drm/i915: introduce is_active/activate/deactivate to the FBC terminology
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121 int min, max;
122 } intel_range_t;
123
124 typedef struct {
125 int dot_limit;
126 int p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131 intel_range_t dot, vco, n, m, m1, m2, p, p1;
132 intel_p2_t p2;
133 };
134
135 /* returns HPLL frequency in kHz */
136 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
137 {
138 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
139
140 /* Obtain SKU information */
141 mutex_lock(&dev_priv->sb_lock);
142 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
143 CCK_FUSE_HPLL_FREQ_MASK;
144 mutex_unlock(&dev_priv->sb_lock);
145
146 return vco_freq[hpll_freq] * 1000;
147 }
148
149 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
150 const char *name, u32 reg)
151 {
152 u32 val;
153 int divider;
154
155 if (dev_priv->hpll_freq == 0)
156 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
157
158 mutex_lock(&dev_priv->sb_lock);
159 val = vlv_cck_read(dev_priv, reg);
160 mutex_unlock(&dev_priv->sb_lock);
161
162 divider = val & CCK_FREQUENCY_VALUES;
163
164 WARN((val & CCK_FREQUENCY_STATUS) !=
165 (divider << CCK_FREQUENCY_STATUS_SHIFT),
166 "%s change in progress\n", name);
167
168 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
169 }
170
171 int
172 intel_pch_rawclk(struct drm_device *dev)
173 {
174 struct drm_i915_private *dev_priv = dev->dev_private;
175
176 WARN_ON(!HAS_PCH_SPLIT(dev));
177
178 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
179 }
180
181 /* hrawclock is 1/4 the FSB frequency */
182 int intel_hrawclk(struct drm_device *dev)
183 {
184 struct drm_i915_private *dev_priv = dev->dev_private;
185 uint32_t clkcfg;
186
187 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188 if (IS_VALLEYVIEW(dev))
189 return 200;
190
191 clkcfg = I915_READ(CLKCFG);
192 switch (clkcfg & CLKCFG_FSB_MASK) {
193 case CLKCFG_FSB_400:
194 return 100;
195 case CLKCFG_FSB_533:
196 return 133;
197 case CLKCFG_FSB_667:
198 return 166;
199 case CLKCFG_FSB_800:
200 return 200;
201 case CLKCFG_FSB_1067:
202 return 266;
203 case CLKCFG_FSB_1333:
204 return 333;
205 /* these two are just a guess; one of them might be right */
206 case CLKCFG_FSB_1600:
207 case CLKCFG_FSB_1600_ALT:
208 return 400;
209 default:
210 return 133;
211 }
212 }
213
214 static void intel_update_czclk(struct drm_i915_private *dev_priv)
215 {
216 if (!IS_VALLEYVIEW(dev_priv))
217 return;
218
219 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
220 CCK_CZ_CLOCK_CONTROL);
221
222 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
223 }
224
225 static inline u32 /* units of 100MHz */
226 intel_fdi_link_freq(struct drm_device *dev)
227 {
228 if (IS_GEN5(dev)) {
229 struct drm_i915_private *dev_priv = dev->dev_private;
230 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
231 } else
232 return 27;
233 }
234
235 static const intel_limit_t intel_limits_i8xx_dac = {
236 .dot = { .min = 25000, .max = 350000 },
237 .vco = { .min = 908000, .max = 1512000 },
238 .n = { .min = 2, .max = 16 },
239 .m = { .min = 96, .max = 140 },
240 .m1 = { .min = 18, .max = 26 },
241 .m2 = { .min = 6, .max = 16 },
242 .p = { .min = 4, .max = 128 },
243 .p1 = { .min = 2, .max = 33 },
244 .p2 = { .dot_limit = 165000,
245 .p2_slow = 4, .p2_fast = 2 },
246 };
247
248 static const intel_limit_t intel_limits_i8xx_dvo = {
249 .dot = { .min = 25000, .max = 350000 },
250 .vco = { .min = 908000, .max = 1512000 },
251 .n = { .min = 2, .max = 16 },
252 .m = { .min = 96, .max = 140 },
253 .m1 = { .min = 18, .max = 26 },
254 .m2 = { .min = 6, .max = 16 },
255 .p = { .min = 4, .max = 128 },
256 .p1 = { .min = 2, .max = 33 },
257 .p2 = { .dot_limit = 165000,
258 .p2_slow = 4, .p2_fast = 4 },
259 };
260
261 static const intel_limit_t intel_limits_i8xx_lvds = {
262 .dot = { .min = 25000, .max = 350000 },
263 .vco = { .min = 908000, .max = 1512000 },
264 .n = { .min = 2, .max = 16 },
265 .m = { .min = 96, .max = 140 },
266 .m1 = { .min = 18, .max = 26 },
267 .m2 = { .min = 6, .max = 16 },
268 .p = { .min = 4, .max = 128 },
269 .p1 = { .min = 1, .max = 6 },
270 .p2 = { .dot_limit = 165000,
271 .p2_slow = 14, .p2_fast = 7 },
272 };
273
274 static const intel_limit_t intel_limits_i9xx_sdvo = {
275 .dot = { .min = 20000, .max = 400000 },
276 .vco = { .min = 1400000, .max = 2800000 },
277 .n = { .min = 1, .max = 6 },
278 .m = { .min = 70, .max = 120 },
279 .m1 = { .min = 8, .max = 18 },
280 .m2 = { .min = 3, .max = 7 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_i9xx_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1400000, .max = 2800000 },
290 .n = { .min = 1, .max = 6 },
291 .m = { .min = 70, .max = 120 },
292 .m1 = { .min = 8, .max = 18 },
293 .m2 = { .min = 3, .max = 7 },
294 .p = { .min = 7, .max = 98 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 7 },
298 };
299
300
301 static const intel_limit_t intel_limits_g4x_sdvo = {
302 .dot = { .min = 25000, .max = 270000 },
303 .vco = { .min = 1750000, .max = 3500000},
304 .n = { .min = 1, .max = 4 },
305 .m = { .min = 104, .max = 138 },
306 .m1 = { .min = 17, .max = 23 },
307 .m2 = { .min = 5, .max = 11 },
308 .p = { .min = 10, .max = 30 },
309 .p1 = { .min = 1, .max = 3},
310 .p2 = { .dot_limit = 270000,
311 .p2_slow = 10,
312 .p2_fast = 10
313 },
314 };
315
316 static const intel_limit_t intel_limits_g4x_hdmi = {
317 .dot = { .min = 22000, .max = 400000 },
318 .vco = { .min = 1750000, .max = 3500000},
319 .n = { .min = 1, .max = 4 },
320 .m = { .min = 104, .max = 138 },
321 .m1 = { .min = 16, .max = 23 },
322 .m2 = { .min = 5, .max = 11 },
323 .p = { .min = 5, .max = 80 },
324 .p1 = { .min = 1, .max = 8},
325 .p2 = { .dot_limit = 165000,
326 .p2_slow = 10, .p2_fast = 5 },
327 };
328
329 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
330 .dot = { .min = 20000, .max = 115000 },
331 .vco = { .min = 1750000, .max = 3500000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 28, .max = 112 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 0,
339 .p2_slow = 14, .p2_fast = 14
340 },
341 };
342
343 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
344 .dot = { .min = 80000, .max = 224000 },
345 .vco = { .min = 1750000, .max = 3500000 },
346 .n = { .min = 1, .max = 3 },
347 .m = { .min = 104, .max = 138 },
348 .m1 = { .min = 17, .max = 23 },
349 .m2 = { .min = 5, .max = 11 },
350 .p = { .min = 14, .max = 42 },
351 .p1 = { .min = 2, .max = 6 },
352 .p2 = { .dot_limit = 0,
353 .p2_slow = 7, .p2_fast = 7
354 },
355 };
356
357 static const intel_limit_t intel_limits_pineview_sdvo = {
358 .dot = { .min = 20000, .max = 400000},
359 .vco = { .min = 1700000, .max = 3500000 },
360 /* Pineview's Ncounter is a ring counter */
361 .n = { .min = 3, .max = 6 },
362 .m = { .min = 2, .max = 256 },
363 /* Pineview only has one combined m divider, which we treat as m2. */
364 .m1 = { .min = 0, .max = 0 },
365 .m2 = { .min = 0, .max = 254 },
366 .p = { .min = 5, .max = 80 },
367 .p1 = { .min = 1, .max = 8 },
368 .p2 = { .dot_limit = 200000,
369 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const intel_limit_t intel_limits_pineview_lvds = {
373 .dot = { .min = 20000, .max = 400000 },
374 .vco = { .min = 1700000, .max = 3500000 },
375 .n = { .min = 3, .max = 6 },
376 .m = { .min = 2, .max = 256 },
377 .m1 = { .min = 0, .max = 0 },
378 .m2 = { .min = 0, .max = 254 },
379 .p = { .min = 7, .max = 112 },
380 .p1 = { .min = 1, .max = 8 },
381 .p2 = { .dot_limit = 112000,
382 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 /* Ironlake / Sandybridge
386 *
387 * We calculate clock using (register_value + 2) for N/M1/M2, so here
388 * the range value for them is (actual_value - 2).
389 */
390 static const intel_limit_t intel_limits_ironlake_dac = {
391 .dot = { .min = 25000, .max = 350000 },
392 .vco = { .min = 1760000, .max = 3510000 },
393 .n = { .min = 1, .max = 5 },
394 .m = { .min = 79, .max = 127 },
395 .m1 = { .min = 12, .max = 22 },
396 .m2 = { .min = 5, .max = 9 },
397 .p = { .min = 5, .max = 80 },
398 .p1 = { .min = 1, .max = 8 },
399 .p2 = { .dot_limit = 225000,
400 .p2_slow = 10, .p2_fast = 5 },
401 };
402
403 static const intel_limit_t intel_limits_ironlake_single_lvds = {
404 .dot = { .min = 25000, .max = 350000 },
405 .vco = { .min = 1760000, .max = 3510000 },
406 .n = { .min = 1, .max = 3 },
407 .m = { .min = 79, .max = 118 },
408 .m1 = { .min = 12, .max = 22 },
409 .m2 = { .min = 5, .max = 9 },
410 .p = { .min = 28, .max = 112 },
411 .p1 = { .min = 2, .max = 8 },
412 .p2 = { .dot_limit = 225000,
413 .p2_slow = 14, .p2_fast = 14 },
414 };
415
416 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
417 .dot = { .min = 25000, .max = 350000 },
418 .vco = { .min = 1760000, .max = 3510000 },
419 .n = { .min = 1, .max = 3 },
420 .m = { .min = 79, .max = 127 },
421 .m1 = { .min = 12, .max = 22 },
422 .m2 = { .min = 5, .max = 9 },
423 .p = { .min = 14, .max = 56 },
424 .p1 = { .min = 2, .max = 8 },
425 .p2 = { .dot_limit = 225000,
426 .p2_slow = 7, .p2_fast = 7 },
427 };
428
429 /* LVDS 100mhz refclk limits. */
430 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
431 .dot = { .min = 25000, .max = 350000 },
432 .vco = { .min = 1760000, .max = 3510000 },
433 .n = { .min = 1, .max = 2 },
434 .m = { .min = 79, .max = 126 },
435 .m1 = { .min = 12, .max = 22 },
436 .m2 = { .min = 5, .max = 9 },
437 .p = { .min = 28, .max = 112 },
438 .p1 = { .min = 2, .max = 8 },
439 .p2 = { .dot_limit = 225000,
440 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
444 .dot = { .min = 25000, .max = 350000 },
445 .vco = { .min = 1760000, .max = 3510000 },
446 .n = { .min = 1, .max = 3 },
447 .m = { .min = 79, .max = 126 },
448 .m1 = { .min = 12, .max = 22 },
449 .m2 = { .min = 5, .max = 9 },
450 .p = { .min = 14, .max = 42 },
451 .p1 = { .min = 2, .max = 6 },
452 .p2 = { .dot_limit = 225000,
453 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 static const intel_limit_t intel_limits_vlv = {
457 /*
458 * These are the data rate limits (measured in fast clocks)
459 * since those are the strictest limits we have. The fast
460 * clock and actual rate limits are more relaxed, so checking
461 * them would make no difference.
462 */
463 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
464 .vco = { .min = 4000000, .max = 6000000 },
465 .n = { .min = 1, .max = 7 },
466 .m1 = { .min = 2, .max = 3 },
467 .m2 = { .min = 11, .max = 156 },
468 .p1 = { .min = 2, .max = 3 },
469 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
470 };
471
472 static const intel_limit_t intel_limits_chv = {
473 /*
474 * These are the data rate limits (measured in fast clocks)
475 * since those are the strictest limits we have. The fast
476 * clock and actual rate limits are more relaxed, so checking
477 * them would make no difference.
478 */
479 .dot = { .min = 25000 * 5, .max = 540000 * 5},
480 .vco = { .min = 4800000, .max = 6480000 },
481 .n = { .min = 1, .max = 1 },
482 .m1 = { .min = 2, .max = 2 },
483 .m2 = { .min = 24 << 22, .max = 175 << 22 },
484 .p1 = { .min = 2, .max = 4 },
485 .p2 = { .p2_slow = 1, .p2_fast = 14 },
486 };
487
488 static const intel_limit_t intel_limits_bxt = {
489 /* FIXME: find real dot limits */
490 .dot = { .min = 0, .max = INT_MAX },
491 .vco = { .min = 4800000, .max = 6700000 },
492 .n = { .min = 1, .max = 1 },
493 .m1 = { .min = 2, .max = 2 },
494 /* FIXME: find real m2 limits */
495 .m2 = { .min = 2 << 22, .max = 255 << 22 },
496 .p1 = { .min = 2, .max = 4 },
497 .p2 = { .p2_slow = 1, .p2_fast = 20 },
498 };
499
500 static bool
501 needs_modeset(struct drm_crtc_state *state)
502 {
503 return drm_atomic_crtc_needs_modeset(state);
504 }
505
506 /**
507 * Returns whether any output on the specified pipe is of the specified type
508 */
509 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
510 {
511 struct drm_device *dev = crtc->base.dev;
512 struct intel_encoder *encoder;
513
514 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
515 if (encoder->type == type)
516 return true;
517
518 return false;
519 }
520
521 /**
522 * Returns whether any output on the specified pipe will have the specified
523 * type after a staged modeset is complete, i.e., the same as
524 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
525 * encoder->crtc.
526 */
527 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
528 int type)
529 {
530 struct drm_atomic_state *state = crtc_state->base.state;
531 struct drm_connector *connector;
532 struct drm_connector_state *connector_state;
533 struct intel_encoder *encoder;
534 int i, num_connectors = 0;
535
536 for_each_connector_in_state(state, connector, connector_state, i) {
537 if (connector_state->crtc != crtc_state->base.crtc)
538 continue;
539
540 num_connectors++;
541
542 encoder = to_intel_encoder(connector_state->best_encoder);
543 if (encoder->type == type)
544 return true;
545 }
546
547 WARN_ON(num_connectors == 0);
548
549 return false;
550 }
551
552 static const intel_limit_t *
553 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
554 {
555 struct drm_device *dev = crtc_state->base.crtc->dev;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
559 if (intel_is_dual_link_lvds(dev)) {
560 if (refclk == 100000)
561 limit = &intel_limits_ironlake_dual_lvds_100m;
562 else
563 limit = &intel_limits_ironlake_dual_lvds;
564 } else {
565 if (refclk == 100000)
566 limit = &intel_limits_ironlake_single_lvds_100m;
567 else
568 limit = &intel_limits_ironlake_single_lvds;
569 }
570 } else
571 limit = &intel_limits_ironlake_dac;
572
573 return limit;
574 }
575
576 static const intel_limit_t *
577 intel_g4x_limit(struct intel_crtc_state *crtc_state)
578 {
579 struct drm_device *dev = crtc_state->base.crtc->dev;
580 const intel_limit_t *limit;
581
582 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
583 if (intel_is_dual_link_lvds(dev))
584 limit = &intel_limits_g4x_dual_channel_lvds;
585 else
586 limit = &intel_limits_g4x_single_channel_lvds;
587 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
588 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
589 limit = &intel_limits_g4x_hdmi;
590 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
591 limit = &intel_limits_g4x_sdvo;
592 } else /* The option is for other outputs */
593 limit = &intel_limits_i9xx_sdvo;
594
595 return limit;
596 }
597
598 static const intel_limit_t *
599 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
600 {
601 struct drm_device *dev = crtc_state->base.crtc->dev;
602 const intel_limit_t *limit;
603
604 if (IS_BROXTON(dev))
605 limit = &intel_limits_bxt;
606 else if (HAS_PCH_SPLIT(dev))
607 limit = intel_ironlake_limit(crtc_state, refclk);
608 else if (IS_G4X(dev)) {
609 limit = intel_g4x_limit(crtc_state);
610 } else if (IS_PINEVIEW(dev)) {
611 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
612 limit = &intel_limits_pineview_lvds;
613 else
614 limit = &intel_limits_pineview_sdvo;
615 } else if (IS_CHERRYVIEW(dev)) {
616 limit = &intel_limits_chv;
617 } else if (IS_VALLEYVIEW(dev)) {
618 limit = &intel_limits_vlv;
619 } else if (!IS_GEN2(dev)) {
620 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
621 limit = &intel_limits_i9xx_lvds;
622 else
623 limit = &intel_limits_i9xx_sdvo;
624 } else {
625 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
626 limit = &intel_limits_i8xx_lvds;
627 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
628 limit = &intel_limits_i8xx_dvo;
629 else
630 limit = &intel_limits_i8xx_dac;
631 }
632 return limit;
633 }
634
635 /*
636 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
637 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
638 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
639 * The helpers' return value is the rate of the clock that is fed to the
640 * display engine's pipe which can be the above fast dot clock rate or a
641 * divided-down version of it.
642 */
643 /* m1 is reserved as 0 in Pineview, n is a ring counter */
644 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
645 {
646 clock->m = clock->m2 + 2;
647 clock->p = clock->p1 * clock->p2;
648 if (WARN_ON(clock->n == 0 || clock->p == 0))
649 return 0;
650 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
651 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
652
653 return clock->dot;
654 }
655
656 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
657 {
658 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
659 }
660
661 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
662 {
663 clock->m = i9xx_dpll_compute_m(clock);
664 clock->p = clock->p1 * clock->p2;
665 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
666 return 0;
667 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
668 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
669
670 return clock->dot;
671 }
672
673 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
674 {
675 clock->m = clock->m1 * clock->m2;
676 clock->p = clock->p1 * clock->p2;
677 if (WARN_ON(clock->n == 0 || clock->p == 0))
678 return 0;
679 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
680 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
681
682 return clock->dot / 5;
683 }
684
685 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
686 {
687 clock->m = clock->m1 * clock->m2;
688 clock->p = clock->p1 * clock->p2;
689 if (WARN_ON(clock->n == 0 || clock->p == 0))
690 return 0;
691 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
692 clock->n << 22);
693 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
694
695 return clock->dot / 5;
696 }
697
698 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
699 /**
700 * Returns whether the given set of divisors are valid for a given refclk with
701 * the given connectors.
702 */
703
704 static bool intel_PLL_is_valid(struct drm_device *dev,
705 const intel_limit_t *limit,
706 const intel_clock_t *clock)
707 {
708 if (clock->n < limit->n.min || limit->n.max < clock->n)
709 INTELPllInvalid("n out of range\n");
710 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
711 INTELPllInvalid("p1 out of range\n");
712 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
713 INTELPllInvalid("m2 out of range\n");
714 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
715 INTELPllInvalid("m1 out of range\n");
716
717 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
718 if (clock->m1 <= clock->m2)
719 INTELPllInvalid("m1 <= m2\n");
720
721 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
722 if (clock->p < limit->p.min || limit->p.max < clock->p)
723 INTELPllInvalid("p out of range\n");
724 if (clock->m < limit->m.min || limit->m.max < clock->m)
725 INTELPllInvalid("m out of range\n");
726 }
727
728 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
729 INTELPllInvalid("vco out of range\n");
730 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
731 * connector, etc., rather than just a single range.
732 */
733 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
734 INTELPllInvalid("dot out of range\n");
735
736 return true;
737 }
738
739 static int
740 i9xx_select_p2_div(const intel_limit_t *limit,
741 const struct intel_crtc_state *crtc_state,
742 int target)
743 {
744 struct drm_device *dev = crtc_state->base.crtc->dev;
745
746 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
747 /*
748 * For LVDS just rely on its current settings for dual-channel.
749 * We haven't figured out how to reliably set up different
750 * single/dual channel state, if we even can.
751 */
752 if (intel_is_dual_link_lvds(dev))
753 return limit->p2.p2_fast;
754 else
755 return limit->p2.p2_slow;
756 } else {
757 if (target < limit->p2.dot_limit)
758 return limit->p2.p2_slow;
759 else
760 return limit->p2.p2_fast;
761 }
762 }
763
764 static bool
765 i9xx_find_best_dpll(const intel_limit_t *limit,
766 struct intel_crtc_state *crtc_state,
767 int target, int refclk, intel_clock_t *match_clock,
768 intel_clock_t *best_clock)
769 {
770 struct drm_device *dev = crtc_state->base.crtc->dev;
771 intel_clock_t clock;
772 int err = target;
773
774 memset(best_clock, 0, sizeof(*best_clock));
775
776 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779 clock.m1++) {
780 for (clock.m2 = limit->m2.min;
781 clock.m2 <= limit->m2.max; clock.m2++) {
782 if (clock.m2 >= clock.m1)
783 break;
784 for (clock.n = limit->n.min;
785 clock.n <= limit->n.max; clock.n++) {
786 for (clock.p1 = limit->p1.min;
787 clock.p1 <= limit->p1.max; clock.p1++) {
788 int this_err;
789
790 i9xx_calc_dpll_params(refclk, &clock);
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
793 continue;
794 if (match_clock &&
795 clock.p != match_clock->p)
796 continue;
797
798 this_err = abs(clock.dot - target);
799 if (this_err < err) {
800 *best_clock = clock;
801 err = this_err;
802 }
803 }
804 }
805 }
806 }
807
808 return (err != target);
809 }
810
811 static bool
812 pnv_find_best_dpll(const intel_limit_t *limit,
813 struct intel_crtc_state *crtc_state,
814 int target, int refclk, intel_clock_t *match_clock,
815 intel_clock_t *best_clock)
816 {
817 struct drm_device *dev = crtc_state->base.crtc->dev;
818 intel_clock_t clock;
819 int err = target;
820
821 memset(best_clock, 0, sizeof(*best_clock));
822
823 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
824
825 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826 clock.m1++) {
827 for (clock.m2 = limit->m2.min;
828 clock.m2 <= limit->m2.max; clock.m2++) {
829 for (clock.n = limit->n.min;
830 clock.n <= limit->n.max; clock.n++) {
831 for (clock.p1 = limit->p1.min;
832 clock.p1 <= limit->p1.max; clock.p1++) {
833 int this_err;
834
835 pnv_calc_dpll_params(refclk, &clock);
836 if (!intel_PLL_is_valid(dev, limit,
837 &clock))
838 continue;
839 if (match_clock &&
840 clock.p != match_clock->p)
841 continue;
842
843 this_err = abs(clock.dot - target);
844 if (this_err < err) {
845 *best_clock = clock;
846 err = this_err;
847 }
848 }
849 }
850 }
851 }
852
853 return (err != target);
854 }
855
856 static bool
857 g4x_find_best_dpll(const intel_limit_t *limit,
858 struct intel_crtc_state *crtc_state,
859 int target, int refclk, intel_clock_t *match_clock,
860 intel_clock_t *best_clock)
861 {
862 struct drm_device *dev = crtc_state->base.crtc->dev;
863 intel_clock_t clock;
864 int max_n;
865 bool found = false;
866 /* approximately equals target * 0.00585 */
867 int err_most = (target >> 8) + (target >> 9);
868
869 memset(best_clock, 0, sizeof(*best_clock));
870
871 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
872
873 max_n = limit->n.max;
874 /* based on hardware requirement, prefer smaller n to precision */
875 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
876 /* based on hardware requirement, prefere larger m1,m2 */
877 for (clock.m1 = limit->m1.max;
878 clock.m1 >= limit->m1.min; clock.m1--) {
879 for (clock.m2 = limit->m2.max;
880 clock.m2 >= limit->m2.min; clock.m2--) {
881 for (clock.p1 = limit->p1.max;
882 clock.p1 >= limit->p1.min; clock.p1--) {
883 int this_err;
884
885 i9xx_calc_dpll_params(refclk, &clock);
886 if (!intel_PLL_is_valid(dev, limit,
887 &clock))
888 continue;
889
890 this_err = abs(clock.dot - target);
891 if (this_err < err_most) {
892 *best_clock = clock;
893 err_most = this_err;
894 max_n = clock.n;
895 found = true;
896 }
897 }
898 }
899 }
900 }
901 return found;
902 }
903
904 /*
905 * Check if the calculated PLL configuration is more optimal compared to the
906 * best configuration and error found so far. Return the calculated error.
907 */
908 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
909 const intel_clock_t *calculated_clock,
910 const intel_clock_t *best_clock,
911 unsigned int best_error_ppm,
912 unsigned int *error_ppm)
913 {
914 /*
915 * For CHV ignore the error and consider only the P value.
916 * Prefer a bigger P value based on HW requirements.
917 */
918 if (IS_CHERRYVIEW(dev)) {
919 *error_ppm = 0;
920
921 return calculated_clock->p > best_clock->p;
922 }
923
924 if (WARN_ON_ONCE(!target_freq))
925 return false;
926
927 *error_ppm = div_u64(1000000ULL *
928 abs(target_freq - calculated_clock->dot),
929 target_freq);
930 /*
931 * Prefer a better P value over a better (smaller) error if the error
932 * is small. Ensure this preference for future configurations too by
933 * setting the error to 0.
934 */
935 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
936 *error_ppm = 0;
937
938 return true;
939 }
940
941 return *error_ppm + 10 < best_error_ppm;
942 }
943
944 static bool
945 vlv_find_best_dpll(const intel_limit_t *limit,
946 struct intel_crtc_state *crtc_state,
947 int target, int refclk, intel_clock_t *match_clock,
948 intel_clock_t *best_clock)
949 {
950 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
951 struct drm_device *dev = crtc->base.dev;
952 intel_clock_t clock;
953 unsigned int bestppm = 1000000;
954 /* min update 19.2 MHz */
955 int max_n = min(limit->n.max, refclk / 19200);
956 bool found = false;
957
958 target *= 5; /* fast clock */
959
960 memset(best_clock, 0, sizeof(*best_clock));
961
962 /* based on hardware requirement, prefer smaller n to precision */
963 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
964 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
965 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
966 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
967 clock.p = clock.p1 * clock.p2;
968 /* based on hardware requirement, prefer bigger m1,m2 values */
969 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
970 unsigned int ppm;
971
972 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
973 refclk * clock.m1);
974
975 vlv_calc_dpll_params(refclk, &clock);
976
977 if (!intel_PLL_is_valid(dev, limit,
978 &clock))
979 continue;
980
981 if (!vlv_PLL_is_optimal(dev, target,
982 &clock,
983 best_clock,
984 bestppm, &ppm))
985 continue;
986
987 *best_clock = clock;
988 bestppm = ppm;
989 found = true;
990 }
991 }
992 }
993 }
994
995 return found;
996 }
997
998 static bool
999 chv_find_best_dpll(const intel_limit_t *limit,
1000 struct intel_crtc_state *crtc_state,
1001 int target, int refclk, intel_clock_t *match_clock,
1002 intel_clock_t *best_clock)
1003 {
1004 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1005 struct drm_device *dev = crtc->base.dev;
1006 unsigned int best_error_ppm;
1007 intel_clock_t clock;
1008 uint64_t m2;
1009 int found = false;
1010
1011 memset(best_clock, 0, sizeof(*best_clock));
1012 best_error_ppm = 1000000;
1013
1014 /*
1015 * Based on hardware doc, the n always set to 1, and m1 always
1016 * set to 2. If requires to support 200Mhz refclk, we need to
1017 * revisit this because n may not 1 anymore.
1018 */
1019 clock.n = 1, clock.m1 = 2;
1020 target *= 5; /* fast clock */
1021
1022 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1023 for (clock.p2 = limit->p2.p2_fast;
1024 clock.p2 >= limit->p2.p2_slow;
1025 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1026 unsigned int error_ppm;
1027
1028 clock.p = clock.p1 * clock.p2;
1029
1030 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1031 clock.n) << 22, refclk * clock.m1);
1032
1033 if (m2 > INT_MAX/clock.m1)
1034 continue;
1035
1036 clock.m2 = m2;
1037
1038 chv_calc_dpll_params(refclk, &clock);
1039
1040 if (!intel_PLL_is_valid(dev, limit, &clock))
1041 continue;
1042
1043 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1044 best_error_ppm, &error_ppm))
1045 continue;
1046
1047 *best_clock = clock;
1048 best_error_ppm = error_ppm;
1049 found = true;
1050 }
1051 }
1052
1053 return found;
1054 }
1055
1056 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1057 intel_clock_t *best_clock)
1058 {
1059 int refclk = i9xx_get_refclk(crtc_state, 0);
1060
1061 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1062 target_clock, refclk, NULL, best_clock);
1063 }
1064
1065 bool intel_crtc_active(struct drm_crtc *crtc)
1066 {
1067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068
1069 /* Be paranoid as we can arrive here with only partial
1070 * state retrieved from the hardware during setup.
1071 *
1072 * We can ditch the adjusted_mode.crtc_clock check as soon
1073 * as Haswell has gained clock readout/fastboot support.
1074 *
1075 * We can ditch the crtc->primary->fb check as soon as we can
1076 * properly reconstruct framebuffers.
1077 *
1078 * FIXME: The intel_crtc->active here should be switched to
1079 * crtc->state->active once we have proper CRTC states wired up
1080 * for atomic.
1081 */
1082 return intel_crtc->active && crtc->primary->state->fb &&
1083 intel_crtc->config->base.adjusted_mode.crtc_clock;
1084 }
1085
1086 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1087 enum pipe pipe)
1088 {
1089 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091
1092 return intel_crtc->config->cpu_transcoder;
1093 }
1094
1095 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1096 {
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 i915_reg_t reg = PIPEDSL(pipe);
1099 u32 line1, line2;
1100 u32 line_mask;
1101
1102 if (IS_GEN2(dev))
1103 line_mask = DSL_LINEMASK_GEN2;
1104 else
1105 line_mask = DSL_LINEMASK_GEN3;
1106
1107 line1 = I915_READ(reg) & line_mask;
1108 msleep(5);
1109 line2 = I915_READ(reg) & line_mask;
1110
1111 return line1 == line2;
1112 }
1113
1114 /*
1115 * intel_wait_for_pipe_off - wait for pipe to turn off
1116 * @crtc: crtc whose pipe to wait for
1117 *
1118 * After disabling a pipe, we can't wait for vblank in the usual way,
1119 * spinning on the vblank interrupt status bit, since we won't actually
1120 * see an interrupt when the pipe is disabled.
1121 *
1122 * On Gen4 and above:
1123 * wait for the pipe register state bit to turn off
1124 *
1125 * Otherwise:
1126 * wait for the display line value to settle (it usually
1127 * ends up stopping at the start of the next frame).
1128 *
1129 */
1130 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1131 {
1132 struct drm_device *dev = crtc->base.dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1135 enum pipe pipe = crtc->pipe;
1136
1137 if (INTEL_INFO(dev)->gen >= 4) {
1138 i915_reg_t reg = PIPECONF(cpu_transcoder);
1139
1140 /* Wait for the Pipe State to go off */
1141 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1142 100))
1143 WARN(1, "pipe_off wait timed out\n");
1144 } else {
1145 /* Wait for the display line to settle */
1146 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1147 WARN(1, "pipe_off wait timed out\n");
1148 }
1149 }
1150
1151 static const char *state_string(bool enabled)
1152 {
1153 return enabled ? "on" : "off";
1154 }
1155
1156 /* Only for pre-ILK configs */
1157 void assert_pll(struct drm_i915_private *dev_priv,
1158 enum pipe pipe, bool state)
1159 {
1160 u32 val;
1161 bool cur_state;
1162
1163 val = I915_READ(DPLL(pipe));
1164 cur_state = !!(val & DPLL_VCO_ENABLE);
1165 I915_STATE_WARN(cur_state != state,
1166 "PLL state assertion failure (expected %s, current %s)\n",
1167 state_string(state), state_string(cur_state));
1168 }
1169
1170 /* XXX: the dsi pll is shared between MIPI DSI ports */
1171 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1172 {
1173 u32 val;
1174 bool cur_state;
1175
1176 mutex_lock(&dev_priv->sb_lock);
1177 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1178 mutex_unlock(&dev_priv->sb_lock);
1179
1180 cur_state = val & DSI_PLL_VCO_EN;
1181 I915_STATE_WARN(cur_state != state,
1182 "DSI PLL state assertion failure (expected %s, current %s)\n",
1183 state_string(state), state_string(cur_state));
1184 }
1185 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1186 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1187
1188 struct intel_shared_dpll *
1189 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1190 {
1191 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1192
1193 if (crtc->config->shared_dpll < 0)
1194 return NULL;
1195
1196 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1197 }
1198
1199 /* For ILK+ */
1200 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1201 struct intel_shared_dpll *pll,
1202 bool state)
1203 {
1204 bool cur_state;
1205 struct intel_dpll_hw_state hw_state;
1206
1207 if (WARN (!pll,
1208 "asserting DPLL %s with no DPLL\n", state_string(state)))
1209 return;
1210
1211 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1212 I915_STATE_WARN(cur_state != state,
1213 "%s assertion failure (expected %s, current %s)\n",
1214 pll->name, state_string(state), state_string(cur_state));
1215 }
1216
1217 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219 {
1220 bool cur_state;
1221 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1222 pipe);
1223
1224 if (HAS_DDI(dev_priv->dev)) {
1225 /* DDI does not have a specific FDI_TX register */
1226 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1227 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1228 } else {
1229 u32 val = I915_READ(FDI_TX_CTL(pipe));
1230 cur_state = !!(val & FDI_TX_ENABLE);
1231 }
1232 I915_STATE_WARN(cur_state != state,
1233 "FDI TX state assertion failure (expected %s, current %s)\n",
1234 state_string(state), state_string(cur_state));
1235 }
1236 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1237 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1238
1239 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
1241 {
1242 u32 val;
1243 bool cur_state;
1244
1245 val = I915_READ(FDI_RX_CTL(pipe));
1246 cur_state = !!(val & FDI_RX_ENABLE);
1247 I915_STATE_WARN(cur_state != state,
1248 "FDI RX state assertion failure (expected %s, current %s)\n",
1249 state_string(state), state_string(cur_state));
1250 }
1251 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1252 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1253
1254 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
1256 {
1257 u32 val;
1258
1259 /* ILK FDI PLL is always enabled */
1260 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1261 return;
1262
1263 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1264 if (HAS_DDI(dev_priv->dev))
1265 return;
1266
1267 val = I915_READ(FDI_TX_CTL(pipe));
1268 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1269 }
1270
1271 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1272 enum pipe pipe, bool state)
1273 {
1274 u32 val;
1275 bool cur_state;
1276
1277 val = I915_READ(FDI_RX_CTL(pipe));
1278 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1279 I915_STATE_WARN(cur_state != state,
1280 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1281 state_string(state), state_string(cur_state));
1282 }
1283
1284 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286 {
1287 struct drm_device *dev = dev_priv->dev;
1288 i915_reg_t pp_reg;
1289 u32 val;
1290 enum pipe panel_pipe = PIPE_A;
1291 bool locked = true;
1292
1293 if (WARN_ON(HAS_DDI(dev)))
1294 return;
1295
1296 if (HAS_PCH_SPLIT(dev)) {
1297 u32 port_sel;
1298
1299 pp_reg = PCH_PP_CONTROL;
1300 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1301
1302 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1303 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1304 panel_pipe = PIPE_B;
1305 /* XXX: else fix for eDP */
1306 } else if (IS_VALLEYVIEW(dev)) {
1307 /* presumably write lock depends on pipe, not port select */
1308 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1309 panel_pipe = pipe;
1310 } else {
1311 pp_reg = PP_CONTROL;
1312 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1313 panel_pipe = PIPE_B;
1314 }
1315
1316 val = I915_READ(pp_reg);
1317 if (!(val & PANEL_POWER_ON) ||
1318 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1319 locked = false;
1320
1321 I915_STATE_WARN(panel_pipe == pipe && locked,
1322 "panel assertion failure, pipe %c regs locked\n",
1323 pipe_name(pipe));
1324 }
1325
1326 static void assert_cursor(struct drm_i915_private *dev_priv,
1327 enum pipe pipe, bool state)
1328 {
1329 struct drm_device *dev = dev_priv->dev;
1330 bool cur_state;
1331
1332 if (IS_845G(dev) || IS_I865G(dev))
1333 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1334 else
1335 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1336
1337 I915_STATE_WARN(cur_state != state,
1338 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1339 pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1342 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1343
1344 void assert_pipe(struct drm_i915_private *dev_priv,
1345 enum pipe pipe, bool state)
1346 {
1347 bool cur_state;
1348 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1349 pipe);
1350
1351 /* if we need the pipe quirk it must be always on */
1352 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1353 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1354 state = true;
1355
1356 if (!intel_display_power_is_enabled(dev_priv,
1357 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1358 cur_state = false;
1359 } else {
1360 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1361 cur_state = !!(val & PIPECONF_ENABLE);
1362 }
1363
1364 I915_STATE_WARN(cur_state != state,
1365 "pipe %c assertion failure (expected %s, current %s)\n",
1366 pipe_name(pipe), state_string(state), state_string(cur_state));
1367 }
1368
1369 static void assert_plane(struct drm_i915_private *dev_priv,
1370 enum plane plane, bool state)
1371 {
1372 u32 val;
1373 bool cur_state;
1374
1375 val = I915_READ(DSPCNTR(plane));
1376 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1377 I915_STATE_WARN(cur_state != state,
1378 "plane %c assertion failure (expected %s, current %s)\n",
1379 plane_name(plane), state_string(state), state_string(cur_state));
1380 }
1381
1382 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1383 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1384
1385 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1386 enum pipe pipe)
1387 {
1388 struct drm_device *dev = dev_priv->dev;
1389 int i;
1390
1391 /* Primary planes are fixed to pipes on gen4+ */
1392 if (INTEL_INFO(dev)->gen >= 4) {
1393 u32 val = I915_READ(DSPCNTR(pipe));
1394 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1395 "plane %c assertion failure, should be disabled but not\n",
1396 plane_name(pipe));
1397 return;
1398 }
1399
1400 /* Need to check both planes against the pipe */
1401 for_each_pipe(dev_priv, i) {
1402 u32 val = I915_READ(DSPCNTR(i));
1403 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1404 DISPPLANE_SEL_PIPE_SHIFT;
1405 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1406 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1407 plane_name(i), pipe_name(pipe));
1408 }
1409 }
1410
1411 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe)
1413 {
1414 struct drm_device *dev = dev_priv->dev;
1415 int sprite;
1416
1417 if (INTEL_INFO(dev)->gen >= 9) {
1418 for_each_sprite(dev_priv, pipe, sprite) {
1419 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1420 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1421 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1422 sprite, pipe_name(pipe));
1423 }
1424 } else if (IS_VALLEYVIEW(dev)) {
1425 for_each_sprite(dev_priv, pipe, sprite) {
1426 u32 val = I915_READ(SPCNTR(pipe, sprite));
1427 I915_STATE_WARN(val & SP_ENABLE,
1428 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429 sprite_name(pipe, sprite), pipe_name(pipe));
1430 }
1431 } else if (INTEL_INFO(dev)->gen >= 7) {
1432 u32 val = I915_READ(SPRCTL(pipe));
1433 I915_STATE_WARN(val & SPRITE_ENABLE,
1434 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435 plane_name(pipe), pipe_name(pipe));
1436 } else if (INTEL_INFO(dev)->gen >= 5) {
1437 u32 val = I915_READ(DVSCNTR(pipe));
1438 I915_STATE_WARN(val & DVS_ENABLE,
1439 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1440 plane_name(pipe), pipe_name(pipe));
1441 }
1442 }
1443
1444 static void assert_vblank_disabled(struct drm_crtc *crtc)
1445 {
1446 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1447 drm_crtc_vblank_put(crtc);
1448 }
1449
1450 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1451 {
1452 u32 val;
1453 bool enabled;
1454
1455 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1456
1457 val = I915_READ(PCH_DREF_CONTROL);
1458 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1459 DREF_SUPERSPREAD_SOURCE_MASK));
1460 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1461 }
1462
1463 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465 {
1466 u32 val;
1467 bool enabled;
1468
1469 val = I915_READ(PCH_TRANSCONF(pipe));
1470 enabled = !!(val & TRANS_ENABLE);
1471 I915_STATE_WARN(enabled,
1472 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1473 pipe_name(pipe));
1474 }
1475
1476 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1477 enum pipe pipe, u32 port_sel, u32 val)
1478 {
1479 if ((val & DP_PORT_EN) == 0)
1480 return false;
1481
1482 if (HAS_PCH_CPT(dev_priv->dev)) {
1483 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1484 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1485 return false;
1486 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1487 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1488 return false;
1489 } else {
1490 if ((val & DP_PIPE_MASK) != (pipe << 30))
1491 return false;
1492 }
1493 return true;
1494 }
1495
1496 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1497 enum pipe pipe, u32 val)
1498 {
1499 if ((val & SDVO_ENABLE) == 0)
1500 return false;
1501
1502 if (HAS_PCH_CPT(dev_priv->dev)) {
1503 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1504 return false;
1505 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1506 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1507 return false;
1508 } else {
1509 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1510 return false;
1511 }
1512 return true;
1513 }
1514
1515 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1516 enum pipe pipe, u32 val)
1517 {
1518 if ((val & LVDS_PORT_EN) == 0)
1519 return false;
1520
1521 if (HAS_PCH_CPT(dev_priv->dev)) {
1522 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1523 return false;
1524 } else {
1525 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1526 return false;
1527 }
1528 return true;
1529 }
1530
1531 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1532 enum pipe pipe, u32 val)
1533 {
1534 if ((val & ADPA_DAC_ENABLE) == 0)
1535 return false;
1536 if (HAS_PCH_CPT(dev_priv->dev)) {
1537 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1538 return false;
1539 } else {
1540 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1541 return false;
1542 }
1543 return true;
1544 }
1545
1546 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1547 enum pipe pipe, i915_reg_t reg,
1548 u32 port_sel)
1549 {
1550 u32 val = I915_READ(reg);
1551 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1552 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1553 i915_mmio_reg_offset(reg), pipe_name(pipe));
1554
1555 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1556 && (val & DP_PIPEB_SELECT),
1557 "IBX PCH dp port still using transcoder B\n");
1558 }
1559
1560 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1561 enum pipe pipe, i915_reg_t reg)
1562 {
1563 u32 val = I915_READ(reg);
1564 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1565 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1566 i915_mmio_reg_offset(reg), pipe_name(pipe));
1567
1568 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1569 && (val & SDVO_PIPE_B_SELECT),
1570 "IBX PCH hdmi port still using transcoder B\n");
1571 }
1572
1573 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1574 enum pipe pipe)
1575 {
1576 u32 val;
1577
1578 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1581
1582 val = I915_READ(PCH_ADPA);
1583 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1584 "PCH VGA enabled on transcoder %c, should be disabled\n",
1585 pipe_name(pipe));
1586
1587 val = I915_READ(PCH_LVDS);
1588 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590 pipe_name(pipe));
1591
1592 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void vlv_enable_pll(struct intel_crtc *crtc,
1598 const struct intel_crtc_state *pipe_config)
1599 {
1600 struct drm_device *dev = crtc->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 i915_reg_t reg = DPLL(crtc->pipe);
1603 u32 dpll = pipe_config->dpll_hw_state.dpll;
1604
1605 assert_pipe_disabled(dev_priv, crtc->pipe);
1606
1607 /* No really, not for ILK+ */
1608 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610 /* PLL is protected by panel, make sure we can write it */
1611 if (IS_MOBILE(dev_priv->dev))
1612 assert_panel_unlocked(dev_priv, crtc->pipe);
1613
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150);
1617
1618 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
1621 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1622 POSTING_READ(DPLL_MD(crtc->pipe));
1623
1624 /* We do this three times for luck */
1625 I915_WRITE(reg, dpll);
1626 POSTING_READ(reg);
1627 udelay(150); /* wait for warmup */
1628 I915_WRITE(reg, dpll);
1629 POSTING_READ(reg);
1630 udelay(150); /* wait for warmup */
1631 I915_WRITE(reg, dpll);
1632 POSTING_READ(reg);
1633 udelay(150); /* wait for warmup */
1634 }
1635
1636 static void chv_enable_pll(struct intel_crtc *crtc,
1637 const struct intel_crtc_state *pipe_config)
1638 {
1639 struct drm_device *dev = crtc->base.dev;
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 int pipe = crtc->pipe;
1642 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1643 u32 tmp;
1644
1645 assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
1649 mutex_lock(&dev_priv->sb_lock);
1650
1651 /* Enable back the 10bit clock to display controller */
1652 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653 tmp |= DPIO_DCLKP_EN;
1654 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
1656 mutex_unlock(&dev_priv->sb_lock);
1657
1658 /*
1659 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660 */
1661 udelay(1);
1662
1663 /* Enable PLL */
1664 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1665
1666 /* Check PLL is locked */
1667 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1668 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
1670 /* not sure when this should be written */
1671 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1672 POSTING_READ(DPLL_MD(pipe));
1673 }
1674
1675 static int intel_num_dvo_pipes(struct drm_device *dev)
1676 {
1677 struct intel_crtc *crtc;
1678 int count = 0;
1679
1680 for_each_intel_crtc(dev, crtc)
1681 count += crtc->base.state->active &&
1682 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1683
1684 return count;
1685 }
1686
1687 static void i9xx_enable_pll(struct intel_crtc *crtc)
1688 {
1689 struct drm_device *dev = crtc->base.dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 i915_reg_t reg = DPLL(crtc->pipe);
1692 u32 dpll = crtc->config->dpll_hw_state.dpll;
1693
1694 assert_pipe_disabled(dev_priv, crtc->pipe);
1695
1696 /* No really, not for ILK+ */
1697 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1698
1699 /* PLL is protected by panel, make sure we can write it */
1700 if (IS_MOBILE(dev) && !IS_I830(dev))
1701 assert_panel_unlocked(dev_priv, crtc->pipe);
1702
1703 /* Enable DVO 2x clock on both PLLs if necessary */
1704 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705 /*
1706 * It appears to be important that we don't enable this
1707 * for the current pipe before otherwise configuring the
1708 * PLL. No idea how this should be handled if multiple
1709 * DVO outputs are enabled simultaneosly.
1710 */
1711 dpll |= DPLL_DVO_2X_MODE;
1712 I915_WRITE(DPLL(!crtc->pipe),
1713 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714 }
1715
1716 /*
1717 * Apparently we need to have VGA mode enabled prior to changing
1718 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1719 * dividers, even though the register value does change.
1720 */
1721 I915_WRITE(reg, 0);
1722
1723 I915_WRITE(reg, dpll);
1724
1725 /* Wait for the clocks to stabilize. */
1726 POSTING_READ(reg);
1727 udelay(150);
1728
1729 if (INTEL_INFO(dev)->gen >= 4) {
1730 I915_WRITE(DPLL_MD(crtc->pipe),
1731 crtc->config->dpll_hw_state.dpll_md);
1732 } else {
1733 /* The pixel multiplier can only be updated once the
1734 * DPLL is enabled and the clocks are stable.
1735 *
1736 * So write it again.
1737 */
1738 I915_WRITE(reg, dpll);
1739 }
1740
1741 /* We do this three times for luck */
1742 I915_WRITE(reg, dpll);
1743 POSTING_READ(reg);
1744 udelay(150); /* wait for warmup */
1745 I915_WRITE(reg, dpll);
1746 POSTING_READ(reg);
1747 udelay(150); /* wait for warmup */
1748 I915_WRITE(reg, dpll);
1749 POSTING_READ(reg);
1750 udelay(150); /* wait for warmup */
1751 }
1752
1753 /**
1754 * i9xx_disable_pll - disable a PLL
1755 * @dev_priv: i915 private structure
1756 * @pipe: pipe PLL to disable
1757 *
1758 * Disable the PLL for @pipe, making sure the pipe is off first.
1759 *
1760 * Note! This is for pre-ILK only.
1761 */
1762 static void i9xx_disable_pll(struct intel_crtc *crtc)
1763 {
1764 struct drm_device *dev = crtc->base.dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 enum pipe pipe = crtc->pipe;
1767
1768 /* Disable DVO 2x clock on both PLLs if necessary */
1769 if (IS_I830(dev) &&
1770 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1771 !intel_num_dvo_pipes(dev)) {
1772 I915_WRITE(DPLL(PIPE_B),
1773 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1774 I915_WRITE(DPLL(PIPE_A),
1775 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1776 }
1777
1778 /* Don't disable pipe or pipe PLLs if needed */
1779 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1780 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1781 return;
1782
1783 /* Make sure the pipe isn't still relying on us */
1784 assert_pipe_disabled(dev_priv, pipe);
1785
1786 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1787 POSTING_READ(DPLL(pipe));
1788 }
1789
1790 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1791 {
1792 u32 val;
1793
1794 /* Make sure the pipe isn't still relying on us */
1795 assert_pipe_disabled(dev_priv, pipe);
1796
1797 /*
1798 * Leave integrated clock source and reference clock enabled for pipe B.
1799 * The latter is needed for VGA hotplug / manual detection.
1800 */
1801 val = DPLL_VGA_MODE_DIS;
1802 if (pipe == PIPE_B)
1803 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1804 I915_WRITE(DPLL(pipe), val);
1805 POSTING_READ(DPLL(pipe));
1806
1807 }
1808
1809 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1810 {
1811 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1812 u32 val;
1813
1814 /* Make sure the pipe isn't still relying on us */
1815 assert_pipe_disabled(dev_priv, pipe);
1816
1817 /* Set PLL en = 0 */
1818 val = DPLL_SSC_REF_CLK_CHV |
1819 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1820 if (pipe != PIPE_A)
1821 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822 I915_WRITE(DPLL(pipe), val);
1823 POSTING_READ(DPLL(pipe));
1824
1825 mutex_lock(&dev_priv->sb_lock);
1826
1827 /* Disable 10bit clock to display controller */
1828 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829 val &= ~DPIO_DCLKP_EN;
1830 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
1832 mutex_unlock(&dev_priv->sb_lock);
1833 }
1834
1835 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1836 struct intel_digital_port *dport,
1837 unsigned int expected_mask)
1838 {
1839 u32 port_mask;
1840 i915_reg_t dpll_reg;
1841
1842 switch (dport->port) {
1843 case PORT_B:
1844 port_mask = DPLL_PORTB_READY_MASK;
1845 dpll_reg = DPLL(0);
1846 break;
1847 case PORT_C:
1848 port_mask = DPLL_PORTC_READY_MASK;
1849 dpll_reg = DPLL(0);
1850 expected_mask <<= 4;
1851 break;
1852 case PORT_D:
1853 port_mask = DPLL_PORTD_READY_MASK;
1854 dpll_reg = DPIO_PHY_STATUS;
1855 break;
1856 default:
1857 BUG();
1858 }
1859
1860 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1861 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1862 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1863 }
1864
1865 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1866 {
1867 struct drm_device *dev = crtc->base.dev;
1868 struct drm_i915_private *dev_priv = dev->dev_private;
1869 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1870
1871 if (WARN_ON(pll == NULL))
1872 return;
1873
1874 WARN_ON(!pll->config.crtc_mask);
1875 if (pll->active == 0) {
1876 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1877 WARN_ON(pll->on);
1878 assert_shared_dpll_disabled(dev_priv, pll);
1879
1880 pll->mode_set(dev_priv, pll);
1881 }
1882 }
1883
1884 /**
1885 * intel_enable_shared_dpll - enable PCH PLL
1886 * @dev_priv: i915 private structure
1887 * @pipe: pipe PLL to enable
1888 *
1889 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1890 * drives the transcoder clock.
1891 */
1892 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1893 {
1894 struct drm_device *dev = crtc->base.dev;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1897
1898 if (WARN_ON(pll == NULL))
1899 return;
1900
1901 if (WARN_ON(pll->config.crtc_mask == 0))
1902 return;
1903
1904 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1905 pll->name, pll->active, pll->on,
1906 crtc->base.base.id);
1907
1908 if (pll->active++) {
1909 WARN_ON(!pll->on);
1910 assert_shared_dpll_enabled(dev_priv, pll);
1911 return;
1912 }
1913 WARN_ON(pll->on);
1914
1915 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1916
1917 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1918 pll->enable(dev_priv, pll);
1919 pll->on = true;
1920 }
1921
1922 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1923 {
1924 struct drm_device *dev = crtc->base.dev;
1925 struct drm_i915_private *dev_priv = dev->dev_private;
1926 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1927
1928 /* PCH only available on ILK+ */
1929 if (INTEL_INFO(dev)->gen < 5)
1930 return;
1931
1932 if (pll == NULL)
1933 return;
1934
1935 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1936 return;
1937
1938 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1939 pll->name, pll->active, pll->on,
1940 crtc->base.base.id);
1941
1942 if (WARN_ON(pll->active == 0)) {
1943 assert_shared_dpll_disabled(dev_priv, pll);
1944 return;
1945 }
1946
1947 assert_shared_dpll_enabled(dev_priv, pll);
1948 WARN_ON(!pll->on);
1949 if (--pll->active)
1950 return;
1951
1952 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1953 pll->disable(dev_priv, pll);
1954 pll->on = false;
1955
1956 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1957 }
1958
1959 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1960 enum pipe pipe)
1961 {
1962 struct drm_device *dev = dev_priv->dev;
1963 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1965 i915_reg_t reg;
1966 uint32_t val, pipeconf_val;
1967
1968 /* PCH only available on ILK+ */
1969 BUG_ON(!HAS_PCH_SPLIT(dev));
1970
1971 /* Make sure PCH DPLL is enabled */
1972 assert_shared_dpll_enabled(dev_priv,
1973 intel_crtc_to_shared_dpll(intel_crtc));
1974
1975 /* FDI must be feeding us bits for PCH ports */
1976 assert_fdi_tx_enabled(dev_priv, pipe);
1977 assert_fdi_rx_enabled(dev_priv, pipe);
1978
1979 if (HAS_PCH_CPT(dev)) {
1980 /* Workaround: Set the timing override bit before enabling the
1981 * pch transcoder. */
1982 reg = TRANS_CHICKEN2(pipe);
1983 val = I915_READ(reg);
1984 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985 I915_WRITE(reg, val);
1986 }
1987
1988 reg = PCH_TRANSCONF(pipe);
1989 val = I915_READ(reg);
1990 pipeconf_val = I915_READ(PIPECONF(pipe));
1991
1992 if (HAS_PCH_IBX(dev_priv->dev)) {
1993 /*
1994 * Make the BPC in transcoder be consistent with
1995 * that in pipeconf reg. For HDMI we must use 8bpc
1996 * here for both 8bpc and 12bpc.
1997 */
1998 val &= ~PIPECONF_BPC_MASK;
1999 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000 val |= PIPECONF_8BPC;
2001 else
2002 val |= pipeconf_val & PIPECONF_BPC_MASK;
2003 }
2004
2005 val &= ~TRANS_INTERLACE_MASK;
2006 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007 if (HAS_PCH_IBX(dev_priv->dev) &&
2008 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2009 val |= TRANS_LEGACY_INTERLACED_ILK;
2010 else
2011 val |= TRANS_INTERLACED;
2012 else
2013 val |= TRANS_PROGRESSIVE;
2014
2015 I915_WRITE(reg, val | TRANS_ENABLE);
2016 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2017 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2018 }
2019
2020 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021 enum transcoder cpu_transcoder)
2022 {
2023 u32 val, pipeconf_val;
2024
2025 /* PCH only available on ILK+ */
2026 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2027
2028 /* FDI must be feeding us bits for PCH ports */
2029 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2030 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2031
2032 /* Workaround: set timing override bit. */
2033 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2034 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2035 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2036
2037 val = TRANS_ENABLE;
2038 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2039
2040 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041 PIPECONF_INTERLACED_ILK)
2042 val |= TRANS_INTERLACED;
2043 else
2044 val |= TRANS_PROGRESSIVE;
2045
2046 I915_WRITE(LPT_TRANSCONF, val);
2047 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2048 DRM_ERROR("Failed to enable PCH transcoder\n");
2049 }
2050
2051 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2052 enum pipe pipe)
2053 {
2054 struct drm_device *dev = dev_priv->dev;
2055 i915_reg_t reg;
2056 uint32_t val;
2057
2058 /* FDI relies on the transcoder */
2059 assert_fdi_tx_disabled(dev_priv, pipe);
2060 assert_fdi_rx_disabled(dev_priv, pipe);
2061
2062 /* Ports must be off as well */
2063 assert_pch_ports_disabled(dev_priv, pipe);
2064
2065 reg = PCH_TRANSCONF(pipe);
2066 val = I915_READ(reg);
2067 val &= ~TRANS_ENABLE;
2068 I915_WRITE(reg, val);
2069 /* wait for PCH transcoder off, transcoder state */
2070 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2071 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2072
2073 if (HAS_PCH_CPT(dev)) {
2074 /* Workaround: Clear the timing override chicken bit again. */
2075 reg = TRANS_CHICKEN2(pipe);
2076 val = I915_READ(reg);
2077 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2078 I915_WRITE(reg, val);
2079 }
2080 }
2081
2082 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2083 {
2084 u32 val;
2085
2086 val = I915_READ(LPT_TRANSCONF);
2087 val &= ~TRANS_ENABLE;
2088 I915_WRITE(LPT_TRANSCONF, val);
2089 /* wait for PCH transcoder off, transcoder state */
2090 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2091 DRM_ERROR("Failed to disable PCH transcoder\n");
2092
2093 /* Workaround: clear timing override bit. */
2094 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2095 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2096 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2097 }
2098
2099 /**
2100 * intel_enable_pipe - enable a pipe, asserting requirements
2101 * @crtc: crtc responsible for the pipe
2102 *
2103 * Enable @crtc's pipe, making sure that various hardware specific requirements
2104 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2105 */
2106 static void intel_enable_pipe(struct intel_crtc *crtc)
2107 {
2108 struct drm_device *dev = crtc->base.dev;
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 enum pipe pipe = crtc->pipe;
2111 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2112 enum pipe pch_transcoder;
2113 i915_reg_t reg;
2114 u32 val;
2115
2116 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2117
2118 assert_planes_disabled(dev_priv, pipe);
2119 assert_cursor_disabled(dev_priv, pipe);
2120 assert_sprites_disabled(dev_priv, pipe);
2121
2122 if (HAS_PCH_LPT(dev_priv->dev))
2123 pch_transcoder = TRANSCODER_A;
2124 else
2125 pch_transcoder = pipe;
2126
2127 /*
2128 * A pipe without a PLL won't actually be able to drive bits from
2129 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2130 * need the check.
