Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54 int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68 intel_range_t dot, vco, n, m, m1, m2, p, p1;
69 intel_p2_t p2;
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78 struct drm_i915_private *dev_priv = dev->dev_private;
79
80 WARN_ON(!HAS_PCH_SPLIT(dev));
81
82 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static inline u32 /* units of 100MHz */
86 intel_fdi_link_freq(struct drm_device *dev)
87 {
88 if (IS_GEN5(dev)) {
89 struct drm_i915_private *dev_priv = dev->dev_private;
90 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
91 } else
92 return 27;
93 }
94
95 static const intel_limit_t intel_limits_i8xx_dac = {
96 .dot = { .min = 25000, .max = 350000 },
97 .vco = { .min = 930000, .max = 1400000 },
98 .n = { .min = 3, .max = 16 },
99 .m = { .min = 96, .max = 140 },
100 .m1 = { .min = 18, .max = 26 },
101 .m2 = { .min = 6, .max = 16 },
102 .p = { .min = 4, .max = 128 },
103 .p1 = { .min = 2, .max = 33 },
104 .p2 = { .dot_limit = 165000,
105 .p2_slow = 4, .p2_fast = 2 },
106 };
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 4 },
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135 .dot = { .min = 20000, .max = 400000 },
136 .vco = { .min = 1400000, .max = 2800000 },
137 .n = { .min = 1, .max = 6 },
138 .m = { .min = 70, .max = 120 },
139 .m1 = { .min = 8, .max = 18 },
140 .m2 = { .min = 3, .max = 7 },
141 .p = { .min = 5, .max = 80 },
142 .p1 = { .min = 1, .max = 8 },
143 .p2 = { .dot_limit = 200000,
144 .p2_slow = 10, .p2_fast = 5 },
145 };
146
147 static const intel_limit_t intel_limits_i9xx_lvds = {
148 .dot = { .min = 20000, .max = 400000 },
149 .vco = { .min = 1400000, .max = 2800000 },
150 .n = { .min = 1, .max = 6 },
151 .m = { .min = 70, .max = 120 },
152 .m1 = { .min = 8, .max = 18 },
153 .m2 = { .min = 3, .max = 7 },
154 .p = { .min = 7, .max = 98 },
155 .p1 = { .min = 1, .max = 8 },
156 .p2 = { .dot_limit = 112000,
157 .p2_slow = 14, .p2_fast = 7 },
158 };
159
160
161 static const intel_limit_t intel_limits_g4x_sdvo = {
162 .dot = { .min = 25000, .max = 270000 },
163 .vco = { .min = 1750000, .max = 3500000},
164 .n = { .min = 1, .max = 4 },
165 .m = { .min = 104, .max = 138 },
166 .m1 = { .min = 17, .max = 23 },
167 .m2 = { .min = 5, .max = 11 },
168 .p = { .min = 10, .max = 30 },
169 .p1 = { .min = 1, .max = 3},
170 .p2 = { .dot_limit = 270000,
171 .p2_slow = 10,
172 .p2_fast = 10
173 },
174 };
175
176 static const intel_limit_t intel_limits_g4x_hdmi = {
177 .dot = { .min = 22000, .max = 400000 },
178 .vco = { .min = 1750000, .max = 3500000},
179 .n = { .min = 1, .max = 4 },
180 .m = { .min = 104, .max = 138 },
181 .m1 = { .min = 16, .max = 23 },
182 .m2 = { .min = 5, .max = 11 },
183 .p = { .min = 5, .max = 80 },
184 .p1 = { .min = 1, .max = 8},
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 10, .p2_fast = 5 },
187 };
188
189 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
190 .dot = { .min = 20000, .max = 115000 },
191 .vco = { .min = 1750000, .max = 3500000 },
192 .n = { .min = 1, .max = 3 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 17, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 28, .max = 112 },
197 .p1 = { .min = 2, .max = 8 },
198 .p2 = { .dot_limit = 0,
199 .p2_slow = 14, .p2_fast = 14
200 },
201 };
202
203 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
204 .dot = { .min = 80000, .max = 224000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 14, .max = 42 },
211 .p1 = { .min = 2, .max = 6 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 7, .p2_fast = 7
214 },
215 };
216
217 static const intel_limit_t intel_limits_pineview_sdvo = {
218 .dot = { .min = 20000, .max = 400000},
219 .vco = { .min = 1700000, .max = 3500000 },
220 /* Pineview's Ncounter is a ring counter */
221 .n = { .min = 3, .max = 6 },
222 .m = { .min = 2, .max = 256 },
223 /* Pineview only has one combined m divider, which we treat as m2. */
224 .m1 = { .min = 0, .max = 0 },
225 .m2 = { .min = 0, .max = 254 },
226 .p = { .min = 5, .max = 80 },
227 .p1 = { .min = 1, .max = 8 },
228 .p2 = { .dot_limit = 200000,
229 .p2_slow = 10, .p2_fast = 5 },
230 };
231
232 static const intel_limit_t intel_limits_pineview_lvds = {
233 .dot = { .min = 20000, .max = 400000 },
234 .vco = { .min = 1700000, .max = 3500000 },
235 .n = { .min = 3, .max = 6 },
236 .m = { .min = 2, .max = 256 },
237 .m1 = { .min = 0, .max = 0 },
238 .m2 = { .min = 0, .max = 254 },
239 .p = { .min = 7, .max = 112 },
240 .p1 = { .min = 1, .max = 8 },
241 .p2 = { .dot_limit = 112000,
242 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 /* Ironlake / Sandybridge
246 *
247 * We calculate clock using (register_value + 2) for N/M1/M2, so here
248 * the range value for them is (actual_value - 2).
249 */
250 static const intel_limit_t intel_limits_ironlake_dac = {
251 .dot = { .min = 25000, .max = 350000 },
252 .vco = { .min = 1760000, .max = 3510000 },
253 .n = { .min = 1, .max = 5 },
254 .m = { .min = 79, .max = 127 },
255 .m1 = { .min = 12, .max = 22 },
256 .m2 = { .min = 5, .max = 9 },
257 .p = { .min = 5, .max = 80 },
258 .p1 = { .min = 1, .max = 8 },
259 .p2 = { .dot_limit = 225000,
260 .p2_slow = 10, .p2_fast = 5 },
261 };
262
263 static const intel_limit_t intel_limits_ironlake_single_lvds = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 1760000, .max = 3510000 },
266 .n = { .min = 1, .max = 3 },
267 .m = { .min = 79, .max = 118 },
268 .m1 = { .min = 12, .max = 22 },
269 .m2 = { .min = 5, .max = 9 },
270 .p = { .min = 28, .max = 112 },
271 .p1 = { .min = 2, .max = 8 },
272 .p2 = { .dot_limit = 225000,
273 .p2_slow = 14, .p2_fast = 14 },
274 };
275
276 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 1760000, .max = 3510000 },
279 .n = { .min = 1, .max = 3 },
280 .m = { .min = 79, .max = 127 },
281 .m1 = { .min = 12, .max = 22 },
282 .m2 = { .min = 5, .max = 9 },
283 .p = { .min = 14, .max = 56 },
284 .p1 = { .min = 2, .max = 8 },
285 .p2 = { .dot_limit = 225000,
286 .p2_slow = 7, .p2_fast = 7 },
287 };
288
289 /* LVDS 100mhz refclk limits. */
290 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 2 },
294 .m = { .min = 79, .max = 126 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 28, .max = 112 },
298 .p1 = { .min = 2, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 14, .p2_fast = 14 },
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 3 },
307 .m = { .min = 79, .max = 126 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 14, .max = 42 },
311 .p1 = { .min = 2, .max = 6 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 7, .p2_fast = 7 },
314 };
315
316 static const intel_limit_t intel_limits_vlv_dac = {
317 .dot = { .min = 25000, .max = 270000 },
318 .vco = { .min = 4000000, .max = 6000000 },
319 .n = { .min = 1, .max = 7 },
320 .m = { .min = 22, .max = 450 }, /* guess */
321 .m1 = { .min = 2, .max = 3 },
322 .m2 = { .min = 11, .max = 156 },
323 .p = { .min = 10, .max = 30 },
324 .p1 = { .min = 1, .max = 3 },
325 .p2 = { .dot_limit = 270000,
326 .p2_slow = 2, .p2_fast = 20 },
327 };
328
329 static const intel_limit_t intel_limits_vlv_hdmi = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 4000000, .max = 6000000 },
332 .n = { .min = 1, .max = 7 },
333 .m = { .min = 60, .max = 300 }, /* guess */
334 .m1 = { .min = 2, .max = 3 },
335 .m2 = { .min = 11, .max = 156 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 2, .max = 3 },
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 2, .p2_fast = 20 },
340 };
341
342 static const intel_limit_t intel_limits_vlv_dp = {
343 .dot = { .min = 25000, .max = 270000 },
344 .vco = { .min = 4000000, .max = 6000000 },
345 .n = { .min = 1, .max = 7 },
346 .m = { .min = 22, .max = 450 },
347 .m1 = { .min = 2, .max = 3 },
348 .m2 = { .min = 11, .max = 156 },
349 .p = { .min = 10, .max = 30 },
350 .p1 = { .min = 1, .max = 3 },
351 .p2 = { .dot_limit = 270000,
352 .p2_slow = 2, .p2_fast = 20 },
353 };
354
355 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
356 int refclk)
357 {
358 struct drm_device *dev = crtc->dev;
359 const intel_limit_t *limit;
360
361 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
362 if (intel_is_dual_link_lvds(dev)) {
363 if (refclk == 100000)
364 limit = &intel_limits_ironlake_dual_lvds_100m;
365 else
366 limit = &intel_limits_ironlake_dual_lvds;
367 } else {
368 if (refclk == 100000)
369 limit = &intel_limits_ironlake_single_lvds_100m;
370 else
371 limit = &intel_limits_ironlake_single_lvds;
372 }
373 } else
374 limit = &intel_limits_ironlake_dac;
375
376 return limit;
377 }
378
379 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
380 {
381 struct drm_device *dev = crtc->dev;
382 const intel_limit_t *limit;
383
384 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
385 if (intel_is_dual_link_lvds(dev))
386 limit = &intel_limits_g4x_dual_channel_lvds;
387 else
388 limit = &intel_limits_g4x_single_channel_lvds;
389 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
390 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
391 limit = &intel_limits_g4x_hdmi;
392 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
393 limit = &intel_limits_g4x_sdvo;
394 } else /* The option is for other outputs */
395 limit = &intel_limits_i9xx_sdvo;
396
397 return limit;
398 }
399
400 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
401 {
402 struct drm_device *dev = crtc->dev;
403 const intel_limit_t *limit;
404
405 if (HAS_PCH_SPLIT(dev))
406 limit = intel_ironlake_limit(crtc, refclk);
407 else if (IS_G4X(dev)) {
408 limit = intel_g4x_limit(crtc);
409 } else if (IS_PINEVIEW(dev)) {
410 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
411 limit = &intel_limits_pineview_lvds;
412 else
413 limit = &intel_limits_pineview_sdvo;
414 } else if (IS_VALLEYVIEW(dev)) {
415 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
416 limit = &intel_limits_vlv_dac;
417 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
418 limit = &intel_limits_vlv_hdmi;
419 else
420 limit = &intel_limits_vlv_dp;
421 } else if (!IS_GEN2(dev)) {
422 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423 limit = &intel_limits_i9xx_lvds;
424 else
425 limit = &intel_limits_i9xx_sdvo;
426 } else {
427 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428 limit = &intel_limits_i8xx_lvds;
429 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
430 limit = &intel_limits_i8xx_dvo;
431 else
432 limit = &intel_limits_i8xx_dac;
433 }
434 return limit;
435 }
436
437 /* m1 is reserved as 0 in Pineview, n is a ring counter */
438 static void pineview_clock(int refclk, intel_clock_t *clock)
439 {
440 clock->m = clock->m2 + 2;
441 clock->p = clock->p1 * clock->p2;
442 clock->vco = refclk * clock->m / clock->n;
443 clock->dot = clock->vco / clock->p;
444 }
445
446 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
447 {
448 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
449 }
450
451 static void i9xx_clock(int refclk, intel_clock_t *clock)
452 {
453 clock->m = i9xx_dpll_compute_m(clock);
454 clock->p = clock->p1 * clock->p2;
455 clock->vco = refclk * clock->m / (clock->n + 2);
456 clock->dot = clock->vco / clock->p;
457 }
458
459 /**
460 * Returns whether any output on the specified pipe is of the specified type
461 */
462 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
463 {
464 struct drm_device *dev = crtc->dev;
465 struct intel_encoder *encoder;
466
467 for_each_encoder_on_crtc(dev, crtc, encoder)
468 if (encoder->type == type)
469 return true;
470
471 return false;
472 }
473
474 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
475 /**
476 * Returns whether the given set of divisors are valid for a given refclk with
477 * the given connectors.
478 */
479
480 static bool intel_PLL_is_valid(struct drm_device *dev,
481 const intel_limit_t *limit,
482 const intel_clock_t *clock)
483 {
484 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
485 INTELPllInvalid("p1 out of range\n");
486 if (clock->p < limit->p.min || limit->p.max < clock->p)
487 INTELPllInvalid("p out of range\n");
488 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
489 INTELPllInvalid("m2 out of range\n");
490 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
491 INTELPllInvalid("m1 out of range\n");
492 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
493 INTELPllInvalid("m1 <= m2\n");
494 if (clock->m < limit->m.min || limit->m.max < clock->m)
495 INTELPllInvalid("m out of range\n");
496 if (clock->n < limit->n.min || limit->n.max < clock->n)
497 INTELPllInvalid("n out of range\n");
498 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
499 INTELPllInvalid("vco out of range\n");
500 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
501 * connector, etc., rather than just a single range.
502 */
503 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
504 INTELPllInvalid("dot out of range\n");
505
506 return true;
507 }
508
509 static bool
510 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
511 int target, int refclk, intel_clock_t *match_clock,
512 intel_clock_t *best_clock)
513 {
514 struct drm_device *dev = crtc->dev;
515 intel_clock_t clock;
516 int err = target;
517
518 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
519 /*
520 * For LVDS just rely on its current settings for dual-channel.
521 * We haven't figured out how to reliably set up different
522 * single/dual channel state, if we even can.
523 */
524 if (intel_is_dual_link_lvds(dev))
525 clock.p2 = limit->p2.p2_fast;
526 else
527 clock.p2 = limit->p2.p2_slow;
528 } else {
529 if (target < limit->p2.dot_limit)
530 clock.p2 = limit->p2.p2_slow;
531 else
532 clock.p2 = limit->p2.p2_fast;
533 }
534
535 memset(best_clock, 0, sizeof(*best_clock));
536
537 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
538 clock.m1++) {
539 for (clock.m2 = limit->m2.min;
540 clock.m2 <= limit->m2.max; clock.m2++) {
541 if (clock.m2 >= clock.m1)
542 break;
543 for (clock.n = limit->n.min;
544 clock.n <= limit->n.max; clock.n++) {
545 for (clock.p1 = limit->p1.min;
546 clock.p1 <= limit->p1.max; clock.p1++) {
547 int this_err;
548
549 i9xx_clock(refclk, &clock);
550 if (!intel_PLL_is_valid(dev, limit,
551 &clock))
552 continue;
553 if (match_clock &&
554 clock.p != match_clock->p)
555 continue;
556
557 this_err = abs(clock.dot - target);
558 if (this_err < err) {
559 *best_clock = clock;
560 err = this_err;
561 }
562 }
563 }
564 }
565 }
566
567 return (err != target);
568 }
569
570 static bool
571 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
572 int target, int refclk, intel_clock_t *match_clock,
573 intel_clock_t *best_clock)
574 {
575 struct drm_device *dev = crtc->dev;
576 intel_clock_t clock;
577 int err = target;
578
579 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
580 /*
581 * For LVDS just rely on its current settings for dual-channel.
582 * We haven't figured out how to reliably set up different
583 * single/dual channel state, if we even can.
584 */
585 if (intel_is_dual_link_lvds(dev))
586 clock.p2 = limit->p2.p2_fast;
587 else
588 clock.p2 = limit->p2.p2_slow;
589 } else {
590 if (target < limit->p2.dot_limit)
591 clock.p2 = limit->p2.p2_slow;
592 else
593 clock.p2 = limit->p2.p2_fast;
594 }
595
596 memset(best_clock, 0, sizeof(*best_clock));
597
598 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
599 clock.m1++) {
600 for (clock.m2 = limit->m2.min;
601 clock.m2 <= limit->m2.max; clock.m2++) {
602 for (clock.n = limit->n.min;
603 clock.n <= limit->n.max; clock.n++) {
604 for (clock.p1 = limit->p1.min;
605 clock.p1 <= limit->p1.max; clock.p1++) {
606 int this_err;
607
608 pineview_clock(refclk, &clock);
609 if (!intel_PLL_is_valid(dev, limit,
610 &clock))
611 continue;
612 if (match_clock &&
613 clock.p != match_clock->p)
614 continue;
615
616 this_err = abs(clock.dot - target);
617 if (this_err < err) {
618 *best_clock = clock;
619 err = this_err;
620 }
621 }
622 }
623 }
624 }
625
626 return (err != target);
627 }
628
629 static bool
630 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
631 int target, int refclk, intel_clock_t *match_clock,
632 intel_clock_t *best_clock)
633 {
634 struct drm_device *dev = crtc->dev;
635 intel_clock_t clock;
636 int max_n;
637 bool found;
638 /* approximately equals target * 0.00585 */
639 int err_most = (target >> 8) + (target >> 9);
640 found = false;
641
642 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643 if (intel_is_dual_link_lvds(dev))
644 clock.p2 = limit->p2.p2_fast;
645 else
646 clock.p2 = limit->p2.p2_slow;
647 } else {
648 if (target < limit->p2.dot_limit)
649 clock.p2 = limit->p2.p2_slow;
650 else
651 clock.p2 = limit->p2.p2_fast;
652 }
653
654 memset(best_clock, 0, sizeof(*best_clock));
655 max_n = limit->n.max;
656 /* based on hardware requirement, prefer smaller n to precision */
657 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
658 /* based on hardware requirement, prefere larger m1,m2 */
659 for (clock.m1 = limit->m1.max;
660 clock.m1 >= limit->m1.min; clock.m1--) {
661 for (clock.m2 = limit->m2.max;
662 clock.m2 >= limit->m2.min; clock.m2--) {
663 for (clock.p1 = limit->p1.max;
664 clock.p1 >= limit->p1.min; clock.p1--) {
665 int this_err;
666
667 i9xx_clock(refclk, &clock);
668 if (!intel_PLL_is_valid(dev, limit,
669 &clock))
670 continue;
671
672 this_err = abs(clock.dot - target);
673 if (this_err < err_most) {
674 *best_clock = clock;
675 err_most = this_err;
676 max_n = clock.n;
677 found = true;
678 }
679 }
680 }
681 }
682 }
683 return found;
684 }
685
686 static bool
687 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
688 int target, int refclk, intel_clock_t *match_clock,
689 intel_clock_t *best_clock)
690 {
691 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
692 u32 m, n, fastclk;
693 u32 updrate, minupdate, p;
694 unsigned long bestppm, ppm, absppm;
695 int dotclk, flag;
696
697 flag = 0;
698 dotclk = target * 1000;
699 bestppm = 1000000;
700 ppm = absppm = 0;
701 fastclk = dotclk / (2*100);
702 updrate = 0;
703 minupdate = 19200;
704 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
705 bestm1 = bestm2 = bestp1 = bestp2 = 0;
706
707 /* based on hardware requirement, prefer smaller n to precision */
708 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
709 updrate = refclk / n;
710 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
711 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
712 if (p2 > 10)
713 p2 = p2 - 1;
714 p = p1 * p2;
715 /* based on hardware requirement, prefer bigger m1,m2 values */
716 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
717 m2 = (((2*(fastclk * p * n / m1 )) +
718 refclk) / (2*refclk));
719 m = m1 * m2;
720 vco = updrate * m;
721 if (vco >= limit->vco.min && vco < limit->vco.max) {
722 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
723 absppm = (ppm > 0) ? ppm : (-ppm);
724 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
725 bestppm = 0;
726 flag = 1;
727 }
728 if (absppm < bestppm - 10) {
729 bestppm = absppm;
730 flag = 1;
731 }
732 if (flag) {
733 bestn = n;
734 bestm1 = m1;
735 bestm2 = m2;
736 bestp1 = p1;
737 bestp2 = p2;
738 flag = 0;
739 }
740 }
741 }
742 }
743 }
744 }
745 best_clock->n = bestn;
746 best_clock->m1 = bestm1;
747 best_clock->m2 = bestm2;
748 best_clock->p1 = bestp1;
749 best_clock->p2 = bestp2;
750
751 return true;
752 }
753
754 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
755 enum pipe pipe)
756 {
757 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
759
760 return intel_crtc->config.cpu_transcoder;
761 }
762
763 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
764 {
765 struct drm_i915_private *dev_priv = dev->dev_private;
766 u32 frame, frame_reg = PIPEFRAME(pipe);
767
768 frame = I915_READ(frame_reg);
769
770 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
771 DRM_DEBUG_KMS("vblank wait timed out\n");
772 }
773
774 /**
775 * intel_wait_for_vblank - wait for vblank on a given pipe
776 * @dev: drm device
777 * @pipe: pipe to wait for
778 *
779 * Wait for vblank to occur on a given pipe. Needed for various bits of
780 * mode setting code.
781 */
782 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
783 {
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 int pipestat_reg = PIPESTAT(pipe);
786
787 if (INTEL_INFO(dev)->gen >= 5) {
788 ironlake_wait_for_vblank(dev, pipe);
789 return;
790 }
791
792 /* Clear existing vblank status. Note this will clear any other
793 * sticky status fields as well.
794 *
795 * This races with i915_driver_irq_handler() with the result
796 * that either function could miss a vblank event. Here it is not
797 * fatal, as we will either wait upon the next vblank interrupt or
798 * timeout. Generally speaking intel_wait_for_vblank() is only
799 * called during modeset at which time the GPU should be idle and
800 * should *not* be performing page flips and thus not waiting on
801 * vblanks...
802 * Currently, the result of us stealing a vblank from the irq
803 * handler is that a single frame will be skipped during swapbuffers.
804 */
805 I915_WRITE(pipestat_reg,
806 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
807
808 /* Wait for vblank interrupt bit to set */
809 if (wait_for(I915_READ(pipestat_reg) &
810 PIPE_VBLANK_INTERRUPT_STATUS,
811 50))
812 DRM_DEBUG_KMS("vblank wait timed out\n");
813 }
814
815 /*
816 * intel_wait_for_pipe_off - wait for pipe to turn off
817 * @dev: drm device
818 * @pipe: pipe to wait for
819 *
820 * After disabling a pipe, we can't wait for vblank in the usual way,
821 * spinning on the vblank interrupt status bit, since we won't actually
822 * see an interrupt when the pipe is disabled.
823 *
824 * On Gen4 and above:
825 * wait for the pipe register state bit to turn off
826 *
827 * Otherwise:
828 * wait for the display line value to settle (it usually
829 * ends up stopping at the start of the next frame).
830 *
831 */
832 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
833 {
834 struct drm_i915_private *dev_priv = dev->dev_private;
835 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
836 pipe);
837
838 if (INTEL_INFO(dev)->gen >= 4) {
839 int reg = PIPECONF(cpu_transcoder);
840
841 /* Wait for the Pipe State to go off */
842 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
843 100))
844 WARN(1, "pipe_off wait timed out\n");
845 } else {
846 u32 last_line, line_mask;
847 int reg = PIPEDSL(pipe);
848 unsigned long timeout = jiffies + msecs_to_jiffies(100);
849
850 if (IS_GEN2(dev))
851 line_mask = DSL_LINEMASK_GEN2;
852 else
853 line_mask = DSL_LINEMASK_GEN3;
854
855 /* Wait for the display line to settle */
856 do {
857 last_line = I915_READ(reg) & line_mask;
858 mdelay(5);
859 } while (((I915_READ(reg) & line_mask) != last_line) &&
860 time_after(timeout, jiffies));
861 if (time_after(jiffies, timeout))
862 WARN(1, "pipe_off wait timed out\n");
863 }
864 }
865
866 /*
867 * ibx_digital_port_connected - is the specified port connected?
868 * @dev_priv: i915 private structure
869 * @port: the port to test
870 *
871 * Returns true if @port is connected, false otherwise.
872 */
873 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
874 struct intel_digital_port *port)
875 {
876 u32 bit;
877
878 if (HAS_PCH_IBX(dev_priv->dev)) {
879 switch(port->port) {
880 case PORT_B:
881 bit = SDE_PORTB_HOTPLUG;
882 break;
883 case PORT_C:
884 bit = SDE_PORTC_HOTPLUG;
885 break;
886 case PORT_D:
887 bit = SDE_PORTD_HOTPLUG;
888 break;
889 default:
890 return true;
891 }
892 } else {
893 switch(port->port) {
894 case PORT_B:
895 bit = SDE_PORTB_HOTPLUG_CPT;
896 break;
897 case PORT_C:
898 bit = SDE_PORTC_HOTPLUG_CPT;
899 break;
900 case PORT_D:
901 bit = SDE_PORTD_HOTPLUG_CPT;
902 break;
903 default:
904 return true;
905 }
906 }
907
908 return I915_READ(SDEISR) & bit;
909 }
910
911 static const char *state_string(bool enabled)
912 {
913 return enabled ? "on" : "off";
914 }
915
916 /* Only for pre-ILK configs */
917 void assert_pll(struct drm_i915_private *dev_priv,
918 enum pipe pipe, bool state)
919 {
920 int reg;
921 u32 val;
922 bool cur_state;
923
924 reg = DPLL(pipe);
925 val = I915_READ(reg);
926 cur_state = !!(val & DPLL_VCO_ENABLE);
927 WARN(cur_state != state,
928 "PLL state assertion failure (expected %s, current %s)\n",
929 state_string(state), state_string(cur_state));
930 }
931
932 struct intel_shared_dpll *
933 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
934 {
935 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
936
937 if (crtc->config.shared_dpll < 0)
938 return NULL;
939
940 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
941 }
942
943 /* For ILK+ */
944 void assert_shared_dpll(struct drm_i915_private *dev_priv,
945 struct intel_shared_dpll *pll,
946 bool state)
947 {
948 bool cur_state;
949 struct intel_dpll_hw_state hw_state;
950
951 if (HAS_PCH_LPT(dev_priv->dev)) {
952 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
953 return;
954 }
955
956 if (WARN (!pll,
957 "asserting DPLL %s with no DPLL\n", state_string(state)))
958 return;
959
960 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
961 WARN(cur_state != state,
962 "%s assertion failure (expected %s, current %s)\n",
963 pll->name, state_string(state), state_string(cur_state));
964 }
965
966 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
967 enum pipe pipe, bool state)
968 {
969 int reg;
970 u32 val;
971 bool cur_state;
972 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
973 pipe);
974
975 if (HAS_DDI(dev_priv->dev)) {
976 /* DDI does not have a specific FDI_TX register */
977 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
978 val = I915_READ(reg);
979 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
980 } else {
981 reg = FDI_TX_CTL(pipe);
982 val = I915_READ(reg);
983 cur_state = !!(val & FDI_TX_ENABLE);
984 }
985 WARN(cur_state != state,
986 "FDI TX state assertion failure (expected %s, current %s)\n",
987 state_string(state), state_string(cur_state));
988 }
989 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
990 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
991
992 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
993 enum pipe pipe, bool state)
994 {
995 int reg;
996 u32 val;
997 bool cur_state;
998
999 reg = FDI_RX_CTL(pipe);
1000 val = I915_READ(reg);
1001 cur_state = !!(val & FDI_RX_ENABLE);
1002 WARN(cur_state != state,
1003 "FDI RX state assertion failure (expected %s, current %s)\n",
1004 state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1007 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1008
1009 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1010 enum pipe pipe)
1011 {
1012 int reg;
1013 u32 val;
1014
1015 /* ILK FDI PLL is always enabled */
1016 if (dev_priv->info->gen == 5)
1017 return;
1018
1019 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1020 if (HAS_DDI(dev_priv->dev))
1021 return;
1022
1023 reg = FDI_TX_CTL(pipe);
1024 val = I915_READ(reg);
1025 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1026 }
1027
1028 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1029 enum pipe pipe, bool state)
1030 {
1031 int reg;
1032 u32 val;
1033 bool cur_state;
1034
1035 reg = FDI_RX_CTL(pipe);
1036 val = I915_READ(reg);
1037 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1038 WARN(cur_state != state,
1039 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1040 state_string(state), state_string(cur_state));
1041 }
1042
1043 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1044 enum pipe pipe)
1045 {
1046 int pp_reg, lvds_reg;
1047 u32 val;
1048 enum pipe panel_pipe = PIPE_A;
1049 bool locked = true;
1050
1051 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1052 pp_reg = PCH_PP_CONTROL;
1053 lvds_reg = PCH_LVDS;
1054 } else {
1055 pp_reg = PP_CONTROL;
1056 lvds_reg = LVDS;
1057 }
1058
1059 val = I915_READ(pp_reg);
1060 if (!(val & PANEL_POWER_ON) ||
1061 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1062 locked = false;
1063
1064 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1065 panel_pipe = PIPE_B;
1066
1067 WARN(panel_pipe == pipe && locked,
1068 "panel assertion failure, pipe %c regs locked\n",
1069 pipe_name(pipe));
1070 }
1071
1072 void assert_pipe(struct drm_i915_private *dev_priv,
1073 enum pipe pipe, bool state)
1074 {
1075 int reg;
1076 u32 val;
1077 bool cur_state;
1078 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1079 pipe);
1080
1081 /* if we need the pipe A quirk it must be always on */
1082 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1083 state = true;
1084
1085 if (!intel_display_power_enabled(dev_priv->dev,
1086 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1087 cur_state = false;
1088 } else {
1089 reg = PIPECONF(cpu_transcoder);
1090 val = I915_READ(reg);
1091 cur_state = !!(val & PIPECONF_ENABLE);
1092 }
1093
1094 WARN(cur_state != state,
1095 "pipe %c assertion failure (expected %s, current %s)\n",
1096 pipe_name(pipe), state_string(state), state_string(cur_state));
1097 }
1098
1099 static void assert_plane(struct drm_i915_private *dev_priv,
1100 enum plane plane, bool state)
1101 {
1102 int reg;
1103 u32 val;
1104 bool cur_state;
1105
1106 reg = DSPCNTR(plane);
1107 val = I915_READ(reg);
1108 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1109 WARN(cur_state != state,
1110 "plane %c assertion failure (expected %s, current %s)\n",
1111 plane_name(plane), state_string(state), state_string(cur_state));
1112 }
1113
1114 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1115 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1116
1117 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1118 enum pipe pipe)
1119 {
1120 struct drm_device *dev = dev_priv->dev;
1121 int reg, i;
1122 u32 val;
1123 int cur_pipe;
1124
1125 /* Primary planes are fixed to pipes on gen4+ */
1126 if (INTEL_INFO(dev)->gen >= 4) {
1127 reg = DSPCNTR(pipe);
1128 val = I915_READ(reg);
1129 WARN((val & DISPLAY_PLANE_ENABLE),
1130 "plane %c assertion failure, should be disabled but not\n",
1131 plane_name(pipe));
1132 return;
1133 }
1134
1135 /* Need to check both planes against the pipe */
1136 for_each_pipe(i) {
1137 reg = DSPCNTR(i);
1138 val = I915_READ(reg);
1139 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1140 DISPPLANE_SEL_PIPE_SHIFT;
1141 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1142 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1143 plane_name(i), pipe_name(pipe));
1144 }
1145 }
1146
1147 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1148 enum pipe pipe)
1149 {
1150 struct drm_device *dev = dev_priv->dev;
1151 int reg, i;
1152 u32 val;
1153
1154 if (IS_VALLEYVIEW(dev)) {
1155 for (i = 0; i < dev_priv->num_plane; i++) {
1156 reg = SPCNTR(pipe, i);
1157 val = I915_READ(reg);
1158 WARN((val & SP_ENABLE),
1159 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1160 sprite_name(pipe, i), pipe_name(pipe));
1161 }
1162 } else if (INTEL_INFO(dev)->gen >= 7) {
1163 reg = SPRCTL(pipe);
1164 val = I915_READ(reg);
1165 WARN((val & SPRITE_ENABLE),
1166 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1167 plane_name(pipe), pipe_name(pipe));
1168 } else if (INTEL_INFO(dev)->gen >= 5) {
1169 reg = DVSCNTR(pipe);
1170 val = I915_READ(reg);
1171 WARN((val & DVS_ENABLE),
1172 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1173 plane_name(pipe), pipe_name(pipe));
1174 }
1175 }
1176
1177 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1178 {
1179 u32 val;
1180 bool enabled;
1181
1182 if (HAS_PCH_LPT(dev_priv->dev)) {
1183 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1184 return;
1185 }
1186
1187 val = I915_READ(PCH_DREF_CONTROL);
1188 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1189 DREF_SUPERSPREAD_SOURCE_MASK));
1190 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1191 }
1192
1193 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1194 enum pipe pipe)
1195 {
1196 int reg;
1197 u32 val;
1198 bool enabled;
1199
1200 reg = PCH_TRANSCONF(pipe);
1201 val = I915_READ(reg);
1202 enabled = !!(val & TRANS_ENABLE);
1203 WARN(enabled,
1204 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1205 pipe_name(pipe));
1206 }
1207
1208 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1209 enum pipe pipe, u32 port_sel, u32 val)
1210 {
1211 if ((val & DP_PORT_EN) == 0)
1212 return false;
1213
1214 if (HAS_PCH_CPT(dev_priv->dev)) {
1215 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1216 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1217 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1218 return false;
1219 } else {
1220 if ((val & DP_PIPE_MASK) != (pipe << 30))
1221 return false;
1222 }
1223 return true;
1224 }
1225
1226 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1227 enum pipe pipe, u32 val)
1228 {
1229 if ((val & SDVO_ENABLE) == 0)
1230 return false;
1231
1232 if (HAS_PCH_CPT(dev_priv->dev)) {
1233 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1234 return false;
1235 } else {
1236 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1237 return false;
1238 }
1239 return true;
1240 }
1241
1242 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, u32 val)
1244 {
1245 if ((val & LVDS_PORT_EN) == 0)
1246 return false;
1247
1248 if (HAS_PCH_CPT(dev_priv->dev)) {
1249 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1250 return false;
1251 } else {
1252 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1253 return false;
1254 }
1255 return true;
1256 }
1257
1258 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1259 enum pipe pipe, u32 val)
1260 {
1261 if ((val & ADPA_DAC_ENABLE) == 0)
1262 return false;
1263 if (HAS_PCH_CPT(dev_priv->dev)) {
1264 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1265 return false;
1266 } else {
1267 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1268 return false;
1269 }
1270 return true;
1271 }
1272
1273 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1274 enum pipe pipe, int reg, u32 port_sel)
1275 {
1276 u32 val = I915_READ(reg);
1277 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1278 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1279 reg, pipe_name(pipe));
1280
1281 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1282 && (val & DP_PIPEB_SELECT),
1283 "IBX PCH dp port still using transcoder B\n");
1284 }
1285
1286 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1287 enum pipe pipe, int reg)
1288 {
1289 u32 val = I915_READ(reg);
1290 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1291 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1292 reg, pipe_name(pipe));
1293
1294 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1295 && (val & SDVO_PIPE_B_SELECT),
1296 "IBX PCH hdmi port still using transcoder B\n");
1297 }
1298
1299 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1300 enum pipe pipe)
1301 {
1302 int reg;
1303 u32 val;
1304
1305 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1306 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1307 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1308
1309 reg = PCH_ADPA;
1310 val = I915_READ(reg);
1311 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1312 "PCH VGA enabled on transcoder %c, should be disabled\n",
1313 pipe_name(pipe));
1314
1315 reg = PCH_LVDS;
1316 val = I915_READ(reg);
1317 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1318 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1319 pipe_name(pipe));
1320
1321 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1322 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1323 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1324 }
1325
1326 static void vlv_enable_pll(struct intel_crtc *crtc)
1327 {
1328 struct drm_device *dev = crtc->base.dev;
1329 struct drm_i915_private *dev_priv = dev->dev_private;
1330 int reg = DPLL(crtc->pipe);
1331 u32 dpll = crtc->config.dpll_hw_state.dpll;
1332
1333 assert_pipe_disabled(dev_priv, crtc->pipe);
1334
1335 /* No really, not for ILK+ */
1336 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1337
1338 /* PLL is protected by panel, make sure we can write it */
1339 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1340 assert_panel_unlocked(dev_priv, crtc->pipe);
1341
1342 I915_WRITE(reg, dpll);
1343 POSTING_READ(reg);
1344 udelay(150);
1345
1346 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1347 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1348
1349 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1350 POSTING_READ(DPLL_MD(crtc->pipe));
1351
1352 /* We do this three times for luck */
1353 I915_WRITE(reg, dpll);
1354 POSTING_READ(reg);
1355 udelay(150); /* wait for warmup */
1356 I915_WRITE(reg, dpll);
1357 POSTING_READ(reg);
1358 udelay(150); /* wait for warmup */
1359 I915_WRITE(reg, dpll);
1360 POSTING_READ(reg);
1361 udelay(150); /* wait for warmup */
1362 }
1363
1364 static void i9xx_enable_pll(struct intel_crtc *crtc)
1365 {
1366 struct drm_device *dev = crtc->base.dev;
1367 struct drm_i915_private *dev_priv = dev->dev_private;
1368 int reg = DPLL(crtc->pipe);
1369 u32 dpll = crtc->config.dpll_hw_state.dpll;
1370
1371 assert_pipe_disabled(dev_priv, crtc->pipe);
1372
1373 /* No really, not for ILK+ */
1374 BUG_ON(dev_priv->info->gen >= 5);
1375
1376 /* PLL is protected by panel, make sure we can write it */
1377 if (IS_MOBILE(dev) && !IS_I830(dev))
1378 assert_panel_unlocked(dev_priv, crtc->pipe);
1379
1380 I915_WRITE(reg, dpll);
1381
1382 /* Wait for the clocks to stabilize. */
1383 POSTING_READ(reg);
1384 udelay(150);
1385
1386 if (INTEL_INFO(dev)->gen >= 4) {
1387 I915_WRITE(DPLL_MD(crtc->pipe),
1388 crtc->config.dpll_hw_state.dpll_md);
1389 } else {
1390 /* The pixel multiplier can only be updated once the
1391 * DPLL is enabled and the clocks are stable.
