * here and adjust the CRTC and GPU clocks as necessary.
4816 */
4817 static void intel_idle_update(struct work_struct *work)
4818 {
4819 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4820 idle_work);
4821 struct drm_device *dev = dev_priv->dev;
4822 struct drm_crtc *crtc;
4823 struct intel_crtc *intel_crtc;
4824 int enabled = 0;
4825
4826 if (!i915_powersave)
4827 return;
4828
4829 mutex_lock(&dev->struct_mutex);
4830
4831 i915_update_gfx_val(dev_priv);
4832
4833 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4834 /* Skip inactive CRTCs */
4835 if (!crtc->fb)
4836 continue;
4837
4838 enabled++;
4839 intel_crtc = to_intel_crtc(crtc);
4840 if (!intel_crtc->busy)
4841 intel_decrease_pllclock(crtc);
4842 }
4843
4844 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4845 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4846 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4847 }
4848
4849 mutex_unlock(&dev->struct_mutex);
4850 }
4851
4852 /**
4853 * intel_mark_busy - mark the GPU and possibly the display busy
4854 * @dev: drm device
4855 * @obj: object we're operating on
4856 *
4857 * Callers can use this function to indicate that the GPU is busy processing
4858 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4859 * buffer), we'll also mark the display as busy, so we know to increase its
4860 * clock frequency.
4861 */
4862 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4863 {
4864 drm_i915_private_t *dev_priv = dev->dev_private;
4865 struct drm_crtc *crtc = NULL;
4866 struct intel_framebuffer *intel_fb;
4867 struct intel_crtc *intel_crtc;
4868
4869 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4870 return;
4871
4872 if (!dev_priv->busy) {
4873 if (IS_I945G(dev) || IS_I945GM(dev)) {
4874 u32 fw_blc_self;
4875
4876 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4877 fw_blc_self = I915_READ(FW_BLC_SELF);
4878 fw_blc_self &= ~FW_BLC_SELF_EN;
4879 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4880 }
4881 dev_priv->busy = true;
4882 } else
4883 mod_timer(&dev_priv->idle_timer, jiffies +
4884 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4885
4886 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4887 if (!crtc->fb)
4888 continue;
4889
4890 intel_crtc = to_intel_crtc(crtc);
4891 intel_fb = to_intel_framebuffer(crtc->fb);
4892 if (intel_fb->obj == obj) {
4893 if (!intel_crtc->busy) {
4894 if (IS_I945G(dev) || IS_I945GM(dev)) {
4895 u32 fw_blc_self;
4896
4897 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4898 fw_blc_self = I915_READ(FW_BLC_SELF);
4899 fw_blc_self &= ~FW_BLC_SELF_EN;
4900 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4901 }
4902 /* Non-busy -> busy, upclock */
4903 intel_increase_pllclock(crtc, true);
4904 intel_crtc->busy = true;
4905 } else {
4906 /* Busy -> busy, put off timer */
4907 mod_timer(&intel_crtc->idle_timer, jiffies +
4908 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4909 }
4910 }
4911 }
4912 }
4913
4914 static void intel_crtc_destroy(struct drm_crtc *crtc)
4915 {
4916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4917
4918 drm_crtc_cleanup(crtc);
4919 kfree(intel_crtc);
4920 }
4921
4922 struct intel_unpin_work {
4923 struct work_struct work;
4924 struct drm_device *dev;
4925 struct drm_gem_object *old_fb_obj;
4926 struct drm_gem_object *pending_flip_obj;
4927 struct drm_pending_vblank_event *event;
4928 int pending;
4929 };
4930
4931 static void intel_unpin_work_fn(struct work_struct *__work)
4932 {
4933 struct intel_unpin_work *work =
4934 container_of(__work, struct intel_unpin_work, work);
4935
4936 mutex_lock(&work->dev->struct_mutex);
4937 i915_gem_object_unpin(work->old_fb_obj);
4938 drm_gem_object_unreference(work->pending_flip_obj);
4939 drm_gem_object_unreference(work->old_fb_obj);
4940 mutex_unlock(&work->dev->struct_mutex);
4941 kfree(work);
4942 }
4943
4944 static void do_intel_finish_page_flip(struct drm_device *dev,
4945 struct drm_crtc *crtc)
4946 {
4947 drm_i915_private_t *dev_priv = dev->dev_private;
4948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4949 struct intel_unpin_work *work;
4950 struct drm_i915_gem_object *obj_priv;
4951 struct drm_pending_vblank_event *e;
4952 struct timeval now;
4953 unsigned long flags;
4954
4955 /* Ignore early vblank irqs */
4956 if (intel_crtc == NULL)
4957 return;
4958
4959 spin_lock_irqsave(&dev->event_lock, flags);
4960 work = intel_crtc->unpin_work;
4961 if (work == NULL || !work->pending) {
4962 spin_unlock_irqrestore(&dev->event_lock, flags);
4963 return;
4964 }
4965
4966 intel_crtc->unpin_work = NULL;
4967 drm_vblank_put(dev, intel_crtc->pipe);
4968
4969 if (work->event) {
4970 e = work->event;
4971 do_gettimeofday(&now);
4972 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4973 e->event.tv_sec = now.tv_sec;
4974 e->event.tv_usec = now.tv_usec;
4975 list_add_tail(&e->base.link,
4976 &e->base.file_priv->event_list);
4977 wake_up_interruptible(&e->base.file_priv->event_wait);
4978 }
4979
4980 spin_unlock_irqrestore(&dev->event_lock, flags);
4981
4982 obj_priv = to_intel_bo(work->pending_flip_obj);