2131 */
2132 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2133 if (crtc->config->has_dsi_encoder)
2134 assert_dsi_pll_enabled(dev_priv);
2135 else
2136 assert_pll_enabled(dev_priv, pipe);
2137 else {
2138 if (crtc->config->has_pch_encoder) {
2139 /* if driving the PCH, we need FDI enabled */
2140 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2141 assert_fdi_tx_pll_enabled(dev_priv,
2142 (enum pipe) cpu_transcoder);
2143 }
2144 /* FIXME: assert CPU port conditions for SNB+ */
2145 }
2146
2147 reg = PIPECONF(cpu_transcoder);
2148 val = I915_READ(reg);
2149 if (val & PIPECONF_ENABLE) {
2150 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2152 return;
2153 }
2154
2155 I915_WRITE(reg, val | PIPECONF_ENABLE);
2156 POSTING_READ(reg);
2157 }
2158
2159 /**
2160 * intel_disable_pipe - disable a pipe, asserting requirements
2161 * @crtc: crtc whose pipes is to be disabled
2162 *
2163 * Disable the pipe of @crtc, making sure that various hardware
2164 * specific requirements are met, if applicable, e.g. plane
2165 * disabled, panel fitter off, etc.
2166 *
2167 * Will wait until the pipe has shut down before returning.
2168 */
2169 static void intel_disable_pipe(struct intel_crtc *crtc)
2170 {
2171 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2172 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2173 enum pipe pipe = crtc->pipe;
2174 i915_reg_t reg;
2175 u32 val;
2176
2177 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2178
2179 /*
2180 * Make sure planes won't keep trying to pump pixels to us,
2181 * or we might hang the display.
2182 */
2183 assert_planes_disabled(dev_priv, pipe);
2184 assert_cursor_disabled(dev_priv, pipe);
2185 assert_sprites_disabled(dev_priv, pipe);
2186
2187 reg = PIPECONF(cpu_transcoder);
2188 val = I915_READ(reg);
2189 if ((val & PIPECONF_ENABLE) == 0)
2190 return;
2191
2192 /*
2193 * Double wide has implications for planes
2194 * so best keep it disabled when not needed.
2195 */
2196 if (crtc->config->double_wide)
2197 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199 /* Don't disable pipe or pipe PLLs if needed */
2200 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202 val &= ~PIPECONF_ENABLE;
2203
2204 I915_WRITE(reg, val);
2205 if ((val & PIPECONF_ENABLE) == 0)
2206 intel_wait_for_pipe_off(crtc);
2207 }
2208
2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213 return true;
2214 #endif
2215 return false;
2216 }
2217
2218 unsigned int
2219 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220 uint64_t fb_format_modifier, unsigned int plane)
2221 {
2222 unsigned int tile_height;
2223 uint32_t pixel_bytes;
2224
2225 switch (fb_format_modifier) {
2226 case DRM_FORMAT_MOD_NONE:
2227 tile_height = 1;
2228 break;
2229 case I915_FORMAT_MOD_X_TILED:
2230 tile_height = IS_GEN2(dev) ? 16 : 8;
2231 break;
2232 case I915_FORMAT_MOD_Y_TILED:
2233 tile_height = 32;
2234 break;
2235 case I915_FORMAT_MOD_Yf_TILED:
2236 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237 switch (pixel_bytes) {
2238 default:
2239 case 1:
2240 tile_height = 64;
2241 break;
2242 case 2:
2243 case 4:
2244 tile_height = 32;
2245 break;
2246 case 8:
2247 tile_height = 16;
2248 break;
2249 case 16:
2250 WARN_ONCE(1,
2251 "128-bit pixels are not supported for display!");
2252 tile_height = 16;
2253 break;
2254 }
2255 break;
2256 default:
2257 MISSING_CASE(fb_format_modifier);
2258 tile_height = 1;
2259 break;
2260 }
2261
2262 return tile_height;
2263 }
2264
2265 unsigned int
2266 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267 uint32_t pixel_format, uint64_t fb_format_modifier)
2268 {
2269 return ALIGN(height, intel_tile_height(dev, pixel_format,
2270 fb_format_modifier, 0));
2271 }
2272
2273 static void
2274 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275 const struct drm_plane_state *plane_state)
2276 {
2277 struct intel_rotation_info *info = &view->params.rotation_info;
2278 unsigned int tile_height, tile_pitch;
2279
2280 *view = i915_ggtt_view_normal;
2281
2282 if (!plane_state)
2283 return;
2284
2285 if (!intel_rotation_90_or_270(plane_state->rotation))
2286 return;
2287
2288 *view = i915_ggtt_view_rotated;
2289
2290 info->height = fb->height;
2291 info->pixel_format = fb->pixel_format;
2292 info->pitch = fb->pitches[0];
2293 info->uv_offset = fb->offsets[1];
2294 info->fb_modifier = fb->modifier[0];
2295
2296 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297 fb->modifier[0], 0);
2298 tile_pitch = PAGE_SIZE / tile_height;
2299 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2302
2303 if (info->pixel_format == DRM_FORMAT_NV12) {
2304 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305 fb->modifier[0], 1);
2306 tile_pitch = PAGE_SIZE / tile_height;
2307 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309 tile_height);
2310 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311 PAGE_SIZE;
2312 }
2313 }
2314
2315 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2316 {
2317 if (INTEL_INFO(dev_priv)->gen >= 9)
2318 return 256 * 1024;
2319 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2320 IS_VALLEYVIEW(dev_priv))
2321 return 128 * 1024;
2322 else if (INTEL_INFO(dev_priv)->gen >= 4)
2323 return 4 * 1024;
2324 else
2325 return 0;
2326 }
2327
2328 int
2329 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2330 struct drm_framebuffer *fb,
2331 const struct drm_plane_state *plane_state)
2332 {
2333 struct drm_device *dev = fb->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2336 struct i915_ggtt_view view;
2337 u32 alignment;
2338 int ret;
2339
2340 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2341
2342 switch (fb->modifier[0]) {
2343 case DRM_FORMAT_MOD_NONE:
2344 alignment = intel_linear_alignment(dev_priv);
2345 break;
2346 case I915_FORMAT_MOD_X_TILED:
2347 if (INTEL_INFO(dev)->gen >= 9)
2348 alignment = 256 * 1024;
2349 else {
2350 /* pin() will align the object as required by fence */
2351 alignment = 0;
2352 }
2353 break;
2354 case I915_FORMAT_MOD_Y_TILED:
2355 case I915_FORMAT_MOD_Yf_TILED:
2356 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2357 "Y tiling bo slipped through, driver bug!\n"))
2358 return -EINVAL;
2359 alignment = 1 * 1024 * 1024;
2360 break;
2361 default:
2362 MISSING_CASE(fb->modifier[0]);
2363 return -EINVAL;
2364 }
2365
2366 intel_fill_fb_ggtt_view(&view, fb, plane_state);
2367
2368 /* Note that the w/a also requires 64 PTE of padding following the
2369 * bo. We currently fill all unused PTE with the shadow page and so
2370 * we should always have valid PTE following the scanout preventing
2371 * the VT-d warning.
2372 */
2373 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2374 alignment = 256 * 1024;
2375
2376 /*
2377 * Global gtt pte registers are special registers which actually forward
2378 * writes to a chunk of system memory. Which means that there is no risk
2379 * that the register values disappear as soon as we call
2380 * intel_runtime_pm_put(), so it is correct to wrap only the
2381 * pin/unpin/fence and not more.
2382 */
2383 intel_runtime_pm_get(dev_priv);
2384
2385 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2386 &view);
2387 if (ret)
2388 goto err_pm;
2389
2390 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2391 * fence, whereas 965+ only requires a fence if using
2392 * framebuffer compression. For simplicity, we always install
2393 * a fence as the cost is not that onerous.
2394 */
2395 if (view.type == I915_GGTT_VIEW_NORMAL) {
2396 ret = i915_gem_object_get_fence(obj);
2397 if (ret == -EDEADLK) {
2398 /*
2399 * -EDEADLK means there are no free fences
2400 * no pending flips.
2401 *
2402 * This is propagated to atomic, but it uses
2403 * -EDEADLK to force a locking recovery, so
2404 * change the returned error to -EBUSY.
2405 */
2406 ret = -EBUSY;
2407 goto err_unpin;
2408 } else if (ret)
2409 goto err_unpin;
2410
2411 i915_gem_object_pin_fence(obj);
2412 }
2413
2414 intel_runtime_pm_put(dev_priv);
2415 return 0;
2416
2417 err_unpin:
2418 i915_gem_object_unpin_from_display_plane(obj, &view);
2419 err_pm:
2420 intel_runtime_pm_put(dev_priv);
2421 return ret;
2422 }
2423
2424 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2425 const struct drm_plane_state *plane_state)
2426 {
2427 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2428 struct i915_ggtt_view view;
2429
2430 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2431
2432 intel_fill_fb_ggtt_view(&view, fb, plane_state);
2433
2434 if (view.type == I915_GGTT_VIEW_NORMAL)
2435 i915_gem_object_unpin_fence(obj);
2436
2437 i915_gem_object_unpin_from_display_plane(obj, &view);
2438 }
2439
2440 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2441 * is assumed to be a power-of-two. */
2442 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2443 int *x, int *y,
2444 unsigned int tiling_mode,
2445 unsigned int cpp,
2446 unsigned int pitch)
2447 {
2448 if (tiling_mode != I915_TILING_NONE) {
2449 unsigned int tile_rows, tiles;
2450
2451 tile_rows = *y / 8;
2452 *y %= 8;
2453
2454 tiles = *x / (512/cpp);
2455 *x %= 512/cpp;
2456
2457 return tile_rows * pitch * 8 + tiles * 4096;
2458 } else {
2459 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2460 unsigned int offset;
2461
2462 offset = *y * pitch + *x * cpp;
2463 *y = (offset & alignment) / pitch;
2464 *x = ((offset & alignment) - *y * pitch) / cpp;
2465 return offset & ~alignment;
2466 }
2467 }
2468
2469 static int i9xx_format_to_fourcc(int format)
2470 {
2471 switch (format) {
2472 case DISPPLANE_8BPP:
2473 return DRM_FORMAT_C8;
2474 case DISPPLANE_BGRX555:
2475 return DRM_FORMAT_XRGB1555;
2476 case DISPPLANE_BGRX565:
2477 return DRM_FORMAT_RGB565;
2478 default:
2479 case DISPPLANE_BGRX888:
2480 return DRM_FORMAT_XRGB8888;
2481 case DISPPLANE_RGBX888:
2482 return DRM_FORMAT_XBGR8888;
2483 case DISPPLANE_BGRX101010:
2484 return DRM_FORMAT_XRGB2101010;
2485 case DISPPLANE_RGBX101010:
2486 return DRM_FORMAT_XBGR2101010;
2487 }
2488 }
2489
2490 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2491 {
2492 switch (format) {
2493 case PLANE_CTL_FORMAT_RGB_565:
2494 return DRM_FORMAT_RGB565;
2495 default:
2496 case PLANE_CTL_FORMAT_XRGB_8888:
2497 if (rgb_order) {
2498 if (alpha)
2499 return DRM_FORMAT_ABGR8888;
2500 else
2501 return DRM_FORMAT_XBGR8888;
2502 } else {
2503 if (alpha)
2504 return DRM_FORMAT_ARGB8888;
2505 else
2506 return DRM_FORMAT_XRGB8888;
2507 }
2508 case PLANE_CTL_FORMAT_XRGB_2101010:
2509 if (rgb_order)
2510 return DRM_FORMAT_XBGR2101010;
2511 else
2512 return DRM_FORMAT_XRGB2101010;
2513 }
2514 }
2515
2516 static bool
2517 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2518 struct intel_initial_plane_config *plane_config)
2519 {
2520 struct drm_device *dev = crtc->base.dev;
2521 struct drm_i915_private *dev_priv = to_i915(dev);
2522 struct drm_i915_gem_object *obj = NULL;
2523 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2524 struct drm_framebuffer *fb = &plane_config->fb->base;
2525 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2526 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2527 PAGE_SIZE);
2528
2529 size_aligned -= base_aligned;
2530
2531 if (plane_config->size == 0)
2532 return false;
2533
2534 /* If the FB is too big, just don't use it since fbdev is not very
2535 * important and we should probably use that space with FBC or other
2536 * features. */
2537 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2538 return false;
2539
2540 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2541 base_aligned,
2542 base_aligned,
2543 size_aligned);
2544 if (!obj)
2545 return false;
2546
2547 obj->tiling_mode = plane_config->tiling;
2548 if (obj->tiling_mode == I915_TILING_X)
2549 obj->stride = fb->pitches[0];
2550
2551 mode_cmd.pixel_format = fb->pixel_format;
2552 mode_cmd.width = fb->width;
2553 mode_cmd.height = fb->height;
2554 mode_cmd.pitches[0] = fb->pitches[0];
2555 mode_cmd.modifier[0] = fb->modifier[0];
2556 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2557
2558 mutex_lock(&dev->struct_mutex);
2559 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2560 &mode_cmd, obj)) {
2561 DRM_DEBUG_KMS("intel fb init failed\n");
2562 goto out_unref_obj;
2563 }
2564 mutex_unlock(&dev->struct_mutex);
2565
2566 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2567 return true;
2568
2569 out_unref_obj:
2570 drm_gem_object_unreference(&obj->base);
2571 mutex_unlock(&dev->struct_mutex);
2572 return false;
2573 }
2574
2575 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2576 static void
2577 update_state_fb(struct drm_plane *plane)
2578 {
2579 if (plane->fb == plane->state->fb)
2580 return;
2581
2582 if (plane->state->fb)
2583 drm_framebuffer_unreference(plane->state->fb);
2584 plane->state->fb = plane->fb;
2585 if (plane->state->fb)
2586 drm_framebuffer_reference(plane->state->fb);
2587 }
2588
2589 static void
2590 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2591 struct intel_initial_plane_config *plane_config)
2592 {
2593 struct drm_device *dev = intel_crtc->base.dev;
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 struct drm_crtc *c;
2596 struct intel_crtc *i;
2597 struct drm_i915_gem_object *obj;
2598 struct drm_plane *primary = intel_crtc->base.primary;
2599 struct drm_plane_state *plane_state = primary->state;
2600 struct drm_framebuffer *fb;
2601
2602 if (!plane_config->fb)
2603 return;
2604
2605 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2606 fb = &plane_config->fb->base;
2607 goto valid_fb;
2608 }
2609
2610 kfree(plane_config->fb);
2611
2612 /*
2613 * Failed to alloc the obj, check to see if we should share
2614 * an fb with another CRTC instead
2615 */
2616 for_each_crtc(dev, c) {
2617 i = to_intel_crtc(c);
2618
2619 if (c == &intel_crtc->base)
2620 continue;
2621
2622 if (!i->active)
2623 continue;
2624
2625 fb = c->primary->fb;
2626 if (!fb)
2627 continue;
2628
2629 obj = intel_fb_obj(fb);
2630 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2631 drm_framebuffer_reference(fb);
2632 goto valid_fb;
2633 }
2634 }
2635
2636 return;
2637
2638 valid_fb:
2639 plane_state->src_x = 0;
2640 plane_state->src_y = 0;
2641 plane_state->src_w = fb->width << 16;
2642 plane_state->src_h = fb->height << 16;
2643
2644 plane_state->crtc_x = 0;
2645 plane_state->crtc_y = 0;
2646 plane_state->crtc_w = fb->width;
2647 plane_state->crtc_h = fb->height;
2648
2649 obj = intel_fb_obj(fb);
2650 if (obj->tiling_mode != I915_TILING_NONE)
2651 dev_priv->preserve_bios_swizzle = true;
2652
2653 drm_framebuffer_reference(fb);
2654 primary->fb = primary->state->fb = fb;
2655 primary->crtc = primary->state->crtc = &intel_crtc->base;
2656 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2657 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2658 }
2659
2660 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2661 struct drm_framebuffer *fb,
2662 int x, int y)
2663 {
2664 struct drm_device *dev = crtc->dev;
2665 struct drm_i915_private *dev_priv = dev->dev_private;
2666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2667 struct drm_plane *primary = crtc->primary;
2668 bool visible = to_intel_plane_state(primary->state)->visible;
2669 struct drm_i915_gem_object *obj;
2670 int plane = intel_crtc->plane;
2671 unsigned long linear_offset;
2672 u32 dspcntr;
2673 i915_reg_t reg = DSPCNTR(plane);
2674 int pixel_size;
2675
2676 if (!visible || !fb) {
2677 I915_WRITE(reg, 0);
2678 if (INTEL_INFO(dev)->gen >= 4)
2679 I915_WRITE(DSPSURF(plane), 0);
2680 else
2681 I915_WRITE(DSPADDR(plane), 0);
2682 POSTING_READ(reg);
2683 return;
2684 }
2685
2686 obj = intel_fb_obj(fb);
2687 if (WARN_ON(obj == NULL))
2688 return;
2689
2690 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2691
2692 dspcntr = DISPPLANE_GAMMA_ENABLE;
2693
2694 dspcntr |= DISPLAY_PLANE_ENABLE;
2695
2696 if (INTEL_INFO(dev)->gen < 4) {
2697 if (intel_crtc->pipe == PIPE_B)
2698 dspcntr |= DISPPLANE_SEL_PIPE_B;
2699
2700 /* pipesrc and dspsize control the size that is scaled from,
2701 * which should always be the user's requested size.
2702 */
2703 I915_WRITE(DSPSIZE(plane),
2704 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2705 (intel_crtc->config->pipe_src_w - 1));
2706 I915_WRITE(DSPPOS(plane), 0);
2707 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2708 I915_WRITE(PRIMSIZE(plane),
2709 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2710 (intel_crtc->config->pipe_src_w - 1));
2711 I915_WRITE(PRIMPOS(plane), 0);
2712 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2713 }
2714
2715 switch (fb->pixel_format) {
2716 case DRM_FORMAT_C8:
2717 dspcntr |= DISPPLANE_8BPP;
2718 break;
2719 case DRM_FORMAT_XRGB1555:
2720 dspcntr |= DISPPLANE_BGRX555;
2721 break;
2722 case DRM_FORMAT_RGB565:
2723 dspcntr |= DISPPLANE_BGRX565;
2724 break;
2725 case DRM_FORMAT_XRGB8888:
2726 dspcntr |= DISPPLANE_BGRX888;
2727 break;
2728 case DRM_FORMAT_XBGR8888:
2729 dspcntr |= DISPPLANE_RGBX888;
2730 break;
2731 case DRM_FORMAT_XRGB2101010:
2732 dspcntr |= DISPPLANE_BGRX101010;
2733 break;
2734 case DRM_FORMAT_XBGR2101010:
2735 dspcntr |= DISPPLANE_RGBX101010;
2736 break;
2737 default:
2738 BUG();
2739 }
2740
2741 if (INTEL_INFO(dev)->gen >= 4 &&
2742 obj->tiling_mode != I915_TILING_NONE)
2743 dspcntr |= DISPPLANE_TILED;
2744
2745 if (IS_G4X(dev))
2746 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2747
2748 linear_offset = y * fb->pitches[0] + x * pixel_size;
2749
2750 if (INTEL_INFO(dev)->gen >= 4) {
2751 intel_crtc->dspaddr_offset =
2752 intel_gen4_compute_page_offset(dev_priv,
2753 &x, &y, obj->tiling_mode,
2754 pixel_size,
2755 fb->pitches[0]);
2756 linear_offset -= intel_crtc->dspaddr_offset;
2757 } else {
2758 intel_crtc->dspaddr_offset = linear_offset;
2759 }
2760
2761 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2762 dspcntr |= DISPPLANE_ROTATE_180;
2763
2764 x += (intel_crtc->config->pipe_src_w - 1);
2765 y += (intel_crtc->config->pipe_src_h - 1);
2766
2767 /* Finding the last pixel of the last line of the display
2768 data and adding to linear_offset*/
2769 linear_offset +=
2770 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2771 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2772 }
2773
2774 intel_crtc->adjusted_x = x;
2775 intel_crtc->adjusted_y = y;
2776
2777 I915_WRITE(reg, dspcntr);
2778
2779 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2780 if (INTEL_INFO(dev)->gen >= 4) {
2781 I915_WRITE(DSPSURF(plane),
2782 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2783 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2784 I915_WRITE(DSPLINOFF(plane), linear_offset);
2785 } else
2786 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2787 POSTING_READ(reg);
2788 }
2789
2790 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2791 struct drm_framebuffer *fb,
2792 int x, int y)
2793 {
2794 struct drm_device *dev = crtc->dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2797 struct drm_plane *primary = crtc->primary;
2798 bool visible = to_intel_plane_state(primary->state)->visible;
2799 struct drm_i915_gem_object *obj;
2800 int plane = intel_crtc->plane;
2801 unsigned long linear_offset;
2802 u32 dspcntr;
2803 i915_reg_t reg = DSPCNTR(plane);
2804 int pixel_size;
2805
2806 if (!visible || !fb) {
2807 I915_WRITE(reg, 0);
2808 I915_WRITE(DSPSURF(plane), 0);
2809 POSTING_READ(reg);
2810 return;
2811 }
2812
2813 obj = intel_fb_obj(fb);
2814 if (WARN_ON(obj == NULL))
2815 return;
2816
2817 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2818
2819 dspcntr = DISPPLANE_GAMMA_ENABLE;
2820
2821 dspcntr |= DISPLAY_PLANE_ENABLE;
2822
2823 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2824 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2825
2826 switch (fb->pixel_format) {
2827 case DRM_FORMAT_C8:
2828 dspcntr |= DISPPLANE_8BPP;
2829 break;
2830 case DRM_FORMAT_RGB565:
2831 dspcntr |= DISPPLANE_BGRX565;
2832 break;
2833 case DRM_FORMAT_XRGB8888:
2834 dspcntr |= DISPPLANE_BGRX888;
2835 break;
2836 case DRM_FORMAT_XBGR8888:
2837 dspcntr |= DISPPLANE_RGBX888;
2838 break;
2839 case DRM_FORMAT_XRGB2101010:
2840 dspcntr |= DISPPLANE_BGRX101010;
2841 break;
2842 case DRM_FORMAT_XBGR2101010:
2843 dspcntr |= DISPPLANE_RGBX101010;
2844 break;
2845 default:
2846 BUG();
2847 }
2848
2849 if (obj->tiling_mode != I915_TILING_NONE)
2850 dspcntr |= DISPPLANE_TILED;
2851
2852 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2853 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2854
2855 linear_offset = y * fb->pitches[0] + x * pixel_size;
2856 intel_crtc->dspaddr_offset =
2857 intel_gen4_compute_page_offset(dev_priv,
2858 &x, &y, obj->tiling_mode,
2859 pixel_size,
2860 fb->pitches[0]);
2861 linear_offset -= intel_crtc->dspaddr_offset;
2862 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2863 dspcntr |= DISPPLANE_ROTATE_180;
2864
2865 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2866 x += (intel_crtc->config->pipe_src_w - 1);
2867 y += (intel_crtc->config->pipe_src_h - 1);
2868
2869 /* Finding the last pixel of the last line of the display
2870 data and adding to linear_offset*/
2871 linear_offset +=
2872 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2873 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2874 }
2875 }
2876
2877 intel_crtc->adjusted_x = x;
2878 intel_crtc->adjusted_y = y;
2879
2880 I915_WRITE(reg, dspcntr);
2881
2882 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2883 I915_WRITE(DSPSURF(plane),
2884 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2885 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2886 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2887 } else {
2888 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2889 I915_WRITE(DSPLINOFF(plane), linear_offset);
2890 }
2891 POSTING_READ(reg);
2892 }
2893
2894 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2895 uint32_t pixel_format)
2896 {
2897 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2898
2899 /*
2900 * The stride is either expressed as a multiple of 64 bytes
2901 * chunks for linear buffers or in number of tiles for tiled
2902 * buffers.
2903 */
2904 switch (fb_modifier) {
2905 case DRM_FORMAT_MOD_NONE:
2906 return 64;
2907 case I915_FORMAT_MOD_X_TILED:
2908 if (INTEL_INFO(dev)->gen == 2)
2909 return 128;
2910 return 512;
2911 case I915_FORMAT_MOD_Y_TILED:
2912 /* No need to check for old gens and Y tiling since this is
2913 * about the display engine and those will be blocked before
2914 * we get here.
2915 */
2916 return 128;
2917 case I915_FORMAT_MOD_Yf_TILED:
2918 if (bits_per_pixel == 8)
2919 return 64;
2920 else
2921 return 128;
2922 default:
2923 MISSING_CASE(fb_modifier);
2924 return 64;
2925 }
2926 }
2927
2928 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2929 struct drm_i915_gem_object *obj,
2930 unsigned int plane)
2931 {
2932 struct i915_ggtt_view view;
2933 struct i915_vma *vma;
2934 u64 offset;
2935
2936 intel_fill_fb_ggtt_view(&view, intel_plane->base.fb,
2937 intel_plane->base.state);
2938
2939 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2940 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2941 view.type))
2942 return -1;
2943
2944 offset = vma->node.start;
2945
2946 if (plane == 1) {
2947 offset += vma->ggtt_view.params.rotation_info.uv_start_page *
2948 PAGE_SIZE;
2949 }
2950
2951 WARN_ON(upper_32_bits(offset));
2952
2953 return lower_32_bits(offset);
2954 }
2955
2956 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2957 {
2958 struct drm_device *dev = intel_crtc->base.dev;
2959 struct drm_i915_private *dev_priv = dev->dev_private;
2960
2961 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2962 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2963 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2964 }
2965
2966 /*
2967 * This function detaches (aka. unbinds) unused scalers in hardware
2968 */
2969 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2970 {
2971 struct intel_crtc_scaler_state *scaler_state;
2972 int i;
2973
2974 scaler_state = &intel_crtc->config->scaler_state;
2975
2976 /* loop through and disable scalers that aren't in use */
2977 for (i = 0; i < intel_crtc->num_scalers; i++) {
2978 if (!scaler_state->scalers[i].in_use)
2979 skl_detach_scaler(intel_crtc, i);
2980 }
2981 }
2982
2983 u32 skl_plane_ctl_format(uint32_t pixel_format)
2984 {
2985 switch (pixel_format) {
2986 case DRM_FORMAT_C8:
2987 return PLANE_CTL_FORMAT_INDEXED;
2988 case DRM_FORMAT_RGB565:
2989 return PLANE_CTL_FORMAT_RGB_565;
2990 case DRM_FORMAT_XBGR8888:
2991 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2992 case DRM_FORMAT_XRGB8888:
2993 return PLANE_CTL_FORMAT_XRGB_8888;
2994 /*
2995 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2996 * to be already pre-multiplied. We need to add a knob (or a different
2997 * DRM_FORMAT) for user-space to configure that.
2998 */
2999 case DRM_FORMAT_ABGR8888:
3000 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3001 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3002 case DRM_FORMAT_ARGB8888:
3003 return PLANE_CTL_FORMAT_XRGB_8888 |
3004 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3005 case DRM_FORMAT_XRGB2101010:
3006 return PLANE_CTL_FORMAT_XRGB_2101010;
3007 case DRM_FORMAT_XBGR2101010:
3008 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3009 case DRM_FORMAT_YUYV:
3010 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3011 case DRM_FORMAT_YVYU:
3012 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3013 case DRM_FORMAT_UYVY:
3014 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3015 case DRM_FORMAT_VYUY:
3016 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3017 default:
3018 MISSING_CASE(pixel_format);
3019 }
3020
3021 return 0;
3022 }
3023
3024 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3025 {
3026 switch (fb_modifier) {
3027 case DRM_FORMAT_MOD_NONE:
3028 break;
3029 case I915_FORMAT_MOD_X_TILED:
3030 return PLANE_CTL_TILED_X;
3031 case I915_FORMAT_MOD_Y_TILED:
3032 return PLANE_CTL_TILED_Y;
3033 case I915_FORMAT_MOD_Yf_TILED:
3034 return PLANE_CTL_TILED_YF;
3035 default:
3036 MISSING_CASE(fb_modifier);
3037 }
3038
3039 return 0;
3040 }
3041
3042 u32 skl_plane_ctl_rotation(unsigned int rotation)
3043 {
3044 switch (rotation) {
3045 case BIT(DRM_ROTATE_0):
3046 break;
3047 /*
3048 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3049 * while i915 HW rotation is clockwise, thats why this swapping.
3050 */
3051 case BIT(DRM_ROTATE_90):
3052 return PLANE_CTL_ROTATE_270;
3053 case BIT(DRM_ROTATE_180):
3054 return PLANE_CTL_ROTATE_180;
3055 case BIT(DRM_ROTATE_270):
3056 return PLANE_CTL_ROTATE_90;
3057 default:
3058 MISSING_CASE(rotation);
3059 }
3060
3061 return 0;
3062 }
3063
3064 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3065 struct drm_framebuffer *fb,
3066 int x, int y)
3067 {
3068 struct drm_device *dev = crtc->dev;
3069 struct drm_i915_private *dev_priv = dev->dev_private;
3070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3071 struct drm_plane *plane = crtc->primary;
3072 bool visible = to_intel_plane_state(plane->state)->visible;
3073 struct drm_i915_gem_object *obj;
3074 int pipe = intel_crtc->pipe;
3075 u32 plane_ctl, stride_div, stride;
3076 u32 tile_height, plane_offset, plane_size;
3077 unsigned int rotation;
3078 int x_offset, y_offset;
3079 u32 surf_addr;
3080 struct intel_crtc_state *crtc_state = intel_crtc->config;
3081 struct intel_plane_state *plane_state;
3082 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3083 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3084 int scaler_id = -1;
3085
3086 plane_state = to_intel_plane_state(plane->state);
3087
3088 if (!visible || !fb) {
3089 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3090 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3091 POSTING_READ(PLANE_CTL(pipe, 0));
3092 return;
3093 }
3094
3095 plane_ctl = PLANE_CTL_ENABLE |
3096 PLANE_CTL_PIPE_GAMMA_ENABLE |
3097 PLANE_CTL_PIPE_CSC_ENABLE;
3098
3099 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3100 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3101 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3102
3103 rotation = plane->state->rotation;
3104 plane_ctl |= skl_plane_ctl_rotation(rotation);
3105
3106 obj = intel_fb_obj(fb);
3107 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3108 fb->pixel_format);
3109 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3110
3111 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3112
3113 scaler_id = plane_state->scaler_id;
3114 src_x = plane_state->src.x1 >> 16;
3115 src_y = plane_state->src.y1 >> 16;
3116 src_w = drm_rect_width(&plane_state->src) >> 16;
3117 src_h = drm_rect_height(&plane_state->src) >> 16;
3118 dst_x = plane_state->dst.x1;
3119 dst_y = plane_state->dst.y1;
3120 dst_w = drm_rect_width(&plane_state->dst);
3121 dst_h = drm_rect_height(&plane_state->dst);
3122
3123 WARN_ON(x != src_x || y != src_y);
3124
3125 if (intel_rotation_90_or_270(rotation)) {
3126 /* stride = Surface height in tiles */
3127 tile_height = intel_tile_height(dev, fb->pixel_format,
3128 fb->modifier[0], 0);
3129 stride = DIV_ROUND_UP(fb->height, tile_height);
3130 x_offset = stride * tile_height - y - src_h;
3131 y_offset = x;
3132 plane_size = (src_w - 1) << 16 | (src_h - 1);
3133 } else {
3134 stride = fb->pitches[0] / stride_div;
3135 x_offset = x;
3136 y_offset = y;
3137 plane_size = (src_h - 1) << 16 | (src_w - 1);
3138 }
3139 plane_offset = y_offset << 16 | x_offset;
3140
3141 intel_crtc->adjusted_x = x_offset;
3142 intel_crtc->adjusted_y = y_offset;
3143
3144 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3145 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3146 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3147 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3148
3149 if (scaler_id >= 0) {
3150 uint32_t ps_ctrl = 0;
3151
3152 WARN_ON(!dst_w || !dst_h);
3153 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3154 crtc_state->scaler_state.scalers[scaler_id].mode;
3155 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3156 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3157 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3158 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3159 I915_WRITE(PLANE_POS(pipe, 0), 0);
3160 } else {
3161 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3162 }
3163
3164 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3165
3166 POSTING_READ(PLANE_SURF(pipe, 0));
3167 }
3168
3169 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3170 static int
3171 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3172 int x, int y, enum mode_set_atomic state)
3173 {
3174 struct drm_device *dev = crtc->dev;
3175 struct drm_i915_private *dev_priv = dev->dev_private;
3176
3177 if (dev_priv->fbc.deactivate)
3178 dev_priv->fbc.deactivate(dev_priv);
3179
3180 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3181
3182 return 0;
3183 }
3184
3185 static void intel_complete_page_flips(struct drm_device *dev)
3186 {
3187 struct drm_crtc *crtc;
3188
3189 for_each_crtc(dev, crtc) {
3190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3191 enum plane plane = intel_crtc->plane;
3192
3193 intel_prepare_page_flip(dev, plane);
3194 intel_finish_page_flip_plane(dev, plane);
3195 }
3196 }
3197
3198 static void intel_update_primary_planes(struct drm_device *dev)
3199 {
3200 struct drm_crtc *crtc;
3201
3202 for_each_crtc(dev, crtc) {
3203 struct intel_plane *plane = to_intel_plane(crtc->primary);
3204 struct intel_plane_state *plane_state;
3205
3206 drm_modeset_lock_crtc(crtc, &plane->base);
3207 plane_state = to_intel_plane_state(plane->base.state);
3208
3209 if (crtc->state->active && plane_state->base.fb)
3210 plane->commit_plane(&plane->base, plane_state);
3211
3212 drm_modeset_unlock_crtc(crtc);
3213 }
3214 }
3215
3216 void intel_prepare_reset(struct drm_device *dev)
3217 {
3218 /* no reset support for gen2 */
3219 if (IS_GEN2(dev))
3220 return;
3221
3222 /* reset doesn't touch the display */
3223 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3224 return;
3225
3226 drm_modeset_lock_all(dev);
3227 /*
3228 * Disabling the crtcs gracefully seems nicer. Also the
3229 * g33 docs say we should at least disable all the planes.
3230 */
3231 intel_display_suspend(dev);
3232 }
3233
3234 void intel_finish_reset(struct drm_device *dev)
3235 {
3236 struct drm_i915_private *dev_priv = to_i915(dev);
3237
3238 /*
3239 * Flips in the rings will be nuked by the reset,
3240 * so complete all pending flips so that user space
3241 * will get its events and not get stuck.
3242 */
3243 intel_complete_page_flips(dev);
3244
3245 /* no reset support for gen2 */
3246 if (IS_GEN2(dev))
3247 return;
3248
3249 /* reset doesn't touch the display */
3250 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3251 /*
3252 * Flips in the rings have been nuked by the reset,
3253 * so update the base address of all primary
3254 * planes to the the last fb to make sure we're
3255 * showing the correct fb after a reset.
3256 *
3257 * FIXME: Atomic will make this obsolete since we won't schedule
3258 * CS-based flips (which might get lost in gpu resets) any more.
3259 */
3260 intel_update_primary_planes(dev);
3261 return;
3262 }
3263
3264 /*
3265 * The display has been reset as well,
3266 * so need a full re-initialization.
3267 */
3268 intel_runtime_pm_disable_interrupts(dev_priv);
3269 intel_runtime_pm_enable_interrupts(dev_priv);
3270
3271 intel_modeset_init_hw(dev);
3272
3273 spin_lock_irq(&dev_priv->irq_lock);
3274 if (dev_priv->display.hpd_irq_setup)
3275 dev_priv->display.hpd_irq_setup(dev);
3276 spin_unlock_irq(&dev_priv->irq_lock);
3277
3278 intel_display_resume(dev);
3279
3280 intel_hpd_init(dev_priv);
3281
3282 drm_modeset_unlock_all(dev);
3283 }
3284
3285 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3286 {
3287 struct drm_device *dev = crtc->dev;
3288 struct drm_i915_private *dev_priv = dev->dev_private;
3289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290 bool pending;
3291
3292 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3293 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3294 return false;
3295
3296 spin_lock_irq(&dev->event_lock);
3297 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3298 spin_unlock_irq(&dev->event_lock);
3299
3300 return pending;
3301 }
3302
3303 static void intel_update_pipe_config(struct intel_crtc *crtc,
3304 struct intel_crtc_state *old_crtc_state)
3305 {
3306 struct drm_device *dev = crtc->base.dev;
3307 struct drm_i915_private *dev_priv = dev->dev_private;
3308 struct intel_crtc_state *pipe_config =
3309 to_intel_crtc_state(crtc->base.state);
3310
3311 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3312 crtc->base.mode = crtc->base.state->mode;
3313
3314 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3315 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3316 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3317
3318 if (HAS_DDI(dev))
3319 intel_set_pipe_csc(&crtc->base);
3320
3321 /*
3322 * Update pipe size and adjust fitter if needed: the reason for this is
3323 * that in compute_mode_changes we check the native mode (not the pfit
3324 * mode) to see if we can flip rather than do a full mode set. In the
3325 * fastboot case, we'll flip, but if we don't update the pipesrc and
3326 * pfit state, we'll end up with a big fb scanned out into the wrong
3327 * sized surface.
3328 */
3329
3330 I915_WRITE(PIPESRC(crtc->pipe),
3331 ((pipe_config->pipe_src_w - 1) << 16) |
3332 (pipe_config->pipe_src_h - 1));
3333
3334 /* on skylake this is done by detaching scalers */
3335 if (INTEL_INFO(dev)->gen >= 9) {
3336 skl_detach_scalers(crtc);
3337
3338 if (pipe_config->pch_pfit.enabled)
3339 skylake_pfit_enable(crtc);
3340 } else if (HAS_PCH_SPLIT(dev)) {
3341 if (pipe_config->pch_pfit.enabled)
3342 ironlake_pfit_enable(crtc);
3343 else if (old_crtc_state->pch_pfit.enabled)
3344 ironlake_pfit_disable(crtc, true);
3345 }
3346 }
3347
3348 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3349 {
3350 struct drm_device *dev = crtc->dev;
3351 struct drm_i915_private *dev_priv = dev->dev_private;
3352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353 int pipe = intel_crtc->pipe;
3354 i915_reg_t reg;
3355 u32 temp;
3356
3357 /* enable normal train */
3358 reg = FDI_TX_CTL(pipe);
3359 temp = I915_READ(reg);
3360 if (IS_IVYBRIDGE(dev)) {
3361 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3362 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3363 } else {
3364 temp &= ~FDI_LINK_TRAIN_NONE;
3365 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3366 }
3367 I915_WRITE(reg, temp);
3368
3369 reg = FDI_RX_CTL(pipe);
3370 temp = I915_READ(reg);
3371 if (HAS_PCH_CPT(dev)) {
3372 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3373 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3374 } else {
3375 temp &= ~FDI_LINK_TRAIN_NONE;
3376 temp |= FDI_LINK_TRAIN_NONE;
3377 }
3378 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3379
3380 /* wait one idle pattern time */
3381 POSTING_READ(reg);
3382 udelay(1000);
3383
3384 /* IVB wants error correction enabled */
3385 if (IS_IVYBRIDGE(dev))
3386 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3387 FDI_FE_ERRC_ENABLE);
3388 }
3389
3390 /* The FDI link training functions for ILK/Ibexpeak. */
3391 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3392 {
3393 struct drm_device *dev = crtc->dev;
3394 struct drm_i915_private *dev_priv = dev->dev_private;
3395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396 int pipe = intel_crtc->pipe;
3397 i915_reg_t reg;
3398 u32 temp, tries;
3399
3400 /* FDI needs bits from pipe first */
3401 assert_pipe_enabled(dev_priv, pipe);
3402
3403 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3404 for train result */
3405 reg = FDI_RX_IMR(pipe);
3406 temp = I915_READ(reg);
3407 temp &= ~FDI_RX_SYMBOL_LOCK;
3408 temp &= ~FDI_RX_BIT_LOCK;
3409 I915_WRITE(reg, temp);
3410 I915_READ(reg);
3411 udelay(150);
3412
3413 /* enable CPU FDI TX and PCH FDI RX */
3414 reg = FDI_TX_CTL(pipe);
3415 temp = I915_READ(reg);
3416 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3417 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3418 temp &= ~FDI_LINK_TRAIN_NONE;
3419 temp |= FDI_LINK_TRAIN_PATTERN_1;
3420 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3421
3422 reg = FDI_RX_CTL(pipe);
3423 temp = I915_READ(reg);
3424 temp &= ~FDI_LINK_TRAIN_NONE;
3425 temp |= FDI_LINK_TRAIN_PATTERN_1;
3426 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3427
3428 POSTING_READ(reg);
3429 udelay(150);
3430
3431 /* Ironlake workaround, enable clock pointer after FDI enable*/
3432 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3433 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3434 FDI_RX_PHASE_SYNC_POINTER_EN);
3435
3436 reg = FDI_RX_IIR(pipe);
3437 for (tries = 0; tries < 5; tries++) {
3438 temp = I915_READ(reg);
3439 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3440
3441 if ((temp & FDI_RX_BIT_LOCK)) {
3442 DRM_DEBUG_KMS("FDI train 1 done.\n");
3443 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3444 break;
3445 }
3446 }
3447 if (tries == 5)
3448 DRM_ERROR("FDI train 1 fail!\n");
3449
3450 /* Train 2 */
3451 reg = FDI_TX_CTL(pipe);
3452 temp = I915_READ(reg);
3453 temp &= ~FDI_LINK_TRAIN_NONE;
3454 temp |= FDI_LINK_TRAIN_PATTERN_2;
3455 I915_WRITE(reg, temp);
3456
3457 reg = FDI_RX_CTL(pipe);
3458 temp = I915_READ(reg);
3459 temp &= ~FDI_LINK_TRAIN_NONE;
3460 temp |= FDI_LINK_TRAIN_PATTERN_2;
3461 I915_WRITE(reg, temp);
3462
3463 POSTING_READ(reg);
3464 udelay(150);
3465
3466 reg = FDI_RX_IIR(pipe);
3467 for (tries = 0; tries < 5; tries++) {
3468 temp = I915_READ(reg);
3469 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3470
3471 if (temp & FDI_RX_SYMBOL_LOCK) {
3472 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3473 DRM_DEBUG_KMS("FDI train 2 done.\n");
3474 break;
3475 }
3476 }
3477 if (tries == 5)
3478 DRM_ERROR("FDI train 2 fail!\n");
3479
3480 DRM_DEBUG_KMS("FDI train done\n");
3481
3482 }
3483
3484 static const int snb_b_fdi_train_param[] = {
3485 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3486 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3487 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3488 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3489 };
3490
3491 /* The FDI link training functions for SNB/Cougarpoint. */
3492 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3493 {
3494 struct drm_device *dev = crtc->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497 int pipe = intel_crtc->pipe;
3498 i915_reg_t reg;
3499 u32 temp, i, retry;
3500
3501 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3502 for train result */
3503 reg = FDI_RX_IMR(pipe);
3504 temp = I915_READ(reg);
3505 temp &= ~FDI_RX_SYMBOL_LOCK;
3506 temp &= ~FDI_RX_BIT_LOCK;
3507 I915_WRITE(reg, temp);
3508
3509 POSTING_READ(reg);
3510 udelay(150);
3511
3512 /* enable CPU FDI TX and PCH FDI RX */
3513 reg = FDI_TX_CTL(pipe);
3514 temp = I915_READ(reg);
3515 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3516 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3517 temp &= ~FDI_LINK_TRAIN_NONE;
3518 temp |= FDI_LINK_TRAIN_PATTERN_1;
3519 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3520 /* SNB-B */
3521 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3522 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3523
3524 I915_WRITE(FDI_RX_MISC(pipe),
3525 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3526
3527 reg = FDI_RX_CTL(pipe);
3528 temp = I915_READ(reg);
3529 if (HAS_PCH_CPT(dev)) {
3530 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3531 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3532 } else {
3533 temp &= ~FDI_LINK_TRAIN_NONE;
3534 temp |= FDI_LINK_TRAIN_PATTERN_1;
3535 }
3536 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3537
3538 POSTING_READ(reg);
3539 udelay(150);
3540
3541 for (i = 0; i < 4; i++) {
3542 reg = FDI_TX_CTL(pipe);
3543 temp = I915_READ(reg);
3544 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3545 temp |= snb_b_fdi_train_param[i];
3546 I915_WRITE(reg, temp);
3547
3548 POSTING_READ(reg);
3549 udelay(500);
3550
3551 for (retry = 0; retry < 5; retry++) {
3552 reg = FDI_RX_IIR(pipe);
3553 temp = I915_READ(reg);
3554 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3555 if (temp & FDI_RX_BIT_LOCK) {
3556 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3557 DRM_DEBUG_KMS("FDI train 1 done.\n");
3558 break;
3559 }
3560 udelay(50);
3561 }
3562 if (retry < 5)
3563 break;
3564 }
3565 if (i == 4)
3566 DRM_ERROR("FDI train 1 fail!\n");
3567
3568 /* Train 2 */
3569 reg = FDI_TX_CTL(pipe);
3570 temp = I915_READ(reg);
3571 temp &= ~FDI_LINK_TRAIN_NONE;
3572 temp |= FDI_LINK_TRAIN_PATTERN_2;
3573 if (IS_GEN6(dev)) {
3574 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575 /* SNB-B */
3576 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3577 }
3578 I915_WRITE(reg, temp);
3579
3580 reg = FDI_RX_CTL(pipe);
3581 temp = I915_READ(reg);
3582 if (HAS_PCH_CPT(dev)) {
3583 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3584 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3585 } else {
3586 temp &= ~FDI_LINK_TRAIN_NONE;
3587 temp |= FDI_LINK_TRAIN_PATTERN_2;
3588 }
3589 I915_WRITE(reg, temp);
3590
3591 POSTING_READ(reg);
3592 udelay(150);
3593
3594 for (i = 0; i < 4; i++) {
3595 reg = FDI_TX_CTL(pipe);
3596 temp = I915_READ(reg);
3597 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598 temp |= snb_b_fdi_train_param[i];
3599 I915_WRITE(reg, temp);
3600
3601 POSTING_READ(reg);
3602 udelay(500);
3603
3604 for (retry = 0; retry < 5; retry++) {
3605 reg = FDI_RX_IIR(pipe);
3606 temp = I915_READ(reg);
3607 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3608 if (temp & FDI_RX_SYMBOL_LOCK) {
3609 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3610 DRM_DEBUG_KMS("FDI train 2 done.\n");
3611 break;
3612 }
3613 udelay(50);
3614 }
3615 if (retry < 5)
3616 break;
3617 }
3618 if (i == 4)
3619 DRM_ERROR("FDI train 2 fail!\n");
3620
3621 DRM_DEBUG_KMS("FDI train done.\n");
3622 }
3623
3624 /* Manual link training for Ivy Bridge A0 parts */
3625 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3626 {
3627 struct drm_device *dev = crtc->dev;
3628 struct drm_i915_private *dev_priv = dev->dev_private;
3629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3630 int pipe = intel_crtc->pipe;
3631 i915_reg_t reg;
3632 u32 temp, i, j;
3633
3634 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3635 for train result */
3636 reg = FDI_RX_IMR(pipe);
3637 temp = I915_READ(reg);
3638 temp &= ~FDI_RX_SYMBOL_LOCK;
3639 temp &= ~FDI_RX_BIT_LOCK;
3640 I915_WRITE(reg, temp);
3641
3642 POSTING_READ(reg);
3643 udelay(150);
3644
3645 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3646 I915_READ(FDI_RX_IIR(pipe)));
3647
3648 /* Try each vswing and preemphasis setting twice before moving on */
3649 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3650 /* disable first in case we need to retry */
3651 reg = FDI_TX_CTL(pipe);
3652 temp = I915_READ(reg);
3653 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3654 temp &= ~FDI_TX_ENABLE;
3655 I915_WRITE(reg, temp);
3656
3657 reg = FDI_RX_CTL(pipe);
3658 temp = I915_READ(reg);
3659 temp &= ~FDI_LINK_TRAIN_AUTO;
3660 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3661 temp &= ~FDI_RX_ENABLE;
3662 I915_WRITE(reg, temp);
3663
3664 /* enable CPU FDI TX and PCH FDI RX */
3665 reg = FDI_TX_CTL(pipe);
3666 temp = I915_READ(reg);
3667 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3668 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3669 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3670 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3671 temp |= snb_b_fdi_train_param[j/2];
3672 temp |= FDI_COMPOSITE_SYNC;
3673 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3674
3675 I915_WRITE(FDI_RX_MISC(pipe),
3676 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3677
3678 reg = FDI_RX_CTL(pipe);
3679 temp = I915_READ(reg);
3680 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3681 temp |= FDI_COMPOSITE_SYNC;
3682 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3683
3684 POSTING_READ(reg);
3685 udelay(1); /* should be 0.5us */
3686
3687 for (i = 0; i < 4; i++) {
3688 reg = FDI_RX_IIR(pipe);
3689 temp = I915_READ(reg);
3690 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3691
3692 if (temp & FDI_RX_BIT_LOCK ||
3693 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3694 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3695 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3696 i);
3697 break;
3698 }
3699 udelay(1); /* should be 0.5us */
3700 }
3701 if (i == 4) {
3702 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3703 continue;
3704 }
3705
3706 /* Train 2 */
3707 reg = FDI_TX_CTL(pipe);
3708 temp = I915_READ(reg);
3709 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3710 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3711 I915_WRITE(reg, temp);
3712
3713 reg = FDI_RX_CTL(pipe);
3714 temp = I915_READ(reg);
3715 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3716 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3717 I915_WRITE(reg, temp);
3718
3719 POSTING_READ(reg);
3720 udelay(2); /* should be 1.5us */
3721
3722 for (i = 0; i < 4; i++) {
3723 reg = FDI_RX_IIR(pipe);
3724 temp = I915_READ(reg);
3725 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3726
3727 if (temp & FDI_RX_SYMBOL_LOCK ||
3728 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3729 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3730 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3731 i);
3732 goto train_done;
3733 }
3734 udelay(2); /* should be 1.5us */
3735 }
3736 if (i == 4)
3737 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3738 }
3739
3740 train_done:
3741 DRM_DEBUG_KMS("FDI train done.\n");
3742 }
3743
3744 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3745 {
3746 struct drm_device *dev = intel_crtc->base.dev;
3747 struct drm_i915_private *dev_priv = dev->dev_private;
3748 int pipe = intel_crtc->pipe;
3749 i915_reg_t reg;
3750 u32 temp;
3751
3752 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3753 reg = FDI_RX_CTL(pipe);
3754 temp = I915_READ(reg);
3755 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3756 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3757 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3758 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3759
3760 POSTING_READ(reg);
3761 udelay(200);
3762
3763 /* Switch from Rawclk to PCDclk */
3764 temp = I915_READ(reg);
3765 I915_WRITE(reg, temp | FDI_PCDCLK);
3766
3767 POSTING_READ(reg);
3768 udelay(200);
3769
3770 /* Enable CPU FDI TX PLL, always on for Ironlake */
3771 reg = FDI_TX_CTL(pipe);
3772 temp = I915_READ(reg);
3773 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3774 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3775
3776 POSTING_READ(reg);
3777 udelay(100);
3778 }
3779 }
3780
3781 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3782 {
3783 struct drm_device *dev = intel_crtc->base.dev;
3784 struct drm_i915_private *dev_priv = dev->dev_private;
3785 int pipe = intel_crtc->pipe;
3786 i915_reg_t reg;
3787 u32 temp;
3788
3789 /* Switch from PCDclk to Rawclk */
3790 reg = FDI_RX_CTL(pipe);
3791 temp = I915_READ(reg);
3792 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3793
3794 /* Disable CPU FDI TX PLL */
3795 reg = FDI_TX_CTL(pipe);
3796 temp = I915_READ(reg);
3797 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3798
3799 POSTING_READ(reg);
3800 udelay(100);
3801
3802 reg = FDI_RX_CTL(pipe);
3803 temp = I915_READ(reg);
3804 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3805
3806 /* Wait for the clocks to turn off. */
3807 POSTING_READ(reg);
3808 udelay(100);
3809 }
3810
3811 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3812 {
3813 struct drm_device *dev = crtc->dev;
3814 struct drm_i915_private *dev_priv = dev->dev_private;
3815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3816 int pipe = intel_crtc->pipe;
3817 i915_reg_t reg;
3818 u32 temp;
3819
3820 /* disable CPU FDI tx and PCH FDI rx */
3821 reg = FDI_TX_CTL(pipe);
3822 temp = I915_READ(reg);
3823 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3824 POSTING_READ(reg);
3825
3826 reg = FDI_RX_CTL(pipe);
3827 temp = I915_READ(reg);
3828 temp &= ~(0x7 << 16);
3829 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3830 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3831
3832 POSTING_READ(reg);
3833 udelay(100);
3834
3835 /* Ironlake workaround, disable clock pointer after downing FDI */
3836 if (HAS_PCH_IBX(dev))
3837 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3838
3839 /* still set train pattern 1 */
3840 reg = FDI_TX_CTL(pipe);
3841 temp = I915_READ(reg);
3842 temp &= ~FDI_LINK_TRAIN_NONE;
3843 temp |= FDI_LINK_TRAIN_PATTERN_1;
3844 I915_WRITE(reg, temp);
3845
3846 reg = FDI_RX_CTL(pipe);
3847 temp = I915_READ(reg);
3848 if (HAS_PCH_CPT(dev)) {
3849 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3850 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3851 } else {
3852 temp &= ~FDI_LINK_TRAIN_NONE;
3853 temp |= FDI_LINK_TRAIN_PATTERN_1;
3854 }
3855 /* BPC in FDI rx is consistent with that in PIPECONF */
3856 temp &= ~(0x07 << 16);
3857 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3858 I915_WRITE(reg, temp);
3859
3860 POSTING_READ(reg);
3861 udelay(100);
3862 }
3863
3864 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3865 {
3866 struct intel_crtc *crtc;
3867
3868 /* Note that we don't need to be called with mode_config.lock here
3869 * as our list of CRTC objects is static for the lifetime of the
3870 * device and so cannot disappear as we iterate. Similarly, we can
3871 * happily treat the predicates as racy, atomic checks as userspace
3872 * cannot claim and pin a new fb without at least acquring the
3873 * struct_mutex and so serialising with us.
3874 */
3875 for_each_intel_crtc(dev, crtc) {
3876 if (atomic_read(&crtc->unpin_work_count) == 0)
3877 continue;
3878
3879 if (crtc->unpin_work)
3880 intel_wait_for_vblank(dev, crtc->pipe);
3881
3882 return true;
3883 }
3884
3885 return false;
3886 }
3887
3888 static void page_flip_completed(struct intel_crtc *intel_crtc)
3889 {
3890 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3891 struct intel_unpin_work *work = intel_crtc->unpin_work;
3892
3893 /* ensure that the unpin work is consistent wrt ->pending. */
3894 smp_rmb();
3895 intel_crtc->unpin_work = NULL;
3896
3897 if (work->event)
3898 drm_send_vblank_event(intel_crtc->base.dev,
3899 intel_crtc->pipe,
3900 work->event);
3901
3902 drm_crtc_vblank_put(&intel_crtc->base);
3903
3904 wake_up_all(&dev_priv->pending_flip_queue);
3905 queue_work(dev_priv->wq, &work->work);
3906
3907 trace_i915_flip_complete(intel_crtc->plane,
3908 work->pending_flip_obj);
3909 }
3910
3911 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3912 {
3913 struct drm_device *dev = crtc->dev;
3914 struct drm_i915_private *dev_priv = dev->dev_private;
3915 long ret;
3916
3917 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3918
3919 ret = wait_event_interruptible_timeout(
3920 dev_priv->pending_flip_queue,
3921 !intel_crtc_has_pending_flip(crtc),
3922 60*HZ);
3923
3924 if (ret < 0)
3925 return ret;
3926
3927 if (ret == 0) {
3928 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3929
3930 spin_lock_irq(&dev->event_lock);
3931 if (intel_crtc->unpin_work) {
3932 WARN_ONCE(1, "Removing stuck page flip\n");
3933 page_flip_completed(intel_crtc);
3934 }
3935 spin_unlock_irq(&dev->event_lock);
3936 }
3937
3938 return 0;
3939 }
3940
3941 /* Program iCLKIP clock to the desired frequency */
3942 static void lpt_program_iclkip(struct drm_crtc *crtc)
3943 {
3944 struct drm_device *dev = crtc->dev;
3945 struct drm_i915_private *dev_priv = dev->dev_private;
3946 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3947 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3948 u32 temp;
3949
3950 mutex_lock(&dev_priv->sb_lock);
3951
3952 /* It is necessary to ungate the pixclk gate prior to programming
3953 * the divisors, and gate it back when it is done.
3954 */
3955 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3956
3957 /* Disable SSCCTL */
3958 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3959 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3960 SBI_SSCCTL_DISABLE,
3961 SBI_ICLK);
3962
3963 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3964 if (clock == 20000) {
3965 auxdiv = 1;
3966 divsel = 0x41;
3967 phaseinc = 0x20;
3968 } else {
3969 /* The iCLK virtual clock root frequency is in MHz,
3970 * but the adjusted_mode->crtc_clock in in KHz. To get the
3971 * divisors, it is necessary to divide one by another, so we
3972 * convert the virtual clock precision to KHz here for higher
3973 * precision.
