drm/i915: extend lpt_enable_clkout_dp
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 typedef struct {
54 int min, max;
55 } intel_range_t;
56
57 typedef struct {
58 int dot_limit;
59 int p2_slow, p2_fast;
60 } intel_p2_t;
61
62 #define INTEL_P2_NUM 2
63 typedef struct intel_limit intel_limit_t;
64 struct intel_limit {
65 intel_range_t dot, vco, n, m, m1, m2, p, p1;
66 intel_p2_t p2;
67 };
68
69 /* FDI */
70 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75 struct drm_i915_private *dev_priv = dev->dev_private;
76
77 WARN_ON(!HAS_PCH_SPLIT(dev));
78
79 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85 if (IS_GEN5(dev)) {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88 } else
89 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93 .dot = { .min = 25000, .max = 350000 },
94 .vco = { .min = 930000, .max = 1400000 },
95 .n = { .min = 3, .max = 16 },
96 .m = { .min = 96, .max = 140 },
97 .m1 = { .min = 18, .max = 26 },
98 .m2 = { .min = 6, .max = 16 },
99 .p = { .min = 4, .max = 128 },
100 .p1 = { .min = 2, .max = 33 },
101 .p2 = { .dot_limit = 165000,
102 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106 .dot = { .min = 25000, .max = 350000 },
107 .vco = { .min = 930000, .max = 1400000 },
108 .n = { .min = 3, .max = 16 },
109 .m = { .min = 96, .max = 140 },
110 .m1 = { .min = 18, .max = 26 },
111 .m2 = { .min = 6, .max = 16 },
112 .p = { .min = 4, .max = 128 },
113 .p1 = { .min = 2, .max = 33 },
114 .p2 = { .dot_limit = 165000,
115 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119 .dot = { .min = 25000, .max = 350000 },
120 .vco = { .min = 930000, .max = 1400000 },
121 .n = { .min = 3, .max = 16 },
122 .m = { .min = 96, .max = 140 },
123 .m1 = { .min = 18, .max = 26 },
124 .m2 = { .min = 6, .max = 16 },
125 .p = { .min = 4, .max = 128 },
126 .p1 = { .min = 1, .max = 6 },
127 .p2 = { .dot_limit = 165000,
128 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132 .dot = { .min = 20000, .max = 400000 },
133 .vco = { .min = 1400000, .max = 2800000 },
134 .n = { .min = 1, .max = 6 },
135 .m = { .min = 70, .max = 120 },
136 .m1 = { .min = 8, .max = 18 },
137 .m2 = { .min = 3, .max = 7 },
138 .p = { .min = 5, .max = 80 },
139 .p1 = { .min = 1, .max = 8 },
140 .p2 = { .dot_limit = 200000,
141 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 8, .max = 18 },
150 .m2 = { .min = 3, .max = 7 },
151 .p = { .min = 7, .max = 98 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 112000,
154 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159 .dot = { .min = 25000, .max = 270000 },
160 .vco = { .min = 1750000, .max = 3500000},
161 .n = { .min = 1, .max = 4 },
162 .m = { .min = 104, .max = 138 },
163 .m1 = { .min = 17, .max = 23 },
164 .m2 = { .min = 5, .max = 11 },
165 .p = { .min = 10, .max = 30 },
166 .p1 = { .min = 1, .max = 3},
167 .p2 = { .dot_limit = 270000,
168 .p2_slow = 10,
169 .p2_fast = 10
170 },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174 .dot = { .min = 22000, .max = 400000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 16, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 5, .max = 80 },
181 .p1 = { .min = 1, .max = 8},
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187 .dot = { .min = 20000, .max = 115000 },
188 .vco = { .min = 1750000, .max = 3500000 },
189 .n = { .min = 1, .max = 3 },
190 .m = { .min = 104, .max = 138 },
191 .m1 = { .min = 17, .max = 23 },
192 .m2 = { .min = 5, .max = 11 },
193 .p = { .min = 28, .max = 112 },
194 .p1 = { .min = 2, .max = 8 },
195 .p2 = { .dot_limit = 0,
196 .p2_slow = 14, .p2_fast = 14
197 },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201 .dot = { .min = 80000, .max = 224000 },
202 .vco = { .min = 1750000, .max = 3500000 },
203 .n = { .min = 1, .max = 3 },
204 .m = { .min = 104, .max = 138 },
205 .m1 = { .min = 17, .max = 23 },
206 .m2 = { .min = 5, .max = 11 },
207 .p = { .min = 14, .max = 42 },
208 .p1 = { .min = 2, .max = 6 },
209 .p2 = { .dot_limit = 0,
210 .p2_slow = 7, .p2_fast = 7
211 },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215 .dot = { .min = 20000, .max = 400000},
216 .vco = { .min = 1700000, .max = 3500000 },
217 /* Pineview's Ncounter is a ring counter */
218 .n = { .min = 3, .max = 6 },
219 .m = { .min = 2, .max = 256 },
220 /* Pineview only has one combined m divider, which we treat as m2. */
221 .m1 = { .min = 0, .max = 0 },
222 .m2 = { .min = 0, .max = 254 },
223 .p = { .min = 5, .max = 80 },
224 .p1 = { .min = 1, .max = 8 },
225 .p2 = { .dot_limit = 200000,
226 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230 .dot = { .min = 20000, .max = 400000 },
231 .vco = { .min = 1700000, .max = 3500000 },
232 .n = { .min = 3, .max = 6 },
233 .m = { .min = 2, .max = 256 },
234 .m1 = { .min = 0, .max = 0 },
235 .m2 = { .min = 0, .max = 254 },
236 .p = { .min = 7, .max = 112 },
237 .p1 = { .min = 1, .max = 8 },
238 .p2 = { .dot_limit = 112000,
239 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243 *
244 * We calculate clock using (register_value + 2) for N/M1/M2, so here
245 * the range value for them is (actual_value - 2).
246 */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248 .dot = { .min = 25000, .max = 350000 },
249 .vco = { .min = 1760000, .max = 3510000 },
250 .n = { .min = 1, .max = 5 },
251 .m = { .min = 79, .max = 127 },
252 .m1 = { .min = 12, .max = 22 },
253 .m2 = { .min = 5, .max = 9 },
254 .p = { .min = 5, .max = 80 },
255 .p1 = { .min = 1, .max = 8 },
256 .p2 = { .dot_limit = 225000,
257 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261 .dot = { .min = 25000, .max = 350000 },
262 .vco = { .min = 1760000, .max = 3510000 },
263 .n = { .min = 1, .max = 3 },
264 .m = { .min = 79, .max = 118 },
265 .m1 = { .min = 12, .max = 22 },
266 .m2 = { .min = 5, .max = 9 },
267 .p = { .min = 28, .max = 112 },
268 .p1 = { .min = 2, .max = 8 },
269 .p2 = { .dot_limit = 225000,
270 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 3 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 14, .max = 56 },
281 .p1 = { .min = 2, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 2 },
291 .m = { .min = 79, .max = 126 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 3 },
304 .m = { .min = 79, .max = 126 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 14, .max = 42 },
308 .p1 = { .min = 2, .max = 6 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314 .dot = { .min = 25000, .max = 270000 },
315 .vco = { .min = 4000000, .max = 6000000 },
316 .n = { .min = 1, .max = 7 },
317 .m = { .min = 22, .max = 450 }, /* guess */
318 .m1 = { .min = 2, .max = 3 },
319 .m2 = { .min = 11, .max = 156 },
320 .p = { .min = 10, .max = 30 },
321 .p1 = { .min = 1, .max = 3 },
322 .p2 = { .dot_limit = 270000,
323 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327 .dot = { .min = 25000, .max = 270000 },
328 .vco = { .min = 4000000, .max = 6000000 },
329 .n = { .min = 1, .max = 7 },
330 .m = { .min = 60, .max = 300 }, /* guess */
331 .m1 = { .min = 2, .max = 3 },
332 .m2 = { .min = 11, .max = 156 },
333 .p = { .min = 10, .max = 30 },
334 .p1 = { .min = 2, .max = 3 },
335 .p2 = { .dot_limit = 270000,
336 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t intel_limits_vlv_dp = {
340 .dot = { .min = 25000, .max = 270000 },
341 .vco = { .min = 4000000, .max = 6000000 },
342 .n = { .min = 1, .max = 7 },
343 .m = { .min = 22, .max = 450 },
344 .m1 = { .min = 2, .max = 3 },
345 .m2 = { .min = 11, .max = 156 },
346 .p = { .min = 10, .max = 30 },
347 .p1 = { .min = 1, .max = 3 },
348 .p2 = { .dot_limit = 270000,
349 .p2_slow = 2, .p2_fast = 20 },
350 };
351
352 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
353 int refclk)
354 {
355 struct drm_device *dev = crtc->dev;
356 const intel_limit_t *limit;
357
358 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
359 if (intel_is_dual_link_lvds(dev)) {
360 if (refclk == 100000)
361 limit = &intel_limits_ironlake_dual_lvds_100m;
362 else
363 limit = &intel_limits_ironlake_dual_lvds;
364 } else {
365 if (refclk == 100000)
366 limit = &intel_limits_ironlake_single_lvds_100m;
367 else
368 limit = &intel_limits_ironlake_single_lvds;
369 }
370 } else
371 limit = &intel_limits_ironlake_dac;
372
373 return limit;
374 }
375
376 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
377 {
378 struct drm_device *dev = crtc->dev;
379 const intel_limit_t *limit;
380
381 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
382 if (intel_is_dual_link_lvds(dev))
383 limit = &intel_limits_g4x_dual_channel_lvds;
384 else
385 limit = &intel_limits_g4x_single_channel_lvds;
386 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
387 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
388 limit = &intel_limits_g4x_hdmi;
389 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
390 limit = &intel_limits_g4x_sdvo;
391 } else /* The option is for other outputs */
392 limit = &intel_limits_i9xx_sdvo;
393
394 return limit;
395 }
396
397 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
398 {
399 struct drm_device *dev = crtc->dev;
400 const intel_limit_t *limit;
401
402 if (HAS_PCH_SPLIT(dev))
403 limit = intel_ironlake_limit(crtc, refclk);
404 else if (IS_G4X(dev)) {
405 limit = intel_g4x_limit(crtc);
406 } else if (IS_PINEVIEW(dev)) {
407 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
408 limit = &intel_limits_pineview_lvds;
409 else
410 limit = &intel_limits_pineview_sdvo;
411 } else if (IS_VALLEYVIEW(dev)) {
412 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
413 limit = &intel_limits_vlv_dac;
414 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
415 limit = &intel_limits_vlv_hdmi;
416 else
417 limit = &intel_limits_vlv_dp;
418 } else if (!IS_GEN2(dev)) {
419 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
420 limit = &intel_limits_i9xx_lvds;
421 else
422 limit = &intel_limits_i9xx_sdvo;
423 } else {
424 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425 limit = &intel_limits_i8xx_lvds;
426 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
427 limit = &intel_limits_i8xx_dvo;
428 else
429 limit = &intel_limits_i8xx_dac;
430 }
431 return limit;
432 }
433
434 /* m1 is reserved as 0 in Pineview, n is a ring counter */
435 static void pineview_clock(int refclk, intel_clock_t *clock)
436 {
437 clock->m = clock->m2 + 2;
438 clock->p = clock->p1 * clock->p2;
439 clock->vco = refclk * clock->m / clock->n;
440 clock->dot = clock->vco / clock->p;
441 }
442
443 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
444 {
445 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
446 }
447
448 static void i9xx_clock(int refclk, intel_clock_t *clock)
449 {
450 clock->m = i9xx_dpll_compute_m(clock);
451 clock->p = clock->p1 * clock->p2;
452 clock->vco = refclk * clock->m / (clock->n + 2);
453 clock->dot = clock->vco / clock->p;
454 }
455
456 /**
457 * Returns whether any output on the specified pipe is of the specified type
458 */
459 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
460 {
461 struct drm_device *dev = crtc->dev;
462 struct intel_encoder *encoder;
463
464 for_each_encoder_on_crtc(dev, crtc, encoder)
465 if (encoder->type == type)
466 return true;
467
468 return false;
469 }
470
471 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
472 /**
473 * Returns whether the given set of divisors are valid for a given refclk with
474 * the given connectors.
475 */
476
477 static bool intel_PLL_is_valid(struct drm_device *dev,
478 const intel_limit_t *limit,
479 const intel_clock_t *clock)
480 {
481 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
482 INTELPllInvalid("p1 out of range\n");
483 if (clock->p < limit->p.min || limit->p.max < clock->p)
484 INTELPllInvalid("p out of range\n");
485 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
486 INTELPllInvalid("m2 out of range\n");
487 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
488 INTELPllInvalid("m1 out of range\n");
489 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
490 INTELPllInvalid("m1 <= m2\n");
491 if (clock->m < limit->m.min || limit->m.max < clock->m)
492 INTELPllInvalid("m out of range\n");
493 if (clock->n < limit->n.min || limit->n.max < clock->n)
494 INTELPllInvalid("n out of range\n");
495 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
496 INTELPllInvalid("vco out of range\n");
497 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
498 * connector, etc., rather than just a single range.
499 */
500 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
501 INTELPllInvalid("dot out of range\n");
502
503 return true;
504 }
505
506 static bool
507 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
508 int target, int refclk, intel_clock_t *match_clock,
509 intel_clock_t *best_clock)
510 {
511 struct drm_device *dev = crtc->dev;
512 intel_clock_t clock;
513 int err = target;
514
515 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
516 /*
517 * For LVDS just rely on its current settings for dual-channel.
518 * We haven't figured out how to reliably set up different
519 * single/dual channel state, if we even can.
520 */
521 if (intel_is_dual_link_lvds(dev))
522 clock.p2 = limit->p2.p2_fast;
523 else
524 clock.p2 = limit->p2.p2_slow;
525 } else {
526 if (target < limit->p2.dot_limit)
527 clock.p2 = limit->p2.p2_slow;
528 else
529 clock.p2 = limit->p2.p2_fast;
530 }
531
532 memset(best_clock, 0, sizeof(*best_clock));
533
534 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
535 clock.m1++) {
536 for (clock.m2 = limit->m2.min;
537 clock.m2 <= limit->m2.max; clock.m2++) {
538 if (clock.m2 >= clock.m1)
539 break;
540 for (clock.n = limit->n.min;
541 clock.n <= limit->n.max; clock.n++) {
542 for (clock.p1 = limit->p1.min;
543 clock.p1 <= limit->p1.max; clock.p1++) {
544 int this_err;
545
546 i9xx_clock(refclk, &clock);
547 if (!intel_PLL_is_valid(dev, limit,
548 &clock))
549 continue;
550 if (match_clock &&
551 clock.p != match_clock->p)
552 continue;
553
554 this_err = abs(clock.dot - target);
555 if (this_err < err) {
556 *best_clock = clock;
557 err = this_err;
558 }
559 }
560 }
561 }
562 }
563
564 return (err != target);
565 }
566
567 static bool
568 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
569 int target, int refclk, intel_clock_t *match_clock,
570 intel_clock_t *best_clock)
571 {
572 struct drm_device *dev = crtc->dev;
573 intel_clock_t clock;
574 int err = target;
575
576 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
577 /*
578 * For LVDS just rely on its current settings for dual-channel.
579 * We haven't figured out how to reliably set up different
580 * single/dual channel state, if we even can.
581 */
582 if (intel_is_dual_link_lvds(dev))
583 clock.p2 = limit->p2.p2_fast;
584 else
585 clock.p2 = limit->p2.p2_slow;
586 } else {
587 if (target < limit->p2.dot_limit)
588 clock.p2 = limit->p2.p2_slow;
589 else
590 clock.p2 = limit->p2.p2_fast;
591 }
592
593 memset(best_clock, 0, sizeof(*best_clock));
594
595 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
596 clock.m1++) {
597 for (clock.m2 = limit->m2.min;
598 clock.m2 <= limit->m2.max; clock.m2++) {
599 for (clock.n = limit->n.min;
600 clock.n <= limit->n.max; clock.n++) {
601 for (clock.p1 = limit->p1.min;
602 clock.p1 <= limit->p1.max; clock.p1++) {
603 int this_err;
604
605 pineview_clock(refclk, &clock);
606 if (!intel_PLL_is_valid(dev, limit,
607 &clock))
608 continue;
609 if (match_clock &&
610 clock.p != match_clock->p)
611 continue;
612
613 this_err = abs(clock.dot - target);
614 if (this_err < err) {
615 *best_clock = clock;
616 err = this_err;
617 }
618 }
619 }
620 }
621 }
622
623 return (err != target);
624 }
625
626 static bool
627 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
628 int target, int refclk, intel_clock_t *match_clock,
629 intel_clock_t *best_clock)
630 {
631 struct drm_device *dev = crtc->dev;
632 intel_clock_t clock;
633 int max_n;
634 bool found;
635 /* approximately equals target * 0.00585 */
636 int err_most = (target >> 8) + (target >> 9);
637 found = false;
638
639 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
640 if (intel_is_dual_link_lvds(dev))
641 clock.p2 = limit->p2.p2_fast;
642 else
643 clock.p2 = limit->p2.p2_slow;
644 } else {
645 if (target < limit->p2.dot_limit)
646 clock.p2 = limit->p2.p2_slow;
647 else
648 clock.p2 = limit->p2.p2_fast;
649 }
650
651 memset(best_clock, 0, sizeof(*best_clock));
652 max_n = limit->n.max;
653 /* based on hardware requirement, prefer smaller n to precision */
654 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
655 /* based on hardware requirement, prefere larger m1,m2 */
656 for (clock.m1 = limit->m1.max;
657 clock.m1 >= limit->m1.min; clock.m1--) {
658 for (clock.m2 = limit->m2.max;
659 clock.m2 >= limit->m2.min; clock.m2--) {
660 for (clock.p1 = limit->p1.max;
661 clock.p1 >= limit->p1.min; clock.p1--) {
662 int this_err;
663
664 i9xx_clock(refclk, &clock);
665 if (!intel_PLL_is_valid(dev, limit,
666 &clock))
667 continue;
668
669 this_err = abs(clock.dot - target);
670 if (this_err < err_most) {
671 *best_clock = clock;
672 err_most = this_err;
673 max_n = clock.n;
674 found = true;
675 }
676 }
677 }
678 }
679 }
680 return found;
681 }
682
683 static bool
684 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
685 int target, int refclk, intel_clock_t *match_clock,
686 intel_clock_t *best_clock)
687 {
688 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
689 u32 m, n, fastclk;
690 u32 updrate, minupdate, fracbits, p;
691 unsigned long bestppm, ppm, absppm;
692 int dotclk, flag;
693
694 flag = 0;
695 dotclk = target * 1000;
696 bestppm = 1000000;
697 ppm = absppm = 0;
698 fastclk = dotclk / (2*100);
699 updrate = 0;
700 minupdate = 19200;
701 fracbits = 1;
702 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
703 bestm1 = bestm2 = bestp1 = bestp2 = 0;
704
705 /* based on hardware requirement, prefer smaller n to precision */
706 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
707 updrate = refclk / n;
708 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
709 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
710 if (p2 > 10)
711 p2 = p2 - 1;
712 p = p1 * p2;
713 /* based on hardware requirement, prefer bigger m1,m2 values */
714 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
715 m2 = (((2*(fastclk * p * n / m1 )) +
716 refclk) / (2*refclk));
717 m = m1 * m2;
718 vco = updrate * m;
719 if (vco >= limit->vco.min && vco < limit->vco.max) {
720 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
721 absppm = (ppm > 0) ? ppm : (-ppm);
722 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
723 bestppm = 0;
724 flag = 1;
725 }
726 if (absppm < bestppm - 10) {
727 bestppm = absppm;
728 flag = 1;
729 }
730 if (flag) {
731 bestn = n;
732 bestm1 = m1;
733 bestm2 = m2;
734 bestp1 = p1;
735 bestp2 = p2;
736 flag = 0;
737 }
738 }
739 }
740 }
741 }
742 }
743 best_clock->n = bestn;
744 best_clock->m1 = bestm1;
745 best_clock->m2 = bestm2;
746 best_clock->p1 = bestp1;
747 best_clock->p2 = bestp2;
748
749 return true;
750 }
751
752 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
753 enum pipe pipe)
754 {
755 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
757
758 return intel_crtc->config.cpu_transcoder;
759 }
760
761 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
762 {
763 struct drm_i915_private *dev_priv = dev->dev_private;
764 u32 frame, frame_reg = PIPEFRAME(pipe);
765
766 frame = I915_READ(frame_reg);
767
768 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
769 DRM_DEBUG_KMS("vblank wait timed out\n");
770 }
771
772 /**
773 * intel_wait_for_vblank - wait for vblank on a given pipe
774 * @dev: drm device
775 * @pipe: pipe to wait for
776 *
777 * Wait for vblank to occur on a given pipe. Needed for various bits of
778 * mode setting code.
779 */
780 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
781 {
782 struct drm_i915_private *dev_priv = dev->dev_private;
783 int pipestat_reg = PIPESTAT(pipe);
784
785 if (INTEL_INFO(dev)->gen >= 5) {
786 ironlake_wait_for_vblank(dev, pipe);
787 return;
788 }
789
790 /* Clear existing vblank status. Note this will clear any other
791 * sticky status fields as well.
792 *
793 * This races with i915_driver_irq_handler() with the result
794 * that either function could miss a vblank event. Here it is not
795 * fatal, as we will either wait upon the next vblank interrupt or
796 * timeout. Generally speaking intel_wait_for_vblank() is only
797 * called during modeset at which time the GPU should be idle and
798 * should *not* be performing page flips and thus not waiting on
799 * vblanks...
800 * Currently, the result of us stealing a vblank from the irq
801 * handler is that a single frame will be skipped during swapbuffers.
802 */
803 I915_WRITE(pipestat_reg,
804 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
805
806 /* Wait for vblank interrupt bit to set */
807 if (wait_for(I915_READ(pipestat_reg) &
808 PIPE_VBLANK_INTERRUPT_STATUS,
809 50))
810 DRM_DEBUG_KMS("vblank wait timed out\n");
811 }
812
813 /*
814 * intel_wait_for_pipe_off - wait for pipe to turn off
815 * @dev: drm device
816 * @pipe: pipe to wait for
817 *
818 * After disabling a pipe, we can't wait for vblank in the usual way,
819 * spinning on the vblank interrupt status bit, since we won't actually
820 * see an interrupt when the pipe is disabled.
821 *
822 * On Gen4 and above:
823 * wait for the pipe register state bit to turn off
824 *
825 * Otherwise:
826 * wait for the display line value to settle (it usually
827 * ends up stopping at the start of the next frame).
828 *
829 */
830 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
831 {
832 struct drm_i915_private *dev_priv = dev->dev_private;
833 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
834 pipe);
835
836 if (INTEL_INFO(dev)->gen >= 4) {
837 int reg = PIPECONF(cpu_transcoder);
838
839 /* Wait for the Pipe State to go off */
840 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
841 100))
842 WARN(1, "pipe_off wait timed out\n");
843 } else {
844 u32 last_line, line_mask;
845 int reg = PIPEDSL(pipe);
846 unsigned long timeout = jiffies + msecs_to_jiffies(100);
847
848 if (IS_GEN2(dev))
849 line_mask = DSL_LINEMASK_GEN2;
850 else
851 line_mask = DSL_LINEMASK_GEN3;
852
853 /* Wait for the display line to settle */
854 do {
855 last_line = I915_READ(reg) & line_mask;
856 mdelay(5);
857 } while (((I915_READ(reg) & line_mask) != last_line) &&
858 time_after(timeout, jiffies));
859 if (time_after(jiffies, timeout))
860 WARN(1, "pipe_off wait timed out\n");
861 }
862 }
863
864 /*
865 * ibx_digital_port_connected - is the specified port connected?
866 * @dev_priv: i915 private structure
867 * @port: the port to test
868 *
869 * Returns true if @port is connected, false otherwise.
870 */
871 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
872 struct intel_digital_port *port)
873 {
874 u32 bit;
875
876 if (HAS_PCH_IBX(dev_priv->dev)) {
877 switch(port->port) {
878 case PORT_B:
879 bit = SDE_PORTB_HOTPLUG;
880 break;
881 case PORT_C:
882 bit = SDE_PORTC_HOTPLUG;
883 break;
884 case PORT_D:
885 bit = SDE_PORTD_HOTPLUG;
886 break;
887 default:
888 return true;
889 }
890 } else {
891 switch(port->port) {
892 case PORT_B:
893 bit = SDE_PORTB_HOTPLUG_CPT;
894 break;
895 case PORT_C:
896 bit = SDE_PORTC_HOTPLUG_CPT;
897 break;
898 case PORT_D:
899 bit = SDE_PORTD_HOTPLUG_CPT;
900 break;
901 default:
902 return true;
903 }
904 }
905
906 return I915_READ(SDEISR) & bit;
907 }
908
909 static const char *state_string(bool enabled)
910 {
911 return enabled ? "on" : "off";
912 }
913
914 /* Only for pre-ILK configs */
915 void assert_pll(struct drm_i915_private *dev_priv,
916 enum pipe pipe, bool state)
917 {
918 int reg;
919 u32 val;
920 bool cur_state;
921
922 reg = DPLL(pipe);
923 val = I915_READ(reg);
924 cur_state = !!(val & DPLL_VCO_ENABLE);
925 WARN(cur_state != state,
926 "PLL state assertion failure (expected %s, current %s)\n",
927 state_string(state), state_string(cur_state));
928 }
929
930 struct intel_shared_dpll *
931 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
932 {
933 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
934
935 if (crtc->config.shared_dpll < 0)
936 return NULL;
937
938 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
939 }
940
941 /* For ILK+ */
942 void assert_shared_dpll(struct drm_i915_private *dev_priv,
943 struct intel_shared_dpll *pll,
944 bool state)
945 {
946 bool cur_state;
947 struct intel_dpll_hw_state hw_state;
948
949 if (HAS_PCH_LPT(dev_priv->dev)) {
950 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
951 return;
952 }
953
954 if (WARN (!pll,
955 "asserting DPLL %s with no DPLL\n", state_string(state)))
956 return;
957
958 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
959 WARN(cur_state != state,
960 "%s assertion failure (expected %s, current %s)\n",
961 pll->name, state_string(state), state_string(cur_state));
962 }
963
964 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
965 enum pipe pipe, bool state)
966 {
967 int reg;
968 u32 val;
969 bool cur_state;
970 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971 pipe);
972
973 if (HAS_DDI(dev_priv->dev)) {
974 /* DDI does not have a specific FDI_TX register */
975 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
976 val = I915_READ(reg);
977 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
978 } else {
979 reg = FDI_TX_CTL(pipe);
980 val = I915_READ(reg);
981 cur_state = !!(val & FDI_TX_ENABLE);
982 }
983 WARN(cur_state != state,
984 "FDI TX state assertion failure (expected %s, current %s)\n",
985 state_string(state), state_string(cur_state));
986 }
987 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
988 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
989
990 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
991 enum pipe pipe, bool state)
992 {
993 int reg;
994 u32 val;
995 bool cur_state;
996
997 reg = FDI_RX_CTL(pipe);
998 val = I915_READ(reg);
999 cur_state = !!(val & FDI_RX_ENABLE);
1000 WARN(cur_state != state,
1001 "FDI RX state assertion failure (expected %s, current %s)\n",
1002 state_string(state), state_string(cur_state));
1003 }
1004 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1005 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1006
1007 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1008 enum pipe pipe)
1009 {
1010 int reg;
1011 u32 val;
1012
1013 /* ILK FDI PLL is always enabled */
1014 if (dev_priv->info->gen == 5)
1015 return;
1016
1017 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1018 if (HAS_DDI(dev_priv->dev))
1019 return;
1020
1021 reg = FDI_TX_CTL(pipe);
1022 val = I915_READ(reg);
1023 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1024 }
1025
1026 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1027 enum pipe pipe, bool state)
1028 {
1029 int reg;
1030 u32 val;
1031 bool cur_state;
1032
1033 reg = FDI_RX_CTL(pipe);
1034 val = I915_READ(reg);
1035 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1036 WARN(cur_state != state,
1037 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1038 state_string(state), state_string(cur_state));
1039 }
1040
1041 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1042 enum pipe pipe)
1043 {
1044 int pp_reg, lvds_reg;
1045 u32 val;
1046 enum pipe panel_pipe = PIPE_A;
1047 bool locked = true;
1048
1049 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1050 pp_reg = PCH_PP_CONTROL;
1051 lvds_reg = PCH_LVDS;
1052 } else {
1053 pp_reg = PP_CONTROL;
1054 lvds_reg = LVDS;
1055 }
1056
1057 val = I915_READ(pp_reg);
1058 if (!(val & PANEL_POWER_ON) ||
1059 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1060 locked = false;
1061
1062 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1063 panel_pipe = PIPE_B;
1064
1065 WARN(panel_pipe == pipe && locked,
1066 "panel assertion failure, pipe %c regs locked\n",
1067 pipe_name(pipe));
1068 }
1069
1070 void assert_pipe(struct drm_i915_private *dev_priv,
1071 enum pipe pipe, bool state)
1072 {
1073 int reg;
1074 u32 val;
1075 bool cur_state;
1076 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1077 pipe);
1078
1079 /* if we need the pipe A quirk it must be always on */
1080 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1081 state = true;
1082
1083 if (!intel_display_power_enabled(dev_priv->dev,
1084 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1085 cur_state = false;
1086 } else {
1087 reg = PIPECONF(cpu_transcoder);
1088 val = I915_READ(reg);
1089 cur_state = !!(val & PIPECONF_ENABLE);
1090 }
1091
1092 WARN(cur_state != state,
1093 "pipe %c assertion failure (expected %s, current %s)\n",
1094 pipe_name(pipe), state_string(state), state_string(cur_state));
1095 }
1096
1097 static void assert_plane(struct drm_i915_private *dev_priv,
1098 enum plane plane, bool state)
1099 {
1100 int reg;
1101 u32 val;
1102 bool cur_state;
1103
1104 reg = DSPCNTR(plane);
1105 val = I915_READ(reg);
1106 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1107 WARN(cur_state != state,
1108 "plane %c assertion failure (expected %s, current %s)\n",
1109 plane_name(plane), state_string(state), state_string(cur_state));
1110 }
1111
1112 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1113 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1114
1115 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1116 enum pipe pipe)
1117 {
1118 struct drm_device *dev = dev_priv->dev;
1119 int reg, i;
1120 u32 val;
1121 int cur_pipe;
1122
1123 /* Primary planes are fixed to pipes on gen4+ */
1124 if (INTEL_INFO(dev)->gen >= 4) {
1125 reg = DSPCNTR(pipe);
1126 val = I915_READ(reg);
1127 WARN((val & DISPLAY_PLANE_ENABLE),
1128 "plane %c assertion failure, should be disabled but not\n",
1129 plane_name(pipe));
1130 return;
1131 }
1132
1133 /* Need to check both planes against the pipe */
1134 for_each_pipe(i) {
1135 reg = DSPCNTR(i);
1136 val = I915_READ(reg);
1137 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1138 DISPPLANE_SEL_PIPE_SHIFT;
1139 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1140 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1141 plane_name(i), pipe_name(pipe));
1142 }
1143 }
1144
1145 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1146 enum pipe pipe)
1147 {
1148 struct drm_device *dev = dev_priv->dev;
1149 int reg, i;
1150 u32 val;
1151
1152 if (IS_VALLEYVIEW(dev)) {
1153 for (i = 0; i < dev_priv->num_plane; i++) {
1154 reg = SPCNTR(pipe, i);
1155 val = I915_READ(reg);
1156 WARN((val & SP_ENABLE),
1157 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1158 sprite_name(pipe, i), pipe_name(pipe));
1159 }
1160 } else if (INTEL_INFO(dev)->gen >= 7) {
1161 reg = SPRCTL(pipe);
1162 val = I915_READ(reg);
1163 WARN((val & SPRITE_ENABLE),
1164 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1165 plane_name(pipe), pipe_name(pipe));
1166 } else if (INTEL_INFO(dev)->gen >= 5) {
1167 reg = DVSCNTR(pipe);
1168 val = I915_READ(reg);
1169 WARN((val & DVS_ENABLE),
1170 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1171 plane_name(pipe), pipe_name(pipe));
1172 }
1173 }
1174
1175 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1176 {
1177 u32 val;
1178 bool enabled;
1179
1180 if (HAS_PCH_LPT(dev_priv->dev)) {
1181 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1182 return;
1183 }
1184
1185 val = I915_READ(PCH_DREF_CONTROL);
1186 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1187 DREF_SUPERSPREAD_SOURCE_MASK));
1188 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1189 }
1190
1191 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1192 enum pipe pipe)
1193 {
1194 int reg;
1195 u32 val;
1196 bool enabled;
1197
1198 reg = PCH_TRANSCONF(pipe);
1199 val = I915_READ(reg);
1200 enabled = !!(val & TRANS_ENABLE);
1201 WARN(enabled,
1202 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1203 pipe_name(pipe));
1204 }
1205
1206 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1207 enum pipe pipe, u32 port_sel, u32 val)
1208 {
1209 if ((val & DP_PORT_EN) == 0)
1210 return false;
1211
1212 if (HAS_PCH_CPT(dev_priv->dev)) {
1213 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1214 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1215 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1216 return false;
1217 } else {
1218 if ((val & DP_PIPE_MASK) != (pipe << 30))
1219 return false;
1220 }
1221 return true;
1222 }
1223
1224 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1225 enum pipe pipe, u32 val)
1226 {
1227 if ((val & SDVO_ENABLE) == 0)
1228 return false;
1229
1230 if (HAS_PCH_CPT(dev_priv->dev)) {
1231 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1232 return false;
1233 } else {
1234 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1235 return false;
1236 }
1237 return true;
1238 }
1239
1240 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1241 enum pipe pipe, u32 val)
1242 {
1243 if ((val & LVDS_PORT_EN) == 0)
1244 return false;
1245
1246 if (HAS_PCH_CPT(dev_priv->dev)) {
1247 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1248 return false;
1249 } else {
1250 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1251 return false;
1252 }
1253 return true;
1254 }
1255
1256 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe, u32 val)
1258 {
1259 if ((val & ADPA_DAC_ENABLE) == 0)
1260 return false;
1261 if (HAS_PCH_CPT(dev_priv->dev)) {
1262 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1263 return false;
1264 } else {
1265 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1266 return false;
1267 }
1268 return true;
1269 }
1270
1271 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1272 enum pipe pipe, int reg, u32 port_sel)
1273 {
1274 u32 val = I915_READ(reg);
1275 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1276 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1277 reg, pipe_name(pipe));
1278
1279 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1280 && (val & DP_PIPEB_SELECT),
1281 "IBX PCH dp port still using transcoder B\n");
1282 }
1283
1284 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1285 enum pipe pipe, int reg)
1286 {
1287 u32 val = I915_READ(reg);
1288 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1289 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1290 reg, pipe_name(pipe));
1291
1292 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1293 && (val & SDVO_PIPE_B_SELECT),
1294 "IBX PCH hdmi port still using transcoder B\n");
1295 }
1296
1297 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1298 enum pipe pipe)
1299 {
1300 int reg;
1301 u32 val;
1302
1303 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1304 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1305 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1306
1307 reg = PCH_ADPA;
1308 val = I915_READ(reg);
1309 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1310 "PCH VGA enabled on transcoder %c, should be disabled\n",
1311 pipe_name(pipe));
1312
1313 reg = PCH_LVDS;
1314 val = I915_READ(reg);
1315 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1316 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1317 pipe_name(pipe));
1318
1319 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1320 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1321 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1322 }
1323
1324 static void vlv_enable_pll(struct intel_crtc *crtc)
1325 {
1326 struct drm_device *dev = crtc->base.dev;
1327 struct drm_i915_private *dev_priv = dev->dev_private;
1328 int reg = DPLL(crtc->pipe);
1329 u32 dpll = crtc->config.dpll_hw_state.dpll;
1330
1331 assert_pipe_disabled(dev_priv, crtc->pipe);
1332
1333 /* No really, not for ILK+ */
1334 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1335
1336 /* PLL is protected by panel, make sure we can write it */
1337 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1338 assert_panel_unlocked(dev_priv, crtc->pipe);
1339
1340 I915_WRITE(reg, dpll);
1341 POSTING_READ(reg);
1342 udelay(150);
1343
1344 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1345 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1346
1347 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1348 POSTING_READ(DPLL_MD(crtc->pipe));
1349
1350 /* We do this three times for luck */
1351 I915_WRITE(reg, dpll);
1352 POSTING_READ(reg);
1353 udelay(150); /* wait for warmup */
1354 I915_WRITE(reg, dpll);
1355 POSTING_READ(reg);
1356 udelay(150); /* wait for warmup */
1357 I915_WRITE(reg, dpll);
1358 POSTING_READ(reg);
1359 udelay(150); /* wait for warmup */
1360 }
1361
1362 static void i9xx_enable_pll(struct intel_crtc *crtc)
1363 {
1364 struct drm_device *dev = crtc->base.dev;
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 int reg = DPLL(crtc->pipe);
1367 u32 dpll = crtc->config.dpll_hw_state.dpll;
1368
1369 assert_pipe_disabled(dev_priv, crtc->pipe);
1370
1371 /* No really, not for ILK+ */
1372 BUG_ON(dev_priv->info->gen >= 5);
1373
1374 /* PLL is protected by panel, make sure we can write it */
1375 if (IS_MOBILE(dev) && !IS_I830(dev))
1376 assert_panel_unlocked(dev_priv, crtc->pipe);
1377
1378 I915_WRITE(reg, dpll);
1379
1380 /* Wait for the clocks to stabilize. */
1381 POSTING_READ(reg);
1382 udelay(150);
1383
1384 if (INTEL_INFO(dev)->gen >= 4) {
1385 I915_WRITE(DPLL_MD(crtc->pipe),
1386 crtc->config.dpll_hw_state.dpll_md);
1387 } else {
1388 /* The pixel multiplier can only be updated once the
1389 * DPLL is enabled and the clocks are stable.
