drm/i915: Remove intel_modeset_disable()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 typedef struct {
54 int min, max;
55 } intel_range_t;
56
57 typedef struct {
58 int dot_limit;
59 int p2_slow, p2_fast;
60 } intel_p2_t;
61
62 typedef struct intel_limit intel_limit_t;
63 struct intel_limit {
64 intel_range_t dot, vco, n, m, m1, m2, p, p1;
65 intel_p2_t p2;
66 };
67
68 /* FDI */
69 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74 struct drm_i915_private *dev_priv = dev->dev_private;
75
76 WARN_ON(!HAS_PCH_SPLIT(dev));
77
78 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84 if (IS_GEN5(dev)) {
85 struct drm_i915_private *dev_priv = dev->dev_private;
86 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87 } else
88 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92 .dot = { .min = 25000, .max = 350000 },
93 .vco = { .min = 930000, .max = 1400000 },
94 .n = { .min = 3, .max = 16 },
95 .m = { .min = 96, .max = 140 },
96 .m1 = { .min = 18, .max = 26 },
97 .m2 = { .min = 6, .max = 16 },
98 .p = { .min = 4, .max = 128 },
99 .p1 = { .min = 2, .max = 33 },
100 .p2 = { .dot_limit = 165000,
101 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105 .dot = { .min = 25000, .max = 350000 },
106 .vco = { .min = 930000, .max = 1400000 },
107 .n = { .min = 3, .max = 16 },
108 .m = { .min = 96, .max = 140 },
109 .m1 = { .min = 18, .max = 26 },
110 .m2 = { .min = 6, .max = 16 },
111 .p = { .min = 4, .max = 128 },
112 .p1 = { .min = 2, .max = 33 },
113 .p2 = { .dot_limit = 165000,
114 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118 .dot = { .min = 25000, .max = 350000 },
119 .vco = { .min = 930000, .max = 1400000 },
120 .n = { .min = 3, .max = 16 },
121 .m = { .min = 96, .max = 140 },
122 .m1 = { .min = 18, .max = 26 },
123 .m2 = { .min = 6, .max = 16 },
124 .p = { .min = 4, .max = 128 },
125 .p1 = { .min = 1, .max = 6 },
126 .p2 = { .dot_limit = 165000,
127 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131 .dot = { .min = 20000, .max = 400000 },
132 .vco = { .min = 1400000, .max = 2800000 },
133 .n = { .min = 1, .max = 6 },
134 .m = { .min = 70, .max = 120 },
135 .m1 = { .min = 8, .max = 18 },
136 .m2 = { .min = 3, .max = 7 },
137 .p = { .min = 5, .max = 80 },
138 .p1 = { .min = 1, .max = 8 },
139 .p2 = { .dot_limit = 200000,
140 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144 .dot = { .min = 20000, .max = 400000 },
145 .vco = { .min = 1400000, .max = 2800000 },
146 .n = { .min = 1, .max = 6 },
147 .m = { .min = 70, .max = 120 },
148 .m1 = { .min = 8, .max = 18 },
149 .m2 = { .min = 3, .max = 7 },
150 .p = { .min = 7, .max = 98 },
151 .p1 = { .min = 1, .max = 8 },
152 .p2 = { .dot_limit = 112000,
153 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158 .dot = { .min = 25000, .max = 270000 },
159 .vco = { .min = 1750000, .max = 3500000},
160 .n = { .min = 1, .max = 4 },
161 .m = { .min = 104, .max = 138 },
162 .m1 = { .min = 17, .max = 23 },
163 .m2 = { .min = 5, .max = 11 },
164 .p = { .min = 10, .max = 30 },
165 .p1 = { .min = 1, .max = 3},
166 .p2 = { .dot_limit = 270000,
167 .p2_slow = 10,
168 .p2_fast = 10
169 },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173 .dot = { .min = 22000, .max = 400000 },
174 .vco = { .min = 1750000, .max = 3500000},
175 .n = { .min = 1, .max = 4 },
176 .m = { .min = 104, .max = 138 },
177 .m1 = { .min = 16, .max = 23 },
178 .m2 = { .min = 5, .max = 11 },
179 .p = { .min = 5, .max = 80 },
180 .p1 = { .min = 1, .max = 8},
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186 .dot = { .min = 20000, .max = 115000 },
187 .vco = { .min = 1750000, .max = 3500000 },
188 .n = { .min = 1, .max = 3 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 17, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 28, .max = 112 },
193 .p1 = { .min = 2, .max = 8 },
194 .p2 = { .dot_limit = 0,
195 .p2_slow = 14, .p2_fast = 14
196 },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200 .dot = { .min = 80000, .max = 224000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 14, .max = 42 },
207 .p1 = { .min = 2, .max = 6 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 7, .p2_fast = 7
210 },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214 .dot = { .min = 20000, .max = 400000},
215 .vco = { .min = 1700000, .max = 3500000 },
216 /* Pineview's Ncounter is a ring counter */
217 .n = { .min = 3, .max = 6 },
218 .m = { .min = 2, .max = 256 },
219 /* Pineview only has one combined m divider, which we treat as m2. */
220 .m1 = { .min = 0, .max = 0 },
221 .m2 = { .min = 0, .max = 254 },
222 .p = { .min = 5, .max = 80 },
223 .p1 = { .min = 1, .max = 8 },
224 .p2 = { .dot_limit = 200000,
225 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229 .dot = { .min = 20000, .max = 400000 },
230 .vco = { .min = 1700000, .max = 3500000 },
231 .n = { .min = 3, .max = 6 },
232 .m = { .min = 2, .max = 256 },
233 .m1 = { .min = 0, .max = 0 },
234 .m2 = { .min = 0, .max = 254 },
235 .p = { .min = 7, .max = 112 },
236 .p1 = { .min = 1, .max = 8 },
237 .p2 = { .dot_limit = 112000,
238 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242 *
243 * We calculate clock using (register_value + 2) for N/M1/M2, so here
244 * the range value for them is (actual_value - 2).
245 */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247 .dot = { .min = 25000, .max = 350000 },
248 .vco = { .min = 1760000, .max = 3510000 },
249 .n = { .min = 1, .max = 5 },
250 .m = { .min = 79, .max = 127 },
251 .m1 = { .min = 12, .max = 22 },
252 .m2 = { .min = 5, .max = 9 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 225000,
256 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260 .dot = { .min = 25000, .max = 350000 },
261 .vco = { .min = 1760000, .max = 3510000 },
262 .n = { .min = 1, .max = 3 },
263 .m = { .min = 79, .max = 118 },
264 .m1 = { .min = 12, .max = 22 },
265 .m2 = { .min = 5, .max = 9 },
266 .p = { .min = 28, .max = 112 },
267 .p1 = { .min = 2, .max = 8 },
268 .p2 = { .dot_limit = 225000,
269 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273 .dot = { .min = 25000, .max = 350000 },
274 .vco = { .min = 1760000, .max = 3510000 },
275 .n = { .min = 1, .max = 3 },
276 .m = { .min = 79, .max = 127 },
277 .m1 = { .min = 12, .max = 22 },
278 .m2 = { .min = 5, .max = 9 },
279 .p = { .min = 14, .max = 56 },
280 .p1 = { .min = 2, .max = 8 },
281 .p2 = { .dot_limit = 225000,
282 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287 .dot = { .min = 25000, .max = 350000 },
288 .vco = { .min = 1760000, .max = 3510000 },
289 .n = { .min = 1, .max = 2 },
290 .m = { .min = 79, .max = 126 },
291 .m1 = { .min = 12, .max = 22 },
292 .m2 = { .min = 5, .max = 9 },
293 .p = { .min = 28, .max = 112 },
294 .p1 = { .min = 2, .max = 8 },
295 .p2 = { .dot_limit = 225000,
296 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300 .dot = { .min = 25000, .max = 350000 },
301 .vco = { .min = 1760000, .max = 3510000 },
302 .n = { .min = 1, .max = 3 },
303 .m = { .min = 79, .max = 126 },
304 .m1 = { .min = 12, .max = 22 },
305 .m2 = { .min = 5, .max = 9 },
306 .p = { .min = 14, .max = 42 },
307 .p1 = { .min = 2, .max = 6 },
308 .p2 = { .dot_limit = 225000,
309 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv_dac = {
313 .dot = { .min = 25000, .max = 270000 },
314 .vco = { .min = 4000000, .max = 6000000 },
315 .n = { .min = 1, .max = 7 },
316 .m = { .min = 22, .max = 450 }, /* guess */
317 .m1 = { .min = 2, .max = 3 },
318 .m2 = { .min = 11, .max = 156 },
319 .p = { .min = 10, .max = 30 },
320 .p1 = { .min = 1, .max = 3 },
321 .p2 = { .dot_limit = 270000,
322 .p2_slow = 2, .p2_fast = 20 },
323 };
324
325 static const intel_limit_t intel_limits_vlv_hdmi = {
326 .dot = { .min = 25000, .max = 270000 },
327 .vco = { .min = 4000000, .max = 6000000 },
328 .n = { .min = 1, .max = 7 },
329 .m = { .min = 60, .max = 300 }, /* guess */
330 .m1 = { .min = 2, .max = 3 },
331 .m2 = { .min = 11, .max = 156 },
332 .p = { .min = 10, .max = 30 },
333 .p1 = { .min = 2, .max = 3 },
334 .p2 = { .dot_limit = 270000,
335 .p2_slow = 2, .p2_fast = 20 },
336 };
337
338 static const intel_limit_t intel_limits_vlv_dp = {
339 .dot = { .min = 25000, .max = 270000 },
340 .vco = { .min = 4000000, .max = 6000000 },
341 .n = { .min = 1, .max = 7 },
342 .m = { .min = 22, .max = 450 },
343 .m1 = { .min = 2, .max = 3 },
344 .m2 = { .min = 11, .max = 156 },
345 .p = { .min = 10, .max = 30 },
346 .p1 = { .min = 1, .max = 3 },
347 .p2 = { .dot_limit = 270000,
348 .p2_slow = 2, .p2_fast = 20 },
349 };
350
351 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352 int refclk)
353 {
354 struct drm_device *dev = crtc->dev;
355 const intel_limit_t *limit;
356
357 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358 if (intel_is_dual_link_lvds(dev)) {
359 if (refclk == 100000)
360 limit = &intel_limits_ironlake_dual_lvds_100m;
361 else
362 limit = &intel_limits_ironlake_dual_lvds;
363 } else {
364 if (refclk == 100000)
365 limit = &intel_limits_ironlake_single_lvds_100m;
366 else
367 limit = &intel_limits_ironlake_single_lvds;
368 }
369 } else
370 limit = &intel_limits_ironlake_dac;
371
372 return limit;
373 }
374
375 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376 {
377 struct drm_device *dev = crtc->dev;
378 const intel_limit_t *limit;
379
380 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381 if (intel_is_dual_link_lvds(dev))
382 limit = &intel_limits_g4x_dual_channel_lvds;
383 else
384 limit = &intel_limits_g4x_single_channel_lvds;
385 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387 limit = &intel_limits_g4x_hdmi;
388 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389 limit = &intel_limits_g4x_sdvo;
390 } else /* The option is for other outputs */
391 limit = &intel_limits_i9xx_sdvo;
392
393 return limit;
394 }
395
396 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397 {
398 struct drm_device *dev = crtc->dev;
399 const intel_limit_t *limit;
400
401 if (HAS_PCH_SPLIT(dev))
402 limit = intel_ironlake_limit(crtc, refclk);
403 else if (IS_G4X(dev)) {
404 limit = intel_g4x_limit(crtc);
405 } else if (IS_PINEVIEW(dev)) {
406 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407 limit = &intel_limits_pineview_lvds;
408 else
409 limit = &intel_limits_pineview_sdvo;
410 } else if (IS_VALLEYVIEW(dev)) {
411 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
412 limit = &intel_limits_vlv_dac;
413 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
414 limit = &intel_limits_vlv_hdmi;
415 else
416 limit = &intel_limits_vlv_dp;
417 } else if (!IS_GEN2(dev)) {
418 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419 limit = &intel_limits_i9xx_lvds;
420 else
421 limit = &intel_limits_i9xx_sdvo;
422 } else {
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424 limit = &intel_limits_i8xx_lvds;
425 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426 limit = &intel_limits_i8xx_dvo;
427 else
428 limit = &intel_limits_i8xx_dac;
429 }
430 return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436 clock->m = clock->m2 + 2;
437 clock->p = clock->p1 * clock->p2;
438 clock->vco = refclk * clock->m / clock->n;
439 clock->dot = clock->vco / clock->p;
440 }
441
442 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
443 {
444 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
445 }
446
447 static void i9xx_clock(int refclk, intel_clock_t *clock)
448 {
449 clock->m = i9xx_dpll_compute_m(clock);
450 clock->p = clock->p1 * clock->p2;
451 clock->vco = refclk * clock->m / (clock->n + 2);
452 clock->dot = clock->vco / clock->p;
453 }
454
455 /**
456 * Returns whether any output on the specified pipe is of the specified type
457 */
458 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
459 {
460 struct drm_device *dev = crtc->dev;
461 struct intel_encoder *encoder;
462
463 for_each_encoder_on_crtc(dev, crtc, encoder)
464 if (encoder->type == type)
465 return true;
466
467 return false;
468 }
469
470 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
471 /**
472 * Returns whether the given set of divisors are valid for a given refclk with
473 * the given connectors.
474 */
475
476 static bool intel_PLL_is_valid(struct drm_device *dev,
477 const intel_limit_t *limit,
478 const intel_clock_t *clock)
479 {
480 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
481 INTELPllInvalid("p1 out of range\n");
482 if (clock->p < limit->p.min || limit->p.max < clock->p)
483 INTELPllInvalid("p out of range\n");
484 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
485 INTELPllInvalid("m2 out of range\n");
486 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
487 INTELPllInvalid("m1 out of range\n");
488 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
489 INTELPllInvalid("m1 <= m2\n");
490 if (clock->m < limit->m.min || limit->m.max < clock->m)
491 INTELPllInvalid("m out of range\n");
492 if (clock->n < limit->n.min || limit->n.max < clock->n)
493 INTELPllInvalid("n out of range\n");
494 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
495 INTELPllInvalid("vco out of range\n");
496 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
497 * connector, etc., rather than just a single range.
498 */
499 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
500 INTELPllInvalid("dot out of range\n");
501
502 return true;
503 }
504
505 static bool
506 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
507 int target, int refclk, intel_clock_t *match_clock,
508 intel_clock_t *best_clock)
509 {
510 struct drm_device *dev = crtc->dev;
511 intel_clock_t clock;
512 int err = target;
513
514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515 /*
516 * For LVDS just rely on its current settings for dual-channel.
517 * We haven't figured out how to reliably set up different
518 * single/dual channel state, if we even can.
519 */
520 if (intel_is_dual_link_lvds(dev))
521 clock.p2 = limit->p2.p2_fast;
522 else
523 clock.p2 = limit->p2.p2_slow;
524 } else {
525 if (target < limit->p2.dot_limit)
526 clock.p2 = limit->p2.p2_slow;
527 else
528 clock.p2 = limit->p2.p2_fast;
529 }
530
531 memset(best_clock, 0, sizeof(*best_clock));
532
533 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
534 clock.m1++) {
535 for (clock.m2 = limit->m2.min;
536 clock.m2 <= limit->m2.max; clock.m2++) {
537 if (clock.m2 >= clock.m1)
538 break;
539 for (clock.n = limit->n.min;
540 clock.n <= limit->n.max; clock.n++) {
541 for (clock.p1 = limit->p1.min;
542 clock.p1 <= limit->p1.max; clock.p1++) {
543 int this_err;
544
545 i9xx_clock(refclk, &clock);
546 if (!intel_PLL_is_valid(dev, limit,
547 &clock))
548 continue;
549 if (match_clock &&
550 clock.p != match_clock->p)
551 continue;
552
553 this_err = abs(clock.dot - target);
554 if (this_err < err) {
555 *best_clock = clock;
556 err = this_err;
557 }
558 }
559 }
560 }
561 }
562
563 return (err != target);
564 }
565
566 static bool
567 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
568 int target, int refclk, intel_clock_t *match_clock,
569 intel_clock_t *best_clock)
570 {
571 struct drm_device *dev = crtc->dev;
572 intel_clock_t clock;
573 int err = target;
574
575 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
576 /*
577 * For LVDS just rely on its current settings for dual-channel.
578 * We haven't figured out how to reliably set up different
579 * single/dual channel state, if we even can.
580 */
581 if (intel_is_dual_link_lvds(dev))
582 clock.p2 = limit->p2.p2_fast;
583 else
584 clock.p2 = limit->p2.p2_slow;
585 } else {
586 if (target < limit->p2.dot_limit)
587 clock.p2 = limit->p2.p2_slow;
588 else
589 clock.p2 = limit->p2.p2_fast;
590 }
591
592 memset(best_clock, 0, sizeof(*best_clock));
593
594 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
595 clock.m1++) {
596 for (clock.m2 = limit->m2.min;
597 clock.m2 <= limit->m2.max; clock.m2++) {
598 for (clock.n = limit->n.min;
599 clock.n <= limit->n.max; clock.n++) {
600 for (clock.p1 = limit->p1.min;
601 clock.p1 <= limit->p1.max; clock.p1++) {
602 int this_err;
603
604 pineview_clock(refclk, &clock);
605 if (!intel_PLL_is_valid(dev, limit,
606 &clock))
607 continue;
608 if (match_clock &&
609 clock.p != match_clock->p)
610 continue;
611
612 this_err = abs(clock.dot - target);
613 if (this_err < err) {
614 *best_clock = clock;
615 err = this_err;
616 }
617 }
618 }
619 }
620 }
621
622 return (err != target);
623 }
624
625 static bool
626 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
627 int target, int refclk, intel_clock_t *match_clock,
628 intel_clock_t *best_clock)
629 {
630 struct drm_device *dev = crtc->dev;
631 intel_clock_t clock;
632 int max_n;
633 bool found;
634 /* approximately equals target * 0.00585 */
635 int err_most = (target >> 8) + (target >> 9);
636 found = false;
637
638 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
639 if (intel_is_dual_link_lvds(dev))
640 clock.p2 = limit->p2.p2_fast;
641 else
642 clock.p2 = limit->p2.p2_slow;
643 } else {
644 if (target < limit->p2.dot_limit)
645 clock.p2 = limit->p2.p2_slow;
646 else
647 clock.p2 = limit->p2.p2_fast;
648 }
649
650 memset(best_clock, 0, sizeof(*best_clock));
651 max_n = limit->n.max;
652 /* based on hardware requirement, prefer smaller n to precision */
653 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
654 /* based on hardware requirement, prefere larger m1,m2 */
655 for (clock.m1 = limit->m1.max;
656 clock.m1 >= limit->m1.min; clock.m1--) {
657 for (clock.m2 = limit->m2.max;
658 clock.m2 >= limit->m2.min; clock.m2--) {
659 for (clock.p1 = limit->p1.max;
660 clock.p1 >= limit->p1.min; clock.p1--) {
661 int this_err;
662
663 i9xx_clock(refclk, &clock);
664 if (!intel_PLL_is_valid(dev, limit,
665 &clock))
666 continue;
667
668 this_err = abs(clock.dot - target);
669 if (this_err < err_most) {
670 *best_clock = clock;
671 err_most = this_err;
672 max_n = clock.n;
673 found = true;
674 }
675 }
676 }
677 }
678 }
679 return found;
680 }
681
682 static bool
683 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
686 {
687 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
688 u32 m, n, fastclk;
689 u32 updrate, minupdate, fracbits, p;
690 unsigned long bestppm, ppm, absppm;
691 int dotclk, flag;
692
693 flag = 0;
694 dotclk = target * 1000;
695 bestppm = 1000000;
696 ppm = absppm = 0;
697 fastclk = dotclk / (2*100);
698 updrate = 0;
699 minupdate = 19200;
700 fracbits = 1;
701 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
702 bestm1 = bestm2 = bestp1 = bestp2 = 0;
703
704 /* based on hardware requirement, prefer smaller n to precision */
705 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
706 updrate = refclk / n;
707 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
708 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
709 if (p2 > 10)
710 p2 = p2 - 1;
711 p = p1 * p2;
712 /* based on hardware requirement, prefer bigger m1,m2 values */
713 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
714 m2 = (((2*(fastclk * p * n / m1 )) +
715 refclk) / (2*refclk));
716 m = m1 * m2;
717 vco = updrate * m;
718 if (vco >= limit->vco.min && vco < limit->vco.max) {
719 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
720 absppm = (ppm > 0) ? ppm : (-ppm);
721 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
722 bestppm = 0;
723 flag = 1;
724 }
725 if (absppm < bestppm - 10) {
726 bestppm = absppm;
727 flag = 1;
728 }
729 if (flag) {
730 bestn = n;
731 bestm1 = m1;
732 bestm2 = m2;
733 bestp1 = p1;
734 bestp2 = p2;
735 flag = 0;
736 }
737 }
738 }
739 }
740 }
741 }
742 best_clock->n = bestn;
743 best_clock->m1 = bestm1;
744 best_clock->m2 = bestm2;
745 best_clock->p1 = bestp1;
746 best_clock->p2 = bestp2;
747
748 return true;
749 }
750
751 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
752 enum pipe pipe)
753 {
754 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756
757 return intel_crtc->config.cpu_transcoder;
758 }
759
760 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762 struct drm_i915_private *dev_priv = dev->dev_private;
763 u32 frame, frame_reg = PIPEFRAME(pipe);
764
765 frame = I915_READ(frame_reg);
766
767 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
768 DRM_DEBUG_KMS("vblank wait timed out\n");
769 }
770
771 /**
772 * intel_wait_for_vblank - wait for vblank on a given pipe
773 * @dev: drm device
774 * @pipe: pipe to wait for
775 *
776 * Wait for vblank to occur on a given pipe. Needed for various bits of
777 * mode setting code.
778 */
779 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
780 {
781 struct drm_i915_private *dev_priv = dev->dev_private;
782 int pipestat_reg = PIPESTAT(pipe);
783
784 if (INTEL_INFO(dev)->gen >= 5) {
785 ironlake_wait_for_vblank(dev, pipe);
786 return;
787 }
788
789 /* Clear existing vblank status. Note this will clear any other
790 * sticky status fields as well.
791 *
792 * This races with i915_driver_irq_handler() with the result
793 * that either function could miss a vblank event. Here it is not
794 * fatal, as we will either wait upon the next vblank interrupt or
795 * timeout. Generally speaking intel_wait_for_vblank() is only
796 * called during modeset at which time the GPU should be idle and
797 * should *not* be performing page flips and thus not waiting on
798 * vblanks...
799 * Currently, the result of us stealing a vblank from the irq
800 * handler is that a single frame will be skipped during swapbuffers.
801 */
802 I915_WRITE(pipestat_reg,
803 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
804
805 /* Wait for vblank interrupt bit to set */
806 if (wait_for(I915_READ(pipestat_reg) &
807 PIPE_VBLANK_INTERRUPT_STATUS,
808 50))
809 DRM_DEBUG_KMS("vblank wait timed out\n");
810 }
811
812 /*
813 * intel_wait_for_pipe_off - wait for pipe to turn off
814 * @dev: drm device
815 * @pipe: pipe to wait for
816 *
817 * After disabling a pipe, we can't wait for vblank in the usual way,
818 * spinning on the vblank interrupt status bit, since we won't actually
819 * see an interrupt when the pipe is disabled.
820 *
821 * On Gen4 and above:
822 * wait for the pipe register state bit to turn off
823 *
824 * Otherwise:
825 * wait for the display line value to settle (it usually
826 * ends up stopping at the start of the next frame).
827 *
828 */
829 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
830 {
831 struct drm_i915_private *dev_priv = dev->dev_private;
832 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
833 pipe);
834
835 if (INTEL_INFO(dev)->gen >= 4) {
836 int reg = PIPECONF(cpu_transcoder);
837
838 /* Wait for the Pipe State to go off */
839 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
840 100))
841 WARN(1, "pipe_off wait timed out\n");
842 } else {
843 u32 last_line, line_mask;
844 int reg = PIPEDSL(pipe);
845 unsigned long timeout = jiffies + msecs_to_jiffies(100);
846
847 if (IS_GEN2(dev))
848 line_mask = DSL_LINEMASK_GEN2;
849 else
850 line_mask = DSL_LINEMASK_GEN3;
851
852 /* Wait for the display line to settle */
853 do {
854 last_line = I915_READ(reg) & line_mask;
855 mdelay(5);
856 } while (((I915_READ(reg) & line_mask) != last_line) &&
857 time_after(timeout, jiffies));
858 if (time_after(jiffies, timeout))
859 WARN(1, "pipe_off wait timed out\n");
860 }
861 }
862
863 /*
864 * ibx_digital_port_connected - is the specified port connected?
865 * @dev_priv: i915 private structure
866 * @port: the port to test
867 *
868 * Returns true if @port is connected, false otherwise.
869 */
870 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
871 struct intel_digital_port *port)
872 {
873 u32 bit;
874
875 if (HAS_PCH_IBX(dev_priv->dev)) {
876 switch(port->port) {
877 case PORT_B:
878 bit = SDE_PORTB_HOTPLUG;
879 break;
880 case PORT_C:
881 bit = SDE_PORTC_HOTPLUG;
882 break;
883 case PORT_D:
884 bit = SDE_PORTD_HOTPLUG;
885 break;
886 default:
887 return true;
888 }
889 } else {
890 switch(port->port) {
891 case PORT_B:
892 bit = SDE_PORTB_HOTPLUG_CPT;
893 break;
894 case PORT_C:
895 bit = SDE_PORTC_HOTPLUG_CPT;
896 break;
897 case PORT_D:
898 bit = SDE_PORTD_HOTPLUG_CPT;
899 break;
900 default:
901 return true;
902 }
903 }
904
905 return I915_READ(SDEISR) & bit;
906 }
907
908 static const char *state_string(bool enabled)
909 {
910 return enabled ? "on" : "off";
911 }
912
913 /* Only for pre-ILK configs */
914 void assert_pll(struct drm_i915_private *dev_priv,
915 enum pipe pipe, bool state)
916 {
917 int reg;
918 u32 val;
919 bool cur_state;
920
921 reg = DPLL(pipe);
922 val = I915_READ(reg);
923 cur_state = !!(val & DPLL_VCO_ENABLE);
924 WARN(cur_state != state,
925 "PLL state assertion failure (expected %s, current %s)\n",
926 state_string(state), state_string(cur_state));
927 }
928
929 struct intel_shared_dpll *
930 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
931 {
932 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
933
934 if (crtc->config.shared_dpll < 0)
935 return NULL;
936
937 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
938 }
939
940 /* For ILK+ */
941 void assert_shared_dpll(struct drm_i915_private *dev_priv,
942 struct intel_shared_dpll *pll,
943 bool state)
944 {
945 bool cur_state;
946 struct intel_dpll_hw_state hw_state;
947
948 if (HAS_PCH_LPT(dev_priv->dev)) {
949 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
950 return;
951 }
952
953 if (WARN (!pll,
954 "asserting DPLL %s with no DPLL\n", state_string(state)))
955 return;
956
957 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
958 WARN(cur_state != state,
959 "%s assertion failure (expected %s, current %s)\n",
960 pll->name, state_string(state), state_string(cur_state));
961 }
962
963 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
964 enum pipe pipe, bool state)
965 {
966 int reg;
967 u32 val;
968 bool cur_state;
969 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
970 pipe);
971
972 if (HAS_DDI(dev_priv->dev)) {
973 /* DDI does not have a specific FDI_TX register */
974 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
975 val = I915_READ(reg);
976 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
977 } else {
978 reg = FDI_TX_CTL(pipe);
979 val = I915_READ(reg);
980 cur_state = !!(val & FDI_TX_ENABLE);
981 }
982 WARN(cur_state != state,
983 "FDI TX state assertion failure (expected %s, current %s)\n",
984 state_string(state), state_string(cur_state));
985 }
986 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
987 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
988
989 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
990 enum pipe pipe, bool state)
991 {
992 int reg;
993 u32 val;
994 bool cur_state;
995
996 reg = FDI_RX_CTL(pipe);
997 val = I915_READ(reg);
998 cur_state = !!(val & FDI_RX_ENABLE);
999 WARN(cur_state != state,
1000 "FDI RX state assertion failure (expected %s, current %s)\n",
1001 state_string(state), state_string(cur_state));
1002 }
1003 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1004 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1005
1006 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1007 enum pipe pipe)
1008 {
1009 int reg;
1010 u32 val;
1011
1012 /* ILK FDI PLL is always enabled */
1013 if (dev_priv->info->gen == 5)
1014 return;
1015
1016 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1017 if (HAS_DDI(dev_priv->dev))
1018 return;
1019
1020 reg = FDI_TX_CTL(pipe);
1021 val = I915_READ(reg);
1022 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1023 }
1024
1025 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1026 enum pipe pipe, bool state)
1027 {
1028 int reg;
1029 u32 val;
1030 bool cur_state;
1031
1032 reg = FDI_RX_CTL(pipe);
1033 val = I915_READ(reg);
1034 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1035 WARN(cur_state != state,
1036 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1037 state_string(state), state_string(cur_state));
1038 }
1039
1040 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1041 enum pipe pipe)
1042 {
1043 int pp_reg, lvds_reg;
1044 u32 val;
1045 enum pipe panel_pipe = PIPE_A;
1046 bool locked = true;
1047
1048 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1049 pp_reg = PCH_PP_CONTROL;
1050 lvds_reg = PCH_LVDS;
1051 } else {
1052 pp_reg = PP_CONTROL;
1053 lvds_reg = LVDS;
1054 }
1055
1056 val = I915_READ(pp_reg);
1057 if (!(val & PANEL_POWER_ON) ||
1058 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1059 locked = false;
1060
1061 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1062 panel_pipe = PIPE_B;
1063
1064 WARN(panel_pipe == pipe && locked,
1065 "panel assertion failure, pipe %c regs locked\n",
1066 pipe_name(pipe));
1067 }
1068
1069 void assert_pipe(struct drm_i915_private *dev_priv,
1070 enum pipe pipe, bool state)
1071 {
1072 int reg;
1073 u32 val;
1074 bool cur_state;
1075 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1076 pipe);
1077
1078 /* if we need the pipe A quirk it must be always on */
1079 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1080 state = true;
1081
1082 if (!intel_display_power_enabled(dev_priv->dev,
1083 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1084 cur_state = false;
1085 } else {
1086 reg = PIPECONF(cpu_transcoder);
1087 val = I915_READ(reg);
1088 cur_state = !!(val & PIPECONF_ENABLE);
1089 }
1090
1091 WARN(cur_state != state,
1092 "pipe %c assertion failure (expected %s, current %s)\n",
1093 pipe_name(pipe), state_string(state), state_string(cur_state));
1094 }
1095
1096 static void assert_plane(struct drm_i915_private *dev_priv,
1097 enum plane plane, bool state)
1098 {
1099 int reg;
1100 u32 val;
1101 bool cur_state;
1102
1103 reg = DSPCNTR(plane);
1104 val = I915_READ(reg);
1105 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1106 WARN(cur_state != state,
1107 "plane %c assertion failure (expected %s, current %s)\n",
1108 plane_name(plane), state_string(state), state_string(cur_state));
1109 }
1110
1111 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1112 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1113
1114 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1115 enum pipe pipe)
1116 {
1117 struct drm_device *dev = dev_priv->dev;
1118 int reg, i;
1119 u32 val;
1120 int cur_pipe;
1121
1122 /* Primary planes are fixed to pipes on gen4+ */
1123 if (INTEL_INFO(dev)->gen >= 4) {
1124 reg = DSPCNTR(pipe);
1125 val = I915_READ(reg);
1126 WARN((val & DISPLAY_PLANE_ENABLE),
1127 "plane %c assertion failure, should be disabled but not\n",
1128 plane_name(pipe));
1129 return;
1130 }
1131
1132 /* Need to check both planes against the pipe */
1133 for_each_pipe(i) {
1134 reg = DSPCNTR(i);
1135 val = I915_READ(reg);
1136 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1137 DISPPLANE_SEL_PIPE_SHIFT;
1138 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1139 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1140 plane_name(i), pipe_name(pipe));
1141 }
1142 }
1143
1144 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1145 enum pipe pipe)
1146 {
1147 struct drm_device *dev = dev_priv->dev;
1148 int reg, i;
1149 u32 val;
1150
1151 if (IS_VALLEYVIEW(dev)) {
1152 for (i = 0; i < dev_priv->num_plane; i++) {
1153 reg = SPCNTR(pipe, i);
1154 val = I915_READ(reg);
1155 WARN((val & SP_ENABLE),
1156 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1157 sprite_name(pipe, i), pipe_name(pipe));
1158 }
1159 } else if (INTEL_INFO(dev)->gen >= 7) {
1160 reg = SPRCTL(pipe);
1161 val = I915_READ(reg);
1162 WARN((val & SPRITE_ENABLE),
1163 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1164 plane_name(pipe), pipe_name(pipe));
1165 } else if (INTEL_INFO(dev)->gen >= 5) {
1166 reg = DVSCNTR(pipe);
1167 val = I915_READ(reg);
1168 WARN((val & DVS_ENABLE),
1169 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1170 plane_name(pipe), pipe_name(pipe));
1171 }
1172 }
1173
1174 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1175 {
1176 u32 val;
1177 bool enabled;
1178
1179 if (HAS_PCH_LPT(dev_priv->dev)) {
1180 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1181 return;
1182 }
1183
1184 val = I915_READ(PCH_DREF_CONTROL);
1185 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1186 DREF_SUPERSPREAD_SOURCE_MASK));
1187 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1188 }
1189
1190 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1191 enum pipe pipe)
1192 {
1193 int reg;
1194 u32 val;
1195 bool enabled;
1196
1197 reg = PCH_TRANSCONF(pipe);
1198 val = I915_READ(reg);
1199 enabled = !!(val & TRANS_ENABLE);
1200 WARN(enabled,
1201 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1202 pipe_name(pipe));
1203 }
1204
1205 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1206 enum pipe pipe, u32 port_sel, u32 val)
1207 {
1208 if ((val & DP_PORT_EN) == 0)
1209 return false;
1210
1211 if (HAS_PCH_CPT(dev_priv->dev)) {
1212 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1213 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1214 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1215 return false;
1216 } else {
1217 if ((val & DP_PIPE_MASK) != (pipe << 30))
1218 return false;
1219 }
1220 return true;
1221 }
1222
1223 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1224 enum pipe pipe, u32 val)
1225 {
1226 if ((val & SDVO_ENABLE) == 0)
1227 return false;
1228
1229 if (HAS_PCH_CPT(dev_priv->dev)) {
1230 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1231 return false;
1232 } else {
1233 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1234 return false;
1235 }
1236 return true;
1237 }
1238
1239 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, u32 val)
1241 {
1242 if ((val & LVDS_PORT_EN) == 0)
1243 return false;
1244
1245 if (HAS_PCH_CPT(dev_priv->dev)) {
1246 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1247 return false;
1248 } else {
1249 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1250 return false;
1251 }
1252 return true;
1253 }
1254
1255 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, u32 val)
1257 {
1258 if ((val & ADPA_DAC_ENABLE) == 0)
1259 return false;
1260 if (HAS_PCH_CPT(dev_priv->dev)) {
1261 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1262 return false;
1263 } else {
1264 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1265 return false;
1266 }
1267 return true;
1268 }
1269
1270 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1271 enum pipe pipe, int reg, u32 port_sel)
1272 {
1273 u32 val = I915_READ(reg);
1274 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1275 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1276 reg, pipe_name(pipe));
1277
1278 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1279 && (val & DP_PIPEB_SELECT),
1280 "IBX PCH dp port still using transcoder B\n");
1281 }
1282
1283 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1284 enum pipe pipe, int reg)
1285 {
1286 u32 val = I915_READ(reg);
1287 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1288 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1289 reg, pipe_name(pipe));
1290
1291 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1292 && (val & SDVO_PIPE_B_SELECT),
1293 "IBX PCH hdmi port still using transcoder B\n");
1294 }
1295
1296 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1297 enum pipe pipe)
1298 {
1299 int reg;
1300 u32 val;
1301
1302 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1303 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1304 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1305
1306 reg = PCH_ADPA;
1307 val = I915_READ(reg);
1308 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1309 "PCH VGA enabled on transcoder %c, should be disabled\n",
1310 pipe_name(pipe));
1311
1312 reg = PCH_LVDS;
1313 val = I915_READ(reg);
1314 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1315 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1316 pipe_name(pipe));
1317
1318 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1319 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1320 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1321 }
1322
1323 static void vlv_enable_pll(struct intel_crtc *crtc)
1324 {
1325 struct drm_device *dev = crtc->base.dev;
1326 struct drm_i915_private *dev_priv = dev->dev_private;
1327 int reg = DPLL(crtc->pipe);
1328 u32 dpll = crtc->config.dpll_hw_state.dpll;
1329
1330 assert_pipe_disabled(dev_priv, crtc->pipe);
1331
1332 /* No really, not for ILK+ */
1333 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1334
1335 /* PLL is protected by panel, make sure we can write it */
1336 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1337 assert_panel_unlocked(dev_priv, crtc->pipe);
1338
1339 I915_WRITE(reg, dpll);
1340 POSTING_READ(reg);
1341 udelay(150);
1342
1343 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1344 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1345
1346 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1347 POSTING_READ(DPLL_MD(crtc->pipe));
1348
1349 /* We do this three times for luck */
1350 I915_WRITE(reg, dpll);
1351 POSTING_READ(reg);
1352 udelay(150); /* wait for warmup */
1353 I915_WRITE(reg, dpll);
1354 POSTING_READ(reg);
1355 udelay(150); /* wait for warmup */
1356 I915_WRITE(reg, dpll);
1357 POSTING_READ(reg);
1358 udelay(150); /* wait for warmup */
1359 }
1360
1361 static void i9xx_enable_pll(struct intel_crtc *crtc)
1362 {
1363 struct drm_device *dev = crtc->base.dev;
1364 struct drm_i915_private *dev_priv = dev->dev_private;
1365 int reg = DPLL(crtc->pipe);
1366 u32 dpll = crtc->config.dpll_hw_state.dpll;
1367
1368 assert_pipe_disabled(dev_priv, crtc->pipe);
1369
1370 /* No really, not for ILK+ */
1371 BUG_ON(dev_priv->info->gen >= 5);
1372
1373 /* PLL is protected by panel, make sure we can write it */
1374 if (IS_MOBILE(dev) && !IS_I830(dev))
1375 assert_panel_unlocked(dev_priv, crtc->pipe);
1376
1377 I915_WRITE(reg, dpll);
1378
1379 /* Wait for the clocks to stabilize. */
1380 POSTING_READ(reg);
1381 udelay(150);
1382
1383 if (INTEL_INFO(dev)->gen >= 4) {
1384 I915_WRITE(DPLL_MD(crtc->pipe),
1385 crtc->config.dpll_hw_state.dpll_md);
1386 } else {
1387 /* The pixel multiplier can only be updated once the
1388 * DPLL is enabled and the clocks are stable.