4983
4984 /* Initial scanout buffer will have a 0 pending flip count */
4985 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4986 atomic_dec_and_test(&obj_priv->pending_flip))
4987 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4988 schedule_work(&work->work);
4989
4990 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
4991 }
4992
4993 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4994 {
4995 drm_i915_private_t *dev_priv = dev->dev_private;
4996 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4997
4998 do_intel_finish_page_flip(dev, crtc);
4999 }
5000
5001 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5002 {
5003 drm_i915_private_t *dev_priv = dev->dev_private;
5004 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5005
5006 do_intel_finish_page_flip(dev, crtc);
5007 }
5008
5009 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5010 {
5011 drm_i915_private_t *dev_priv = dev->dev_private;
5012 struct intel_crtc *intel_crtc =
5013 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5014 unsigned long flags;
5015
5016 spin_lock_irqsave(&dev->event_lock, flags);
5017 if (intel_crtc->unpin_work) {
5018 intel_crtc->unpin_work->pending = 1;
5019 } else {
5020 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5021 }
5022 spin_unlock_irqrestore(&dev->event_lock, flags);
5023 }
5024
5025 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5026 struct drm_framebuffer *fb,
5027 struct drm_pending_vblank_event *event)
5028 {
5029 struct drm_device *dev = crtc->dev;
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031 struct intel_framebuffer *intel_fb;
5032 struct drm_i915_gem_object *obj_priv;
5033 struct drm_gem_object *obj;
5034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5035 struct intel_unpin_work *work;
5036 unsigned long flags, offset;
5037 int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
5038 int ret, pipesrc;
5039 u32 flip_mask;
5040
5041 work = kzalloc(sizeof *work, GFP_KERNEL);
5042 if (work == NULL)
5043 return -ENOMEM;
5044
5045 work->event = event;
5046 work->dev = crtc->dev;
5047 intel_fb = to_intel_framebuffer(crtc->fb);
5048 work->old_fb_obj = intel_fb->obj;
5049 INIT_WORK(&work->work, intel_unpin_work_fn);
5050
5051 /* We borrow the event spin lock for protecting unpin_work */
5052 spin_lock_irqsave(&dev->event_lock, flags);
5053 if (intel_crtc->unpin_work) {
5054 spin_unlock_irqrestore(&dev->event_lock, flags);
5055 kfree(work);
5056
5057 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5058 return -EBUSY;
5059 }
5060 intel_crtc->unpin_work = work;
5061 spin_unlock_irqrestore(&dev->event_lock, flags);
5062
5063 intel_fb = to_intel_framebuffer(fb);
5064 obj = intel_fb->obj;
5065
5066 mutex_lock(&dev->struct_mutex);
5067 ret = intel_pin_and_fence_fb_obj(dev, obj);
5068 if (ret)
5069 goto cleanup_work;
5070
5071 /* Reference the objects for the scheduled work. */
5072 drm_gem_object_reference(work->old_fb_obj);
5073 drm_gem_object_reference(obj);
5074
5075 crtc->fb = fb;
5076 ret = i915_gem_object_flush_write_domain(obj);
5077 if (ret)
5078 goto cleanup_objs;
5079
5080 ret = drm_vblank_get(dev, intel_crtc->pipe);
5081 if (ret)
5082 goto cleanup_objs;
5083
5084 obj_priv = to_intel_bo(obj);
5085 atomic_inc(&obj_priv->pending_flip);
5086 work->pending_flip_obj = obj;
5087
5088 if (intel_crtc->plane)
5089 flip_mask = I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
5090 else
5091 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
5092
5093 /* Wait for any previous flip to finish */
5094 if (IS_GEN3(dev))
5095 while (I915_READ(ISR) & flip_mask)
5096 ;
5097
5098 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5099 offset = obj_priv->gtt_offset;
5100 offset += (crtc->y * fb->pitch) + (crtc->x * (fb->bits_per_pixel) / 8);
5101
5102 BEGIN_LP_RING(4);
5103 if (IS_I965G(dev)) {
5104 OUT_RING(MI_DISPLAY_FLIP |
5105 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5106 OUT_RING(fb->pitch);
5107 OUT_RING(offset | obj_priv->tiling_mode);
5108 pipesrc = I915_READ(pipesrc_reg);
5109 OUT_RING(pipesrc & 0x0fff0fff);
5110 } else {
5111 OUT_RING(MI_DISPLAY_FLIP_I915 |
5112 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5113 OUT_RING(fb->pitch);
5114 OUT_RING(offset);
5115 OUT_RING(MI_NOOP);
5116 }
5117 ADVANCE_LP_RING();
5118
5119 mutex_unlock(&dev->struct_mutex);
5120
5121 trace_i915_flip_request(intel_crtc->plane, obj);
5122
5123 return 0;
5124
5125 cleanup_objs:
5126 drm_gem_object_unreference(work->old_fb_obj);
5127 drm_gem_object_unreference(obj);
5128 cleanup_work:
5129 mutex_unlock(&dev->struct_mutex);
5130
5131 spin_lock_irqsave(&dev->event_lock, flags);
5132 intel_crtc->unpin_work = NULL;
5133 spin_unlock_irqrestore(&dev->event_lock, flags);
5134
5135 kfree(work);
5136
5137 return ret;
5138 }
5139
5140 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
5141 .dpms = intel_crtc_dpms,
5142 .mode_fixup = intel_crtc_mode_fixup,
5143 .mode_set = intel_crtc_mode_set,
5144 .mode_set_base = intel_pipe_set_base,