1390 *
1391 * So write it again.
1392 */
1393 I915_WRITE(reg, dpll);
1394 }
1395
1396 /* We do this three times for luck */
1397 I915_WRITE(reg, dpll);
1398 POSTING_READ(reg);
1399 udelay(150); /* wait for warmup */
1400 I915_WRITE(reg, dpll);
1401 POSTING_READ(reg);
1402 udelay(150); /* wait for warmup */
1403 I915_WRITE(reg, dpll);
1404 POSTING_READ(reg);
1405 udelay(150); /* wait for warmup */
1406 }
1407
1408 /**
1409 * i9xx_disable_pll - disable a PLL
1410 * @dev_priv: i915 private structure
1411 * @pipe: pipe PLL to disable
1412 *
1413 * Disable the PLL for @pipe, making sure the pipe is off first.
1414 *
1415 * Note! This is for pre-ILK only.
1416 */
1417 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1418 {
1419 /* Don't disable pipe A or pipe A PLLs if needed */
1420 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1421 return;
1422
1423 /* Make sure the pipe isn't still relying on us */
1424 assert_pipe_disabled(dev_priv, pipe);
1425
1426 I915_WRITE(DPLL(pipe), 0);
1427 POSTING_READ(DPLL(pipe));
1428 }
1429
1430 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1431 {
1432 u32 port_mask;
1433
1434 if (!port)
1435 port_mask = DPLL_PORTB_READY_MASK;
1436 else
1437 port_mask = DPLL_PORTC_READY_MASK;
1438
1439 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1440 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1441 'B' + port, I915_READ(DPLL(0)));
1442 }
1443
1444 /**
1445 * ironlake_enable_shared_dpll - enable PCH PLL
1446 * @dev_priv: i915 private structure
1447 * @pipe: pipe PLL to enable
1448 *
1449 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1450 * drives the transcoder clock.
1451 */
1452 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1453 {
1454 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1455 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1456
1457 /* PCH PLLs only available on ILK, SNB and IVB */
1458 BUG_ON(dev_priv->info->gen < 5);
1459 if (WARN_ON(pll == NULL))
1460 return;
1461
1462 if (WARN_ON(pll->refcount == 0))
1463 return;
1464
1465 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1466 pll->name, pll->active, pll->on,
1467 crtc->base.base.id);
1468
1469 if (pll->active++) {
1470 WARN_ON(!pll->on);
1471 assert_shared_dpll_enabled(dev_priv, pll);
1472 return;
1473 }
1474 WARN_ON(pll->on);
1475
1476 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1477 pll->enable(dev_priv, pll);
1478 pll->on = true;
1479 }
1480
1481 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1482 {
1483 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1484 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1485
1486 /* PCH only available on ILK+ */
1487 BUG_ON(dev_priv->info->gen < 5);
1488 if (WARN_ON(pll == NULL))
1489 return;
1490
1491 if (WARN_ON(pll->refcount == 0))
1492 return;
1493
1494 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1495 pll->name, pll->active, pll->on,
1496 crtc->base.base.id);
1497
1498 if (WARN_ON(pll->active == 0)) {
1499 assert_shared_dpll_disabled(dev_priv, pll);
1500 return;
1501 }
1502
1503 assert_shared_dpll_enabled(dev_priv, pll);
1504 WARN_ON(!pll->on);
1505 if (--pll->active)
1506 return;
1507
1508 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1509 pll->disable(dev_priv, pll);
1510 pll->on = false;
1511 }
1512
1513 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1514 enum pipe pipe)
1515 {
1516 struct drm_device *dev = dev_priv->dev;
1517 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1519 uint32_t reg, val, pipeconf_val;
1520
1521 /* PCH only available on ILK+ */
1522 BUG_ON(dev_priv->info->gen < 5);
1523
1524 /* Make sure PCH DPLL is enabled */
1525 assert_shared_dpll_enabled(dev_priv,
1526 intel_crtc_to_shared_dpll(intel_crtc));
1527
1528 /* FDI must be feeding us bits for PCH ports */
1529 assert_fdi_tx_enabled(dev_priv, pipe);
1530 assert_fdi_rx_enabled(dev_priv, pipe);
1531
1532 if (HAS_PCH_CPT(dev)) {
1533 /* Workaround: Set the timing override bit before enabling the
1534 * pch transcoder. */
1535 reg = TRANS_CHICKEN2(pipe);
1536 val = I915_READ(reg);
1537 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1538 I915_WRITE(reg, val);
1539 }
1540
1541 reg = PCH_TRANSCONF(pipe);
1542 val = I915_READ(reg);
1543 pipeconf_val = I915_READ(PIPECONF(pipe));
1544
1545 if (HAS_PCH_IBX(dev_priv->dev)) {
1546 /*
1547 * make the BPC in transcoder be consistent with
1548 * that in pipeconf reg.
1549 */
1550 val &= ~PIPECONF_BPC_MASK;
1551 val |= pipeconf_val & PIPECONF_BPC_MASK;
1552 }
1553
1554 val &= ~TRANS_INTERLACE_MASK;
1555 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1556 if (HAS_PCH_IBX(dev_priv->dev) &&
1557 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1558 val |= TRANS_LEGACY_INTERLACED_ILK;
1559 else
1560 val |= TRANS_INTERLACED;
1561 else
1562 val |= TRANS_PROGRESSIVE;
1563
1564 I915_WRITE(reg, val | TRANS_ENABLE);
1565 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1566 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1567 }
1568
1569 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1570 enum transcoder cpu_transcoder)
1571 {
1572 u32 val, pipeconf_val;
1573
1574 /* PCH only available on ILK+ */
1575 BUG_ON(dev_priv->info->gen < 5);
1576
1577 /* FDI must be feeding us bits for PCH ports */
1578 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1579 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1580
1581 /* Workaround: set timing override bit. */
1582 val = I915_READ(_TRANSA_CHICKEN2);
1583 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1584 I915_WRITE(_TRANSA_CHICKEN2, val);
1585
1586 val = TRANS_ENABLE;
1587 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1588
1589 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1590 PIPECONF_INTERLACED_ILK)
1591 val |= TRANS_INTERLACED;
1592 else
1593 val |= TRANS_PROGRESSIVE;
1594
1595 I915_WRITE(LPT_TRANSCONF, val);
1596 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1597 DRM_ERROR("Failed to enable PCH transcoder\n");
1598 }
1599
1600 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1601 enum pipe pipe)
1602 {
1603 struct drm_device *dev = dev_priv->dev;
1604 uint32_t reg, val;
1605
1606 /* FDI relies on the transcoder */
1607 assert_fdi_tx_disabled(dev_priv, pipe);
1608 assert_fdi_rx_disabled(dev_priv, pipe);
1609
1610 /* Ports must be off as well */
1611 assert_pch_ports_disabled(dev_priv, pipe);
1612
1613 reg = PCH_TRANSCONF(pipe);
1614 val = I915_READ(reg);
1615 val &= ~TRANS_ENABLE;
1616 I915_WRITE(reg, val);
1617 /* wait for PCH transcoder off, transcoder state */
1618 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1619 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1620
1621 if (!HAS_PCH_IBX(dev)) {
1622 /* Workaround: Clear the timing override chicken bit again. */
1623 reg = TRANS_CHICKEN2(pipe);
1624 val = I915_READ(reg);
1625 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1626 I915_WRITE(reg, val);
1627 }
1628 }
1629
1630 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1631 {
1632 u32 val;
1633
1634 val = I915_READ(LPT_TRANSCONF);
1635 val &= ~TRANS_ENABLE;
1636 I915_WRITE(LPT_TRANSCONF, val);
1637 /* wait for PCH transcoder off, transcoder state */
1638 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1639 DRM_ERROR("Failed to disable PCH transcoder\n");
1640
1641 /* Workaround: clear timing override bit. */
1642 val = I915_READ(_TRANSA_CHICKEN2);
1643 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1644 I915_WRITE(_TRANSA_CHICKEN2, val);
1645 }
1646
1647 /**
1648 * intel_enable_pipe - enable a pipe, asserting requirements
1649 * @dev_priv: i915 private structure
1650 * @pipe: pipe to enable
1651 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1652 *
1653 * Enable @pipe, making sure that various hardware specific requirements
1654 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1655 *
1656 * @pipe should be %PIPE_A or %PIPE_B.
1657 *
1658 * Will wait until the pipe is actually running (i.e. first vblank) before
1659 * returning.
1660 */
1661 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1662 bool pch_port)
1663 {
1664 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1665 pipe);
1666 enum pipe pch_transcoder;
1667 int reg;
1668 u32 val;
1669
1670 assert_planes_disabled(dev_priv, pipe);
1671 assert_sprites_disabled(dev_priv, pipe);
1672
1673 if (HAS_PCH_LPT(dev_priv->dev))
1674 pch_transcoder = TRANSCODER_A;
1675 else
1676 pch_transcoder = pipe;
1677
1678 /*
1679 * A pipe without a PLL won't actually be able to drive bits from
1680 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1681 * need the check.
1682 */
1683 if (!HAS_PCH_SPLIT(dev_priv->dev))
1684 assert_pll_enabled(dev_priv, pipe);
1685 else {
1686 if (pch_port) {
1687 /* if driving the PCH, we need FDI enabled */
1688 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1689 assert_fdi_tx_pll_enabled(dev_priv,
1690 (enum pipe) cpu_transcoder);
1691 }
1692 /* FIXME: assert CPU port conditions for SNB+ */
1693 }
1694
1695 reg = PIPECONF(cpu_transcoder);
1696 val = I915_READ(reg);
1697 if (val & PIPECONF_ENABLE)
1698 return;
1699
1700 I915_WRITE(reg, val | PIPECONF_ENABLE);
1701 intel_wait_for_vblank(dev_priv->dev, pipe);
1702 }
1703
1704 /**
1705 * intel_disable_pipe - disable a pipe, asserting requirements
1706 * @dev_priv: i915 private structure
1707 * @pipe: pipe to disable
1708 *
1709 * Disable @pipe, making sure that various hardware specific requirements
1710 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1711 *
1712 * @pipe should be %PIPE_A or %PIPE_B.
1713 *
1714 * Will wait until the pipe has shut down before returning.
1715 */
1716 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1717 enum pipe pipe)
1718 {
1719 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1720 pipe);
1721 int reg;
1722 u32 val;
1723
1724 /*
1725 * Make sure planes won't keep trying to pump pixels to us,
1726 * or we might hang the display.
1727 */
1728 assert_planes_disabled(dev_priv, pipe);
1729 assert_sprites_disabled(dev_priv, pipe);
1730
1731 /* Don't disable pipe A or pipe A PLLs if needed */
1732 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1733 return;
1734
1735 reg = PIPECONF(cpu_transcoder);
1736 val = I915_READ(reg);
1737 if ((val & PIPECONF_ENABLE) == 0)
1738 return;
1739
1740 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1741 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1742 }
1743
1744 /*
1745 * Plane regs are double buffered, going from enabled->disabled needs a
1746 * trigger in order to latch. The display address reg provides this.
1747 */
1748 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1749 enum plane plane)
1750 {
1751 if (dev_priv->info->gen >= 4)
1752 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1753 else
1754 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1755 }
1756
1757 /**
1758 * intel_enable_plane - enable a display plane on a given pipe
1759 * @dev_priv: i915 private structure
1760 * @plane: plane to enable
1761 * @pipe: pipe being fed
1762 *
1763 * Enable @plane on @pipe, making sure that @pipe is running first.
1764 */
1765 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1766 enum plane plane, enum pipe pipe)
1767 {
1768 int reg;
1769 u32 val;
1770
1771 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1772 assert_pipe_enabled(dev_priv, pipe);
1773
1774 reg = DSPCNTR(plane);
1775 val = I915_READ(reg);
1776 if (val & DISPLAY_PLANE_ENABLE)
1777 return;
1778
1779 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1780 intel_flush_display_plane(dev_priv, plane);
1781 intel_wait_for_vblank(dev_priv->dev, pipe);
1782 }
1783
1784 /**
1785 * intel_disable_plane - disable a display plane
1786 * @dev_priv: i915 private structure
1787 * @plane: plane to disable
1788 * @pipe: pipe consuming the data
1789 *
1790 * Disable @plane; should be an independent operation.
1791 */
1792 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1793 enum plane plane, enum pipe pipe)
1794 {
1795 int reg;
1796 u32 val;
1797
1798 reg = DSPCNTR(plane);
1799 val = I915_READ(reg);
1800 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1801 return;
1802
1803 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1804 intel_flush_display_plane(dev_priv, plane);
1805 intel_wait_for_vblank(dev_priv->dev, pipe);
1806 }
1807
1808 static bool need_vtd_wa(struct drm_device *dev)
1809 {
1810 #ifdef CONFIG_INTEL_IOMMU
1811 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1812 return true;
1813 #endif
1814 return false;
1815 }
1816
1817 int
1818 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1819 struct drm_i915_gem_object *obj,
1820 struct intel_ring_buffer *pipelined)
1821 {
1822 struct drm_i915_private *dev_priv = dev->dev_private;
1823 u32 alignment;
1824 int ret;
1825
1826 switch (obj->tiling_mode) {
1827 case I915_TILING_NONE:
1828 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1829 alignment = 128 * 1024;
1830 else if (INTEL_INFO(dev)->gen >= 4)
1831 alignment = 4 * 1024;
1832 else
1833 alignment = 64 * 1024;
1834 break;
1835 case I915_TILING_X:
1836 /* pin() will align the object as required by fence */
1837 alignment = 0;
1838 break;
1839 case I915_TILING_Y:
1840 /* Despite that we check this in framebuffer_init userspace can
1841 * screw us over and change the tiling after the fact. Only
1842 * pinned buffers can't change their tiling. */
1843 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1844 return -EINVAL;
1845 default:
1846 BUG();
1847 }
1848
1849 /* Note that the w/a also requires 64 PTE of padding following the
1850 * bo. We currently fill all unused PTE with the shadow page and so
1851 * we should always have valid PTE following the scanout preventing
1852 * the VT-d warning.
1853 */
1854 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1855 alignment = 256 * 1024;
1856
1857 dev_priv->mm.interruptible = false;
1858 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1859 if (ret)
1860 goto err_interruptible;
1861
1862 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1863 * fence, whereas 965+ only requires a fence if using
1864 * framebuffer compression. For simplicity, we always install
1865 * a fence as the cost is not that onerous.
1866 */
1867 ret = i915_gem_object_get_fence(obj);
1868 if (ret)
1869 goto err_unpin;
1870
1871 i915_gem_object_pin_fence(obj);
1872
1873 dev_priv->mm.interruptible = true;
1874 return 0;
1875
1876 err_unpin:
1877 i915_gem_object_unpin(obj);
1878 err_interruptible:
1879 dev_priv->mm.interruptible = true;
1880 return ret;
1881 }
1882
1883 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1884 {
1885 i915_gem_object_unpin_fence(obj);
1886 i915_gem_object_unpin(obj);
1887 }
1888
1889 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1890 * is assumed to be a power-of-two. */
1891 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1892 unsigned int tiling_mode,
1893 unsigned int cpp,
1894 unsigned int pitch)
1895 {
1896 if (tiling_mode != I915_TILING_NONE) {
1897 unsigned int tile_rows, tiles;
1898
1899 tile_rows = *y / 8;
1900 *y %= 8;
1901
1902 tiles = *x / (512/cpp);
1903 *x %= 512/cpp;
1904
1905 return tile_rows * pitch * 8 + tiles * 4096;
1906 } else {
1907 unsigned int offset;
1908
1909 offset = *y * pitch + *x * cpp;
1910 *y = 0;
1911 *x = (offset & 4095) / cpp;
1912 return offset & -4096;
1913 }
1914 }
1915
1916 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1917 int x, int y)
1918 {
1919 struct drm_device *dev = crtc->dev;
1920 struct drm_i915_private *dev_priv = dev->dev_private;
1921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1922 struct intel_framebuffer *intel_fb;
1923 struct drm_i915_gem_object *obj;
1924 int plane = intel_crtc->plane;
1925 unsigned long linear_offset;
1926 u32 dspcntr;
1927 u32 reg;
1928
1929 switch (plane) {
1930 case 0:
1931 case 1:
1932 break;
1933 default:
1934 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1935 return -EINVAL;
1936 }
1937
1938 intel_fb = to_intel_framebuffer(fb);
1939 obj = intel_fb->obj;
1940
1941 reg = DSPCNTR(plane);
1942 dspcntr = I915_READ(reg);
1943 /* Mask out pixel format bits in case we change it */
1944 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1945 switch (fb->pixel_format) {
1946 case DRM_FORMAT_C8:
1947 dspcntr |= DISPPLANE_8BPP;
1948 break;
1949 case DRM_FORMAT_XRGB1555:
1950 case DRM_FORMAT_ARGB1555:
1951 dspcntr |= DISPPLANE_BGRX555;
1952 break;
1953 case DRM_FORMAT_RGB565:
1954 dspcntr |= DISPPLANE_BGRX565;
1955 break;
1956 case DRM_FORMAT_XRGB8888:
1957 case DRM_FORMAT_ARGB8888:
1958 dspcntr |= DISPPLANE_BGRX888;
1959 break;
1960 case DRM_FORMAT_XBGR8888:
1961 case DRM_FORMAT_ABGR8888:
1962 dspcntr |= DISPPLANE_RGBX888;
1963 break;
1964 case DRM_FORMAT_XRGB2101010:
1965 case DRM_FORMAT_ARGB2101010:
1966 dspcntr |= DISPPLANE_BGRX101010;
1967 break;
1968 case DRM_FORMAT_XBGR2101010:
1969 case DRM_FORMAT_ABGR2101010:
1970 dspcntr |= DISPPLANE_RGBX101010;
1971 break;
1972 default:
1973 BUG();
1974 }
1975
1976 if (INTEL_INFO(dev)->gen >= 4) {
1977 if (obj->tiling_mode != I915_TILING_NONE)
1978 dspcntr |= DISPPLANE_TILED;
1979 else
1980 dspcntr &= ~DISPPLANE_TILED;
1981 }
1982
1983 if (IS_G4X(dev))
1984 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1985
1986 I915_WRITE(reg, dspcntr);
1987
1988 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1989
1990 if (INTEL_INFO(dev)->gen >= 4) {
1991 intel_crtc->dspaddr_offset =
1992 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1993 fb->bits_per_pixel / 8,
1994 fb->pitches[0]);
1995 linear_offset -= intel_crtc->dspaddr_offset;
1996 } else {
1997 intel_crtc->dspaddr_offset = linear_offset;
1998 }
1999
2000 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2001 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2002 fb->pitches[0]);
2003 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2004 if (INTEL_INFO(dev)->gen >= 4) {
2005 I915_MODIFY_DISPBASE(DSPSURF(plane),
2006 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2007 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2008 I915_WRITE(DSPLINOFF(plane), linear_offset);
2009 } else
2010 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2011 POSTING_READ(reg);
2012
2013 return 0;
2014 }
2015
2016 static int ironlake_update_plane(struct drm_crtc *crtc,
2017 struct drm_framebuffer *fb, int x, int y)
2018 {
2019 struct drm_device *dev = crtc->dev;
2020 struct drm_i915_private *dev_priv = dev->dev_private;
2021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2022 struct intel_framebuffer *intel_fb;
2023 struct drm_i915_gem_object *obj;
2024 int plane = intel_crtc->plane;
2025 unsigned long linear_offset;
2026 u32 dspcntr;
2027 u32 reg;
2028
2029 switch (plane) {
2030 case 0:
2031 case 1:
2032 case 2:
2033 break;
2034 default:
2035 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2036 return -EINVAL;
2037 }
2038
2039 intel_fb = to_intel_framebuffer(fb);
2040 obj = intel_fb->obj;
2041
2042 reg = DSPCNTR(plane);
2043 dspcntr = I915_READ(reg);
2044 /* Mask out pixel format bits in case we change it */
2045 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2046 switch (fb->pixel_format) {
2047 case DRM_FORMAT_C8:
2048 dspcntr |= DISPPLANE_8BPP;
2049 break;
2050 case DRM_FORMAT_RGB565:
2051 dspcntr |= DISPPLANE_BGRX565;
2052 break;
2053 case DRM_FORMAT_XRGB8888:
2054 case DRM_FORMAT_ARGB8888:
2055 dspcntr |= DISPPLANE_BGRX888;
2056 break;
2057 case DRM_FORMAT_XBGR8888:
2058 case DRM_FORMAT_ABGR8888:
2059 dspcntr |= DISPPLANE_RGBX888;
2060 break;
2061 case DRM_FORMAT_XRGB2101010:
2062 case DRM_FORMAT_ARGB2101010:
2063 dspcntr |= DISPPLANE_BGRX101010;
2064 break;
2065 case DRM_FORMAT_XBGR2101010:
2066 case DRM_FORMAT_ABGR2101010:
2067 dspcntr |= DISPPLANE_RGBX101010;
2068 break;
2069 default:
2070 BUG();
2071 }
2072
2073 if (obj->tiling_mode != I915_TILING_NONE)
2074 dspcntr |= DISPPLANE_TILED;
2075 else
2076 dspcntr &= ~DISPPLANE_TILED;
2077
2078 /* must disable */
2079 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2080
2081 I915_WRITE(reg, dspcntr);
2082
2083 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2084 intel_crtc->dspaddr_offset =
2085 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2086 fb->bits_per_pixel / 8,
2087 fb->pitches[0]);
2088 linear_offset -= intel_crtc->dspaddr_offset;
2089
2090 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2091 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2092 fb->pitches[0]);
2093 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2094 I915_MODIFY_DISPBASE(DSPSURF(plane),
2095 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2096 if (IS_HASWELL(dev)) {
2097 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2098 } else {
2099 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2100 I915_WRITE(DSPLINOFF(plane), linear_offset);
2101 }
2102 POSTING_READ(reg);
2103
2104 return 0;
2105 }
2106
2107 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2108 static int
2109 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2110 int x, int y, enum mode_set_atomic state)
2111 {
2112 struct drm_device *dev = crtc->dev;
2113 struct drm_i915_private *dev_priv = dev->dev_private;
2114
2115 if (dev_priv->display.disable_fbc)
2116 dev_priv->display.disable_fbc(dev);
2117 intel_increase_pllclock(crtc);
2118
2119 return dev_priv->display.update_plane(crtc, fb, x, y);
2120 }
2121
2122 void intel_display_handle_reset(struct drm_device *dev)
2123 {
2124 struct drm_i915_private *dev_priv = dev->dev_private;
2125 struct drm_crtc *crtc;
2126
2127 /*
2128 * Flips in the rings have been nuked by the reset,
2129 * so complete all pending flips so that user space
2130 * will get its events and not get stuck.
2131 *
2132 * Also update the base address of all primary
2133 * planes to the the last fb to make sure we're
2134 * showing the correct fb after a reset.
2135 *
2136 * Need to make two loops over the crtcs so that we
2137 * don't try to grab a crtc mutex before the
2138 * pending_flip_queue really got woken up.
2139 */
2140
2141 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2143 enum plane plane = intel_crtc->plane;
2144
2145 intel_prepare_page_flip(dev, plane);
2146 intel_finish_page_flip_plane(dev, plane);
2147 }
2148
2149 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2151
2152 mutex_lock(&crtc->mutex);
2153 if (intel_crtc->active)
2154 dev_priv->display.update_plane(crtc, crtc->fb,
2155 crtc->x, crtc->y);
2156 mutex_unlock(&crtc->mutex);
2157 }
2158 }
2159
2160 static int
2161 intel_finish_fb(struct drm_framebuffer *old_fb)
2162 {
2163 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2164 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2165 bool was_interruptible = dev_priv->mm.interruptible;
2166 int ret;
2167
2168 /* Big Hammer, we also need to ensure that any pending
2169 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2170 * current scanout is retired before unpinning the old
2171 * framebuffer.
2172 *
2173 * This should only fail upon a hung GPU, in which case we
2174 * can safely continue.
2175 */
2176 dev_priv->mm.interruptible = false;
2177 ret = i915_gem_object_finish_gpu(obj);
2178 dev_priv->mm.interruptible = was_interruptible;
2179
2180 return ret;
2181 }
2182
2183 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2184 {
2185 struct drm_device *dev = crtc->dev;
2186 struct drm_i915_master_private *master_priv;
2187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188
2189 if (!dev->primary->master)
2190 return;
2191
2192 master_priv = dev->primary->master->driver_priv;
2193 if (!master_priv->sarea_priv)
2194 return;
2195
2196 switch (intel_crtc->pipe) {
2197 case 0:
2198 master_priv->sarea_priv->pipeA_x = x;
2199 master_priv->sarea_priv->pipeA_y = y;
2200 break;
2201 case 1:
2202 master_priv->sarea_priv->pipeB_x = x;
2203 master_priv->sarea_priv->pipeB_y = y;
2204 break;
2205 default:
2206 break;
2207 }
2208 }
2209
2210 static int
2211 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2212 struct drm_framebuffer *fb)
2213 {
2214 struct drm_device *dev = crtc->dev;
2215 struct drm_i915_private *dev_priv = dev->dev_private;
2216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2217 struct drm_framebuffer *old_fb;
2218 int ret;
2219
2220 /* no fb bound */
2221 if (!fb) {
2222 DRM_ERROR("No FB bound\n");
2223 return 0;
2224 }
2225
2226 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2227 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2228 plane_name(intel_crtc->plane),
2229 INTEL_INFO(dev)->num_pipes);
2230 return -EINVAL;
2231 }
2232
2233 mutex_lock(&dev->struct_mutex);
2234 ret = intel_pin_and_fence_fb_obj(dev,
2235 to_intel_framebuffer(fb)->obj,
2236 NULL);
2237 if (ret != 0) {
2238 mutex_unlock(&dev->struct_mutex);
2239 DRM_ERROR("pin & fence failed\n");
2240 return ret;
2241 }
2242
2243 /* Update pipe size and adjust fitter if needed */
2244 if (i915_fastboot) {
2245 I915_WRITE(PIPESRC(intel_crtc->pipe),
2246 ((crtc->mode.hdisplay - 1) << 16) |
2247 (crtc->mode.vdisplay - 1));
2248 if (!intel_crtc->config.pch_pfit.size &&
2249 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2250 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2251 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2252 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2253 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2254 }
2255 }
2256
2257 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2258 if (ret) {
2259 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2260 mutex_unlock(&dev->struct_mutex);
2261 DRM_ERROR("failed to update base address\n");
2262 return ret;
2263 }
2264
2265 old_fb = crtc->fb;
2266 crtc->fb = fb;
2267 crtc->x = x;
2268 crtc->y = y;
2269
2270 if (old_fb) {
2271 if (intel_crtc->active && old_fb != fb)
2272 intel_wait_for_vblank(dev, intel_crtc->pipe);
2273 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2274 }
2275
2276 intel_update_fbc(dev);
2277 intel_edp_psr_update(dev);
2278 mutex_unlock(&dev->struct_mutex);
2279
2280 intel_crtc_update_sarea_pos(crtc, x, y);
2281
2282 return 0;
2283 }
2284
2285 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2286 {
2287 struct drm_device *dev = crtc->dev;
2288 struct drm_i915_private *dev_priv = dev->dev_private;
2289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290 int pipe = intel_crtc->pipe;
2291 u32 reg, temp;
2292
2293 /* enable normal train */
2294 reg = FDI_TX_CTL(pipe);
2295 temp = I915_READ(reg);
2296 if (IS_IVYBRIDGE(dev)) {
2297 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2298 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2299 } else {
2300 temp &= ~FDI_LINK_TRAIN_NONE;
2301 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2302 }
2303 I915_WRITE(reg, temp);
2304
2305 reg = FDI_RX_CTL(pipe);
2306 temp = I915_READ(reg);
2307 if (HAS_PCH_CPT(dev)) {
2308 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2309 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2310 } else {
2311 temp &= ~FDI_LINK_TRAIN_NONE;
2312 temp |= FDI_LINK_TRAIN_NONE;
2313 }
2314 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2315
2316 /* wait one idle pattern time */
2317 POSTING_READ(reg);
2318 udelay(1000);
2319
2320 /* IVB wants error correction enabled */
2321 if (IS_IVYBRIDGE(dev))
2322 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2323 FDI_FE_ERRC_ENABLE);
2324 }
2325
2326 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2327 {
2328 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2329 }
2330
2331 static void ivb_modeset_global_resources(struct drm_device *dev)
2332 {
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334 struct intel_crtc *pipe_B_crtc =
2335 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2336 struct intel_crtc *pipe_C_crtc =
2337 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2338 uint32_t temp;
2339
2340 /*
2341 * When everything is off disable fdi C so that we could enable fdi B
2342 * with all lanes. Note that we don't care about enabled pipes without
2343 * an enabled pch encoder.
2344 */
2345 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2346 !pipe_has_enabled_pch(pipe_C_crtc)) {
2347 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2348 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2349
2350 temp = I915_READ(SOUTH_CHICKEN1);
2351 temp &= ~FDI_BC_BIFURCATION_SELECT;
2352 DRM_DEBUG_KMS("disabling fdi C rx\n");
2353 I915_WRITE(SOUTH_CHICKEN1, temp);
2354 }
2355 }
2356
2357 /* The FDI link training functions for ILK/Ibexpeak. */
2358 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2359 {
2360 struct drm_device *dev = crtc->dev;
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2363 int pipe = intel_crtc->pipe;
2364 int plane = intel_crtc->plane;
2365 u32 reg, temp, tries;
2366
2367 /* FDI needs bits from pipe & plane first */
2368 assert_pipe_enabled(dev_priv, pipe);
2369 assert_plane_enabled(dev_priv, plane);
2370
2371 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2372 for train result */
2373 reg = FDI_RX_IMR(pipe);
2374 temp = I915_READ(reg);
2375 temp &= ~FDI_RX_SYMBOL_LOCK;
2376 temp &= ~FDI_RX_BIT_LOCK;
2377 I915_WRITE(reg, temp);
2378 I915_READ(reg);
2379 udelay(150);
2380
2381 /* enable CPU FDI TX and PCH FDI RX */
2382 reg = FDI_TX_CTL(pipe);
2383 temp = I915_READ(reg);
2384 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2385 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2386 temp &= ~FDI_LINK_TRAIN_NONE;
2387 temp |= FDI_LINK_TRAIN_PATTERN_1;
2388 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2389
2390 reg = FDI_RX_CTL(pipe);
2391 temp = I915_READ(reg);
2392 temp &= ~FDI_LINK_TRAIN_NONE;
2393 temp |= FDI_LINK_TRAIN_PATTERN_1;
2394 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2395
2396 POSTING_READ(reg);
2397 udelay(150);
2398
2399 /* Ironlake workaround, enable clock pointer after FDI enable*/
2400 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2401 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2402 FDI_RX_PHASE_SYNC_POINTER_EN);
2403
2404 reg = FDI_RX_IIR(pipe);
2405 for (tries = 0; tries < 5; tries++) {
2406 temp = I915_READ(reg);
2407 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2408
2409 if ((temp & FDI_RX_BIT_LOCK)) {
2410 DRM_DEBUG_KMS("FDI train 1 done.\n");
2411 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2412 break;
2413 }
2414 }
2415 if (tries == 5)
2416 DRM_ERROR("FDI train 1 fail!\n");
2417
2418 /* Train 2 */
2419 reg = FDI_TX_CTL(pipe);
2420 temp = I915_READ(reg);
2421 temp &= ~FDI_LINK_TRAIN_NONE;
2422 temp |= FDI_LINK_TRAIN_PATTERN_2;
2423 I915_WRITE(reg, temp);
2424
2425 reg = FDI_RX_CTL(pipe);
2426 temp = I915_READ(reg);
2427 temp &= ~FDI_LINK_TRAIN_NONE;
2428 temp |= FDI_LINK_TRAIN_PATTERN_2;
2429 I915_WRITE(reg, temp);
2430
2431 POSTING_READ(reg);
2432 udelay(150);
2433
2434 reg = FDI_RX_IIR(pipe);
2435 for (tries = 0; tries < 5; tries++) {
2436 temp = I915_READ(reg);
2437 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2438
2439 if (temp & FDI_RX_SYMBOL_LOCK) {
2440 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2441 DRM_DEBUG_KMS("FDI train 2 done.\n");
2442 break;
2443 }
2444 }
2445 if (tries == 5)
2446 DRM_ERROR("FDI train 2 fail!\n");
2447
2448 DRM_DEBUG_KMS("FDI train done\n");
2449
2450 }
2451
2452 static const int snb_b_fdi_train_param[] = {
2453 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2454 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2455 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2456 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2457 };
2458
2459 /* The FDI link training functions for SNB/Cougarpoint. */
2460 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2461 {
2462 struct drm_device *dev = crtc->dev;
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2465 int pipe = intel_crtc->pipe;
2466 u32 reg, temp, i, retry;
2467
2468 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2469 for train result */
2470 reg = FDI_RX_IMR(pipe);
2471 temp = I915_READ(reg);
2472 temp &= ~FDI_RX_SYMBOL_LOCK;
2473 temp &= ~FDI_RX_BIT_LOCK;
2474 I915_WRITE(reg, temp);
2475
2476 POSTING_READ(reg);
2477 udelay(150);
2478
2479 /* enable CPU FDI TX and PCH FDI RX */
2480 reg = FDI_TX_CTL(pipe);
2481 temp = I915_READ(reg);
2482 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2483 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2484 temp &= ~FDI_LINK_TRAIN_NONE;
2485 temp |= FDI_LINK_TRAIN_PATTERN_1;
2486 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2487 /* SNB-B */
2488 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2489 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2490
2491 I915_WRITE(FDI_RX_MISC(pipe),
2492 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2493
2494 reg = FDI_RX_CTL(pipe);
2495 temp = I915_READ(reg);
2496 if (HAS_PCH_CPT(dev)) {
2497 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2498 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2499 } else {
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 }
2503 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2504
2505 POSTING_READ(reg);
2506 udelay(150);
2507
2508 for (i = 0; i < 4; i++) {
2509 reg = FDI_TX_CTL(pipe);
2510 temp = I915_READ(reg);
2511 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2512 temp |= snb_b_fdi_train_param[i];
2513 I915_WRITE(reg, temp);
2514
2515 POSTING_READ(reg);
2516 udelay(500);
2517
2518 for (retry = 0; retry < 5; retry++) {
2519 reg = FDI_RX_IIR(pipe);
2520 temp = I915_READ(reg);
2521 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2522 if (temp & FDI_RX_BIT_LOCK) {
2523 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2524 DRM_DEBUG_KMS("FDI train 1 done.\n");
2525 break;
2526 }
2527 udelay(50);
2528 }
2529 if (retry < 5)
2530 break;
2531 }
2532 if (i == 4)
2533 DRM_ERROR("FDI train 1 fail!\n");
2534
2535 /* Train 2 */
2536 reg = FDI_TX_CTL(pipe);
2537 temp = I915_READ(reg);
2538 temp &= ~FDI_LINK_TRAIN_NONE;
2539 temp |= FDI_LINK_TRAIN_PATTERN_2;
2540 if (IS_GEN6(dev)) {
2541 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2542 /* SNB-B */
2543 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2544 }
2545 I915_WRITE(reg, temp);
2546
2547 reg = FDI_RX_CTL(pipe);
2548 temp = I915_READ(reg);
2549 if (HAS_PCH_CPT(dev)) {
2550 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2551 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2552 } else {
2553 temp &= ~FDI_LINK_TRAIN_NONE;
2554 temp |= FDI_LINK_TRAIN_PATTERN_2;
2555 }
2556 I915_WRITE(reg, temp);
2557
2558 POSTING_READ(reg);
2559 udelay(150);
2560
2561 for (i = 0; i < 4; i++) {
2562 reg = FDI_TX_CTL(pipe);
2563 temp = I915_READ(reg);
2564 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2565 temp |= snb_b_fdi_train_param[i];
2566 I915_WRITE(reg, temp);
2567
2568 POSTING_READ(reg);
2569 udelay(500);
2570
2571 for (retry = 0; retry < 5; retry++) {
2572 reg = FDI_RX_IIR(pipe);
2573 temp = I915_READ(reg);
2574 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575 if (temp & FDI_RX_SYMBOL_LOCK) {
2576 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577 DRM_DEBUG_KMS("FDI train 2 done.\n");
2578 break;
2579 }
2580 udelay(50);
2581 }
2582 if (retry < 5)
2583 break;
2584 }
2585 if (i == 4)
2586 DRM_ERROR("FDI train 2 fail!\n");
2587
2588 DRM_DEBUG_KMS("FDI train done.\n");
2589 }
2590
2591 /* Manual link training for Ivy Bridge A0 parts */
2592 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2593 {
2594 struct drm_device *dev = crtc->dev;
2595 struct drm_i915_private *dev_priv = dev->dev_private;
2596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2597 int pipe = intel_crtc->pipe;
2598 u32 reg, temp, i;
2599
2600 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2601 for train result */
2602 reg = FDI_RX_IMR(pipe);
2603 temp = I915_READ(reg);
2604 temp &= ~FDI_RX_SYMBOL_LOCK;
2605 temp &= ~FDI_RX_BIT_LOCK;
2606 I915_WRITE(reg, temp);
2607
2608 POSTING_READ(reg);
2609 udelay(150);
2610
2611 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2612 I915_READ(FDI_RX_IIR(pipe)));
2613
2614 /* enable CPU FDI TX and PCH FDI RX */
2615 reg = FDI_TX_CTL(pipe);
2616 temp = I915_READ(reg);
2617 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2618 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2619 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2620 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2623 temp |= FDI_COMPOSITE_SYNC;
2624 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2625
2626 I915_WRITE(FDI_RX_MISC(pipe),
2627 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2628
2629 reg = FDI_RX_CTL(pipe);
2630 temp = I915_READ(reg);
2631 temp &= ~FDI_LINK_TRAIN_AUTO;
2632 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2633 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2634 temp |= FDI_COMPOSITE_SYNC;
2635 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2636
2637 POSTING_READ(reg);
2638 udelay(150);
2639
2640 for (i = 0; i < 4; i++) {
2641 reg = FDI_TX_CTL(pipe);
2642 temp = I915_READ(reg);
2643 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2644 temp |= snb_b_fdi_train_param[i];
2645 I915_WRITE(reg, temp);
2646
2647 POSTING_READ(reg);
2648 udelay(500);
2649
2650 reg = FDI_RX_IIR(pipe);
2651 temp = I915_READ(reg);
2652 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2653
2654 if (temp & FDI_RX_BIT_LOCK ||
2655 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2656 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2657 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2658 break;
2659 }
2660 }
2661 if (i == 4)
2662 DRM_ERROR("FDI train 1 fail!\n");
2663
2664 /* Train 2 */
2665 reg = FDI_TX_CTL(pipe);
2666 temp = I915_READ(reg);
2667 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2668 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2669 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2670 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2671 I915_WRITE(reg, temp);
2672
2673 reg = FDI_RX_CTL(pipe);
2674 temp = I915_READ(reg);
2675 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2676 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2677 I915_WRITE(reg, temp);
2678
2679 POSTING_READ(reg);
2680 udelay(150);
2681
2682 for (i = 0; i < 4; i++) {
2683 reg = FDI_TX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2686 temp |= snb_b_fdi_train_param[i];
2687 I915_WRITE(reg, temp);
2688
2689 POSTING_READ(reg);
2690 udelay(500);
2691
2692 reg = FDI_RX_IIR(pipe);
2693 temp = I915_READ(reg);
2694 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2695
2696 if (temp & FDI_RX_SYMBOL_LOCK) {
2697 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2698 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2699 break;
2700 }
2701 }
2702 if (i == 4)
2703 DRM_ERROR("FDI train 2 fail!\n");
2704
2705 DRM_DEBUG_KMS("FDI train done.\n");
2706 }
2707
2708 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2709 {
2710 struct drm_device *dev = intel_crtc->base.dev;
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 int pipe = intel_crtc->pipe;
2713 u32 reg, temp;
2714
2715
2716 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2717 reg = FDI_RX_CTL(pipe);
2718 temp = I915_READ(reg);
2719 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2720 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2721 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2722 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2723
2724 POSTING_READ(reg);
2725 udelay(200);
2726
2727 /* Switch from Rawclk to PCDclk */
2728 temp = I915_READ(reg);
2729 I915_WRITE(reg, temp | FDI_PCDCLK);
2730
2731 POSTING_READ(reg);
2732 udelay(200);
2733
2734 /* Enable CPU FDI TX PLL, always on for Ironlake */
2735 reg = FDI_TX_CTL(pipe);
2736 temp = I915_READ(reg);
2737 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2738 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2739
2740 POSTING_READ(reg);
2741 udelay(100);
2742 }
2743 }
2744
2745 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2746 {
2747 struct drm_device *dev = intel_crtc->base.dev;
2748 struct drm_i915_private *dev_priv = dev->dev_private;
2749 int pipe = intel_crtc->pipe;
2750 u32 reg, temp;
2751
2752 /* Switch from PCDclk to Rawclk */
2753 reg = FDI_RX_CTL(pipe);
2754 temp = I915_READ(reg);
2755 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2756
2757 /* Disable CPU FDI TX PLL */
2758 reg = FDI_TX_CTL(pipe);
2759 temp = I915_READ(reg);
2760 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2761
2762 POSTING_READ(reg);
2763 udelay(100);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2768
2769 /* Wait for the clocks to turn off. */
2770 POSTING_READ(reg);
2771 udelay(100);
2772 }
2773
2774 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2775 {
2776 struct drm_device *dev = crtc->dev;
2777 struct drm_i915_private *dev_priv = dev->dev_private;
2778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2779 int pipe = intel_crtc->pipe;
2780 u32 reg, temp;
2781
2782 /* disable CPU FDI tx and PCH FDI rx */
2783 reg = FDI_TX_CTL(pipe);
2784 temp = I915_READ(reg);
2785 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2786 POSTING_READ(reg);
2787
2788 reg = FDI_RX_CTL(pipe);
2789 temp = I915_READ(reg);
2790 temp &= ~(0x7 << 16);
2791 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2792 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2793
2794 POSTING_READ(reg);
2795 udelay(100);
2796
2797 /* Ironlake workaround, disable clock pointer after downing FDI */
2798 if (HAS_PCH_IBX(dev)) {
2799 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2800 }
2801
2802 /* still set train pattern 1 */
2803 reg = FDI_TX_CTL(pipe);
2804 temp = I915_READ(reg);
2805 temp &= ~FDI_LINK_TRAIN_NONE;
2806 temp |= FDI_LINK_TRAIN_PATTERN_1;
2807 I915_WRITE(reg, temp);
2808
2809 reg = FDI_RX_CTL(pipe);
2810 temp = I915_READ(reg);
2811 if (HAS_PCH_CPT(dev)) {
2812 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2813 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2814 } else {
2815 temp &= ~FDI_LINK_TRAIN_NONE;
2816 temp |= FDI_LINK_TRAIN_PATTERN_1;
2817 }
2818 /* BPC in FDI rx is consistent with that in PIPECONF */
2819 temp &= ~(0x07 << 16);
2820 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2821 I915_WRITE(reg, temp);
2822
2823 POSTING_READ(reg);
2824 udelay(100);
2825 }
2826
2827 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2828 {
2829 struct drm_device *dev = crtc->dev;
2830 struct drm_i915_private *dev_priv = dev->dev_private;
2831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2832 unsigned long flags;
2833 bool pending;
2834
2835 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2836 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2837 return false;
2838
2839 spin_lock_irqsave(&dev->event_lock, flags);
2840 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2841 spin_unlock_irqrestore(&dev->event_lock, flags);
2842
2843 return pending;
2844 }
2845
2846 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2847 {
2848 struct drm_device *dev = crtc->dev;
2849 struct drm_i915_private *dev_priv = dev->dev_private;
2850
2851 if (crtc->fb == NULL)
2852 return;
2853
2854 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2855
2856 wait_event(dev_priv->pending_flip_queue,
2857 !intel_crtc_has_pending_flip(crtc));
2858
2859 mutex_lock(&dev->struct_mutex);
2860 intel_finish_fb(crtc->fb);
2861 mutex_unlock(&dev->struct_mutex);
2862 }
2863
2864 /* Program iCLKIP clock to the desired frequency */
2865 static void lpt_program_iclkip(struct drm_crtc *crtc)
2866 {
2867 struct drm_device *dev = crtc->dev;
2868 struct drm_i915_private *dev_priv = dev->dev_private;
2869 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2870 u32 temp;
2871
2872 mutex_lock(&dev_priv->dpio_lock);
2873
2874 /* It is necessary to ungate the pixclk gate prior to programming
2875 * the divisors, and gate it back when it is done.