1389 *
1390 * So write it again.
1391 */
1392 I915_WRITE(reg, dpll);
1393 }
1394
1395 /* We do this three times for luck */
1396 I915_WRITE(reg, dpll);
1397 POSTING_READ(reg);
1398 udelay(150); /* wait for warmup */
1399 I915_WRITE(reg, dpll);
1400 POSTING_READ(reg);
1401 udelay(150); /* wait for warmup */
1402 I915_WRITE(reg, dpll);
1403 POSTING_READ(reg);
1404 udelay(150); /* wait for warmup */
1405 }
1406
1407 /**
1408 * i9xx_disable_pll - disable a PLL
1409 * @dev_priv: i915 private structure
1410 * @pipe: pipe PLL to disable
1411 *
1412 * Disable the PLL for @pipe, making sure the pipe is off first.
1413 *
1414 * Note! This is for pre-ILK only.
1415 */
1416 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1417 {
1418 /* Don't disable pipe A or pipe A PLLs if needed */
1419 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1420 return;
1421
1422 /* Make sure the pipe isn't still relying on us */
1423 assert_pipe_disabled(dev_priv, pipe);
1424
1425 I915_WRITE(DPLL(pipe), 0);
1426 POSTING_READ(DPLL(pipe));
1427 }
1428
1429 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1430 {
1431 u32 port_mask;
1432
1433 if (!port)
1434 port_mask = DPLL_PORTB_READY_MASK;
1435 else
1436 port_mask = DPLL_PORTC_READY_MASK;
1437
1438 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1439 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1440 'B' + port, I915_READ(DPLL(0)));
1441 }
1442
1443 /**
1444 * ironlake_enable_shared_dpll - enable PCH PLL
1445 * @dev_priv: i915 private structure
1446 * @pipe: pipe PLL to enable
1447 *
1448 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1449 * drives the transcoder clock.
1450 */
1451 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1452 {
1453 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1454 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1455
1456 /* PCH PLLs only available on ILK, SNB and IVB */
1457 BUG_ON(dev_priv->info->gen < 5);
1458 if (WARN_ON(pll == NULL))
1459 return;
1460
1461 if (WARN_ON(pll->refcount == 0))
1462 return;
1463
1464 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1465 pll->name, pll->active, pll->on,
1466 crtc->base.base.id);
1467
1468 if (pll->active++) {
1469 WARN_ON(!pll->on);
1470 assert_shared_dpll_enabled(dev_priv, pll);
1471 return;
1472 }
1473 WARN_ON(pll->on);
1474
1475 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1476 pll->enable(dev_priv, pll);
1477 pll->on = true;
1478 }
1479
1480 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1481 {
1482 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1483 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1484
1485 /* PCH only available on ILK+ */
1486 BUG_ON(dev_priv->info->gen < 5);
1487 if (WARN_ON(pll == NULL))
1488 return;
1489
1490 if (WARN_ON(pll->refcount == 0))
1491 return;
1492
1493 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1494 pll->name, pll->active, pll->on,
1495 crtc->base.base.id);
1496
1497 if (WARN_ON(pll->active == 0)) {
1498 assert_shared_dpll_disabled(dev_priv, pll);
1499 return;
1500 }
1501
1502 assert_shared_dpll_enabled(dev_priv, pll);
1503 WARN_ON(!pll->on);
1504 if (--pll->active)
1505 return;
1506
1507 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1508 pll->disable(dev_priv, pll);
1509 pll->on = false;
1510 }
1511
1512 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1513 enum pipe pipe)
1514 {
1515 struct drm_device *dev = dev_priv->dev;
1516 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1518 uint32_t reg, val, pipeconf_val;
1519
1520 /* PCH only available on ILK+ */
1521 BUG_ON(dev_priv->info->gen < 5);
1522
1523 /* Make sure PCH DPLL is enabled */
1524 assert_shared_dpll_enabled(dev_priv,
1525 intel_crtc_to_shared_dpll(intel_crtc));
1526
1527 /* FDI must be feeding us bits for PCH ports */
1528 assert_fdi_tx_enabled(dev_priv, pipe);
1529 assert_fdi_rx_enabled(dev_priv, pipe);
1530
1531 if (HAS_PCH_CPT(dev)) {
1532 /* Workaround: Set the timing override bit before enabling the
1533 * pch transcoder. */
1534 reg = TRANS_CHICKEN2(pipe);
1535 val = I915_READ(reg);
1536 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1537 I915_WRITE(reg, val);
1538 }
1539
1540 reg = PCH_TRANSCONF(pipe);
1541 val = I915_READ(reg);
1542 pipeconf_val = I915_READ(PIPECONF(pipe));
1543
1544 if (HAS_PCH_IBX(dev_priv->dev)) {
1545 /*
1546 * make the BPC in transcoder be consistent with
1547 * that in pipeconf reg.
1548 */
1549 val &= ~PIPECONF_BPC_MASK;
1550 val |= pipeconf_val & PIPECONF_BPC_MASK;
1551 }
1552
1553 val &= ~TRANS_INTERLACE_MASK;
1554 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1555 if (HAS_PCH_IBX(dev_priv->dev) &&
1556 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1557 val |= TRANS_LEGACY_INTERLACED_ILK;
1558 else
1559 val |= TRANS_INTERLACED;
1560 else
1561 val |= TRANS_PROGRESSIVE;
1562
1563 I915_WRITE(reg, val | TRANS_ENABLE);
1564 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1565 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1566 }
1567
1568 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1569 enum transcoder cpu_transcoder)
1570 {
1571 u32 val, pipeconf_val;
1572
1573 /* PCH only available on ILK+ */
1574 BUG_ON(dev_priv->info->gen < 5);
1575
1576 /* FDI must be feeding us bits for PCH ports */
1577 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1578 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1579
1580 /* Workaround: set timing override bit. */
1581 val = I915_READ(_TRANSA_CHICKEN2);
1582 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1583 I915_WRITE(_TRANSA_CHICKEN2, val);
1584
1585 val = TRANS_ENABLE;
1586 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1587
1588 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1589 PIPECONF_INTERLACED_ILK)
1590 val |= TRANS_INTERLACED;
1591 else
1592 val |= TRANS_PROGRESSIVE;
1593
1594 I915_WRITE(LPT_TRANSCONF, val);
1595 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1596 DRM_ERROR("Failed to enable PCH transcoder\n");
1597 }
1598
1599 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1600 enum pipe pipe)
1601 {
1602 struct drm_device *dev = dev_priv->dev;
1603 uint32_t reg, val;
1604
1605 /* FDI relies on the transcoder */
1606 assert_fdi_tx_disabled(dev_priv, pipe);
1607 assert_fdi_rx_disabled(dev_priv, pipe);
1608
1609 /* Ports must be off as well */
1610 assert_pch_ports_disabled(dev_priv, pipe);
1611
1612 reg = PCH_TRANSCONF(pipe);
1613 val = I915_READ(reg);
1614 val &= ~TRANS_ENABLE;
1615 I915_WRITE(reg, val);
1616 /* wait for PCH transcoder off, transcoder state */
1617 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1618 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1619
1620 if (!HAS_PCH_IBX(dev)) {
1621 /* Workaround: Clear the timing override chicken bit again. */
1622 reg = TRANS_CHICKEN2(pipe);
1623 val = I915_READ(reg);
1624 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1625 I915_WRITE(reg, val);
1626 }
1627 }
1628
1629 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1630 {
1631 u32 val;
1632
1633 val = I915_READ(LPT_TRANSCONF);
1634 val &= ~TRANS_ENABLE;
1635 I915_WRITE(LPT_TRANSCONF, val);
1636 /* wait for PCH transcoder off, transcoder state */
1637 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1638 DRM_ERROR("Failed to disable PCH transcoder\n");
1639
1640 /* Workaround: clear timing override bit. */
1641 val = I915_READ(_TRANSA_CHICKEN2);
1642 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1643 I915_WRITE(_TRANSA_CHICKEN2, val);
1644 }
1645
1646 /**
1647 * intel_enable_pipe - enable a pipe, asserting requirements
1648 * @dev_priv: i915 private structure
1649 * @pipe: pipe to enable
1650 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1651 *
1652 * Enable @pipe, making sure that various hardware specific requirements
1653 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1654 *
1655 * @pipe should be %PIPE_A or %PIPE_B.
1656 *
1657 * Will wait until the pipe is actually running (i.e. first vblank) before
1658 * returning.
1659 */
1660 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1661 bool pch_port)
1662 {
1663 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1664 pipe);
1665 enum pipe pch_transcoder;
1666 int reg;
1667 u32 val;
1668
1669 assert_planes_disabled(dev_priv, pipe);
1670 assert_sprites_disabled(dev_priv, pipe);
1671
1672 if (HAS_PCH_LPT(dev_priv->dev))
1673 pch_transcoder = TRANSCODER_A;
1674 else
1675 pch_transcoder = pipe;
1676
1677 /*
1678 * A pipe without a PLL won't actually be able to drive bits from
1679 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1680 * need the check.
1681 */
1682 if (!HAS_PCH_SPLIT(dev_priv->dev))
1683 assert_pll_enabled(dev_priv, pipe);
1684 else {
1685 if (pch_port) {
1686 /* if driving the PCH, we need FDI enabled */
1687 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1688 assert_fdi_tx_pll_enabled(dev_priv,
1689 (enum pipe) cpu_transcoder);
1690 }
1691 /* FIXME: assert CPU port conditions for SNB+ */
1692 }
1693
1694 reg = PIPECONF(cpu_transcoder);
1695 val = I915_READ(reg);
1696 if (val & PIPECONF_ENABLE)
1697 return;
1698
1699 I915_WRITE(reg, val | PIPECONF_ENABLE);
1700 intel_wait_for_vblank(dev_priv->dev, pipe);
1701 }
1702
1703 /**
1704 * intel_disable_pipe - disable a pipe, asserting requirements
1705 * @dev_priv: i915 private structure
1706 * @pipe: pipe to disable
1707 *
1708 * Disable @pipe, making sure that various hardware specific requirements
1709 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1710 *
1711 * @pipe should be %PIPE_A or %PIPE_B.
1712 *
1713 * Will wait until the pipe has shut down before returning.
1714 */
1715 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1716 enum pipe pipe)
1717 {
1718 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1719 pipe);
1720 int reg;
1721 u32 val;
1722
1723 /*
1724 * Make sure planes won't keep trying to pump pixels to us,
1725 * or we might hang the display.
1726 */
1727 assert_planes_disabled(dev_priv, pipe);
1728 assert_sprites_disabled(dev_priv, pipe);
1729
1730 /* Don't disable pipe A or pipe A PLLs if needed */
1731 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1732 return;
1733
1734 reg = PIPECONF(cpu_transcoder);
1735 val = I915_READ(reg);
1736 if ((val & PIPECONF_ENABLE) == 0)
1737 return;
1738
1739 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1740 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1741 }
1742
1743 /*
1744 * Plane regs are double buffered, going from enabled->disabled needs a
1745 * trigger in order to latch. The display address reg provides this.
1746 */
1747 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1748 enum plane plane)
1749 {
1750 if (dev_priv->info->gen >= 4)
1751 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1752 else
1753 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1754 }
1755
1756 /**
1757 * intel_enable_plane - enable a display plane on a given pipe
1758 * @dev_priv: i915 private structure
1759 * @plane: plane to enable
1760 * @pipe: pipe being fed
1761 *
1762 * Enable @plane on @pipe, making sure that @pipe is running first.
1763 */
1764 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1765 enum plane plane, enum pipe pipe)
1766 {
1767 int reg;
1768 u32 val;
1769
1770 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1771 assert_pipe_enabled(dev_priv, pipe);
1772
1773 reg = DSPCNTR(plane);
1774 val = I915_READ(reg);
1775 if (val & DISPLAY_PLANE_ENABLE)
1776 return;
1777
1778 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1779 intel_flush_display_plane(dev_priv, plane);
1780 intel_wait_for_vblank(dev_priv->dev, pipe);
1781 }
1782
1783 /**
1784 * intel_disable_plane - disable a display plane
1785 * @dev_priv: i915 private structure
1786 * @plane: plane to disable
1787 * @pipe: pipe consuming the data
1788 *
1789 * Disable @plane; should be an independent operation.
1790 */
1791 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1792 enum plane plane, enum pipe pipe)
1793 {
1794 int reg;
1795 u32 val;
1796
1797 reg = DSPCNTR(plane);
1798 val = I915_READ(reg);
1799 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1800 return;
1801
1802 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1803 intel_flush_display_plane(dev_priv, plane);
1804 intel_wait_for_vblank(dev_priv->dev, pipe);
1805 }
1806
1807 static bool need_vtd_wa(struct drm_device *dev)
1808 {
1809 #ifdef CONFIG_INTEL_IOMMU
1810 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1811 return true;
1812 #endif
1813 return false;
1814 }
1815
1816 int
1817 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1818 struct drm_i915_gem_object *obj,
1819 struct intel_ring_buffer *pipelined)
1820 {
1821 struct drm_i915_private *dev_priv = dev->dev_private;
1822 u32 alignment;
1823 int ret;
1824
1825 switch (obj->tiling_mode) {
1826 case I915_TILING_NONE:
1827 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1828 alignment = 128 * 1024;
1829 else if (INTEL_INFO(dev)->gen >= 4)
1830 alignment = 4 * 1024;
1831 else
1832 alignment = 64 * 1024;
1833 break;
1834 case I915_TILING_X:
1835 /* pin() will align the object as required by fence */
1836 alignment = 0;
1837 break;
1838 case I915_TILING_Y:
1839 /* Despite that we check this in framebuffer_init userspace can
1840 * screw us over and change the tiling after the fact. Only
1841 * pinned buffers can't change their tiling. */
1842 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1843 return -EINVAL;
1844 default:
1845 BUG();
1846 }
1847
1848 /* Note that the w/a also requires 64 PTE of padding following the
1849 * bo. We currently fill all unused PTE with the shadow page and so
1850 * we should always have valid PTE following the scanout preventing
1851 * the VT-d warning.
1852 */
1853 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1854 alignment = 256 * 1024;
1855
1856 dev_priv->mm.interruptible = false;
1857 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1858 if (ret)
1859 goto err_interruptible;
1860
1861 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1862 * fence, whereas 965+ only requires a fence if using
1863 * framebuffer compression. For simplicity, we always install
1864 * a fence as the cost is not that onerous.
1865 */
1866 ret = i915_gem_object_get_fence(obj);
1867 if (ret)
1868 goto err_unpin;
1869
1870 i915_gem_object_pin_fence(obj);
1871
1872 dev_priv->mm.interruptible = true;
1873 return 0;
1874
1875 err_unpin:
1876 i915_gem_object_unpin(obj);
1877 err_interruptible:
1878 dev_priv->mm.interruptible = true;
1879 return ret;
1880 }
1881
1882 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1883 {
1884 i915_gem_object_unpin_fence(obj);
1885 i915_gem_object_unpin(obj);
1886 }
1887
1888 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1889 * is assumed to be a power-of-two. */
1890 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1891 unsigned int tiling_mode,
1892 unsigned int cpp,
1893 unsigned int pitch)
1894 {
1895 if (tiling_mode != I915_TILING_NONE) {
1896 unsigned int tile_rows, tiles;
1897
1898 tile_rows = *y / 8;
1899 *y %= 8;
1900
1901 tiles = *x / (512/cpp);
1902 *x %= 512/cpp;
1903
1904 return tile_rows * pitch * 8 + tiles * 4096;
1905 } else {
1906 unsigned int offset;
1907
1908 offset = *y * pitch + *x * cpp;
1909 *y = 0;
1910 *x = (offset & 4095) / cpp;
1911 return offset & -4096;
1912 }
1913 }
1914
1915 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1916 int x, int y)
1917 {
1918 struct drm_device *dev = crtc->dev;
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1921 struct intel_framebuffer *intel_fb;
1922 struct drm_i915_gem_object *obj;
1923 int plane = intel_crtc->plane;
1924 unsigned long linear_offset;
1925 u32 dspcntr;
1926 u32 reg;
1927
1928 switch (plane) {
1929 case 0:
1930 case 1:
1931 break;
1932 default:
1933 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1934 return -EINVAL;
1935 }
1936
1937 intel_fb = to_intel_framebuffer(fb);
1938 obj = intel_fb->obj;
1939
1940 reg = DSPCNTR(plane);
1941 dspcntr = I915_READ(reg);
1942 /* Mask out pixel format bits in case we change it */
1943 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1944 switch (fb->pixel_format) {
1945 case DRM_FORMAT_C8:
1946 dspcntr |= DISPPLANE_8BPP;
1947 break;
1948 case DRM_FORMAT_XRGB1555:
1949 case DRM_FORMAT_ARGB1555:
1950 dspcntr |= DISPPLANE_BGRX555;
1951 break;
1952 case DRM_FORMAT_RGB565:
1953 dspcntr |= DISPPLANE_BGRX565;
1954 break;
1955 case DRM_FORMAT_XRGB8888:
1956 case DRM_FORMAT_ARGB8888:
1957 dspcntr |= DISPPLANE_BGRX888;
1958 break;
1959 case DRM_FORMAT_XBGR8888:
1960 case DRM_FORMAT_ABGR8888:
1961 dspcntr |= DISPPLANE_RGBX888;
1962 break;
1963 case DRM_FORMAT_XRGB2101010:
1964 case DRM_FORMAT_ARGB2101010:
1965 dspcntr |= DISPPLANE_BGRX101010;
1966 break;
1967 case DRM_FORMAT_XBGR2101010:
1968 case DRM_FORMAT_ABGR2101010:
1969 dspcntr |= DISPPLANE_RGBX101010;
1970 break;
1971 default:
1972 BUG();
1973 }
1974
1975 if (INTEL_INFO(dev)->gen >= 4) {
1976 if (obj->tiling_mode != I915_TILING_NONE)
1977 dspcntr |= DISPPLANE_TILED;
1978 else
1979 dspcntr &= ~DISPPLANE_TILED;
1980 }
1981
1982 if (IS_G4X(dev))
1983 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1984
1985 I915_WRITE(reg, dspcntr);
1986
1987 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1988
1989 if (INTEL_INFO(dev)->gen >= 4) {
1990 intel_crtc->dspaddr_offset =
1991 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1992 fb->bits_per_pixel / 8,
1993 fb->pitches[0]);
1994 linear_offset -= intel_crtc->dspaddr_offset;
1995 } else {
1996 intel_crtc->dspaddr_offset = linear_offset;
1997 }
1998
1999 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2000 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2001 fb->pitches[0]);
2002 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2003 if (INTEL_INFO(dev)->gen >= 4) {
2004 I915_MODIFY_DISPBASE(DSPSURF(plane),
2005 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2006 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2007 I915_WRITE(DSPLINOFF(plane), linear_offset);
2008 } else
2009 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2010 POSTING_READ(reg);
2011
2012 return 0;
2013 }
2014
2015 static int ironlake_update_plane(struct drm_crtc *crtc,
2016 struct drm_framebuffer *fb, int x, int y)
2017 {
2018 struct drm_device *dev = crtc->dev;
2019 struct drm_i915_private *dev_priv = dev->dev_private;
2020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2021 struct intel_framebuffer *intel_fb;
2022 struct drm_i915_gem_object *obj;
2023 int plane = intel_crtc->plane;
2024 unsigned long linear_offset;
2025 u32 dspcntr;
2026 u32 reg;
2027
2028 switch (plane) {
2029 case 0:
2030 case 1:
2031 case 2:
2032 break;
2033 default:
2034 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2035 return -EINVAL;
2036 }
2037
2038 intel_fb = to_intel_framebuffer(fb);
2039 obj = intel_fb->obj;
2040
2041 reg = DSPCNTR(plane);
2042 dspcntr = I915_READ(reg);
2043 /* Mask out pixel format bits in case we change it */
2044 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2045 switch (fb->pixel_format) {
2046 case DRM_FORMAT_C8:
2047 dspcntr |= DISPPLANE_8BPP;
2048 break;
2049 case DRM_FORMAT_RGB565:
2050 dspcntr |= DISPPLANE_BGRX565;
2051 break;
2052 case DRM_FORMAT_XRGB8888:
2053 case DRM_FORMAT_ARGB8888:
2054 dspcntr |= DISPPLANE_BGRX888;
2055 break;
2056 case DRM_FORMAT_XBGR8888:
2057 case DRM_FORMAT_ABGR8888:
2058 dspcntr |= DISPPLANE_RGBX888;
2059 break;
2060 case DRM_FORMAT_XRGB2101010:
2061 case DRM_FORMAT_ARGB2101010:
2062 dspcntr |= DISPPLANE_BGRX101010;
2063 break;
2064 case DRM_FORMAT_XBGR2101010:
2065 case DRM_FORMAT_ABGR2101010:
2066 dspcntr |= DISPPLANE_RGBX101010;
2067 break;
2068 default:
2069 BUG();
2070 }
2071
2072 if (obj->tiling_mode != I915_TILING_NONE)
2073 dspcntr |= DISPPLANE_TILED;
2074 else
2075 dspcntr &= ~DISPPLANE_TILED;
2076
2077 /* must disable */
2078 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2079
2080 I915_WRITE(reg, dspcntr);
2081
2082 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2083 intel_crtc->dspaddr_offset =
2084 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2085 fb->bits_per_pixel / 8,
2086 fb->pitches[0]);
2087 linear_offset -= intel_crtc->dspaddr_offset;
2088
2089 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2090 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2091 fb->pitches[0]);
2092 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2093 I915_MODIFY_DISPBASE(DSPSURF(plane),
2094 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2095 if (IS_HASWELL(dev)) {
2096 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2097 } else {
2098 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2099 I915_WRITE(DSPLINOFF(plane), linear_offset);
2100 }
2101 POSTING_READ(reg);
2102
2103 return 0;
2104 }
2105
2106 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2107 static int
2108 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2109 int x, int y, enum mode_set_atomic state)
2110 {
2111 struct drm_device *dev = crtc->dev;
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113
2114 if (dev_priv->display.disable_fbc)
2115 dev_priv->display.disable_fbc(dev);
2116 intel_increase_pllclock(crtc);
2117
2118 return dev_priv->display.update_plane(crtc, fb, x, y);
2119 }
2120
2121 void intel_display_handle_reset(struct drm_device *dev)
2122 {
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124 struct drm_crtc *crtc;
2125
2126 /*
2127 * Flips in the rings have been nuked by the reset,
2128 * so complete all pending flips so that user space
2129 * will get its events and not get stuck.
2130 *
2131 * Also update the base address of all primary
2132 * planes to the the last fb to make sure we're
2133 * showing the correct fb after a reset.
2134 *
2135 * Need to make two loops over the crtcs so that we
2136 * don't try to grab a crtc mutex before the
2137 * pending_flip_queue really got woken up.
2138 */
2139
2140 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2142 enum plane plane = intel_crtc->plane;
2143
2144 intel_prepare_page_flip(dev, plane);
2145 intel_finish_page_flip_plane(dev, plane);
2146 }
2147
2148 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2150
2151 mutex_lock(&crtc->mutex);
2152 if (intel_crtc->active)
2153 dev_priv->display.update_plane(crtc, crtc->fb,
2154 crtc->x, crtc->y);
2155 mutex_unlock(&crtc->mutex);
2156 }
2157 }
2158
2159 static int
2160 intel_finish_fb(struct drm_framebuffer *old_fb)
2161 {
2162 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2163 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2164 bool was_interruptible = dev_priv->mm.interruptible;
2165 int ret;
2166
2167 /* Big Hammer, we also need to ensure that any pending
2168 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2169 * current scanout is retired before unpinning the old
2170 * framebuffer.
2171 *
2172 * This should only fail upon a hung GPU, in which case we
2173 * can safely continue.
2174 */
2175 dev_priv->mm.interruptible = false;
2176 ret = i915_gem_object_finish_gpu(obj);
2177 dev_priv->mm.interruptible = was_interruptible;
2178
2179 return ret;
2180 }
2181
2182 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2183 {
2184 struct drm_device *dev = crtc->dev;
2185 struct drm_i915_master_private *master_priv;
2186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2187
2188 if (!dev->primary->master)
2189 return;
2190
2191 master_priv = dev->primary->master->driver_priv;
2192 if (!master_priv->sarea_priv)
2193 return;
2194
2195 switch (intel_crtc->pipe) {
2196 case 0:
2197 master_priv->sarea_priv->pipeA_x = x;
2198 master_priv->sarea_priv->pipeA_y = y;
2199 break;
2200 case 1:
2201 master_priv->sarea_priv->pipeB_x = x;
2202 master_priv->sarea_priv->pipeB_y = y;
2203 break;
2204 default:
2205 break;
2206 }
2207 }
2208
2209 static int
2210 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2211 struct drm_framebuffer *fb)
2212 {
2213 struct drm_device *dev = crtc->dev;
2214 struct drm_i915_private *dev_priv = dev->dev_private;
2215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2216 struct drm_framebuffer *old_fb;
2217 int ret;
2218
2219 /* no fb bound */
2220 if (!fb) {
2221 DRM_ERROR("No FB bound\n");
2222 return 0;
2223 }
2224
2225 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2226 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2227 plane_name(intel_crtc->plane),
2228 INTEL_INFO(dev)->num_pipes);
2229 return -EINVAL;
2230 }
2231
2232 mutex_lock(&dev->struct_mutex);
2233 ret = intel_pin_and_fence_fb_obj(dev,
2234 to_intel_framebuffer(fb)->obj,
2235 NULL);
2236 if (ret != 0) {
2237 mutex_unlock(&dev->struct_mutex);
2238 DRM_ERROR("pin & fence failed\n");
2239 return ret;
2240 }
2241
2242 /* Update pipe size and adjust fitter if needed */
2243 if (i915_fastboot) {
2244 I915_WRITE(PIPESRC(intel_crtc->pipe),
2245 ((crtc->mode.hdisplay - 1) << 16) |
2246 (crtc->mode.vdisplay - 1));
2247 if (!intel_crtc->config.pch_pfit.size &&
2248 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2249 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2250 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2251 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2252 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2253 }
2254 }
2255
2256 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2257 if (ret) {
2258 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2259 mutex_unlock(&dev->struct_mutex);
2260 DRM_ERROR("failed to update base address\n");
2261 return ret;
2262 }
2263
2264 old_fb = crtc->fb;
2265 crtc->fb = fb;
2266 crtc->x = x;
2267 crtc->y = y;
2268
2269 if (old_fb) {
2270 if (intel_crtc->active && old_fb != fb)
2271 intel_wait_for_vblank(dev, intel_crtc->pipe);
2272 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2273 }
2274
2275 intel_update_fbc(dev);
2276 intel_edp_psr_update(dev);
2277 mutex_unlock(&dev->struct_mutex);
2278
2279 intel_crtc_update_sarea_pos(crtc, x, y);
2280
2281 return 0;
2282 }
2283
2284 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2285 {
2286 struct drm_device *dev = crtc->dev;
2287 struct drm_i915_private *dev_priv = dev->dev_private;
2288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2289 int pipe = intel_crtc->pipe;
2290 u32 reg, temp;
2291
2292 /* enable normal train */
2293 reg = FDI_TX_CTL(pipe);
2294 temp = I915_READ(reg);
2295 if (IS_IVYBRIDGE(dev)) {
2296 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2297 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2298 } else {
2299 temp &= ~FDI_LINK_TRAIN_NONE;
2300 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2301 }
2302 I915_WRITE(reg, temp);
2303
2304 reg = FDI_RX_CTL(pipe);
2305 temp = I915_READ(reg);
2306 if (HAS_PCH_CPT(dev)) {
2307 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2308 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2309 } else {
2310 temp &= ~FDI_LINK_TRAIN_NONE;
2311 temp |= FDI_LINK_TRAIN_NONE;
2312 }
2313 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2314
2315 /* wait one idle pattern time */
2316 POSTING_READ(reg);
2317 udelay(1000);
2318
2319 /* IVB wants error correction enabled */
2320 if (IS_IVYBRIDGE(dev))
2321 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2322 FDI_FE_ERRC_ENABLE);
2323 }
2324
2325 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2326 {
2327 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2328 }
2329
2330 static void ivb_modeset_global_resources(struct drm_device *dev)
2331 {
2332 struct drm_i915_private *dev_priv = dev->dev_private;
2333 struct intel_crtc *pipe_B_crtc =
2334 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2335 struct intel_crtc *pipe_C_crtc =
2336 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2337 uint32_t temp;
2338
2339 /*
2340 * When everything is off disable fdi C so that we could enable fdi B
2341 * with all lanes. Note that we don't care about enabled pipes without
2342 * an enabled pch encoder.
2343 */
2344 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2345 !pipe_has_enabled_pch(pipe_C_crtc)) {
2346 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2347 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2348
2349 temp = I915_READ(SOUTH_CHICKEN1);
2350 temp &= ~FDI_BC_BIFURCATION_SELECT;
2351 DRM_DEBUG_KMS("disabling fdi C rx\n");
2352 I915_WRITE(SOUTH_CHICKEN1, temp);
2353 }
2354 }
2355
2356 /* The FDI link training functions for ILK/Ibexpeak. */
2357 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2358 {
2359 struct drm_device *dev = crtc->dev;
2360 struct drm_i915_private *dev_priv = dev->dev_private;
2361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2362 int pipe = intel_crtc->pipe;
2363 int plane = intel_crtc->plane;
2364 u32 reg, temp, tries;
2365
2366 /* FDI needs bits from pipe & plane first */
2367 assert_pipe_enabled(dev_priv, pipe);
2368 assert_plane_enabled(dev_priv, plane);
2369
2370 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2371 for train result */
2372 reg = FDI_RX_IMR(pipe);
2373 temp = I915_READ(reg);
2374 temp &= ~FDI_RX_SYMBOL_LOCK;
2375 temp &= ~FDI_RX_BIT_LOCK;
2376 I915_WRITE(reg, temp);
2377 I915_READ(reg);
2378 udelay(150);
2379
2380 /* enable CPU FDI TX and PCH FDI RX */
2381 reg = FDI_TX_CTL(pipe);
2382 temp = I915_READ(reg);
2383 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2384 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2385 temp &= ~FDI_LINK_TRAIN_NONE;
2386 temp |= FDI_LINK_TRAIN_PATTERN_1;
2387 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2388
2389 reg = FDI_RX_CTL(pipe);
2390 temp = I915_READ(reg);
2391 temp &= ~FDI_LINK_TRAIN_NONE;
2392 temp |= FDI_LINK_TRAIN_PATTERN_1;
2393 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2394
2395 POSTING_READ(reg);
2396 udelay(150);
2397
2398 /* Ironlake workaround, enable clock pointer after FDI enable*/
2399 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2400 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2401 FDI_RX_PHASE_SYNC_POINTER_EN);
2402
2403 reg = FDI_RX_IIR(pipe);
2404 for (tries = 0; tries < 5; tries++) {
2405 temp = I915_READ(reg);
2406 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2407
2408 if ((temp & FDI_RX_BIT_LOCK)) {
2409 DRM_DEBUG_KMS("FDI train 1 done.\n");
2410 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2411 break;
2412 }
2413 }
2414 if (tries == 5)
2415 DRM_ERROR("FDI train 1 fail!\n");
2416
2417 /* Train 2 */
2418 reg = FDI_TX_CTL(pipe);
2419 temp = I915_READ(reg);
2420 temp &= ~FDI_LINK_TRAIN_NONE;
2421 temp |= FDI_LINK_TRAIN_PATTERN_2;
2422 I915_WRITE(reg, temp);
2423
2424 reg = FDI_RX_CTL(pipe);
2425 temp = I915_READ(reg);
2426 temp &= ~FDI_LINK_TRAIN_NONE;
2427 temp |= FDI_LINK_TRAIN_PATTERN_2;
2428 I915_WRITE(reg, temp);
2429
2430 POSTING_READ(reg);
2431 udelay(150);
2432
2433 reg = FDI_RX_IIR(pipe);
2434 for (tries = 0; tries < 5; tries++) {
2435 temp = I915_READ(reg);
2436 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2437
2438 if (temp & FDI_RX_SYMBOL_LOCK) {
2439 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2440 DRM_DEBUG_KMS("FDI train 2 done.\n");
2441 break;
2442 }
2443 }
2444 if (tries == 5)
2445 DRM_ERROR("FDI train 2 fail!\n");
2446
2447 DRM_DEBUG_KMS("FDI train done\n");
2448
2449 }
2450
2451 static const int snb_b_fdi_train_param[] = {
2452 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2453 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2454 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2455 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2456 };
2457
2458 /* The FDI link training functions for SNB/Cougarpoint. */
2459 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2460 {
2461 struct drm_device *dev = crtc->dev;
2462 struct drm_i915_private *dev_priv = dev->dev_private;
2463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2464 int pipe = intel_crtc->pipe;
2465 u32 reg, temp, i, retry;
2466
2467 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2468 for train result */
2469 reg = FDI_RX_IMR(pipe);
2470 temp = I915_READ(reg);
2471 temp &= ~FDI_RX_SYMBOL_LOCK;
2472 temp &= ~FDI_RX_BIT_LOCK;
2473 I915_WRITE(reg, temp);
2474
2475 POSTING_READ(reg);
2476 udelay(150);
2477
2478 /* enable CPU FDI TX and PCH FDI RX */
2479 reg = FDI_TX_CTL(pipe);
2480 temp = I915_READ(reg);
2481 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2482 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2483 temp &= ~FDI_LINK_TRAIN_NONE;
2484 temp |= FDI_LINK_TRAIN_PATTERN_1;
2485 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2486 /* SNB-B */
2487 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2488 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2489
2490 I915_WRITE(FDI_RX_MISC(pipe),
2491 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2492
2493 reg = FDI_RX_CTL(pipe);
2494 temp = I915_READ(reg);
2495 if (HAS_PCH_CPT(dev)) {
2496 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2497 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2498 } else {
2499 temp &= ~FDI_LINK_TRAIN_NONE;
2500 temp |= FDI_LINK_TRAIN_PATTERN_1;
2501 }
2502 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2503
2504 POSTING_READ(reg);
2505 udelay(150);
2506
2507 for (i = 0; i < 4; i++) {
2508 reg = FDI_TX_CTL(pipe);
2509 temp = I915_READ(reg);
2510 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2511 temp |= snb_b_fdi_train_param[i];
2512 I915_WRITE(reg, temp);
2513
2514 POSTING_READ(reg);
2515 udelay(500);
2516
2517 for (retry = 0; retry < 5; retry++) {
2518 reg = FDI_RX_IIR(pipe);
2519 temp = I915_READ(reg);
2520 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2521 if (temp & FDI_RX_BIT_LOCK) {
2522 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2523 DRM_DEBUG_KMS("FDI train 1 done.\n");
2524 break;
2525 }
2526 udelay(50);
2527 }
2528 if (retry < 5)
2529 break;
2530 }
2531 if (i == 4)
2532 DRM_ERROR("FDI train 1 fail!\n");
2533
2534 /* Train 2 */
2535 reg = FDI_TX_CTL(pipe);
2536 temp = I915_READ(reg);
2537 temp &= ~FDI_LINK_TRAIN_NONE;
2538 temp |= FDI_LINK_TRAIN_PATTERN_2;
2539 if (IS_GEN6(dev)) {
2540 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2541 /* SNB-B */
2542 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2543 }
2544 I915_WRITE(reg, temp);
2545
2546 reg = FDI_RX_CTL(pipe);
2547 temp = I915_READ(reg);
2548 if (HAS_PCH_CPT(dev)) {
2549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2550 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2551 } else {
2552 temp &= ~FDI_LINK_TRAIN_NONE;
2553 temp |= FDI_LINK_TRAIN_PATTERN_2;
2554 }
2555 I915_WRITE(reg, temp);
2556
2557 POSTING_READ(reg);
2558 udelay(150);
2559
2560 for (i = 0; i < 4; i++) {
2561 reg = FDI_TX_CTL(pipe);
2562 temp = I915_READ(reg);
2563 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2564 temp |= snb_b_fdi_train_param[i];
2565 I915_WRITE(reg, temp);
2566
2567 POSTING_READ(reg);
2568 udelay(500);
2569
2570 for (retry = 0; retry < 5; retry++) {
2571 reg = FDI_RX_IIR(pipe);
2572 temp = I915_READ(reg);
2573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2574 if (temp & FDI_RX_SYMBOL_LOCK) {
2575 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2576 DRM_DEBUG_KMS("FDI train 2 done.\n");
2577 break;
2578 }
2579 udelay(50);
2580 }
2581 if (retry < 5)
2582 break;
2583 }
2584 if (i == 4)
2585 DRM_ERROR("FDI train 2 fail!\n");
2586
2587 DRM_DEBUG_KMS("FDI train done.\n");
2588 }
2589
2590 /* Manual link training for Ivy Bridge A0 parts */
2591 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2592 {
2593 struct drm_device *dev = crtc->dev;
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2596 int pipe = intel_crtc->pipe;
2597 u32 reg, temp, i;
2598
2599 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2600 for train result */
2601 reg = FDI_RX_IMR(pipe);
2602 temp = I915_READ(reg);
2603 temp &= ~FDI_RX_SYMBOL_LOCK;
2604 temp &= ~FDI_RX_BIT_LOCK;
2605 I915_WRITE(reg, temp);
2606
2607 POSTING_READ(reg);
2608 udelay(150);
2609
2610 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2611 I915_READ(FDI_RX_IIR(pipe)));
2612
2613 /* enable CPU FDI TX and PCH FDI RX */
2614 reg = FDI_TX_CTL(pipe);
2615 temp = I915_READ(reg);
2616 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2617 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2618 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2619 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2620 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2621 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2622 temp |= FDI_COMPOSITE_SYNC;
2623 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2624
2625 I915_WRITE(FDI_RX_MISC(pipe),
2626 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2627
2628 reg = FDI_RX_CTL(pipe);
2629 temp = I915_READ(reg);
2630 temp &= ~FDI_LINK_TRAIN_AUTO;
2631 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2632 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2633 temp |= FDI_COMPOSITE_SYNC;
2634 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2635
2636 POSTING_READ(reg);
2637 udelay(150);
2638
2639 for (i = 0; i < 4; i++) {
2640 reg = FDI_TX_CTL(pipe);
2641 temp = I915_READ(reg);
2642 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2643 temp |= snb_b_fdi_train_param[i];
2644 I915_WRITE(reg, temp);
2645
2646 POSTING_READ(reg);
2647 udelay(500);
2648
2649 reg = FDI_RX_IIR(pipe);
2650 temp = I915_READ(reg);
2651 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2652
2653 if (temp & FDI_RX_BIT_LOCK ||
2654 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2655 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2656 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2657 break;
2658 }
2659 }
2660 if (i == 4)
2661 DRM_ERROR("FDI train 1 fail!\n");
2662
2663 /* Train 2 */
2664 reg = FDI_TX_CTL(pipe);
2665 temp = I915_READ(reg);
2666 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2667 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2668 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2669 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2670 I915_WRITE(reg, temp);
2671
2672 reg = FDI_RX_CTL(pipe);
2673 temp = I915_READ(reg);
2674 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2675 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2676 I915_WRITE(reg, temp);
2677
2678 POSTING_READ(reg);
2679 udelay(150);
2680
2681 for (i = 0; i < 4; i++) {
2682 reg = FDI_TX_CTL(pipe);
2683 temp = I915_READ(reg);
2684 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2685 temp |= snb_b_fdi_train_param[i];
2686 I915_WRITE(reg, temp);
2687
2688 POSTING_READ(reg);
2689 udelay(500);
2690
2691 reg = FDI_RX_IIR(pipe);
2692 temp = I915_READ(reg);
2693 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2694
2695 if (temp & FDI_RX_SYMBOL_LOCK) {
2696 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2697 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2698 break;
2699 }
2700 }
2701 if (i == 4)
2702 DRM_ERROR("FDI train 2 fail!\n");
2703
2704 DRM_DEBUG_KMS("FDI train done.\n");
2705 }
2706
2707 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2708 {
2709 struct drm_device *dev = intel_crtc->base.dev;
2710 struct drm_i915_private *dev_priv = dev->dev_private;
2711 int pipe = intel_crtc->pipe;
2712 u32 reg, temp;
2713
2714
2715 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2716 reg = FDI_RX_CTL(pipe);
2717 temp = I915_READ(reg);
2718 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2719 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2720 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2721 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2722
2723 POSTING_READ(reg);
2724 udelay(200);
2725
2726 /* Switch from Rawclk to PCDclk */
2727 temp = I915_READ(reg);
2728 I915_WRITE(reg, temp | FDI_PCDCLK);
2729
2730 POSTING_READ(reg);
2731 udelay(200);
2732
2733 /* Enable CPU FDI TX PLL, always on for Ironlake */
2734 reg = FDI_TX_CTL(pipe);
2735 temp = I915_READ(reg);
2736 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2737 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2738
2739 POSTING_READ(reg);
2740 udelay(100);
2741 }
2742 }
2743
2744 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2745 {
2746 struct drm_device *dev = intel_crtc->base.dev;
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 int pipe = intel_crtc->pipe;
2749 u32 reg, temp;
2750
2751 /* Switch from PCDclk to Rawclk */
2752 reg = FDI_RX_CTL(pipe);
2753 temp = I915_READ(reg);
2754 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2755
2756 /* Disable CPU FDI TX PLL */
2757 reg = FDI_TX_CTL(pipe);
2758 temp = I915_READ(reg);
2759 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2760
2761 POSTING_READ(reg);
2762 udelay(100);
2763
2764 reg = FDI_RX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2767
2768 /* Wait for the clocks to turn off. */
2769 POSTING_READ(reg);
2770 udelay(100);
2771 }
2772
2773 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2774 {
2775 struct drm_device *dev = crtc->dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778 int pipe = intel_crtc->pipe;
2779 u32 reg, temp;
2780
2781 /* disable CPU FDI tx and PCH FDI rx */
2782 reg = FDI_TX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2785 POSTING_READ(reg);
2786
2787 reg = FDI_RX_CTL(pipe);
2788 temp = I915_READ(reg);
2789 temp &= ~(0x7 << 16);
2790 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2791 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2792
2793 POSTING_READ(reg);
2794 udelay(100);
2795
2796 /* Ironlake workaround, disable clock pointer after downing FDI */
2797 if (HAS_PCH_IBX(dev)) {
2798 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2799 }
2800
2801 /* still set train pattern 1 */
2802 reg = FDI_TX_CTL(pipe);
2803 temp = I915_READ(reg);
2804 temp &= ~FDI_LINK_TRAIN_NONE;
2805 temp |= FDI_LINK_TRAIN_PATTERN_1;
2806 I915_WRITE(reg, temp);
2807
2808 reg = FDI_RX_CTL(pipe);
2809 temp = I915_READ(reg);
2810 if (HAS_PCH_CPT(dev)) {
2811 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2813 } else {
2814 temp &= ~FDI_LINK_TRAIN_NONE;
2815 temp |= FDI_LINK_TRAIN_PATTERN_1;
2816 }
2817 /* BPC in FDI rx is consistent with that in PIPECONF */
2818 temp &= ~(0x07 << 16);
2819 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2820 I915_WRITE(reg, temp);
2821
2822 POSTING_READ(reg);
2823 udelay(100);
2824 }
2825
2826 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2827 {
2828 struct drm_device *dev = crtc->dev;
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2831 unsigned long flags;
2832 bool pending;
2833
2834 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2835 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2836 return false;
2837
2838 spin_lock_irqsave(&dev->event_lock, flags);
2839 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2840 spin_unlock_irqrestore(&dev->event_lock, flags);
2841
2842 return pending;
2843 }
2844
2845 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2846 {
2847 struct drm_device *dev = crtc->dev;
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849
2850 if (crtc->fb == NULL)
2851 return;
2852
2853 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2854
2855 wait_event(dev_priv->pending_flip_queue,
2856 !intel_crtc_has_pending_flip(crtc));
2857
2858 mutex_lock(&dev->struct_mutex);
2859 intel_finish_fb(crtc->fb);
2860 mutex_unlock(&dev->struct_mutex);
2861 }
2862
2863 /* Program iCLKIP clock to the desired frequency */
2864 static void lpt_program_iclkip(struct drm_crtc *crtc)
2865 {
2866 struct drm_device *dev = crtc->dev;
2867 struct drm_i915_private *dev_priv = dev->dev_private;
2868 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2869 u32 temp;
2870
2871 mutex_lock(&dev_priv->dpio_lock);
2872
2873 /* It is necessary to ungate the pixclk gate prior to programming
2874 * the divisors, and gate it back when it is done.