5145 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5146 .prepare = intel_crtc_prepare,
5147 .commit = intel_crtc_commit,
5148 .load_lut = intel_crtc_load_lut,
5149 };
5150
5151 static const struct drm_crtc_funcs intel_crtc_funcs = {
5152 .cursor_set = intel_crtc_cursor_set,
5153 .cursor_move = intel_crtc_cursor_move,
5154 .gamma_set = intel_crtc_gamma_set,
5155 .set_config = drm_crtc_helper_set_config,
5156 .destroy = intel_crtc_destroy,
5157 .page_flip = intel_crtc_page_flip,
5158 };
5159
5160
5161 static void intel_crtc_init(struct drm_device *dev, int pipe)
5162 {
5163 drm_i915_private_t *dev_priv = dev->dev_private;
5164 struct intel_crtc *intel_crtc;
5165 int i;
5166
5167 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5168 if (intel_crtc == NULL)
5169 return;
5170
5171 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5172
5173 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5174 intel_crtc->pipe = pipe;
5175 intel_crtc->plane = pipe;
5176 for (i = 0; i < 256; i++) {
5177 intel_crtc->lut_r[i] = i;
5178 intel_crtc->lut_g[i] = i;
5179 intel_crtc->lut_b[i] = i;
5180 }
5181
5182 /* Swap pipes & planes for FBC on pre-965 */
5183 intel_crtc->pipe = pipe;
5184 intel_crtc->plane = pipe;
5185 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
5186 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5187 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
5188 }
5189
5190 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5191 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5192 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5193 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5194
5195 intel_crtc->cursor_addr = 0;
5196 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5197 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5198
5199 intel_crtc->busy = false;
5200
5201 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5202 (unsigned long)intel_crtc);
5203 }
5204
5205 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5206 struct drm_file *file_priv)
5207 {
5208 drm_i915_private_t *dev_priv = dev->dev_private;
5209 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5210 struct drm_mode_object *drmmode_obj;
5211 struct intel_crtc *crtc;
5212
5213 if (!dev_priv) {
5214 DRM_ERROR("called with no initialization\n");
5215 return -EINVAL;
5216 }
5217
5218 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5219 DRM_MODE_OBJECT_CRTC);
5220
5221 if (!drmmode_obj) {
5222 DRM_ERROR("no such CRTC id\n");
5223 return -EINVAL;
5224 }
5225
5226 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5227 pipe_from_crtc_id->pipe = crtc->pipe;
5228
5229 return 0;
5230 }
5231
5232 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5233 {
5234 struct drm_crtc *crtc = NULL;
5235
5236 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238 if (intel_crtc->pipe == pipe)
5239 break;
5240 }
5241 return crtc;
5242 }
5243
5244 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5245 {
5246 int index_mask = 0;
5247 struct drm_encoder *encoder;
5248 int entry = 0;
5249
5250 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5251 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5252 if (type_mask & intel_encoder->clone_mask)
5253 index_mask |= (1 << entry);
5254 entry++;
5255 }
5256 return index_mask;
5257 }
5258
5259
5260 static void intel_setup_outputs(struct drm_device *dev)
5261 {
5262 struct drm_i915_private *dev_priv = dev->dev_private;
5263 struct drm_encoder *encoder;
5264 bool dpd_is_edp = false;
5265
5266 if (IS_MOBILE(dev) && !IS_I830(dev))
5267 intel_lvds_init(dev);
5268
5269 if (HAS_PCH_SPLIT(dev)) {
5270 dpd_is_edp = intel_dpd_is_edp(dev);
5271
5272 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5273 intel_dp_init(dev, DP_A);
5274
5275 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5276 intel_dp_init(dev, PCH_DP_D);
5277 }
5278
5279 intel_crt_init(dev);
5280
5281 if (HAS_PCH_SPLIT(dev)) {
5282 int found;
5283
5284 if (I915_READ(HDMIB) & PORT_DETECTED) {
5285 /* PCH SDVOB multiplex with HDMIB */
5286 found = intel_sdvo_init(dev, PCH_SDVOB);
5287 if (!found)
5288 intel_hdmi_init(dev, HDMIB);
5289 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5290 intel_dp_init(dev, PCH_DP_B);
5291 }
5292
5293 if (I915_READ(HDMIC) & PORT_DETECTED)
5294 intel_hdmi_init(dev, HDMIC);
5295
5296 if (I915_READ(HDMID) & PORT_DETECTED)
5297 intel_hdmi_init(dev, HDMID);
5298
5299 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5300 intel_dp_init(dev, PCH_DP_C);
5301
5302 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5303 intel_dp_init(dev, PCH_DP_D);
5304
5305 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5306 bool found = false;
5307
5308 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5309 DRM_DEBUG_KMS("probing SDVOB\n");
5310 found = intel_sdvo_init(dev, SDVOB);
5311 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5312 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5313 intel_hdmi_init(dev, SDVOB);
5314 }
5315
5316 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5317 DRM_DEBUG_KMS("probing DP_B\n");