2876 */
2877 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2878
2879 /* Disable SSCCTL */
2880 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2881 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2882 SBI_SSCCTL_DISABLE,
2883 SBI_ICLK);
2884
2885 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2886 if (crtc->mode.clock == 20000) {
2887 auxdiv = 1;
2888 divsel = 0x41;
2889 phaseinc = 0x20;
2890 } else {
2891 /* The iCLK virtual clock root frequency is in MHz,
2892 * but the crtc->mode.clock in in KHz. To get the divisors,
2893 * it is necessary to divide one by another, so we
2894 * convert the virtual clock precision to KHz here for higher
2895 * precision.
2896 */
2897 u32 iclk_virtual_root_freq = 172800 * 1000;
2898 u32 iclk_pi_range = 64;
2899 u32 desired_divisor, msb_divisor_value, pi_value;
2900
2901 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2902 msb_divisor_value = desired_divisor / iclk_pi_range;
2903 pi_value = desired_divisor % iclk_pi_range;
2904
2905 auxdiv = 0;
2906 divsel = msb_divisor_value - 2;
2907 phaseinc = pi_value;
2908 }
2909
2910 /* This should not happen with any sane values */
2911 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2912 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2913 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2914 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2915
2916 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2917 crtc->mode.clock,
2918 auxdiv,
2919 divsel,
2920 phasedir,
2921 phaseinc);
2922
2923 /* Program SSCDIVINTPHASE6 */
2924 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2925 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2926 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2927 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2928 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2929 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2930 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2931 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2932
2933 /* Program SSCAUXDIV */
2934 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2935 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2936 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2937 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2938
2939 /* Enable modulator and associated divider */
2940 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2941 temp &= ~SBI_SSCCTL_DISABLE;
2942 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2943
2944 /* Wait for initialization time */
2945 udelay(24);
2946
2947 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2948
2949 mutex_unlock(&dev_priv->dpio_lock);
2950 }
2951
2952 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2953 enum pipe pch_transcoder)
2954 {
2955 struct drm_device *dev = crtc->base.dev;
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2958
2959 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2960 I915_READ(HTOTAL(cpu_transcoder)));
2961 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2962 I915_READ(HBLANK(cpu_transcoder)));
2963 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2964 I915_READ(HSYNC(cpu_transcoder)));
2965
2966 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2967 I915_READ(VTOTAL(cpu_transcoder)));
2968 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2969 I915_READ(VBLANK(cpu_transcoder)));
2970 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2971 I915_READ(VSYNC(cpu_transcoder)));
2972 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2973 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2974 }
2975
2976 /*
2977 * Enable PCH resources required for PCH ports:
2978 * - PCH PLLs
2979 * - FDI training & RX/TX
2980 * - update transcoder timings
2981 * - DP transcoding bits
2982 * - transcoder
2983 */
2984 static void ironlake_pch_enable(struct drm_crtc *crtc)
2985 {
2986 struct drm_device *dev = crtc->dev;
2987 struct drm_i915_private *dev_priv = dev->dev_private;
2988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2989 int pipe = intel_crtc->pipe;
2990 u32 reg, temp;
2991
2992 assert_pch_transcoder_disabled(dev_priv, pipe);
2993
2994 /* Write the TU size bits before fdi link training, so that error
2995 * detection works. */
2996 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2997 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2998
2999 /* For PCH output, training FDI link */
3000 dev_priv->display.fdi_link_train(crtc);
3001
3002 /* We need to program the right clock selection before writing the pixel
3003 * mutliplier into the DPLL. */
3004 if (HAS_PCH_CPT(dev)) {
3005 u32 sel;
3006
3007 temp = I915_READ(PCH_DPLL_SEL);
3008 temp |= TRANS_DPLL_ENABLE(pipe);
3009 sel = TRANS_DPLLB_SEL(pipe);
3010 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3011 temp |= sel;
3012 else
3013 temp &= ~sel;
3014 I915_WRITE(PCH_DPLL_SEL, temp);
3015 }
3016
3017 /* XXX: pch pll's can be enabled any time before we enable the PCH
3018 * transcoder, and we actually should do this to not upset any PCH
3019 * transcoder that already use the clock when we share it.
3020 *
3021 * Note that enable_shared_dpll tries to do the right thing, but
3022 * get_shared_dpll unconditionally resets the pll - we need that to have
3023 * the right LVDS enable sequence. */
3024 ironlake_enable_shared_dpll(intel_crtc);
3025
3026 /* set transcoder timing, panel must allow it */
3027 assert_panel_unlocked(dev_priv, pipe);
3028 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3029
3030 intel_fdi_normal_train(crtc);
3031
3032 /* For PCH DP, enable TRANS_DP_CTL */
3033 if (HAS_PCH_CPT(dev) &&
3034 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3035 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3036 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3037 reg = TRANS_DP_CTL(pipe);
3038 temp = I915_READ(reg);
3039 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3040 TRANS_DP_SYNC_MASK |
3041 TRANS_DP_BPC_MASK);
3042 temp |= (TRANS_DP_OUTPUT_ENABLE |
3043 TRANS_DP_ENH_FRAMING);
3044 temp |= bpc << 9; /* same format but at 11:9 */
3045
3046 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3047 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3048 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3049 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3050
3051 switch (intel_trans_dp_port_sel(crtc)) {
3052 case PCH_DP_B:
3053 temp |= TRANS_DP_PORT_SEL_B;
3054 break;
3055 case PCH_DP_C:
3056 temp |= TRANS_DP_PORT_SEL_C;
3057 break;
3058 case PCH_DP_D:
3059 temp |= TRANS_DP_PORT_SEL_D;
3060 break;
3061 default:
3062 BUG();
3063 }
3064
3065 I915_WRITE(reg, temp);
3066 }
3067
3068 ironlake_enable_pch_transcoder(dev_priv, pipe);
3069 }
3070
3071 static void lpt_pch_enable(struct drm_crtc *crtc)
3072 {
3073 struct drm_device *dev = crtc->dev;
3074 struct drm_i915_private *dev_priv = dev->dev_private;
3075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3076 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3077
3078 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3079
3080 lpt_program_iclkip(crtc);
3081
3082 /* Set transcoder timing. */
3083 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3084
3085 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3086 }
3087
3088 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3089 {
3090 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3091
3092 if (pll == NULL)
3093 return;
3094
3095 if (pll->refcount == 0) {
3096 WARN(1, "bad %s refcount\n", pll->name);
3097 return;
3098 }
3099
3100 if (--pll->refcount == 0) {
3101 WARN_ON(pll->on);
3102 WARN_ON(pll->active);
3103 }
3104
3105 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3106 }
3107
3108 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3109 {
3110 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3111 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3112 enum intel_dpll_id i;
3113
3114 if (pll) {
3115 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3116 crtc->base.base.id, pll->name);
3117 intel_put_shared_dpll(crtc);
3118 }
3119
3120 if (HAS_PCH_IBX(dev_priv->dev)) {
3121 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3122 i = (enum intel_dpll_id) crtc->pipe;
3123 pll = &dev_priv->shared_dplls[i];
3124
3125 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3126 crtc->base.base.id, pll->name);
3127
3128 goto found;
3129 }
3130
3131 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3132 pll = &dev_priv->shared_dplls[i];
3133
3134 /* Only want to check enabled timings first */
3135 if (pll->refcount == 0)
3136 continue;
3137
3138 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3139 sizeof(pll->hw_state)) == 0) {
3140 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3141 crtc->base.base.id,
3142 pll->name, pll->refcount, pll->active);
3143
3144 goto found;
3145 }
3146 }
3147
3148 /* Ok no matching timings, maybe there's a free one? */
3149 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3150 pll = &dev_priv->shared_dplls[i];
3151 if (pll->refcount == 0) {
3152 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3153 crtc->base.base.id, pll->name);
3154 goto found;
3155 }
3156 }
3157
3158 return NULL;
3159
3160 found:
3161 crtc->config.shared_dpll = i;
3162 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3163 pipe_name(crtc->pipe));
3164
3165 if (pll->active == 0) {
3166 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3167 sizeof(pll->hw_state));
3168
3169 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3170 WARN_ON(pll->on);
3171 assert_shared_dpll_disabled(dev_priv, pll);
3172
3173 pll->mode_set(dev_priv, pll);
3174 }
3175 pll->refcount++;
3176
3177 return pll;
3178 }
3179
3180 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3181 {
3182 struct drm_i915_private *dev_priv = dev->dev_private;
3183 int dslreg = PIPEDSL(pipe);
3184 u32 temp;
3185
3186 temp = I915_READ(dslreg);
3187 udelay(500);
3188 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3189 if (wait_for(I915_READ(dslreg) != temp, 5))
3190 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3191 }
3192 }
3193
3194 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3195 {
3196 struct drm_device *dev = crtc->base.dev;
3197 struct drm_i915_private *dev_priv = dev->dev_private;
3198 int pipe = crtc->pipe;
3199
3200 if (crtc->config.pch_pfit.size) {
3201 /* Force use of hard-coded filter coefficients
3202 * as some pre-programmed values are broken,
3203 * e.g. x201.
3204 */
3205 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3206 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3207 PF_PIPE_SEL_IVB(pipe));
3208 else
3209 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3210 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3211 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3212 }
3213 }
3214
3215 static void intel_enable_planes(struct drm_crtc *crtc)
3216 {
3217 struct drm_device *dev = crtc->dev;
3218 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3219 struct intel_plane *intel_plane;
3220
3221 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3222 if (intel_plane->pipe == pipe)
3223 intel_plane_restore(&intel_plane->base);
3224 }
3225
3226 static void intel_disable_planes(struct drm_crtc *crtc)
3227 {
3228 struct drm_device *dev = crtc->dev;
3229 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3230 struct intel_plane *intel_plane;
3231
3232 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3233 if (intel_plane->pipe == pipe)
3234 intel_plane_disable(&intel_plane->base);
3235 }
3236
3237 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3238 {
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242 struct intel_encoder *encoder;
3243 int pipe = intel_crtc->pipe;
3244 int plane = intel_crtc->plane;
3245
3246 WARN_ON(!crtc->enabled);
3247
3248 if (intel_crtc->active)
3249 return;
3250
3251 intel_crtc->active = true;
3252
3253 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3254 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3255
3256 intel_update_watermarks(dev);
3257
3258 for_each_encoder_on_crtc(dev, crtc, encoder)
3259 if (encoder->pre_enable)
3260 encoder->pre_enable(encoder);
3261
3262 if (intel_crtc->config.has_pch_encoder) {
3263 /* Note: FDI PLL enabling _must_ be done before we enable the
3264 * cpu pipes, hence this is separate from all the other fdi/pch
3265 * enabling. */
3266 ironlake_fdi_pll_enable(intel_crtc);
3267 } else {
3268 assert_fdi_tx_disabled(dev_priv, pipe);
3269 assert_fdi_rx_disabled(dev_priv, pipe);
3270 }
3271
3272 ironlake_pfit_enable(intel_crtc);
3273
3274 /*
3275 * On ILK+ LUT must be loaded before the pipe is running but with
3276 * clocks enabled
3277 */
3278 intel_crtc_load_lut(crtc);
3279
3280 intel_enable_pipe(dev_priv, pipe,
3281 intel_crtc->config.has_pch_encoder);
3282 intel_enable_plane(dev_priv, plane, pipe);
3283 intel_enable_planes(crtc);
3284 intel_crtc_update_cursor(crtc, true);
3285
3286 if (intel_crtc->config.has_pch_encoder)
3287 ironlake_pch_enable(crtc);
3288
3289 mutex_lock(&dev->struct_mutex);
3290 intel_update_fbc(dev);
3291 mutex_unlock(&dev->struct_mutex);
3292
3293 for_each_encoder_on_crtc(dev, crtc, encoder)
3294 encoder->enable(encoder);
3295
3296 if (HAS_PCH_CPT(dev))
3297 cpt_verify_modeset(dev, intel_crtc->pipe);
3298
3299 /*
3300 * There seems to be a race in PCH platform hw (at least on some
3301 * outputs) where an enabled pipe still completes any pageflip right
3302 * away (as if the pipe is off) instead of waiting for vblank. As soon
3303 * as the first vblank happend, everything works as expected. Hence just
3304 * wait for one vblank before returning to avoid strange things
3305 * happening.
3306 */
3307 intel_wait_for_vblank(dev, intel_crtc->pipe);
3308 }
3309
3310 /* IPS only exists on ULT machines and is tied to pipe A. */
3311 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3312 {
3313 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3314 }
3315
3316 static void hsw_enable_ips(struct intel_crtc *crtc)
3317 {
3318 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3319
3320 if (!crtc->config.ips_enabled)
3321 return;
3322
3323 /* We can only enable IPS after we enable a plane and wait for a vblank.
3324 * We guarantee that the plane is enabled by calling intel_enable_ips
3325 * only after intel_enable_plane. And intel_enable_plane already waits
3326 * for a vblank, so all we need to do here is to enable the IPS bit. */
3327 assert_plane_enabled(dev_priv, crtc->plane);
3328 I915_WRITE(IPS_CTL, IPS_ENABLE);
3329 }
3330
3331 static void hsw_disable_ips(struct intel_crtc *crtc)
3332 {
3333 struct drm_device *dev = crtc->base.dev;
3334 struct drm_i915_private *dev_priv = dev->dev_private;
3335
3336 if (!crtc->config.ips_enabled)
3337 return;
3338
3339 assert_plane_enabled(dev_priv, crtc->plane);
3340 I915_WRITE(IPS_CTL, 0);
3341
3342 /* We need to wait for a vblank before we can disable the plane. */
3343 intel_wait_for_vblank(dev, crtc->pipe);
3344 }
3345
3346 static void haswell_crtc_enable(struct drm_crtc *crtc)
3347 {
3348 struct drm_device *dev = crtc->dev;
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351 struct intel_encoder *encoder;
3352 int pipe = intel_crtc->pipe;
3353 int plane = intel_crtc->plane;
3354
3355 WARN_ON(!crtc->enabled);
3356
3357 if (intel_crtc->active)
3358 return;
3359
3360 intel_crtc->active = true;
3361
3362 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3363 if (intel_crtc->config.has_pch_encoder)
3364 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3365
3366 intel_update_watermarks(dev);
3367
3368 if (intel_crtc->config.has_pch_encoder)
3369 dev_priv->display.fdi_link_train(crtc);
3370
3371 for_each_encoder_on_crtc(dev, crtc, encoder)
3372 if (encoder->pre_enable)
3373 encoder->pre_enable(encoder);
3374
3375 intel_ddi_enable_pipe_clock(intel_crtc);
3376
3377 ironlake_pfit_enable(intel_crtc);
3378
3379 /*
3380 * On ILK+ LUT must be loaded before the pipe is running but with
3381 * clocks enabled
3382 */
3383 intel_crtc_load_lut(crtc);
3384
3385 intel_ddi_set_pipe_settings(crtc);
3386 intel_ddi_enable_transcoder_func(crtc);
3387
3388 intel_enable_pipe(dev_priv, pipe,
3389 intel_crtc->config.has_pch_encoder);
3390 intel_enable_plane(dev_priv, plane, pipe);
3391 intel_enable_planes(crtc);
3392 intel_crtc_update_cursor(crtc, true);
3393
3394 hsw_enable_ips(intel_crtc);
3395
3396 if (intel_crtc->config.has_pch_encoder)
3397 lpt_pch_enable(crtc);
3398
3399 mutex_lock(&dev->struct_mutex);
3400 intel_update_fbc(dev);
3401 mutex_unlock(&dev->struct_mutex);
3402
3403 for_each_encoder_on_crtc(dev, crtc, encoder)
3404 encoder->enable(encoder);
3405
3406 /*
3407 * There seems to be a race in PCH platform hw (at least on some
3408 * outputs) where an enabled pipe still completes any pageflip right
3409 * away (as if the pipe is off) instead of waiting for vblank. As soon
3410 * as the first vblank happend, everything works as expected. Hence just
3411 * wait for one vblank before returning to avoid strange things
3412 * happening.
3413 */
3414 intel_wait_for_vblank(dev, intel_crtc->pipe);
3415 }
3416
3417 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3418 {
3419 struct drm_device *dev = crtc->base.dev;
3420 struct drm_i915_private *dev_priv = dev->dev_private;
3421 int pipe = crtc->pipe;
3422
3423 /* To avoid upsetting the power well on haswell only disable the pfit if
3424 * it's in use. The hw state code will make sure we get this right. */
3425 if (crtc->config.pch_pfit.size) {
3426 I915_WRITE(PF_CTL(pipe), 0);
3427 I915_WRITE(PF_WIN_POS(pipe), 0);
3428 I915_WRITE(PF_WIN_SZ(pipe), 0);
3429 }
3430 }
3431
3432 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3433 {
3434 struct drm_device *dev = crtc->dev;
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3437 struct intel_encoder *encoder;
3438 int pipe = intel_crtc->pipe;
3439 int plane = intel_crtc->plane;
3440 u32 reg, temp;
3441
3442
3443 if (!intel_crtc->active)
3444 return;
3445
3446 for_each_encoder_on_crtc(dev, crtc, encoder)
3447 encoder->disable(encoder);
3448
3449 intel_crtc_wait_for_pending_flips(crtc);
3450 drm_vblank_off(dev, pipe);
3451
3452 if (dev_priv->fbc.plane == plane)
3453 intel_disable_fbc(dev);
3454
3455 intel_crtc_update_cursor(crtc, false);
3456 intel_disable_planes(crtc);
3457 intel_disable_plane(dev_priv, plane, pipe);
3458
3459 if (intel_crtc->config.has_pch_encoder)
3460 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3461
3462 intel_disable_pipe(dev_priv, pipe);
3463
3464 ironlake_pfit_disable(intel_crtc);
3465
3466 for_each_encoder_on_crtc(dev, crtc, encoder)
3467 if (encoder->post_disable)
3468 encoder->post_disable(encoder);
3469
3470 if (intel_crtc->config.has_pch_encoder) {
3471 ironlake_fdi_disable(crtc);
3472
3473 ironlake_disable_pch_transcoder(dev_priv, pipe);
3474 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3475
3476 if (HAS_PCH_CPT(dev)) {
3477 /* disable TRANS_DP_CTL */
3478 reg = TRANS_DP_CTL(pipe);
3479 temp = I915_READ(reg);
3480 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3481 TRANS_DP_PORT_SEL_MASK);
3482 temp |= TRANS_DP_PORT_SEL_NONE;
3483 I915_WRITE(reg, temp);
3484
3485 /* disable DPLL_SEL */
3486 temp = I915_READ(PCH_DPLL_SEL);
3487 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3488 I915_WRITE(PCH_DPLL_SEL, temp);
3489 }
3490
3491 /* disable PCH DPLL */
3492 intel_disable_shared_dpll(intel_crtc);
3493
3494 ironlake_fdi_pll_disable(intel_crtc);
3495 }
3496
3497 intel_crtc->active = false;
3498 intel_update_watermarks(dev);
3499
3500 mutex_lock(&dev->struct_mutex);
3501 intel_update_fbc(dev);
3502 mutex_unlock(&dev->struct_mutex);
3503 }
3504
3505 static void haswell_crtc_disable(struct drm_crtc *crtc)
3506 {
3507 struct drm_device *dev = crtc->dev;
3508 struct drm_i915_private *dev_priv = dev->dev_private;
3509 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3510 struct intel_encoder *encoder;
3511 int pipe = intel_crtc->pipe;
3512 int plane = intel_crtc->plane;
3513 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3514
3515 if (!intel_crtc->active)
3516 return;
3517
3518 for_each_encoder_on_crtc(dev, crtc, encoder)
3519 encoder->disable(encoder);
3520
3521 intel_crtc_wait_for_pending_flips(crtc);
3522 drm_vblank_off(dev, pipe);
3523
3524 /* FBC must be disabled before disabling the plane on HSW. */
3525 if (dev_priv->fbc.plane == plane)
3526 intel_disable_fbc(dev);
3527
3528 hsw_disable_ips(intel_crtc);
3529
3530 intel_crtc_update_cursor(crtc, false);
3531 intel_disable_planes(crtc);
3532 intel_disable_plane(dev_priv, plane, pipe);
3533
3534 if (intel_crtc->config.has_pch_encoder)
3535 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3536 intel_disable_pipe(dev_priv, pipe);
3537
3538 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3539
3540 ironlake_pfit_disable(intel_crtc);
3541
3542 intel_ddi_disable_pipe_clock(intel_crtc);
3543
3544 for_each_encoder_on_crtc(dev, crtc, encoder)
3545 if (encoder->post_disable)
3546 encoder->post_disable(encoder);
3547
3548 if (intel_crtc->config.has_pch_encoder) {
3549 lpt_disable_pch_transcoder(dev_priv);
3550 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3551 intel_ddi_fdi_disable(crtc);
3552 }
3553
3554 intel_crtc->active = false;
3555 intel_update_watermarks(dev);
3556
3557 mutex_lock(&dev->struct_mutex);
3558 intel_update_fbc(dev);
3559 mutex_unlock(&dev->struct_mutex);
3560 }
3561
3562 static void ironlake_crtc_off(struct drm_crtc *crtc)
3563 {
3564 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565 intel_put_shared_dpll(intel_crtc);
3566 }
3567
3568 static void haswell_crtc_off(struct drm_crtc *crtc)
3569 {
3570 intel_ddi_put_crtc_pll(crtc);
3571 }
3572
3573 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3574 {
3575 if (!enable && intel_crtc->overlay) {
3576 struct drm_device *dev = intel_crtc->base.dev;
3577 struct drm_i915_private *dev_priv = dev->dev_private;
3578
3579 mutex_lock(&dev->struct_mutex);
3580 dev_priv->mm.interruptible = false;
3581 (void) intel_overlay_switch_off(intel_crtc->overlay);
3582 dev_priv->mm.interruptible = true;
3583 mutex_unlock(&dev->struct_mutex);
3584 }
3585
3586 /* Let userspace switch the overlay on again. In most cases userspace
3587 * has to recompute where to put it anyway.
3588 */
3589 }
3590
3591 /**
3592 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3593 * cursor plane briefly if not already running after enabling the display
3594 * plane.
3595 * This workaround avoids occasional blank screens when self refresh is
3596 * enabled.
3597 */
3598 static void
3599 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3600 {
3601 u32 cntl = I915_READ(CURCNTR(pipe));
3602
3603 if ((cntl & CURSOR_MODE) == 0) {
3604 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3605
3606 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3607 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3608 intel_wait_for_vblank(dev_priv->dev, pipe);
3609 I915_WRITE(CURCNTR(pipe), cntl);
3610 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3611 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3612 }
3613 }
3614
3615 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3616 {
3617 struct drm_device *dev = crtc->base.dev;
3618 struct drm_i915_private *dev_priv = dev->dev_private;
3619 struct intel_crtc_config *pipe_config = &crtc->config;
3620
3621 if (!crtc->config.gmch_pfit.control)
3622 return;
3623
3624 /*
3625 * The panel fitter should only be adjusted whilst the pipe is disabled,
3626 * according to register description and PRM.
3627 */
3628 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3629 assert_pipe_disabled(dev_priv, crtc->pipe);
3630
3631 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3632 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3633
3634 /* Border color in case we don't scale up to the full screen. Black by
3635 * default, change to something else for debugging. */
3636 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3637 }
3638
3639 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3640 {
3641 struct drm_device *dev = crtc->dev;
3642 struct drm_i915_private *dev_priv = dev->dev_private;
3643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644 struct intel_encoder *encoder;
3645 int pipe = intel_crtc->pipe;
3646 int plane = intel_crtc->plane;
3647
3648 WARN_ON(!crtc->enabled);
3649
3650 if (intel_crtc->active)
3651 return;
3652
3653 intel_crtc->active = true;
3654 intel_update_watermarks(dev);
3655
3656 mutex_lock(&dev_priv->dpio_lock);
3657
3658 for_each_encoder_on_crtc(dev, crtc, encoder)
3659 if (encoder->pre_pll_enable)
3660 encoder->pre_pll_enable(encoder);
3661
3662 vlv_enable_pll(intel_crtc);
3663
3664 for_each_encoder_on_crtc(dev, crtc, encoder)
3665 if (encoder->pre_enable)
3666 encoder->pre_enable(encoder);
3667
3668 /* VLV wants encoder enabling _before_ the pipe is up. */
3669 for_each_encoder_on_crtc(dev, crtc, encoder)
3670 encoder->enable(encoder);
3671
3672 i9xx_pfit_enable(intel_crtc);
3673
3674 intel_crtc_load_lut(crtc);
3675
3676 intel_enable_pipe(dev_priv, pipe, false);
3677 intel_enable_plane(dev_priv, plane, pipe);
3678 intel_enable_planes(crtc);
3679 intel_crtc_update_cursor(crtc, true);
3680
3681 intel_update_fbc(dev);
3682
3683 mutex_unlock(&dev_priv->dpio_lock);
3684 }
3685
3686 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3687 {
3688 struct drm_device *dev = crtc->dev;
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3691 struct intel_encoder *encoder;
3692 int pipe = intel_crtc->pipe;
3693 int plane = intel_crtc->plane;
3694
3695 WARN_ON(!crtc->enabled);
3696
3697 if (intel_crtc->active)
3698 return;
3699
3700 intel_crtc->active = true;
3701 intel_update_watermarks(dev);
3702
3703 for_each_encoder_on_crtc(dev, crtc, encoder)
3704 if (encoder->pre_enable)
3705 encoder->pre_enable(encoder);
3706
3707 i9xx_enable_pll(intel_crtc);
3708
3709 i9xx_pfit_enable(intel_crtc);
3710
3711 intel_crtc_load_lut(crtc);
3712
3713 intel_enable_pipe(dev_priv, pipe, false);
3714 intel_enable_plane(dev_priv, plane, pipe);
3715 intel_enable_planes(crtc);
3716 /* The fixup needs to happen before cursor is enabled */
3717 if (IS_G4X(dev))
3718 g4x_fixup_plane(dev_priv, pipe);
3719 intel_crtc_update_cursor(crtc, true);
3720
3721 /* Give the overlay scaler a chance to enable if it's on this pipe */
3722 intel_crtc_dpms_overlay(intel_crtc, true);
3723
3724 intel_update_fbc(dev);
3725
3726 for_each_encoder_on_crtc(dev, crtc, encoder)
3727 encoder->enable(encoder);
3728 }
3729
3730 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3731 {
3732 struct drm_device *dev = crtc->base.dev;
3733 struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735 if (!crtc->config.gmch_pfit.control)
3736 return;
3737
3738 assert_pipe_disabled(dev_priv, crtc->pipe);
3739
3740 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3741 I915_READ(PFIT_CONTROL));
3742 I915_WRITE(PFIT_CONTROL, 0);
3743 }
3744
3745 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3746 {
3747 struct drm_device *dev = crtc->dev;
3748 struct drm_i915_private *dev_priv = dev->dev_private;
3749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750 struct intel_encoder *encoder;
3751 int pipe = intel_crtc->pipe;
3752 int plane = intel_crtc->plane;
3753
3754 if (!intel_crtc->active)
3755 return;
3756
3757 for_each_encoder_on_crtc(dev, crtc, encoder)
3758 encoder->disable(encoder);
3759
3760 /* Give the overlay scaler a chance to disable if it's on this pipe */
3761 intel_crtc_wait_for_pending_flips(crtc);
3762 drm_vblank_off(dev, pipe);
3763
3764 if (dev_priv->fbc.plane == plane)
3765 intel_disable_fbc(dev);
3766
3767 intel_crtc_dpms_overlay(intel_crtc, false);
3768 intel_crtc_update_cursor(crtc, false);
3769 intel_disable_planes(crtc);
3770 intel_disable_plane(dev_priv, plane, pipe);
3771
3772 intel_disable_pipe(dev_priv, pipe);
3773
3774 i9xx_pfit_disable(intel_crtc);
3775
3776 for_each_encoder_on_crtc(dev, crtc, encoder)
3777 if (encoder->post_disable)
3778 encoder->post_disable(encoder);
3779
3780 i9xx_disable_pll(dev_priv, pipe);
3781
3782 intel_crtc->active = false;
3783 intel_update_fbc(dev);
3784 intel_update_watermarks(dev);
3785 }
3786
3787 static void i9xx_crtc_off(struct drm_crtc *crtc)
3788 {
3789 }
3790
3791 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3792 bool enabled)
3793 {
3794 struct drm_device *dev = crtc->dev;
3795 struct drm_i915_master_private *master_priv;
3796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3797 int pipe = intel_crtc->pipe;
3798
3799 if (!dev->primary->master)
3800 return;
3801
3802 master_priv = dev->primary->master->driver_priv;
3803 if (!master_priv->sarea_priv)
3804 return;
3805
3806 switch (pipe) {
3807 case 0:
3808 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3809 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3810 break;
3811 case 1:
3812 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3813 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3814 break;
3815 default:
3816 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3817 break;
3818 }
3819 }
3820
3821 /**
3822 * Sets the power management mode of the pipe and plane.