2875 */
2876 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2877
2878 /* Disable SSCCTL */
2879 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2880 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2881 SBI_SSCCTL_DISABLE,
2882 SBI_ICLK);
2883
2884 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2885 if (crtc->mode.clock == 20000) {
2886 auxdiv = 1;
2887 divsel = 0x41;
2888 phaseinc = 0x20;
2889 } else {
2890 /* The iCLK virtual clock root frequency is in MHz,
2891 * but the crtc->mode.clock in in KHz. To get the divisors,
2892 * it is necessary to divide one by another, so we
2893 * convert the virtual clock precision to KHz here for higher
2894 * precision.
2895 */
2896 u32 iclk_virtual_root_freq = 172800 * 1000;
2897 u32 iclk_pi_range = 64;
2898 u32 desired_divisor, msb_divisor_value, pi_value;
2899
2900 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2901 msb_divisor_value = desired_divisor / iclk_pi_range;
2902 pi_value = desired_divisor % iclk_pi_range;
2903
2904 auxdiv = 0;
2905 divsel = msb_divisor_value - 2;
2906 phaseinc = pi_value;
2907 }
2908
2909 /* This should not happen with any sane values */
2910 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2911 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2912 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2913 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2914
2915 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2916 crtc->mode.clock,
2917 auxdiv,
2918 divsel,
2919 phasedir,
2920 phaseinc);
2921
2922 /* Program SSCDIVINTPHASE6 */
2923 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2924 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2925 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2926 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2927 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2928 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2929 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2930 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2931
2932 /* Program SSCAUXDIV */
2933 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2934 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2935 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2936 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2937
2938 /* Enable modulator and associated divider */
2939 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2940 temp &= ~SBI_SSCCTL_DISABLE;
2941 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2942
2943 /* Wait for initialization time */
2944 udelay(24);
2945
2946 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2947
2948 mutex_unlock(&dev_priv->dpio_lock);
2949 }
2950
2951 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2952 enum pipe pch_transcoder)
2953 {
2954 struct drm_device *dev = crtc->base.dev;
2955 struct drm_i915_private *dev_priv = dev->dev_private;
2956 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2957
2958 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2959 I915_READ(HTOTAL(cpu_transcoder)));
2960 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2961 I915_READ(HBLANK(cpu_transcoder)));
2962 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2963 I915_READ(HSYNC(cpu_transcoder)));
2964
2965 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2966 I915_READ(VTOTAL(cpu_transcoder)));
2967 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2968 I915_READ(VBLANK(cpu_transcoder)));
2969 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2970 I915_READ(VSYNC(cpu_transcoder)));
2971 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2972 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2973 }
2974
2975 /*
2976 * Enable PCH resources required for PCH ports:
2977 * - PCH PLLs
2978 * - FDI training & RX/TX
2979 * - update transcoder timings
2980 * - DP transcoding bits
2981 * - transcoder
2982 */
2983 static void ironlake_pch_enable(struct drm_crtc *crtc)
2984 {
2985 struct drm_device *dev = crtc->dev;
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2988 int pipe = intel_crtc->pipe;
2989 u32 reg, temp;
2990
2991 assert_pch_transcoder_disabled(dev_priv, pipe);
2992
2993 /* Write the TU size bits before fdi link training, so that error
2994 * detection works. */
2995 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2996 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2997
2998 /* For PCH output, training FDI link */
2999 dev_priv->display.fdi_link_train(crtc);
3000
3001 /* We need to program the right clock selection before writing the pixel
3002 * mutliplier into the DPLL. */
3003 if (HAS_PCH_CPT(dev)) {
3004 u32 sel;
3005
3006 temp = I915_READ(PCH_DPLL_SEL);
3007 temp |= TRANS_DPLL_ENABLE(pipe);
3008 sel = TRANS_DPLLB_SEL(pipe);
3009 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3010 temp |= sel;
3011 else
3012 temp &= ~sel;
3013 I915_WRITE(PCH_DPLL_SEL, temp);
3014 }
3015
3016 /* XXX: pch pll's can be enabled any time before we enable the PCH
3017 * transcoder, and we actually should do this to not upset any PCH
3018 * transcoder that already use the clock when we share it.
3019 *
3020 * Note that enable_shared_dpll tries to do the right thing, but
3021 * get_shared_dpll unconditionally resets the pll - we need that to have
3022 * the right LVDS enable sequence. */
3023 ironlake_enable_shared_dpll(intel_crtc);
3024
3025 /* set transcoder timing, panel must allow it */
3026 assert_panel_unlocked(dev_priv, pipe);
3027 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3028
3029 intel_fdi_normal_train(crtc);
3030
3031 /* For PCH DP, enable TRANS_DP_CTL */
3032 if (HAS_PCH_CPT(dev) &&
3033 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3034 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3035 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3036 reg = TRANS_DP_CTL(pipe);
3037 temp = I915_READ(reg);
3038 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3039 TRANS_DP_SYNC_MASK |
3040 TRANS_DP_BPC_MASK);
3041 temp |= (TRANS_DP_OUTPUT_ENABLE |
3042 TRANS_DP_ENH_FRAMING);
3043 temp |= bpc << 9; /* same format but at 11:9 */
3044
3045 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3046 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3047 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3048 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3049
3050 switch (intel_trans_dp_port_sel(crtc)) {
3051 case PCH_DP_B:
3052 temp |= TRANS_DP_PORT_SEL_B;
3053 break;
3054 case PCH_DP_C:
3055 temp |= TRANS_DP_PORT_SEL_C;
3056 break;
3057 case PCH_DP_D:
3058 temp |= TRANS_DP_PORT_SEL_D;
3059 break;
3060 default:
3061 BUG();
3062 }
3063
3064 I915_WRITE(reg, temp);
3065 }
3066
3067 ironlake_enable_pch_transcoder(dev_priv, pipe);
3068 }
3069
3070 static void lpt_pch_enable(struct drm_crtc *crtc)
3071 {
3072 struct drm_device *dev = crtc->dev;
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3075 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3076
3077 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3078
3079 lpt_program_iclkip(crtc);
3080
3081 /* Set transcoder timing. */
3082 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3083
3084 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3085 }
3086
3087 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3088 {
3089 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3090
3091 if (pll == NULL)
3092 return;
3093
3094 if (pll->refcount == 0) {
3095 WARN(1, "bad %s refcount\n", pll->name);
3096 return;
3097 }
3098
3099 if (--pll->refcount == 0) {
3100 WARN_ON(pll->on);
3101 WARN_ON(pll->active);
3102 }
3103
3104 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3105 }
3106
3107 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3108 {
3109 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3110 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3111 enum intel_dpll_id i;
3112
3113 if (pll) {
3114 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3115 crtc->base.base.id, pll->name);
3116 intel_put_shared_dpll(crtc);
3117 }
3118
3119 if (HAS_PCH_IBX(dev_priv->dev)) {
3120 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3121 i = (enum intel_dpll_id) crtc->pipe;
3122 pll = &dev_priv->shared_dplls[i];
3123
3124 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3125 crtc->base.base.id, pll->name);
3126
3127 goto found;
3128 }
3129
3130 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3131 pll = &dev_priv->shared_dplls[i];
3132
3133 /* Only want to check enabled timings first */
3134 if (pll->refcount == 0)
3135 continue;
3136
3137 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3138 sizeof(pll->hw_state)) == 0) {
3139 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3140 crtc->base.base.id,
3141 pll->name, pll->refcount, pll->active);
3142
3143 goto found;
3144 }
3145 }
3146
3147 /* Ok no matching timings, maybe there's a free one? */
3148 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3149 pll = &dev_priv->shared_dplls[i];
3150 if (pll->refcount == 0) {
3151 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3152 crtc->base.base.id, pll->name);
3153 goto found;
3154 }
3155 }
3156
3157 return NULL;
3158
3159 found:
3160 crtc->config.shared_dpll = i;
3161 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3162 pipe_name(crtc->pipe));
3163
3164 if (pll->active == 0) {
3165 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3166 sizeof(pll->hw_state));
3167
3168 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3169 WARN_ON(pll->on);
3170 assert_shared_dpll_disabled(dev_priv, pll);
3171
3172 pll->mode_set(dev_priv, pll);
3173 }
3174 pll->refcount++;
3175
3176 return pll;
3177 }
3178
3179 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3180 {
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 int dslreg = PIPEDSL(pipe);
3183 u32 temp;
3184
3185 temp = I915_READ(dslreg);
3186 udelay(500);
3187 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3188 if (wait_for(I915_READ(dslreg) != temp, 5))
3189 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3190 }
3191 }
3192
3193 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3194 {
3195 struct drm_device *dev = crtc->base.dev;
3196 struct drm_i915_private *dev_priv = dev->dev_private;
3197 int pipe = crtc->pipe;
3198
3199 if (crtc->config.pch_pfit.size) {
3200 /* Force use of hard-coded filter coefficients
3201 * as some pre-programmed values are broken,
3202 * e.g. x201.
3203 */
3204 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3205 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3206 PF_PIPE_SEL_IVB(pipe));
3207 else
3208 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3209 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3210 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3211 }
3212 }
3213
3214 static void intel_enable_planes(struct drm_crtc *crtc)
3215 {
3216 struct drm_device *dev = crtc->dev;
3217 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3218 struct intel_plane *intel_plane;
3219
3220 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3221 if (intel_plane->pipe == pipe)
3222 intel_plane_restore(&intel_plane->base);
3223 }
3224
3225 static void intel_disable_planes(struct drm_crtc *crtc)
3226 {
3227 struct drm_device *dev = crtc->dev;
3228 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3229 struct intel_plane *intel_plane;
3230
3231 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3232 if (intel_plane->pipe == pipe)
3233 intel_plane_disable(&intel_plane->base);
3234 }
3235
3236 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3237 {
3238 struct drm_device *dev = crtc->dev;
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3241 struct intel_encoder *encoder;
3242 int pipe = intel_crtc->pipe;
3243 int plane = intel_crtc->plane;
3244
3245 WARN_ON(!crtc->enabled);
3246
3247 if (intel_crtc->active)
3248 return;
3249
3250 intel_crtc->active = true;
3251
3252 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3253 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3254
3255 intel_update_watermarks(dev);
3256
3257 for_each_encoder_on_crtc(dev, crtc, encoder)
3258 if (encoder->pre_enable)
3259 encoder->pre_enable(encoder);
3260
3261 if (intel_crtc->config.has_pch_encoder) {
3262 /* Note: FDI PLL enabling _must_ be done before we enable the
3263 * cpu pipes, hence this is separate from all the other fdi/pch
3264 * enabling. */
3265 ironlake_fdi_pll_enable(intel_crtc);
3266 } else {
3267 assert_fdi_tx_disabled(dev_priv, pipe);
3268 assert_fdi_rx_disabled(dev_priv, pipe);
3269 }
3270
3271 ironlake_pfit_enable(intel_crtc);
3272
3273 /*
3274 * On ILK+ LUT must be loaded before the pipe is running but with
3275 * clocks enabled
3276 */
3277 intel_crtc_load_lut(crtc);
3278
3279 intel_enable_pipe(dev_priv, pipe,
3280 intel_crtc->config.has_pch_encoder);
3281 intel_enable_plane(dev_priv, plane, pipe);
3282 intel_enable_planes(crtc);
3283 intel_crtc_update_cursor(crtc, true);
3284
3285 if (intel_crtc->config.has_pch_encoder)
3286 ironlake_pch_enable(crtc);
3287
3288 mutex_lock(&dev->struct_mutex);
3289 intel_update_fbc(dev);
3290 mutex_unlock(&dev->struct_mutex);
3291
3292 for_each_encoder_on_crtc(dev, crtc, encoder)
3293 encoder->enable(encoder);
3294
3295 if (HAS_PCH_CPT(dev))
3296 cpt_verify_modeset(dev, intel_crtc->pipe);
3297
3298 /*
3299 * There seems to be a race in PCH platform hw (at least on some
3300 * outputs) where an enabled pipe still completes any pageflip right
3301 * away (as if the pipe is off) instead of waiting for vblank. As soon
3302 * as the first vblank happend, everything works as expected. Hence just
3303 * wait for one vblank before returning to avoid strange things
3304 * happening.
3305 */
3306 intel_wait_for_vblank(dev, intel_crtc->pipe);
3307 }
3308
3309 /* IPS only exists on ULT machines and is tied to pipe A. */
3310 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3311 {
3312 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3313 }
3314
3315 static void hsw_enable_ips(struct intel_crtc *crtc)
3316 {
3317 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3318
3319 if (!crtc->config.ips_enabled)
3320 return;
3321
3322 /* We can only enable IPS after we enable a plane and wait for a vblank.
3323 * We guarantee that the plane is enabled by calling intel_enable_ips
3324 * only after intel_enable_plane. And intel_enable_plane already waits
3325 * for a vblank, so all we need to do here is to enable the IPS bit. */
3326 assert_plane_enabled(dev_priv, crtc->plane);
3327 I915_WRITE(IPS_CTL, IPS_ENABLE);
3328 }
3329
3330 static void hsw_disable_ips(struct intel_crtc *crtc)
3331 {
3332 struct drm_device *dev = crtc->base.dev;
3333 struct drm_i915_private *dev_priv = dev->dev_private;
3334
3335 if (!crtc->config.ips_enabled)
3336 return;
3337
3338 assert_plane_enabled(dev_priv, crtc->plane);
3339 I915_WRITE(IPS_CTL, 0);
3340
3341 /* We need to wait for a vblank before we can disable the plane. */
3342 intel_wait_for_vblank(dev, crtc->pipe);
3343 }
3344
3345 static void haswell_crtc_enable(struct drm_crtc *crtc)
3346 {
3347 struct drm_device *dev = crtc->dev;
3348 struct drm_i915_private *dev_priv = dev->dev_private;
3349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3350 struct intel_encoder *encoder;
3351 int pipe = intel_crtc->pipe;
3352 int plane = intel_crtc->plane;
3353
3354 WARN_ON(!crtc->enabled);
3355
3356 if (intel_crtc->active)
3357 return;
3358
3359 intel_crtc->active = true;
3360
3361 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3362 if (intel_crtc->config.has_pch_encoder)
3363 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3364
3365 intel_update_watermarks(dev);
3366
3367 if (intel_crtc->config.has_pch_encoder)
3368 dev_priv->display.fdi_link_train(crtc);
3369
3370 for_each_encoder_on_crtc(dev, crtc, encoder)
3371 if (encoder->pre_enable)
3372 encoder->pre_enable(encoder);
3373
3374 intel_ddi_enable_pipe_clock(intel_crtc);
3375
3376 ironlake_pfit_enable(intel_crtc);
3377
3378 /*
3379 * On ILK+ LUT must be loaded before the pipe is running but with
3380 * clocks enabled
3381 */
3382 intel_crtc_load_lut(crtc);
3383
3384 intel_ddi_set_pipe_settings(crtc);
3385 intel_ddi_enable_transcoder_func(crtc);
3386
3387 intel_enable_pipe(dev_priv, pipe,
3388 intel_crtc->config.has_pch_encoder);
3389 intel_enable_plane(dev_priv, plane, pipe);
3390 intel_enable_planes(crtc);
3391 intel_crtc_update_cursor(crtc, true);
3392
3393 hsw_enable_ips(intel_crtc);
3394
3395 if (intel_crtc->config.has_pch_encoder)
3396 lpt_pch_enable(crtc);
3397
3398 mutex_lock(&dev->struct_mutex);
3399 intel_update_fbc(dev);
3400 mutex_unlock(&dev->struct_mutex);
3401
3402 for_each_encoder_on_crtc(dev, crtc, encoder)
3403 encoder->enable(encoder);
3404
3405 /*
3406 * There seems to be a race in PCH platform hw (at least on some
3407 * outputs) where an enabled pipe still completes any pageflip right
3408 * away (as if the pipe is off) instead of waiting for vblank. As soon
3409 * as the first vblank happend, everything works as expected. Hence just
3410 * wait for one vblank before returning to avoid strange things
3411 * happening.
3412 */
3413 intel_wait_for_vblank(dev, intel_crtc->pipe);
3414 }
3415
3416 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3417 {
3418 struct drm_device *dev = crtc->base.dev;
3419 struct drm_i915_private *dev_priv = dev->dev_private;
3420 int pipe = crtc->pipe;
3421
3422 /* To avoid upsetting the power well on haswell only disable the pfit if
3423 * it's in use. The hw state code will make sure we get this right. */
3424 if (crtc->config.pch_pfit.size) {
3425 I915_WRITE(PF_CTL(pipe), 0);
3426 I915_WRITE(PF_WIN_POS(pipe), 0);
3427 I915_WRITE(PF_WIN_SZ(pipe), 0);
3428 }
3429 }
3430
3431 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3432 {
3433 struct drm_device *dev = crtc->dev;
3434 struct drm_i915_private *dev_priv = dev->dev_private;
3435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3436 struct intel_encoder *encoder;
3437 int pipe = intel_crtc->pipe;
3438 int plane = intel_crtc->plane;
3439 u32 reg, temp;
3440
3441
3442 if (!intel_crtc->active)
3443 return;
3444
3445 for_each_encoder_on_crtc(dev, crtc, encoder)
3446 encoder->disable(encoder);
3447
3448 intel_crtc_wait_for_pending_flips(crtc);
3449 drm_vblank_off(dev, pipe);
3450
3451 if (dev_priv->fbc.plane == plane)
3452 intel_disable_fbc(dev);
3453
3454 intel_crtc_update_cursor(crtc, false);
3455 intel_disable_planes(crtc);
3456 intel_disable_plane(dev_priv, plane, pipe);
3457
3458 if (intel_crtc->config.has_pch_encoder)
3459 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3460
3461 intel_disable_pipe(dev_priv, pipe);
3462
3463 ironlake_pfit_disable(intel_crtc);
3464
3465 for_each_encoder_on_crtc(dev, crtc, encoder)
3466 if (encoder->post_disable)
3467 encoder->post_disable(encoder);
3468
3469 if (intel_crtc->config.has_pch_encoder) {
3470 ironlake_fdi_disable(crtc);
3471
3472 ironlake_disable_pch_transcoder(dev_priv, pipe);
3473 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3474
3475 if (HAS_PCH_CPT(dev)) {
3476 /* disable TRANS_DP_CTL */
3477 reg = TRANS_DP_CTL(pipe);
3478 temp = I915_READ(reg);
3479 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3480 TRANS_DP_PORT_SEL_MASK);
3481 temp |= TRANS_DP_PORT_SEL_NONE;
3482 I915_WRITE(reg, temp);
3483
3484 /* disable DPLL_SEL */
3485 temp = I915_READ(PCH_DPLL_SEL);
3486 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3487 I915_WRITE(PCH_DPLL_SEL, temp);
3488 }
3489
3490 /* disable PCH DPLL */
3491 intel_disable_shared_dpll(intel_crtc);
3492
3493 ironlake_fdi_pll_disable(intel_crtc);
3494 }
3495
3496 intel_crtc->active = false;
3497 intel_update_watermarks(dev);
3498
3499 mutex_lock(&dev->struct_mutex);
3500 intel_update_fbc(dev);
3501 mutex_unlock(&dev->struct_mutex);
3502 }
3503
3504 static void haswell_crtc_disable(struct drm_crtc *crtc)
3505 {
3506 struct drm_device *dev = crtc->dev;
3507 struct drm_i915_private *dev_priv = dev->dev_private;
3508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3509 struct intel_encoder *encoder;
3510 int pipe = intel_crtc->pipe;
3511 int plane = intel_crtc->plane;
3512 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3513
3514 if (!intel_crtc->active)
3515 return;
3516
3517 for_each_encoder_on_crtc(dev, crtc, encoder)
3518 encoder->disable(encoder);
3519
3520 intel_crtc_wait_for_pending_flips(crtc);
3521 drm_vblank_off(dev, pipe);
3522
3523 /* FBC must be disabled before disabling the plane on HSW. */
3524 if (dev_priv->fbc.plane == plane)
3525 intel_disable_fbc(dev);
3526
3527 hsw_disable_ips(intel_crtc);
3528
3529 intel_crtc_update_cursor(crtc, false);
3530 intel_disable_planes(crtc);
3531 intel_disable_plane(dev_priv, plane, pipe);
3532
3533 if (intel_crtc->config.has_pch_encoder)
3534 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3535 intel_disable_pipe(dev_priv, pipe);
3536
3537 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3538
3539 ironlake_pfit_disable(intel_crtc);
3540
3541 intel_ddi_disable_pipe_clock(intel_crtc);
3542
3543 for_each_encoder_on_crtc(dev, crtc, encoder)
3544 if (encoder->post_disable)
3545 encoder->post_disable(encoder);
3546
3547 if (intel_crtc->config.has_pch_encoder) {
3548 lpt_disable_pch_transcoder(dev_priv);
3549 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3550 intel_ddi_fdi_disable(crtc);
3551 }
3552
3553 intel_crtc->active = false;
3554 intel_update_watermarks(dev);
3555
3556 mutex_lock(&dev->struct_mutex);
3557 intel_update_fbc(dev);
3558 mutex_unlock(&dev->struct_mutex);
3559 }
3560
3561 static void ironlake_crtc_off(struct drm_crtc *crtc)
3562 {
3563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3564 intel_put_shared_dpll(intel_crtc);
3565 }
3566
3567 static void haswell_crtc_off(struct drm_crtc *crtc)
3568 {
3569 intel_ddi_put_crtc_pll(crtc);
3570 }
3571
3572 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3573 {
3574 if (!enable && intel_crtc->overlay) {
3575 struct drm_device *dev = intel_crtc->base.dev;
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577
3578 mutex_lock(&dev->struct_mutex);
3579 dev_priv->mm.interruptible = false;
3580 (void) intel_overlay_switch_off(intel_crtc->overlay);
3581 dev_priv->mm.interruptible = true;
3582 mutex_unlock(&dev->struct_mutex);
3583 }
3584
3585 /* Let userspace switch the overlay on again. In most cases userspace
3586 * has to recompute where to put it anyway.
3587 */
3588 }
3589
3590 /**
3591 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3592 * cursor plane briefly if not already running after enabling the display
3593 * plane.
3594 * This workaround avoids occasional blank screens when self refresh is
3595 * enabled.
3596 */
3597 static void
3598 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3599 {
3600 u32 cntl = I915_READ(CURCNTR(pipe));
3601
3602 if ((cntl & CURSOR_MODE) == 0) {
3603 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3604
3605 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3606 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3607 intel_wait_for_vblank(dev_priv->dev, pipe);
3608 I915_WRITE(CURCNTR(pipe), cntl);
3609 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3610 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3611 }
3612 }
3613
3614 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3615 {
3616 struct drm_device *dev = crtc->base.dev;
3617 struct drm_i915_private *dev_priv = dev->dev_private;
3618 struct intel_crtc_config *pipe_config = &crtc->config;
3619
3620 if (!crtc->config.gmch_pfit.control)
3621 return;
3622
3623 /*
3624 * The panel fitter should only be adjusted whilst the pipe is disabled,
3625 * according to register description and PRM.
3626 */
3627 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3628 assert_pipe_disabled(dev_priv, crtc->pipe);
3629
3630 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3631 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3632
3633 /* Border color in case we don't scale up to the full screen. Black by
3634 * default, change to something else for debugging. */
3635 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3636 }
3637
3638 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3639 {
3640 struct drm_device *dev = crtc->dev;
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3643 struct intel_encoder *encoder;
3644 int pipe = intel_crtc->pipe;
3645 int plane = intel_crtc->plane;
3646
3647 WARN_ON(!crtc->enabled);
3648
3649 if (intel_crtc->active)
3650 return;
3651
3652 intel_crtc->active = true;
3653 intel_update_watermarks(dev);
3654
3655 for_each_encoder_on_crtc(dev, crtc, encoder)
3656 if (encoder->pre_pll_enable)
3657 encoder->pre_pll_enable(encoder);
3658
3659 vlv_enable_pll(intel_crtc);
3660
3661 for_each_encoder_on_crtc(dev, crtc, encoder)
3662 if (encoder->pre_enable)
3663 encoder->pre_enable(encoder);
3664
3665 i9xx_pfit_enable(intel_crtc);
3666
3667 intel_crtc_load_lut(crtc);
3668
3669 intel_enable_pipe(dev_priv, pipe, false);
3670 intel_enable_plane(dev_priv, plane, pipe);
3671 intel_enable_planes(crtc);
3672 intel_crtc_update_cursor(crtc, true);
3673
3674 intel_update_fbc(dev);
3675
3676 for_each_encoder_on_crtc(dev, crtc, encoder)
3677 encoder->enable(encoder);
3678 }
3679
3680 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3681 {
3682 struct drm_device *dev = crtc->dev;
3683 struct drm_i915_private *dev_priv = dev->dev_private;
3684 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3685 struct intel_encoder *encoder;
3686 int pipe = intel_crtc->pipe;
3687 int plane = intel_crtc->plane;
3688
3689 WARN_ON(!crtc->enabled);
3690
3691 if (intel_crtc->active)
3692 return;
3693
3694 intel_crtc->active = true;
3695 intel_update_watermarks(dev);
3696
3697 for_each_encoder_on_crtc(dev, crtc, encoder)
3698 if (encoder->pre_enable)
3699 encoder->pre_enable(encoder);
3700
3701 i9xx_enable_pll(intel_crtc);
3702
3703 i9xx_pfit_enable(intel_crtc);
3704
3705 intel_crtc_load_lut(crtc);
3706
3707 intel_enable_pipe(dev_priv, pipe, false);
3708 intel_enable_plane(dev_priv, plane, pipe);
3709 intel_enable_planes(crtc);
3710 /* The fixup needs to happen before cursor is enabled */
3711 if (IS_G4X(dev))
3712 g4x_fixup_plane(dev_priv, pipe);
3713 intel_crtc_update_cursor(crtc, true);
3714
3715 /* Give the overlay scaler a chance to enable if it's on this pipe */
3716 intel_crtc_dpms_overlay(intel_crtc, true);
3717
3718 intel_update_fbc(dev);
3719
3720 for_each_encoder_on_crtc(dev, crtc, encoder)
3721 encoder->enable(encoder);
3722 }
3723
3724 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3725 {
3726 struct drm_device *dev = crtc->base.dev;
3727 struct drm_i915_private *dev_priv = dev->dev_private;
3728
3729 if (!crtc->config.gmch_pfit.control)
3730 return;
3731
3732 assert_pipe_disabled(dev_priv, crtc->pipe);
3733
3734 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3735 I915_READ(PFIT_CONTROL));
3736 I915_WRITE(PFIT_CONTROL, 0);
3737 }
3738
3739 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3740 {
3741 struct drm_device *dev = crtc->dev;
3742 struct drm_i915_private *dev_priv = dev->dev_private;
3743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3744 struct intel_encoder *encoder;
3745 int pipe = intel_crtc->pipe;
3746 int plane = intel_crtc->plane;
3747
3748 if (!intel_crtc->active)
3749 return;
3750
3751 for_each_encoder_on_crtc(dev, crtc, encoder)
3752 encoder->disable(encoder);
3753
3754 /* Give the overlay scaler a chance to disable if it's on this pipe */
3755 intel_crtc_wait_for_pending_flips(crtc);
3756 drm_vblank_off(dev, pipe);
3757
3758 if (dev_priv->fbc.plane == plane)
3759 intel_disable_fbc(dev);
3760
3761 intel_crtc_dpms_overlay(intel_crtc, false);
3762 intel_crtc_update_cursor(crtc, false);
3763 intel_disable_planes(crtc);
3764 intel_disable_plane(dev_priv, plane, pipe);
3765
3766 intel_disable_pipe(dev_priv, pipe);
3767
3768 i9xx_pfit_disable(intel_crtc);
3769
3770 for_each_encoder_on_crtc(dev, crtc, encoder)
3771 if (encoder->post_disable)
3772 encoder->post_disable(encoder);
3773
3774 i9xx_disable_pll(dev_priv, pipe);
3775
3776 intel_crtc->active = false;
3777 intel_update_fbc(dev);
3778 intel_update_watermarks(dev);
3779 }
3780
3781 static void i9xx_crtc_off(struct drm_crtc *crtc)
3782 {
3783 }
3784
3785 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3786 bool enabled)
3787 {
3788 struct drm_device *dev = crtc->dev;
3789 struct drm_i915_master_private *master_priv;
3790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3791 int pipe = intel_crtc->pipe;
3792
3793 if (!dev->primary->master)
3794 return;
3795
3796 master_priv = dev->primary->master->driver_priv;
3797 if (!master_priv->sarea_priv)
3798 return;
3799
3800 switch (pipe) {
3801 case 0:
3802 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3803 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3804 break;
3805 case 1:
3806 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3807 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3808 break;
3809 default:
3810 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3811 break;
3812 }
3813 }
3814
3815 /**
3816 * Sets the power management mode of the pipe and plane.