3974 */
3975 u32 iclk_virtual_root_freq = 172800 * 1000;
3976 u32 iclk_pi_range = 64;
3977 u32 desired_divisor, msb_divisor_value, pi_value;
3978
3979 desired_divisor = (iclk_virtual_root_freq / clock);
3980 msb_divisor_value = desired_divisor / iclk_pi_range;
3981 pi_value = desired_divisor % iclk_pi_range;
3982
3983 auxdiv = 0;
3984 divsel = msb_divisor_value - 2;
3985 phaseinc = pi_value;
3986 }
3987
3988 /* This should not happen with any sane values */
3989 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3990 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3991 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3992 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3993
3994 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3995 clock,
3996 auxdiv,
3997 divsel,
3998 phasedir,
3999 phaseinc);
4000
4001 /* Program SSCDIVINTPHASE6 */
4002 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4003 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4004 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4005 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4006 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4007 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4008 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4009 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4010
4011 /* Program SSCAUXDIV */
4012 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4013 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4014 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4015 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4016
4017 /* Enable modulator and associated divider */
4018 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4019 temp &= ~SBI_SSCCTL_DISABLE;
4020 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4021
4022 /* Wait for initialization time */
4023 udelay(24);
4024
4025 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4026
4027 mutex_unlock(&dev_priv->sb_lock);
4028 }
4029
4030 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4031 enum pipe pch_transcoder)
4032 {
4033 struct drm_device *dev = crtc->base.dev;
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4036
4037 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4038 I915_READ(HTOTAL(cpu_transcoder)));
4039 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4040 I915_READ(HBLANK(cpu_transcoder)));
4041 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4042 I915_READ(HSYNC(cpu_transcoder)));
4043
4044 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4045 I915_READ(VTOTAL(cpu_transcoder)));
4046 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4047 I915_READ(VBLANK(cpu_transcoder)));
4048 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4049 I915_READ(VSYNC(cpu_transcoder)));
4050 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4051 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4052 }
4053
4054 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4055 {
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 uint32_t temp;
4058
4059 temp = I915_READ(SOUTH_CHICKEN1);
4060 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4061 return;
4062
4063 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4064 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4065
4066 temp &= ~FDI_BC_BIFURCATION_SELECT;
4067 if (enable)
4068 temp |= FDI_BC_BIFURCATION_SELECT;
4069
4070 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4071 I915_WRITE(SOUTH_CHICKEN1, temp);
4072 POSTING_READ(SOUTH_CHICKEN1);
4073 }
4074
4075 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4076 {
4077 struct drm_device *dev = intel_crtc->base.dev;
4078
4079 switch (intel_crtc->pipe) {
4080 case PIPE_A:
4081 break;
4082 case PIPE_B:
4083 if (intel_crtc->config->fdi_lanes > 2)
4084 cpt_set_fdi_bc_bifurcation(dev, false);
4085 else
4086 cpt_set_fdi_bc_bifurcation(dev, true);
4087
4088 break;
4089 case PIPE_C:
4090 cpt_set_fdi_bc_bifurcation(dev, true);
4091
4092 break;
4093 default:
4094 BUG();
4095 }
4096 }
4097
4098 /* Return which DP Port should be selected for Transcoder DP control */
4099 static enum port
4100 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4101 {
4102 struct drm_device *dev = crtc->dev;
4103 struct intel_encoder *encoder;
4104
4105 for_each_encoder_on_crtc(dev, crtc, encoder) {
4106 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4107 encoder->type == INTEL_OUTPUT_EDP)
4108 return enc_to_dig_port(&encoder->base)->port;
4109 }
4110
4111 return -1;
4112 }
4113
4114 /*
4115 * Enable PCH resources required for PCH ports:
4116 * - PCH PLLs
4117 * - FDI training & RX/TX
4118 * - update transcoder timings
4119 * - DP transcoding bits
4120 * - transcoder
4121 */
4122 static void ironlake_pch_enable(struct drm_crtc *crtc)
4123 {
4124 struct drm_device *dev = crtc->dev;
4125 struct drm_i915_private *dev_priv = dev->dev_private;
4126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4127 int pipe = intel_crtc->pipe;
4128 u32 temp;
4129
4130 assert_pch_transcoder_disabled(dev_priv, pipe);
4131
4132 if (IS_IVYBRIDGE(dev))
4133 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4134
4135 /* Write the TU size bits before fdi link training, so that error
4136 * detection works. */
4137 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4138 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4139
4140 /*
4141 * Sometimes spurious CPU pipe underruns happen during FDI
4142 * training, at least with VGA+HDMI cloning. Suppress them.
4143 */
4144 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4145
4146 /* For PCH output, training FDI link */
4147 dev_priv->display.fdi_link_train(crtc);
4148
4149 /* We need to program the right clock selection before writing the pixel
4150 * mutliplier into the DPLL. */
4151 if (HAS_PCH_CPT(dev)) {
4152 u32 sel;
4153
4154 temp = I915_READ(PCH_DPLL_SEL);
4155 temp |= TRANS_DPLL_ENABLE(pipe);
4156 sel = TRANS_DPLLB_SEL(pipe);
4157 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4158 temp |= sel;
4159 else
4160 temp &= ~sel;
4161 I915_WRITE(PCH_DPLL_SEL, temp);
4162 }
4163
4164 /* XXX: pch pll's can be enabled any time before we enable the PCH
4165 * transcoder, and we actually should do this to not upset any PCH
4166 * transcoder that already use the clock when we share it.
4167 *
4168 * Note that enable_shared_dpll tries to do the right thing, but
4169 * get_shared_dpll unconditionally resets the pll - we need that to have
4170 * the right LVDS enable sequence. */
4171 intel_enable_shared_dpll(intel_crtc);
4172
4173 /* set transcoder timing, panel must allow it */
4174 assert_panel_unlocked(dev_priv, pipe);
4175 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4176
4177 intel_fdi_normal_train(crtc);
4178
4179 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4180
4181 /* For PCH DP, enable TRANS_DP_CTL */
4182 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4183 const struct drm_display_mode *adjusted_mode =
4184 &intel_crtc->config->base.adjusted_mode;
4185 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4186 i915_reg_t reg = TRANS_DP_CTL(pipe);
4187 temp = I915_READ(reg);
4188 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4189 TRANS_DP_SYNC_MASK |
4190 TRANS_DP_BPC_MASK);
4191 temp |= TRANS_DP_OUTPUT_ENABLE;
4192 temp |= bpc << 9; /* same format but at 11:9 */
4193
4194 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4195 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4196 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4197 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4198
4199 switch (intel_trans_dp_port_sel(crtc)) {
4200 case PORT_B:
4201 temp |= TRANS_DP_PORT_SEL_B;
4202 break;
4203 case PORT_C:
4204 temp |= TRANS_DP_PORT_SEL_C;
4205 break;
4206 case PORT_D:
4207 temp |= TRANS_DP_PORT_SEL_D;
4208 break;
4209 default:
4210 BUG();
4211 }
4212
4213 I915_WRITE(reg, temp);
4214 }
4215
4216 ironlake_enable_pch_transcoder(dev_priv, pipe);
4217 }
4218
4219 static void lpt_pch_enable(struct drm_crtc *crtc)
4220 {
4221 struct drm_device *dev = crtc->dev;
4222 struct drm_i915_private *dev_priv = dev->dev_private;
4223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4224 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4225
4226 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4227
4228 lpt_program_iclkip(crtc);
4229
4230 /* Set transcoder timing. */
4231 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4232
4233 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4234 }
4235
4236 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4237 struct intel_crtc_state *crtc_state)
4238 {
4239 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4240 struct intel_shared_dpll *pll;
4241 struct intel_shared_dpll_config *shared_dpll;
4242 enum intel_dpll_id i;
4243 int max = dev_priv->num_shared_dpll;
4244
4245 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4246
4247 if (HAS_PCH_IBX(dev_priv->dev)) {
4248 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4249 i = (enum intel_dpll_id) crtc->pipe;
4250 pll = &dev_priv->shared_dplls[i];
4251
4252 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4253 crtc->base.base.id, pll->name);
4254
4255 WARN_ON(shared_dpll[i].crtc_mask);
4256
4257 goto found;
4258 }
4259
4260 if (IS_BROXTON(dev_priv->dev)) {
4261 /* PLL is attached to port in bxt */
4262 struct intel_encoder *encoder;
4263 struct intel_digital_port *intel_dig_port;
4264
4265 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4266 if (WARN_ON(!encoder))
4267 return NULL;
4268
4269 intel_dig_port = enc_to_dig_port(&encoder->base);
4270 /* 1:1 mapping between ports and PLLs */
4271 i = (enum intel_dpll_id)intel_dig_port->port;
4272 pll = &dev_priv->shared_dplls[i];
4273 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4274 crtc->base.base.id, pll->name);
4275 WARN_ON(shared_dpll[i].crtc_mask);
4276
4277 goto found;
4278 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4279 /* Do not consider SPLL */
4280 max = 2;
4281
4282 for (i = 0; i < max; i++) {
4283 pll = &dev_priv->shared_dplls[i];
4284
4285 /* Only want to check enabled timings first */
4286 if (shared_dpll[i].crtc_mask == 0)
4287 continue;
4288
4289 if (memcmp(&crtc_state->dpll_hw_state,
4290 &shared_dpll[i].hw_state,
4291 sizeof(crtc_state->dpll_hw_state)) == 0) {
4292 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4293 crtc->base.base.id, pll->name,
4294 shared_dpll[i].crtc_mask,
4295 pll->active);
4296 goto found;
4297 }
4298 }
4299
4300 /* Ok no matching timings, maybe there's a free one? */
4301 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4302 pll = &dev_priv->shared_dplls[i];
4303 if (shared_dpll[i].crtc_mask == 0) {
4304 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4305 crtc->base.base.id, pll->name);
4306 goto found;
4307 }
4308 }
4309
4310 return NULL;
4311
4312 found:
4313 if (shared_dpll[i].crtc_mask == 0)
4314 shared_dpll[i].hw_state =
4315 crtc_state->dpll_hw_state;
4316
4317 crtc_state->shared_dpll = i;
4318 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4319 pipe_name(crtc->pipe));
4320
4321 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4322
4323 return pll;
4324 }
4325
4326 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4327 {
4328 struct drm_i915_private *dev_priv = to_i915(state->dev);
4329 struct intel_shared_dpll_config *shared_dpll;
4330 struct intel_shared_dpll *pll;
4331 enum intel_dpll_id i;
4332
4333 if (!to_intel_atomic_state(state)->dpll_set)
4334 return;
4335
4336 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4337 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4338 pll = &dev_priv->shared_dplls[i];
4339 pll->config = shared_dpll[i];
4340 }
4341 }
4342
4343 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4344 {
4345 struct drm_i915_private *dev_priv = dev->dev_private;
4346 i915_reg_t dslreg = PIPEDSL(pipe);
4347 u32 temp;
4348
4349 temp = I915_READ(dslreg);
4350 udelay(500);
4351 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4352 if (wait_for(I915_READ(dslreg) != temp, 5))
4353 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4354 }
4355 }
4356
4357 static int
4358 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4359 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4360 int src_w, int src_h, int dst_w, int dst_h)
4361 {
4362 struct intel_crtc_scaler_state *scaler_state =
4363 &crtc_state->scaler_state;
4364 struct intel_crtc *intel_crtc =
4365 to_intel_crtc(crtc_state->base.crtc);
4366 int need_scaling;
4367
4368 need_scaling = intel_rotation_90_or_270(rotation) ?
4369 (src_h != dst_w || src_w != dst_h):
4370 (src_w != dst_w || src_h != dst_h);
4371
4372 /*
4373 * if plane is being disabled or scaler is no more required or force detach
4374 * - free scaler binded to this plane/crtc
4375 * - in order to do this, update crtc->scaler_usage
4376 *
4377 * Here scaler state in crtc_state is set free so that
4378 * scaler can be assigned to other user. Actual register
4379 * update to free the scaler is done in plane/panel-fit programming.
4380 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4381 */
4382 if (force_detach || !need_scaling) {
4383 if (*scaler_id >= 0) {
4384 scaler_state->scaler_users &= ~(1 << scaler_user);
4385 scaler_state->scalers[*scaler_id].in_use = 0;
4386
4387 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4388 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4389 intel_crtc->pipe, scaler_user, *scaler_id,
4390 scaler_state->scaler_users);
4391 *scaler_id = -1;
4392 }
4393 return 0;
4394 }
4395
4396 /* range checks */
4397 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4398 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4399
4400 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4401 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4402 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4403 "size is out of scaler range\n",
4404 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4405 return -EINVAL;
4406 }
4407
4408 /* mark this plane as a scaler user in crtc_state */
4409 scaler_state->scaler_users |= (1 << scaler_user);
4410 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4411 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4412 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4413 scaler_state->scaler_users);
4414
4415 return 0;
4416 }
4417
4418 /**
4419 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4420 *
4421 * @state: crtc's scaler state
4422 *
4423 * Return
4424 * 0 - scaler_usage updated successfully
4425 * error - requested scaling cannot be supported or other error condition
4426 */
4427 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4428 {
4429 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4430 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4431
4432 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4433 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4434
4435 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4436 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4437 state->pipe_src_w, state->pipe_src_h,
4438 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4439 }
4440
4441 /**
4442 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4443 *
4444 * @state: crtc's scaler state
4445 * @plane_state: atomic plane state to update
4446 *
4447 * Return
4448 * 0 - scaler_usage updated successfully
4449 * error - requested scaling cannot be supported or other error condition
4450 */
4451 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4452 struct intel_plane_state *plane_state)
4453 {
4454
4455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4456 struct intel_plane *intel_plane =
4457 to_intel_plane(plane_state->base.plane);
4458 struct drm_framebuffer *fb = plane_state->base.fb;
4459 int ret;
4460
4461 bool force_detach = !fb || !plane_state->visible;
4462
4463 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4464 intel_plane->base.base.id, intel_crtc->pipe,
4465 drm_plane_index(&intel_plane->base));
4466
4467 ret = skl_update_scaler(crtc_state, force_detach,
4468 drm_plane_index(&intel_plane->base),
4469 &plane_state->scaler_id,
4470 plane_state->base.rotation,
4471 drm_rect_width(&plane_state->src) >> 16,
4472 drm_rect_height(&plane_state->src) >> 16,
4473 drm_rect_width(&plane_state->dst),
4474 drm_rect_height(&plane_state->dst));
4475
4476 if (ret || plane_state->scaler_id < 0)
4477 return ret;
4478
4479 /* check colorkey */
4480 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4481 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4482 intel_plane->base.base.id);
4483 return -EINVAL;
4484 }
4485
4486 /* Check src format */
4487 switch (fb->pixel_format) {
4488 case DRM_FORMAT_RGB565:
4489 case DRM_FORMAT_XBGR8888:
4490 case DRM_FORMAT_XRGB8888:
4491 case DRM_FORMAT_ABGR8888:
4492 case DRM_FORMAT_ARGB8888:
4493 case DRM_FORMAT_XRGB2101010:
4494 case DRM_FORMAT_XBGR2101010:
4495 case DRM_FORMAT_YUYV:
4496 case DRM_FORMAT_YVYU:
4497 case DRM_FORMAT_UYVY:
4498 case DRM_FORMAT_VYUY:
4499 break;
4500 default:
4501 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4502 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4503 return -EINVAL;
4504 }
4505
4506 return 0;
4507 }
4508
4509 static void skylake_scaler_disable(struct intel_crtc *crtc)
4510 {
4511 int i;
4512
4513 for (i = 0; i < crtc->num_scalers; i++)
4514 skl_detach_scaler(crtc, i);
4515 }
4516
4517 static void skylake_pfit_enable(struct intel_crtc *crtc)
4518 {
4519 struct drm_device *dev = crtc->base.dev;
4520 struct drm_i915_private *dev_priv = dev->dev_private;
4521 int pipe = crtc->pipe;
4522 struct intel_crtc_scaler_state *scaler_state =
4523 &crtc->config->scaler_state;
4524
4525 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4526
4527 if (crtc->config->pch_pfit.enabled) {
4528 int id;
4529
4530 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4531 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4532 return;
4533 }
4534
4535 id = scaler_state->scaler_id;
4536 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4537 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4538 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4539 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4540
4541 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4542 }
4543 }
4544
4545 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4546 {
4547 struct drm_device *dev = crtc->base.dev;
4548 struct drm_i915_private *dev_priv = dev->dev_private;
4549 int pipe = crtc->pipe;
4550
4551 if (crtc->config->pch_pfit.enabled) {
4552 /* Force use of hard-coded filter coefficients
4553 * as some pre-programmed values are broken,
4554 * e.g. x201.
4555 */
4556 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4557 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4558 PF_PIPE_SEL_IVB(pipe));
4559 else
4560 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4561 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4562 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4563 }
4564 }
4565
4566 void hsw_enable_ips(struct intel_crtc *crtc)
4567 {
4568 struct drm_device *dev = crtc->base.dev;
4569 struct drm_i915_private *dev_priv = dev->dev_private;
4570
4571 if (!crtc->config->ips_enabled)
4572 return;
4573
4574 /* We can only enable IPS after we enable a plane and wait for a vblank */
4575 intel_wait_for_vblank(dev, crtc->pipe);
4576
4577 assert_plane_enabled(dev_priv, crtc->plane);
4578 if (IS_BROADWELL(dev)) {
4579 mutex_lock(&dev_priv->rps.hw_lock);
4580 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4581 mutex_unlock(&dev_priv->rps.hw_lock);
4582 /* Quoting Art Runyan: "its not safe to expect any particular
4583 * value in IPS_CTL bit 31 after enabling IPS through the
4584 * mailbox." Moreover, the mailbox may return a bogus state,
4585 * so we need to just enable it and continue on.
4586 */
4587 } else {
4588 I915_WRITE(IPS_CTL, IPS_ENABLE);
4589 /* The bit only becomes 1 in the next vblank, so this wait here
4590 * is essentially intel_wait_for_vblank. If we don't have this
4591 * and don't wait for vblanks until the end of crtc_enable, then
4592 * the HW state readout code will complain that the expected
4593 * IPS_CTL value is not the one we read. */
4594 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4595 DRM_ERROR("Timed out waiting for IPS enable\n");
4596 }
4597 }
4598
4599 void hsw_disable_ips(struct intel_crtc *crtc)
4600 {
4601 struct drm_device *dev = crtc->base.dev;
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603
4604 if (!crtc->config->ips_enabled)
4605 return;
4606
4607 assert_plane_enabled(dev_priv, crtc->plane);
4608 if (IS_BROADWELL(dev)) {
4609 mutex_lock(&dev_priv->rps.hw_lock);
4610 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4611 mutex_unlock(&dev_priv->rps.hw_lock);
4612 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4613 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4614 DRM_ERROR("Timed out waiting for IPS disable\n");
4615 } else {
4616 I915_WRITE(IPS_CTL, 0);
4617 POSTING_READ(IPS_CTL);
4618 }
4619
4620 /* We need to wait for a vblank before we can disable the plane. */
4621 intel_wait_for_vblank(dev, crtc->pipe);
4622 }
4623
4624 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4625 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4626 {
4627 struct drm_device *dev = crtc->dev;
4628 struct drm_i915_private *dev_priv = dev->dev_private;
4629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4630 enum pipe pipe = intel_crtc->pipe;
4631 int i;
4632 bool reenable_ips = false;
4633
4634 /* The clocks have to be on to load the palette. */
4635 if (!crtc->state->active)
4636 return;
4637
4638 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4639 if (intel_crtc->config->has_dsi_encoder)
4640 assert_dsi_pll_enabled(dev_priv);
4641 else
4642 assert_pll_enabled(dev_priv, pipe);
4643 }
4644
4645 /* Workaround : Do not read or write the pipe palette/gamma data while
4646 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4647 */
4648 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4649 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4650 GAMMA_MODE_MODE_SPLIT)) {
4651 hsw_disable_ips(intel_crtc);
4652 reenable_ips = true;
4653 }
4654
4655 for (i = 0; i < 256; i++) {
4656 i915_reg_t palreg;
4657
4658 if (HAS_GMCH_DISPLAY(dev))
4659 palreg = PALETTE(pipe, i);
4660 else
4661 palreg = LGC_PALETTE(pipe, i);
4662
4663 I915_WRITE(palreg,
4664 (intel_crtc->lut_r[i] << 16) |
4665 (intel_crtc->lut_g[i] << 8) |
4666 intel_crtc->lut_b[i]);
4667 }
4668
4669 if (reenable_ips)
4670 hsw_enable_ips(intel_crtc);
4671 }
4672
4673 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4674 {
4675 if (intel_crtc->overlay) {
4676 struct drm_device *dev = intel_crtc->base.dev;
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678
4679 mutex_lock(&dev->struct_mutex);
4680 dev_priv->mm.interruptible = false;
4681 (void) intel_overlay_switch_off(intel_crtc->overlay);
4682 dev_priv->mm.interruptible = true;
4683 mutex_unlock(&dev->struct_mutex);
4684 }
4685
4686 /* Let userspace switch the overlay on again. In most cases userspace
4687 * has to recompute where to put it anyway.
4688 */
4689 }
4690
4691 /**
4692 * intel_post_enable_primary - Perform operations after enabling primary plane
4693 * @crtc: the CRTC whose primary plane was just enabled
4694 *
4695 * Performs potentially sleeping operations that must be done after the primary
4696 * plane is enabled, such as updating FBC and IPS. Note that this may be
4697 * called due to an explicit primary plane update, or due to an implicit
4698 * re-enable that is caused when a sprite plane is updated to no longer
4699 * completely hide the primary plane.
4700 */
4701 static void
4702 intel_post_enable_primary(struct drm_crtc *crtc)
4703 {
4704 struct drm_device *dev = crtc->dev;
4705 struct drm_i915_private *dev_priv = dev->dev_private;
4706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4707 int pipe = intel_crtc->pipe;
4708
4709 /*
4710 * BDW signals flip done immediately if the plane
4711 * is disabled, even if the plane enable is already
4712 * armed to occur at the next vblank :(
4713 */
4714 if (IS_BROADWELL(dev))
4715 intel_wait_for_vblank(dev, pipe);
4716
4717 /*
4718 * FIXME IPS should be fine as long as one plane is
4719 * enabled, but in practice it seems to have problems
4720 * when going from primary only to sprite only and vice
4721 * versa.
4722 */
4723 hsw_enable_ips(intel_crtc);
4724
4725 /*
4726 * Gen2 reports pipe underruns whenever all planes are disabled.
4727 * So don't enable underrun reporting before at least some planes
4728 * are enabled.
4729 * FIXME: Need to fix the logic to work when we turn off all planes
4730 * but leave the pipe running.
4731 */
4732 if (IS_GEN2(dev))
4733 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4734
4735 /* Underruns don't always raise interrupts, so check manually. */
4736 intel_check_cpu_fifo_underruns(dev_priv);
4737 intel_check_pch_fifo_underruns(dev_priv);
4738 }
4739
4740 /**
4741 * intel_pre_disable_primary - Perform operations before disabling primary plane
4742 * @crtc: the CRTC whose primary plane is to be disabled
4743 *
4744 * Performs potentially sleeping operations that must be done before the
4745 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4746 * be called due to an explicit primary plane update, or due to an implicit
4747 * disable that is caused when a sprite plane completely hides the primary
4748 * plane.
4749 */
4750 static void
4751 intel_pre_disable_primary(struct drm_crtc *crtc)
4752 {
4753 struct drm_device *dev = crtc->dev;
4754 struct drm_i915_private *dev_priv = dev->dev_private;
4755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4756 int pipe = intel_crtc->pipe;
4757
4758 /*
4759 * Gen2 reports pipe underruns whenever all planes are disabled.
4760 * So diasble underrun reporting before all the planes get disabled.
4761 * FIXME: Need to fix the logic to work when we turn off all planes
4762 * but leave the pipe running.
4763 */
4764 if (IS_GEN2(dev))
4765 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4766
4767 /*
4768 * Vblank time updates from the shadow to live plane control register
4769 * are blocked if the memory self-refresh mode is active at that
4770 * moment. So to make sure the plane gets truly disabled, disable
4771 * first the self-refresh mode. The self-refresh enable bit in turn
4772 * will be checked/applied by the HW only at the next frame start
4773 * event which is after the vblank start event, so we need to have a
4774 * wait-for-vblank between disabling the plane and the pipe.
4775 */
4776 if (HAS_GMCH_DISPLAY(dev)) {
4777 intel_set_memory_cxsr(dev_priv, false);
4778 dev_priv->wm.vlv.cxsr = false;
4779 intel_wait_for_vblank(dev, pipe);
4780 }
4781
4782 /*
4783 * FIXME IPS should be fine as long as one plane is
4784 * enabled, but in practice it seems to have problems
4785 * when going from primary only to sprite only and vice
4786 * versa.
4787 */
4788 hsw_disable_ips(intel_crtc);
4789 }
4790
4791 static void intel_post_plane_update(struct intel_crtc *crtc)
4792 {
4793 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4794 struct drm_device *dev = crtc->base.dev;
4795
4796 if (atomic->wait_vblank)
4797 intel_wait_for_vblank(dev, crtc->pipe);
4798
4799 intel_frontbuffer_flip(dev, atomic->fb_bits);
4800
4801 if (atomic->disable_cxsr)
4802 crtc->wm.cxsr_allowed = true;
4803
4804 if (crtc->atomic.update_wm_post)
4805 intel_update_watermarks(&crtc->base);
4806
4807 if (atomic->update_fbc)
4808 intel_fbc_update(crtc);
4809
4810 if (atomic->post_enable_primary)
4811 intel_post_enable_primary(&crtc->base);
4812
4813 memset(atomic, 0, sizeof(*atomic));
4814 }
4815
4816 static void intel_pre_plane_update(struct intel_crtc *crtc)
4817 {
4818 struct drm_device *dev = crtc->base.dev;
4819 struct drm_i915_private *dev_priv = dev->dev_private;
4820 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4821
4822 if (atomic->disable_fbc)
4823 intel_fbc_disable_crtc(crtc);
4824
4825 if (crtc->atomic.disable_ips)
4826 hsw_disable_ips(crtc);
4827
4828 if (atomic->pre_disable_primary)
4829 intel_pre_disable_primary(&crtc->base);
4830
4831 if (atomic->disable_cxsr) {
4832 crtc->wm.cxsr_allowed = false;
4833 intel_set_memory_cxsr(dev_priv, false);
4834 }
4835 }
4836
4837 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4838 {
4839 struct drm_device *dev = crtc->dev;
4840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4841 struct drm_plane *p;
4842 int pipe = intel_crtc->pipe;
4843
4844 intel_crtc_dpms_overlay_disable(intel_crtc);
4845
4846 drm_for_each_plane_mask(p, dev, plane_mask)
4847 to_intel_plane(p)->disable_plane(p, crtc);
4848
4849 /*
4850 * FIXME: Once we grow proper nuclear flip support out of this we need
4851 * to compute the mask of flip planes precisely. For the time being
4852 * consider this a flip to a NULL plane.
4853 */
4854 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4855 }
4856
4857 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4858 {
4859 struct drm_device *dev = crtc->dev;
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4862 struct intel_encoder *encoder;
4863 int pipe = intel_crtc->pipe;
4864
4865 if (WARN_ON(intel_crtc->active))
4866 return;
4867
4868 if (intel_crtc->config->has_pch_encoder)
4869 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4870
4871 if (intel_crtc->config->has_pch_encoder)
4872 intel_prepare_shared_dpll(intel_crtc);
4873
4874 if (intel_crtc->config->has_dp_encoder)
4875 intel_dp_set_m_n(intel_crtc, M1_N1);
4876
4877 intel_set_pipe_timings(intel_crtc);
4878
4879 if (intel_crtc->config->has_pch_encoder) {
4880 intel_cpu_transcoder_set_m_n(intel_crtc,
4881 &intel_crtc->config->fdi_m_n, NULL);
4882 }
4883
4884 ironlake_set_pipeconf(crtc);
4885
4886 intel_crtc->active = true;
4887
4888 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4889
4890 for_each_encoder_on_crtc(dev, crtc, encoder)
4891 if (encoder->pre_enable)
4892 encoder->pre_enable(encoder);
4893
4894 if (intel_crtc->config->has_pch_encoder) {
4895 /* Note: FDI PLL enabling _must_ be done before we enable the
4896 * cpu pipes, hence this is separate from all the other fdi/pch
4897 * enabling. */
4898 ironlake_fdi_pll_enable(intel_crtc);
4899 } else {
4900 assert_fdi_tx_disabled(dev_priv, pipe);
4901 assert_fdi_rx_disabled(dev_priv, pipe);
4902 }
4903
4904 ironlake_pfit_enable(intel_crtc);
4905
4906 /*
4907 * On ILK+ LUT must be loaded before the pipe is running but with
4908 * clocks enabled
4909 */
4910 intel_crtc_load_lut(crtc);
4911
4912 intel_update_watermarks(crtc);
4913 intel_enable_pipe(intel_crtc);
4914
4915 if (intel_crtc->config->has_pch_encoder)
4916 ironlake_pch_enable(crtc);
4917
4918 assert_vblank_disabled(crtc);
4919 drm_crtc_vblank_on(crtc);
4920
4921 for_each_encoder_on_crtc(dev, crtc, encoder)
4922 encoder->enable(encoder);
4923
4924 if (HAS_PCH_CPT(dev))
4925 cpt_verify_modeset(dev, intel_crtc->pipe);
4926
4927 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4928 if (intel_crtc->config->has_pch_encoder)
4929 intel_wait_for_vblank(dev, pipe);
4930 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4931 }
4932
4933 /* IPS only exists on ULT machines and is tied to pipe A. */
4934 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4935 {
4936 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4937 }
4938
4939 static void haswell_crtc_enable(struct drm_crtc *crtc)
4940 {
4941 struct drm_device *dev = crtc->dev;
4942 struct drm_i915_private *dev_priv = dev->dev_private;
4943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4944 struct intel_encoder *encoder;
4945 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4946 struct intel_crtc_state *pipe_config =
4947 to_intel_crtc_state(crtc->state);
4948
4949 if (WARN_ON(intel_crtc->active))
4950 return;
4951
4952 if (intel_crtc->config->has_pch_encoder)
4953 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4954 false);
4955
4956 if (intel_crtc_to_shared_dpll(intel_crtc))
4957 intel_enable_shared_dpll(intel_crtc);
4958
4959 if (intel_crtc->config->has_dp_encoder)
4960 intel_dp_set_m_n(intel_crtc, M1_N1);
4961
4962 intel_set_pipe_timings(intel_crtc);
4963
4964 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4965 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4966 intel_crtc->config->pixel_multiplier - 1);
4967 }
4968
4969 if (intel_crtc->config->has_pch_encoder) {
4970 intel_cpu_transcoder_set_m_n(intel_crtc,
4971 &intel_crtc->config->fdi_m_n, NULL);
4972 }
4973
4974 haswell_set_pipeconf(crtc);
4975
4976 intel_set_pipe_csc(crtc);
4977
4978 intel_crtc->active = true;
4979
4980 if (intel_crtc->config->has_pch_encoder)
4981 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4982 else
4983 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4984
4985 for_each_encoder_on_crtc(dev, crtc, encoder) {
4986 if (encoder->pre_enable)
4987 encoder->pre_enable(encoder);
4988 }
4989
4990 if (intel_crtc->config->has_pch_encoder)
4991 dev_priv->display.fdi_link_train(crtc);
4992
4993 if (!intel_crtc->config->has_dsi_encoder)
4994 intel_ddi_enable_pipe_clock(intel_crtc);
4995
4996 if (INTEL_INFO(dev)->gen >= 9)
4997 skylake_pfit_enable(intel_crtc);
4998 else
4999 ironlake_pfit_enable(intel_crtc);
5000
5001 /*
5002 * On ILK+ LUT must be loaded before the pipe is running but with
5003 * clocks enabled
5004 */
5005 intel_crtc_load_lut(crtc);
5006
5007 intel_ddi_set_pipe_settings(crtc);
5008 if (!intel_crtc->config->has_dsi_encoder)
5009 intel_ddi_enable_transcoder_func(crtc);
5010
5011 intel_update_watermarks(crtc);
5012 intel_enable_pipe(intel_crtc);
5013
5014 if (intel_crtc->config->has_pch_encoder)
5015 lpt_pch_enable(crtc);
5016
5017 if (intel_crtc->config->dp_encoder_is_mst)
5018 intel_ddi_set_vc_payload_alloc(crtc, true);
5019
5020 assert_vblank_disabled(crtc);
5021 drm_crtc_vblank_on(crtc);
5022
5023 for_each_encoder_on_crtc(dev, crtc, encoder) {
5024 encoder->enable(encoder);
5025 intel_opregion_notify_encoder(encoder, true);
5026 }
5027
5028 if (intel_crtc->config->has_pch_encoder) {
5029 intel_wait_for_vblank(dev, pipe);
5030 intel_wait_for_vblank(dev, pipe);
5031 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5032 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5033 true);
5034 }
5035
5036 /* If we change the relative order between pipe/planes enabling, we need
5037 * to change the workaround. */
5038 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5039 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5040 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5041 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5042 }
5043 }
5044
5045 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5046 {
5047 struct drm_device *dev = crtc->base.dev;
5048 struct drm_i915_private *dev_priv = dev->dev_private;
5049 int pipe = crtc->pipe;
5050
5051 /* To avoid upsetting the power well on haswell only disable the pfit if
5052 * it's in use. The hw state code will make sure we get this right. */
5053 if (force || crtc->config->pch_pfit.enabled) {
5054 I915_WRITE(PF_CTL(pipe), 0);
5055 I915_WRITE(PF_WIN_POS(pipe), 0);
5056 I915_WRITE(PF_WIN_SZ(pipe), 0);
5057 }
5058 }
5059
5060 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5061 {
5062 struct drm_device *dev = crtc->dev;
5063 struct drm_i915_private *dev_priv = dev->dev_private;
5064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5065 struct intel_encoder *encoder;
5066 int pipe = intel_crtc->pipe;
5067
5068 if (intel_crtc->config->has_pch_encoder)
5069 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5070
5071 for_each_encoder_on_crtc(dev, crtc, encoder)
5072 encoder->disable(encoder);
5073
5074 drm_crtc_vblank_off(crtc);
5075 assert_vblank_disabled(crtc);
5076
5077 /*
5078 * Sometimes spurious CPU pipe underruns happen when the
5079 * pipe is already disabled, but FDI RX/TX is still enabled.
5080 * Happens at least with VGA+HDMI cloning. Suppress them.
5081 */
5082 if (intel_crtc->config->has_pch_encoder)
5083 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5084
5085 intel_disable_pipe(intel_crtc);
5086
5087 ironlake_pfit_disable(intel_crtc, false);
5088
5089 if (intel_crtc->config->has_pch_encoder) {
5090 ironlake_fdi_disable(crtc);
5091 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5092 }
5093
5094 for_each_encoder_on_crtc(dev, crtc, encoder)
5095 if (encoder->post_disable)
5096 encoder->post_disable(encoder);
5097
5098 if (intel_crtc->config->has_pch_encoder) {
5099 ironlake_disable_pch_transcoder(dev_priv, pipe);
5100
5101 if (HAS_PCH_CPT(dev)) {
5102 i915_reg_t reg;
5103 u32 temp;
5104
5105 /* disable TRANS_DP_CTL */
5106 reg = TRANS_DP_CTL(pipe);
5107 temp = I915_READ(reg);
5108 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5109 TRANS_DP_PORT_SEL_MASK);
5110 temp |= TRANS_DP_PORT_SEL_NONE;
5111 I915_WRITE(reg, temp);
5112
5113 /* disable DPLL_SEL */
5114 temp = I915_READ(PCH_DPLL_SEL);
5115 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5116 I915_WRITE(PCH_DPLL_SEL, temp);
5117 }
5118
5119 ironlake_fdi_pll_disable(intel_crtc);
5120 }
5121
5122 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5123 }
5124
5125 static void haswell_crtc_disable(struct drm_crtc *crtc)
5126 {
5127 struct drm_device *dev = crtc->dev;
5128 struct drm_i915_private *dev_priv = dev->dev_private;
5129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5130 struct intel_encoder *encoder;
5131 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5132
5133 if (intel_crtc->config->has_pch_encoder)
5134 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5135 false);
5136
5137 for_each_encoder_on_crtc(dev, crtc, encoder) {
5138 intel_opregion_notify_encoder(encoder, false);
5139 encoder->disable(encoder);
5140 }
5141
5142 drm_crtc_vblank_off(crtc);
5143 assert_vblank_disabled(crtc);
5144
5145 intel_disable_pipe(intel_crtc);
5146
5147 if (intel_crtc->config->dp_encoder_is_mst)
5148 intel_ddi_set_vc_payload_alloc(crtc, false);
5149
5150 if (!intel_crtc->config->has_dsi_encoder)
5151 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5152
5153 if (INTEL_INFO(dev)->gen >= 9)
5154 skylake_scaler_disable(intel_crtc);
5155 else
5156 ironlake_pfit_disable(intel_crtc, false);
5157
5158 if (!intel_crtc->config->has_dsi_encoder)
5159 intel_ddi_disable_pipe_clock(intel_crtc);
5160
5161 if (intel_crtc->config->has_pch_encoder) {
5162 lpt_disable_pch_transcoder(dev_priv);
5163 intel_ddi_fdi_disable(crtc);
5164 }
5165
5166 for_each_encoder_on_crtc(dev, crtc, encoder)
5167 if (encoder->post_disable)
5168 encoder->post_disable(encoder);
5169
5170 if (intel_crtc->config->has_pch_encoder)
5171 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5172 true);
5173 }
5174
5175 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5176 {
5177 struct drm_device *dev = crtc->base.dev;
5178 struct drm_i915_private *dev_priv = dev->dev_private;
5179 struct intel_crtc_state *pipe_config = crtc->config;
5180
5181 if (!pipe_config->gmch_pfit.control)
5182 return;
5183
5184 /*
5185 * The panel fitter should only be adjusted whilst the pipe is disabled,
5186 * according to register description and PRM.
5187 */
5188 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5189 assert_pipe_disabled(dev_priv, crtc->pipe);
5190
5191 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5192 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5193
5194 /* Border color in case we don't scale up to the full screen. Black by
5195 * default, change to something else for debugging. */
5196 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5197 }
5198
5199 static enum intel_display_power_domain port_to_power_domain(enum port port)
5200 {
5201 switch (port) {
5202 case PORT_A:
5203 return POWER_DOMAIN_PORT_DDI_A_LANES;
5204 case PORT_B:
5205 return POWER_DOMAIN_PORT_DDI_B_LANES;
5206 case PORT_C:
5207 return POWER_DOMAIN_PORT_DDI_C_LANES;
5208 case PORT_D:
5209 return POWER_DOMAIN_PORT_DDI_D_LANES;
5210 case PORT_E:
5211 return POWER_DOMAIN_PORT_DDI_E_LANES;
5212 default:
5213 MISSING_CASE(port);
5214 return POWER_DOMAIN_PORT_OTHER;
5215 }
5216 }
5217
5218 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5219 {
5220 switch (port) {
5221 case PORT_A:
5222 return POWER_DOMAIN_AUX_A;
5223 case PORT_B:
5224 return POWER_DOMAIN_AUX_B;
5225 case PORT_C:
5226 return POWER_DOMAIN_AUX_C;
5227 case PORT_D:
5228 return POWER_DOMAIN_AUX_D;
5229 case PORT_E:
5230 /* FIXME: Check VBT for actual wiring of PORT E */
5231 return POWER_DOMAIN_AUX_D;
5232 default:
5233 MISSING_CASE(port);
5234 return POWER_DOMAIN_AUX_A;
5235 }
5236 }
5237
5238 enum intel_display_power_domain
5239 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5240 {
5241 struct drm_device *dev = intel_encoder->base.dev;
5242 struct intel_digital_port *intel_dig_port;
5243
5244 switch (intel_encoder->type) {
5245 case INTEL_OUTPUT_UNKNOWN:
5246 /* Only DDI platforms should ever use this output type */
5247 WARN_ON_ONCE(!HAS_DDI(dev));
5248 case INTEL_OUTPUT_DISPLAYPORT:
5249 case INTEL_OUTPUT_HDMI:
5250 case INTEL_OUTPUT_EDP:
5251 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5252 return port_to_power_domain(intel_dig_port->port);
5253 case INTEL_OUTPUT_DP_MST:
5254 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5255 return port_to_power_domain(intel_dig_port->port);
5256 case INTEL_OUTPUT_ANALOG:
5257 return POWER_DOMAIN_PORT_CRT;
5258 case INTEL_OUTPUT_DSI:
5259 return POWER_DOMAIN_PORT_DSI;
5260 default:
5261 return POWER_DOMAIN_PORT_OTHER;
5262 }
5263 }
5264
5265 enum intel_display_power_domain
5266 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5267 {
5268 struct drm_device *dev = intel_encoder->base.dev;
5269 struct intel_digital_port *intel_dig_port;
5270
5271 switch (intel_encoder->type) {
5272 case INTEL_OUTPUT_UNKNOWN:
5273 case INTEL_OUTPUT_HDMI:
5274 /*
5275 * Only DDI platforms should ever use these output types.
5276 * We can get here after the HDMI detect code has already set
5277 * the type of the shared encoder. Since we can't be sure
5278 * what's the status of the given connectors, play safe and
5279 * run the DP detection too.
5280 */
5281 WARN_ON_ONCE(!HAS_DDI(dev));
5282 case INTEL_OUTPUT_DISPLAYPORT:
5283 case INTEL_OUTPUT_EDP:
5284 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5285 return port_to_aux_power_domain(intel_dig_port->port);
5286 case INTEL_OUTPUT_DP_MST:
5287 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5288 return port_to_aux_power_domain(intel_dig_port->port);
5289 default:
5290 MISSING_CASE(intel_encoder->type);
5291 return POWER_DOMAIN_AUX_A;
5292 }
5293 }
5294
5295 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5296 {
5297 struct drm_device *dev = crtc->dev;
5298 struct intel_encoder *intel_encoder;
5299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5300 enum pipe pipe = intel_crtc->pipe;
5301 unsigned long mask;
5302 enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
5303
5304 if (!crtc->state->active)
5305 return 0;
5306
5307 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5308 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5309 if (intel_crtc->config->pch_pfit.enabled ||
5310 intel_crtc->config->pch_pfit.force_thru)
5311 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5312
5313 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5314 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5315
5316 return mask;
5317 }
5318
5319 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5320 {
5321 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5323 enum intel_display_power_domain domain;
5324 unsigned long domains, new_domains, old_domains;
5325
5326 old_domains = intel_crtc->enabled_power_domains;
5327 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5328
5329 domains = new_domains & ~old_domains;
5330
5331 for_each_power_domain(domain, domains)
5332 intel_display_power_get(dev_priv, domain);
5333
5334 return old_domains & ~new_domains;
5335 }
5336
5337 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5338 unsigned long domains)
5339 {
5340 enum intel_display_power_domain domain;
5341
5342 for_each_power_domain(domain, domains)
5343 intel_display_power_put(dev_priv, domain);
5344 }
5345
5346 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5347 {
5348 struct drm_device *dev = state->dev;
5349 struct drm_i915_private *dev_priv = dev->dev_private;
5350 unsigned long put_domains[I915_MAX_PIPES] = {};
5351 struct drm_crtc_state *crtc_state;
5352 struct drm_crtc *crtc;
5353 int i;
5354
5355 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5356 if (needs_modeset(crtc->state))
5357 put_domains[to_intel_crtc(crtc)->pipe] =
5358 modeset_get_crtc_power_domains(crtc);
5359 }
5360
5361 if (dev_priv->display.modeset_commit_cdclk) {
5362 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5363
5364 if (cdclk != dev_priv->cdclk_freq &&
5365 !WARN_ON(!state->allow_modeset))
5366 dev_priv->display.modeset_commit_cdclk(state);
5367 }
5368
5369 for (i = 0; i < I915_MAX_PIPES; i++)
5370 if (put_domains[i])
5371 modeset_put_power_domains(dev_priv, put_domains[i]);
5372 }
5373
5374 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5375 {
5376 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5377
5378 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5379 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5380 return max_cdclk_freq;
5381 else if (IS_CHERRYVIEW(dev_priv))
5382 return max_cdclk_freq*95/100;
5383 else if (INTEL_INFO(dev_priv)->gen < 4)
5384 return 2*max_cdclk_freq*90/100;
5385 else
5386 return max_cdclk_freq*90/100;
5387 }
5388
5389 static void intel_update_max_cdclk(struct drm_device *dev)
5390 {
5391 struct drm_i915_private *dev_priv = dev->dev_private;
5392
5393 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5394 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5395
5396 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5397 dev_priv->max_cdclk_freq = 675000;
5398 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5399 dev_priv->max_cdclk_freq = 540000;
5400 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5401 dev_priv->max_cdclk_freq = 450000;
5402 else
5403 dev_priv->max_cdclk_freq = 337500;
5404 } else if (IS_BROADWELL(dev)) {
5405 /*
5406 * FIXME with extra cooling we can allow
5407 * 540 MHz for ULX and 675 Mhz for ULT.
5408 * How can we know if extra cooling is
5409 * available? PCI ID, VTB, something else?
5410 */
5411 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5412 dev_priv->max_cdclk_freq = 450000;
5413 else if (IS_BDW_ULX(dev))
5414 dev_priv->max_cdclk_freq = 450000;
5415 else if (IS_BDW_ULT(dev))
5416 dev_priv->max_cdclk_freq = 540000;
5417 else
5418 dev_priv->max_cdclk_freq = 675000;
5419 } else if (IS_CHERRYVIEW(dev)) {
5420 dev_priv->max_cdclk_freq = 320000;
5421 } else if (IS_VALLEYVIEW(dev)) {
5422 dev_priv->max_cdclk_freq = 400000;
5423 } else {
5424 /* otherwise assume cdclk is fixed */
5425 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5426 }
5427
5428 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5429
5430 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5431 dev_priv->max_cdclk_freq);
5432
5433 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5434 dev_priv->max_dotclk_freq);
5435 }
5436
5437 static void intel_update_cdclk(struct drm_device *dev)
5438 {
5439 struct drm_i915_private *dev_priv = dev->dev_private;
5440
5441 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5442 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5443 dev_priv->cdclk_freq);
5444
5445 /*
5446 * Program the gmbus_freq based on the cdclk frequency.
5447 * BSpec erroneously claims we should aim for 4MHz, but
5448 * in fact 1MHz is the correct frequency.
5449 */
5450 if (IS_VALLEYVIEW(dev)) {
5451 /*
5452 * Program the gmbus_freq based on the cdclk frequency.
5453 * BSpec erroneously claims we should aim for 4MHz, but
5454 * in fact 1MHz is the correct frequency.
5455 */
5456 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5457 }
5458
5459 if (dev_priv->max_cdclk_freq == 0)
5460 intel_update_max_cdclk(dev);
5461 }
5462
5463 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5464 {
5465 struct drm_i915_private *dev_priv = dev->dev_private;
5466 uint32_t divider;
5467 uint32_t ratio;
5468 uint32_t current_freq;
5469 int ret;
5470
5471 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5472 switch (frequency) {
5473 case 144000:
5474 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5475 ratio = BXT_DE_PLL_RATIO(60);
5476 break;
5477 case 288000:
5478 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5479 ratio = BXT_DE_PLL_RATIO(60);
5480 break;
5481 case 384000:
5482 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5483 ratio = BXT_DE_PLL_RATIO(60);
5484 break;
5485 case 576000:
5486 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5487 ratio = BXT_DE_PLL_RATIO(60);
5488 break;
5489 case 624000:
5490 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5491 ratio = BXT_DE_PLL_RATIO(65);
5492 break;
5493 case 19200:
5494 /*
5495 * Bypass frequency with DE PLL disabled. Init ratio, divider
5496 * to suppress GCC warning.
5497 */
5498 ratio = 0;
5499 divider = 0;
5500 break;
5501 default:
5502 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5503
5504 return;
5505 }
5506
5507 mutex_lock(&dev_priv->rps.hw_lock);
5508 /* Inform power controller of upcoming frequency change */
5509 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5510 0x80000000);
5511 mutex_unlock(&dev_priv->rps.hw_lock);
5512
5513 if (ret) {
5514 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5515 ret, frequency);
5516 return;
5517 }
5518
5519 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5520 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5521 current_freq = current_freq * 500 + 1000;
5522
5523 /*
5524 * DE PLL has to be disabled when
5525 * - setting to 19.2MHz (bypass, PLL isn't used)
5526 * - before setting to 624MHz (PLL needs toggling)
5527 * - before setting to any frequency from 624MHz (PLL needs toggling)
5528 */
5529 if (frequency == 19200 || frequency == 624000 ||
5530 current_freq == 624000) {
5531 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5532 /* Timeout 200us */
5533 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5534 1))
5535 DRM_ERROR("timout waiting for DE PLL unlock\n");
5536 }
5537
5538 if (frequency != 19200) {
5539 uint32_t val;
5540
5541 val = I915_READ(BXT_DE_PLL_CTL);
5542 val &= ~BXT_DE_PLL_RATIO_MASK;
5543 val |= ratio;
5544 I915_WRITE(BXT_DE_PLL_CTL, val);
5545
5546 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5547 /* Timeout 200us */
5548 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5549 DRM_ERROR("timeout waiting for DE PLL lock\n");
5550
5551 val = I915_READ(CDCLK_CTL);
5552 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5553 val |= divider;
5554 /*
5555 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5556 * enable otherwise.
5557 */
5558 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5559 if (frequency >= 500000)
5560 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5561
5562 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5563 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5564 val |= (frequency - 1000) / 500;
5565 I915_WRITE(CDCLK_CTL, val);
5566 }
5567
5568 mutex_lock(&dev_priv->rps.hw_lock);
5569 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5570 DIV_ROUND_UP(frequency, 25000));
5571 mutex_unlock(&dev_priv->rps.hw_lock);
5572
5573 if (ret) {
5574 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5575 ret, frequency);
5576 return;
5577 }
5578
5579 intel_update_cdclk(dev);
5580 }
5581
5582 void broxton_init_cdclk(struct drm_device *dev)
5583 {
5584 struct drm_i915_private *dev_priv = dev->dev_private;
5585 uint32_t val;
5586
5587 /*
5588 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5589 * or else the reset will hang because there is no PCH to respond.
5590 * Move the handshake programming to initialization sequence.
5591 * Previously was left up to BIOS.
5592 */
5593 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5594 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5595 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5596
5597 /* Enable PG1 for cdclk */
5598 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5599
5600 /* check if cd clock is enabled */
5601 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5602 DRM_DEBUG_KMS("Display already initialized\n");
5603 return;
5604 }
5605
5606 /*
5607 * FIXME:
5608 * - The initial CDCLK needs to be read from VBT.
5609 * Need to make this change after VBT has changes for BXT.
5610 * - check if setting the max (or any) cdclk freq is really necessary
5611 * here, it belongs to modeset time
5612 */
5613 broxton_set_cdclk(dev, 624000);
5614
5615 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5616 POSTING_READ(DBUF_CTL);
5617
5618 udelay(10);
5619
5620 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5621 DRM_ERROR("DBuf power enable timeout!\n");
5622 }
5623
5624 void broxton_uninit_cdclk(struct drm_device *dev)
5625 {
5626 struct drm_i915_private *dev_priv = dev->dev_private;
5627
5628 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5629 POSTING_READ(DBUF_CTL);
5630
5631 udelay(10);
5632
5633 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5634 DRM_ERROR("DBuf power disable timeout!\n");
5635
5636 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5637 broxton_set_cdclk(dev, 19200);
5638
5639 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5640 }
5641
5642 static const struct skl_cdclk_entry {
5643 unsigned int freq;
5644 unsigned int vco;
5645 } skl_cdclk_frequencies[] = {
5646 { .freq = 308570, .vco = 8640 },
5647 { .freq = 337500, .vco = 8100 },
5648 { .freq = 432000, .vco = 8640 },
5649 { .freq = 450000, .vco = 8100 },
5650 { .freq = 540000, .vco = 8100 },
5651 { .freq = 617140, .vco = 8640 },
5652 { .freq = 675000, .vco = 8100 },
5653 };
5654
5655 static unsigned int skl_cdclk_decimal(unsigned int freq)
5656 {
5657 return (freq - 1000) / 500;
5658 }
5659
5660 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5661 {
5662 unsigned int i;
5663
5664 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5665 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5666
5667 if (e->freq == freq)
5668 return e->vco;
5669 }
5670
5671 return 8100;
5672 }
5673
5674 static void
5675 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5676 {
5677 unsigned int min_freq;
5678 u32 val;
5679
5680 /* select the minimum CDCLK before enabling DPLL 0 */
5681 val = I915_READ(CDCLK_CTL);
5682 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5683 val |= CDCLK_FREQ_337_308;
5684
5685 if (required_vco == 8640)
5686 min_freq = 308570;
5687 else
5688 min_freq = 337500;
5689
5690 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5691
5692 I915_WRITE(CDCLK_CTL, val);
5693 POSTING_READ(CDCLK_CTL);
5694
5695 /*
5696 * We always enable DPLL0 with the lowest link rate possible, but still
5697 * taking into account the VCO required to operate the eDP panel at the
5698 * desired frequency. The usual DP link rates operate with a VCO of
5699 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5700 * The modeset code is responsible for the selection of the exact link
5701 * rate later on, with the constraint of choosing a frequency that
5702 * works with required_vco.
5703 */
5704 val = I915_READ(DPLL_CTRL1);
5705
5706 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5707 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5708 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5709 if (required_vco == 8640)
5710 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5711 SKL_DPLL0);
5712 else
5713 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5714 SKL_DPLL0);
5715
5716 I915_WRITE(DPLL_CTRL1, val);
5717 POSTING_READ(DPLL_CTRL1);
5718
5719 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5720
5721 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5722 DRM_ERROR("DPLL0 not locked\n");
5723 }
5724
5725 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5726 {
5727 int ret;
5728 u32 val;
5729
5730 /* inform PCU we want to change CDCLK */
5731 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5732 mutex_lock(&dev_priv->rps.hw_lock);
5733 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5734 mutex_unlock(&dev_priv->rps.hw_lock);
5735
5736 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5737 }
5738
5739 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5740 {
5741 unsigned int i;
5742
5743 for (i = 0; i < 15; i++) {
5744 if (skl_cdclk_pcu_ready(dev_priv))
5745 return true;
5746 udelay(10);
5747 }
5748
5749 return false;
5750 }
5751
5752 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5753 {
5754 struct drm_device *dev = dev_priv->dev;
5755 u32 freq_select, pcu_ack;
5756
5757 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5758
5759 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5760 DRM_ERROR("failed to inform PCU about cdclk change\n");
5761 return;
5762 }
5763
5764 /* set CDCLK_CTL */
5765 switch(freq) {
5766 case 450000:
5767 case 432000:
5768 freq_select = CDCLK_FREQ_450_432;
5769 pcu_ack = 1;
5770 break;
5771 case 540000:
5772 freq_select = CDCLK_FREQ_540;
5773 pcu_ack = 2;
5774 break;
5775 case 308570:
5776 case 337500:
5777 default:
5778 freq_select = CDCLK_FREQ_337_308;
5779 pcu_ack = 0;
5780 break;
5781 case 617140:
5782 case 675000:
5783 freq_select = CDCLK_FREQ_675_617;
5784 pcu_ack = 3;
5785 break;
5786 }
5787
5788 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5789 POSTING_READ(CDCLK_CTL);
5790
5791 /* inform PCU of the change */
5792 mutex_lock(&dev_priv->rps.hw_lock);
5793 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5794 mutex_unlock(&dev_priv->rps.hw_lock);
5795
5796 intel_update_cdclk(dev);
5797 }
5798
5799 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5800 {
5801 /* disable DBUF power */
5802 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5803 POSTING_READ(DBUF_CTL);
5804
5805 udelay(10);
5806
5807 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5808 DRM_ERROR("DBuf power disable timeout\n");
5809
5810 /* disable DPLL0 */
5811 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5812 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5813 DRM_ERROR("Couldn't disable DPLL0\n");
5814 }
5815
5816 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5817 {
5818 unsigned int required_vco;
5819
5820 /* DPLL0 not enabled (happens on early BIOS versions) */
5821 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5822 /* enable DPLL0 */
5823 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5824 skl_dpll0_enable(dev_priv, required_vco);
5825 }
5826
5827 /* set CDCLK to the frequency the BIOS chose */
5828 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5829
5830 /* enable DBUF power */
5831 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5832 POSTING_READ(DBUF_CTL);
5833
5834 udelay(10);
5835
5836 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5837 DRM_ERROR("DBuf power enable timeout\n");
5838 }
5839
5840 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5841 {
5842 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5843 uint32_t cdctl = I915_READ(CDCLK_CTL);
5844 int freq = dev_priv->skl_boot_cdclk;
5845
5846 /*
5847 * check if the pre-os intialized the display
5848 * There is SWF18 scratchpad register defined which is set by the
5849 * pre-os which can be used by the OS drivers to check the status
5850 */
5851 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5852 goto sanitize;
5853
5854 /* Is PLL enabled and locked ? */
5855 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5856 goto sanitize;
5857
5858 /* DPLL okay; verify the cdclock
5859 *
5860 * Noticed in some instances that the freq selection is correct but
5861 * decimal part is programmed wrong from BIOS where pre-os does not
5862 * enable display. Verify the same as well.
5863 */
5864 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5865 /* All well; nothing to sanitize */
5866 return false;
5867 sanitize:
5868 /*
5869 * As of now initialize with max cdclk till
5870 * we get dynamic cdclk support
5871 * */
5872 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5873 skl_init_cdclk(dev_priv);
5874
5875 /* we did have to sanitize */
5876 return true;
5877 }
5878
5879 /* Adjust CDclk dividers to allow high res or save power if possible */
5880 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5881 {
5882 struct drm_i915_private *dev_priv = dev->dev_private;
5883 u32 val, cmd;
5884
5885 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5886 != dev_priv->cdclk_freq);
5887
5888 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5889 cmd = 2;
5890 else if (cdclk == 266667)
5891 cmd = 1;
5892 else
5893 cmd = 0;
5894
5895 mutex_lock(&dev_priv->rps.hw_lock);
5896 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5897 val &= ~DSPFREQGUAR_MASK;
5898 val |= (cmd << DSPFREQGUAR_SHIFT);
5899 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5900 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5901 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5902 50)) {
5903 DRM_ERROR("timed out waiting for CDclk change\n");
5904 }
5905 mutex_unlock(&dev_priv->rps.hw_lock);
5906
5907 mutex_lock(&dev_priv->sb_lock);
5908
5909 if (cdclk == 400000) {
5910 u32 divider;
5911
5912 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5913
5914 /* adjust cdclk divider */
5915 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5916 val &= ~CCK_FREQUENCY_VALUES;
5917 val |= divider;
5918 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5919
5920 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5921 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5922 50))
5923 DRM_ERROR("timed out waiting for CDclk change\n");
5924 }
5925
5926 /* adjust self-refresh exit latency value */
5927 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5928 val &= ~0x7f;
5929
5930 /*
5931 * For high bandwidth configs, we set a higher latency in the bunit
5932 * so that the core display fetch happens in time to avoid underruns.
5933 */
5934 if (cdclk == 400000)
5935 val |= 4500 / 250; /* 4.5 usec */
5936 else
5937 val |= 3000 / 250; /* 3.0 usec */
5938 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5939
5940 mutex_unlock(&dev_priv->sb_lock);
5941
5942 intel_update_cdclk(dev);
5943 }
5944
5945 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5946 {
5947 struct drm_i915_private *dev_priv = dev->dev_private;
5948 u32 val, cmd;
5949
5950 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5951 != dev_priv->cdclk_freq);
5952
5953 switch (cdclk) {
5954 case 333333:
5955 case 320000:
5956 case 266667:
5957 case 200000:
5958 break;
5959 default:
5960 MISSING_CASE(cdclk);
5961 return;
5962 }
5963
5964 /*
5965 * Specs are full of misinformation, but testing on actual
5966 * hardware has shown that we just need to write the desired
5967 * CCK divider into the Punit register.
5968 */
5969 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5970
5971 mutex_lock(&dev_priv->rps.hw_lock);
5972 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5973 val &= ~DSPFREQGUAR_MASK_CHV;
5974 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5975 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5976 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5977 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5978 50)) {
5979 DRM_ERROR("timed out waiting for CDclk change\n");
5980 }
5981 mutex_unlock(&dev_priv->rps.hw_lock);
5982
5983 intel_update_cdclk(dev);
5984 }
5985
5986 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5987 int max_pixclk)
5988 {
5989 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5990 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5991
5992 /*
5993 * Really only a few cases to deal with, as only 4 CDclks are supported:
5994 * 200MHz
5995 * 267MHz
5996 * 320/333MHz (depends on HPLL freq)
5997 * 400MHz (VLV only)
5998 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5999 * of the lower bin and adjust if needed.