5318 intel_dp_init(dev, DP_B);
5319 }
5320 }
5321
5322 /* Before G4X SDVOC doesn't have its own detect register */
5323
5324 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5325 DRM_DEBUG_KMS("probing SDVOC\n");
5326 found = intel_sdvo_init(dev, SDVOC);
5327 }
5328
5329 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5330
5331 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5332 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5333 intel_hdmi_init(dev, SDVOC);
5334 }
5335 if (SUPPORTS_INTEGRATED_DP(dev)) {
5336 DRM_DEBUG_KMS("probing DP_C\n");
5337 intel_dp_init(dev, DP_C);
5338 }
5339 }
5340
5341 if (SUPPORTS_INTEGRATED_DP(dev) &&
5342 (I915_READ(DP_D) & DP_DETECTED)) {
5343 DRM_DEBUG_KMS("probing DP_D\n");
5344 intel_dp_init(dev, DP_D);
5345 }
5346 } else if (IS_GEN2(dev))
5347 intel_dvo_init(dev);
5348
5349 if (SUPPORTS_TV(dev))
5350 intel_tv_init(dev);
5351
5352 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5353 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5354
5355 encoder->possible_crtcs = intel_encoder->crtc_mask;
5356 encoder->possible_clones = intel_encoder_clones(dev,
5357 intel_encoder->clone_mask);
5358 }
5359 }
5360
5361 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5362 {
5363 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5364
5365 drm_framebuffer_cleanup(fb);
5366 drm_gem_object_unreference_unlocked(intel_fb->obj);
5367
5368 kfree(intel_fb);
5369 }
5370
5371 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5372 struct drm_file *file_priv,
5373 unsigned int *handle)
5374 {
5375 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5376 struct drm_gem_object *object = intel_fb->obj;
5377
5378 return drm_gem_handle_create(file_priv, object, handle);
5379 }
5380
5381 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5382 .destroy = intel_user_framebuffer_destroy,
5383 .create_handle = intel_user_framebuffer_create_handle,
5384 };
5385
5386 int intel_framebuffer_init(struct drm_device *dev,
5387 struct intel_framebuffer *intel_fb,
5388 struct drm_mode_fb_cmd *mode_cmd,
5389 struct drm_gem_object *obj)
5390 {
5391 int ret;
5392
5393 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5394 if (ret) {
5395 DRM_ERROR("framebuffer init failed %d\n", ret);
5396 return ret;
5397 }
5398
5399 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5400 intel_fb->obj = obj;
5401 return 0;
5402 }
5403
5404 static struct drm_framebuffer *
5405 intel_user_framebuffer_create(struct drm_device *dev,
5406 struct drm_file *filp,
5407 struct drm_mode_fb_cmd *mode_cmd)
5408 {
5409 struct drm_gem_object *obj;
5410 struct intel_framebuffer *intel_fb;
5411 int ret;
5412
5413 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5414 if (!obj)
5415 return NULL;
5416
5417 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5418 if (!intel_fb)
5419 return NULL;
5420
5421 ret = intel_framebuffer_init(dev, intel_fb,
5422 mode_cmd, obj);
5423 if (ret) {
5424 drm_gem_object_unreference_unlocked(obj);
5425 kfree(intel_fb);
5426 return NULL;
5427 }
5428
5429 return &intel_fb->base;
5430 }
5431
5432 static const struct drm_mode_config_funcs intel_mode_funcs = {
5433 .fb_create = intel_user_framebuffer_create,
5434 .output_poll_changed = intel_fb_output_poll_changed,
5435 };
5436
5437 static struct drm_gem_object *
5438 intel_alloc_power_context(struct drm_device *dev)
5439 {
5440 struct drm_gem_object *pwrctx;
5441 int ret;
5442
5443 pwrctx = i915_gem_alloc_object(dev, 4096);
5444 if (!pwrctx) {
5445 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5446 return NULL;
5447 }
5448
5449 mutex_lock(&dev->struct_mutex);
5450 ret = i915_gem_object_pin(pwrctx, 4096);
5451 if (ret) {
5452 DRM_ERROR("failed to pin power context: %d\n", ret);
5453 goto err_unref;
5454 }
5455
5456 ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5457 if (ret) {
5458 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5459 goto err_unpin;
5460 }
5461 mutex_unlock(&dev->struct_mutex);
5462
5463 return pwrctx;
5464
5465 err_unpin:
5466 i915_gem_object_unpin(pwrctx);
5467 err_unref:
5468 drm_gem_object_unreference(pwrctx);
5469 mutex_unlock(&dev->struct_mutex);
5470 return NULL;
5471 }
5472
5473 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5474 {
5475 struct drm_i915_private *dev_priv = dev->dev_private;
5476 u16 rgvswctl;
5477
5478 rgvswctl = I915_READ16(MEMSWCTL);
5479 if (rgvswctl & MEMCTL_CMD_STS) {
5480 DRM_DEBUG("gpu busy, RCS change rejected\n");
5481 return false; /* still busy with another command */
5482 }
5483
5484 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5485 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5486 I915_WRITE16(MEMSWCTL, rgvswctl);
5487 POSTING_READ16(MEMSWCTL);
5488
5489 rgvswctl |= MEMCTL_CMD_STS;
5490 I915_WRITE16(MEMSWCTL, rgvswctl);
5491
5492 return true;
5493 }
5494
5495 void ironlake_enable_drps(struct drm_device *dev)
5496 {
5497 struct drm_i915_private *dev_priv = dev->dev_private;
5498 u32 rgvmodectl = I915_READ(MEMMODECTL);
5499 u8 fmax, fmin, fstart, vstart;
5500 int i = 0;
5501