1392 *
1393 * So write it again.
1394 */
1395 I915_WRITE(reg, dpll);
1396 }
1397
1398 /* We do this three times for luck */
1399 I915_WRITE(reg, dpll);
1400 POSTING_READ(reg);
1401 udelay(150); /* wait for warmup */
1402 I915_WRITE(reg, dpll);
1403 POSTING_READ(reg);
1404 udelay(150); /* wait for warmup */
1405 I915_WRITE(reg, dpll);
1406 POSTING_READ(reg);
1407 udelay(150); /* wait for warmup */
1408 }
1409
1410 /**
1411 * i9xx_disable_pll - disable a PLL
1412 * @dev_priv: i915 private structure
1413 * @pipe: pipe PLL to disable
1414 *
1415 * Disable the PLL for @pipe, making sure the pipe is off first.
1416 *
1417 * Note! This is for pre-ILK only.
1418 */
1419 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1420 {
1421 /* Don't disable pipe A or pipe A PLLs if needed */
1422 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1423 return;
1424
1425 /* Make sure the pipe isn't still relying on us */
1426 assert_pipe_disabled(dev_priv, pipe);
1427
1428 I915_WRITE(DPLL(pipe), 0);
1429 POSTING_READ(DPLL(pipe));
1430 }
1431
1432 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1433 {
1434 u32 port_mask;
1435
1436 if (!port)
1437 port_mask = DPLL_PORTB_READY_MASK;
1438 else
1439 port_mask = DPLL_PORTC_READY_MASK;
1440
1441 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1442 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1443 'B' + port, I915_READ(DPLL(0)));
1444 }
1445
1446 /**
1447 * ironlake_enable_shared_dpll - enable PCH PLL
1448 * @dev_priv: i915 private structure
1449 * @pipe: pipe PLL to enable
1450 *
1451 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1452 * drives the transcoder clock.
1453 */
1454 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1455 {
1456 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1457 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1458
1459 /* PCH PLLs only available on ILK, SNB and IVB */
1460 BUG_ON(dev_priv->info->gen < 5);
1461 if (WARN_ON(pll == NULL))
1462 return;
1463
1464 if (WARN_ON(pll->refcount == 0))
1465 return;
1466
1467 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1468 pll->name, pll->active, pll->on,
1469 crtc->base.base.id);
1470
1471 if (pll->active++) {
1472 WARN_ON(!pll->on);
1473 assert_shared_dpll_enabled(dev_priv, pll);
1474 return;
1475 }
1476 WARN_ON(pll->on);
1477
1478 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1479 pll->enable(dev_priv, pll);
1480 pll->on = true;
1481 }
1482
1483 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1484 {
1485 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1486 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1487
1488 /* PCH only available on ILK+ */
1489 BUG_ON(dev_priv->info->gen < 5);
1490 if (WARN_ON(pll == NULL))
1491 return;
1492
1493 if (WARN_ON(pll->refcount == 0))
1494 return;
1495
1496 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1497 pll->name, pll->active, pll->on,
1498 crtc->base.base.id);
1499
1500 if (WARN_ON(pll->active == 0)) {
1501 assert_shared_dpll_disabled(dev_priv, pll);
1502 return;
1503 }
1504
1505 assert_shared_dpll_enabled(dev_priv, pll);
1506 WARN_ON(!pll->on);
1507 if (--pll->active)
1508 return;
1509
1510 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1511 pll->disable(dev_priv, pll);
1512 pll->on = false;
1513 }
1514
1515 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1516 enum pipe pipe)
1517 {
1518 struct drm_device *dev = dev_priv->dev;
1519 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1521 uint32_t reg, val, pipeconf_val;
1522
1523 /* PCH only available on ILK+ */
1524 BUG_ON(dev_priv->info->gen < 5);
1525
1526 /* Make sure PCH DPLL is enabled */
1527 assert_shared_dpll_enabled(dev_priv,
1528 intel_crtc_to_shared_dpll(intel_crtc));
1529
1530 /* FDI must be feeding us bits for PCH ports */
1531 assert_fdi_tx_enabled(dev_priv, pipe);
1532 assert_fdi_rx_enabled(dev_priv, pipe);
1533
1534 if (HAS_PCH_CPT(dev)) {
1535 /* Workaround: Set the timing override bit before enabling the
1536 * pch transcoder. */
1537 reg = TRANS_CHICKEN2(pipe);
1538 val = I915_READ(reg);
1539 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1540 I915_WRITE(reg, val);
1541 }
1542
1543 reg = PCH_TRANSCONF(pipe);
1544 val = I915_READ(reg);
1545 pipeconf_val = I915_READ(PIPECONF(pipe));
1546
1547 if (HAS_PCH_IBX(dev_priv->dev)) {
1548 /*
1549 * make the BPC in transcoder be consistent with
1550 * that in pipeconf reg.
1551 */
1552 val &= ~PIPECONF_BPC_MASK;
1553 val |= pipeconf_val & PIPECONF_BPC_MASK;
1554 }
1555
1556 val &= ~TRANS_INTERLACE_MASK;
1557 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1558 if (HAS_PCH_IBX(dev_priv->dev) &&
1559 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1560 val |= TRANS_LEGACY_INTERLACED_ILK;
1561 else
1562 val |= TRANS_INTERLACED;
1563 else
1564 val |= TRANS_PROGRESSIVE;
1565
1566 I915_WRITE(reg, val | TRANS_ENABLE);
1567 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1568 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1569 }
1570
1571 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1572 enum transcoder cpu_transcoder)
1573 {
1574 u32 val, pipeconf_val;
1575
1576 /* PCH only available on ILK+ */
1577 BUG_ON(dev_priv->info->gen < 5);
1578
1579 /* FDI must be feeding us bits for PCH ports */
1580 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1581 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1582
1583 /* Workaround: set timing override bit. */
1584 val = I915_READ(_TRANSA_CHICKEN2);
1585 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1586 I915_WRITE(_TRANSA_CHICKEN2, val);
1587
1588 val = TRANS_ENABLE;
1589 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1590
1591 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1592 PIPECONF_INTERLACED_ILK)
1593 val |= TRANS_INTERLACED;
1594 else
1595 val |= TRANS_PROGRESSIVE;
1596
1597 I915_WRITE(LPT_TRANSCONF, val);
1598 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1599 DRM_ERROR("Failed to enable PCH transcoder\n");
1600 }
1601
1602 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1603 enum pipe pipe)
1604 {
1605 struct drm_device *dev = dev_priv->dev;
1606 uint32_t reg, val;
1607
1608 /* FDI relies on the transcoder */
1609 assert_fdi_tx_disabled(dev_priv, pipe);
1610 assert_fdi_rx_disabled(dev_priv, pipe);
1611
1612 /* Ports must be off as well */
1613 assert_pch_ports_disabled(dev_priv, pipe);
1614
1615 reg = PCH_TRANSCONF(pipe);
1616 val = I915_READ(reg);
1617 val &= ~TRANS_ENABLE;
1618 I915_WRITE(reg, val);
1619 /* wait for PCH transcoder off, transcoder state */
1620 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1621 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1622
1623 if (!HAS_PCH_IBX(dev)) {
1624 /* Workaround: Clear the timing override chicken bit again. */
1625 reg = TRANS_CHICKEN2(pipe);
1626 val = I915_READ(reg);
1627 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1628 I915_WRITE(reg, val);
1629 }
1630 }
1631
1632 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1633 {
1634 u32 val;
1635
1636 val = I915_READ(LPT_TRANSCONF);
1637 val &= ~TRANS_ENABLE;
1638 I915_WRITE(LPT_TRANSCONF, val);
1639 /* wait for PCH transcoder off, transcoder state */
1640 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1641 DRM_ERROR("Failed to disable PCH transcoder\n");
1642
1643 /* Workaround: clear timing override bit. */
1644 val = I915_READ(_TRANSA_CHICKEN2);
1645 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1646 I915_WRITE(_TRANSA_CHICKEN2, val);
1647 }
1648
1649 /**
1650 * intel_enable_pipe - enable a pipe, asserting requirements
1651 * @dev_priv: i915 private structure
1652 * @pipe: pipe to enable
1653 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1654 *
1655 * Enable @pipe, making sure that various hardware specific requirements
1656 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1657 *
1658 * @pipe should be %PIPE_A or %PIPE_B.
1659 *
1660 * Will wait until the pipe is actually running (i.e. first vblank) before
1661 * returning.
1662 */
1663 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1664 bool pch_port)
1665 {
1666 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1667 pipe);
1668 enum pipe pch_transcoder;
1669 int reg;
1670 u32 val;
1671
1672 assert_planes_disabled(dev_priv, pipe);
1673 assert_sprites_disabled(dev_priv, pipe);
1674
1675 if (HAS_PCH_LPT(dev_priv->dev))
1676 pch_transcoder = TRANSCODER_A;
1677 else
1678 pch_transcoder = pipe;
1679
1680 /*
1681 * A pipe without a PLL won't actually be able to drive bits from
1682 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1683 * need the check.
1684 */
1685 if (!HAS_PCH_SPLIT(dev_priv->dev))
1686 assert_pll_enabled(dev_priv, pipe);
1687 else {
1688 if (pch_port) {
1689 /* if driving the PCH, we need FDI enabled */
1690 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1691 assert_fdi_tx_pll_enabled(dev_priv,
1692 (enum pipe) cpu_transcoder);
1693 }
1694 /* FIXME: assert CPU port conditions for SNB+ */
1695 }
1696
1697 reg = PIPECONF(cpu_transcoder);
1698 val = I915_READ(reg);
1699 if (val & PIPECONF_ENABLE)
1700 return;
1701
1702 I915_WRITE(reg, val | PIPECONF_ENABLE);
1703 intel_wait_for_vblank(dev_priv->dev, pipe);
1704 }
1705
1706 /**
1707 * intel_disable_pipe - disable a pipe, asserting requirements
1708 * @dev_priv: i915 private structure
1709 * @pipe: pipe to disable
1710 *
1711 * Disable @pipe, making sure that various hardware specific requirements
1712 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1713 *
1714 * @pipe should be %PIPE_A or %PIPE_B.
1715 *
1716 * Will wait until the pipe has shut down before returning.
1717 */
1718 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1719 enum pipe pipe)
1720 {
1721 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1722 pipe);
1723 int reg;
1724 u32 val;
1725
1726 /*
1727 * Make sure planes won't keep trying to pump pixels to us,
1728 * or we might hang the display.
1729 */
1730 assert_planes_disabled(dev_priv, pipe);
1731 assert_sprites_disabled(dev_priv, pipe);
1732
1733 /* Don't disable pipe A or pipe A PLLs if needed */
1734 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1735 return;
1736
1737 reg = PIPECONF(cpu_transcoder);
1738 val = I915_READ(reg);
1739 if ((val & PIPECONF_ENABLE) == 0)
1740 return;
1741
1742 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1743 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1744 }
1745
1746 /*
1747 * Plane regs are double buffered, going from enabled->disabled needs a
1748 * trigger in order to latch. The display address reg provides this.
1749 */
1750 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1751 enum plane plane)
1752 {
1753 if (dev_priv->info->gen >= 4)
1754 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1755 else
1756 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1757 }
1758
1759 /**
1760 * intel_enable_plane - enable a display plane on a given pipe
1761 * @dev_priv: i915 private structure
1762 * @plane: plane to enable
1763 * @pipe: pipe being fed
1764 *
1765 * Enable @plane on @pipe, making sure that @pipe is running first.
1766 */
1767 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1768 enum plane plane, enum pipe pipe)
1769 {
1770 int reg;
1771 u32 val;
1772
1773 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1774 assert_pipe_enabled(dev_priv, pipe);
1775
1776 reg = DSPCNTR(plane);
1777 val = I915_READ(reg);
1778 if (val & DISPLAY_PLANE_ENABLE)
1779 return;
1780
1781 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1782 intel_flush_display_plane(dev_priv, plane);
1783 intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 /**
1787 * intel_disable_plane - disable a display plane
1788 * @dev_priv: i915 private structure
1789 * @plane: plane to disable
1790 * @pipe: pipe consuming the data
1791 *
1792 * Disable @plane; should be an independent operation.
1793 */
1794 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1795 enum plane plane, enum pipe pipe)
1796 {
1797 int reg;
1798 u32 val;
1799
1800 reg = DSPCNTR(plane);
1801 val = I915_READ(reg);
1802 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1803 return;
1804
1805 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1806 intel_flush_display_plane(dev_priv, plane);
1807 intel_wait_for_vblank(dev_priv->dev, pipe);
1808 }
1809
1810 static bool need_vtd_wa(struct drm_device *dev)
1811 {
1812 #ifdef CONFIG_INTEL_IOMMU
1813 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1814 return true;
1815 #endif
1816 return false;
1817 }
1818
1819 int
1820 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1821 struct drm_i915_gem_object *obj,
1822 struct intel_ring_buffer *pipelined)
1823 {
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 u32 alignment;
1826 int ret;
1827
1828 switch (obj->tiling_mode) {
1829 case I915_TILING_NONE:
1830 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1831 alignment = 128 * 1024;
1832 else if (INTEL_INFO(dev)->gen >= 4)
1833 alignment = 4 * 1024;
1834 else
1835 alignment = 64 * 1024;
1836 break;
1837 case I915_TILING_X:
1838 /* pin() will align the object as required by fence */
1839 alignment = 0;
1840 break;
1841 case I915_TILING_Y:
1842 /* Despite that we check this in framebuffer_init userspace can
1843 * screw us over and change the tiling after the fact. Only
1844 * pinned buffers can't change their tiling. */
1845 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1846 return -EINVAL;
1847 default:
1848 BUG();
1849 }
1850
1851 /* Note that the w/a also requires 64 PTE of padding following the
1852 * bo. We currently fill all unused PTE with the shadow page and so
1853 * we should always have valid PTE following the scanout preventing
1854 * the VT-d warning.
1855 */
1856 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1857 alignment = 256 * 1024;
1858
1859 dev_priv->mm.interruptible = false;
1860 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1861 if (ret)
1862 goto err_interruptible;
1863
1864 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1865 * fence, whereas 965+ only requires a fence if using
1866 * framebuffer compression. For simplicity, we always install
1867 * a fence as the cost is not that onerous.
1868 */
1869 ret = i915_gem_object_get_fence(obj);
1870 if (ret)
1871 goto err_unpin;
1872
1873 i915_gem_object_pin_fence(obj);
1874
1875 dev_priv->mm.interruptible = true;
1876 return 0;
1877
1878 err_unpin:
1879 i915_gem_object_unpin_from_display_plane(obj);
1880 err_interruptible:
1881 dev_priv->mm.interruptible = true;
1882 return ret;
1883 }
1884
1885 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1886 {
1887 i915_gem_object_unpin_fence(obj);
1888 i915_gem_object_unpin_from_display_plane(obj);
1889 }
1890
1891 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1892 * is assumed to be a power-of-two. */
1893 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1894 unsigned int tiling_mode,
1895 unsigned int cpp,
1896 unsigned int pitch)
1897 {
1898 if (tiling_mode != I915_TILING_NONE) {
1899 unsigned int tile_rows, tiles;
1900
1901 tile_rows = *y / 8;
1902 *y %= 8;
1903
1904 tiles = *x / (512/cpp);
1905 *x %= 512/cpp;
1906
1907 return tile_rows * pitch * 8 + tiles * 4096;
1908 } else {
1909 unsigned int offset;
1910
1911 offset = *y * pitch + *x * cpp;
1912 *y = 0;
1913 *x = (offset & 4095) / cpp;
1914 return offset & -4096;
1915 }
1916 }
1917
1918 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1919 int x, int y)
1920 {
1921 struct drm_device *dev = crtc->dev;
1922 struct drm_i915_private *dev_priv = dev->dev_private;
1923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1924 struct intel_framebuffer *intel_fb;
1925 struct drm_i915_gem_object *obj;
1926 int plane = intel_crtc->plane;
1927 unsigned long linear_offset;
1928 u32 dspcntr;
1929 u32 reg;
1930
1931 switch (plane) {
1932 case 0:
1933 case 1:
1934 break;
1935 default:
1936 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1937 return -EINVAL;
1938 }
1939
1940 intel_fb = to_intel_framebuffer(fb);
1941 obj = intel_fb->obj;
1942
1943 reg = DSPCNTR(plane);
1944 dspcntr = I915_READ(reg);
1945 /* Mask out pixel format bits in case we change it */
1946 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1947 switch (fb->pixel_format) {
1948 case DRM_FORMAT_C8:
1949 dspcntr |= DISPPLANE_8BPP;
1950 break;
1951 case DRM_FORMAT_XRGB1555:
1952 case DRM_FORMAT_ARGB1555:
1953 dspcntr |= DISPPLANE_BGRX555;
1954 break;
1955 case DRM_FORMAT_RGB565:
1956 dspcntr |= DISPPLANE_BGRX565;
1957 break;
1958 case DRM_FORMAT_XRGB8888:
1959 case DRM_FORMAT_ARGB8888:
1960 dspcntr |= DISPPLANE_BGRX888;
1961 break;
1962 case DRM_FORMAT_XBGR8888:
1963 case DRM_FORMAT_ABGR8888:
1964 dspcntr |= DISPPLANE_RGBX888;
1965 break;
1966 case DRM_FORMAT_XRGB2101010:
1967 case DRM_FORMAT_ARGB2101010:
1968 dspcntr |= DISPPLANE_BGRX101010;
1969 break;
1970 case DRM_FORMAT_XBGR2101010:
1971 case DRM_FORMAT_ABGR2101010:
1972 dspcntr |= DISPPLANE_RGBX101010;
1973 break;
1974 default:
1975 BUG();
1976 }
1977
1978 if (INTEL_INFO(dev)->gen >= 4) {
1979 if (obj->tiling_mode != I915_TILING_NONE)
1980 dspcntr |= DISPPLANE_TILED;
1981 else
1982 dspcntr &= ~DISPPLANE_TILED;
1983 }
1984
1985 if (IS_G4X(dev))
1986 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1987
1988 I915_WRITE(reg, dspcntr);
1989
1990 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1991
1992 if (INTEL_INFO(dev)->gen >= 4) {
1993 intel_crtc->dspaddr_offset =
1994 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1995 fb->bits_per_pixel / 8,
1996 fb->pitches[0]);
1997 linear_offset -= intel_crtc->dspaddr_offset;
1998 } else {
1999 intel_crtc->dspaddr_offset = linear_offset;
2000 }
2001
2002 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2004 fb->pitches[0]);
2005 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2006 if (INTEL_INFO(dev)->gen >= 4) {
2007 I915_MODIFY_DISPBASE(DSPSURF(plane),
2008 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2009 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2010 I915_WRITE(DSPLINOFF(plane), linear_offset);
2011 } else
2012 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2013 POSTING_READ(reg);
2014
2015 return 0;
2016 }
2017
2018 static int ironlake_update_plane(struct drm_crtc *crtc,
2019 struct drm_framebuffer *fb, int x, int y)
2020 {
2021 struct drm_device *dev = crtc->dev;
2022 struct drm_i915_private *dev_priv = dev->dev_private;
2023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024 struct intel_framebuffer *intel_fb;
2025 struct drm_i915_gem_object *obj;
2026 int plane = intel_crtc->plane;
2027 unsigned long linear_offset;
2028 u32 dspcntr;
2029 u32 reg;
2030
2031 switch (plane) {
2032 case 0:
2033 case 1:
2034 case 2:
2035 break;
2036 default:
2037 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2038 return -EINVAL;
2039 }
2040
2041 intel_fb = to_intel_framebuffer(fb);
2042 obj = intel_fb->obj;
2043
2044 reg = DSPCNTR(plane);
2045 dspcntr = I915_READ(reg);
2046 /* Mask out pixel format bits in case we change it */
2047 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048 switch (fb->pixel_format) {
2049 case DRM_FORMAT_C8:
2050 dspcntr |= DISPPLANE_8BPP;
2051 break;
2052 case DRM_FORMAT_RGB565:
2053 dspcntr |= DISPPLANE_BGRX565;
2054 break;
2055 case DRM_FORMAT_XRGB8888:
2056 case DRM_FORMAT_ARGB8888:
2057 dspcntr |= DISPPLANE_BGRX888;
2058 break;
2059 case DRM_FORMAT_XBGR8888:
2060 case DRM_FORMAT_ABGR8888:
2061 dspcntr |= DISPPLANE_RGBX888;
2062 break;
2063 case DRM_FORMAT_XRGB2101010:
2064 case DRM_FORMAT_ARGB2101010:
2065 dspcntr |= DISPPLANE_BGRX101010;
2066 break;
2067 case DRM_FORMAT_XBGR2101010:
2068 case DRM_FORMAT_ABGR2101010:
2069 dspcntr |= DISPPLANE_RGBX101010;
2070 break;
2071 default:
2072 BUG();
2073 }
2074
2075 if (obj->tiling_mode != I915_TILING_NONE)
2076 dspcntr |= DISPPLANE_TILED;
2077 else
2078 dspcntr &= ~DISPPLANE_TILED;
2079
2080 if (IS_HASWELL(dev))
2081 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2082 else
2083 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2084
2085 I915_WRITE(reg, dspcntr);
2086
2087 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2088 intel_crtc->dspaddr_offset =
2089 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2090 fb->bits_per_pixel / 8,
2091 fb->pitches[0]);
2092 linear_offset -= intel_crtc->dspaddr_offset;
2093
2094 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2095 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2096 fb->pitches[0]);
2097 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2098 I915_MODIFY_DISPBASE(DSPSURF(plane),
2099 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2100 if (IS_HASWELL(dev)) {
2101 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2102 } else {
2103 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2104 I915_WRITE(DSPLINOFF(plane), linear_offset);
2105 }
2106 POSTING_READ(reg);
2107
2108 return 0;
2109 }
2110
2111 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2112 static int
2113 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2114 int x, int y, enum mode_set_atomic state)
2115 {
2116 struct drm_device *dev = crtc->dev;
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119 if (dev_priv->display.disable_fbc)
2120 dev_priv->display.disable_fbc(dev);
2121 intel_increase_pllclock(crtc);
2122
2123 return dev_priv->display.update_plane(crtc, fb, x, y);
2124 }
2125
2126 void intel_display_handle_reset(struct drm_device *dev)
2127 {
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129 struct drm_crtc *crtc;
2130
2131 /*
2132 * Flips in the rings have been nuked by the reset,
2133 * so complete all pending flips so that user space
2134 * will get its events and not get stuck.
2135 *
2136 * Also update the base address of all primary
2137 * planes to the the last fb to make sure we're
2138 * showing the correct fb after a reset.
2139 *
2140 * Need to make two loops over the crtcs so that we
2141 * don't try to grab a crtc mutex before the
2142 * pending_flip_queue really got woken up.
2143 */
2144
2145 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2147 enum plane plane = intel_crtc->plane;
2148
2149 intel_prepare_page_flip(dev, plane);
2150 intel_finish_page_flip_plane(dev, plane);
2151 }
2152
2153 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2155
2156 mutex_lock(&crtc->mutex);
2157 if (intel_crtc->active)
2158 dev_priv->display.update_plane(crtc, crtc->fb,
2159 crtc->x, crtc->y);
2160 mutex_unlock(&crtc->mutex);
2161 }
2162 }
2163
2164 static int
2165 intel_finish_fb(struct drm_framebuffer *old_fb)
2166 {
2167 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2168 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2169 bool was_interruptible = dev_priv->mm.interruptible;
2170 int ret;
2171
2172 /* Big Hammer, we also need to ensure that any pending
2173 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2174 * current scanout is retired before unpinning the old
2175 * framebuffer.
2176 *
2177 * This should only fail upon a hung GPU, in which case we
2178 * can safely continue.
2179 */
2180 dev_priv->mm.interruptible = false;
2181 ret = i915_gem_object_finish_gpu(obj);
2182 dev_priv->mm.interruptible = was_interruptible;
2183
2184 return ret;
2185 }
2186
2187 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2188 {
2189 struct drm_device *dev = crtc->dev;
2190 struct drm_i915_master_private *master_priv;
2191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2192
2193 if (!dev->primary->master)
2194 return;
2195
2196 master_priv = dev->primary->master->driver_priv;
2197 if (!master_priv->sarea_priv)
2198 return;
2199
2200 switch (intel_crtc->pipe) {
2201 case 0:
2202 master_priv->sarea_priv->pipeA_x = x;
2203 master_priv->sarea_priv->pipeA_y = y;
2204 break;
2205 case 1:
2206 master_priv->sarea_priv->pipeB_x = x;
2207 master_priv->sarea_priv->pipeB_y = y;
2208 break;
2209 default:
2210 break;
2211 }
2212 }
2213
2214 static int
2215 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2216 struct drm_framebuffer *fb)
2217 {
2218 struct drm_device *dev = crtc->dev;
2219 struct drm_i915_private *dev_priv = dev->dev_private;
2220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2221 struct drm_framebuffer *old_fb;
2222 int ret;
2223
2224 /* no fb bound */
2225 if (!fb) {
2226 DRM_ERROR("No FB bound\n");
2227 return 0;
2228 }
2229
2230 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2231 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2232 plane_name(intel_crtc->plane),
2233 INTEL_INFO(dev)->num_pipes);
2234 return -EINVAL;
2235 }
2236
2237 mutex_lock(&dev->struct_mutex);
2238 ret = intel_pin_and_fence_fb_obj(dev,
2239 to_intel_framebuffer(fb)->obj,
2240 NULL);
2241 if (ret != 0) {
2242 mutex_unlock(&dev->struct_mutex);
2243 DRM_ERROR("pin & fence failed\n");
2244 return ret;
2245 }
2246
2247 /* Update pipe size and adjust fitter if needed */
2248 if (i915_fastboot) {
2249 I915_WRITE(PIPESRC(intel_crtc->pipe),
2250 ((crtc->mode.hdisplay - 1) << 16) |
2251 (crtc->mode.vdisplay - 1));
2252 if (!intel_crtc->config.pch_pfit.size &&
2253 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2254 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2255 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2256 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2257 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2258 }
2259 }
2260
2261 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2262 if (ret) {
2263 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2264 mutex_unlock(&dev->struct_mutex);
2265 DRM_ERROR("failed to update base address\n");
2266 return ret;
2267 }
2268
2269 old_fb = crtc->fb;
2270 crtc->fb = fb;
2271 crtc->x = x;
2272 crtc->y = y;
2273
2274 if (old_fb) {
2275 if (intel_crtc->active && old_fb != fb)
2276 intel_wait_for_vblank(dev, intel_crtc->pipe);
2277 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2278 }
2279
2280 intel_update_fbc(dev);
2281 intel_edp_psr_update(dev);
2282 mutex_unlock(&dev->struct_mutex);
2283
2284 intel_crtc_update_sarea_pos(crtc, x, y);
2285
2286 return 0;
2287 }
2288
2289 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2290 {
2291 struct drm_device *dev = crtc->dev;
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2294 int pipe = intel_crtc->pipe;
2295 u32 reg, temp;
2296
2297 /* enable normal train */
2298 reg = FDI_TX_CTL(pipe);
2299 temp = I915_READ(reg);
2300 if (IS_IVYBRIDGE(dev)) {
2301 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2302 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2303 } else {
2304 temp &= ~FDI_LINK_TRAIN_NONE;
2305 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2306 }
2307 I915_WRITE(reg, temp);
2308
2309 reg = FDI_RX_CTL(pipe);
2310 temp = I915_READ(reg);
2311 if (HAS_PCH_CPT(dev)) {
2312 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2313 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2314 } else {
2315 temp &= ~FDI_LINK_TRAIN_NONE;
2316 temp |= FDI_LINK_TRAIN_NONE;
2317 }
2318 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2319
2320 /* wait one idle pattern time */
2321 POSTING_READ(reg);
2322 udelay(1000);
2323
2324 /* IVB wants error correction enabled */
2325 if (IS_IVYBRIDGE(dev))
2326 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2327 FDI_FE_ERRC_ENABLE);
2328 }
2329
2330 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2331 {
2332 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2333 }
2334
2335 static void ivb_modeset_global_resources(struct drm_device *dev)
2336 {
2337 struct drm_i915_private *dev_priv = dev->dev_private;
2338 struct intel_crtc *pipe_B_crtc =
2339 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2340 struct intel_crtc *pipe_C_crtc =
2341 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2342 uint32_t temp;
2343
2344 /*
2345 * When everything is off disable fdi C so that we could enable fdi B
2346 * with all lanes. Note that we don't care about enabled pipes without
2347 * an enabled pch encoder.
2348 */
2349 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2350 !pipe_has_enabled_pch(pipe_C_crtc)) {
2351 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2352 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2353
2354 temp = I915_READ(SOUTH_CHICKEN1);
2355 temp &= ~FDI_BC_BIFURCATION_SELECT;
2356 DRM_DEBUG_KMS("disabling fdi C rx\n");
2357 I915_WRITE(SOUTH_CHICKEN1, temp);
2358 }
2359 }
2360
2361 /* The FDI link training functions for ILK/Ibexpeak. */
2362 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2363 {
2364 struct drm_device *dev = crtc->dev;
2365 struct drm_i915_private *dev_priv = dev->dev_private;
2366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2367 int pipe = intel_crtc->pipe;
2368 int plane = intel_crtc->plane;
2369 u32 reg, temp, tries;
2370
2371 /* FDI needs bits from pipe & plane first */
2372 assert_pipe_enabled(dev_priv, pipe);
2373 assert_plane_enabled(dev_priv, plane);
2374
2375 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2376 for train result */
2377 reg = FDI_RX_IMR(pipe);
2378 temp = I915_READ(reg);
2379 temp &= ~FDI_RX_SYMBOL_LOCK;
2380 temp &= ~FDI_RX_BIT_LOCK;
2381 I915_WRITE(reg, temp);
2382 I915_READ(reg);
2383 udelay(150);
2384
2385 /* enable CPU FDI TX and PCH FDI RX */
2386 reg = FDI_TX_CTL(pipe);
2387 temp = I915_READ(reg);
2388 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2389 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2390 temp &= ~FDI_LINK_TRAIN_NONE;
2391 temp |= FDI_LINK_TRAIN_PATTERN_1;
2392 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2393
2394 reg = FDI_RX_CTL(pipe);
2395 temp = I915_READ(reg);
2396 temp &= ~FDI_LINK_TRAIN_NONE;
2397 temp |= FDI_LINK_TRAIN_PATTERN_1;
2398 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2399
2400 POSTING_READ(reg);
2401 udelay(150);
2402
2403 /* Ironlake workaround, enable clock pointer after FDI enable*/
2404 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2405 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2406 FDI_RX_PHASE_SYNC_POINTER_EN);
2407
2408 reg = FDI_RX_IIR(pipe);
2409 for (tries = 0; tries < 5; tries++) {
2410 temp = I915_READ(reg);
2411 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2412
2413 if ((temp & FDI_RX_BIT_LOCK)) {
2414 DRM_DEBUG_KMS("FDI train 1 done.\n");
2415 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2416 break;
2417 }
2418 }
2419 if (tries == 5)
2420 DRM_ERROR("FDI train 1 fail!\n");
2421
2422 /* Train 2 */
2423 reg = FDI_TX_CTL(pipe);
2424 temp = I915_READ(reg);
2425 temp &= ~FDI_LINK_TRAIN_NONE;
2426 temp |= FDI_LINK_TRAIN_PATTERN_2;
2427 I915_WRITE(reg, temp);
2428
2429 reg = FDI_RX_CTL(pipe);
2430 temp = I915_READ(reg);
2431 temp &= ~FDI_LINK_TRAIN_NONE;
2432 temp |= FDI_LINK_TRAIN_PATTERN_2;
2433 I915_WRITE(reg, temp);
2434
2435 POSTING_READ(reg);
2436 udelay(150);
2437
2438 reg = FDI_RX_IIR(pipe);
2439 for (tries = 0; tries < 5; tries++) {
2440 temp = I915_READ(reg);
2441 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2442
2443 if (temp & FDI_RX_SYMBOL_LOCK) {
2444 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2445 DRM_DEBUG_KMS("FDI train 2 done.\n");
2446 break;
2447 }
2448 }
2449 if (tries == 5)
2450 DRM_ERROR("FDI train 2 fail!\n");
2451
2452 DRM_DEBUG_KMS("FDI train done\n");
2453
2454 }
2455
2456 static const int snb_b_fdi_train_param[] = {
2457 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2458 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2459 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2460 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2461 };
2462
2463 /* The FDI link training functions for SNB/Cougarpoint. */
2464 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2465 {
2466 struct drm_device *dev = crtc->dev;
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469 int pipe = intel_crtc->pipe;
2470 u32 reg, temp, i, retry;
2471
2472 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2473 for train result */
2474 reg = FDI_RX_IMR(pipe);
2475 temp = I915_READ(reg);
2476 temp &= ~FDI_RX_SYMBOL_LOCK;
2477 temp &= ~FDI_RX_BIT_LOCK;
2478 I915_WRITE(reg, temp);
2479
2480 POSTING_READ(reg);
2481 udelay(150);
2482
2483 /* enable CPU FDI TX and PCH FDI RX */
2484 reg = FDI_TX_CTL(pipe);
2485 temp = I915_READ(reg);
2486 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2487 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2488 temp &= ~FDI_LINK_TRAIN_NONE;
2489 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2491 /* SNB-B */
2492 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2493 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2494
2495 I915_WRITE(FDI_RX_MISC(pipe),
2496 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2497
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 if (HAS_PCH_CPT(dev)) {
2501 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503 } else {
2504 temp &= ~FDI_LINK_TRAIN_NONE;
2505 temp |= FDI_LINK_TRAIN_PATTERN_1;
2506 }
2507 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509 POSTING_READ(reg);
2510 udelay(150);
2511
2512 for (i = 0; i < 4; i++) {
2513 reg = FDI_TX_CTL(pipe);
2514 temp = I915_READ(reg);
2515 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516 temp |= snb_b_fdi_train_param[i];
2517 I915_WRITE(reg, temp);
2518
2519 POSTING_READ(reg);
2520 udelay(500);
2521
2522 for (retry = 0; retry < 5; retry++) {
2523 reg = FDI_RX_IIR(pipe);
2524 temp = I915_READ(reg);
2525 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2526 if (temp & FDI_RX_BIT_LOCK) {
2527 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528 DRM_DEBUG_KMS("FDI train 1 done.\n");
2529 break;
2530 }
2531 udelay(50);
2532 }
2533 if (retry < 5)
2534 break;
2535 }
2536 if (i == 4)
2537 DRM_ERROR("FDI train 1 fail!\n");
2538
2539 /* Train 2 */
2540 reg = FDI_TX_CTL(pipe);
2541 temp = I915_READ(reg);
2542 temp &= ~FDI_LINK_TRAIN_NONE;
2543 temp |= FDI_LINK_TRAIN_PATTERN_2;
2544 if (IS_GEN6(dev)) {
2545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546 /* SNB-B */
2547 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2548 }
2549 I915_WRITE(reg, temp);
2550
2551 reg = FDI_RX_CTL(pipe);
2552 temp = I915_READ(reg);
2553 if (HAS_PCH_CPT(dev)) {
2554 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2555 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2556 } else {
2557 temp &= ~FDI_LINK_TRAIN_NONE;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559 }
2560 I915_WRITE(reg, temp);
2561
2562 POSTING_READ(reg);
2563 udelay(150);
2564
2565 for (i = 0; i < 4; i++) {
2566 reg = FDI_TX_CTL(pipe);
2567 temp = I915_READ(reg);
2568 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2569 temp |= snb_b_fdi_train_param[i];
2570 I915_WRITE(reg, temp);
2571
2572 POSTING_READ(reg);
2573 udelay(500);
2574
2575 for (retry = 0; retry < 5; retry++) {
2576 reg = FDI_RX_IIR(pipe);
2577 temp = I915_READ(reg);
2578 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2579 if (temp & FDI_RX_SYMBOL_LOCK) {
2580 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2581 DRM_DEBUG_KMS("FDI train 2 done.\n");
2582 break;
2583 }
2584 udelay(50);
2585 }
2586 if (retry < 5)
2587 break;
2588 }
2589 if (i == 4)
2590 DRM_ERROR("FDI train 2 fail!\n");
2591
2592 DRM_DEBUG_KMS("FDI train done.\n");
2593 }
2594
2595 /* Manual link training for Ivy Bridge A0 parts */
2596 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598 struct drm_device *dev = crtc->dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 int pipe = intel_crtc->pipe;
2602 u32 reg, temp, i, j;
2603
2604 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605 for train result */
2606 reg = FDI_RX_IMR(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~FDI_RX_SYMBOL_LOCK;
2609 temp &= ~FDI_RX_BIT_LOCK;
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2616 I915_READ(FDI_RX_IIR(pipe)));
2617
2618 /* Try each vswing and preemphasis setting twice before moving on */
2619 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2620 /* disable first in case we need to retry */
2621 reg = FDI_TX_CTL(pipe);
2622 temp = I915_READ(reg);
2623 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2624 temp &= ~FDI_TX_ENABLE;
2625 I915_WRITE(reg, temp);
2626
2627 reg = FDI_RX_CTL(pipe);
2628 temp = I915_READ(reg);
2629 temp &= ~FDI_LINK_TRAIN_AUTO;
2630 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2631 temp &= ~FDI_RX_ENABLE;
2632 I915_WRITE(reg, temp);
2633
2634 /* enable CPU FDI TX and PCH FDI RX */
2635 reg = FDI_TX_CTL(pipe);
2636 temp = I915_READ(reg);
2637 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2638 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2639 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2640 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641 temp |= snb_b_fdi_train_param[j/2];
2642 temp |= FDI_COMPOSITE_SYNC;
2643 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2644
2645 I915_WRITE(FDI_RX_MISC(pipe),
2646 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2647
2648 reg = FDI_RX_CTL(pipe);
2649 temp = I915_READ(reg);
2650 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2651 temp |= FDI_COMPOSITE_SYNC;
2652 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2653
2654 POSTING_READ(reg);
2655 udelay(1); /* should be 0.5us */
2656
2657 for (i = 0; i < 4; i++) {
2658 reg = FDI_RX_IIR(pipe);
2659 temp = I915_READ(reg);
2660 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2661
2662 if (temp & FDI_RX_BIT_LOCK ||
2663 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2664 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2665 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2666 i);
2667 break;
2668 }
2669 udelay(1); /* should be 0.5us */
2670 }
2671 if (i == 4) {
2672 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2673 continue;
2674 }
2675
2676 /* Train 2 */
2677 reg = FDI_TX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2680 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2681 I915_WRITE(reg, temp);
2682
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2686 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2687 I915_WRITE(reg, temp);
2688
2689 POSTING_READ(reg);
2690 udelay(2); /* should be 1.5us */
2691
2692 for (i = 0; i < 4; i++) {
2693 reg = FDI_RX_IIR(pipe);
2694 temp = I915_READ(reg);
2695 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2696
2697 if (temp & FDI_RX_SYMBOL_LOCK ||
2698 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2699 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2700 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2701 i);
2702 goto train_done;
2703 }
2704 udelay(2); /* should be 1.5us */
2705 }
2706 if (i == 4)
2707 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2708 }
2709
2710 train_done:
2711 DRM_DEBUG_KMS("FDI train done.\n");
2712 }
2713
2714 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2715 {
2716 struct drm_device *dev = intel_crtc->base.dev;
2717 struct drm_i915_private *dev_priv = dev->dev_private;
2718 int pipe = intel_crtc->pipe;
2719 u32 reg, temp;
2720
2721
2722 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2723 reg = FDI_RX_CTL(pipe);
2724 temp = I915_READ(reg);
2725 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2726 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2727 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2728 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2729
2730 POSTING_READ(reg);
2731 udelay(200);
2732
2733 /* Switch from Rawclk to PCDclk */
2734 temp = I915_READ(reg);
2735 I915_WRITE(reg, temp | FDI_PCDCLK);
2736
2737 POSTING_READ(reg);
2738 udelay(200);
2739
2740 /* Enable CPU FDI TX PLL, always on for Ironlake */
2741 reg = FDI_TX_CTL(pipe);
2742 temp = I915_READ(reg);
2743 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2744 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2745
2746 POSTING_READ(reg);
2747 udelay(100);
2748 }
2749 }
2750
2751 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2752 {
2753 struct drm_device *dev = intel_crtc->base.dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 int pipe = intel_crtc->pipe;
2756 u32 reg, temp;
2757
2758 /* Switch from PCDclk to Rawclk */
2759 reg = FDI_RX_CTL(pipe);
2760 temp = I915_READ(reg);
2761 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2762
2763 /* Disable CPU FDI TX PLL */
2764 reg = FDI_TX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2767
2768 POSTING_READ(reg);
2769 udelay(100);
2770
2771 reg = FDI_RX_CTL(pipe);
2772 temp = I915_READ(reg);
2773 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2774
2775 /* Wait for the clocks to turn off. */
2776 POSTING_READ(reg);
2777 udelay(100);
2778 }
2779
2780 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2781 {
2782 struct drm_device *dev = crtc->dev;
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2785 int pipe = intel_crtc->pipe;
2786 u32 reg, temp;
2787
2788 /* disable CPU FDI tx and PCH FDI rx */
2789 reg = FDI_TX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2792 POSTING_READ(reg);
2793
2794 reg = FDI_RX_CTL(pipe);
2795 temp = I915_READ(reg);
2796 temp &= ~(0x7 << 16);
2797 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2798 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2799
2800 POSTING_READ(reg);
2801 udelay(100);
2802
2803 /* Ironlake workaround, disable clock pointer after downing FDI */
2804 if (HAS_PCH_IBX(dev)) {
2805 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2806 }
2807
2808 /* still set train pattern 1 */
2809 reg = FDI_TX_CTL(pipe);
2810 temp = I915_READ(reg);
2811 temp &= ~FDI_LINK_TRAIN_NONE;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813 I915_WRITE(reg, temp);
2814
2815 reg = FDI_RX_CTL(pipe);
2816 temp = I915_READ(reg);
2817 if (HAS_PCH_CPT(dev)) {
2818 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2819 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2820 } else {
2821 temp &= ~FDI_LINK_TRAIN_NONE;
2822 temp |= FDI_LINK_TRAIN_PATTERN_1;
2823 }
2824 /* BPC in FDI rx is consistent with that in PIPECONF */
2825 temp &= ~(0x07 << 16);
2826 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2827 I915_WRITE(reg, temp);
2828
2829 POSTING_READ(reg);
2830 udelay(100);
2831 }
2832
2833 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2834 {
2835 struct drm_device *dev = crtc->dev;
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838 unsigned long flags;
2839 bool pending;
2840
2841 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843 return false;
2844
2845 spin_lock_irqsave(&dev->event_lock, flags);
2846 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2847 spin_unlock_irqrestore(&dev->event_lock, flags);
2848
2849 return pending;
2850 }
2851
2852 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2853 {
2854 struct drm_device *dev = crtc->dev;
2855 struct drm_i915_private *dev_priv = dev->dev_private;
2856
2857 if (crtc->fb == NULL)
2858 return;
2859
2860 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2861
2862 wait_event(dev_priv->pending_flip_queue,
2863 !intel_crtc_has_pending_flip(crtc));
2864
2865 mutex_lock(&dev->struct_mutex);
2866 intel_finish_fb(crtc->fb);
2867 mutex_unlock(&dev->struct_mutex);
2868 }
2869
2870 /* Program iCLKIP clock to the desired frequency */
2871 static void lpt_program_iclkip(struct drm_crtc *crtc)
2872 {
2873 struct drm_device *dev = crtc->dev;
2874 struct drm_i915_private *dev_priv = dev->dev_private;
2875 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2876 u32 temp;
2877
2878 mutex_lock(&dev_priv->dpio_lock);
2879
2880 /* It is necessary to ungate the pixclk gate prior to programming
2881 * the divisors, and gate it back when it is done.