3817 */
3818 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3819 {
3820 struct drm_device *dev = crtc->dev;
3821 struct drm_i915_private *dev_priv = dev->dev_private;
3822 struct intel_encoder *intel_encoder;
3823 bool enable = false;
3824
3825 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3826 enable |= intel_encoder->connectors_active;
3827
3828 if (enable)
3829 dev_priv->display.crtc_enable(crtc);
3830 else
3831 dev_priv->display.crtc_disable(crtc);
3832
3833 intel_crtc_update_sarea(crtc, enable);
3834 }
3835
3836 static void intel_crtc_disable(struct drm_crtc *crtc)
3837 {
3838 struct drm_device *dev = crtc->dev;
3839 struct drm_connector *connector;
3840 struct drm_i915_private *dev_priv = dev->dev_private;
3841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3842
3843 /* crtc should still be enabled when we disable it. */
3844 WARN_ON(!crtc->enabled);
3845
3846 dev_priv->display.crtc_disable(crtc);
3847 intel_crtc->eld_vld = false;
3848 intel_crtc_update_sarea(crtc, false);
3849 dev_priv->display.off(crtc);
3850
3851 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3852 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3853
3854 if (crtc->fb) {
3855 mutex_lock(&dev->struct_mutex);
3856 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3857 mutex_unlock(&dev->struct_mutex);
3858 crtc->fb = NULL;
3859 }
3860
3861 /* Update computed state. */
3862 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3863 if (!connector->encoder || !connector->encoder->crtc)
3864 continue;
3865
3866 if (connector->encoder->crtc != crtc)
3867 continue;
3868
3869 connector->dpms = DRM_MODE_DPMS_OFF;
3870 to_intel_encoder(connector->encoder)->connectors_active = false;
3871 }
3872 }
3873
3874 void intel_encoder_destroy(struct drm_encoder *encoder)
3875 {
3876 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3877
3878 drm_encoder_cleanup(encoder);
3879 kfree(intel_encoder);
3880 }
3881
3882 /* Simple dpms helper for encoders with just one connector, no cloning and only
3883 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3884 * state of the entire output pipe. */
3885 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3886 {
3887 if (mode == DRM_MODE_DPMS_ON) {
3888 encoder->connectors_active = true;
3889
3890 intel_crtc_update_dpms(encoder->base.crtc);
3891 } else {
3892 encoder->connectors_active = false;
3893
3894 intel_crtc_update_dpms(encoder->base.crtc);
3895 }
3896 }
3897
3898 /* Cross check the actual hw state with our own modeset state tracking (and it's
3899 * internal consistency). */
3900 static void intel_connector_check_state(struct intel_connector *connector)
3901 {
3902 if (connector->get_hw_state(connector)) {
3903 struct intel_encoder *encoder = connector->encoder;
3904 struct drm_crtc *crtc;
3905 bool encoder_enabled;
3906 enum pipe pipe;
3907
3908 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3909 connector->base.base.id,
3910 drm_get_connector_name(&connector->base));
3911
3912 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3913 "wrong connector dpms state\n");
3914 WARN(connector->base.encoder != &encoder->base,
3915 "active connector not linked to encoder\n");
3916 WARN(!encoder->connectors_active,
3917 "encoder->connectors_active not set\n");
3918
3919 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3920 WARN(!encoder_enabled, "encoder not enabled\n");
3921 if (WARN_ON(!encoder->base.crtc))
3922 return;
3923
3924 crtc = encoder->base.crtc;
3925
3926 WARN(!crtc->enabled, "crtc not enabled\n");
3927 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3928 WARN(pipe != to_intel_crtc(crtc)->pipe,
3929 "encoder active on the wrong pipe\n");
3930 }
3931 }
3932
3933 /* Even simpler default implementation, if there's really no special case to
3934 * consider. */
3935 void intel_connector_dpms(struct drm_connector *connector, int mode)
3936 {
3937 struct intel_encoder *encoder = intel_attached_encoder(connector);
3938
3939 /* All the simple cases only support two dpms states. */
3940 if (mode != DRM_MODE_DPMS_ON)
3941 mode = DRM_MODE_DPMS_OFF;
3942
3943 if (mode == connector->dpms)
3944 return;
3945
3946 connector->dpms = mode;
3947
3948 /* Only need to change hw state when actually enabled */
3949 if (encoder->base.crtc)
3950 intel_encoder_dpms(encoder, mode);
3951 else
3952 WARN_ON(encoder->connectors_active != false);
3953
3954 intel_modeset_check_state(connector->dev);
3955 }
3956
3957 /* Simple connector->get_hw_state implementation for encoders that support only
3958 * one connector and no cloning and hence the encoder state determines the state
3959 * of the connector. */
3960 bool intel_connector_get_hw_state(struct intel_connector *connector)
3961 {
3962 enum pipe pipe = 0;
3963 struct intel_encoder *encoder = connector->encoder;
3964
3965 return encoder->get_hw_state(encoder, &pipe);
3966 }
3967
3968 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3969 struct intel_crtc_config *pipe_config)
3970 {
3971 struct drm_i915_private *dev_priv = dev->dev_private;
3972 struct intel_crtc *pipe_B_crtc =
3973 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3974
3975 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3976 pipe_name(pipe), pipe_config->fdi_lanes);
3977 if (pipe_config->fdi_lanes > 4) {
3978 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3979 pipe_name(pipe), pipe_config->fdi_lanes);
3980 return false;
3981 }
3982
3983 if (IS_HASWELL(dev)) {
3984 if (pipe_config->fdi_lanes > 2) {
3985 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3986 pipe_config->fdi_lanes);
3987 return false;
3988 } else {
3989 return true;
3990 }
3991 }
3992
3993 if (INTEL_INFO(dev)->num_pipes == 2)
3994 return true;
3995
3996 /* Ivybridge 3 pipe is really complicated */
3997 switch (pipe) {
3998 case PIPE_A:
3999 return true;
4000 case PIPE_B:
4001 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4002 pipe_config->fdi_lanes > 2) {
4003 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4004 pipe_name(pipe), pipe_config->fdi_lanes);
4005 return false;
4006 }
4007 return true;
4008 case PIPE_C:
4009 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4010 pipe_B_crtc->config.fdi_lanes <= 2) {
4011 if (pipe_config->fdi_lanes > 2) {
4012 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4013 pipe_name(pipe), pipe_config->fdi_lanes);
4014 return false;
4015 }
4016 } else {
4017 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4018 return false;
4019 }
4020 return true;
4021 default:
4022 BUG();
4023 }
4024 }
4025
4026 #define RETRY 1
4027 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4028 struct intel_crtc_config *pipe_config)
4029 {
4030 struct drm_device *dev = intel_crtc->base.dev;
4031 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4032 int lane, link_bw, fdi_dotclock;
4033 bool setup_ok, needs_recompute = false;
4034
4035 retry:
4036 /* FDI is a binary signal running at ~2.7GHz, encoding
4037 * each output octet as 10 bits. The actual frequency
4038 * is stored as a divider into a 100MHz clock, and the
4039 * mode pixel clock is stored in units of 1KHz.
4040 * Hence the bw of each lane in terms of the mode signal
4041 * is:
4042 */
4043 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4044
4045 fdi_dotclock = adjusted_mode->clock;
4046 fdi_dotclock /= pipe_config->pixel_multiplier;
4047
4048 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4049 pipe_config->pipe_bpp);
4050
4051 pipe_config->fdi_lanes = lane;
4052
4053 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4054 link_bw, &pipe_config->fdi_m_n);
4055
4056 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4057 intel_crtc->pipe, pipe_config);
4058 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4059 pipe_config->pipe_bpp -= 2*3;
4060 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4061 pipe_config->pipe_bpp);
4062 needs_recompute = true;
4063 pipe_config->bw_constrained = true;
4064
4065 goto retry;
4066 }
4067
4068 if (needs_recompute)
4069 return RETRY;
4070
4071 return setup_ok ? 0 : -EINVAL;
4072 }
4073
4074 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4075 struct intel_crtc_config *pipe_config)
4076 {
4077 pipe_config->ips_enabled = i915_enable_ips &&
4078 hsw_crtc_supports_ips(crtc) &&
4079 pipe_config->pipe_bpp <= 24;
4080 }
4081
4082 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4083 struct intel_crtc_config *pipe_config)
4084 {
4085 struct drm_device *dev = crtc->base.dev;
4086 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4087
4088 if (HAS_PCH_SPLIT(dev)) {
4089 /* FDI link clock is fixed at 2.7G */
4090 if (pipe_config->requested_mode.clock * 3
4091 > IRONLAKE_FDI_FREQ * 4)
4092 return -EINVAL;
4093 }
4094
4095 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4096 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4097 */
4098 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4099 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4100 return -EINVAL;
4101
4102 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4103 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4104 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4105 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4106 * for lvds. */
4107 pipe_config->pipe_bpp = 8*3;
4108 }
4109
4110 if (HAS_IPS(dev))
4111 hsw_compute_ips_config(crtc, pipe_config);
4112
4113 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4114 * clock survives for now. */
4115 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4116 pipe_config->shared_dpll = crtc->config.shared_dpll;
4117
4118 if (pipe_config->has_pch_encoder)
4119 return ironlake_fdi_compute_config(crtc, pipe_config);
4120
4121 return 0;
4122 }
4123
4124 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4125 {
4126 return 400000; /* FIXME */
4127 }
4128
4129 static int i945_get_display_clock_speed(struct drm_device *dev)
4130 {
4131 return 400000;
4132 }
4133
4134 static int i915_get_display_clock_speed(struct drm_device *dev)
4135 {
4136 return 333000;
4137 }
4138
4139 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4140 {
4141 return 200000;
4142 }
4143
4144 static int pnv_get_display_clock_speed(struct drm_device *dev)
4145 {
4146 u16 gcfgc = 0;
4147
4148 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4149
4150 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4151 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4152 return 267000;
4153 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4154 return 333000;
4155 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4156 return 444000;
4157 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4158 return 200000;
4159 default:
4160 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4161 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4162 return 133000;
4163 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4164 return 167000;
4165 }
4166 }
4167
4168 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4169 {
4170 u16 gcfgc = 0;
4171
4172 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4173
4174 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4175 return 133000;
4176 else {
4177 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4178 case GC_DISPLAY_CLOCK_333_MHZ:
4179 return 333000;
4180 default:
4181 case GC_DISPLAY_CLOCK_190_200_MHZ:
4182 return 190000;
4183 }
4184 }
4185 }
4186
4187 static int i865_get_display_clock_speed(struct drm_device *dev)
4188 {
4189 return 266000;
4190 }
4191
4192 static int i855_get_display_clock_speed(struct drm_device *dev)
4193 {
4194 u16 hpllcc = 0;
4195 /* Assume that the hardware is in the high speed state. This
4196 * should be the default.
4197 */
4198 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4199 case GC_CLOCK_133_200:
4200 case GC_CLOCK_100_200:
4201 return 200000;
4202 case GC_CLOCK_166_250:
4203 return 250000;
4204 case GC_CLOCK_100_133:
4205 return 133000;
4206 }
4207
4208 /* Shouldn't happen */
4209 return 0;
4210 }
4211
4212 static int i830_get_display_clock_speed(struct drm_device *dev)
4213 {
4214 return 133000;
4215 }
4216
4217 static void
4218 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4219 {
4220 while (*num > DATA_LINK_M_N_MASK ||
4221 *den > DATA_LINK_M_N_MASK) {
4222 *num >>= 1;
4223 *den >>= 1;
4224 }
4225 }
4226
4227 static void compute_m_n(unsigned int m, unsigned int n,
4228 uint32_t *ret_m, uint32_t *ret_n)
4229 {
4230 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4231 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4232 intel_reduce_m_n_ratio(ret_m, ret_n);
4233 }
4234
4235 void
4236 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4237 int pixel_clock, int link_clock,
4238 struct intel_link_m_n *m_n)
4239 {
4240 m_n->tu = 64;
4241
4242 compute_m_n(bits_per_pixel * pixel_clock,
4243 link_clock * nlanes * 8,
4244 &m_n->gmch_m, &m_n->gmch_n);
4245
4246 compute_m_n(pixel_clock, link_clock,
4247 &m_n->link_m, &m_n->link_n);
4248 }
4249
4250 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4251 {
4252 if (i915_panel_use_ssc >= 0)
4253 return i915_panel_use_ssc != 0;
4254 return dev_priv->vbt.lvds_use_ssc
4255 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4256 }
4257
4258 static int vlv_get_refclk(struct drm_crtc *crtc)
4259 {
4260 struct drm_device *dev = crtc->dev;
4261 struct drm_i915_private *dev_priv = dev->dev_private;
4262 int refclk = 27000; /* for DP & HDMI */
4263
4264 return 100000; /* only one validated so far */
4265
4266 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4267 refclk = 96000;
4268 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4269 if (intel_panel_use_ssc(dev_priv))
4270 refclk = 100000;
4271 else
4272 refclk = 96000;
4273 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4274 refclk = 100000;
4275 }
4276
4277 return refclk;
4278 }
4279
4280 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4281 {
4282 struct drm_device *dev = crtc->dev;
4283 struct drm_i915_private *dev_priv = dev->dev_private;
4284 int refclk;
4285
4286 if (IS_VALLEYVIEW(dev)) {
4287 refclk = vlv_get_refclk(crtc);
4288 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4289 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4290 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4291 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4292 refclk / 1000);
4293 } else if (!IS_GEN2(dev)) {
4294 refclk = 96000;
4295 } else {
4296 refclk = 48000;
4297 }
4298
4299 return refclk;
4300 }
4301
4302 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4303 {
4304 return (1 << dpll->n) << 16 | dpll->m2;
4305 }
4306
4307 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4308 {
4309 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4310 }
4311
4312 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4313 intel_clock_t *reduced_clock)
4314 {
4315 struct drm_device *dev = crtc->base.dev;
4316 struct drm_i915_private *dev_priv = dev->dev_private;
4317 int pipe = crtc->pipe;
4318 u32 fp, fp2 = 0;
4319
4320 if (IS_PINEVIEW(dev)) {
4321 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4322 if (reduced_clock)
4323 fp2 = pnv_dpll_compute_fp(reduced_clock);
4324 } else {
4325 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4326 if (reduced_clock)
4327 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4328 }
4329
4330 I915_WRITE(FP0(pipe), fp);
4331 crtc->config.dpll_hw_state.fp0 = fp;
4332
4333 crtc->lowfreq_avail = false;
4334 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4335 reduced_clock && i915_powersave) {
4336 I915_WRITE(FP1(pipe), fp2);
4337 crtc->config.dpll_hw_state.fp1 = fp2;
4338 crtc->lowfreq_avail = true;
4339 } else {
4340 I915_WRITE(FP1(pipe), fp);
4341 crtc->config.dpll_hw_state.fp1 = fp;
4342 }
4343 }
4344
4345 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4346 {
4347 u32 reg_val;
4348
4349 /*
4350 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4351 * and set it to a reasonable value instead.
4352 */
4353 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4354 reg_val &= 0xffffff00;
4355 reg_val |= 0x00000030;
4356 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4357
4358 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4359 reg_val &= 0x8cffffff;
4360 reg_val = 0x8c000000;
4361 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4362
4363 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4364 reg_val &= 0xffffff00;
4365 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4366
4367 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4368 reg_val &= 0x00ffffff;
4369 reg_val |= 0xb0000000;
4370 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4371 }
4372
4373 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4374 struct intel_link_m_n *m_n)
4375 {
4376 struct drm_device *dev = crtc->base.dev;
4377 struct drm_i915_private *dev_priv = dev->dev_private;
4378 int pipe = crtc->pipe;
4379
4380 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4381 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4382 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4383 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4384 }
4385
4386 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4387 struct intel_link_m_n *m_n)
4388 {
4389 struct drm_device *dev = crtc->base.dev;
4390 struct drm_i915_private *dev_priv = dev->dev_private;
4391 int pipe = crtc->pipe;
4392 enum transcoder transcoder = crtc->config.cpu_transcoder;
4393
4394 if (INTEL_INFO(dev)->gen >= 5) {
4395 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4396 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4397 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4398 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4399 } else {
4400 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4401 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4402 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4403 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4404 }
4405 }
4406
4407 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4408 {
4409 if (crtc->config.has_pch_encoder)
4410 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4411 else
4412 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4413 }
4414
4415 static void vlv_update_pll(struct intel_crtc *crtc)
4416 {
4417 struct drm_device *dev = crtc->base.dev;
4418 struct drm_i915_private *dev_priv = dev->dev_private;
4419 int pipe = crtc->pipe;
4420 u32 dpll, mdiv;
4421 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4422 bool is_hdmi;
4423 u32 coreclk, reg_val, dpll_md;
4424
4425 mutex_lock(&dev_priv->dpio_lock);
4426
4427 is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4428
4429 bestn = crtc->config.dpll.n;
4430 bestm1 = crtc->config.dpll.m1;
4431 bestm2 = crtc->config.dpll.m2;
4432 bestp1 = crtc->config.dpll.p1;
4433 bestp2 = crtc->config.dpll.p2;
4434
4435 /* See eDP HDMI DPIO driver vbios notes doc */
4436
4437 /* PLL B needs special handling */
4438 if (pipe)
4439 vlv_pllb_recal_opamp(dev_priv);
4440
4441 /* Set up Tx target for periodic Rcomp update */
4442 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4443
4444 /* Disable target IRef on PLL */
4445 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4446 reg_val &= 0x00ffffff;
4447 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4448
4449 /* Disable fast lock */
4450 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4451
4452 /* Set idtafcrecal before PLL is enabled */
4453 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4454 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4455 mdiv |= ((bestn << DPIO_N_SHIFT));
4456 mdiv |= (1 << DPIO_K_SHIFT);
4457
4458 /*
4459 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4460 * but we don't support that).
4461 * Note: don't use the DAC post divider as it seems unstable.
4462 */
4463 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4464 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4465
4466 mdiv |= DPIO_ENABLE_CALIBRATION;
4467 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4468
4469 /* Set HBR and RBR LPF coefficients */
4470 if (crtc->config.port_clock == 162000 ||
4471 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4472 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4473 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4474 0x009f0003);
4475 else
4476 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4477 0x00d0000f);
4478
4479 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4480 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4481 /* Use SSC source */
4482 if (!pipe)
4483 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4484 0x0df40000);
4485 else
4486 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4487 0x0df70000);
4488 } else { /* HDMI or VGA */
4489 /* Use bend source */
4490 if (!pipe)
4491 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4492 0x0df70000);
4493 else
4494 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4495 0x0df40000);
4496 }
4497
4498 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4499 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4500 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4501 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4502 coreclk |= 0x01000000;
4503 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4504
4505 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4506
4507 /* Enable DPIO clock input */
4508 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4509 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4510 if (pipe)
4511 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4512
4513 dpll |= DPLL_VCO_ENABLE;
4514 crtc->config.dpll_hw_state.dpll = dpll;
4515
4516 dpll_md = (crtc->config.pixel_multiplier - 1)
4517 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4518 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4519
4520 if (crtc->config.has_dp_encoder)
4521 intel_dp_set_m_n(crtc);
4522
4523 mutex_unlock(&dev_priv->dpio_lock);
4524 }
4525
4526 static void i9xx_update_pll(struct intel_crtc *crtc,
4527 intel_clock_t *reduced_clock,
4528 int num_connectors)
4529 {
4530 struct drm_device *dev = crtc->base.dev;
4531 struct drm_i915_private *dev_priv = dev->dev_private;
4532 u32 dpll;
4533 bool is_sdvo;
4534 struct dpll *clock = &crtc->config.dpll;
4535
4536 i9xx_update_pll_dividers(crtc, reduced_clock);
4537
4538 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4539 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4540
4541 dpll = DPLL_VGA_MODE_DIS;
4542
4543 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4544 dpll |= DPLLB_MODE_LVDS;
4545 else
4546 dpll |= DPLLB_MODE_DAC_SERIAL;
4547
4548 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4549 dpll |= (crtc->config.pixel_multiplier - 1)
4550 << SDVO_MULTIPLIER_SHIFT_HIRES;
4551 }
4552
4553 if (is_sdvo)
4554 dpll |= DPLL_SDVO_HIGH_SPEED;
4555
4556 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4557 dpll |= DPLL_SDVO_HIGH_SPEED;
4558
4559 /* compute bitmask from p1 value */
4560 if (IS_PINEVIEW(dev))
4561 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4562 else {
4563 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4564 if (IS_G4X(dev) && reduced_clock)
4565 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4566 }
4567 switch (clock->p2) {
4568 case 5:
4569 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4570 break;
4571 case 7:
4572 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4573 break;
4574 case 10:
4575 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4576 break;
4577 case 14:
4578 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4579 break;
4580 }
4581 if (INTEL_INFO(dev)->gen >= 4)
4582 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4583
4584 if (crtc->config.sdvo_tv_clock)
4585 dpll |= PLL_REF_INPUT_TVCLKINBC;
4586 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4587 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4588 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4589 else
4590 dpll |= PLL_REF_INPUT_DREFCLK;
4591
4592 dpll |= DPLL_VCO_ENABLE;
4593 crtc->config.dpll_hw_state.dpll = dpll;
4594
4595 if (INTEL_INFO(dev)->gen >= 4) {
4596 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4597 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4598 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4599 }
4600
4601 if (crtc->config.has_dp_encoder)
4602 intel_dp_set_m_n(crtc);
4603 }
4604
4605 static void i8xx_update_pll(struct intel_crtc *crtc,
4606 intel_clock_t *reduced_clock,
4607 int num_connectors)
4608 {
4609 struct drm_device *dev = crtc->base.dev;
4610 struct drm_i915_private *dev_priv = dev->dev_private;
4611 u32 dpll;
4612 struct dpll *clock = &crtc->config.dpll;
4613
4614 i9xx_update_pll_dividers(crtc, reduced_clock);
4615
4616 dpll = DPLL_VGA_MODE_DIS;
4617
4618 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4619 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4620 } else {
4621 if (clock->p1 == 2)
4622 dpll |= PLL_P1_DIVIDE_BY_TWO;
4623 else
4624 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4625 if (clock->p2 == 4)
4626 dpll |= PLL_P2_DIVIDE_BY_4;
4627 }
4628
4629 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4630 dpll |= DPLL_DVO_2X_MODE;
4631
4632 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4633 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4634 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4635 else
4636 dpll |= PLL_REF_INPUT_DREFCLK;
4637
4638 dpll |= DPLL_VCO_ENABLE;
4639 crtc->config.dpll_hw_state.dpll = dpll;
4640 }
4641
4642 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4643 {
4644 struct drm_device *dev = intel_crtc->base.dev;
4645 struct drm_i915_private *dev_priv = dev->dev_private;
4646 enum pipe pipe = intel_crtc->pipe;
4647 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4648 struct drm_display_mode *adjusted_mode =
4649 &intel_crtc->config.adjusted_mode;
4650 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4651 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4652
4653 /* We need to be careful not to changed the adjusted mode, for otherwise
4654 * the hw state checker will get angry at the mismatch. */
4655 crtc_vtotal = adjusted_mode->crtc_vtotal;
4656 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4657
4658 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4659 /* the chip adds 2 halflines automatically */
4660 crtc_vtotal -= 1;
4661 crtc_vblank_end -= 1;
4662 vsyncshift = adjusted_mode->crtc_hsync_start
4663 - adjusted_mode->crtc_htotal / 2;
4664 } else {
4665 vsyncshift = 0;
4666 }
4667
4668 if (INTEL_INFO(dev)->gen > 3)
4669 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4670
4671 I915_WRITE(HTOTAL(cpu_transcoder),
4672 (adjusted_mode->crtc_hdisplay - 1) |
4673 ((adjusted_mode->crtc_htotal - 1) << 16));
4674 I915_WRITE(HBLANK(cpu_transcoder),
4675 (adjusted_mode->crtc_hblank_start - 1) |
4676 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4677 I915_WRITE(HSYNC(cpu_transcoder),
4678 (adjusted_mode->crtc_hsync_start - 1) |
4679 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4680
4681 I915_WRITE(VTOTAL(cpu_transcoder),
4682 (adjusted_mode->crtc_vdisplay - 1) |
4683 ((crtc_vtotal - 1) << 16));
4684 I915_WRITE(VBLANK(cpu_transcoder),
4685 (adjusted_mode->crtc_vblank_start - 1) |
4686 ((crtc_vblank_end - 1) << 16));
4687 I915_WRITE(VSYNC(cpu_transcoder),
4688 (adjusted_mode->crtc_vsync_start - 1) |
4689 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4690
4691 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4692 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4693 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4694 * bits. */
4695 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4696 (pipe == PIPE_B || pipe == PIPE_C))
4697 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4698
4699 /* pipesrc controls the size that is scaled from, which should
4700 * always be the user's requested size.
4701 */
4702 I915_WRITE(PIPESRC(pipe),
4703 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4704 }
4705
4706 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4707 struct intel_crtc_config *pipe_config)
4708 {
4709 struct drm_device *dev = crtc->base.dev;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4712 uint32_t tmp;
4713
4714 tmp = I915_READ(HTOTAL(cpu_transcoder));
4715 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4716 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4717 tmp = I915_READ(HBLANK(cpu_transcoder));
4718 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4719 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4720 tmp = I915_READ(HSYNC(cpu_transcoder));
4721 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4722 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4723
4724 tmp = I915_READ(VTOTAL(cpu_transcoder));
4725 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4726 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4727 tmp = I915_READ(VBLANK(cpu_transcoder));
4728 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4729 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4730 tmp = I915_READ(VSYNC(cpu_transcoder));
4731 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4732 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4733
4734 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4735 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4736 pipe_config->adjusted_mode.crtc_vtotal += 1;
4737 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4738 }
4739
4740 tmp = I915_READ(PIPESRC(crtc->pipe));
4741 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4742 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4743 }
4744
4745 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4746 struct intel_crtc_config *pipe_config)
4747 {
4748 struct drm_crtc *crtc = &intel_crtc->base;
4749
4750 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4751 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4752 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4753 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4754
4755 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4756 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4757 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4758 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4759
4760 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4761
4762 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4763 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4764 }
4765
4766 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4767 {
4768 struct drm_device *dev = intel_crtc->base.dev;
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770 uint32_t pipeconf;
4771
4772 pipeconf = 0;
4773
4774 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4775 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4776 * core speed.
4777 *
4778 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4779 * pipe == 0 check?
4780 */
4781 if (intel_crtc->config.requested_mode.clock >
4782 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4783 pipeconf |= PIPECONF_DOUBLE_WIDE;
4784 }
4785
4786 /* only g4x and later have fancy bpc/dither controls */
4787 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4788 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4789 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4790 pipeconf |= PIPECONF_DITHER_EN |
4791 PIPECONF_DITHER_TYPE_SP;
4792
4793 switch (intel_crtc->config.pipe_bpp) {
4794 case 18:
4795 pipeconf |= PIPECONF_6BPC;
4796 break;
4797 case 24:
4798 pipeconf |= PIPECONF_8BPC;
4799 break;
4800 case 30:
4801 pipeconf |= PIPECONF_10BPC;
4802 break;
4803 default:
4804 /* Case prevented by intel_choose_pipe_bpp_dither. */
4805 BUG();
4806 }
4807 }
4808
4809 if (HAS_PIPE_CXSR(dev)) {
4810 if (intel_crtc->lowfreq_avail) {
4811 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4812 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4813 } else {
4814 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4815 }
4816 }
4817
4818 if (!IS_GEN2(dev) &&
4819 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4820 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4821 else
4822 pipeconf |= PIPECONF_PROGRESSIVE;
4823
4824 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4825 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4826
4827 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4828 POSTING_READ(PIPECONF(intel_crtc->pipe));
4829 }
4830
4831 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4832 int x, int y,
4833 struct drm_framebuffer *fb)
4834 {
4835 struct drm_device *dev = crtc->dev;
4836 struct drm_i915_private *dev_priv = dev->dev_private;
4837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4838 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4839 int pipe = intel_crtc->pipe;
4840 int plane = intel_crtc->plane;
4841 int refclk, num_connectors = 0;
4842 intel_clock_t clock, reduced_clock;
4843 u32 dspcntr;
4844 bool ok, has_reduced_clock = false;
4845 bool is_lvds = false;
4846 struct intel_encoder *encoder;
4847 const intel_limit_t *limit;
4848 int ret;
4849
4850 for_each_encoder_on_crtc(dev, crtc, encoder) {
4851 switch (encoder->type) {
4852 case INTEL_OUTPUT_LVDS:
4853 is_lvds = true;
4854 break;
4855 }
4856
4857 num_connectors++;
4858 }
4859
4860 refclk = i9xx_get_refclk(crtc, num_connectors);
4861
4862 /*
4863 * Returns a set of divisors for the desired target clock with the given
4864 * refclk, or FALSE. The returned values represent the clock equation:
4865 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4866 */
4867 limit = intel_limit(crtc, refclk);
4868 ok = dev_priv->display.find_dpll(limit, crtc,
4869 intel_crtc->config.port_clock,
4870 refclk, NULL, &clock);
4871 if (!ok && !intel_crtc->config.clock_set) {
4872 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4873 return -EINVAL;
4874 }
4875
4876 /* Ensure that the cursor is valid for the new mode before changing... */
4877 intel_crtc_update_cursor(crtc, true);
4878
4879 if (is_lvds && dev_priv->lvds_downclock_avail) {
4880 /*
4881 * Ensure we match the reduced clock's P to the target clock.
4882 * If the clocks don't match, we can't switch the display clock
4883 * by using the FP0/FP1. In such case we will disable the LVDS
4884 * downclock feature.
4885 */
4886 has_reduced_clock =
4887 dev_priv->display.find_dpll(limit, crtc,
4888 dev_priv->lvds_downclock,
4889 refclk, &clock,
4890 &reduced_clock);
4891 }
4892 /* Compat-code for transition, will disappear. */
4893 if (!intel_crtc->config.clock_set) {
4894 intel_crtc->config.dpll.n = clock.n;
4895 intel_crtc->config.dpll.m1 = clock.m1;
4896 intel_crtc->config.dpll.m2 = clock.m2;
4897 intel_crtc->config.dpll.p1 = clock.p1;
4898 intel_crtc->config.dpll.p2 = clock.p2;
4899 }
4900
4901 if (IS_GEN2(dev))
4902 i8xx_update_pll(intel_crtc,
4903 has_reduced_clock ? &reduced_clock : NULL,
4904 num_connectors);
4905 else if (IS_VALLEYVIEW(dev))
4906 vlv_update_pll(intel_crtc);
4907 else
4908 i9xx_update_pll(intel_crtc,
4909 has_reduced_clock ? &reduced_clock : NULL,
4910 num_connectors);
4911
4912 /* Set up the display plane register */
4913 dspcntr = DISPPLANE_GAMMA_ENABLE;
4914
4915 if (!IS_VALLEYVIEW(dev)) {
4916 if (pipe == 0)
4917 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4918 else
4919 dspcntr |= DISPPLANE_SEL_PIPE_B;
4920 }
4921
4922 intel_set_pipe_timings(intel_crtc);
4923
4924 /* pipesrc and dspsize control the size that is scaled from,
4925 * which should always be the user's requested size.
4926 */
4927 I915_WRITE(DSPSIZE(plane),
4928 ((mode->vdisplay - 1) << 16) |
4929 (mode->hdisplay - 1));
4930 I915_WRITE(DSPPOS(plane), 0);
4931
4932 i9xx_set_pipeconf(intel_crtc);
4933
4934 I915_WRITE(DSPCNTR(plane), dspcntr);
4935 POSTING_READ(DSPCNTR(plane));
4936
4937 ret = intel_pipe_set_base(crtc, x, y, fb);
4938
4939 intel_update_watermarks(dev);
4940
4941 return ret;
4942 }
4943
4944 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4945 struct intel_crtc_config *pipe_config)
4946 {
4947 struct drm_device *dev = crtc->base.dev;
4948 struct drm_i915_private *dev_priv = dev->dev_private;
4949 uint32_t tmp;
4950
4951 tmp = I915_READ(PFIT_CONTROL);
4952 if (!(tmp & PFIT_ENABLE))
4953 return;
4954
4955 /* Check whether the pfit is attached to our pipe. */
4956 if (INTEL_INFO(dev)->gen < 4) {
4957 if (crtc->pipe != PIPE_B)
4958 return;
4959 } else {
4960 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4961 return;
4962 }
4963
4964 pipe_config->gmch_pfit.control = tmp;
4965 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4966 if (INTEL_INFO(dev)->gen < 5)
4967 pipe_config->gmch_pfit.lvds_border_bits =
4968 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4969 }
4970
4971 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4972 struct intel_crtc_config *pipe_config)
4973 {
4974 struct drm_device *dev = crtc->base.dev;
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976 uint32_t tmp;
4977
4978 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4979 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4980
4981 tmp = I915_READ(PIPECONF(crtc->pipe));
4982 if (!(tmp & PIPECONF_ENABLE))
4983 return false;
4984
4985 intel_get_pipe_timings(crtc, pipe_config);
4986
4987 i9xx_get_pfit_config(crtc, pipe_config);
4988
4989 if (INTEL_INFO(dev)->gen >= 4) {
4990 tmp = I915_READ(DPLL_MD(crtc->pipe));
4991 pipe_config->pixel_multiplier =
4992 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4993 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4994 pipe_config->dpll_hw_state.dpll_md = tmp;
4995 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4996 tmp = I915_READ(DPLL(crtc->pipe));
4997 pipe_config->pixel_multiplier =
4998 ((tmp & SDVO_MULTIPLIER_MASK)
4999 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5000 } else {
5001 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5002 * port and will be fixed up in the encoder->get_config
5003 * function. */
5004 pipe_config->pixel_multiplier = 1;
5005 }
5006 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5007 if (!IS_VALLEYVIEW(dev)) {
5008 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5009 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5010 } else {
5011 /* Mask out read-only status bits. */
5012 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5013 DPLL_PORTC_READY_MASK |
5014 DPLL_PORTB_READY_MASK);
5015 }
5016
5017 return true;
5018 }
5019
5020 static void ironlake_init_pch_refclk(struct drm_device *dev)
5021 {
5022 struct drm_i915_private *dev_priv = dev->dev_private;
5023 struct drm_mode_config *mode_config = &dev->mode_config;
5024 struct intel_encoder *encoder;
5025 u32 val, final;
5026 bool has_lvds = false;
5027 bool has_cpu_edp = false;
5028 bool has_panel = false;
5029 bool has_ck505 = false;
5030 bool can_ssc = false;
5031
5032 /* We need to take the global config into account */
5033 list_for_each_entry(encoder, &mode_config->encoder_list,
5034 base.head) {
5035 switch (encoder->type) {
5036 case INTEL_OUTPUT_LVDS:
5037 has_panel = true;
5038 has_lvds = true;
5039 break;
5040 case INTEL_OUTPUT_EDP:
5041 has_panel = true;
5042 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5043 has_cpu_edp = true;
5044 break;
5045 }
5046 }
5047
5048 if (HAS_PCH_IBX(dev)) {
5049 has_ck505 = dev_priv->vbt.display_clock_mode;
5050 can_ssc = has_ck505;
5051 } else {
5052 has_ck505 = false;
5053 can_ssc = true;
5054 }
5055
5056 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5057 has_panel, has_lvds, has_ck505);
5058
5059 /* Ironlake: try to setup display ref clock before DPLL
5060 * enabling. This is only under driver's control after
5061 * PCH B stepping, previous chipset stepping should be
5062 * ignoring this setting.
5063 */
5064 val = I915_READ(PCH_DREF_CONTROL);
5065
5066 /* As we must carefully and slowly disable/enable each source in turn,
5067 * compute the final state we want first and check if we need to
5068 * make any changes at all.
5069 */
5070 final = val;
5071 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5072 if (has_ck505)
5073 final |= DREF_NONSPREAD_CK505_ENABLE;
5074 else
5075 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5076
5077 final &= ~DREF_SSC_SOURCE_MASK;
5078 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5079 final &= ~DREF_SSC1_ENABLE;
5080
5081 if (has_panel) {
5082 final |= DREF_SSC_SOURCE_ENABLE;
5083
5084 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5085 final |= DREF_SSC1_ENABLE;
5086
5087 if (has_cpu_edp) {
5088 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5089 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5090 else
5091 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5092 } else
5093 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5094 } else {
5095 final |= DREF_SSC_SOURCE_DISABLE;
5096 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5097 }
5098
5099 if (final == val)
5100 return;
5101
5102 /* Always enable nonspread source */
5103 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5104
5105 if (has_ck505)
5106 val |= DREF_NONSPREAD_CK505_ENABLE;
5107 else
5108 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5109
5110 if (has_panel) {
5111 val &= ~DREF_SSC_SOURCE_MASK;
5112 val |= DREF_SSC_SOURCE_ENABLE;
5113
5114 /* SSC must be turned on before enabling the CPU output */
5115 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5116 DRM_DEBUG_KMS("Using SSC on panel\n");
5117 val |= DREF_SSC1_ENABLE;
5118 } else
5119 val &= ~DREF_SSC1_ENABLE;
5120
5121 /* Get SSC going before enabling the outputs */
5122 I915_WRITE(PCH_DREF_CONTROL, val);
5123 POSTING_READ(PCH_DREF_CONTROL);
5124 udelay(200);
5125
5126 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5127
5128 /* Enable CPU source on CPU attached eDP */
5129 if (has_cpu_edp) {
5130 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5131 DRM_DEBUG_KMS("Using SSC on eDP\n");
5132 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5133 }
5134 else
5135 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5136 } else
5137 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5138
5139 I915_WRITE(PCH_DREF_CONTROL, val);
5140 POSTING_READ(PCH_DREF_CONTROL);
5141 udelay(200);
5142 } else {
5143 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5144
5145 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5146
5147 /* Turn off CPU output */
5148 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5149
5150 I915_WRITE(PCH_DREF_CONTROL, val);
5151 POSTING_READ(PCH_DREF_CONTROL);
5152 udelay(200);
5153
5154 /* Turn off the SSC source */
5155 val &= ~DREF_SSC_SOURCE_MASK;
5156 val |= DREF_SSC_SOURCE_DISABLE;
5157
5158 /* Turn off SSC1 */
5159 val &= ~DREF_SSC1_ENABLE;
5160
5161 I915_WRITE(PCH_DREF_CONTROL, val);
5162 POSTING_READ(PCH_DREF_CONTROL);
5163 udelay(200);
5164 }
5165
5166 BUG_ON(val != final);
5167 }
5168
5169 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5170 {
5171 uint32_t tmp;
5172
5173 tmp = I915_READ(SOUTH_CHICKEN2);
5174 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5175 I915_WRITE(SOUTH_CHICKEN2, tmp);
5176
5177 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5178 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5179 DRM_ERROR("FDI mPHY reset assert timeout\n");
5180
5181 tmp = I915_READ(SOUTH_CHICKEN2);
5182 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5183 I915_WRITE(SOUTH_CHICKEN2, tmp);
5184
5185 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5186 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5187 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5188 }
5189
5190 /* WaMPhyProgramming:hsw */
5191 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5192 {
5193 uint32_t tmp;
5194
5195 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5196 tmp &= ~(0xFF << 24);
5197 tmp |= (0x12 << 24);
5198 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5199
5200 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5201 tmp |= (1 << 11);
5202 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5203
5204 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5205 tmp |= (1 << 11);
5206 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5207
5208 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5209 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5210 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5211
5212 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5213 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5214 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5215
5216 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5217 tmp &= ~(7 << 13);
5218 tmp |= (5 << 13);
5219 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5220
5221 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5222 tmp &= ~(7 << 13);
5223 tmp |= (5 << 13);
5224 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5225
5226 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5227 tmp &= ~0xFF;
5228 tmp |= 0x1C;
5229 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5230
5231 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5232 tmp &= ~0xFF;
5233 tmp |= 0x1C;
5234 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5235
5236 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5237 tmp &= ~(0xFF << 16);
5238 tmp |= (0x1C << 16);
5239 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5240
5241 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5242 tmp &= ~(0xFF << 16);
5243 tmp |= (0x1C << 16);
5244 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5245
5246 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5247 tmp |= (1 << 27);
5248 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5249
5250 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5251 tmp |= (1 << 27);
5252 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5253
5254 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5255 tmp &= ~(0xF << 28);
5256 tmp |= (4 << 28);
5257 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5258
5259 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5260 tmp &= ~(0xF << 28);
5261 tmp |= (4 << 28);
5262 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5263 }
5264
5265 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5266 * Programming" based on the parameters passed:
5267 * - Sequence to enable CLKOUT_DP
5268 * - Sequence to enable CLKOUT_DP without spread
5269 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5270 */
5271 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5272 bool with_fdi)
5273 {
5274 struct drm_i915_private *dev_priv = dev->dev_private;
5275 uint32_t reg, tmp;
5276
5277 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5278 with_spread = true;
5279 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5280 with_fdi, "LP PCH doesn't have FDI\n"))
5281 with_fdi = false;
5282
5283 mutex_lock(&dev_priv->dpio_lock);
5284
5285 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5286 tmp &= ~SBI_SSCCTL_DISABLE;
5287 tmp |= SBI_SSCCTL_PATHALT;
5288 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5289
5290 udelay(24);
5291
5292 if (with_spread) {
5293 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5294 tmp &= ~SBI_SSCCTL_PATHALT;
5295 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5296
5297 if (with_fdi) {
5298 lpt_reset_fdi_mphy(dev_priv);
5299 lpt_program_fdi_mphy(dev_priv);
5300 }
5301 }
5302
5303 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5304 SBI_GEN0 : SBI_DBUFF0;
5305 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5306 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5307 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5308
5309 mutex_unlock(&dev_priv->dpio_lock);
5310 }
5311
5312 /* Sequence to disable CLKOUT_DP */
5313 static void lpt_disable_clkout_dp(struct drm_device *dev)
5314 {
5315 struct drm_i915_private *dev_priv = dev->dev_private;
5316 uint32_t reg, tmp;
5317
5318 mutex_lock(&dev_priv->dpio_lock);
5319
5320 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5321 SBI_GEN0 : SBI_DBUFF0;
5322 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5323 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5324 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5325
5326 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5327 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5328 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5329 tmp |= SBI_SSCCTL_PATHALT;
5330 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5331 udelay(32);
5332 }
5333 tmp |= SBI_SSCCTL_DISABLE;
5334 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5335 }
5336
5337 mutex_unlock(&dev_priv->dpio_lock);
5338 }
5339
5340 static void lpt_init_pch_refclk(struct drm_device *dev)
5341 {
5342 struct drm_mode_config *mode_config = &dev->mode_config;
5343 struct intel_encoder *encoder;
5344 bool has_vga = false;
5345
5346 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5347 switch (encoder->type) {
5348 case INTEL_OUTPUT_ANALOG:
5349 has_vga = true;
5350 break;
5351 }
5352 }
5353
5354 if (has_vga)
5355 lpt_enable_clkout_dp(dev, true, true);
5356 else
5357 lpt_disable_clkout_dp(dev);
5358 }
5359
5360 /*
5361 * Initialize reference clocks when the driver loads
5362 */
5363 void intel_init_pch_refclk(struct drm_device *dev)
5364 {
5365 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5366 ironlake_init_pch_refclk(dev);
5367 else if (HAS_PCH_LPT(dev))
5368 lpt_init_pch_refclk(dev);
5369 }
5370
5371 static int ironlake_get_refclk(struct drm_crtc *crtc)
5372 {
5373 struct drm_device *dev = crtc->dev;
5374 struct drm_i915_private *dev_priv = dev->dev_private;
5375 struct intel_encoder *encoder;
5376 int num_connectors = 0;
5377 bool is_lvds = false;
5378
5379 for_each_encoder_on_crtc(dev, crtc, encoder) {
5380 switch (encoder->type) {
5381 case INTEL_OUTPUT_LVDS:
5382 is_lvds = true;
5383 break;
5384 }
5385 num_connectors++;
5386 }
5387
5388 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5389 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5390 dev_priv->vbt.lvds_ssc_freq);
5391 return dev_priv->vbt.lvds_ssc_freq * 1000;
5392 }
5393
5394 return 120000;
5395 }
5396
5397 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5398 {
5399 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5401 int pipe = intel_crtc->pipe;
5402 uint32_t val;
5403
5404 val = 0;
5405
5406 switch (intel_crtc->config.pipe_bpp) {
5407 case 18:
5408 val |= PIPECONF_6BPC;
5409 break;
5410 case 24:
5411 val |= PIPECONF_8BPC;
5412 break;
5413 case 30:
5414 val |= PIPECONF_10BPC;
5415 break;
5416 case 36:
5417 val |= PIPECONF_12BPC;
5418 break;
5419 default:
5420 /* Case prevented by intel_choose_pipe_bpp_dither. */
5421 BUG();
5422 }
5423
5424 if (intel_crtc->config.dither)
5425 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5426
5427 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5428 val |= PIPECONF_INTERLACED_ILK;
5429 else
5430 val |= PIPECONF_PROGRESSIVE;
5431
5432 if (intel_crtc->config.limited_color_range)
5433 val |= PIPECONF_COLOR_RANGE_SELECT;
5434
5435 I915_WRITE(PIPECONF(pipe), val);
5436 POSTING_READ(PIPECONF(pipe));
5437 }
5438
5439 /*
5440 * Set up the pipe CSC unit.