3823 */
3824 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3825 {
3826 struct drm_device *dev = crtc->dev;
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828 struct intel_encoder *intel_encoder;
3829 bool enable = false;
3830
3831 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3832 enable |= intel_encoder->connectors_active;
3833
3834 if (enable)
3835 dev_priv->display.crtc_enable(crtc);
3836 else
3837 dev_priv->display.crtc_disable(crtc);
3838
3839 intel_crtc_update_sarea(crtc, enable);
3840 }
3841
3842 static void intel_crtc_disable(struct drm_crtc *crtc)
3843 {
3844 struct drm_device *dev = crtc->dev;
3845 struct drm_connector *connector;
3846 struct drm_i915_private *dev_priv = dev->dev_private;
3847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3848
3849 /* crtc should still be enabled when we disable it. */
3850 WARN_ON(!crtc->enabled);
3851
3852 dev_priv->display.crtc_disable(crtc);
3853 intel_crtc->eld_vld = false;
3854 intel_crtc_update_sarea(crtc, false);
3855 dev_priv->display.off(crtc);
3856
3857 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3858 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3859
3860 if (crtc->fb) {
3861 mutex_lock(&dev->struct_mutex);
3862 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3863 mutex_unlock(&dev->struct_mutex);
3864 crtc->fb = NULL;
3865 }
3866
3867 /* Update computed state. */
3868 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3869 if (!connector->encoder || !connector->encoder->crtc)
3870 continue;
3871
3872 if (connector->encoder->crtc != crtc)
3873 continue;
3874
3875 connector->dpms = DRM_MODE_DPMS_OFF;
3876 to_intel_encoder(connector->encoder)->connectors_active = false;
3877 }
3878 }
3879
3880 void intel_modeset_disable(struct drm_device *dev)
3881 {
3882 struct drm_crtc *crtc;
3883
3884 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3885 if (crtc->enabled)
3886 intel_crtc_disable(crtc);
3887 }
3888 }
3889
3890 void intel_encoder_destroy(struct drm_encoder *encoder)
3891 {
3892 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3893
3894 drm_encoder_cleanup(encoder);
3895 kfree(intel_encoder);
3896 }
3897
3898 /* Simple dpms helper for encodres with just one connector, no cloning and only
3899 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3900 * state of the entire output pipe. */
3901 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3902 {
3903 if (mode == DRM_MODE_DPMS_ON) {
3904 encoder->connectors_active = true;
3905
3906 intel_crtc_update_dpms(encoder->base.crtc);
3907 } else {
3908 encoder->connectors_active = false;
3909
3910 intel_crtc_update_dpms(encoder->base.crtc);
3911 }
3912 }
3913
3914 /* Cross check the actual hw state with our own modeset state tracking (and it's
3915 * internal consistency). */
3916 static void intel_connector_check_state(struct intel_connector *connector)
3917 {
3918 if (connector->get_hw_state(connector)) {
3919 struct intel_encoder *encoder = connector->encoder;
3920 struct drm_crtc *crtc;
3921 bool encoder_enabled;
3922 enum pipe pipe;
3923
3924 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3925 connector->base.base.id,
3926 drm_get_connector_name(&connector->base));
3927
3928 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3929 "wrong connector dpms state\n");
3930 WARN(connector->base.encoder != &encoder->base,
3931 "active connector not linked to encoder\n");
3932 WARN(!encoder->connectors_active,
3933 "encoder->connectors_active not set\n");
3934
3935 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3936 WARN(!encoder_enabled, "encoder not enabled\n");
3937 if (WARN_ON(!encoder->base.crtc))
3938 return;
3939
3940 crtc = encoder->base.crtc;
3941
3942 WARN(!crtc->enabled, "crtc not enabled\n");
3943 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3944 WARN(pipe != to_intel_crtc(crtc)->pipe,
3945 "encoder active on the wrong pipe\n");
3946 }
3947 }
3948
3949 /* Even simpler default implementation, if there's really no special case to
3950 * consider. */
3951 void intel_connector_dpms(struct drm_connector *connector, int mode)
3952 {
3953 struct intel_encoder *encoder = intel_attached_encoder(connector);
3954
3955 /* All the simple cases only support two dpms states. */
3956 if (mode != DRM_MODE_DPMS_ON)
3957 mode = DRM_MODE_DPMS_OFF;
3958
3959 if (mode == connector->dpms)
3960 return;
3961
3962 connector->dpms = mode;
3963
3964 /* Only need to change hw state when actually enabled */
3965 if (encoder->base.crtc)
3966 intel_encoder_dpms(encoder, mode);
3967 else
3968 WARN_ON(encoder->connectors_active != false);
3969
3970 intel_modeset_check_state(connector->dev);
3971 }
3972
3973 /* Simple connector->get_hw_state implementation for encoders that support only
3974 * one connector and no cloning and hence the encoder state determines the state
3975 * of the connector. */
3976 bool intel_connector_get_hw_state(struct intel_connector *connector)
3977 {
3978 enum pipe pipe = 0;
3979 struct intel_encoder *encoder = connector->encoder;
3980
3981 return encoder->get_hw_state(encoder, &pipe);
3982 }
3983
3984 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3985 struct intel_crtc_config *pipe_config)
3986 {
3987 struct drm_i915_private *dev_priv = dev->dev_private;
3988 struct intel_crtc *pipe_B_crtc =
3989 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3990
3991 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3992 pipe_name(pipe), pipe_config->fdi_lanes);
3993 if (pipe_config->fdi_lanes > 4) {
3994 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3995 pipe_name(pipe), pipe_config->fdi_lanes);
3996 return false;
3997 }
3998
3999 if (IS_HASWELL(dev)) {
4000 if (pipe_config->fdi_lanes > 2) {
4001 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4002 pipe_config->fdi_lanes);
4003 return false;
4004 } else {
4005 return true;
4006 }
4007 }
4008
4009 if (INTEL_INFO(dev)->num_pipes == 2)
4010 return true;
4011
4012 /* Ivybridge 3 pipe is really complicated */
4013 switch (pipe) {
4014 case PIPE_A:
4015 return true;
4016 case PIPE_B:
4017 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4018 pipe_config->fdi_lanes > 2) {
4019 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4020 pipe_name(pipe), pipe_config->fdi_lanes);
4021 return false;
4022 }
4023 return true;
4024 case PIPE_C:
4025 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4026 pipe_B_crtc->config.fdi_lanes <= 2) {
4027 if (pipe_config->fdi_lanes > 2) {
4028 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4029 pipe_name(pipe), pipe_config->fdi_lanes);
4030 return false;
4031 }
4032 } else {
4033 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4034 return false;
4035 }
4036 return true;
4037 default:
4038 BUG();
4039 }
4040 }
4041
4042 #define RETRY 1
4043 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4044 struct intel_crtc_config *pipe_config)
4045 {
4046 struct drm_device *dev = intel_crtc->base.dev;
4047 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4048 int lane, link_bw, fdi_dotclock;
4049 bool setup_ok, needs_recompute = false;
4050
4051 retry:
4052 /* FDI is a binary signal running at ~2.7GHz, encoding
4053 * each output octet as 10 bits. The actual frequency
4054 * is stored as a divider into a 100MHz clock, and the
4055 * mode pixel clock is stored in units of 1KHz.
4056 * Hence the bw of each lane in terms of the mode signal
4057 * is:
4058 */
4059 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4060
4061 fdi_dotclock = adjusted_mode->clock;
4062 fdi_dotclock /= pipe_config->pixel_multiplier;
4063
4064 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4065 pipe_config->pipe_bpp);
4066
4067 pipe_config->fdi_lanes = lane;
4068
4069 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4070 link_bw, &pipe_config->fdi_m_n);
4071
4072 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4073 intel_crtc->pipe, pipe_config);
4074 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4075 pipe_config->pipe_bpp -= 2*3;
4076 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4077 pipe_config->pipe_bpp);
4078 needs_recompute = true;
4079 pipe_config->bw_constrained = true;
4080
4081 goto retry;
4082 }
4083
4084 if (needs_recompute)
4085 return RETRY;
4086
4087 return setup_ok ? 0 : -EINVAL;
4088 }
4089
4090 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4091 struct intel_crtc_config *pipe_config)
4092 {
4093 pipe_config->ips_enabled = i915_enable_ips &&
4094 hsw_crtc_supports_ips(crtc) &&
4095 pipe_config->pipe_bpp == 24;
4096 }
4097
4098 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4099 struct intel_crtc_config *pipe_config)
4100 {
4101 struct drm_device *dev = crtc->base.dev;
4102 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4103
4104 if (HAS_PCH_SPLIT(dev)) {
4105 /* FDI link clock is fixed at 2.7G */
4106 if (pipe_config->requested_mode.clock * 3
4107 > IRONLAKE_FDI_FREQ * 4)
4108 return -EINVAL;
4109 }
4110
4111 /* All interlaced capable intel hw wants timings in frames. Note though
4112 * that intel_lvds_mode_fixup does some funny tricks with the crtc
4113 * timings, so we need to be careful not to clobber these.*/
4114 if (!pipe_config->timings_set)
4115 drm_mode_set_crtcinfo(adjusted_mode, 0);
4116
4117 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4118 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4119 */
4120 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4121 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4122 return -EINVAL;
4123
4124 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4125 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4126 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4127 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4128 * for lvds. */
4129 pipe_config->pipe_bpp = 8*3;
4130 }
4131
4132 if (HAS_IPS(dev))
4133 hsw_compute_ips_config(crtc, pipe_config);
4134
4135 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4136 * clock survives for now. */
4137 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4138 pipe_config->shared_dpll = crtc->config.shared_dpll;
4139
4140 if (pipe_config->has_pch_encoder)
4141 return ironlake_fdi_compute_config(crtc, pipe_config);
4142
4143 return 0;
4144 }
4145
4146 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4147 {
4148 return 400000; /* FIXME */
4149 }
4150
4151 static int i945_get_display_clock_speed(struct drm_device *dev)
4152 {
4153 return 400000;
4154 }
4155
4156 static int i915_get_display_clock_speed(struct drm_device *dev)
4157 {
4158 return 333000;
4159 }
4160
4161 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4162 {
4163 return 200000;
4164 }
4165
4166 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4167 {
4168 u16 gcfgc = 0;
4169
4170 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4171
4172 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4173 return 133000;
4174 else {
4175 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4176 case GC_DISPLAY_CLOCK_333_MHZ:
4177 return 333000;
4178 default:
4179 case GC_DISPLAY_CLOCK_190_200_MHZ:
4180 return 190000;
4181 }
4182 }
4183 }
4184
4185 static int i865_get_display_clock_speed(struct drm_device *dev)
4186 {
4187 return 266000;
4188 }
4189
4190 static int i855_get_display_clock_speed(struct drm_device *dev)
4191 {
4192 u16 hpllcc = 0;
4193 /* Assume that the hardware is in the high speed state. This
4194 * should be the default.
4195 */
4196 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4197 case GC_CLOCK_133_200:
4198 case GC_CLOCK_100_200:
4199 return 200000;
4200 case GC_CLOCK_166_250:
4201 return 250000;
4202 case GC_CLOCK_100_133:
4203 return 133000;
4204 }
4205
4206 /* Shouldn't happen */
4207 return 0;
4208 }
4209
4210 static int i830_get_display_clock_speed(struct drm_device *dev)
4211 {
4212 return 133000;
4213 }
4214
4215 static void
4216 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4217 {
4218 while (*num > DATA_LINK_M_N_MASK ||
4219 *den > DATA_LINK_M_N_MASK) {
4220 *num >>= 1;
4221 *den >>= 1;
4222 }
4223 }
4224
4225 static void compute_m_n(unsigned int m, unsigned int n,
4226 uint32_t *ret_m, uint32_t *ret_n)
4227 {
4228 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4229 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4230 intel_reduce_m_n_ratio(ret_m, ret_n);
4231 }
4232
4233 void
4234 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4235 int pixel_clock, int link_clock,
4236 struct intel_link_m_n *m_n)
4237 {
4238 m_n->tu = 64;
4239
4240 compute_m_n(bits_per_pixel * pixel_clock,
4241 link_clock * nlanes * 8,
4242 &m_n->gmch_m, &m_n->gmch_n);
4243
4244 compute_m_n(pixel_clock, link_clock,
4245 &m_n->link_m, &m_n->link_n);
4246 }
4247
4248 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4249 {
4250 if (i915_panel_use_ssc >= 0)
4251 return i915_panel_use_ssc != 0;
4252 return dev_priv->vbt.lvds_use_ssc
4253 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4254 }
4255
4256 static int vlv_get_refclk(struct drm_crtc *crtc)
4257 {
4258 struct drm_device *dev = crtc->dev;
4259 struct drm_i915_private *dev_priv = dev->dev_private;
4260 int refclk = 27000; /* for DP & HDMI */
4261
4262 return 100000; /* only one validated so far */
4263
4264 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4265 refclk = 96000;
4266 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4267 if (intel_panel_use_ssc(dev_priv))
4268 refclk = 100000;
4269 else
4270 refclk = 96000;
4271 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4272 refclk = 100000;
4273 }
4274
4275 return refclk;
4276 }
4277
4278 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4279 {
4280 struct drm_device *dev = crtc->dev;
4281 struct drm_i915_private *dev_priv = dev->dev_private;
4282 int refclk;
4283
4284 if (IS_VALLEYVIEW(dev)) {
4285 refclk = vlv_get_refclk(crtc);
4286 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4287 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4288 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4289 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4290 refclk / 1000);
4291 } else if (!IS_GEN2(dev)) {
4292 refclk = 96000;
4293 } else {
4294 refclk = 48000;
4295 }
4296
4297 return refclk;
4298 }
4299
4300 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4301 {
4302 return (1 << dpll->n) << 16 | dpll->m2;
4303 }
4304
4305 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4306 {
4307 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4308 }
4309
4310 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4311 intel_clock_t *reduced_clock)
4312 {
4313 struct drm_device *dev = crtc->base.dev;
4314 struct drm_i915_private *dev_priv = dev->dev_private;
4315 int pipe = crtc->pipe;
4316 u32 fp, fp2 = 0;
4317
4318 if (IS_PINEVIEW(dev)) {
4319 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4320 if (reduced_clock)
4321 fp2 = pnv_dpll_compute_fp(reduced_clock);
4322 } else {
4323 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4324 if (reduced_clock)
4325 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4326 }
4327
4328 I915_WRITE(FP0(pipe), fp);
4329 crtc->config.dpll_hw_state.fp0 = fp;
4330
4331 crtc->lowfreq_avail = false;
4332 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4333 reduced_clock && i915_powersave) {
4334 I915_WRITE(FP1(pipe), fp2);
4335 crtc->config.dpll_hw_state.fp1 = fp2;
4336 crtc->lowfreq_avail = true;
4337 } else {
4338 I915_WRITE(FP1(pipe), fp);
4339 crtc->config.dpll_hw_state.fp1 = fp;
4340 }
4341 }
4342
4343 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4344 {
4345 u32 reg_val;
4346
4347 /*
4348 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4349 * and set it to a reasonable value instead.
4350 */
4351 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4352 reg_val &= 0xffffff00;
4353 reg_val |= 0x00000030;
4354 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4355
4356 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4357 reg_val &= 0x8cffffff;
4358 reg_val = 0x8c000000;
4359 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4360
4361 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4362 reg_val &= 0xffffff00;
4363 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4364
4365 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4366 reg_val &= 0x00ffffff;
4367 reg_val |= 0xb0000000;
4368 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4369 }
4370
4371 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4372 struct intel_link_m_n *m_n)
4373 {
4374 struct drm_device *dev = crtc->base.dev;
4375 struct drm_i915_private *dev_priv = dev->dev_private;
4376 int pipe = crtc->pipe;
4377
4378 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4379 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4380 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4381 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4382 }
4383
4384 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4385 struct intel_link_m_n *m_n)
4386 {
4387 struct drm_device *dev = crtc->base.dev;
4388 struct drm_i915_private *dev_priv = dev->dev_private;
4389 int pipe = crtc->pipe;
4390 enum transcoder transcoder = crtc->config.cpu_transcoder;
4391
4392 if (INTEL_INFO(dev)->gen >= 5) {
4393 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4394 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4395 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4396 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4397 } else {
4398 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4399 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4400 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4401 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4402 }
4403 }
4404
4405 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4406 {
4407 if (crtc->config.has_pch_encoder)
4408 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4409 else
4410 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4411 }
4412
4413 static void vlv_update_pll(struct intel_crtc *crtc)
4414 {
4415 struct drm_device *dev = crtc->base.dev;
4416 struct drm_i915_private *dev_priv = dev->dev_private;
4417 int pipe = crtc->pipe;
4418 u32 dpll, mdiv;
4419 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4420 bool is_hdmi;
4421 u32 coreclk, reg_val, dpll_md;
4422
4423 mutex_lock(&dev_priv->dpio_lock);
4424
4425 is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4426
4427 bestn = crtc->config.dpll.n;
4428 bestm1 = crtc->config.dpll.m1;
4429 bestm2 = crtc->config.dpll.m2;
4430 bestp1 = crtc->config.dpll.p1;
4431 bestp2 = crtc->config.dpll.p2;
4432
4433 /* See eDP HDMI DPIO driver vbios notes doc */
4434
4435 /* PLL B needs special handling */
4436 if (pipe)
4437 vlv_pllb_recal_opamp(dev_priv);
4438
4439 /* Set up Tx target for periodic Rcomp update */
4440 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4441
4442 /* Disable target IRef on PLL */
4443 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4444 reg_val &= 0x00ffffff;
4445 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4446
4447 /* Disable fast lock */
4448 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4449
4450 /* Set idtafcrecal before PLL is enabled */
4451 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4452 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4453 mdiv |= ((bestn << DPIO_N_SHIFT));
4454 mdiv |= (1 << DPIO_K_SHIFT);
4455
4456 /*
4457 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4458 * but we don't support that).
4459 * Note: don't use the DAC post divider as it seems unstable.
4460 */
4461 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4462 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4463
4464 mdiv |= DPIO_ENABLE_CALIBRATION;
4465 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4466
4467 /* Set HBR and RBR LPF coefficients */
4468 if (crtc->config.port_clock == 162000 ||
4469 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4470 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4471 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4472 0x009f0003);
4473 else
4474 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4475 0x00d0000f);
4476
4477 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4478 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4479 /* Use SSC source */
4480 if (!pipe)
4481 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4482 0x0df40000);
4483 else
4484 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4485 0x0df70000);
4486 } else { /* HDMI or VGA */
4487 /* Use bend source */
4488 if (!pipe)
4489 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4490 0x0df70000);
4491 else
4492 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4493 0x0df40000);
4494 }
4495
4496 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4497 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4498 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4499 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4500 coreclk |= 0x01000000;
4501 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4502
4503 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4504
4505 /* Enable DPIO clock input */
4506 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4507 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4508 if (pipe)
4509 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4510
4511 dpll |= DPLL_VCO_ENABLE;
4512 crtc->config.dpll_hw_state.dpll = dpll;
4513
4514 dpll_md = (crtc->config.pixel_multiplier - 1)
4515 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4516 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4517
4518 if (crtc->config.has_dp_encoder)
4519 intel_dp_set_m_n(crtc);
4520
4521 mutex_unlock(&dev_priv->dpio_lock);
4522 }
4523
4524 static void i9xx_update_pll(struct intel_crtc *crtc,
4525 intel_clock_t *reduced_clock,
4526 int num_connectors)
4527 {
4528 struct drm_device *dev = crtc->base.dev;
4529 struct drm_i915_private *dev_priv = dev->dev_private;
4530 u32 dpll;
4531 bool is_sdvo;
4532 struct dpll *clock = &crtc->config.dpll;
4533
4534 i9xx_update_pll_dividers(crtc, reduced_clock);
4535
4536 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4537 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4538
4539 dpll = DPLL_VGA_MODE_DIS;
4540
4541 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4542 dpll |= DPLLB_MODE_LVDS;
4543 else
4544 dpll |= DPLLB_MODE_DAC_SERIAL;
4545
4546 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4547 dpll |= (crtc->config.pixel_multiplier - 1)
4548 << SDVO_MULTIPLIER_SHIFT_HIRES;
4549 }
4550
4551 if (is_sdvo)
4552 dpll |= DPLL_SDVO_HIGH_SPEED;
4553
4554 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4555 dpll |= DPLL_SDVO_HIGH_SPEED;
4556
4557 /* compute bitmask from p1 value */
4558 if (IS_PINEVIEW(dev))
4559 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4560 else {
4561 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4562 if (IS_G4X(dev) && reduced_clock)
4563 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4564 }
4565 switch (clock->p2) {
4566 case 5:
4567 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4568 break;
4569 case 7:
4570 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4571 break;
4572 case 10:
4573 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4574 break;
4575 case 14:
4576 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4577 break;
4578 }
4579 if (INTEL_INFO(dev)->gen >= 4)
4580 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4581
4582 if (crtc->config.sdvo_tv_clock)
4583 dpll |= PLL_REF_INPUT_TVCLKINBC;
4584 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4585 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4586 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4587 else
4588 dpll |= PLL_REF_INPUT_DREFCLK;
4589
4590 dpll |= DPLL_VCO_ENABLE;
4591 crtc->config.dpll_hw_state.dpll = dpll;
4592
4593 if (INTEL_INFO(dev)->gen >= 4) {
4594 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4595 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4596 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4597 }
4598
4599 if (crtc->config.has_dp_encoder)
4600 intel_dp_set_m_n(crtc);
4601 }
4602
4603 static void i8xx_update_pll(struct intel_crtc *crtc,
4604 intel_clock_t *reduced_clock,
4605 int num_connectors)
4606 {
4607 struct drm_device *dev = crtc->base.dev;
4608 struct drm_i915_private *dev_priv = dev->dev_private;
4609 u32 dpll;
4610 struct dpll *clock = &crtc->config.dpll;
4611
4612 i9xx_update_pll_dividers(crtc, reduced_clock);
4613
4614 dpll = DPLL_VGA_MODE_DIS;
4615
4616 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4617 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4618 } else {
4619 if (clock->p1 == 2)
4620 dpll |= PLL_P1_DIVIDE_BY_TWO;
4621 else
4622 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4623 if (clock->p2 == 4)
4624 dpll |= PLL_P2_DIVIDE_BY_4;
4625 }
4626
4627 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4628 dpll |= DPLL_DVO_2X_MODE;
4629
4630 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4631 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4632 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4633 else
4634 dpll |= PLL_REF_INPUT_DREFCLK;
4635
4636 dpll |= DPLL_VCO_ENABLE;
4637 crtc->config.dpll_hw_state.dpll = dpll;
4638 }
4639
4640 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4641 {
4642 struct drm_device *dev = intel_crtc->base.dev;
4643 struct drm_i915_private *dev_priv = dev->dev_private;
4644 enum pipe pipe = intel_crtc->pipe;
4645 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4646 struct drm_display_mode *adjusted_mode =
4647 &intel_crtc->config.adjusted_mode;
4648 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4649 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4650
4651 /* We need to be careful not to changed the adjusted mode, for otherwise
4652 * the hw state checker will get angry at the mismatch. */
4653 crtc_vtotal = adjusted_mode->crtc_vtotal;
4654 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4655
4656 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4657 /* the chip adds 2 halflines automatically */
4658 crtc_vtotal -= 1;
4659 crtc_vblank_end -= 1;
4660 vsyncshift = adjusted_mode->crtc_hsync_start
4661 - adjusted_mode->crtc_htotal / 2;
4662 } else {
4663 vsyncshift = 0;
4664 }
4665
4666 if (INTEL_INFO(dev)->gen > 3)
4667 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4668
4669 I915_WRITE(HTOTAL(cpu_transcoder),
4670 (adjusted_mode->crtc_hdisplay - 1) |
4671 ((adjusted_mode->crtc_htotal - 1) << 16));
4672 I915_WRITE(HBLANK(cpu_transcoder),
4673 (adjusted_mode->crtc_hblank_start - 1) |
4674 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4675 I915_WRITE(HSYNC(cpu_transcoder),
4676 (adjusted_mode->crtc_hsync_start - 1) |
4677 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4678
4679 I915_WRITE(VTOTAL(cpu_transcoder),
4680 (adjusted_mode->crtc_vdisplay - 1) |
4681 ((crtc_vtotal - 1) << 16));
4682 I915_WRITE(VBLANK(cpu_transcoder),
4683 (adjusted_mode->crtc_vblank_start - 1) |
4684 ((crtc_vblank_end - 1) << 16));
4685 I915_WRITE(VSYNC(cpu_transcoder),
4686 (adjusted_mode->crtc_vsync_start - 1) |
4687 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4688
4689 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4690 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4691 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4692 * bits. */
4693 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4694 (pipe == PIPE_B || pipe == PIPE_C))
4695 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4696
4697 /* pipesrc controls the size that is scaled from, which should
4698 * always be the user's requested size.
4699 */
4700 I915_WRITE(PIPESRC(pipe),
4701 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4702 }
4703
4704 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4705 struct intel_crtc_config *pipe_config)
4706 {
4707 struct drm_device *dev = crtc->base.dev;
4708 struct drm_i915_private *dev_priv = dev->dev_private;
4709 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4710 uint32_t tmp;
4711
4712 tmp = I915_READ(HTOTAL(cpu_transcoder));
4713 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4714 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4715 tmp = I915_READ(HBLANK(cpu_transcoder));
4716 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4717 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4718 tmp = I915_READ(HSYNC(cpu_transcoder));
4719 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4720 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4721
4722 tmp = I915_READ(VTOTAL(cpu_transcoder));
4723 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4724 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4725 tmp = I915_READ(VBLANK(cpu_transcoder));
4726 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4727 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4728 tmp = I915_READ(VSYNC(cpu_transcoder));
4729 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4730 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4731
4732 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4733 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4734 pipe_config->adjusted_mode.crtc_vtotal += 1;
4735 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4736 }
4737
4738 tmp = I915_READ(PIPESRC(crtc->pipe));
4739 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4740 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4741 }
4742
4743 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4744 struct intel_crtc_config *pipe_config)
4745 {
4746 struct drm_crtc *crtc = &intel_crtc->base;
4747
4748 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4749 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4750 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4751 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4752
4753 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4754 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4755 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4756 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4757
4758 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4759
4760 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4761 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4762 }
4763
4764 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4765 {
4766 struct drm_device *dev = intel_crtc->base.dev;
4767 struct drm_i915_private *dev_priv = dev->dev_private;
4768 uint32_t pipeconf;
4769
4770 pipeconf = 0;
4771
4772 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4773 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4774 * core speed.
4775 *
4776 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4777 * pipe == 0 check?
4778 */
4779 if (intel_crtc->config.requested_mode.clock >
4780 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4781 pipeconf |= PIPECONF_DOUBLE_WIDE;
4782 }
4783
4784 /* only g4x and later have fancy bpc/dither controls */
4785 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4786 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4787 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4788 pipeconf |= PIPECONF_DITHER_EN |
4789 PIPECONF_DITHER_TYPE_SP;
4790
4791 switch (intel_crtc->config.pipe_bpp) {
4792 case 18:
4793 pipeconf |= PIPECONF_6BPC;
4794 break;
4795 case 24:
4796 pipeconf |= PIPECONF_8BPC;
4797 break;
4798 case 30:
4799 pipeconf |= PIPECONF_10BPC;
4800 break;
4801 default:
4802 /* Case prevented by intel_choose_pipe_bpp_dither. */
4803 BUG();
4804 }
4805 }
4806
4807 if (HAS_PIPE_CXSR(dev)) {
4808 if (intel_crtc->lowfreq_avail) {
4809 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4810 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4811 } else {
4812 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4813 }
4814 }
4815
4816 if (!IS_GEN2(dev) &&
4817 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4818 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4819 else
4820 pipeconf |= PIPECONF_PROGRESSIVE;
4821
4822 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4823 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4824
4825 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4826 POSTING_READ(PIPECONF(intel_crtc->pipe));
4827 }
4828
4829 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4830 int x, int y,
4831 struct drm_framebuffer *fb)
4832 {
4833 struct drm_device *dev = crtc->dev;
4834 struct drm_i915_private *dev_priv = dev->dev_private;
4835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4836 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4837 int pipe = intel_crtc->pipe;
4838 int plane = intel_crtc->plane;
4839 int refclk, num_connectors = 0;
4840 intel_clock_t clock, reduced_clock;
4841 u32 dspcntr;
4842 bool ok, has_reduced_clock = false;
4843 bool is_lvds = false;
4844 struct intel_encoder *encoder;
4845 const intel_limit_t *limit;
4846 int ret;
4847
4848 for_each_encoder_on_crtc(dev, crtc, encoder) {
4849 switch (encoder->type) {
4850 case INTEL_OUTPUT_LVDS:
4851 is_lvds = true;
4852 break;
4853 }
4854
4855 num_connectors++;
4856 }
4857
4858 refclk = i9xx_get_refclk(crtc, num_connectors);
4859
4860 /*
4861 * Returns a set of divisors for the desired target clock with the given
4862 * refclk, or FALSE. The returned values represent the clock equation:
4863 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4864 */
4865 limit = intel_limit(crtc, refclk);
4866 ok = dev_priv->display.find_dpll(limit, crtc,
4867 intel_crtc->config.port_clock,
4868 refclk, NULL, &clock);
4869 if (!ok && !intel_crtc->config.clock_set) {
4870 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4871 return -EINVAL;
4872 }
4873
4874 /* Ensure that the cursor is valid for the new mode before changing... */
4875 intel_crtc_update_cursor(crtc, true);
4876
4877 if (is_lvds && dev_priv->lvds_downclock_avail) {
4878 /*
4879 * Ensure we match the reduced clock's P to the target clock.
4880 * If the clocks don't match, we can't switch the display clock
4881 * by using the FP0/FP1. In such case we will disable the LVDS
4882 * downclock feature.
4883 */
4884 has_reduced_clock =
4885 dev_priv->display.find_dpll(limit, crtc,
4886 dev_priv->lvds_downclock,
4887 refclk, &clock,
4888 &reduced_clock);
4889 }
4890 /* Compat-code for transition, will disappear. */
4891 if (!intel_crtc->config.clock_set) {
4892 intel_crtc->config.dpll.n = clock.n;
4893 intel_crtc->config.dpll.m1 = clock.m1;
4894 intel_crtc->config.dpll.m2 = clock.m2;
4895 intel_crtc->config.dpll.p1 = clock.p1;
4896 intel_crtc->config.dpll.p2 = clock.p2;
4897 }
4898
4899 if (IS_GEN2(dev))
4900 i8xx_update_pll(intel_crtc,
4901 has_reduced_clock ? &reduced_clock : NULL,
4902 num_connectors);
4903 else if (IS_VALLEYVIEW(dev))
4904 vlv_update_pll(intel_crtc);
4905 else
4906 i9xx_update_pll(intel_crtc,
4907 has_reduced_clock ? &reduced_clock : NULL,
4908 num_connectors);
4909
4910 /* Set up the display plane register */
4911 dspcntr = DISPPLANE_GAMMA_ENABLE;
4912
4913 if (!IS_VALLEYVIEW(dev)) {
4914 if (pipe == 0)
4915 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4916 else
4917 dspcntr |= DISPPLANE_SEL_PIPE_B;
4918 }
4919
4920 intel_set_pipe_timings(intel_crtc);
4921
4922 /* pipesrc and dspsize control the size that is scaled from,
4923 * which should always be the user's requested size.
4924 */
4925 I915_WRITE(DSPSIZE(plane),
4926 ((mode->vdisplay - 1) << 16) |
4927 (mode->hdisplay - 1));
4928 I915_WRITE(DSPPOS(plane), 0);
4929
4930 i9xx_set_pipeconf(intel_crtc);
4931
4932 I915_WRITE(DSPCNTR(plane), dspcntr);
4933 POSTING_READ(DSPCNTR(plane));
4934
4935 ret = intel_pipe_set_base(crtc, x, y, fb);
4936
4937 intel_update_watermarks(dev);
4938
4939 return ret;
4940 }
4941
4942 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4943 struct intel_crtc_config *pipe_config)
4944 {
4945 struct drm_device *dev = crtc->base.dev;
4946 struct drm_i915_private *dev_priv = dev->dev_private;
4947 uint32_t tmp;
4948
4949 tmp = I915_READ(PFIT_CONTROL);
4950
4951 if (INTEL_INFO(dev)->gen < 4) {
4952 if (crtc->pipe != PIPE_B)
4953 return;
4954
4955 /* gen2/3 store dither state in pfit control, needs to match */
4956 pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
4957 } else {
4958 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4959 return;
4960 }
4961
4962 if (!(tmp & PFIT_ENABLE))
4963 return;
4964
4965 pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
4966 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4967 if (INTEL_INFO(dev)->gen < 5)
4968 pipe_config->gmch_pfit.lvds_border_bits =
4969 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4970 }
4971
4972 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4973 struct intel_crtc_config *pipe_config)
4974 {
4975 struct drm_device *dev = crtc->base.dev;
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 uint32_t tmp;
4978
4979 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4980 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4981
4982 tmp = I915_READ(PIPECONF(crtc->pipe));
4983 if (!(tmp & PIPECONF_ENABLE))
4984 return false;
4985
4986 intel_get_pipe_timings(crtc, pipe_config);
4987
4988 i9xx_get_pfit_config(crtc, pipe_config);
4989
4990 if (INTEL_INFO(dev)->gen >= 4) {
4991 tmp = I915_READ(DPLL_MD(crtc->pipe));
4992 pipe_config->pixel_multiplier =
4993 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4994 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4995 pipe_config->dpll_hw_state.dpll_md = tmp;
4996 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4997 tmp = I915_READ(DPLL(crtc->pipe));
4998 pipe_config->pixel_multiplier =
4999 ((tmp & SDVO_MULTIPLIER_MASK)
5000 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5001 } else {
5002 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5003 * port and will be fixed up in the encoder->get_config
5004 * function. */
5005 pipe_config->pixel_multiplier = 1;
5006 }
5007 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5008 if (!IS_VALLEYVIEW(dev)) {
5009 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5010 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5011 } else {
5012 /* Mask out read-only status bits. */
5013 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5014 DPLL_PORTC_READY_MASK |
5015 DPLL_PORTB_READY_MASK);
5016 }
5017
5018 return true;
5019 }
5020
5021 static void ironlake_init_pch_refclk(struct drm_device *dev)
5022 {
5023 struct drm_i915_private *dev_priv = dev->dev_private;
5024 struct drm_mode_config *mode_config = &dev->mode_config;
5025 struct intel_encoder *encoder;
5026 u32 val, final;
5027 bool has_lvds = false;
5028 bool has_cpu_edp = false;
5029 bool has_panel = false;
5030 bool has_ck505 = false;
5031 bool can_ssc = false;
5032
5033 /* We need to take the global config into account */
5034 list_for_each_entry(encoder, &mode_config->encoder_list,
5035 base.head) {
5036 switch (encoder->type) {
5037 case INTEL_OUTPUT_LVDS:
5038 has_panel = true;
5039 has_lvds = true;
5040 break;
5041 case INTEL_OUTPUT_EDP:
5042 has_panel = true;
5043 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5044 has_cpu_edp = true;
5045 break;
5046 }
5047 }
5048
5049 if (HAS_PCH_IBX(dev)) {
5050 has_ck505 = dev_priv->vbt.display_clock_mode;
5051 can_ssc = has_ck505;
5052 } else {
5053 has_ck505 = false;
5054 can_ssc = true;
5055 }
5056
5057 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5058 has_panel, has_lvds, has_ck505);
5059
5060 /* Ironlake: try to setup display ref clock before DPLL
5061 * enabling. This is only under driver's control after
5062 * PCH B stepping, previous chipset stepping should be
5063 * ignoring this setting.
5064 */
5065 val = I915_READ(PCH_DREF_CONTROL);
5066
5067 /* As we must carefully and slowly disable/enable each source in turn,
5068 * compute the final state we want first and check if we need to
5069 * make any changes at all.