2882 */
2883 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2884
2885 /* Disable SSCCTL */
2886 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2887 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2888 SBI_SSCCTL_DISABLE,
2889 SBI_ICLK);
2890
2891 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2892 if (crtc->mode.clock == 20000) {
2893 auxdiv = 1;
2894 divsel = 0x41;
2895 phaseinc = 0x20;
2896 } else {
2897 /* The iCLK virtual clock root frequency is in MHz,
2898 * but the crtc->mode.clock in in KHz. To get the divisors,
2899 * it is necessary to divide one by another, so we
2900 * convert the virtual clock precision to KHz here for higher
2901 * precision.
2902 */
2903 u32 iclk_virtual_root_freq = 172800 * 1000;
2904 u32 iclk_pi_range = 64;
2905 u32 desired_divisor, msb_divisor_value, pi_value;
2906
2907 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2908 msb_divisor_value = desired_divisor / iclk_pi_range;
2909 pi_value = desired_divisor % iclk_pi_range;
2910
2911 auxdiv = 0;
2912 divsel = msb_divisor_value - 2;
2913 phaseinc = pi_value;
2914 }
2915
2916 /* This should not happen with any sane values */
2917 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2918 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2919 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2920 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2921
2922 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2923 crtc->mode.clock,
2924 auxdiv,
2925 divsel,
2926 phasedir,
2927 phaseinc);
2928
2929 /* Program SSCDIVINTPHASE6 */
2930 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2931 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2932 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2933 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2934 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2935 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2936 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2937 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2938
2939 /* Program SSCAUXDIV */
2940 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2941 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2942 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2943 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2944
2945 /* Enable modulator and associated divider */
2946 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2947 temp &= ~SBI_SSCCTL_DISABLE;
2948 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2949
2950 /* Wait for initialization time */
2951 udelay(24);
2952
2953 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2954
2955 mutex_unlock(&dev_priv->dpio_lock);
2956 }
2957
2958 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2959 enum pipe pch_transcoder)
2960 {
2961 struct drm_device *dev = crtc->base.dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2964
2965 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2966 I915_READ(HTOTAL(cpu_transcoder)));
2967 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2968 I915_READ(HBLANK(cpu_transcoder)));
2969 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2970 I915_READ(HSYNC(cpu_transcoder)));
2971
2972 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2973 I915_READ(VTOTAL(cpu_transcoder)));
2974 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2975 I915_READ(VBLANK(cpu_transcoder)));
2976 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2977 I915_READ(VSYNC(cpu_transcoder)));
2978 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2979 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2980 }
2981
2982 /*
2983 * Enable PCH resources required for PCH ports:
2984 * - PCH PLLs
2985 * - FDI training & RX/TX
2986 * - update transcoder timings
2987 * - DP transcoding bits
2988 * - transcoder
2989 */
2990 static void ironlake_pch_enable(struct drm_crtc *crtc)
2991 {
2992 struct drm_device *dev = crtc->dev;
2993 struct drm_i915_private *dev_priv = dev->dev_private;
2994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2995 int pipe = intel_crtc->pipe;
2996 u32 reg, temp;
2997
2998 assert_pch_transcoder_disabled(dev_priv, pipe);
2999
3000 /* Write the TU size bits before fdi link training, so that error
3001 * detection works. */
3002 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3003 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3004
3005 /* For PCH output, training FDI link */
3006 dev_priv->display.fdi_link_train(crtc);
3007
3008 /* We need to program the right clock selection before writing the pixel
3009 * mutliplier into the DPLL. */
3010 if (HAS_PCH_CPT(dev)) {
3011 u32 sel;
3012
3013 temp = I915_READ(PCH_DPLL_SEL);
3014 temp |= TRANS_DPLL_ENABLE(pipe);
3015 sel = TRANS_DPLLB_SEL(pipe);
3016 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3017 temp |= sel;
3018 else
3019 temp &= ~sel;
3020 I915_WRITE(PCH_DPLL_SEL, temp);
3021 }
3022
3023 /* XXX: pch pll's can be enabled any time before we enable the PCH
3024 * transcoder, and we actually should do this to not upset any PCH
3025 * transcoder that already use the clock when we share it.
3026 *
3027 * Note that enable_shared_dpll tries to do the right thing, but
3028 * get_shared_dpll unconditionally resets the pll - we need that to have
3029 * the right LVDS enable sequence. */
3030 ironlake_enable_shared_dpll(intel_crtc);
3031
3032 /* set transcoder timing, panel must allow it */
3033 assert_panel_unlocked(dev_priv, pipe);
3034 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3035
3036 intel_fdi_normal_train(crtc);
3037
3038 /* For PCH DP, enable TRANS_DP_CTL */
3039 if (HAS_PCH_CPT(dev) &&
3040 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3041 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3042 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3043 reg = TRANS_DP_CTL(pipe);
3044 temp = I915_READ(reg);
3045 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3046 TRANS_DP_SYNC_MASK |
3047 TRANS_DP_BPC_MASK);
3048 temp |= (TRANS_DP_OUTPUT_ENABLE |
3049 TRANS_DP_ENH_FRAMING);
3050 temp |= bpc << 9; /* same format but at 11:9 */
3051
3052 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3053 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3054 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3055 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3056
3057 switch (intel_trans_dp_port_sel(crtc)) {
3058 case PCH_DP_B:
3059 temp |= TRANS_DP_PORT_SEL_B;
3060 break;
3061 case PCH_DP_C:
3062 temp |= TRANS_DP_PORT_SEL_C;
3063 break;
3064 case PCH_DP_D:
3065 temp |= TRANS_DP_PORT_SEL_D;
3066 break;
3067 default:
3068 BUG();
3069 }
3070
3071 I915_WRITE(reg, temp);
3072 }
3073
3074 ironlake_enable_pch_transcoder(dev_priv, pipe);
3075 }
3076
3077 static void lpt_pch_enable(struct drm_crtc *crtc)
3078 {
3079 struct drm_device *dev = crtc->dev;
3080 struct drm_i915_private *dev_priv = dev->dev_private;
3081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3082 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3083
3084 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3085
3086 lpt_program_iclkip(crtc);
3087
3088 /* Set transcoder timing. */
3089 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3090
3091 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3092 }
3093
3094 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3095 {
3096 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3097
3098 if (pll == NULL)
3099 return;
3100
3101 if (pll->refcount == 0) {
3102 WARN(1, "bad %s refcount\n", pll->name);
3103 return;
3104 }
3105
3106 if (--pll->refcount == 0) {
3107 WARN_ON(pll->on);
3108 WARN_ON(pll->active);
3109 }
3110
3111 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3112 }
3113
3114 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3115 {
3116 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3117 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3118 enum intel_dpll_id i;
3119
3120 if (pll) {
3121 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3122 crtc->base.base.id, pll->name);
3123 intel_put_shared_dpll(crtc);
3124 }
3125
3126 if (HAS_PCH_IBX(dev_priv->dev)) {
3127 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3128 i = (enum intel_dpll_id) crtc->pipe;
3129 pll = &dev_priv->shared_dplls[i];
3130
3131 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3132 crtc->base.base.id, pll->name);
3133
3134 goto found;
3135 }
3136
3137 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3138 pll = &dev_priv->shared_dplls[i];
3139
3140 /* Only want to check enabled timings first */
3141 if (pll->refcount == 0)
3142 continue;
3143
3144 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3145 sizeof(pll->hw_state)) == 0) {
3146 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3147 crtc->base.base.id,
3148 pll->name, pll->refcount, pll->active);
3149
3150 goto found;
3151 }
3152 }
3153
3154 /* Ok no matching timings, maybe there's a free one? */
3155 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3156 pll = &dev_priv->shared_dplls[i];
3157 if (pll->refcount == 0) {
3158 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3159 crtc->base.base.id, pll->name);
3160 goto found;
3161 }
3162 }
3163
3164 return NULL;
3165
3166 found:
3167 crtc->config.shared_dpll = i;
3168 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3169 pipe_name(crtc->pipe));
3170
3171 if (pll->active == 0) {
3172 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3173 sizeof(pll->hw_state));
3174
3175 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3176 WARN_ON(pll->on);
3177 assert_shared_dpll_disabled(dev_priv, pll);
3178
3179 pll->mode_set(dev_priv, pll);
3180 }
3181 pll->refcount++;
3182
3183 return pll;
3184 }
3185
3186 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3187 {
3188 struct drm_i915_private *dev_priv = dev->dev_private;
3189 int dslreg = PIPEDSL(pipe);
3190 u32 temp;
3191
3192 temp = I915_READ(dslreg);
3193 udelay(500);
3194 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3195 if (wait_for(I915_READ(dslreg) != temp, 5))
3196 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3197 }
3198 }
3199
3200 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3201 {
3202 struct drm_device *dev = crtc->base.dev;
3203 struct drm_i915_private *dev_priv = dev->dev_private;
3204 int pipe = crtc->pipe;
3205
3206 if (crtc->config.pch_pfit.size) {
3207 /* Force use of hard-coded filter coefficients
3208 * as some pre-programmed values are broken,
3209 * e.g. x201.
3210 */
3211 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3212 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3213 PF_PIPE_SEL_IVB(pipe));
3214 else
3215 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3216 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3217 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3218 }
3219 }
3220
3221 static void intel_enable_planes(struct drm_crtc *crtc)
3222 {
3223 struct drm_device *dev = crtc->dev;
3224 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3225 struct intel_plane *intel_plane;
3226
3227 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3228 if (intel_plane->pipe == pipe)
3229 intel_plane_restore(&intel_plane->base);
3230 }
3231
3232 static void intel_disable_planes(struct drm_crtc *crtc)
3233 {
3234 struct drm_device *dev = crtc->dev;
3235 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3236 struct intel_plane *intel_plane;
3237
3238 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3239 if (intel_plane->pipe == pipe)
3240 intel_plane_disable(&intel_plane->base);
3241 }
3242
3243 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3244 {
3245 struct drm_device *dev = crtc->dev;
3246 struct drm_i915_private *dev_priv = dev->dev_private;
3247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3248 struct intel_encoder *encoder;
3249 int pipe = intel_crtc->pipe;
3250 int plane = intel_crtc->plane;
3251
3252 WARN_ON(!crtc->enabled);
3253
3254 if (intel_crtc->active)
3255 return;
3256
3257 intel_crtc->active = true;
3258
3259 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3260 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3261
3262 intel_update_watermarks(dev);
3263
3264 for_each_encoder_on_crtc(dev, crtc, encoder)
3265 if (encoder->pre_enable)
3266 encoder->pre_enable(encoder);
3267
3268 if (intel_crtc->config.has_pch_encoder) {
3269 /* Note: FDI PLL enabling _must_ be done before we enable the
3270 * cpu pipes, hence this is separate from all the other fdi/pch
3271 * enabling. */
3272 ironlake_fdi_pll_enable(intel_crtc);
3273 } else {
3274 assert_fdi_tx_disabled(dev_priv, pipe);
3275 assert_fdi_rx_disabled(dev_priv, pipe);
3276 }
3277
3278 ironlake_pfit_enable(intel_crtc);
3279
3280 /*
3281 * On ILK+ LUT must be loaded before the pipe is running but with
3282 * clocks enabled
3283 */
3284 intel_crtc_load_lut(crtc);
3285
3286 intel_enable_pipe(dev_priv, pipe,
3287 intel_crtc->config.has_pch_encoder);
3288 intel_enable_plane(dev_priv, plane, pipe);
3289 intel_enable_planes(crtc);
3290 intel_crtc_update_cursor(crtc, true);
3291
3292 if (intel_crtc->config.has_pch_encoder)
3293 ironlake_pch_enable(crtc);
3294
3295 mutex_lock(&dev->struct_mutex);
3296 intel_update_fbc(dev);
3297 mutex_unlock(&dev->struct_mutex);
3298
3299 for_each_encoder_on_crtc(dev, crtc, encoder)
3300 encoder->enable(encoder);
3301
3302 if (HAS_PCH_CPT(dev))
3303 cpt_verify_modeset(dev, intel_crtc->pipe);
3304
3305 /*
3306 * There seems to be a race in PCH platform hw (at least on some
3307 * outputs) where an enabled pipe still completes any pageflip right
3308 * away (as if the pipe is off) instead of waiting for vblank. As soon
3309 * as the first vblank happend, everything works as expected. Hence just
3310 * wait for one vblank before returning to avoid strange things
3311 * happening.
3312 */
3313 intel_wait_for_vblank(dev, intel_crtc->pipe);
3314 }
3315
3316 /* IPS only exists on ULT machines and is tied to pipe A. */
3317 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3318 {
3319 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3320 }
3321
3322 static void hsw_enable_ips(struct intel_crtc *crtc)
3323 {
3324 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3325
3326 if (!crtc->config.ips_enabled)
3327 return;
3328
3329 /* We can only enable IPS after we enable a plane and wait for a vblank.
3330 * We guarantee that the plane is enabled by calling intel_enable_ips
3331 * only after intel_enable_plane. And intel_enable_plane already waits
3332 * for a vblank, so all we need to do here is to enable the IPS bit. */
3333 assert_plane_enabled(dev_priv, crtc->plane);
3334 I915_WRITE(IPS_CTL, IPS_ENABLE);
3335 }
3336
3337 static void hsw_disable_ips(struct intel_crtc *crtc)
3338 {
3339 struct drm_device *dev = crtc->base.dev;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3341
3342 if (!crtc->config.ips_enabled)
3343 return;
3344
3345 assert_plane_enabled(dev_priv, crtc->plane);
3346 I915_WRITE(IPS_CTL, 0);
3347
3348 /* We need to wait for a vblank before we can disable the plane. */
3349 intel_wait_for_vblank(dev, crtc->pipe);
3350 }
3351
3352 static void haswell_crtc_enable(struct drm_crtc *crtc)
3353 {
3354 struct drm_device *dev = crtc->dev;
3355 struct drm_i915_private *dev_priv = dev->dev_private;
3356 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3357 struct intel_encoder *encoder;
3358 int pipe = intel_crtc->pipe;
3359 int plane = intel_crtc->plane;
3360
3361 WARN_ON(!crtc->enabled);
3362
3363 if (intel_crtc->active)
3364 return;
3365
3366 intel_crtc->active = true;
3367
3368 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3369 if (intel_crtc->config.has_pch_encoder)
3370 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3371
3372 intel_update_watermarks(dev);
3373
3374 if (intel_crtc->config.has_pch_encoder)
3375 dev_priv->display.fdi_link_train(crtc);
3376
3377 for_each_encoder_on_crtc(dev, crtc, encoder)
3378 if (encoder->pre_enable)
3379 encoder->pre_enable(encoder);
3380
3381 intel_ddi_enable_pipe_clock(intel_crtc);
3382
3383 ironlake_pfit_enable(intel_crtc);
3384
3385 /*
3386 * On ILK+ LUT must be loaded before the pipe is running but with
3387 * clocks enabled
3388 */
3389 intel_crtc_load_lut(crtc);
3390
3391 intel_ddi_set_pipe_settings(crtc);
3392 intel_ddi_enable_transcoder_func(crtc);
3393
3394 intel_enable_pipe(dev_priv, pipe,
3395 intel_crtc->config.has_pch_encoder);
3396 intel_enable_plane(dev_priv, plane, pipe);
3397 intel_enable_planes(crtc);
3398 intel_crtc_update_cursor(crtc, true);
3399
3400 hsw_enable_ips(intel_crtc);
3401
3402 if (intel_crtc->config.has_pch_encoder)
3403 lpt_pch_enable(crtc);
3404
3405 mutex_lock(&dev->struct_mutex);
3406 intel_update_fbc(dev);
3407 mutex_unlock(&dev->struct_mutex);
3408
3409 for_each_encoder_on_crtc(dev, crtc, encoder)
3410 encoder->enable(encoder);
3411
3412 /*
3413 * There seems to be a race in PCH platform hw (at least on some
3414 * outputs) where an enabled pipe still completes any pageflip right
3415 * away (as if the pipe is off) instead of waiting for vblank. As soon
3416 * as the first vblank happend, everything works as expected. Hence just
3417 * wait for one vblank before returning to avoid strange things
3418 * happening.
3419 */
3420 intel_wait_for_vblank(dev, intel_crtc->pipe);
3421 }
3422
3423 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3424 {
3425 struct drm_device *dev = crtc->base.dev;
3426 struct drm_i915_private *dev_priv = dev->dev_private;
3427 int pipe = crtc->pipe;
3428
3429 /* To avoid upsetting the power well on haswell only disable the pfit if
3430 * it's in use. The hw state code will make sure we get this right. */
3431 if (crtc->config.pch_pfit.size) {
3432 I915_WRITE(PF_CTL(pipe), 0);
3433 I915_WRITE(PF_WIN_POS(pipe), 0);
3434 I915_WRITE(PF_WIN_SZ(pipe), 0);
3435 }
3436 }
3437
3438 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3439 {
3440 struct drm_device *dev = crtc->dev;
3441 struct drm_i915_private *dev_priv = dev->dev_private;
3442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3443 struct intel_encoder *encoder;
3444 int pipe = intel_crtc->pipe;
3445 int plane = intel_crtc->plane;
3446 u32 reg, temp;
3447
3448
3449 if (!intel_crtc->active)
3450 return;
3451
3452 for_each_encoder_on_crtc(dev, crtc, encoder)
3453 encoder->disable(encoder);
3454
3455 intel_crtc_wait_for_pending_flips(crtc);
3456 drm_vblank_off(dev, pipe);
3457
3458 if (dev_priv->fbc.plane == plane)
3459 intel_disable_fbc(dev);
3460
3461 intel_crtc_update_cursor(crtc, false);
3462 intel_disable_planes(crtc);
3463 intel_disable_plane(dev_priv, plane, pipe);
3464
3465 if (intel_crtc->config.has_pch_encoder)
3466 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3467
3468 intel_disable_pipe(dev_priv, pipe);
3469
3470 ironlake_pfit_disable(intel_crtc);
3471
3472 for_each_encoder_on_crtc(dev, crtc, encoder)
3473 if (encoder->post_disable)
3474 encoder->post_disable(encoder);
3475
3476 if (intel_crtc->config.has_pch_encoder) {
3477 ironlake_fdi_disable(crtc);
3478
3479 ironlake_disable_pch_transcoder(dev_priv, pipe);
3480 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3481
3482 if (HAS_PCH_CPT(dev)) {
3483 /* disable TRANS_DP_CTL */
3484 reg = TRANS_DP_CTL(pipe);
3485 temp = I915_READ(reg);
3486 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3487 TRANS_DP_PORT_SEL_MASK);
3488 temp |= TRANS_DP_PORT_SEL_NONE;
3489 I915_WRITE(reg, temp);
3490
3491 /* disable DPLL_SEL */
3492 temp = I915_READ(PCH_DPLL_SEL);
3493 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3494 I915_WRITE(PCH_DPLL_SEL, temp);
3495 }
3496
3497 /* disable PCH DPLL */
3498 intel_disable_shared_dpll(intel_crtc);
3499
3500 ironlake_fdi_pll_disable(intel_crtc);
3501 }
3502
3503 intel_crtc->active = false;
3504 intel_update_watermarks(dev);
3505
3506 mutex_lock(&dev->struct_mutex);
3507 intel_update_fbc(dev);
3508 mutex_unlock(&dev->struct_mutex);
3509 }
3510
3511 static void haswell_crtc_disable(struct drm_crtc *crtc)
3512 {
3513 struct drm_device *dev = crtc->dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516 struct intel_encoder *encoder;
3517 int pipe = intel_crtc->pipe;
3518 int plane = intel_crtc->plane;
3519 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3520
3521 if (!intel_crtc->active)
3522 return;
3523
3524 for_each_encoder_on_crtc(dev, crtc, encoder)
3525 encoder->disable(encoder);
3526
3527 intel_crtc_wait_for_pending_flips(crtc);
3528 drm_vblank_off(dev, pipe);
3529
3530 /* FBC must be disabled before disabling the plane on HSW. */
3531 if (dev_priv->fbc.plane == plane)
3532 intel_disable_fbc(dev);
3533
3534 hsw_disable_ips(intel_crtc);
3535
3536 intel_crtc_update_cursor(crtc, false);
3537 intel_disable_planes(crtc);
3538 intel_disable_plane(dev_priv, plane, pipe);
3539
3540 if (intel_crtc->config.has_pch_encoder)
3541 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3542 intel_disable_pipe(dev_priv, pipe);
3543
3544 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3545
3546 ironlake_pfit_disable(intel_crtc);
3547
3548 intel_ddi_disable_pipe_clock(intel_crtc);
3549
3550 for_each_encoder_on_crtc(dev, crtc, encoder)
3551 if (encoder->post_disable)
3552 encoder->post_disable(encoder);
3553
3554 if (intel_crtc->config.has_pch_encoder) {
3555 lpt_disable_pch_transcoder(dev_priv);
3556 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3557 intel_ddi_fdi_disable(crtc);
3558 }
3559
3560 intel_crtc->active = false;
3561 intel_update_watermarks(dev);
3562
3563 mutex_lock(&dev->struct_mutex);
3564 intel_update_fbc(dev);
3565 mutex_unlock(&dev->struct_mutex);
3566 }
3567
3568 static void ironlake_crtc_off(struct drm_crtc *crtc)
3569 {
3570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571 intel_put_shared_dpll(intel_crtc);
3572 }
3573
3574 static void haswell_crtc_off(struct drm_crtc *crtc)
3575 {
3576 intel_ddi_put_crtc_pll(crtc);
3577 }
3578
3579 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3580 {
3581 if (!enable && intel_crtc->overlay) {
3582 struct drm_device *dev = intel_crtc->base.dev;
3583 struct drm_i915_private *dev_priv = dev->dev_private;
3584
3585 mutex_lock(&dev->struct_mutex);
3586 dev_priv->mm.interruptible = false;
3587 (void) intel_overlay_switch_off(intel_crtc->overlay);
3588 dev_priv->mm.interruptible = true;
3589 mutex_unlock(&dev->struct_mutex);
3590 }
3591
3592 /* Let userspace switch the overlay on again. In most cases userspace
3593 * has to recompute where to put it anyway.
3594 */
3595 }
3596
3597 /**
3598 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3599 * cursor plane briefly if not already running after enabling the display
3600 * plane.
3601 * This workaround avoids occasional blank screens when self refresh is
3602 * enabled.
3603 */
3604 static void
3605 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3606 {
3607 u32 cntl = I915_READ(CURCNTR(pipe));
3608
3609 if ((cntl & CURSOR_MODE) == 0) {
3610 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3611
3612 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3613 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3614 intel_wait_for_vblank(dev_priv->dev, pipe);
3615 I915_WRITE(CURCNTR(pipe), cntl);
3616 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3617 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3618 }
3619 }
3620
3621 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3622 {
3623 struct drm_device *dev = crtc->base.dev;
3624 struct drm_i915_private *dev_priv = dev->dev_private;
3625 struct intel_crtc_config *pipe_config = &crtc->config;
3626
3627 if (!crtc->config.gmch_pfit.control)
3628 return;
3629
3630 /*
3631 * The panel fitter should only be adjusted whilst the pipe is disabled,
3632 * according to register description and PRM.
3633 */
3634 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3635 assert_pipe_disabled(dev_priv, crtc->pipe);
3636
3637 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3638 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3639
3640 /* Border color in case we don't scale up to the full screen. Black by
3641 * default, change to something else for debugging. */
3642 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3643 }
3644
3645 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3646 {
3647 struct drm_device *dev = crtc->dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650 struct intel_encoder *encoder;
3651 int pipe = intel_crtc->pipe;
3652 int plane = intel_crtc->plane;
3653
3654 WARN_ON(!crtc->enabled);
3655
3656 if (intel_crtc->active)
3657 return;
3658
3659 intel_crtc->active = true;
3660 intel_update_watermarks(dev);
3661
3662 for_each_encoder_on_crtc(dev, crtc, encoder)
3663 if (encoder->pre_pll_enable)
3664 encoder->pre_pll_enable(encoder);
3665
3666 vlv_enable_pll(intel_crtc);
3667
3668 for_each_encoder_on_crtc(dev, crtc, encoder)
3669 if (encoder->pre_enable)
3670 encoder->pre_enable(encoder);
3671
3672 i9xx_pfit_enable(intel_crtc);
3673
3674 intel_crtc_load_lut(crtc);
3675
3676 intel_enable_pipe(dev_priv, pipe, false);
3677 intel_enable_plane(dev_priv, plane, pipe);
3678 intel_enable_planes(crtc);
3679 intel_crtc_update_cursor(crtc, true);
3680
3681 intel_update_fbc(dev);
3682
3683 for_each_encoder_on_crtc(dev, crtc, encoder)
3684 encoder->enable(encoder);
3685 }
3686
3687 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3688 {
3689 struct drm_device *dev = crtc->dev;
3690 struct drm_i915_private *dev_priv = dev->dev_private;
3691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3692 struct intel_encoder *encoder;
3693 int pipe = intel_crtc->pipe;
3694 int plane = intel_crtc->plane;
3695
3696 WARN_ON(!crtc->enabled);
3697
3698 if (intel_crtc->active)
3699 return;
3700
3701 intel_crtc->active = true;
3702 intel_update_watermarks(dev);
3703
3704 for_each_encoder_on_crtc(dev, crtc, encoder)
3705 if (encoder->pre_enable)
3706 encoder->pre_enable(encoder);
3707
3708 i9xx_enable_pll(intel_crtc);
3709
3710 i9xx_pfit_enable(intel_crtc);
3711
3712 intel_crtc_load_lut(crtc);
3713
3714 intel_enable_pipe(dev_priv, pipe, false);
3715 intel_enable_plane(dev_priv, plane, pipe);
3716 intel_enable_planes(crtc);
3717 /* The fixup needs to happen before cursor is enabled */
3718 if (IS_G4X(dev))
3719 g4x_fixup_plane(dev_priv, pipe);
3720 intel_crtc_update_cursor(crtc, true);
3721
3722 /* Give the overlay scaler a chance to enable if it's on this pipe */
3723 intel_crtc_dpms_overlay(intel_crtc, true);
3724
3725 intel_update_fbc(dev);
3726
3727 for_each_encoder_on_crtc(dev, crtc, encoder)
3728 encoder->enable(encoder);
3729 }
3730
3731 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3732 {
3733 struct drm_device *dev = crtc->base.dev;
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736 if (!crtc->config.gmch_pfit.control)
3737 return;
3738
3739 assert_pipe_disabled(dev_priv, crtc->pipe);
3740
3741 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3742 I915_READ(PFIT_CONTROL));
3743 I915_WRITE(PFIT_CONTROL, 0);
3744 }
3745
3746 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3747 {
3748 struct drm_device *dev = crtc->dev;
3749 struct drm_i915_private *dev_priv = dev->dev_private;
3750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3751 struct intel_encoder *encoder;
3752 int pipe = intel_crtc->pipe;
3753 int plane = intel_crtc->plane;
3754
3755 if (!intel_crtc->active)
3756 return;
3757
3758 for_each_encoder_on_crtc(dev, crtc, encoder)
3759 encoder->disable(encoder);
3760
3761 /* Give the overlay scaler a chance to disable if it's on this pipe */
3762 intel_crtc_wait_for_pending_flips(crtc);
3763 drm_vblank_off(dev, pipe);
3764
3765 if (dev_priv->fbc.plane == plane)
3766 intel_disable_fbc(dev);
3767
3768 intel_crtc_dpms_overlay(intel_crtc, false);
3769 intel_crtc_update_cursor(crtc, false);
3770 intel_disable_planes(crtc);
3771 intel_disable_plane(dev_priv, plane, pipe);
3772
3773 intel_disable_pipe(dev_priv, pipe);
3774
3775 i9xx_pfit_disable(intel_crtc);
3776
3777 for_each_encoder_on_crtc(dev, crtc, encoder)
3778 if (encoder->post_disable)
3779 encoder->post_disable(encoder);
3780
3781 i9xx_disable_pll(dev_priv, pipe);
3782
3783 intel_crtc->active = false;
3784 intel_update_fbc(dev);
3785 intel_update_watermarks(dev);
3786 }
3787
3788 static void i9xx_crtc_off(struct drm_crtc *crtc)
3789 {
3790 }
3791
3792 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3793 bool enabled)
3794 {
3795 struct drm_device *dev = crtc->dev;
3796 struct drm_i915_master_private *master_priv;
3797 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3798 int pipe = intel_crtc->pipe;
3799
3800 if (!dev->primary->master)
3801 return;
3802
3803 master_priv = dev->primary->master->driver_priv;
3804 if (!master_priv->sarea_priv)
3805 return;
3806
3807 switch (pipe) {
3808 case 0:
3809 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3810 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3811 break;
3812 case 1:
3813 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3814 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3815 break;
3816 default:
3817 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3818 break;
3819 }
3820 }
3821
3822 /**
3823 * Sets the power management mode of the pipe and plane.
3824 */
3825 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3826 {
3827 struct drm_device *dev = crtc->dev;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct intel_encoder *intel_encoder;
3830 bool enable = false;
3831
3832 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3833 enable |= intel_encoder->connectors_active;
3834
3835 if (enable)
3836 dev_priv->display.crtc_enable(crtc);
3837 else
3838 dev_priv->display.crtc_disable(crtc);
3839
3840 intel_crtc_update_sarea(crtc, enable);
3841 }
3842
3843 static void intel_crtc_disable(struct drm_crtc *crtc)
3844 {
3845 struct drm_device *dev = crtc->dev;
3846 struct drm_connector *connector;
3847 struct drm_i915_private *dev_priv = dev->dev_private;
3848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849
3850 /* crtc should still be enabled when we disable it. */
3851 WARN_ON(!crtc->enabled);
3852
3853 dev_priv->display.crtc_disable(crtc);
3854 intel_crtc->eld_vld = false;
3855 intel_crtc_update_sarea(crtc, false);
3856 dev_priv->display.off(crtc);
3857
3858 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3859 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3860
3861 if (crtc->fb) {
3862 mutex_lock(&dev->struct_mutex);
3863 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3864 mutex_unlock(&dev->struct_mutex);
3865 crtc->fb = NULL;
3866 }
3867
3868 /* Update computed state. */
3869 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3870 if (!connector->encoder || !connector->encoder->crtc)
3871 continue;
3872
3873 if (connector->encoder->crtc != crtc)
3874 continue;
3875
3876 connector->dpms = DRM_MODE_DPMS_OFF;
3877 to_intel_encoder(connector->encoder)->connectors_active = false;
3878 }
3879 }
3880
3881 void intel_encoder_destroy(struct drm_encoder *encoder)
3882 {
3883 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3884
3885 drm_encoder_cleanup(encoder);
3886 kfree(intel_encoder);
3887 }
3888
3889 /* Simple dpms helper for encoders with just one connector, no cloning and only
3890 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3891 * state of the entire output pipe. */
3892 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3893 {
3894 if (mode == DRM_MODE_DPMS_ON) {
3895 encoder->connectors_active = true;
3896
3897 intel_crtc_update_dpms(encoder->base.crtc);
3898 } else {
3899 encoder->connectors_active = false;
3900
3901 intel_crtc_update_dpms(encoder->base.crtc);
3902 }
3903 }
3904
3905 /* Cross check the actual hw state with our own modeset state tracking (and it's
3906 * internal consistency). */
3907 static void intel_connector_check_state(struct intel_connector *connector)
3908 {
3909 if (connector->get_hw_state(connector)) {
3910 struct intel_encoder *encoder = connector->encoder;
3911 struct drm_crtc *crtc;
3912 bool encoder_enabled;
3913 enum pipe pipe;
3914
3915 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3916 connector->base.base.id,
3917 drm_get_connector_name(&connector->base));
3918
3919 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3920 "wrong connector dpms state\n");
3921 WARN(connector->base.encoder != &encoder->base,
3922 "active connector not linked to encoder\n");
3923 WARN(!encoder->connectors_active,
3924 "encoder->connectors_active not set\n");
3925
3926 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3927 WARN(!encoder_enabled, "encoder not enabled\n");
3928 if (WARN_ON(!encoder->base.crtc))
3929 return;
3930
3931 crtc = encoder->base.crtc;
3932
3933 WARN(!crtc->enabled, "crtc not enabled\n");
3934 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3935 WARN(pipe != to_intel_crtc(crtc)->pipe,
3936 "encoder active on the wrong pipe\n");
3937 }
3938 }
3939
3940 /* Even simpler default implementation, if there's really no special case to
3941 * consider. */
3942 void intel_connector_dpms(struct drm_connector *connector, int mode)
3943 {
3944 struct intel_encoder *encoder = intel_attached_encoder(connector);
3945
3946 /* All the simple cases only support two dpms states. */
3947 if (mode != DRM_MODE_DPMS_ON)
3948 mode = DRM_MODE_DPMS_OFF;
3949
3950 if (mode == connector->dpms)
3951 return;
3952
3953 connector->dpms = mode;
3954
3955 /* Only need to change hw state when actually enabled */
3956 if (encoder->base.crtc)
3957 intel_encoder_dpms(encoder, mode);
3958 else
3959 WARN_ON(encoder->connectors_active != false);
3960
3961 intel_modeset_check_state(connector->dev);
3962 }
3963
3964 /* Simple connector->get_hw_state implementation for encoders that support only
3965 * one connector and no cloning and hence the encoder state determines the state
3966 * of the connector. */
3967 bool intel_connector_get_hw_state(struct intel_connector *connector)
3968 {
3969 enum pipe pipe = 0;
3970 struct intel_encoder *encoder = connector->encoder;
3971
3972 return encoder->get_hw_state(encoder, &pipe);
3973 }
3974
3975 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3976 struct intel_crtc_config *pipe_config)
3977 {
3978 struct drm_i915_private *dev_priv = dev->dev_private;
3979 struct intel_crtc *pipe_B_crtc =
3980 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3981
3982 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3983 pipe_name(pipe), pipe_config->fdi_lanes);
3984 if (pipe_config->fdi_lanes > 4) {
3985 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3986 pipe_name(pipe), pipe_config->fdi_lanes);
3987 return false;
3988 }
3989
3990 if (IS_HASWELL(dev)) {
3991 if (pipe_config->fdi_lanes > 2) {
3992 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3993 pipe_config->fdi_lanes);
3994 return false;
3995 } else {
3996 return true;
3997 }
3998 }
3999
4000 if (INTEL_INFO(dev)->num_pipes == 2)
4001 return true;
4002
4003 /* Ivybridge 3 pipe is really complicated */
4004 switch (pipe) {
4005 case PIPE_A:
4006 return true;
4007 case PIPE_B:
4008 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4009 pipe_config->fdi_lanes > 2) {
4010 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4011 pipe_name(pipe), pipe_config->fdi_lanes);
4012 return false;
4013 }
4014 return true;
4015 case PIPE_C:
4016 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4017 pipe_B_crtc->config.fdi_lanes <= 2) {
4018 if (pipe_config->fdi_lanes > 2) {
4019 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4020 pipe_name(pipe), pipe_config->fdi_lanes);
4021 return false;
4022 }
4023 } else {
4024 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4025 return false;
4026 }
4027 return true;
4028 default:
4029 BUG();
4030 }
4031 }
4032
4033 #define RETRY 1
4034 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4035 struct intel_crtc_config *pipe_config)
4036 {
4037 struct drm_device *dev = intel_crtc->base.dev;
4038 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4039 int lane, link_bw, fdi_dotclock;
4040 bool setup_ok, needs_recompute = false;
4041
4042 retry:
4043 /* FDI is a binary signal running at ~2.7GHz, encoding
4044 * each output octet as 10 bits. The actual frequency
4045 * is stored as a divider into a 100MHz clock, and the
4046 * mode pixel clock is stored in units of 1KHz.