6000 *
6001 * We seem to get an unstable or solid color picture at 200MHz.
6002 * Not sure what's wrong. For now use 200MHz only when all pipes
6003 * are off.
6004 */
6005 if (!IS_CHERRYVIEW(dev_priv) &&
6006 max_pixclk > freq_320*limit/100)
6007 return 400000;
6008 else if (max_pixclk > 266667*limit/100)
6009 return freq_320;
6010 else if (max_pixclk > 0)
6011 return 266667;
6012 else
6013 return 200000;
6014 }
6015
6016 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6017 int max_pixclk)
6018 {
6019 /*
6020 * FIXME:
6021 * - remove the guardband, it's not needed on BXT
6022 * - set 19.2MHz bypass frequency if there are no active pipes
6023 */
6024 if (max_pixclk > 576000*9/10)
6025 return 624000;
6026 else if (max_pixclk > 384000*9/10)
6027 return 576000;
6028 else if (max_pixclk > 288000*9/10)
6029 return 384000;
6030 else if (max_pixclk > 144000*9/10)
6031 return 288000;
6032 else
6033 return 144000;
6034 }
6035
6036 /* Compute the max pixel clock for new configuration. Uses atomic state if
6037 * that's non-NULL, look at current state otherwise. */
6038 static int intel_mode_max_pixclk(struct drm_device *dev,
6039 struct drm_atomic_state *state)
6040 {
6041 struct intel_crtc *intel_crtc;
6042 struct intel_crtc_state *crtc_state;
6043 int max_pixclk = 0;
6044
6045 for_each_intel_crtc(dev, intel_crtc) {
6046 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6047 if (IS_ERR(crtc_state))
6048 return PTR_ERR(crtc_state);
6049
6050 if (!crtc_state->base.enable)
6051 continue;
6052
6053 max_pixclk = max(max_pixclk,
6054 crtc_state->base.adjusted_mode.crtc_clock);
6055 }
6056
6057 return max_pixclk;
6058 }
6059
6060 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6061 {
6062 struct drm_device *dev = state->dev;
6063 struct drm_i915_private *dev_priv = dev->dev_private;
6064 int max_pixclk = intel_mode_max_pixclk(dev, state);
6065
6066 if (max_pixclk < 0)
6067 return max_pixclk;
6068
6069 to_intel_atomic_state(state)->cdclk =
6070 valleyview_calc_cdclk(dev_priv, max_pixclk);
6071
6072 return 0;
6073 }
6074
6075 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6076 {
6077 struct drm_device *dev = state->dev;
6078 struct drm_i915_private *dev_priv = dev->dev_private;
6079 int max_pixclk = intel_mode_max_pixclk(dev, state);
6080
6081 if (max_pixclk < 0)
6082 return max_pixclk;
6083
6084 to_intel_atomic_state(state)->cdclk =
6085 broxton_calc_cdclk(dev_priv, max_pixclk);
6086
6087 return 0;
6088 }
6089
6090 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6091 {
6092 unsigned int credits, default_credits;
6093
6094 if (IS_CHERRYVIEW(dev_priv))
6095 default_credits = PFI_CREDIT(12);
6096 else
6097 default_credits = PFI_CREDIT(8);
6098
6099 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6100 /* CHV suggested value is 31 or 63 */
6101 if (IS_CHERRYVIEW(dev_priv))
6102 credits = PFI_CREDIT_63;
6103 else
6104 credits = PFI_CREDIT(15);
6105 } else {
6106 credits = default_credits;
6107 }
6108
6109 /*
6110 * WA - write default credits before re-programming
6111 * FIXME: should we also set the resend bit here?
6112 */
6113 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6114 default_credits);
6115
6116 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6117 credits | PFI_CREDIT_RESEND);
6118
6119 /*
6120 * FIXME is this guaranteed to clear
6121 * immediately or should we poll for it?
6122 */
6123 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6124 }
6125
6126 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6127 {
6128 struct drm_device *dev = old_state->dev;
6129 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6130 struct drm_i915_private *dev_priv = dev->dev_private;
6131
6132 /*
6133 * FIXME: We can end up here with all power domains off, yet
6134 * with a CDCLK frequency other than the minimum. To account
6135 * for this take the PIPE-A power domain, which covers the HW
6136 * blocks needed for the following programming. This can be
6137 * removed once it's guaranteed that we get here either with
6138 * the minimum CDCLK set, or the required power domains
6139 * enabled.
6140 */
6141 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6142
6143 if (IS_CHERRYVIEW(dev))
6144 cherryview_set_cdclk(dev, req_cdclk);
6145 else
6146 valleyview_set_cdclk(dev, req_cdclk);
6147
6148 vlv_program_pfi_credits(dev_priv);
6149
6150 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6151 }
6152
6153 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6154 {
6155 struct drm_device *dev = crtc->dev;
6156 struct drm_i915_private *dev_priv = to_i915(dev);
6157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6158 struct intel_encoder *encoder;
6159 int pipe = intel_crtc->pipe;
6160
6161 if (WARN_ON(intel_crtc->active))
6162 return;
6163
6164 if (intel_crtc->config->has_dp_encoder)
6165 intel_dp_set_m_n(intel_crtc, M1_N1);
6166
6167 intel_set_pipe_timings(intel_crtc);
6168
6169 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6170 struct drm_i915_private *dev_priv = dev->dev_private;
6171
6172 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6173 I915_WRITE(CHV_CANVAS(pipe), 0);
6174 }
6175
6176 i9xx_set_pipeconf(intel_crtc);
6177
6178 intel_crtc->active = true;
6179
6180 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6181
6182 for_each_encoder_on_crtc(dev, crtc, encoder)
6183 if (encoder->pre_pll_enable)
6184 encoder->pre_pll_enable(encoder);
6185
6186 if (!intel_crtc->config->has_dsi_encoder) {
6187 if (IS_CHERRYVIEW(dev)) {
6188 chv_prepare_pll(intel_crtc, intel_crtc->config);
6189 chv_enable_pll(intel_crtc, intel_crtc->config);
6190 } else {
6191 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6192 vlv_enable_pll(intel_crtc, intel_crtc->config);
6193 }
6194 }
6195
6196 for_each_encoder_on_crtc(dev, crtc, encoder)
6197 if (encoder->pre_enable)
6198 encoder->pre_enable(encoder);
6199
6200 i9xx_pfit_enable(intel_crtc);
6201
6202 intel_crtc_load_lut(crtc);
6203
6204 intel_enable_pipe(intel_crtc);
6205
6206 assert_vblank_disabled(crtc);
6207 drm_crtc_vblank_on(crtc);
6208
6209 for_each_encoder_on_crtc(dev, crtc, encoder)
6210 encoder->enable(encoder);
6211 }
6212
6213 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6214 {
6215 struct drm_device *dev = crtc->base.dev;
6216 struct drm_i915_private *dev_priv = dev->dev_private;
6217
6218 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6219 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6220 }
6221
6222 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6223 {
6224 struct drm_device *dev = crtc->dev;
6225 struct drm_i915_private *dev_priv = to_i915(dev);
6226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6227 struct intel_encoder *encoder;
6228 int pipe = intel_crtc->pipe;
6229
6230 if (WARN_ON(intel_crtc->active))
6231 return;
6232
6233 i9xx_set_pll_dividers(intel_crtc);
6234
6235 if (intel_crtc->config->has_dp_encoder)
6236 intel_dp_set_m_n(intel_crtc, M1_N1);
6237
6238 intel_set_pipe_timings(intel_crtc);
6239
6240 i9xx_set_pipeconf(intel_crtc);
6241
6242 intel_crtc->active = true;
6243
6244 if (!IS_GEN2(dev))
6245 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6246
6247 for_each_encoder_on_crtc(dev, crtc, encoder)
6248 if (encoder->pre_enable)
6249 encoder->pre_enable(encoder);
6250
6251 i9xx_enable_pll(intel_crtc);
6252
6253 i9xx_pfit_enable(intel_crtc);
6254
6255 intel_crtc_load_lut(crtc);
6256
6257 intel_update_watermarks(crtc);
6258 intel_enable_pipe(intel_crtc);
6259
6260 assert_vblank_disabled(crtc);
6261 drm_crtc_vblank_on(crtc);
6262
6263 for_each_encoder_on_crtc(dev, crtc, encoder)
6264 encoder->enable(encoder);
6265 }
6266
6267 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6268 {
6269 struct drm_device *dev = crtc->base.dev;
6270 struct drm_i915_private *dev_priv = dev->dev_private;
6271
6272 if (!crtc->config->gmch_pfit.control)
6273 return;
6274
6275 assert_pipe_disabled(dev_priv, crtc->pipe);
6276
6277 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6278 I915_READ(PFIT_CONTROL));
6279 I915_WRITE(PFIT_CONTROL, 0);
6280 }
6281
6282 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6283 {
6284 struct drm_device *dev = crtc->dev;
6285 struct drm_i915_private *dev_priv = dev->dev_private;
6286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6287 struct intel_encoder *encoder;
6288 int pipe = intel_crtc->pipe;
6289
6290 /*
6291 * On gen2 planes are double buffered but the pipe isn't, so we must
6292 * wait for planes to fully turn off before disabling the pipe.
6293 * We also need to wait on all gmch platforms because of the
6294 * self-refresh mode constraint explained above.
6295 */
6296 intel_wait_for_vblank(dev, pipe);
6297
6298 for_each_encoder_on_crtc(dev, crtc, encoder)
6299 encoder->disable(encoder);
6300
6301 drm_crtc_vblank_off(crtc);
6302 assert_vblank_disabled(crtc);
6303
6304 intel_disable_pipe(intel_crtc);
6305
6306 i9xx_pfit_disable(intel_crtc);
6307
6308 for_each_encoder_on_crtc(dev, crtc, encoder)
6309 if (encoder->post_disable)
6310 encoder->post_disable(encoder);
6311
6312 if (!intel_crtc->config->has_dsi_encoder) {
6313 if (IS_CHERRYVIEW(dev))
6314 chv_disable_pll(dev_priv, pipe);
6315 else if (IS_VALLEYVIEW(dev))
6316 vlv_disable_pll(dev_priv, pipe);
6317 else
6318 i9xx_disable_pll(intel_crtc);
6319 }
6320
6321 for_each_encoder_on_crtc(dev, crtc, encoder)
6322 if (encoder->post_pll_disable)
6323 encoder->post_pll_disable(encoder);
6324
6325 if (!IS_GEN2(dev))
6326 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6327 }
6328
6329 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6330 {
6331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6332 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6333 enum intel_display_power_domain domain;
6334 unsigned long domains;
6335
6336 if (!intel_crtc->active)
6337 return;
6338
6339 if (to_intel_plane_state(crtc->primary->state)->visible) {
6340 WARN_ON(intel_crtc->unpin_work);
6341
6342 intel_pre_disable_primary(crtc);
6343 }
6344
6345 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6346 dev_priv->display.crtc_disable(crtc);
6347 intel_crtc->active = false;
6348 intel_update_watermarks(crtc);
6349 intel_disable_shared_dpll(intel_crtc);
6350
6351 domains = intel_crtc->enabled_power_domains;
6352 for_each_power_domain(domain, domains)
6353 intel_display_power_put(dev_priv, domain);
6354 intel_crtc->enabled_power_domains = 0;
6355 }
6356
6357 /*
6358 * turn all crtc's off, but do not adjust state
6359 * This has to be paired with a call to intel_modeset_setup_hw_state.
6360 */
6361 int intel_display_suspend(struct drm_device *dev)
6362 {
6363 struct drm_mode_config *config = &dev->mode_config;
6364 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6365 struct drm_atomic_state *state;
6366 struct drm_crtc *crtc;
6367 unsigned crtc_mask = 0;
6368 int ret = 0;
6369
6370 if (WARN_ON(!ctx))
6371 return 0;
6372
6373 lockdep_assert_held(&ctx->ww_ctx);
6374 state = drm_atomic_state_alloc(dev);
6375 if (WARN_ON(!state))
6376 return -ENOMEM;
6377
6378 state->acquire_ctx = ctx;
6379 state->allow_modeset = true;
6380
6381 for_each_crtc(dev, crtc) {
6382 struct drm_crtc_state *crtc_state =
6383 drm_atomic_get_crtc_state(state, crtc);
6384
6385 ret = PTR_ERR_OR_ZERO(crtc_state);
6386 if (ret)
6387 goto free;
6388
6389 if (!crtc_state->active)
6390 continue;
6391
6392 crtc_state->active = false;
6393 crtc_mask |= 1 << drm_crtc_index(crtc);
6394 }
6395
6396 if (crtc_mask) {
6397 ret = drm_atomic_commit(state);
6398
6399 if (!ret) {
6400 for_each_crtc(dev, crtc)
6401 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6402 crtc->state->active = true;
6403
6404 return ret;
6405 }
6406 }
6407
6408 free:
6409 if (ret)
6410 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6411 drm_atomic_state_free(state);
6412 return ret;
6413 }
6414
6415 void intel_encoder_destroy(struct drm_encoder *encoder)
6416 {
6417 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6418
6419 drm_encoder_cleanup(encoder);
6420 kfree(intel_encoder);
6421 }
6422
6423 /* Cross check the actual hw state with our own modeset state tracking (and it's
6424 * internal consistency). */
6425 static void intel_connector_check_state(struct intel_connector *connector)
6426 {
6427 struct drm_crtc *crtc = connector->base.state->crtc;
6428
6429 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6430 connector->base.base.id,
6431 connector->base.name);
6432
6433 if (connector->get_hw_state(connector)) {
6434 struct intel_encoder *encoder = connector->encoder;
6435 struct drm_connector_state *conn_state = connector->base.state;
6436
6437 I915_STATE_WARN(!crtc,
6438 "connector enabled without attached crtc\n");
6439
6440 if (!crtc)
6441 return;
6442
6443 I915_STATE_WARN(!crtc->state->active,
6444 "connector is active, but attached crtc isn't\n");
6445
6446 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6447 return;
6448
6449 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6450 "atomic encoder doesn't match attached encoder\n");
6451
6452 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6453 "attached encoder crtc differs from connector crtc\n");
6454 } else {
6455 I915_STATE_WARN(crtc && crtc->state->active,
6456 "attached crtc is active, but connector isn't\n");
6457 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6458 "best encoder set without crtc!\n");
6459 }
6460 }
6461
6462 int intel_connector_init(struct intel_connector *connector)
6463 {
6464 struct drm_connector_state *connector_state;
6465
6466 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6467 if (!connector_state)
6468 return -ENOMEM;
6469
6470 connector->base.state = connector_state;
6471 return 0;
6472 }
6473
6474 struct intel_connector *intel_connector_alloc(void)
6475 {
6476 struct intel_connector *connector;
6477
6478 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6479 if (!connector)
6480 return NULL;
6481
6482 if (intel_connector_init(connector) < 0) {
6483 kfree(connector);
6484 return NULL;
6485 }
6486
6487 return connector;
6488 }
6489
6490 /* Simple connector->get_hw_state implementation for encoders that support only
6491 * one connector and no cloning and hence the encoder state determines the state
6492 * of the connector. */
6493 bool intel_connector_get_hw_state(struct intel_connector *connector)
6494 {
6495 enum pipe pipe = 0;
6496 struct intel_encoder *encoder = connector->encoder;
6497
6498 return encoder->get_hw_state(encoder, &pipe);
6499 }
6500
6501 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6502 {
6503 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6504 return crtc_state->fdi_lanes;
6505
6506 return 0;
6507 }
6508
6509 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6510 struct intel_crtc_state *pipe_config)
6511 {
6512 struct drm_atomic_state *state = pipe_config->base.state;
6513 struct intel_crtc *other_crtc;
6514 struct intel_crtc_state *other_crtc_state;
6515
6516 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6517 pipe_name(pipe), pipe_config->fdi_lanes);
6518 if (pipe_config->fdi_lanes > 4) {
6519 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6520 pipe_name(pipe), pipe_config->fdi_lanes);
6521 return -EINVAL;
6522 }
6523
6524 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6525 if (pipe_config->fdi_lanes > 2) {
6526 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6527 pipe_config->fdi_lanes);
6528 return -EINVAL;
6529 } else {
6530 return 0;
6531 }
6532 }
6533
6534 if (INTEL_INFO(dev)->num_pipes == 2)
6535 return 0;
6536
6537 /* Ivybridge 3 pipe is really complicated */
6538 switch (pipe) {
6539 case PIPE_A:
6540 return 0;
6541 case PIPE_B:
6542 if (pipe_config->fdi_lanes <= 2)
6543 return 0;
6544
6545 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6546 other_crtc_state =
6547 intel_atomic_get_crtc_state(state, other_crtc);
6548 if (IS_ERR(other_crtc_state))
6549 return PTR_ERR(other_crtc_state);
6550
6551 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6552 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6553 pipe_name(pipe), pipe_config->fdi_lanes);
6554 return -EINVAL;
6555 }
6556 return 0;
6557 case PIPE_C:
6558 if (pipe_config->fdi_lanes > 2) {
6559 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6560 pipe_name(pipe), pipe_config->fdi_lanes);
6561 return -EINVAL;
6562 }
6563
6564 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6565 other_crtc_state =
6566 intel_atomic_get_crtc_state(state, other_crtc);
6567 if (IS_ERR(other_crtc_state))
6568 return PTR_ERR(other_crtc_state);
6569
6570 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6571 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6572 return -EINVAL;
6573 }
6574 return 0;
6575 default:
6576 BUG();
6577 }
6578 }
6579
6580 #define RETRY 1
6581 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6582 struct intel_crtc_state *pipe_config)
6583 {
6584 struct drm_device *dev = intel_crtc->base.dev;
6585 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6586 int lane, link_bw, fdi_dotclock, ret;
6587 bool needs_recompute = false;
6588
6589 retry:
6590 /* FDI is a binary signal running at ~2.7GHz, encoding
6591 * each output octet as 10 bits. The actual frequency
6592 * is stored as a divider into a 100MHz clock, and the
6593 * mode pixel clock is stored in units of 1KHz.
6594 * Hence the bw of each lane in terms of the mode signal
6595 * is:
6596 */
6597 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6598
6599 fdi_dotclock = adjusted_mode->crtc_clock;
6600
6601 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6602 pipe_config->pipe_bpp);
6603
6604 pipe_config->fdi_lanes = lane;
6605
6606 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6607 link_bw, &pipe_config->fdi_m_n);
6608
6609 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6610 intel_crtc->pipe, pipe_config);
6611 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6612 pipe_config->pipe_bpp -= 2*3;
6613 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6614 pipe_config->pipe_bpp);
6615 needs_recompute = true;
6616 pipe_config->bw_constrained = true;
6617
6618 goto retry;
6619 }
6620
6621 if (needs_recompute)
6622 return RETRY;
6623
6624 return ret;
6625 }
6626
6627 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6628 struct intel_crtc_state *pipe_config)
6629 {
6630 if (pipe_config->pipe_bpp > 24)
6631 return false;
6632
6633 /* HSW can handle pixel rate up to cdclk? */
6634 if (IS_HASWELL(dev_priv->dev))
6635 return true;
6636
6637 /*
6638 * We compare against max which means we must take
6639 * the increased cdclk requirement into account when
6640 * calculating the new cdclk.
6641 *
6642 * Should measure whether using a lower cdclk w/o IPS
6643 */
6644 return ilk_pipe_pixel_rate(pipe_config) <=
6645 dev_priv->max_cdclk_freq * 95 / 100;
6646 }
6647
6648 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6649 struct intel_crtc_state *pipe_config)
6650 {
6651 struct drm_device *dev = crtc->base.dev;
6652 struct drm_i915_private *dev_priv = dev->dev_private;
6653
6654 pipe_config->ips_enabled = i915.enable_ips &&
6655 hsw_crtc_supports_ips(crtc) &&
6656 pipe_config_supports_ips(dev_priv, pipe_config);
6657 }
6658
6659 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6660 {
6661 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6662
6663 /* GDG double wide on either pipe, otherwise pipe A only */
6664 return INTEL_INFO(dev_priv)->gen < 4 &&
6665 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6666 }
6667
6668 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6669 struct intel_crtc_state *pipe_config)
6670 {
6671 struct drm_device *dev = crtc->base.dev;
6672 struct drm_i915_private *dev_priv = dev->dev_private;
6673 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6674
6675 /* FIXME should check pixel clock limits on all platforms */
6676 if (INTEL_INFO(dev)->gen < 4) {
6677 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6678
6679 /*
6680 * Enable double wide mode when the dot clock
6681 * is > 90% of the (display) core speed.
6682 */
6683 if (intel_crtc_supports_double_wide(crtc) &&
6684 adjusted_mode->crtc_clock > clock_limit) {
6685 clock_limit *= 2;
6686 pipe_config->double_wide = true;
6687 }
6688
6689 if (adjusted_mode->crtc_clock > clock_limit) {
6690 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6691 adjusted_mode->crtc_clock, clock_limit,
6692 yesno(pipe_config->double_wide));
6693 return -EINVAL;
6694 }
6695 }
6696
6697 /*
6698 * Pipe horizontal size must be even in:
6699 * - DVO ganged mode
6700 * - LVDS dual channel mode
6701 * - Double wide pipe
6702 */
6703 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6704 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6705 pipe_config->pipe_src_w &= ~1;
6706
6707 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6708 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6709 */
6710 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6711 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6712 return -EINVAL;
6713
6714 if (HAS_IPS(dev))
6715 hsw_compute_ips_config(crtc, pipe_config);
6716
6717 if (pipe_config->has_pch_encoder)
6718 return ironlake_fdi_compute_config(crtc, pipe_config);
6719
6720 return 0;
6721 }
6722
6723 static int skylake_get_display_clock_speed(struct drm_device *dev)
6724 {
6725 struct drm_i915_private *dev_priv = to_i915(dev);
6726 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6727 uint32_t cdctl = I915_READ(CDCLK_CTL);
6728 uint32_t linkrate;
6729
6730 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6731 return 24000; /* 24MHz is the cd freq with NSSC ref */
6732
6733 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6734 return 540000;
6735
6736 linkrate = (I915_READ(DPLL_CTRL1) &
6737 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6738
6739 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6740 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6741 /* vco 8640 */
6742 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6743 case CDCLK_FREQ_450_432:
6744 return 432000;
6745 case CDCLK_FREQ_337_308:
6746 return 308570;
6747 case CDCLK_FREQ_675_617:
6748 return 617140;
6749 default:
6750 WARN(1, "Unknown cd freq selection\n");
6751 }
6752 } else {
6753 /* vco 8100 */
6754 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6755 case CDCLK_FREQ_450_432:
6756 return 450000;
6757 case CDCLK_FREQ_337_308:
6758 return 337500;
6759 case CDCLK_FREQ_675_617:
6760 return 675000;
6761 default:
6762 WARN(1, "Unknown cd freq selection\n");
6763 }
6764 }
6765
6766 /* error case, do as if DPLL0 isn't enabled */
6767 return 24000;
6768 }
6769
6770 static int broxton_get_display_clock_speed(struct drm_device *dev)
6771 {
6772 struct drm_i915_private *dev_priv = to_i915(dev);
6773 uint32_t cdctl = I915_READ(CDCLK_CTL);
6774 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6775 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6776 int cdclk;
6777
6778 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6779 return 19200;
6780
6781 cdclk = 19200 * pll_ratio / 2;
6782
6783 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6784 case BXT_CDCLK_CD2X_DIV_SEL_1:
6785 return cdclk; /* 576MHz or 624MHz */
6786 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6787 return cdclk * 2 / 3; /* 384MHz */
6788 case BXT_CDCLK_CD2X_DIV_SEL_2:
6789 return cdclk / 2; /* 288MHz */
6790 case BXT_CDCLK_CD2X_DIV_SEL_4:
6791 return cdclk / 4; /* 144MHz */
6792 }
6793
6794 /* error case, do as if DE PLL isn't enabled */
6795 return 19200;
6796 }
6797
6798 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6799 {
6800 struct drm_i915_private *dev_priv = dev->dev_private;
6801 uint32_t lcpll = I915_READ(LCPLL_CTL);
6802 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6803
6804 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6805 return 800000;
6806 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6807 return 450000;
6808 else if (freq == LCPLL_CLK_FREQ_450)
6809 return 450000;
6810 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6811 return 540000;
6812 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6813 return 337500;
6814 else
6815 return 675000;
6816 }
6817
6818 static int haswell_get_display_clock_speed(struct drm_device *dev)
6819 {
6820 struct drm_i915_private *dev_priv = dev->dev_private;
6821 uint32_t lcpll = I915_READ(LCPLL_CTL);
6822 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6823
6824 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6825 return 800000;
6826 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6827 return 450000;
6828 else if (freq == LCPLL_CLK_FREQ_450)
6829 return 450000;
6830 else if (IS_HSW_ULT(dev))
6831 return 337500;
6832 else
6833 return 540000;
6834 }
6835
6836 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6837 {
6838 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6839 CCK_DISPLAY_CLOCK_CONTROL);
6840 }
6841
6842 static int ilk_get_display_clock_speed(struct drm_device *dev)
6843 {
6844 return 450000;
6845 }
6846
6847 static int i945_get_display_clock_speed(struct drm_device *dev)
6848 {
6849 return 400000;
6850 }
6851
6852 static int i915_get_display_clock_speed(struct drm_device *dev)
6853 {
6854 return 333333;
6855 }
6856
6857 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6858 {
6859 return 200000;
6860 }
6861
6862 static int pnv_get_display_clock_speed(struct drm_device *dev)
6863 {
6864 u16 gcfgc = 0;
6865
6866 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6867
6868 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6869 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6870 return 266667;
6871 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6872 return 333333;
6873 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6874 return 444444;
6875 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6876 return 200000;
6877 default:
6878 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6879 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6880 return 133333;
6881 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6882 return 166667;
6883 }
6884 }
6885
6886 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6887 {
6888 u16 gcfgc = 0;
6889
6890 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6891
6892 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6893 return 133333;
6894 else {
6895 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6896 case GC_DISPLAY_CLOCK_333_MHZ:
6897 return 333333;
6898 default:
6899 case GC_DISPLAY_CLOCK_190_200_MHZ:
6900 return 190000;
6901 }
6902 }
6903 }
6904
6905 static int i865_get_display_clock_speed(struct drm_device *dev)
6906 {
6907 return 266667;
6908 }
6909
6910 static int i85x_get_display_clock_speed(struct drm_device *dev)
6911 {
6912 u16 hpllcc = 0;
6913
6914 /*
6915 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6916 * encoding is different :(
6917 * FIXME is this the right way to detect 852GM/852GMV?
6918 */
6919 if (dev->pdev->revision == 0x1)
6920 return 133333;
6921
6922 pci_bus_read_config_word(dev->pdev->bus,
6923 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6924
6925 /* Assume that the hardware is in the high speed state. This
6926 * should be the default.
6927 */
6928 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6929 case GC_CLOCK_133_200:
6930 case GC_CLOCK_133_200_2:
6931 case GC_CLOCK_100_200:
6932 return 200000;
6933 case GC_CLOCK_166_250:
6934 return 250000;
6935 case GC_CLOCK_100_133:
6936 return 133333;
6937 case GC_CLOCK_133_266:
6938 case GC_CLOCK_133_266_2:
6939 case GC_CLOCK_166_266:
6940 return 266667;
6941 }
6942
6943 /* Shouldn't happen */
6944 return 0;
6945 }
6946
6947 static int i830_get_display_clock_speed(struct drm_device *dev)
6948 {
6949 return 133333;
6950 }
6951
6952 static unsigned int intel_hpll_vco(struct drm_device *dev)
6953 {
6954 struct drm_i915_private *dev_priv = dev->dev_private;
6955 static const unsigned int blb_vco[8] = {
6956 [0] = 3200000,
6957 [1] = 4000000,
6958 [2] = 5333333,
6959 [3] = 4800000,
6960 [4] = 6400000,
6961 };
6962 static const unsigned int pnv_vco[8] = {
6963 [0] = 3200000,
6964 [1] = 4000000,
6965 [2] = 5333333,
6966 [3] = 4800000,
6967 [4] = 2666667,
6968 };
6969 static const unsigned int cl_vco[8] = {
6970 [0] = 3200000,
6971 [1] = 4000000,
6972 [2] = 5333333,
6973 [3] = 6400000,
6974 [4] = 3333333,
6975 [5] = 3566667,
6976 [6] = 4266667,
6977 };
6978 static const unsigned int elk_vco[8] = {
6979 [0] = 3200000,
6980 [1] = 4000000,
6981 [2] = 5333333,
6982 [3] = 4800000,
6983 };
6984 static const unsigned int ctg_vco[8] = {
6985 [0] = 3200000,
6986 [1] = 4000000,
6987 [2] = 5333333,
6988 [3] = 6400000,
6989 [4] = 2666667,
6990 [5] = 4266667,
6991 };
6992 const unsigned int *vco_table;
6993 unsigned int vco;
6994 uint8_t tmp = 0;
6995
6996 /* FIXME other chipsets? */
6997 if (IS_GM45(dev))
6998 vco_table = ctg_vco;
6999 else if (IS_G4X(dev))
7000 vco_table = elk_vco;
7001 else if (IS_CRESTLINE(dev))
7002 vco_table = cl_vco;
7003 else if (IS_PINEVIEW(dev))
7004 vco_table = pnv_vco;
7005 else if (IS_G33(dev))
7006 vco_table = blb_vco;
7007 else
7008 return 0;
7009
7010 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7011
7012 vco = vco_table[tmp & 0x7];
7013 if (vco == 0)
7014 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7015 else
7016 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7017
7018 return vco;
7019 }
7020
7021 static int gm45_get_display_clock_speed(struct drm_device *dev)
7022 {
7023 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7024 uint16_t tmp = 0;
7025
7026 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7027
7028 cdclk_sel = (tmp >> 12) & 0x1;
7029
7030 switch (vco) {
7031 case 2666667:
7032 case 4000000:
7033 case 5333333:
7034 return cdclk_sel ? 333333 : 222222;
7035 case 3200000:
7036 return cdclk_sel ? 320000 : 228571;
7037 default:
7038 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7039 return 222222;
7040 }
7041 }
7042
7043 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7044 {
7045 static const uint8_t div_3200[] = { 16, 10, 8 };
7046 static const uint8_t div_4000[] = { 20, 12, 10 };
7047 static const uint8_t div_5333[] = { 24, 16, 14 };
7048 const uint8_t *div_table;
7049 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7050 uint16_t tmp = 0;
7051
7052 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7053
7054 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7055
7056 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7057 goto fail;
7058
7059 switch (vco) {
7060 case 3200000:
7061 div_table = div_3200;
7062 break;
7063 case 4000000:
7064 div_table = div_4000;
7065 break;
7066 case 5333333:
7067 div_table = div_5333;
7068 break;
7069 default:
7070 goto fail;
7071 }
7072
7073 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7074
7075 fail:
7076 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7077 return 200000;
7078 }
7079
7080 static int g33_get_display_clock_speed(struct drm_device *dev)
7081 {
7082 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7083 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7084 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7085 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7086 const uint8_t *div_table;
7087 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7088 uint16_t tmp = 0;
7089
7090 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7091
7092 cdclk_sel = (tmp >> 4) & 0x7;
7093
7094 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7095 goto fail;
7096
7097 switch (vco) {
7098 case 3200000:
7099 div_table = div_3200;
7100 break;
7101 case 4000000:
7102 div_table = div_4000;
7103 break;
7104 case 4800000:
7105 div_table = div_4800;
7106 break;
7107 case 5333333:
7108 div_table = div_5333;
7109 break;
7110 default:
7111 goto fail;
7112 }
7113
7114 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7115
7116 fail:
7117 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7118 return 190476;
7119 }
7120
7121 static void
7122 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7123 {
7124 while (*num > DATA_LINK_M_N_MASK ||
7125 *den > DATA_LINK_M_N_MASK) {
7126 *num >>= 1;
7127 *den >>= 1;
7128 }
7129 }
7130
7131 static void compute_m_n(unsigned int m, unsigned int n,
7132 uint32_t *ret_m, uint32_t *ret_n)
7133 {
7134 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7135 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7136 intel_reduce_m_n_ratio(ret_m, ret_n);
7137 }
7138
7139 void
7140 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7141 int pixel_clock, int link_clock,
7142 struct intel_link_m_n *m_n)
7143 {
7144 m_n->tu = 64;
7145
7146 compute_m_n(bits_per_pixel * pixel_clock,
7147 link_clock * nlanes * 8,
7148 &m_n->gmch_m, &m_n->gmch_n);
7149
7150 compute_m_n(pixel_clock, link_clock,
7151 &m_n->link_m, &m_n->link_n);
7152 }
7153
7154 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7155 {
7156 if (i915.panel_use_ssc >= 0)
7157 return i915.panel_use_ssc != 0;
7158 return dev_priv->vbt.lvds_use_ssc
7159 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7160 }
7161
7162 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7163 int num_connectors)
7164 {
7165 struct drm_device *dev = crtc_state->base.crtc->dev;
7166 struct drm_i915_private *dev_priv = dev->dev_private;
7167 int refclk;
7168
7169 WARN_ON(!crtc_state->base.state);
7170
7171 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7172 refclk = 100000;
7173 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7174 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7175 refclk = dev_priv->vbt.lvds_ssc_freq;
7176 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7177 } else if (!IS_GEN2(dev)) {
7178 refclk = 96000;
7179 } else {
7180 refclk = 48000;
7181 }
7182
7183 return refclk;
7184 }
7185
7186 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7187 {
7188 return (1 << dpll->n) << 16 | dpll->m2;
7189 }
7190
7191 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7192 {
7193 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7194 }
7195
7196 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7197 struct intel_crtc_state *crtc_state,
7198 intel_clock_t *reduced_clock)
7199 {
7200 struct drm_device *dev = crtc->base.dev;
7201 u32 fp, fp2 = 0;
7202
7203 if (IS_PINEVIEW(dev)) {
7204 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7205 if (reduced_clock)
7206 fp2 = pnv_dpll_compute_fp(reduced_clock);
7207 } else {
7208 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7209 if (reduced_clock)
7210 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7211 }
7212
7213 crtc_state->dpll_hw_state.fp0 = fp;
7214
7215 crtc->lowfreq_avail = false;
7216 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7217 reduced_clock) {
7218 crtc_state->dpll_hw_state.fp1 = fp2;
7219 crtc->lowfreq_avail = true;
7220 } else {
7221 crtc_state->dpll_hw_state.fp1 = fp;
7222 }
7223 }
7224
7225 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7226 pipe)
7227 {
7228 u32 reg_val;
7229
7230 /*
7231 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7232 * and set it to a reasonable value instead.
7233 */
7234 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7235 reg_val &= 0xffffff00;
7236 reg_val |= 0x00000030;
7237 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7238
7239 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7240 reg_val &= 0x8cffffff;
7241 reg_val = 0x8c000000;
7242 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7243
7244 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7245 reg_val &= 0xffffff00;
7246 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7247
7248 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7249 reg_val &= 0x00ffffff;
7250 reg_val |= 0xb0000000;
7251 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7252 }
7253
7254 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7255 struct intel_link_m_n *m_n)
7256 {
7257 struct drm_device *dev = crtc->base.dev;
7258 struct drm_i915_private *dev_priv = dev->dev_private;
7259 int pipe = crtc->pipe;
7260
7261 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7262 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7263 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7264 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7265 }
7266
7267 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7268 struct intel_link_m_n *m_n,
7269 struct intel_link_m_n *m2_n2)
7270 {
7271 struct drm_device *dev = crtc->base.dev;
7272 struct drm_i915_private *dev_priv = dev->dev_private;
7273 int pipe = crtc->pipe;
7274 enum transcoder transcoder = crtc->config->cpu_transcoder;
7275
7276 if (INTEL_INFO(dev)->gen >= 5) {
7277 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7278 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7279 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7280 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7281 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7282 * for gen < 8) and if DRRS is supported (to make sure the
7283 * registers are not unnecessarily accessed).
7284 */
7285 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7286 crtc->config->has_drrs) {
7287 I915_WRITE(PIPE_DATA_M2(transcoder),
7288 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7289 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7290 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7291 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7292 }
7293 } else {
7294 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7295 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7296 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7297 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7298 }
7299 }
7300
7301 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7302 {
7303 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7304
7305 if (m_n == M1_N1) {
7306 dp_m_n = &crtc->config->dp_m_n;
7307 dp_m2_n2 = &crtc->config->dp_m2_n2;
7308 } else if (m_n == M2_N2) {
7309
7310 /*
7311 * M2_N2 registers are not supported. Hence m2_n2 divider value
7312 * needs to be programmed into M1_N1.
7313 */
7314 dp_m_n = &crtc->config->dp_m2_n2;
7315 } else {
7316 DRM_ERROR("Unsupported divider value\n");
7317 return;
7318 }
7319
7320 if (crtc->config->has_pch_encoder)
7321 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7322 else
7323 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7324 }
7325
7326 static void vlv_compute_dpll(struct intel_crtc *crtc,
7327 struct intel_crtc_state *pipe_config)
7328 {
7329 u32 dpll, dpll_md;
7330
7331 /*
7332 * Enable DPIO clock input. We should never disable the reference
7333 * clock for pipe B, since VGA hotplug / manual detection depends
7334 * on it.
7335 */
7336 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7337 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7338 /* We should never disable this, set it here for state tracking */
7339 if (crtc->pipe == PIPE_B)
7340 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7341 dpll |= DPLL_VCO_ENABLE;
7342 pipe_config->dpll_hw_state.dpll = dpll;
7343
7344 dpll_md = (pipe_config->pixel_multiplier - 1)
7345 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7346 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7347 }
7348
7349 static void vlv_prepare_pll(struct intel_crtc *crtc,
7350 const struct intel_crtc_state *pipe_config)
7351 {
7352 struct drm_device *dev = crtc->base.dev;
7353 struct drm_i915_private *dev_priv = dev->dev_private;
7354 int pipe = crtc->pipe;
7355 u32 mdiv;
7356 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7357 u32 coreclk, reg_val;
7358
7359 mutex_lock(&dev_priv->sb_lock);
7360
7361 bestn = pipe_config->dpll.n;
7362 bestm1 = pipe_config->dpll.m1;
7363 bestm2 = pipe_config->dpll.m2;
7364 bestp1 = pipe_config->dpll.p1;
7365 bestp2 = pipe_config->dpll.p2;
7366
7367 /* See eDP HDMI DPIO driver vbios notes doc */
7368
7369 /* PLL B needs special handling */
7370 if (pipe == PIPE_B)
7371 vlv_pllb_recal_opamp(dev_priv, pipe);
7372
7373 /* Set up Tx target for periodic Rcomp update */
7374 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7375
7376 /* Disable target IRef on PLL */
7377 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7378 reg_val &= 0x00ffffff;
7379 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7380
7381 /* Disable fast lock */
7382 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7383
7384 /* Set idtafcrecal before PLL is enabled */
7385 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7386 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7387 mdiv |= ((bestn << DPIO_N_SHIFT));
7388 mdiv |= (1 << DPIO_K_SHIFT);
7389
7390 /*
7391 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7392 * but we don't support that).
7393 * Note: don't use the DAC post divider as it seems unstable.
7394 */
7395 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7396 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7397
7398 mdiv |= DPIO_ENABLE_CALIBRATION;
7399 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7400
7401 /* Set HBR and RBR LPF coefficients */
7402 if (pipe_config->port_clock == 162000 ||
7403 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7404 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7405 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7406 0x009f0003);
7407 else
7408 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7409 0x00d0000f);
7410
7411 if (pipe_config->has_dp_encoder) {
7412 /* Use SSC source */
7413 if (pipe == PIPE_A)
7414 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7415 0x0df40000);
7416 else
7417 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7418 0x0df70000);
7419 } else { /* HDMI or VGA */
7420 /* Use bend source */
7421 if (pipe == PIPE_A)
7422 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7423 0x0df70000);
7424 else
7425 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7426 0x0df40000);
7427 }
7428
7429 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7430 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7432 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7433 coreclk |= 0x01000000;
7434 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7435
7436 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7437 mutex_unlock(&dev_priv->sb_lock);
7438 }
7439
7440 static void chv_compute_dpll(struct intel_crtc *crtc,
7441 struct intel_crtc_state *pipe_config)
7442 {
7443 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7444 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7445 DPLL_VCO_ENABLE;
7446 if (crtc->pipe != PIPE_A)
7447 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7448
7449 pipe_config->dpll_hw_state.dpll_md =
7450 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7451 }
7452
7453 static void chv_prepare_pll(struct intel_crtc *crtc,
7454 const struct intel_crtc_state *pipe_config)
7455 {
7456 struct drm_device *dev = crtc->base.dev;
7457 struct drm_i915_private *dev_priv = dev->dev_private;
7458 int pipe = crtc->pipe;
7459 i915_reg_t dpll_reg = DPLL(crtc->pipe);
7460 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7461 u32 loopfilter, tribuf_calcntr;
7462 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7463 u32 dpio_val;
7464 int vco;
7465
7466 bestn = pipe_config->dpll.n;
7467 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7468 bestm1 = pipe_config->dpll.m1;
7469 bestm2 = pipe_config->dpll.m2 >> 22;
7470 bestp1 = pipe_config->dpll.p1;
7471 bestp2 = pipe_config->dpll.p2;
7472 vco = pipe_config->dpll.vco;
7473 dpio_val = 0;
7474 loopfilter = 0;
7475
7476 /*
7477 * Enable Refclk and SSC
7478 */
7479 I915_WRITE(dpll_reg,
7480 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7481
7482 mutex_lock(&dev_priv->sb_lock);
7483
7484 /* p1 and p2 divider */
7485 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7486 5 << DPIO_CHV_S1_DIV_SHIFT |
7487 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7488 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7489 1 << DPIO_CHV_K_DIV_SHIFT);
7490
7491 /* Feedback post-divider - m2 */
7492 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7493
7494 /* Feedback refclk divider - n and m1 */
7495 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7496 DPIO_CHV_M1_DIV_BY_2 |
7497 1 << DPIO_CHV_N_DIV_SHIFT);
7498
7499 /* M2 fraction division */
7500 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7501
7502 /* M2 fraction division enable */
7503 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7504 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7505 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7506 if (bestm2_frac)
7507 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7508 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7509
7510 /* Program digital lock detect threshold */
7511 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7512 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7513 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7514 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7515 if (!bestm2_frac)
7516 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7517 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7518
7519 /* Loop filter */
7520 if (vco == 5400000) {
7521 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7522 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7523 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7524 tribuf_calcntr = 0x9;
7525 } else if (vco <= 6200000) {
7526 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7527 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7528 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7529 tribuf_calcntr = 0x9;
7530 } else if (vco <= 6480000) {
7531 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7532 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7533 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7534 tribuf_calcntr = 0x8;
7535 } else {
7536 /* Not supported. Apply the same limits as in the max case */
7537 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7538 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7539 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7540 tribuf_calcntr = 0;
7541 }
7542 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7543
7544 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7545 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7546 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7547 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7548
7549 /* AFC Recal */
7550 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7551 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7552 DPIO_AFC_RECAL);
7553
7554 mutex_unlock(&dev_priv->sb_lock);
7555 }
7556
7557 /**
7558 * vlv_force_pll_on - forcibly enable just the PLL
7559 * @dev_priv: i915 private structure
7560 * @pipe: pipe PLL to enable
7561 * @dpll: PLL configuration
7562 *
7563 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7564 * in cases where we need the PLL enabled even when @pipe is not going to
7565 * be enabled.
7566 */
7567 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7568 const struct dpll *dpll)
7569 {
7570 struct intel_crtc *crtc =
7571 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7572 struct intel_crtc_state pipe_config = {
7573 .base.crtc = &crtc->base,
7574 .pixel_multiplier = 1,
7575 .dpll = *dpll,
7576 };
7577
7578 if (IS_CHERRYVIEW(dev)) {
7579 chv_compute_dpll(crtc, &pipe_config);
7580 chv_prepare_pll(crtc, &pipe_config);
7581 chv_enable_pll(crtc, &pipe_config);
7582 } else {
7583 vlv_compute_dpll(crtc, &pipe_config);
7584 vlv_prepare_pll(crtc, &pipe_config);
7585 vlv_enable_pll(crtc, &pipe_config);
7586 }
7587 }
7588
7589 /**
7590 * vlv_force_pll_off - forcibly disable just the PLL
7591 * @dev_priv: i915 private structure
7592 * @pipe: pipe PLL to disable
7593 *
7594 * Disable the PLL for @pipe. To be used in cases where we need
7595 * the PLL enabled even when @pipe is not going to be enabled.
7596 */
7597 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7598 {
7599 if (IS_CHERRYVIEW(dev))
7600 chv_disable_pll(to_i915(dev), pipe);
7601 else
7602 vlv_disable_pll(to_i915(dev), pipe);
7603 }
7604
7605 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7606 struct intel_crtc_state *crtc_state,
7607 intel_clock_t *reduced_clock,
7608 int num_connectors)
7609 {
7610 struct drm_device *dev = crtc->base.dev;
7611 struct drm_i915_private *dev_priv = dev->dev_private;
7612 u32 dpll;
7613 bool is_sdvo;
7614 struct dpll *clock = &crtc_state->dpll;
7615
7616 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7617
7618 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7619 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7620
7621 dpll = DPLL_VGA_MODE_DIS;
7622
7623 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7624 dpll |= DPLLB_MODE_LVDS;
7625 else
7626 dpll |= DPLLB_MODE_DAC_SERIAL;
7627
7628 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7629 dpll |= (crtc_state->pixel_multiplier - 1)
7630 << SDVO_MULTIPLIER_SHIFT_HIRES;
7631 }
7632
7633 if (is_sdvo)
7634 dpll |= DPLL_SDVO_HIGH_SPEED;
7635
7636 if (crtc_state->has_dp_encoder)
7637 dpll |= DPLL_SDVO_HIGH_SPEED;
7638
7639 /* compute bitmask from p1 value */
7640 if (IS_PINEVIEW(dev))
7641 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7642 else {
7643 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7644 if (IS_G4X(dev) && reduced_clock)
7645 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7646 }
7647 switch (clock->p2) {
7648 case 5:
7649 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7650 break;
7651 case 7:
7652 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7653 break;
7654 case 10:
7655 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7656 break;
7657 case 14:
7658 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7659 break;
7660 }
7661 if (INTEL_INFO(dev)->gen >= 4)
7662 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7663
7664 if (crtc_state->sdvo_tv_clock)
7665 dpll |= PLL_REF_INPUT_TVCLKINBC;
7666 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7667 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7668 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7669 else
7670 dpll |= PLL_REF_INPUT_DREFCLK;
7671
7672 dpll |= DPLL_VCO_ENABLE;
7673 crtc_state->dpll_hw_state.dpll = dpll;
7674
7675 if (INTEL_INFO(dev)->gen >= 4) {
7676 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7677 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7678 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7679 }
7680 }
7681
7682 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7683 struct intel_crtc_state *crtc_state,
7684 intel_clock_t *reduced_clock,
7685 int num_connectors)
7686 {
7687 struct drm_device *dev = crtc->base.dev;
7688 struct drm_i915_private *dev_priv = dev->dev_private;
7689 u32 dpll;
7690 struct dpll *clock = &crtc_state->dpll;
7691
7692 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7693
7694 dpll = DPLL_VGA_MODE_DIS;
7695
7696 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7697 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7698 } else {
7699 if (clock->p1 == 2)
7700 dpll |= PLL_P1_DIVIDE_BY_TWO;
7701 else
7702 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7703 if (clock->p2 == 4)
7704 dpll |= PLL_P2_DIVIDE_BY_4;
7705 }
7706
7707 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7708 dpll |= DPLL_DVO_2X_MODE;
7709
7710 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7711 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7712 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7713 else
7714 dpll |= PLL_REF_INPUT_DREFCLK;
7715
7716 dpll |= DPLL_VCO_ENABLE;
7717 crtc_state->dpll_hw_state.dpll = dpll;
7718 }
7719
7720 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7721 {
7722 struct drm_device *dev = intel_crtc->base.dev;
7723 struct drm_i915_private *dev_priv = dev->dev_private;
7724 enum pipe pipe = intel_crtc->pipe;
7725 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7726 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7727 uint32_t crtc_vtotal, crtc_vblank_end;
7728 int vsyncshift = 0;
7729
7730 /* We need to be careful not to changed the adjusted mode, for otherwise
7731 * the hw state checker will get angry at the mismatch. */
7732 crtc_vtotal = adjusted_mode->crtc_vtotal;
7733 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7734
7735 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7736 /* the chip adds 2 halflines automatically */
7737 crtc_vtotal -= 1;
7738 crtc_vblank_end -= 1;
7739
7740 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7741 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7742 else
7743 vsyncshift = adjusted_mode->crtc_hsync_start -
7744 adjusted_mode->crtc_htotal / 2;
7745 if (vsyncshift < 0)
7746 vsyncshift += adjusted_mode->crtc_htotal;
7747 }
7748
7749 if (INTEL_INFO(dev)->gen > 3)
7750 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7751
7752 I915_WRITE(HTOTAL(cpu_transcoder),
7753 (adjusted_mode->crtc_hdisplay - 1) |
7754 ((adjusted_mode->crtc_htotal - 1) << 16));
7755 I915_WRITE(HBLANK(cpu_transcoder),
7756 (adjusted_mode->crtc_hblank_start - 1) |
7757 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7758 I915_WRITE(HSYNC(cpu_transcoder),
7759 (adjusted_mode->crtc_hsync_start - 1) |
7760 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7761
7762 I915_WRITE(VTOTAL(cpu_transcoder),
7763 (adjusted_mode->crtc_vdisplay - 1) |
7764 ((crtc_vtotal - 1) << 16));
7765 I915_WRITE(VBLANK(cpu_transcoder),
7766 (adjusted_mode->crtc_vblank_start - 1) |
7767 ((crtc_vblank_end - 1) << 16));
7768 I915_WRITE(VSYNC(cpu_transcoder),
7769 (adjusted_mode->crtc_vsync_start - 1) |
7770 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7771
7772 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7773 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7774 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7775 * bits. */
7776 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7777 (pipe == PIPE_B || pipe == PIPE_C))
7778 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7779
7780 /* pipesrc controls the size that is scaled from, which should
7781 * always be the user's requested size.
7782 */
7783 I915_WRITE(PIPESRC(pipe),
7784 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7785 (intel_crtc->config->pipe_src_h - 1));
7786 }
7787
7788 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7789 struct intel_crtc_state *pipe_config)
7790 {
7791 struct drm_device *dev = crtc->base.dev;
7792 struct drm_i915_private *dev_priv = dev->dev_private;
7793 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7794 uint32_t tmp;
7795
7796 tmp = I915_READ(HTOTAL(cpu_transcoder));
7797 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7798 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7799 tmp = I915_READ(HBLANK(cpu_transcoder));
7800 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7801 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7802 tmp = I915_READ(HSYNC(cpu_transcoder));
7803 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7804 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7805
7806 tmp = I915_READ(VTOTAL(cpu_transcoder));
7807 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7808 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7809 tmp = I915_READ(VBLANK(cpu_transcoder));
7810 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7811 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7812 tmp = I915_READ(VSYNC(cpu_transcoder));
7813 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7814 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7815
7816 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7817 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7818 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7819 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7820 }
7821
7822 tmp = I915_READ(PIPESRC(crtc->pipe));
7823 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7824 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7825
7826 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7827 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7828 }
7829
7830 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7831 struct intel_crtc_state *pipe_config)
7832 {
7833 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7834 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7835 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7836 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7837
7838 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7839 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7840 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7841 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7842
7843 mode->flags = pipe_config->base.adjusted_mode.flags;
7844 mode->type = DRM_MODE_TYPE_DRIVER;
7845
7846 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7847 mode->flags |= pipe_config->base.adjusted_mode.flags;
7848
7849 mode->hsync = drm_mode_hsync(mode);
7850 mode->vrefresh = drm_mode_vrefresh(mode);
7851 drm_mode_set_name(mode);
7852 }
7853
7854 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7855 {
7856 struct drm_device *dev = intel_crtc->base.dev;
7857 struct drm_i915_private *dev_priv = dev->dev_private;
7858 uint32_t pipeconf;
7859
7860 pipeconf = 0;
7861
7862 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7863 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7864 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7865
7866 if (intel_crtc->config->double_wide)
7867 pipeconf |= PIPECONF_DOUBLE_WIDE;
7868
7869 /* only g4x and later have fancy bpc/dither controls */
7870 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7871 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7872 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7873 pipeconf |= PIPECONF_DITHER_EN |
7874 PIPECONF_DITHER_TYPE_SP;
7875
7876 switch (intel_crtc->config->pipe_bpp) {
7877 case 18:
7878 pipeconf |= PIPECONF_6BPC;
7879 break;
7880 case 24:
7881 pipeconf |= PIPECONF_8BPC;
7882 break;
7883 case 30:
7884 pipeconf |= PIPECONF_10BPC;
7885 break;
7886 default:
7887 /* Case prevented by intel_choose_pipe_bpp_dither. */
7888 BUG();
7889 }
7890 }
7891
7892 if (HAS_PIPE_CXSR(dev)) {
7893 if (intel_crtc->lowfreq_avail) {
7894 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7895 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7896 } else {
7897 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7898 }
7899 }
7900
7901 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7902 if (INTEL_INFO(dev)->gen < 4 ||
7903 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7904 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7905 else
7906 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7907 } else
7908 pipeconf |= PIPECONF_PROGRESSIVE;
7909
7910 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7911 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7912
7913 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7914 POSTING_READ(PIPECONF(intel_crtc->pipe));
7915 }
7916
7917 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7918 struct intel_crtc_state *crtc_state)
7919 {
7920 struct drm_device *dev = crtc->base.dev;
7921 struct drm_i915_private *dev_priv = dev->dev_private;
7922 int refclk, num_connectors = 0;
7923 intel_clock_t clock;
7924 bool ok;
7925 const intel_limit_t *limit;
7926 struct drm_atomic_state *state = crtc_state->base.state;
7927 struct drm_connector *connector;
7928 struct drm_connector_state *connector_state;
7929 int i;
7930
7931 memset(&crtc_state->dpll_hw_state, 0,
7932 sizeof(crtc_state->dpll_hw_state));
7933
7934 if (crtc_state->has_dsi_encoder)
7935 return 0;
7936
7937 for_each_connector_in_state(state, connector, connector_state, i) {
7938 if (connector_state->crtc == &crtc->base)
7939 num_connectors++;
7940 }
7941
7942 if (!crtc_state->clock_set) {
7943 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7944
7945 /*
7946 * Returns a set of divisors for the desired target clock with
7947 * the given refclk, or FALSE. The returned values represent
7948 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7949 * 2) / p1 / p2.
7950 */
7951 limit = intel_limit(crtc_state, refclk);
7952 ok = dev_priv->display.find_dpll(limit, crtc_state,
7953 crtc_state->port_clock,
7954 refclk, NULL, &clock);
7955 if (!ok) {
7956 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7957 return -EINVAL;
7958 }
7959
7960 /* Compat-code for transition, will disappear. */
7961 crtc_state->dpll.n = clock.n;
7962 crtc_state->dpll.m1 = clock.m1;
7963 crtc_state->dpll.m2 = clock.m2;
7964 crtc_state->dpll.p1 = clock.p1;
7965 crtc_state->dpll.p2 = clock.p2;
7966 }
7967
7968 if (IS_GEN2(dev)) {
7969 i8xx_compute_dpll(crtc, crtc_state, NULL,
7970 num_connectors);
7971 } else if (IS_CHERRYVIEW(dev)) {
7972 chv_compute_dpll(crtc, crtc_state);
7973 } else if (IS_VALLEYVIEW(dev)) {
7974 vlv_compute_dpll(crtc, crtc_state);
7975 } else {
7976 i9xx_compute_dpll(crtc, crtc_state, NULL,
7977 num_connectors);
7978 }
7979
7980 return 0;
7981 }
7982
7983 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7984 struct intel_crtc_state *pipe_config)
7985 {
7986 struct drm_device *dev = crtc->base.dev;
7987 struct drm_i915_private *dev_priv = dev->dev_private;
7988 uint32_t tmp;
7989
7990 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7991 return;
7992
7993 tmp = I915_READ(PFIT_CONTROL);
7994 if (!(tmp & PFIT_ENABLE))
7995 return;
7996
7997 /* Check whether the pfit is attached to our pipe. */
7998 if (INTEL_INFO(dev)->gen < 4) {
7999 if (crtc->pipe != PIPE_B)
8000 return;
8001 } else {
8002 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8003 return;
8004 }
8005
8006 pipe_config->gmch_pfit.control = tmp;
8007 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8008 if (INTEL_INFO(dev)->gen < 5)
8009 pipe_config->gmch_pfit.lvds_border_bits =
8010 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8011 }
8012
8013 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8014 struct intel_crtc_state *pipe_config)
8015 {
8016 struct drm_device *dev = crtc->base.dev;
8017 struct drm_i915_private *dev_priv = dev->dev_private;
8018 int pipe = pipe_config->cpu_transcoder;
8019 intel_clock_t clock;
8020 u32 mdiv;
8021 int refclk = 100000;
8022
8023 /* In case of MIPI DPLL will not even be used */
8024 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8025 return;
8026
8027 mutex_lock(&dev_priv->sb_lock);
8028 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8029 mutex_unlock(&dev_priv->sb_lock);
8030
8031 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8032 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8033 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8034 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8035 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8036
8037 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8038 }
8039
8040 static void
8041 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8042 struct intel_initial_plane_config *plane_config)
8043 {
8044 struct drm_device *dev = crtc->base.dev;
8045 struct drm_i915_private *dev_priv = dev->dev_private;
8046 u32 val, base, offset;
8047 int pipe = crtc->pipe, plane = crtc->plane;
8048 int fourcc, pixel_format;
8049 unsigned int aligned_height;
8050 struct drm_framebuffer *fb;
8051 struct intel_framebuffer *intel_fb;
8052
8053 val = I915_READ(DSPCNTR(plane));
8054 if (!(val & DISPLAY_PLANE_ENABLE))
8055 return;
8056
8057 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8058 if (!intel_fb) {
8059 DRM_DEBUG_KMS("failed to alloc fb\n");
8060 return;
8061 }
8062
8063 fb = &intel_fb->base;
8064
8065 if (INTEL_INFO(dev)->gen >= 4) {
8066 if (val & DISPPLANE_TILED) {
8067 plane_config->tiling = I915_TILING_X;
8068 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8069 }
8070 }
8071
8072 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8073 fourcc = i9xx_format_to_fourcc(pixel_format);
8074 fb->pixel_format = fourcc;
8075 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8076
8077 if (INTEL_INFO(dev)->gen >= 4) {
8078 if (plane_config->tiling)
8079 offset = I915_READ(DSPTILEOFF(plane));
8080 else
8081 offset = I915_READ(DSPLINOFF(plane));
8082 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8083 } else {
8084 base = I915_READ(DSPADDR(plane));
8085 }
8086 plane_config->base = base;
8087
8088 val = I915_READ(PIPESRC(pipe));
8089 fb->width = ((val >> 16) & 0xfff) + 1;
8090 fb->height = ((val >> 0) & 0xfff) + 1;
8091
8092 val = I915_READ(DSPSTRIDE(pipe));
8093 fb->pitches[0] = val & 0xffffffc0;
8094
8095 aligned_height = intel_fb_align_height(dev, fb->height,
8096 fb->pixel_format,
8097 fb->modifier[0]);
8098
8099 plane_config->size = fb->pitches[0] * aligned_height;
8100
8101 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8102 pipe_name(pipe), plane, fb->width, fb->height,
8103 fb->bits_per_pixel, base, fb->pitches[0],
8104 plane_config->size);
8105
8106 plane_config->fb = intel_fb;
8107 }
8108
8109 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8110 struct intel_crtc_state *pipe_config)
8111 {
8112 struct drm_device *dev = crtc->base.dev;
8113 struct drm_i915_private *dev_priv = dev->dev_private;
8114 int pipe = pipe_config->cpu_transcoder;
8115 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8116 intel_clock_t clock;
8117 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8118 int refclk = 100000;
8119
8120 mutex_lock(&dev_priv->sb_lock);
8121 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8122 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8123 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8124 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8125 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8126 mutex_unlock(&dev_priv->sb_lock);
8127
8128 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8129 clock.m2 = (pll_dw0 & 0xff) << 22;
8130 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8131 clock.m2 |= pll_dw2 & 0x3fffff;
8132 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8133 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8134 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8135
8136 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8137 }
8138
8139 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8140 struct intel_crtc_state *pipe_config)
8141 {
8142 struct drm_device *dev = crtc->base.dev;
8143 struct drm_i915_private *dev_priv = dev->dev_private;
8144 uint32_t tmp;
8145
8146 if (!intel_display_power_is_enabled(dev_priv,
8147 POWER_DOMAIN_PIPE(crtc->pipe)))
8148 return false;
8149
8150 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8151 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8152
8153 tmp = I915_READ(PIPECONF(crtc->pipe));
8154 if (!(tmp & PIPECONF_ENABLE))
8155 return false;
8156
8157 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8158 switch (tmp & PIPECONF_BPC_MASK) {
8159 case PIPECONF_6BPC:
8160 pipe_config->pipe_bpp = 18;
8161 break;
8162 case PIPECONF_8BPC:
8163 pipe_config->pipe_bpp = 24;
8164 break;
8165 case PIPECONF_10BPC:
8166 pipe_config->pipe_bpp = 30;
8167 break;
8168 default:
8169 break;
8170 }
8171 }
8172
8173 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8174 pipe_config->limited_color_range = true;
8175
8176 if (INTEL_INFO(dev)->gen < 4)
8177 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8178
8179 intel_get_pipe_timings(crtc, pipe_config);
8180
8181 i9xx_get_pfit_config(crtc, pipe_config);
8182
8183 if (INTEL_INFO(dev)->gen >= 4) {
8184 tmp = I915_READ(DPLL_MD(crtc->pipe));
8185 pipe_config->pixel_multiplier =
8186 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8187 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8188 pipe_config->dpll_hw_state.dpll_md = tmp;
8189 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8190 tmp = I915_READ(DPLL(crtc->pipe));
8191 pipe_config->pixel_multiplier =
8192 ((tmp & SDVO_MULTIPLIER_MASK)
8193 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8194 } else {
8195 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8196 * port and will be fixed up in the encoder->get_config
8197 * function. */
8198 pipe_config->pixel_multiplier = 1;
8199 }
8200 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8201 if (!IS_VALLEYVIEW(dev)) {
8202 /*
8203 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8204 * on 830. Filter it out here so that we don't
8205 * report errors due to that.