5441 *
5442 * Currently only full range RGB to limited range RGB conversion
5443 * is supported, but eventually this should handle various
5444 * RGB<->YCbCr scenarios as well.
5445 */
5446 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5447 {
5448 struct drm_device *dev = crtc->dev;
5449 struct drm_i915_private *dev_priv = dev->dev_private;
5450 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5451 int pipe = intel_crtc->pipe;
5452 uint16_t coeff = 0x7800; /* 1.0 */
5453
5454 /*
5455 * TODO: Check what kind of values actually come out of the pipe
5456 * with these coeff/postoff values and adjust to get the best
5457 * accuracy. Perhaps we even need to take the bpc value into
5458 * consideration.
5459 */
5460
5461 if (intel_crtc->config.limited_color_range)
5462 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5463
5464 /*
5465 * GY/GU and RY/RU should be the other way around according
5466 * to BSpec, but reality doesn't agree. Just set them up in
5467 * a way that results in the correct picture.
5468 */
5469 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5470 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5471
5472 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5473 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5474
5475 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5476 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5477
5478 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5479 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5480 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5481
5482 if (INTEL_INFO(dev)->gen > 6) {
5483 uint16_t postoff = 0;
5484
5485 if (intel_crtc->config.limited_color_range)
5486 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5487
5488 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5489 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5490 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5491
5492 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5493 } else {
5494 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5495
5496 if (intel_crtc->config.limited_color_range)
5497 mode |= CSC_BLACK_SCREEN_OFFSET;
5498
5499 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5500 }
5501 }
5502
5503 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5504 {
5505 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5507 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5508 uint32_t val;
5509
5510 val = 0;
5511
5512 if (intel_crtc->config.dither)
5513 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5514
5515 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5516 val |= PIPECONF_INTERLACED_ILK;
5517 else
5518 val |= PIPECONF_PROGRESSIVE;
5519
5520 I915_WRITE(PIPECONF(cpu_transcoder), val);
5521 POSTING_READ(PIPECONF(cpu_transcoder));
5522
5523 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5524 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5525 }
5526
5527 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5528 intel_clock_t *clock,
5529 bool *has_reduced_clock,
5530 intel_clock_t *reduced_clock)
5531 {
5532 struct drm_device *dev = crtc->dev;
5533 struct drm_i915_private *dev_priv = dev->dev_private;
5534 struct intel_encoder *intel_encoder;
5535 int refclk;
5536 const intel_limit_t *limit;
5537 bool ret, is_lvds = false;
5538
5539 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5540 switch (intel_encoder->type) {
5541 case INTEL_OUTPUT_LVDS:
5542 is_lvds = true;
5543 break;
5544 }
5545 }
5546
5547 refclk = ironlake_get_refclk(crtc);
5548
5549 /*
5550 * Returns a set of divisors for the desired target clock with the given
5551 * refclk, or FALSE. The returned values represent the clock equation:
5552 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5553 */
5554 limit = intel_limit(crtc, refclk);
5555 ret = dev_priv->display.find_dpll(limit, crtc,
5556 to_intel_crtc(crtc)->config.port_clock,
5557 refclk, NULL, clock);
5558 if (!ret)
5559 return false;
5560
5561 if (is_lvds && dev_priv->lvds_downclock_avail) {
5562 /*
5563 * Ensure we match the reduced clock's P to the target clock.
5564 * If the clocks don't match, we can't switch the display clock
5565 * by using the FP0/FP1. In such case we will disable the LVDS
5566 * downclock feature.
5567 */
5568 *has_reduced_clock =
5569 dev_priv->display.find_dpll(limit, crtc,
5570 dev_priv->lvds_downclock,
5571 refclk, clock,
5572 reduced_clock);
5573 }
5574
5575 return true;
5576 }
5577
5578 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5579 {
5580 struct drm_i915_private *dev_priv = dev->dev_private;
5581 uint32_t temp;
5582
5583 temp = I915_READ(SOUTH_CHICKEN1);
5584 if (temp & FDI_BC_BIFURCATION_SELECT)
5585 return;
5586
5587 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5588 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5589
5590 temp |= FDI_BC_BIFURCATION_SELECT;
5591 DRM_DEBUG_KMS("enabling fdi C rx\n");
5592 I915_WRITE(SOUTH_CHICKEN1, temp);
5593 POSTING_READ(SOUTH_CHICKEN1);
5594 }
5595
5596 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5597 {
5598 struct drm_device *dev = intel_crtc->base.dev;
5599 struct drm_i915_private *dev_priv = dev->dev_private;
5600
5601 switch (intel_crtc->pipe) {
5602 case PIPE_A:
5603 break;
5604 case PIPE_B:
5605 if (intel_crtc->config.fdi_lanes > 2)
5606 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5607 else
5608 cpt_enable_fdi_bc_bifurcation(dev);
5609
5610 break;
5611 case PIPE_C:
5612 cpt_enable_fdi_bc_bifurcation(dev);
5613
5614 break;
5615 default:
5616 BUG();
5617 }
5618 }
5619
5620 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5621 {
5622 /*
5623 * Account for spread spectrum to avoid
5624 * oversubscribing the link. Max center spread
5625 * is 2.5%; use 5% for safety's sake.
5626 */
5627 u32 bps = target_clock * bpp * 21 / 20;
5628 return bps / (link_bw * 8) + 1;
5629 }
5630
5631 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5632 {
5633 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5634 }
5635
5636 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5637 u32 *fp,
5638 intel_clock_t *reduced_clock, u32 *fp2)
5639 {
5640 struct drm_crtc *crtc = &intel_crtc->base;
5641 struct drm_device *dev = crtc->dev;
5642 struct drm_i915_private *dev_priv = dev->dev_private;
5643 struct intel_encoder *intel_encoder;
5644 uint32_t dpll;
5645 int factor, num_connectors = 0;
5646 bool is_lvds = false, is_sdvo = false;
5647
5648 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5649 switch (intel_encoder->type) {
5650 case INTEL_OUTPUT_LVDS:
5651 is_lvds = true;
5652 break;
5653 case INTEL_OUTPUT_SDVO:
5654 case INTEL_OUTPUT_HDMI:
5655 is_sdvo = true;
5656 break;
5657 }
5658
5659 num_connectors++;
5660 }
5661
5662 /* Enable autotuning of the PLL clock (if permissible) */
5663 factor = 21;
5664 if (is_lvds) {
5665 if ((intel_panel_use_ssc(dev_priv) &&
5666 dev_priv->vbt.lvds_ssc_freq == 100) ||
5667 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5668 factor = 25;
5669 } else if (intel_crtc->config.sdvo_tv_clock)
5670 factor = 20;
5671
5672 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5673 *fp |= FP_CB_TUNE;
5674
5675 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5676 *fp2 |= FP_CB_TUNE;
5677
5678 dpll = 0;
5679
5680 if (is_lvds)
5681 dpll |= DPLLB_MODE_LVDS;
5682 else
5683 dpll |= DPLLB_MODE_DAC_SERIAL;
5684
5685 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5686 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5687
5688 if (is_sdvo)
5689 dpll |= DPLL_SDVO_HIGH_SPEED;
5690 if (intel_crtc->config.has_dp_encoder)
5691 dpll |= DPLL_SDVO_HIGH_SPEED;
5692
5693 /* compute bitmask from p1 value */
5694 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5695 /* also FPA1 */
5696 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5697
5698 switch (intel_crtc->config.dpll.p2) {
5699 case 5:
5700 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5701 break;
5702 case 7:
5703 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5704 break;
5705 case 10:
5706 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5707 break;
5708 case 14:
5709 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5710 break;
5711 }
5712
5713 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5714 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5715 else
5716 dpll |= PLL_REF_INPUT_DREFCLK;
5717
5718 return dpll | DPLL_VCO_ENABLE;
5719 }
5720
5721 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5722 int x, int y,
5723 struct drm_framebuffer *fb)
5724 {
5725 struct drm_device *dev = crtc->dev;
5726 struct drm_i915_private *dev_priv = dev->dev_private;
5727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5728 int pipe = intel_crtc->pipe;
5729 int plane = intel_crtc->plane;
5730 int num_connectors = 0;
5731 intel_clock_t clock, reduced_clock;
5732 u32 dpll = 0, fp = 0, fp2 = 0;
5733 bool ok, has_reduced_clock = false;
5734 bool is_lvds = false;
5735 struct intel_encoder *encoder;
5736 struct intel_shared_dpll *pll;
5737 int ret;
5738
5739 for_each_encoder_on_crtc(dev, crtc, encoder) {
5740 switch (encoder->type) {
5741 case INTEL_OUTPUT_LVDS:
5742 is_lvds = true;
5743 break;
5744 }
5745
5746 num_connectors++;
5747 }
5748
5749 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5750 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5751
5752 ok = ironlake_compute_clocks(crtc, &clock,
5753 &has_reduced_clock, &reduced_clock);
5754 if (!ok && !intel_crtc->config.clock_set) {
5755 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5756 return -EINVAL;
5757 }
5758 /* Compat-code for transition, will disappear. */
5759 if (!intel_crtc->config.clock_set) {
5760 intel_crtc->config.dpll.n = clock.n;
5761 intel_crtc->config.dpll.m1 = clock.m1;
5762 intel_crtc->config.dpll.m2 = clock.m2;
5763 intel_crtc->config.dpll.p1 = clock.p1;
5764 intel_crtc->config.dpll.p2 = clock.p2;
5765 }
5766
5767 /* Ensure that the cursor is valid for the new mode before changing... */
5768 intel_crtc_update_cursor(crtc, true);
5769
5770 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5771 if (intel_crtc->config.has_pch_encoder) {
5772 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5773 if (has_reduced_clock)
5774 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5775
5776 dpll = ironlake_compute_dpll(intel_crtc,
5777 &fp, &reduced_clock,
5778 has_reduced_clock ? &fp2 : NULL);
5779
5780 intel_crtc->config.dpll_hw_state.dpll = dpll;
5781 intel_crtc->config.dpll_hw_state.fp0 = fp;
5782 if (has_reduced_clock)
5783 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5784 else
5785 intel_crtc->config.dpll_hw_state.fp1 = fp;
5786
5787 pll = intel_get_shared_dpll(intel_crtc);
5788 if (pll == NULL) {
5789 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5790 pipe_name(pipe));
5791 return -EINVAL;
5792 }
5793 } else
5794 intel_put_shared_dpll(intel_crtc);
5795
5796 if (intel_crtc->config.has_dp_encoder)
5797 intel_dp_set_m_n(intel_crtc);
5798
5799 if (is_lvds && has_reduced_clock && i915_powersave)
5800 intel_crtc->lowfreq_avail = true;
5801 else
5802 intel_crtc->lowfreq_avail = false;
5803
5804 if (intel_crtc->config.has_pch_encoder) {
5805 pll = intel_crtc_to_shared_dpll(intel_crtc);
5806
5807 }
5808
5809 intel_set_pipe_timings(intel_crtc);
5810
5811 if (intel_crtc->config.has_pch_encoder) {
5812 intel_cpu_transcoder_set_m_n(intel_crtc,
5813 &intel_crtc->config.fdi_m_n);
5814 }
5815
5816 if (IS_IVYBRIDGE(dev))
5817 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5818
5819 ironlake_set_pipeconf(crtc);
5820
5821 /* Set up the display plane register */
5822 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5823 POSTING_READ(DSPCNTR(plane));
5824
5825 ret = intel_pipe_set_base(crtc, x, y, fb);
5826
5827 intel_update_watermarks(dev);
5828
5829 return ret;
5830 }
5831
5832 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5833 struct intel_crtc_config *pipe_config)
5834 {
5835 struct drm_device *dev = crtc->base.dev;
5836 struct drm_i915_private *dev_priv = dev->dev_private;
5837 enum transcoder transcoder = pipe_config->cpu_transcoder;
5838
5839 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5840 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5841 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5842 & ~TU_SIZE_MASK;
5843 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5844 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5845 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5846 }
5847
5848 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5849 struct intel_crtc_config *pipe_config)
5850 {
5851 struct drm_device *dev = crtc->base.dev;
5852 struct drm_i915_private *dev_priv = dev->dev_private;
5853 uint32_t tmp;
5854
5855 tmp = I915_READ(PF_CTL(crtc->pipe));
5856
5857 if (tmp & PF_ENABLE) {
5858 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5859 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5860
5861 /* We currently do not free assignements of panel fitters on
5862 * ivb/hsw (since we don't use the higher upscaling modes which
5863 * differentiates them) so just WARN about this case for now. */
5864 if (IS_GEN7(dev)) {
5865 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5866 PF_PIPE_SEL_IVB(crtc->pipe));
5867 }
5868 }
5869 }
5870
5871 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5872 struct intel_crtc_config *pipe_config)
5873 {
5874 struct drm_device *dev = crtc->base.dev;
5875 struct drm_i915_private *dev_priv = dev->dev_private;
5876 uint32_t tmp;
5877
5878 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5879 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5880
5881 tmp = I915_READ(PIPECONF(crtc->pipe));
5882 if (!(tmp & PIPECONF_ENABLE))
5883 return false;
5884
5885 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5886 struct intel_shared_dpll *pll;
5887
5888 pipe_config->has_pch_encoder = true;
5889
5890 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5891 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5892 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5893
5894 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5895
5896 if (HAS_PCH_IBX(dev_priv->dev)) {
5897 pipe_config->shared_dpll =
5898 (enum intel_dpll_id) crtc->pipe;
5899 } else {
5900 tmp = I915_READ(PCH_DPLL_SEL);
5901 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5902 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5903 else
5904 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5905 }
5906
5907 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5908
5909 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5910 &pipe_config->dpll_hw_state));
5911
5912 tmp = pipe_config->dpll_hw_state.dpll;
5913 pipe_config->pixel_multiplier =
5914 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5915 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5916 } else {
5917 pipe_config->pixel_multiplier = 1;
5918 }
5919
5920 intel_get_pipe_timings(crtc, pipe_config);
5921
5922 ironlake_get_pfit_config(crtc, pipe_config);
5923
5924 return true;
5925 }
5926
5927 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5928 {
5929 struct drm_device *dev = dev_priv->dev;
5930 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5931 struct intel_crtc *crtc;
5932 unsigned long irqflags;
5933 uint32_t val, pch_hpd_mask;
5934
5935 pch_hpd_mask = SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT;
5936 if (!(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE))
5937 pch_hpd_mask |= SDE_PORTD_HOTPLUG_CPT | SDE_CRT_HOTPLUG_CPT;
5938
5939 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5940 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5941 pipe_name(crtc->pipe));
5942
5943 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5944 WARN(plls->spll_refcount, "SPLL enabled\n");
5945 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5946 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5947 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5948 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5949 "CPU PWM1 enabled\n");
5950 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5951 "CPU PWM2 enabled\n");
5952 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5953 "PCH PWM1 enabled\n");
5954 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5955 "Utility pin enabled\n");
5956 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5957
5958 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5959 val = I915_READ(DEIMR);
5960 WARN((val & ~DE_PCH_EVENT_IVB) != val,
5961 "Unexpected DEIMR bits enabled: 0x%x\n", val);
5962 val = I915_READ(SDEIMR);
5963 WARN((val & ~pch_hpd_mask) != val,
5964 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5965 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5966 }
5967
5968 /*
5969 * This function implements pieces of two sequences from BSpec:
5970 * - Sequence for display software to disable LCPLL
5971 * - Sequence for display software to allow package C8+
5972 * The steps implemented here are just the steps that actually touch the LCPLL
5973 * register. Callers should take care of disabling all the display engine
5974 * functions, doing the mode unset, fixing interrupts, etc.
5975 */
5976 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5977 bool switch_to_fclk, bool allow_power_down)
5978 {
5979 uint32_t val;
5980
5981 assert_can_disable_lcpll(dev_priv);
5982
5983 val = I915_READ(LCPLL_CTL);
5984
5985 if (switch_to_fclk) {
5986 val |= LCPLL_CD_SOURCE_FCLK;
5987 I915_WRITE(LCPLL_CTL, val);
5988
5989 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5990 LCPLL_CD_SOURCE_FCLK_DONE, 1))
5991 DRM_ERROR("Switching to FCLK failed\n");
5992
5993 val = I915_READ(LCPLL_CTL);
5994 }
5995
5996 val |= LCPLL_PLL_DISABLE;
5997 I915_WRITE(LCPLL_CTL, val);
5998 POSTING_READ(LCPLL_CTL);
5999
6000 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6001 DRM_ERROR("LCPLL still locked\n");
6002
6003 val = I915_READ(D_COMP);
6004 val |= D_COMP_COMP_DISABLE;
6005 I915_WRITE(D_COMP, val);
6006 POSTING_READ(D_COMP);
6007 ndelay(100);
6008
6009 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6010 DRM_ERROR("D_COMP RCOMP still in progress\n");
6011
6012 if (allow_power_down) {
6013 val = I915_READ(LCPLL_CTL);
6014 val |= LCPLL_POWER_DOWN_ALLOW;
6015 I915_WRITE(LCPLL_CTL, val);
6016 POSTING_READ(LCPLL_CTL);
6017 }
6018 }
6019
6020 /*
6021 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6022 * source.
6023 */
6024 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6025 {
6026 uint32_t val;
6027
6028 val = I915_READ(LCPLL_CTL);
6029
6030 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6031 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6032 return;
6033
6034 if (val & LCPLL_POWER_DOWN_ALLOW) {
6035 val &= ~LCPLL_POWER_DOWN_ALLOW;
6036 I915_WRITE(LCPLL_CTL, val);
6037 }
6038
6039 val = I915_READ(D_COMP);
6040 val |= D_COMP_COMP_FORCE;
6041 val &= ~D_COMP_COMP_DISABLE;
6042 I915_WRITE(D_COMP, val);
6043 I915_READ(D_COMP);
6044
6045 val = I915_READ(LCPLL_CTL);
6046 val &= ~LCPLL_PLL_DISABLE;
6047 I915_WRITE(LCPLL_CTL, val);
6048
6049 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6050 DRM_ERROR("LCPLL not locked yet\n");
6051
6052 if (val & LCPLL_CD_SOURCE_FCLK) {
6053 val = I915_READ(LCPLL_CTL);
6054 val &= ~LCPLL_CD_SOURCE_FCLK;
6055 I915_WRITE(LCPLL_CTL, val);
6056
6057 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6058 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6059 DRM_ERROR("Switching back to LCPLL failed\n");
6060 }
6061 }
6062
6063 static void haswell_modeset_global_resources(struct drm_device *dev)
6064 {
6065 bool enable = false;
6066 struct intel_crtc *crtc;
6067
6068 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6069 if (!crtc->base.enabled)
6070 continue;
6071
6072 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6073 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6074 enable = true;
6075 }
6076
6077 intel_set_power_well(dev, enable);
6078 }
6079
6080 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6081 int x, int y,
6082 struct drm_framebuffer *fb)
6083 {
6084 struct drm_device *dev = crtc->dev;
6085 struct drm_i915_private *dev_priv = dev->dev_private;
6086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6087 int plane = intel_crtc->plane;
6088 int ret;
6089
6090 if (!intel_ddi_pll_mode_set(crtc))
6091 return -EINVAL;
6092
6093 /* Ensure that the cursor is valid for the new mode before changing... */
6094 intel_crtc_update_cursor(crtc, true);
6095
6096 if (intel_crtc->config.has_dp_encoder)
6097 intel_dp_set_m_n(intel_crtc);
6098
6099 intel_crtc->lowfreq_avail = false;
6100
6101 intel_set_pipe_timings(intel_crtc);
6102
6103 if (intel_crtc->config.has_pch_encoder) {
6104 intel_cpu_transcoder_set_m_n(intel_crtc,
6105 &intel_crtc->config.fdi_m_n);
6106 }
6107
6108 haswell_set_pipeconf(crtc);
6109
6110 intel_set_pipe_csc(crtc);
6111
6112 /* Set up the display plane register */
6113 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6114 POSTING_READ(DSPCNTR(plane));
6115
6116 ret = intel_pipe_set_base(crtc, x, y, fb);
6117
6118 intel_update_watermarks(dev);
6119
6120 return ret;
6121 }
6122
6123 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6124 struct intel_crtc_config *pipe_config)
6125 {
6126 struct drm_device *dev = crtc->base.dev;
6127 struct drm_i915_private *dev_priv = dev->dev_private;
6128 enum intel_display_power_domain pfit_domain;
6129 uint32_t tmp;
6130
6131 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6132 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6133
6134 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6135 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6136 enum pipe trans_edp_pipe;
6137 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6138 default:
6139 WARN(1, "unknown pipe linked to edp transcoder\n");
6140 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6141 case TRANS_DDI_EDP_INPUT_A_ON:
6142 trans_edp_pipe = PIPE_A;
6143 break;
6144 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6145 trans_edp_pipe = PIPE_B;
6146 break;
6147 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6148 trans_edp_pipe = PIPE_C;
6149 break;
6150 }
6151
6152 if (trans_edp_pipe == crtc->pipe)
6153 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6154 }
6155
6156 if (!intel_display_power_enabled(dev,
6157 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6158 return false;
6159
6160 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6161 if (!(tmp & PIPECONF_ENABLE))
6162 return false;
6163
6164 /*
6165 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6166 * DDI E. So just check whether this pipe is wired to DDI E and whether
6167 * the PCH transcoder is on.
6168 */
6169 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6170 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6171 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6172 pipe_config->has_pch_encoder = true;
6173
6174 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6175 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6176 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6177
6178 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6179 }
6180
6181 intel_get_pipe_timings(crtc, pipe_config);
6182
6183 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6184 if (intel_display_power_enabled(dev, pfit_domain))
6185 ironlake_get_pfit_config(crtc, pipe_config);
6186
6187 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6188 (I915_READ(IPS_CTL) & IPS_ENABLE);
6189
6190 pipe_config->pixel_multiplier = 1;
6191
6192 return true;
6193 }
6194
6195 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6196 int x, int y,
6197 struct drm_framebuffer *fb)
6198 {
6199 struct drm_device *dev = crtc->dev;
6200 struct drm_i915_private *dev_priv = dev->dev_private;
6201 struct intel_encoder *encoder;
6202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6203 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6204 int pipe = intel_crtc->pipe;
6205 int ret;
6206
6207 drm_vblank_pre_modeset(dev, pipe);
6208
6209 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6210
6211 drm_vblank_post_modeset(dev, pipe);
6212
6213 if (ret != 0)
6214 return ret;
6215
6216 for_each_encoder_on_crtc(dev, crtc, encoder) {
6217 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6218 encoder->base.base.id,
6219 drm_get_encoder_name(&encoder->base),
6220 mode->base.id, mode->name);
6221 encoder->mode_set(encoder);
6222 }
6223
6224 return 0;
6225 }
6226
6227 static bool intel_eld_uptodate(struct drm_connector *connector,
6228 int reg_eldv, uint32_t bits_eldv,
6229 int reg_elda, uint32_t bits_elda,
6230 int reg_edid)
6231 {
6232 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6233 uint8_t *eld = connector->eld;
6234 uint32_t i;
6235
6236 i = I915_READ(reg_eldv);
6237 i &= bits_eldv;
6238
6239 if (!eld[0])
6240 return !i;
6241
6242 if (!i)
6243 return false;
6244
6245 i = I915_READ(reg_elda);
6246 i &= ~bits_elda;
6247 I915_WRITE(reg_elda, i);
6248
6249 for (i = 0; i < eld[2]; i++)
6250 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6251 return false;
6252
6253 return true;
6254 }
6255
6256 static void g4x_write_eld(struct drm_connector *connector,
6257 struct drm_crtc *crtc)
6258 {
6259 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6260 uint8_t *eld = connector->eld;
6261 uint32_t eldv;
6262 uint32_t len;
6263 uint32_t i;
6264
6265 i = I915_READ(G4X_AUD_VID_DID);
6266
6267 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6268 eldv = G4X_ELDV_DEVCL_DEVBLC;
6269 else
6270 eldv = G4X_ELDV_DEVCTG;
6271
6272 if (intel_eld_uptodate(connector,
6273 G4X_AUD_CNTL_ST, eldv,
6274 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6275 G4X_HDMIW_HDMIEDID))
6276 return;
6277
6278 i = I915_READ(G4X_AUD_CNTL_ST);
6279 i &= ~(eldv | G4X_ELD_ADDR);
6280 len = (i >> 9) & 0x1f; /* ELD buffer size */
6281 I915_WRITE(G4X_AUD_CNTL_ST, i);
6282
6283 if (!eld[0])
6284 return;
6285
6286 len = min_t(uint8_t, eld[2], len);
6287 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6288 for (i = 0; i < len; i++)
6289 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6290
6291 i = I915_READ(G4X_AUD_CNTL_ST);
6292 i |= eldv;
6293 I915_WRITE(G4X_AUD_CNTL_ST, i);
6294 }
6295
6296 static void haswell_write_eld(struct drm_connector *connector,
6297 struct drm_crtc *crtc)
6298 {
6299 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6300 uint8_t *eld = connector->eld;
6301 struct drm_device *dev = crtc->dev;
6302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6303 uint32_t eldv;
6304 uint32_t i;
6305 int len;
6306 int pipe = to_intel_crtc(crtc)->pipe;
6307 int tmp;
6308
6309 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6310 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6311 int aud_config = HSW_AUD_CFG(pipe);
6312 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6313
6314
6315 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6316
6317 /* Audio output enable */
6318 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6319 tmp = I915_READ(aud_cntrl_st2);
6320 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6321 I915_WRITE(aud_cntrl_st2, tmp);
6322
6323 /* Wait for 1 vertical blank */
6324 intel_wait_for_vblank(dev, pipe);
6325
6326 /* Set ELD valid state */
6327 tmp = I915_READ(aud_cntrl_st2);
6328 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6329 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6330 I915_WRITE(aud_cntrl_st2, tmp);
6331 tmp = I915_READ(aud_cntrl_st2);
6332 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6333
6334 /* Enable HDMI mode */
6335 tmp = I915_READ(aud_config);
6336 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6337 /* clear N_programing_enable and N_value_index */
6338 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6339 I915_WRITE(aud_config, tmp);
6340
6341 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6342
6343 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6344 intel_crtc->eld_vld = true;
6345
6346 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6347 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6348 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6349 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6350 } else
6351 I915_WRITE(aud_config, 0);
6352
6353 if (intel_eld_uptodate(connector,
6354 aud_cntrl_st2, eldv,
6355 aud_cntl_st, IBX_ELD_ADDRESS,
6356 hdmiw_hdmiedid))
6357 return;
6358
6359 i = I915_READ(aud_cntrl_st2);
6360 i &= ~eldv;
6361 I915_WRITE(aud_cntrl_st2, i);
6362
6363 if (!eld[0])
6364 return;
6365
6366 i = I915_READ(aud_cntl_st);
6367 i &= ~IBX_ELD_ADDRESS;
6368 I915_WRITE(aud_cntl_st, i);
6369 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6370 DRM_DEBUG_DRIVER("port num:%d\n", i);
6371
6372 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6373 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6374 for (i = 0; i < len; i++)
6375 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6376
6377 i = I915_READ(aud_cntrl_st2);
6378 i |= eldv;
6379 I915_WRITE(aud_cntrl_st2, i);
6380
6381 }
6382
6383 static void ironlake_write_eld(struct drm_connector *connector,
6384 struct drm_crtc *crtc)
6385 {
6386 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6387 uint8_t *eld = connector->eld;
6388 uint32_t eldv;
6389 uint32_t i;
6390 int len;
6391 int hdmiw_hdmiedid;
6392 int aud_config;
6393 int aud_cntl_st;
6394 int aud_cntrl_st2;
6395 int pipe = to_intel_crtc(crtc)->pipe;
6396
6397 if (HAS_PCH_IBX(connector->dev)) {
6398 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6399 aud_config = IBX_AUD_CFG(pipe);
6400 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6401 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6402 } else {
6403 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6404 aud_config = CPT_AUD_CFG(pipe);
6405 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6406 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6407 }
6408
6409 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6410
6411 i = I915_READ(aud_cntl_st);
6412 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6413 if (!i) {
6414 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6415 /* operate blindly on all ports */
6416 eldv = IBX_ELD_VALIDB;
6417 eldv |= IBX_ELD_VALIDB << 4;
6418 eldv |= IBX_ELD_VALIDB << 8;
6419 } else {
6420 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6421 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6422 }
6423
6424 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6425 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6426 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6427 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6428 } else
6429 I915_WRITE(aud_config, 0);
6430
6431 if (intel_eld_uptodate(connector,
6432 aud_cntrl_st2, eldv,
6433 aud_cntl_st, IBX_ELD_ADDRESS,
6434 hdmiw_hdmiedid))
6435 return;
6436
6437 i = I915_READ(aud_cntrl_st2);
6438 i &= ~eldv;
6439 I915_WRITE(aud_cntrl_st2, i);
6440
6441 if (!eld[0])
6442 return;
6443
6444 i = I915_READ(aud_cntl_st);
6445 i &= ~IBX_ELD_ADDRESS;
6446 I915_WRITE(aud_cntl_st, i);
6447
6448 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6449 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6450 for (i = 0; i < len; i++)
6451 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6452
6453 i = I915_READ(aud_cntrl_st2);
6454 i |= eldv;
6455 I915_WRITE(aud_cntrl_st2, i);
6456 }
6457
6458 void intel_write_eld(struct drm_encoder *encoder,
6459 struct drm_display_mode *mode)
6460 {
6461 struct drm_crtc *crtc = encoder->crtc;
6462 struct drm_connector *connector;
6463 struct drm_device *dev = encoder->dev;
6464 struct drm_i915_private *dev_priv = dev->dev_private;
6465
6466 connector = drm_select_eld(encoder, mode);
6467 if (!connector)
6468 return;
6469
6470 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6471 connector->base.id,
6472 drm_get_connector_name(connector),
6473 connector->encoder->base.id,
6474 drm_get_encoder_name(connector->encoder));
6475
6476 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6477
6478 if (dev_priv->display.write_eld)
6479 dev_priv->display.write_eld(connector, crtc);
6480 }
6481
6482 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6483 void intel_crtc_load_lut(struct drm_crtc *crtc)
6484 {
6485 struct drm_device *dev = crtc->dev;
6486 struct drm_i915_private *dev_priv = dev->dev_private;
6487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6488 enum pipe pipe = intel_crtc->pipe;
6489 int palreg = PALETTE(pipe);
6490 int i;
6491 bool reenable_ips = false;
6492
6493 /* The clocks have to be on to load the palette. */
6494 if (!crtc->enabled || !intel_crtc->active)
6495 return;
6496
6497 if (!HAS_PCH_SPLIT(dev_priv->dev))
6498 assert_pll_enabled(dev_priv, pipe);
6499
6500 /* use legacy palette for Ironlake */
6501 if (HAS_PCH_SPLIT(dev))
6502 palreg = LGC_PALETTE(pipe);
6503
6504 /* Workaround : Do not read or write the pipe palette/gamma data while
6505 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6506 */
6507 if (intel_crtc->config.ips_enabled &&
6508 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6509 GAMMA_MODE_MODE_SPLIT)) {
6510 hsw_disable_ips(intel_crtc);
6511 reenable_ips = true;
6512 }
6513
6514 for (i = 0; i < 256; i++) {
6515 I915_WRITE(palreg + 4 * i,
6516 (intel_crtc->lut_r[i] << 16) |
6517 (intel_crtc->lut_g[i] << 8) |
6518 intel_crtc->lut_b[i]);
6519 }
6520
6521 if (reenable_ips)
6522 hsw_enable_ips(intel_crtc);
6523 }
6524
6525 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6526 {
6527 struct drm_device *dev = crtc->dev;
6528 struct drm_i915_private *dev_priv = dev->dev_private;
6529 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6530 bool visible = base != 0;
6531 u32 cntl;
6532
6533 if (intel_crtc->cursor_visible == visible)
6534 return;
6535
6536 cntl = I915_READ(_CURACNTR);
6537 if (visible) {
6538 /* On these chipsets we can only modify the base whilst
6539 * the cursor is disabled.