4047 * Hence the bw of each lane in terms of the mode signal
4048 * is:
4049 */
4050 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4051
4052 fdi_dotclock = adjusted_mode->clock;
4053 fdi_dotclock /= pipe_config->pixel_multiplier;
4054
4055 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4056 pipe_config->pipe_bpp);
4057
4058 pipe_config->fdi_lanes = lane;
4059
4060 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4061 link_bw, &pipe_config->fdi_m_n);
4062
4063 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4064 intel_crtc->pipe, pipe_config);
4065 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4066 pipe_config->pipe_bpp -= 2*3;
4067 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4068 pipe_config->pipe_bpp);
4069 needs_recompute = true;
4070 pipe_config->bw_constrained = true;
4071
4072 goto retry;
4073 }
4074
4075 if (needs_recompute)
4076 return RETRY;
4077
4078 return setup_ok ? 0 : -EINVAL;
4079 }
4080
4081 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4082 struct intel_crtc_config *pipe_config)
4083 {
4084 pipe_config->ips_enabled = i915_enable_ips &&
4085 hsw_crtc_supports_ips(crtc) &&
4086 pipe_config->pipe_bpp <= 24;
4087 }
4088
4089 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4090 struct intel_crtc_config *pipe_config)
4091 {
4092 struct drm_device *dev = crtc->base.dev;
4093 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4094
4095 if (HAS_PCH_SPLIT(dev)) {
4096 /* FDI link clock is fixed at 2.7G */
4097 if (pipe_config->requested_mode.clock * 3
4098 > IRONLAKE_FDI_FREQ * 4)
4099 return -EINVAL;
4100 }
4101
4102 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4103 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4104 */
4105 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4106 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4107 return -EINVAL;
4108
4109 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4110 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4111 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4112 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4113 * for lvds. */
4114 pipe_config->pipe_bpp = 8*3;
4115 }
4116
4117 if (HAS_IPS(dev))
4118 hsw_compute_ips_config(crtc, pipe_config);
4119
4120 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4121 * clock survives for now. */
4122 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4123 pipe_config->shared_dpll = crtc->config.shared_dpll;
4124
4125 if (pipe_config->has_pch_encoder)
4126 return ironlake_fdi_compute_config(crtc, pipe_config);
4127
4128 return 0;
4129 }
4130
4131 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4132 {
4133 return 400000; /* FIXME */
4134 }
4135
4136 static int i945_get_display_clock_speed(struct drm_device *dev)
4137 {
4138 return 400000;
4139 }
4140
4141 static int i915_get_display_clock_speed(struct drm_device *dev)
4142 {
4143 return 333000;
4144 }
4145
4146 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4147 {
4148 return 200000;
4149 }
4150
4151 static int pnv_get_display_clock_speed(struct drm_device *dev)
4152 {
4153 u16 gcfgc = 0;
4154
4155 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4156
4157 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4158 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4159 return 267000;
4160 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4161 return 333000;
4162 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4163 return 444000;
4164 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4165 return 200000;
4166 default:
4167 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4168 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4169 return 133000;
4170 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4171 return 167000;
4172 }
4173 }
4174
4175 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4176 {
4177 u16 gcfgc = 0;
4178
4179 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4180
4181 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4182 return 133000;
4183 else {
4184 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4185 case GC_DISPLAY_CLOCK_333_MHZ:
4186 return 333000;
4187 default:
4188 case GC_DISPLAY_CLOCK_190_200_MHZ:
4189 return 190000;
4190 }
4191 }
4192 }
4193
4194 static int i865_get_display_clock_speed(struct drm_device *dev)
4195 {
4196 return 266000;
4197 }
4198
4199 static int i855_get_display_clock_speed(struct drm_device *dev)
4200 {
4201 u16 hpllcc = 0;
4202 /* Assume that the hardware is in the high speed state. This
4203 * should be the default.
4204 */
4205 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4206 case GC_CLOCK_133_200:
4207 case GC_CLOCK_100_200:
4208 return 200000;
4209 case GC_CLOCK_166_250:
4210 return 250000;
4211 case GC_CLOCK_100_133:
4212 return 133000;
4213 }
4214
4215 /* Shouldn't happen */
4216 return 0;
4217 }
4218
4219 static int i830_get_display_clock_speed(struct drm_device *dev)
4220 {
4221 return 133000;
4222 }
4223
4224 static void
4225 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4226 {
4227 while (*num > DATA_LINK_M_N_MASK ||
4228 *den > DATA_LINK_M_N_MASK) {
4229 *num >>= 1;
4230 *den >>= 1;
4231 }
4232 }
4233
4234 static void compute_m_n(unsigned int m, unsigned int n,
4235 uint32_t *ret_m, uint32_t *ret_n)
4236 {
4237 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4238 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4239 intel_reduce_m_n_ratio(ret_m, ret_n);
4240 }
4241
4242 void
4243 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4244 int pixel_clock, int link_clock,
4245 struct intel_link_m_n *m_n)
4246 {
4247 m_n->tu = 64;
4248
4249 compute_m_n(bits_per_pixel * pixel_clock,
4250 link_clock * nlanes * 8,
4251 &m_n->gmch_m, &m_n->gmch_n);
4252
4253 compute_m_n(pixel_clock, link_clock,
4254 &m_n->link_m, &m_n->link_n);
4255 }
4256
4257 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4258 {
4259 if (i915_panel_use_ssc >= 0)
4260 return i915_panel_use_ssc != 0;
4261 return dev_priv->vbt.lvds_use_ssc
4262 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4263 }
4264
4265 static int vlv_get_refclk(struct drm_crtc *crtc)
4266 {
4267 struct drm_device *dev = crtc->dev;
4268 struct drm_i915_private *dev_priv = dev->dev_private;
4269 int refclk = 27000; /* for DP & HDMI */
4270
4271 return 100000; /* only one validated so far */
4272
4273 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4274 refclk = 96000;
4275 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4276 if (intel_panel_use_ssc(dev_priv))
4277 refclk = 100000;
4278 else
4279 refclk = 96000;
4280 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4281 refclk = 100000;
4282 }
4283
4284 return refclk;
4285 }
4286
4287 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4288 {
4289 struct drm_device *dev = crtc->dev;
4290 struct drm_i915_private *dev_priv = dev->dev_private;
4291 int refclk;
4292
4293 if (IS_VALLEYVIEW(dev)) {
4294 refclk = vlv_get_refclk(crtc);
4295 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4296 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4297 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4298 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4299 refclk / 1000);
4300 } else if (!IS_GEN2(dev)) {
4301 refclk = 96000;
4302 } else {
4303 refclk = 48000;
4304 }
4305
4306 return refclk;
4307 }
4308
4309 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4310 {
4311 return (1 << dpll->n) << 16 | dpll->m2;
4312 }
4313
4314 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4315 {
4316 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4317 }
4318
4319 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4320 intel_clock_t *reduced_clock)
4321 {
4322 struct drm_device *dev = crtc->base.dev;
4323 struct drm_i915_private *dev_priv = dev->dev_private;
4324 int pipe = crtc->pipe;
4325 u32 fp, fp2 = 0;
4326
4327 if (IS_PINEVIEW(dev)) {
4328 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4329 if (reduced_clock)
4330 fp2 = pnv_dpll_compute_fp(reduced_clock);
4331 } else {
4332 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4333 if (reduced_clock)
4334 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4335 }
4336
4337 I915_WRITE(FP0(pipe), fp);
4338 crtc->config.dpll_hw_state.fp0 = fp;
4339
4340 crtc->lowfreq_avail = false;
4341 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4342 reduced_clock && i915_powersave) {
4343 I915_WRITE(FP1(pipe), fp2);
4344 crtc->config.dpll_hw_state.fp1 = fp2;
4345 crtc->lowfreq_avail = true;
4346 } else {
4347 I915_WRITE(FP1(pipe), fp);
4348 crtc->config.dpll_hw_state.fp1 = fp;
4349 }
4350 }
4351
4352 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4353 {
4354 u32 reg_val;
4355
4356 /*
4357 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4358 * and set it to a reasonable value instead.
4359 */
4360 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4361 reg_val &= 0xffffff00;
4362 reg_val |= 0x00000030;
4363 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4364
4365 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4366 reg_val &= 0x8cffffff;
4367 reg_val = 0x8c000000;
4368 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4369
4370 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4371 reg_val &= 0xffffff00;
4372 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4373
4374 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4375 reg_val &= 0x00ffffff;
4376 reg_val |= 0xb0000000;
4377 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4378 }
4379
4380 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4381 struct intel_link_m_n *m_n)
4382 {
4383 struct drm_device *dev = crtc->base.dev;
4384 struct drm_i915_private *dev_priv = dev->dev_private;
4385 int pipe = crtc->pipe;
4386
4387 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4388 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4389 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4390 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4391 }
4392
4393 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4394 struct intel_link_m_n *m_n)
4395 {
4396 struct drm_device *dev = crtc->base.dev;
4397 struct drm_i915_private *dev_priv = dev->dev_private;
4398 int pipe = crtc->pipe;
4399 enum transcoder transcoder = crtc->config.cpu_transcoder;
4400
4401 if (INTEL_INFO(dev)->gen >= 5) {
4402 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4403 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4404 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4405 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4406 } else {
4407 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4408 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4409 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4410 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4411 }
4412 }
4413
4414 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4415 {
4416 if (crtc->config.has_pch_encoder)
4417 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4418 else
4419 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4420 }
4421
4422 static void vlv_update_pll(struct intel_crtc *crtc)
4423 {
4424 struct drm_device *dev = crtc->base.dev;
4425 struct drm_i915_private *dev_priv = dev->dev_private;
4426 int pipe = crtc->pipe;
4427 u32 dpll, mdiv;
4428 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4429 u32 coreclk, reg_val, dpll_md;
4430
4431 mutex_lock(&dev_priv->dpio_lock);
4432
4433 bestn = crtc->config.dpll.n;
4434 bestm1 = crtc->config.dpll.m1;
4435 bestm2 = crtc->config.dpll.m2;
4436 bestp1 = crtc->config.dpll.p1;
4437 bestp2 = crtc->config.dpll.p2;
4438
4439 /* See eDP HDMI DPIO driver vbios notes doc */
4440
4441 /* PLL B needs special handling */
4442 if (pipe)
4443 vlv_pllb_recal_opamp(dev_priv);
4444
4445 /* Set up Tx target for periodic Rcomp update */
4446 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4447
4448 /* Disable target IRef on PLL */
4449 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4450 reg_val &= 0x00ffffff;
4451 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4452
4453 /* Disable fast lock */
4454 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4455
4456 /* Set idtafcrecal before PLL is enabled */
4457 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4458 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4459 mdiv |= ((bestn << DPIO_N_SHIFT));
4460 mdiv |= (1 << DPIO_K_SHIFT);
4461
4462 /*
4463 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4464 * but we don't support that).
4465 * Note: don't use the DAC post divider as it seems unstable.
4466 */
4467 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4468 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4469
4470 mdiv |= DPIO_ENABLE_CALIBRATION;
4471 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4472
4473 /* Set HBR and RBR LPF coefficients */
4474 if (crtc->config.port_clock == 162000 ||
4475 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4476 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4477 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4478 0x009f0003);
4479 else
4480 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4481 0x00d0000f);
4482
4483 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4484 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4485 /* Use SSC source */
4486 if (!pipe)
4487 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4488 0x0df40000);
4489 else
4490 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4491 0x0df70000);
4492 } else { /* HDMI or VGA */
4493 /* Use bend source */
4494 if (!pipe)
4495 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4496 0x0df70000);
4497 else
4498 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4499 0x0df40000);
4500 }
4501
4502 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4503 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4504 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4505 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4506 coreclk |= 0x01000000;
4507 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4508
4509 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4510
4511 /* Enable DPIO clock input */
4512 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4513 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4514 if (pipe)
4515 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4516
4517 dpll |= DPLL_VCO_ENABLE;
4518 crtc->config.dpll_hw_state.dpll = dpll;
4519
4520 dpll_md = (crtc->config.pixel_multiplier - 1)
4521 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4522 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4523
4524 if (crtc->config.has_dp_encoder)
4525 intel_dp_set_m_n(crtc);
4526
4527 mutex_unlock(&dev_priv->dpio_lock);
4528 }
4529
4530 static void i9xx_update_pll(struct intel_crtc *crtc,
4531 intel_clock_t *reduced_clock,
4532 int num_connectors)
4533 {
4534 struct drm_device *dev = crtc->base.dev;
4535 struct drm_i915_private *dev_priv = dev->dev_private;
4536 u32 dpll;
4537 bool is_sdvo;
4538 struct dpll *clock = &crtc->config.dpll;
4539
4540 i9xx_update_pll_dividers(crtc, reduced_clock);
4541
4542 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4543 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4544
4545 dpll = DPLL_VGA_MODE_DIS;
4546
4547 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4548 dpll |= DPLLB_MODE_LVDS;
4549 else
4550 dpll |= DPLLB_MODE_DAC_SERIAL;
4551
4552 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4553 dpll |= (crtc->config.pixel_multiplier - 1)
4554 << SDVO_MULTIPLIER_SHIFT_HIRES;
4555 }
4556
4557 if (is_sdvo)
4558 dpll |= DPLL_SDVO_HIGH_SPEED;
4559
4560 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4561 dpll |= DPLL_SDVO_HIGH_SPEED;
4562
4563 /* compute bitmask from p1 value */
4564 if (IS_PINEVIEW(dev))
4565 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4566 else {
4567 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4568 if (IS_G4X(dev) && reduced_clock)
4569 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4570 }
4571 switch (clock->p2) {
4572 case 5:
4573 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4574 break;
4575 case 7:
4576 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4577 break;
4578 case 10:
4579 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4580 break;
4581 case 14:
4582 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4583 break;
4584 }
4585 if (INTEL_INFO(dev)->gen >= 4)
4586 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4587
4588 if (crtc->config.sdvo_tv_clock)
4589 dpll |= PLL_REF_INPUT_TVCLKINBC;
4590 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4591 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4592 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4593 else
4594 dpll |= PLL_REF_INPUT_DREFCLK;
4595
4596 dpll |= DPLL_VCO_ENABLE;
4597 crtc->config.dpll_hw_state.dpll = dpll;
4598
4599 if (INTEL_INFO(dev)->gen >= 4) {
4600 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4601 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4602 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4603 }
4604
4605 if (crtc->config.has_dp_encoder)
4606 intel_dp_set_m_n(crtc);
4607 }
4608
4609 static void i8xx_update_pll(struct intel_crtc *crtc,
4610 intel_clock_t *reduced_clock,
4611 int num_connectors)
4612 {
4613 struct drm_device *dev = crtc->base.dev;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 u32 dpll;
4616 struct dpll *clock = &crtc->config.dpll;
4617
4618 i9xx_update_pll_dividers(crtc, reduced_clock);
4619
4620 dpll = DPLL_VGA_MODE_DIS;
4621
4622 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4623 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4624 } else {
4625 if (clock->p1 == 2)
4626 dpll |= PLL_P1_DIVIDE_BY_TWO;
4627 else
4628 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4629 if (clock->p2 == 4)
4630 dpll |= PLL_P2_DIVIDE_BY_4;
4631 }
4632
4633 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4634 dpll |= DPLL_DVO_2X_MODE;
4635
4636 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4637 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4638 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4639 else
4640 dpll |= PLL_REF_INPUT_DREFCLK;
4641
4642 dpll |= DPLL_VCO_ENABLE;
4643 crtc->config.dpll_hw_state.dpll = dpll;
4644 }
4645
4646 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4647 {
4648 struct drm_device *dev = intel_crtc->base.dev;
4649 struct drm_i915_private *dev_priv = dev->dev_private;
4650 enum pipe pipe = intel_crtc->pipe;
4651 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4652 struct drm_display_mode *adjusted_mode =
4653 &intel_crtc->config.adjusted_mode;
4654 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4655 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4656
4657 /* We need to be careful not to changed the adjusted mode, for otherwise
4658 * the hw state checker will get angry at the mismatch. */
4659 crtc_vtotal = adjusted_mode->crtc_vtotal;
4660 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4661
4662 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4663 /* the chip adds 2 halflines automatically */
4664 crtc_vtotal -= 1;
4665 crtc_vblank_end -= 1;
4666 vsyncshift = adjusted_mode->crtc_hsync_start
4667 - adjusted_mode->crtc_htotal / 2;
4668 } else {
4669 vsyncshift = 0;
4670 }
4671
4672 if (INTEL_INFO(dev)->gen > 3)
4673 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4674
4675 I915_WRITE(HTOTAL(cpu_transcoder),
4676 (adjusted_mode->crtc_hdisplay - 1) |
4677 ((adjusted_mode->crtc_htotal - 1) << 16));
4678 I915_WRITE(HBLANK(cpu_transcoder),
4679 (adjusted_mode->crtc_hblank_start - 1) |
4680 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4681 I915_WRITE(HSYNC(cpu_transcoder),
4682 (adjusted_mode->crtc_hsync_start - 1) |
4683 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4684
4685 I915_WRITE(VTOTAL(cpu_transcoder),
4686 (adjusted_mode->crtc_vdisplay - 1) |
4687 ((crtc_vtotal - 1) << 16));
4688 I915_WRITE(VBLANK(cpu_transcoder),
4689 (adjusted_mode->crtc_vblank_start - 1) |
4690 ((crtc_vblank_end - 1) << 16));
4691 I915_WRITE(VSYNC(cpu_transcoder),
4692 (adjusted_mode->crtc_vsync_start - 1) |
4693 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4694
4695 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4696 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4697 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4698 * bits. */
4699 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4700 (pipe == PIPE_B || pipe == PIPE_C))
4701 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4702
4703 /* pipesrc controls the size that is scaled from, which should
4704 * always be the user's requested size.
4705 */
4706 I915_WRITE(PIPESRC(pipe),
4707 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4708 }
4709
4710 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4711 struct intel_crtc_config *pipe_config)
4712 {
4713 struct drm_device *dev = crtc->base.dev;
4714 struct drm_i915_private *dev_priv = dev->dev_private;
4715 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4716 uint32_t tmp;
4717
4718 tmp = I915_READ(HTOTAL(cpu_transcoder));
4719 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4720 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4721 tmp = I915_READ(HBLANK(cpu_transcoder));
4722 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4723 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4724 tmp = I915_READ(HSYNC(cpu_transcoder));
4725 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4726 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4727
4728 tmp = I915_READ(VTOTAL(cpu_transcoder));
4729 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4730 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4731 tmp = I915_READ(VBLANK(cpu_transcoder));
4732 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4733 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4734 tmp = I915_READ(VSYNC(cpu_transcoder));
4735 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4736 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4737
4738 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4739 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4740 pipe_config->adjusted_mode.crtc_vtotal += 1;
4741 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4742 }
4743
4744 tmp = I915_READ(PIPESRC(crtc->pipe));
4745 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4746 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4747 }
4748
4749 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4750 struct intel_crtc_config *pipe_config)
4751 {
4752 struct drm_crtc *crtc = &intel_crtc->base;
4753
4754 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4755 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4756 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4757 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4758
4759 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4760 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4761 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4762 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4763
4764 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4765
4766 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4767 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4768 }
4769
4770 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4771 {
4772 struct drm_device *dev = intel_crtc->base.dev;
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774 uint32_t pipeconf;
4775
4776 pipeconf = 0;
4777
4778 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4779 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4780 * core speed.
4781 *
4782 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4783 * pipe == 0 check?
4784 */
4785 if (intel_crtc->config.requested_mode.clock >
4786 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4787 pipeconf |= PIPECONF_DOUBLE_WIDE;
4788 }
4789
4790 /* only g4x and later have fancy bpc/dither controls */
4791 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4792 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4793 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4794 pipeconf |= PIPECONF_DITHER_EN |
4795 PIPECONF_DITHER_TYPE_SP;
4796
4797 switch (intel_crtc->config.pipe_bpp) {
4798 case 18:
4799 pipeconf |= PIPECONF_6BPC;
4800 break;
4801 case 24:
4802 pipeconf |= PIPECONF_8BPC;
4803 break;
4804 case 30:
4805 pipeconf |= PIPECONF_10BPC;
4806 break;
4807 default:
4808 /* Case prevented by intel_choose_pipe_bpp_dither. */
4809 BUG();
4810 }
4811 }
4812
4813 if (HAS_PIPE_CXSR(dev)) {
4814 if (intel_crtc->lowfreq_avail) {
4815 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4816 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4817 } else {
4818 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4819 }
4820 }
4821
4822 if (!IS_GEN2(dev) &&
4823 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4824 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4825 else
4826 pipeconf |= PIPECONF_PROGRESSIVE;
4827
4828 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4829 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4830
4831 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4832 POSTING_READ(PIPECONF(intel_crtc->pipe));
4833 }
4834
4835 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4836 int x, int y,
4837 struct drm_framebuffer *fb)
4838 {
4839 struct drm_device *dev = crtc->dev;
4840 struct drm_i915_private *dev_priv = dev->dev_private;
4841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4842 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4843 int pipe = intel_crtc->pipe;
4844 int plane = intel_crtc->plane;
4845 int refclk, num_connectors = 0;
4846 intel_clock_t clock, reduced_clock;
4847 u32 dspcntr;
4848 bool ok, has_reduced_clock = false;
4849 bool is_lvds = false;
4850 struct intel_encoder *encoder;
4851 const intel_limit_t *limit;
4852 int ret;
4853
4854 for_each_encoder_on_crtc(dev, crtc, encoder) {
4855 switch (encoder->type) {
4856 case INTEL_OUTPUT_LVDS:
4857 is_lvds = true;
4858 break;
4859 }
4860
4861 num_connectors++;
4862 }
4863
4864 refclk = i9xx_get_refclk(crtc, num_connectors);
4865
4866 /*
4867 * Returns a set of divisors for the desired target clock with the given
4868 * refclk, or FALSE. The returned values represent the clock equation:
4869 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4870 */
4871 limit = intel_limit(crtc, refclk);
4872 ok = dev_priv->display.find_dpll(limit, crtc,
4873 intel_crtc->config.port_clock,
4874 refclk, NULL, &clock);
4875 if (!ok && !intel_crtc->config.clock_set) {
4876 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4877 return -EINVAL;
4878 }
4879
4880 /* Ensure that the cursor is valid for the new mode before changing... */
4881 intel_crtc_update_cursor(crtc, true);
4882
4883 if (is_lvds && dev_priv->lvds_downclock_avail) {
4884 /*
4885 * Ensure we match the reduced clock's P to the target clock.
4886 * If the clocks don't match, we can't switch the display clock
4887 * by using the FP0/FP1. In such case we will disable the LVDS
4888 * downclock feature.
4889 */
4890 has_reduced_clock =
4891 dev_priv->display.find_dpll(limit, crtc,
4892 dev_priv->lvds_downclock,
4893 refclk, &clock,
4894 &reduced_clock);
4895 }
4896 /* Compat-code for transition, will disappear. */
4897 if (!intel_crtc->config.clock_set) {
4898 intel_crtc->config.dpll.n = clock.n;
4899 intel_crtc->config.dpll.m1 = clock.m1;
4900 intel_crtc->config.dpll.m2 = clock.m2;
4901 intel_crtc->config.dpll.p1 = clock.p1;
4902 intel_crtc->config.dpll.p2 = clock.p2;
4903 }
4904
4905 if (IS_GEN2(dev))
4906 i8xx_update_pll(intel_crtc,
4907 has_reduced_clock ? &reduced_clock : NULL,
4908 num_connectors);
4909 else if (IS_VALLEYVIEW(dev))
4910 vlv_update_pll(intel_crtc);
4911 else
4912 i9xx_update_pll(intel_crtc,
4913 has_reduced_clock ? &reduced_clock : NULL,
4914 num_connectors);
4915
4916 /* Set up the display plane register */
4917 dspcntr = DISPPLANE_GAMMA_ENABLE;
4918
4919 if (!IS_VALLEYVIEW(dev)) {
4920 if (pipe == 0)
4921 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4922 else
4923 dspcntr |= DISPPLANE_SEL_PIPE_B;
4924 }
4925
4926 intel_set_pipe_timings(intel_crtc);
4927
4928 /* pipesrc and dspsize control the size that is scaled from,
4929 * which should always be the user's requested size.
4930 */
4931 I915_WRITE(DSPSIZE(plane),
4932 ((mode->vdisplay - 1) << 16) |
4933 (mode->hdisplay - 1));
4934 I915_WRITE(DSPPOS(plane), 0);
4935
4936 i9xx_set_pipeconf(intel_crtc);
4937
4938 I915_WRITE(DSPCNTR(plane), dspcntr);
4939 POSTING_READ(DSPCNTR(plane));
4940
4941 ret = intel_pipe_set_base(crtc, x, y, fb);
4942
4943 intel_update_watermarks(dev);
4944
4945 return ret;
4946 }
4947
4948 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4949 struct intel_crtc_config *pipe_config)
4950 {
4951 struct drm_device *dev = crtc->base.dev;
4952 struct drm_i915_private *dev_priv = dev->dev_private;
4953 uint32_t tmp;
4954
4955 tmp = I915_READ(PFIT_CONTROL);
4956 if (!(tmp & PFIT_ENABLE))
4957 return;
4958
4959 /* Check whether the pfit is attached to our pipe. */
4960 if (INTEL_INFO(dev)->gen < 4) {
4961 if (crtc->pipe != PIPE_B)
4962 return;
4963 } else {
4964 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4965 return;
4966 }
4967
4968 pipe_config->gmch_pfit.control = tmp;
4969 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4970 if (INTEL_INFO(dev)->gen < 5)
4971 pipe_config->gmch_pfit.lvds_border_bits =
4972 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4973 }
4974
4975 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4976 struct intel_crtc_config *pipe_config)
4977 {
4978 struct drm_device *dev = crtc->base.dev;
4979 struct drm_i915_private *dev_priv = dev->dev_private;
4980 uint32_t tmp;
4981
4982 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4983 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4984
4985 tmp = I915_READ(PIPECONF(crtc->pipe));
4986 if (!(tmp & PIPECONF_ENABLE))
4987 return false;
4988
4989 intel_get_pipe_timings(crtc, pipe_config);
4990
4991 i9xx_get_pfit_config(crtc, pipe_config);
4992
4993 if (INTEL_INFO(dev)->gen >= 4) {
4994 tmp = I915_READ(DPLL_MD(crtc->pipe));
4995 pipe_config->pixel_multiplier =
4996 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4997 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4998 pipe_config->dpll_hw_state.dpll_md = tmp;
4999 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5000 tmp = I915_READ(DPLL(crtc->pipe));
5001 pipe_config->pixel_multiplier =
5002 ((tmp & SDVO_MULTIPLIER_MASK)
5003 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5004 } else {
5005 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5006 * port and will be fixed up in the encoder->get_config
5007 * function. */
5008 pipe_config->pixel_multiplier = 1;
5009 }
5010 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5011 if (!IS_VALLEYVIEW(dev)) {
5012 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5013 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5014 } else {
5015 /* Mask out read-only status bits. */
5016 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5017 DPLL_PORTC_READY_MASK |
5018 DPLL_PORTB_READY_MASK);
5019 }
5020
5021 return true;
5022 }
5023
5024 static void ironlake_init_pch_refclk(struct drm_device *dev)
5025 {
5026 struct drm_i915_private *dev_priv = dev->dev_private;
5027 struct drm_mode_config *mode_config = &dev->mode_config;
5028 struct intel_encoder *encoder;
5029 u32 val, final;
5030 bool has_lvds = false;
5031 bool has_cpu_edp = false;
5032 bool has_panel = false;
5033 bool has_ck505 = false;
5034 bool can_ssc = false;
5035
5036 /* We need to take the global config into account */
5037 list_for_each_entry(encoder, &mode_config->encoder_list,
5038 base.head) {
5039 switch (encoder->type) {
5040 case INTEL_OUTPUT_LVDS:
5041 has_panel = true;
5042 has_lvds = true;
5043 break;
5044 case INTEL_OUTPUT_EDP:
5045 has_panel = true;
5046 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5047 has_cpu_edp = true;
5048 break;
5049 }
5050 }
5051
5052 if (HAS_PCH_IBX(dev)) {
5053 has_ck505 = dev_priv->vbt.display_clock_mode;
5054 can_ssc = has_ck505;
5055 } else {
5056 has_ck505 = false;
5057 can_ssc = true;
5058 }
5059
5060 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5061 has_panel, has_lvds, has_ck505);
5062
5063 /* Ironlake: try to setup display ref clock before DPLL
5064 * enabling. This is only under driver's control after
5065 * PCH B stepping, previous chipset stepping should be
5066 * ignoring this setting.
5067 */
5068 val = I915_READ(PCH_DREF_CONTROL);
5069
5070 /* As we must carefully and slowly disable/enable each source in turn,
5071 * compute the final state we want first and check if we need to
5072 * make any changes at all.
5073 */
5074 final = val;
5075 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5076 if (has_ck505)
5077 final |= DREF_NONSPREAD_CK505_ENABLE;
5078 else
5079 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5080
5081 final &= ~DREF_SSC_SOURCE_MASK;
5082 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5083 final &= ~DREF_SSC1_ENABLE;
5084
5085 if (has_panel) {
5086 final |= DREF_SSC_SOURCE_ENABLE;
5087
5088 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5089 final |= DREF_SSC1_ENABLE;
5090
5091 if (has_cpu_edp) {
5092 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5093 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5094 else
5095 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5096 } else
5097 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5098 } else {
5099 final |= DREF_SSC_SOURCE_DISABLE;
5100 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5101 }
5102
5103 if (final == val)
5104 return;
5105
5106 /* Always enable nonspread source */
5107 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5108
5109 if (has_ck505)
5110 val |= DREF_NONSPREAD_CK505_ENABLE;
5111 else
5112 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5113
5114 if (has_panel) {
5115 val &= ~DREF_SSC_SOURCE_MASK;
5116 val |= DREF_SSC_SOURCE_ENABLE;
5117
5118 /* SSC must be turned on before enabling the CPU output */
5119 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5120 DRM_DEBUG_KMS("Using SSC on panel\n");
5121 val |= DREF_SSC1_ENABLE;
5122 } else
5123 val &= ~DREF_SSC1_ENABLE;
5124
5125 /* Get SSC going before enabling the outputs */
5126 I915_WRITE(PCH_DREF_CONTROL, val);
5127 POSTING_READ(PCH_DREF_CONTROL);
5128 udelay(200);
5129
5130 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5131
5132 /* Enable CPU source on CPU attached eDP */
5133 if (has_cpu_edp) {
5134 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5135 DRM_DEBUG_KMS("Using SSC on eDP\n");
5136 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5137 }
5138 else
5139 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5140 } else
5141 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5142
5143 I915_WRITE(PCH_DREF_CONTROL, val);
5144 POSTING_READ(PCH_DREF_CONTROL);
5145 udelay(200);
5146 } else {
5147 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5148
5149 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5150
5151 /* Turn off CPU output */
5152 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5153
5154 I915_WRITE(PCH_DREF_CONTROL, val);
5155 POSTING_READ(PCH_DREF_CONTROL);
5156 udelay(200);
5157
5158 /* Turn off the SSC source */
5159 val &= ~DREF_SSC_SOURCE_MASK;
5160 val |= DREF_SSC_SOURCE_DISABLE;
5161
5162 /* Turn off SSC1 */
5163 val &= ~DREF_SSC1_ENABLE;
5164
5165 I915_WRITE(PCH_DREF_CONTROL, val);
5166 POSTING_READ(PCH_DREF_CONTROL);
5167 udelay(200);
5168 }
5169
5170 BUG_ON(val != final);
5171 }
5172
5173 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5174 {
5175 uint32_t tmp;
5176
5177 tmp = I915_READ(SOUTH_CHICKEN2);
5178 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5179 I915_WRITE(SOUTH_CHICKEN2, tmp);
5180
5181 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5182 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5183 DRM_ERROR("FDI mPHY reset assert timeout\n");
5184
5185 tmp = I915_READ(SOUTH_CHICKEN2);
5186 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5187 I915_WRITE(SOUTH_CHICKEN2, tmp);
5188
5189 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5190 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5191 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5192 }
5193
5194 /* WaMPhyProgramming:hsw */
5195 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5196 {
5197 uint32_t tmp;
5198
5199 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5200 tmp &= ~(0xFF << 24);
5201 tmp |= (0x12 << 24);
5202 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5203
5204 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5205 tmp |= (1 << 11);
5206 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5207
5208 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5209 tmp |= (1 << 11);
5210 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5211
5212 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5213 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5214 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5215
5216 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5217 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5218 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5219
5220 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5221 tmp &= ~(7 << 13);
5222 tmp |= (5 << 13);
5223 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5224
5225 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5226 tmp &= ~(7 << 13);
5227 tmp |= (5 << 13);
5228 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5229
5230 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5231 tmp &= ~0xFF;
5232 tmp |= 0x1C;
5233 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5234
5235 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5236 tmp &= ~0xFF;
5237 tmp |= 0x1C;
5238 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5239
5240 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5241 tmp &= ~(0xFF << 16);
5242 tmp |= (0x1C << 16);
5243 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5244
5245 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5246 tmp &= ~(0xFF << 16);
5247 tmp |= (0x1C << 16);
5248 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5249
5250 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5251 tmp |= (1 << 27);
5252 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5253
5254 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5255 tmp |= (1 << 27);
5256 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5257
5258 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5259 tmp &= ~(0xF << 28);
5260 tmp |= (4 << 28);
5261 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5262
5263 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5264 tmp &= ~(0xF << 28);
5265 tmp |= (4 << 28);
5266 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5267 }
5268
5269 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5270 * Programming" based on the parameters passed:
5271 * - Sequence to enable CLKOUT_DP
5272 * - Sequence to enable CLKOUT_DP without spread
5273 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5274 */
5275 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5276 bool with_fdi)
5277 {
5278 struct drm_i915_private *dev_priv = dev->dev_private;
5279 uint32_t reg, tmp;
5280
5281 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5282 with_spread = true;
5283 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5284 with_fdi, "LP PCH doesn't have FDI\n"))
5285 with_fdi = false;
5286
5287 mutex_lock(&dev_priv->dpio_lock);
5288
5289 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5290 tmp &= ~SBI_SSCCTL_DISABLE;
5291 tmp |= SBI_SSCCTL_PATHALT;
5292 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5293
5294 udelay(24);
5295
5296 if (with_spread) {
5297 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5298 tmp &= ~SBI_SSCCTL_PATHALT;
5299 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5300
5301 if (with_fdi) {
5302 lpt_reset_fdi_mphy(dev_priv);
5303 lpt_program_fdi_mphy(dev_priv);
5304 }
5305 }
5306
5307 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5308 SBI_GEN0 : SBI_DBUFF0;
5309 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5310 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5311 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5312
5313 mutex_unlock(&dev_priv->dpio_lock);
5314 }
5315
5316 /* Sequence to disable CLKOUT_DP */
5317 static void lpt_disable_clkout_dp(struct drm_device *dev)
5318 {
5319 struct drm_i915_private *dev_priv = dev->dev_private;
5320 uint32_t reg, tmp;
5321
5322 mutex_lock(&dev_priv->dpio_lock);
5323
5324 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5325 SBI_GEN0 : SBI_DBUFF0;
5326 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5327 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5328 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5329
5330 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5331 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5332 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5333 tmp |= SBI_SSCCTL_PATHALT;
5334 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5335 udelay(32);
5336 }
5337 tmp |= SBI_SSCCTL_DISABLE;
5338 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5339 }
5340
5341 mutex_unlock(&dev_priv->dpio_lock);
5342 }
5343
5344 static void lpt_init_pch_refclk(struct drm_device *dev)
5345 {
5346 struct drm_mode_config *mode_config = &dev->mode_config;
5347 struct intel_encoder *encoder;
5348 bool has_vga = false;
5349
5350 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5351 switch (encoder->type) {
5352 case INTEL_OUTPUT_ANALOG:
5353 has_vga = true;
5354 break;
5355 }
5356 }
5357
5358 if (has_vga)
5359 lpt_enable_clkout_dp(dev, true, true);
5360 else
5361 lpt_disable_clkout_dp(dev);
5362 }
5363
5364 /*
5365 * Initialize reference clocks when the driver loads
5366 */
5367 void intel_init_pch_refclk(struct drm_device *dev)
5368 {
5369 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5370 ironlake_init_pch_refclk(dev);
5371 else if (HAS_PCH_LPT(dev))
5372 lpt_init_pch_refclk(dev);
5373 }
5374
5375 static int ironlake_get_refclk(struct drm_crtc *crtc)
5376 {
5377 struct drm_device *dev = crtc->dev;
5378 struct drm_i915_private *dev_priv = dev->dev_private;
5379 struct intel_encoder *encoder;
5380 int num_connectors = 0;
5381 bool is_lvds = false;
5382
5383 for_each_encoder_on_crtc(dev, crtc, encoder) {
5384 switch (encoder->type) {
5385 case INTEL_OUTPUT_LVDS:
5386 is_lvds = true;
5387 break;
5388 }
5389 num_connectors++;
5390 }
5391
5392 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5393 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5394 dev_priv->vbt.lvds_ssc_freq);
5395 return dev_priv->vbt.lvds_ssc_freq * 1000;
5396 }
5397
5398 return 120000;
5399 }
5400
5401 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5402 {
5403 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5405 int pipe = intel_crtc->pipe;
5406 uint32_t val;
5407
5408 val = 0;
5409
5410 switch (intel_crtc->config.pipe_bpp) {
5411 case 18:
5412 val |= PIPECONF_6BPC;
5413 break;
5414 case 24:
5415 val |= PIPECONF_8BPC;
5416 break;
5417 case 30:
5418 val |= PIPECONF_10BPC;
5419 break;
5420 case 36:
5421 val |= PIPECONF_12BPC;
5422 break;
5423 default:
5424 /* Case prevented by intel_choose_pipe_bpp_dither. */
5425 BUG();
5426 }
5427
5428 if (intel_crtc->config.dither)
5429 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5430
5431 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5432 val |= PIPECONF_INTERLACED_ILK;
5433 else
5434 val |= PIPECONF_PROGRESSIVE;
5435
5436 if (intel_crtc->config.limited_color_range)
5437 val |= PIPECONF_COLOR_RANGE_SELECT;
5438
5439 I915_WRITE(PIPECONF(pipe), val);
5440 POSTING_READ(PIPECONF(pipe));
5441 }
5442
5443 /*
5444 * Set up the pipe CSC unit.