8206 */
8207 if (IS_I830(dev))
8208 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8209
8210 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8211 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8212 } else {
8213 /* Mask out read-only status bits. */
8214 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8215 DPLL_PORTC_READY_MASK |
8216 DPLL_PORTB_READY_MASK);
8217 }
8218
8219 if (IS_CHERRYVIEW(dev))
8220 chv_crtc_clock_get(crtc, pipe_config);
8221 else if (IS_VALLEYVIEW(dev))
8222 vlv_crtc_clock_get(crtc, pipe_config);
8223 else
8224 i9xx_crtc_clock_get(crtc, pipe_config);
8225
8226 /*
8227 * Normally the dotclock is filled in by the encoder .get_config()
8228 * but in case the pipe is enabled w/o any ports we need a sane
8229 * default.
8230 */
8231 pipe_config->base.adjusted_mode.crtc_clock =
8232 pipe_config->port_clock / pipe_config->pixel_multiplier;
8233
8234 return true;
8235 }
8236
8237 static void ironlake_init_pch_refclk(struct drm_device *dev)
8238 {
8239 struct drm_i915_private *dev_priv = dev->dev_private;
8240 struct intel_encoder *encoder;
8241 u32 val, final;
8242 bool has_lvds = false;
8243 bool has_cpu_edp = false;
8244 bool has_panel = false;
8245 bool has_ck505 = false;
8246 bool can_ssc = false;
8247
8248 /* We need to take the global config into account */
8249 for_each_intel_encoder(dev, encoder) {
8250 switch (encoder->type) {
8251 case INTEL_OUTPUT_LVDS:
8252 has_panel = true;
8253 has_lvds = true;
8254 break;
8255 case INTEL_OUTPUT_EDP:
8256 has_panel = true;
8257 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8258 has_cpu_edp = true;
8259 break;
8260 default:
8261 break;
8262 }
8263 }
8264
8265 if (HAS_PCH_IBX(dev)) {
8266 has_ck505 = dev_priv->vbt.display_clock_mode;
8267 can_ssc = has_ck505;
8268 } else {
8269 has_ck505 = false;
8270 can_ssc = true;
8271 }
8272
8273 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8274 has_panel, has_lvds, has_ck505);
8275
8276 /* Ironlake: try to setup display ref clock before DPLL
8277 * enabling. This is only under driver's control after
8278 * PCH B stepping, previous chipset stepping should be
8279 * ignoring this setting.
8280 */
8281 val = I915_READ(PCH_DREF_CONTROL);
8282
8283 /* As we must carefully and slowly disable/enable each source in turn,
8284 * compute the final state we want first and check if we need to
8285 * make any changes at all.
8286 */
8287 final = val;
8288 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8289 if (has_ck505)
8290 final |= DREF_NONSPREAD_CK505_ENABLE;
8291 else
8292 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8293
8294 final &= ~DREF_SSC_SOURCE_MASK;
8295 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8296 final &= ~DREF_SSC1_ENABLE;
8297
8298 if (has_panel) {
8299 final |= DREF_SSC_SOURCE_ENABLE;
8300
8301 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8302 final |= DREF_SSC1_ENABLE;
8303
8304 if (has_cpu_edp) {
8305 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8306 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8307 else
8308 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8309 } else
8310 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8311 } else {
8312 final |= DREF_SSC_SOURCE_DISABLE;
8313 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8314 }
8315
8316 if (final == val)
8317 return;
8318
8319 /* Always enable nonspread source */
8320 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8321
8322 if (has_ck505)
8323 val |= DREF_NONSPREAD_CK505_ENABLE;
8324 else
8325 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8326
8327 if (has_panel) {
8328 val &= ~DREF_SSC_SOURCE_MASK;
8329 val |= DREF_SSC_SOURCE_ENABLE;
8330
8331 /* SSC must be turned on before enabling the CPU output */
8332 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8333 DRM_DEBUG_KMS("Using SSC on panel\n");
8334 val |= DREF_SSC1_ENABLE;
8335 } else
8336 val &= ~DREF_SSC1_ENABLE;
8337
8338 /* Get SSC going before enabling the outputs */
8339 I915_WRITE(PCH_DREF_CONTROL, val);
8340 POSTING_READ(PCH_DREF_CONTROL);
8341 udelay(200);
8342
8343 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8344
8345 /* Enable CPU source on CPU attached eDP */
8346 if (has_cpu_edp) {
8347 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8348 DRM_DEBUG_KMS("Using SSC on eDP\n");
8349 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8350 } else
8351 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8352 } else
8353 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8354
8355 I915_WRITE(PCH_DREF_CONTROL, val);
8356 POSTING_READ(PCH_DREF_CONTROL);
8357 udelay(200);
8358 } else {
8359 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8360
8361 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8362
8363 /* Turn off CPU output */
8364 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8365
8366 I915_WRITE(PCH_DREF_CONTROL, val);
8367 POSTING_READ(PCH_DREF_CONTROL);
8368 udelay(200);
8369
8370 /* Turn off the SSC source */
8371 val &= ~DREF_SSC_SOURCE_MASK;
8372 val |= DREF_SSC_SOURCE_DISABLE;
8373
8374 /* Turn off SSC1 */
8375 val &= ~DREF_SSC1_ENABLE;
8376
8377 I915_WRITE(PCH_DREF_CONTROL, val);
8378 POSTING_READ(PCH_DREF_CONTROL);
8379 udelay(200);
8380 }
8381
8382 BUG_ON(val != final);
8383 }
8384
8385 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8386 {
8387 uint32_t tmp;
8388
8389 tmp = I915_READ(SOUTH_CHICKEN2);
8390 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8391 I915_WRITE(SOUTH_CHICKEN2, tmp);
8392
8393 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8394 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8395 DRM_ERROR("FDI mPHY reset assert timeout\n");
8396
8397 tmp = I915_READ(SOUTH_CHICKEN2);
8398 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8399 I915_WRITE(SOUTH_CHICKEN2, tmp);
8400
8401 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8402 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8403 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8404 }
8405
8406 /* WaMPhyProgramming:hsw */
8407 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8408 {
8409 uint32_t tmp;
8410
8411 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8412 tmp &= ~(0xFF << 24);
8413 tmp |= (0x12 << 24);
8414 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8415
8416 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8417 tmp |= (1 << 11);
8418 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8419
8420 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8421 tmp |= (1 << 11);
8422 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8423
8424 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8425 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8426 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8427
8428 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8429 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8430 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8431
8432 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8433 tmp &= ~(7 << 13);
8434 tmp |= (5 << 13);
8435 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8436
8437 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8438 tmp &= ~(7 << 13);
8439 tmp |= (5 << 13);
8440 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8441
8442 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8443 tmp &= ~0xFF;
8444 tmp |= 0x1C;
8445 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8446
8447 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8448 tmp &= ~0xFF;
8449 tmp |= 0x1C;
8450 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8451
8452 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8453 tmp &= ~(0xFF << 16);
8454 tmp |= (0x1C << 16);
8455 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8456
8457 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8458 tmp &= ~(0xFF << 16);
8459 tmp |= (0x1C << 16);
8460 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8461
8462 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8463 tmp |= (1 << 27);
8464 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8465
8466 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8467 tmp |= (1 << 27);
8468 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8469
8470 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8471 tmp &= ~(0xF << 28);
8472 tmp |= (4 << 28);
8473 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8474
8475 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8476 tmp &= ~(0xF << 28);
8477 tmp |= (4 << 28);
8478 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8479 }
8480
8481 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8482 * Programming" based on the parameters passed:
8483 * - Sequence to enable CLKOUT_DP
8484 * - Sequence to enable CLKOUT_DP without spread
8485 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8486 */
8487 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8488 bool with_fdi)
8489 {
8490 struct drm_i915_private *dev_priv = dev->dev_private;
8491 uint32_t reg, tmp;
8492
8493 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8494 with_spread = true;
8495 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8496 with_fdi = false;
8497
8498 mutex_lock(&dev_priv->sb_lock);
8499
8500 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8501 tmp &= ~SBI_SSCCTL_DISABLE;
8502 tmp |= SBI_SSCCTL_PATHALT;
8503 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8504
8505 udelay(24);
8506
8507 if (with_spread) {
8508 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8509 tmp &= ~SBI_SSCCTL_PATHALT;
8510 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8511
8512 if (with_fdi) {
8513 lpt_reset_fdi_mphy(dev_priv);
8514 lpt_program_fdi_mphy(dev_priv);
8515 }
8516 }
8517
8518 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8519 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8520 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8521 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8522
8523 mutex_unlock(&dev_priv->sb_lock);
8524 }
8525
8526 /* Sequence to disable CLKOUT_DP */
8527 static void lpt_disable_clkout_dp(struct drm_device *dev)
8528 {
8529 struct drm_i915_private *dev_priv = dev->dev_private;
8530 uint32_t reg, tmp;
8531
8532 mutex_lock(&dev_priv->sb_lock);
8533
8534 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8535 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8536 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8537 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8538
8539 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8540 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8541 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8542 tmp |= SBI_SSCCTL_PATHALT;
8543 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8544 udelay(32);
8545 }
8546 tmp |= SBI_SSCCTL_DISABLE;
8547 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8548 }
8549
8550 mutex_unlock(&dev_priv->sb_lock);
8551 }
8552
8553 static void lpt_init_pch_refclk(struct drm_device *dev)
8554 {
8555 struct intel_encoder *encoder;
8556 bool has_vga = false;
8557
8558 for_each_intel_encoder(dev, encoder) {
8559 switch (encoder->type) {
8560 case INTEL_OUTPUT_ANALOG:
8561 has_vga = true;
8562 break;
8563 default:
8564 break;
8565 }
8566 }
8567
8568 if (has_vga)
8569 lpt_enable_clkout_dp(dev, true, true);
8570 else
8571 lpt_disable_clkout_dp(dev);
8572 }
8573
8574 /*
8575 * Initialize reference clocks when the driver loads
8576 */
8577 void intel_init_pch_refclk(struct drm_device *dev)
8578 {
8579 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8580 ironlake_init_pch_refclk(dev);
8581 else if (HAS_PCH_LPT(dev))
8582 lpt_init_pch_refclk(dev);
8583 }
8584
8585 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8586 {
8587 struct drm_device *dev = crtc_state->base.crtc->dev;
8588 struct drm_i915_private *dev_priv = dev->dev_private;
8589 struct drm_atomic_state *state = crtc_state->base.state;
8590 struct drm_connector *connector;
8591 struct drm_connector_state *connector_state;
8592 struct intel_encoder *encoder;
8593 int num_connectors = 0, i;
8594 bool is_lvds = false;
8595
8596 for_each_connector_in_state(state, connector, connector_state, i) {
8597 if (connector_state->crtc != crtc_state->base.crtc)
8598 continue;
8599
8600 encoder = to_intel_encoder(connector_state->best_encoder);
8601
8602 switch (encoder->type) {
8603 case INTEL_OUTPUT_LVDS:
8604 is_lvds = true;
8605 break;
8606 default:
8607 break;
8608 }
8609 num_connectors++;
8610 }
8611
8612 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8613 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8614 dev_priv->vbt.lvds_ssc_freq);
8615 return dev_priv->vbt.lvds_ssc_freq;
8616 }
8617
8618 return 120000;
8619 }
8620
8621 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8622 {
8623 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8625 int pipe = intel_crtc->pipe;
8626 uint32_t val;
8627
8628 val = 0;
8629
8630 switch (intel_crtc->config->pipe_bpp) {
8631 case 18:
8632 val |= PIPECONF_6BPC;
8633 break;
8634 case 24:
8635 val |= PIPECONF_8BPC;
8636 break;
8637 case 30:
8638 val |= PIPECONF_10BPC;
8639 break;
8640 case 36:
8641 val |= PIPECONF_12BPC;
8642 break;
8643 default:
8644 /* Case prevented by intel_choose_pipe_bpp_dither. */
8645 BUG();
8646 }
8647
8648 if (intel_crtc->config->dither)
8649 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8650
8651 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8652 val |= PIPECONF_INTERLACED_ILK;
8653 else
8654 val |= PIPECONF_PROGRESSIVE;
8655
8656 if (intel_crtc->config->limited_color_range)
8657 val |= PIPECONF_COLOR_RANGE_SELECT;
8658
8659 I915_WRITE(PIPECONF(pipe), val);
8660 POSTING_READ(PIPECONF(pipe));
8661 }
8662
8663 /*
8664 * Set up the pipe CSC unit.
8665 *
8666 * Currently only full range RGB to limited range RGB conversion
8667 * is supported, but eventually this should handle various
8668 * RGB<->YCbCr scenarios as well.
8669 */
8670 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8671 {
8672 struct drm_device *dev = crtc->dev;
8673 struct drm_i915_private *dev_priv = dev->dev_private;
8674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8675 int pipe = intel_crtc->pipe;
8676 uint16_t coeff = 0x7800; /* 1.0 */
8677
8678 /*
8679 * TODO: Check what kind of values actually come out of the pipe
8680 * with these coeff/postoff values and adjust to get the best
8681 * accuracy. Perhaps we even need to take the bpc value into
8682 * consideration.
8683 */
8684
8685 if (intel_crtc->config->limited_color_range)
8686 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8687
8688 /*
8689 * GY/GU and RY/RU should be the other way around according
8690 * to BSpec, but reality doesn't agree. Just set them up in
8691 * a way that results in the correct picture.
8692 */
8693 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8694 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8695
8696 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8697 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8698
8699 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8700 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8701
8702 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8703 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8704 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8705
8706 if (INTEL_INFO(dev)->gen > 6) {
8707 uint16_t postoff = 0;
8708
8709 if (intel_crtc->config->limited_color_range)
8710 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8711
8712 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8713 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8714 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8715
8716 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8717 } else {
8718 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8719
8720 if (intel_crtc->config->limited_color_range)
8721 mode |= CSC_BLACK_SCREEN_OFFSET;
8722
8723 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8724 }
8725 }
8726
8727 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8728 {
8729 struct drm_device *dev = crtc->dev;
8730 struct drm_i915_private *dev_priv = dev->dev_private;
8731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8732 enum pipe pipe = intel_crtc->pipe;
8733 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8734 uint32_t val;
8735
8736 val = 0;
8737
8738 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8739 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8740
8741 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8742 val |= PIPECONF_INTERLACED_ILK;
8743 else
8744 val |= PIPECONF_PROGRESSIVE;
8745
8746 I915_WRITE(PIPECONF(cpu_transcoder), val);
8747 POSTING_READ(PIPECONF(cpu_transcoder));
8748
8749 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8750 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8751
8752 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8753 val = 0;
8754
8755 switch (intel_crtc->config->pipe_bpp) {
8756 case 18:
8757 val |= PIPEMISC_DITHER_6_BPC;
8758 break;
8759 case 24:
8760 val |= PIPEMISC_DITHER_8_BPC;
8761 break;
8762 case 30:
8763 val |= PIPEMISC_DITHER_10_BPC;
8764 break;
8765 case 36:
8766 val |= PIPEMISC_DITHER_12_BPC;
8767 break;
8768 default:
8769 /* Case prevented by pipe_config_set_bpp. */
8770 BUG();
8771 }
8772
8773 if (intel_crtc->config->dither)
8774 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8775
8776 I915_WRITE(PIPEMISC(pipe), val);
8777 }
8778 }
8779
8780 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8781 struct intel_crtc_state *crtc_state,
8782 intel_clock_t *clock,
8783 bool *has_reduced_clock,
8784 intel_clock_t *reduced_clock)
8785 {
8786 struct drm_device *dev = crtc->dev;
8787 struct drm_i915_private *dev_priv = dev->dev_private;
8788 int refclk;
8789 const intel_limit_t *limit;
8790 bool ret;
8791
8792 refclk = ironlake_get_refclk(crtc_state);
8793
8794 /*
8795 * Returns a set of divisors for the desired target clock with the given
8796 * refclk, or FALSE. The returned values represent the clock equation:
8797 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8798 */
8799 limit = intel_limit(crtc_state, refclk);
8800 ret = dev_priv->display.find_dpll(limit, crtc_state,
8801 crtc_state->port_clock,
8802 refclk, NULL, clock);
8803 if (!ret)
8804 return false;
8805
8806 return true;
8807 }
8808
8809 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8810 {
8811 /*
8812 * Account for spread spectrum to avoid
8813 * oversubscribing the link. Max center spread
8814 * is 2.5%; use 5% for safety's sake.
8815 */
8816 u32 bps = target_clock * bpp * 21 / 20;
8817 return DIV_ROUND_UP(bps, link_bw * 8);
8818 }
8819
8820 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8821 {
8822 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8823 }
8824
8825 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8826 struct intel_crtc_state *crtc_state,
8827 u32 *fp,
8828 intel_clock_t *reduced_clock, u32 *fp2)
8829 {
8830 struct drm_crtc *crtc = &intel_crtc->base;
8831 struct drm_device *dev = crtc->dev;
8832 struct drm_i915_private *dev_priv = dev->dev_private;
8833 struct drm_atomic_state *state = crtc_state->base.state;
8834 struct drm_connector *connector;
8835 struct drm_connector_state *connector_state;
8836 struct intel_encoder *encoder;
8837 uint32_t dpll;
8838 int factor, num_connectors = 0, i;
8839 bool is_lvds = false, is_sdvo = false;
8840
8841 for_each_connector_in_state(state, connector, connector_state, i) {
8842 if (connector_state->crtc != crtc_state->base.crtc)
8843 continue;
8844
8845 encoder = to_intel_encoder(connector_state->best_encoder);
8846
8847 switch (encoder->type) {
8848 case INTEL_OUTPUT_LVDS:
8849 is_lvds = true;
8850 break;
8851 case INTEL_OUTPUT_SDVO:
8852 case INTEL_OUTPUT_HDMI:
8853 is_sdvo = true;
8854 break;
8855 default:
8856 break;
8857 }
8858
8859 num_connectors++;
8860 }
8861
8862 /* Enable autotuning of the PLL clock (if permissible) */
8863 factor = 21;
8864 if (is_lvds) {
8865 if ((intel_panel_use_ssc(dev_priv) &&
8866 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8867 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8868 factor = 25;
8869 } else if (crtc_state->sdvo_tv_clock)
8870 factor = 20;
8871
8872 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8873 *fp |= FP_CB_TUNE;
8874
8875 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8876 *fp2 |= FP_CB_TUNE;
8877
8878 dpll = 0;
8879
8880 if (is_lvds)
8881 dpll |= DPLLB_MODE_LVDS;
8882 else
8883 dpll |= DPLLB_MODE_DAC_SERIAL;
8884
8885 dpll |= (crtc_state->pixel_multiplier - 1)
8886 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8887
8888 if (is_sdvo)
8889 dpll |= DPLL_SDVO_HIGH_SPEED;
8890 if (crtc_state->has_dp_encoder)
8891 dpll |= DPLL_SDVO_HIGH_SPEED;
8892
8893 /* compute bitmask from p1 value */
8894 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8895 /* also FPA1 */
8896 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8897
8898 switch (crtc_state->dpll.p2) {
8899 case 5:
8900 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8901 break;
8902 case 7:
8903 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8904 break;
8905 case 10:
8906 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8907 break;
8908 case 14:
8909 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8910 break;
8911 }
8912
8913 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8914 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8915 else
8916 dpll |= PLL_REF_INPUT_DREFCLK;
8917
8918 return dpll | DPLL_VCO_ENABLE;
8919 }
8920
8921 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8922 struct intel_crtc_state *crtc_state)
8923 {
8924 struct drm_device *dev = crtc->base.dev;
8925 intel_clock_t clock, reduced_clock;
8926 u32 dpll = 0, fp = 0, fp2 = 0;
8927 bool ok, has_reduced_clock = false;
8928 bool is_lvds = false;
8929 struct intel_shared_dpll *pll;
8930
8931 memset(&crtc_state->dpll_hw_state, 0,
8932 sizeof(crtc_state->dpll_hw_state));
8933
8934 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8935
8936 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8937 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8938
8939 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8940 &has_reduced_clock, &reduced_clock);
8941 if (!ok && !crtc_state->clock_set) {
8942 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8943 return -EINVAL;
8944 }
8945 /* Compat-code for transition, will disappear. */
8946 if (!crtc_state->clock_set) {
8947 crtc_state->dpll.n = clock.n;
8948 crtc_state->dpll.m1 = clock.m1;
8949 crtc_state->dpll.m2 = clock.m2;
8950 crtc_state->dpll.p1 = clock.p1;
8951 crtc_state->dpll.p2 = clock.p2;
8952 }
8953
8954 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8955 if (crtc_state->has_pch_encoder) {
8956 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8957 if (has_reduced_clock)
8958 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8959
8960 dpll = ironlake_compute_dpll(crtc, crtc_state,
8961 &fp, &reduced_clock,
8962 has_reduced_clock ? &fp2 : NULL);
8963
8964 crtc_state->dpll_hw_state.dpll = dpll;
8965 crtc_state->dpll_hw_state.fp0 = fp;
8966 if (has_reduced_clock)
8967 crtc_state->dpll_hw_state.fp1 = fp2;
8968 else
8969 crtc_state->dpll_hw_state.fp1 = fp;
8970
8971 pll = intel_get_shared_dpll(crtc, crtc_state);
8972 if (pll == NULL) {
8973 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8974 pipe_name(crtc->pipe));
8975 return -EINVAL;
8976 }
8977 }
8978
8979 if (is_lvds && has_reduced_clock)
8980 crtc->lowfreq_avail = true;
8981 else
8982 crtc->lowfreq_avail = false;
8983
8984 return 0;
8985 }
8986
8987 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8988 struct intel_link_m_n *m_n)
8989 {
8990 struct drm_device *dev = crtc->base.dev;
8991 struct drm_i915_private *dev_priv = dev->dev_private;
8992 enum pipe pipe = crtc->pipe;
8993
8994 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8995 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8996 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8997 & ~TU_SIZE_MASK;
8998 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8999 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9000 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9001 }
9002
9003 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9004 enum transcoder transcoder,
9005 struct intel_link_m_n *m_n,
9006 struct intel_link_m_n *m2_n2)
9007 {
9008 struct drm_device *dev = crtc->base.dev;
9009 struct drm_i915_private *dev_priv = dev->dev_private;
9010 enum pipe pipe = crtc->pipe;
9011
9012 if (INTEL_INFO(dev)->gen >= 5) {
9013 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9014 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9015 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9016 & ~TU_SIZE_MASK;
9017 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9018 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9019 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9020 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9021 * gen < 8) and if DRRS is supported (to make sure the
9022 * registers are not unnecessarily read).
9023 */
9024 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9025 crtc->config->has_drrs) {
9026 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9027 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9028 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9029 & ~TU_SIZE_MASK;
9030 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9031 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9032 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9033 }
9034 } else {
9035 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9036 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9037 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9038 & ~TU_SIZE_MASK;
9039 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9040 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9041 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9042 }
9043 }
9044
9045 void intel_dp_get_m_n(struct intel_crtc *crtc,
9046 struct intel_crtc_state *pipe_config)
9047 {
9048 if (pipe_config->has_pch_encoder)
9049 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9050 else
9051 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9052 &pipe_config->dp_m_n,
9053 &pipe_config->dp_m2_n2);
9054 }
9055
9056 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9057 struct intel_crtc_state *pipe_config)
9058 {
9059 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9060 &pipe_config->fdi_m_n, NULL);
9061 }
9062
9063 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9064 struct intel_crtc_state *pipe_config)
9065 {
9066 struct drm_device *dev = crtc->base.dev;
9067 struct drm_i915_private *dev_priv = dev->dev_private;
9068 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9069 uint32_t ps_ctrl = 0;
9070 int id = -1;
9071 int i;
9072
9073 /* find scaler attached to this pipe */
9074 for (i = 0; i < crtc->num_scalers; i++) {
9075 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9076 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9077 id = i;
9078 pipe_config->pch_pfit.enabled = true;
9079 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9080 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9081 break;
9082 }
9083 }
9084
9085 scaler_state->scaler_id = id;
9086 if (id >= 0) {
9087 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9088 } else {
9089 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9090 }
9091 }
9092
9093 static void
9094 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9095 struct intel_initial_plane_config *plane_config)
9096 {
9097 struct drm_device *dev = crtc->base.dev;
9098 struct drm_i915_private *dev_priv = dev->dev_private;
9099 u32 val, base, offset, stride_mult, tiling;
9100 int pipe = crtc->pipe;
9101 int fourcc, pixel_format;
9102 unsigned int aligned_height;
9103 struct drm_framebuffer *fb;
9104 struct intel_framebuffer *intel_fb;
9105
9106 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9107 if (!intel_fb) {
9108 DRM_DEBUG_KMS("failed to alloc fb\n");
9109 return;
9110 }
9111
9112 fb = &intel_fb->base;
9113
9114 val = I915_READ(PLANE_CTL(pipe, 0));
9115 if (!(val & PLANE_CTL_ENABLE))
9116 goto error;
9117
9118 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9119 fourcc = skl_format_to_fourcc(pixel_format,
9120 val & PLANE_CTL_ORDER_RGBX,
9121 val & PLANE_CTL_ALPHA_MASK);
9122 fb->pixel_format = fourcc;
9123 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9124
9125 tiling = val & PLANE_CTL_TILED_MASK;
9126 switch (tiling) {
9127 case PLANE_CTL_TILED_LINEAR:
9128 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9129 break;
9130 case PLANE_CTL_TILED_X:
9131 plane_config->tiling = I915_TILING_X;
9132 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9133 break;
9134 case PLANE_CTL_TILED_Y:
9135 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9136 break;
9137 case PLANE_CTL_TILED_YF:
9138 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9139 break;
9140 default:
9141 MISSING_CASE(tiling);
9142 goto error;
9143 }
9144
9145 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9146 plane_config->base = base;
9147
9148 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9149
9150 val = I915_READ(PLANE_SIZE(pipe, 0));
9151 fb->height = ((val >> 16) & 0xfff) + 1;
9152 fb->width = ((val >> 0) & 0x1fff) + 1;
9153
9154 val = I915_READ(PLANE_STRIDE(pipe, 0));
9155 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9156 fb->pixel_format);
9157 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9158
9159 aligned_height = intel_fb_align_height(dev, fb->height,
9160 fb->pixel_format,
9161 fb->modifier[0]);
9162
9163 plane_config->size = fb->pitches[0] * aligned_height;
9164
9165 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9166 pipe_name(pipe), fb->width, fb->height,
9167 fb->bits_per_pixel, base, fb->pitches[0],
9168 plane_config->size);
9169
9170 plane_config->fb = intel_fb;
9171 return;
9172
9173 error:
9174 kfree(fb);
9175 }
9176
9177 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9178 struct intel_crtc_state *pipe_config)
9179 {
9180 struct drm_device *dev = crtc->base.dev;
9181 struct drm_i915_private *dev_priv = dev->dev_private;
9182 uint32_t tmp;
9183
9184 tmp = I915_READ(PF_CTL(crtc->pipe));
9185
9186 if (tmp & PF_ENABLE) {
9187 pipe_config->pch_pfit.enabled = true;
9188 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9189 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9190
9191 /* We currently do not free assignements of panel fitters on
9192 * ivb/hsw (since we don't use the higher upscaling modes which
9193 * differentiates them) so just WARN about this case for now. */
9194 if (IS_GEN7(dev)) {
9195 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9196 PF_PIPE_SEL_IVB(crtc->pipe));
9197 }
9198 }
9199 }
9200
9201 static void
9202 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9203 struct intel_initial_plane_config *plane_config)
9204 {
9205 struct drm_device *dev = crtc->base.dev;
9206 struct drm_i915_private *dev_priv = dev->dev_private;
9207 u32 val, base, offset;
9208 int pipe = crtc->pipe;
9209 int fourcc, pixel_format;
9210 unsigned int aligned_height;
9211 struct drm_framebuffer *fb;
9212 struct intel_framebuffer *intel_fb;
9213
9214 val = I915_READ(DSPCNTR(pipe));
9215 if (!(val & DISPLAY_PLANE_ENABLE))
9216 return;
9217
9218 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9219 if (!intel_fb) {
9220 DRM_DEBUG_KMS("failed to alloc fb\n");
9221 return;
9222 }
9223
9224 fb = &intel_fb->base;
9225
9226 if (INTEL_INFO(dev)->gen >= 4) {
9227 if (val & DISPPLANE_TILED) {
9228 plane_config->tiling = I915_TILING_X;
9229 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9230 }
9231 }
9232
9233 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9234 fourcc = i9xx_format_to_fourcc(pixel_format);
9235 fb->pixel_format = fourcc;
9236 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9237
9238 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9239 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9240 offset = I915_READ(DSPOFFSET(pipe));
9241 } else {
9242 if (plane_config->tiling)
9243 offset = I915_READ(DSPTILEOFF(pipe));
9244 else
9245 offset = I915_READ(DSPLINOFF(pipe));
9246 }
9247 plane_config->base = base;
9248
9249 val = I915_READ(PIPESRC(pipe));
9250 fb->width = ((val >> 16) & 0xfff) + 1;
9251 fb->height = ((val >> 0) & 0xfff) + 1;
9252
9253 val = I915_READ(DSPSTRIDE(pipe));
9254 fb->pitches[0] = val & 0xffffffc0;
9255
9256 aligned_height = intel_fb_align_height(dev, fb->height,
9257 fb->pixel_format,
9258 fb->modifier[0]);
9259
9260 plane_config->size = fb->pitches[0] * aligned_height;
9261
9262 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9263 pipe_name(pipe), fb->width, fb->height,
9264 fb->bits_per_pixel, base, fb->pitches[0],
9265 plane_config->size);
9266
9267 plane_config->fb = intel_fb;
9268 }
9269
9270 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9271 struct intel_crtc_state *pipe_config)
9272 {
9273 struct drm_device *dev = crtc->base.dev;
9274 struct drm_i915_private *dev_priv = dev->dev_private;
9275 uint32_t tmp;
9276
9277 if (!intel_display_power_is_enabled(dev_priv,
9278 POWER_DOMAIN_PIPE(crtc->pipe)))
9279 return false;
9280
9281 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9282 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9283
9284 tmp = I915_READ(PIPECONF(crtc->pipe));
9285 if (!(tmp & PIPECONF_ENABLE))
9286 return false;
9287
9288 switch (tmp & PIPECONF_BPC_MASK) {
9289 case PIPECONF_6BPC:
9290 pipe_config->pipe_bpp = 18;
9291 break;
9292 case PIPECONF_8BPC:
9293 pipe_config->pipe_bpp = 24;
9294 break;
9295 case PIPECONF_10BPC:
9296 pipe_config->pipe_bpp = 30;
9297 break;
9298 case PIPECONF_12BPC:
9299 pipe_config->pipe_bpp = 36;
9300 break;
9301 default:
9302 break;
9303 }
9304
9305 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9306 pipe_config->limited_color_range = true;
9307
9308 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9309 struct intel_shared_dpll *pll;
9310
9311 pipe_config->has_pch_encoder = true;
9312
9313 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9314 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9315 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9316
9317 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9318
9319 if (HAS_PCH_IBX(dev_priv->dev)) {
9320 pipe_config->shared_dpll =
9321 (enum intel_dpll_id) crtc->pipe;
9322 } else {
9323 tmp = I915_READ(PCH_DPLL_SEL);
9324 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9325 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9326 else
9327 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9328 }
9329
9330 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9331
9332 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9333 &pipe_config->dpll_hw_state));
9334
9335 tmp = pipe_config->dpll_hw_state.dpll;
9336 pipe_config->pixel_multiplier =
9337 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9338 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9339
9340 ironlake_pch_clock_get(crtc, pipe_config);
9341 } else {
9342 pipe_config->pixel_multiplier = 1;
9343 }
9344
9345 intel_get_pipe_timings(crtc, pipe_config);
9346
9347 ironlake_get_pfit_config(crtc, pipe_config);
9348
9349 return true;
9350 }
9351
9352 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9353 {
9354 struct drm_device *dev = dev_priv->dev;
9355 struct intel_crtc *crtc;
9356
9357 for_each_intel_crtc(dev, crtc)
9358 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9359 pipe_name(crtc->pipe));
9360
9361 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9362 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9363 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9364 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9365 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9366 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9367 "CPU PWM1 enabled\n");
9368 if (IS_HASWELL(dev))
9369 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9370 "CPU PWM2 enabled\n");
9371 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9372 "PCH PWM1 enabled\n");
9373 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9374 "Utility pin enabled\n");
9375 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9376
9377 /*
9378 * In theory we can still leave IRQs enabled, as long as only the HPD
9379 * interrupts remain enabled. We used to check for that, but since it's
9380 * gen-specific and since we only disable LCPLL after we fully disable
9381 * the interrupts, the check below should be enough.
9382 */
9383 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9384 }
9385
9386 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9387 {
9388 struct drm_device *dev = dev_priv->dev;
9389
9390 if (IS_HASWELL(dev))
9391 return I915_READ(D_COMP_HSW);
9392 else
9393 return I915_READ(D_COMP_BDW);
9394 }
9395
9396 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9397 {
9398 struct drm_device *dev = dev_priv->dev;
9399
9400 if (IS_HASWELL(dev)) {
9401 mutex_lock(&dev_priv->rps.hw_lock);
9402 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9403 val))
9404 DRM_ERROR("Failed to write to D_COMP\n");
9405 mutex_unlock(&dev_priv->rps.hw_lock);
9406 } else {
9407 I915_WRITE(D_COMP_BDW, val);
9408 POSTING_READ(D_COMP_BDW);
9409 }
9410 }
9411
9412 /*
9413 * This function implements pieces of two sequences from BSpec:
9414 * - Sequence for display software to disable LCPLL
9415 * - Sequence for display software to allow package C8+
9416 * The steps implemented here are just the steps that actually touch the LCPLL
9417 * register. Callers should take care of disabling all the display engine
9418 * functions, doing the mode unset, fixing interrupts, etc.
9419 */
9420 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9421 bool switch_to_fclk, bool allow_power_down)
9422 {
9423 uint32_t val;
9424
9425 assert_can_disable_lcpll(dev_priv);
9426
9427 val = I915_READ(LCPLL_CTL);
9428
9429 if (switch_to_fclk) {
9430 val |= LCPLL_CD_SOURCE_FCLK;
9431 I915_WRITE(LCPLL_CTL, val);
9432
9433 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9434 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9435 DRM_ERROR("Switching to FCLK failed\n");
9436
9437 val = I915_READ(LCPLL_CTL);
9438 }
9439
9440 val |= LCPLL_PLL_DISABLE;
9441 I915_WRITE(LCPLL_CTL, val);
9442 POSTING_READ(LCPLL_CTL);
9443
9444 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9445 DRM_ERROR("LCPLL still locked\n");
9446
9447 val = hsw_read_dcomp(dev_priv);
9448 val |= D_COMP_COMP_DISABLE;
9449 hsw_write_dcomp(dev_priv, val);
9450 ndelay(100);
9451
9452 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9453 1))
9454 DRM_ERROR("D_COMP RCOMP still in progress\n");
9455
9456 if (allow_power_down) {
9457 val = I915_READ(LCPLL_CTL);
9458 val |= LCPLL_POWER_DOWN_ALLOW;
9459 I915_WRITE(LCPLL_CTL, val);
9460 POSTING_READ(LCPLL_CTL);
9461 }
9462 }
9463
9464 /*
9465 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9466 * source.
9467 */
9468 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9469 {
9470 uint32_t val;
9471
9472 val = I915_READ(LCPLL_CTL);
9473
9474 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9475 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9476 return;
9477
9478 /*
9479 * Make sure we're not on PC8 state before disabling PC8, otherwise
9480 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9481 */
9482 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9483
9484 if (val & LCPLL_POWER_DOWN_ALLOW) {
9485 val &= ~LCPLL_POWER_DOWN_ALLOW;
9486 I915_WRITE(LCPLL_CTL, val);
9487 POSTING_READ(LCPLL_CTL);
9488 }
9489
9490 val = hsw_read_dcomp(dev_priv);
9491 val |= D_COMP_COMP_FORCE;
9492 val &= ~D_COMP_COMP_DISABLE;
9493 hsw_write_dcomp(dev_priv, val);
9494
9495 val = I915_READ(LCPLL_CTL);
9496 val &= ~LCPLL_PLL_DISABLE;
9497 I915_WRITE(LCPLL_CTL, val);
9498
9499 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9500 DRM_ERROR("LCPLL not locked yet\n");
9501
9502 if (val & LCPLL_CD_SOURCE_FCLK) {
9503 val = I915_READ(LCPLL_CTL);
9504 val &= ~LCPLL_CD_SOURCE_FCLK;
9505 I915_WRITE(LCPLL_CTL, val);
9506
9507 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9508 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9509 DRM_ERROR("Switching back to LCPLL failed\n");
9510 }
9511
9512 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9513 intel_update_cdclk(dev_priv->dev);
9514 }
9515
9516 /*
9517 * Package states C8 and deeper are really deep PC states that can only be
9518 * reached when all the devices on the system allow it, so even if the graphics
9519 * device allows PC8+, it doesn't mean the system will actually get to these
9520 * states. Our driver only allows PC8+ when going into runtime PM.
9521 *
9522 * The requirements for PC8+ are that all the outputs are disabled, the power
9523 * well is disabled and most interrupts are disabled, and these are also
9524 * requirements for runtime PM. When these conditions are met, we manually do
9525 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9526 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9527 * hang the machine.
9528 *
9529 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9530 * the state of some registers, so when we come back from PC8+ we need to
9531 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9532 * need to take care of the registers kept by RC6. Notice that this happens even
9533 * if we don't put the device in PCI D3 state (which is what currently happens
9534 * because of the runtime PM support).
9535 *
9536 * For more, read "Display Sequences for Package C8" on the hardware
9537 * documentation.
9538 */
9539 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9540 {
9541 struct drm_device *dev = dev_priv->dev;
9542 uint32_t val;
9543
9544 DRM_DEBUG_KMS("Enabling package C8+\n");
9545
9546 if (HAS_PCH_LPT_LP(dev)) {
9547 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9548 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9549 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9550 }
9551
9552 lpt_disable_clkout_dp(dev);
9553 hsw_disable_lcpll(dev_priv, true, true);
9554 }
9555
9556 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9557 {
9558 struct drm_device *dev = dev_priv->dev;
9559 uint32_t val;
9560
9561 DRM_DEBUG_KMS("Disabling package C8+\n");
9562
9563 hsw_restore_lcpll(dev_priv);
9564 lpt_init_pch_refclk(dev);
9565
9566 if (HAS_PCH_LPT_LP(dev)) {
9567 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9568 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9569 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9570 }
9571
9572 intel_prepare_ddi(dev);
9573 }
9574
9575 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9576 {
9577 struct drm_device *dev = old_state->dev;
9578 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9579
9580 broxton_set_cdclk(dev, req_cdclk);
9581 }
9582
9583 /* compute the max rate for new configuration */
9584 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9585 {
9586 struct intel_crtc *intel_crtc;
9587 struct intel_crtc_state *crtc_state;
9588 int max_pixel_rate = 0;
9589
9590 for_each_intel_crtc(state->dev, intel_crtc) {
9591 int pixel_rate;
9592
9593 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9594 if (IS_ERR(crtc_state))
9595 return PTR_ERR(crtc_state);
9596
9597 if (!crtc_state->base.enable)
9598 continue;
9599
9600 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9601
9602 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9603 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9604 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9605
9606 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9607 }
9608
9609 return max_pixel_rate;
9610 }
9611
9612 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9613 {
9614 struct drm_i915_private *dev_priv = dev->dev_private;
9615 uint32_t val, data;
9616 int ret;
9617
9618 if (WARN((I915_READ(LCPLL_CTL) &
9619 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9620 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9621 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9622 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9623 "trying to change cdclk frequency with cdclk not enabled\n"))
9624 return;
9625
9626 mutex_lock(&dev_priv->rps.hw_lock);
9627 ret = sandybridge_pcode_write(dev_priv,
9628 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9629 mutex_unlock(&dev_priv->rps.hw_lock);
9630 if (ret) {
9631 DRM_ERROR("failed to inform pcode about cdclk change\n");
9632 return;
9633 }
9634
9635 val = I915_READ(LCPLL_CTL);
9636 val |= LCPLL_CD_SOURCE_FCLK;
9637 I915_WRITE(LCPLL_CTL, val);
9638
9639 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9640 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9641 DRM_ERROR("Switching to FCLK failed\n");
9642
9643 val = I915_READ(LCPLL_CTL);
9644 val &= ~LCPLL_CLK_FREQ_MASK;
9645
9646 switch (cdclk) {
9647 case 450000:
9648 val |= LCPLL_CLK_FREQ_450;
9649 data = 0;
9650 break;
9651 case 540000:
9652 val |= LCPLL_CLK_FREQ_54O_BDW;
9653 data = 1;
9654 break;
9655 case 337500:
9656 val |= LCPLL_CLK_FREQ_337_5_BDW;
9657 data = 2;
9658 break;
9659 case 675000:
9660 val |= LCPLL_CLK_FREQ_675_BDW;
9661 data = 3;
9662 break;
9663 default:
9664 WARN(1, "invalid cdclk frequency\n");
9665 return;
9666 }
9667
9668 I915_WRITE(LCPLL_CTL, val);
9669
9670 val = I915_READ(LCPLL_CTL);
9671 val &= ~LCPLL_CD_SOURCE_FCLK;
9672 I915_WRITE(LCPLL_CTL, val);
9673
9674 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9675 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9676 DRM_ERROR("Switching back to LCPLL failed\n");
9677
9678 mutex_lock(&dev_priv->rps.hw_lock);
9679 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9680 mutex_unlock(&dev_priv->rps.hw_lock);
9681
9682 intel_update_cdclk(dev);
9683
9684 WARN(cdclk != dev_priv->cdclk_freq,
9685 "cdclk requested %d kHz but got %d kHz\n",
9686 cdclk, dev_priv->cdclk_freq);
9687 }
9688
9689 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9690 {
9691 struct drm_i915_private *dev_priv = to_i915(state->dev);
9692 int max_pixclk = ilk_max_pixel_rate(state);
9693 int cdclk;
9694
9695 /*
9696 * FIXME should also account for plane ratio
9697 * once 64bpp pixel formats are supported.
9698 */
9699 if (max_pixclk > 540000)
9700 cdclk = 675000;
9701 else if (max_pixclk > 450000)
9702 cdclk = 540000;
9703 else if (max_pixclk > 337500)
9704 cdclk = 450000;
9705 else
9706 cdclk = 337500;
9707
9708 /*
9709 * FIXME move the cdclk caclulation to
9710 * compute_config() so we can fail gracegully.
9711 */
9712 if (cdclk > dev_priv->max_cdclk_freq) {
9713 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9714 cdclk, dev_priv->max_cdclk_freq);
9715 cdclk = dev_priv->max_cdclk_freq;
9716 }
9717
9718 to_intel_atomic_state(state)->cdclk = cdclk;
9719
9720 return 0;
9721 }
9722
9723 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9724 {
9725 struct drm_device *dev = old_state->dev;
9726 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9727
9728 broadwell_set_cdclk(dev, req_cdclk);
9729 }
9730
9731 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9732 struct intel_crtc_state *crtc_state)
9733 {
9734 if (!intel_ddi_pll_select(crtc, crtc_state))
9735 return -EINVAL;
9736
9737 crtc->lowfreq_avail = false;
9738
9739 return 0;
9740 }
9741
9742 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9743 enum port port,
9744 struct intel_crtc_state *pipe_config)
9745 {
9746 switch (port) {
9747 case PORT_A:
9748 pipe_config->ddi_pll_sel = SKL_DPLL0;
9749 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9750 break;
9751 case PORT_B:
9752 pipe_config->ddi_pll_sel = SKL_DPLL1;
9753 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9754 break;
9755 case PORT_C:
9756 pipe_config->ddi_pll_sel = SKL_DPLL2;
9757 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9758 break;
9759 default:
9760 DRM_ERROR("Incorrect port type\n");
9761 }
9762 }
9763
9764 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9765 enum port port,
9766 struct intel_crtc_state *pipe_config)
9767 {
9768 u32 temp, dpll_ctl1;
9769
9770 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9771 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9772
9773 switch (pipe_config->ddi_pll_sel) {
9774 case SKL_DPLL0:
9775 /*
9776 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9777 * of the shared DPLL framework and thus needs to be read out
9778 * separately
9779 */
9780 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9781 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9782 break;
9783 case SKL_DPLL1:
9784 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9785 break;
9786 case SKL_DPLL2:
9787 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9788 break;
9789 case SKL_DPLL3:
9790 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9791 break;
9792 }
9793 }
9794
9795 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9796 enum port port,
9797 struct intel_crtc_state *pipe_config)
9798 {
9799 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9800
9801 switch (pipe_config->ddi_pll_sel) {
9802 case PORT_CLK_SEL_WRPLL1:
9803 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9804 break;
9805 case PORT_CLK_SEL_WRPLL2:
9806 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9807 break;
9808 case PORT_CLK_SEL_SPLL:
9809 pipe_config->shared_dpll = DPLL_ID_SPLL;
9810 break;
9811 }
9812 }
9813
9814 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9815 struct intel_crtc_state *pipe_config)
9816 {
9817 struct drm_device *dev = crtc->base.dev;
9818 struct drm_i915_private *dev_priv = dev->dev_private;
9819 struct intel_shared_dpll *pll;
9820 enum port port;
9821 uint32_t tmp;
9822
9823 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9824
9825 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9826
9827 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9828 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9829 else if (IS_BROXTON(dev))
9830 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9831 else
9832 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9833
9834 if (pipe_config->shared_dpll >= 0) {
9835 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9836
9837 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9838 &pipe_config->dpll_hw_state));
9839 }
9840
9841 /*
9842 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9843 * DDI E. So just check whether this pipe is wired to DDI E and whether
9844 * the PCH transcoder is on.
9845 */
9846 if (INTEL_INFO(dev)->gen < 9 &&
9847 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9848 pipe_config->has_pch_encoder = true;
9849
9850 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9851 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9852 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9853
9854 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9855 }
9856 }
9857
9858 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9859 struct intel_crtc_state *pipe_config)
9860 {
9861 struct drm_device *dev = crtc->base.dev;
9862 struct drm_i915_private *dev_priv = dev->dev_private;
9863 enum intel_display_power_domain pfit_domain;
9864 uint32_t tmp;
9865
9866 if (!intel_display_power_is_enabled(dev_priv,
9867 POWER_DOMAIN_PIPE(crtc->pipe)))
9868 return false;
9869
9870 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9871 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9872
9873 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9874 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9875 enum pipe trans_edp_pipe;
9876 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9877 default:
9878 WARN(1, "unknown pipe linked to edp transcoder\n");
9879 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9880 case TRANS_DDI_EDP_INPUT_A_ON:
9881 trans_edp_pipe = PIPE_A;
9882 break;
9883 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9884 trans_edp_pipe = PIPE_B;
9885 break;
9886 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9887 trans_edp_pipe = PIPE_C;
9888 break;
9889 }
9890
9891 if (trans_edp_pipe == crtc->pipe)
9892 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9893 }
9894
9895 if (!intel_display_power_is_enabled(dev_priv,
9896 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9897 return false;
9898
9899 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9900 if (!(tmp & PIPECONF_ENABLE))
9901 return false;
9902
9903 haswell_get_ddi_port_state(crtc, pipe_config);
9904
9905 intel_get_pipe_timings(crtc, pipe_config);
9906
9907 if (INTEL_INFO(dev)->gen >= 9) {
9908 skl_init_scalers(dev, crtc, pipe_config);
9909 }
9910
9911 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9912
9913 if (INTEL_INFO(dev)->gen >= 9) {
9914 pipe_config->scaler_state.scaler_id = -1;
9915 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9916 }
9917
9918 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9919 if (INTEL_INFO(dev)->gen >= 9)
9920 skylake_get_pfit_config(crtc, pipe_config);
9921 else
9922 ironlake_get_pfit_config(crtc, pipe_config);
9923 }
9924
9925 if (IS_HASWELL(dev))
9926 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9927 (I915_READ(IPS_CTL) & IPS_ENABLE);
9928
9929 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9930 pipe_config->pixel_multiplier =
9931 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9932 } else {
9933 pipe_config->pixel_multiplier = 1;
9934 }
9935
9936 return true;
9937 }
9938
9939 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9940 {
9941 struct drm_device *dev = crtc->dev;
9942 struct drm_i915_private *dev_priv = dev->dev_private;
9943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9944 uint32_t cntl = 0, size = 0;
9945
9946 if (base) {
9947 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9948 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9949 unsigned int stride = roundup_pow_of_two(width) * 4;
9950
9951 switch (stride) {
9952 default:
9953 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9954 width, stride);
9955 stride = 256;
9956 /* fallthrough */
9957 case 256:
9958 case 512:
9959 case 1024:
9960 case 2048:
9961 break;
9962 }
9963
9964 cntl |= CURSOR_ENABLE |
9965 CURSOR_GAMMA_ENABLE |
9966 CURSOR_FORMAT_ARGB |
9967 CURSOR_STRIDE(stride);
9968
9969 size = (height << 12) | width;
9970 }
9971
9972 if (intel_crtc->cursor_cntl != 0 &&
9973 (intel_crtc->cursor_base != base ||
9974 intel_crtc->cursor_size != size ||
9975 intel_crtc->cursor_cntl != cntl)) {
9976 /* On these chipsets we can only modify the base/size/stride
9977 * whilst the cursor is disabled.
9978 */
9979 I915_WRITE(CURCNTR(PIPE_A), 0);
9980 POSTING_READ(CURCNTR(PIPE_A));
9981 intel_crtc->cursor_cntl = 0;
9982 }
9983
9984 if (intel_crtc->cursor_base != base) {
9985 I915_WRITE(CURBASE(PIPE_A), base);
9986 intel_crtc->cursor_base = base;
9987 }
9988
9989 if (intel_crtc->cursor_size != size) {
9990 I915_WRITE(CURSIZE, size);
9991 intel_crtc->cursor_size = size;
9992 }
9993
9994 if (intel_crtc->cursor_cntl != cntl) {
9995 I915_WRITE(CURCNTR(PIPE_A), cntl);
9996 POSTING_READ(CURCNTR(PIPE_A));
9997 intel_crtc->cursor_cntl = cntl;
9998 }
9999 }
10000
10001 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
10002 {
10003 struct drm_device *dev = crtc->dev;
10004 struct drm_i915_private *dev_priv = dev->dev_private;
10005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10006 int pipe = intel_crtc->pipe;
10007 uint32_t cntl;
10008
10009 cntl = 0;
10010 if (base) {
10011 cntl = MCURSOR_GAMMA_ENABLE;
10012 switch (intel_crtc->base.cursor->state->crtc_w) {
10013 case 64:
10014 cntl |= CURSOR_MODE_64_ARGB_AX;
10015 break;
10016 case 128:
10017 cntl |= CURSOR_MODE_128_ARGB_AX;
10018 break;
10019 case 256:
10020 cntl |= CURSOR_MODE_256_ARGB_AX;
10021 break;
10022 default:
10023 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10024 return;
10025 }
10026 cntl |= pipe << 28; /* Connect to correct pipe */
10027
10028 if (HAS_DDI(dev))
10029 cntl |= CURSOR_PIPE_CSC_ENABLE;
10030 }
10031
10032 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10033 cntl |= CURSOR_ROTATE_180;
10034
10035 if (intel_crtc->cursor_cntl != cntl) {
10036 I915_WRITE(CURCNTR(pipe), cntl);
10037 POSTING_READ(CURCNTR(pipe));
10038 intel_crtc->cursor_cntl = cntl;
10039 }
10040
10041 /* and commit changes on next vblank */
10042 I915_WRITE(CURBASE(pipe), base);
10043 POSTING_READ(CURBASE(pipe));
10044
10045 intel_crtc->cursor_base = base;
10046 }
10047
10048 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10049 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10050 bool on)
10051 {
10052 struct drm_device *dev = crtc->dev;
10053 struct drm_i915_private *dev_priv = dev->dev_private;
10054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10055 int pipe = intel_crtc->pipe;
10056 struct drm_plane_state *cursor_state = crtc->cursor->state;
10057 int x = cursor_state->crtc_x;
10058 int y = cursor_state->crtc_y;
10059 u32 base = 0, pos = 0;
10060
10061 if (on)
10062 base = intel_crtc->cursor_addr;
10063
10064 if (x >= intel_crtc->config->pipe_src_w)
10065 base = 0;
10066
10067 if (y >= intel_crtc->config->pipe_src_h)
10068 base = 0;
10069
10070 if (x < 0) {
10071 if (x + cursor_state->crtc_w <= 0)
10072 base = 0;
10073
10074 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10075 x = -x;
10076 }
10077 pos |= x << CURSOR_X_SHIFT;
10078
10079 if (y < 0) {
10080 if (y + cursor_state->crtc_h <= 0)
10081 base = 0;
10082
10083 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10084 y = -y;
10085 }
10086 pos |= y << CURSOR_Y_SHIFT;
10087
10088 if (base == 0 && intel_crtc->cursor_base == 0)
10089 return;
10090
10091 I915_WRITE(CURPOS(pipe), pos);
10092
10093 /* ILK+ do this automagically */
10094 if (HAS_GMCH_DISPLAY(dev) &&
10095 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10096 base += (cursor_state->crtc_h *
10097 cursor_state->crtc_w - 1) * 4;
10098 }
10099
10100 if (IS_845G(dev) || IS_I865G(dev))
10101 i845_update_cursor(crtc, base);
10102 else
10103 i9xx_update_cursor(crtc, base);
10104 }
10105
10106 static bool cursor_size_ok(struct drm_device *dev,
10107 uint32_t width, uint32_t height)
10108 {
10109 if (width == 0 || height == 0)
10110 return false;
10111
10112 /*
10113 * 845g/865g are special in that they are only limited by
10114 * the width of their cursors, the height is arbitrary up to
10115 * the precision of the register. Everything else requires
10116 * square cursors, limited to a few power-of-two sizes.