5070 */
5071 final = val;
5072 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5073 if (has_ck505)
5074 final |= DREF_NONSPREAD_CK505_ENABLE;
5075 else
5076 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5077
5078 final &= ~DREF_SSC_SOURCE_MASK;
5079 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5080 final &= ~DREF_SSC1_ENABLE;
5081
5082 if (has_panel) {
5083 final |= DREF_SSC_SOURCE_ENABLE;
5084
5085 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5086 final |= DREF_SSC1_ENABLE;
5087
5088 if (has_cpu_edp) {
5089 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5090 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5091 else
5092 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5093 } else
5094 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5095 } else {
5096 final |= DREF_SSC_SOURCE_DISABLE;
5097 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5098 }
5099
5100 if (final == val)
5101 return;
5102
5103 /* Always enable nonspread source */
5104 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5105
5106 if (has_ck505)
5107 val |= DREF_NONSPREAD_CK505_ENABLE;
5108 else
5109 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5110
5111 if (has_panel) {
5112 val &= ~DREF_SSC_SOURCE_MASK;
5113 val |= DREF_SSC_SOURCE_ENABLE;
5114
5115 /* SSC must be turned on before enabling the CPU output */
5116 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5117 DRM_DEBUG_KMS("Using SSC on panel\n");
5118 val |= DREF_SSC1_ENABLE;
5119 } else
5120 val &= ~DREF_SSC1_ENABLE;
5121
5122 /* Get SSC going before enabling the outputs */
5123 I915_WRITE(PCH_DREF_CONTROL, val);
5124 POSTING_READ(PCH_DREF_CONTROL);
5125 udelay(200);
5126
5127 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5128
5129 /* Enable CPU source on CPU attached eDP */
5130 if (has_cpu_edp) {
5131 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5132 DRM_DEBUG_KMS("Using SSC on eDP\n");
5133 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5134 }
5135 else
5136 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5137 } else
5138 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5139
5140 I915_WRITE(PCH_DREF_CONTROL, val);
5141 POSTING_READ(PCH_DREF_CONTROL);
5142 udelay(200);
5143 } else {
5144 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5145
5146 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5147
5148 /* Turn off CPU output */
5149 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5150
5151 I915_WRITE(PCH_DREF_CONTROL, val);
5152 POSTING_READ(PCH_DREF_CONTROL);
5153 udelay(200);
5154
5155 /* Turn off the SSC source */
5156 val &= ~DREF_SSC_SOURCE_MASK;
5157 val |= DREF_SSC_SOURCE_DISABLE;
5158
5159 /* Turn off SSC1 */
5160 val &= ~DREF_SSC1_ENABLE;
5161
5162 I915_WRITE(PCH_DREF_CONTROL, val);
5163 POSTING_READ(PCH_DREF_CONTROL);
5164 udelay(200);
5165 }
5166
5167 BUG_ON(val != final);
5168 }
5169
5170 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5171 {
5172 uint32_t tmp;
5173
5174 tmp = I915_READ(SOUTH_CHICKEN2);
5175 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5176 I915_WRITE(SOUTH_CHICKEN2, tmp);
5177
5178 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5179 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5180 DRM_ERROR("FDI mPHY reset assert timeout\n");
5181
5182 tmp = I915_READ(SOUTH_CHICKEN2);
5183 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5184 I915_WRITE(SOUTH_CHICKEN2, tmp);
5185
5186 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5187 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5188 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5189 }
5190
5191 /* WaMPhyProgramming:hsw */
5192 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5193 {
5194 uint32_t tmp;
5195
5196 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5197 tmp &= ~(0xFF << 24);
5198 tmp |= (0x12 << 24);
5199 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5200
5201 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5202 tmp |= (1 << 11);
5203 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5204
5205 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5206 tmp |= (1 << 11);
5207 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5208
5209 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5210 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5211 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5212
5213 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5214 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5215 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5216
5217 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5218 tmp &= ~(7 << 13);
5219 tmp |= (5 << 13);
5220 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5221
5222 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5223 tmp &= ~(7 << 13);
5224 tmp |= (5 << 13);
5225 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5226
5227 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5228 tmp &= ~0xFF;
5229 tmp |= 0x1C;
5230 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5231
5232 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5233 tmp &= ~0xFF;
5234 tmp |= 0x1C;
5235 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5236
5237 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5238 tmp &= ~(0xFF << 16);
5239 tmp |= (0x1C << 16);
5240 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5241
5242 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5243 tmp &= ~(0xFF << 16);
5244 tmp |= (0x1C << 16);
5245 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5246
5247 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5248 tmp |= (1 << 27);
5249 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5250
5251 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5252 tmp |= (1 << 27);
5253 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5254
5255 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5256 tmp &= ~(0xF << 28);
5257 tmp |= (4 << 28);
5258 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5259
5260 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5261 tmp &= ~(0xF << 28);
5262 tmp |= (4 << 28);
5263 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5264 }
5265
5266 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5267 * Programming" based on the parameters passed:
5268 * - Sequence to enable CLKOUT_DP
5269 * - Sequence to enable CLKOUT_DP without spread
5270 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5271 */
5272 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5273 bool with_fdi)
5274 {
5275 struct drm_i915_private *dev_priv = dev->dev_private;
5276 uint32_t reg, tmp;
5277
5278 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5279 with_spread = true;
5280 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5281 with_fdi, "LP PCH doesn't have FDI\n"))
5282 with_fdi = false;
5283
5284 mutex_lock(&dev_priv->dpio_lock);
5285
5286 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5287 tmp &= ~SBI_SSCCTL_DISABLE;
5288 tmp |= SBI_SSCCTL_PATHALT;
5289 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5290
5291 udelay(24);
5292
5293 if (with_spread) {
5294 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5295 tmp &= ~SBI_SSCCTL_PATHALT;
5296 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5297
5298 if (with_fdi) {
5299 lpt_reset_fdi_mphy(dev_priv);
5300 lpt_program_fdi_mphy(dev_priv);
5301 }
5302 }
5303
5304 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5305 SBI_GEN0 : SBI_DBUFF0;
5306 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5307 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5308 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5309
5310 mutex_unlock(&dev_priv->dpio_lock);
5311 }
5312
5313 static void lpt_init_pch_refclk(struct drm_device *dev)
5314 {
5315 struct drm_mode_config *mode_config = &dev->mode_config;
5316 struct intel_encoder *encoder;
5317 bool has_vga = false;
5318
5319 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5320 switch (encoder->type) {
5321 case INTEL_OUTPUT_ANALOG:
5322 has_vga = true;
5323 break;
5324 }
5325 }
5326
5327 if (!has_vga)
5328 return;
5329
5330 lpt_enable_clkout_dp(dev, true, true);
5331 }
5332
5333 /*
5334 * Initialize reference clocks when the driver loads
5335 */
5336 void intel_init_pch_refclk(struct drm_device *dev)
5337 {
5338 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5339 ironlake_init_pch_refclk(dev);
5340 else if (HAS_PCH_LPT(dev))
5341 lpt_init_pch_refclk(dev);
5342 }
5343
5344 static int ironlake_get_refclk(struct drm_crtc *crtc)
5345 {
5346 struct drm_device *dev = crtc->dev;
5347 struct drm_i915_private *dev_priv = dev->dev_private;
5348 struct intel_encoder *encoder;
5349 int num_connectors = 0;
5350 bool is_lvds = false;
5351
5352 for_each_encoder_on_crtc(dev, crtc, encoder) {
5353 switch (encoder->type) {
5354 case INTEL_OUTPUT_LVDS:
5355 is_lvds = true;
5356 break;
5357 }
5358 num_connectors++;
5359 }
5360
5361 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5362 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5363 dev_priv->vbt.lvds_ssc_freq);
5364 return dev_priv->vbt.lvds_ssc_freq * 1000;
5365 }
5366
5367 return 120000;
5368 }
5369
5370 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5371 {
5372 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5374 int pipe = intel_crtc->pipe;
5375 uint32_t val;
5376
5377 val = 0;
5378
5379 switch (intel_crtc->config.pipe_bpp) {
5380 case 18:
5381 val |= PIPECONF_6BPC;
5382 break;
5383 case 24:
5384 val |= PIPECONF_8BPC;
5385 break;
5386 case 30:
5387 val |= PIPECONF_10BPC;
5388 break;
5389 case 36:
5390 val |= PIPECONF_12BPC;
5391 break;
5392 default:
5393 /* Case prevented by intel_choose_pipe_bpp_dither. */
5394 BUG();
5395 }
5396
5397 if (intel_crtc->config.dither)
5398 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5399
5400 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5401 val |= PIPECONF_INTERLACED_ILK;
5402 else
5403 val |= PIPECONF_PROGRESSIVE;
5404
5405 if (intel_crtc->config.limited_color_range)
5406 val |= PIPECONF_COLOR_RANGE_SELECT;
5407
5408 I915_WRITE(PIPECONF(pipe), val);
5409 POSTING_READ(PIPECONF(pipe));
5410 }
5411
5412 /*
5413 * Set up the pipe CSC unit.
5414 *
5415 * Currently only full range RGB to limited range RGB conversion
5416 * is supported, but eventually this should handle various
5417 * RGB<->YCbCr scenarios as well.
5418 */
5419 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5420 {
5421 struct drm_device *dev = crtc->dev;
5422 struct drm_i915_private *dev_priv = dev->dev_private;
5423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5424 int pipe = intel_crtc->pipe;
5425 uint16_t coeff = 0x7800; /* 1.0 */
5426
5427 /*
5428 * TODO: Check what kind of values actually come out of the pipe
5429 * with these coeff/postoff values and adjust to get the best
5430 * accuracy. Perhaps we even need to take the bpc value into
5431 * consideration.
5432 */
5433
5434 if (intel_crtc->config.limited_color_range)
5435 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5436
5437 /*
5438 * GY/GU and RY/RU should be the other way around according
5439 * to BSpec, but reality doesn't agree. Just set them up in
5440 * a way that results in the correct picture.
5441 */
5442 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5443 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5444
5445 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5446 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5447
5448 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5449 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5450
5451 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5452 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5453 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5454
5455 if (INTEL_INFO(dev)->gen > 6) {
5456 uint16_t postoff = 0;
5457
5458 if (intel_crtc->config.limited_color_range)
5459 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5460
5461 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5462 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5463 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5464
5465 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5466 } else {
5467 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5468
5469 if (intel_crtc->config.limited_color_range)
5470 mode |= CSC_BLACK_SCREEN_OFFSET;
5471
5472 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5473 }
5474 }
5475
5476 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5477 {
5478 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5479 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5480 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5481 uint32_t val;
5482
5483 val = 0;
5484
5485 if (intel_crtc->config.dither)
5486 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5487
5488 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5489 val |= PIPECONF_INTERLACED_ILK;
5490 else
5491 val |= PIPECONF_PROGRESSIVE;
5492
5493 I915_WRITE(PIPECONF(cpu_transcoder), val);
5494 POSTING_READ(PIPECONF(cpu_transcoder));
5495
5496 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5497 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5498 }
5499
5500 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5501 intel_clock_t *clock,
5502 bool *has_reduced_clock,
5503 intel_clock_t *reduced_clock)
5504 {
5505 struct drm_device *dev = crtc->dev;
5506 struct drm_i915_private *dev_priv = dev->dev_private;
5507 struct intel_encoder *intel_encoder;
5508 int refclk;
5509 const intel_limit_t *limit;
5510 bool ret, is_lvds = false;
5511
5512 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5513 switch (intel_encoder->type) {
5514 case INTEL_OUTPUT_LVDS:
5515 is_lvds = true;
5516 break;
5517 }
5518 }
5519
5520 refclk = ironlake_get_refclk(crtc);
5521
5522 /*
5523 * Returns a set of divisors for the desired target clock with the given
5524 * refclk, or FALSE. The returned values represent the clock equation:
5525 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5526 */
5527 limit = intel_limit(crtc, refclk);
5528 ret = dev_priv->display.find_dpll(limit, crtc,
5529 to_intel_crtc(crtc)->config.port_clock,
5530 refclk, NULL, clock);
5531 if (!ret)
5532 return false;
5533
5534 if (is_lvds && dev_priv->lvds_downclock_avail) {
5535 /*
5536 * Ensure we match the reduced clock's P to the target clock.
5537 * If the clocks don't match, we can't switch the display clock
5538 * by using the FP0/FP1. In such case we will disable the LVDS
5539 * downclock feature.
5540 */
5541 *has_reduced_clock =
5542 dev_priv->display.find_dpll(limit, crtc,
5543 dev_priv->lvds_downclock,
5544 refclk, clock,
5545 reduced_clock);
5546 }
5547
5548 return true;
5549 }
5550
5551 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5552 {
5553 struct drm_i915_private *dev_priv = dev->dev_private;
5554 uint32_t temp;
5555
5556 temp = I915_READ(SOUTH_CHICKEN1);
5557 if (temp & FDI_BC_BIFURCATION_SELECT)
5558 return;
5559
5560 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5561 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5562
5563 temp |= FDI_BC_BIFURCATION_SELECT;
5564 DRM_DEBUG_KMS("enabling fdi C rx\n");
5565 I915_WRITE(SOUTH_CHICKEN1, temp);
5566 POSTING_READ(SOUTH_CHICKEN1);
5567 }
5568
5569 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5570 {
5571 struct drm_device *dev = intel_crtc->base.dev;
5572 struct drm_i915_private *dev_priv = dev->dev_private;
5573
5574 switch (intel_crtc->pipe) {
5575 case PIPE_A:
5576 break;
5577 case PIPE_B:
5578 if (intel_crtc->config.fdi_lanes > 2)
5579 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5580 else
5581 cpt_enable_fdi_bc_bifurcation(dev);
5582
5583 break;
5584 case PIPE_C:
5585 cpt_enable_fdi_bc_bifurcation(dev);
5586
5587 break;
5588 default:
5589 BUG();
5590 }
5591 }
5592
5593 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5594 {
5595 /*
5596 * Account for spread spectrum to avoid
5597 * oversubscribing the link. Max center spread
5598 * is 2.5%; use 5% for safety's sake.
5599 */
5600 u32 bps = target_clock * bpp * 21 / 20;
5601 return bps / (link_bw * 8) + 1;
5602 }
5603
5604 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5605 {
5606 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5607 }
5608
5609 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5610 u32 *fp,
5611 intel_clock_t *reduced_clock, u32 *fp2)
5612 {
5613 struct drm_crtc *crtc = &intel_crtc->base;
5614 struct drm_device *dev = crtc->dev;
5615 struct drm_i915_private *dev_priv = dev->dev_private;
5616 struct intel_encoder *intel_encoder;
5617 uint32_t dpll;
5618 int factor, num_connectors = 0;
5619 bool is_lvds = false, is_sdvo = false;
5620
5621 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5622 switch (intel_encoder->type) {
5623 case INTEL_OUTPUT_LVDS:
5624 is_lvds = true;
5625 break;
5626 case INTEL_OUTPUT_SDVO:
5627 case INTEL_OUTPUT_HDMI:
5628 is_sdvo = true;
5629 break;
5630 }
5631
5632 num_connectors++;
5633 }
5634
5635 /* Enable autotuning of the PLL clock (if permissible) */
5636 factor = 21;
5637 if (is_lvds) {
5638 if ((intel_panel_use_ssc(dev_priv) &&
5639 dev_priv->vbt.lvds_ssc_freq == 100) ||
5640 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5641 factor = 25;
5642 } else if (intel_crtc->config.sdvo_tv_clock)
5643 factor = 20;
5644
5645 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5646 *fp |= FP_CB_TUNE;
5647
5648 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5649 *fp2 |= FP_CB_TUNE;
5650
5651 dpll = 0;
5652
5653 if (is_lvds)
5654 dpll |= DPLLB_MODE_LVDS;
5655 else
5656 dpll |= DPLLB_MODE_DAC_SERIAL;
5657
5658 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5659 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5660
5661 if (is_sdvo)
5662 dpll |= DPLL_SDVO_HIGH_SPEED;
5663 if (intel_crtc->config.has_dp_encoder)
5664 dpll |= DPLL_SDVO_HIGH_SPEED;
5665
5666 /* compute bitmask from p1 value */
5667 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5668 /* also FPA1 */
5669 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5670
5671 switch (intel_crtc->config.dpll.p2) {
5672 case 5:
5673 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5674 break;
5675 case 7:
5676 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5677 break;
5678 case 10:
5679 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5680 break;
5681 case 14:
5682 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5683 break;
5684 }
5685
5686 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5687 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5688 else
5689 dpll |= PLL_REF_INPUT_DREFCLK;
5690
5691 return dpll | DPLL_VCO_ENABLE;
5692 }
5693
5694 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5695 int x, int y,
5696 struct drm_framebuffer *fb)
5697 {
5698 struct drm_device *dev = crtc->dev;
5699 struct drm_i915_private *dev_priv = dev->dev_private;
5700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5701 int pipe = intel_crtc->pipe;
5702 int plane = intel_crtc->plane;
5703 int num_connectors = 0;
5704 intel_clock_t clock, reduced_clock;
5705 u32 dpll = 0, fp = 0, fp2 = 0;
5706 bool ok, has_reduced_clock = false;
5707 bool is_lvds = false;
5708 struct intel_encoder *encoder;
5709 struct intel_shared_dpll *pll;
5710 int ret;
5711
5712 for_each_encoder_on_crtc(dev, crtc, encoder) {
5713 switch (encoder->type) {
5714 case INTEL_OUTPUT_LVDS:
5715 is_lvds = true;
5716 break;
5717 }
5718
5719 num_connectors++;
5720 }
5721
5722 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5723 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5724
5725 ok = ironlake_compute_clocks(crtc, &clock,
5726 &has_reduced_clock, &reduced_clock);
5727 if (!ok && !intel_crtc->config.clock_set) {
5728 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5729 return -EINVAL;
5730 }
5731 /* Compat-code for transition, will disappear. */
5732 if (!intel_crtc->config.clock_set) {
5733 intel_crtc->config.dpll.n = clock.n;
5734 intel_crtc->config.dpll.m1 = clock.m1;
5735 intel_crtc->config.dpll.m2 = clock.m2;
5736 intel_crtc->config.dpll.p1 = clock.p1;
5737 intel_crtc->config.dpll.p2 = clock.p2;
5738 }
5739
5740 /* Ensure that the cursor is valid for the new mode before changing... */
5741 intel_crtc_update_cursor(crtc, true);
5742
5743 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5744 if (intel_crtc->config.has_pch_encoder) {
5745 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5746 if (has_reduced_clock)
5747 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5748
5749 dpll = ironlake_compute_dpll(intel_crtc,
5750 &fp, &reduced_clock,
5751 has_reduced_clock ? &fp2 : NULL);
5752
5753 intel_crtc->config.dpll_hw_state.dpll = dpll;
5754 intel_crtc->config.dpll_hw_state.fp0 = fp;
5755 if (has_reduced_clock)
5756 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5757 else
5758 intel_crtc->config.dpll_hw_state.fp1 = fp;
5759
5760 pll = intel_get_shared_dpll(intel_crtc);
5761 if (pll == NULL) {
5762 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5763 pipe_name(pipe));
5764 return -EINVAL;
5765 }
5766 } else
5767 intel_put_shared_dpll(intel_crtc);
5768
5769 if (intel_crtc->config.has_dp_encoder)
5770 intel_dp_set_m_n(intel_crtc);
5771
5772 if (is_lvds && has_reduced_clock && i915_powersave)
5773 intel_crtc->lowfreq_avail = true;
5774 else
5775 intel_crtc->lowfreq_avail = false;
5776
5777 if (intel_crtc->config.has_pch_encoder) {
5778 pll = intel_crtc_to_shared_dpll(intel_crtc);
5779
5780 }
5781
5782 intel_set_pipe_timings(intel_crtc);
5783
5784 if (intel_crtc->config.has_pch_encoder) {
5785 intel_cpu_transcoder_set_m_n(intel_crtc,
5786 &intel_crtc->config.fdi_m_n);
5787 }
5788
5789 if (IS_IVYBRIDGE(dev))
5790 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5791
5792 ironlake_set_pipeconf(crtc);
5793
5794 /* Set up the display plane register */
5795 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5796 POSTING_READ(DSPCNTR(plane));
5797
5798 ret = intel_pipe_set_base(crtc, x, y, fb);
5799
5800 intel_update_watermarks(dev);
5801
5802 return ret;
5803 }
5804
5805 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5806 struct intel_crtc_config *pipe_config)
5807 {
5808 struct drm_device *dev = crtc->base.dev;
5809 struct drm_i915_private *dev_priv = dev->dev_private;
5810 enum transcoder transcoder = pipe_config->cpu_transcoder;
5811
5812 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5813 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5814 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5815 & ~TU_SIZE_MASK;
5816 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5817 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5818 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5819 }
5820
5821 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5822 struct intel_crtc_config *pipe_config)
5823 {
5824 struct drm_device *dev = crtc->base.dev;
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5826 uint32_t tmp;
5827
5828 tmp = I915_READ(PF_CTL(crtc->pipe));
5829
5830 if (tmp & PF_ENABLE) {
5831 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5832 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5833
5834 /* We currently do not free assignements of panel fitters on
5835 * ivb/hsw (since we don't use the higher upscaling modes which
5836 * differentiates them) so just WARN about this case for now. */
5837 if (IS_GEN7(dev)) {
5838 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5839 PF_PIPE_SEL_IVB(crtc->pipe));
5840 }
5841 }
5842 }
5843
5844 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5845 struct intel_crtc_config *pipe_config)
5846 {
5847 struct drm_device *dev = crtc->base.dev;
5848 struct drm_i915_private *dev_priv = dev->dev_private;
5849 uint32_t tmp;
5850
5851 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5852 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5853
5854 tmp = I915_READ(PIPECONF(crtc->pipe));
5855 if (!(tmp & PIPECONF_ENABLE))
5856 return false;
5857
5858 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5859 struct intel_shared_dpll *pll;
5860
5861 pipe_config->has_pch_encoder = true;
5862
5863 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5864 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5865 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5866
5867 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5868
5869 if (HAS_PCH_IBX(dev_priv->dev)) {
5870 pipe_config->shared_dpll =
5871 (enum intel_dpll_id) crtc->pipe;
5872 } else {
5873 tmp = I915_READ(PCH_DPLL_SEL);
5874 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5875 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5876 else
5877 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5878 }
5879
5880 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5881
5882 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5883 &pipe_config->dpll_hw_state));
5884
5885 tmp = pipe_config->dpll_hw_state.dpll;
5886 pipe_config->pixel_multiplier =
5887 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5888 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5889 } else {
5890 pipe_config->pixel_multiplier = 1;
5891 }
5892
5893 intel_get_pipe_timings(crtc, pipe_config);
5894
5895 ironlake_get_pfit_config(crtc, pipe_config);
5896
5897 return true;
5898 }
5899
5900 static void haswell_modeset_global_resources(struct drm_device *dev)
5901 {
5902 bool enable = false;
5903 struct intel_crtc *crtc;
5904
5905 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5906 if (!crtc->base.enabled)
5907 continue;
5908
5909 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
5910 crtc->config.cpu_transcoder != TRANSCODER_EDP)
5911 enable = true;
5912 }
5913
5914 intel_set_power_well(dev, enable);
5915 }
5916
5917 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5918 int x, int y,
5919 struct drm_framebuffer *fb)
5920 {
5921 struct drm_device *dev = crtc->dev;
5922 struct drm_i915_private *dev_priv = dev->dev_private;
5923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5924 int plane = intel_crtc->plane;
5925 int ret;
5926
5927 if (!intel_ddi_pll_mode_set(crtc))
5928 return -EINVAL;
5929
5930 /* Ensure that the cursor is valid for the new mode before changing... */
5931 intel_crtc_update_cursor(crtc, true);
5932
5933 if (intel_crtc->config.has_dp_encoder)
5934 intel_dp_set_m_n(intel_crtc);
5935
5936 intel_crtc->lowfreq_avail = false;
5937
5938 intel_set_pipe_timings(intel_crtc);
5939
5940 if (intel_crtc->config.has_pch_encoder) {
5941 intel_cpu_transcoder_set_m_n(intel_crtc,
5942 &intel_crtc->config.fdi_m_n);
5943 }
5944
5945 haswell_set_pipeconf(crtc);
5946
5947 intel_set_pipe_csc(crtc);
5948
5949 /* Set up the display plane register */
5950 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5951 POSTING_READ(DSPCNTR(plane));
5952
5953 ret = intel_pipe_set_base(crtc, x, y, fb);
5954
5955 intel_update_watermarks(dev);
5956
5957 return ret;
5958 }
5959
5960 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5961 struct intel_crtc_config *pipe_config)
5962 {
5963 struct drm_device *dev = crtc->base.dev;
5964 struct drm_i915_private *dev_priv = dev->dev_private;
5965 enum intel_display_power_domain pfit_domain;
5966 uint32_t tmp;
5967
5968 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5969 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5970
5971 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
5972 if (tmp & TRANS_DDI_FUNC_ENABLE) {
5973 enum pipe trans_edp_pipe;
5974 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
5975 default:
5976 WARN(1, "unknown pipe linked to edp transcoder\n");
5977 case TRANS_DDI_EDP_INPUT_A_ONOFF:
5978 case TRANS_DDI_EDP_INPUT_A_ON:
5979 trans_edp_pipe = PIPE_A;
5980 break;
5981 case TRANS_DDI_EDP_INPUT_B_ONOFF:
5982 trans_edp_pipe = PIPE_B;
5983 break;
5984 case TRANS_DDI_EDP_INPUT_C_ONOFF:
5985 trans_edp_pipe = PIPE_C;
5986 break;
5987 }
5988
5989 if (trans_edp_pipe == crtc->pipe)
5990 pipe_config->cpu_transcoder = TRANSCODER_EDP;
5991 }
5992
5993 if (!intel_display_power_enabled(dev,
5994 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
5995 return false;
5996
5997 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
5998 if (!(tmp & PIPECONF_ENABLE))
5999 return false;
6000
6001 /*
6002 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6003 * DDI E. So just check whether this pipe is wired to DDI E and whether
6004 * the PCH transcoder is on.
6005 */
6006 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6007 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6008 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6009 pipe_config->has_pch_encoder = true;
6010
6011 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6012 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6013 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6014
6015 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6016 }
6017
6018 intel_get_pipe_timings(crtc, pipe_config);
6019
6020 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6021 if (intel_display_power_enabled(dev, pfit_domain))
6022 ironlake_get_pfit_config(crtc, pipe_config);
6023
6024 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6025 (I915_READ(IPS_CTL) & IPS_ENABLE);
6026
6027 pipe_config->pixel_multiplier = 1;
6028
6029 return true;
6030 }
6031
6032 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6033 int x, int y,
6034 struct drm_framebuffer *fb)
6035 {
6036 struct drm_device *dev = crtc->dev;
6037 struct drm_i915_private *dev_priv = dev->dev_private;
6038 struct drm_encoder_helper_funcs *encoder_funcs;
6039 struct intel_encoder *encoder;
6040 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6041 struct drm_display_mode *adjusted_mode =
6042 &intel_crtc->config.adjusted_mode;
6043 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6044 int pipe = intel_crtc->pipe;
6045 int ret;
6046
6047 drm_vblank_pre_modeset(dev, pipe);
6048
6049 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6050
6051 drm_vblank_post_modeset(dev, pipe);
6052
6053 if (ret != 0)
6054 return ret;
6055
6056 for_each_encoder_on_crtc(dev, crtc, encoder) {
6057 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6058 encoder->base.base.id,
6059 drm_get_encoder_name(&encoder->base),
6060 mode->base.id, mode->name);
6061 if (encoder->mode_set) {
6062 encoder->mode_set(encoder);
6063 } else {
6064 encoder_funcs = encoder->base.helper_private;
6065 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6066 }
6067 }
6068
6069 return 0;
6070 }
6071
6072 static bool intel_eld_uptodate(struct drm_connector *connector,
6073 int reg_eldv, uint32_t bits_eldv,
6074 int reg_elda, uint32_t bits_elda,
6075 int reg_edid)
6076 {
6077 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6078 uint8_t *eld = connector->eld;
6079 uint32_t i;
6080
6081 i = I915_READ(reg_eldv);
6082 i &= bits_eldv;
6083
6084 if (!eld[0])
6085 return !i;
6086
6087 if (!i)
6088 return false;
6089
6090 i = I915_READ(reg_elda);
6091 i &= ~bits_elda;
6092 I915_WRITE(reg_elda, i);
6093
6094 for (i = 0; i < eld[2]; i++)
6095 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6096 return false;
6097
6098 return true;
6099 }
6100
6101 static void g4x_write_eld(struct drm_connector *connector,
6102 struct drm_crtc *crtc)
6103 {
6104 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6105 uint8_t *eld = connector->eld;
6106 uint32_t eldv;
6107 uint32_t len;
6108 uint32_t i;
6109
6110 i = I915_READ(G4X_AUD_VID_DID);
6111
6112 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6113 eldv = G4X_ELDV_DEVCL_DEVBLC;
6114 else
6115 eldv = G4X_ELDV_DEVCTG;
6116
6117 if (intel_eld_uptodate(connector,
6118 G4X_AUD_CNTL_ST, eldv,
6119 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6120 G4X_HDMIW_HDMIEDID))
6121 return;
6122
6123 i = I915_READ(G4X_AUD_CNTL_ST);
6124 i &= ~(eldv | G4X_ELD_ADDR);
6125 len = (i >> 9) & 0x1f; /* ELD buffer size */
6126 I915_WRITE(G4X_AUD_CNTL_ST, i);
6127
6128 if (!eld[0])
6129 return;
6130
6131 len = min_t(uint8_t, eld[2], len);
6132 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6133 for (i = 0; i < len; i++)
6134 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6135
6136 i = I915_READ(G4X_AUD_CNTL_ST);
6137 i |= eldv;
6138 I915_WRITE(G4X_AUD_CNTL_ST, i);
6139 }
6140
6141 static void haswell_write_eld(struct drm_connector *connector,
6142 struct drm_crtc *crtc)
6143 {
6144 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6145 uint8_t *eld = connector->eld;
6146 struct drm_device *dev = crtc->dev;
6147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6148 uint32_t eldv;
6149 uint32_t i;
6150 int len;
6151 int pipe = to_intel_crtc(crtc)->pipe;
6152 int tmp;
6153
6154 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6155 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6156 int aud_config = HSW_AUD_CFG(pipe);
6157 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6158
6159
6160 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6161
6162 /* Audio output enable */
6163 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6164 tmp = I915_READ(aud_cntrl_st2);
6165 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6166 I915_WRITE(aud_cntrl_st2, tmp);
6167
6168 /* Wait for 1 vertical blank */
6169 intel_wait_for_vblank(dev, pipe);
6170
6171 /* Set ELD valid state */
6172 tmp = I915_READ(aud_cntrl_st2);
6173 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6174 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6175 I915_WRITE(aud_cntrl_st2, tmp);
6176 tmp = I915_READ(aud_cntrl_st2);
6177 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6178
6179 /* Enable HDMI mode */
6180 tmp = I915_READ(aud_config);
6181 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6182 /* clear N_programing_enable and N_value_index */
6183 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6184 I915_WRITE(aud_config, tmp);
6185
6186 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6187
6188 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6189 intel_crtc->eld_vld = true;
6190
6191 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6192 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6193 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6194 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6195 } else
6196 I915_WRITE(aud_config, 0);
6197
6198 if (intel_eld_uptodate(connector,
6199 aud_cntrl_st2, eldv,
6200 aud_cntl_st, IBX_ELD_ADDRESS,
6201 hdmiw_hdmiedid))
6202 return;
6203
6204 i = I915_READ(aud_cntrl_st2);
6205 i &= ~eldv;
6206 I915_WRITE(aud_cntrl_st2, i);
6207
6208 if (!eld[0])
6209 return;
6210
6211 i = I915_READ(aud_cntl_st);
6212 i &= ~IBX_ELD_ADDRESS;
6213 I915_WRITE(aud_cntl_st, i);
6214 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6215 DRM_DEBUG_DRIVER("port num:%d\n", i);
6216
6217 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6218 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6219 for (i = 0; i < len; i++)
6220 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6221
6222 i = I915_READ(aud_cntrl_st2);
6223 i |= eldv;
6224 I915_WRITE(aud_cntrl_st2, i);
6225
6226 }
6227
6228 static void ironlake_write_eld(struct drm_connector *connector,
6229 struct drm_crtc *crtc)
6230 {
6231 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6232 uint8_t *eld = connector->eld;
6233 uint32_t eldv;
6234 uint32_t i;
6235 int len;
6236 int hdmiw_hdmiedid;
6237 int aud_config;
6238 int aud_cntl_st;
6239 int aud_cntrl_st2;
6240 int pipe = to_intel_crtc(crtc)->pipe;
6241
6242 if (HAS_PCH_IBX(connector->dev)) {
6243 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6244 aud_config = IBX_AUD_CFG(pipe);
6245 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6246 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6247 } else {
6248 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6249 aud_config = CPT_AUD_CFG(pipe);
6250 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6251 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6252 }
6253
6254 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6255
6256 i = I915_READ(aud_cntl_st);
6257 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6258 if (!i) {
6259 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6260 /* operate blindly on all ports */
6261 eldv = IBX_ELD_VALIDB;
6262 eldv |= IBX_ELD_VALIDB << 4;
6263 eldv |= IBX_ELD_VALIDB << 8;
6264 } else {
6265 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6266 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6267 }
6268
6269 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6270 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6271 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6272 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6273 } else
6274 I915_WRITE(aud_config, 0);
6275
6276 if (intel_eld_uptodate(connector,
6277 aud_cntrl_st2, eldv,
6278 aud_cntl_st, IBX_ELD_ADDRESS,
6279 hdmiw_hdmiedid))
6280 return;
6281
6282 i = I915_READ(aud_cntrl_st2);
6283 i &= ~eldv;
6284 I915_WRITE(aud_cntrl_st2, i);
6285
6286 if (!eld[0])
6287 return;
6288
6289 i = I915_READ(aud_cntl_st);
6290 i &= ~IBX_ELD_ADDRESS;
6291 I915_WRITE(aud_cntl_st, i);
6292
6293 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6294 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6295 for (i = 0; i < len; i++)
6296 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6297
6298 i = I915_READ(aud_cntrl_st2);
6299 i |= eldv;
6300 I915_WRITE(aud_cntrl_st2, i);
6301 }
6302
6303 void intel_write_eld(struct drm_encoder *encoder,
6304 struct drm_display_mode *mode)
6305 {
6306 struct drm_crtc *crtc = encoder->crtc;
6307 struct drm_connector *connector;
6308 struct drm_device *dev = encoder->dev;
6309 struct drm_i915_private *dev_priv = dev->dev_private;
6310
6311 connector = drm_select_eld(encoder, mode);
6312 if (!connector)
6313 return;
6314
6315 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6316 connector->base.id,
6317 drm_get_connector_name(connector),
6318 connector->encoder->base.id,
6319 drm_get_encoder_name(connector->encoder));
6320
6321 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6322
6323 if (dev_priv->display.write_eld)
6324 dev_priv->display.write_eld(connector, crtc);
6325 }
6326
6327 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6328 void intel_crtc_load_lut(struct drm_crtc *crtc)
6329 {
6330 struct drm_device *dev = crtc->dev;
6331 struct drm_i915_private *dev_priv = dev->dev_private;
6332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6333 enum pipe pipe = intel_crtc->pipe;
6334 int palreg = PALETTE(pipe);
6335 int i;
6336 bool reenable_ips = false;
6337
6338 /* The clocks have to be on to load the palette. */
6339 if (!crtc->enabled || !intel_crtc->active)
6340 return;
6341
6342 if (!HAS_PCH_SPLIT(dev_priv->dev))
6343 assert_pll_enabled(dev_priv, pipe);
6344
6345 /* use legacy palette for Ironlake */
6346 if (HAS_PCH_SPLIT(dev))
6347 palreg = LGC_PALETTE(pipe);
6348
6349 /* Workaround : Do not read or write the pipe palette/gamma data while
6350 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6351 */
6352 if (intel_crtc->config.ips_enabled &&
6353 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6354 GAMMA_MODE_MODE_SPLIT)) {
6355 hsw_disable_ips(intel_crtc);
6356 reenable_ips = true;
6357 }
6358
6359 for (i = 0; i < 256; i++) {
6360 I915_WRITE(palreg + 4 * i,
6361 (intel_crtc->lut_r[i] << 16) |
6362 (intel_crtc->lut_g[i] << 8) |
6363 intel_crtc->lut_b[i]);
6364 }
6365
6366 if (reenable_ips)
6367 hsw_enable_ips(intel_crtc);
6368 }
6369
6370 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6371 {
6372 struct drm_device *dev = crtc->dev;
6373 struct drm_i915_private *dev_priv = dev->dev_private;
6374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6375 bool visible = base != 0;
6376 u32 cntl;
6377
6378 if (intel_crtc->cursor_visible == visible)
6379 return;
6380
6381 cntl = I915_READ(_CURACNTR);
6382 if (visible) {
6383 /* On these chipsets we can only modify the base whilst
6384 * the cursor is disabled.
6385 */
6386 I915_WRITE(_CURABASE, base);
6387
6388 cntl &= ~(CURSOR_FORMAT_MASK);
6389 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6390 cntl |= CURSOR_ENABLE |
6391 CURSOR_GAMMA_ENABLE |
6392 CURSOR_FORMAT_ARGB;
6393 } else
6394 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6395 I915_WRITE(_CURACNTR, cntl);
6396
6397 intel_crtc->cursor_visible = visible;
6398 }
6399
6400 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6401 {
6402 struct drm_device *dev = crtc->dev;
6403 struct drm_i915_private *dev_priv = dev->dev_private;
6404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6405 int pipe = intel_crtc->pipe;
6406 bool visible = base != 0;
6407
6408 if (intel_crtc->cursor_visible != visible) {
6409 uint32_t cntl = I915_READ(CURCNTR(pipe));
6410 if (base) {
6411 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6412 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6413 cntl |= pipe << 28; /* Connect to correct pipe */
6414 } else {
6415 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6416 cntl |= CURSOR_MODE_DISABLE;
6417 }
6418 I915_WRITE(CURCNTR(pipe), cntl);
6419
6420 intel_crtc->cursor_visible = visible;
6421 }
6422 /* and commit changes on next vblank */
6423 I915_WRITE(CURBASE(pipe), base);
6424 }
6425
6426 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6427 {
6428 struct drm_device *dev = crtc->dev;
6429 struct drm_i915_private *dev_priv = dev->dev_private;
6430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6431 int pipe = intel_crtc->pipe;
6432 bool visible = base != 0;
6433
6434 if (intel_crtc->cursor_visible != visible) {
6435 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6436 if (base) {
6437 cntl &= ~CURSOR_MODE;
6438 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6439 } else {
6440 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6441 cntl |= CURSOR_MODE_DISABLE;
6442 }
6443 if (IS_HASWELL(dev))
6444 cntl |= CURSOR_PIPE_CSC_ENABLE;
6445 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6446
6447 intel_crtc->cursor_visible = visible;
6448 }
6449 /* and commit changes on next vblank */
6450 I915_WRITE(CURBASE_IVB(pipe), base);
6451 }
6452
6453 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6454 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6455 bool on)
6456 {
6457 struct drm_device *dev = crtc->dev;
6458 struct drm_i915_private *dev_priv = dev->dev_private;
6459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6460 int pipe = intel_crtc->pipe;
6461 int x = intel_crtc->cursor_x;
6462 int y = intel_crtc->cursor_y;
6463 u32 base, pos;
6464 bool visible;
6465
6466 pos = 0;
6467
6468 if (on && crtc->enabled && crtc->fb) {
6469 base = intel_crtc->cursor_addr;
6470 if (x > (int) crtc->fb->width)
6471 base = 0;
6472
6473 if (y > (int) crtc->fb->height)
6474 base = 0;
6475 } else
6476 base = 0;
6477
6478 if (x < 0) {
6479 if (x + intel_crtc->cursor_width < 0)
6480 base = 0;
6481
6482 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6483 x = -x;
6484 }
6485 pos |= x << CURSOR_X_SHIFT;
6486
6487 if (y < 0) {
6488 if (y + intel_crtc->cursor_height < 0)
6489 base = 0;
6490
6491 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6492 y = -y;
6493 }
6494 pos |= y << CURSOR_Y_SHIFT;
6495
6496 visible = base != 0;
6497 if (!visible && !intel_crtc->cursor_visible)
6498 return;
6499
6500 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6501 I915_WRITE(CURPOS_IVB(pipe), pos);
6502 ivb_update_cursor(crtc, base);
6503 } else {
6504 I915_WRITE(CURPOS(pipe), pos);
6505 if (IS_845G(dev) || IS_I865G(dev))
6506 i845_update_cursor(crtc, base);
6507 else
6508 i9xx_update_cursor(crtc, base);
6509 }
6510 }
6511
6512 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6513 struct drm_file *file,
6514 uint32_t handle,
6515 uint32_t width, uint32_t height)
6516 {
6517 struct drm_device *dev = crtc->dev;
6518 struct drm_i915_private *dev_priv = dev->dev_private;
6519 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6520 struct drm_i915_gem_object *obj;
6521 uint32_t addr;
6522 int ret;
6523
6524 /* if we want to turn off the cursor ignore width and height */
6525 if (!handle) {
6526 DRM_DEBUG_KMS("cursor off\n");
6527 addr = 0;
6528 obj = NULL;
6529 mutex_lock(&dev->struct_mutex);
6530 goto finish;
6531 }
6532
6533 /* Currently we only support 64x64 cursors */
6534 if (width != 64 || height != 64) {
6535 DRM_ERROR("we currently only support 64x64 cursors\n");
6536 return -EINVAL;
6537 }
6538
6539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6540 if (&obj->base == NULL)
6541 return -ENOENT;
6542
6543 if (obj->base.size < width * height * 4) {
6544 DRM_ERROR("buffer is to small\n");
6545 ret = -ENOMEM;
6546 goto fail;
6547 }
6548
6549 /* we only need to pin inside GTT if cursor is non-phy */
6550 mutex_lock(&dev->struct_mutex);
6551 if (!dev_priv->info->cursor_needs_physical) {
6552 unsigned alignment;
6553
6554 if (obj->tiling_mode) {
6555 DRM_ERROR("cursor cannot be tiled\n");
6556 ret = -EINVAL;
6557 goto fail_locked;
6558 }
6559
6560 /* Note that the w/a also requires 2 PTE of padding following
6561 * the bo. We currently fill all unused PTE with the shadow
6562 * page and so we should always have valid PTE following the
6563 * cursor preventing the VT-d warning.