6540 */
6541 I915_WRITE(_CURABASE, base);
6542
6543 cntl &= ~(CURSOR_FORMAT_MASK);
6544 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6545 cntl |= CURSOR_ENABLE |
6546 CURSOR_GAMMA_ENABLE |
6547 CURSOR_FORMAT_ARGB;
6548 } else
6549 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6550 I915_WRITE(_CURACNTR, cntl);
6551
6552 intel_crtc->cursor_visible = visible;
6553 }
6554
6555 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6556 {
6557 struct drm_device *dev = crtc->dev;
6558 struct drm_i915_private *dev_priv = dev->dev_private;
6559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6560 int pipe = intel_crtc->pipe;
6561 bool visible = base != 0;
6562
6563 if (intel_crtc->cursor_visible != visible) {
6564 uint32_t cntl = I915_READ(CURCNTR(pipe));
6565 if (base) {
6566 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6567 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6568 cntl |= pipe << 28; /* Connect to correct pipe */
6569 } else {
6570 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6571 cntl |= CURSOR_MODE_DISABLE;
6572 }
6573 I915_WRITE(CURCNTR(pipe), cntl);
6574
6575 intel_crtc->cursor_visible = visible;
6576 }
6577 /* and commit changes on next vblank */
6578 I915_WRITE(CURBASE(pipe), base);
6579 }
6580
6581 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6582 {
6583 struct drm_device *dev = crtc->dev;
6584 struct drm_i915_private *dev_priv = dev->dev_private;
6585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6586 int pipe = intel_crtc->pipe;
6587 bool visible = base != 0;
6588
6589 if (intel_crtc->cursor_visible != visible) {
6590 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6591 if (base) {
6592 cntl &= ~CURSOR_MODE;
6593 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6594 } else {
6595 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6596 cntl |= CURSOR_MODE_DISABLE;
6597 }
6598 if (IS_HASWELL(dev))
6599 cntl |= CURSOR_PIPE_CSC_ENABLE;
6600 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6601
6602 intel_crtc->cursor_visible = visible;
6603 }
6604 /* and commit changes on next vblank */
6605 I915_WRITE(CURBASE_IVB(pipe), base);
6606 }
6607
6608 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6609 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6610 bool on)
6611 {
6612 struct drm_device *dev = crtc->dev;
6613 struct drm_i915_private *dev_priv = dev->dev_private;
6614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6615 int pipe = intel_crtc->pipe;
6616 int x = intel_crtc->cursor_x;
6617 int y = intel_crtc->cursor_y;
6618 u32 base, pos;
6619 bool visible;
6620
6621 pos = 0;
6622
6623 if (on && crtc->enabled && crtc->fb) {
6624 base = intel_crtc->cursor_addr;
6625 if (x > (int) crtc->fb->width)
6626 base = 0;
6627
6628 if (y > (int) crtc->fb->height)
6629 base = 0;
6630 } else
6631 base = 0;
6632
6633 if (x < 0) {
6634 if (x + intel_crtc->cursor_width < 0)
6635 base = 0;
6636
6637 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6638 x = -x;
6639 }
6640 pos |= x << CURSOR_X_SHIFT;
6641
6642 if (y < 0) {
6643 if (y + intel_crtc->cursor_height < 0)
6644 base = 0;
6645
6646 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6647 y = -y;
6648 }
6649 pos |= y << CURSOR_Y_SHIFT;
6650
6651 visible = base != 0;
6652 if (!visible && !intel_crtc->cursor_visible)
6653 return;
6654
6655 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6656 I915_WRITE(CURPOS_IVB(pipe), pos);
6657 ivb_update_cursor(crtc, base);
6658 } else {
6659 I915_WRITE(CURPOS(pipe), pos);
6660 if (IS_845G(dev) || IS_I865G(dev))
6661 i845_update_cursor(crtc, base);
6662 else
6663 i9xx_update_cursor(crtc, base);
6664 }
6665 }
6666
6667 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6668 struct drm_file *file,
6669 uint32_t handle,
6670 uint32_t width, uint32_t height)
6671 {
6672 struct drm_device *dev = crtc->dev;
6673 struct drm_i915_private *dev_priv = dev->dev_private;
6674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6675 struct drm_i915_gem_object *obj;
6676 uint32_t addr;
6677 int ret;
6678
6679 /* if we want to turn off the cursor ignore width and height */
6680 if (!handle) {
6681 DRM_DEBUG_KMS("cursor off\n");
6682 addr = 0;
6683 obj = NULL;
6684 mutex_lock(&dev->struct_mutex);
6685 goto finish;
6686 }
6687
6688 /* Currently we only support 64x64 cursors */
6689 if (width != 64 || height != 64) {
6690 DRM_ERROR("we currently only support 64x64 cursors\n");
6691 return -EINVAL;
6692 }
6693
6694 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6695 if (&obj->base == NULL)
6696 return -ENOENT;
6697
6698 if (obj->base.size < width * height * 4) {
6699 DRM_ERROR("buffer is to small\n");
6700 ret = -ENOMEM;
6701 goto fail;
6702 }
6703
6704 /* we only need to pin inside GTT if cursor is non-phy */
6705 mutex_lock(&dev->struct_mutex);
6706 if (!dev_priv->info->cursor_needs_physical) {
6707 unsigned alignment;
6708
6709 if (obj->tiling_mode) {
6710 DRM_ERROR("cursor cannot be tiled\n");
6711 ret = -EINVAL;
6712 goto fail_locked;
6713 }
6714
6715 /* Note that the w/a also requires 2 PTE of padding following
6716 * the bo. We currently fill all unused PTE with the shadow
6717 * page and so we should always have valid PTE following the
6718 * cursor preventing the VT-d warning.
6719 */
6720 alignment = 0;
6721 if (need_vtd_wa(dev))
6722 alignment = 64*1024;
6723
6724 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6725 if (ret) {
6726 DRM_ERROR("failed to move cursor bo into the GTT\n");
6727 goto fail_locked;
6728 }
6729
6730 ret = i915_gem_object_put_fence(obj);
6731 if (ret) {
6732 DRM_ERROR("failed to release fence for cursor");
6733 goto fail_unpin;
6734 }
6735
6736 addr = i915_gem_obj_ggtt_offset(obj);
6737 } else {
6738 int align = IS_I830(dev) ? 16 * 1024 : 256;
6739 ret = i915_gem_attach_phys_object(dev, obj,
6740 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6741 align);
6742 if (ret) {
6743 DRM_ERROR("failed to attach phys object\n");
6744 goto fail_locked;
6745 }
6746 addr = obj->phys_obj->handle->busaddr;
6747 }
6748
6749 if (IS_GEN2(dev))
6750 I915_WRITE(CURSIZE, (height << 12) | width);
6751
6752 finish:
6753 if (intel_crtc->cursor_bo) {
6754 if (dev_priv->info->cursor_needs_physical) {
6755 if (intel_crtc->cursor_bo != obj)
6756 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6757 } else
6758 i915_gem_object_unpin(intel_crtc->cursor_bo);
6759 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6760 }
6761
6762 mutex_unlock(&dev->struct_mutex);
6763
6764 intel_crtc->cursor_addr = addr;
6765 intel_crtc->cursor_bo = obj;
6766 intel_crtc->cursor_width = width;
6767 intel_crtc->cursor_height = height;
6768
6769 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6770
6771 return 0;
6772 fail_unpin:
6773 i915_gem_object_unpin(obj);
6774 fail_locked:
6775 mutex_unlock(&dev->struct_mutex);
6776 fail:
6777 drm_gem_object_unreference_unlocked(&obj->base);
6778 return ret;
6779 }
6780
6781 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6782 {
6783 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6784
6785 intel_crtc->cursor_x = x;
6786 intel_crtc->cursor_y = y;
6787
6788 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6789
6790 return 0;
6791 }
6792
6793 /** Sets the color ramps on behalf of RandR */
6794 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6795 u16 blue, int regno)
6796 {
6797 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6798
6799 intel_crtc->lut_r[regno] = red >> 8;
6800 intel_crtc->lut_g[regno] = green >> 8;
6801 intel_crtc->lut_b[regno] = blue >> 8;
6802 }
6803
6804 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6805 u16 *blue, int regno)
6806 {
6807 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6808
6809 *red = intel_crtc->lut_r[regno] << 8;
6810 *green = intel_crtc->lut_g[regno] << 8;
6811 *blue = intel_crtc->lut_b[regno] << 8;
6812 }
6813
6814 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6815 u16 *blue, uint32_t start, uint32_t size)
6816 {
6817 int end = (start + size > 256) ? 256 : start + size, i;
6818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6819
6820 for (i = start; i < end; i++) {
6821 intel_crtc->lut_r[i] = red[i] >> 8;
6822 intel_crtc->lut_g[i] = green[i] >> 8;
6823 intel_crtc->lut_b[i] = blue[i] >> 8;
6824 }
6825
6826 intel_crtc_load_lut(crtc);
6827 }
6828
6829 /* VESA 640x480x72Hz mode to set on the pipe */
6830 static struct drm_display_mode load_detect_mode = {
6831 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6832 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6833 };
6834
6835 static struct drm_framebuffer *
6836 intel_framebuffer_create(struct drm_device *dev,
6837 struct drm_mode_fb_cmd2 *mode_cmd,
6838 struct drm_i915_gem_object *obj)
6839 {
6840 struct intel_framebuffer *intel_fb;
6841 int ret;
6842
6843 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6844 if (!intel_fb) {
6845 drm_gem_object_unreference_unlocked(&obj->base);
6846 return ERR_PTR(-ENOMEM);
6847 }
6848
6849 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6850 if (ret) {
6851 drm_gem_object_unreference_unlocked(&obj->base);
6852 kfree(intel_fb);
6853 return ERR_PTR(ret);
6854 }
6855
6856 return &intel_fb->base;
6857 }
6858
6859 static u32
6860 intel_framebuffer_pitch_for_width(int width, int bpp)
6861 {
6862 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6863 return ALIGN(pitch, 64);
6864 }
6865
6866 static u32
6867 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6868 {
6869 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6870 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6871 }
6872
6873 static struct drm_framebuffer *
6874 intel_framebuffer_create_for_mode(struct drm_device *dev,
6875 struct drm_display_mode *mode,
6876 int depth, int bpp)
6877 {
6878 struct drm_i915_gem_object *obj;
6879 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6880
6881 obj = i915_gem_alloc_object(dev,
6882 intel_framebuffer_size_for_mode(mode, bpp));
6883 if (obj == NULL)
6884 return ERR_PTR(-ENOMEM);
6885
6886 mode_cmd.width = mode->hdisplay;
6887 mode_cmd.height = mode->vdisplay;
6888 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6889 bpp);
6890 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6891
6892 return intel_framebuffer_create(dev, &mode_cmd, obj);
6893 }
6894
6895 static struct drm_framebuffer *
6896 mode_fits_in_fbdev(struct drm_device *dev,
6897 struct drm_display_mode *mode)
6898 {
6899 struct drm_i915_private *dev_priv = dev->dev_private;
6900 struct drm_i915_gem_object *obj;
6901 struct drm_framebuffer *fb;
6902
6903 if (dev_priv->fbdev == NULL)
6904 return NULL;
6905
6906 obj = dev_priv->fbdev->ifb.obj;
6907 if (obj == NULL)
6908 return NULL;
6909
6910 fb = &dev_priv->fbdev->ifb.base;
6911 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6912 fb->bits_per_pixel))
6913 return NULL;
6914
6915 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6916 return NULL;
6917
6918 return fb;
6919 }
6920
6921 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6922 struct drm_display_mode *mode,
6923 struct intel_load_detect_pipe *old)
6924 {
6925 struct intel_crtc *intel_crtc;
6926 struct intel_encoder *intel_encoder =
6927 intel_attached_encoder(connector);
6928 struct drm_crtc *possible_crtc;
6929 struct drm_encoder *encoder = &intel_encoder->base;
6930 struct drm_crtc *crtc = NULL;
6931 struct drm_device *dev = encoder->dev;
6932 struct drm_framebuffer *fb;
6933 int i = -1;
6934
6935 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6936 connector->base.id, drm_get_connector_name(connector),
6937 encoder->base.id, drm_get_encoder_name(encoder));
6938
6939 /*
6940 * Algorithm gets a little messy:
6941 *
6942 * - if the connector already has an assigned crtc, use it (but make
6943 * sure it's on first)
6944 *
6945 * - try to find the first unused crtc that can drive this connector,
6946 * and use that if we find one
6947 */
6948
6949 /* See if we already have a CRTC for this connector */
6950 if (encoder->crtc) {
6951 crtc = encoder->crtc;
6952
6953 mutex_lock(&crtc->mutex);
6954
6955 old->dpms_mode = connector->dpms;
6956 old->load_detect_temp = false;
6957
6958 /* Make sure the crtc and connector are running */
6959 if (connector->dpms != DRM_MODE_DPMS_ON)
6960 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6961
6962 return true;
6963 }
6964
6965 /* Find an unused one (if possible) */
6966 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6967 i++;
6968 if (!(encoder->possible_crtcs & (1 << i)))
6969 continue;
6970 if (!possible_crtc->enabled) {
6971 crtc = possible_crtc;
6972 break;
6973 }
6974 }
6975
6976 /*
6977 * If we didn't find an unused CRTC, don't use any.
6978 */
6979 if (!crtc) {
6980 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6981 return false;
6982 }
6983
6984 mutex_lock(&crtc->mutex);
6985 intel_encoder->new_crtc = to_intel_crtc(crtc);
6986 to_intel_connector(connector)->new_encoder = intel_encoder;
6987
6988 intel_crtc = to_intel_crtc(crtc);
6989 old->dpms_mode = connector->dpms;
6990 old->load_detect_temp = true;
6991 old->release_fb = NULL;
6992
6993 if (!mode)
6994 mode = &load_detect_mode;
6995
6996 /* We need a framebuffer large enough to accommodate all accesses
6997 * that the plane may generate whilst we perform load detection.
6998 * We can not rely on the fbcon either being present (we get called
6999 * during its initialisation to detect all boot displays, or it may
7000 * not even exist) or that it is large enough to satisfy the
7001 * requested mode.
7002 */
7003 fb = mode_fits_in_fbdev(dev, mode);
7004 if (fb == NULL) {
7005 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7006 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7007 old->release_fb = fb;
7008 } else
7009 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7010 if (IS_ERR(fb)) {
7011 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7012 mutex_unlock(&crtc->mutex);
7013 return false;
7014 }
7015
7016 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7017 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7018 if (old->release_fb)
7019 old->release_fb->funcs->destroy(old->release_fb);
7020 mutex_unlock(&crtc->mutex);
7021 return false;
7022 }
7023
7024 /* let the connector get through one full cycle before testing */
7025 intel_wait_for_vblank(dev, intel_crtc->pipe);
7026 return true;
7027 }
7028
7029 void intel_release_load_detect_pipe(struct drm_connector *connector,
7030 struct intel_load_detect_pipe *old)
7031 {
7032 struct intel_encoder *intel_encoder =
7033 intel_attached_encoder(connector);
7034 struct drm_encoder *encoder = &intel_encoder->base;
7035 struct drm_crtc *crtc = encoder->crtc;
7036
7037 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7038 connector->base.id, drm_get_connector_name(connector),
7039 encoder->base.id, drm_get_encoder_name(encoder));
7040
7041 if (old->load_detect_temp) {
7042 to_intel_connector(connector)->new_encoder = NULL;
7043 intel_encoder->new_crtc = NULL;
7044 intel_set_mode(crtc, NULL, 0, 0, NULL);
7045
7046 if (old->release_fb) {
7047 drm_framebuffer_unregister_private(old->release_fb);
7048 drm_framebuffer_unreference(old->release_fb);
7049 }
7050
7051 mutex_unlock(&crtc->mutex);
7052 return;
7053 }
7054
7055 /* Switch crtc and encoder back off if necessary */
7056 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7057 connector->funcs->dpms(connector, old->dpms_mode);
7058
7059 mutex_unlock(&crtc->mutex);
7060 }
7061
7062 /* Returns the clock of the currently programmed mode of the given pipe. */
7063 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7064 struct intel_crtc_config *pipe_config)
7065 {
7066 struct drm_device *dev = crtc->base.dev;
7067 struct drm_i915_private *dev_priv = dev->dev_private;
7068 int pipe = pipe_config->cpu_transcoder;
7069 u32 dpll = I915_READ(DPLL(pipe));
7070 u32 fp;
7071 intel_clock_t clock;
7072
7073 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7074 fp = I915_READ(FP0(pipe));
7075 else
7076 fp = I915_READ(FP1(pipe));
7077
7078 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7079 if (IS_PINEVIEW(dev)) {
7080 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7081 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7082 } else {
7083 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7084 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7085 }
7086
7087 if (!IS_GEN2(dev)) {
7088 if (IS_PINEVIEW(dev))
7089 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7090 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7091 else
7092 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7093 DPLL_FPA01_P1_POST_DIV_SHIFT);
7094
7095 switch (dpll & DPLL_MODE_MASK) {
7096 case DPLLB_MODE_DAC_SERIAL:
7097 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7098 5 : 10;
7099 break;
7100 case DPLLB_MODE_LVDS:
7101 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7102 7 : 14;
7103 break;
7104 default:
7105 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7106 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7107 pipe_config->adjusted_mode.clock = 0;
7108 return;
7109 }
7110
7111 if (IS_PINEVIEW(dev))
7112 pineview_clock(96000, &clock);
7113 else
7114 i9xx_clock(96000, &clock);
7115 } else {
7116 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7117
7118 if (is_lvds) {
7119 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7120 DPLL_FPA01_P1_POST_DIV_SHIFT);
7121 clock.p2 = 14;
7122
7123 if ((dpll & PLL_REF_INPUT_MASK) ==
7124 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7125 /* XXX: might not be 66MHz */
7126 i9xx_clock(66000, &clock);
7127 } else
7128 i9xx_clock(48000, &clock);
7129 } else {
7130 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7131 clock.p1 = 2;
7132 else {
7133 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7134 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7135 }
7136 if (dpll & PLL_P2_DIVIDE_BY_4)
7137 clock.p2 = 4;
7138 else
7139 clock.p2 = 2;
7140
7141 i9xx_clock(48000, &clock);
7142 }
7143 }
7144
7145 pipe_config->adjusted_mode.clock = clock.dot *
7146 pipe_config->pixel_multiplier;
7147 }
7148
7149 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7150 struct intel_crtc_config *pipe_config)
7151 {
7152 struct drm_device *dev = crtc->base.dev;
7153 struct drm_i915_private *dev_priv = dev->dev_private;
7154 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7155 int link_freq, repeat;
7156 u64 clock;
7157 u32 link_m, link_n;
7158
7159 repeat = pipe_config->pixel_multiplier;
7160
7161 /*
7162 * The calculation for the data clock is:
7163 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7164 * But we want to avoid losing precison if possible, so:
7165 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7166 *
7167 * and the link clock is simpler:
7168 * link_clock = (m * link_clock * repeat) / n
7169 */
7170
7171 /*
7172 * We need to get the FDI or DP link clock here to derive
7173 * the M/N dividers.
7174 *
7175 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7176 * For DP, it's either 1.62GHz or 2.7GHz.
7177 * We do our calculations in 10*MHz since we don't need much precison.
7178 */
7179 if (pipe_config->has_pch_encoder)
7180 link_freq = intel_fdi_link_freq(dev) * 10000;
7181 else
7182 link_freq = pipe_config->port_clock;
7183
7184 link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7185 link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7186
7187 if (!link_m || !link_n)
7188 return;
7189
7190 clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7191 do_div(clock, link_n);
7192
7193 pipe_config->adjusted_mode.clock = clock;
7194 }
7195
7196 /** Returns the currently programmed mode of the given pipe. */
7197 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7198 struct drm_crtc *crtc)
7199 {
7200 struct drm_i915_private *dev_priv = dev->dev_private;
7201 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7202 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7203 struct drm_display_mode *mode;
7204 struct intel_crtc_config pipe_config;
7205 int htot = I915_READ(HTOTAL(cpu_transcoder));
7206 int hsync = I915_READ(HSYNC(cpu_transcoder));
7207 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7208 int vsync = I915_READ(VSYNC(cpu_transcoder));
7209
7210 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7211 if (!mode)
7212 return NULL;
7213
7214 /*
7215 * Construct a pipe_config sufficient for getting the clock info
7216 * back out of crtc_clock_get.
7217 *
7218 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7219 * to use a real value here instead.
7220 */
7221 pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7222 pipe_config.pixel_multiplier = 1;
7223 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7224
7225 mode->clock = pipe_config.adjusted_mode.clock;
7226 mode->hdisplay = (htot & 0xffff) + 1;
7227 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7228 mode->hsync_start = (hsync & 0xffff) + 1;
7229 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7230 mode->vdisplay = (vtot & 0xffff) + 1;
7231 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7232 mode->vsync_start = (vsync & 0xffff) + 1;
7233 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7234
7235 drm_mode_set_name(mode);
7236
7237 return mode;
7238 }
7239
7240 static void intel_increase_pllclock(struct drm_crtc *crtc)
7241 {
7242 struct drm_device *dev = crtc->dev;
7243 drm_i915_private_t *dev_priv = dev->dev_private;
7244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7245 int pipe = intel_crtc->pipe;
7246 int dpll_reg = DPLL(pipe);
7247 int dpll;
7248
7249 if (HAS_PCH_SPLIT(dev))
7250 return;
7251
7252 if (!dev_priv->lvds_downclock_avail)
7253 return;
7254
7255 dpll = I915_READ(dpll_reg);
7256 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7257 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7258
7259 assert_panel_unlocked(dev_priv, pipe);
7260
7261 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7262 I915_WRITE(dpll_reg, dpll);
7263 intel_wait_for_vblank(dev, pipe);
7264
7265 dpll = I915_READ(dpll_reg);
7266 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7267 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7268 }
7269 }
7270
7271 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7272 {
7273 struct drm_device *dev = crtc->dev;
7274 drm_i915_private_t *dev_priv = dev->dev_private;
7275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7276
7277 if (HAS_PCH_SPLIT(dev))
7278 return;
7279
7280 if (!dev_priv->lvds_downclock_avail)
7281 return;
7282
7283 /*
7284 * Since this is called by a timer, we should never get here in
7285 * the manual case.
7286 */
7287 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7288 int pipe = intel_crtc->pipe;
7289 int dpll_reg = DPLL(pipe);
7290 int dpll;
7291
7292 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7293
7294 assert_panel_unlocked(dev_priv, pipe);
7295
7296 dpll = I915_READ(dpll_reg);
7297 dpll |= DISPLAY_RATE_SELECT_FPA1;
7298 I915_WRITE(dpll_reg, dpll);
7299 intel_wait_for_vblank(dev, pipe);
7300 dpll = I915_READ(dpll_reg);
7301 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7302 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7303 }
7304
7305 }
7306
7307 void intel_mark_busy(struct drm_device *dev)
7308 {
7309 i915_update_gfx_val(dev->dev_private);
7310 }
7311
7312 void intel_mark_idle(struct drm_device *dev)
7313 {
7314 struct drm_crtc *crtc;
7315
7316 if (!i915_powersave)
7317 return;
7318
7319 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7320 if (!crtc->fb)
7321 continue;
7322
7323 intel_decrease_pllclock(crtc);
7324 }
7325 }
7326
7327 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7328 struct intel_ring_buffer *ring)
7329 {
7330 struct drm_device *dev = obj->base.dev;
7331 struct drm_crtc *crtc;
7332
7333 if (!i915_powersave)
7334 return;
7335
7336 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7337 if (!crtc->fb)
7338 continue;
7339
7340 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7341 continue;
7342
7343 intel_increase_pllclock(crtc);
7344 if (ring && intel_fbc_enabled(dev))
7345 ring->fbc_dirty = true;
7346 }
7347 }
7348
7349 static void intel_crtc_destroy(struct drm_crtc *crtc)
7350 {
7351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7352 struct drm_device *dev = crtc->dev;
7353 struct intel_unpin_work *work;
7354 unsigned long flags;
7355
7356 spin_lock_irqsave(&dev->event_lock, flags);
7357 work = intel_crtc->unpin_work;
7358 intel_crtc->unpin_work = NULL;
7359 spin_unlock_irqrestore(&dev->event_lock, flags);
7360
7361 if (work) {
7362 cancel_work_sync(&work->work);
7363 kfree(work);
7364 }
7365
7366 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7367
7368 drm_crtc_cleanup(crtc);
7369
7370 kfree(intel_crtc);
7371 }
7372
7373 static void intel_unpin_work_fn(struct work_struct *__work)
7374 {
7375 struct intel_unpin_work *work =
7376 container_of(__work, struct intel_unpin_work, work);
7377 struct drm_device *dev = work->crtc->dev;
7378
7379 mutex_lock(&dev->struct_mutex);
7380 intel_unpin_fb_obj(work->old_fb_obj);
7381 drm_gem_object_unreference(&work->pending_flip_obj->base);
7382 drm_gem_object_unreference(&work->old_fb_obj->base);
7383
7384 intel_update_fbc(dev);
7385 mutex_unlock(&dev->struct_mutex);
7386
7387 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7388 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7389
7390 kfree(work);
7391 }
7392
7393 static void do_intel_finish_page_flip(struct drm_device *dev,
7394 struct drm_crtc *crtc)
7395 {
7396 drm_i915_private_t *dev_priv = dev->dev_private;
7397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7398 struct intel_unpin_work *work;
7399 unsigned long flags;
7400
7401 /* Ignore early vblank irqs */
7402 if (intel_crtc == NULL)
7403 return;
7404
7405 spin_lock_irqsave(&dev->event_lock, flags);
7406 work = intel_crtc->unpin_work;
7407
7408 /* Ensure we don't miss a work->pending update ... */
7409 smp_rmb();
7410
7411 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7412 spin_unlock_irqrestore(&dev->event_lock, flags);
7413 return;
7414 }
7415
7416 /* and that the unpin work is consistent wrt ->pending. */
7417 smp_rmb();
7418
7419 intel_crtc->unpin_work = NULL;
7420
7421 if (work->event)
7422 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7423
7424 drm_vblank_put(dev, intel_crtc->pipe);
7425
7426 spin_unlock_irqrestore(&dev->event_lock, flags);
7427
7428 wake_up_all(&dev_priv->pending_flip_queue);
7429
7430 queue_work(dev_priv->wq, &work->work);
7431
7432 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7433 }
7434
7435 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7436 {
7437 drm_i915_private_t *dev_priv = dev->dev_private;
7438 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7439
7440 do_intel_finish_page_flip(dev, crtc);
7441 }
7442
7443 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7444 {
7445 drm_i915_private_t *dev_priv = dev->dev_private;
7446 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7447
7448 do_intel_finish_page_flip(dev, crtc);
7449 }
7450
7451 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7452 {
7453 drm_i915_private_t *dev_priv = dev->dev_private;
7454 struct intel_crtc *intel_crtc =
7455 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7456 unsigned long flags;
7457
7458 /* NB: An MMIO update of the plane base pointer will also
7459 * generate a page-flip completion irq, i.e. every modeset
7460 * is also accompanied by a spurious intel_prepare_page_flip().
7461 */
7462 spin_lock_irqsave(&dev->event_lock, flags);
7463 if (intel_crtc->unpin_work)
7464 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7465 spin_unlock_irqrestore(&dev->event_lock, flags);
7466 }
7467
7468 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7469 {
7470 /* Ensure that the work item is consistent when activating it ... */
7471 smp_wmb();
7472 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7473 /* and that it is marked active as soon as the irq could fire. */
7474 smp_wmb();
7475 }
7476
7477 static int intel_gen2_queue_flip(struct drm_device *dev,
7478 struct drm_crtc *crtc,
7479 struct drm_framebuffer *fb,
7480 struct drm_i915_gem_object *obj)
7481 {
7482 struct drm_i915_private *dev_priv = dev->dev_private;
7483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7484 u32 flip_mask;
7485 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7486 int ret;
7487
7488 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7489 if (ret)
7490 goto err;
7491
7492 ret = intel_ring_begin(ring, 6);
7493 if (ret)
7494 goto err_unpin;
7495
7496 /* Can't queue multiple flips, so wait for the previous
7497 * one to finish before executing the next.
7498 */
7499 if (intel_crtc->plane)
7500 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7501 else
7502 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7503 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7504 intel_ring_emit(ring, MI_NOOP);
7505 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7506 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7507 intel_ring_emit(ring, fb->pitches[0]);
7508 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7509 intel_ring_emit(ring, 0); /* aux display base address, unused */
7510
7511 intel_mark_page_flip_active(intel_crtc);
7512 intel_ring_advance(ring);
7513 return 0;
7514
7515 err_unpin:
7516 intel_unpin_fb_obj(obj);
7517 err:
7518 return ret;
7519 }
7520
7521 static int intel_gen3_queue_flip(struct drm_device *dev,
7522 struct drm_crtc *crtc,
7523 struct drm_framebuffer *fb,
7524 struct drm_i915_gem_object *obj)
7525 {
7526 struct drm_i915_private *dev_priv = dev->dev_private;
7527 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7528 u32 flip_mask;
7529 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7530 int ret;
7531
7532 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7533 if (ret)
7534 goto err;
7535
7536 ret = intel_ring_begin(ring, 6);
7537 if (ret)
7538 goto err_unpin;
7539
7540 if (intel_crtc->plane)
7541 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7542 else
7543 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7544 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7545 intel_ring_emit(ring, MI_NOOP);
7546 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7547 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7548 intel_ring_emit(ring, fb->pitches[0]);
7549 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7550 intel_ring_emit(ring, MI_NOOP);
7551
7552 intel_mark_page_flip_active(intel_crtc);
7553 intel_ring_advance(ring);
7554 return 0;
7555
7556 err_unpin:
7557 intel_unpin_fb_obj(obj);
7558 err:
7559 return ret;
7560 }
7561
7562 static int intel_gen4_queue_flip(struct drm_device *dev,
7563 struct drm_crtc *crtc,
7564 struct drm_framebuffer *fb,
7565 struct drm_i915_gem_object *obj)
7566 {
7567 struct drm_i915_private *dev_priv = dev->dev_private;
7568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7569 uint32_t pf, pipesrc;
7570 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7571 int ret;
7572
7573 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7574 if (ret)
7575 goto err;
7576
7577 ret = intel_ring_begin(ring, 4);
7578 if (ret)
7579 goto err_unpin;
7580
7581 /* i965+ uses the linear or tiled offsets from the
7582 * Display Registers (which do not change across a page-flip)
7583 * so we need only reprogram the base address.
7584 */
7585 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7586 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7587 intel_ring_emit(ring, fb->pitches[0]);
7588 intel_ring_emit(ring,
7589 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7590 obj->tiling_mode);
7591
7592 /* XXX Enabling the panel-fitter across page-flip is so far
7593 * untested on non-native modes, so ignore it for now.
7594 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7595 */
7596 pf = 0;
7597 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7598 intel_ring_emit(ring, pf | pipesrc);
7599
7600 intel_mark_page_flip_active(intel_crtc);
7601 intel_ring_advance(ring);
7602 return 0;
7603
7604 err_unpin:
7605 intel_unpin_fb_obj(obj);
7606 err:
7607 return ret;
7608 }
7609
7610 static int intel_gen6_queue_flip(struct drm_device *dev,
7611 struct drm_crtc *crtc,
7612 struct drm_framebuffer *fb,
7613 struct drm_i915_gem_object *obj)
7614 {
7615 struct drm_i915_private *dev_priv = dev->dev_private;
7616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7617 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7618 uint32_t pf, pipesrc;
7619 int ret;
7620
7621 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7622 if (ret)
7623 goto err;
7624
7625 ret = intel_ring_begin(ring, 4);
7626 if (ret)
7627 goto err_unpin;
7628
7629 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7630 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7631 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7632 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7633
7634 /* Contrary to the suggestions in the documentation,
7635 * "Enable Panel Fitter" does not seem to be required when page
7636 * flipping with a non-native mode, and worse causes a normal
7637 * modeset to fail.
7638 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7639 */
7640 pf = 0;
7641 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7642 intel_ring_emit(ring, pf | pipesrc);
7643
7644 intel_mark_page_flip_active(intel_crtc);
7645 intel_ring_advance(ring);
7646 return 0;
7647
7648 err_unpin:
7649 intel_unpin_fb_obj(obj);
7650 err:
7651 return ret;
7652 }
7653
7654 /*
7655 * On gen7 we currently use the blit ring because (in early silicon at least)
7656 * the render ring doesn't give us interrpts for page flip completion, which
7657 * means clients will hang after the first flip is queued. Fortunately the
7658 * blit ring generates interrupts properly, so use it instead.
7659 */
7660 static int intel_gen7_queue_flip(struct drm_device *dev,
7661 struct drm_crtc *crtc,
7662 struct drm_framebuffer *fb,
7663 struct drm_i915_gem_object *obj)
7664 {
7665 struct drm_i915_private *dev_priv = dev->dev_private;
7666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7667 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7668 uint32_t plane_bit = 0;
7669 int ret;
7670
7671 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7672 if (ret)
7673 goto err;
7674
7675 switch(intel_crtc->plane) {
7676 case PLANE_A:
7677 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7678 break;
7679 case PLANE_B:
7680 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7681 break;
7682 case PLANE_C:
7683 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7684 break;
7685 default:
7686 WARN_ONCE(1, "unknown plane in flip command\n");
7687 ret = -ENODEV;
7688 goto err_unpin;
7689 }
7690
7691 ret = intel_ring_begin(ring, 4);
7692 if (ret)
7693 goto err_unpin;
7694
7695 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7696 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7697 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7698 intel_ring_emit(ring, (MI_NOOP));
7699
7700 intel_mark_page_flip_active(intel_crtc);
7701 intel_ring_advance(ring);
7702 return 0;
7703
7704 err_unpin:
7705 intel_unpin_fb_obj(obj);
7706 err:
7707 return ret;
7708 }
7709
7710 static int intel_default_queue_flip(struct drm_device *dev,
7711 struct drm_crtc *crtc,
7712 struct drm_framebuffer *fb,
7713 struct drm_i915_gem_object *obj)
7714 {
7715 return -ENODEV;
7716 }
7717
7718 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7719 struct drm_framebuffer *fb,
7720 struct drm_pending_vblank_event *event)
7721 {
7722 struct drm_device *dev = crtc->dev;
7723 struct drm_i915_private *dev_priv = dev->dev_private;
7724 struct drm_framebuffer *old_fb = crtc->fb;
7725 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7727 struct intel_unpin_work *work;
7728 unsigned long flags;
7729 int ret;
7730
7731 /* Can't change pixel format via MI display flips. */
7732 if (fb->pixel_format != crtc->fb->pixel_format)
7733 return -EINVAL;
7734
7735 /*
7736 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7737 * Note that pitch changes could also affect these register.
7738 */
7739 if (INTEL_INFO(dev)->gen > 3 &&
7740 (fb->offsets[0] != crtc->fb->offsets[0] ||
7741 fb->pitches[0] != crtc->fb->pitches[0]))
7742 return -EINVAL;
7743
7744 work = kzalloc(sizeof *work, GFP_KERNEL);
7745 if (work == NULL)
7746 return -ENOMEM;
7747
7748 work->event = event;
7749 work->crtc = crtc;
7750 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7751 INIT_WORK(&work->work, intel_unpin_work_fn);
7752
7753 ret = drm_vblank_get(dev, intel_crtc->pipe);
7754 if (ret)
7755 goto free_work;
7756
7757 /* We borrow the event spin lock for protecting unpin_work */
7758 spin_lock_irqsave(&dev->event_lock, flags);
7759 if (intel_crtc->unpin_work) {
7760 spin_unlock_irqrestore(&dev->event_lock, flags);
7761 kfree(work);
7762 drm_vblank_put(dev, intel_crtc->pipe);
7763
7764 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7765 return -EBUSY;
7766 }
7767 intel_crtc->unpin_work = work;
7768 spin_unlock_irqrestore(&dev->event_lock, flags);
7769
7770 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7771 flush_workqueue(dev_priv->wq);
7772
7773 ret = i915_mutex_lock_interruptible(dev);
7774 if (ret)
7775 goto cleanup;
7776
7777 /* Reference the objects for the scheduled work. */
7778 drm_gem_object_reference(&work->old_fb_obj->base);
7779 drm_gem_object_reference(&obj->base);
7780
7781 crtc->fb = fb;
7782
7783 work->pending_flip_obj = obj;
7784
7785 work->enable_stall_check = true;
7786
7787 atomic_inc(&intel_crtc->unpin_work_count);
7788 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7789
7790 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7791 if (ret)
7792 goto cleanup_pending;
7793
7794 intel_disable_fbc(dev);
7795 intel_mark_fb_busy(obj, NULL);
7796 mutex_unlock(&dev->struct_mutex);
7797
7798 trace_i915_flip_request(intel_crtc->plane, obj);
7799
7800 return 0;
7801
7802 cleanup_pending:
7803 atomic_dec(&intel_crtc->unpin_work_count);
7804 crtc->fb = old_fb;
7805 drm_gem_object_unreference(&work->old_fb_obj->base);
7806 drm_gem_object_unreference(&obj->base);
7807 mutex_unlock(&dev->struct_mutex);
7808
7809 cleanup:
7810 spin_lock_irqsave(&dev->event_lock, flags);
7811 intel_crtc->unpin_work = NULL;
7812 spin_unlock_irqrestore(&dev->event_lock, flags);
7813
7814 drm_vblank_put(dev, intel_crtc->pipe);
7815 free_work:
7816 kfree(work);
7817
7818 return ret;
7819 }
7820
7821 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7822 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7823 .load_lut = intel_crtc_load_lut,
7824 };
7825
7826 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7827 struct drm_crtc *crtc)
7828 {
7829 struct drm_device *dev;
7830 struct drm_crtc *tmp;
7831 int crtc_mask = 1;
7832
7833 WARN(!crtc, "checking null crtc?\n");
7834
7835 dev = crtc->dev;
7836
7837 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7838 if (tmp == crtc)
7839 break;
7840 crtc_mask <<= 1;
7841 }
7842
7843 if (encoder->possible_crtcs & crtc_mask)
7844 return true;
7845 return false;
7846 }
7847
7848 /**
7849 * intel_modeset_update_staged_output_state
7850 *
7851 * Updates the staged output configuration state, e.g. after we've read out the
7852 * current hw state.
7853 */
7854 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7855 {
7856 struct intel_encoder *encoder;
7857 struct intel_connector *connector;
7858
7859 list_for_each_entry(connector, &dev->mode_config.connector_list,
7860 base.head) {
7861 connector->new_encoder =
7862 to_intel_encoder(connector->base.encoder);
7863 }
7864
7865 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7866 base.head) {
7867 encoder->new_crtc =
7868 to_intel_crtc(encoder->base.crtc);
7869 }
7870 }
7871
7872 /**
7873 * intel_modeset_commit_output_state
7874 *
7875 * This function copies the stage display pipe configuration to the real one.