5445 *
5446 * Currently only full range RGB to limited range RGB conversion
5447 * is supported, but eventually this should handle various
5448 * RGB<->YCbCr scenarios as well.
5449 */
5450 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5451 {
5452 struct drm_device *dev = crtc->dev;
5453 struct drm_i915_private *dev_priv = dev->dev_private;
5454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5455 int pipe = intel_crtc->pipe;
5456 uint16_t coeff = 0x7800; /* 1.0 */
5457
5458 /*
5459 * TODO: Check what kind of values actually come out of the pipe
5460 * with these coeff/postoff values and adjust to get the best
5461 * accuracy. Perhaps we even need to take the bpc value into
5462 * consideration.
5463 */
5464
5465 if (intel_crtc->config.limited_color_range)
5466 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5467
5468 /*
5469 * GY/GU and RY/RU should be the other way around according
5470 * to BSpec, but reality doesn't agree. Just set them up in
5471 * a way that results in the correct picture.
5472 */
5473 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5474 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5475
5476 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5477 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5478
5479 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5480 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5481
5482 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5483 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5484 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5485
5486 if (INTEL_INFO(dev)->gen > 6) {
5487 uint16_t postoff = 0;
5488
5489 if (intel_crtc->config.limited_color_range)
5490 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5491
5492 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5493 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5494 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5495
5496 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5497 } else {
5498 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5499
5500 if (intel_crtc->config.limited_color_range)
5501 mode |= CSC_BLACK_SCREEN_OFFSET;
5502
5503 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5504 }
5505 }
5506
5507 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5508 {
5509 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5511 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5512 uint32_t val;
5513
5514 val = 0;
5515
5516 if (intel_crtc->config.dither)
5517 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5518
5519 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5520 val |= PIPECONF_INTERLACED_ILK;
5521 else
5522 val |= PIPECONF_PROGRESSIVE;
5523
5524 I915_WRITE(PIPECONF(cpu_transcoder), val);
5525 POSTING_READ(PIPECONF(cpu_transcoder));
5526
5527 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5528 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5529 }
5530
5531 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5532 intel_clock_t *clock,
5533 bool *has_reduced_clock,
5534 intel_clock_t *reduced_clock)
5535 {
5536 struct drm_device *dev = crtc->dev;
5537 struct drm_i915_private *dev_priv = dev->dev_private;
5538 struct intel_encoder *intel_encoder;
5539 int refclk;
5540 const intel_limit_t *limit;
5541 bool ret, is_lvds = false;
5542
5543 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5544 switch (intel_encoder->type) {
5545 case INTEL_OUTPUT_LVDS:
5546 is_lvds = true;
5547 break;
5548 }
5549 }
5550
5551 refclk = ironlake_get_refclk(crtc);
5552
5553 /*
5554 * Returns a set of divisors for the desired target clock with the given
5555 * refclk, or FALSE. The returned values represent the clock equation:
5556 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5557 */
5558 limit = intel_limit(crtc, refclk);
5559 ret = dev_priv->display.find_dpll(limit, crtc,
5560 to_intel_crtc(crtc)->config.port_clock,
5561 refclk, NULL, clock);
5562 if (!ret)
5563 return false;
5564
5565 if (is_lvds && dev_priv->lvds_downclock_avail) {
5566 /*
5567 * Ensure we match the reduced clock's P to the target clock.
5568 * If the clocks don't match, we can't switch the display clock
5569 * by using the FP0/FP1. In such case we will disable the LVDS
5570 * downclock feature.
5571 */
5572 *has_reduced_clock =
5573 dev_priv->display.find_dpll(limit, crtc,
5574 dev_priv->lvds_downclock,
5575 refclk, clock,
5576 reduced_clock);
5577 }
5578
5579 return true;
5580 }
5581
5582 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5583 {
5584 struct drm_i915_private *dev_priv = dev->dev_private;
5585 uint32_t temp;
5586
5587 temp = I915_READ(SOUTH_CHICKEN1);
5588 if (temp & FDI_BC_BIFURCATION_SELECT)
5589 return;
5590
5591 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5592 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5593
5594 temp |= FDI_BC_BIFURCATION_SELECT;
5595 DRM_DEBUG_KMS("enabling fdi C rx\n");
5596 I915_WRITE(SOUTH_CHICKEN1, temp);
5597 POSTING_READ(SOUTH_CHICKEN1);
5598 }
5599
5600 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5601 {
5602 struct drm_device *dev = intel_crtc->base.dev;
5603 struct drm_i915_private *dev_priv = dev->dev_private;
5604
5605 switch (intel_crtc->pipe) {
5606 case PIPE_A:
5607 break;
5608 case PIPE_B:
5609 if (intel_crtc->config.fdi_lanes > 2)
5610 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5611 else
5612 cpt_enable_fdi_bc_bifurcation(dev);
5613
5614 break;
5615 case PIPE_C:
5616 cpt_enable_fdi_bc_bifurcation(dev);
5617
5618 break;
5619 default:
5620 BUG();
5621 }
5622 }
5623
5624 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5625 {
5626 /*
5627 * Account for spread spectrum to avoid
5628 * oversubscribing the link. Max center spread
5629 * is 2.5%; use 5% for safety's sake.
5630 */
5631 u32 bps = target_clock * bpp * 21 / 20;
5632 return bps / (link_bw * 8) + 1;
5633 }
5634
5635 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5636 {
5637 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5638 }
5639
5640 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5641 u32 *fp,
5642 intel_clock_t *reduced_clock, u32 *fp2)
5643 {
5644 struct drm_crtc *crtc = &intel_crtc->base;
5645 struct drm_device *dev = crtc->dev;
5646 struct drm_i915_private *dev_priv = dev->dev_private;
5647 struct intel_encoder *intel_encoder;
5648 uint32_t dpll;
5649 int factor, num_connectors = 0;
5650 bool is_lvds = false, is_sdvo = false;
5651
5652 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5653 switch (intel_encoder->type) {
5654 case INTEL_OUTPUT_LVDS:
5655 is_lvds = true;
5656 break;
5657 case INTEL_OUTPUT_SDVO:
5658 case INTEL_OUTPUT_HDMI:
5659 is_sdvo = true;
5660 break;
5661 }
5662
5663 num_connectors++;
5664 }
5665
5666 /* Enable autotuning of the PLL clock (if permissible) */
5667 factor = 21;
5668 if (is_lvds) {
5669 if ((intel_panel_use_ssc(dev_priv) &&
5670 dev_priv->vbt.lvds_ssc_freq == 100) ||
5671 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5672 factor = 25;
5673 } else if (intel_crtc->config.sdvo_tv_clock)
5674 factor = 20;
5675
5676 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5677 *fp |= FP_CB_TUNE;
5678
5679 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5680 *fp2 |= FP_CB_TUNE;
5681
5682 dpll = 0;
5683
5684 if (is_lvds)
5685 dpll |= DPLLB_MODE_LVDS;
5686 else
5687 dpll |= DPLLB_MODE_DAC_SERIAL;
5688
5689 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5690 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5691
5692 if (is_sdvo)
5693 dpll |= DPLL_SDVO_HIGH_SPEED;
5694 if (intel_crtc->config.has_dp_encoder)
5695 dpll |= DPLL_SDVO_HIGH_SPEED;
5696
5697 /* compute bitmask from p1 value */
5698 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5699 /* also FPA1 */
5700 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5701
5702 switch (intel_crtc->config.dpll.p2) {
5703 case 5:
5704 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5705 break;
5706 case 7:
5707 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5708 break;
5709 case 10:
5710 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5711 break;
5712 case 14:
5713 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5714 break;
5715 }
5716
5717 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5718 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5719 else
5720 dpll |= PLL_REF_INPUT_DREFCLK;
5721
5722 return dpll | DPLL_VCO_ENABLE;
5723 }
5724
5725 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5726 int x, int y,
5727 struct drm_framebuffer *fb)
5728 {
5729 struct drm_device *dev = crtc->dev;
5730 struct drm_i915_private *dev_priv = dev->dev_private;
5731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5732 int pipe = intel_crtc->pipe;
5733 int plane = intel_crtc->plane;
5734 int num_connectors = 0;
5735 intel_clock_t clock, reduced_clock;
5736 u32 dpll = 0, fp = 0, fp2 = 0;
5737 bool ok, has_reduced_clock = false;
5738 bool is_lvds = false;
5739 struct intel_encoder *encoder;
5740 struct intel_shared_dpll *pll;
5741 int ret;
5742
5743 for_each_encoder_on_crtc(dev, crtc, encoder) {
5744 switch (encoder->type) {
5745 case INTEL_OUTPUT_LVDS:
5746 is_lvds = true;
5747 break;
5748 }
5749
5750 num_connectors++;
5751 }
5752
5753 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5754 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5755
5756 ok = ironlake_compute_clocks(crtc, &clock,
5757 &has_reduced_clock, &reduced_clock);
5758 if (!ok && !intel_crtc->config.clock_set) {
5759 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5760 return -EINVAL;
5761 }
5762 /* Compat-code for transition, will disappear. */
5763 if (!intel_crtc->config.clock_set) {
5764 intel_crtc->config.dpll.n = clock.n;
5765 intel_crtc->config.dpll.m1 = clock.m1;
5766 intel_crtc->config.dpll.m2 = clock.m2;
5767 intel_crtc->config.dpll.p1 = clock.p1;
5768 intel_crtc->config.dpll.p2 = clock.p2;
5769 }
5770
5771 /* Ensure that the cursor is valid for the new mode before changing... */
5772 intel_crtc_update_cursor(crtc, true);
5773
5774 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5775 if (intel_crtc->config.has_pch_encoder) {
5776 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5777 if (has_reduced_clock)
5778 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5779
5780 dpll = ironlake_compute_dpll(intel_crtc,
5781 &fp, &reduced_clock,
5782 has_reduced_clock ? &fp2 : NULL);
5783
5784 intel_crtc->config.dpll_hw_state.dpll = dpll;
5785 intel_crtc->config.dpll_hw_state.fp0 = fp;
5786 if (has_reduced_clock)
5787 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5788 else
5789 intel_crtc->config.dpll_hw_state.fp1 = fp;
5790
5791 pll = intel_get_shared_dpll(intel_crtc);
5792 if (pll == NULL) {
5793 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5794 pipe_name(pipe));
5795 return -EINVAL;
5796 }
5797 } else
5798 intel_put_shared_dpll(intel_crtc);
5799
5800 if (intel_crtc->config.has_dp_encoder)
5801 intel_dp_set_m_n(intel_crtc);
5802
5803 if (is_lvds && has_reduced_clock && i915_powersave)
5804 intel_crtc->lowfreq_avail = true;
5805 else
5806 intel_crtc->lowfreq_avail = false;
5807
5808 if (intel_crtc->config.has_pch_encoder) {
5809 pll = intel_crtc_to_shared_dpll(intel_crtc);
5810
5811 }
5812
5813 intel_set_pipe_timings(intel_crtc);
5814
5815 if (intel_crtc->config.has_pch_encoder) {
5816 intel_cpu_transcoder_set_m_n(intel_crtc,
5817 &intel_crtc->config.fdi_m_n);
5818 }
5819
5820 if (IS_IVYBRIDGE(dev))
5821 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5822
5823 ironlake_set_pipeconf(crtc);
5824
5825 /* Set up the display plane register */
5826 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5827 POSTING_READ(DSPCNTR(plane));
5828
5829 ret = intel_pipe_set_base(crtc, x, y, fb);
5830
5831 intel_update_watermarks(dev);
5832
5833 return ret;
5834 }
5835
5836 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5837 struct intel_crtc_config *pipe_config)
5838 {
5839 struct drm_device *dev = crtc->base.dev;
5840 struct drm_i915_private *dev_priv = dev->dev_private;
5841 enum transcoder transcoder = pipe_config->cpu_transcoder;
5842
5843 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5844 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5845 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5846 & ~TU_SIZE_MASK;
5847 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5848 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5849 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5850 }
5851
5852 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5853 struct intel_crtc_config *pipe_config)
5854 {
5855 struct drm_device *dev = crtc->base.dev;
5856 struct drm_i915_private *dev_priv = dev->dev_private;
5857 uint32_t tmp;
5858
5859 tmp = I915_READ(PF_CTL(crtc->pipe));
5860
5861 if (tmp & PF_ENABLE) {
5862 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5863 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5864
5865 /* We currently do not free assignements of panel fitters on
5866 * ivb/hsw (since we don't use the higher upscaling modes which
5867 * differentiates them) so just WARN about this case for now. */
5868 if (IS_GEN7(dev)) {
5869 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5870 PF_PIPE_SEL_IVB(crtc->pipe));
5871 }
5872 }
5873 }
5874
5875 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5876 struct intel_crtc_config *pipe_config)
5877 {
5878 struct drm_device *dev = crtc->base.dev;
5879 struct drm_i915_private *dev_priv = dev->dev_private;
5880 uint32_t tmp;
5881
5882 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5883 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5884
5885 tmp = I915_READ(PIPECONF(crtc->pipe));
5886 if (!(tmp & PIPECONF_ENABLE))
5887 return false;
5888
5889 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5890 struct intel_shared_dpll *pll;
5891
5892 pipe_config->has_pch_encoder = true;
5893
5894 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5895 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5896 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5897
5898 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5899
5900 if (HAS_PCH_IBX(dev_priv->dev)) {
5901 pipe_config->shared_dpll =
5902 (enum intel_dpll_id) crtc->pipe;
5903 } else {
5904 tmp = I915_READ(PCH_DPLL_SEL);
5905 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5906 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5907 else
5908 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5909 }
5910
5911 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5912
5913 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5914 &pipe_config->dpll_hw_state));
5915
5916 tmp = pipe_config->dpll_hw_state.dpll;
5917 pipe_config->pixel_multiplier =
5918 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5919 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5920 } else {
5921 pipe_config->pixel_multiplier = 1;
5922 }
5923
5924 intel_get_pipe_timings(crtc, pipe_config);
5925
5926 ironlake_get_pfit_config(crtc, pipe_config);
5927
5928 return true;
5929 }
5930
5931 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5932 {
5933 struct drm_device *dev = dev_priv->dev;
5934 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5935 struct intel_crtc *crtc;
5936 unsigned long irqflags;
5937 uint32_t val;
5938
5939 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5940 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5941 pipe_name(crtc->pipe));
5942
5943 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5944 WARN(plls->spll_refcount, "SPLL enabled\n");
5945 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5946 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5947 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5948 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5949 "CPU PWM1 enabled\n");
5950 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5951 "CPU PWM2 enabled\n");
5952 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5953 "PCH PWM1 enabled\n");
5954 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5955 "Utility pin enabled\n");
5956 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5957
5958 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5959 val = I915_READ(DEIMR);
5960 WARN((val & ~DE_PCH_EVENT_IVB) != val,
5961 "Unexpected DEIMR bits enabled: 0x%x\n", val);
5962 val = I915_READ(SDEIMR);
5963 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
5964 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5965 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5966 }
5967
5968 /*
5969 * This function implements pieces of two sequences from BSpec:
5970 * - Sequence for display software to disable LCPLL
5971 * - Sequence for display software to allow package C8+
5972 * The steps implemented here are just the steps that actually touch the LCPLL
5973 * register. Callers should take care of disabling all the display engine
5974 * functions, doing the mode unset, fixing interrupts, etc.
5975 */
5976 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5977 bool switch_to_fclk, bool allow_power_down)
5978 {
5979 uint32_t val;
5980
5981 assert_can_disable_lcpll(dev_priv);
5982
5983 val = I915_READ(LCPLL_CTL);
5984
5985 if (switch_to_fclk) {
5986 val |= LCPLL_CD_SOURCE_FCLK;
5987 I915_WRITE(LCPLL_CTL, val);
5988
5989 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5990 LCPLL_CD_SOURCE_FCLK_DONE, 1))
5991 DRM_ERROR("Switching to FCLK failed\n");
5992
5993 val = I915_READ(LCPLL_CTL);
5994 }
5995
5996 val |= LCPLL_PLL_DISABLE;
5997 I915_WRITE(LCPLL_CTL, val);
5998 POSTING_READ(LCPLL_CTL);
5999
6000 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6001 DRM_ERROR("LCPLL still locked\n");
6002
6003 val = I915_READ(D_COMP);
6004 val |= D_COMP_COMP_DISABLE;
6005 I915_WRITE(D_COMP, val);
6006 POSTING_READ(D_COMP);
6007 ndelay(100);
6008
6009 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6010 DRM_ERROR("D_COMP RCOMP still in progress\n");
6011
6012 if (allow_power_down) {
6013 val = I915_READ(LCPLL_CTL);
6014 val |= LCPLL_POWER_DOWN_ALLOW;
6015 I915_WRITE(LCPLL_CTL, val);
6016 POSTING_READ(LCPLL_CTL);
6017 }
6018 }
6019
6020 /*
6021 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6022 * source.
6023 */
6024 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6025 {
6026 uint32_t val;
6027
6028 val = I915_READ(LCPLL_CTL);
6029
6030 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6031 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6032 return;
6033
6034 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6035 * we'll hang the machine! */
6036 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6037
6038 if (val & LCPLL_POWER_DOWN_ALLOW) {
6039 val &= ~LCPLL_POWER_DOWN_ALLOW;
6040 I915_WRITE(LCPLL_CTL, val);
6041 POSTING_READ(LCPLL_CTL);
6042 }
6043
6044 val = I915_READ(D_COMP);
6045 val |= D_COMP_COMP_FORCE;
6046 val &= ~D_COMP_COMP_DISABLE;
6047 I915_WRITE(D_COMP, val);
6048 POSTING_READ(D_COMP);
6049
6050 val = I915_READ(LCPLL_CTL);
6051 val &= ~LCPLL_PLL_DISABLE;
6052 I915_WRITE(LCPLL_CTL, val);
6053
6054 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6055 DRM_ERROR("LCPLL not locked yet\n");
6056
6057 if (val & LCPLL_CD_SOURCE_FCLK) {
6058 val = I915_READ(LCPLL_CTL);
6059 val &= ~LCPLL_CD_SOURCE_FCLK;
6060 I915_WRITE(LCPLL_CTL, val);
6061
6062 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6063 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6064 DRM_ERROR("Switching back to LCPLL failed\n");
6065 }
6066
6067 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6068 }
6069
6070 void hsw_enable_pc8_work(struct work_struct *__work)
6071 {
6072 struct drm_i915_private *dev_priv =
6073 container_of(to_delayed_work(__work), struct drm_i915_private,
6074 pc8.enable_work);
6075 struct drm_device *dev = dev_priv->dev;
6076 uint32_t val;
6077
6078 if (dev_priv->pc8.enabled)
6079 return;
6080
6081 DRM_DEBUG_KMS("Enabling package C8+\n");
6082
6083 dev_priv->pc8.enabled = true;
6084
6085 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6086 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6087 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6088 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6089 }
6090
6091 lpt_disable_clkout_dp(dev);
6092 hsw_pc8_disable_interrupts(dev);
6093 hsw_disable_lcpll(dev_priv, true, true);
6094 }
6095
6096 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6097 {
6098 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6099 WARN(dev_priv->pc8.disable_count < 1,
6100 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6101
6102 dev_priv->pc8.disable_count--;
6103 if (dev_priv->pc8.disable_count != 0)
6104 return;
6105
6106 schedule_delayed_work(&dev_priv->pc8.enable_work,
6107 msecs_to_jiffies(i915_pc8_timeout));
6108 }
6109
6110 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6111 {
6112 struct drm_device *dev = dev_priv->dev;
6113 uint32_t val;
6114
6115 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6116 WARN(dev_priv->pc8.disable_count < 0,
6117 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6118
6119 dev_priv->pc8.disable_count++;
6120 if (dev_priv->pc8.disable_count != 1)
6121 return;
6122
6123 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6124 if (!dev_priv->pc8.enabled)
6125 return;
6126
6127 DRM_DEBUG_KMS("Disabling package C8+\n");
6128
6129 hsw_restore_lcpll(dev_priv);
6130 hsw_pc8_restore_interrupts(dev);
6131 lpt_init_pch_refclk(dev);
6132
6133 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6134 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6135 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6136 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6137 }
6138
6139 intel_prepare_ddi(dev);
6140 i915_gem_init_swizzling(dev);
6141 mutex_lock(&dev_priv->rps.hw_lock);
6142 gen6_update_ring_freq(dev);
6143 mutex_unlock(&dev_priv->rps.hw_lock);
6144 dev_priv->pc8.enabled = false;
6145 }
6146
6147 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6148 {
6149 mutex_lock(&dev_priv->pc8.lock);
6150 __hsw_enable_package_c8(dev_priv);
6151 mutex_unlock(&dev_priv->pc8.lock);
6152 }
6153
6154 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6155 {
6156 mutex_lock(&dev_priv->pc8.lock);
6157 __hsw_disable_package_c8(dev_priv);
6158 mutex_unlock(&dev_priv->pc8.lock);
6159 }
6160
6161 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6162 {
6163 struct drm_device *dev = dev_priv->dev;
6164 struct intel_crtc *crtc;
6165 uint32_t val;
6166
6167 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6168 if (crtc->base.enabled)
6169 return false;
6170
6171 /* This case is still possible since we have the i915.disable_power_well
6172 * parameter and also the KVMr or something else might be requesting the
6173 * power well. */
6174 val = I915_READ(HSW_PWR_WELL_DRIVER);
6175 if (val != 0) {
6176 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6177 return false;
6178 }
6179
6180 return true;
6181 }
6182
6183 /* Since we're called from modeset_global_resources there's no way to
6184 * symmetrically increase and decrease the refcount, so we use
6185 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6186 * or not.
6187 */
6188 static void hsw_update_package_c8(struct drm_device *dev)
6189 {
6190 struct drm_i915_private *dev_priv = dev->dev_private;
6191 bool allow;
6192
6193 if (!i915_enable_pc8)
6194 return;
6195
6196 mutex_lock(&dev_priv->pc8.lock);
6197
6198 allow = hsw_can_enable_package_c8(dev_priv);
6199
6200 if (allow == dev_priv->pc8.requirements_met)
6201 goto done;
6202
6203 dev_priv->pc8.requirements_met = allow;
6204
6205 if (allow)
6206 __hsw_enable_package_c8(dev_priv);
6207 else
6208 __hsw_disable_package_c8(dev_priv);
6209
6210 done:
6211 mutex_unlock(&dev_priv->pc8.lock);
6212 }
6213
6214 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6215 {
6216 if (!dev_priv->pc8.gpu_idle) {
6217 dev_priv->pc8.gpu_idle = true;
6218 hsw_enable_package_c8(dev_priv);
6219 }
6220 }
6221
6222 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6223 {
6224 if (dev_priv->pc8.gpu_idle) {
6225 dev_priv->pc8.gpu_idle = false;
6226 hsw_disable_package_c8(dev_priv);
6227 }
6228 }
6229
6230 static void haswell_modeset_global_resources(struct drm_device *dev)
6231 {
6232 bool enable = false;
6233 struct intel_crtc *crtc;
6234
6235 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6236 if (!crtc->base.enabled)
6237 continue;
6238
6239 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6240 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6241 enable = true;
6242 }
6243
6244 intel_set_power_well(dev, enable);
6245
6246 hsw_update_package_c8(dev);
6247 }
6248
6249 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6250 int x, int y,
6251 struct drm_framebuffer *fb)
6252 {
6253 struct drm_device *dev = crtc->dev;
6254 struct drm_i915_private *dev_priv = dev->dev_private;
6255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6256 int plane = intel_crtc->plane;
6257 int ret;
6258
6259 if (!intel_ddi_pll_mode_set(crtc))
6260 return -EINVAL;
6261
6262 /* Ensure that the cursor is valid for the new mode before changing... */
6263 intel_crtc_update_cursor(crtc, true);
6264
6265 if (intel_crtc->config.has_dp_encoder)
6266 intel_dp_set_m_n(intel_crtc);
6267
6268 intel_crtc->lowfreq_avail = false;
6269
6270 intel_set_pipe_timings(intel_crtc);
6271
6272 if (intel_crtc->config.has_pch_encoder) {
6273 intel_cpu_transcoder_set_m_n(intel_crtc,
6274 &intel_crtc->config.fdi_m_n);
6275 }
6276
6277 haswell_set_pipeconf(crtc);
6278
6279 intel_set_pipe_csc(crtc);
6280
6281 /* Set up the display plane register */
6282 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6283 POSTING_READ(DSPCNTR(plane));
6284
6285 ret = intel_pipe_set_base(crtc, x, y, fb);
6286
6287 intel_update_watermarks(dev);
6288
6289 return ret;
6290 }
6291
6292 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6293 struct intel_crtc_config *pipe_config)
6294 {
6295 struct drm_device *dev = crtc->base.dev;
6296 struct drm_i915_private *dev_priv = dev->dev_private;
6297 enum intel_display_power_domain pfit_domain;
6298 uint32_t tmp;
6299
6300 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6301 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6302
6303 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6304 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6305 enum pipe trans_edp_pipe;
6306 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6307 default:
6308 WARN(1, "unknown pipe linked to edp transcoder\n");
6309 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6310 case TRANS_DDI_EDP_INPUT_A_ON:
6311 trans_edp_pipe = PIPE_A;
6312 break;
6313 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6314 trans_edp_pipe = PIPE_B;
6315 break;
6316 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6317 trans_edp_pipe = PIPE_C;
6318 break;
6319 }
6320
6321 if (trans_edp_pipe == crtc->pipe)
6322 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6323 }
6324
6325 if (!intel_display_power_enabled(dev,
6326 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6327 return false;
6328
6329 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6330 if (!(tmp & PIPECONF_ENABLE))
6331 return false;
6332
6333 /*
6334 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6335 * DDI E. So just check whether this pipe is wired to DDI E and whether
6336 * the PCH transcoder is on.
6337 */
6338 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6339 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6340 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6341 pipe_config->has_pch_encoder = true;
6342
6343 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6344 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6345 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6346
6347 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6348 }
6349
6350 intel_get_pipe_timings(crtc, pipe_config);
6351
6352 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6353 if (intel_display_power_enabled(dev, pfit_domain))
6354 ironlake_get_pfit_config(crtc, pipe_config);
6355
6356 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6357 (I915_READ(IPS_CTL) & IPS_ENABLE);
6358
6359 pipe_config->pixel_multiplier = 1;
6360
6361 return true;
6362 }
6363
6364 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6365 int x, int y,
6366 struct drm_framebuffer *fb)
6367 {
6368 struct drm_device *dev = crtc->dev;
6369 struct drm_i915_private *dev_priv = dev->dev_private;
6370 struct intel_encoder *encoder;
6371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6372 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6373 int pipe = intel_crtc->pipe;
6374 int ret;
6375
6376 drm_vblank_pre_modeset(dev, pipe);
6377
6378 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6379
6380 drm_vblank_post_modeset(dev, pipe);
6381
6382 if (ret != 0)
6383 return ret;
6384
6385 for_each_encoder_on_crtc(dev, crtc, encoder) {
6386 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6387 encoder->base.base.id,
6388 drm_get_encoder_name(&encoder->base),
6389 mode->base.id, mode->name);
6390 encoder->mode_set(encoder);
6391 }
6392
6393 return 0;
6394 }
6395
6396 static bool intel_eld_uptodate(struct drm_connector *connector,
6397 int reg_eldv, uint32_t bits_eldv,
6398 int reg_elda, uint32_t bits_elda,
6399 int reg_edid)
6400 {
6401 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6402 uint8_t *eld = connector->eld;
6403 uint32_t i;
6404
6405 i = I915_READ(reg_eldv);
6406 i &= bits_eldv;
6407
6408 if (!eld[0])
6409 return !i;
6410
6411 if (!i)
6412 return false;
6413
6414 i = I915_READ(reg_elda);
6415 i &= ~bits_elda;
6416 I915_WRITE(reg_elda, i);
6417
6418 for (i = 0; i < eld[2]; i++)
6419 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6420 return false;
6421
6422 return true;
6423 }
6424
6425 static void g4x_write_eld(struct drm_connector *connector,
6426 struct drm_crtc *crtc)
6427 {
6428 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6429 uint8_t *eld = connector->eld;
6430 uint32_t eldv;
6431 uint32_t len;
6432 uint32_t i;
6433
6434 i = I915_READ(G4X_AUD_VID_DID);
6435
6436 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6437 eldv = G4X_ELDV_DEVCL_DEVBLC;
6438 else
6439 eldv = G4X_ELDV_DEVCTG;
6440
6441 if (intel_eld_uptodate(connector,
6442 G4X_AUD_CNTL_ST, eldv,
6443 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6444 G4X_HDMIW_HDMIEDID))
6445 return;
6446
6447 i = I915_READ(G4X_AUD_CNTL_ST);
6448 i &= ~(eldv | G4X_ELD_ADDR);
6449 len = (i >> 9) & 0x1f; /* ELD buffer size */
6450 I915_WRITE(G4X_AUD_CNTL_ST, i);
6451
6452 if (!eld[0])
6453 return;
6454
6455 len = min_t(uint8_t, eld[2], len);
6456 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6457 for (i = 0; i < len; i++)
6458 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6459
6460 i = I915_READ(G4X_AUD_CNTL_ST);
6461 i |= eldv;
6462 I915_WRITE(G4X_AUD_CNTL_ST, i);
6463 }
6464
6465 static void haswell_write_eld(struct drm_connector *connector,
6466 struct drm_crtc *crtc)
6467 {
6468 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6469 uint8_t *eld = connector->eld;
6470 struct drm_device *dev = crtc->dev;
6471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6472 uint32_t eldv;
6473 uint32_t i;
6474 int len;
6475 int pipe = to_intel_crtc(crtc)->pipe;
6476 int tmp;
6477
6478 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6479 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6480 int aud_config = HSW_AUD_CFG(pipe);
6481 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6482
6483
6484 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6485
6486 /* Audio output enable */
6487 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6488 tmp = I915_READ(aud_cntrl_st2);
6489 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6490 I915_WRITE(aud_cntrl_st2, tmp);
6491
6492 /* Wait for 1 vertical blank */
6493 intel_wait_for_vblank(dev, pipe);
6494
6495 /* Set ELD valid state */
6496 tmp = I915_READ(aud_cntrl_st2);
6497 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6498 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6499 I915_WRITE(aud_cntrl_st2, tmp);
6500 tmp = I915_READ(aud_cntrl_st2);
6501 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6502
6503 /* Enable HDMI mode */
6504 tmp = I915_READ(aud_config);
6505 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6506 /* clear N_programing_enable and N_value_index */
6507 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6508 I915_WRITE(aud_config, tmp);
6509
6510 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6511
6512 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6513 intel_crtc->eld_vld = true;
6514
6515 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6516 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6517 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6518 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6519 } else
6520 I915_WRITE(aud_config, 0);
6521
6522 if (intel_eld_uptodate(connector,
6523 aud_cntrl_st2, eldv,
6524 aud_cntl_st, IBX_ELD_ADDRESS,
6525 hdmiw_hdmiedid))
6526 return;
6527
6528 i = I915_READ(aud_cntrl_st2);
6529 i &= ~eldv;
6530 I915_WRITE(aud_cntrl_st2, i);
6531
6532 if (!eld[0])
6533 return;
6534
6535 i = I915_READ(aud_cntl_st);
6536 i &= ~IBX_ELD_ADDRESS;
6537 I915_WRITE(aud_cntl_st, i);
6538 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6539 DRM_DEBUG_DRIVER("port num:%d\n", i);
6540
6541 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6542 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6543 for (i = 0; i < len; i++)
6544 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6545
6546 i = I915_READ(aud_cntrl_st2);
6547 i |= eldv;
6548 I915_WRITE(aud_cntrl_st2, i);
6549
6550 }
6551
6552 static void ironlake_write_eld(struct drm_connector *connector,
6553 struct drm_crtc *crtc)
6554 {
6555 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6556 uint8_t *eld = connector->eld;
6557 uint32_t eldv;
6558 uint32_t i;
6559 int len;
6560 int hdmiw_hdmiedid;
6561 int aud_config;
6562 int aud_cntl_st;
6563 int aud_cntrl_st2;
6564 int pipe = to_intel_crtc(crtc)->pipe;
6565
6566 if (HAS_PCH_IBX(connector->dev)) {
6567 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6568 aud_config = IBX_AUD_CFG(pipe);
6569 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6570 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6571 } else {
6572 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6573 aud_config = CPT_AUD_CFG(pipe);
6574 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6575 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6576 }
6577
6578 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6579
6580 i = I915_READ(aud_cntl_st);
6581 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6582 if (!i) {
6583 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6584 /* operate blindly on all ports */
6585 eldv = IBX_ELD_VALIDB;
6586 eldv |= IBX_ELD_VALIDB << 4;
6587 eldv |= IBX_ELD_VALIDB << 8;
6588 } else {
6589 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6590 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6591 }
6592
6593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6594 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6595 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6596 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6597 } else
6598 I915_WRITE(aud_config, 0);
6599
6600 if (intel_eld_uptodate(connector,
6601 aud_cntrl_st2, eldv,
6602 aud_cntl_st, IBX_ELD_ADDRESS,
6603 hdmiw_hdmiedid))
6604 return;
6605
6606 i = I915_READ(aud_cntrl_st2);
6607 i &= ~eldv;
6608 I915_WRITE(aud_cntrl_st2, i);
6609
6610 if (!eld[0])
6611 return;
6612
6613 i = I915_READ(aud_cntl_st);
6614 i &= ~IBX_ELD_ADDRESS;
6615 I915_WRITE(aud_cntl_st, i);
6616
6617 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6618 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6619 for (i = 0; i < len; i++)
6620 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6621
6622 i = I915_READ(aud_cntrl_st2);
6623 i |= eldv;
6624 I915_WRITE(aud_cntrl_st2, i);
6625 }
6626
6627 void intel_write_eld(struct drm_encoder *encoder,
6628 struct drm_display_mode *mode)
6629 {
6630 struct drm_crtc *crtc = encoder->crtc;
6631 struct drm_connector *connector;
6632 struct drm_device *dev = encoder->dev;
6633 struct drm_i915_private *dev_priv = dev->dev_private;
6634
6635 connector = drm_select_eld(encoder, mode);
6636 if (!connector)
6637 return;
6638
6639 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6640 connector->base.id,
6641 drm_get_connector_name(connector),
6642 connector->encoder->base.id,
6643 drm_get_encoder_name(connector->encoder));
6644
6645 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6646
6647 if (dev_priv->display.write_eld)
6648 dev_priv->display.write_eld(connector, crtc);
6649 }
6650
6651 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6652 void intel_crtc_load_lut(struct drm_crtc *crtc)
6653 {
6654 struct drm_device *dev = crtc->dev;
6655 struct drm_i915_private *dev_priv = dev->dev_private;
6656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6657 enum pipe pipe = intel_crtc->pipe;
6658 int palreg = PALETTE(pipe);
6659 int i;
6660 bool reenable_ips = false;
6661
6662 /* The clocks have to be on to load the palette. */
6663 if (!crtc->enabled || !intel_crtc->active)
6664 return;
6665
6666 if (!HAS_PCH_SPLIT(dev_priv->dev))
6667 assert_pll_enabled(dev_priv, pipe);
6668
6669 /* use legacy palette for Ironlake */
6670 if (HAS_PCH_SPLIT(dev))
6671 palreg = LGC_PALETTE(pipe);
6672
6673 /* Workaround : Do not read or write the pipe palette/gamma data while
6674 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6675 */
6676 if (intel_crtc->config.ips_enabled &&
6677 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6678 GAMMA_MODE_MODE_SPLIT)) {
6679 hsw_disable_ips(intel_crtc);
6680 reenable_ips = true;
6681 }
6682
6683 for (i = 0; i < 256; i++) {
6684 I915_WRITE(palreg + 4 * i,
6685 (intel_crtc->lut_r[i] << 16) |
6686 (intel_crtc->lut_g[i] << 8) |
6687 intel_crtc->lut_b[i]);
6688 }
6689
6690 if (reenable_ips)
6691 hsw_enable_ips(intel_crtc);
6692 }
6693
6694 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6695 {
6696 struct drm_device *dev = crtc->dev;
6697 struct drm_i915_private *dev_priv = dev->dev_private;
6698 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6699 bool visible = base != 0;
6700 u32 cntl;
6701
6702 if (intel_crtc->cursor_visible == visible)
6703 return;
6704
6705 cntl = I915_READ(_CURACNTR);
6706 if (visible) {
6707 /* On these chipsets we can only modify the base whilst
6708 * the cursor is disabled.