5502 /* 100ms RC evaluation intervals */
5503 I915_WRITE(RCUPEI, 100000);
5504 I915_WRITE(RCDNEI, 100000);
5505
5506 /* Set max/min thresholds to 90ms and 80ms respectively */
5507 I915_WRITE(RCBMAXAVG, 90000);
5508 I915_WRITE(RCBMINAVG, 80000);
5509
5510 I915_WRITE(MEMIHYST, 1);
5511
5512 /* Set up min, max, and cur for interrupt handling */
5513 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5514 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5515 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5516 MEMMODE_FSTART_SHIFT;
5517 fstart = fmax;
5518
5519 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5520 PXVFREQ_PX_SHIFT;
5521
5522 dev_priv->fmax = fstart; /* IPS callback will increase this */
5523 dev_priv->fstart = fstart;
5524
5525 dev_priv->max_delay = fmax;
5526 dev_priv->min_delay = fmin;
5527 dev_priv->cur_delay = fstart;
5528
5529 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5530 fstart);
5531
5532 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5533
5534 /*
5535 * Interrupts will be enabled in ironlake_irq_postinstall
5536 */
5537
5538 I915_WRITE(VIDSTART, vstart);
5539 POSTING_READ(VIDSTART);
5540
5541 rgvmodectl |= MEMMODE_SWMODE_EN;
5542 I915_WRITE(MEMMODECTL, rgvmodectl);
5543
5544 while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5545 if (i++ > 100) {
5546 DRM_ERROR("stuck trying to change perf mode\n");
5547 break;
5548 }
5549 msleep(1);
5550 }
5551 msleep(1);
5552
5553 ironlake_set_drps(dev, fstart);
5554
5555 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5556 I915_READ(0x112e0);
5557 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5558 dev_priv->last_count2 = I915_READ(0x112f4);
5559 getrawmonotonic(&dev_priv->last_time2);
5560 }
5561
5562 void ironlake_disable_drps(struct drm_device *dev)
5563 {
5564 struct drm_i915_private *dev_priv = dev->dev_private;
5565 u16 rgvswctl = I915_READ16(MEMSWCTL);
5566
5567 /* Ack interrupts, disable EFC interrupt */
5568 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5569 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5570 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5571 I915_WRITE(DEIIR, DE_PCU_EVENT);
5572 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5573
5574 /* Go back to the starting frequency */
5575 ironlake_set_drps(dev, dev_priv->fstart);
5576 msleep(1);
5577 rgvswctl |= MEMCTL_CMD_STS;
5578 I915_WRITE(MEMSWCTL, rgvswctl);
5579 msleep(1);
5580
5581 }
5582
5583 static unsigned long intel_pxfreq(u32 vidfreq)
5584 {
5585 unsigned long freq;
5586 int div = (vidfreq & 0x3f0000) >> 16;
5587 int post = (vidfreq & 0x3000) >> 12;
5588 int pre = (vidfreq & 0x7);
5589
5590 if (!pre)
5591 return 0;
5592
5593 freq = ((div * 133333) / ((1<<post) * pre));
5594
5595 return freq;
5596 }
5597
5598 void intel_init_emon(struct drm_device *dev)
5599 {
5600 struct drm_i915_private *dev_priv = dev->dev_private;
5601 u32 lcfuse;
5602 u8 pxw[16];
5603 int i;
5604
5605 /* Disable to program */
5606 I915_WRITE(ECR, 0);
5607 POSTING_READ(ECR);
5608
5609 /* Program energy weights for various events */
5610 I915_WRITE(SDEW, 0x15040d00);
5611 I915_WRITE(CSIEW0, 0x007f0000);
5612 I915_WRITE(CSIEW1, 0x1e220004);
5613 I915_WRITE(CSIEW2, 0x04000004);
5614
5615 for (i = 0; i < 5; i++)
5616 I915_WRITE(PEW + (i * 4), 0);
5617 for (i = 0; i < 3; i++)
5618 I915_WRITE(DEW + (i * 4), 0);
5619
5620 /* Program P-state weights to account for frequency power adjustment */
5621 for (i = 0; i < 16; i++) {
5622 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5623 unsigned long freq = intel_pxfreq(pxvidfreq);
5624 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5625 PXVFREQ_PX_SHIFT;
5626 unsigned long val;
5627
5628 val = vid * vid;
5629 val *= (freq / 1000);
5630 val *= 255;
5631 val /= (127*127*900);
5632 if (val > 0xff)
5633 DRM_ERROR("bad pxval: %ld\n", val);
5634 pxw[i] = val;
5635 }
5636 /* Render standby states get 0 weight */
5637 pxw[14] = 0;
5638 pxw[15] = 0;
5639
5640 for (i = 0; i < 4; i++) {
5641 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5642 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5643 I915_WRITE(PXW + (i * 4), val);
5644 }
5645
5646 /* Adjust magic regs to magic values (more experimental results) */
5647 I915_WRITE(OGW0, 0);
5648 I915_WRITE(OGW1, 0);
5649 I915_WRITE(EG0, 0x00007f00);
5650 I915_WRITE(EG1, 0x0000000e);
5651 I915_WRITE(EG2, 0x000e0000);
5652 I915_WRITE(EG3, 0x68000300);
5653 I915_WRITE(EG4, 0x42000000);
5654 I915_WRITE(EG5, 0x00140031);
5655 I915_WRITE(EG6, 0);
5656 I915_WRITE(EG7, 0);
5657
5658 for (i = 0; i < 8; i++)
5659 I915_WRITE(PXWL + (i * 4), 0);
5660
5661 /* Enable PMON + select events */
5662 I915_WRITE(ECR, 0x80000019);
5663
5664 lcfuse = I915_READ(LCFUSE02);
5665
5666 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5667 }
5668
5669 void intel_init_clock_gating(struct drm_device *dev)
5670 {
5671 struct drm_i915_private *dev_priv = dev->dev_private;
5672
5673 /*
5674 * Disable clock gating reported to work incorrectly according to the
5675 * specs, but enable as much else as we can.