7876 */
7877 static void intel_modeset_commit_output_state(struct drm_device *dev)
7878 {
7879 struct intel_encoder *encoder;
7880 struct intel_connector *connector;
7881
7882 list_for_each_entry(connector, &dev->mode_config.connector_list,
7883 base.head) {
7884 connector->base.encoder = &connector->new_encoder->base;
7885 }
7886
7887 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7888 base.head) {
7889 encoder->base.crtc = &encoder->new_crtc->base;
7890 }
7891 }
7892
7893 static void
7894 connected_sink_compute_bpp(struct intel_connector * connector,
7895 struct intel_crtc_config *pipe_config)
7896 {
7897 int bpp = pipe_config->pipe_bpp;
7898
7899 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7900 connector->base.base.id,
7901 drm_get_connector_name(&connector->base));
7902
7903 /* Don't use an invalid EDID bpc value */
7904 if (connector->base.display_info.bpc &&
7905 connector->base.display_info.bpc * 3 < bpp) {
7906 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7907 bpp, connector->base.display_info.bpc*3);
7908 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7909 }
7910
7911 /* Clamp bpp to 8 on screens without EDID 1.4 */
7912 if (connector->base.display_info.bpc == 0 && bpp > 24) {
7913 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7914 bpp);
7915 pipe_config->pipe_bpp = 24;
7916 }
7917 }
7918
7919 static int
7920 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7921 struct drm_framebuffer *fb,
7922 struct intel_crtc_config *pipe_config)
7923 {
7924 struct drm_device *dev = crtc->base.dev;
7925 struct intel_connector *connector;
7926 int bpp;
7927
7928 switch (fb->pixel_format) {
7929 case DRM_FORMAT_C8:
7930 bpp = 8*3; /* since we go through a colormap */
7931 break;
7932 case DRM_FORMAT_XRGB1555:
7933 case DRM_FORMAT_ARGB1555:
7934 /* checked in intel_framebuffer_init already */
7935 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7936 return -EINVAL;
7937 case DRM_FORMAT_RGB565:
7938 bpp = 6*3; /* min is 18bpp */
7939 break;
7940 case DRM_FORMAT_XBGR8888:
7941 case DRM_FORMAT_ABGR8888:
7942 /* checked in intel_framebuffer_init already */
7943 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7944 return -EINVAL;
7945 case DRM_FORMAT_XRGB8888:
7946 case DRM_FORMAT_ARGB8888:
7947 bpp = 8*3;
7948 break;
7949 case DRM_FORMAT_XRGB2101010:
7950 case DRM_FORMAT_ARGB2101010:
7951 case DRM_FORMAT_XBGR2101010:
7952 case DRM_FORMAT_ABGR2101010:
7953 /* checked in intel_framebuffer_init already */
7954 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7955 return -EINVAL;
7956 bpp = 10*3;
7957 break;
7958 /* TODO: gen4+ supports 16 bpc floating point, too. */
7959 default:
7960 DRM_DEBUG_KMS("unsupported depth\n");
7961 return -EINVAL;
7962 }
7963
7964 pipe_config->pipe_bpp = bpp;
7965
7966 /* Clamp display bpp to EDID value */
7967 list_for_each_entry(connector, &dev->mode_config.connector_list,
7968 base.head) {
7969 if (!connector->new_encoder ||
7970 connector->new_encoder->new_crtc != crtc)
7971 continue;
7972
7973 connected_sink_compute_bpp(connector, pipe_config);
7974 }
7975
7976 return bpp;
7977 }
7978
7979 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7980 struct intel_crtc_config *pipe_config,
7981 const char *context)
7982 {
7983 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7984 context, pipe_name(crtc->pipe));
7985
7986 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7987 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7988 pipe_config->pipe_bpp, pipe_config->dither);
7989 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7990 pipe_config->has_pch_encoder,
7991 pipe_config->fdi_lanes,
7992 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7993 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7994 pipe_config->fdi_m_n.tu);
7995 DRM_DEBUG_KMS("requested mode:\n");
7996 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7997 DRM_DEBUG_KMS("adjusted mode:\n");
7998 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7999 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8000 pipe_config->gmch_pfit.control,
8001 pipe_config->gmch_pfit.pgm_ratios,
8002 pipe_config->gmch_pfit.lvds_border_bits);
8003 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8004 pipe_config->pch_pfit.pos,
8005 pipe_config->pch_pfit.size);
8006 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8007 }
8008
8009 static bool check_encoder_cloning(struct drm_crtc *crtc)
8010 {
8011 int num_encoders = 0;
8012 bool uncloneable_encoders = false;
8013 struct intel_encoder *encoder;
8014
8015 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8016 base.head) {
8017 if (&encoder->new_crtc->base != crtc)
8018 continue;
8019
8020 num_encoders++;
8021 if (!encoder->cloneable)
8022 uncloneable_encoders = true;
8023 }
8024
8025 return !(num_encoders > 1 && uncloneable_encoders);
8026 }
8027
8028 static struct intel_crtc_config *
8029 intel_modeset_pipe_config(struct drm_crtc *crtc,
8030 struct drm_framebuffer *fb,
8031 struct drm_display_mode *mode)
8032 {
8033 struct drm_device *dev = crtc->dev;
8034 struct intel_encoder *encoder;
8035 struct intel_crtc_config *pipe_config;
8036 int plane_bpp, ret = -EINVAL;
8037 bool retry = true;
8038
8039 if (!check_encoder_cloning(crtc)) {
8040 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8041 return ERR_PTR(-EINVAL);
8042 }
8043
8044 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8045 if (!pipe_config)
8046 return ERR_PTR(-ENOMEM);
8047
8048 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8049 drm_mode_copy(&pipe_config->requested_mode, mode);
8050 pipe_config->cpu_transcoder =
8051 (enum transcoder) to_intel_crtc(crtc)->pipe;
8052 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8053
8054 /*
8055 * Sanitize sync polarity flags based on requested ones. If neither
8056 * positive or negative polarity is requested, treat this as meaning
8057 * negative polarity.
8058 */
8059 if (!(pipe_config->adjusted_mode.flags &
8060 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8061 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8062
8063 if (!(pipe_config->adjusted_mode.flags &
8064 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8065 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8066
8067 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8068 * plane pixel format and any sink constraints into account. Returns the
8069 * source plane bpp so that dithering can be selected on mismatches
8070 * after encoders and crtc also have had their say. */
8071 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8072 fb, pipe_config);
8073 if (plane_bpp < 0)
8074 goto fail;
8075
8076 encoder_retry:
8077 /* Ensure the port clock defaults are reset when retrying. */
8078 pipe_config->port_clock = 0;
8079 pipe_config->pixel_multiplier = 1;
8080
8081 /* Fill in default crtc timings, allow encoders to overwrite them. */
8082 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8083
8084 /* Pass our mode to the connectors and the CRTC to give them a chance to
8085 * adjust it according to limitations or connector properties, and also
8086 * a chance to reject the mode entirely.
8087 */
8088 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8089 base.head) {
8090
8091 if (&encoder->new_crtc->base != crtc)
8092 continue;
8093
8094 if (!(encoder->compute_config(encoder, pipe_config))) {
8095 DRM_DEBUG_KMS("Encoder config failure\n");
8096 goto fail;
8097 }
8098 }
8099
8100 /* Set default port clock if not overwritten by the encoder. Needs to be
8101 * done afterwards in case the encoder adjusts the mode. */
8102 if (!pipe_config->port_clock)
8103 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8104
8105 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8106 if (ret < 0) {
8107 DRM_DEBUG_KMS("CRTC fixup failed\n");
8108 goto fail;
8109 }
8110
8111 if (ret == RETRY) {
8112 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8113 ret = -EINVAL;
8114 goto fail;
8115 }
8116
8117 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8118 retry = false;
8119 goto encoder_retry;
8120 }
8121
8122 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8123 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8124 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8125
8126 return pipe_config;
8127 fail:
8128 kfree(pipe_config);
8129 return ERR_PTR(ret);
8130 }
8131
8132 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8133 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8134 static void
8135 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8136 unsigned *prepare_pipes, unsigned *disable_pipes)
8137 {
8138 struct intel_crtc *intel_crtc;
8139 struct drm_device *dev = crtc->dev;
8140 struct intel_encoder *encoder;
8141 struct intel_connector *connector;
8142 struct drm_crtc *tmp_crtc;
8143
8144 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8145
8146 /* Check which crtcs have changed outputs connected to them, these need
8147 * to be part of the prepare_pipes mask. We don't (yet) support global
8148 * modeset across multiple crtcs, so modeset_pipes will only have one
8149 * bit set at most. */
8150 list_for_each_entry(connector, &dev->mode_config.connector_list,
8151 base.head) {
8152 if (connector->base.encoder == &connector->new_encoder->base)
8153 continue;
8154
8155 if (connector->base.encoder) {
8156 tmp_crtc = connector->base.encoder->crtc;
8157
8158 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8159 }
8160
8161 if (connector->new_encoder)
8162 *prepare_pipes |=
8163 1 << connector->new_encoder->new_crtc->pipe;
8164 }
8165
8166 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8167 base.head) {
8168 if (encoder->base.crtc == &encoder->new_crtc->base)
8169 continue;
8170
8171 if (encoder->base.crtc) {
8172 tmp_crtc = encoder->base.crtc;
8173
8174 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8175 }
8176
8177 if (encoder->new_crtc)
8178 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8179 }
8180
8181 /* Check for any pipes that will be fully disabled ... */
8182 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8183 base.head) {
8184 bool used = false;
8185
8186 /* Don't try to disable disabled crtcs. */
8187 if (!intel_crtc->base.enabled)
8188 continue;
8189
8190 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8191 base.head) {
8192 if (encoder->new_crtc == intel_crtc)
8193 used = true;
8194 }
8195
8196 if (!used)
8197 *disable_pipes |= 1 << intel_crtc->pipe;
8198 }
8199
8200
8201 /* set_mode is also used to update properties on life display pipes. */
8202 intel_crtc = to_intel_crtc(crtc);
8203 if (crtc->enabled)
8204 *prepare_pipes |= 1 << intel_crtc->pipe;
8205
8206 /*
8207 * For simplicity do a full modeset on any pipe where the output routing
8208 * changed. We could be more clever, but that would require us to be
8209 * more careful with calling the relevant encoder->mode_set functions.
8210 */
8211 if (*prepare_pipes)
8212 *modeset_pipes = *prepare_pipes;
8213
8214 /* ... and mask these out. */
8215 *modeset_pipes &= ~(*disable_pipes);
8216 *prepare_pipes &= ~(*disable_pipes);
8217
8218 /*
8219 * HACK: We don't (yet) fully support global modesets. intel_set_config
8220 * obies this rule, but the modeset restore mode of
8221 * intel_modeset_setup_hw_state does not.
8222 */
8223 *modeset_pipes &= 1 << intel_crtc->pipe;
8224 *prepare_pipes &= 1 << intel_crtc->pipe;
8225
8226 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8227 *modeset_pipes, *prepare_pipes, *disable_pipes);
8228 }
8229
8230 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8231 {
8232 struct drm_encoder *encoder;
8233 struct drm_device *dev = crtc->dev;
8234
8235 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8236 if (encoder->crtc == crtc)
8237 return true;
8238
8239 return false;
8240 }
8241
8242 static void
8243 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8244 {
8245 struct intel_encoder *intel_encoder;
8246 struct intel_crtc *intel_crtc;
8247 struct drm_connector *connector;
8248
8249 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8250 base.head) {
8251 if (!intel_encoder->base.crtc)
8252 continue;
8253
8254 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8255
8256 if (prepare_pipes & (1 << intel_crtc->pipe))
8257 intel_encoder->connectors_active = false;
8258 }
8259
8260 intel_modeset_commit_output_state(dev);
8261
8262 /* Update computed state. */
8263 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8264 base.head) {
8265 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8266 }
8267
8268 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8269 if (!connector->encoder || !connector->encoder->crtc)
8270 continue;
8271
8272 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8273
8274 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8275 struct drm_property *dpms_property =
8276 dev->mode_config.dpms_property;
8277
8278 connector->dpms = DRM_MODE_DPMS_ON;
8279 drm_object_property_set_value(&connector->base,
8280 dpms_property,
8281 DRM_MODE_DPMS_ON);
8282
8283 intel_encoder = to_intel_encoder(connector->encoder);
8284 intel_encoder->connectors_active = true;
8285 }
8286 }
8287
8288 }
8289
8290 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8291 struct intel_crtc_config *new)
8292 {
8293 int clock1, clock2, diff;
8294
8295 clock1 = cur->adjusted_mode.clock;
8296 clock2 = new->adjusted_mode.clock;
8297
8298 if (clock1 == clock2)
8299 return true;
8300
8301 if (!clock1 || !clock2)
8302 return false;
8303
8304 diff = abs(clock1 - clock2);
8305
8306 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8307 return true;
8308
8309 return false;
8310 }
8311
8312 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8313 list_for_each_entry((intel_crtc), \
8314 &(dev)->mode_config.crtc_list, \
8315 base.head) \
8316 if (mask & (1 <<(intel_crtc)->pipe))
8317
8318 static bool
8319 intel_pipe_config_compare(struct drm_device *dev,
8320 struct intel_crtc_config *current_config,
8321 struct intel_crtc_config *pipe_config)
8322 {
8323 #define PIPE_CONF_CHECK_X(name) \
8324 if (current_config->name != pipe_config->name) { \
8325 DRM_ERROR("mismatch in " #name " " \
8326 "(expected 0x%08x, found 0x%08x)\n", \
8327 current_config->name, \
8328 pipe_config->name); \
8329 return false; \
8330 }
8331
8332 #define PIPE_CONF_CHECK_I(name) \
8333 if (current_config->name != pipe_config->name) { \
8334 DRM_ERROR("mismatch in " #name " " \
8335 "(expected %i, found %i)\n", \
8336 current_config->name, \
8337 pipe_config->name); \
8338 return false; \
8339 }
8340
8341 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8342 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8343 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8344 "(expected %i, found %i)\n", \
8345 current_config->name & (mask), \
8346 pipe_config->name & (mask)); \
8347 return false; \
8348 }
8349
8350 #define PIPE_CONF_QUIRK(quirk) \
8351 ((current_config->quirks | pipe_config->quirks) & (quirk))
8352
8353 PIPE_CONF_CHECK_I(cpu_transcoder);
8354
8355 PIPE_CONF_CHECK_I(has_pch_encoder);
8356 PIPE_CONF_CHECK_I(fdi_lanes);
8357 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8358 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8359 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8360 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8361 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8362
8363 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8364 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8365 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8366 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8367 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8368 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8369
8370 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8371 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8372 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8373 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8374 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8375 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8376
8377 PIPE_CONF_CHECK_I(pixel_multiplier);
8378
8379 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8380 DRM_MODE_FLAG_INTERLACE);
8381
8382 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8383 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8384 DRM_MODE_FLAG_PHSYNC);
8385 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8386 DRM_MODE_FLAG_NHSYNC);
8387 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8388 DRM_MODE_FLAG_PVSYNC);
8389 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8390 DRM_MODE_FLAG_NVSYNC);
8391 }
8392
8393 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8394 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8395
8396 PIPE_CONF_CHECK_I(gmch_pfit.control);
8397 /* pfit ratios are autocomputed by the hw on gen4+ */
8398 if (INTEL_INFO(dev)->gen < 4)
8399 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8400 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8401 PIPE_CONF_CHECK_I(pch_pfit.pos);
8402 PIPE_CONF_CHECK_I(pch_pfit.size);
8403
8404 PIPE_CONF_CHECK_I(ips_enabled);
8405
8406 PIPE_CONF_CHECK_I(shared_dpll);
8407 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8408 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8409 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8410 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8411
8412 #undef PIPE_CONF_CHECK_X
8413 #undef PIPE_CONF_CHECK_I
8414 #undef PIPE_CONF_CHECK_FLAGS
8415 #undef PIPE_CONF_QUIRK
8416
8417 if (!IS_HASWELL(dev)) {
8418 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8419 DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8420 current_config->adjusted_mode.clock,
8421 pipe_config->adjusted_mode.clock);
8422 return false;
8423 }
8424 }
8425
8426 return true;
8427 }
8428
8429 static void
8430 check_connector_state(struct drm_device *dev)
8431 {
8432 struct intel_connector *connector;
8433
8434 list_for_each_entry(connector, &dev->mode_config.connector_list,
8435 base.head) {
8436 /* This also checks the encoder/connector hw state with the
8437 * ->get_hw_state callbacks. */
8438 intel_connector_check_state(connector);
8439
8440 WARN(&connector->new_encoder->base != connector->base.encoder,
8441 "connector's staged encoder doesn't match current encoder\n");
8442 }
8443 }
8444
8445 static void
8446 check_encoder_state(struct drm_device *dev)
8447 {
8448 struct intel_encoder *encoder;
8449 struct intel_connector *connector;
8450
8451 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8452 base.head) {
8453 bool enabled = false;
8454 bool active = false;
8455 enum pipe pipe, tracked_pipe;
8456
8457 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8458 encoder->base.base.id,
8459 drm_get_encoder_name(&encoder->base));
8460
8461 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8462 "encoder's stage crtc doesn't match current crtc\n");
8463 WARN(encoder->connectors_active && !encoder->base.crtc,
8464 "encoder's active_connectors set, but no crtc\n");
8465
8466 list_for_each_entry(connector, &dev->mode_config.connector_list,
8467 base.head) {
8468 if (connector->base.encoder != &encoder->base)
8469 continue;
8470 enabled = true;
8471 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8472 active = true;
8473 }
8474 WARN(!!encoder->base.crtc != enabled,
8475 "encoder's enabled state mismatch "
8476 "(expected %i, found %i)\n",
8477 !!encoder->base.crtc, enabled);
8478 WARN(active && !encoder->base.crtc,
8479 "active encoder with no crtc\n");
8480
8481 WARN(encoder->connectors_active != active,
8482 "encoder's computed active state doesn't match tracked active state "
8483 "(expected %i, found %i)\n", active, encoder->connectors_active);
8484
8485 active = encoder->get_hw_state(encoder, &pipe);
8486 WARN(active != encoder->connectors_active,
8487 "encoder's hw state doesn't match sw tracking "
8488 "(expected %i, found %i)\n",
8489 encoder->connectors_active, active);
8490
8491 if (!encoder->base.crtc)
8492 continue;
8493
8494 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8495 WARN(active && pipe != tracked_pipe,
8496 "active encoder's pipe doesn't match"
8497 "(expected %i, found %i)\n",
8498 tracked_pipe, pipe);
8499
8500 }
8501 }
8502
8503 static void
8504 check_crtc_state(struct drm_device *dev)
8505 {
8506 drm_i915_private_t *dev_priv = dev->dev_private;
8507 struct intel_crtc *crtc;
8508 struct intel_encoder *encoder;
8509 struct intel_crtc_config pipe_config;
8510
8511 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8512 base.head) {
8513 bool enabled = false;
8514 bool active = false;
8515
8516 memset(&pipe_config, 0, sizeof(pipe_config));
8517
8518 DRM_DEBUG_KMS("[CRTC:%d]\n",
8519 crtc->base.base.id);
8520
8521 WARN(crtc->active && !crtc->base.enabled,
8522 "active crtc, but not enabled in sw tracking\n");
8523
8524 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8525 base.head) {
8526 if (encoder->base.crtc != &crtc->base)
8527 continue;
8528 enabled = true;
8529 if (encoder->connectors_active)
8530 active = true;
8531 }
8532
8533 WARN(active != crtc->active,
8534 "crtc's computed active state doesn't match tracked active state "
8535 "(expected %i, found %i)\n", active, crtc->active);
8536 WARN(enabled != crtc->base.enabled,
8537 "crtc's computed enabled state doesn't match tracked enabled state "
8538 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8539
8540 active = dev_priv->display.get_pipe_config(crtc,
8541 &pipe_config);
8542
8543 /* hw state is inconsistent with the pipe A quirk */
8544 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8545 active = crtc->active;
8546
8547 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8548 base.head) {
8549 if (encoder->base.crtc != &crtc->base)
8550 continue;
8551 if (encoder->get_config)
8552 encoder->get_config(encoder, &pipe_config);
8553 }
8554
8555 if (dev_priv->display.get_clock)
8556 dev_priv->display.get_clock(crtc, &pipe_config);
8557
8558 WARN(crtc->active != active,
8559 "crtc active state doesn't match with hw state "
8560 "(expected %i, found %i)\n", crtc->active, active);
8561
8562 if (active &&
8563 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8564 WARN(1, "pipe state doesn't match!\n");
8565 intel_dump_pipe_config(crtc, &pipe_config,
8566 "[hw state]");
8567 intel_dump_pipe_config(crtc, &crtc->config,
8568 "[sw state]");
8569 }
8570 }
8571 }
8572
8573 static void
8574 check_shared_dpll_state(struct drm_device *dev)
8575 {
8576 drm_i915_private_t *dev_priv = dev->dev_private;
8577 struct intel_crtc *crtc;
8578 struct intel_dpll_hw_state dpll_hw_state;
8579 int i;
8580
8581 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8582 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8583 int enabled_crtcs = 0, active_crtcs = 0;
8584 bool active;
8585
8586 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8587
8588 DRM_DEBUG_KMS("%s\n", pll->name);
8589
8590 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8591
8592 WARN(pll->active > pll->refcount,
8593 "more active pll users than references: %i vs %i\n",
8594 pll->active, pll->refcount);
8595 WARN(pll->active && !pll->on,
8596 "pll in active use but not on in sw tracking\n");
8597 WARN(pll->on && !pll->active,
8598 "pll in on but not on in use in sw tracking\n");
8599 WARN(pll->on != active,
8600 "pll on state mismatch (expected %i, found %i)\n",
8601 pll->on, active);
8602
8603 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8604 base.head) {
8605 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8606 enabled_crtcs++;
8607 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8608 active_crtcs++;
8609 }
8610 WARN(pll->active != active_crtcs,
8611 "pll active crtcs mismatch (expected %i, found %i)\n",
8612 pll->active, active_crtcs);
8613 WARN(pll->refcount != enabled_crtcs,
8614 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8615 pll->refcount, enabled_crtcs);
8616
8617 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8618 sizeof(dpll_hw_state)),
8619 "pll hw state mismatch\n");
8620 }
8621 }
8622
8623 void
8624 intel_modeset_check_state(struct drm_device *dev)
8625 {
8626 check_connector_state(dev);
8627 check_encoder_state(dev);
8628 check_crtc_state(dev);
8629 check_shared_dpll_state(dev);
8630 }
8631
8632 static int __intel_set_mode(struct drm_crtc *crtc,
8633 struct drm_display_mode *mode,
8634 int x, int y, struct drm_framebuffer *fb)
8635 {
8636 struct drm_device *dev = crtc->dev;
8637 drm_i915_private_t *dev_priv = dev->dev_private;
8638 struct drm_display_mode *saved_mode, *saved_hwmode;
8639 struct intel_crtc_config *pipe_config = NULL;
8640 struct intel_crtc *intel_crtc;
8641 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8642 int ret = 0;
8643
8644 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8645 if (!saved_mode)
8646 return -ENOMEM;
8647 saved_hwmode = saved_mode + 1;
8648
8649 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8650 &prepare_pipes, &disable_pipes);
8651
8652 *saved_hwmode = crtc->hwmode;
8653 *saved_mode = crtc->mode;
8654
8655 /* Hack: Because we don't (yet) support global modeset on multiple
8656 * crtcs, we don't keep track of the new mode for more than one crtc.
8657 * Hence simply check whether any bit is set in modeset_pipes in all the
8658 * pieces of code that are not yet converted to deal with mutliple crtcs
8659 * changing their mode at the same time. */
8660 if (modeset_pipes) {
8661 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8662 if (IS_ERR(pipe_config)) {
8663 ret = PTR_ERR(pipe_config);
8664 pipe_config = NULL;
8665
8666 goto out;
8667 }
8668 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8669 "[modeset]");
8670 }
8671
8672 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8673 intel_crtc_disable(&intel_crtc->base);
8674
8675 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8676 if (intel_crtc->base.enabled)
8677 dev_priv->display.crtc_disable(&intel_crtc->base);
8678 }
8679
8680 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8681 * to set it here already despite that we pass it down the callchain.
8682 */
8683 if (modeset_pipes) {
8684 crtc->mode = *mode;
8685 /* mode_set/enable/disable functions rely on a correct pipe
8686 * config. */
8687 to_intel_crtc(crtc)->config = *pipe_config;
8688 }
8689
8690 /* Only after disabling all output pipelines that will be changed can we
8691 * update the the output configuration. */
8692 intel_modeset_update_state(dev, prepare_pipes);
8693
8694 if (dev_priv->display.modeset_global_resources)
8695 dev_priv->display.modeset_global_resources(dev);
8696
8697 /* Set up the DPLL and any encoders state that needs to adjust or depend
8698 * on the DPLL.
8699 */
8700 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8701 ret = intel_crtc_mode_set(&intel_crtc->base,
8702 x, y, fb);
8703 if (ret)
8704 goto done;
8705 }
8706
8707 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8708 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8709 dev_priv->display.crtc_enable(&intel_crtc->base);
8710
8711 if (modeset_pipes) {
8712 /* Store real post-adjustment hardware mode. */
8713 crtc->hwmode = pipe_config->adjusted_mode;
8714
8715 /* Calculate and store various constants which
8716 * are later needed by vblank and swap-completion
8717 * timestamping. They are derived from true hwmode.
8718 */
8719 drm_calc_timestamping_constants(crtc);
8720 }
8721
8722 /* FIXME: add subpixel order */
8723 done:
8724 if (ret && crtc->enabled) {
8725 crtc->hwmode = *saved_hwmode;
8726 crtc->mode = *saved_mode;
8727 }
8728
8729 out:
8730 kfree(pipe_config);
8731 kfree(saved_mode);
8732 return ret;
8733 }
8734
8735 int intel_set_mode(struct drm_crtc *crtc,
8736 struct drm_display_mode *mode,
8737 int x, int y, struct drm_framebuffer *fb)
8738 {
8739 int ret;
8740
8741 ret = __intel_set_mode(crtc, mode, x, y, fb);
8742
8743 if (ret == 0)
8744 intel_modeset_check_state(crtc->dev);
8745
8746 return ret;
8747 }
8748
8749 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8750 {
8751 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8752 }
8753
8754 #undef for_each_intel_crtc_masked
8755
8756 static void intel_set_config_free(struct intel_set_config *config)
8757 {
8758 if (!config)
8759 return;
8760
8761 kfree(config->save_connector_encoders);
8762 kfree(config->save_encoder_crtcs);
8763 kfree(config);
8764 }
8765
8766 static int intel_set_config_save_state(struct drm_device *dev,
8767 struct intel_set_config *config)
8768 {
8769 struct drm_encoder *encoder;
8770 struct drm_connector *connector;
8771 int count;
8772
8773 config->save_encoder_crtcs =
8774 kcalloc(dev->mode_config.num_encoder,
8775 sizeof(struct drm_crtc *), GFP_KERNEL);
8776 if (!config->save_encoder_crtcs)
8777 return -ENOMEM;
8778
8779 config->save_connector_encoders =
8780 kcalloc(dev->mode_config.num_connector,
8781 sizeof(struct drm_encoder *), GFP_KERNEL);
8782 if (!config->save_connector_encoders)
8783 return -ENOMEM;
8784
8785 /* Copy data. Note that driver private data is not affected.
8786 * Should anything bad happen only the expected state is
8787 * restored, not the drivers personal bookkeeping.
8788 */
8789 count = 0;
8790 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8791 config->save_encoder_crtcs[count++] = encoder->crtc;
8792 }
8793
8794 count = 0;
8795 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8796 config->save_connector_encoders[count++] = connector->encoder;
8797 }
8798
8799 return 0;
8800 }
8801
8802 static void intel_set_config_restore_state(struct drm_device *dev,
8803 struct intel_set_config *config)
8804 {
8805 struct intel_encoder *encoder;
8806 struct intel_connector *connector;
8807 int count;
8808
8809 count = 0;
8810 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8811 encoder->new_crtc =
8812 to_intel_crtc(config->save_encoder_crtcs[count++]);
8813 }
8814
8815 count = 0;
8816 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8817 connector->new_encoder =
8818 to_intel_encoder(config->save_connector_encoders[count++]);
8819 }
8820 }
8821
8822 static bool
8823 is_crtc_connector_off(struct drm_mode_set *set)
8824 {
8825 int i;
8826
8827 if (set->num_connectors == 0)
8828 return false;
8829
8830 if (WARN_ON(set->connectors == NULL))
8831 return false;
8832
8833 for (i = 0; i < set->num_connectors; i++)
8834 if (set->connectors[i]->encoder &&
8835 set->connectors[i]->encoder->crtc == set->crtc &&
8836 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
8837 return true;
8838
8839 return false;
8840 }
8841
8842 static void
8843 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8844 struct intel_set_config *config)
8845 {
8846
8847 /* We should be able to check here if the fb has the same properties
8848 * and then just flip_or_move it */
8849 if (is_crtc_connector_off(set)) {
8850 config->mode_changed = true;
8851 } else if (set->crtc->fb != set->fb) {
8852 /* If we have no fb then treat it as a full mode set */
8853 if (set->crtc->fb == NULL) {
8854 struct intel_crtc *intel_crtc =
8855 to_intel_crtc(set->crtc);
8856
8857 if (intel_crtc->active && i915_fastboot) {
8858 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8859 config->fb_changed = true;
8860 } else {
8861 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8862 config->mode_changed = true;
8863 }
8864 } else if (set->fb == NULL) {
8865 config->mode_changed = true;
8866 } else if (set->fb->pixel_format !=
8867 set->crtc->fb->pixel_format) {
8868 config->mode_changed = true;
8869 } else {
8870 config->fb_changed = true;
8871 }
8872 }
8873
8874 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8875 config->fb_changed = true;
8876
8877 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8878 DRM_DEBUG_KMS("modes are different, full mode set\n");
8879 drm_mode_debug_printmodeline(&set->crtc->mode);
8880 drm_mode_debug_printmodeline(set->mode);
8881 config->mode_changed = true;
8882 }
8883 }
8884
8885 static int
8886 intel_modeset_stage_output_state(struct drm_device *dev,
8887 struct drm_mode_set *set,
8888 struct intel_set_config *config)
8889 {
8890 struct drm_crtc *new_crtc;
8891 struct intel_connector *connector;
8892 struct intel_encoder *encoder;
8893 int count, ro;
8894
8895 /* The upper layers ensure that we either disable a crtc or have a list
8896 * of connectors. For paranoia, double-check this. */
8897 WARN_ON(!set->fb && (set->num_connectors != 0));
8898 WARN_ON(set->fb && (set->num_connectors == 0));
8899
8900 count = 0;
8901 list_for_each_entry(connector, &dev->mode_config.connector_list,
8902 base.head) {
8903 /* Otherwise traverse passed in connector list and get encoders
8904 * for them. */
8905 for (ro = 0; ro < set->num_connectors; ro++) {
8906 if (set->connectors[ro] == &connector->base) {
8907 connector->new_encoder = connector->encoder;
8908 break;
8909 }
8910 }
8911
8912 /* If we disable the crtc, disable all its connectors. Also, if
8913 * the connector is on the changing crtc but not on the new
8914 * connector list, disable it. */
8915 if ((!set->fb || ro == set->num_connectors) &&
8916 connector->base.encoder &&
8917 connector->base.encoder->crtc == set->crtc) {
8918 connector->new_encoder = NULL;
8919
8920 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8921 connector->base.base.id,
8922 drm_get_connector_name(&connector->base));
8923 }
8924
8925
8926 if (&connector->new_encoder->base != connector->base.encoder) {
8927 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8928 config->mode_changed = true;
8929 }
8930 }
8931 /* connector->new_encoder is now updated for all connectors. */
8932
8933 /* Update crtc of enabled connectors. */
8934 count = 0;
8935 list_for_each_entry(connector, &dev->mode_config.connector_list,
8936 base.head) {
8937 if (!connector->new_encoder)
8938 continue;
8939
8940 new_crtc = connector->new_encoder->base.crtc;
8941
8942 for (ro = 0; ro < set->num_connectors; ro++) {
8943 if (set->connectors[ro] == &connector->base)
8944 new_crtc = set->crtc;
8945 }
8946
8947 /* Make sure the new CRTC will work with the encoder */
8948 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8949 new_crtc)) {
8950 return -EINVAL;
8951 }
8952 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8953
8954 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8955 connector->base.base.id,
8956 drm_get_connector_name(&connector->base),
8957 new_crtc->base.id);
8958 }
8959
8960 /* Check for any encoders that needs to be disabled. */
8961 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8962 base.head) {
8963 list_for_each_entry(connector,
8964 &dev->mode_config.connector_list,
8965 base.head) {
8966 if (connector->new_encoder == encoder) {
8967 WARN_ON(!connector->new_encoder->new_crtc);
8968
8969 goto next_encoder;
8970 }
8971 }
8972 encoder->new_crtc = NULL;
8973 next_encoder:
8974 /* Only now check for crtc changes so we don't miss encoders
8975 * that will be disabled. */
8976 if (&encoder->new_crtc->base != encoder->base.crtc) {
8977 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8978 config->mode_changed = true;
8979 }
8980 }
8981 /* Now we've also updated encoder->new_crtc for all encoders. */
8982
8983 return 0;
8984 }
8985
8986 static int intel_crtc_set_config(struct drm_mode_set *set)
8987 {
8988 struct drm_device *dev;
8989 struct drm_mode_set save_set;
8990 struct intel_set_config *config;
8991 int ret;
8992
8993 BUG_ON(!set);
8994 BUG_ON(!set->crtc);
8995 BUG_ON(!set->crtc->helper_private);
8996
8997 /* Enforce sane interface api - has been abused by the fb helper. */
8998 BUG_ON(!set->mode && set->fb);
8999 BUG_ON(set->fb && set->num_connectors == 0);
9000
9001 if (set->fb) {
9002 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9003 set->crtc->base.id, set->fb->base.id,
9004 (int)set->num_connectors, set->x, set->y);
9005 } else {
9006 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9007 }
9008
9009 dev = set->crtc->dev;
9010
9011 ret = -ENOMEM;
9012 config = kzalloc(sizeof(*config), GFP_KERNEL);
9013 if (!config)
9014 goto out_config;
9015
9016 ret = intel_set_config_save_state(dev, config);
9017 if (ret)
9018 goto out_config;
9019
9020 save_set.crtc = set->crtc;
9021 save_set.mode = &set->crtc->mode;
9022 save_set.x = set->crtc->x;
9023 save_set.y = set->crtc->y;
9024 save_set.fb = set->crtc->fb;
9025
9026 /* Compute whether we need a full modeset, only an fb base update or no
9027 * change at all. In the future we might also check whether only the
9028 * mode changed, e.g. for LVDS where we only change the panel fitter in
9029 * such cases. */
9030 intel_set_config_compute_mode_changes(set, config);
9031
9032 ret = intel_modeset_stage_output_state(dev, set, config);
9033 if (ret)
9034 goto fail;
9035
9036 if (config->mode_changed) {
9037 ret = intel_set_mode(set->crtc, set->mode,
9038 set->x, set->y, set->fb);
9039 } else if (config->fb_changed) {
9040 intel_crtc_wait_for_pending_flips(set->crtc);
9041
9042 ret = intel_pipe_set_base(set->crtc,
9043 set->x, set->y, set->fb);
9044 }
9045
9046 if (ret) {
9047 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9048 set->crtc->base.id, ret);
9049 fail:
9050 intel_set_config_restore_state(dev, config);
9051
9052 /* Try to restore the config */
9053 if (config->mode_changed &&
9054 intel_set_mode(save_set.crtc, save_set.mode,
9055 save_set.x, save_set.y, save_set.fb))
9056 DRM_ERROR("failed to restore config after modeset failure\n");
9057 }
9058
9059 out_config:
9060 intel_set_config_free(config);
9061 return ret;
9062 }
9063
9064 static const struct drm_crtc_funcs intel_crtc_funcs = {
9065 .cursor_set = intel_crtc_cursor_set,
9066 .cursor_move = intel_crtc_cursor_move,
9067 .gamma_set = intel_crtc_gamma_set,
9068 .set_config = intel_crtc_set_config,
9069 .destroy = intel_crtc_destroy,
9070 .page_flip = intel_crtc_page_flip,
9071 };
9072
9073 static void intel_cpu_pll_init(struct drm_device *dev)
9074 {
9075 if (HAS_DDI(dev))
9076 intel_ddi_pll_init(dev);
9077 }
9078
9079 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9080 struct intel_shared_dpll *pll,
9081 struct intel_dpll_hw_state *hw_state)
9082 {
9083 uint32_t val;
9084
9085 val = I915_READ(PCH_DPLL(pll->id));
9086 hw_state->dpll = val;
9087 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9088 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9089
9090 return val & DPLL_VCO_ENABLE;
9091 }
9092
9093 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9094 struct intel_shared_dpll *pll)
9095 {
9096 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9097 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9098 }
9099
9100 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9101 struct intel_shared_dpll *pll)
9102 {
9103 /* PCH refclock must be enabled first */
9104 assert_pch_refclk_enabled(dev_priv);
9105
9106 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9107
9108 /* Wait for the clocks to stabilize. */
9109 POSTING_READ(PCH_DPLL(pll->id));
9110 udelay(150);
9111
9112 /* The pixel multiplier can only be updated once the
9113 * DPLL is enabled and the clocks are stable.
9114 *
9115 * So write it again.