6709 */
6710 I915_WRITE(_CURABASE, base);
6711
6712 cntl &= ~(CURSOR_FORMAT_MASK);
6713 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6714 cntl |= CURSOR_ENABLE |
6715 CURSOR_GAMMA_ENABLE |
6716 CURSOR_FORMAT_ARGB;
6717 } else
6718 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6719 I915_WRITE(_CURACNTR, cntl);
6720
6721 intel_crtc->cursor_visible = visible;
6722 }
6723
6724 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6725 {
6726 struct drm_device *dev = crtc->dev;
6727 struct drm_i915_private *dev_priv = dev->dev_private;
6728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6729 int pipe = intel_crtc->pipe;
6730 bool visible = base != 0;
6731
6732 if (intel_crtc->cursor_visible != visible) {
6733 uint32_t cntl = I915_READ(CURCNTR(pipe));
6734 if (base) {
6735 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6736 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6737 cntl |= pipe << 28; /* Connect to correct pipe */
6738 } else {
6739 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6740 cntl |= CURSOR_MODE_DISABLE;
6741 }
6742 I915_WRITE(CURCNTR(pipe), cntl);
6743
6744 intel_crtc->cursor_visible = visible;
6745 }
6746 /* and commit changes on next vblank */
6747 I915_WRITE(CURBASE(pipe), base);
6748 }
6749
6750 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6751 {
6752 struct drm_device *dev = crtc->dev;
6753 struct drm_i915_private *dev_priv = dev->dev_private;
6754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6755 int pipe = intel_crtc->pipe;
6756 bool visible = base != 0;
6757
6758 if (intel_crtc->cursor_visible != visible) {
6759 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6760 if (base) {
6761 cntl &= ~CURSOR_MODE;
6762 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6763 } else {
6764 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6765 cntl |= CURSOR_MODE_DISABLE;
6766 }
6767 if (IS_HASWELL(dev)) {
6768 cntl |= CURSOR_PIPE_CSC_ENABLE;
6769 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6770 }
6771 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6772
6773 intel_crtc->cursor_visible = visible;
6774 }
6775 /* and commit changes on next vblank */
6776 I915_WRITE(CURBASE_IVB(pipe), base);
6777 }
6778
6779 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6780 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6781 bool on)
6782 {
6783 struct drm_device *dev = crtc->dev;
6784 struct drm_i915_private *dev_priv = dev->dev_private;
6785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6786 int pipe = intel_crtc->pipe;
6787 int x = intel_crtc->cursor_x;
6788 int y = intel_crtc->cursor_y;
6789 u32 base, pos;
6790 bool visible;
6791
6792 pos = 0;
6793
6794 if (on && crtc->enabled && crtc->fb) {
6795 base = intel_crtc->cursor_addr;
6796 if (x > (int) crtc->fb->width)
6797 base = 0;
6798
6799 if (y > (int) crtc->fb->height)
6800 base = 0;
6801 } else
6802 base = 0;
6803
6804 if (x < 0) {
6805 if (x + intel_crtc->cursor_width < 0)
6806 base = 0;
6807
6808 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6809 x = -x;
6810 }
6811 pos |= x << CURSOR_X_SHIFT;
6812
6813 if (y < 0) {
6814 if (y + intel_crtc->cursor_height < 0)
6815 base = 0;
6816
6817 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6818 y = -y;
6819 }
6820 pos |= y << CURSOR_Y_SHIFT;
6821
6822 visible = base != 0;
6823 if (!visible && !intel_crtc->cursor_visible)
6824 return;
6825
6826 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6827 I915_WRITE(CURPOS_IVB(pipe), pos);
6828 ivb_update_cursor(crtc, base);
6829 } else {
6830 I915_WRITE(CURPOS(pipe), pos);
6831 if (IS_845G(dev) || IS_I865G(dev))
6832 i845_update_cursor(crtc, base);
6833 else
6834 i9xx_update_cursor(crtc, base);
6835 }
6836 }
6837
6838 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6839 struct drm_file *file,
6840 uint32_t handle,
6841 uint32_t width, uint32_t height)
6842 {
6843 struct drm_device *dev = crtc->dev;
6844 struct drm_i915_private *dev_priv = dev->dev_private;
6845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6846 struct drm_i915_gem_object *obj;
6847 uint32_t addr;
6848 int ret;
6849
6850 /* if we want to turn off the cursor ignore width and height */
6851 if (!handle) {
6852 DRM_DEBUG_KMS("cursor off\n");
6853 addr = 0;
6854 obj = NULL;
6855 mutex_lock(&dev->struct_mutex);
6856 goto finish;
6857 }
6858
6859 /* Currently we only support 64x64 cursors */
6860 if (width != 64 || height != 64) {
6861 DRM_ERROR("we currently only support 64x64 cursors\n");
6862 return -EINVAL;
6863 }
6864
6865 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6866 if (&obj->base == NULL)
6867 return -ENOENT;
6868
6869 if (obj->base.size < width * height * 4) {
6870 DRM_ERROR("buffer is to small\n");
6871 ret = -ENOMEM;
6872 goto fail;
6873 }
6874
6875 /* we only need to pin inside GTT if cursor is non-phy */
6876 mutex_lock(&dev->struct_mutex);
6877 if (!dev_priv->info->cursor_needs_physical) {
6878 unsigned alignment;
6879
6880 if (obj->tiling_mode) {
6881 DRM_ERROR("cursor cannot be tiled\n");
6882 ret = -EINVAL;
6883 goto fail_locked;
6884 }
6885
6886 /* Note that the w/a also requires 2 PTE of padding following
6887 * the bo. We currently fill all unused PTE with the shadow
6888 * page and so we should always have valid PTE following the
6889 * cursor preventing the VT-d warning.
6890 */
6891 alignment = 0;
6892 if (need_vtd_wa(dev))
6893 alignment = 64*1024;
6894
6895 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6896 if (ret) {
6897 DRM_ERROR("failed to move cursor bo into the GTT\n");
6898 goto fail_locked;
6899 }
6900
6901 ret = i915_gem_object_put_fence(obj);
6902 if (ret) {
6903 DRM_ERROR("failed to release fence for cursor");
6904 goto fail_unpin;
6905 }
6906
6907 addr = i915_gem_obj_ggtt_offset(obj);
6908 } else {
6909 int align = IS_I830(dev) ? 16 * 1024 : 256;
6910 ret = i915_gem_attach_phys_object(dev, obj,
6911 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6912 align);
6913 if (ret) {
6914 DRM_ERROR("failed to attach phys object\n");
6915 goto fail_locked;
6916 }
6917 addr = obj->phys_obj->handle->busaddr;
6918 }
6919
6920 if (IS_GEN2(dev))
6921 I915_WRITE(CURSIZE, (height << 12) | width);
6922
6923 finish:
6924 if (intel_crtc->cursor_bo) {
6925 if (dev_priv->info->cursor_needs_physical) {
6926 if (intel_crtc->cursor_bo != obj)
6927 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6928 } else
6929 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
6930 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6931 }
6932
6933 mutex_unlock(&dev->struct_mutex);
6934
6935 intel_crtc->cursor_addr = addr;
6936 intel_crtc->cursor_bo = obj;
6937 intel_crtc->cursor_width = width;
6938 intel_crtc->cursor_height = height;
6939
6940 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6941
6942 return 0;
6943 fail_unpin:
6944 i915_gem_object_unpin_from_display_plane(obj);
6945 fail_locked:
6946 mutex_unlock(&dev->struct_mutex);
6947 fail:
6948 drm_gem_object_unreference_unlocked(&obj->base);
6949 return ret;
6950 }
6951
6952 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6953 {
6954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6955
6956 intel_crtc->cursor_x = x;
6957 intel_crtc->cursor_y = y;
6958
6959 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6960
6961 return 0;
6962 }
6963
6964 /** Sets the color ramps on behalf of RandR */
6965 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6966 u16 blue, int regno)
6967 {
6968 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6969
6970 intel_crtc->lut_r[regno] = red >> 8;
6971 intel_crtc->lut_g[regno] = green >> 8;
6972 intel_crtc->lut_b[regno] = blue >> 8;
6973 }
6974
6975 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6976 u16 *blue, int regno)
6977 {
6978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6979
6980 *red = intel_crtc->lut_r[regno] << 8;
6981 *green = intel_crtc->lut_g[regno] << 8;
6982 *blue = intel_crtc->lut_b[regno] << 8;
6983 }
6984
6985 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6986 u16 *blue, uint32_t start, uint32_t size)
6987 {
6988 int end = (start + size > 256) ? 256 : start + size, i;
6989 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6990
6991 for (i = start; i < end; i++) {
6992 intel_crtc->lut_r[i] = red[i] >> 8;
6993 intel_crtc->lut_g[i] = green[i] >> 8;
6994 intel_crtc->lut_b[i] = blue[i] >> 8;
6995 }
6996
6997 intel_crtc_load_lut(crtc);
6998 }
6999
7000 /* VESA 640x480x72Hz mode to set on the pipe */
7001 static struct drm_display_mode load_detect_mode = {
7002 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7003 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7004 };
7005
7006 static struct drm_framebuffer *
7007 intel_framebuffer_create(struct drm_device *dev,
7008 struct drm_mode_fb_cmd2 *mode_cmd,
7009 struct drm_i915_gem_object *obj)
7010 {
7011 struct intel_framebuffer *intel_fb;
7012 int ret;
7013
7014 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7015 if (!intel_fb) {
7016 drm_gem_object_unreference_unlocked(&obj->base);
7017 return ERR_PTR(-ENOMEM);
7018 }
7019
7020 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7021 if (ret) {
7022 drm_gem_object_unreference_unlocked(&obj->base);
7023 kfree(intel_fb);
7024 return ERR_PTR(ret);
7025 }
7026
7027 return &intel_fb->base;
7028 }
7029
7030 static u32
7031 intel_framebuffer_pitch_for_width(int width, int bpp)
7032 {
7033 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7034 return ALIGN(pitch, 64);
7035 }
7036
7037 static u32
7038 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7039 {
7040 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7041 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7042 }
7043
7044 static struct drm_framebuffer *
7045 intel_framebuffer_create_for_mode(struct drm_device *dev,
7046 struct drm_display_mode *mode,
7047 int depth, int bpp)
7048 {
7049 struct drm_i915_gem_object *obj;
7050 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7051
7052 obj = i915_gem_alloc_object(dev,
7053 intel_framebuffer_size_for_mode(mode, bpp));
7054 if (obj == NULL)
7055 return ERR_PTR(-ENOMEM);
7056
7057 mode_cmd.width = mode->hdisplay;
7058 mode_cmd.height = mode->vdisplay;
7059 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7060 bpp);
7061 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7062
7063 return intel_framebuffer_create(dev, &mode_cmd, obj);
7064 }
7065
7066 static struct drm_framebuffer *
7067 mode_fits_in_fbdev(struct drm_device *dev,
7068 struct drm_display_mode *mode)
7069 {
7070 struct drm_i915_private *dev_priv = dev->dev_private;
7071 struct drm_i915_gem_object *obj;
7072 struct drm_framebuffer *fb;
7073
7074 if (dev_priv->fbdev == NULL)
7075 return NULL;
7076
7077 obj = dev_priv->fbdev->ifb.obj;
7078 if (obj == NULL)
7079 return NULL;
7080
7081 fb = &dev_priv->fbdev->ifb.base;
7082 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7083 fb->bits_per_pixel))
7084 return NULL;
7085
7086 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7087 return NULL;
7088
7089 return fb;
7090 }
7091
7092 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7093 struct drm_display_mode *mode,
7094 struct intel_load_detect_pipe *old)
7095 {
7096 struct intel_crtc *intel_crtc;
7097 struct intel_encoder *intel_encoder =
7098 intel_attached_encoder(connector);
7099 struct drm_crtc *possible_crtc;
7100 struct drm_encoder *encoder = &intel_encoder->base;
7101 struct drm_crtc *crtc = NULL;
7102 struct drm_device *dev = encoder->dev;
7103 struct drm_framebuffer *fb;
7104 int i = -1;
7105
7106 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7107 connector->base.id, drm_get_connector_name(connector),
7108 encoder->base.id, drm_get_encoder_name(encoder));
7109
7110 /*
7111 * Algorithm gets a little messy:
7112 *
7113 * - if the connector already has an assigned crtc, use it (but make
7114 * sure it's on first)
7115 *
7116 * - try to find the first unused crtc that can drive this connector,
7117 * and use that if we find one
7118 */
7119
7120 /* See if we already have a CRTC for this connector */
7121 if (encoder->crtc) {
7122 crtc = encoder->crtc;
7123
7124 mutex_lock(&crtc->mutex);
7125
7126 old->dpms_mode = connector->dpms;
7127 old->load_detect_temp = false;
7128
7129 /* Make sure the crtc and connector are running */
7130 if (connector->dpms != DRM_MODE_DPMS_ON)
7131 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7132
7133 return true;
7134 }
7135
7136 /* Find an unused one (if possible) */
7137 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7138 i++;
7139 if (!(encoder->possible_crtcs & (1 << i)))
7140 continue;
7141 if (!possible_crtc->enabled) {
7142 crtc = possible_crtc;
7143 break;
7144 }
7145 }
7146
7147 /*
7148 * If we didn't find an unused CRTC, don't use any.
7149 */
7150 if (!crtc) {
7151 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7152 return false;
7153 }
7154
7155 mutex_lock(&crtc->mutex);
7156 intel_encoder->new_crtc = to_intel_crtc(crtc);
7157 to_intel_connector(connector)->new_encoder = intel_encoder;
7158
7159 intel_crtc = to_intel_crtc(crtc);
7160 old->dpms_mode = connector->dpms;
7161 old->load_detect_temp = true;
7162 old->release_fb = NULL;
7163
7164 if (!mode)
7165 mode = &load_detect_mode;
7166
7167 /* We need a framebuffer large enough to accommodate all accesses
7168 * that the plane may generate whilst we perform load detection.
7169 * We can not rely on the fbcon either being present (we get called
7170 * during its initialisation to detect all boot displays, or it may
7171 * not even exist) or that it is large enough to satisfy the
7172 * requested mode.
7173 */
7174 fb = mode_fits_in_fbdev(dev, mode);
7175 if (fb == NULL) {
7176 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7177 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7178 old->release_fb = fb;
7179 } else
7180 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7181 if (IS_ERR(fb)) {
7182 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7183 mutex_unlock(&crtc->mutex);
7184 return false;
7185 }
7186
7187 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7188 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7189 if (old->release_fb)
7190 old->release_fb->funcs->destroy(old->release_fb);
7191 mutex_unlock(&crtc->mutex);
7192 return false;
7193 }
7194
7195 /* let the connector get through one full cycle before testing */
7196 intel_wait_for_vblank(dev, intel_crtc->pipe);
7197 return true;
7198 }
7199
7200 void intel_release_load_detect_pipe(struct drm_connector *connector,
7201 struct intel_load_detect_pipe *old)
7202 {
7203 struct intel_encoder *intel_encoder =
7204 intel_attached_encoder(connector);
7205 struct drm_encoder *encoder = &intel_encoder->base;
7206 struct drm_crtc *crtc = encoder->crtc;
7207
7208 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7209 connector->base.id, drm_get_connector_name(connector),
7210 encoder->base.id, drm_get_encoder_name(encoder));
7211
7212 if (old->load_detect_temp) {
7213 to_intel_connector(connector)->new_encoder = NULL;
7214 intel_encoder->new_crtc = NULL;
7215 intel_set_mode(crtc, NULL, 0, 0, NULL);
7216
7217 if (old->release_fb) {
7218 drm_framebuffer_unregister_private(old->release_fb);
7219 drm_framebuffer_unreference(old->release_fb);
7220 }
7221
7222 mutex_unlock(&crtc->mutex);
7223 return;
7224 }
7225
7226 /* Switch crtc and encoder back off if necessary */
7227 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7228 connector->funcs->dpms(connector, old->dpms_mode);
7229
7230 mutex_unlock(&crtc->mutex);
7231 }
7232
7233 /* Returns the clock of the currently programmed mode of the given pipe. */
7234 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7235 struct intel_crtc_config *pipe_config)
7236 {
7237 struct drm_device *dev = crtc->base.dev;
7238 struct drm_i915_private *dev_priv = dev->dev_private;
7239 int pipe = pipe_config->cpu_transcoder;
7240 u32 dpll = I915_READ(DPLL(pipe));
7241 u32 fp;
7242 intel_clock_t clock;
7243
7244 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7245 fp = I915_READ(FP0(pipe));
7246 else
7247 fp = I915_READ(FP1(pipe));
7248
7249 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7250 if (IS_PINEVIEW(dev)) {
7251 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7252 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7253 } else {
7254 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7255 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7256 }
7257
7258 if (!IS_GEN2(dev)) {
7259 if (IS_PINEVIEW(dev))
7260 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7261 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7262 else
7263 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7264 DPLL_FPA01_P1_POST_DIV_SHIFT);
7265
7266 switch (dpll & DPLL_MODE_MASK) {
7267 case DPLLB_MODE_DAC_SERIAL:
7268 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7269 5 : 10;
7270 break;
7271 case DPLLB_MODE_LVDS:
7272 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7273 7 : 14;
7274 break;
7275 default:
7276 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7277 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7278 pipe_config->adjusted_mode.clock = 0;
7279 return;
7280 }
7281
7282 if (IS_PINEVIEW(dev))
7283 pineview_clock(96000, &clock);
7284 else
7285 i9xx_clock(96000, &clock);
7286 } else {
7287 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7288
7289 if (is_lvds) {
7290 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7291 DPLL_FPA01_P1_POST_DIV_SHIFT);
7292 clock.p2 = 14;
7293
7294 if ((dpll & PLL_REF_INPUT_MASK) ==
7295 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7296 /* XXX: might not be 66MHz */
7297 i9xx_clock(66000, &clock);
7298 } else
7299 i9xx_clock(48000, &clock);
7300 } else {
7301 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7302 clock.p1 = 2;
7303 else {
7304 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7305 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7306 }
7307 if (dpll & PLL_P2_DIVIDE_BY_4)
7308 clock.p2 = 4;
7309 else
7310 clock.p2 = 2;
7311
7312 i9xx_clock(48000, &clock);
7313 }
7314 }
7315
7316 pipe_config->adjusted_mode.clock = clock.dot;
7317 }
7318
7319 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7320 struct intel_crtc_config *pipe_config)
7321 {
7322 struct drm_device *dev = crtc->base.dev;
7323 struct drm_i915_private *dev_priv = dev->dev_private;
7324 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7325 int link_freq, repeat;
7326 u64 clock;
7327 u32 link_m, link_n;
7328
7329 repeat = pipe_config->pixel_multiplier;
7330
7331 /*
7332 * The calculation for the data clock is:
7333 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7334 * But we want to avoid losing precison if possible, so:
7335 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7336 *
7337 * and the link clock is simpler:
7338 * link_clock = (m * link_clock * repeat) / n
7339 */
7340
7341 /*
7342 * We need to get the FDI or DP link clock here to derive
7343 * the M/N dividers.
7344 *
7345 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7346 * For DP, it's either 1.62GHz or 2.7GHz.
7347 * We do our calculations in 10*MHz since we don't need much precison.
7348 */
7349 if (pipe_config->has_pch_encoder)
7350 link_freq = intel_fdi_link_freq(dev) * 10000;
7351 else
7352 link_freq = pipe_config->port_clock;
7353
7354 link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7355 link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7356
7357 if (!link_m || !link_n)
7358 return;
7359
7360 clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7361 do_div(clock, link_n);
7362
7363 pipe_config->adjusted_mode.clock = clock;
7364 }
7365
7366 /** Returns the currently programmed mode of the given pipe. */
7367 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7368 struct drm_crtc *crtc)
7369 {
7370 struct drm_i915_private *dev_priv = dev->dev_private;
7371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7372 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7373 struct drm_display_mode *mode;
7374 struct intel_crtc_config pipe_config;
7375 int htot = I915_READ(HTOTAL(cpu_transcoder));
7376 int hsync = I915_READ(HSYNC(cpu_transcoder));
7377 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7378 int vsync = I915_READ(VSYNC(cpu_transcoder));
7379
7380 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7381 if (!mode)
7382 return NULL;
7383
7384 /*
7385 * Construct a pipe_config sufficient for getting the clock info
7386 * back out of crtc_clock_get.
7387 *
7388 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7389 * to use a real value here instead.
7390 */
7391 pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7392 pipe_config.pixel_multiplier = 1;
7393 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7394
7395 mode->clock = pipe_config.adjusted_mode.clock;
7396 mode->hdisplay = (htot & 0xffff) + 1;
7397 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7398 mode->hsync_start = (hsync & 0xffff) + 1;
7399 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7400 mode->vdisplay = (vtot & 0xffff) + 1;
7401 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7402 mode->vsync_start = (vsync & 0xffff) + 1;
7403 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7404
7405 drm_mode_set_name(mode);
7406
7407 return mode;
7408 }
7409
7410 static void intel_increase_pllclock(struct drm_crtc *crtc)
7411 {
7412 struct drm_device *dev = crtc->dev;
7413 drm_i915_private_t *dev_priv = dev->dev_private;
7414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7415 int pipe = intel_crtc->pipe;
7416 int dpll_reg = DPLL(pipe);
7417 int dpll;
7418
7419 if (HAS_PCH_SPLIT(dev))
7420 return;
7421
7422 if (!dev_priv->lvds_downclock_avail)
7423 return;
7424
7425 dpll = I915_READ(dpll_reg);
7426 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7427 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7428
7429 assert_panel_unlocked(dev_priv, pipe);
7430
7431 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7432 I915_WRITE(dpll_reg, dpll);
7433 intel_wait_for_vblank(dev, pipe);
7434
7435 dpll = I915_READ(dpll_reg);
7436 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7437 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7438 }
7439 }
7440
7441 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7442 {
7443 struct drm_device *dev = crtc->dev;
7444 drm_i915_private_t *dev_priv = dev->dev_private;
7445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7446
7447 if (HAS_PCH_SPLIT(dev))
7448 return;
7449
7450 if (!dev_priv->lvds_downclock_avail)
7451 return;
7452
7453 /*
7454 * Since this is called by a timer, we should never get here in
7455 * the manual case.
7456 */
7457 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7458 int pipe = intel_crtc->pipe;
7459 int dpll_reg = DPLL(pipe);
7460 int dpll;
7461
7462 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7463
7464 assert_panel_unlocked(dev_priv, pipe);
7465
7466 dpll = I915_READ(dpll_reg);
7467 dpll |= DISPLAY_RATE_SELECT_FPA1;
7468 I915_WRITE(dpll_reg, dpll);
7469 intel_wait_for_vblank(dev, pipe);
7470 dpll = I915_READ(dpll_reg);
7471 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7472 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7473 }
7474
7475 }
7476
7477 void intel_mark_busy(struct drm_device *dev)
7478 {
7479 struct drm_i915_private *dev_priv = dev->dev_private;
7480
7481 hsw_package_c8_gpu_busy(dev_priv);
7482 i915_update_gfx_val(dev_priv);
7483 }
7484
7485 void intel_mark_idle(struct drm_device *dev)
7486 {
7487 struct drm_i915_private *dev_priv = dev->dev_private;
7488 struct drm_crtc *crtc;
7489
7490 hsw_package_c8_gpu_idle(dev_priv);
7491
7492 if (!i915_powersave)
7493 return;
7494
7495 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7496 if (!crtc->fb)
7497 continue;
7498
7499 intel_decrease_pllclock(crtc);
7500 }
7501 }
7502
7503 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7504 struct intel_ring_buffer *ring)
7505 {
7506 struct drm_device *dev = obj->base.dev;
7507 struct drm_crtc *crtc;
7508
7509 if (!i915_powersave)
7510 return;
7511
7512 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7513 if (!crtc->fb)
7514 continue;
7515
7516 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7517 continue;
7518
7519 intel_increase_pllclock(crtc);
7520 if (ring && intel_fbc_enabled(dev))
7521 ring->fbc_dirty = true;
7522 }
7523 }
7524
7525 static void intel_crtc_destroy(struct drm_crtc *crtc)
7526 {
7527 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7528 struct drm_device *dev = crtc->dev;
7529 struct intel_unpin_work *work;
7530 unsigned long flags;
7531
7532 spin_lock_irqsave(&dev->event_lock, flags);
7533 work = intel_crtc->unpin_work;
7534 intel_crtc->unpin_work = NULL;
7535 spin_unlock_irqrestore(&dev->event_lock, flags);
7536
7537 if (work) {
7538 cancel_work_sync(&work->work);
7539 kfree(work);
7540 }
7541
7542 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7543
7544 drm_crtc_cleanup(crtc);
7545
7546 kfree(intel_crtc);
7547 }
7548
7549 static void intel_unpin_work_fn(struct work_struct *__work)
7550 {
7551 struct intel_unpin_work *work =
7552 container_of(__work, struct intel_unpin_work, work);
7553 struct drm_device *dev = work->crtc->dev;
7554
7555 mutex_lock(&dev->struct_mutex);
7556 intel_unpin_fb_obj(work->old_fb_obj);
7557 drm_gem_object_unreference(&work->pending_flip_obj->base);
7558 drm_gem_object_unreference(&work->old_fb_obj->base);
7559
7560 intel_update_fbc(dev);
7561 mutex_unlock(&dev->struct_mutex);
7562
7563 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7564 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7565
7566 kfree(work);
7567 }
7568
7569 static void do_intel_finish_page_flip(struct drm_device *dev,
7570 struct drm_crtc *crtc)
7571 {
7572 drm_i915_private_t *dev_priv = dev->dev_private;
7573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7574 struct intel_unpin_work *work;
7575 unsigned long flags;
7576
7577 /* Ignore early vblank irqs */
7578 if (intel_crtc == NULL)
7579 return;
7580
7581 spin_lock_irqsave(&dev->event_lock, flags);
7582 work = intel_crtc->unpin_work;
7583
7584 /* Ensure we don't miss a work->pending update ... */
7585 smp_rmb();
7586
7587 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7588 spin_unlock_irqrestore(&dev->event_lock, flags);
7589 return;
7590 }
7591
7592 /* and that the unpin work is consistent wrt ->pending. */
7593 smp_rmb();
7594
7595 intel_crtc->unpin_work = NULL;
7596
7597 if (work->event)
7598 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7599
7600 drm_vblank_put(dev, intel_crtc->pipe);
7601
7602 spin_unlock_irqrestore(&dev->event_lock, flags);
7603
7604 wake_up_all(&dev_priv->pending_flip_queue);
7605
7606 queue_work(dev_priv->wq, &work->work);
7607
7608 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7609 }
7610
7611 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7612 {
7613 drm_i915_private_t *dev_priv = dev->dev_private;
7614 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7615
7616 do_intel_finish_page_flip(dev, crtc);
7617 }
7618
7619 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7620 {
7621 drm_i915_private_t *dev_priv = dev->dev_private;
7622 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7623
7624 do_intel_finish_page_flip(dev, crtc);
7625 }
7626
7627 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7628 {
7629 drm_i915_private_t *dev_priv = dev->dev_private;
7630 struct intel_crtc *intel_crtc =
7631 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7632 unsigned long flags;
7633
7634 /* NB: An MMIO update of the plane base pointer will also
7635 * generate a page-flip completion irq, i.e. every modeset
7636 * is also accompanied by a spurious intel_prepare_page_flip().
7637 */
7638 spin_lock_irqsave(&dev->event_lock, flags);
7639 if (intel_crtc->unpin_work)
7640 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7641 spin_unlock_irqrestore(&dev->event_lock, flags);
7642 }
7643
7644 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7645 {
7646 /* Ensure that the work item is consistent when activating it ... */
7647 smp_wmb();
7648 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7649 /* and that it is marked active as soon as the irq could fire. */
7650 smp_wmb();
7651 }
7652
7653 static int intel_gen2_queue_flip(struct drm_device *dev,
7654 struct drm_crtc *crtc,
7655 struct drm_framebuffer *fb,
7656 struct drm_i915_gem_object *obj,
7657 uint32_t flags)
7658 {
7659 struct drm_i915_private *dev_priv = dev->dev_private;
7660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7661 u32 flip_mask;
7662 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7663 int ret;
7664
7665 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7666 if (ret)
7667 goto err;
7668
7669 ret = intel_ring_begin(ring, 6);
7670 if (ret)
7671 goto err_unpin;
7672
7673 /* Can't queue multiple flips, so wait for the previous
7674 * one to finish before executing the next.
7675 */
7676 if (intel_crtc->plane)
7677 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7678 else
7679 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7680 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7681 intel_ring_emit(ring, MI_NOOP);
7682 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7683 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7684 intel_ring_emit(ring, fb->pitches[0]);
7685 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7686 intel_ring_emit(ring, 0); /* aux display base address, unused */
7687
7688 intel_mark_page_flip_active(intel_crtc);
7689 intel_ring_advance(ring);
7690 return 0;
7691
7692 err_unpin:
7693 intel_unpin_fb_obj(obj);
7694 err:
7695 return ret;
7696 }
7697
7698 static int intel_gen3_queue_flip(struct drm_device *dev,
7699 struct drm_crtc *crtc,
7700 struct drm_framebuffer *fb,
7701 struct drm_i915_gem_object *obj,
7702 uint32_t flags)
7703 {
7704 struct drm_i915_private *dev_priv = dev->dev_private;
7705 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7706 u32 flip_mask;
7707 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7708 int ret;
7709
7710 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7711 if (ret)
7712 goto err;
7713
7714 ret = intel_ring_begin(ring, 6);
7715 if (ret)
7716 goto err_unpin;
7717
7718 if (intel_crtc->plane)
7719 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7720 else
7721 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7722 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7723 intel_ring_emit(ring, MI_NOOP);
7724 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7725 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7726 intel_ring_emit(ring, fb->pitches[0]);
7727 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7728 intel_ring_emit(ring, MI_NOOP);
7729
7730 intel_mark_page_flip_active(intel_crtc);
7731 intel_ring_advance(ring);
7732 return 0;
7733
7734 err_unpin:
7735 intel_unpin_fb_obj(obj);
7736 err:
7737 return ret;
7738 }
7739
7740 static int intel_gen4_queue_flip(struct drm_device *dev,
7741 struct drm_crtc *crtc,
7742 struct drm_framebuffer *fb,
7743 struct drm_i915_gem_object *obj,
7744 uint32_t flags)
7745 {
7746 struct drm_i915_private *dev_priv = dev->dev_private;
7747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7748 uint32_t pf, pipesrc;
7749 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7750 int ret;
7751
7752 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7753 if (ret)
7754 goto err;
7755
7756 ret = intel_ring_begin(ring, 4);
7757 if (ret)
7758 goto err_unpin;
7759
7760 /* i965+ uses the linear or tiled offsets from the
7761 * Display Registers (which do not change across a page-flip)
7762 * so we need only reprogram the base address.
7763 */
7764 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7765 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7766 intel_ring_emit(ring, fb->pitches[0]);
7767 intel_ring_emit(ring,
7768 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7769 obj->tiling_mode);
7770
7771 /* XXX Enabling the panel-fitter across page-flip is so far
7772 * untested on non-native modes, so ignore it for now.
7773 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7774 */
7775 pf = 0;
7776 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7777 intel_ring_emit(ring, pf | pipesrc);
7778
7779 intel_mark_page_flip_active(intel_crtc);
7780 intel_ring_advance(ring);
7781 return 0;
7782
7783 err_unpin:
7784 intel_unpin_fb_obj(obj);
7785 err:
7786 return ret;
7787 }
7788
7789 static int intel_gen6_queue_flip(struct drm_device *dev,
7790 struct drm_crtc *crtc,
7791 struct drm_framebuffer *fb,
7792 struct drm_i915_gem_object *obj,
7793 uint32_t flags)
7794 {
7795 struct drm_i915_private *dev_priv = dev->dev_private;
7796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7797 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7798 uint32_t pf, pipesrc;
7799 int ret;
7800
7801 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7802 if (ret)
7803 goto err;
7804
7805 ret = intel_ring_begin(ring, 4);
7806 if (ret)
7807 goto err_unpin;
7808
7809 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7810 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7811 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7812 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7813
7814 /* Contrary to the suggestions in the documentation,
7815 * "Enable Panel Fitter" does not seem to be required when page
7816 * flipping with a non-native mode, and worse causes a normal
7817 * modeset to fail.
7818 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7819 */
7820 pf = 0;
7821 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7822 intel_ring_emit(ring, pf | pipesrc);
7823
7824 intel_mark_page_flip_active(intel_crtc);
7825 intel_ring_advance(ring);
7826 return 0;
7827
7828 err_unpin:
7829 intel_unpin_fb_obj(obj);
7830 err:
7831 return ret;
7832 }
7833
7834 static int intel_gen7_queue_flip(struct drm_device *dev,
7835 struct drm_crtc *crtc,
7836 struct drm_framebuffer *fb,
7837 struct drm_i915_gem_object *obj,
7838 uint32_t flags)
7839 {
7840 struct drm_i915_private *dev_priv = dev->dev_private;
7841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7842 struct intel_ring_buffer *ring;
7843 uint32_t plane_bit = 0;
7844 int len, ret;
7845
7846 ring = obj->ring;
7847 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7848 ring = &dev_priv->ring[BCS];
7849
7850 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7851 if (ret)
7852 goto err;
7853
7854 switch(intel_crtc->plane) {
7855 case PLANE_A:
7856 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7857 break;
7858 case PLANE_B:
7859 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7860 break;
7861 case PLANE_C:
7862 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7863 break;
7864 default:
7865 WARN_ONCE(1, "unknown plane in flip command\n");
7866 ret = -ENODEV;
7867 goto err_unpin;
7868 }
7869
7870 len = 4;
7871 if (ring->id == RCS)
7872 len += 6;
7873
7874 ret = intel_ring_begin(ring, len);
7875 if (ret)
7876 goto err_unpin;
7877
7878 /* Unmask the flip-done completion message. Note that the bspec says that
7879 * we should do this for both the BCS and RCS, and that we must not unmask
7880 * more than one flip event at any time (or ensure that one flip message
7881 * can be sent by waiting for flip-done prior to queueing new flips).
7882 * Experimentation says that BCS works despite DERRMR masking all
7883 * flip-done completion events and that unmasking all planes at once
7884 * for the RCS also doesn't appear to drop events. Setting the DERRMR
7885 * to zero does lead to lockups within MI_DISPLAY_FLIP.
7886 */
7887 if (ring->id == RCS) {
7888 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
7889 intel_ring_emit(ring, DERRMR);
7890 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
7891 DERRMR_PIPEB_PRI_FLIP_DONE |
7892 DERRMR_PIPEC_PRI_FLIP_DONE));
7893 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
7894 intel_ring_emit(ring, DERRMR);
7895 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
7896 }
7897
7898 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7899 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7900 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7901 intel_ring_emit(ring, (MI_NOOP));
7902
7903 intel_mark_page_flip_active(intel_crtc);
7904 intel_ring_advance(ring);
7905 return 0;
7906
7907 err_unpin:
7908 intel_unpin_fb_obj(obj);
7909 err:
7910 return ret;
7911 }
7912
7913 static int intel_default_queue_flip(struct drm_device *dev,
7914 struct drm_crtc *crtc,
7915 struct drm_framebuffer *fb,
7916 struct drm_i915_gem_object *obj,
7917 uint32_t flags)
7918 {
7919 return -ENODEV;
7920 }
7921
7922 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7923 struct drm_framebuffer *fb,
7924 struct drm_pending_vblank_event *event,
7925 uint32_t page_flip_flags)
7926 {
7927 struct drm_device *dev = crtc->dev;
7928 struct drm_i915_private *dev_priv = dev->dev_private;
7929 struct drm_framebuffer *old_fb = crtc->fb;
7930 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7931 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7932 struct intel_unpin_work *work;
7933 unsigned long flags;
7934 int ret;
7935
7936 /* Can't change pixel format via MI display flips. */
7937 if (fb->pixel_format != crtc->fb->pixel_format)
7938 return -EINVAL;
7939
7940 /*
7941 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7942 * Note that pitch changes could also affect these register.