10117 */
10118 if (IS_845G(dev) || IS_I865G(dev)) {
10119 if ((width & 63) != 0)
10120 return false;
10121
10122 if (width > (IS_845G(dev) ? 64 : 512))
10123 return false;
10124
10125 if (height > 1023)
10126 return false;
10127 } else {
10128 switch (width | height) {
10129 case 256:
10130 case 128:
10131 if (IS_GEN2(dev))
10132 return false;
10133 case 64:
10134 break;
10135 default:
10136 return false;
10137 }
10138 }
10139
10140 return true;
10141 }
10142
10143 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10144 u16 *blue, uint32_t start, uint32_t size)
10145 {
10146 int end = (start + size > 256) ? 256 : start + size, i;
10147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10148
10149 for (i = start; i < end; i++) {
10150 intel_crtc->lut_r[i] = red[i] >> 8;
10151 intel_crtc->lut_g[i] = green[i] >> 8;
10152 intel_crtc->lut_b[i] = blue[i] >> 8;
10153 }
10154
10155 intel_crtc_load_lut(crtc);
10156 }
10157
10158 /* VESA 640x480x72Hz mode to set on the pipe */
10159 static struct drm_display_mode load_detect_mode = {
10160 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10161 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10162 };
10163
10164 struct drm_framebuffer *
10165 __intel_framebuffer_create(struct drm_device *dev,
10166 struct drm_mode_fb_cmd2 *mode_cmd,
10167 struct drm_i915_gem_object *obj)
10168 {
10169 struct intel_framebuffer *intel_fb;
10170 int ret;
10171
10172 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10173 if (!intel_fb)
10174 return ERR_PTR(-ENOMEM);
10175
10176 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10177 if (ret)
10178 goto err;
10179
10180 return &intel_fb->base;
10181
10182 err:
10183 kfree(intel_fb);
10184 return ERR_PTR(ret);
10185 }
10186
10187 static struct drm_framebuffer *
10188 intel_framebuffer_create(struct drm_device *dev,
10189 struct drm_mode_fb_cmd2 *mode_cmd,
10190 struct drm_i915_gem_object *obj)
10191 {
10192 struct drm_framebuffer *fb;
10193 int ret;
10194
10195 ret = i915_mutex_lock_interruptible(dev);
10196 if (ret)
10197 return ERR_PTR(ret);
10198 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10199 mutex_unlock(&dev->struct_mutex);
10200
10201 return fb;
10202 }
10203
10204 static u32
10205 intel_framebuffer_pitch_for_width(int width, int bpp)
10206 {
10207 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10208 return ALIGN(pitch, 64);
10209 }
10210
10211 static u32
10212 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10213 {
10214 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10215 return PAGE_ALIGN(pitch * mode->vdisplay);
10216 }
10217
10218 static struct drm_framebuffer *
10219 intel_framebuffer_create_for_mode(struct drm_device *dev,
10220 struct drm_display_mode *mode,
10221 int depth, int bpp)
10222 {
10223 struct drm_framebuffer *fb;
10224 struct drm_i915_gem_object *obj;
10225 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10226
10227 obj = i915_gem_alloc_object(dev,
10228 intel_framebuffer_size_for_mode(mode, bpp));
10229 if (obj == NULL)
10230 return ERR_PTR(-ENOMEM);
10231
10232 mode_cmd.width = mode->hdisplay;
10233 mode_cmd.height = mode->vdisplay;
10234 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10235 bpp);
10236 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10237
10238 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10239 if (IS_ERR(fb))
10240 drm_gem_object_unreference_unlocked(&obj->base);
10241
10242 return fb;
10243 }
10244
10245 static struct drm_framebuffer *
10246 mode_fits_in_fbdev(struct drm_device *dev,
10247 struct drm_display_mode *mode)
10248 {
10249 #ifdef CONFIG_DRM_FBDEV_EMULATION
10250 struct drm_i915_private *dev_priv = dev->dev_private;
10251 struct drm_i915_gem_object *obj;
10252 struct drm_framebuffer *fb;
10253
10254 if (!dev_priv->fbdev)
10255 return NULL;
10256
10257 if (!dev_priv->fbdev->fb)
10258 return NULL;
10259
10260 obj = dev_priv->fbdev->fb->obj;
10261 BUG_ON(!obj);
10262
10263 fb = &dev_priv->fbdev->fb->base;
10264 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10265 fb->bits_per_pixel))
10266 return NULL;
10267
10268 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10269 return NULL;
10270
10271 return fb;
10272 #else
10273 return NULL;
10274 #endif
10275 }
10276
10277 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10278 struct drm_crtc *crtc,
10279 struct drm_display_mode *mode,
10280 struct drm_framebuffer *fb,
10281 int x, int y)
10282 {
10283 struct drm_plane_state *plane_state;
10284 int hdisplay, vdisplay;
10285 int ret;
10286
10287 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10288 if (IS_ERR(plane_state))
10289 return PTR_ERR(plane_state);
10290
10291 if (mode)
10292 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10293 else
10294 hdisplay = vdisplay = 0;
10295
10296 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10297 if (ret)
10298 return ret;
10299 drm_atomic_set_fb_for_plane(plane_state, fb);
10300 plane_state->crtc_x = 0;
10301 plane_state->crtc_y = 0;
10302 plane_state->crtc_w = hdisplay;
10303 plane_state->crtc_h = vdisplay;
10304 plane_state->src_x = x << 16;
10305 plane_state->src_y = y << 16;
10306 plane_state->src_w = hdisplay << 16;
10307 plane_state->src_h = vdisplay << 16;
10308
10309 return 0;
10310 }
10311
10312 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10313 struct drm_display_mode *mode,
10314 struct intel_load_detect_pipe *old,
10315 struct drm_modeset_acquire_ctx *ctx)
10316 {
10317 struct intel_crtc *intel_crtc;
10318 struct intel_encoder *intel_encoder =
10319 intel_attached_encoder(connector);
10320 struct drm_crtc *possible_crtc;
10321 struct drm_encoder *encoder = &intel_encoder->base;
10322 struct drm_crtc *crtc = NULL;
10323 struct drm_device *dev = encoder->dev;
10324 struct drm_framebuffer *fb;
10325 struct drm_mode_config *config = &dev->mode_config;
10326 struct drm_atomic_state *state = NULL;
10327 struct drm_connector_state *connector_state;
10328 struct intel_crtc_state *crtc_state;
10329 int ret, i = -1;
10330
10331 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10332 connector->base.id, connector->name,
10333 encoder->base.id, encoder->name);
10334
10335 retry:
10336 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10337 if (ret)
10338 goto fail;
10339
10340 /*
10341 * Algorithm gets a little messy:
10342 *
10343 * - if the connector already has an assigned crtc, use it (but make
10344 * sure it's on first)
10345 *
10346 * - try to find the first unused crtc that can drive this connector,
10347 * and use that if we find one
10348 */
10349
10350 /* See if we already have a CRTC for this connector */
10351 if (encoder->crtc) {
10352 crtc = encoder->crtc;
10353
10354 ret = drm_modeset_lock(&crtc->mutex, ctx);
10355 if (ret)
10356 goto fail;
10357 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10358 if (ret)
10359 goto fail;
10360
10361 old->dpms_mode = connector->dpms;
10362 old->load_detect_temp = false;
10363
10364 /* Make sure the crtc and connector are running */
10365 if (connector->dpms != DRM_MODE_DPMS_ON)
10366 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10367
10368 return true;
10369 }
10370
10371 /* Find an unused one (if possible) */
10372 for_each_crtc(dev, possible_crtc) {
10373 i++;
10374 if (!(encoder->possible_crtcs & (1 << i)))
10375 continue;
10376 if (possible_crtc->state->enable)
10377 continue;
10378
10379 crtc = possible_crtc;
10380 break;
10381 }
10382
10383 /*
10384 * If we didn't find an unused CRTC, don't use any.
10385 */
10386 if (!crtc) {
10387 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10388 goto fail;
10389 }
10390
10391 ret = drm_modeset_lock(&crtc->mutex, ctx);
10392 if (ret)
10393 goto fail;
10394 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10395 if (ret)
10396 goto fail;
10397
10398 intel_crtc = to_intel_crtc(crtc);
10399 old->dpms_mode = connector->dpms;
10400 old->load_detect_temp = true;
10401 old->release_fb = NULL;
10402
10403 state = drm_atomic_state_alloc(dev);
10404 if (!state)
10405 return false;
10406
10407 state->acquire_ctx = ctx;
10408
10409 connector_state = drm_atomic_get_connector_state(state, connector);
10410 if (IS_ERR(connector_state)) {
10411 ret = PTR_ERR(connector_state);
10412 goto fail;
10413 }
10414
10415 connector_state->crtc = crtc;
10416 connector_state->best_encoder = &intel_encoder->base;
10417
10418 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10419 if (IS_ERR(crtc_state)) {
10420 ret = PTR_ERR(crtc_state);
10421 goto fail;
10422 }
10423
10424 crtc_state->base.active = crtc_state->base.enable = true;
10425
10426 if (!mode)
10427 mode = &load_detect_mode;
10428
10429 /* We need a framebuffer large enough to accommodate all accesses
10430 * that the plane may generate whilst we perform load detection.
10431 * We can not rely on the fbcon either being present (we get called
10432 * during its initialisation to detect all boot displays, or it may
10433 * not even exist) or that it is large enough to satisfy the
10434 * requested mode.
10435 */
10436 fb = mode_fits_in_fbdev(dev, mode);
10437 if (fb == NULL) {
10438 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10439 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10440 old->release_fb = fb;
10441 } else
10442 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10443 if (IS_ERR(fb)) {
10444 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10445 goto fail;
10446 }
10447
10448 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10449 if (ret)
10450 goto fail;
10451
10452 drm_mode_copy(&crtc_state->base.mode, mode);
10453
10454 if (drm_atomic_commit(state)) {
10455 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10456 if (old->release_fb)
10457 old->release_fb->funcs->destroy(old->release_fb);
10458 goto fail;
10459 }
10460 crtc->primary->crtc = crtc;
10461
10462 /* let the connector get through one full cycle before testing */
10463 intel_wait_for_vblank(dev, intel_crtc->pipe);
10464 return true;
10465
10466 fail:
10467 drm_atomic_state_free(state);
10468 state = NULL;
10469
10470 if (ret == -EDEADLK) {
10471 drm_modeset_backoff(ctx);
10472 goto retry;
10473 }
10474
10475 return false;
10476 }
10477
10478 void intel_release_load_detect_pipe(struct drm_connector *connector,
10479 struct intel_load_detect_pipe *old,
10480 struct drm_modeset_acquire_ctx *ctx)
10481 {
10482 struct drm_device *dev = connector->dev;
10483 struct intel_encoder *intel_encoder =
10484 intel_attached_encoder(connector);
10485 struct drm_encoder *encoder = &intel_encoder->base;
10486 struct drm_crtc *crtc = encoder->crtc;
10487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10488 struct drm_atomic_state *state;
10489 struct drm_connector_state *connector_state;
10490 struct intel_crtc_state *crtc_state;
10491 int ret;
10492
10493 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10494 connector->base.id, connector->name,
10495 encoder->base.id, encoder->name);
10496
10497 if (old->load_detect_temp) {
10498 state = drm_atomic_state_alloc(dev);
10499 if (!state)
10500 goto fail;
10501
10502 state->acquire_ctx = ctx;
10503
10504 connector_state = drm_atomic_get_connector_state(state, connector);
10505 if (IS_ERR(connector_state))
10506 goto fail;
10507
10508 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10509 if (IS_ERR(crtc_state))
10510 goto fail;
10511
10512 connector_state->best_encoder = NULL;
10513 connector_state->crtc = NULL;
10514
10515 crtc_state->base.enable = crtc_state->base.active = false;
10516
10517 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10518 0, 0);
10519 if (ret)
10520 goto fail;
10521
10522 ret = drm_atomic_commit(state);
10523 if (ret)
10524 goto fail;
10525
10526 if (old->release_fb) {
10527 drm_framebuffer_unregister_private(old->release_fb);
10528 drm_framebuffer_unreference(old->release_fb);
10529 }
10530
10531 return;
10532 }
10533
10534 /* Switch crtc and encoder back off if necessary */
10535 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10536 connector->funcs->dpms(connector, old->dpms_mode);
10537
10538 return;
10539 fail:
10540 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10541 drm_atomic_state_free(state);
10542 }
10543
10544 static int i9xx_pll_refclk(struct drm_device *dev,
10545 const struct intel_crtc_state *pipe_config)
10546 {
10547 struct drm_i915_private *dev_priv = dev->dev_private;
10548 u32 dpll = pipe_config->dpll_hw_state.dpll;
10549
10550 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10551 return dev_priv->vbt.lvds_ssc_freq;
10552 else if (HAS_PCH_SPLIT(dev))
10553 return 120000;
10554 else if (!IS_GEN2(dev))
10555 return 96000;
10556 else
10557 return 48000;
10558 }
10559
10560 /* Returns the clock of the currently programmed mode of the given pipe. */
10561 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10562 struct intel_crtc_state *pipe_config)
10563 {
10564 struct drm_device *dev = crtc->base.dev;
10565 struct drm_i915_private *dev_priv = dev->dev_private;
10566 int pipe = pipe_config->cpu_transcoder;
10567 u32 dpll = pipe_config->dpll_hw_state.dpll;
10568 u32 fp;
10569 intel_clock_t clock;
10570 int port_clock;
10571 int refclk = i9xx_pll_refclk(dev, pipe_config);
10572
10573 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10574 fp = pipe_config->dpll_hw_state.fp0;
10575 else
10576 fp = pipe_config->dpll_hw_state.fp1;
10577
10578 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10579 if (IS_PINEVIEW(dev)) {
10580 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10581 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10582 } else {
10583 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10584 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10585 }
10586
10587 if (!IS_GEN2(dev)) {
10588 if (IS_PINEVIEW(dev))
10589 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10590 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10591 else
10592 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10593 DPLL_FPA01_P1_POST_DIV_SHIFT);
10594
10595 switch (dpll & DPLL_MODE_MASK) {
10596 case DPLLB_MODE_DAC_SERIAL:
10597 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10598 5 : 10;
10599 break;
10600 case DPLLB_MODE_LVDS:
10601 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10602 7 : 14;
10603 break;
10604 default:
10605 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10606 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10607 return;
10608 }
10609
10610 if (IS_PINEVIEW(dev))
10611 port_clock = pnv_calc_dpll_params(refclk, &clock);
10612 else
10613 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10614 } else {
10615 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10616 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10617
10618 if (is_lvds) {
10619 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10620 DPLL_FPA01_P1_POST_DIV_SHIFT);
10621
10622 if (lvds & LVDS_CLKB_POWER_UP)
10623 clock.p2 = 7;
10624 else
10625 clock.p2 = 14;
10626 } else {
10627 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10628 clock.p1 = 2;
10629 else {
10630 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10631 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10632 }
10633 if (dpll & PLL_P2_DIVIDE_BY_4)
10634 clock.p2 = 4;
10635 else
10636 clock.p2 = 2;
10637 }
10638
10639 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10640 }
10641
10642 /*
10643 * This value includes pixel_multiplier. We will use
10644 * port_clock to compute adjusted_mode.crtc_clock in the
10645 * encoder's get_config() function.
10646 */
10647 pipe_config->port_clock = port_clock;
10648 }
10649
10650 int intel_dotclock_calculate(int link_freq,
10651 const struct intel_link_m_n *m_n)
10652 {
10653 /*
10654 * The calculation for the data clock is:
10655 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10656 * But we want to avoid losing precison if possible, so:
10657 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10658 *
10659 * and the link clock is simpler:
10660 * link_clock = (m * link_clock) / n
10661 */
10662
10663 if (!m_n->link_n)
10664 return 0;
10665
10666 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10667 }
10668
10669 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10670 struct intel_crtc_state *pipe_config)
10671 {
10672 struct drm_device *dev = crtc->base.dev;
10673
10674 /* read out port_clock from the DPLL */
10675 i9xx_crtc_clock_get(crtc, pipe_config);
10676
10677 /*
10678 * This value does not include pixel_multiplier.
10679 * We will check that port_clock and adjusted_mode.crtc_clock
10680 * agree once we know their relationship in the encoder's
10681 * get_config() function.
10682 */
10683 pipe_config->base.adjusted_mode.crtc_clock =
10684 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10685 &pipe_config->fdi_m_n);
10686 }
10687
10688 /** Returns the currently programmed mode of the given pipe. */
10689 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10690 struct drm_crtc *crtc)
10691 {
10692 struct drm_i915_private *dev_priv = dev->dev_private;
10693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10694 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10695 struct drm_display_mode *mode;
10696 struct intel_crtc_state pipe_config;
10697 int htot = I915_READ(HTOTAL(cpu_transcoder));
10698 int hsync = I915_READ(HSYNC(cpu_transcoder));
10699 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10700 int vsync = I915_READ(VSYNC(cpu_transcoder));
10701 enum pipe pipe = intel_crtc->pipe;
10702
10703 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10704 if (!mode)
10705 return NULL;
10706
10707 /*
10708 * Construct a pipe_config sufficient for getting the clock info
10709 * back out of crtc_clock_get.
10710 *
10711 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10712 * to use a real value here instead.
10713 */
10714 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10715 pipe_config.pixel_multiplier = 1;
10716 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10717 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10718 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10719 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10720
10721 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10722 mode->hdisplay = (htot & 0xffff) + 1;
10723 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10724 mode->hsync_start = (hsync & 0xffff) + 1;
10725 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10726 mode->vdisplay = (vtot & 0xffff) + 1;
10727 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10728 mode->vsync_start = (vsync & 0xffff) + 1;
10729 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10730
10731 drm_mode_set_name(mode);
10732
10733 return mode;
10734 }
10735
10736 void intel_mark_busy(struct drm_device *dev)
10737 {
10738 struct drm_i915_private *dev_priv = dev->dev_private;
10739
10740 if (dev_priv->mm.busy)
10741 return;
10742
10743 intel_runtime_pm_get(dev_priv);
10744 i915_update_gfx_val(dev_priv);
10745 if (INTEL_INFO(dev)->gen >= 6)
10746 gen6_rps_busy(dev_priv);
10747 dev_priv->mm.busy = true;
10748 }
10749
10750 void intel_mark_idle(struct drm_device *dev)
10751 {
10752 struct drm_i915_private *dev_priv = dev->dev_private;
10753
10754 if (!dev_priv->mm.busy)
10755 return;
10756
10757 dev_priv->mm.busy = false;
10758
10759 if (INTEL_INFO(dev)->gen >= 6)
10760 gen6_rps_idle(dev->dev_private);
10761
10762 intel_runtime_pm_put(dev_priv);
10763 }
10764
10765 static void intel_crtc_destroy(struct drm_crtc *crtc)
10766 {
10767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10768 struct drm_device *dev = crtc->dev;
10769 struct intel_unpin_work *work;
10770
10771 spin_lock_irq(&dev->event_lock);
10772 work = intel_crtc->unpin_work;
10773 intel_crtc->unpin_work = NULL;
10774 spin_unlock_irq(&dev->event_lock);
10775
10776 if (work) {
10777 cancel_work_sync(&work->work);
10778 kfree(work);
10779 }
10780
10781 drm_crtc_cleanup(crtc);
10782
10783 kfree(intel_crtc);
10784 }
10785
10786 static void intel_unpin_work_fn(struct work_struct *__work)
10787 {
10788 struct intel_unpin_work *work =
10789 container_of(__work, struct intel_unpin_work, work);
10790 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10791 struct drm_device *dev = crtc->base.dev;
10792 struct drm_plane *primary = crtc->base.primary;
10793
10794 mutex_lock(&dev->struct_mutex);
10795 intel_unpin_fb_obj(work->old_fb, primary->state);
10796 drm_gem_object_unreference(&work->pending_flip_obj->base);
10797
10798 if (work->flip_queued_req)
10799 i915_gem_request_assign(&work->flip_queued_req, NULL);
10800 mutex_unlock(&dev->struct_mutex);
10801
10802 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10803 drm_framebuffer_unreference(work->old_fb);
10804
10805 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10806 atomic_dec(&crtc->unpin_work_count);
10807
10808 kfree(work);
10809 }
10810
10811 static void do_intel_finish_page_flip(struct drm_device *dev,
10812 struct drm_crtc *crtc)
10813 {
10814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10815 struct intel_unpin_work *work;
10816 unsigned long flags;
10817
10818 /* Ignore early vblank irqs */
10819 if (intel_crtc == NULL)
10820 return;
10821
10822 /*
10823 * This is called both by irq handlers and the reset code (to complete
10824 * lost pageflips) so needs the full irqsave spinlocks.
10825 */
10826 spin_lock_irqsave(&dev->event_lock, flags);
10827 work = intel_crtc->unpin_work;
10828
10829 /* Ensure we don't miss a work->pending update ... */
10830 smp_rmb();
10831
10832 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10833 spin_unlock_irqrestore(&dev->event_lock, flags);
10834 return;
10835 }
10836
10837 page_flip_completed(intel_crtc);
10838
10839 spin_unlock_irqrestore(&dev->event_lock, flags);
10840 }
10841
10842 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10843 {
10844 struct drm_i915_private *dev_priv = dev->dev_private;
10845 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10846
10847 do_intel_finish_page_flip(dev, crtc);
10848 }
10849
10850 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10851 {
10852 struct drm_i915_private *dev_priv = dev->dev_private;
10853 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10854
10855 do_intel_finish_page_flip(dev, crtc);
10856 }
10857
10858 /* Is 'a' after or equal to 'b'? */
10859 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10860 {
10861 return !((a - b) & 0x80000000);
10862 }
10863
10864 static bool page_flip_finished(struct intel_crtc *crtc)
10865 {
10866 struct drm_device *dev = crtc->base.dev;
10867 struct drm_i915_private *dev_priv = dev->dev_private;
10868
10869 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10870 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10871 return true;
10872
10873 /*
10874 * The relevant registers doen't exist on pre-ctg.
10875 * As the flip done interrupt doesn't trigger for mmio
10876 * flips on gmch platforms, a flip count check isn't
10877 * really needed there. But since ctg has the registers,
10878 * include it in the check anyway.
10879 */
10880 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10881 return true;
10882
10883 /*
10884 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10885 * used the same base address. In that case the mmio flip might
10886 * have completed, but the CS hasn't even executed the flip yet.
10887 *
10888 * A flip count check isn't enough as the CS might have updated
10889 * the base address just after start of vblank, but before we
10890 * managed to process the interrupt. This means we'd complete the
10891 * CS flip too soon.
10892 *
10893 * Combining both checks should get us a good enough result. It may
10894 * still happen that the CS flip has been executed, but has not
10895 * yet actually completed. But in case the base address is the same
10896 * anyway, we don't really care.
10897 */
10898 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10899 crtc->unpin_work->gtt_offset &&
10900 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10901 crtc->unpin_work->flip_count);
10902 }
10903
10904 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10905 {
10906 struct drm_i915_private *dev_priv = dev->dev_private;
10907 struct intel_crtc *intel_crtc =
10908 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10909 unsigned long flags;
10910
10911
10912 /*
10913 * This is called both by irq handlers and the reset code (to complete
10914 * lost pageflips) so needs the full irqsave spinlocks.
10915 *
10916 * NB: An MMIO update of the plane base pointer will also
10917 * generate a page-flip completion irq, i.e. every modeset
10918 * is also accompanied by a spurious intel_prepare_page_flip().
10919 */
10920 spin_lock_irqsave(&dev->event_lock, flags);
10921 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10922 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10923 spin_unlock_irqrestore(&dev->event_lock, flags);
10924 }
10925
10926 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10927 {
10928 /* Ensure that the work item is consistent when activating it ... */
10929 smp_wmb();
10930 atomic_set(&work->pending, INTEL_FLIP_PENDING);
10931 /* and that it is marked active as soon as the irq could fire. */
10932 smp_wmb();
10933 }
10934
10935 static int intel_gen2_queue_flip(struct drm_device *dev,
10936 struct drm_crtc *crtc,
10937 struct drm_framebuffer *fb,
10938 struct drm_i915_gem_object *obj,
10939 struct drm_i915_gem_request *req,
10940 uint32_t flags)
10941 {
10942 struct intel_engine_cs *ring = req->ring;
10943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10944 u32 flip_mask;
10945 int ret;
10946
10947 ret = intel_ring_begin(req, 6);
10948 if (ret)
10949 return ret;
10950
10951 /* Can't queue multiple flips, so wait for the previous
10952 * one to finish before executing the next.
10953 */
10954 if (intel_crtc->plane)
10955 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10956 else
10957 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10958 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10959 intel_ring_emit(ring, MI_NOOP);
10960 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10961 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10962 intel_ring_emit(ring, fb->pitches[0]);
10963 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10964 intel_ring_emit(ring, 0); /* aux display base address, unused */
10965
10966 intel_mark_page_flip_active(intel_crtc->unpin_work);
10967 return 0;
10968 }
10969
10970 static int intel_gen3_queue_flip(struct drm_device *dev,
10971 struct drm_crtc *crtc,
10972 struct drm_framebuffer *fb,
10973 struct drm_i915_gem_object *obj,
10974 struct drm_i915_gem_request *req,
10975 uint32_t flags)
10976 {
10977 struct intel_engine_cs *ring = req->ring;
10978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10979 u32 flip_mask;
10980 int ret;
10981
10982 ret = intel_ring_begin(req, 6);
10983 if (ret)
10984 return ret;
10985
10986 if (intel_crtc->plane)
10987 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10988 else
10989 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10990 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10991 intel_ring_emit(ring, MI_NOOP);
10992 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10993 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10994 intel_ring_emit(ring, fb->pitches[0]);
10995 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10996 intel_ring_emit(ring, MI_NOOP);
10997
10998 intel_mark_page_flip_active(intel_crtc->unpin_work);
10999 return 0;
11000 }
11001
11002 static int intel_gen4_queue_flip(struct drm_device *dev,
11003 struct drm_crtc *crtc,
11004 struct drm_framebuffer *fb,
11005 struct drm_i915_gem_object *obj,
11006 struct drm_i915_gem_request *req,
11007 uint32_t flags)
11008 {
11009 struct intel_engine_cs *ring = req->ring;
11010 struct drm_i915_private *dev_priv = dev->dev_private;
11011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11012 uint32_t pf, pipesrc;
11013 int ret;
11014
11015 ret = intel_ring_begin(req, 4);
11016 if (ret)
11017 return ret;
11018
11019 /* i965+ uses the linear or tiled offsets from the
11020 * Display Registers (which do not change across a page-flip)
11021 * so we need only reprogram the base address.
11022 */
11023 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11024 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11025 intel_ring_emit(ring, fb->pitches[0]);
11026 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11027 obj->tiling_mode);
11028
11029 /* XXX Enabling the panel-fitter across page-flip is so far
11030 * untested on non-native modes, so ignore it for now.
11031 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11032 */
11033 pf = 0;
11034 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11035 intel_ring_emit(ring, pf | pipesrc);
11036
11037 intel_mark_page_flip_active(intel_crtc->unpin_work);
11038 return 0;
11039 }
11040
11041 static int intel_gen6_queue_flip(struct drm_device *dev,
11042 struct drm_crtc *crtc,
11043 struct drm_framebuffer *fb,
11044 struct drm_i915_gem_object *obj,
11045 struct drm_i915_gem_request *req,
11046 uint32_t flags)
11047 {
11048 struct intel_engine_cs *ring = req->ring;
11049 struct drm_i915_private *dev_priv = dev->dev_private;
11050 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11051 uint32_t pf, pipesrc;
11052 int ret;
11053
11054 ret = intel_ring_begin(req, 4);
11055 if (ret)
11056 return ret;
11057
11058 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11059 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11060 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11061 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11062
11063 /* Contrary to the suggestions in the documentation,
11064 * "Enable Panel Fitter" does not seem to be required when page
11065 * flipping with a non-native mode, and worse causes a normal
11066 * modeset to fail.
11067 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11068 */
11069 pf = 0;
11070 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11071 intel_ring_emit(ring, pf | pipesrc);
11072
11073 intel_mark_page_flip_active(intel_crtc->unpin_work);
11074 return 0;
11075 }
11076
11077 static int intel_gen7_queue_flip(struct drm_device *dev,
11078 struct drm_crtc *crtc,
11079 struct drm_framebuffer *fb,
11080 struct drm_i915_gem_object *obj,
11081 struct drm_i915_gem_request *req,
11082 uint32_t flags)
11083 {
11084 struct intel_engine_cs *ring = req->ring;
11085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11086 uint32_t plane_bit = 0;
11087 int len, ret;
11088
11089 switch (intel_crtc->plane) {
11090 case PLANE_A:
11091 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11092 break;
11093 case PLANE_B:
11094 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11095 break;
11096 case PLANE_C:
11097 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11098 break;
11099 default:
11100 WARN_ONCE(1, "unknown plane in flip command\n");
11101 return -ENODEV;
11102 }
11103
11104 len = 4;
11105 if (ring->id == RCS) {
11106 len += 6;
11107 /*
11108 * On Gen 8, SRM is now taking an extra dword to accommodate
11109 * 48bits addresses, and we need a NOOP for the batch size to
11110 * stay even.
11111 */
11112 if (IS_GEN8(dev))
11113 len += 2;
11114 }
11115
11116 /*
11117 * BSpec MI_DISPLAY_FLIP for IVB:
11118 * "The full packet must be contained within the same cache line."
11119 *
11120 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11121 * cacheline, if we ever start emitting more commands before
11122 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11123 * then do the cacheline alignment, and finally emit the
11124 * MI_DISPLAY_FLIP.
11125 */
11126 ret = intel_ring_cacheline_align(req);
11127 if (ret)
11128 return ret;
11129
11130 ret = intel_ring_begin(req, len);
11131 if (ret)
11132 return ret;
11133
11134 /* Unmask the flip-done completion message. Note that the bspec says that
11135 * we should do this for both the BCS and RCS, and that we must not unmask
11136 * more than one flip event at any time (or ensure that one flip message
11137 * can be sent by waiting for flip-done prior to queueing new flips).
11138 * Experimentation says that BCS works despite DERRMR masking all
11139 * flip-done completion events and that unmasking all planes at once
11140 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11141 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11142 */
11143 if (ring->id == RCS) {
11144 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11145 intel_ring_emit_reg(ring, DERRMR);
11146 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11147 DERRMR_PIPEB_PRI_FLIP_DONE |
11148 DERRMR_PIPEC_PRI_FLIP_DONE));
11149 if (IS_GEN8(dev))
11150 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11151 MI_SRM_LRM_GLOBAL_GTT);
11152 else
11153 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11154 MI_SRM_LRM_GLOBAL_GTT);
11155 intel_ring_emit_reg(ring, DERRMR);
11156 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11157 if (IS_GEN8(dev)) {
11158 intel_ring_emit(ring, 0);
11159 intel_ring_emit(ring, MI_NOOP);
11160 }
11161 }
11162
11163 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11164 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11165 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11166 intel_ring_emit(ring, (MI_NOOP));
11167
11168 intel_mark_page_flip_active(intel_crtc->unpin_work);
11169 return 0;
11170 }
11171
11172 static bool use_mmio_flip(struct intel_engine_cs *ring,
11173 struct drm_i915_gem_object *obj)
11174 {
11175 /*
11176 * This is not being used for older platforms, because
11177 * non-availability of flip done interrupt forces us to use
11178 * CS flips. Older platforms derive flip done using some clever
11179 * tricks involving the flip_pending status bits and vblank irqs.
11180 * So using MMIO flips there would disrupt this mechanism.
11181 */
11182
11183 if (ring == NULL)
11184 return true;
11185
11186 if (INTEL_INFO(ring->dev)->gen < 5)
11187 return false;
11188
11189 if (i915.use_mmio_flip < 0)
11190 return false;
11191 else if (i915.use_mmio_flip > 0)
11192 return true;
11193 else if (i915.enable_execlists)
11194 return true;
11195 else
11196 return ring != i915_gem_request_get_ring(obj->last_write_req);
11197 }
11198
11199 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11200 unsigned int rotation,
11201 struct intel_unpin_work *work)
11202 {
11203 struct drm_device *dev = intel_crtc->base.dev;
11204 struct drm_i915_private *dev_priv = dev->dev_private;
11205 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11206 const enum pipe pipe = intel_crtc->pipe;
11207 u32 ctl, stride, tile_height;
11208
11209 ctl = I915_READ(PLANE_CTL(pipe, 0));
11210 ctl &= ~PLANE_CTL_TILED_MASK;
11211 switch (fb->modifier[0]) {
11212 case DRM_FORMAT_MOD_NONE:
11213 break;
11214 case I915_FORMAT_MOD_X_TILED:
11215 ctl |= PLANE_CTL_TILED_X;
11216 break;
11217 case I915_FORMAT_MOD_Y_TILED:
11218 ctl |= PLANE_CTL_TILED_Y;
11219 break;
11220 case I915_FORMAT_MOD_Yf_TILED:
11221 ctl |= PLANE_CTL_TILED_YF;
11222 break;
11223 default:
11224 MISSING_CASE(fb->modifier[0]);
11225 }
11226
11227 /*
11228 * The stride is either expressed as a multiple of 64 bytes chunks for
11229 * linear buffers or in number of tiles for tiled buffers.
11230 */
11231 if (intel_rotation_90_or_270(rotation)) {
11232 /* stride = Surface height in tiles */
11233 tile_height = intel_tile_height(dev, fb->pixel_format,
11234 fb->modifier[0], 0);
11235 stride = DIV_ROUND_UP(fb->height, tile_height);
11236 } else {
11237 stride = fb->pitches[0] /
11238 intel_fb_stride_alignment(dev, fb->modifier[0],
11239 fb->pixel_format);
11240 }
11241
11242 /*
11243 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11244 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11245 */
11246 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11247 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11248
11249 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11250 POSTING_READ(PLANE_SURF(pipe, 0));
11251 }
11252
11253 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11254 struct intel_unpin_work *work)
11255 {
11256 struct drm_device *dev = intel_crtc->base.dev;
11257 struct drm_i915_private *dev_priv = dev->dev_private;
11258 struct intel_framebuffer *intel_fb =
11259 to_intel_framebuffer(intel_crtc->base.primary->fb);
11260 struct drm_i915_gem_object *obj = intel_fb->obj;
11261 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11262 u32 dspcntr;
11263
11264 dspcntr = I915_READ(reg);
11265
11266 if (obj->tiling_mode != I915_TILING_NONE)
11267 dspcntr |= DISPPLANE_TILED;
11268 else
11269 dspcntr &= ~DISPPLANE_TILED;
11270
11271 I915_WRITE(reg, dspcntr);
11272
11273 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11274 POSTING_READ(DSPSURF(intel_crtc->plane));
11275 }
11276
11277 /*
11278 * XXX: This is the temporary way to update the plane registers until we get
11279 * around to using the usual plane update functions for MMIO flips
11280 */
11281 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11282 {
11283 struct intel_crtc *crtc = mmio_flip->crtc;
11284 struct intel_unpin_work *work;
11285
11286 spin_lock_irq(&crtc->base.dev->event_lock);
11287 work = crtc->unpin_work;
11288 spin_unlock_irq(&crtc->base.dev->event_lock);
11289 if (work == NULL)
11290 return;
11291
11292 intel_mark_page_flip_active(work);
11293
11294 intel_pipe_update_start(crtc);
11295
11296 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11297 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11298 else
11299 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11300 ilk_do_mmio_flip(crtc, work);
11301
11302 intel_pipe_update_end(crtc);
11303 }
11304
11305 static void intel_mmio_flip_work_func(struct work_struct *work)
11306 {
11307 struct intel_mmio_flip *mmio_flip =
11308 container_of(work, struct intel_mmio_flip, work);
11309
11310 if (mmio_flip->req) {
11311 WARN_ON(__i915_wait_request(mmio_flip->req,
11312 mmio_flip->crtc->reset_counter,
11313 false, NULL,
11314 &mmio_flip->i915->rps.mmioflips));
11315 i915_gem_request_unreference__unlocked(mmio_flip->req);
11316 }
11317
11318 intel_do_mmio_flip(mmio_flip);
11319 kfree(mmio_flip);
11320 }
11321
11322 static int intel_queue_mmio_flip(struct drm_device *dev,
11323 struct drm_crtc *crtc,
11324 struct drm_i915_gem_object *obj)
11325 {
11326 struct intel_mmio_flip *mmio_flip;
11327
11328 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11329 if (mmio_flip == NULL)
11330 return -ENOMEM;
11331
11332 mmio_flip->i915 = to_i915(dev);
11333 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11334 mmio_flip->crtc = to_intel_crtc(crtc);
11335 mmio_flip->rotation = crtc->primary->state->rotation;
11336
11337 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11338 schedule_work(&mmio_flip->work);
11339
11340 return 0;
11341 }
11342
11343 static int intel_default_queue_flip(struct drm_device *dev,
11344 struct drm_crtc *crtc,
11345 struct drm_framebuffer *fb,
11346 struct drm_i915_gem_object *obj,
11347 struct drm_i915_gem_request *req,
11348 uint32_t flags)
11349 {
11350 return -ENODEV;
11351 }
11352
11353 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11354 struct drm_crtc *crtc)
11355 {
11356 struct drm_i915_private *dev_priv = dev->dev_private;
11357 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11358 struct intel_unpin_work *work = intel_crtc->unpin_work;
11359 u32 addr;
11360
11361 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11362 return true;
11363
11364 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11365 return false;
11366
11367 if (!work->enable_stall_check)
11368 return false;
11369
11370 if (work->flip_ready_vblank == 0) {
11371 if (work->flip_queued_req &&
11372 !i915_gem_request_completed(work->flip_queued_req, true))
11373 return false;
11374
11375 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11376 }
11377
11378 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11379 return false;
11380
11381 /* Potential stall - if we see that the flip has happened,
11382 * assume a missed interrupt. */
11383 if (INTEL_INFO(dev)->gen >= 4)
11384 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11385 else
11386 addr = I915_READ(DSPADDR(intel_crtc->plane));
11387
11388 /* There is a potential issue here with a false positive after a flip
11389 * to the same address. We could address this by checking for a
11390 * non-incrementing frame counter.
11391 */
11392 return addr == work->gtt_offset;
11393 }
11394
11395 void intel_check_page_flip(struct drm_device *dev, int pipe)
11396 {
11397 struct drm_i915_private *dev_priv = dev->dev_private;
11398 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11400 struct intel_unpin_work *work;
11401
11402 WARN_ON(!in_interrupt());
11403
11404 if (crtc == NULL)
11405 return;
11406
11407 spin_lock(&dev->event_lock);
11408 work = intel_crtc->unpin_work;
11409 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11410 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11411 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11412 page_flip_completed(intel_crtc);
11413 work = NULL;
11414 }
11415 if (work != NULL &&
11416 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11417 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11418 spin_unlock(&dev->event_lock);
11419 }
11420
11421 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11422 struct drm_framebuffer *fb,
11423 struct drm_pending_vblank_event *event,
11424 uint32_t page_flip_flags)
11425 {
11426 struct drm_device *dev = crtc->dev;
11427 struct drm_i915_private *dev_priv = dev->dev_private;
11428 struct drm_framebuffer *old_fb = crtc->primary->fb;
11429 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11431 struct drm_plane *primary = crtc->primary;
11432 enum pipe pipe = intel_crtc->pipe;
11433 struct intel_unpin_work *work;
11434 struct intel_engine_cs *ring;
11435 bool mmio_flip;
11436 struct drm_i915_gem_request *request = NULL;
11437 int ret;
11438
11439 /*
11440 * drm_mode_page_flip_ioctl() should already catch this, but double
11441 * check to be safe. In the future we may enable pageflipping from
11442 * a disabled primary plane.
11443 */
11444 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11445 return -EBUSY;
11446
11447 /* Can't change pixel format via MI display flips. */
11448 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11449 return -EINVAL;
11450
11451 /*
11452 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11453 * Note that pitch changes could also affect these register.
11454 */
11455 if (INTEL_INFO(dev)->gen > 3 &&
11456 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11457 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11458 return -EINVAL;
11459
11460 if (i915_terminally_wedged(&dev_priv->gpu_error))
11461 goto out_hang;
11462
11463 work = kzalloc(sizeof(*work), GFP_KERNEL);
11464 if (work == NULL)
11465 return -ENOMEM;
11466
11467 work->event = event;
11468 work->crtc = crtc;
11469 work->old_fb = old_fb;
11470 INIT_WORK(&work->work, intel_unpin_work_fn);
11471
11472 ret = drm_crtc_vblank_get(crtc);
11473 if (ret)
11474 goto free_work;
11475
11476 /* We borrow the event spin lock for protecting unpin_work */
11477 spin_lock_irq(&dev->event_lock);
11478 if (intel_crtc->unpin_work) {
11479 /* Before declaring the flip queue wedged, check if
11480 * the hardware completed the operation behind our backs.
11481 */
11482 if (__intel_pageflip_stall_check(dev, crtc)) {
11483 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11484 page_flip_completed(intel_crtc);
11485 } else {
11486 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11487 spin_unlock_irq(&dev->event_lock);
11488
11489 drm_crtc_vblank_put(crtc);
11490 kfree(work);
11491 return -EBUSY;
11492 }
11493 }
11494 intel_crtc->unpin_work = work;
11495 spin_unlock_irq(&dev->event_lock);
11496
11497 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11498 flush_workqueue(dev_priv->wq);
11499
11500 /* Reference the objects for the scheduled work. */
11501 drm_framebuffer_reference(work->old_fb);
11502 drm_gem_object_reference(&obj->base);
11503
11504 crtc->primary->fb = fb;
11505 update_state_fb(crtc->primary);
11506
11507 work->pending_flip_obj = obj;
11508
11509 ret = i915_mutex_lock_interruptible(dev);
11510 if (ret)
11511 goto cleanup;
11512
11513 atomic_inc(&intel_crtc->unpin_work_count);
11514 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11515
11516 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11517 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11518
11519 if (IS_VALLEYVIEW(dev)) {
11520 ring = &dev_priv->ring[BCS];
11521 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11522 /* vlv: DISPLAY_FLIP fails to change tiling */
11523 ring = NULL;
11524 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11525 ring = &dev_priv->ring[BCS];
11526 } else if (INTEL_INFO(dev)->gen >= 7) {
11527 ring = i915_gem_request_get_ring(obj->last_write_req);
11528 if (ring == NULL || ring->id != RCS)
11529 ring = &dev_priv->ring[BCS];
11530 } else {
11531 ring = &dev_priv->ring[RCS];
11532 }
11533
11534 mmio_flip = use_mmio_flip(ring, obj);
11535
11536 /* When using CS flips, we want to emit semaphores between rings.
11537 * However, when using mmio flips we will create a task to do the
11538 * synchronisation, so all we want here is to pin the framebuffer
11539 * into the display plane and skip any waits.
11540 */
11541 if (!mmio_flip) {
11542 ret = i915_gem_object_sync(obj, ring, &request);
11543 if (ret)
11544 goto cleanup_pending;
11545 }
11546
11547 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11548 crtc->primary->state);
11549 if (ret)
11550 goto cleanup_pending;
11551
11552 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11553 obj, 0);
11554 work->gtt_offset += intel_crtc->dspaddr_offset;
11555
11556 if (mmio_flip) {
11557 ret = intel_queue_mmio_flip(dev, crtc, obj);
11558 if (ret)
11559 goto cleanup_unpin;
11560
11561 i915_gem_request_assign(&work->flip_queued_req,
11562 obj->last_write_req);
11563 } else {
11564 if (!request) {
11565 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11566 if (ret)
11567 goto cleanup_unpin;
11568 }
11569
11570 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11571 page_flip_flags);
11572 if (ret)
11573 goto cleanup_unpin;
11574
11575 i915_gem_request_assign(&work->flip_queued_req, request);
11576 }
11577
11578 if (request)
11579 i915_add_request_no_flush(request);
11580
11581 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11582 work->enable_stall_check = true;
11583
11584 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11585 to_intel_plane(primary)->frontbuffer_bit);
11586 mutex_unlock(&dev->struct_mutex);
11587
11588 intel_fbc_disable_crtc(intel_crtc);
11589 intel_frontbuffer_flip_prepare(dev,
11590 to_intel_plane(primary)->frontbuffer_bit);
11591
11592 trace_i915_flip_request(intel_crtc->plane, obj);
11593
11594 return 0;
11595
11596 cleanup_unpin:
11597 intel_unpin_fb_obj(fb, crtc->primary->state);
11598 cleanup_pending:
11599 if (request)
11600 i915_gem_request_cancel(request);
11601 atomic_dec(&intel_crtc->unpin_work_count);
11602 mutex_unlock(&dev->struct_mutex);
11603 cleanup:
11604 crtc->primary->fb = old_fb;
11605 update_state_fb(crtc->primary);
11606
11607 drm_gem_object_unreference_unlocked(&obj->base);
11608 drm_framebuffer_unreference(work->old_fb);
11609
11610 spin_lock_irq(&dev->event_lock);
11611 intel_crtc->unpin_work = NULL;
11612 spin_unlock_irq(&dev->event_lock);
11613
11614 drm_crtc_vblank_put(crtc);
11615 free_work:
11616 kfree(work);
11617
11618 if (ret == -EIO) {
11619 struct drm_atomic_state *state;
11620 struct drm_plane_state *plane_state;
11621
11622 out_hang:
11623 state = drm_atomic_state_alloc(dev);
11624 if (!state)
11625 return -ENOMEM;
11626 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11627
11628 retry:
11629 plane_state = drm_atomic_get_plane_state(state, primary);
11630 ret = PTR_ERR_OR_ZERO(plane_state);
11631 if (!ret) {
11632 drm_atomic_set_fb_for_plane(plane_state, fb);
11633
11634 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11635 if (!ret)
11636 ret = drm_atomic_commit(state);
11637 }
11638
11639 if (ret == -EDEADLK) {
11640 drm_modeset_backoff(state->acquire_ctx);
11641 drm_atomic_state_clear(state);
11642 goto retry;
11643 }
11644
11645 if (ret)
11646 drm_atomic_state_free(state);
11647
11648 if (ret == 0 && event) {
11649 spin_lock_irq(&dev->event_lock);
11650 drm_send_vblank_event(dev, pipe, event);
11651 spin_unlock_irq(&dev->event_lock);
11652 }
11653 }
11654 return ret;
11655 }
11656
11657
11658 /**
11659 * intel_wm_need_update - Check whether watermarks need updating
11660 * @plane: drm plane
11661 * @state: new plane state
11662 *
11663 * Check current plane state versus the new one to determine whether
11664 * watermarks need to be recalculated.
11665 *
11666 * Returns true or false.
11667 */
11668 static bool intel_wm_need_update(struct drm_plane *plane,
11669 struct drm_plane_state *state)
11670 {
11671 struct intel_plane_state *new = to_intel_plane_state(state);
11672 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11673
11674 /* Update watermarks on tiling or size changes. */
11675 if (!plane->state->fb || !state->fb ||
11676 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11677 plane->state->rotation != state->rotation ||
11678 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11679 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11680 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11681 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11682 return true;
11683
11684 return false;
11685 }
11686
11687 static bool needs_scaling(struct intel_plane_state *state)
11688 {
11689 int src_w = drm_rect_width(&state->src) >> 16;
11690 int src_h = drm_rect_height(&state->src) >> 16;
11691 int dst_w = drm_rect_width(&state->dst);
11692 int dst_h = drm_rect_height(&state->dst);
11693
11694 return (src_w != dst_w || src_h != dst_h);
11695 }
11696
11697 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11698 struct drm_plane_state *plane_state)
11699 {
11700 struct drm_crtc *crtc = crtc_state->crtc;
11701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11702 struct drm_plane *plane = plane_state->plane;
11703 struct drm_device *dev = crtc->dev;
11704 struct drm_i915_private *dev_priv = dev->dev_private;
11705 struct intel_plane_state *old_plane_state =
11706 to_intel_plane_state(plane->state);
11707 int idx = intel_crtc->base.base.id, ret;
11708 int i = drm_plane_index(plane);
11709 bool mode_changed = needs_modeset(crtc_state);
11710 bool was_crtc_enabled = crtc->state->active;
11711 bool is_crtc_enabled = crtc_state->active;
11712 bool turn_off, turn_on, visible, was_visible;
11713 struct drm_framebuffer *fb = plane_state->fb;
11714
11715 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11716 plane->type != DRM_PLANE_TYPE_CURSOR) {
11717 ret = skl_update_scaler_plane(
11718 to_intel_crtc_state(crtc_state),
11719 to_intel_plane_state(plane_state));
11720 if (ret)
11721 return ret;
11722 }
11723
11724 was_visible = old_plane_state->visible;
11725 visible = to_intel_plane_state(plane_state)->visible;
11726
11727 if (!was_crtc_enabled && WARN_ON(was_visible))
11728 was_visible = false;
11729
11730 if (!is_crtc_enabled && WARN_ON(visible))
11731 visible = false;
11732
11733 if (!was_visible && !visible)
11734 return 0;
11735
11736 turn_off = was_visible && (!visible || mode_changed);
11737 turn_on = visible && (!was_visible || mode_changed);
11738
11739 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11740 plane->base.id, fb ? fb->base.id : -1);
11741
11742 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11743 plane->base.id, was_visible, visible,
11744 turn_off, turn_on, mode_changed);
11745
11746 if (turn_on) {
11747 intel_crtc->atomic.update_wm_pre = true;
11748 /* must disable cxsr around plane enable/disable */
11749 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11750 intel_crtc->atomic.disable_cxsr = true;
11751 /* to potentially re-enable cxsr */
11752 intel_crtc->atomic.wait_vblank = true;
11753 intel_crtc->atomic.update_wm_post = true;
11754 }
11755 } else if (turn_off) {
11756 intel_crtc->atomic.update_wm_post = true;
11757 /* must disable cxsr around plane enable/disable */
11758 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11759 if (is_crtc_enabled)
11760 intel_crtc->atomic.wait_vblank = true;
11761 intel_crtc->atomic.disable_cxsr = true;
11762 }
11763 } else if (intel_wm_need_update(plane, plane_state)) {
11764 intel_crtc->atomic.update_wm_pre = true;
11765 }
11766
11767 if (visible || was_visible)
11768 intel_crtc->atomic.fb_bits |=
11769 to_intel_plane(plane)->frontbuffer_bit;
11770
11771 switch (plane->type) {
11772 case DRM_PLANE_TYPE_PRIMARY:
11773 intel_crtc->atomic.pre_disable_primary = turn_off;
11774 intel_crtc->atomic.post_enable_primary = turn_on;
11775
11776 if (turn_off) {
11777 /*
11778 * FIXME: Actually if we will still have any other
11779 * plane enabled on the pipe we could let IPS enabled
11780 * still, but for now lets consider that when we make
11781 * primary invisible by setting DSPCNTR to 0 on
11782 * update_primary_plane function IPS needs to be
11783 * disable.
11784 */
11785 intel_crtc->atomic.disable_ips = true;
11786
11787 intel_crtc->atomic.disable_fbc = true;
11788 }
11789
11790 /*
11791 * FBC does not work on some platforms for rotated
11792 * planes, so disable it when rotation is not 0 and
11793 * update it when rotation is set back to 0.
11794 *
11795 * FIXME: This is redundant with the fbc update done in
11796 * the primary plane enable function except that that
11797 * one is done too late. We eventually need to unify
11798 * this.
11799 */
11800
11801 if (visible &&
11802 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11803 dev_priv->fbc.crtc == intel_crtc &&
11804 plane_state->rotation != BIT(DRM_ROTATE_0))
11805 intel_crtc->atomic.disable_fbc = true;
11806
11807 /*
11808 * BDW signals flip done immediately if the plane
11809 * is disabled, even if the plane enable is already
11810 * armed to occur at the next vblank :(
11811 */
11812 if (turn_on && IS_BROADWELL(dev))
11813 intel_crtc->atomic.wait_vblank = true;
11814
11815 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11816 break;
11817 case DRM_PLANE_TYPE_CURSOR:
11818 break;
11819 case DRM_PLANE_TYPE_OVERLAY:
11820 /*
11821 * WaCxSRDisabledForSpriteScaling:ivb
11822 *
11823 * cstate->update_wm was already set above, so this flag will
11824 * take effect when we commit and program watermarks.
11825 */
11826 if (IS_IVYBRIDGE(dev) &&
11827 needs_scaling(to_intel_plane_state(plane_state)) &&
11828 !needs_scaling(old_plane_state)) {
11829 to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11830 } else if (turn_off && !mode_changed) {
11831 intel_crtc->atomic.wait_vblank = true;
11832 intel_crtc->atomic.update_sprite_watermarks |=
11833 1 << i;
11834 }
11835
11836 break;
11837 }
11838 return 0;
11839 }
11840
11841 static bool encoders_cloneable(const struct intel_encoder *a,
11842 const struct intel_encoder *b)
11843 {
11844 /* masks could be asymmetric, so check both ways */
11845 return a == b || (a->cloneable & (1 << b->type) &&
11846 b->cloneable & (1 << a->type));
11847 }
11848
11849 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11850 struct intel_crtc *crtc,
11851 struct intel_encoder *encoder)
11852 {
11853 struct intel_encoder *source_encoder;
11854 struct drm_connector *connector;
11855 struct drm_connector_state *connector_state;
11856 int i;
11857
11858 for_each_connector_in_state(state, connector, connector_state, i) {
11859 if (connector_state->crtc != &crtc->base)
11860 continue;
11861
11862 source_encoder =
11863 to_intel_encoder(connector_state->best_encoder);
11864 if (!encoders_cloneable(encoder, source_encoder))
11865 return false;
11866 }
11867
11868 return true;
11869 }
11870
11871 static bool check_encoder_cloning(struct drm_atomic_state *state,
11872 struct intel_crtc *crtc)
11873 {
11874 struct intel_encoder *encoder;
11875 struct drm_connector *connector;
11876 struct drm_connector_state *connector_state;
11877 int i;
11878
11879 for_each_connector_in_state(state, connector, connector_state, i) {
11880 if (connector_state->crtc != &crtc->base)
11881 continue;
11882
11883 encoder = to_intel_encoder(connector_state->best_encoder);
11884 if (!check_single_encoder_cloning(state, crtc, encoder))
11885 return false;
11886 }
11887
11888 return true;
11889 }
11890
11891 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11892 struct drm_crtc_state *crtc_state)
11893 {
11894 struct drm_device *dev = crtc->dev;
11895 struct drm_i915_private *dev_priv = dev->dev_private;
11896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11897 struct intel_crtc_state *pipe_config =
11898 to_intel_crtc_state(crtc_state);
11899 struct drm_atomic_state *state = crtc_state->state;
11900 int ret;
11901 bool mode_changed = needs_modeset(crtc_state);
11902
11903 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11904 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11905 return -EINVAL;
11906 }
11907
11908 if (mode_changed && !crtc_state->active)
11909 intel_crtc->atomic.update_wm_post = true;
11910
11911 if (mode_changed && crtc_state->enable &&
11912 dev_priv->display.crtc_compute_clock &&
11913 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11914 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11915 pipe_config);
11916 if (ret)
11917 return ret;
11918 }
11919
11920 ret = 0;
11921 if (dev_priv->display.compute_pipe_wm) {
11922 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11923 if (ret)
11924 return ret;
11925 }
11926
11927 if (INTEL_INFO(dev)->gen >= 9) {
11928 if (mode_changed)
11929 ret = skl_update_scaler_crtc(pipe_config);
11930
11931 if (!ret)
11932 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11933 pipe_config);
11934 }
11935
11936 return ret;
11937 }
11938
11939 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11940 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11941 .load_lut = intel_crtc_load_lut,
11942 .atomic_begin = intel_begin_crtc_commit,
11943 .atomic_flush = intel_finish_crtc_commit,
11944 .atomic_check = intel_crtc_atomic_check,
11945 };
11946
11947 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11948 {
11949 struct intel_connector *connector;
11950
11951 for_each_intel_connector(dev, connector) {
11952 if (connector->base.encoder) {
11953 connector->base.state->best_encoder =
11954 connector->base.encoder;
11955 connector->base.state->crtc =
11956 connector->base.encoder->crtc;
11957 } else {
11958 connector->base.state->best_encoder = NULL;
11959 connector->base.state->crtc = NULL;
11960 }
11961 }
11962 }
11963
11964 static void
11965 connected_sink_compute_bpp(struct intel_connector *connector,
11966 struct intel_crtc_state *pipe_config)
11967 {
11968 int bpp = pipe_config->pipe_bpp;
11969
11970 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11971 connector->base.base.id,
11972 connector->base.name);
11973
11974 /* Don't use an invalid EDID bpc value */
11975 if (connector->base.display_info.bpc &&
11976 connector->base.display_info.bpc * 3 < bpp) {
11977 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11978 bpp, connector->base.display_info.bpc*3);
11979 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11980 }
11981
11982 /* Clamp bpp to 8 on screens without EDID 1.4 */
11983 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11984 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11985 bpp);
11986 pipe_config->pipe_bpp = 24;
11987 }
11988 }
11989
11990 static int
11991 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11992 struct intel_crtc_state *pipe_config)
11993 {
11994 struct drm_device *dev = crtc->base.dev;
11995 struct drm_atomic_state *state;
11996 struct drm_connector *connector;
11997 struct drm_connector_state *connector_state;
11998 int bpp, i;
11999
12000 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
12001 bpp = 10*3;
12002 else if (INTEL_INFO(dev)->gen >= 5)
12003 bpp = 12*3;
12004 else
12005 bpp = 8*3;
12006
12007
12008 pipe_config->pipe_bpp = bpp;
12009
12010 state = pipe_config->base.state;
12011
12012 /* Clamp display bpp to EDID value */
12013 for_each_connector_in_state(state, connector, connector_state, i) {
12014 if (connector_state->crtc != &crtc->base)
12015 continue;
12016
12017 connected_sink_compute_bpp(to_intel_connector(connector),
12018 pipe_config);
12019 }
12020
12021 return bpp;
12022 }
12023
12024 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12025 {
12026 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12027 "type: 0x%x flags: 0x%x\n",
12028 mode->crtc_clock,
12029 mode->crtc_hdisplay, mode->crtc_hsync_start,
12030 mode->crtc_hsync_end, mode->crtc_htotal,
12031 mode->crtc_vdisplay, mode->crtc_vsync_start,
12032 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12033 }
12034
12035 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12036 struct intel_crtc_state *pipe_config,
12037 const char *context)
12038 {
12039 struct drm_device *dev = crtc->base.dev;
12040 struct drm_plane *plane;
12041 struct intel_plane *intel_plane;
12042 struct intel_plane_state *state;
12043 struct drm_framebuffer *fb;
12044
12045 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12046 context, pipe_config, pipe_name(crtc->pipe));
12047
12048 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12049 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12050 pipe_config->pipe_bpp, pipe_config->dither);
12051 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12052 pipe_config->has_pch_encoder,
12053 pipe_config->fdi_lanes,
12054 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12055 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12056 pipe_config->fdi_m_n.tu);
12057 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12058 pipe_config->has_dp_encoder,
12059 pipe_config->lane_count,
12060 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12061 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12062 pipe_config->dp_m_n.tu);
12063
12064 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12065 pipe_config->has_dp_encoder,
12066 pipe_config->lane_count,
12067 pipe_config->dp_m2_n2.gmch_m,
12068 pipe_config->dp_m2_n2.gmch_n,
12069 pipe_config->dp_m2_n2.link_m,
12070 pipe_config->dp_m2_n2.link_n,
12071 pipe_config->dp_m2_n2.tu);
12072
12073 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12074 pipe_config->has_audio,
12075 pipe_config->has_infoframe);
12076
12077 DRM_DEBUG_KMS("requested mode:\n");
12078 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12079 DRM_DEBUG_KMS("adjusted mode:\n");
12080 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12081 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12082 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12083 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12084 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12085 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12086 crtc->num_scalers,
12087 pipe_config->scaler_state.scaler_users,
12088 pipe_config->scaler_state.scaler_id);
12089 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12090 pipe_config->gmch_pfit.control,
12091 pipe_config->gmch_pfit.pgm_ratios,
12092 pipe_config->gmch_pfit.lvds_border_bits);
12093 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12094 pipe_config->pch_pfit.pos,
12095 pipe_config->pch_pfit.size,
12096 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12097 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12098 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12099
12100 if (IS_BROXTON(dev)) {
12101 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12102 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12103 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12104 pipe_config->ddi_pll_sel,
12105 pipe_config->dpll_hw_state.ebb0,
12106 pipe_config->dpll_hw_state.ebb4,
12107 pipe_config->dpll_hw_state.pll0,
12108 pipe_config->dpll_hw_state.pll1,
12109 pipe_config->dpll_hw_state.pll2,
12110 pipe_config->dpll_hw_state.pll3,
12111 pipe_config->dpll_hw_state.pll6,
12112 pipe_config->dpll_hw_state.pll8,
12113 pipe_config->dpll_hw_state.pll9,
12114 pipe_config->dpll_hw_state.pll10,
12115 pipe_config->dpll_hw_state.pcsdw12);
12116 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12117 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12118 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12119 pipe_config->ddi_pll_sel,
12120 pipe_config->dpll_hw_state.ctrl1,
12121 pipe_config->dpll_hw_state.cfgcr1,
12122 pipe_config->dpll_hw_state.cfgcr2);
12123 } else if (HAS_DDI(dev)) {
12124 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12125 pipe_config->ddi_pll_sel,
12126 pipe_config->dpll_hw_state.wrpll,
12127 pipe_config->dpll_hw_state.spll);
12128 } else {
12129 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12130 "fp0: 0x%x, fp1: 0x%x\n",
12131 pipe_config->dpll_hw_state.dpll,
12132 pipe_config->dpll_hw_state.dpll_md,
12133 pipe_config->dpll_hw_state.fp0,
12134 pipe_config->dpll_hw_state.fp1);
12135 }
12136
12137 DRM_DEBUG_KMS("planes on this crtc\n");
12138 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12139 intel_plane = to_intel_plane(plane);
12140 if (intel_plane->pipe != crtc->pipe)
12141 continue;
12142
12143 state = to_intel_plane_state(plane->state);
12144 fb = state->base.fb;
12145 if (!fb) {
12146 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12147 "disabled, scaler_id = %d\n",
12148 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12149 plane->base.id, intel_plane->pipe,
12150 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12151 drm_plane_index(plane), state->scaler_id);
12152 continue;
12153 }
12154
12155 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12156 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12157 plane->base.id, intel_plane->pipe,
12158 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12159 drm_plane_index(plane));
12160 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12161 fb->base.id, fb->width, fb->height, fb->pixel_format);
12162 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12163 state->scaler_id,
12164 state->src.x1 >> 16, state->src.y1 >> 16,
12165 drm_rect_width(&state->src) >> 16,
12166 drm_rect_height(&state->src) >> 16,
12167 state->dst.x1, state->dst.y1,
12168 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12169 }
12170 }
12171
12172 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12173 {
12174 struct drm_device *dev = state->dev;
12175 struct intel_encoder *encoder;
12176 struct drm_connector *connector;
12177 struct drm_connector_state *connector_state;
12178 unsigned int used_ports = 0;
12179 int i;
12180
12181 /*
12182 * Walk the connector list instead of the encoder
12183 * list to detect the problem on ddi platforms
12184 * where there's just one encoder per digital port.