9116 */
9117 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9118 POSTING_READ(PCH_DPLL(pll->id));
9119 udelay(200);
9120 }
9121
9122 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9123 struct intel_shared_dpll *pll)
9124 {
9125 struct drm_device *dev = dev_priv->dev;
9126 struct intel_crtc *crtc;
9127
9128 /* Make sure no transcoder isn't still depending on us. */
9129 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9130 if (intel_crtc_to_shared_dpll(crtc) == pll)
9131 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9132 }
9133
9134 I915_WRITE(PCH_DPLL(pll->id), 0);
9135 POSTING_READ(PCH_DPLL(pll->id));
9136 udelay(200);
9137 }
9138
9139 static char *ibx_pch_dpll_names[] = {
9140 "PCH DPLL A",
9141 "PCH DPLL B",
9142 };
9143
9144 static void ibx_pch_dpll_init(struct drm_device *dev)
9145 {
9146 struct drm_i915_private *dev_priv = dev->dev_private;
9147 int i;
9148
9149 dev_priv->num_shared_dpll = 2;
9150
9151 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9152 dev_priv->shared_dplls[i].id = i;
9153 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9154 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9155 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9156 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9157 dev_priv->shared_dplls[i].get_hw_state =
9158 ibx_pch_dpll_get_hw_state;
9159 }
9160 }
9161
9162 static void intel_shared_dpll_init(struct drm_device *dev)
9163 {
9164 struct drm_i915_private *dev_priv = dev->dev_private;
9165
9166 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9167 ibx_pch_dpll_init(dev);
9168 else
9169 dev_priv->num_shared_dpll = 0;
9170
9171 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9172 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9173 dev_priv->num_shared_dpll);
9174 }
9175
9176 static void intel_crtc_init(struct drm_device *dev, int pipe)
9177 {
9178 drm_i915_private_t *dev_priv = dev->dev_private;
9179 struct intel_crtc *intel_crtc;
9180 int i;
9181
9182 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9183 if (intel_crtc == NULL)
9184 return;
9185
9186 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9187
9188 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9189 for (i = 0; i < 256; i++) {
9190 intel_crtc->lut_r[i] = i;
9191 intel_crtc->lut_g[i] = i;
9192 intel_crtc->lut_b[i] = i;
9193 }
9194
9195 /* Swap pipes & planes for FBC on pre-965 */
9196 intel_crtc->pipe = pipe;
9197 intel_crtc->plane = pipe;
9198 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9199 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9200 intel_crtc->plane = !pipe;
9201 }
9202
9203 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9204 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9205 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9206 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9207
9208 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9209 }
9210
9211 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9212 struct drm_file *file)
9213 {
9214 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9215 struct drm_mode_object *drmmode_obj;
9216 struct intel_crtc *crtc;
9217
9218 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9219 return -ENODEV;
9220
9221 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9222 DRM_MODE_OBJECT_CRTC);
9223
9224 if (!drmmode_obj) {
9225 DRM_ERROR("no such CRTC id\n");
9226 return -EINVAL;
9227 }
9228
9229 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9230 pipe_from_crtc_id->pipe = crtc->pipe;
9231
9232 return 0;
9233 }
9234
9235 static int intel_encoder_clones(struct intel_encoder *encoder)
9236 {
9237 struct drm_device *dev = encoder->base.dev;
9238 struct intel_encoder *source_encoder;
9239 int index_mask = 0;
9240 int entry = 0;
9241
9242 list_for_each_entry(source_encoder,
9243 &dev->mode_config.encoder_list, base.head) {
9244
9245 if (encoder == source_encoder)
9246 index_mask |= (1 << entry);
9247
9248 /* Intel hw has only one MUX where enocoders could be cloned. */
9249 if (encoder->cloneable && source_encoder->cloneable)
9250 index_mask |= (1 << entry);
9251
9252 entry++;
9253 }
9254
9255 return index_mask;
9256 }
9257
9258 static bool has_edp_a(struct drm_device *dev)
9259 {
9260 struct drm_i915_private *dev_priv = dev->dev_private;
9261
9262 if (!IS_MOBILE(dev))
9263 return false;
9264
9265 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9266 return false;
9267
9268 if (IS_GEN5(dev) &&
9269 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9270 return false;
9271
9272 return true;
9273 }
9274
9275 static void intel_setup_outputs(struct drm_device *dev)
9276 {
9277 struct drm_i915_private *dev_priv = dev->dev_private;
9278 struct intel_encoder *encoder;
9279 bool dpd_is_edp = false;
9280
9281 intel_lvds_init(dev);
9282
9283 if (!IS_ULT(dev))
9284 intel_crt_init(dev);
9285
9286 if (HAS_DDI(dev)) {
9287 int found;
9288
9289 /* Haswell uses DDI functions to detect digital outputs */
9290 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9291 /* DDI A only supports eDP */
9292 if (found)
9293 intel_ddi_init(dev, PORT_A);
9294
9295 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9296 * register */
9297 found = I915_READ(SFUSE_STRAP);
9298
9299 if (found & SFUSE_STRAP_DDIB_DETECTED)
9300 intel_ddi_init(dev, PORT_B);
9301 if (found & SFUSE_STRAP_DDIC_DETECTED)
9302 intel_ddi_init(dev, PORT_C);
9303 if (found & SFUSE_STRAP_DDID_DETECTED)
9304 intel_ddi_init(dev, PORT_D);
9305 } else if (HAS_PCH_SPLIT(dev)) {
9306 int found;
9307 dpd_is_edp = intel_dpd_is_edp(dev);
9308
9309 if (has_edp_a(dev))
9310 intel_dp_init(dev, DP_A, PORT_A);
9311
9312 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9313 /* PCH SDVOB multiplex with HDMIB */
9314 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9315 if (!found)
9316 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9317 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9318 intel_dp_init(dev, PCH_DP_B, PORT_B);
9319 }
9320
9321 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9322 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9323
9324 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9325 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9326
9327 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9328 intel_dp_init(dev, PCH_DP_C, PORT_C);
9329
9330 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9331 intel_dp_init(dev, PCH_DP_D, PORT_D);
9332 } else if (IS_VALLEYVIEW(dev)) {
9333 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9334 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9335 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9336
9337 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9338 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9339 PORT_B);
9340 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9341 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9342 }
9343 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9344 bool found = false;
9345
9346 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9347 DRM_DEBUG_KMS("probing SDVOB\n");
9348 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9349 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9350 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9351 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9352 }
9353
9354 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9355 intel_dp_init(dev, DP_B, PORT_B);
9356 }
9357
9358 /* Before G4X SDVOC doesn't have its own detect register */
9359
9360 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9361 DRM_DEBUG_KMS("probing SDVOC\n");
9362 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9363 }
9364
9365 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9366
9367 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9368 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9369 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9370 }
9371 if (SUPPORTS_INTEGRATED_DP(dev))
9372 intel_dp_init(dev, DP_C, PORT_C);
9373 }
9374
9375 if (SUPPORTS_INTEGRATED_DP(dev) &&
9376 (I915_READ(DP_D) & DP_DETECTED))
9377 intel_dp_init(dev, DP_D, PORT_D);
9378 } else if (IS_GEN2(dev))
9379 intel_dvo_init(dev);
9380
9381 if (SUPPORTS_TV(dev))
9382 intel_tv_init(dev);
9383
9384 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9385 encoder->base.possible_crtcs = encoder->crtc_mask;
9386 encoder->base.possible_clones =
9387 intel_encoder_clones(encoder);
9388 }
9389
9390 intel_init_pch_refclk(dev);
9391
9392 drm_helper_move_panel_connectors_to_head(dev);
9393 }
9394
9395 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9396 {
9397 drm_framebuffer_cleanup(&fb->base);
9398 drm_gem_object_unreference_unlocked(&fb->obj->base);
9399 }
9400
9401 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9402 {
9403 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9404
9405 intel_framebuffer_fini(intel_fb);
9406 kfree(intel_fb);
9407 }
9408
9409 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9410 struct drm_file *file,
9411 unsigned int *handle)
9412 {
9413 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9414 struct drm_i915_gem_object *obj = intel_fb->obj;
9415
9416 return drm_gem_handle_create(file, &obj->base, handle);
9417 }
9418
9419 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9420 .destroy = intel_user_framebuffer_destroy,
9421 .create_handle = intel_user_framebuffer_create_handle,
9422 };
9423
9424 int intel_framebuffer_init(struct drm_device *dev,
9425 struct intel_framebuffer *intel_fb,
9426 struct drm_mode_fb_cmd2 *mode_cmd,
9427 struct drm_i915_gem_object *obj)
9428 {
9429 int pitch_limit;
9430 int ret;
9431
9432 if (obj->tiling_mode == I915_TILING_Y) {
9433 DRM_DEBUG("hardware does not support tiling Y\n");
9434 return -EINVAL;
9435 }
9436
9437 if (mode_cmd->pitches[0] & 63) {
9438 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9439 mode_cmd->pitches[0]);
9440 return -EINVAL;
9441 }
9442
9443 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9444 pitch_limit = 32*1024;
9445 } else if (INTEL_INFO(dev)->gen >= 4) {
9446 if (obj->tiling_mode)
9447 pitch_limit = 16*1024;
9448 else
9449 pitch_limit = 32*1024;
9450 } else if (INTEL_INFO(dev)->gen >= 3) {
9451 if (obj->tiling_mode)
9452 pitch_limit = 8*1024;
9453 else
9454 pitch_limit = 16*1024;
9455 } else
9456 /* XXX DSPC is limited to 4k tiled */
9457 pitch_limit = 8*1024;
9458
9459 if (mode_cmd->pitches[0] > pitch_limit) {
9460 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9461 obj->tiling_mode ? "tiled" : "linear",
9462 mode_cmd->pitches[0], pitch_limit);
9463 return -EINVAL;
9464 }
9465
9466 if (obj->tiling_mode != I915_TILING_NONE &&
9467 mode_cmd->pitches[0] != obj->stride) {
9468 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9469 mode_cmd->pitches[0], obj->stride);
9470 return -EINVAL;
9471 }
9472
9473 /* Reject formats not supported by any plane early. */
9474 switch (mode_cmd->pixel_format) {
9475 case DRM_FORMAT_C8:
9476 case DRM_FORMAT_RGB565:
9477 case DRM_FORMAT_XRGB8888:
9478 case DRM_FORMAT_ARGB8888:
9479 break;
9480 case DRM_FORMAT_XRGB1555:
9481 case DRM_FORMAT_ARGB1555:
9482 if (INTEL_INFO(dev)->gen > 3) {
9483 DRM_DEBUG("unsupported pixel format: %s\n",
9484 drm_get_format_name(mode_cmd->pixel_format));
9485 return -EINVAL;
9486 }
9487 break;
9488 case DRM_FORMAT_XBGR8888:
9489 case DRM_FORMAT_ABGR8888:
9490 case DRM_FORMAT_XRGB2101010:
9491 case DRM_FORMAT_ARGB2101010:
9492 case DRM_FORMAT_XBGR2101010:
9493 case DRM_FORMAT_ABGR2101010:
9494 if (INTEL_INFO(dev)->gen < 4) {
9495 DRM_DEBUG("unsupported pixel format: %s\n",
9496 drm_get_format_name(mode_cmd->pixel_format));
9497 return -EINVAL;
9498 }
9499 break;
9500 case DRM_FORMAT_YUYV:
9501 case DRM_FORMAT_UYVY:
9502 case DRM_FORMAT_YVYU:
9503 case DRM_FORMAT_VYUY:
9504 if (INTEL_INFO(dev)->gen < 5) {
9505 DRM_DEBUG("unsupported pixel format: %s\n",
9506 drm_get_format_name(mode_cmd->pixel_format));
9507 return -EINVAL;
9508 }
9509 break;
9510 default:
9511 DRM_DEBUG("unsupported pixel format: %s\n",
9512 drm_get_format_name(mode_cmd->pixel_format));
9513 return -EINVAL;
9514 }
9515
9516 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9517 if (mode_cmd->offsets[0] != 0)
9518 return -EINVAL;
9519
9520 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9521 intel_fb->obj = obj;
9522
9523 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9524 if (ret) {
9525 DRM_ERROR("framebuffer init failed %d\n", ret);
9526 return ret;
9527 }
9528
9529 return 0;
9530 }
9531
9532 static struct drm_framebuffer *
9533 intel_user_framebuffer_create(struct drm_device *dev,
9534 struct drm_file *filp,
9535 struct drm_mode_fb_cmd2 *mode_cmd)
9536 {
9537 struct drm_i915_gem_object *obj;
9538
9539 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9540 mode_cmd->handles[0]));
9541 if (&obj->base == NULL)
9542 return ERR_PTR(-ENOENT);
9543
9544 return intel_framebuffer_create(dev, mode_cmd, obj);
9545 }
9546
9547 static const struct drm_mode_config_funcs intel_mode_funcs = {
9548 .fb_create = intel_user_framebuffer_create,
9549 .output_poll_changed = intel_fb_output_poll_changed,
9550 };
9551
9552 /* Set up chip specific display functions */
9553 static void intel_init_display(struct drm_device *dev)
9554 {
9555 struct drm_i915_private *dev_priv = dev->dev_private;
9556
9557 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9558 dev_priv->display.find_dpll = g4x_find_best_dpll;
9559 else if (IS_VALLEYVIEW(dev))
9560 dev_priv->display.find_dpll = vlv_find_best_dpll;
9561 else if (IS_PINEVIEW(dev))
9562 dev_priv->display.find_dpll = pnv_find_best_dpll;
9563 else
9564 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9565
9566 if (HAS_DDI(dev)) {
9567 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9568 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9569 dev_priv->display.crtc_enable = haswell_crtc_enable;
9570 dev_priv->display.crtc_disable = haswell_crtc_disable;
9571 dev_priv->display.off = haswell_crtc_off;
9572 dev_priv->display.update_plane = ironlake_update_plane;
9573 } else if (HAS_PCH_SPLIT(dev)) {
9574 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9575 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9576 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9577 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9578 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9579 dev_priv->display.off = ironlake_crtc_off;
9580 dev_priv->display.update_plane = ironlake_update_plane;
9581 } else if (IS_VALLEYVIEW(dev)) {
9582 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9583 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9584 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9585 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9586 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9587 dev_priv->display.off = i9xx_crtc_off;
9588 dev_priv->display.update_plane = i9xx_update_plane;
9589 } else {
9590 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9591 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9592 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9593 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9594 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9595 dev_priv->display.off = i9xx_crtc_off;
9596 dev_priv->display.update_plane = i9xx_update_plane;
9597 }
9598
9599 /* Returns the core display clock speed */
9600 if (IS_VALLEYVIEW(dev))
9601 dev_priv->display.get_display_clock_speed =
9602 valleyview_get_display_clock_speed;
9603 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9604 dev_priv->display.get_display_clock_speed =
9605 i945_get_display_clock_speed;
9606 else if (IS_I915G(dev))
9607 dev_priv->display.get_display_clock_speed =
9608 i915_get_display_clock_speed;
9609 else if (IS_I945GM(dev) || IS_845G(dev))
9610 dev_priv->display.get_display_clock_speed =
9611 i9xx_misc_get_display_clock_speed;
9612 else if (IS_PINEVIEW(dev))
9613 dev_priv->display.get_display_clock_speed =
9614 pnv_get_display_clock_speed;
9615 else if (IS_I915GM(dev))
9616 dev_priv->display.get_display_clock_speed =
9617 i915gm_get_display_clock_speed;
9618 else if (IS_I865G(dev))
9619 dev_priv->display.get_display_clock_speed =
9620 i865_get_display_clock_speed;
9621 else if (IS_I85X(dev))
9622 dev_priv->display.get_display_clock_speed =
9623 i855_get_display_clock_speed;
9624 else /* 852, 830 */
9625 dev_priv->display.get_display_clock_speed =
9626 i830_get_display_clock_speed;
9627
9628 if (HAS_PCH_SPLIT(dev)) {
9629 if (IS_GEN5(dev)) {
9630 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9631 dev_priv->display.write_eld = ironlake_write_eld;
9632 } else if (IS_GEN6(dev)) {
9633 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9634 dev_priv->display.write_eld = ironlake_write_eld;
9635 } else if (IS_IVYBRIDGE(dev)) {
9636 /* FIXME: detect B0+ stepping and use auto training */
9637 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9638 dev_priv->display.write_eld = ironlake_write_eld;
9639 dev_priv->display.modeset_global_resources =
9640 ivb_modeset_global_resources;
9641 } else if (IS_HASWELL(dev)) {
9642 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9643 dev_priv->display.write_eld = haswell_write_eld;
9644 dev_priv->display.modeset_global_resources =
9645 haswell_modeset_global_resources;
9646 }
9647 } else if (IS_G4X(dev)) {
9648 dev_priv->display.write_eld = g4x_write_eld;
9649 }
9650
9651 /* Default just returns -ENODEV to indicate unsupported */
9652 dev_priv->display.queue_flip = intel_default_queue_flip;
9653
9654 switch (INTEL_INFO(dev)->gen) {
9655 case 2:
9656 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9657 break;
9658
9659 case 3:
9660 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9661 break;
9662
9663 case 4:
9664 case 5:
9665 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9666 break;
9667
9668 case 6:
9669 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9670 break;
9671 case 7:
9672 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9673 break;
9674 }
9675 }
9676
9677 /*
9678 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9679 * resume, or other times. This quirk makes sure that's the case for
9680 * affected systems.
9681 */
9682 static void quirk_pipea_force(struct drm_device *dev)
9683 {
9684 struct drm_i915_private *dev_priv = dev->dev_private;
9685
9686 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9687 DRM_INFO("applying pipe a force quirk\n");
9688 }
9689
9690 /*
9691 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9692 */
9693 static void quirk_ssc_force_disable(struct drm_device *dev)
9694 {
9695 struct drm_i915_private *dev_priv = dev->dev_private;
9696 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9697 DRM_INFO("applying lvds SSC disable quirk\n");
9698 }
9699
9700 /*
9701 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9702 * brightness value
9703 */
9704 static void quirk_invert_brightness(struct drm_device *dev)
9705 {
9706 struct drm_i915_private *dev_priv = dev->dev_private;
9707 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9708 DRM_INFO("applying inverted panel brightness quirk\n");
9709 }
9710
9711 /*
9712 * Some machines (Dell XPS13) suffer broken backlight controls if
9713 * BLM_PCH_PWM_ENABLE is set.
9714 */
9715 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9716 {
9717 struct drm_i915_private *dev_priv = dev->dev_private;
9718 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9719 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9720 }
9721
9722 struct intel_quirk {
9723 int device;
9724 int subsystem_vendor;
9725 int subsystem_device;
9726 void (*hook)(struct drm_device *dev);
9727 };
9728
9729 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9730 struct intel_dmi_quirk {
9731 void (*hook)(struct drm_device *dev);
9732 const struct dmi_system_id (*dmi_id_list)[];
9733 };
9734
9735 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9736 {
9737 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9738 return 1;
9739 }
9740
9741 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9742 {
9743 .dmi_id_list = &(const struct dmi_system_id[]) {
9744 {
9745 .callback = intel_dmi_reverse_brightness,
9746 .ident = "NCR Corporation",
9747 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9748 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9749 },
9750 },
9751 { } /* terminating entry */
9752 },
9753 .hook = quirk_invert_brightness,
9754 },
9755 };
9756
9757 static struct intel_quirk intel_quirks[] = {
9758 /* HP Mini needs pipe A force quirk (LP: #322104) */
9759 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9760
9761 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9762 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9763
9764 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9765 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9766
9767 /* 830/845 need to leave pipe A & dpll A up */
9768 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9769 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9770
9771 /* Lenovo U160 cannot use SSC on LVDS */
9772 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9773
9774 /* Sony Vaio Y cannot use SSC on LVDS */
9775 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9776
9777 /* Acer Aspire 5734Z must invert backlight brightness */
9778 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9779
9780 /* Acer/eMachines G725 */
9781 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9782
9783 /* Acer/eMachines e725 */
9784 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9785
9786 /* Acer/Packard Bell NCL20 */
9787 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9788
9789 /* Acer Aspire 4736Z */
9790 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9791
9792 /* Dell XPS13 HD Sandy Bridge */
9793 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9794 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9795 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
9796 };
9797
9798 static void intel_init_quirks(struct drm_device *dev)
9799 {
9800 struct pci_dev *d = dev->pdev;
9801 int i;
9802
9803 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9804 struct intel_quirk *q = &intel_quirks[i];
9805
9806 if (d->device == q->device &&
9807 (d->subsystem_vendor == q->subsystem_vendor ||
9808 q->subsystem_vendor == PCI_ANY_ID) &&
9809 (d->subsystem_device == q->subsystem_device ||
9810 q->subsystem_device == PCI_ANY_ID))
9811 q->hook(dev);
9812 }
9813 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9814 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9815 intel_dmi_quirks[i].hook(dev);
9816 }
9817 }
9818
9819 /* Disable the VGA plane that we never use */
9820 static void i915_disable_vga(struct drm_device *dev)
9821 {
9822 struct drm_i915_private *dev_priv = dev->dev_private;
9823 u8 sr1;
9824 u32 vga_reg = i915_vgacntrl_reg(dev);
9825
9826 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9827 outb(SR01, VGA_SR_INDEX);
9828 sr1 = inb(VGA_SR_DATA);
9829 outb(sr1 | 1<<5, VGA_SR_DATA);
9830 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9831 udelay(300);
9832
9833 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9834 POSTING_READ(vga_reg);
9835 }
9836
9837 void intel_modeset_init_hw(struct drm_device *dev)
9838 {
9839 intel_init_power_well(dev);
9840
9841 intel_prepare_ddi(dev);
9842
9843 intel_init_clock_gating(dev);
9844
9845 mutex_lock(&dev->struct_mutex);
9846 intel_enable_gt_powersave(dev);
9847 mutex_unlock(&dev->struct_mutex);
9848 }
9849
9850 void intel_modeset_suspend_hw(struct drm_device *dev)
9851 {
9852 intel_suspend_hw(dev);
9853 }
9854
9855 void intel_modeset_init(struct drm_device *dev)
9856 {
9857 struct drm_i915_private *dev_priv = dev->dev_private;
9858 int i, j, ret;
9859
9860 drm_mode_config_init(dev);
9861
9862 dev->mode_config.min_width = 0;
9863 dev->mode_config.min_height = 0;
9864
9865 dev->mode_config.preferred_depth = 24;
9866 dev->mode_config.prefer_shadow = 1;
9867
9868 dev->mode_config.funcs = &intel_mode_funcs;
9869
9870 intel_init_quirks(dev);
9871
9872 intel_init_pm(dev);
9873
9874 if (INTEL_INFO(dev)->num_pipes == 0)
9875 return;
9876
9877 intel_init_display(dev);
9878
9879 if (IS_GEN2(dev)) {
9880 dev->mode_config.max_width = 2048;
9881 dev->mode_config.max_height = 2048;
9882 } else if (IS_GEN3(dev)) {
9883 dev->mode_config.max_width = 4096;
9884 dev->mode_config.max_height = 4096;
9885 } else {
9886 dev->mode_config.max_width = 8192;
9887 dev->mode_config.max_height = 8192;
9888 }
9889 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9890
9891 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9892 INTEL_INFO(dev)->num_pipes,
9893 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9894
9895 for_each_pipe(i) {
9896 intel_crtc_init(dev, i);
9897 for (j = 0; j < dev_priv->num_plane; j++) {
9898 ret = intel_plane_init(dev, i, j);
9899 if (ret)
9900 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9901 pipe_name(i), sprite_name(i, j), ret);
9902 }
9903 }
9904
9905 intel_cpu_pll_init(dev);
9906 intel_shared_dpll_init(dev);
9907
9908 /* Just disable it once at startup */
9909 i915_disable_vga(dev);
9910 intel_setup_outputs(dev);
9911
9912 /* Just in case the BIOS is doing something questionable. */
9913 intel_disable_fbc(dev);
9914 }
9915
9916 static void
9917 intel_connector_break_all_links(struct intel_connector *connector)
9918 {
9919 connector->base.dpms = DRM_MODE_DPMS_OFF;
9920 connector->base.encoder = NULL;
9921 connector->encoder->connectors_active = false;
9922 connector->encoder->base.crtc = NULL;
9923 }
9924
9925 static void intel_enable_pipe_a(struct drm_device *dev)
9926 {
9927 struct intel_connector *connector;
9928 struct drm_connector *crt = NULL;
9929 struct intel_load_detect_pipe load_detect_temp;
9930
9931 /* We can't just switch on the pipe A, we need to set things up with a
9932 * proper mode and output configuration. As a gross hack, enable pipe A
9933 * by enabling the load detect pipe once. */
9934 list_for_each_entry(connector,
9935 &dev->mode_config.connector_list,
9936 base.head) {
9937 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9938 crt = &connector->base;
9939 break;
9940 }
9941 }
9942
9943 if (!crt)
9944 return;
9945
9946 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9947 intel_release_load_detect_pipe(crt, &load_detect_temp);
9948
9949
9950 }
9951
9952 static bool
9953 intel_check_plane_mapping(struct intel_crtc *crtc)
9954 {
9955 struct drm_device *dev = crtc->base.dev;
9956 struct drm_i915_private *dev_priv = dev->dev_private;
9957 u32 reg, val;
9958
9959 if (INTEL_INFO(dev)->num_pipes == 1)
9960 return true;
9961
9962 reg = DSPCNTR(!crtc->plane);
9963 val = I915_READ(reg);
9964
9965 if ((val & DISPLAY_PLANE_ENABLE) &&
9966 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9967 return false;
9968
9969 return true;
9970 }
9971
9972 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9973 {
9974 struct drm_device *dev = crtc->base.dev;
9975 struct drm_i915_private *dev_priv = dev->dev_private;
9976 u32 reg;
9977
9978 /* Clear any frame start delays used for debugging left by the BIOS */
9979 reg = PIPECONF(crtc->config.cpu_transcoder);
9980 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9981
9982 /* We need to sanitize the plane -> pipe mapping first because this will
9983 * disable the crtc (and hence change the state) if it is wrong. Note
9984 * that gen4+ has a fixed plane -> pipe mapping. */
9985 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9986 struct intel_connector *connector;
9987 bool plane;
9988
9989 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9990 crtc->base.base.id);
9991
9992 /* Pipe has the wrong plane attached and the plane is active.
9993 * Temporarily change the plane mapping and disable everything
9994 * ... */
9995 plane = crtc->plane;
9996 crtc->plane = !plane;
9997 dev_priv->display.crtc_disable(&crtc->base);
9998 crtc->plane = plane;
9999
10000 /* ... and break all links. */
10001 list_for_each_entry(connector, &dev->mode_config.connector_list,
10002 base.head) {
10003 if (connector->encoder->base.crtc != &crtc->base)
10004 continue;
10005
10006 intel_connector_break_all_links(connector);
10007 }
10008
10009 WARN_ON(crtc->active);
10010 crtc->base.enabled = false;
10011 }
10012
10013 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10014 crtc->pipe == PIPE_A && !crtc->active) {
10015 /* BIOS forgot to enable pipe A, this mostly happens after
10016 * resume. Force-enable the pipe to fix this, the update_dpms
10017 * call below we restore the pipe to the right state, but leave
10018 * the required bits on. */
10019 intel_enable_pipe_a(dev);
10020 }
10021
10022 /* Adjust the state of the output pipe according to whether we
10023 * have active connectors/encoders. */
10024 intel_crtc_update_dpms(&crtc->base);
10025
10026 if (crtc->active != crtc->base.enabled) {
10027 struct intel_encoder *encoder;
10028
10029 /* This can happen either due to bugs in the get_hw_state
10030 * functions or because the pipe is force-enabled due to the
10031 * pipe A quirk. */
10032 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10033 crtc->base.base.id,
10034 crtc->base.enabled ? "enabled" : "disabled",
10035 crtc->active ? "enabled" : "disabled");
10036
10037 crtc->base.enabled = crtc->active;
10038
10039 /* Because we only establish the connector -> encoder ->
10040 * crtc links if something is active, this means the
10041 * crtc is now deactivated. Break the links. connector
10042 * -> encoder links are only establish when things are
10043 * actually up, hence no need to break them. */
10044 WARN_ON(crtc->active);
10045
10046 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10047 WARN_ON(encoder->connectors_active);
10048 encoder->base.crtc = NULL;
10049 }
10050 }
10051 }
10052
10053 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10054 {
10055 struct intel_connector *connector;
10056 struct drm_device *dev = encoder->base.dev;
10057
10058 /* We need to check both for a crtc link (meaning that the
10059 * encoder is active and trying to read from a pipe) and the
10060 * pipe itself being active. */
10061 bool has_active_crtc = encoder->base.crtc &&
10062 to_intel_crtc(encoder->base.crtc)->active;
10063
10064 if (encoder->connectors_active && !has_active_crtc) {
10065 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10066 encoder->base.base.id,
10067 drm_get_encoder_name(&encoder->base));
10068
10069 /* Connector is active, but has no active pipe. This is
10070 * fallout from our resume register restoring. Disable
10071 * the encoder manually again. */
10072 if (encoder->base.crtc) {
10073 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10074 encoder->base.base.id,
10075 drm_get_encoder_name(&encoder->base));
10076 encoder->disable(encoder);
10077 }
10078
10079 /* Inconsistent output/port/pipe state happens presumably due to
10080 * a bug in one of the get_hw_state functions. Or someplace else
10081 * in our code, like the register restore mess on resume. Clamp
10082 * things to off as a safer default. */
10083 list_for_each_entry(connector,
10084 &dev->mode_config.connector_list,
10085 base.head) {
10086 if (connector->encoder != encoder)
10087 continue;
10088
10089 intel_connector_break_all_links(connector);
10090 }
10091 }
10092 /* Enabled encoders without active connectors will be fixed in
10093 * the crtc fixup. */
10094 }
10095
10096 void i915_redisable_vga(struct drm_device *dev)
10097 {
10098 struct drm_i915_private *dev_priv = dev->dev_private;
10099 u32 vga_reg = i915_vgacntrl_reg(dev);
10100
10101 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10102 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10103 i915_disable_vga(dev);
10104 }
10105 }
10106
10107 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10108 {
10109 struct drm_i915_private *dev_priv = dev->dev_private;
10110 enum pipe pipe;
10111 struct intel_crtc *crtc;
10112 struct intel_encoder *encoder;
10113 struct intel_connector *connector;
10114 int i;
10115
10116 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10117 base.head) {
10118 memset(&crtc->config, 0, sizeof(crtc->config));
10119
10120 crtc->active = dev_priv->display.get_pipe_config(crtc,
10121 &crtc->config);
10122
10123 crtc->base.enabled = crtc->active;
10124
10125 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10126 crtc->base.base.id,
10127 crtc->active ? "enabled" : "disabled");
10128 }
10129
10130 /* FIXME: Smash this into the new shared dpll infrastructure. */
10131 if (HAS_DDI(dev))
10132 intel_ddi_setup_hw_pll_state(dev);
10133
10134 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10135 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10136
10137 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10138 pll->active = 0;
10139 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10140 base.head) {
10141 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10142 pll->active++;
10143 }
10144 pll->refcount = pll->active;
10145
10146 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10147 pll->name, pll->refcount, pll->on);
10148 }
10149
10150 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10151 base.head) {
10152 pipe = 0;
10153
10154 if (encoder->get_hw_state(encoder, &pipe)) {
10155 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10156 encoder->base.crtc = &crtc->base;
10157 if (encoder->get_config)
10158 encoder->get_config(encoder, &crtc->config);
10159 } else {
10160 encoder->base.crtc = NULL;
10161 }
10162
10163 encoder->connectors_active = false;
10164 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10165 encoder->base.base.id,
10166 drm_get_encoder_name(&encoder->base),
10167 encoder->base.crtc ? "enabled" : "disabled",
10168 pipe);
10169 }
10170
10171 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10172 base.head) {
10173 if (!crtc->active)
10174 continue;
10175 if (dev_priv->display.get_clock)
10176 dev_priv->display.get_clock(crtc,
10177 &crtc->config);
10178 }
10179
10180 list_for_each_entry(connector, &dev->mode_config.connector_list,
10181 base.head) {
10182 if (connector->get_hw_state(connector)) {
10183 connector->base.dpms = DRM_MODE_DPMS_ON;
10184 connector->encoder->connectors_active = true;
10185 connector->base.encoder = &connector->encoder->base;
10186 } else {
10187 connector->base.dpms = DRM_MODE_DPMS_OFF;
10188 connector->base.encoder = NULL;
10189 }
10190 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10191 connector->base.base.id,
10192 drm_get_connector_name(&connector->base),
10193 connector->base.encoder ? "enabled" : "disabled");
10194 }
10195 }
10196
10197 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10198 * and i915 state tracking structures. */
10199 void intel_modeset_setup_hw_state(struct drm_device *dev,
10200 bool force_restore)
10201 {
10202 struct drm_i915_private *dev_priv = dev->dev_private;
10203 enum pipe pipe;
10204 struct drm_plane *plane;
10205 struct intel_crtc *crtc;
10206 struct intel_encoder *encoder;
10207 int i;
10208
10209 intel_modeset_readout_hw_state(dev);
10210
10211 /*
10212 * Now that we have the config, copy it to each CRTC struct
10213 * Note that this could go away if we move to using crtc_config
10214 * checking everywhere.
10215 */
10216 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10217 base.head) {
10218 if (crtc->active && i915_fastboot) {
10219 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10220
10221 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10222 crtc->base.base.id);
10223 drm_mode_debug_printmodeline(&crtc->base.mode);
10224 }
10225 }
10226
10227 /* HW state is read out, now we need to sanitize this mess. */
10228 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10229 base.head) {
10230 intel_sanitize_encoder(encoder);
10231 }
10232
10233 for_each_pipe(pipe) {
10234 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10235 intel_sanitize_crtc(crtc);
10236 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10237 }
10238
10239 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10240 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10241
10242 if (!pll->on || pll->active)
10243 continue;
10244
10245 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10246
10247 pll->disable(dev_priv, pll);
10248 pll->on = false;
10249 }
10250
10251 if (force_restore) {
10252 /*
10253 * We need to use raw interfaces for restoring state to avoid
10254 * checking (bogus) intermediate states.
10255 */
10256 for_each_pipe(pipe) {
10257 struct drm_crtc *crtc =
10258 dev_priv->pipe_to_crtc_mapping[pipe];
10259
10260 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10261 crtc->fb);
10262 }
10263 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10264 intel_plane_restore(plane);
10265
10266 i915_redisable_vga(dev);
10267 } else {
10268 intel_modeset_update_staged_output_state(dev);
10269 }
10270
10271 intel_modeset_check_state(dev);
10272
10273 drm_mode_config_reset(dev);
10274 }
10275
10276 void intel_modeset_gem_init(struct drm_device *dev)
10277 {
10278 intel_modeset_init_hw(dev);
10279
10280 intel_setup_overlay(dev);
10281
10282 intel_modeset_setup_hw_state(dev, false);
10283 }
10284
10285 void intel_modeset_cleanup(struct drm_device *dev)
10286 {
10287 struct drm_i915_private *dev_priv = dev->dev_private;
10288 struct drm_crtc *crtc;
10289 struct intel_crtc *intel_crtc;
10290
10291 /*
10292 * Interrupts and polling as the first thing to avoid creating havoc.
10293 * Too much stuff here (turning of rps, connectors, ...) would
10294 * experience fancy races otherwise.
10295 */
10296 drm_irq_uninstall(dev);
10297 cancel_work_sync(&dev_priv->hotplug_work);
10298 /*
10299 * Due to the hpd irq storm handling the hotplug work can re-arm the
10300 * poll handlers. Hence disable polling after hpd handling is shut down.
10301 */
10302 drm_kms_helper_poll_fini(dev);
10303
10304 mutex_lock(&dev->struct_mutex);
10305
10306 intel_unregister_dsm_handler();
10307
10308 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10309 /* Skip inactive CRTCs */
10310 if (!crtc->fb)
10311 continue;
10312
10313 intel_crtc = to_intel_crtc(crtc);
10314 intel_increase_pllclock(crtc);
10315 }
10316
10317 intel_disable_fbc(dev);
10318
10319 intel_disable_gt_powersave(dev);
10320
10321 ironlake_teardown_rc6(dev);
10322
10323 mutex_unlock(&dev->struct_mutex);
10324
10325 /* flush any delayed tasks or pending work */
10326 flush_scheduled_work();
10327
10328 /* destroy backlight, if any, before the connectors */
10329 intel_panel_destroy_backlight(dev);
10330
10331 drm_mode_config_cleanup(dev);
10332
10333 intel_cleanup_overlay(dev);
10334 }
10335
10336 /*
10337 * Return which encoder is currently attached for connector.
10338 */
10339 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10340 {
10341 return &intel_attached_encoder(connector)->base;
10342 }
10343
10344 void intel_connector_attach_encoder(struct intel_connector *connector,
10345 struct intel_encoder *encoder)
10346 {
10347 connector->encoder = encoder;
10348 drm_mode_connector_attach_encoder(&connector->base,
10349 &encoder->base);
10350 }
10351
10352 /*
10353 * set vga decode state - true == enable VGA decode
10354 */
10355 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10356 {
10357 struct drm_i915_private *dev_priv = dev->dev_private;
10358 u16 gmch_ctrl;
10359
10360 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10361 if (state)
10362 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10363 else
10364 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10365 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10366 return 0;
10367 }
10368
10369 struct intel_display_error_state {
10370
10371 u32 power_well_driver;
10372
10373 struct intel_cursor_error_state {
10374 u32 control;
10375 u32 position;
10376 u32 base;
10377 u32 size;
10378 } cursor[I915_MAX_PIPES];
10379
10380 struct intel_pipe_error_state {
10381 enum transcoder cpu_transcoder;
10382 u32 conf;
10383 u32 source;
10384
10385 u32 htotal;
10386 u32 hblank;
10387 u32 hsync;
10388 u32 vtotal;
10389 u32 vblank;
10390 u32 vsync;
10391 } pipe[I915_MAX_PIPES];
10392
10393 struct intel_plane_error_state {
10394 u32 control;
10395 u32 stride;
10396 u32 size;
10397 u32 pos;
10398 u32 addr;
10399 u32 surface;
10400 u32 tile_offset;
10401 } plane[I915_MAX_PIPES];
10402 };
10403
10404 struct intel_display_error_state *
10405 intel_display_capture_error_state(struct drm_device *dev)
10406 {
10407 drm_i915_private_t *dev_priv = dev->dev_private;
10408 struct intel_display_error_state *error;
10409 enum transcoder cpu_transcoder;
10410 int i;
10411
10412 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10413 if (error == NULL)
10414 return NULL;
10415
10416 if (HAS_POWER_WELL(dev))
10417 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10418
10419 for_each_pipe(i) {
10420 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10421 error->pipe[i].cpu_transcoder = cpu_transcoder;
10422
10423 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10424 error->cursor[i].control = I915_READ(CURCNTR(i));
10425 error->cursor[i].position = I915_READ(CURPOS(i));
10426 error->cursor[i].base = I915_READ(CURBASE(i));
10427 } else {
10428 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10429 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10430 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10431 }
10432
10433 error->plane[i].control = I915_READ(DSPCNTR(i));
10434 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10435 if (INTEL_INFO(dev)->gen <= 3) {
10436 error->plane[i].size = I915_READ(DSPSIZE(i));
10437 error->plane[i].pos = I915_READ(DSPPOS(i));
10438 }
10439 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10440 error->plane[i].addr = I915_READ(DSPADDR(i));
10441 if (INTEL_INFO(dev)->gen >= 4) {
10442 error->plane[i].surface = I915_READ(DSPSURF(i));
10443 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10444 }
10445
10446 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10447 error->pipe[i].source = I915_READ(PIPESRC(i));
10448 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10449 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10450 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10451 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10452 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10453 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10454 }
10455
10456 /* In the code above we read the registers without checking if the power
10457 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10458 * prevent the next I915_WRITE from detecting it and printing an error
10459 * message. */
10460 intel_uncore_clear_errors(dev);
10461
10462 return error;
10463 }
10464
10465 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10466
10467 void
10468 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10469 struct drm_device *dev,
10470 struct intel_display_error_state *error)
10471 {
10472 int i;
10473
10474 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10475 if (HAS_POWER_WELL(dev))
10476 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10477 error->power_well_driver);
10478 for_each_pipe(i) {
10479 err_printf(m, "Pipe [%d]:\n", i);
10480 err_printf(m, " CPU transcoder: %c\n",
10481 transcoder_name(error->pipe[i].cpu_transcoder));
10482 err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
10483 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10484 err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
10485 err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
10486 err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
10487 err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
10488 err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
10489 err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
10490
10491 err_printf(m, "Plane [%d]:\n", i);
10492 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10493 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10494 if (INTEL_INFO(dev)->gen <= 3) {
10495 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10496 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10497 }
10498 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10499 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10500 if (INTEL_INFO(dev)->gen >= 4) {
10501 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10502 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10503 }
10504
10505 err_printf(m, "Cursor [%d]:\n", i);
10506 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10507 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10508 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10509 }
10510 }
This page took 0.398312 seconds and 5 git commands to generate.