7943 */
7944 if (INTEL_INFO(dev)->gen > 3 &&
7945 (fb->offsets[0] != crtc->fb->offsets[0] ||
7946 fb->pitches[0] != crtc->fb->pitches[0]))
7947 return -EINVAL;
7948
7949 work = kzalloc(sizeof *work, GFP_KERNEL);
7950 if (work == NULL)
7951 return -ENOMEM;
7952
7953 work->event = event;
7954 work->crtc = crtc;
7955 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7956 INIT_WORK(&work->work, intel_unpin_work_fn);
7957
7958 ret = drm_vblank_get(dev, intel_crtc->pipe);
7959 if (ret)
7960 goto free_work;
7961
7962 /* We borrow the event spin lock for protecting unpin_work */
7963 spin_lock_irqsave(&dev->event_lock, flags);
7964 if (intel_crtc->unpin_work) {
7965 spin_unlock_irqrestore(&dev->event_lock, flags);
7966 kfree(work);
7967 drm_vblank_put(dev, intel_crtc->pipe);
7968
7969 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7970 return -EBUSY;
7971 }
7972 intel_crtc->unpin_work = work;
7973 spin_unlock_irqrestore(&dev->event_lock, flags);
7974
7975 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7976 flush_workqueue(dev_priv->wq);
7977
7978 ret = i915_mutex_lock_interruptible(dev);
7979 if (ret)
7980 goto cleanup;
7981
7982 /* Reference the objects for the scheduled work. */
7983 drm_gem_object_reference(&work->old_fb_obj->base);
7984 drm_gem_object_reference(&obj->base);
7985
7986 crtc->fb = fb;
7987
7988 work->pending_flip_obj = obj;
7989
7990 work->enable_stall_check = true;
7991
7992 atomic_inc(&intel_crtc->unpin_work_count);
7993 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7994
7995 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
7996 if (ret)
7997 goto cleanup_pending;
7998
7999 intel_disable_fbc(dev);
8000 intel_mark_fb_busy(obj, NULL);
8001 mutex_unlock(&dev->struct_mutex);
8002
8003 trace_i915_flip_request(intel_crtc->plane, obj);
8004
8005 return 0;
8006
8007 cleanup_pending:
8008 atomic_dec(&intel_crtc->unpin_work_count);
8009 crtc->fb = old_fb;
8010 drm_gem_object_unreference(&work->old_fb_obj->base);
8011 drm_gem_object_unreference(&obj->base);
8012 mutex_unlock(&dev->struct_mutex);
8013
8014 cleanup:
8015 spin_lock_irqsave(&dev->event_lock, flags);
8016 intel_crtc->unpin_work = NULL;
8017 spin_unlock_irqrestore(&dev->event_lock, flags);
8018
8019 drm_vblank_put(dev, intel_crtc->pipe);
8020 free_work:
8021 kfree(work);
8022
8023 return ret;
8024 }
8025
8026 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8027 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8028 .load_lut = intel_crtc_load_lut,
8029 };
8030
8031 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8032 struct drm_crtc *crtc)
8033 {
8034 struct drm_device *dev;
8035 struct drm_crtc *tmp;
8036 int crtc_mask = 1;
8037
8038 WARN(!crtc, "checking null crtc?\n");
8039
8040 dev = crtc->dev;
8041
8042 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8043 if (tmp == crtc)
8044 break;
8045 crtc_mask <<= 1;
8046 }
8047
8048 if (encoder->possible_crtcs & crtc_mask)
8049 return true;
8050 return false;
8051 }
8052
8053 /**
8054 * intel_modeset_update_staged_output_state
8055 *
8056 * Updates the staged output configuration state, e.g. after we've read out the
8057 * current hw state.
8058 */
8059 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8060 {
8061 struct intel_encoder *encoder;
8062 struct intel_connector *connector;
8063
8064 list_for_each_entry(connector, &dev->mode_config.connector_list,
8065 base.head) {
8066 connector->new_encoder =
8067 to_intel_encoder(connector->base.encoder);
8068 }
8069
8070 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8071 base.head) {
8072 encoder->new_crtc =
8073 to_intel_crtc(encoder->base.crtc);
8074 }
8075 }
8076
8077 /**
8078 * intel_modeset_commit_output_state
8079 *
8080 * This function copies the stage display pipe configuration to the real one.
8081 */
8082 static void intel_modeset_commit_output_state(struct drm_device *dev)
8083 {
8084 struct intel_encoder *encoder;
8085 struct intel_connector *connector;
8086
8087 list_for_each_entry(connector, &dev->mode_config.connector_list,
8088 base.head) {
8089 connector->base.encoder = &connector->new_encoder->base;
8090 }
8091
8092 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8093 base.head) {
8094 encoder->base.crtc = &encoder->new_crtc->base;
8095 }
8096 }
8097
8098 static void
8099 connected_sink_compute_bpp(struct intel_connector * connector,
8100 struct intel_crtc_config *pipe_config)
8101 {
8102 int bpp = pipe_config->pipe_bpp;
8103
8104 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8105 connector->base.base.id,
8106 drm_get_connector_name(&connector->base));
8107
8108 /* Don't use an invalid EDID bpc value */
8109 if (connector->base.display_info.bpc &&
8110 connector->base.display_info.bpc * 3 < bpp) {
8111 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8112 bpp, connector->base.display_info.bpc*3);
8113 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8114 }
8115
8116 /* Clamp bpp to 8 on screens without EDID 1.4 */
8117 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8118 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8119 bpp);
8120 pipe_config->pipe_bpp = 24;
8121 }
8122 }
8123
8124 static int
8125 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8126 struct drm_framebuffer *fb,
8127 struct intel_crtc_config *pipe_config)
8128 {
8129 struct drm_device *dev = crtc->base.dev;
8130 struct intel_connector *connector;
8131 int bpp;
8132
8133 switch (fb->pixel_format) {
8134 case DRM_FORMAT_C8:
8135 bpp = 8*3; /* since we go through a colormap */
8136 break;
8137 case DRM_FORMAT_XRGB1555:
8138 case DRM_FORMAT_ARGB1555:
8139 /* checked in intel_framebuffer_init already */
8140 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8141 return -EINVAL;
8142 case DRM_FORMAT_RGB565:
8143 bpp = 6*3; /* min is 18bpp */
8144 break;
8145 case DRM_FORMAT_XBGR8888:
8146 case DRM_FORMAT_ABGR8888:
8147 /* checked in intel_framebuffer_init already */
8148 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8149 return -EINVAL;
8150 case DRM_FORMAT_XRGB8888:
8151 case DRM_FORMAT_ARGB8888:
8152 bpp = 8*3;
8153 break;
8154 case DRM_FORMAT_XRGB2101010:
8155 case DRM_FORMAT_ARGB2101010:
8156 case DRM_FORMAT_XBGR2101010:
8157 case DRM_FORMAT_ABGR2101010:
8158 /* checked in intel_framebuffer_init already */
8159 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8160 return -EINVAL;
8161 bpp = 10*3;
8162 break;
8163 /* TODO: gen4+ supports 16 bpc floating point, too. */
8164 default:
8165 DRM_DEBUG_KMS("unsupported depth\n");
8166 return -EINVAL;
8167 }
8168
8169 pipe_config->pipe_bpp = bpp;
8170
8171 /* Clamp display bpp to EDID value */
8172 list_for_each_entry(connector, &dev->mode_config.connector_list,
8173 base.head) {
8174 if (!connector->new_encoder ||
8175 connector->new_encoder->new_crtc != crtc)
8176 continue;
8177
8178 connected_sink_compute_bpp(connector, pipe_config);
8179 }
8180
8181 return bpp;
8182 }
8183
8184 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8185 struct intel_crtc_config *pipe_config,
8186 const char *context)
8187 {
8188 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8189 context, pipe_name(crtc->pipe));
8190
8191 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8192 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8193 pipe_config->pipe_bpp, pipe_config->dither);
8194 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8195 pipe_config->has_pch_encoder,
8196 pipe_config->fdi_lanes,
8197 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8198 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8199 pipe_config->fdi_m_n.tu);
8200 DRM_DEBUG_KMS("requested mode:\n");
8201 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8202 DRM_DEBUG_KMS("adjusted mode:\n");
8203 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8204 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8205 pipe_config->gmch_pfit.control,
8206 pipe_config->gmch_pfit.pgm_ratios,
8207 pipe_config->gmch_pfit.lvds_border_bits);
8208 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8209 pipe_config->pch_pfit.pos,
8210 pipe_config->pch_pfit.size);
8211 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8212 }
8213
8214 static bool check_encoder_cloning(struct drm_crtc *crtc)
8215 {
8216 int num_encoders = 0;
8217 bool uncloneable_encoders = false;
8218 struct intel_encoder *encoder;
8219
8220 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8221 base.head) {
8222 if (&encoder->new_crtc->base != crtc)
8223 continue;
8224
8225 num_encoders++;
8226 if (!encoder->cloneable)
8227 uncloneable_encoders = true;
8228 }
8229
8230 return !(num_encoders > 1 && uncloneable_encoders);
8231 }
8232
8233 static struct intel_crtc_config *
8234 intel_modeset_pipe_config(struct drm_crtc *crtc,
8235 struct drm_framebuffer *fb,
8236 struct drm_display_mode *mode)
8237 {
8238 struct drm_device *dev = crtc->dev;
8239 struct intel_encoder *encoder;
8240 struct intel_crtc_config *pipe_config;
8241 int plane_bpp, ret = -EINVAL;
8242 bool retry = true;
8243
8244 if (!check_encoder_cloning(crtc)) {
8245 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8246 return ERR_PTR(-EINVAL);
8247 }
8248
8249 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8250 if (!pipe_config)
8251 return ERR_PTR(-ENOMEM);
8252
8253 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8254 drm_mode_copy(&pipe_config->requested_mode, mode);
8255 pipe_config->cpu_transcoder =
8256 (enum transcoder) to_intel_crtc(crtc)->pipe;
8257 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8258
8259 /*
8260 * Sanitize sync polarity flags based on requested ones. If neither
8261 * positive or negative polarity is requested, treat this as meaning
8262 * negative polarity.
8263 */
8264 if (!(pipe_config->adjusted_mode.flags &
8265 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8266 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8267
8268 if (!(pipe_config->adjusted_mode.flags &
8269 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8270 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8271
8272 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8273 * plane pixel format and any sink constraints into account. Returns the
8274 * source plane bpp so that dithering can be selected on mismatches
8275 * after encoders and crtc also have had their say. */
8276 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8277 fb, pipe_config);
8278 if (plane_bpp < 0)
8279 goto fail;
8280
8281 encoder_retry:
8282 /* Ensure the port clock defaults are reset when retrying. */
8283 pipe_config->port_clock = 0;
8284 pipe_config->pixel_multiplier = 1;
8285
8286 /* Fill in default crtc timings, allow encoders to overwrite them. */
8287 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8288
8289 /* Pass our mode to the connectors and the CRTC to give them a chance to
8290 * adjust it according to limitations or connector properties, and also
8291 * a chance to reject the mode entirely.
8292 */
8293 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8294 base.head) {
8295
8296 if (&encoder->new_crtc->base != crtc)
8297 continue;
8298
8299 if (!(encoder->compute_config(encoder, pipe_config))) {
8300 DRM_DEBUG_KMS("Encoder config failure\n");
8301 goto fail;
8302 }
8303 }
8304
8305 /* Set default port clock if not overwritten by the encoder. Needs to be
8306 * done afterwards in case the encoder adjusts the mode. */
8307 if (!pipe_config->port_clock)
8308 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8309
8310 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8311 if (ret < 0) {
8312 DRM_DEBUG_KMS("CRTC fixup failed\n");
8313 goto fail;
8314 }
8315
8316 if (ret == RETRY) {
8317 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8318 ret = -EINVAL;
8319 goto fail;
8320 }
8321
8322 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8323 retry = false;
8324 goto encoder_retry;
8325 }
8326
8327 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8328 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8329 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8330
8331 return pipe_config;
8332 fail:
8333 kfree(pipe_config);
8334 return ERR_PTR(ret);
8335 }
8336
8337 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8338 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8339 static void
8340 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8341 unsigned *prepare_pipes, unsigned *disable_pipes)
8342 {
8343 struct intel_crtc *intel_crtc;
8344 struct drm_device *dev = crtc->dev;
8345 struct intel_encoder *encoder;
8346 struct intel_connector *connector;
8347 struct drm_crtc *tmp_crtc;
8348
8349 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8350
8351 /* Check which crtcs have changed outputs connected to them, these need
8352 * to be part of the prepare_pipes mask. We don't (yet) support global
8353 * modeset across multiple crtcs, so modeset_pipes will only have one
8354 * bit set at most. */
8355 list_for_each_entry(connector, &dev->mode_config.connector_list,
8356 base.head) {
8357 if (connector->base.encoder == &connector->new_encoder->base)
8358 continue;
8359
8360 if (connector->base.encoder) {
8361 tmp_crtc = connector->base.encoder->crtc;
8362
8363 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8364 }
8365
8366 if (connector->new_encoder)
8367 *prepare_pipes |=
8368 1 << connector->new_encoder->new_crtc->pipe;
8369 }
8370
8371 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8372 base.head) {
8373 if (encoder->base.crtc == &encoder->new_crtc->base)
8374 continue;
8375
8376 if (encoder->base.crtc) {
8377 tmp_crtc = encoder->base.crtc;
8378
8379 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8380 }
8381
8382 if (encoder->new_crtc)
8383 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8384 }
8385
8386 /* Check for any pipes that will be fully disabled ... */
8387 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8388 base.head) {
8389 bool used = false;
8390
8391 /* Don't try to disable disabled crtcs. */
8392 if (!intel_crtc->base.enabled)
8393 continue;
8394
8395 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8396 base.head) {
8397 if (encoder->new_crtc == intel_crtc)
8398 used = true;
8399 }
8400
8401 if (!used)
8402 *disable_pipes |= 1 << intel_crtc->pipe;
8403 }
8404
8405
8406 /* set_mode is also used to update properties on life display pipes. */
8407 intel_crtc = to_intel_crtc(crtc);
8408 if (crtc->enabled)
8409 *prepare_pipes |= 1 << intel_crtc->pipe;
8410
8411 /*
8412 * For simplicity do a full modeset on any pipe where the output routing
8413 * changed. We could be more clever, but that would require us to be
8414 * more careful with calling the relevant encoder->mode_set functions.
8415 */
8416 if (*prepare_pipes)
8417 *modeset_pipes = *prepare_pipes;
8418
8419 /* ... and mask these out. */
8420 *modeset_pipes &= ~(*disable_pipes);
8421 *prepare_pipes &= ~(*disable_pipes);
8422
8423 /*
8424 * HACK: We don't (yet) fully support global modesets. intel_set_config
8425 * obies this rule, but the modeset restore mode of
8426 * intel_modeset_setup_hw_state does not.
8427 */
8428 *modeset_pipes &= 1 << intel_crtc->pipe;
8429 *prepare_pipes &= 1 << intel_crtc->pipe;
8430
8431 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8432 *modeset_pipes, *prepare_pipes, *disable_pipes);
8433 }
8434
8435 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8436 {
8437 struct drm_encoder *encoder;
8438 struct drm_device *dev = crtc->dev;
8439
8440 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8441 if (encoder->crtc == crtc)
8442 return true;
8443
8444 return false;
8445 }
8446
8447 static void
8448 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8449 {
8450 struct intel_encoder *intel_encoder;
8451 struct intel_crtc *intel_crtc;
8452 struct drm_connector *connector;
8453
8454 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8455 base.head) {
8456 if (!intel_encoder->base.crtc)
8457 continue;
8458
8459 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8460
8461 if (prepare_pipes & (1 << intel_crtc->pipe))
8462 intel_encoder->connectors_active = false;
8463 }
8464
8465 intel_modeset_commit_output_state(dev);
8466
8467 /* Update computed state. */
8468 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8469 base.head) {
8470 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8471 }
8472
8473 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8474 if (!connector->encoder || !connector->encoder->crtc)
8475 continue;
8476
8477 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8478
8479 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8480 struct drm_property *dpms_property =
8481 dev->mode_config.dpms_property;
8482
8483 connector->dpms = DRM_MODE_DPMS_ON;
8484 drm_object_property_set_value(&connector->base,
8485 dpms_property,
8486 DRM_MODE_DPMS_ON);
8487
8488 intel_encoder = to_intel_encoder(connector->encoder);
8489 intel_encoder->connectors_active = true;
8490 }
8491 }
8492
8493 }
8494
8495 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8496 struct intel_crtc_config *new)
8497 {
8498 int clock1, clock2, diff;
8499
8500 clock1 = cur->adjusted_mode.clock;
8501 clock2 = new->adjusted_mode.clock;
8502
8503 if (clock1 == clock2)
8504 return true;
8505
8506 if (!clock1 || !clock2)
8507 return false;
8508
8509 diff = abs(clock1 - clock2);
8510
8511 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8512 return true;
8513
8514 return false;
8515 }
8516
8517 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8518 list_for_each_entry((intel_crtc), \
8519 &(dev)->mode_config.crtc_list, \
8520 base.head) \
8521 if (mask & (1 <<(intel_crtc)->pipe))
8522
8523 static bool
8524 intel_pipe_config_compare(struct drm_device *dev,
8525 struct intel_crtc_config *current_config,
8526 struct intel_crtc_config *pipe_config)
8527 {
8528 #define PIPE_CONF_CHECK_X(name) \
8529 if (current_config->name != pipe_config->name) { \
8530 DRM_ERROR("mismatch in " #name " " \
8531 "(expected 0x%08x, found 0x%08x)\n", \
8532 current_config->name, \
8533 pipe_config->name); \
8534 return false; \
8535 }
8536
8537 #define PIPE_CONF_CHECK_I(name) \
8538 if (current_config->name != pipe_config->name) { \
8539 DRM_ERROR("mismatch in " #name " " \
8540 "(expected %i, found %i)\n", \
8541 current_config->name, \
8542 pipe_config->name); \
8543 return false; \
8544 }
8545
8546 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8547 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8548 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8549 "(expected %i, found %i)\n", \
8550 current_config->name & (mask), \
8551 pipe_config->name & (mask)); \
8552 return false; \
8553 }
8554
8555 #define PIPE_CONF_QUIRK(quirk) \
8556 ((current_config->quirks | pipe_config->quirks) & (quirk))
8557
8558 PIPE_CONF_CHECK_I(cpu_transcoder);
8559
8560 PIPE_CONF_CHECK_I(has_pch_encoder);
8561 PIPE_CONF_CHECK_I(fdi_lanes);
8562 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8563 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8564 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8565 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8566 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8567
8568 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8569 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8570 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8571 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8572 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8573 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8574
8575 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8576 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8577 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8578 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8579 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8580 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8581
8582 PIPE_CONF_CHECK_I(pixel_multiplier);
8583
8584 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8585 DRM_MODE_FLAG_INTERLACE);
8586
8587 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8588 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8589 DRM_MODE_FLAG_PHSYNC);
8590 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8591 DRM_MODE_FLAG_NHSYNC);
8592 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8593 DRM_MODE_FLAG_PVSYNC);
8594 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8595 DRM_MODE_FLAG_NVSYNC);
8596 }
8597
8598 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8599 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8600
8601 PIPE_CONF_CHECK_I(gmch_pfit.control);
8602 /* pfit ratios are autocomputed by the hw on gen4+ */
8603 if (INTEL_INFO(dev)->gen < 4)
8604 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8605 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8606 PIPE_CONF_CHECK_I(pch_pfit.pos);
8607 PIPE_CONF_CHECK_I(pch_pfit.size);
8608
8609 PIPE_CONF_CHECK_I(ips_enabled);
8610
8611 PIPE_CONF_CHECK_I(shared_dpll);
8612 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8613 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8614 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8615 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8616
8617 #undef PIPE_CONF_CHECK_X
8618 #undef PIPE_CONF_CHECK_I
8619 #undef PIPE_CONF_CHECK_FLAGS
8620 #undef PIPE_CONF_QUIRK
8621
8622 if (!IS_HASWELL(dev)) {
8623 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8624 DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8625 current_config->adjusted_mode.clock,
8626 pipe_config->adjusted_mode.clock);
8627 return false;
8628 }
8629 }
8630
8631 return true;
8632 }
8633
8634 static void
8635 check_connector_state(struct drm_device *dev)
8636 {
8637 struct intel_connector *connector;
8638
8639 list_for_each_entry(connector, &dev->mode_config.connector_list,
8640 base.head) {
8641 /* This also checks the encoder/connector hw state with the
8642 * ->get_hw_state callbacks. */
8643 intel_connector_check_state(connector);
8644
8645 WARN(&connector->new_encoder->base != connector->base.encoder,
8646 "connector's staged encoder doesn't match current encoder\n");
8647 }
8648 }
8649
8650 static void
8651 check_encoder_state(struct drm_device *dev)
8652 {
8653 struct intel_encoder *encoder;
8654 struct intel_connector *connector;
8655
8656 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8657 base.head) {
8658 bool enabled = false;
8659 bool active = false;
8660 enum pipe pipe, tracked_pipe;
8661
8662 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8663 encoder->base.base.id,
8664 drm_get_encoder_name(&encoder->base));
8665
8666 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8667 "encoder's stage crtc doesn't match current crtc\n");
8668 WARN(encoder->connectors_active && !encoder->base.crtc,
8669 "encoder's active_connectors set, but no crtc\n");
8670
8671 list_for_each_entry(connector, &dev->mode_config.connector_list,
8672 base.head) {
8673 if (connector->base.encoder != &encoder->base)
8674 continue;
8675 enabled = true;
8676 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8677 active = true;
8678 }
8679 WARN(!!encoder->base.crtc != enabled,
8680 "encoder's enabled state mismatch "
8681 "(expected %i, found %i)\n",
8682 !!encoder->base.crtc, enabled);
8683 WARN(active && !encoder->base.crtc,
8684 "active encoder with no crtc\n");
8685
8686 WARN(encoder->connectors_active != active,
8687 "encoder's computed active state doesn't match tracked active state "
8688 "(expected %i, found %i)\n", active, encoder->connectors_active);
8689
8690 active = encoder->get_hw_state(encoder, &pipe);
8691 WARN(active != encoder->connectors_active,
8692 "encoder's hw state doesn't match sw tracking "
8693 "(expected %i, found %i)\n",
8694 encoder->connectors_active, active);
8695
8696 if (!encoder->base.crtc)
8697 continue;
8698
8699 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8700 WARN(active && pipe != tracked_pipe,
8701 "active encoder's pipe doesn't match"
8702 "(expected %i, found %i)\n",
8703 tracked_pipe, pipe);
8704
8705 }
8706 }
8707
8708 static void
8709 check_crtc_state(struct drm_device *dev)
8710 {
8711 drm_i915_private_t *dev_priv = dev->dev_private;
8712 struct intel_crtc *crtc;
8713 struct intel_encoder *encoder;
8714 struct intel_crtc_config pipe_config;
8715
8716 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8717 base.head) {
8718 bool enabled = false;
8719 bool active = false;
8720
8721 memset(&pipe_config, 0, sizeof(pipe_config));
8722
8723 DRM_DEBUG_KMS("[CRTC:%d]\n",
8724 crtc->base.base.id);
8725
8726 WARN(crtc->active && !crtc->base.enabled,
8727 "active crtc, but not enabled in sw tracking\n");
8728
8729 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8730 base.head) {
8731 if (encoder->base.crtc != &crtc->base)
8732 continue;
8733 enabled = true;
8734 if (encoder->connectors_active)
8735 active = true;
8736 }
8737
8738 WARN(active != crtc->active,
8739 "crtc's computed active state doesn't match tracked active state "
8740 "(expected %i, found %i)\n", active, crtc->active);
8741 WARN(enabled != crtc->base.enabled,
8742 "crtc's computed enabled state doesn't match tracked enabled state "
8743 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8744
8745 active = dev_priv->display.get_pipe_config(crtc,
8746 &pipe_config);
8747
8748 /* hw state is inconsistent with the pipe A quirk */
8749 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8750 active = crtc->active;
8751
8752 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8753 base.head) {
8754 enum pipe pipe;
8755 if (encoder->base.crtc != &crtc->base)
8756 continue;
8757 if (encoder->get_config &&
8758 encoder->get_hw_state(encoder, &pipe))
8759 encoder->get_config(encoder, &pipe_config);
8760 }
8761
8762 if (dev_priv->display.get_clock)
8763 dev_priv->display.get_clock(crtc, &pipe_config);
8764
8765 WARN(crtc->active != active,
8766 "crtc active state doesn't match with hw state "
8767 "(expected %i, found %i)\n", crtc->active, active);
8768
8769 if (active &&
8770 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8771 WARN(1, "pipe state doesn't match!\n");
8772 intel_dump_pipe_config(crtc, &pipe_config,
8773 "[hw state]");
8774 intel_dump_pipe_config(crtc, &crtc->config,
8775 "[sw state]");
8776 }
8777 }
8778 }
8779
8780 static void
8781 check_shared_dpll_state(struct drm_device *dev)
8782 {
8783 drm_i915_private_t *dev_priv = dev->dev_private;
8784 struct intel_crtc *crtc;
8785 struct intel_dpll_hw_state dpll_hw_state;
8786 int i;
8787
8788 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8789 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8790 int enabled_crtcs = 0, active_crtcs = 0;
8791 bool active;
8792
8793 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8794
8795 DRM_DEBUG_KMS("%s\n", pll->name);
8796
8797 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8798
8799 WARN(pll->active > pll->refcount,
8800 "more active pll users than references: %i vs %i\n",
8801 pll->active, pll->refcount);
8802 WARN(pll->active && !pll->on,
8803 "pll in active use but not on in sw tracking\n");
8804 WARN(pll->on && !pll->active,
8805 "pll in on but not on in use in sw tracking\n");
8806 WARN(pll->on != active,
8807 "pll on state mismatch (expected %i, found %i)\n",
8808 pll->on, active);
8809
8810 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8811 base.head) {
8812 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8813 enabled_crtcs++;
8814 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8815 active_crtcs++;
8816 }
8817 WARN(pll->active != active_crtcs,
8818 "pll active crtcs mismatch (expected %i, found %i)\n",
8819 pll->active, active_crtcs);
8820 WARN(pll->refcount != enabled_crtcs,
8821 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8822 pll->refcount, enabled_crtcs);
8823
8824 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8825 sizeof(dpll_hw_state)),
8826 "pll hw state mismatch\n");
8827 }
8828 }
8829
8830 void
8831 intel_modeset_check_state(struct drm_device *dev)
8832 {
8833 check_connector_state(dev);
8834 check_encoder_state(dev);
8835 check_crtc_state(dev);
8836 check_shared_dpll_state(dev);
8837 }
8838
8839 static int __intel_set_mode(struct drm_crtc *crtc,
8840 struct drm_display_mode *mode,
8841 int x, int y, struct drm_framebuffer *fb)
8842 {
8843 struct drm_device *dev = crtc->dev;
8844 drm_i915_private_t *dev_priv = dev->dev_private;
8845 struct drm_display_mode *saved_mode, *saved_hwmode;
8846 struct intel_crtc_config *pipe_config = NULL;
8847 struct intel_crtc *intel_crtc;
8848 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8849 int ret = 0;
8850
8851 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8852 if (!saved_mode)
8853 return -ENOMEM;
8854 saved_hwmode = saved_mode + 1;
8855
8856 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8857 &prepare_pipes, &disable_pipes);
8858
8859 *saved_hwmode = crtc->hwmode;
8860 *saved_mode = crtc->mode;
8861
8862 /* Hack: Because we don't (yet) support global modeset on multiple
8863 * crtcs, we don't keep track of the new mode for more than one crtc.
8864 * Hence simply check whether any bit is set in modeset_pipes in all the
8865 * pieces of code that are not yet converted to deal with mutliple crtcs
8866 * changing their mode at the same time. */
8867 if (modeset_pipes) {
8868 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8869 if (IS_ERR(pipe_config)) {
8870 ret = PTR_ERR(pipe_config);
8871 pipe_config = NULL;
8872
8873 goto out;
8874 }
8875 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8876 "[modeset]");
8877 }
8878
8879 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8880 intel_crtc_disable(&intel_crtc->base);
8881
8882 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8883 if (intel_crtc->base.enabled)
8884 dev_priv->display.crtc_disable(&intel_crtc->base);
8885 }
8886
8887 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8888 * to set it here already despite that we pass it down the callchain.
8889 */
8890 if (modeset_pipes) {
8891 crtc->mode = *mode;
8892 /* mode_set/enable/disable functions rely on a correct pipe
8893 * config. */
8894 to_intel_crtc(crtc)->config = *pipe_config;
8895 }
8896
8897 /* Only after disabling all output pipelines that will be changed can we
8898 * update the the output configuration. */
8899 intel_modeset_update_state(dev, prepare_pipes);
8900
8901 if (dev_priv->display.modeset_global_resources)
8902 dev_priv->display.modeset_global_resources(dev);
8903
8904 /* Set up the DPLL and any encoders state that needs to adjust or depend
8905 * on the DPLL.
8906 */
8907 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8908 ret = intel_crtc_mode_set(&intel_crtc->base,
8909 x, y, fb);
8910 if (ret)
8911 goto done;
8912 }
8913
8914 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8915 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8916 dev_priv->display.crtc_enable(&intel_crtc->base);
8917
8918 if (modeset_pipes) {
8919 /* Store real post-adjustment hardware mode. */
8920 crtc->hwmode = pipe_config->adjusted_mode;
8921
8922 /* Calculate and store various constants which
8923 * are later needed by vblank and swap-completion
8924 * timestamping. They are derived from true hwmode.
8925 */
8926 drm_calc_timestamping_constants(crtc);
8927 }
8928
8929 /* FIXME: add subpixel order */
8930 done:
8931 if (ret && crtc->enabled) {
8932 crtc->hwmode = *saved_hwmode;
8933 crtc->mode = *saved_mode;
8934 }
8935
8936 out:
8937 kfree(pipe_config);
8938 kfree(saved_mode);
8939 return ret;
8940 }
8941
8942 static int intel_set_mode(struct drm_crtc *crtc,
8943 struct drm_display_mode *mode,
8944 int x, int y, struct drm_framebuffer *fb)
8945 {
8946 int ret;
8947
8948 ret = __intel_set_mode(crtc, mode, x, y, fb);
8949
8950 if (ret == 0)
8951 intel_modeset_check_state(crtc->dev);
8952
8953 return ret;
8954 }
8955
8956 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8957 {
8958 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8959 }
8960
8961 #undef for_each_intel_crtc_masked
8962
8963 static void intel_set_config_free(struct intel_set_config *config)
8964 {
8965 if (!config)
8966 return;
8967
8968 kfree(config->save_connector_encoders);
8969 kfree(config->save_encoder_crtcs);
8970 kfree(config);
8971 }
8972
8973 static int intel_set_config_save_state(struct drm_device *dev,
8974 struct intel_set_config *config)
8975 {
8976 struct drm_encoder *encoder;
8977 struct drm_connector *connector;
8978 int count;
8979
8980 config->save_encoder_crtcs =
8981 kcalloc(dev->mode_config.num_encoder,
8982 sizeof(struct drm_crtc *), GFP_KERNEL);
8983 if (!config->save_encoder_crtcs)
8984 return -ENOMEM;
8985
8986 config->save_connector_encoders =
8987 kcalloc(dev->mode_config.num_connector,
8988 sizeof(struct drm_encoder *), GFP_KERNEL);
8989 if (!config->save_connector_encoders)
8990 return -ENOMEM;
8991
8992 /* Copy data. Note that driver private data is not affected.
8993 * Should anything bad happen only the expected state is
8994 * restored, not the drivers personal bookkeeping.
8995 */
8996 count = 0;
8997 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8998 config->save_encoder_crtcs[count++] = encoder->crtc;
8999 }
9000
9001 count = 0;
9002 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9003 config->save_connector_encoders[count++] = connector->encoder;
9004 }
9005
9006 return 0;
9007 }
9008
9009 static void intel_set_config_restore_state(struct drm_device *dev,
9010 struct intel_set_config *config)
9011 {
9012 struct intel_encoder *encoder;
9013 struct intel_connector *connector;
9014 int count;
9015
9016 count = 0;
9017 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9018 encoder->new_crtc =
9019 to_intel_crtc(config->save_encoder_crtcs[count++]);
9020 }
9021
9022 count = 0;
9023 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9024 connector->new_encoder =
9025 to_intel_encoder(config->save_connector_encoders[count++]);
9026 }
9027 }
9028
9029 static bool
9030 is_crtc_connector_off(struct drm_mode_set *set)
9031 {
9032 int i;
9033
9034 if (set->num_connectors == 0)
9035 return false;
9036
9037 if (WARN_ON(set->connectors == NULL))
9038 return false;
9039
9040 for (i = 0; i < set->num_connectors; i++)
9041 if (set->connectors[i]->encoder &&
9042 set->connectors[i]->encoder->crtc == set->crtc &&
9043 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9044 return true;
9045
9046 return false;
9047 }
9048
9049 static void
9050 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9051 struct intel_set_config *config)
9052 {
9053
9054 /* We should be able to check here if the fb has the same properties
9055 * and then just flip_or_move it */
9056 if (is_crtc_connector_off(set)) {
9057 config->mode_changed = true;
9058 } else if (set->crtc->fb != set->fb) {
9059 /* If we have no fb then treat it as a full mode set */
9060 if (set->crtc->fb == NULL) {
9061 struct intel_crtc *intel_crtc =
9062 to_intel_crtc(set->crtc);
9063
9064 if (intel_crtc->active && i915_fastboot) {
9065 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9066 config->fb_changed = true;
9067 } else {
9068 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9069 config->mode_changed = true;
9070 }
9071 } else if (set->fb == NULL) {
9072 config->mode_changed = true;
9073 } else if (set->fb->pixel_format !=
9074 set->crtc->fb->pixel_format) {
9075 config->mode_changed = true;
9076 } else {
9077 config->fb_changed = true;
9078 }
9079 }
9080
9081 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9082 config->fb_changed = true;
9083
9084 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9085 DRM_DEBUG_KMS("modes are different, full mode set\n");
9086 drm_mode_debug_printmodeline(&set->crtc->mode);
9087 drm_mode_debug_printmodeline(set->mode);
9088 config->mode_changed = true;
9089 }
9090
9091 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9092 set->crtc->base.id, config->mode_changed, config->fb_changed);
9093 }
9094
9095 static int
9096 intel_modeset_stage_output_state(struct drm_device *dev,
9097 struct drm_mode_set *set,
9098 struct intel_set_config *config)
9099 {
9100 struct drm_crtc *new_crtc;
9101 struct intel_connector *connector;
9102 struct intel_encoder *encoder;
9103 int ro;
9104
9105 /* The upper layers ensure that we either disable a crtc or have a list
9106 * of connectors. For paranoia, double-check this. */
9107 WARN_ON(!set->fb && (set->num_connectors != 0));
9108 WARN_ON(set->fb && (set->num_connectors == 0));
9109
9110 list_for_each_entry(connector, &dev->mode_config.connector_list,
9111 base.head) {
9112 /* Otherwise traverse passed in connector list and get encoders
9113 * for them. */
9114 for (ro = 0; ro < set->num_connectors; ro++) {
9115 if (set->connectors[ro] == &connector->base) {
9116 connector->new_encoder = connector->encoder;
9117 break;
9118 }
9119 }
9120
9121 /* If we disable the crtc, disable all its connectors. Also, if
9122 * the connector is on the changing crtc but not on the new
9123 * connector list, disable it. */
9124 if ((!set->fb || ro == set->num_connectors) &&
9125 connector->base.encoder &&
9126 connector->base.encoder->crtc == set->crtc) {
9127 connector->new_encoder = NULL;
9128
9129 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9130 connector->base.base.id,
9131 drm_get_connector_name(&connector->base));
9132 }
9133
9134
9135 if (&connector->new_encoder->base != connector->base.encoder) {
9136 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9137 config->mode_changed = true;
9138 }
9139 }
9140 /* connector->new_encoder is now updated for all connectors. */
9141
9142 /* Update crtc of enabled connectors. */
9143 list_for_each_entry(connector, &dev->mode_config.connector_list,
9144 base.head) {
9145 if (!connector->new_encoder)
9146 continue;
9147
9148 new_crtc = connector->new_encoder->base.crtc;
9149
9150 for (ro = 0; ro < set->num_connectors; ro++) {
9151 if (set->connectors[ro] == &connector->base)
9152 new_crtc = set->crtc;
9153 }
9154
9155 /* Make sure the new CRTC will work with the encoder */
9156 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9157 new_crtc)) {
9158 return -EINVAL;
9159 }
9160 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9161
9162 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9163 connector->base.base.id,
9164 drm_get_connector_name(&connector->base),
9165 new_crtc->base.id);
9166 }
9167
9168 /* Check for any encoders that needs to be disabled. */
9169 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9170 base.head) {
9171 list_for_each_entry(connector,
9172 &dev->mode_config.connector_list,
9173 base.head) {
9174 if (connector->new_encoder == encoder) {
9175 WARN_ON(!connector->new_encoder->new_crtc);
9176
9177 goto next_encoder;
9178 }
9179 }
9180 encoder->new_crtc = NULL;
9181 next_encoder:
9182 /* Only now check for crtc changes so we don't miss encoders
9183 * that will be disabled. */
9184 if (&encoder->new_crtc->base != encoder->base.crtc) {
9185 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9186 config->mode_changed = true;
9187 }
9188 }
9189 /* Now we've also updated encoder->new_crtc for all encoders. */
9190
9191 return 0;
9192 }
9193
9194 static int intel_crtc_set_config(struct drm_mode_set *set)
9195 {
9196 struct drm_device *dev;
9197 struct drm_mode_set save_set;
9198 struct intel_set_config *config;
9199 int ret;
9200
9201 BUG_ON(!set);
9202 BUG_ON(!set->crtc);
9203 BUG_ON(!set->crtc->helper_private);
9204
9205 /* Enforce sane interface api - has been abused by the fb helper. */
9206 BUG_ON(!set->mode && set->fb);
9207 BUG_ON(set->fb && set->num_connectors == 0);
9208
9209 if (set->fb) {
9210 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9211 set->crtc->base.id, set->fb->base.id,
9212 (int)set->num_connectors, set->x, set->y);
9213 } else {
9214 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9215 }
9216
9217 dev = set->crtc->dev;
9218
9219 ret = -ENOMEM;
9220 config = kzalloc(sizeof(*config), GFP_KERNEL);
9221 if (!config)
9222 goto out_config;
9223
9224 ret = intel_set_config_save_state(dev, config);
9225 if (ret)
9226 goto out_config;
9227
9228 save_set.crtc = set->crtc;
9229 save_set.mode = &set->crtc->mode;
9230 save_set.x = set->crtc->x;
9231 save_set.y = set->crtc->y;
9232 save_set.fb = set->crtc->fb;
9233
9234 /* Compute whether we need a full modeset, only an fb base update or no
9235 * change at all. In the future we might also check whether only the
9236 * mode changed, e.g. for LVDS where we only change the panel fitter in
9237 * such cases. */
9238 intel_set_config_compute_mode_changes(set, config);
9239
9240 ret = intel_modeset_stage_output_state(dev, set, config);
9241 if (ret)
9242 goto fail;
9243
9244 if (config->mode_changed) {
9245 ret = intel_set_mode(set->crtc, set->mode,
9246 set->x, set->y, set->fb);
9247 } else if (config->fb_changed) {
9248 intel_crtc_wait_for_pending_flips(set->crtc);
9249
9250 ret = intel_pipe_set_base(set->crtc,
9251 set->x, set->y, set->fb);
9252 }
9253
9254 if (ret) {
9255 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9256 set->crtc->base.id, ret);
9257 fail:
9258 intel_set_config_restore_state(dev, config);
9259
9260 /* Try to restore the config */
9261 if (config->mode_changed &&
9262 intel_set_mode(save_set.crtc, save_set.mode,
9263 save_set.x, save_set.y, save_set.fb))
9264 DRM_ERROR("failed to restore config after modeset failure\n");
9265 }
9266
9267 out_config:
9268 intel_set_config_free(config);
9269 return ret;
9270 }
9271
9272 static const struct drm_crtc_funcs intel_crtc_funcs = {
9273 .cursor_set = intel_crtc_cursor_set,
9274 .cursor_move = intel_crtc_cursor_move,
9275 .gamma_set = intel_crtc_gamma_set,
9276 .set_config = intel_crtc_set_config,
9277 .destroy = intel_crtc_destroy,
9278 .page_flip = intel_crtc_page_flip,
9279 };
9280
9281 static void intel_cpu_pll_init(struct drm_device *dev)
9282 {
9283 if (HAS_DDI(dev))
9284 intel_ddi_pll_init(dev);
9285 }
9286
9287 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9288 struct intel_shared_dpll *pll,
9289 struct intel_dpll_hw_state *hw_state)
9290 {
9291 uint32_t val;
9292
9293 val = I915_READ(PCH_DPLL(pll->id));
9294 hw_state->dpll = val;
9295 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9296 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9297
9298 return val & DPLL_VCO_ENABLE;
9299 }
9300
9301 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9302 struct intel_shared_dpll *pll)
9303 {
9304 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9305 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9306 }
9307
9308 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9309 struct intel_shared_dpll *pll)
9310 {
9311 /* PCH refclock must be enabled first */
9312 assert_pch_refclk_enabled(dev_priv);
9313
9314 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9315
9316 /* Wait for the clocks to stabilize. */
9317 POSTING_READ(PCH_DPLL(pll->id));
9318 udelay(150);
9319
9320 /* The pixel multiplier can only be updated once the
9321 * DPLL is enabled and the clocks are stable.