12185 */
12186 for_each_connector_in_state(state, connector, connector_state, i) {
12187 if (!connector_state->best_encoder)
12188 continue;
12189
12190 encoder = to_intel_encoder(connector_state->best_encoder);
12191
12192 WARN_ON(!connector_state->crtc);
12193
12194 switch (encoder->type) {
12195 unsigned int port_mask;
12196 case INTEL_OUTPUT_UNKNOWN:
12197 if (WARN_ON(!HAS_DDI(dev)))
12198 break;
12199 case INTEL_OUTPUT_DISPLAYPORT:
12200 case INTEL_OUTPUT_HDMI:
12201 case INTEL_OUTPUT_EDP:
12202 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12203
12204 /* the same port mustn't appear more than once */
12205 if (used_ports & port_mask)
12206 return false;
12207
12208 used_ports |= port_mask;
12209 default:
12210 break;
12211 }
12212 }
12213
12214 return true;
12215 }
12216
12217 static void
12218 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12219 {
12220 struct drm_crtc_state tmp_state;
12221 struct intel_crtc_scaler_state scaler_state;
12222 struct intel_dpll_hw_state dpll_hw_state;
12223 enum intel_dpll_id shared_dpll;
12224 uint32_t ddi_pll_sel;
12225 bool force_thru;
12226
12227 /* FIXME: before the switch to atomic started, a new pipe_config was
12228 * kzalloc'd. Code that depends on any field being zero should be
12229 * fixed, so that the crtc_state can be safely duplicated. For now,
12230 * only fields that are know to not cause problems are preserved. */
12231
12232 tmp_state = crtc_state->base;
12233 scaler_state = crtc_state->scaler_state;
12234 shared_dpll = crtc_state->shared_dpll;
12235 dpll_hw_state = crtc_state->dpll_hw_state;
12236 ddi_pll_sel = crtc_state->ddi_pll_sel;
12237 force_thru = crtc_state->pch_pfit.force_thru;
12238
12239 memset(crtc_state, 0, sizeof *crtc_state);
12240
12241 crtc_state->base = tmp_state;
12242 crtc_state->scaler_state = scaler_state;
12243 crtc_state->shared_dpll = shared_dpll;
12244 crtc_state->dpll_hw_state = dpll_hw_state;
12245 crtc_state->ddi_pll_sel = ddi_pll_sel;
12246 crtc_state->pch_pfit.force_thru = force_thru;
12247 }
12248
12249 static int
12250 intel_modeset_pipe_config(struct drm_crtc *crtc,
12251 struct intel_crtc_state *pipe_config)
12252 {
12253 struct drm_atomic_state *state = pipe_config->base.state;
12254 struct intel_encoder *encoder;
12255 struct drm_connector *connector;
12256 struct drm_connector_state *connector_state;
12257 int base_bpp, ret = -EINVAL;
12258 int i;
12259 bool retry = true;
12260
12261 clear_intel_crtc_state(pipe_config);
12262
12263 pipe_config->cpu_transcoder =
12264 (enum transcoder) to_intel_crtc(crtc)->pipe;
12265
12266 /*
12267 * Sanitize sync polarity flags based on requested ones. If neither
12268 * positive or negative polarity is requested, treat this as meaning
12269 * negative polarity.
12270 */
12271 if (!(pipe_config->base.adjusted_mode.flags &
12272 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12273 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12274
12275 if (!(pipe_config->base.adjusted_mode.flags &
12276 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12277 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12278
12279 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12280 pipe_config);
12281 if (base_bpp < 0)
12282 goto fail;
12283
12284 /*
12285 * Determine the real pipe dimensions. Note that stereo modes can
12286 * increase the actual pipe size due to the frame doubling and
12287 * insertion of additional space for blanks between the frame. This
12288 * is stored in the crtc timings. We use the requested mode to do this
12289 * computation to clearly distinguish it from the adjusted mode, which
12290 * can be changed by the connectors in the below retry loop.
12291 */
12292 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12293 &pipe_config->pipe_src_w,
12294 &pipe_config->pipe_src_h);
12295
12296 encoder_retry:
12297 /* Ensure the port clock defaults are reset when retrying. */
12298 pipe_config->port_clock = 0;
12299 pipe_config->pixel_multiplier = 1;
12300
12301 /* Fill in default crtc timings, allow encoders to overwrite them. */
12302 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12303 CRTC_STEREO_DOUBLE);
12304
12305 /* Pass our mode to the connectors and the CRTC to give them a chance to
12306 * adjust it according to limitations or connector properties, and also
12307 * a chance to reject the mode entirely.
12308 */
12309 for_each_connector_in_state(state, connector, connector_state, i) {
12310 if (connector_state->crtc != crtc)
12311 continue;
12312
12313 encoder = to_intel_encoder(connector_state->best_encoder);
12314
12315 if (!(encoder->compute_config(encoder, pipe_config))) {
12316 DRM_DEBUG_KMS("Encoder config failure\n");
12317 goto fail;
12318 }
12319 }
12320
12321 /* Set default port clock if not overwritten by the encoder. Needs to be
12322 * done afterwards in case the encoder adjusts the mode. */
12323 if (!pipe_config->port_clock)
12324 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12325 * pipe_config->pixel_multiplier;
12326
12327 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12328 if (ret < 0) {
12329 DRM_DEBUG_KMS("CRTC fixup failed\n");
12330 goto fail;
12331 }
12332
12333 if (ret == RETRY) {
12334 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12335 ret = -EINVAL;
12336 goto fail;
12337 }
12338
12339 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12340 retry = false;
12341 goto encoder_retry;
12342 }
12343
12344 /* Dithering seems to not pass-through bits correctly when it should, so
12345 * only enable it on 6bpc panels. */
12346 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12347 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12348 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12349
12350 fail:
12351 return ret;
12352 }
12353
12354 static void
12355 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12356 {
12357 struct drm_crtc *crtc;
12358 struct drm_crtc_state *crtc_state;
12359 int i;
12360
12361 /* Double check state. */
12362 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12363 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12364
12365 /* Update hwmode for vblank functions */
12366 if (crtc->state->active)
12367 crtc->hwmode = crtc->state->adjusted_mode;
12368 else
12369 crtc->hwmode.crtc_clock = 0;
12370
12371 /*
12372 * Update legacy state to satisfy fbc code. This can
12373 * be removed when fbc uses the atomic state.
12374 */
12375 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12376 struct drm_plane_state *plane_state = crtc->primary->state;
12377
12378 crtc->primary->fb = plane_state->fb;
12379 crtc->x = plane_state->src_x >> 16;
12380 crtc->y = plane_state->src_y >> 16;
12381 }
12382 }
12383 }
12384
12385 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12386 {
12387 int diff;
12388
12389 if (clock1 == clock2)
12390 return true;
12391
12392 if (!clock1 || !clock2)
12393 return false;
12394
12395 diff = abs(clock1 - clock2);
12396
12397 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12398 return true;
12399
12400 return false;
12401 }
12402
12403 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12404 list_for_each_entry((intel_crtc), \
12405 &(dev)->mode_config.crtc_list, \
12406 base.head) \
12407 if (mask & (1 <<(intel_crtc)->pipe))
12408
12409 static bool
12410 intel_compare_m_n(unsigned int m, unsigned int n,
12411 unsigned int m2, unsigned int n2,
12412 bool exact)
12413 {
12414 if (m == m2 && n == n2)
12415 return true;
12416
12417 if (exact || !m || !n || !m2 || !n2)
12418 return false;
12419
12420 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12421
12422 if (m > m2) {
12423 while (m > m2) {
12424 m2 <<= 1;
12425 n2 <<= 1;
12426 }
12427 } else if (m < m2) {
12428 while (m < m2) {
12429 m <<= 1;
12430 n <<= 1;
12431 }
12432 }
12433
12434 return m == m2 && n == n2;
12435 }
12436
12437 static bool
12438 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12439 struct intel_link_m_n *m2_n2,
12440 bool adjust)
12441 {
12442 if (m_n->tu == m2_n2->tu &&
12443 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12444 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12445 intel_compare_m_n(m_n->link_m, m_n->link_n,
12446 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12447 if (adjust)
12448 *m2_n2 = *m_n;
12449
12450 return true;
12451 }
12452
12453 return false;
12454 }
12455
12456 static bool
12457 intel_pipe_config_compare(struct drm_device *dev,
12458 struct intel_crtc_state *current_config,
12459 struct intel_crtc_state *pipe_config,
12460 bool adjust)
12461 {
12462 bool ret = true;
12463
12464 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12465 do { \
12466 if (!adjust) \
12467 DRM_ERROR(fmt, ##__VA_ARGS__); \
12468 else \
12469 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12470 } while (0)
12471
12472 #define PIPE_CONF_CHECK_X(name) \
12473 if (current_config->name != pipe_config->name) { \
12474 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12475 "(expected 0x%08x, found 0x%08x)\n", \
12476 current_config->name, \
12477 pipe_config->name); \
12478 ret = false; \
12479 }
12480
12481 #define PIPE_CONF_CHECK_I(name) \
12482 if (current_config->name != pipe_config->name) { \
12483 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12484 "(expected %i, found %i)\n", \
12485 current_config->name, \
12486 pipe_config->name); \
12487 ret = false; \
12488 }
12489
12490 #define PIPE_CONF_CHECK_M_N(name) \
12491 if (!intel_compare_link_m_n(&current_config->name, \
12492 &pipe_config->name,\
12493 adjust)) { \
12494 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12495 "(expected tu %i gmch %i/%i link %i/%i, " \
12496 "found tu %i, gmch %i/%i link %i/%i)\n", \
12497 current_config->name.tu, \
12498 current_config->name.gmch_m, \
12499 current_config->name.gmch_n, \
12500 current_config->name.link_m, \
12501 current_config->name.link_n, \
12502 pipe_config->name.tu, \
12503 pipe_config->name.gmch_m, \
12504 pipe_config->name.gmch_n, \
12505 pipe_config->name.link_m, \
12506 pipe_config->name.link_n); \
12507 ret = false; \
12508 }
12509
12510 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12511 if (!intel_compare_link_m_n(&current_config->name, \
12512 &pipe_config->name, adjust) && \
12513 !intel_compare_link_m_n(&current_config->alt_name, \
12514 &pipe_config->name, adjust)) { \
12515 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12516 "(expected tu %i gmch %i/%i link %i/%i, " \
12517 "or tu %i gmch %i/%i link %i/%i, " \
12518 "found tu %i, gmch %i/%i link %i/%i)\n", \
12519 current_config->name.tu, \
12520 current_config->name.gmch_m, \
12521 current_config->name.gmch_n, \
12522 current_config->name.link_m, \
12523 current_config->name.link_n, \
12524 current_config->alt_name.tu, \
12525 current_config->alt_name.gmch_m, \
12526 current_config->alt_name.gmch_n, \
12527 current_config->alt_name.link_m, \
12528 current_config->alt_name.link_n, \
12529 pipe_config->name.tu, \
12530 pipe_config->name.gmch_m, \
12531 pipe_config->name.gmch_n, \
12532 pipe_config->name.link_m, \
12533 pipe_config->name.link_n); \
12534 ret = false; \
12535 }
12536
12537 /* This is required for BDW+ where there is only one set of registers for
12538 * switching between high and low RR.
12539 * This macro can be used whenever a comparison has to be made between one
12540 * hw state and multiple sw state variables.
12541 */
12542 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12543 if ((current_config->name != pipe_config->name) && \
12544 (current_config->alt_name != pipe_config->name)) { \
12545 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12546 "(expected %i or %i, found %i)\n", \
12547 current_config->name, \
12548 current_config->alt_name, \
12549 pipe_config->name); \
12550 ret = false; \
12551 }
12552
12553 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12554 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12555 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12556 "(expected %i, found %i)\n", \
12557 current_config->name & (mask), \
12558 pipe_config->name & (mask)); \
12559 ret = false; \
12560 }
12561
12562 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12563 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12564 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12565 "(expected %i, found %i)\n", \
12566 current_config->name, \
12567 pipe_config->name); \
12568 ret = false; \
12569 }
12570
12571 #define PIPE_CONF_QUIRK(quirk) \
12572 ((current_config->quirks | pipe_config->quirks) & (quirk))
12573
12574 PIPE_CONF_CHECK_I(cpu_transcoder);
12575
12576 PIPE_CONF_CHECK_I(has_pch_encoder);
12577 PIPE_CONF_CHECK_I(fdi_lanes);
12578 PIPE_CONF_CHECK_M_N(fdi_m_n);
12579
12580 PIPE_CONF_CHECK_I(has_dp_encoder);
12581 PIPE_CONF_CHECK_I(lane_count);
12582
12583 if (INTEL_INFO(dev)->gen < 8) {
12584 PIPE_CONF_CHECK_M_N(dp_m_n);
12585
12586 PIPE_CONF_CHECK_I(has_drrs);
12587 if (current_config->has_drrs)
12588 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12589 } else
12590 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12591
12592 PIPE_CONF_CHECK_I(has_dsi_encoder);
12593
12594 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12595 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12596 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12597 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12598 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12599 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12600
12601 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12602 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12603 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12604 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12605 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12606 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12607
12608 PIPE_CONF_CHECK_I(pixel_multiplier);
12609 PIPE_CONF_CHECK_I(has_hdmi_sink);
12610 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12611 IS_VALLEYVIEW(dev))
12612 PIPE_CONF_CHECK_I(limited_color_range);
12613 PIPE_CONF_CHECK_I(has_infoframe);
12614
12615 PIPE_CONF_CHECK_I(has_audio);
12616
12617 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12618 DRM_MODE_FLAG_INTERLACE);
12619
12620 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12621 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12622 DRM_MODE_FLAG_PHSYNC);
12623 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12624 DRM_MODE_FLAG_NHSYNC);
12625 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12626 DRM_MODE_FLAG_PVSYNC);
12627 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12628 DRM_MODE_FLAG_NVSYNC);
12629 }
12630
12631 PIPE_CONF_CHECK_X(gmch_pfit.control);
12632 /* pfit ratios are autocomputed by the hw on gen4+ */
12633 if (INTEL_INFO(dev)->gen < 4)
12634 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12635 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12636
12637 if (!adjust) {
12638 PIPE_CONF_CHECK_I(pipe_src_w);
12639 PIPE_CONF_CHECK_I(pipe_src_h);
12640
12641 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12642 if (current_config->pch_pfit.enabled) {
12643 PIPE_CONF_CHECK_X(pch_pfit.pos);
12644 PIPE_CONF_CHECK_X(pch_pfit.size);
12645 }
12646
12647 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12648 }
12649
12650 /* BDW+ don't expose a synchronous way to read the state */
12651 if (IS_HASWELL(dev))
12652 PIPE_CONF_CHECK_I(ips_enabled);
12653
12654 PIPE_CONF_CHECK_I(double_wide);
12655
12656 PIPE_CONF_CHECK_X(ddi_pll_sel);
12657
12658 PIPE_CONF_CHECK_I(shared_dpll);
12659 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12660 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12661 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12662 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12663 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12664 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12665 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12666 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12667 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12668
12669 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12670 PIPE_CONF_CHECK_I(pipe_bpp);
12671
12672 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12673 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12674
12675 #undef PIPE_CONF_CHECK_X
12676 #undef PIPE_CONF_CHECK_I
12677 #undef PIPE_CONF_CHECK_I_ALT
12678 #undef PIPE_CONF_CHECK_FLAGS
12679 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12680 #undef PIPE_CONF_QUIRK
12681 #undef INTEL_ERR_OR_DBG_KMS
12682
12683 return ret;
12684 }
12685
12686 static void check_wm_state(struct drm_device *dev)
12687 {
12688 struct drm_i915_private *dev_priv = dev->dev_private;
12689 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12690 struct intel_crtc *intel_crtc;
12691 int plane;
12692
12693 if (INTEL_INFO(dev)->gen < 9)
12694 return;
12695
12696 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12697 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12698
12699 for_each_intel_crtc(dev, intel_crtc) {
12700 struct skl_ddb_entry *hw_entry, *sw_entry;
12701 const enum pipe pipe = intel_crtc->pipe;
12702
12703 if (!intel_crtc->active)
12704 continue;
12705
12706 /* planes */
12707 for_each_plane(dev_priv, pipe, plane) {
12708 hw_entry = &hw_ddb.plane[pipe][plane];
12709 sw_entry = &sw_ddb->plane[pipe][plane];
12710
12711 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12712 continue;
12713
12714 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12715 "(expected (%u,%u), found (%u,%u))\n",
12716 pipe_name(pipe), plane + 1,
12717 sw_entry->start, sw_entry->end,
12718 hw_entry->start, hw_entry->end);
12719 }
12720
12721 /* cursor */
12722 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12723 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12724
12725 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12726 continue;
12727
12728 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12729 "(expected (%u,%u), found (%u,%u))\n",
12730 pipe_name(pipe),
12731 sw_entry->start, sw_entry->end,
12732 hw_entry->start, hw_entry->end);
12733 }
12734 }
12735
12736 static void
12737 check_connector_state(struct drm_device *dev,
12738 struct drm_atomic_state *old_state)
12739 {
12740 struct drm_connector_state *old_conn_state;
12741 struct drm_connector *connector;
12742 int i;
12743
12744 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12745 struct drm_encoder *encoder = connector->encoder;
12746 struct drm_connector_state *state = connector->state;
12747
12748 /* This also checks the encoder/connector hw state with the
12749 * ->get_hw_state callbacks. */
12750 intel_connector_check_state(to_intel_connector(connector));
12751
12752 I915_STATE_WARN(state->best_encoder != encoder,
12753 "connector's atomic encoder doesn't match legacy encoder\n");
12754 }
12755 }
12756
12757 static void
12758 check_encoder_state(struct drm_device *dev)
12759 {
12760 struct intel_encoder *encoder;
12761 struct intel_connector *connector;
12762
12763 for_each_intel_encoder(dev, encoder) {
12764 bool enabled = false;
12765 enum pipe pipe;
12766
12767 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12768 encoder->base.base.id,
12769 encoder->base.name);
12770
12771 for_each_intel_connector(dev, connector) {
12772 if (connector->base.state->best_encoder != &encoder->base)
12773 continue;
12774 enabled = true;
12775
12776 I915_STATE_WARN(connector->base.state->crtc !=
12777 encoder->base.crtc,
12778 "connector's crtc doesn't match encoder crtc\n");
12779 }
12780
12781 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12782 "encoder's enabled state mismatch "
12783 "(expected %i, found %i)\n",
12784 !!encoder->base.crtc, enabled);
12785
12786 if (!encoder->base.crtc) {
12787 bool active;
12788
12789 active = encoder->get_hw_state(encoder, &pipe);
12790 I915_STATE_WARN(active,
12791 "encoder detached but still enabled on pipe %c.\n",
12792 pipe_name(pipe));
12793 }
12794 }
12795 }
12796
12797 static void
12798 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12799 {
12800 struct drm_i915_private *dev_priv = dev->dev_private;
12801 struct intel_encoder *encoder;
12802 struct drm_crtc_state *old_crtc_state;
12803 struct drm_crtc *crtc;
12804 int i;
12805
12806 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12807 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12808 struct intel_crtc_state *pipe_config, *sw_config;
12809 bool active;
12810
12811 if (!needs_modeset(crtc->state) &&
12812 !to_intel_crtc_state(crtc->state)->update_pipe)
12813 continue;
12814
12815 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12816 pipe_config = to_intel_crtc_state(old_crtc_state);
12817 memset(pipe_config, 0, sizeof(*pipe_config));
12818 pipe_config->base.crtc = crtc;
12819 pipe_config->base.state = old_state;
12820
12821 DRM_DEBUG_KMS("[CRTC:%d]\n",
12822 crtc->base.id);
12823
12824 active = dev_priv->display.get_pipe_config(intel_crtc,
12825 pipe_config);
12826
12827 /* hw state is inconsistent with the pipe quirk */
12828 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12829 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12830 active = crtc->state->active;
12831
12832 I915_STATE_WARN(crtc->state->active != active,
12833 "crtc active state doesn't match with hw state "
12834 "(expected %i, found %i)\n", crtc->state->active, active);
12835
12836 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12837 "transitional active state does not match atomic hw state "
12838 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12839
12840 for_each_encoder_on_crtc(dev, crtc, encoder) {
12841 enum pipe pipe;
12842
12843 active = encoder->get_hw_state(encoder, &pipe);
12844 I915_STATE_WARN(active != crtc->state->active,
12845 "[ENCODER:%i] active %i with crtc active %i\n",
12846 encoder->base.base.id, active, crtc->state->active);
12847
12848 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12849 "Encoder connected to wrong pipe %c\n",
12850 pipe_name(pipe));
12851
12852 if (active)
12853 encoder->get_config(encoder, pipe_config);
12854 }
12855
12856 if (!crtc->state->active)
12857 continue;
12858
12859 sw_config = to_intel_crtc_state(crtc->state);
12860 if (!intel_pipe_config_compare(dev, sw_config,
12861 pipe_config, false)) {
12862 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12863 intel_dump_pipe_config(intel_crtc, pipe_config,
12864 "[hw state]");
12865 intel_dump_pipe_config(intel_crtc, sw_config,
12866 "[sw state]");
12867 }
12868 }
12869 }
12870
12871 static void
12872 check_shared_dpll_state(struct drm_device *dev)
12873 {
12874 struct drm_i915_private *dev_priv = dev->dev_private;
12875 struct intel_crtc *crtc;
12876 struct intel_dpll_hw_state dpll_hw_state;
12877 int i;
12878
12879 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12880 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12881 int enabled_crtcs = 0, active_crtcs = 0;
12882 bool active;
12883
12884 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12885
12886 DRM_DEBUG_KMS("%s\n", pll->name);
12887
12888 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12889
12890 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12891 "more active pll users than references: %i vs %i\n",
12892 pll->active, hweight32(pll->config.crtc_mask));
12893 I915_STATE_WARN(pll->active && !pll->on,
12894 "pll in active use but not on in sw tracking\n");
12895 I915_STATE_WARN(pll->on && !pll->active,
12896 "pll in on but not on in use in sw tracking\n");
12897 I915_STATE_WARN(pll->on != active,
12898 "pll on state mismatch (expected %i, found %i)\n",
12899 pll->on, active);
12900
12901 for_each_intel_crtc(dev, crtc) {
12902 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12903 enabled_crtcs++;
12904 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12905 active_crtcs++;
12906 }
12907 I915_STATE_WARN(pll->active != active_crtcs,
12908 "pll active crtcs mismatch (expected %i, found %i)\n",
12909 pll->active, active_crtcs);
12910 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12911 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12912 hweight32(pll->config.crtc_mask), enabled_crtcs);
12913
12914 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12915 sizeof(dpll_hw_state)),
12916 "pll hw state mismatch\n");
12917 }
12918 }
12919
12920 static void
12921 intel_modeset_check_state(struct drm_device *dev,
12922 struct drm_atomic_state *old_state)
12923 {
12924 check_wm_state(dev);
12925 check_connector_state(dev, old_state);
12926 check_encoder_state(dev);
12927 check_crtc_state(dev, old_state);
12928 check_shared_dpll_state(dev);
12929 }
12930
12931 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12932 int dotclock)
12933 {
12934 /*
12935 * FDI already provided one idea for the dotclock.
12936 * Yell if the encoder disagrees.
12937 */
12938 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12939 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12940 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12941 }
12942
12943 static void update_scanline_offset(struct intel_crtc *crtc)
12944 {
12945 struct drm_device *dev = crtc->base.dev;
12946
12947 /*
12948 * The scanline counter increments at the leading edge of hsync.
12949 *
12950 * On most platforms it starts counting from vtotal-1 on the
12951 * first active line. That means the scanline counter value is
12952 * always one less than what we would expect. Ie. just after
12953 * start of vblank, which also occurs at start of hsync (on the
12954 * last active line), the scanline counter will read vblank_start-1.
12955 *
12956 * On gen2 the scanline counter starts counting from 1 instead
12957 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12958 * to keep the value positive), instead of adding one.
12959 *
12960 * On HSW+ the behaviour of the scanline counter depends on the output
12961 * type. For DP ports it behaves like most other platforms, but on HDMI
12962 * there's an extra 1 line difference. So we need to add two instead of
12963 * one to the value.
12964 */
12965 if (IS_GEN2(dev)) {
12966 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12967 int vtotal;
12968
12969 vtotal = adjusted_mode->crtc_vtotal;
12970 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12971 vtotal /= 2;
12972
12973 crtc->scanline_offset = vtotal - 1;
12974 } else if (HAS_DDI(dev) &&
12975 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12976 crtc->scanline_offset = 2;
12977 } else
12978 crtc->scanline_offset = 1;
12979 }
12980
12981 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12982 {
12983 struct drm_device *dev = state->dev;
12984 struct drm_i915_private *dev_priv = to_i915(dev);
12985 struct intel_shared_dpll_config *shared_dpll = NULL;
12986 struct intel_crtc *intel_crtc;
12987 struct intel_crtc_state *intel_crtc_state;
12988 struct drm_crtc *crtc;
12989 struct drm_crtc_state *crtc_state;
12990 int i;
12991
12992 if (!dev_priv->display.crtc_compute_clock)
12993 return;
12994
12995 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12996 int dpll;
12997
12998 intel_crtc = to_intel_crtc(crtc);
12999 intel_crtc_state = to_intel_crtc_state(crtc_state);
13000 dpll = intel_crtc_state->shared_dpll;
13001
13002 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
13003 continue;
13004
13005 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
13006
13007 if (!shared_dpll)
13008 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13009
13010 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13011 }
13012 }
13013
13014 /*
13015 * This implements the workaround described in the "notes" section of the mode
13016 * set sequence documentation. When going from no pipes or single pipe to
13017 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13018 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13019 */
13020 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13021 {
13022 struct drm_crtc_state *crtc_state;
13023 struct intel_crtc *intel_crtc;
13024 struct drm_crtc *crtc;
13025 struct intel_crtc_state *first_crtc_state = NULL;
13026 struct intel_crtc_state *other_crtc_state = NULL;
13027 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13028 int i;
13029
13030 /* look at all crtc's that are going to be enabled in during modeset */
13031 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13032 intel_crtc = to_intel_crtc(crtc);
13033
13034 if (!crtc_state->active || !needs_modeset(crtc_state))
13035 continue;
13036
13037 if (first_crtc_state) {
13038 other_crtc_state = to_intel_crtc_state(crtc_state);
13039 break;
13040 } else {
13041 first_crtc_state = to_intel_crtc_state(crtc_state);
13042 first_pipe = intel_crtc->pipe;
13043 }
13044 }
13045
13046 /* No workaround needed? */
13047 if (!first_crtc_state)
13048 return 0;
13049
13050 /* w/a possibly needed, check how many crtc's are already enabled. */
13051 for_each_intel_crtc(state->dev, intel_crtc) {
13052 struct intel_crtc_state *pipe_config;
13053
13054 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13055 if (IS_ERR(pipe_config))
13056 return PTR_ERR(pipe_config);
13057
13058 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13059
13060 if (!pipe_config->base.active ||
13061 needs_modeset(&pipe_config->base))
13062 continue;
13063
13064 /* 2 or more enabled crtcs means no need for w/a */
13065 if (enabled_pipe != INVALID_PIPE)
13066 return 0;
13067
13068 enabled_pipe = intel_crtc->pipe;
13069 }
13070
13071 if (enabled_pipe != INVALID_PIPE)
13072 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13073 else if (other_crtc_state)
13074 other_crtc_state->hsw_workaround_pipe = first_pipe;
13075
13076 return 0;
13077 }
13078
13079 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13080 {
13081 struct drm_crtc *crtc;
13082 struct drm_crtc_state *crtc_state;
13083 int ret = 0;
13084
13085 /* add all active pipes to the state */
13086 for_each_crtc(state->dev, crtc) {
13087 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13088 if (IS_ERR(crtc_state))
13089 return PTR_ERR(crtc_state);
13090
13091 if (!crtc_state->active || needs_modeset(crtc_state))
13092 continue;
13093
13094 crtc_state->mode_changed = true;
13095
13096 ret = drm_atomic_add_affected_connectors(state, crtc);
13097 if (ret)
13098 break;
13099
13100 ret = drm_atomic_add_affected_planes(state, crtc);
13101 if (ret)
13102 break;
13103 }
13104
13105 return ret;
13106 }
13107
13108 static int intel_modeset_checks(struct drm_atomic_state *state)
13109 {
13110 struct drm_device *dev = state->dev;
13111 struct drm_i915_private *dev_priv = dev->dev_private;
13112 int ret;
13113
13114 if (!check_digital_port_conflicts(state)) {
13115 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13116 return -EINVAL;
13117 }
13118
13119 /*
13120 * See if the config requires any additional preparation, e.g.
13121 * to adjust global state with pipes off. We need to do this
13122 * here so we can get the modeset_pipe updated config for the new
13123 * mode set on this crtc. For other crtcs we need to use the
13124 * adjusted_mode bits in the crtc directly.
13125 */
13126 if (dev_priv->display.modeset_calc_cdclk) {
13127 unsigned int cdclk;
13128
13129 ret = dev_priv->display.modeset_calc_cdclk(state);
13130
13131 cdclk = to_intel_atomic_state(state)->cdclk;
13132 if (!ret && cdclk != dev_priv->cdclk_freq)
13133 ret = intel_modeset_all_pipes(state);
13134
13135 if (ret < 0)
13136 return ret;
13137 } else
13138 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13139
13140 intel_modeset_clear_plls(state);
13141
13142 if (IS_HASWELL(dev))
13143 return haswell_mode_set_planes_workaround(state);
13144
13145 return 0;
13146 }
13147
13148 /*
13149 * Handle calculation of various watermark data at the end of the atomic check
13150 * phase. The code here should be run after the per-crtc and per-plane 'check'
13151 * handlers to ensure that all derived state has been updated.
13152 */
13153 static void calc_watermark_data(struct drm_atomic_state *state)
13154 {
13155 struct drm_device *dev = state->dev;
13156 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13157 struct drm_crtc *crtc;
13158 struct drm_crtc_state *cstate;
13159 struct drm_plane *plane;
13160 struct drm_plane_state *pstate;
13161
13162 /*
13163 * Calculate watermark configuration details now that derived
13164 * plane/crtc state is all properly updated.
13165 */
13166 drm_for_each_crtc(crtc, dev) {
13167 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13168 crtc->state;
13169
13170 if (cstate->active)
13171 intel_state->wm_config.num_pipes_active++;
13172 }
13173 drm_for_each_legacy_plane(plane, dev) {
13174 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13175 plane->state;
13176
13177 if (!to_intel_plane_state(pstate)->visible)
13178 continue;
13179
13180 intel_state->wm_config.sprites_enabled = true;
13181 if (pstate->crtc_w != pstate->src_w >> 16 ||
13182 pstate->crtc_h != pstate->src_h >> 16)
13183 intel_state->wm_config.sprites_scaled = true;
13184 }
13185 }
13186
13187 /**
13188 * intel_atomic_check - validate state object
13189 * @dev: drm device
13190 * @state: state to validate
13191 */
13192 static int intel_atomic_check(struct drm_device *dev,
13193 struct drm_atomic_state *state)
13194 {
13195 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13196 struct drm_crtc *crtc;
13197 struct drm_crtc_state *crtc_state;
13198 int ret, i;
13199 bool any_ms = false;
13200
13201 ret = drm_atomic_helper_check_modeset(dev, state);
13202 if (ret)
13203 return ret;
13204
13205 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13206 struct intel_crtc_state *pipe_config =
13207 to_intel_crtc_state(crtc_state);
13208
13209 memset(&to_intel_crtc(crtc)->atomic, 0,
13210 sizeof(struct intel_crtc_atomic_commit));
13211
13212 /* Catch I915_MODE_FLAG_INHERITED */
13213 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13214 crtc_state->mode_changed = true;
13215
13216 if (!crtc_state->enable) {
13217 if (needs_modeset(crtc_state))
13218 any_ms = true;
13219 continue;
13220 }
13221
13222 if (!needs_modeset(crtc_state))
13223 continue;
13224
13225 /* FIXME: For only active_changed we shouldn't need to do any
13226 * state recomputation at all. */
13227
13228 ret = drm_atomic_add_affected_connectors(state, crtc);
13229 if (ret)
13230 return ret;
13231
13232 ret = intel_modeset_pipe_config(crtc, pipe_config);
13233 if (ret)
13234 return ret;
13235
13236 if (i915.fastboot &&
13237 intel_pipe_config_compare(state->dev,
13238 to_intel_crtc_state(crtc->state),
13239 pipe_config, true)) {
13240 crtc_state->mode_changed = false;
13241 to_intel_crtc_state(crtc_state)->update_pipe = true;
13242 }
13243
13244 if (needs_modeset(crtc_state)) {
13245 any_ms = true;
13246
13247 ret = drm_atomic_add_affected_planes(state, crtc);
13248 if (ret)
13249 return ret;
13250 }
13251
13252 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13253 needs_modeset(crtc_state) ?
13254 "[modeset]" : "[fastset]");
13255 }
13256
13257 if (any_ms) {
13258 ret = intel_modeset_checks(state);
13259
13260 if (ret)
13261 return ret;
13262 } else
13263 intel_state->cdclk = to_i915(state->dev)->cdclk_freq;
13264
13265 ret = drm_atomic_helper_check_planes(state->dev, state);
13266 if (ret)
13267 return ret;
13268
13269 calc_watermark_data(state);
13270
13271 return 0;
13272 }
13273
13274 static int intel_atomic_prepare_commit(struct drm_device *dev,
13275 struct drm_atomic_state *state,
13276 bool async)
13277 {
13278 struct drm_i915_private *dev_priv = dev->dev_private;
13279 struct drm_plane_state *plane_state;
13280 struct drm_crtc_state *crtc_state;
13281 struct drm_plane *plane;
13282 struct drm_crtc *crtc;
13283 int i, ret;
13284
13285 if (async) {
13286 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13287 return -EINVAL;
13288 }
13289
13290 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13291 ret = intel_crtc_wait_for_pending_flips(crtc);
13292 if (ret)
13293 return ret;
13294
13295 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13296 flush_workqueue(dev_priv->wq);
13297 }
13298
13299 ret = mutex_lock_interruptible(&dev->struct_mutex);
13300 if (ret)
13301 return ret;
13302
13303 ret = drm_atomic_helper_prepare_planes(dev, state);
13304 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13305 u32 reset_counter;
13306
13307 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13308 mutex_unlock(&dev->struct_mutex);
13309
13310 for_each_plane_in_state(state, plane, plane_state, i) {
13311 struct intel_plane_state *intel_plane_state =
13312 to_intel_plane_state(plane_state);
13313
13314 if (!intel_plane_state->wait_req)
13315 continue;
13316
13317 ret = __i915_wait_request(intel_plane_state->wait_req,
13318 reset_counter, true,
13319 NULL, NULL);
13320
13321 /* Swallow -EIO errors to allow updates during hw lockup. */
13322 if (ret == -EIO)
13323 ret = 0;
13324
13325 if (ret)
13326 break;
13327 }
13328
13329 if (!ret)
13330 return 0;
13331
13332 mutex_lock(&dev->struct_mutex);
13333 drm_atomic_helper_cleanup_planes(dev, state);
13334 }
13335
13336 mutex_unlock(&dev->struct_mutex);
13337 return ret;
13338 }
13339
13340 /**
13341 * intel_atomic_commit - commit validated state object
13342 * @dev: DRM device
13343 * @state: the top-level driver state object
13344 * @async: asynchronous commit
13345 *
13346 * This function commits a top-level state object that has been validated
13347 * with drm_atomic_helper_check().
13348 *
13349 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13350 * we can only handle plane-related operations and do not yet support
13351 * asynchronous commit.
13352 *
13353 * RETURNS
13354 * Zero for success or -errno.
13355 */
13356 static int intel_atomic_commit(struct drm_device *dev,
13357 struct drm_atomic_state *state,
13358 bool async)
13359 {
13360 struct drm_i915_private *dev_priv = dev->dev_private;
13361 struct drm_crtc_state *crtc_state;
13362 struct drm_crtc *crtc;
13363 int ret = 0;
13364 int i;
13365 bool any_ms = false;
13366
13367 ret = intel_atomic_prepare_commit(dev, state, async);
13368 if (ret) {
13369 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13370 return ret;
13371 }
13372
13373 drm_atomic_helper_swap_state(dev, state);
13374 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13375
13376 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13378
13379 if (!needs_modeset(crtc->state))
13380 continue;
13381
13382 any_ms = true;
13383 intel_pre_plane_update(intel_crtc);
13384
13385 if (crtc_state->active) {
13386 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13387 dev_priv->display.crtc_disable(crtc);
13388 intel_crtc->active = false;
13389 intel_disable_shared_dpll(intel_crtc);
13390
13391 /*
13392 * Underruns don't always raise
13393 * interrupts, so check manually.
13394 */
13395 intel_check_cpu_fifo_underruns(dev_priv);
13396 intel_check_pch_fifo_underruns(dev_priv);
13397 }
13398 }
13399
13400 /* Only after disabling all output pipelines that will be changed can we
13401 * update the the output configuration. */
13402 intel_modeset_update_crtc_state(state);
13403
13404 if (any_ms) {
13405 intel_shared_dpll_commit(state);
13406
13407 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13408 modeset_update_crtc_power_domains(state);
13409 }
13410
13411 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13412 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13414 bool modeset = needs_modeset(crtc->state);
13415 bool update_pipe = !modeset &&
13416 to_intel_crtc_state(crtc->state)->update_pipe;
13417 unsigned long put_domains = 0;
13418
13419 if (modeset)
13420 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13421
13422 if (modeset && crtc->state->active) {
13423 update_scanline_offset(to_intel_crtc(crtc));
13424 dev_priv->display.crtc_enable(crtc);
13425 }
13426
13427 if (update_pipe) {
13428 put_domains = modeset_get_crtc_power_domains(crtc);
13429
13430 /* make sure intel_modeset_check_state runs */
13431 any_ms = true;
13432 }
13433
13434 if (!modeset)
13435 intel_pre_plane_update(intel_crtc);
13436
13437 if (crtc->state->active &&
13438 (crtc->state->planes_changed || update_pipe))
13439 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13440
13441 if (put_domains)
13442 modeset_put_power_domains(dev_priv, put_domains);
13443
13444 intel_post_plane_update(intel_crtc);
13445
13446 if (modeset)
13447 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13448 }
13449
13450 /* FIXME: add subpixel order */
13451
13452 drm_atomic_helper_wait_for_vblanks(dev, state);
13453
13454 mutex_lock(&dev->struct_mutex);
13455 drm_atomic_helper_cleanup_planes(dev, state);
13456 mutex_unlock(&dev->struct_mutex);
13457
13458 if (any_ms)
13459 intel_modeset_check_state(dev, state);
13460
13461 drm_atomic_state_free(state);
13462
13463 return 0;
13464 }
13465
13466 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13467 {
13468 struct drm_device *dev = crtc->dev;
13469 struct drm_atomic_state *state;
13470 struct drm_crtc_state *crtc_state;
13471 int ret;
13472
13473 state = drm_atomic_state_alloc(dev);
13474 if (!state) {
13475 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13476 crtc->base.id);
13477 return;
13478 }
13479
13480 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13481
13482 retry:
13483 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13484 ret = PTR_ERR_OR_ZERO(crtc_state);
13485 if (!ret) {
13486 if (!crtc_state->active)
13487 goto out;
13488
13489 crtc_state->mode_changed = true;
13490 ret = drm_atomic_commit(state);
13491 }
13492
13493 if (ret == -EDEADLK) {
13494 drm_atomic_state_clear(state);
13495 drm_modeset_backoff(state->acquire_ctx);
13496 goto retry;
13497 }
13498
13499 if (ret)
13500 out:
13501 drm_atomic_state_free(state);
13502 }
13503
13504 #undef for_each_intel_crtc_masked
13505
13506 static const struct drm_crtc_funcs intel_crtc_funcs = {
13507 .gamma_set = intel_crtc_gamma_set,
13508 .set_config = drm_atomic_helper_set_config,
13509 .destroy = intel_crtc_destroy,
13510 .page_flip = intel_crtc_page_flip,
13511 .atomic_duplicate_state = intel_crtc_duplicate_state,
13512 .atomic_destroy_state = intel_crtc_destroy_state,
13513 };
13514
13515 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13516 struct intel_shared_dpll *pll,
13517 struct intel_dpll_hw_state *hw_state)
13518 {
13519 uint32_t val;
13520
13521 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13522 return false;
13523
13524 val = I915_READ(PCH_DPLL(pll->id));
13525 hw_state->dpll = val;
13526 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13527 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13528
13529 return val & DPLL_VCO_ENABLE;
13530 }
13531
13532 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13533 struct intel_shared_dpll *pll)
13534 {
13535 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13536 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13537 }
13538
13539 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13540 struct intel_shared_dpll *pll)
13541 {
13542 /* PCH refclock must be enabled first */
13543 ibx_assert_pch_refclk_enabled(dev_priv);
13544
13545 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13546
13547 /* Wait for the clocks to stabilize. */
13548 POSTING_READ(PCH_DPLL(pll->id));
13549 udelay(150);
13550
13551 /* The pixel multiplier can only be updated once the
13552 * DPLL is enabled and the clocks are stable.
13553 *
13554 * So write it again.
13555 */
13556 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13557 POSTING_READ(PCH_DPLL(pll->id));
13558 udelay(200);
13559 }
13560
13561 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13562 struct intel_shared_dpll *pll)
13563 {
13564 struct drm_device *dev = dev_priv->dev;
13565 struct intel_crtc *crtc;
13566
13567 /* Make sure no transcoder isn't still depending on us. */
13568 for_each_intel_crtc(dev, crtc) {
13569 if (intel_crtc_to_shared_dpll(crtc) == pll)
13570 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13571 }
13572
13573 I915_WRITE(PCH_DPLL(pll->id), 0);
13574 POSTING_READ(PCH_DPLL(pll->id));
13575 udelay(200);
13576 }
13577
13578 static char *ibx_pch_dpll_names[] = {
13579 "PCH DPLL A",
13580 "PCH DPLL B",
13581 };
13582
13583 static void ibx_pch_dpll_init(struct drm_device *dev)
13584 {
13585 struct drm_i915_private *dev_priv = dev->dev_private;
13586 int i;
13587
13588 dev_priv->num_shared_dpll = 2;
13589
13590 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13591 dev_priv->shared_dplls[i].id = i;
13592 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13593 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13594 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13595 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13596 dev_priv->shared_dplls[i].get_hw_state =
13597 ibx_pch_dpll_get_hw_state;
13598 }
13599 }
13600
13601 static void intel_shared_dpll_init(struct drm_device *dev)
13602 {
13603 struct drm_i915_private *dev_priv = dev->dev_private;
13604
13605 if (HAS_DDI(dev))
13606 intel_ddi_pll_init(dev);
13607 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13608 ibx_pch_dpll_init(dev);
13609 else
13610 dev_priv->num_shared_dpll = 0;
13611
13612 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13613 }
13614
13615 /**
13616 * intel_prepare_plane_fb - Prepare fb for usage on plane
13617 * @plane: drm plane to prepare for
13618 * @fb: framebuffer to prepare for presentation
13619 *
13620 * Prepares a framebuffer for usage on a display plane. Generally this
13621 * involves pinning the underlying object and updating the frontbuffer tracking
13622 * bits. Some older platforms need special physical address handling for
13623 * cursor planes.
13624 *
13625 * Must be called with struct_mutex held.
13626 *
13627 * Returns 0 on success, negative error code on failure.
13628 */
13629 int
13630 intel_prepare_plane_fb(struct drm_plane *plane,
13631 const struct drm_plane_state *new_state)
13632 {
13633 struct drm_device *dev = plane->dev;
13634 struct drm_framebuffer *fb = new_state->fb;
13635 struct intel_plane *intel_plane = to_intel_plane(plane);
13636 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13637 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13638 int ret = 0;
13639
13640 if (!obj && !old_obj)
13641 return 0;
13642
13643 if (old_obj) {
13644 struct drm_crtc_state *crtc_state =
13645 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13646
13647 /* Big Hammer, we also need to ensure that any pending
13648 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13649 * current scanout is retired before unpinning the old
13650 * framebuffer. Note that we rely on userspace rendering
13651 * into the buffer attached to the pipe they are waiting
13652 * on. If not, userspace generates a GPU hang with IPEHR
13653 * point to the MI_WAIT_FOR_EVENT.
13654 *
13655 * This should only fail upon a hung GPU, in which case we
13656 * can safely continue.
13657 */
13658 if (needs_modeset(crtc_state))
13659 ret = i915_gem_object_wait_rendering(old_obj, true);
13660
13661 /* Swallow -EIO errors to allow updates during hw lockup. */
13662 if (ret && ret != -EIO)
13663 return ret;
13664 }
13665
13666 if (!obj) {
13667 ret = 0;
13668 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13669 INTEL_INFO(dev)->cursor_needs_physical) {
13670 int align = IS_I830(dev) ? 16 * 1024 : 256;
13671 ret = i915_gem_object_attach_phys(obj, align);
13672 if (ret)
13673 DRM_DEBUG_KMS("failed to attach phys object\n");
13674 } else {
13675 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13676 }
13677
13678 if (ret == 0) {
13679 if (obj) {
13680 struct intel_plane_state *plane_state =
13681 to_intel_plane_state(new_state);
13682
13683 i915_gem_request_assign(&plane_state->wait_req,
13684 obj->last_write_req);
13685 }
13686
13687 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13688 }
13689
13690 return ret;
13691 }
13692
13693 /**
13694 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13695 * @plane: drm plane to clean up for
13696 * @fb: old framebuffer that was on plane
13697 *
13698 * Cleans up a framebuffer that has just been removed from a plane.
13699 *
13700 * Must be called with struct_mutex held.
13701 */
13702 void
13703 intel_cleanup_plane_fb(struct drm_plane *plane,
13704 const struct drm_plane_state *old_state)
13705 {
13706 struct drm_device *dev = plane->dev;
13707 struct intel_plane *intel_plane = to_intel_plane(plane);
13708 struct intel_plane_state *old_intel_state;
13709 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13710 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13711
13712 old_intel_state = to_intel_plane_state(old_state);
13713
13714 if (!obj && !old_obj)
13715 return;
13716
13717 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13718 !INTEL_INFO(dev)->cursor_needs_physical))
13719 intel_unpin_fb_obj(old_state->fb, old_state);
13720
13721 /* prepare_fb aborted? */
13722 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13723 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13724 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13725
13726 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13727
13728 }
13729
13730 int
13731 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13732 {
13733 int max_scale;
13734 struct drm_device *dev;
13735 struct drm_i915_private *dev_priv;
13736 int crtc_clock, cdclk;
13737
13738 if (!intel_crtc || !crtc_state)
13739 return DRM_PLANE_HELPER_NO_SCALING;
13740
13741 dev = intel_crtc->base.dev;
13742 dev_priv = dev->dev_private;
13743 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13744 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13745
13746 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13747 return DRM_PLANE_HELPER_NO_SCALING;
13748
13749 /*
13750 * skl max scale is lower of:
13751 * close to 3 but not 3, -1 is for that purpose
13752 * or
13753 * cdclk/crtc_clock
13754 */
13755 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13756
13757 return max_scale;
13758 }
13759
13760 static int
13761 intel_check_primary_plane(struct drm_plane *plane,
13762 struct intel_crtc_state *crtc_state,
13763 struct intel_plane_state *state)
13764 {
13765 struct drm_crtc *crtc = state->base.crtc;
13766 struct drm_framebuffer *fb = state->base.fb;
13767 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13768 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13769 bool can_position = false;
13770
13771 /* use scaler when colorkey is not required */
13772 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13773 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13774 min_scale = 1;
13775 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13776 can_position = true;
13777 }
13778
13779 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13780 &state->dst, &state->clip,
13781 min_scale, max_scale,
13782 can_position, true,
13783 &state->visible);
13784 }
13785
13786 static void
13787 intel_commit_primary_plane(struct drm_plane *plane,
13788 struct intel_plane_state *state)
13789 {
13790 struct drm_crtc *crtc = state->base.crtc;
13791 struct drm_framebuffer *fb = state->base.fb;
13792 struct drm_device *dev = plane->dev;
13793 struct drm_i915_private *dev_priv = dev->dev_private;
13794
13795 crtc = crtc ? crtc : plane->crtc;
13796
13797 dev_priv->display.update_primary_plane(crtc, fb,
13798 state->src.x1 >> 16,
13799 state->src.y1 >> 16);
13800 }
13801
13802 static void
13803 intel_disable_primary_plane(struct drm_plane *plane,
13804 struct drm_crtc *crtc)
13805 {
13806 struct drm_device *dev = plane->dev;
13807 struct drm_i915_private *dev_priv = dev->dev_private;
13808
13809 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13810 }
13811
13812 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13813 struct drm_crtc_state *old_crtc_state)
13814 {
13815 struct drm_device *dev = crtc->dev;
13816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13817 struct intel_crtc_state *old_intel_state =
13818 to_intel_crtc_state(old_crtc_state);
13819 bool modeset = needs_modeset(crtc->state);
13820
13821 if (intel_crtc->atomic.update_wm_pre)
13822 intel_update_watermarks(crtc);
13823
13824 /* Perform vblank evasion around commit operation */
13825 intel_pipe_update_start(intel_crtc);
13826
13827 if (modeset)
13828 return;
13829
13830 if (to_intel_crtc_state(crtc->state)->update_pipe)
13831 intel_update_pipe_config(intel_crtc, old_intel_state);
13832 else if (INTEL_INFO(dev)->gen >= 9)
13833 skl_detach_scalers(intel_crtc);
13834 }
13835
13836 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13837 struct drm_crtc_state *old_crtc_state)
13838 {
13839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13840
13841 intel_pipe_update_end(intel_crtc);
13842 }
13843
13844 /**
13845 * intel_plane_destroy - destroy a plane
13846 * @plane: plane to destroy
13847 *
13848 * Common destruction function for all types of planes (primary, cursor,
13849 * sprite).
13850 */
13851 void intel_plane_destroy(struct drm_plane *plane)
13852 {
13853 struct intel_plane *intel_plane = to_intel_plane(plane);
13854 drm_plane_cleanup(plane);
13855 kfree(intel_plane);
13856 }
13857
13858 const struct drm_plane_funcs intel_plane_funcs = {
13859 .update_plane = drm_atomic_helper_update_plane,
13860 .disable_plane = drm_atomic_helper_disable_plane,
13861 .destroy = intel_plane_destroy,
13862 .set_property = drm_atomic_helper_plane_set_property,
13863 .atomic_get_property = intel_plane_atomic_get_property,
13864 .atomic_set_property = intel_plane_atomic_set_property,
13865 .atomic_duplicate_state = intel_plane_duplicate_state,
13866 .atomic_destroy_state = intel_plane_destroy_state,
13867
13868 };
13869
13870 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13871 int pipe)
13872 {
13873 struct intel_plane *primary;
13874 struct intel_plane_state *state;
13875 const uint32_t *intel_primary_formats;
13876 unsigned int num_formats;
13877
13878 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13879 if (primary == NULL)
13880 return NULL;
13881
13882 state = intel_create_plane_state(&primary->base);
13883 if (!state) {
13884 kfree(primary);
13885 return NULL;
13886 }
13887 primary->base.state = &state->base;
13888
13889 primary->can_scale = false;
13890 primary->max_downscale = 1;
13891 if (INTEL_INFO(dev)->gen >= 9) {
13892 primary->can_scale = true;
13893 state->scaler_id = -1;
13894 }
13895 primary->pipe = pipe;
13896 primary->plane = pipe;
13897 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13898 primary->check_plane = intel_check_primary_plane;
13899 primary->commit_plane = intel_commit_primary_plane;
13900 primary->disable_plane = intel_disable_primary_plane;
13901 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13902 primary->plane = !pipe;
13903
13904 if (INTEL_INFO(dev)->gen >= 9) {
13905 intel_primary_formats = skl_primary_formats;
13906 num_formats = ARRAY_SIZE(skl_primary_formats);
13907 } else if (INTEL_INFO(dev)->gen >= 4) {
13908 intel_primary_formats = i965_primary_formats;
13909 num_formats = ARRAY_SIZE(i965_primary_formats);
13910 } else {
13911 intel_primary_formats = i8xx_primary_formats;
13912 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13913 }
13914
13915 drm_universal_plane_init(dev, &primary->base, 0,
13916 &intel_plane_funcs,
13917 intel_primary_formats, num_formats,
13918 DRM_PLANE_TYPE_PRIMARY);
13919
13920 if (INTEL_INFO(dev)->gen >= 4)
13921 intel_create_rotation_property(dev, primary);
13922
13923 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13924
13925 return &primary->base;
13926 }
13927
13928 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13929 {
13930 if (!dev->mode_config.rotation_property) {
13931 unsigned long flags = BIT(DRM_ROTATE_0) |
13932 BIT(DRM_ROTATE_180);
13933
13934 if (INTEL_INFO(dev)->gen >= 9)
13935 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13936
13937 dev->mode_config.rotation_property =
13938 drm_mode_create_rotation_property(dev, flags);
13939 }
13940 if (dev->mode_config.rotation_property)
13941 drm_object_attach_property(&plane->base.base,
13942 dev->mode_config.rotation_property,
13943 plane->base.state->rotation);
13944 }
13945
13946 static int
13947 intel_check_cursor_plane(struct drm_plane *plane,
13948 struct intel_crtc_state *crtc_state,
13949 struct intel_plane_state *state)
13950 {
13951 struct drm_crtc *crtc = crtc_state->base.crtc;
13952 struct drm_framebuffer *fb = state->base.fb;
13953 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13954 unsigned stride;
13955 int ret;
13956
13957 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13958 &state->dst, &state->clip,
13959 DRM_PLANE_HELPER_NO_SCALING,
13960 DRM_PLANE_HELPER_NO_SCALING,
13961 true, true, &state->visible);
13962 if (ret)
13963 return ret;
13964
13965 /* if we want to turn off the cursor ignore width and height */
13966 if (!obj)
13967 return 0;
13968
13969 /* Check for which cursor types we support */
13970 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13971 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13972 state->base.crtc_w, state->base.crtc_h);
13973 return -EINVAL;
13974 }
13975
13976 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13977 if (obj->base.size < stride * state->base.crtc_h) {
13978 DRM_DEBUG_KMS("buffer is too small\n");
13979 return -ENOMEM;
13980 }
13981
13982 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13983 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13984 return -EINVAL;
13985 }
13986
13987 return 0;
13988 }
13989
13990 static void
13991 intel_disable_cursor_plane(struct drm_plane *plane,
13992 struct drm_crtc *crtc)
13993 {
13994 intel_crtc_update_cursor(crtc, false);
13995 }
13996
13997 static void
13998 intel_commit_cursor_plane(struct drm_plane *plane,
13999 struct intel_plane_state *state)
14000 {
14001 struct drm_crtc *crtc = state->base.crtc;
14002 struct drm_device *dev = plane->dev;
14003 struct intel_crtc *intel_crtc;
14004 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14005 uint32_t addr;
14006
14007 crtc = crtc ? crtc : plane->crtc;
14008 intel_crtc = to_intel_crtc(crtc);
14009
14010 if (intel_crtc->cursor_bo == obj)
14011 goto update;
14012
14013 if (!obj)
14014 addr = 0;
14015 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14016 addr = i915_gem_obj_ggtt_offset(obj);
14017 else
14018 addr = obj->phys_handle->busaddr;
14019
14020 intel_crtc->cursor_addr = addr;
14021 intel_crtc->cursor_bo = obj;
14022
14023 update:
14024 intel_crtc_update_cursor(crtc, state->visible);
14025 }
14026
14027 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14028 int pipe)
14029 {
14030 struct intel_plane *cursor;
14031 struct intel_plane_state *state;
14032
14033 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14034 if (cursor == NULL)
14035 return NULL;
14036
14037 state = intel_create_plane_state(&cursor->base);
14038 if (!state) {
14039 kfree(cursor);
14040 return NULL;
14041 }
14042 cursor->base.state = &state->base;
14043
14044 cursor->can_scale = false;
14045 cursor->max_downscale = 1;
14046 cursor->pipe = pipe;
14047 cursor->plane = pipe;
14048 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14049 cursor->check_plane = intel_check_cursor_plane;
14050 cursor->commit_plane = intel_commit_cursor_plane;
14051 cursor->disable_plane = intel_disable_cursor_plane;
14052
14053 drm_universal_plane_init(dev, &cursor->base, 0,
14054 &intel_plane_funcs,
14055 intel_cursor_formats,
14056 ARRAY_SIZE(intel_cursor_formats),
14057 DRM_PLANE_TYPE_CURSOR);
14058
14059 if (INTEL_INFO(dev)->gen >= 4) {
14060 if (!dev->mode_config.rotation_property)
14061 dev->mode_config.rotation_property =
14062 drm_mode_create_rotation_property(dev,
14063 BIT(DRM_ROTATE_0) |
14064 BIT(DRM_ROTATE_180));
14065 if (dev->mode_config.rotation_property)
14066 drm_object_attach_property(&cursor->base.base,
14067 dev->mode_config.rotation_property,
14068 state->base.rotation);
14069 }
14070
14071 if (INTEL_INFO(dev)->gen >=9)
14072 state->scaler_id = -1;
14073
14074 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14075
14076 return &cursor->base;
14077 }
14078
14079 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14080 struct intel_crtc_state *crtc_state)
14081 {
14082 int i;
14083 struct intel_scaler *intel_scaler;
14084 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14085
14086 for (i = 0; i < intel_crtc->num_scalers; i++) {
14087 intel_scaler = &scaler_state->scalers[i];
14088 intel_scaler->in_use = 0;
14089 intel_scaler->mode = PS_SCALER_MODE_DYN;
14090 }
14091
14092 scaler_state->scaler_id = -1;
14093 }
14094
14095 static void intel_crtc_init(struct drm_device *dev, int pipe)
14096 {
14097 struct drm_i915_private *dev_priv = dev->dev_private;
14098 struct intel_crtc *intel_crtc;
14099 struct intel_crtc_state *crtc_state = NULL;
14100 struct drm_plane *primary = NULL;
14101 struct drm_plane *cursor = NULL;
14102 int i, ret;
14103
14104 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14105 if (intel_crtc == NULL)
14106 return;
14107
14108 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14109 if (!crtc_state)
14110 goto fail;
14111 intel_crtc->config = crtc_state;
14112 intel_crtc->base.state = &crtc_state->base;
14113 crtc_state->base.crtc = &intel_crtc->base;
14114
14115 /* initialize shared scalers */
14116 if (INTEL_INFO(dev)->gen >= 9) {
14117 if (pipe == PIPE_C)
14118 intel_crtc->num_scalers = 1;
14119 else
14120 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14121
14122 skl_init_scalers(dev, intel_crtc, crtc_state);
14123 }
14124
14125 primary = intel_primary_plane_create(dev, pipe);
14126 if (!primary)
14127 goto fail;
14128
14129 cursor = intel_cursor_plane_create(dev, pipe);
14130 if (!cursor)
14131 goto fail;
14132
14133 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14134 cursor, &intel_crtc_funcs);
14135 if (ret)
14136 goto fail;
14137
14138 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14139 for (i = 0; i < 256; i++) {
14140 intel_crtc->lut_r[i] = i;
14141 intel_crtc->lut_g[i] = i;
14142 intel_crtc->lut_b[i] = i;
14143 }
14144
14145 /*
14146 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14147 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14148 */
14149 intel_crtc->pipe = pipe;
14150 intel_crtc->plane = pipe;
14151 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14152 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14153 intel_crtc->plane = !pipe;
14154 }
14155
14156 intel_crtc->cursor_base = ~0;
14157 intel_crtc->cursor_cntl = ~0;
14158 intel_crtc->cursor_size = ~0;
14159
14160 intel_crtc->wm.cxsr_allowed = true;
14161
14162 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14163 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14164 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14165 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14166
14167 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14168
14169 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14170 return;
14171
14172 fail:
14173 if (primary)
14174 drm_plane_cleanup(primary);
14175 if (cursor)
14176 drm_plane_cleanup(cursor);
14177 kfree(crtc_state);
14178 kfree(intel_crtc);
14179 }
14180
14181 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14182 {
14183 struct drm_encoder *encoder = connector->base.encoder;
14184 struct drm_device *dev = connector->base.dev;
14185
14186 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14187
14188 if (!encoder || WARN_ON(!encoder->crtc))
14189 return INVALID_PIPE;
14190
14191 return to_intel_crtc(encoder->crtc)->pipe;
14192 }
14193
14194 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14195 struct drm_file *file)
14196 {
14197 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14198 struct drm_crtc *drmmode_crtc;
14199 struct intel_crtc *crtc;
14200
14201 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14202
14203 if (!drmmode_crtc) {
14204 DRM_ERROR("no such CRTC id\n");
14205 return -ENOENT;
14206 }
14207
14208 crtc = to_intel_crtc(drmmode_crtc);
14209 pipe_from_crtc_id->pipe = crtc->pipe;
14210
14211 return 0;
14212 }
14213
14214 static int intel_encoder_clones(struct intel_encoder *encoder)
14215 {
14216 struct drm_device *dev = encoder->base.dev;
14217 struct intel_encoder *source_encoder;
14218 int index_mask = 0;
14219 int entry = 0;
14220
14221 for_each_intel_encoder(dev, source_encoder) {
14222 if (encoders_cloneable(encoder, source_encoder))
14223 index_mask |= (1 << entry);
14224
14225 entry++;
14226 }
14227
14228 return index_mask;
14229 }
14230
14231 static bool has_edp_a(struct drm_device *dev)
14232 {
14233 struct drm_i915_private *dev_priv = dev->dev_private;
14234
14235 if (!IS_MOBILE(dev))
14236 return false;
14237
14238 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14239 return false;
14240
14241 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14242 return false;
14243
14244 return true;
14245 }
14246
14247 static bool intel_crt_present(struct drm_device *dev)
14248 {
14249 struct drm_i915_private *dev_priv = dev->dev_private;
14250
14251 if (INTEL_INFO(dev)->gen >= 9)
14252 return false;
14253
14254 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14255 return false;
14256
14257 if (IS_CHERRYVIEW(dev))
14258 return false;
14259
14260 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14261 return false;
14262
14263 /* DDI E can't be used if DDI A requires 4 lanes */
14264 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14265 return false;
14266
14267 if (!dev_priv->vbt.int_crt_support)
14268 return false;
14269
14270 return true;
14271 }
14272
14273 static void intel_setup_outputs(struct drm_device *dev)
14274 {
14275 struct drm_i915_private *dev_priv = dev->dev_private;
14276 struct intel_encoder *encoder;
14277 bool dpd_is_edp = false;
14278
14279 intel_lvds_init(dev);
14280
14281 if (intel_crt_present(dev))
14282 intel_crt_init(dev);
14283
14284 if (IS_BROXTON(dev)) {
14285 /*
14286 * FIXME: Broxton doesn't support port detection via the
14287 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14288 * detect the ports.