5676 */
5677 if (HAS_PCH_SPLIT(dev)) {
5678 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5679
5680 if (IS_IRONLAKE(dev)) {
5681 /* Required for FBC */
5682 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5683 /* Required for CxSR */
5684 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5685
5686 I915_WRITE(PCH_3DCGDIS0,
5687 MARIUNIT_CLOCK_GATE_DISABLE |
5688 SVSMUNIT_CLOCK_GATE_DISABLE);
5689 }
5690
5691 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5692
5693 /*
5694 * According to the spec the following bits should be set in
5695 * order to enable memory self-refresh
5696 * The bit 22/21 of 0x42004
5697 * The bit 5 of 0x42020
5698 * The bit 15 of 0x45000
5699 */
5700 if (IS_IRONLAKE(dev)) {
5701 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5702 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5703 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5704 I915_WRITE(ILK_DSPCLK_GATE,
5705 (I915_READ(ILK_DSPCLK_GATE) |
5706 ILK_DPARB_CLK_GATE));
5707 I915_WRITE(DISP_ARB_CTL,
5708 (I915_READ(DISP_ARB_CTL) |
5709 DISP_FBC_WM_DIS));
5710 }
5711 /*
5712 * Based on the document from hardware guys the following bits
5713 * should be set unconditionally in order to enable FBC.
5714 * The bit 22 of 0x42000
5715 * The bit 22 of 0x42004
5716 * The bit 7,8,9 of 0x42020.
5717 */
5718 if (IS_IRONLAKE_M(dev)) {
5719 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5720 I915_READ(ILK_DISPLAY_CHICKEN1) |
5721 ILK_FBCQ_DIS);
5722 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5723 I915_READ(ILK_DISPLAY_CHICKEN2) |
5724 ILK_DPARB_GATE);
5725 I915_WRITE(ILK_DSPCLK_GATE,
5726 I915_READ(ILK_DSPCLK_GATE) |
5727 ILK_DPFC_DIS1 |
5728 ILK_DPFC_DIS2 |
5729 ILK_CLK_FBC);
5730 }
5731 return;
5732 } else if (IS_G4X(dev)) {
5733 uint32_t dspclk_gate;
5734 I915_WRITE(RENCLK_GATE_D1, 0);
5735 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5736 GS_UNIT_CLOCK_GATE_DISABLE |
5737 CL_UNIT_CLOCK_GATE_DISABLE);
5738 I915_WRITE(RAMCLK_GATE_D, 0);
5739 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5740 OVRUNIT_CLOCK_GATE_DISABLE |
5741 OVCUNIT_CLOCK_GATE_DISABLE;
5742 if (IS_GM45(dev))
5743 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5744 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5745 } else if (IS_I965GM(dev)) {
5746 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5747 I915_WRITE(RENCLK_GATE_D2, 0);
5748 I915_WRITE(DSPCLK_GATE_D, 0);
5749 I915_WRITE(RAMCLK_GATE_D, 0);
5750 I915_WRITE16(DEUC, 0);
5751 } else if (IS_I965G(dev)) {
5752 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5753 I965_RCC_CLOCK_GATE_DISABLE |
5754 I965_RCPB_CLOCK_GATE_DISABLE |
5755 I965_ISC_CLOCK_GATE_DISABLE |
5756 I965_FBC_CLOCK_GATE_DISABLE);
5757 I915_WRITE(RENCLK_GATE_D2, 0);
5758 } else if (IS_I9XX(dev)) {
5759 u32 dstate = I915_READ(D_STATE);
5760
5761 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5762 DSTATE_DOT_CLOCK_GATING;
5763 I915_WRITE(D_STATE, dstate);
5764 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5765 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5766 } else if (IS_I830(dev)) {
5767 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5768 }
5769
5770 /*
5771 * GPU can automatically power down the render unit if given a page
5772 * to save state.