6564 */
6565 alignment = 0;
6566 if (need_vtd_wa(dev))
6567 alignment = 64*1024;
6568
6569 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6570 if (ret) {
6571 DRM_ERROR("failed to move cursor bo into the GTT\n");
6572 goto fail_locked;
6573 }
6574
6575 ret = i915_gem_object_put_fence(obj);
6576 if (ret) {
6577 DRM_ERROR("failed to release fence for cursor");
6578 goto fail_unpin;
6579 }
6580
6581 addr = i915_gem_obj_ggtt_offset(obj);
6582 } else {
6583 int align = IS_I830(dev) ? 16 * 1024 : 256;
6584 ret = i915_gem_attach_phys_object(dev, obj,
6585 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6586 align);
6587 if (ret) {
6588 DRM_ERROR("failed to attach phys object\n");
6589 goto fail_locked;
6590 }
6591 addr = obj->phys_obj->handle->busaddr;
6592 }
6593
6594 if (IS_GEN2(dev))
6595 I915_WRITE(CURSIZE, (height << 12) | width);
6596
6597 finish:
6598 if (intel_crtc->cursor_bo) {
6599 if (dev_priv->info->cursor_needs_physical) {
6600 if (intel_crtc->cursor_bo != obj)
6601 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6602 } else
6603 i915_gem_object_unpin(intel_crtc->cursor_bo);
6604 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6605 }
6606
6607 mutex_unlock(&dev->struct_mutex);
6608
6609 intel_crtc->cursor_addr = addr;
6610 intel_crtc->cursor_bo = obj;
6611 intel_crtc->cursor_width = width;
6612 intel_crtc->cursor_height = height;
6613
6614 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6615
6616 return 0;
6617 fail_unpin:
6618 i915_gem_object_unpin(obj);
6619 fail_locked:
6620 mutex_unlock(&dev->struct_mutex);
6621 fail:
6622 drm_gem_object_unreference_unlocked(&obj->base);
6623 return ret;
6624 }
6625
6626 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6627 {
6628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6629
6630 intel_crtc->cursor_x = x;
6631 intel_crtc->cursor_y = y;
6632
6633 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6634
6635 return 0;
6636 }
6637
6638 /** Sets the color ramps on behalf of RandR */
6639 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6640 u16 blue, int regno)
6641 {
6642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6643
6644 intel_crtc->lut_r[regno] = red >> 8;
6645 intel_crtc->lut_g[regno] = green >> 8;
6646 intel_crtc->lut_b[regno] = blue >> 8;
6647 }
6648
6649 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6650 u16 *blue, int regno)
6651 {
6652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6653
6654 *red = intel_crtc->lut_r[regno] << 8;
6655 *green = intel_crtc->lut_g[regno] << 8;
6656 *blue = intel_crtc->lut_b[regno] << 8;
6657 }
6658
6659 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6660 u16 *blue, uint32_t start, uint32_t size)
6661 {
6662 int end = (start + size > 256) ? 256 : start + size, i;
6663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6664
6665 for (i = start; i < end; i++) {
6666 intel_crtc->lut_r[i] = red[i] >> 8;
6667 intel_crtc->lut_g[i] = green[i] >> 8;
6668 intel_crtc->lut_b[i] = blue[i] >> 8;
6669 }
6670
6671 intel_crtc_load_lut(crtc);
6672 }
6673
6674 /* VESA 640x480x72Hz mode to set on the pipe */
6675 static struct drm_display_mode load_detect_mode = {
6676 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6677 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6678 };
6679
6680 static struct drm_framebuffer *
6681 intel_framebuffer_create(struct drm_device *dev,
6682 struct drm_mode_fb_cmd2 *mode_cmd,
6683 struct drm_i915_gem_object *obj)
6684 {
6685 struct intel_framebuffer *intel_fb;
6686 int ret;
6687
6688 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6689 if (!intel_fb) {
6690 drm_gem_object_unreference_unlocked(&obj->base);
6691 return ERR_PTR(-ENOMEM);
6692 }
6693
6694 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6695 if (ret) {
6696 drm_gem_object_unreference_unlocked(&obj->base);
6697 kfree(intel_fb);
6698 return ERR_PTR(ret);
6699 }
6700
6701 return &intel_fb->base;
6702 }
6703
6704 static u32
6705 intel_framebuffer_pitch_for_width(int width, int bpp)
6706 {
6707 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6708 return ALIGN(pitch, 64);
6709 }
6710
6711 static u32
6712 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6713 {
6714 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6715 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6716 }
6717
6718 static struct drm_framebuffer *
6719 intel_framebuffer_create_for_mode(struct drm_device *dev,
6720 struct drm_display_mode *mode,
6721 int depth, int bpp)
6722 {
6723 struct drm_i915_gem_object *obj;
6724 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6725
6726 obj = i915_gem_alloc_object(dev,
6727 intel_framebuffer_size_for_mode(mode, bpp));
6728 if (obj == NULL)
6729 return ERR_PTR(-ENOMEM);
6730
6731 mode_cmd.width = mode->hdisplay;
6732 mode_cmd.height = mode->vdisplay;
6733 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6734 bpp);
6735 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6736
6737 return intel_framebuffer_create(dev, &mode_cmd, obj);
6738 }
6739
6740 static struct drm_framebuffer *
6741 mode_fits_in_fbdev(struct drm_device *dev,
6742 struct drm_display_mode *mode)
6743 {
6744 struct drm_i915_private *dev_priv = dev->dev_private;
6745 struct drm_i915_gem_object *obj;
6746 struct drm_framebuffer *fb;
6747
6748 if (dev_priv->fbdev == NULL)
6749 return NULL;
6750
6751 obj = dev_priv->fbdev->ifb.obj;
6752 if (obj == NULL)
6753 return NULL;
6754
6755 fb = &dev_priv->fbdev->ifb.base;
6756 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6757 fb->bits_per_pixel))
6758 return NULL;
6759
6760 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6761 return NULL;
6762
6763 return fb;
6764 }
6765
6766 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6767 struct drm_display_mode *mode,
6768 struct intel_load_detect_pipe *old)
6769 {
6770 struct intel_crtc *intel_crtc;
6771 struct intel_encoder *intel_encoder =
6772 intel_attached_encoder(connector);
6773 struct drm_crtc *possible_crtc;
6774 struct drm_encoder *encoder = &intel_encoder->base;
6775 struct drm_crtc *crtc = NULL;
6776 struct drm_device *dev = encoder->dev;
6777 struct drm_framebuffer *fb;
6778 int i = -1;
6779
6780 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6781 connector->base.id, drm_get_connector_name(connector),
6782 encoder->base.id, drm_get_encoder_name(encoder));
6783
6784 /*
6785 * Algorithm gets a little messy:
6786 *
6787 * - if the connector already has an assigned crtc, use it (but make
6788 * sure it's on first)
6789 *
6790 * - try to find the first unused crtc that can drive this connector,
6791 * and use that if we find one
6792 */
6793
6794 /* See if we already have a CRTC for this connector */
6795 if (encoder->crtc) {
6796 crtc = encoder->crtc;
6797
6798 mutex_lock(&crtc->mutex);
6799
6800 old->dpms_mode = connector->dpms;
6801 old->load_detect_temp = false;
6802
6803 /* Make sure the crtc and connector are running */
6804 if (connector->dpms != DRM_MODE_DPMS_ON)
6805 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6806
6807 return true;
6808 }
6809
6810 /* Find an unused one (if possible) */
6811 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6812 i++;
6813 if (!(encoder->possible_crtcs & (1 << i)))
6814 continue;
6815 if (!possible_crtc->enabled) {
6816 crtc = possible_crtc;
6817 break;
6818 }
6819 }
6820
6821 /*
6822 * If we didn't find an unused CRTC, don't use any.
6823 */
6824 if (!crtc) {
6825 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6826 return false;
6827 }
6828
6829 mutex_lock(&crtc->mutex);
6830 intel_encoder->new_crtc = to_intel_crtc(crtc);
6831 to_intel_connector(connector)->new_encoder = intel_encoder;
6832
6833 intel_crtc = to_intel_crtc(crtc);
6834 old->dpms_mode = connector->dpms;
6835 old->load_detect_temp = true;
6836 old->release_fb = NULL;
6837
6838 if (!mode)
6839 mode = &load_detect_mode;
6840
6841 /* We need a framebuffer large enough to accommodate all accesses
6842 * that the plane may generate whilst we perform load detection.
6843 * We can not rely on the fbcon either being present (we get called
6844 * during its initialisation to detect all boot displays, or it may
6845 * not even exist) or that it is large enough to satisfy the
6846 * requested mode.
6847 */
6848 fb = mode_fits_in_fbdev(dev, mode);
6849 if (fb == NULL) {
6850 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6851 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6852 old->release_fb = fb;
6853 } else
6854 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6855 if (IS_ERR(fb)) {
6856 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6857 mutex_unlock(&crtc->mutex);
6858 return false;
6859 }
6860
6861 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6862 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6863 if (old->release_fb)
6864 old->release_fb->funcs->destroy(old->release_fb);
6865 mutex_unlock(&crtc->mutex);
6866 return false;
6867 }
6868
6869 /* let the connector get through one full cycle before testing */
6870 intel_wait_for_vblank(dev, intel_crtc->pipe);
6871 return true;
6872 }
6873
6874 void intel_release_load_detect_pipe(struct drm_connector *connector,
6875 struct intel_load_detect_pipe *old)
6876 {
6877 struct intel_encoder *intel_encoder =
6878 intel_attached_encoder(connector);
6879 struct drm_encoder *encoder = &intel_encoder->base;
6880 struct drm_crtc *crtc = encoder->crtc;
6881
6882 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6883 connector->base.id, drm_get_connector_name(connector),
6884 encoder->base.id, drm_get_encoder_name(encoder));
6885
6886 if (old->load_detect_temp) {
6887 to_intel_connector(connector)->new_encoder = NULL;
6888 intel_encoder->new_crtc = NULL;
6889 intel_set_mode(crtc, NULL, 0, 0, NULL);
6890
6891 if (old->release_fb) {
6892 drm_framebuffer_unregister_private(old->release_fb);
6893 drm_framebuffer_unreference(old->release_fb);
6894 }
6895
6896 mutex_unlock(&crtc->mutex);
6897 return;
6898 }
6899
6900 /* Switch crtc and encoder back off if necessary */
6901 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6902 connector->funcs->dpms(connector, old->dpms_mode);
6903
6904 mutex_unlock(&crtc->mutex);
6905 }
6906
6907 /* Returns the clock of the currently programmed mode of the given pipe. */
6908 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
6909 struct intel_crtc_config *pipe_config)
6910 {
6911 struct drm_device *dev = crtc->base.dev;
6912 struct drm_i915_private *dev_priv = dev->dev_private;
6913 int pipe = pipe_config->cpu_transcoder;
6914 u32 dpll = I915_READ(DPLL(pipe));
6915 u32 fp;
6916 intel_clock_t clock;
6917
6918 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6919 fp = I915_READ(FP0(pipe));
6920 else
6921 fp = I915_READ(FP1(pipe));
6922
6923 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6924 if (IS_PINEVIEW(dev)) {
6925 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6926 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6927 } else {
6928 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6929 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6930 }
6931
6932 if (!IS_GEN2(dev)) {
6933 if (IS_PINEVIEW(dev))
6934 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6935 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6936 else
6937 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6938 DPLL_FPA01_P1_POST_DIV_SHIFT);
6939
6940 switch (dpll & DPLL_MODE_MASK) {
6941 case DPLLB_MODE_DAC_SERIAL:
6942 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6943 5 : 10;
6944 break;
6945 case DPLLB_MODE_LVDS:
6946 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6947 7 : 14;
6948 break;
6949 default:
6950 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6951 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6952 pipe_config->adjusted_mode.clock = 0;
6953 return;
6954 }
6955
6956 if (IS_PINEVIEW(dev))
6957 pineview_clock(96000, &clock);
6958 else
6959 i9xx_clock(96000, &clock);
6960 } else {
6961 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6962
6963 if (is_lvds) {
6964 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6965 DPLL_FPA01_P1_POST_DIV_SHIFT);
6966 clock.p2 = 14;
6967
6968 if ((dpll & PLL_REF_INPUT_MASK) ==
6969 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6970 /* XXX: might not be 66MHz */
6971 i9xx_clock(66000, &clock);
6972 } else
6973 i9xx_clock(48000, &clock);
6974 } else {
6975 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6976 clock.p1 = 2;
6977 else {
6978 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6979 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6980 }
6981 if (dpll & PLL_P2_DIVIDE_BY_4)
6982 clock.p2 = 4;
6983 else
6984 clock.p2 = 2;
6985
6986 i9xx_clock(48000, &clock);
6987 }
6988 }
6989
6990 pipe_config->adjusted_mode.clock = clock.dot *
6991 pipe_config->pixel_multiplier;
6992 }
6993
6994 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
6995 struct intel_crtc_config *pipe_config)
6996 {
6997 struct drm_device *dev = crtc->base.dev;
6998 struct drm_i915_private *dev_priv = dev->dev_private;
6999 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7000 int link_freq, repeat;
7001 u64 clock;
7002 u32 link_m, link_n;
7003
7004 repeat = pipe_config->pixel_multiplier;
7005
7006 /*
7007 * The calculation for the data clock is:
7008 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7009 * But we want to avoid losing precison if possible, so:
7010 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7011 *
7012 * and the link clock is simpler:
7013 * link_clock = (m * link_clock * repeat) / n
7014 */
7015
7016 /*
7017 * We need to get the FDI or DP link clock here to derive
7018 * the M/N dividers.
7019 *
7020 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7021 * For DP, it's either 1.62GHz or 2.7GHz.
7022 * We do our calculations in 10*MHz since we don't need much precison.
7023 */
7024 if (pipe_config->has_pch_encoder)
7025 link_freq = intel_fdi_link_freq(dev) * 10000;
7026 else
7027 link_freq = pipe_config->port_clock;
7028
7029 link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7030 link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7031
7032 if (!link_m || !link_n)
7033 return;
7034
7035 clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7036 do_div(clock, link_n);
7037
7038 pipe_config->adjusted_mode.clock = clock;
7039 }
7040
7041 /** Returns the currently programmed mode of the given pipe. */
7042 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7043 struct drm_crtc *crtc)
7044 {
7045 struct drm_i915_private *dev_priv = dev->dev_private;
7046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7047 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7048 struct drm_display_mode *mode;
7049 struct intel_crtc_config pipe_config;
7050 int htot = I915_READ(HTOTAL(cpu_transcoder));
7051 int hsync = I915_READ(HSYNC(cpu_transcoder));
7052 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7053 int vsync = I915_READ(VSYNC(cpu_transcoder));
7054
7055 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7056 if (!mode)
7057 return NULL;
7058
7059 /*
7060 * Construct a pipe_config sufficient for getting the clock info
7061 * back out of crtc_clock_get.
7062 *
7063 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7064 * to use a real value here instead.
7065 */
7066 pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7067 pipe_config.pixel_multiplier = 1;
7068 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7069
7070 mode->clock = pipe_config.adjusted_mode.clock;
7071 mode->hdisplay = (htot & 0xffff) + 1;
7072 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7073 mode->hsync_start = (hsync & 0xffff) + 1;
7074 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7075 mode->vdisplay = (vtot & 0xffff) + 1;
7076 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7077 mode->vsync_start = (vsync & 0xffff) + 1;
7078 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7079
7080 drm_mode_set_name(mode);
7081
7082 return mode;
7083 }
7084
7085 static void intel_increase_pllclock(struct drm_crtc *crtc)
7086 {
7087 struct drm_device *dev = crtc->dev;
7088 drm_i915_private_t *dev_priv = dev->dev_private;
7089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7090 int pipe = intel_crtc->pipe;
7091 int dpll_reg = DPLL(pipe);
7092 int dpll;
7093
7094 if (HAS_PCH_SPLIT(dev))
7095 return;
7096
7097 if (!dev_priv->lvds_downclock_avail)
7098 return;
7099
7100 dpll = I915_READ(dpll_reg);
7101 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7102 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7103
7104 assert_panel_unlocked(dev_priv, pipe);
7105
7106 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7107 I915_WRITE(dpll_reg, dpll);
7108 intel_wait_for_vblank(dev, pipe);
7109
7110 dpll = I915_READ(dpll_reg);
7111 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7112 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7113 }
7114 }
7115
7116 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7117 {
7118 struct drm_device *dev = crtc->dev;
7119 drm_i915_private_t *dev_priv = dev->dev_private;
7120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7121
7122 if (HAS_PCH_SPLIT(dev))
7123 return;
7124
7125 if (!dev_priv->lvds_downclock_avail)
7126 return;
7127
7128 /*
7129 * Since this is called by a timer, we should never get here in
7130 * the manual case.
7131 */
7132 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7133 int pipe = intel_crtc->pipe;
7134 int dpll_reg = DPLL(pipe);
7135 int dpll;
7136
7137 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7138
7139 assert_panel_unlocked(dev_priv, pipe);
7140
7141 dpll = I915_READ(dpll_reg);
7142 dpll |= DISPLAY_RATE_SELECT_FPA1;
7143 I915_WRITE(dpll_reg, dpll);
7144 intel_wait_for_vblank(dev, pipe);
7145 dpll = I915_READ(dpll_reg);
7146 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7147 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7148 }
7149
7150 }
7151
7152 void intel_mark_busy(struct drm_device *dev)
7153 {
7154 i915_update_gfx_val(dev->dev_private);
7155 }
7156
7157 void intel_mark_idle(struct drm_device *dev)
7158 {
7159 struct drm_crtc *crtc;
7160
7161 if (!i915_powersave)
7162 return;
7163
7164 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7165 if (!crtc->fb)
7166 continue;
7167
7168 intel_decrease_pllclock(crtc);
7169 }
7170 }
7171
7172 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7173 struct intel_ring_buffer *ring)
7174 {
7175 struct drm_device *dev = obj->base.dev;
7176 struct drm_crtc *crtc;
7177
7178 if (!i915_powersave)
7179 return;
7180
7181 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7182 if (!crtc->fb)
7183 continue;
7184
7185 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7186 continue;
7187
7188 intel_increase_pllclock(crtc);
7189 if (ring && intel_fbc_enabled(dev))
7190 ring->fbc_dirty = true;
7191 }
7192 }
7193
7194 static void intel_crtc_destroy(struct drm_crtc *crtc)
7195 {
7196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7197 struct drm_device *dev = crtc->dev;
7198 struct intel_unpin_work *work;
7199 unsigned long flags;
7200
7201 spin_lock_irqsave(&dev->event_lock, flags);
7202 work = intel_crtc->unpin_work;
7203 intel_crtc->unpin_work = NULL;
7204 spin_unlock_irqrestore(&dev->event_lock, flags);
7205
7206 if (work) {
7207 cancel_work_sync(&work->work);
7208 kfree(work);
7209 }
7210
7211 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7212
7213 drm_crtc_cleanup(crtc);
7214
7215 kfree(intel_crtc);
7216 }
7217
7218 static void intel_unpin_work_fn(struct work_struct *__work)
7219 {
7220 struct intel_unpin_work *work =
7221 container_of(__work, struct intel_unpin_work, work);
7222 struct drm_device *dev = work->crtc->dev;
7223
7224 mutex_lock(&dev->struct_mutex);
7225 intel_unpin_fb_obj(work->old_fb_obj);
7226 drm_gem_object_unreference(&work->pending_flip_obj->base);
7227 drm_gem_object_unreference(&work->old_fb_obj->base);
7228
7229 intel_update_fbc(dev);
7230 mutex_unlock(&dev->struct_mutex);
7231
7232 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7233 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7234
7235 kfree(work);
7236 }
7237
7238 static void do_intel_finish_page_flip(struct drm_device *dev,
7239 struct drm_crtc *crtc)
7240 {
7241 drm_i915_private_t *dev_priv = dev->dev_private;
7242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7243 struct intel_unpin_work *work;
7244 unsigned long flags;
7245
7246 /* Ignore early vblank irqs */
7247 if (intel_crtc == NULL)
7248 return;
7249
7250 spin_lock_irqsave(&dev->event_lock, flags);
7251 work = intel_crtc->unpin_work;
7252
7253 /* Ensure we don't miss a work->pending update ... */
7254 smp_rmb();
7255
7256 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7257 spin_unlock_irqrestore(&dev->event_lock, flags);
7258 return;
7259 }
7260
7261 /* and that the unpin work is consistent wrt ->pending. */
7262 smp_rmb();
7263
7264 intel_crtc->unpin_work = NULL;
7265
7266 if (work->event)
7267 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7268
7269 drm_vblank_put(dev, intel_crtc->pipe);
7270
7271 spin_unlock_irqrestore(&dev->event_lock, flags);
7272
7273 wake_up_all(&dev_priv->pending_flip_queue);
7274
7275 queue_work(dev_priv->wq, &work->work);
7276
7277 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7278 }
7279
7280 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7281 {
7282 drm_i915_private_t *dev_priv = dev->dev_private;
7283 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7284
7285 do_intel_finish_page_flip(dev, crtc);
7286 }
7287
7288 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7289 {
7290 drm_i915_private_t *dev_priv = dev->dev_private;
7291 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7292
7293 do_intel_finish_page_flip(dev, crtc);
7294 }
7295
7296 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7297 {
7298 drm_i915_private_t *dev_priv = dev->dev_private;
7299 struct intel_crtc *intel_crtc =
7300 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7301 unsigned long flags;
7302
7303 /* NB: An MMIO update of the plane base pointer will also
7304 * generate a page-flip completion irq, i.e. every modeset
7305 * is also accompanied by a spurious intel_prepare_page_flip().
7306 */
7307 spin_lock_irqsave(&dev->event_lock, flags);
7308 if (intel_crtc->unpin_work)
7309 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7310 spin_unlock_irqrestore(&dev->event_lock, flags);
7311 }
7312
7313 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7314 {
7315 /* Ensure that the work item is consistent when activating it ... */
7316 smp_wmb();
7317 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7318 /* and that it is marked active as soon as the irq could fire. */
7319 smp_wmb();
7320 }
7321
7322 static int intel_gen2_queue_flip(struct drm_device *dev,
7323 struct drm_crtc *crtc,
7324 struct drm_framebuffer *fb,
7325 struct drm_i915_gem_object *obj)
7326 {
7327 struct drm_i915_private *dev_priv = dev->dev_private;
7328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7329 u32 flip_mask;
7330 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7331 int ret;
7332
7333 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7334 if (ret)
7335 goto err;
7336
7337 ret = intel_ring_begin(ring, 6);
7338 if (ret)
7339 goto err_unpin;
7340
7341 /* Can't queue multiple flips, so wait for the previous
7342 * one to finish before executing the next.
7343 */
7344 if (intel_crtc->plane)
7345 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7346 else
7347 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7348 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7349 intel_ring_emit(ring, MI_NOOP);
7350 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7351 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7352 intel_ring_emit(ring, fb->pitches[0]);
7353 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7354 intel_ring_emit(ring, 0); /* aux display base address, unused */
7355
7356 intel_mark_page_flip_active(intel_crtc);
7357 intel_ring_advance(ring);
7358 return 0;
7359
7360 err_unpin:
7361 intel_unpin_fb_obj(obj);
7362 err:
7363 return ret;
7364 }
7365
7366 static int intel_gen3_queue_flip(struct drm_device *dev,
7367 struct drm_crtc *crtc,
7368 struct drm_framebuffer *fb,
7369 struct drm_i915_gem_object *obj)
7370 {
7371 struct drm_i915_private *dev_priv = dev->dev_private;
7372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7373 u32 flip_mask;
7374 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7375 int ret;
7376
7377 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7378 if (ret)
7379 goto err;
7380
7381 ret = intel_ring_begin(ring, 6);
7382 if (ret)
7383 goto err_unpin;
7384
7385 if (intel_crtc->plane)
7386 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7387 else
7388 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7389 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7390 intel_ring_emit(ring, MI_NOOP);
7391 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7392 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7393 intel_ring_emit(ring, fb->pitches[0]);
7394 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7395 intel_ring_emit(ring, MI_NOOP);
7396
7397 intel_mark_page_flip_active(intel_crtc);
7398 intel_ring_advance(ring);
7399 return 0;
7400
7401 err_unpin:
7402 intel_unpin_fb_obj(obj);
7403 err:
7404 return ret;
7405 }
7406
7407 static int intel_gen4_queue_flip(struct drm_device *dev,
7408 struct drm_crtc *crtc,
7409 struct drm_framebuffer *fb,
7410 struct drm_i915_gem_object *obj)
7411 {
7412 struct drm_i915_private *dev_priv = dev->dev_private;
7413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7414 uint32_t pf, pipesrc;
7415 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7416 int ret;
7417
7418 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7419 if (ret)
7420 goto err;
7421
7422 ret = intel_ring_begin(ring, 4);
7423 if (ret)
7424 goto err_unpin;
7425
7426 /* i965+ uses the linear or tiled offsets from the
7427 * Display Registers (which do not change across a page-flip)
7428 * so we need only reprogram the base address.
7429 */
7430 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7431 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7432 intel_ring_emit(ring, fb->pitches[0]);
7433 intel_ring_emit(ring,
7434 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7435 obj->tiling_mode);
7436
7437 /* XXX Enabling the panel-fitter across page-flip is so far
7438 * untested on non-native modes, so ignore it for now.
7439 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7440 */
7441 pf = 0;
7442 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7443 intel_ring_emit(ring, pf | pipesrc);
7444
7445 intel_mark_page_flip_active(intel_crtc);
7446 intel_ring_advance(ring);
7447 return 0;
7448
7449 err_unpin:
7450 intel_unpin_fb_obj(obj);
7451 err:
7452 return ret;
7453 }
7454
7455 static int intel_gen6_queue_flip(struct drm_device *dev,
7456 struct drm_crtc *crtc,
7457 struct drm_framebuffer *fb,
7458 struct drm_i915_gem_object *obj)
7459 {
7460 struct drm_i915_private *dev_priv = dev->dev_private;
7461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7462 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7463 uint32_t pf, pipesrc;
7464 int ret;
7465
7466 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7467 if (ret)
7468 goto err;
7469
7470 ret = intel_ring_begin(ring, 4);
7471 if (ret)
7472 goto err_unpin;
7473
7474 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7475 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7476 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7477 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7478
7479 /* Contrary to the suggestions in the documentation,
7480 * "Enable Panel Fitter" does not seem to be required when page
7481 * flipping with a non-native mode, and worse causes a normal
7482 * modeset to fail.
7483 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7484 */
7485 pf = 0;
7486 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7487 intel_ring_emit(ring, pf | pipesrc);
7488
7489 intel_mark_page_flip_active(intel_crtc);
7490 intel_ring_advance(ring);
7491 return 0;
7492
7493 err_unpin:
7494 intel_unpin_fb_obj(obj);
7495 err:
7496 return ret;
7497 }
7498
7499 /*
7500 * On gen7 we currently use the blit ring because (in early silicon at least)
7501 * the render ring doesn't give us interrpts for page flip completion, which
7502 * means clients will hang after the first flip is queued. Fortunately the
7503 * blit ring generates interrupts properly, so use it instead.
7504 */
7505 static int intel_gen7_queue_flip(struct drm_device *dev,
7506 struct drm_crtc *crtc,
7507 struct drm_framebuffer *fb,
7508 struct drm_i915_gem_object *obj)
7509 {
7510 struct drm_i915_private *dev_priv = dev->dev_private;
7511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7512 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7513 uint32_t plane_bit = 0;
7514 int ret;
7515
7516 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7517 if (ret)
7518 goto err;
7519
7520 switch(intel_crtc->plane) {
7521 case PLANE_A:
7522 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7523 break;
7524 case PLANE_B:
7525 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7526 break;
7527 case PLANE_C:
7528 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7529 break;
7530 default:
7531 WARN_ONCE(1, "unknown plane in flip command\n");
7532 ret = -ENODEV;
7533 goto err_unpin;
7534 }
7535
7536 ret = intel_ring_begin(ring, 4);
7537 if (ret)
7538 goto err_unpin;
7539
7540 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7541 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7542 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7543 intel_ring_emit(ring, (MI_NOOP));
7544
7545 intel_mark_page_flip_active(intel_crtc);
7546 intel_ring_advance(ring);
7547 return 0;
7548
7549 err_unpin:
7550 intel_unpin_fb_obj(obj);
7551 err:
7552 return ret;
7553 }
7554
7555 static int intel_default_queue_flip(struct drm_device *dev,
7556 struct drm_crtc *crtc,
7557 struct drm_framebuffer *fb,
7558 struct drm_i915_gem_object *obj)
7559 {
7560 return -ENODEV;
7561 }
7562
7563 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7564 struct drm_framebuffer *fb,
7565 struct drm_pending_vblank_event *event)
7566 {
7567 struct drm_device *dev = crtc->dev;
7568 struct drm_i915_private *dev_priv = dev->dev_private;
7569 struct drm_framebuffer *old_fb = crtc->fb;
7570 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7572 struct intel_unpin_work *work;
7573 unsigned long flags;
7574 int ret;
7575
7576 /* Can't change pixel format via MI display flips. */
7577 if (fb->pixel_format != crtc->fb->pixel_format)
7578 return -EINVAL;
7579
7580 /*
7581 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7582 * Note that pitch changes could also affect these register.
7583 */
7584 if (INTEL_INFO(dev)->gen > 3 &&
7585 (fb->offsets[0] != crtc->fb->offsets[0] ||
7586 fb->pitches[0] != crtc->fb->pitches[0]))
7587 return -EINVAL;
7588
7589 work = kzalloc(sizeof *work, GFP_KERNEL);
7590 if (work == NULL)
7591 return -ENOMEM;
7592
7593 work->event = event;
7594 work->crtc = crtc;
7595 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7596 INIT_WORK(&work->work, intel_unpin_work_fn);
7597
7598 ret = drm_vblank_get(dev, intel_crtc->pipe);
7599 if (ret)
7600 goto free_work;
7601
7602 /* We borrow the event spin lock for protecting unpin_work */
7603 spin_lock_irqsave(&dev->event_lock, flags);
7604 if (intel_crtc->unpin_work) {
7605 spin_unlock_irqrestore(&dev->event_lock, flags);
7606 kfree(work);
7607 drm_vblank_put(dev, intel_crtc->pipe);
7608
7609 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7610 return -EBUSY;
7611 }
7612 intel_crtc->unpin_work = work;
7613 spin_unlock_irqrestore(&dev->event_lock, flags);
7614
7615 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7616 flush_workqueue(dev_priv->wq);
7617
7618 ret = i915_mutex_lock_interruptible(dev);
7619 if (ret)
7620 goto cleanup;
7621
7622 /* Reference the objects for the scheduled work. */
7623 drm_gem_object_reference(&work->old_fb_obj->base);
7624 drm_gem_object_reference(&obj->base);
7625
7626 crtc->fb = fb;
7627
7628 work->pending_flip_obj = obj;
7629
7630 work->enable_stall_check = true;
7631
7632 atomic_inc(&intel_crtc->unpin_work_count);
7633 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7634
7635 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7636 if (ret)
7637 goto cleanup_pending;
7638
7639 intel_disable_fbc(dev);
7640 intel_mark_fb_busy(obj, NULL);
7641 mutex_unlock(&dev->struct_mutex);
7642
7643 trace_i915_flip_request(intel_crtc->plane, obj);
7644
7645 return 0;
7646
7647 cleanup_pending:
7648 atomic_dec(&intel_crtc->unpin_work_count);
7649 crtc->fb = old_fb;
7650 drm_gem_object_unreference(&work->old_fb_obj->base);
7651 drm_gem_object_unreference(&obj->base);
7652 mutex_unlock(&dev->struct_mutex);
7653
7654 cleanup:
7655 spin_lock_irqsave(&dev->event_lock, flags);
7656 intel_crtc->unpin_work = NULL;
7657 spin_unlock_irqrestore(&dev->event_lock, flags);
7658
7659 drm_vblank_put(dev, intel_crtc->pipe);
7660 free_work:
7661 kfree(work);
7662
7663 return ret;
7664 }
7665
7666 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7667 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7668 .load_lut = intel_crtc_load_lut,
7669 };
7670
7671 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7672 struct drm_crtc *crtc)
7673 {
7674 struct drm_device *dev;
7675 struct drm_crtc *tmp;
7676 int crtc_mask = 1;
7677
7678 WARN(!crtc, "checking null crtc?\n");
7679
7680 dev = crtc->dev;
7681
7682 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7683 if (tmp == crtc)
7684 break;
7685 crtc_mask <<= 1;
7686 }
7687
7688 if (encoder->possible_crtcs & crtc_mask)
7689 return true;
7690 return false;
7691 }
7692
7693 /**
7694 * intel_modeset_update_staged_output_state
7695 *
7696 * Updates the staged output configuration state, e.g. after we've read out the
7697 * current hw state.
7698 */
7699 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7700 {
7701 struct intel_encoder *encoder;
7702 struct intel_connector *connector;
7703
7704 list_for_each_entry(connector, &dev->mode_config.connector_list,
7705 base.head) {
7706 connector->new_encoder =
7707 to_intel_encoder(connector->base.encoder);
7708 }
7709
7710 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7711 base.head) {
7712 encoder->new_crtc =
7713 to_intel_crtc(encoder->base.crtc);
7714 }
7715 }
7716
7717 /**
7718 * intel_modeset_commit_output_state
7719 *
7720 * This function copies the stage display pipe configuration to the real one.