14289 */
14290 intel_ddi_init(dev, PORT_A);
14291 intel_ddi_init(dev, PORT_B);
14292 intel_ddi_init(dev, PORT_C);
14293 } else if (HAS_DDI(dev)) {
14294 int found;
14295
14296 /*
14297 * Haswell uses DDI functions to detect digital outputs.
14298 * On SKL pre-D0 the strap isn't connected, so we assume
14299 * it's there.
14300 */
14301 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14302 /* WaIgnoreDDIAStrap: skl */
14303 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14304 intel_ddi_init(dev, PORT_A);
14305
14306 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14307 * register */
14308 found = I915_READ(SFUSE_STRAP);
14309
14310 if (found & SFUSE_STRAP_DDIB_DETECTED)
14311 intel_ddi_init(dev, PORT_B);
14312 if (found & SFUSE_STRAP_DDIC_DETECTED)
14313 intel_ddi_init(dev, PORT_C);
14314 if (found & SFUSE_STRAP_DDID_DETECTED)
14315 intel_ddi_init(dev, PORT_D);
14316 /*
14317 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14318 */
14319 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14320 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14321 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14322 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14323 intel_ddi_init(dev, PORT_E);
14324
14325 } else if (HAS_PCH_SPLIT(dev)) {
14326 int found;
14327 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14328
14329 if (has_edp_a(dev))
14330 intel_dp_init(dev, DP_A, PORT_A);
14331
14332 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14333 /* PCH SDVOB multiplex with HDMIB */
14334 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14335 if (!found)
14336 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14337 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14338 intel_dp_init(dev, PCH_DP_B, PORT_B);
14339 }
14340
14341 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14342 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14343
14344 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14345 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14346
14347 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14348 intel_dp_init(dev, PCH_DP_C, PORT_C);
14349
14350 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14351 intel_dp_init(dev, PCH_DP_D, PORT_D);
14352 } else if (IS_VALLEYVIEW(dev)) {
14353 /*
14354 * The DP_DETECTED bit is the latched state of the DDC
14355 * SDA pin at boot. However since eDP doesn't require DDC
14356 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14357 * eDP ports may have been muxed to an alternate function.
14358 * Thus we can't rely on the DP_DETECTED bit alone to detect
14359 * eDP ports. Consult the VBT as well as DP_DETECTED to
14360 * detect eDP ports.
14361 */
14362 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14363 !intel_dp_is_edp(dev, PORT_B))
14364 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14365 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14366 intel_dp_is_edp(dev, PORT_B))
14367 intel_dp_init(dev, VLV_DP_B, PORT_B);
14368
14369 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14370 !intel_dp_is_edp(dev, PORT_C))
14371 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14372 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14373 intel_dp_is_edp(dev, PORT_C))
14374 intel_dp_init(dev, VLV_DP_C, PORT_C);
14375
14376 if (IS_CHERRYVIEW(dev)) {
14377 /* eDP not supported on port D, so don't check VBT */
14378 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14379 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14380 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14381 intel_dp_init(dev, CHV_DP_D, PORT_D);
14382 }
14383
14384 intel_dsi_init(dev);
14385 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14386 bool found = false;
14387
14388 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14389 DRM_DEBUG_KMS("probing SDVOB\n");
14390 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14391 if (!found && IS_G4X(dev)) {
14392 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14393 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14394 }
14395
14396 if (!found && IS_G4X(dev))
14397 intel_dp_init(dev, DP_B, PORT_B);
14398 }
14399
14400 /* Before G4X SDVOC doesn't have its own detect register */
14401
14402 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14403 DRM_DEBUG_KMS("probing SDVOC\n");
14404 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14405 }
14406
14407 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14408
14409 if (IS_G4X(dev)) {
14410 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14411 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14412 }
14413 if (IS_G4X(dev))
14414 intel_dp_init(dev, DP_C, PORT_C);
14415 }
14416
14417 if (IS_G4X(dev) &&
14418 (I915_READ(DP_D) & DP_DETECTED))
14419 intel_dp_init(dev, DP_D, PORT_D);
14420 } else if (IS_GEN2(dev))
14421 intel_dvo_init(dev);
14422
14423 if (SUPPORTS_TV(dev))
14424 intel_tv_init(dev);
14425
14426 intel_psr_init(dev);
14427
14428 for_each_intel_encoder(dev, encoder) {
14429 encoder->base.possible_crtcs = encoder->crtc_mask;
14430 encoder->base.possible_clones =
14431 intel_encoder_clones(encoder);
14432 }
14433
14434 intel_init_pch_refclk(dev);
14435
14436 drm_helper_move_panel_connectors_to_head(dev);
14437 }
14438
14439 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14440 {
14441 struct drm_device *dev = fb->dev;
14442 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14443
14444 drm_framebuffer_cleanup(fb);
14445 mutex_lock(&dev->struct_mutex);
14446 WARN_ON(!intel_fb->obj->framebuffer_references--);
14447 drm_gem_object_unreference(&intel_fb->obj->base);
14448 mutex_unlock(&dev->struct_mutex);
14449 kfree(intel_fb);
14450 }
14451
14452 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14453 struct drm_file *file,
14454 unsigned int *handle)
14455 {
14456 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14457 struct drm_i915_gem_object *obj = intel_fb->obj;
14458
14459 if (obj->userptr.mm) {
14460 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14461 return -EINVAL;
14462 }
14463
14464 return drm_gem_handle_create(file, &obj->base, handle);
14465 }
14466
14467 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14468 struct drm_file *file,
14469 unsigned flags, unsigned color,
14470 struct drm_clip_rect *clips,
14471 unsigned num_clips)
14472 {
14473 struct drm_device *dev = fb->dev;
14474 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14475 struct drm_i915_gem_object *obj = intel_fb->obj;
14476
14477 mutex_lock(&dev->struct_mutex);
14478 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14479 mutex_unlock(&dev->struct_mutex);
14480
14481 return 0;
14482 }
14483
14484 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14485 .destroy = intel_user_framebuffer_destroy,
14486 .create_handle = intel_user_framebuffer_create_handle,
14487 .dirty = intel_user_framebuffer_dirty,
14488 };
14489
14490 static
14491 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14492 uint32_t pixel_format)
14493 {
14494 u32 gen = INTEL_INFO(dev)->gen;
14495
14496 if (gen >= 9) {
14497 /* "The stride in bytes must not exceed the of the size of 8K
14498 * pixels and 32K bytes."
14499 */
14500 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14501 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14502 return 32*1024;
14503 } else if (gen >= 4) {
14504 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14505 return 16*1024;
14506 else
14507 return 32*1024;
14508 } else if (gen >= 3) {
14509 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14510 return 8*1024;
14511 else
14512 return 16*1024;
14513 } else {
14514 /* XXX DSPC is limited to 4k tiled */
14515 return 8*1024;
14516 }
14517 }
14518
14519 static int intel_framebuffer_init(struct drm_device *dev,
14520 struct intel_framebuffer *intel_fb,
14521 struct drm_mode_fb_cmd2 *mode_cmd,
14522 struct drm_i915_gem_object *obj)
14523 {
14524 unsigned int aligned_height;
14525 int ret;
14526 u32 pitch_limit, stride_alignment;
14527
14528 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14529
14530 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14531 /* Enforce that fb modifier and tiling mode match, but only for
14532 * X-tiled. This is needed for FBC. */
14533 if (!!(obj->tiling_mode == I915_TILING_X) !=
14534 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14535 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14536 return -EINVAL;
14537 }
14538 } else {
14539 if (obj->tiling_mode == I915_TILING_X)
14540 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14541 else if (obj->tiling_mode == I915_TILING_Y) {
14542 DRM_DEBUG("No Y tiling for legacy addfb\n");
14543 return -EINVAL;
14544 }
14545 }
14546
14547 /* Passed in modifier sanity checking. */
14548 switch (mode_cmd->modifier[0]) {
14549 case I915_FORMAT_MOD_Y_TILED:
14550 case I915_FORMAT_MOD_Yf_TILED:
14551 if (INTEL_INFO(dev)->gen < 9) {
14552 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14553 mode_cmd->modifier[0]);
14554 return -EINVAL;
14555 }
14556 case DRM_FORMAT_MOD_NONE:
14557 case I915_FORMAT_MOD_X_TILED:
14558 break;
14559 default:
14560 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14561 mode_cmd->modifier[0]);
14562 return -EINVAL;
14563 }
14564
14565 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14566 mode_cmd->pixel_format);
14567 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14568 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14569 mode_cmd->pitches[0], stride_alignment);
14570 return -EINVAL;
14571 }
14572
14573 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14574 mode_cmd->pixel_format);
14575 if (mode_cmd->pitches[0] > pitch_limit) {
14576 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14577 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14578 "tiled" : "linear",
14579 mode_cmd->pitches[0], pitch_limit);
14580 return -EINVAL;
14581 }
14582
14583 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14584 mode_cmd->pitches[0] != obj->stride) {
14585 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14586 mode_cmd->pitches[0], obj->stride);
14587 return -EINVAL;
14588 }
14589
14590 /* Reject formats not supported by any plane early. */
14591 switch (mode_cmd->pixel_format) {
14592 case DRM_FORMAT_C8:
14593 case DRM_FORMAT_RGB565:
14594 case DRM_FORMAT_XRGB8888:
14595 case DRM_FORMAT_ARGB8888:
14596 break;
14597 case DRM_FORMAT_XRGB1555:
14598 if (INTEL_INFO(dev)->gen > 3) {
14599 DRM_DEBUG("unsupported pixel format: %s\n",
14600 drm_get_format_name(mode_cmd->pixel_format));
14601 return -EINVAL;
14602 }
14603 break;
14604 case DRM_FORMAT_ABGR8888:
14605 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14606 DRM_DEBUG("unsupported pixel format: %s\n",
14607 drm_get_format_name(mode_cmd->pixel_format));
14608 return -EINVAL;
14609 }
14610 break;
14611 case DRM_FORMAT_XBGR8888:
14612 case DRM_FORMAT_XRGB2101010:
14613 case DRM_FORMAT_XBGR2101010:
14614 if (INTEL_INFO(dev)->gen < 4) {
14615 DRM_DEBUG("unsupported pixel format: %s\n",
14616 drm_get_format_name(mode_cmd->pixel_format));
14617 return -EINVAL;
14618 }
14619 break;
14620 case DRM_FORMAT_ABGR2101010:
14621 if (!IS_VALLEYVIEW(dev)) {
14622 DRM_DEBUG("unsupported pixel format: %s\n",
14623 drm_get_format_name(mode_cmd->pixel_format));
14624 return -EINVAL;
14625 }
14626 break;
14627 case DRM_FORMAT_YUYV:
14628 case DRM_FORMAT_UYVY:
14629 case DRM_FORMAT_YVYU:
14630 case DRM_FORMAT_VYUY:
14631 if (INTEL_INFO(dev)->gen < 5) {
14632 DRM_DEBUG("unsupported pixel format: %s\n",
14633 drm_get_format_name(mode_cmd->pixel_format));
14634 return -EINVAL;
14635 }
14636 break;
14637 default:
14638 DRM_DEBUG("unsupported pixel format: %s\n",
14639 drm_get_format_name(mode_cmd->pixel_format));
14640 return -EINVAL;
14641 }
14642
14643 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14644 if (mode_cmd->offsets[0] != 0)
14645 return -EINVAL;
14646
14647 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14648 mode_cmd->pixel_format,
14649 mode_cmd->modifier[0]);
14650 /* FIXME drm helper for size checks (especially planar formats)? */
14651 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14652 return -EINVAL;
14653
14654 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14655 intel_fb->obj = obj;
14656 intel_fb->obj->framebuffer_references++;
14657
14658 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14659 if (ret) {
14660 DRM_ERROR("framebuffer init failed %d\n", ret);
14661 return ret;
14662 }
14663
14664 return 0;
14665 }
14666
14667 static struct drm_framebuffer *
14668 intel_user_framebuffer_create(struct drm_device *dev,
14669 struct drm_file *filp,
14670 struct drm_mode_fb_cmd2 *user_mode_cmd)
14671 {
14672 struct drm_framebuffer *fb;
14673 struct drm_i915_gem_object *obj;
14674 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14675
14676 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14677 mode_cmd.handles[0]));
14678 if (&obj->base == NULL)
14679 return ERR_PTR(-ENOENT);
14680
14681 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14682 if (IS_ERR(fb))
14683 drm_gem_object_unreference_unlocked(&obj->base);
14684
14685 return fb;
14686 }
14687
14688 #ifndef CONFIG_DRM_FBDEV_EMULATION
14689 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14690 {
14691 }
14692 #endif
14693
14694 static const struct drm_mode_config_funcs intel_mode_funcs = {
14695 .fb_create = intel_user_framebuffer_create,
14696 .output_poll_changed = intel_fbdev_output_poll_changed,
14697 .atomic_check = intel_atomic_check,
14698 .atomic_commit = intel_atomic_commit,
14699 .atomic_state_alloc = intel_atomic_state_alloc,
14700 .atomic_state_clear = intel_atomic_state_clear,
14701 };
14702
14703 /* Set up chip specific display functions */
14704 static void intel_init_display(struct drm_device *dev)
14705 {
14706 struct drm_i915_private *dev_priv = dev->dev_private;
14707
14708 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14709 dev_priv->display.find_dpll = g4x_find_best_dpll;
14710 else if (IS_CHERRYVIEW(dev))
14711 dev_priv->display.find_dpll = chv_find_best_dpll;
14712 else if (IS_VALLEYVIEW(dev))
14713 dev_priv->display.find_dpll = vlv_find_best_dpll;
14714 else if (IS_PINEVIEW(dev))
14715 dev_priv->display.find_dpll = pnv_find_best_dpll;
14716 else
14717 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14718
14719 if (INTEL_INFO(dev)->gen >= 9) {
14720 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14721 dev_priv->display.get_initial_plane_config =
14722 skylake_get_initial_plane_config;
14723 dev_priv->display.crtc_compute_clock =
14724 haswell_crtc_compute_clock;
14725 dev_priv->display.crtc_enable = haswell_crtc_enable;
14726 dev_priv->display.crtc_disable = haswell_crtc_disable;
14727 dev_priv->display.update_primary_plane =
14728 skylake_update_primary_plane;
14729 } else if (HAS_DDI(dev)) {
14730 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14731 dev_priv->display.get_initial_plane_config =
14732 ironlake_get_initial_plane_config;
14733 dev_priv->display.crtc_compute_clock =
14734 haswell_crtc_compute_clock;
14735 dev_priv->display.crtc_enable = haswell_crtc_enable;
14736 dev_priv->display.crtc_disable = haswell_crtc_disable;
14737 dev_priv->display.update_primary_plane =
14738 ironlake_update_primary_plane;
14739 } else if (HAS_PCH_SPLIT(dev)) {
14740 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14741 dev_priv->display.get_initial_plane_config =
14742 ironlake_get_initial_plane_config;
14743 dev_priv->display.crtc_compute_clock =
14744 ironlake_crtc_compute_clock;
14745 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14746 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14747 dev_priv->display.update_primary_plane =
14748 ironlake_update_primary_plane;
14749 } else if (IS_VALLEYVIEW(dev)) {
14750 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14751 dev_priv->display.get_initial_plane_config =
14752 i9xx_get_initial_plane_config;
14753 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14754 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14755 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14756 dev_priv->display.update_primary_plane =
14757 i9xx_update_primary_plane;
14758 } else {
14759 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14760 dev_priv->display.get_initial_plane_config =
14761 i9xx_get_initial_plane_config;
14762 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14763 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14764 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14765 dev_priv->display.update_primary_plane =
14766 i9xx_update_primary_plane;
14767 }
14768
14769 /* Returns the core display clock speed */
14770 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14771 dev_priv->display.get_display_clock_speed =
14772 skylake_get_display_clock_speed;
14773 else if (IS_BROXTON(dev))
14774 dev_priv->display.get_display_clock_speed =
14775 broxton_get_display_clock_speed;
14776 else if (IS_BROADWELL(dev))
14777 dev_priv->display.get_display_clock_speed =
14778 broadwell_get_display_clock_speed;
14779 else if (IS_HASWELL(dev))
14780 dev_priv->display.get_display_clock_speed =
14781 haswell_get_display_clock_speed;
14782 else if (IS_VALLEYVIEW(dev))
14783 dev_priv->display.get_display_clock_speed =
14784 valleyview_get_display_clock_speed;
14785 else if (IS_GEN5(dev))
14786 dev_priv->display.get_display_clock_speed =
14787 ilk_get_display_clock_speed;
14788 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14789 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14790 dev_priv->display.get_display_clock_speed =
14791 i945_get_display_clock_speed;
14792 else if (IS_GM45(dev))
14793 dev_priv->display.get_display_clock_speed =
14794 gm45_get_display_clock_speed;
14795 else if (IS_CRESTLINE(dev))
14796 dev_priv->display.get_display_clock_speed =
14797 i965gm_get_display_clock_speed;
14798 else if (IS_PINEVIEW(dev))
14799 dev_priv->display.get_display_clock_speed =
14800 pnv_get_display_clock_speed;
14801 else if (IS_G33(dev) || IS_G4X(dev))
14802 dev_priv->display.get_display_clock_speed =
14803 g33_get_display_clock_speed;
14804 else if (IS_I915G(dev))
14805 dev_priv->display.get_display_clock_speed =
14806 i915_get_display_clock_speed;
14807 else if (IS_I945GM(dev) || IS_845G(dev))
14808 dev_priv->display.get_display_clock_speed =
14809 i9xx_misc_get_display_clock_speed;
14810 else if (IS_I915GM(dev))
14811 dev_priv->display.get_display_clock_speed =
14812 i915gm_get_display_clock_speed;
14813 else if (IS_I865G(dev))
14814 dev_priv->display.get_display_clock_speed =
14815 i865_get_display_clock_speed;
14816 else if (IS_I85X(dev))
14817 dev_priv->display.get_display_clock_speed =
14818 i85x_get_display_clock_speed;
14819 else { /* 830 */
14820 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14821 dev_priv->display.get_display_clock_speed =
14822 i830_get_display_clock_speed;
14823 }
14824
14825 if (IS_GEN5(dev)) {
14826 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14827 } else if (IS_GEN6(dev)) {
14828 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14829 } else if (IS_IVYBRIDGE(dev)) {
14830 /* FIXME: detect B0+ stepping and use auto training */
14831 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14832 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14833 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14834 if (IS_BROADWELL(dev)) {
14835 dev_priv->display.modeset_commit_cdclk =
14836 broadwell_modeset_commit_cdclk;
14837 dev_priv->display.modeset_calc_cdclk =
14838 broadwell_modeset_calc_cdclk;
14839 }
14840 } else if (IS_VALLEYVIEW(dev)) {
14841 dev_priv->display.modeset_commit_cdclk =
14842 valleyview_modeset_commit_cdclk;
14843 dev_priv->display.modeset_calc_cdclk =
14844 valleyview_modeset_calc_cdclk;
14845 } else if (IS_BROXTON(dev)) {
14846 dev_priv->display.modeset_commit_cdclk =
14847 broxton_modeset_commit_cdclk;
14848 dev_priv->display.modeset_calc_cdclk =
14849 broxton_modeset_calc_cdclk;
14850 }
14851
14852 switch (INTEL_INFO(dev)->gen) {
14853 case 2:
14854 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14855 break;
14856
14857 case 3:
14858 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14859 break;
14860
14861 case 4:
14862 case 5:
14863 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14864 break;
14865
14866 case 6:
14867 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14868 break;
14869 case 7:
14870 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14871 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14872 break;
14873 case 9:
14874 /* Drop through - unsupported since execlist only. */
14875 default:
14876 /* Default just returns -ENODEV to indicate unsupported */
14877 dev_priv->display.queue_flip = intel_default_queue_flip;
14878 }
14879
14880 mutex_init(&dev_priv->pps_mutex);
14881 }
14882
14883 /*
14884 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14885 * resume, or other times. This quirk makes sure that's the case for
14886 * affected systems.
14887 */
14888 static void quirk_pipea_force(struct drm_device *dev)
14889 {
14890 struct drm_i915_private *dev_priv = dev->dev_private;
14891
14892 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14893 DRM_INFO("applying pipe a force quirk\n");
14894 }
14895
14896 static void quirk_pipeb_force(struct drm_device *dev)
14897 {
14898 struct drm_i915_private *dev_priv = dev->dev_private;
14899
14900 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14901 DRM_INFO("applying pipe b force quirk\n");
14902 }
14903
14904 /*
14905 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14906 */
14907 static void quirk_ssc_force_disable(struct drm_device *dev)
14908 {
14909 struct drm_i915_private *dev_priv = dev->dev_private;
14910 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14911 DRM_INFO("applying lvds SSC disable quirk\n");
14912 }
14913
14914 /*
14915 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14916 * brightness value
14917 */
14918 static void quirk_invert_brightness(struct drm_device *dev)
14919 {
14920 struct drm_i915_private *dev_priv = dev->dev_private;
14921 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14922 DRM_INFO("applying inverted panel brightness quirk\n");
14923 }
14924
14925 /* Some VBT's incorrectly indicate no backlight is present */
14926 static void quirk_backlight_present(struct drm_device *dev)
14927 {
14928 struct drm_i915_private *dev_priv = dev->dev_private;
14929 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14930 DRM_INFO("applying backlight present quirk\n");
14931 }
14932
14933 struct intel_quirk {
14934 int device;
14935 int subsystem_vendor;
14936 int subsystem_device;
14937 void (*hook)(struct drm_device *dev);
14938 };
14939
14940 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14941 struct intel_dmi_quirk {
14942 void (*hook)(struct drm_device *dev);
14943 const struct dmi_system_id (*dmi_id_list)[];
14944 };
14945
14946 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14947 {
14948 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14949 return 1;
14950 }
14951
14952 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14953 {
14954 .dmi_id_list = &(const struct dmi_system_id[]) {
14955 {
14956 .callback = intel_dmi_reverse_brightness,
14957 .ident = "NCR Corporation",
14958 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14959 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14960 },
14961 },
14962 { } /* terminating entry */
14963 },
14964 .hook = quirk_invert_brightness,
14965 },
14966 };
14967
14968 static struct intel_quirk intel_quirks[] = {
14969 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14970 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14971
14972 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14973 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14974
14975 /* 830 needs to leave pipe A & dpll A up */
14976 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14977
14978 /* 830 needs to leave pipe B & dpll B up */
14979 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14980
14981 /* Lenovo U160 cannot use SSC on LVDS */
14982 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14983
14984 /* Sony Vaio Y cannot use SSC on LVDS */
14985 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14986
14987 /* Acer Aspire 5734Z must invert backlight brightness */
14988 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14989
14990 /* Acer/eMachines G725 */
14991 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14992
14993 /* Acer/eMachines e725 */
14994 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14995
14996 /* Acer/Packard Bell NCL20 */
14997 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14998
14999 /* Acer Aspire 4736Z */
15000 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15001
15002 /* Acer Aspire 5336 */
15003 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15004
15005 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15006 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15007
15008 /* Acer C720 Chromebook (Core i3 4005U) */
15009 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15010
15011 /* Apple Macbook 2,1 (Core 2 T7400) */
15012 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15013
15014 /* Apple Macbook 4,1 */
15015 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15016
15017 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15018 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15019
15020 /* HP Chromebook 14 (Celeron 2955U) */
15021 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15022
15023 /* Dell Chromebook 11 */
15024 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15025
15026 /* Dell Chromebook 11 (2015 version) */
15027 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15028 };
15029
15030 static void intel_init_quirks(struct drm_device *dev)
15031 {
15032 struct pci_dev *d = dev->pdev;
15033 int i;
15034
15035 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15036 struct intel_quirk *q = &intel_quirks[i];
15037
15038 if (d->device == q->device &&
15039 (d->subsystem_vendor == q->subsystem_vendor ||
15040 q->subsystem_vendor == PCI_ANY_ID) &&
15041 (d->subsystem_device == q->subsystem_device ||
15042 q->subsystem_device == PCI_ANY_ID))
15043 q->hook(dev);
15044 }
15045 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15046 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15047 intel_dmi_quirks[i].hook(dev);
15048 }
15049 }
15050
15051 /* Disable the VGA plane that we never use */
15052 static void i915_disable_vga(struct drm_device *dev)
15053 {
15054 struct drm_i915_private *dev_priv = dev->dev_private;
15055 u8 sr1;
15056 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15057
15058 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15059 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15060 outb(SR01, VGA_SR_INDEX);
15061 sr1 = inb(VGA_SR_DATA);
15062 outb(sr1 | 1<<5, VGA_SR_DATA);
15063 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15064 udelay(300);
15065
15066 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15067 POSTING_READ(vga_reg);
15068 }
15069
15070 void intel_modeset_init_hw(struct drm_device *dev)
15071 {
15072 intel_update_cdclk(dev);
15073 intel_prepare_ddi(dev);
15074 intel_init_clock_gating(dev);
15075 intel_enable_gt_powersave(dev);
15076 }
15077
15078 void intel_modeset_init(struct drm_device *dev)
15079 {
15080 struct drm_i915_private *dev_priv = dev->dev_private;
15081 int sprite, ret;
15082 enum pipe pipe;
15083 struct intel_crtc *crtc;
15084
15085 drm_mode_config_init(dev);
15086
15087 dev->mode_config.min_width = 0;
15088 dev->mode_config.min_height = 0;
15089
15090 dev->mode_config.preferred_depth = 24;
15091 dev->mode_config.prefer_shadow = 1;
15092
15093 dev->mode_config.allow_fb_modifiers = true;
15094
15095 dev->mode_config.funcs = &intel_mode_funcs;
15096
15097 intel_init_quirks(dev);
15098
15099 intel_init_pm(dev);
15100
15101 if (INTEL_INFO(dev)->num_pipes == 0)
15102 return;
15103
15104 /*
15105 * There may be no VBT; and if the BIOS enabled SSC we can
15106 * just keep using it to avoid unnecessary flicker. Whereas if the
15107 * BIOS isn't using it, don't assume it will work even if the VBT
15108 * indicates as much.
15109 */
15110 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15111 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15112 DREF_SSC1_ENABLE);
15113
15114 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15115 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15116 bios_lvds_use_ssc ? "en" : "dis",
15117 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15118 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15119 }
15120 }
15121
15122 intel_init_display(dev);
15123 intel_init_audio(dev);
15124
15125 if (IS_GEN2(dev)) {
15126 dev->mode_config.max_width = 2048;
15127 dev->mode_config.max_height = 2048;
15128 } else if (IS_GEN3(dev)) {
15129 dev->mode_config.max_width = 4096;
15130 dev->mode_config.max_height = 4096;
15131 } else {
15132 dev->mode_config.max_width = 8192;
15133 dev->mode_config.max_height = 8192;
15134 }
15135
15136 if (IS_845G(dev) || IS_I865G(dev)) {
15137 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15138 dev->mode_config.cursor_height = 1023;
15139 } else if (IS_GEN2(dev)) {
15140 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15141 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15142 } else {
15143 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15144 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15145 }
15146
15147 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15148
15149 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15150 INTEL_INFO(dev)->num_pipes,
15151 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15152
15153 for_each_pipe(dev_priv, pipe) {
15154 intel_crtc_init(dev, pipe);
15155 for_each_sprite(dev_priv, pipe, sprite) {
15156 ret = intel_plane_init(dev, pipe, sprite);
15157 if (ret)
15158 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15159 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15160 }
15161 }
15162
15163 intel_update_czclk(dev_priv);
15164 intel_update_cdclk(dev);
15165
15166 intel_shared_dpll_init(dev);
15167
15168 /* Just disable it once at startup */
15169 i915_disable_vga(dev);
15170 intel_setup_outputs(dev);
15171
15172 drm_modeset_lock_all(dev);
15173 intel_modeset_setup_hw_state(dev);
15174 drm_modeset_unlock_all(dev);
15175
15176 for_each_intel_crtc(dev, crtc) {
15177 struct intel_initial_plane_config plane_config = {};
15178
15179 if (!crtc->active)
15180 continue;
15181
15182 /*
15183 * Note that reserving the BIOS fb up front prevents us
15184 * from stuffing other stolen allocations like the ring
15185 * on top. This prevents some ugliness at boot time, and
15186 * can even allow for smooth boot transitions if the BIOS
15187 * fb is large enough for the active pipe configuration.
15188 */
15189 dev_priv->display.get_initial_plane_config(crtc,
15190 &plane_config);
15191
15192 /*
15193 * If the fb is shared between multiple heads, we'll
15194 * just get the first one.
15195 */
15196 intel_find_initial_plane_obj(crtc, &plane_config);
15197 }
15198 }
15199
15200 static void intel_enable_pipe_a(struct drm_device *dev)
15201 {
15202 struct intel_connector *connector;
15203 struct drm_connector *crt = NULL;
15204 struct intel_load_detect_pipe load_detect_temp;
15205 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15206
15207 /* We can't just switch on the pipe A, we need to set things up with a
15208 * proper mode and output configuration. As a gross hack, enable pipe A
15209 * by enabling the load detect pipe once. */
15210 for_each_intel_connector(dev, connector) {
15211 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15212 crt = &connector->base;
15213 break;
15214 }
15215 }
15216
15217 if (!crt)
15218 return;
15219
15220 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15221 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15222 }
15223
15224 static bool
15225 intel_check_plane_mapping(struct intel_crtc *crtc)
15226 {
15227 struct drm_device *dev = crtc->base.dev;
15228 struct drm_i915_private *dev_priv = dev->dev_private;
15229 u32 val;
15230
15231 if (INTEL_INFO(dev)->num_pipes == 1)
15232 return true;
15233
15234 val = I915_READ(DSPCNTR(!crtc->plane));
15235
15236 if ((val & DISPLAY_PLANE_ENABLE) &&
15237 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15238 return false;
15239
15240 return true;
15241 }
15242
15243 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15244 {
15245 struct drm_device *dev = crtc->base.dev;
15246 struct intel_encoder *encoder;
15247
15248 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15249 return true;
15250
15251 return false;
15252 }
15253
15254 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15255 {
15256 struct drm_device *dev = crtc->base.dev;
15257 struct drm_i915_private *dev_priv = dev->dev_private;
15258 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15259
15260 /* Clear any frame start delays used for debugging left by the BIOS */
15261 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15262
15263 /* restore vblank interrupts to correct state */
15264 drm_crtc_vblank_reset(&crtc->base);
15265 if (crtc->active) {
15266 struct intel_plane *plane;
15267
15268 drm_crtc_vblank_on(&crtc->base);
15269
15270 /* Disable everything but the primary plane */
15271 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15272 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15273 continue;
15274
15275 plane->disable_plane(&plane->base, &crtc->base);
15276 }
15277 }
15278
15279 /* We need to sanitize the plane -> pipe mapping first because this will
15280 * disable the crtc (and hence change the state) if it is wrong. Note
15281 * that gen4+ has a fixed plane -> pipe mapping. */
15282 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15283 bool plane;
15284
15285 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15286 crtc->base.base.id);
15287
15288 /* Pipe has the wrong plane attached and the plane is active.
15289 * Temporarily change the plane mapping and disable everything
15290 * ... */
15291 plane = crtc->plane;
15292 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15293 crtc->plane = !plane;
15294 intel_crtc_disable_noatomic(&crtc->base);
15295 crtc->plane = plane;
15296 }
15297
15298 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15299 crtc->pipe == PIPE_A && !crtc->active) {
15300 /* BIOS forgot to enable pipe A, this mostly happens after
15301 * resume. Force-enable the pipe to fix this, the update_dpms
15302 * call below we restore the pipe to the right state, but leave
15303 * the required bits on. */
15304 intel_enable_pipe_a(dev);
15305 }
15306
15307 /* Adjust the state of the output pipe according to whether we
15308 * have active connectors/encoders. */
15309 if (!intel_crtc_has_encoders(crtc))
15310 intel_crtc_disable_noatomic(&crtc->base);
15311
15312 if (crtc->active != crtc->base.state->active) {
15313 struct intel_encoder *encoder;
15314
15315 /* This can happen either due to bugs in the get_hw_state
15316 * functions or because of calls to intel_crtc_disable_noatomic,
15317 * or because the pipe is force-enabled due to the
15318 * pipe A quirk. */
15319 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15320 crtc->base.base.id,
15321 crtc->base.state->enable ? "enabled" : "disabled",
15322 crtc->active ? "enabled" : "disabled");
15323
15324 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15325 crtc->base.state->active = crtc->active;
15326 crtc->base.enabled = crtc->active;
15327
15328 /* Because we only establish the connector -> encoder ->
15329 * crtc links if something is active, this means the
15330 * crtc is now deactivated. Break the links. connector
15331 * -> encoder links are only establish when things are
15332 * actually up, hence no need to break them. */
15333 WARN_ON(crtc->active);
15334
15335 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15336 encoder->base.crtc = NULL;
15337 }
15338
15339 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15340 /*
15341 * We start out with underrun reporting disabled to avoid races.
15342 * For correct bookkeeping mark this on active crtcs.
15343 *
15344 * Also on gmch platforms we dont have any hardware bits to
15345 * disable the underrun reporting. Which means we need to start
15346 * out with underrun reporting disabled also on inactive pipes,
15347 * since otherwise we'll complain about the garbage we read when
15348 * e.g. coming up after runtime pm.
15349 *
15350 * No protection against concurrent access is required - at
15351 * worst a fifo underrun happens which also sets this to false.
15352 */
15353 crtc->cpu_fifo_underrun_disabled = true;
15354 crtc->pch_fifo_underrun_disabled = true;
15355 }
15356 }
15357
15358 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15359 {
15360 struct intel_connector *connector;
15361 struct drm_device *dev = encoder->base.dev;
15362 bool active = false;
15363
15364 /* We need to check both for a crtc link (meaning that the
15365 * encoder is active and trying to read from a pipe) and the
15366 * pipe itself being active. */
15367 bool has_active_crtc = encoder->base.crtc &&
15368 to_intel_crtc(encoder->base.crtc)->active;
15369
15370 for_each_intel_connector(dev, connector) {
15371 if (connector->base.encoder != &encoder->base)
15372 continue;
15373
15374 active = true;
15375 break;
15376 }
15377
15378 if (active && !has_active_crtc) {
15379 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15380 encoder->base.base.id,
15381 encoder->base.name);
15382
15383 /* Connector is active, but has no active pipe. This is
15384 * fallout from our resume register restoring. Disable
15385 * the encoder manually again. */
15386 if (encoder->base.crtc) {
15387 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15388 encoder->base.base.id,
15389 encoder->base.name);
15390 encoder->disable(encoder);
15391 if (encoder->post_disable)
15392 encoder->post_disable(encoder);
15393 }
15394 encoder->base.crtc = NULL;
15395
15396 /* Inconsistent output/port/pipe state happens presumably due to
15397 * a bug in one of the get_hw_state functions. Or someplace else
15398 * in our code, like the register restore mess on resume. Clamp
15399 * things to off as a safer default. */
15400 for_each_intel_connector(dev, connector) {
15401 if (connector->encoder != encoder)
15402 continue;
15403 connector->base.dpms = DRM_MODE_DPMS_OFF;
15404 connector->base.encoder = NULL;
15405 }
15406 }
15407 /* Enabled encoders without active connectors will be fixed in
15408 * the crtc fixup. */
15409 }
15410
15411 void i915_redisable_vga_power_on(struct drm_device *dev)
15412 {
15413 struct drm_i915_private *dev_priv = dev->dev_private;
15414 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15415
15416 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15417 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15418 i915_disable_vga(dev);
15419 }
15420 }
15421
15422 void i915_redisable_vga(struct drm_device *dev)
15423 {
15424 struct drm_i915_private *dev_priv = dev->dev_private;
15425
15426 /* This function can be called both from intel_modeset_setup_hw_state or
15427 * at a very early point in our resume sequence, where the power well
15428 * structures are not yet restored. Since this function is at a very
15429 * paranoid "someone might have enabled VGA while we were not looking"
15430 * level, just check if the power well is enabled instead of trying to
15431 * follow the "don't touch the power well if we don't need it" policy
15432 * the rest of the driver uses. */
15433 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15434 return;
15435
15436 i915_redisable_vga_power_on(dev);
15437 }
15438
15439 static bool primary_get_hw_state(struct intel_plane *plane)
15440 {
15441 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15442
15443 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15444 }
15445
15446 /* FIXME read out full plane state for all planes */
15447 static void readout_plane_state(struct intel_crtc *crtc)
15448 {
15449 struct drm_plane *primary = crtc->base.primary;
15450 struct intel_plane_state *plane_state =
15451 to_intel_plane_state(primary->state);
15452
15453 plane_state->visible = crtc->active &&
15454 primary_get_hw_state(to_intel_plane(primary));
15455
15456 if (plane_state->visible)
15457 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15458 }
15459
15460 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15461 {
15462 struct drm_i915_private *dev_priv = dev->dev_private;
15463 enum pipe pipe;
15464 struct intel_crtc *crtc;
15465 struct intel_encoder *encoder;
15466 struct intel_connector *connector;
15467 int i;
15468
15469 for_each_intel_crtc(dev, crtc) {
15470 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15471 memset(crtc->config, 0, sizeof(*crtc->config));
15472 crtc->config->base.crtc = &crtc->base;
15473
15474 crtc->active = dev_priv->display.get_pipe_config(crtc,
15475 crtc->config);
15476
15477 crtc->base.state->active = crtc->active;
15478 crtc->base.enabled = crtc->active;
15479
15480 readout_plane_state(crtc);
15481
15482 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15483 crtc->base.base.id,
15484 crtc->active ? "enabled" : "disabled");
15485 }
15486
15487 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15488 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15489
15490 pll->on = pll->get_hw_state(dev_priv, pll,
15491 &pll->config.hw_state);
15492 pll->active = 0;
15493 pll->config.crtc_mask = 0;
15494 for_each_intel_crtc(dev, crtc) {
15495 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15496 pll->active++;
15497 pll->config.crtc_mask |= 1 << crtc->pipe;
15498 }
15499 }
15500
15501 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15502 pll->name, pll->config.crtc_mask, pll->on);
15503
15504 if (pll->config.crtc_mask)
15505 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15506 }
15507
15508 for_each_intel_encoder(dev, encoder) {
15509 pipe = 0;
15510
15511 if (encoder->get_hw_state(encoder, &pipe)) {
15512 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15513 encoder->base.crtc = &crtc->base;
15514 encoder->get_config(encoder, crtc->config);
15515 } else {
15516 encoder->base.crtc = NULL;
15517 }
15518
15519 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15520 encoder->base.base.id,
15521 encoder->base.name,
15522 encoder->base.crtc ? "enabled" : "disabled",
15523 pipe_name(pipe));
15524 }
15525
15526 for_each_intel_connector(dev, connector) {
15527 if (connector->get_hw_state(connector)) {
15528 connector->base.dpms = DRM_MODE_DPMS_ON;
15529 connector->base.encoder = &connector->encoder->base;
15530 } else {
15531 connector->base.dpms = DRM_MODE_DPMS_OFF;
15532 connector->base.encoder = NULL;
15533 }
15534 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15535 connector->base.base.id,
15536 connector->base.name,
15537 connector->base.encoder ? "enabled" : "disabled");
15538 }
15539
15540 for_each_intel_crtc(dev, crtc) {
15541 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15542
15543 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15544 if (crtc->base.state->active) {
15545 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15546 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15547 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15548
15549 /*
15550 * The initial mode needs to be set in order to keep
15551 * the atomic core happy. It wants a valid mode if the
15552 * crtc's enabled, so we do the above call.
15553 *
15554 * At this point some state updated by the connectors
15555 * in their ->detect() callback has not run yet, so
15556 * no recalculation can be done yet.
15557 *
15558 * Even if we could do a recalculation and modeset
15559 * right now it would cause a double modeset if
15560 * fbdev or userspace chooses a different initial mode.
15561 *
15562 * If that happens, someone indicated they wanted a
15563 * mode change, which means it's safe to do a full
15564 * recalculation.
15565 */
15566 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15567
15568 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15569 update_scanline_offset(crtc);
15570 }
15571 }
15572 }
15573
15574 /* Scan out the current hw modeset state,
15575 * and sanitizes it to the current state
15576 */
15577 static void
15578 intel_modeset_setup_hw_state(struct drm_device *dev)
15579 {
15580 struct drm_i915_private *dev_priv = dev->dev_private;
15581 enum pipe pipe;
15582 struct intel_crtc *crtc;
15583 struct intel_encoder *encoder;
15584 int i;
15585
15586 intel_modeset_readout_hw_state(dev);
15587
15588 /* HW state is read out, now we need to sanitize this mess. */
15589 for_each_intel_encoder(dev, encoder) {
15590 intel_sanitize_encoder(encoder);
15591 }
15592
15593 for_each_pipe(dev_priv, pipe) {
15594 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15595 intel_sanitize_crtc(crtc);
15596 intel_dump_pipe_config(crtc, crtc->config,
15597 "[setup_hw_state]");
15598 }
15599
15600 intel_modeset_update_connector_atomic_state(dev);
15601
15602 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15603 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15604
15605 if (!pll->on || pll->active)
15606 continue;
15607
15608 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15609
15610 pll->disable(dev_priv, pll);
15611 pll->on = false;
15612 }
15613
15614 if (IS_VALLEYVIEW(dev))
15615 vlv_wm_get_hw_state(dev);
15616 else if (IS_GEN9(dev))
15617 skl_wm_get_hw_state(dev);
15618 else if (HAS_PCH_SPLIT(dev))
15619 ilk_wm_get_hw_state(dev);
15620
15621 for_each_intel_crtc(dev, crtc) {
15622 unsigned long put_domains;
15623
15624 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15625 if (WARN_ON(put_domains))
15626 modeset_put_power_domains(dev_priv, put_domains);
15627 }
15628 intel_display_set_init_power(dev_priv, false);
15629 }
15630
15631 void intel_display_resume(struct drm_device *dev)
15632 {
15633 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15634 struct intel_connector *conn;
15635 struct intel_plane *plane;
15636 struct drm_crtc *crtc;
15637 int ret;
15638
15639 if (!state)
15640 return;
15641
15642 state->acquire_ctx = dev->mode_config.acquire_ctx;
15643
15644 /* preserve complete old state, including dpll */
15645 intel_atomic_get_shared_dpll_state(state);
15646
15647 for_each_crtc(dev, crtc) {
15648 struct drm_crtc_state *crtc_state =
15649 drm_atomic_get_crtc_state(state, crtc);
15650
15651 ret = PTR_ERR_OR_ZERO(crtc_state);
15652 if (ret)
15653 goto err;
15654
15655 /* force a restore */
15656 crtc_state->mode_changed = true;
15657 }
15658
15659 for_each_intel_plane(dev, plane) {
15660 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15661 if (ret)
15662 goto err;
15663 }
15664
15665 for_each_intel_connector(dev, conn) {
15666 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15667 if (ret)
15668 goto err;
15669 }
15670
15671 intel_modeset_setup_hw_state(dev);
15672
15673 i915_redisable_vga(dev);
15674 ret = drm_atomic_commit(state);
15675 if (!ret)
15676 return;
15677
15678 err:
15679 DRM_ERROR("Restoring old state failed with %i\n", ret);
15680 drm_atomic_state_free(state);
15681 }
15682
15683 void intel_modeset_gem_init(struct drm_device *dev)
15684 {
15685 struct drm_crtc *c;
15686 struct drm_i915_gem_object *obj;
15687 int ret;
15688
15689 mutex_lock(&dev->struct_mutex);
15690 intel_init_gt_powersave(dev);
15691 mutex_unlock(&dev->struct_mutex);
15692
15693 intel_modeset_init_hw(dev);
15694
15695 intel_setup_overlay(dev);
15696
15697 /*
15698 * Make sure any fbs we allocated at startup are properly
15699 * pinned & fenced. When we do the allocation it's too early
15700 * for this.
15701 */
15702 for_each_crtc(dev, c) {
15703 obj = intel_fb_obj(c->primary->fb);
15704 if (obj == NULL)
15705 continue;
15706
15707 mutex_lock(&dev->struct_mutex);
15708 ret = intel_pin_and_fence_fb_obj(c->primary,
15709 c->primary->fb,
15710 c->primary->state);
15711 mutex_unlock(&dev->struct_mutex);
15712 if (ret) {
15713 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15714 to_intel_crtc(c)->pipe);
15715 drm_framebuffer_unreference(c->primary->fb);
15716 c->primary->fb = NULL;
15717 c->primary->crtc = c->primary->state->crtc = NULL;
15718 update_state_fb(c->primary);
15719 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15720 }
15721 }
15722
15723 intel_backlight_register(dev);
15724 }
15725
15726 void intel_connector_unregister(struct intel_connector *intel_connector)
15727 {
15728 struct drm_connector *connector = &intel_connector->base;
15729
15730 intel_panel_destroy_backlight(connector);
15731 drm_connector_unregister(connector);
15732 }
15733
15734 void intel_modeset_cleanup(struct drm_device *dev)
15735 {
15736 struct drm_i915_private *dev_priv = dev->dev_private;
15737 struct drm_connector *connector;
15738
15739 intel_disable_gt_powersave(dev);
15740
15741 intel_backlight_unregister(dev);
15742
15743 /*
15744 * Interrupts and polling as the first thing to avoid creating havoc.
15745 * Too much stuff here (turning of connectors, ...) would
15746 * experience fancy races otherwise.
15747 */
15748 intel_irq_uninstall(dev_priv);
15749
15750 /*
15751 * Due to the hpd irq storm handling the hotplug work can re-arm the
15752 * poll handlers. Hence disable polling after hpd handling is shut down.
15753 */
15754 drm_kms_helper_poll_fini(dev);
15755
15756 intel_unregister_dsm_handler();
15757
15758 intel_fbc_disable(dev_priv);
15759
15760 /* flush any delayed tasks or pending work */
15761 flush_scheduled_work();
15762
15763 /* destroy the backlight and sysfs files before encoders/connectors */
15764 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15765 struct intel_connector *intel_connector;
15766
15767 intel_connector = to_intel_connector(connector);
15768 intel_connector->unregister(intel_connector);
15769 }
15770
15771 drm_mode_config_cleanup(dev);
15772
15773 intel_cleanup_overlay(dev);
15774
15775 mutex_lock(&dev->struct_mutex);
15776 intel_cleanup_gt_powersave(dev);
15777 mutex_unlock(&dev->struct_mutex);
15778 }
15779
15780 /*
15781 * Return which encoder is currently attached for connector.
15782 */
15783 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15784 {
15785 return &intel_attached_encoder(connector)->base;
15786 }
15787
15788 void intel_connector_attach_encoder(struct intel_connector *connector,
15789 struct intel_encoder *encoder)
15790 {
15791 connector->encoder = encoder;
15792 drm_mode_connector_attach_encoder(&connector->base,
15793 &encoder->base);
15794 }
15795
15796 /*
15797 * set vga decode state - true == enable VGA decode
15798 */
15799 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15800 {
15801 struct drm_i915_private *dev_priv = dev->dev_private;
15802 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15803 u16 gmch_ctrl;
15804
15805 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15806 DRM_ERROR("failed to read control word\n");
15807 return -EIO;
15808 }
15809
15810 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15811 return 0;
15812
15813 if (state)
15814 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15815 else
15816 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15817
15818 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15819 DRM_ERROR("failed to write control word\n");
15820 return -EIO;
15821 }
15822
15823 return 0;
15824 }
15825
15826 struct intel_display_error_state {
15827
15828 u32 power_well_driver;
15829
15830 int num_transcoders;
15831
15832 struct intel_cursor_error_state {
15833 u32 control;
15834 u32 position;
15835 u32 base;
15836 u32 size;
15837 } cursor[I915_MAX_PIPES];
15838
15839 struct intel_pipe_error_state {
15840 bool power_domain_on;
15841 u32 source;
15842 u32 stat;
15843 } pipe[I915_MAX_PIPES];
15844
15845 struct intel_plane_error_state {
15846 u32 control;
15847 u32 stride;
15848 u32 size;
15849 u32 pos;
15850 u32 addr;
15851 u32 surface;
15852 u32 tile_offset;
15853 } plane[I915_MAX_PIPES];
15854
15855 struct intel_transcoder_error_state {
15856 bool power_domain_on;
15857 enum transcoder cpu_transcoder;
15858
15859 u32 conf;
15860
15861 u32 htotal;
15862 u32 hblank;
15863 u32 hsync;
15864 u32 vtotal;
15865 u32 vblank;
15866 u32 vsync;
15867 } transcoder[4];
15868 };
15869
15870 struct intel_display_error_state *
15871 intel_display_capture_error_state(struct drm_device *dev)
15872 {
15873 struct drm_i915_private *dev_priv = dev->dev_private;
15874 struct intel_display_error_state *error;
15875 int transcoders[] = {
15876 TRANSCODER_A,
15877 TRANSCODER_B,
15878 TRANSCODER_C,
15879 TRANSCODER_EDP,
15880 };
15881 int i;
15882
15883 if (INTEL_INFO(dev)->num_pipes == 0)
15884 return NULL;
15885
15886 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15887 if (error == NULL)
15888 return NULL;
15889
15890 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15891 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15892
15893 for_each_pipe(dev_priv, i) {
15894 error->pipe[i].power_domain_on =
15895 __intel_display_power_is_enabled(dev_priv,
15896 POWER_DOMAIN_PIPE(i));
15897 if (!error->pipe[i].power_domain_on)
15898 continue;
15899
15900 error->cursor[i].control = I915_READ(CURCNTR(i));
15901 error->cursor[i].position = I915_READ(CURPOS(i));
15902 error->cursor[i].base = I915_READ(CURBASE(i));
15903
15904 error->plane[i].control = I915_READ(DSPCNTR(i));
15905 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15906 if (INTEL_INFO(dev)->gen <= 3) {
15907 error->plane[i].size = I915_READ(DSPSIZE(i));
15908 error->plane[i].pos = I915_READ(DSPPOS(i));
15909 }
15910 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15911 error->plane[i].addr = I915_READ(DSPADDR(i));
15912 if (INTEL_INFO(dev)->gen >= 4) {
15913 error->plane[i].surface = I915_READ(DSPSURF(i));
15914 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15915 }
15916
15917 error->pipe[i].source = I915_READ(PIPESRC(i));
15918
15919 if (HAS_GMCH_DISPLAY(dev))
15920 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15921 }
15922
15923 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15924 if (HAS_DDI(dev_priv->dev))
15925 error->num_transcoders++; /* Account for eDP. */
15926
15927 for (i = 0; i < error->num_transcoders; i++) {
15928 enum transcoder cpu_transcoder = transcoders[i];
15929
15930 error->transcoder[i].power_domain_on =
15931 __intel_display_power_is_enabled(dev_priv,
15932 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15933 if (!error->transcoder[i].power_domain_on)
15934 continue;
15935
15936 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15937
15938 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15939 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15940 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15941 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15942 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15943 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15944 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15945 }
15946
15947 return error;
15948 }
15949
15950 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15951
15952 void
15953 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15954 struct drm_device *dev,
15955 struct intel_display_error_state *error)
15956 {
15957 struct drm_i915_private *dev_priv = dev->dev_private;
15958 int i;
15959
15960 if (!error)
15961 return;
15962
15963 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15964 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15965 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15966 error->power_well_driver);
15967 for_each_pipe(dev_priv, i) {
15968 err_printf(m, "Pipe [%d]:\n", i);
15969 err_printf(m, " Power: %s\n",
15970 error->pipe[i].power_domain_on ? "on" : "off");
15971 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15972 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15973
15974 err_printf(m, "Plane [%d]:\n", i);
15975 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15976 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15977 if (INTEL_INFO(dev)->gen <= 3) {
15978 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15979 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15980 }
15981 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15982 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15983 if (INTEL_INFO(dev)->gen >= 4) {
15984 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15985 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15986 }
15987
15988 err_printf(m, "Cursor [%d]:\n", i);
15989 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15990 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15991 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15992 }
15993
15994 for (i = 0; i < error->num_transcoders; i++) {
15995 err_printf(m, "CPU transcoder: %c\n",
15996 transcoder_name(error->transcoder[i].cpu_transcoder));
15997 err_printf(m, " Power: %s\n",
15998 error->transcoder[i].power_domain_on ? "on" : "off");
15999 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16000 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16001 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16002 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16003 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16004 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16005 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16006 }
16007 }
16008
16009 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
16010 {
16011 struct intel_crtc *crtc;
16012
16013 for_each_intel_crtc(dev, crtc) {
16014 struct intel_unpin_work *work;
16015
16016 spin_lock_irq(&dev->event_lock);
16017
16018 work = crtc->unpin_work;
16019
16020 if (work && work->event &&
16021 work->event->base.file_priv == file) {
16022 kfree(work->event);
16023 work->event = NULL;
16024 }
16025
16026 spin_unlock_irq(&dev->event_lock);
16027 }
16028 }
This page took 0.848848 seconds and 5 git commands to generate.