5773 */
5774 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5775 struct drm_i915_gem_object *obj_priv = NULL;
5776
5777 if (dev_priv->pwrctx) {
5778 obj_priv = to_intel_bo(dev_priv->pwrctx);
5779 } else {
5780 struct drm_gem_object *pwrctx;
5781
5782 pwrctx = intel_alloc_power_context(dev);
5783 if (pwrctx) {
5784 dev_priv->pwrctx = pwrctx;
5785 obj_priv = to_intel_bo(pwrctx);
5786 }
5787 }
5788
5789 if (obj_priv) {
5790 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5791 I915_WRITE(MCHBAR_RENDER_STANDBY,
5792 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5793 }
5794 }
5795 }
5796
5797 /* Set up chip specific display functions */
5798 static void intel_init_display(struct drm_device *dev)
5799 {
5800 struct drm_i915_private *dev_priv = dev->dev_private;
5801
5802 /* We always want a DPMS function */
5803 if (HAS_PCH_SPLIT(dev))
5804 dev_priv->display.dpms = ironlake_crtc_dpms;
5805 else
5806 dev_priv->display.dpms = i9xx_crtc_dpms;
5807
5808 if (I915_HAS_FBC(dev)) {
5809 if (IS_IRONLAKE_M(dev)) {
5810 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5811 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5812 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5813 } else if (IS_GM45(dev)) {
5814 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5815 dev_priv->display.enable_fbc = g4x_enable_fbc;
5816 dev_priv->display.disable_fbc = g4x_disable_fbc;
5817 } else if (IS_I965GM(dev)) {
5818 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5819 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5820 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5821 }
5822 /* 855GM needs testing */
5823 }
5824
5825 /* Returns the core display clock speed */
5826 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5827 dev_priv->display.get_display_clock_speed =
5828 i945_get_display_clock_speed;
5829 else if (IS_I915G(dev))
5830 dev_priv->display.get_display_clock_speed =
5831 i915_get_display_clock_speed;
5832 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5833 dev_priv->display.get_display_clock_speed =
5834 i9xx_misc_get_display_clock_speed;
5835 else if (IS_I915GM(dev))
5836 dev_priv->display.get_display_clock_speed =
5837 i915gm_get_display_clock_speed;
5838 else if (IS_I865G(dev))
5839 dev_priv->display.get_display_clock_speed =
5840 i865_get_display_clock_speed;
5841 else if (IS_I85X(dev))
5842 dev_priv->display.get_display_clock_speed =
5843 i855_get_display_clock_speed;
5844 else /* 852, 830 */
5845 dev_priv->display.get_display_clock_speed =
5846 i830_get_display_clock_speed;
5847
5848 /* For FIFO watermark updates */
5849 if (HAS_PCH_SPLIT(dev)) {
5850 if (IS_IRONLAKE(dev)) {
5851 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5852 dev_priv->display.update_wm = ironlake_update_wm;
5853 else {
5854 DRM_DEBUG_KMS("Failed to get proper latency. "
5855 "Disable CxSR\n");
5856 dev_priv->display.update_wm = NULL;
5857 }
5858 } else
5859 dev_priv->display.update_wm = NULL;
5860 } else if (IS_PINEVIEW(dev)) {
5861 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5862 dev_priv->is_ddr3,
5863 dev_priv->fsb_freq,
5864 dev_priv->mem_freq)) {
5865 DRM_INFO("failed to find known CxSR latency "
5866 "(found ddr%s fsb freq %d, mem freq %d), "
5867 "disabling CxSR\n",
5868 (dev_priv->is_ddr3 == 1) ? "3": "2",
5869 dev_priv->fsb_freq, dev_priv->mem_freq);
5870 /* Disable CxSR and never update its watermark again */
5871 pineview_disable_cxsr(dev);
5872 dev_priv->display.update_wm = NULL;
5873 } else
5874 dev_priv->display.update_wm = pineview_update_wm;
5875 } else if (IS_G4X(dev))
5876 dev_priv->display.update_wm = g4x_update_wm;
5877 else if (IS_I965G(dev))
5878 dev_priv->display.update_wm = i965_update_wm;
5879 else if (IS_I9XX(dev)) {
5880 dev_priv->display.update_wm = i9xx_update_wm;
5881 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5882 } else if (IS_I85X(dev)) {
5883 dev_priv->display.update_wm = i9xx_update_wm;
5884 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5885 } else {
5886 dev_priv->display.update_wm = i830_update_wm;
5887 if (IS_845G(dev))
5888 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5889 else
5890 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5891 }
5892 }
5893
5894 /*
5895 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5896 * resume, or other times. This quirk makes sure that's the case for
5897 * affected systems.