7721 */
7722 static void intel_modeset_commit_output_state(struct drm_device *dev)
7723 {
7724 struct intel_encoder *encoder;
7725 struct intel_connector *connector;
7726
7727 list_for_each_entry(connector, &dev->mode_config.connector_list,
7728 base.head) {
7729 connector->base.encoder = &connector->new_encoder->base;
7730 }
7731
7732 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7733 base.head) {
7734 encoder->base.crtc = &encoder->new_crtc->base;
7735 }
7736 }
7737
7738 static void
7739 connected_sink_compute_bpp(struct intel_connector * connector,
7740 struct intel_crtc_config *pipe_config)
7741 {
7742 int bpp = pipe_config->pipe_bpp;
7743
7744 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7745 connector->base.base.id,
7746 drm_get_connector_name(&connector->base));
7747
7748 /* Don't use an invalid EDID bpc value */
7749 if (connector->base.display_info.bpc &&
7750 connector->base.display_info.bpc * 3 < bpp) {
7751 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7752 bpp, connector->base.display_info.bpc*3);
7753 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7754 }
7755
7756 /* Clamp bpp to 8 on screens without EDID 1.4 */
7757 if (connector->base.display_info.bpc == 0 && bpp > 24) {
7758 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7759 bpp);
7760 pipe_config->pipe_bpp = 24;
7761 }
7762 }
7763
7764 static int
7765 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7766 struct drm_framebuffer *fb,
7767 struct intel_crtc_config *pipe_config)
7768 {
7769 struct drm_device *dev = crtc->base.dev;
7770 struct intel_connector *connector;
7771 int bpp;
7772
7773 switch (fb->pixel_format) {
7774 case DRM_FORMAT_C8:
7775 bpp = 8*3; /* since we go through a colormap */
7776 break;
7777 case DRM_FORMAT_XRGB1555:
7778 case DRM_FORMAT_ARGB1555:
7779 /* checked in intel_framebuffer_init already */
7780 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7781 return -EINVAL;
7782 case DRM_FORMAT_RGB565:
7783 bpp = 6*3; /* min is 18bpp */
7784 break;
7785 case DRM_FORMAT_XBGR8888:
7786 case DRM_FORMAT_ABGR8888:
7787 /* checked in intel_framebuffer_init already */
7788 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7789 return -EINVAL;
7790 case DRM_FORMAT_XRGB8888:
7791 case DRM_FORMAT_ARGB8888:
7792 bpp = 8*3;
7793 break;
7794 case DRM_FORMAT_XRGB2101010:
7795 case DRM_FORMAT_ARGB2101010:
7796 case DRM_FORMAT_XBGR2101010:
7797 case DRM_FORMAT_ABGR2101010:
7798 /* checked in intel_framebuffer_init already */
7799 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7800 return -EINVAL;
7801 bpp = 10*3;
7802 break;
7803 /* TODO: gen4+ supports 16 bpc floating point, too. */
7804 default:
7805 DRM_DEBUG_KMS("unsupported depth\n");
7806 return -EINVAL;
7807 }
7808
7809 pipe_config->pipe_bpp = bpp;
7810
7811 /* Clamp display bpp to EDID value */
7812 list_for_each_entry(connector, &dev->mode_config.connector_list,
7813 base.head) {
7814 if (!connector->new_encoder ||
7815 connector->new_encoder->new_crtc != crtc)
7816 continue;
7817
7818 connected_sink_compute_bpp(connector, pipe_config);
7819 }
7820
7821 return bpp;
7822 }
7823
7824 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7825 struct intel_crtc_config *pipe_config,
7826 const char *context)
7827 {
7828 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7829 context, pipe_name(crtc->pipe));
7830
7831 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7832 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7833 pipe_config->pipe_bpp, pipe_config->dither);
7834 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7835 pipe_config->has_pch_encoder,
7836 pipe_config->fdi_lanes,
7837 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7838 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7839 pipe_config->fdi_m_n.tu);
7840 DRM_DEBUG_KMS("requested mode:\n");
7841 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7842 DRM_DEBUG_KMS("adjusted mode:\n");
7843 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7844 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
7845 pipe_config->gmch_pfit.control,
7846 pipe_config->gmch_pfit.pgm_ratios,
7847 pipe_config->gmch_pfit.lvds_border_bits);
7848 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
7849 pipe_config->pch_pfit.pos,
7850 pipe_config->pch_pfit.size);
7851 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
7852 }
7853
7854 static bool check_encoder_cloning(struct drm_crtc *crtc)
7855 {
7856 int num_encoders = 0;
7857 bool uncloneable_encoders = false;
7858 struct intel_encoder *encoder;
7859
7860 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
7861 base.head) {
7862 if (&encoder->new_crtc->base != crtc)
7863 continue;
7864
7865 num_encoders++;
7866 if (!encoder->cloneable)
7867 uncloneable_encoders = true;
7868 }
7869
7870 return !(num_encoders > 1 && uncloneable_encoders);
7871 }
7872
7873 static struct intel_crtc_config *
7874 intel_modeset_pipe_config(struct drm_crtc *crtc,
7875 struct drm_framebuffer *fb,
7876 struct drm_display_mode *mode)
7877 {
7878 struct drm_device *dev = crtc->dev;
7879 struct drm_encoder_helper_funcs *encoder_funcs;
7880 struct intel_encoder *encoder;
7881 struct intel_crtc_config *pipe_config;
7882 int plane_bpp, ret = -EINVAL;
7883 bool retry = true;
7884
7885 if (!check_encoder_cloning(crtc)) {
7886 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
7887 return ERR_PTR(-EINVAL);
7888 }
7889
7890 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7891 if (!pipe_config)
7892 return ERR_PTR(-ENOMEM);
7893
7894 drm_mode_copy(&pipe_config->adjusted_mode, mode);
7895 drm_mode_copy(&pipe_config->requested_mode, mode);
7896 pipe_config->cpu_transcoder =
7897 (enum transcoder) to_intel_crtc(crtc)->pipe;
7898 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7899
7900 /* Compute a starting value for pipe_config->pipe_bpp taking the source
7901 * plane pixel format and any sink constraints into account. Returns the
7902 * source plane bpp so that dithering can be selected on mismatches
7903 * after encoders and crtc also have had their say. */
7904 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
7905 fb, pipe_config);
7906 if (plane_bpp < 0)
7907 goto fail;
7908
7909 encoder_retry:
7910 /* Ensure the port clock defaults are reset when retrying. */
7911 pipe_config->port_clock = 0;
7912 pipe_config->pixel_multiplier = 1;
7913
7914 /* Pass our mode to the connectors and the CRTC to give them a chance to
7915 * adjust it according to limitations or connector properties, and also
7916 * a chance to reject the mode entirely.
7917 */
7918 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7919 base.head) {
7920
7921 if (&encoder->new_crtc->base != crtc)
7922 continue;
7923
7924 if (encoder->compute_config) {
7925 if (!(encoder->compute_config(encoder, pipe_config))) {
7926 DRM_DEBUG_KMS("Encoder config failure\n");
7927 goto fail;
7928 }
7929
7930 continue;
7931 }
7932
7933 encoder_funcs = encoder->base.helper_private;
7934 if (!(encoder_funcs->mode_fixup(&encoder->base,
7935 &pipe_config->requested_mode,
7936 &pipe_config->adjusted_mode))) {
7937 DRM_DEBUG_KMS("Encoder fixup failed\n");
7938 goto fail;
7939 }
7940 }
7941
7942 /* Set default port clock if not overwritten by the encoder. Needs to be
7943 * done afterwards in case the encoder adjusts the mode. */
7944 if (!pipe_config->port_clock)
7945 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
7946
7947 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
7948 if (ret < 0) {
7949 DRM_DEBUG_KMS("CRTC fixup failed\n");
7950 goto fail;
7951 }
7952
7953 if (ret == RETRY) {
7954 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7955 ret = -EINVAL;
7956 goto fail;
7957 }
7958
7959 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7960 retry = false;
7961 goto encoder_retry;
7962 }
7963
7964 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7965 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7966 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7967
7968 return pipe_config;
7969 fail:
7970 kfree(pipe_config);
7971 return ERR_PTR(ret);
7972 }
7973
7974 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7975 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7976 static void
7977 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7978 unsigned *prepare_pipes, unsigned *disable_pipes)
7979 {
7980 struct intel_crtc *intel_crtc;
7981 struct drm_device *dev = crtc->dev;
7982 struct intel_encoder *encoder;
7983 struct intel_connector *connector;
7984 struct drm_crtc *tmp_crtc;
7985
7986 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7987
7988 /* Check which crtcs have changed outputs connected to them, these need
7989 * to be part of the prepare_pipes mask. We don't (yet) support global
7990 * modeset across multiple crtcs, so modeset_pipes will only have one
7991 * bit set at most. */
7992 list_for_each_entry(connector, &dev->mode_config.connector_list,
7993 base.head) {
7994 if (connector->base.encoder == &connector->new_encoder->base)
7995 continue;
7996
7997 if (connector->base.encoder) {
7998 tmp_crtc = connector->base.encoder->crtc;
7999
8000 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8001 }
8002
8003 if (connector->new_encoder)
8004 *prepare_pipes |=
8005 1 << connector->new_encoder->new_crtc->pipe;
8006 }
8007
8008 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8009 base.head) {
8010 if (encoder->base.crtc == &encoder->new_crtc->base)
8011 continue;
8012
8013 if (encoder->base.crtc) {
8014 tmp_crtc = encoder->base.crtc;
8015
8016 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8017 }
8018
8019 if (encoder->new_crtc)
8020 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8021 }
8022
8023 /* Check for any pipes that will be fully disabled ... */
8024 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8025 base.head) {
8026 bool used = false;
8027
8028 /* Don't try to disable disabled crtcs. */
8029 if (!intel_crtc->base.enabled)
8030 continue;
8031
8032 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8033 base.head) {
8034 if (encoder->new_crtc == intel_crtc)
8035 used = true;
8036 }
8037
8038 if (!used)
8039 *disable_pipes |= 1 << intel_crtc->pipe;
8040 }
8041
8042
8043 /* set_mode is also used to update properties on life display pipes. */
8044 intel_crtc = to_intel_crtc(crtc);
8045 if (crtc->enabled)
8046 *prepare_pipes |= 1 << intel_crtc->pipe;
8047
8048 /*
8049 * For simplicity do a full modeset on any pipe where the output routing
8050 * changed. We could be more clever, but that would require us to be
8051 * more careful with calling the relevant encoder->mode_set functions.
8052 */
8053 if (*prepare_pipes)
8054 *modeset_pipes = *prepare_pipes;
8055
8056 /* ... and mask these out. */
8057 *modeset_pipes &= ~(*disable_pipes);
8058 *prepare_pipes &= ~(*disable_pipes);
8059
8060 /*
8061 * HACK: We don't (yet) fully support global modesets. intel_set_config
8062 * obies this rule, but the modeset restore mode of
8063 * intel_modeset_setup_hw_state does not.
8064 */
8065 *modeset_pipes &= 1 << intel_crtc->pipe;
8066 *prepare_pipes &= 1 << intel_crtc->pipe;
8067
8068 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8069 *modeset_pipes, *prepare_pipes, *disable_pipes);
8070 }
8071
8072 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8073 {
8074 struct drm_encoder *encoder;
8075 struct drm_device *dev = crtc->dev;
8076
8077 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8078 if (encoder->crtc == crtc)
8079 return true;
8080
8081 return false;
8082 }
8083
8084 static void
8085 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8086 {
8087 struct intel_encoder *intel_encoder;
8088 struct intel_crtc *intel_crtc;
8089 struct drm_connector *connector;
8090
8091 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8092 base.head) {
8093 if (!intel_encoder->base.crtc)
8094 continue;
8095
8096 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8097
8098 if (prepare_pipes & (1 << intel_crtc->pipe))
8099 intel_encoder->connectors_active = false;
8100 }
8101
8102 intel_modeset_commit_output_state(dev);
8103
8104 /* Update computed state. */
8105 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8106 base.head) {
8107 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8108 }
8109
8110 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8111 if (!connector->encoder || !connector->encoder->crtc)
8112 continue;
8113
8114 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8115
8116 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8117 struct drm_property *dpms_property =
8118 dev->mode_config.dpms_property;
8119
8120 connector->dpms = DRM_MODE_DPMS_ON;
8121 drm_object_property_set_value(&connector->base,
8122 dpms_property,
8123 DRM_MODE_DPMS_ON);
8124
8125 intel_encoder = to_intel_encoder(connector->encoder);
8126 intel_encoder->connectors_active = true;
8127 }
8128 }
8129
8130 }
8131
8132 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8133 struct intel_crtc_config *new)
8134 {
8135 int clock1, clock2, diff;
8136
8137 clock1 = cur->adjusted_mode.clock;
8138 clock2 = new->adjusted_mode.clock;
8139
8140 if (clock1 == clock2)
8141 return true;
8142
8143 if (!clock1 || !clock2)
8144 return false;
8145
8146 diff = abs(clock1 - clock2);
8147
8148 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8149 return true;
8150
8151 return false;
8152 }
8153
8154 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8155 list_for_each_entry((intel_crtc), \
8156 &(dev)->mode_config.crtc_list, \
8157 base.head) \
8158 if (mask & (1 <<(intel_crtc)->pipe))
8159
8160 static bool
8161 intel_pipe_config_compare(struct drm_device *dev,
8162 struct intel_crtc_config *current_config,
8163 struct intel_crtc_config *pipe_config)
8164 {
8165 #define PIPE_CONF_CHECK_X(name) \
8166 if (current_config->name != pipe_config->name) { \
8167 DRM_ERROR("mismatch in " #name " " \
8168 "(expected 0x%08x, found 0x%08x)\n", \
8169 current_config->name, \
8170 pipe_config->name); \
8171 return false; \
8172 }
8173
8174 #define PIPE_CONF_CHECK_I(name) \
8175 if (current_config->name != pipe_config->name) { \
8176 DRM_ERROR("mismatch in " #name " " \
8177 "(expected %i, found %i)\n", \
8178 current_config->name, \
8179 pipe_config->name); \
8180 return false; \
8181 }
8182
8183 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8184 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8185 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8186 "(expected %i, found %i)\n", \
8187 current_config->name & (mask), \
8188 pipe_config->name & (mask)); \
8189 return false; \
8190 }
8191
8192 #define PIPE_CONF_QUIRK(quirk) \
8193 ((current_config->quirks | pipe_config->quirks) & (quirk))
8194
8195 PIPE_CONF_CHECK_I(cpu_transcoder);
8196
8197 PIPE_CONF_CHECK_I(has_pch_encoder);
8198 PIPE_CONF_CHECK_I(fdi_lanes);
8199 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8200 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8201 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8202 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8203 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8204
8205 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8206 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8207 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8208 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8209 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8210 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8211
8212 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8213 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8214 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8215 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8216 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8217 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8218
8219 PIPE_CONF_CHECK_I(pixel_multiplier);
8220
8221 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8222 DRM_MODE_FLAG_INTERLACE);
8223
8224 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8225 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8226 DRM_MODE_FLAG_PHSYNC);
8227 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8228 DRM_MODE_FLAG_NHSYNC);
8229 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8230 DRM_MODE_FLAG_PVSYNC);
8231 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8232 DRM_MODE_FLAG_NVSYNC);
8233 }
8234
8235 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8236 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8237
8238 PIPE_CONF_CHECK_I(gmch_pfit.control);
8239 /* pfit ratios are autocomputed by the hw on gen4+ */
8240 if (INTEL_INFO(dev)->gen < 4)
8241 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8242 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8243 PIPE_CONF_CHECK_I(pch_pfit.pos);
8244 PIPE_CONF_CHECK_I(pch_pfit.size);
8245
8246 PIPE_CONF_CHECK_I(ips_enabled);
8247
8248 PIPE_CONF_CHECK_I(shared_dpll);
8249 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8250 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8251 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8252 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8253
8254 #undef PIPE_CONF_CHECK_X
8255 #undef PIPE_CONF_CHECK_I
8256 #undef PIPE_CONF_CHECK_FLAGS
8257 #undef PIPE_CONF_QUIRK
8258
8259 if (!IS_HASWELL(dev)) {
8260 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8261 DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8262 current_config->adjusted_mode.clock,
8263 pipe_config->adjusted_mode.clock);
8264 return false;
8265 }
8266 }
8267
8268 return true;
8269 }
8270
8271 static void
8272 check_connector_state(struct drm_device *dev)
8273 {
8274 struct intel_connector *connector;
8275
8276 list_for_each_entry(connector, &dev->mode_config.connector_list,
8277 base.head) {
8278 /* This also checks the encoder/connector hw state with the
8279 * ->get_hw_state callbacks. */
8280 intel_connector_check_state(connector);
8281
8282 WARN(&connector->new_encoder->base != connector->base.encoder,
8283 "connector's staged encoder doesn't match current encoder\n");
8284 }
8285 }
8286
8287 static void
8288 check_encoder_state(struct drm_device *dev)
8289 {
8290 struct intel_encoder *encoder;
8291 struct intel_connector *connector;
8292
8293 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8294 base.head) {
8295 bool enabled = false;
8296 bool active = false;
8297 enum pipe pipe, tracked_pipe;
8298
8299 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8300 encoder->base.base.id,
8301 drm_get_encoder_name(&encoder->base));
8302
8303 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8304 "encoder's stage crtc doesn't match current crtc\n");
8305 WARN(encoder->connectors_active && !encoder->base.crtc,
8306 "encoder's active_connectors set, but no crtc\n");
8307
8308 list_for_each_entry(connector, &dev->mode_config.connector_list,
8309 base.head) {
8310 if (connector->base.encoder != &encoder->base)
8311 continue;
8312 enabled = true;
8313 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8314 active = true;
8315 }
8316 WARN(!!encoder->base.crtc != enabled,
8317 "encoder's enabled state mismatch "
8318 "(expected %i, found %i)\n",
8319 !!encoder->base.crtc, enabled);
8320 WARN(active && !encoder->base.crtc,
8321 "active encoder with no crtc\n");
8322
8323 WARN(encoder->connectors_active != active,
8324 "encoder's computed active state doesn't match tracked active state "
8325 "(expected %i, found %i)\n", active, encoder->connectors_active);
8326
8327 active = encoder->get_hw_state(encoder, &pipe);
8328 WARN(active != encoder->connectors_active,
8329 "encoder's hw state doesn't match sw tracking "
8330 "(expected %i, found %i)\n",
8331 encoder->connectors_active, active);
8332
8333 if (!encoder->base.crtc)
8334 continue;
8335
8336 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8337 WARN(active && pipe != tracked_pipe,
8338 "active encoder's pipe doesn't match"
8339 "(expected %i, found %i)\n",
8340 tracked_pipe, pipe);
8341
8342 }
8343 }
8344
8345 static void
8346 check_crtc_state(struct drm_device *dev)
8347 {
8348 drm_i915_private_t *dev_priv = dev->dev_private;
8349 struct intel_crtc *crtc;
8350 struct intel_encoder *encoder;
8351 struct intel_crtc_config pipe_config;
8352
8353 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8354 base.head) {
8355 bool enabled = false;
8356 bool active = false;
8357
8358 memset(&pipe_config, 0, sizeof(pipe_config));
8359
8360 DRM_DEBUG_KMS("[CRTC:%d]\n",
8361 crtc->base.base.id);
8362
8363 WARN(crtc->active && !crtc->base.enabled,
8364 "active crtc, but not enabled in sw tracking\n");
8365
8366 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8367 base.head) {
8368 if (encoder->base.crtc != &crtc->base)
8369 continue;
8370 enabled = true;
8371 if (encoder->connectors_active)
8372 active = true;
8373 }
8374
8375 WARN(active != crtc->active,
8376 "crtc's computed active state doesn't match tracked active state "
8377 "(expected %i, found %i)\n", active, crtc->active);
8378 WARN(enabled != crtc->base.enabled,
8379 "crtc's computed enabled state doesn't match tracked enabled state "
8380 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8381
8382 active = dev_priv->display.get_pipe_config(crtc,
8383 &pipe_config);
8384
8385 /* hw state is inconsistent with the pipe A quirk */
8386 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8387 active = crtc->active;
8388
8389 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8390 base.head) {
8391 if (encoder->base.crtc != &crtc->base)
8392 continue;
8393 if (encoder->get_config)
8394 encoder->get_config(encoder, &pipe_config);
8395 }
8396
8397 if (dev_priv->display.get_clock)
8398 dev_priv->display.get_clock(crtc, &pipe_config);
8399
8400 WARN(crtc->active != active,
8401 "crtc active state doesn't match with hw state "
8402 "(expected %i, found %i)\n", crtc->active, active);
8403
8404 if (active &&
8405 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8406 WARN(1, "pipe state doesn't match!\n");
8407 intel_dump_pipe_config(crtc, &pipe_config,
8408 "[hw state]");
8409 intel_dump_pipe_config(crtc, &crtc->config,
8410 "[sw state]");
8411 }
8412 }
8413 }
8414
8415 static void
8416 check_shared_dpll_state(struct drm_device *dev)
8417 {
8418 drm_i915_private_t *dev_priv = dev->dev_private;
8419 struct intel_crtc *crtc;
8420 struct intel_dpll_hw_state dpll_hw_state;
8421 int i;
8422
8423 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8424 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8425 int enabled_crtcs = 0, active_crtcs = 0;
8426 bool active;
8427
8428 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8429
8430 DRM_DEBUG_KMS("%s\n", pll->name);
8431
8432 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8433
8434 WARN(pll->active > pll->refcount,
8435 "more active pll users than references: %i vs %i\n",
8436 pll->active, pll->refcount);
8437 WARN(pll->active && !pll->on,
8438 "pll in active use but not on in sw tracking\n");
8439 WARN(pll->on != active,
8440 "pll on state mismatch (expected %i, found %i)\n",
8441 pll->on, active);
8442
8443 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8444 base.head) {
8445 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8446 enabled_crtcs++;
8447 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8448 active_crtcs++;
8449 }
8450 WARN(pll->active != active_crtcs,
8451 "pll active crtcs mismatch (expected %i, found %i)\n",
8452 pll->active, active_crtcs);
8453 WARN(pll->refcount != enabled_crtcs,
8454 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8455 pll->refcount, enabled_crtcs);
8456
8457 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8458 sizeof(dpll_hw_state)),
8459 "pll hw state mismatch\n");
8460 }
8461 }
8462
8463 void
8464 intel_modeset_check_state(struct drm_device *dev)
8465 {
8466 check_connector_state(dev);
8467 check_encoder_state(dev);
8468 check_crtc_state(dev);
8469 check_shared_dpll_state(dev);
8470 }
8471
8472 static int __intel_set_mode(struct drm_crtc *crtc,
8473 struct drm_display_mode *mode,
8474 int x, int y, struct drm_framebuffer *fb)
8475 {
8476 struct drm_device *dev = crtc->dev;
8477 drm_i915_private_t *dev_priv = dev->dev_private;
8478 struct drm_display_mode *saved_mode, *saved_hwmode;
8479 struct intel_crtc_config *pipe_config = NULL;
8480 struct intel_crtc *intel_crtc;
8481 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8482 int ret = 0;
8483
8484 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8485 if (!saved_mode)
8486 return -ENOMEM;
8487 saved_hwmode = saved_mode + 1;
8488
8489 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8490 &prepare_pipes, &disable_pipes);
8491
8492 *saved_hwmode = crtc->hwmode;
8493 *saved_mode = crtc->mode;
8494
8495 /* Hack: Because we don't (yet) support global modeset on multiple
8496 * crtcs, we don't keep track of the new mode for more than one crtc.
8497 * Hence simply check whether any bit is set in modeset_pipes in all the
8498 * pieces of code that are not yet converted to deal with mutliple crtcs
8499 * changing their mode at the same time. */
8500 if (modeset_pipes) {
8501 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8502 if (IS_ERR(pipe_config)) {
8503 ret = PTR_ERR(pipe_config);
8504 pipe_config = NULL;
8505
8506 goto out;
8507 }
8508 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8509 "[modeset]");
8510 }
8511
8512 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8513 intel_crtc_disable(&intel_crtc->base);
8514
8515 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8516 if (intel_crtc->base.enabled)
8517 dev_priv->display.crtc_disable(&intel_crtc->base);
8518 }
8519
8520 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8521 * to set it here already despite that we pass it down the callchain.
8522 */
8523 if (modeset_pipes) {
8524 crtc->mode = *mode;
8525 /* mode_set/enable/disable functions rely on a correct pipe
8526 * config. */
8527 to_intel_crtc(crtc)->config = *pipe_config;
8528 }
8529
8530 /* Only after disabling all output pipelines that will be changed can we
8531 * update the the output configuration. */
8532 intel_modeset_update_state(dev, prepare_pipes);
8533
8534 if (dev_priv->display.modeset_global_resources)
8535 dev_priv->display.modeset_global_resources(dev);
8536
8537 /* Set up the DPLL and any encoders state that needs to adjust or depend
8538 * on the DPLL.
8539 */
8540 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8541 ret = intel_crtc_mode_set(&intel_crtc->base,
8542 x, y, fb);
8543 if (ret)
8544 goto done;
8545 }
8546
8547 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8548 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8549 dev_priv->display.crtc_enable(&intel_crtc->base);
8550
8551 if (modeset_pipes) {
8552 /* Store real post-adjustment hardware mode. */
8553 crtc->hwmode = pipe_config->adjusted_mode;
8554
8555 /* Calculate and store various constants which
8556 * are later needed by vblank and swap-completion
8557 * timestamping. They are derived from true hwmode.
8558 */
8559 drm_calc_timestamping_constants(crtc);
8560 }
8561
8562 /* FIXME: add subpixel order */
8563 done:
8564 if (ret && crtc->enabled) {
8565 crtc->hwmode = *saved_hwmode;
8566 crtc->mode = *saved_mode;
8567 }
8568
8569 out:
8570 kfree(pipe_config);
8571 kfree(saved_mode);
8572 return ret;
8573 }
8574
8575 int intel_set_mode(struct drm_crtc *crtc,
8576 struct drm_display_mode *mode,
8577 int x, int y, struct drm_framebuffer *fb)
8578 {
8579 int ret;
8580
8581 ret = __intel_set_mode(crtc, mode, x, y, fb);
8582
8583 if (ret == 0)
8584 intel_modeset_check_state(crtc->dev);
8585
8586 return ret;
8587 }
8588
8589 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8590 {
8591 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8592 }
8593
8594 #undef for_each_intel_crtc_masked
8595
8596 static void intel_set_config_free(struct intel_set_config *config)
8597 {
8598 if (!config)
8599 return;
8600
8601 kfree(config->save_connector_encoders);
8602 kfree(config->save_encoder_crtcs);
8603 kfree(config);
8604 }
8605
8606 static int intel_set_config_save_state(struct drm_device *dev,
8607 struct intel_set_config *config)
8608 {
8609 struct drm_encoder *encoder;
8610 struct drm_connector *connector;
8611 int count;
8612
8613 config->save_encoder_crtcs =
8614 kcalloc(dev->mode_config.num_encoder,
8615 sizeof(struct drm_crtc *), GFP_KERNEL);
8616 if (!config->save_encoder_crtcs)
8617 return -ENOMEM;
8618
8619 config->save_connector_encoders =
8620 kcalloc(dev->mode_config.num_connector,
8621 sizeof(struct drm_encoder *), GFP_KERNEL);
8622 if (!config->save_connector_encoders)
8623 return -ENOMEM;
8624
8625 /* Copy data. Note that driver private data is not affected.
8626 * Should anything bad happen only the expected state is
8627 * restored, not the drivers personal bookkeeping.
8628 */
8629 count = 0;
8630 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8631 config->save_encoder_crtcs[count++] = encoder->crtc;
8632 }
8633
8634 count = 0;
8635 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8636 config->save_connector_encoders[count++] = connector->encoder;
8637 }
8638
8639 return 0;
8640 }
8641
8642 static void intel_set_config_restore_state(struct drm_device *dev,
8643 struct intel_set_config *config)
8644 {
8645 struct intel_encoder *encoder;
8646 struct intel_connector *connector;
8647 int count;
8648
8649 count = 0;
8650 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8651 encoder->new_crtc =
8652 to_intel_crtc(config->save_encoder_crtcs[count++]);
8653 }
8654
8655 count = 0;
8656 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8657 connector->new_encoder =
8658 to_intel_encoder(config->save_connector_encoders[count++]);
8659 }
8660 }
8661
8662 static bool
8663 is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
8664 int num_connectors)
8665 {
8666 int i;
8667
8668 for (i = 0; i < num_connectors; i++)
8669 if (connectors[i].encoder &&
8670 connectors[i].encoder->crtc == crtc &&
8671 connectors[i].dpms != DRM_MODE_DPMS_ON)
8672 return true;
8673
8674 return false;
8675 }
8676
8677 static void
8678 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8679 struct intel_set_config *config)
8680 {
8681
8682 /* We should be able to check here if the fb has the same properties
8683 * and then just flip_or_move it */
8684 if (set->connectors != NULL &&
8685 is_crtc_connector_off(set->crtc, *set->connectors,
8686 set->num_connectors)) {
8687 config->mode_changed = true;
8688 } else if (set->crtc->fb != set->fb) {
8689 /* If we have no fb then treat it as a full mode set */
8690 if (set->crtc->fb == NULL) {
8691 struct intel_crtc *intel_crtc =
8692 to_intel_crtc(set->crtc);
8693
8694 if (intel_crtc->active && i915_fastboot) {
8695 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8696 config->fb_changed = true;
8697 } else {
8698 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8699 config->mode_changed = true;
8700 }
8701 } else if (set->fb == NULL) {
8702 config->mode_changed = true;
8703 } else if (set->fb->pixel_format !=
8704 set->crtc->fb->pixel_format) {
8705 config->mode_changed = true;
8706 } else {
8707 config->fb_changed = true;
8708 }
8709 }
8710
8711 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8712 config->fb_changed = true;
8713
8714 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8715 DRM_DEBUG_KMS("modes are different, full mode set\n");
8716 drm_mode_debug_printmodeline(&set->crtc->mode);
8717 drm_mode_debug_printmodeline(set->mode);
8718 config->mode_changed = true;
8719 }
8720 }
8721
8722 static int
8723 intel_modeset_stage_output_state(struct drm_device *dev,
8724 struct drm_mode_set *set,
8725 struct intel_set_config *config)
8726 {
8727 struct drm_crtc *new_crtc;
8728 struct intel_connector *connector;
8729 struct intel_encoder *encoder;
8730 int count, ro;
8731
8732 /* The upper layers ensure that we either disable a crtc or have a list
8733 * of connectors. For paranoia, double-check this. */
8734 WARN_ON(!set->fb && (set->num_connectors != 0));
8735 WARN_ON(set->fb && (set->num_connectors == 0));
8736
8737 count = 0;
8738 list_for_each_entry(connector, &dev->mode_config.connector_list,
8739 base.head) {
8740 /* Otherwise traverse passed in connector list and get encoders
8741 * for them. */
8742 for (ro = 0; ro < set->num_connectors; ro++) {
8743 if (set->connectors[ro] == &connector->base) {
8744 connector->new_encoder = connector->encoder;
8745 break;
8746 }
8747 }
8748
8749 /* If we disable the crtc, disable all its connectors. Also, if
8750 * the connector is on the changing crtc but not on the new
8751 * connector list, disable it. */
8752 if ((!set->fb || ro == set->num_connectors) &&
8753 connector->base.encoder &&
8754 connector->base.encoder->crtc == set->crtc) {
8755 connector->new_encoder = NULL;
8756
8757 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8758 connector->base.base.id,
8759 drm_get_connector_name(&connector->base));
8760 }
8761
8762
8763 if (&connector->new_encoder->base != connector->base.encoder) {
8764 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8765 config->mode_changed = true;
8766 }
8767 }
8768 /* connector->new_encoder is now updated for all connectors. */
8769
8770 /* Update crtc of enabled connectors. */
8771 count = 0;
8772 list_for_each_entry(connector, &dev->mode_config.connector_list,
8773 base.head) {
8774 if (!connector->new_encoder)
8775 continue;
8776
8777 new_crtc = connector->new_encoder->base.crtc;
8778
8779 for (ro = 0; ro < set->num_connectors; ro++) {
8780 if (set->connectors[ro] == &connector->base)
8781 new_crtc = set->crtc;
8782 }
8783
8784 /* Make sure the new CRTC will work with the encoder */
8785 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8786 new_crtc)) {
8787 return -EINVAL;
8788 }
8789 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8790
8791 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8792 connector->base.base.id,
8793 drm_get_connector_name(&connector->base),
8794 new_crtc->base.id);
8795 }
8796
8797 /* Check for any encoders that needs to be disabled. */
8798 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8799 base.head) {
8800 list_for_each_entry(connector,
8801 &dev->mode_config.connector_list,
8802 base.head) {
8803 if (connector->new_encoder == encoder) {
8804 WARN_ON(!connector->new_encoder->new_crtc);
8805
8806 goto next_encoder;
8807 }
8808 }
8809 encoder->new_crtc = NULL;
8810 next_encoder:
8811 /* Only now check for crtc changes so we don't miss encoders
8812 * that will be disabled. */
8813 if (&encoder->new_crtc->base != encoder->base.crtc) {
8814 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8815 config->mode_changed = true;
8816 }
8817 }
8818 /* Now we've also updated encoder->new_crtc for all encoders. */
8819
8820 return 0;
8821 }
8822
8823 static int intel_crtc_set_config(struct drm_mode_set *set)
8824 {
8825 struct drm_device *dev;
8826 struct drm_mode_set save_set;
8827 struct intel_set_config *config;
8828 int ret;
8829
8830 BUG_ON(!set);
8831 BUG_ON(!set->crtc);
8832 BUG_ON(!set->crtc->helper_private);
8833
8834 /* Enforce sane interface api - has been abused by the fb helper. */
8835 BUG_ON(!set->mode && set->fb);
8836 BUG_ON(set->fb && set->num_connectors == 0);
8837
8838 if (set->fb) {
8839 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8840 set->crtc->base.id, set->fb->base.id,
8841 (int)set->num_connectors, set->x, set->y);
8842 } else {
8843 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8844 }
8845
8846 dev = set->crtc->dev;
8847
8848 ret = -ENOMEM;
8849 config = kzalloc(sizeof(*config), GFP_KERNEL);
8850 if (!config)
8851 goto out_config;
8852
8853 ret = intel_set_config_save_state(dev, config);
8854 if (ret)
8855 goto out_config;
8856
8857 save_set.crtc = set->crtc;
8858 save_set.mode = &set->crtc->mode;
8859 save_set.x = set->crtc->x;
8860 save_set.y = set->crtc->y;
8861 save_set.fb = set->crtc->fb;
8862
8863 /* Compute whether we need a full modeset, only an fb base update or no
8864 * change at all. In the future we might also check whether only the
8865 * mode changed, e.g. for LVDS where we only change the panel fitter in
8866 * such cases. */
8867 intel_set_config_compute_mode_changes(set, config);
8868
8869 ret = intel_modeset_stage_output_state(dev, set, config);
8870 if (ret)
8871 goto fail;
8872
8873 if (config->mode_changed) {
8874 ret = intel_set_mode(set->crtc, set->mode,
8875 set->x, set->y, set->fb);
8876 } else if (config->fb_changed) {
8877 intel_crtc_wait_for_pending_flips(set->crtc);
8878
8879 ret = intel_pipe_set_base(set->crtc,
8880 set->x, set->y, set->fb);
8881 }
8882
8883 if (ret) {
8884 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
8885 set->crtc->base.id, ret);
8886 fail:
8887 intel_set_config_restore_state(dev, config);
8888
8889 /* Try to restore the config */
8890 if (config->mode_changed &&
8891 intel_set_mode(save_set.crtc, save_set.mode,
8892 save_set.x, save_set.y, save_set.fb))
8893 DRM_ERROR("failed to restore config after modeset failure\n");
8894 }
8895
8896 out_config:
8897 intel_set_config_free(config);
8898 return ret;
8899 }
8900
8901 static const struct drm_crtc_funcs intel_crtc_funcs = {
8902 .cursor_set = intel_crtc_cursor_set,
8903 .cursor_move = intel_crtc_cursor_move,
8904 .gamma_set = intel_crtc_gamma_set,
8905 .set_config = intel_crtc_set_config,
8906 .destroy = intel_crtc_destroy,
8907 .page_flip = intel_crtc_page_flip,
8908 };
8909
8910 static void intel_cpu_pll_init(struct drm_device *dev)
8911 {
8912 if (HAS_DDI(dev))
8913 intel_ddi_pll_init(dev);
8914 }
8915
8916 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
8917 struct intel_shared_dpll *pll,
8918 struct intel_dpll_hw_state *hw_state)
8919 {
8920 uint32_t val;
8921
8922 val = I915_READ(PCH_DPLL(pll->id));
8923 hw_state->dpll = val;
8924 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
8925 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
8926
8927 return val & DPLL_VCO_ENABLE;
8928 }
8929
8930 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
8931 struct intel_shared_dpll *pll)
8932 {
8933 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
8934 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
8935 }
8936
8937 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
8938 struct intel_shared_dpll *pll)
8939 {
8940 /* PCH refclock must be enabled first */
8941 assert_pch_refclk_enabled(dev_priv);
8942
8943 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8944
8945 /* Wait for the clocks to stabilize. */
8946 POSTING_READ(PCH_DPLL(pll->id));
8947 udelay(150);
8948
8949 /* The pixel multiplier can only be updated once the
8950 * DPLL is enabled and the clocks are stable.
8951 *
8952 * So write it again.
8953 */
8954 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8955 POSTING_READ(PCH_DPLL(pll->id));
8956 udelay(200);
8957 }
8958
8959 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
8960 struct intel_shared_dpll *pll)
8961 {
8962 struct drm_device *dev = dev_priv->dev;
8963 struct intel_crtc *crtc;
8964
8965 /* Make sure no transcoder isn't still depending on us. */
8966 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
8967 if (intel_crtc_to_shared_dpll(crtc) == pll)
8968 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
8969 }
8970
8971 I915_WRITE(PCH_DPLL(pll->id), 0);
8972 POSTING_READ(PCH_DPLL(pll->id));
8973 udelay(200);
8974 }
8975
8976 static char *ibx_pch_dpll_names[] = {
8977 "PCH DPLL A",
8978 "PCH DPLL B",
8979 };
8980
8981 static void ibx_pch_dpll_init(struct drm_device *dev)
8982 {
8983 struct drm_i915_private *dev_priv = dev->dev_private;
8984 int i;
8985
8986 dev_priv->num_shared_dpll = 2;
8987
8988 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8989 dev_priv->shared_dplls[i].id = i;
8990 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
8991 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
8992 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
8993 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
8994 dev_priv->shared_dplls[i].get_hw_state =
8995 ibx_pch_dpll_get_hw_state;
8996 }
8997 }
8998
8999 static void intel_shared_dpll_init(struct drm_device *dev)
9000 {
9001 struct drm_i915_private *dev_priv = dev->dev_private;
9002
9003 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9004 ibx_pch_dpll_init(dev);
9005 else
9006 dev_priv->num_shared_dpll = 0;
9007
9008 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9009 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9010 dev_priv->num_shared_dpll);
9011 }
9012
9013 static void intel_crtc_init(struct drm_device *dev, int pipe)
9014 {
9015 drm_i915_private_t *dev_priv = dev->dev_private;
9016 struct intel_crtc *intel_crtc;
9017 int i;
9018
9019 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9020 if (intel_crtc == NULL)
9021 return;
9022
9023 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9024
9025 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9026 for (i = 0; i < 256; i++) {
9027 intel_crtc->lut_r[i] = i;
9028 intel_crtc->lut_g[i] = i;
9029 intel_crtc->lut_b[i] = i;
9030 }
9031
9032 /* Swap pipes & planes for FBC on pre-965 */
9033 intel_crtc->pipe = pipe;
9034 intel_crtc->plane = pipe;
9035 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9036 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9037 intel_crtc->plane = !pipe;
9038 }
9039
9040 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9041 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9042 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9043 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9044
9045 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9046 }
9047
9048 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9049 struct drm_file *file)
9050 {
9051 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9052 struct drm_mode_object *drmmode_obj;
9053 struct intel_crtc *crtc;
9054
9055 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9056 return -ENODEV;
9057
9058 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9059 DRM_MODE_OBJECT_CRTC);
9060
9061 if (!drmmode_obj) {
9062 DRM_ERROR("no such CRTC id\n");
9063 return -EINVAL;
9064 }
9065
9066 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9067 pipe_from_crtc_id->pipe = crtc->pipe;
9068
9069 return 0;
9070 }
9071
9072 static int intel_encoder_clones(struct intel_encoder *encoder)
9073 {
9074 struct drm_device *dev = encoder->base.dev;
9075 struct intel_encoder *source_encoder;
9076 int index_mask = 0;
9077 int entry = 0;
9078
9079 list_for_each_entry(source_encoder,
9080 &dev->mode_config.encoder_list, base.head) {
9081
9082 if (encoder == source_encoder)
9083 index_mask |= (1 << entry);
9084
9085 /* Intel hw has only one MUX where enocoders could be cloned. */
9086 if (encoder->cloneable && source_encoder->cloneable)
9087 index_mask |= (1 << entry);
9088
9089 entry++;
9090 }
9091
9092 return index_mask;
9093 }
9094
9095 static bool has_edp_a(struct drm_device *dev)
9096 {
9097 struct drm_i915_private *dev_priv = dev->dev_private;
9098
9099 if (!IS_MOBILE(dev))
9100 return false;
9101
9102 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9103 return false;
9104
9105 if (IS_GEN5(dev) &&
9106 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9107 return false;
9108
9109 return true;
9110 }
9111
9112 static void intel_setup_outputs(struct drm_device *dev)
9113 {
9114 struct drm_i915_private *dev_priv = dev->dev_private;
9115 struct intel_encoder *encoder;
9116 bool dpd_is_edp = false;
9117
9118 intel_lvds_init(dev);
9119
9120 if (!IS_ULT(dev))
9121 intel_crt_init(dev);
9122
9123 if (HAS_DDI(dev)) {
9124 int found;
9125
9126 /* Haswell uses DDI functions to detect digital outputs */
9127 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9128 /* DDI A only supports eDP */
9129 if (found)
9130 intel_ddi_init(dev, PORT_A);
9131
9132 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9133 * register */
9134 found = I915_READ(SFUSE_STRAP);
9135
9136 if (found & SFUSE_STRAP_DDIB_DETECTED)
9137 intel_ddi_init(dev, PORT_B);
9138 if (found & SFUSE_STRAP_DDIC_DETECTED)
9139 intel_ddi_init(dev, PORT_C);
9140 if (found & SFUSE_STRAP_DDID_DETECTED)
9141 intel_ddi_init(dev, PORT_D);
9142 } else if (HAS_PCH_SPLIT(dev)) {
9143 int found;
9144 dpd_is_edp = intel_dpd_is_edp(dev);
9145
9146 if (has_edp_a(dev))
9147 intel_dp_init(dev, DP_A, PORT_A);
9148
9149 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9150 /* PCH SDVOB multiplex with HDMIB */
9151 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9152 if (!found)
9153 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9154 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9155 intel_dp_init(dev, PCH_DP_B, PORT_B);
9156 }
9157
9158 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9159 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9160
9161 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9162 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9163
9164 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9165 intel_dp_init(dev, PCH_DP_C, PORT_C);
9166
9167 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9168 intel_dp_init(dev, PCH_DP_D, PORT_D);
9169 } else if (IS_VALLEYVIEW(dev)) {
9170 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9171 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9172 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9173
9174 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9175 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9176 PORT_B);
9177 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9178 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9179 }
9180 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9181 bool found = false;
9182
9183 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9184 DRM_DEBUG_KMS("probing SDVOB\n");
9185 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9186 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9187 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9188 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9189 }
9190
9191 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9192 intel_dp_init(dev, DP_B, PORT_B);
9193 }
9194
9195 /* Before G4X SDVOC doesn't have its own detect register */
9196
9197 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9198 DRM_DEBUG_KMS("probing SDVOC\n");
9199 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9200 }
9201
9202 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9203
9204 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9205 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9206 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9207 }
9208 if (SUPPORTS_INTEGRATED_DP(dev))
9209 intel_dp_init(dev, DP_C, PORT_C);
9210 }
9211
9212 if (SUPPORTS_INTEGRATED_DP(dev) &&
9213 (I915_READ(DP_D) & DP_DETECTED))
9214 intel_dp_init(dev, DP_D, PORT_D);
9215 } else if (IS_GEN2(dev))
9216 intel_dvo_init(dev);
9217
9218 if (SUPPORTS_TV(dev))
9219 intel_tv_init(dev);
9220
9221 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9222 encoder->base.possible_crtcs = encoder->crtc_mask;
9223 encoder->base.possible_clones =
9224 intel_encoder_clones(encoder);
9225 }
9226
9227 intel_init_pch_refclk(dev);
9228
9229 drm_helper_move_panel_connectors_to_head(dev);
9230 }
9231
9232 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9233 {
9234 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9235
9236 drm_framebuffer_cleanup(fb);
9237 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9238
9239 kfree(intel_fb);
9240 }
9241
9242 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9243 struct drm_file *file,
9244 unsigned int *handle)
9245 {
9246 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9247 struct drm_i915_gem_object *obj = intel_fb->obj;
9248
9249 return drm_gem_handle_create(file, &obj->base, handle);
9250 }
9251
9252 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9253 .destroy = intel_user_framebuffer_destroy,
9254 .create_handle = intel_user_framebuffer_create_handle,
9255 };
9256
9257 int intel_framebuffer_init(struct drm_device *dev,
9258 struct intel_framebuffer *intel_fb,
9259 struct drm_mode_fb_cmd2 *mode_cmd,
9260 struct drm_i915_gem_object *obj)
9261 {
9262 int pitch_limit;
9263 int ret;
9264
9265 if (obj->tiling_mode == I915_TILING_Y) {
9266 DRM_DEBUG("hardware does not support tiling Y\n");
9267 return -EINVAL;
9268 }
9269
9270 if (mode_cmd->pitches[0] & 63) {
9271 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9272 mode_cmd->pitches[0]);
9273 return -EINVAL;
9274 }
9275
9276 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9277 pitch_limit = 32*1024;
9278 } else if (INTEL_INFO(dev)->gen >= 4) {
9279 if (obj->tiling_mode)
9280 pitch_limit = 16*1024;
9281 else
9282 pitch_limit = 32*1024;
9283 } else if (INTEL_INFO(dev)->gen >= 3) {
9284 if (obj->tiling_mode)
9285 pitch_limit = 8*1024;
9286 else
9287 pitch_limit = 16*1024;
9288 } else
9289 /* XXX DSPC is limited to 4k tiled */
9290 pitch_limit = 8*1024;
9291
9292 if (mode_cmd->pitches[0] > pitch_limit) {
9293 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9294 obj->tiling_mode ? "tiled" : "linear",
9295 mode_cmd->pitches[0], pitch_limit);
9296 return -EINVAL;
9297 }
9298
9299 if (obj->tiling_mode != I915_TILING_NONE &&
9300 mode_cmd->pitches[0] != obj->stride) {
9301 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9302 mode_cmd->pitches[0], obj->stride);
9303 return -EINVAL;
9304 }
9305
9306 /* Reject formats not supported by any plane early. */
9307 switch (mode_cmd->pixel_format) {
9308 case DRM_FORMAT_C8:
9309 case DRM_FORMAT_RGB565:
9310 case DRM_FORMAT_XRGB8888:
9311 case DRM_FORMAT_ARGB8888:
9312 break;
9313 case DRM_FORMAT_XRGB1555:
9314 case DRM_FORMAT_ARGB1555:
9315 if (INTEL_INFO(dev)->gen > 3) {
9316 DRM_DEBUG("unsupported pixel format: %s\n",
9317 drm_get_format_name(mode_cmd->pixel_format));
9318 return -EINVAL;
9319 }
9320 break;
9321 case DRM_FORMAT_XBGR8888:
9322 case DRM_FORMAT_ABGR8888:
9323 case DRM_FORMAT_XRGB2101010:
9324 case DRM_FORMAT_ARGB2101010:
9325 case DRM_FORMAT_XBGR2101010:
9326 case DRM_FORMAT_ABGR2101010:
9327 if (INTEL_INFO(dev)->gen < 4) {
9328 DRM_DEBUG("unsupported pixel format: %s\n",
9329 drm_get_format_name(mode_cmd->pixel_format));
9330 return -EINVAL;
9331 }
9332 break;
9333 case DRM_FORMAT_YUYV:
9334 case DRM_FORMAT_UYVY:
9335 case DRM_FORMAT_YVYU:
9336 case DRM_FORMAT_VYUY:
9337 if (INTEL_INFO(dev)->gen < 5) {
9338 DRM_DEBUG("unsupported pixel format: %s\n",
9339 drm_get_format_name(mode_cmd->pixel_format));
9340 return -EINVAL;
9341 }
9342 break;
9343 default:
9344 DRM_DEBUG("unsupported pixel format: %s\n",
9345 drm_get_format_name(mode_cmd->pixel_format));
9346 return -EINVAL;
9347 }
9348
9349 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9350 if (mode_cmd->offsets[0] != 0)
9351 return -EINVAL;
9352
9353 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9354 intel_fb->obj = obj;
9355
9356 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9357 if (ret) {
9358 DRM_ERROR("framebuffer init failed %d\n", ret);
9359 return ret;
9360 }
9361
9362 return 0;
9363 }
9364
9365 static struct drm_framebuffer *
9366 intel_user_framebuffer_create(struct drm_device *dev,
9367 struct drm_file *filp,
9368 struct drm_mode_fb_cmd2 *mode_cmd)
9369 {
9370 struct drm_i915_gem_object *obj;
9371
9372 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9373 mode_cmd->handles[0]));
9374 if (&obj->base == NULL)
9375 return ERR_PTR(-ENOENT);
9376
9377 return intel_framebuffer_create(dev, mode_cmd, obj);
9378 }
9379
9380 static const struct drm_mode_config_funcs intel_mode_funcs = {
9381 .fb_create = intel_user_framebuffer_create,
9382 .output_poll_changed = intel_fb_output_poll_changed,
9383 };
9384
9385 /* Set up chip specific display functions */
9386 static void intel_init_display(struct drm_device *dev)
9387 {
9388 struct drm_i915_private *dev_priv = dev->dev_private;
9389
9390 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9391 dev_priv->display.find_dpll = g4x_find_best_dpll;
9392 else if (IS_VALLEYVIEW(dev))
9393 dev_priv->display.find_dpll = vlv_find_best_dpll;
9394 else if (IS_PINEVIEW(dev))
9395 dev_priv->display.find_dpll = pnv_find_best_dpll;
9396 else
9397 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9398
9399 if (HAS_DDI(dev)) {
9400 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9401 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9402 dev_priv->display.crtc_enable = haswell_crtc_enable;
9403 dev_priv->display.crtc_disable = haswell_crtc_disable;
9404 dev_priv->display.off = haswell_crtc_off;
9405 dev_priv->display.update_plane = ironlake_update_plane;
9406 } else if (HAS_PCH_SPLIT(dev)) {
9407 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9408 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9409 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9410 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9411 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9412 dev_priv->display.off = ironlake_crtc_off;
9413 dev_priv->display.update_plane = ironlake_update_plane;
9414 } else if (IS_VALLEYVIEW(dev)) {
9415 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9416 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9417 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9418 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9419 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9420 dev_priv->display.off = i9xx_crtc_off;
9421 dev_priv->display.update_plane = i9xx_update_plane;
9422 } else {
9423 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9424 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9425 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9426 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9427 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9428 dev_priv->display.off = i9xx_crtc_off;
9429 dev_priv->display.update_plane = i9xx_update_plane;
9430 }
9431
9432 /* Returns the core display clock speed */
9433 if (IS_VALLEYVIEW(dev))
9434 dev_priv->display.get_display_clock_speed =
9435 valleyview_get_display_clock_speed;
9436 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9437 dev_priv->display.get_display_clock_speed =
9438 i945_get_display_clock_speed;
9439 else if (IS_I915G(dev))
9440 dev_priv->display.get_display_clock_speed =
9441 i915_get_display_clock_speed;
9442 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9443 dev_priv->display.get_display_clock_speed =
9444 i9xx_misc_get_display_clock_speed;
9445 else if (IS_I915GM(dev))
9446 dev_priv->display.get_display_clock_speed =
9447 i915gm_get_display_clock_speed;
9448 else if (IS_I865G(dev))
9449 dev_priv->display.get_display_clock_speed =
9450 i865_get_display_clock_speed;
9451 else if (IS_I85X(dev))
9452 dev_priv->display.get_display_clock_speed =
9453 i855_get_display_clock_speed;
9454 else /* 852, 830 */
9455 dev_priv->display.get_display_clock_speed =
9456 i830_get_display_clock_speed;
9457
9458 if (HAS_PCH_SPLIT(dev)) {
9459 if (IS_GEN5(dev)) {
9460 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9461 dev_priv->display.write_eld = ironlake_write_eld;
9462 } else if (IS_GEN6(dev)) {
9463 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9464 dev_priv->display.write_eld = ironlake_write_eld;
9465 } else if (IS_IVYBRIDGE(dev)) {
9466 /* FIXME: detect B0+ stepping and use auto training */
9467 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9468 dev_priv->display.write_eld = ironlake_write_eld;
9469 dev_priv->display.modeset_global_resources =
9470 ivb_modeset_global_resources;
9471 } else if (IS_HASWELL(dev)) {
9472 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9473 dev_priv->display.write_eld = haswell_write_eld;
9474 dev_priv->display.modeset_global_resources =
9475 haswell_modeset_global_resources;
9476 }
9477 } else if (IS_G4X(dev)) {
9478 dev_priv->display.write_eld = g4x_write_eld;
9479 }
9480
9481 /* Default just returns -ENODEV to indicate unsupported */
9482 dev_priv->display.queue_flip = intel_default_queue_flip;
9483
9484 switch (INTEL_INFO(dev)->gen) {
9485 case 2:
9486 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9487 break;
9488
9489 case 3:
9490 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9491 break;
9492
9493 case 4:
9494 case 5:
9495 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9496 break;
9497
9498 case 6:
9499 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9500 break;
9501 case 7:
9502 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9503 break;
9504 }
9505 }
9506
9507 /*
9508 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9509 * resume, or other times. This quirk makes sure that's the case for
9510 * affected systems.
9511 */
9512 static void quirk_pipea_force(struct drm_device *dev)
9513 {
9514 struct drm_i915_private *dev_priv = dev->dev_private;
9515
9516 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9517 DRM_INFO("applying pipe a force quirk\n");
9518 }
9519
9520 /*
9521 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9522 */
9523 static void quirk_ssc_force_disable(struct drm_device *dev)
9524 {
9525 struct drm_i915_private *dev_priv = dev->dev_private;
9526 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9527 DRM_INFO("applying lvds SSC disable quirk\n");
9528 }
9529
9530 /*
9531 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9532 * brightness value
9533 */
9534 static void quirk_invert_brightness(struct drm_device *dev)
9535 {
9536 struct drm_i915_private *dev_priv = dev->dev_private;
9537 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9538 DRM_INFO("applying inverted panel brightness quirk\n");
9539 }
9540
9541 struct intel_quirk {
9542 int device;
9543 int subsystem_vendor;
9544 int subsystem_device;
9545 void (*hook)(struct drm_device *dev);
9546 };
9547
9548 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9549 struct intel_dmi_quirk {
9550 void (*hook)(struct drm_device *dev);
9551 const struct dmi_system_id (*dmi_id_list)[];
9552 };
9553
9554 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9555 {
9556 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9557 return 1;
9558 }
9559
9560 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9561 {
9562 .dmi_id_list = &(const struct dmi_system_id[]) {
9563 {
9564 .callback = intel_dmi_reverse_brightness,
9565 .ident = "NCR Corporation",
9566 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9567 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9568 },
9569 },
9570 { } /* terminating entry */
9571 },
9572 .hook = quirk_invert_brightness,
9573 },
9574 };
9575
9576 static struct intel_quirk intel_quirks[] = {
9577 /* HP Mini needs pipe A force quirk (LP: #322104) */
9578 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9579
9580 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9581 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9582
9583 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9584 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9585
9586 /* 830/845 need to leave pipe A & dpll A up */
9587 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9588 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9589
9590 /* Lenovo U160 cannot use SSC on LVDS */
9591 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9592
9593 /* Sony Vaio Y cannot use SSC on LVDS */
9594 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9595
9596 /* Acer Aspire 5734Z must invert backlight brightness */
9597 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9598
9599 /* Acer/eMachines G725 */
9600 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9601
9602 /* Acer/eMachines e725 */
9603 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9604
9605 /* Acer/Packard Bell NCL20 */
9606 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9607
9608 /* Acer Aspire 4736Z */
9609 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9610 };
9611
9612 static void intel_init_quirks(struct drm_device *dev)
9613 {
9614 struct pci_dev *d = dev->pdev;
9615 int i;
9616
9617 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9618 struct intel_quirk *q = &intel_quirks[i];
9619
9620 if (d->device == q->device &&
9621 (d->subsystem_vendor == q->subsystem_vendor ||
9622 q->subsystem_vendor == PCI_ANY_ID) &&
9623 (d->subsystem_device == q->subsystem_device ||
9624 q->subsystem_device == PCI_ANY_ID))
9625 q->hook(dev);
9626 }
9627 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9628 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9629 intel_dmi_quirks[i].hook(dev);
9630 }
9631 }
9632
9633 /* Disable the VGA plane that we never use */
9634 static void i915_disable_vga(struct drm_device *dev)
9635 {
9636 struct drm_i915_private *dev_priv = dev->dev_private;
9637 u8 sr1;
9638 u32 vga_reg = i915_vgacntrl_reg(dev);
9639
9640 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9641 outb(SR01, VGA_SR_INDEX);
9642 sr1 = inb(VGA_SR_DATA);
9643 outb(sr1 | 1<<5, VGA_SR_DATA);
9644 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9645 udelay(300);
9646
9647 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9648 POSTING_READ(vga_reg);
9649 }
9650
9651 void intel_modeset_init_hw(struct drm_device *dev)
9652 {
9653 intel_init_power_well(dev);
9654
9655 intel_prepare_ddi(dev);
9656
9657 intel_init_clock_gating(dev);
9658
9659 mutex_lock(&dev->struct_mutex);
9660 intel_enable_gt_powersave(dev);
9661 mutex_unlock(&dev->struct_mutex);
9662 }
9663
9664 void intel_modeset_suspend_hw(struct drm_device *dev)
9665 {
9666 intel_suspend_hw(dev);
9667 }
9668
9669 void intel_modeset_init(struct drm_device *dev)
9670 {
9671 struct drm_i915_private *dev_priv = dev->dev_private;
9672 int i, j, ret;
9673
9674 drm_mode_config_init(dev);
9675
9676 dev->mode_config.min_width = 0;
9677 dev->mode_config.min_height = 0;
9678
9679 dev->mode_config.preferred_depth = 24;
9680 dev->mode_config.prefer_shadow = 1;
9681
9682 dev->mode_config.funcs = &intel_mode_funcs;
9683
9684 intel_init_quirks(dev);
9685
9686 intel_init_pm(dev);
9687
9688 if (INTEL_INFO(dev)->num_pipes == 0)
9689 return;
9690
9691 intel_init_display(dev);
9692
9693 if (IS_GEN2(dev)) {
9694 dev->mode_config.max_width = 2048;
9695 dev->mode_config.max_height = 2048;
9696 } else if (IS_GEN3(dev)) {
9697 dev->mode_config.max_width = 4096;
9698 dev->mode_config.max_height = 4096;
9699 } else {
9700 dev->mode_config.max_width = 8192;
9701 dev->mode_config.max_height = 8192;
9702 }
9703 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9704
9705 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9706 INTEL_INFO(dev)->num_pipes,
9707 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9708
9709 for_each_pipe(i) {
9710 intel_crtc_init(dev, i);
9711 for (j = 0; j < dev_priv->num_plane; j++) {
9712 ret = intel_plane_init(dev, i, j);
9713 if (ret)
9714 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9715 pipe_name(i), sprite_name(i, j), ret);
9716 }
9717 }
9718
9719 intel_cpu_pll_init(dev);
9720 intel_shared_dpll_init(dev);
9721
9722 /* Just disable it once at startup */
9723 i915_disable_vga(dev);
9724 intel_setup_outputs(dev);
9725
9726 /* Just in case the BIOS is doing something questionable. */
9727 intel_disable_fbc(dev);
9728 }
9729
9730 static void
9731 intel_connector_break_all_links(struct intel_connector *connector)
9732 {
9733 connector->base.dpms = DRM_MODE_DPMS_OFF;
9734 connector->base.encoder = NULL;
9735 connector->encoder->connectors_active = false;
9736 connector->encoder->base.crtc = NULL;
9737 }
9738
9739 static void intel_enable_pipe_a(struct drm_device *dev)
9740 {
9741 struct intel_connector *connector;
9742 struct drm_connector *crt = NULL;
9743 struct intel_load_detect_pipe load_detect_temp;
9744
9745 /* We can't just switch on the pipe A, we need to set things up with a
9746 * proper mode and output configuration. As a gross hack, enable pipe A
9747 * by enabling the load detect pipe once. */
9748 list_for_each_entry(connector,
9749 &dev->mode_config.connector_list,
9750 base.head) {
9751 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9752 crt = &connector->base;
9753 break;
9754 }
9755 }
9756
9757 if (!crt)
9758 return;
9759
9760 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9761 intel_release_load_detect_pipe(crt, &load_detect_temp);
9762
9763
9764 }
9765
9766 static bool
9767 intel_check_plane_mapping(struct intel_crtc *crtc)
9768 {
9769 struct drm_device *dev = crtc->base.dev;
9770 struct drm_i915_private *dev_priv = dev->dev_private;
9771 u32 reg, val;
9772
9773 if (INTEL_INFO(dev)->num_pipes == 1)
9774 return true;
9775
9776 reg = DSPCNTR(!crtc->plane);
9777 val = I915_READ(reg);
9778
9779 if ((val & DISPLAY_PLANE_ENABLE) &&
9780 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9781 return false;
9782
9783 return true;
9784 }
9785
9786 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9787 {
9788 struct drm_device *dev = crtc->base.dev;
9789 struct drm_i915_private *dev_priv = dev->dev_private;
9790 u32 reg;
9791
9792 /* Clear any frame start delays used for debugging left by the BIOS */
9793 reg = PIPECONF(crtc->config.cpu_transcoder);
9794 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9795
9796 /* We need to sanitize the plane -> pipe mapping first because this will
9797 * disable the crtc (and hence change the state) if it is wrong. Note
9798 * that gen4+ has a fixed plane -> pipe mapping. */
9799 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9800 struct intel_connector *connector;
9801 bool plane;
9802
9803 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9804 crtc->base.base.id);
9805
9806 /* Pipe has the wrong plane attached and the plane is active.
9807 * Temporarily change the plane mapping and disable everything
9808 * ... */
9809 plane = crtc->plane;
9810 crtc->plane = !plane;
9811 dev_priv->display.crtc_disable(&crtc->base);
9812 crtc->plane = plane;
9813
9814 /* ... and break all links. */
9815 list_for_each_entry(connector, &dev->mode_config.connector_list,
9816 base.head) {
9817 if (connector->encoder->base.crtc != &crtc->base)
9818 continue;
9819
9820 intel_connector_break_all_links(connector);
9821 }
9822
9823 WARN_ON(crtc->active);
9824 crtc->base.enabled = false;
9825 }
9826
9827 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9828 crtc->pipe == PIPE_A && !crtc->active) {
9829 /* BIOS forgot to enable pipe A, this mostly happens after
9830 * resume. Force-enable the pipe to fix this, the update_dpms
9831 * call below we restore the pipe to the right state, but leave
9832 * the required bits on. */
9833 intel_enable_pipe_a(dev);
9834 }
9835
9836 /* Adjust the state of the output pipe according to whether we
9837 * have active connectors/encoders. */
9838 intel_crtc_update_dpms(&crtc->base);
9839
9840 if (crtc->active != crtc->base.enabled) {
9841 struct intel_encoder *encoder;
9842
9843 /* This can happen either due to bugs in the get_hw_state
9844 * functions or because the pipe is force-enabled due to the
9845 * pipe A quirk. */
9846 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9847 crtc->base.base.id,
9848 crtc->base.enabled ? "enabled" : "disabled",
9849 crtc->active ? "enabled" : "disabled");
9850
9851 crtc->base.enabled = crtc->active;
9852
9853 /* Because we only establish the connector -> encoder ->
9854 * crtc links if something is active, this means the
9855 * crtc is now deactivated. Break the links. connector
9856 * -> encoder links are only establish when things are
9857 * actually up, hence no need to break them. */
9858 WARN_ON(crtc->active);
9859
9860 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9861 WARN_ON(encoder->connectors_active);
9862 encoder->base.crtc = NULL;
9863 }
9864 }
9865 }
9866
9867 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9868 {
9869 struct intel_connector *connector;
9870 struct drm_device *dev = encoder->base.dev;
9871
9872 /* We need to check both for a crtc link (meaning that the
9873 * encoder is active and trying to read from a pipe) and the
9874 * pipe itself being active. */
9875 bool has_active_crtc = encoder->base.crtc &&
9876 to_intel_crtc(encoder->base.crtc)->active;
9877
9878 if (encoder->connectors_active && !has_active_crtc) {
9879 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9880 encoder->base.base.id,
9881 drm_get_encoder_name(&encoder->base));
9882
9883 /* Connector is active, but has no active pipe. This is
9884 * fallout from our resume register restoring. Disable
9885 * the encoder manually again. */
9886 if (encoder->base.crtc) {
9887 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9888 encoder->base.base.id,
9889 drm_get_encoder_name(&encoder->base));
9890 encoder->disable(encoder);
9891 }
9892
9893 /* Inconsistent output/port/pipe state happens presumably due to
9894 * a bug in one of the get_hw_state functions. Or someplace else
9895 * in our code, like the register restore mess on resume. Clamp
9896 * things to off as a safer default. */
9897 list_for_each_entry(connector,
9898 &dev->mode_config.connector_list,
9899 base.head) {
9900 if (connector->encoder != encoder)
9901 continue;
9902
9903 intel_connector_break_all_links(connector);
9904 }
9905 }
9906 /* Enabled encoders without active connectors will be fixed in
9907 * the crtc fixup. */
9908 }
9909
9910 void i915_redisable_vga(struct drm_device *dev)
9911 {
9912 struct drm_i915_private *dev_priv = dev->dev_private;
9913 u32 vga_reg = i915_vgacntrl_reg(dev);
9914
9915 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9916 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9917 i915_disable_vga(dev);
9918 }
9919 }
9920
9921 static void intel_modeset_readout_hw_state(struct drm_device *dev)
9922 {
9923 struct drm_i915_private *dev_priv = dev->dev_private;
9924 enum pipe pipe;
9925 struct intel_crtc *crtc;
9926 struct intel_encoder *encoder;
9927 struct intel_connector *connector;
9928 int i;
9929
9930 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9931 base.head) {
9932 memset(&crtc->config, 0, sizeof(crtc->config));
9933
9934 crtc->active = dev_priv->display.get_pipe_config(crtc,
9935 &crtc->config);
9936
9937 crtc->base.enabled = crtc->active;
9938
9939 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9940 crtc->base.base.id,
9941 crtc->active ? "enabled" : "disabled");
9942 }
9943
9944 /* FIXME: Smash this into the new shared dpll infrastructure. */
9945 if (HAS_DDI(dev))
9946 intel_ddi_setup_hw_pll_state(dev);
9947
9948 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9949 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9950
9951 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
9952 pll->active = 0;
9953 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9954 base.head) {
9955 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9956 pll->active++;
9957 }
9958 pll->refcount = pll->active;
9959
9960 DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
9961 pll->name, pll->refcount);
9962 }
9963
9964 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9965 base.head) {
9966 pipe = 0;
9967
9968 if (encoder->get_hw_state(encoder, &pipe)) {
9969 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9970 encoder->base.crtc = &crtc->base;
9971 if (encoder->get_config)
9972 encoder->get_config(encoder, &crtc->config);
9973 } else {
9974 encoder->base.crtc = NULL;
9975 }
9976
9977 encoder->connectors_active = false;
9978 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9979 encoder->base.base.id,
9980 drm_get_encoder_name(&encoder->base),
9981 encoder->base.crtc ? "enabled" : "disabled",
9982 pipe);
9983 }
9984
9985 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9986 base.head) {
9987 if (!crtc->active)
9988 continue;
9989 if (dev_priv->display.get_clock)
9990 dev_priv->display.get_clock(crtc,
9991 &crtc->config);
9992 }
9993
9994 list_for_each_entry(connector, &dev->mode_config.connector_list,
9995 base.head) {
9996 if (connector->get_hw_state(connector)) {
9997 connector->base.dpms = DRM_MODE_DPMS_ON;
9998 connector->encoder->connectors_active = true;
9999 connector->base.encoder = &connector->encoder->base;
10000 } else {
10001 connector->base.dpms = DRM_MODE_DPMS_OFF;
10002 connector->base.encoder = NULL;
10003 }
10004 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10005 connector->base.base.id,
10006 drm_get_connector_name(&connector->base),
10007 connector->base.encoder ? "enabled" : "disabled");
10008 }
10009 }
10010
10011 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10012 * and i915 state tracking structures. */
10013 void intel_modeset_setup_hw_state(struct drm_device *dev,
10014 bool force_restore)
10015 {
10016 struct drm_i915_private *dev_priv = dev->dev_private;
10017 enum pipe pipe;
10018 struct drm_plane *plane;
10019 struct intel_crtc *crtc;
10020 struct intel_encoder *encoder;
10021
10022 intel_modeset_readout_hw_state(dev);
10023
10024 /*
10025 * Now that we have the config, copy it to each CRTC struct
10026 * Note that this could go away if we move to using crtc_config
10027 * checking everywhere.
10028 */
10029 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10030 base.head) {
10031 if (crtc->active && i915_fastboot) {
10032 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10033
10034 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10035 crtc->base.base.id);
10036 drm_mode_debug_printmodeline(&crtc->base.mode);
10037 }
10038 }
10039
10040 /* HW state is read out, now we need to sanitize this mess. */
10041 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10042 base.head) {
10043 intel_sanitize_encoder(encoder);
10044 }
10045
10046 for_each_pipe(pipe) {
10047 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10048 intel_sanitize_crtc(crtc);
10049 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10050 }
10051
10052 if (force_restore) {
10053 /*
10054 * We need to use raw interfaces for restoring state to avoid
10055 * checking (bogus) intermediate states.
10056 */
10057 for_each_pipe(pipe) {
10058 struct drm_crtc *crtc =
10059 dev_priv->pipe_to_crtc_mapping[pipe];
10060
10061 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10062 crtc->fb);
10063 }
10064 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10065 intel_plane_restore(plane);
10066
10067 i915_redisable_vga(dev);
10068 } else {
10069 intel_modeset_update_staged_output_state(dev);
10070 }
10071
10072 intel_modeset_check_state(dev);
10073
10074 drm_mode_config_reset(dev);
10075 }
10076
10077 void intel_modeset_gem_init(struct drm_device *dev)
10078 {
10079 intel_modeset_init_hw(dev);
10080
10081 intel_setup_overlay(dev);
10082
10083 intel_modeset_setup_hw_state(dev, false);
10084 }
10085
10086 void intel_modeset_cleanup(struct drm_device *dev)
10087 {
10088 struct drm_i915_private *dev_priv = dev->dev_private;
10089 struct drm_crtc *crtc;
10090 struct intel_crtc *intel_crtc;
10091
10092 /*
10093 * Interrupts and polling as the first thing to avoid creating havoc.
10094 * Too much stuff here (turning of rps, connectors, ...) would
10095 * experience fancy races otherwise.
10096 */
10097 drm_irq_uninstall(dev);
10098 cancel_work_sync(&dev_priv->hotplug_work);
10099 /*
10100 * Due to the hpd irq storm handling the hotplug work can re-arm the
10101 * poll handlers. Hence disable polling after hpd handling is shut down.
10102 */
10103 drm_kms_helper_poll_fini(dev);
10104
10105 mutex_lock(&dev->struct_mutex);
10106
10107 intel_unregister_dsm_handler();
10108
10109 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10110 /* Skip inactive CRTCs */
10111 if (!crtc->fb)
10112 continue;
10113
10114 intel_crtc = to_intel_crtc(crtc);
10115 intel_increase_pllclock(crtc);
10116 }
10117
10118 intel_disable_fbc(dev);
10119
10120 intel_disable_gt_powersave(dev);
10121
10122 ironlake_teardown_rc6(dev);
10123
10124 mutex_unlock(&dev->struct_mutex);
10125
10126 /* flush any delayed tasks or pending work */
10127 flush_scheduled_work();
10128
10129 /* destroy backlight, if any, before the connectors */
10130 intel_panel_destroy_backlight(dev);
10131
10132 drm_mode_config_cleanup(dev);
10133
10134 intel_cleanup_overlay(dev);
10135 }
10136
10137 /*
10138 * Return which encoder is currently attached for connector.
10139 */
10140 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10141 {
10142 return &intel_attached_encoder(connector)->base;
10143 }
10144
10145 void intel_connector_attach_encoder(struct intel_connector *connector,
10146 struct intel_encoder *encoder)
10147 {
10148 connector->encoder = encoder;
10149 drm_mode_connector_attach_encoder(&connector->base,
10150 &encoder->base);
10151 }
10152
10153 /*
10154 * set vga decode state - true == enable VGA decode
10155 */
10156 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10157 {
10158 struct drm_i915_private *dev_priv = dev->dev_private;
10159 u16 gmch_ctrl;
10160
10161 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10162 if (state)
10163 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10164 else
10165 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10166 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10167 return 0;
10168 }
10169
10170 struct intel_display_error_state {
10171
10172 u32 power_well_driver;
10173
10174 struct intel_cursor_error_state {
10175 u32 control;
10176 u32 position;
10177 u32 base;
10178 u32 size;
10179 } cursor[I915_MAX_PIPES];
10180
10181 struct intel_pipe_error_state {
10182 enum transcoder cpu_transcoder;
10183 u32 conf;
10184 u32 source;
10185
10186 u32 htotal;
10187 u32 hblank;
10188 u32 hsync;
10189 u32 vtotal;
10190 u32 vblank;
10191 u32 vsync;
10192 } pipe[I915_MAX_PIPES];
10193
10194 struct intel_plane_error_state {
10195 u32 control;
10196 u32 stride;
10197 u32 size;
10198 u32 pos;
10199 u32 addr;
10200 u32 surface;
10201 u32 tile_offset;
10202 } plane[I915_MAX_PIPES];
10203 };
10204
10205 struct intel_display_error_state *
10206 intel_display_capture_error_state(struct drm_device *dev)
10207 {
10208 drm_i915_private_t *dev_priv = dev->dev_private;
10209 struct intel_display_error_state *error;
10210 enum transcoder cpu_transcoder;
10211 int i;
10212
10213 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10214 if (error == NULL)
10215 return NULL;
10216
10217 if (HAS_POWER_WELL(dev))
10218 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10219
10220 for_each_pipe(i) {
10221 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10222 error->pipe[i].cpu_transcoder = cpu_transcoder;
10223
10224 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10225 error->cursor[i].control = I915_READ(CURCNTR(i));
10226 error->cursor[i].position = I915_READ(CURPOS(i));
10227 error->cursor[i].base = I915_READ(CURBASE(i));
10228 } else {
10229 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10230 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10231 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10232 }
10233
10234 error->plane[i].control = I915_READ(DSPCNTR(i));
10235 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10236 if (INTEL_INFO(dev)->gen <= 3) {
10237 error->plane[i].size = I915_READ(DSPSIZE(i));
10238 error->plane[i].pos = I915_READ(DSPPOS(i));
10239 }
10240 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10241 error->plane[i].addr = I915_READ(DSPADDR(i));
10242 if (INTEL_INFO(dev)->gen >= 4) {
10243 error->plane[i].surface = I915_READ(DSPSURF(i));
10244 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10245 }
10246
10247 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10248 error->pipe[i].source = I915_READ(PIPESRC(i));
10249 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10250 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10251 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10252 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10253 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10254 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10255 }
10256
10257 /* In the code above we read the registers without checking if the power
10258 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10259 * prevent the next I915_WRITE from detecting it and printing an error
10260 * message. */
10261 if (HAS_POWER_WELL(dev))
10262 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
10263
10264 return error;
10265 }
10266
10267 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10268
10269 void
10270 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10271 struct drm_device *dev,
10272 struct intel_display_error_state *error)
10273 {
10274 int i;
10275
10276 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10277 if (HAS_POWER_WELL(dev))
10278 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10279 error->power_well_driver);
10280 for_each_pipe(i) {
10281 err_printf(m, "Pipe [%d]:\n", i);
10282 err_printf(m, " CPU transcoder: %c\n",
10283 transcoder_name(error->pipe[i].cpu_transcoder));
10284 err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
10285 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10286 err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
10287 err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
10288 err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
10289 err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
10290 err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
10291 err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
10292
10293 err_printf(m, "Plane [%d]:\n", i);
10294 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10295 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10296 if (INTEL_INFO(dev)->gen <= 3) {
10297 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10298 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10299 }
10300 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10301 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10302 if (INTEL_INFO(dev)->gen >= 4) {
10303 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10304 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10305 }
10306
10307 err_printf(m, "Cursor [%d]:\n", i);
10308 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10309 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10310 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10311 }
10312 }
This page took 0.479759 seconds and 5 git commands to generate.