5898 */
5899 static void quirk_pipea_force (struct drm_device *dev)
5900 {
5901 struct drm_i915_private *dev_priv = dev->dev_private;
5902
5903 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5904 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5905 }
5906
5907 struct intel_quirk {
5908 int device;
5909 int subsystem_vendor;
5910 int subsystem_device;
5911 void (*hook)(struct drm_device *dev);
5912 };
5913
5914 struct intel_quirk intel_quirks[] = {
5915 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5916 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5917 /* HP Mini needs pipe A force quirk (LP: #322104) */
5918 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5919
5920 /* Thinkpad R31 needs pipe A force quirk */
5921 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5922 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5923 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5924
5925 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5926 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
5927 /* ThinkPad X40 needs pipe A force quirk */
5928
5929 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5930 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5931
5932 /* 855 & before need to leave pipe A & dpll A up */
5933 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5934 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5935 };
5936
5937 static void intel_init_quirks(struct drm_device *dev)
5938 {
5939 struct pci_dev *d = dev->pdev;
5940 int i;
5941
5942 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5943 struct intel_quirk *q = &intel_quirks[i];
5944
5945 if (d->device == q->device &&
5946 (d->subsystem_vendor == q->subsystem_vendor ||
5947 q->subsystem_vendor == PCI_ANY_ID) &&
5948 (d->subsystem_device == q->subsystem_device ||
5949 q->subsystem_device == PCI_ANY_ID))
5950 q->hook(dev);
5951 }
5952 }
5953
5954 void intel_modeset_init(struct drm_device *dev)
5955 {
5956 struct drm_i915_private *dev_priv = dev->dev_private;
5957 int i;
5958
5959 drm_mode_config_init(dev);
5960
5961 dev->mode_config.min_width = 0;
5962 dev->mode_config.min_height = 0;
5963
5964 dev->mode_config.funcs = (void *)&intel_mode_funcs;
5965
5966 intel_init_quirks(dev);
5967
5968 intel_init_display(dev);
5969
5970 if (IS_I965G(dev)) {
5971 dev->mode_config.max_width = 8192;
5972 dev->mode_config.max_height = 8192;
5973 } else if (IS_I9XX(dev)) {
5974 dev->mode_config.max_width = 4096;
5975 dev->mode_config.max_height = 4096;
5976 } else {
5977 dev->mode_config.max_width = 2048;
5978 dev->mode_config.max_height = 2048;
5979 }
5980
5981 /* set memory base */
5982 if (IS_I9XX(dev))
5983 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5984 else
5985 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5986
5987 if (IS_MOBILE(dev) || IS_I9XX(dev))
5988 dev_priv->num_pipe = 2;
5989 else
5990 dev_priv->num_pipe = 1;
5991 DRM_DEBUG_KMS("%d display pipe%s available.\n",
5992 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
5993
5994 for (i = 0; i < dev_priv->num_pipe; i++) {
5995 intel_crtc_init(dev, i);
5996 }
5997
5998 intel_setup_outputs(dev);
5999
6000 intel_init_clock_gating(dev);
6001
6002 if (IS_IRONLAKE_M(dev)) {
6003 ironlake_enable_drps(dev);
6004 intel_init_emon(dev);
6005 }
6006
6007 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6008 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6009 (unsigned long)dev);
6010
6011 intel_setup_overlay(dev);
6012 }
6013
6014 void intel_modeset_cleanup(struct drm_device *dev)
6015 {
6016 struct drm_i915_private *dev_priv = dev->dev_private;
6017 struct drm_crtc *crtc;
6018 struct intel_crtc *intel_crtc;
6019
6020 mutex_lock(&dev->struct_mutex);
6021
6022 drm_kms_helper_poll_fini(dev);
6023 intel_fbdev_fini(dev);
6024
6025 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6026 /* Skip inactive CRTCs */
6027 if (!crtc->fb)
6028 continue;
6029
6030 intel_crtc = to_intel_crtc(crtc);
6031 intel_increase_pllclock(crtc, false);
6032 del_timer_sync(&intel_crtc->idle_timer);
6033 }
6034
6035 del_timer_sync(&dev_priv->idle_timer);
6036
6037 if (dev_priv->display.disable_fbc)
6038 dev_priv->display.disable_fbc(dev);
6039
6040 if (dev_priv->pwrctx) {
6041 struct drm_i915_gem_object *obj_priv;
6042
6043 obj_priv = to_intel_bo(dev_priv->pwrctx);
6044 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6045 I915_READ(PWRCTXA);
6046 i915_gem_object_unpin(dev_priv->pwrctx);
6047 drm_gem_object_unreference(dev_priv->pwrctx);
6048 }
6049
6050 if (IS_IRONLAKE_M(dev))
6051 ironlake_disable_drps(dev);
6052
6053 mutex_unlock(&dev->struct_mutex);
6054
6055 drm_mode_config_cleanup(dev);
6056 }
6057
6058
6059 /*
6060 * Return which encoder is currently attached for connector.
6061 */
6062 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
6063 {
6064 struct drm_mode_object *obj;
6065 struct drm_encoder *encoder;
6066 int i;
6067
6068 for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
6069 if (connector->encoder_ids[i] == 0)
6070 break;
6071
6072 obj = drm_mode_object_find(connector->dev,
6073 connector->encoder_ids[i],
6074 DRM_MODE_OBJECT_ENCODER);
6075 if (!obj)
6076 continue;
6077
6078 encoder = obj_to_encoder(obj);
6079 return encoder;
6080 }
6081 return NULL;
6082 }
6083
6084 /*
6085 * set vga decode state - true == enable VGA decode
6086 */
6087 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6088 {
6089 struct drm_i915_private *dev_priv = dev->dev_private;
6090 u16 gmch_ctrl;
6091
6092 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6093 if (state)
6094 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6095 else
6096 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6097 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6098 return 0;
6099 }
This page took 0.174248 seconds and 5 git commands to generate.