9322 *
9323 * So write it again.
9324 */
9325 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9326 POSTING_READ(PCH_DPLL(pll->id));
9327 udelay(200);
9328 }
9329
9330 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9331 struct intel_shared_dpll *pll)
9332 {
9333 struct drm_device *dev = dev_priv->dev;
9334 struct intel_crtc *crtc;
9335
9336 /* Make sure no transcoder isn't still depending on us. */
9337 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9338 if (intel_crtc_to_shared_dpll(crtc) == pll)
9339 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9340 }
9341
9342 I915_WRITE(PCH_DPLL(pll->id), 0);
9343 POSTING_READ(PCH_DPLL(pll->id));
9344 udelay(200);
9345 }
9346
9347 static char *ibx_pch_dpll_names[] = {
9348 "PCH DPLL A",
9349 "PCH DPLL B",
9350 };
9351
9352 static void ibx_pch_dpll_init(struct drm_device *dev)
9353 {
9354 struct drm_i915_private *dev_priv = dev->dev_private;
9355 int i;
9356
9357 dev_priv->num_shared_dpll = 2;
9358
9359 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9360 dev_priv->shared_dplls[i].id = i;
9361 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9362 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9363 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9364 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9365 dev_priv->shared_dplls[i].get_hw_state =
9366 ibx_pch_dpll_get_hw_state;
9367 }
9368 }
9369
9370 static void intel_shared_dpll_init(struct drm_device *dev)
9371 {
9372 struct drm_i915_private *dev_priv = dev->dev_private;
9373
9374 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9375 ibx_pch_dpll_init(dev);
9376 else
9377 dev_priv->num_shared_dpll = 0;
9378
9379 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9380 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9381 dev_priv->num_shared_dpll);
9382 }
9383
9384 static void intel_crtc_init(struct drm_device *dev, int pipe)
9385 {
9386 drm_i915_private_t *dev_priv = dev->dev_private;
9387 struct intel_crtc *intel_crtc;
9388 int i;
9389
9390 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9391 if (intel_crtc == NULL)
9392 return;
9393
9394 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9395
9396 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9397 for (i = 0; i < 256; i++) {
9398 intel_crtc->lut_r[i] = i;
9399 intel_crtc->lut_g[i] = i;
9400 intel_crtc->lut_b[i] = i;
9401 }
9402
9403 /* Swap pipes & planes for FBC on pre-965 */
9404 intel_crtc->pipe = pipe;
9405 intel_crtc->plane = pipe;
9406 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9407 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9408 intel_crtc->plane = !pipe;
9409 }
9410
9411 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9412 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9413 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9414 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9415
9416 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9417 }
9418
9419 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9420 struct drm_file *file)
9421 {
9422 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9423 struct drm_mode_object *drmmode_obj;
9424 struct intel_crtc *crtc;
9425
9426 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9427 return -ENODEV;
9428
9429 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9430 DRM_MODE_OBJECT_CRTC);
9431
9432 if (!drmmode_obj) {
9433 DRM_ERROR("no such CRTC id\n");
9434 return -EINVAL;
9435 }
9436
9437 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9438 pipe_from_crtc_id->pipe = crtc->pipe;
9439
9440 return 0;
9441 }
9442
9443 static int intel_encoder_clones(struct intel_encoder *encoder)
9444 {
9445 struct drm_device *dev = encoder->base.dev;
9446 struct intel_encoder *source_encoder;
9447 int index_mask = 0;
9448 int entry = 0;
9449
9450 list_for_each_entry(source_encoder,
9451 &dev->mode_config.encoder_list, base.head) {
9452
9453 if (encoder == source_encoder)
9454 index_mask |= (1 << entry);
9455
9456 /* Intel hw has only one MUX where enocoders could be cloned. */
9457 if (encoder->cloneable && source_encoder->cloneable)
9458 index_mask |= (1 << entry);
9459
9460 entry++;
9461 }
9462
9463 return index_mask;
9464 }
9465
9466 static bool has_edp_a(struct drm_device *dev)
9467 {
9468 struct drm_i915_private *dev_priv = dev->dev_private;
9469
9470 if (!IS_MOBILE(dev))
9471 return false;
9472
9473 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9474 return false;
9475
9476 if (IS_GEN5(dev) &&
9477 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9478 return false;
9479
9480 return true;
9481 }
9482
9483 static void intel_setup_outputs(struct drm_device *dev)
9484 {
9485 struct drm_i915_private *dev_priv = dev->dev_private;
9486 struct intel_encoder *encoder;
9487 bool dpd_is_edp = false;
9488
9489 intel_lvds_init(dev);
9490
9491 if (!IS_ULT(dev))
9492 intel_crt_init(dev);
9493
9494 if (HAS_DDI(dev)) {
9495 int found;
9496
9497 /* Haswell uses DDI functions to detect digital outputs */
9498 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9499 /* DDI A only supports eDP */
9500 if (found)
9501 intel_ddi_init(dev, PORT_A);
9502
9503 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9504 * register */
9505 found = I915_READ(SFUSE_STRAP);
9506
9507 if (found & SFUSE_STRAP_DDIB_DETECTED)
9508 intel_ddi_init(dev, PORT_B);
9509 if (found & SFUSE_STRAP_DDIC_DETECTED)
9510 intel_ddi_init(dev, PORT_C);
9511 if (found & SFUSE_STRAP_DDID_DETECTED)
9512 intel_ddi_init(dev, PORT_D);
9513 } else if (HAS_PCH_SPLIT(dev)) {
9514 int found;
9515 dpd_is_edp = intel_dpd_is_edp(dev);
9516
9517 if (has_edp_a(dev))
9518 intel_dp_init(dev, DP_A, PORT_A);
9519
9520 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9521 /* PCH SDVOB multiplex with HDMIB */
9522 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9523 if (!found)
9524 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9525 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9526 intel_dp_init(dev, PCH_DP_B, PORT_B);
9527 }
9528
9529 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9530 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9531
9532 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9533 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9534
9535 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9536 intel_dp_init(dev, PCH_DP_C, PORT_C);
9537
9538 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9539 intel_dp_init(dev, PCH_DP_D, PORT_D);
9540 } else if (IS_VALLEYVIEW(dev)) {
9541 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9542 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9543 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9544 PORT_C);
9545 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9546 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9547 PORT_C);
9548 }
9549
9550 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9551 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9552 PORT_B);
9553 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9554 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9555 }
9556 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9557 bool found = false;
9558
9559 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9560 DRM_DEBUG_KMS("probing SDVOB\n");
9561 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9562 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9563 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9564 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9565 }
9566
9567 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9568 intel_dp_init(dev, DP_B, PORT_B);
9569 }
9570
9571 /* Before G4X SDVOC doesn't have its own detect register */
9572
9573 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9574 DRM_DEBUG_KMS("probing SDVOC\n");
9575 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9576 }
9577
9578 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9579
9580 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9581 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9582 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9583 }
9584 if (SUPPORTS_INTEGRATED_DP(dev))
9585 intel_dp_init(dev, DP_C, PORT_C);
9586 }
9587
9588 if (SUPPORTS_INTEGRATED_DP(dev) &&
9589 (I915_READ(DP_D) & DP_DETECTED))
9590 intel_dp_init(dev, DP_D, PORT_D);
9591 } else if (IS_GEN2(dev))
9592 intel_dvo_init(dev);
9593
9594 if (SUPPORTS_TV(dev))
9595 intel_tv_init(dev);
9596
9597 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9598 encoder->base.possible_crtcs = encoder->crtc_mask;
9599 encoder->base.possible_clones =
9600 intel_encoder_clones(encoder);
9601 }
9602
9603 intel_init_pch_refclk(dev);
9604
9605 drm_helper_move_panel_connectors_to_head(dev);
9606 }
9607
9608 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9609 {
9610 drm_framebuffer_cleanup(&fb->base);
9611 drm_gem_object_unreference_unlocked(&fb->obj->base);
9612 }
9613
9614 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9615 {
9616 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9617
9618 intel_framebuffer_fini(intel_fb);
9619 kfree(intel_fb);
9620 }
9621
9622 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9623 struct drm_file *file,
9624 unsigned int *handle)
9625 {
9626 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9627 struct drm_i915_gem_object *obj = intel_fb->obj;
9628
9629 return drm_gem_handle_create(file, &obj->base, handle);
9630 }
9631
9632 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9633 .destroy = intel_user_framebuffer_destroy,
9634 .create_handle = intel_user_framebuffer_create_handle,
9635 };
9636
9637 int intel_framebuffer_init(struct drm_device *dev,
9638 struct intel_framebuffer *intel_fb,
9639 struct drm_mode_fb_cmd2 *mode_cmd,
9640 struct drm_i915_gem_object *obj)
9641 {
9642 int pitch_limit;
9643 int ret;
9644
9645 if (obj->tiling_mode == I915_TILING_Y) {
9646 DRM_DEBUG("hardware does not support tiling Y\n");
9647 return -EINVAL;
9648 }
9649
9650 if (mode_cmd->pitches[0] & 63) {
9651 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9652 mode_cmd->pitches[0]);
9653 return -EINVAL;
9654 }
9655
9656 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9657 pitch_limit = 32*1024;
9658 } else if (INTEL_INFO(dev)->gen >= 4) {
9659 if (obj->tiling_mode)
9660 pitch_limit = 16*1024;
9661 else
9662 pitch_limit = 32*1024;
9663 } else if (INTEL_INFO(dev)->gen >= 3) {
9664 if (obj->tiling_mode)
9665 pitch_limit = 8*1024;
9666 else
9667 pitch_limit = 16*1024;
9668 } else
9669 /* XXX DSPC is limited to 4k tiled */
9670 pitch_limit = 8*1024;
9671
9672 if (mode_cmd->pitches[0] > pitch_limit) {
9673 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9674 obj->tiling_mode ? "tiled" : "linear",
9675 mode_cmd->pitches[0], pitch_limit);
9676 return -EINVAL;
9677 }
9678
9679 if (obj->tiling_mode != I915_TILING_NONE &&
9680 mode_cmd->pitches[0] != obj->stride) {
9681 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9682 mode_cmd->pitches[0], obj->stride);
9683 return -EINVAL;
9684 }
9685
9686 /* Reject formats not supported by any plane early. */
9687 switch (mode_cmd->pixel_format) {
9688 case DRM_FORMAT_C8:
9689 case DRM_FORMAT_RGB565:
9690 case DRM_FORMAT_XRGB8888:
9691 case DRM_FORMAT_ARGB8888:
9692 break;
9693 case DRM_FORMAT_XRGB1555:
9694 case DRM_FORMAT_ARGB1555:
9695 if (INTEL_INFO(dev)->gen > 3) {
9696 DRM_DEBUG("unsupported pixel format: %s\n",
9697 drm_get_format_name(mode_cmd->pixel_format));
9698 return -EINVAL;
9699 }
9700 break;
9701 case DRM_FORMAT_XBGR8888:
9702 case DRM_FORMAT_ABGR8888:
9703 case DRM_FORMAT_XRGB2101010:
9704 case DRM_FORMAT_ARGB2101010:
9705 case DRM_FORMAT_XBGR2101010:
9706 case DRM_FORMAT_ABGR2101010:
9707 if (INTEL_INFO(dev)->gen < 4) {
9708 DRM_DEBUG("unsupported pixel format: %s\n",
9709 drm_get_format_name(mode_cmd->pixel_format));
9710 return -EINVAL;
9711 }
9712 break;
9713 case DRM_FORMAT_YUYV:
9714 case DRM_FORMAT_UYVY:
9715 case DRM_FORMAT_YVYU:
9716 case DRM_FORMAT_VYUY:
9717 if (INTEL_INFO(dev)->gen < 5) {
9718 DRM_DEBUG("unsupported pixel format: %s\n",
9719 drm_get_format_name(mode_cmd->pixel_format));
9720 return -EINVAL;
9721 }
9722 break;
9723 default:
9724 DRM_DEBUG("unsupported pixel format: %s\n",
9725 drm_get_format_name(mode_cmd->pixel_format));
9726 return -EINVAL;
9727 }
9728
9729 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9730 if (mode_cmd->offsets[0] != 0)
9731 return -EINVAL;
9732
9733 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9734 intel_fb->obj = obj;
9735
9736 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9737 if (ret) {
9738 DRM_ERROR("framebuffer init failed %d\n", ret);
9739 return ret;
9740 }
9741
9742 return 0;
9743 }
9744
9745 static struct drm_framebuffer *
9746 intel_user_framebuffer_create(struct drm_device *dev,
9747 struct drm_file *filp,
9748 struct drm_mode_fb_cmd2 *mode_cmd)
9749 {
9750 struct drm_i915_gem_object *obj;
9751
9752 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9753 mode_cmd->handles[0]));
9754 if (&obj->base == NULL)
9755 return ERR_PTR(-ENOENT);
9756
9757 return intel_framebuffer_create(dev, mode_cmd, obj);
9758 }
9759
9760 static const struct drm_mode_config_funcs intel_mode_funcs = {
9761 .fb_create = intel_user_framebuffer_create,
9762 .output_poll_changed = intel_fb_output_poll_changed,
9763 };
9764
9765 /* Set up chip specific display functions */
9766 static void intel_init_display(struct drm_device *dev)
9767 {
9768 struct drm_i915_private *dev_priv = dev->dev_private;
9769
9770 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9771 dev_priv->display.find_dpll = g4x_find_best_dpll;
9772 else if (IS_VALLEYVIEW(dev))
9773 dev_priv->display.find_dpll = vlv_find_best_dpll;
9774 else if (IS_PINEVIEW(dev))
9775 dev_priv->display.find_dpll = pnv_find_best_dpll;
9776 else
9777 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9778
9779 if (HAS_DDI(dev)) {
9780 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9781 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9782 dev_priv->display.crtc_enable = haswell_crtc_enable;
9783 dev_priv->display.crtc_disable = haswell_crtc_disable;
9784 dev_priv->display.off = haswell_crtc_off;
9785 dev_priv->display.update_plane = ironlake_update_plane;
9786 } else if (HAS_PCH_SPLIT(dev)) {
9787 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9788 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9789 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9790 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9791 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9792 dev_priv->display.off = ironlake_crtc_off;
9793 dev_priv->display.update_plane = ironlake_update_plane;
9794 } else if (IS_VALLEYVIEW(dev)) {
9795 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9796 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9797 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9798 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9799 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9800 dev_priv->display.off = i9xx_crtc_off;
9801 dev_priv->display.update_plane = i9xx_update_plane;
9802 } else {
9803 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9804 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9805 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9806 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9807 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9808 dev_priv->display.off = i9xx_crtc_off;
9809 dev_priv->display.update_plane = i9xx_update_plane;
9810 }
9811
9812 /* Returns the core display clock speed */
9813 if (IS_VALLEYVIEW(dev))
9814 dev_priv->display.get_display_clock_speed =
9815 valleyview_get_display_clock_speed;
9816 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9817 dev_priv->display.get_display_clock_speed =
9818 i945_get_display_clock_speed;
9819 else if (IS_I915G(dev))
9820 dev_priv->display.get_display_clock_speed =
9821 i915_get_display_clock_speed;
9822 else if (IS_I945GM(dev) || IS_845G(dev))
9823 dev_priv->display.get_display_clock_speed =
9824 i9xx_misc_get_display_clock_speed;
9825 else if (IS_PINEVIEW(dev))
9826 dev_priv->display.get_display_clock_speed =
9827 pnv_get_display_clock_speed;
9828 else if (IS_I915GM(dev))
9829 dev_priv->display.get_display_clock_speed =
9830 i915gm_get_display_clock_speed;
9831 else if (IS_I865G(dev))
9832 dev_priv->display.get_display_clock_speed =
9833 i865_get_display_clock_speed;
9834 else if (IS_I85X(dev))
9835 dev_priv->display.get_display_clock_speed =
9836 i855_get_display_clock_speed;
9837 else /* 852, 830 */
9838 dev_priv->display.get_display_clock_speed =
9839 i830_get_display_clock_speed;
9840
9841 if (HAS_PCH_SPLIT(dev)) {
9842 if (IS_GEN5(dev)) {
9843 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9844 dev_priv->display.write_eld = ironlake_write_eld;
9845 } else if (IS_GEN6(dev)) {
9846 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9847 dev_priv->display.write_eld = ironlake_write_eld;
9848 } else if (IS_IVYBRIDGE(dev)) {
9849 /* FIXME: detect B0+ stepping and use auto training */
9850 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9851 dev_priv->display.write_eld = ironlake_write_eld;
9852 dev_priv->display.modeset_global_resources =
9853 ivb_modeset_global_resources;
9854 } else if (IS_HASWELL(dev)) {
9855 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9856 dev_priv->display.write_eld = haswell_write_eld;
9857 dev_priv->display.modeset_global_resources =
9858 haswell_modeset_global_resources;
9859 }
9860 } else if (IS_G4X(dev)) {
9861 dev_priv->display.write_eld = g4x_write_eld;
9862 }
9863
9864 /* Default just returns -ENODEV to indicate unsupported */
9865 dev_priv->display.queue_flip = intel_default_queue_flip;
9866
9867 switch (INTEL_INFO(dev)->gen) {
9868 case 2:
9869 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9870 break;
9871
9872 case 3:
9873 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9874 break;
9875
9876 case 4:
9877 case 5:
9878 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9879 break;
9880
9881 case 6:
9882 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9883 break;
9884 case 7:
9885 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9886 break;
9887 }
9888 }
9889
9890 /*
9891 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9892 * resume, or other times. This quirk makes sure that's the case for
9893 * affected systems.
9894 */
9895 static void quirk_pipea_force(struct drm_device *dev)
9896 {
9897 struct drm_i915_private *dev_priv = dev->dev_private;
9898
9899 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9900 DRM_INFO("applying pipe a force quirk\n");
9901 }
9902
9903 /*
9904 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9905 */
9906 static void quirk_ssc_force_disable(struct drm_device *dev)
9907 {
9908 struct drm_i915_private *dev_priv = dev->dev_private;
9909 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9910 DRM_INFO("applying lvds SSC disable quirk\n");
9911 }
9912
9913 /*
9914 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9915 * brightness value
9916 */
9917 static void quirk_invert_brightness(struct drm_device *dev)
9918 {
9919 struct drm_i915_private *dev_priv = dev->dev_private;
9920 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9921 DRM_INFO("applying inverted panel brightness quirk\n");
9922 }
9923
9924 /*
9925 * Some machines (Dell XPS13) suffer broken backlight controls if
9926 * BLM_PCH_PWM_ENABLE is set.
9927 */
9928 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9929 {
9930 struct drm_i915_private *dev_priv = dev->dev_private;
9931 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9932 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9933 }
9934
9935 struct intel_quirk {
9936 int device;
9937 int subsystem_vendor;
9938 int subsystem_device;
9939 void (*hook)(struct drm_device *dev);
9940 };
9941
9942 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9943 struct intel_dmi_quirk {
9944 void (*hook)(struct drm_device *dev);
9945 const struct dmi_system_id (*dmi_id_list)[];
9946 };
9947
9948 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9949 {
9950 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9951 return 1;
9952 }
9953
9954 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9955 {
9956 .dmi_id_list = &(const struct dmi_system_id[]) {
9957 {
9958 .callback = intel_dmi_reverse_brightness,
9959 .ident = "NCR Corporation",
9960 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9961 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9962 },
9963 },
9964 { } /* terminating entry */
9965 },
9966 .hook = quirk_invert_brightness,
9967 },
9968 };
9969
9970 static struct intel_quirk intel_quirks[] = {
9971 /* HP Mini needs pipe A force quirk (LP: #322104) */
9972 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9973
9974 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9975 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9976
9977 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9978 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9979
9980 /* 830/845 need to leave pipe A & dpll A up */
9981 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9982 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9983
9984 /* Lenovo U160 cannot use SSC on LVDS */
9985 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9986
9987 /* Sony Vaio Y cannot use SSC on LVDS */
9988 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9989
9990 /* Acer Aspire 5734Z must invert backlight brightness */
9991 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9992
9993 /* Acer/eMachines G725 */
9994 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9995
9996 /* Acer/eMachines e725 */
9997 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9998
9999 /* Acer/Packard Bell NCL20 */
10000 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10001
10002 /* Acer Aspire 4736Z */
10003 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10004
10005 /* Dell XPS13 HD Sandy Bridge */
10006 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10007 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10008 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10009 };
10010
10011 static void intel_init_quirks(struct drm_device *dev)
10012 {
10013 struct pci_dev *d = dev->pdev;
10014 int i;
10015
10016 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10017 struct intel_quirk *q = &intel_quirks[i];
10018
10019 if (d->device == q->device &&
10020 (d->subsystem_vendor == q->subsystem_vendor ||
10021 q->subsystem_vendor == PCI_ANY_ID) &&
10022 (d->subsystem_device == q->subsystem_device ||
10023 q->subsystem_device == PCI_ANY_ID))
10024 q->hook(dev);
10025 }
10026 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10027 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10028 intel_dmi_quirks[i].hook(dev);
10029 }
10030 }
10031
10032 /* Disable the VGA plane that we never use */
10033 static void i915_disable_vga(struct drm_device *dev)
10034 {
10035 struct drm_i915_private *dev_priv = dev->dev_private;
10036 u8 sr1;
10037 u32 vga_reg = i915_vgacntrl_reg(dev);
10038
10039 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10040 outb(SR01, VGA_SR_INDEX);
10041 sr1 = inb(VGA_SR_DATA);
10042 outb(sr1 | 1<<5, VGA_SR_DATA);
10043 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10044 udelay(300);
10045
10046 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10047 POSTING_READ(vga_reg);
10048 }
10049
10050 static void i915_enable_vga_mem(struct drm_device *dev)
10051 {
10052 /* Enable VGA memory on Intel HD */
10053 if (HAS_PCH_SPLIT(dev)) {
10054 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10055 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10056 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10057 VGA_RSRC_LEGACY_MEM |
10058 VGA_RSRC_NORMAL_IO |
10059 VGA_RSRC_NORMAL_MEM);
10060 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10061 }
10062 }
10063
10064 void i915_disable_vga_mem(struct drm_device *dev)
10065 {
10066 /* Disable VGA memory on Intel HD */
10067 if (HAS_PCH_SPLIT(dev)) {
10068 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10069 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10070 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10071 VGA_RSRC_NORMAL_IO |
10072 VGA_RSRC_NORMAL_MEM);
10073 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10074 }
10075 }
10076
10077 void intel_modeset_init_hw(struct drm_device *dev)
10078 {
10079 intel_init_power_well(dev);
10080
10081 intel_prepare_ddi(dev);
10082
10083 intel_init_clock_gating(dev);
10084
10085 mutex_lock(&dev->struct_mutex);
10086 intel_enable_gt_powersave(dev);
10087 mutex_unlock(&dev->struct_mutex);
10088 }
10089
10090 void intel_modeset_suspend_hw(struct drm_device *dev)
10091 {
10092 intel_suspend_hw(dev);
10093 }
10094
10095 void intel_modeset_init(struct drm_device *dev)
10096 {
10097 struct drm_i915_private *dev_priv = dev->dev_private;
10098 int i, j, ret;
10099
10100 drm_mode_config_init(dev);
10101
10102 dev->mode_config.min_width = 0;
10103 dev->mode_config.min_height = 0;
10104
10105 dev->mode_config.preferred_depth = 24;
10106 dev->mode_config.prefer_shadow = 1;
10107
10108 dev->mode_config.funcs = &intel_mode_funcs;
10109
10110 intel_init_quirks(dev);
10111
10112 intel_init_pm(dev);
10113
10114 if (INTEL_INFO(dev)->num_pipes == 0)
10115 return;
10116
10117 intel_init_display(dev);
10118
10119 if (IS_GEN2(dev)) {
10120 dev->mode_config.max_width = 2048;
10121 dev->mode_config.max_height = 2048;
10122 } else if (IS_GEN3(dev)) {
10123 dev->mode_config.max_width = 4096;
10124 dev->mode_config.max_height = 4096;
10125 } else {
10126 dev->mode_config.max_width = 8192;
10127 dev->mode_config.max_height = 8192;
10128 }
10129 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10130
10131 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10132 INTEL_INFO(dev)->num_pipes,
10133 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10134
10135 for_each_pipe(i) {
10136 intel_crtc_init(dev, i);
10137 for (j = 0; j < dev_priv->num_plane; j++) {
10138 ret = intel_plane_init(dev, i, j);
10139 if (ret)
10140 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10141 pipe_name(i), sprite_name(i, j), ret);
10142 }
10143 }
10144
10145 intel_cpu_pll_init(dev);
10146 intel_shared_dpll_init(dev);
10147
10148 /* Just disable it once at startup */
10149 i915_disable_vga(dev);
10150 intel_setup_outputs(dev);
10151
10152 /* Just in case the BIOS is doing something questionable. */
10153 intel_disable_fbc(dev);
10154 }
10155
10156 static void
10157 intel_connector_break_all_links(struct intel_connector *connector)
10158 {
10159 connector->base.dpms = DRM_MODE_DPMS_OFF;
10160 connector->base.encoder = NULL;
10161 connector->encoder->connectors_active = false;
10162 connector->encoder->base.crtc = NULL;
10163 }
10164
10165 static void intel_enable_pipe_a(struct drm_device *dev)
10166 {
10167 struct intel_connector *connector;
10168 struct drm_connector *crt = NULL;
10169 struct intel_load_detect_pipe load_detect_temp;
10170
10171 /* We can't just switch on the pipe A, we need to set things up with a
10172 * proper mode and output configuration. As a gross hack, enable pipe A
10173 * by enabling the load detect pipe once. */
10174 list_for_each_entry(connector,
10175 &dev->mode_config.connector_list,
10176 base.head) {
10177 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10178 crt = &connector->base;
10179 break;
10180 }
10181 }
10182
10183 if (!crt)
10184 return;
10185
10186 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10187 intel_release_load_detect_pipe(crt, &load_detect_temp);
10188
10189
10190 }
10191
10192 static bool
10193 intel_check_plane_mapping(struct intel_crtc *crtc)
10194 {
10195 struct drm_device *dev = crtc->base.dev;
10196 struct drm_i915_private *dev_priv = dev->dev_private;
10197 u32 reg, val;
10198
10199 if (INTEL_INFO(dev)->num_pipes == 1)
10200 return true;
10201
10202 reg = DSPCNTR(!crtc->plane);
10203 val = I915_READ(reg);
10204
10205 if ((val & DISPLAY_PLANE_ENABLE) &&
10206 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10207 return false;
10208
10209 return true;
10210 }
10211
10212 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10213 {
10214 struct drm_device *dev = crtc->base.dev;
10215 struct drm_i915_private *dev_priv = dev->dev_private;
10216 u32 reg;
10217
10218 /* Clear any frame start delays used for debugging left by the BIOS */
10219 reg = PIPECONF(crtc->config.cpu_transcoder);
10220 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10221
10222 /* We need to sanitize the plane -> pipe mapping first because this will
10223 * disable the crtc (and hence change the state) if it is wrong. Note
10224 * that gen4+ has a fixed plane -> pipe mapping. */
10225 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10226 struct intel_connector *connector;
10227 bool plane;
10228
10229 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10230 crtc->base.base.id);
10231
10232 /* Pipe has the wrong plane attached and the plane is active.
10233 * Temporarily change the plane mapping and disable everything
10234 * ... */
10235 plane = crtc->plane;
10236 crtc->plane = !plane;
10237 dev_priv->display.crtc_disable(&crtc->base);
10238 crtc->plane = plane;
10239
10240 /* ... and break all links. */
10241 list_for_each_entry(connector, &dev->mode_config.connector_list,
10242 base.head) {
10243 if (connector->encoder->base.crtc != &crtc->base)
10244 continue;
10245
10246 intel_connector_break_all_links(connector);
10247 }
10248
10249 WARN_ON(crtc->active);
10250 crtc->base.enabled = false;
10251 }
10252
10253 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10254 crtc->pipe == PIPE_A && !crtc->active) {
10255 /* BIOS forgot to enable pipe A, this mostly happens after
10256 * resume. Force-enable the pipe to fix this, the update_dpms
10257 * call below we restore the pipe to the right state, but leave
10258 * the required bits on. */
10259 intel_enable_pipe_a(dev);
10260 }
10261
10262 /* Adjust the state of the output pipe according to whether we
10263 * have active connectors/encoders. */
10264 intel_crtc_update_dpms(&crtc->base);
10265
10266 if (crtc->active != crtc->base.enabled) {
10267 struct intel_encoder *encoder;
10268
10269 /* This can happen either due to bugs in the get_hw_state
10270 * functions or because the pipe is force-enabled due to the
10271 * pipe A quirk. */
10272 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10273 crtc->base.base.id,
10274 crtc->base.enabled ? "enabled" : "disabled",
10275 crtc->active ? "enabled" : "disabled");
10276
10277 crtc->base.enabled = crtc->active;
10278
10279 /* Because we only establish the connector -> encoder ->
10280 * crtc links if something is active, this means the
10281 * crtc is now deactivated. Break the links. connector
10282 * -> encoder links are only establish when things are
10283 * actually up, hence no need to break them. */
10284 WARN_ON(crtc->active);
10285
10286 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10287 WARN_ON(encoder->connectors_active);
10288 encoder->base.crtc = NULL;
10289 }
10290 }
10291 }
10292
10293 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10294 {
10295 struct intel_connector *connector;
10296 struct drm_device *dev = encoder->base.dev;
10297
10298 /* We need to check both for a crtc link (meaning that the
10299 * encoder is active and trying to read from a pipe) and the
10300 * pipe itself being active. */
10301 bool has_active_crtc = encoder->base.crtc &&
10302 to_intel_crtc(encoder->base.crtc)->active;
10303
10304 if (encoder->connectors_active && !has_active_crtc) {
10305 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10306 encoder->base.base.id,
10307 drm_get_encoder_name(&encoder->base));
10308
10309 /* Connector is active, but has no active pipe. This is
10310 * fallout from our resume register restoring. Disable
10311 * the encoder manually again. */
10312 if (encoder->base.crtc) {
10313 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10314 encoder->base.base.id,
10315 drm_get_encoder_name(&encoder->base));
10316 encoder->disable(encoder);
10317 }
10318
10319 /* Inconsistent output/port/pipe state happens presumably due to
10320 * a bug in one of the get_hw_state functions. Or someplace else
10321 * in our code, like the register restore mess on resume. Clamp
10322 * things to off as a safer default. */
10323 list_for_each_entry(connector,
10324 &dev->mode_config.connector_list,
10325 base.head) {
10326 if (connector->encoder != encoder)
10327 continue;
10328
10329 intel_connector_break_all_links(connector);
10330 }
10331 }
10332 /* Enabled encoders without active connectors will be fixed in
10333 * the crtc fixup. */
10334 }
10335
10336 void i915_redisable_vga(struct drm_device *dev)
10337 {
10338 struct drm_i915_private *dev_priv = dev->dev_private;
10339 u32 vga_reg = i915_vgacntrl_reg(dev);
10340
10341 /* This function can be called both from intel_modeset_setup_hw_state or
10342 * at a very early point in our resume sequence, where the power well
10343 * structures are not yet restored. Since this function is at a very
10344 * paranoid "someone might have enabled VGA while we were not looking"
10345 * level, just check if the power well is enabled instead of trying to
10346 * follow the "don't touch the power well if we don't need it" policy
10347 * the rest of the driver uses. */
10348 if (HAS_POWER_WELL(dev) &&
10349 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10350 return;
10351
10352 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10353 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10354 i915_disable_vga(dev);
10355 i915_disable_vga_mem(dev);
10356 }
10357 }
10358
10359 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10360 {
10361 struct drm_i915_private *dev_priv = dev->dev_private;
10362 enum pipe pipe;
10363 struct intel_crtc *crtc;
10364 struct intel_encoder *encoder;
10365 struct intel_connector *connector;
10366 int i;
10367
10368 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10369 base.head) {
10370 memset(&crtc->config, 0, sizeof(crtc->config));
10371
10372 crtc->active = dev_priv->display.get_pipe_config(crtc,
10373 &crtc->config);
10374
10375 crtc->base.enabled = crtc->active;
10376
10377 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10378 crtc->base.base.id,
10379 crtc->active ? "enabled" : "disabled");
10380 }
10381
10382 /* FIXME: Smash this into the new shared dpll infrastructure. */
10383 if (HAS_DDI(dev))
10384 intel_ddi_setup_hw_pll_state(dev);
10385
10386 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10387 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10388
10389 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10390 pll->active = 0;
10391 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10392 base.head) {
10393 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10394 pll->active++;
10395 }
10396 pll->refcount = pll->active;
10397
10398 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10399 pll->name, pll->refcount, pll->on);
10400 }
10401
10402 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10403 base.head) {
10404 pipe = 0;
10405
10406 if (encoder->get_hw_state(encoder, &pipe)) {
10407 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10408 encoder->base.crtc = &crtc->base;
10409 if (encoder->get_config)
10410 encoder->get_config(encoder, &crtc->config);
10411 } else {
10412 encoder->base.crtc = NULL;
10413 }
10414
10415 encoder->connectors_active = false;
10416 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10417 encoder->base.base.id,
10418 drm_get_encoder_name(&encoder->base),
10419 encoder->base.crtc ? "enabled" : "disabled",
10420 pipe);
10421 }
10422
10423 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10424 base.head) {
10425 if (!crtc->active)
10426 continue;
10427 if (dev_priv->display.get_clock)
10428 dev_priv->display.get_clock(crtc,
10429 &crtc->config);
10430 }
10431
10432 list_for_each_entry(connector, &dev->mode_config.connector_list,
10433 base.head) {
10434 if (connector->get_hw_state(connector)) {
10435 connector->base.dpms = DRM_MODE_DPMS_ON;
10436 connector->encoder->connectors_active = true;
10437 connector->base.encoder = &connector->encoder->base;
10438 } else {
10439 connector->base.dpms = DRM_MODE_DPMS_OFF;
10440 connector->base.encoder = NULL;
10441 }
10442 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10443 connector->base.base.id,
10444 drm_get_connector_name(&connector->base),
10445 connector->base.encoder ? "enabled" : "disabled");
10446 }
10447 }
10448
10449 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10450 * and i915 state tracking structures. */
10451 void intel_modeset_setup_hw_state(struct drm_device *dev,
10452 bool force_restore)
10453 {
10454 struct drm_i915_private *dev_priv = dev->dev_private;
10455 enum pipe pipe;
10456 struct drm_plane *plane;
10457 struct intel_crtc *crtc;
10458 struct intel_encoder *encoder;
10459 int i;
10460
10461 intel_modeset_readout_hw_state(dev);
10462
10463 /*
10464 * Now that we have the config, copy it to each CRTC struct
10465 * Note that this could go away if we move to using crtc_config
10466 * checking everywhere.
10467 */
10468 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10469 base.head) {
10470 if (crtc->active && i915_fastboot) {
10471 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10472
10473 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10474 crtc->base.base.id);
10475 drm_mode_debug_printmodeline(&crtc->base.mode);
10476 }
10477 }
10478
10479 /* HW state is read out, now we need to sanitize this mess. */
10480 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10481 base.head) {
10482 intel_sanitize_encoder(encoder);
10483 }
10484
10485 for_each_pipe(pipe) {
10486 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10487 intel_sanitize_crtc(crtc);
10488 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10489 }
10490
10491 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10492 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10493
10494 if (!pll->on || pll->active)
10495 continue;
10496
10497 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10498
10499 pll->disable(dev_priv, pll);
10500 pll->on = false;
10501 }
10502
10503 if (force_restore) {
10504 /*
10505 * We need to use raw interfaces for restoring state to avoid
10506 * checking (bogus) intermediate states.
10507 */
10508 for_each_pipe(pipe) {
10509 struct drm_crtc *crtc =
10510 dev_priv->pipe_to_crtc_mapping[pipe];
10511
10512 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10513 crtc->fb);
10514 }
10515 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10516 intel_plane_restore(plane);
10517
10518 i915_redisable_vga(dev);
10519 } else {
10520 intel_modeset_update_staged_output_state(dev);
10521 }
10522
10523 intel_modeset_check_state(dev);
10524
10525 drm_mode_config_reset(dev);
10526 }
10527
10528 void intel_modeset_gem_init(struct drm_device *dev)
10529 {
10530 intel_modeset_init_hw(dev);
10531
10532 intel_setup_overlay(dev);
10533
10534 intel_modeset_setup_hw_state(dev, false);
10535 }
10536
10537 void intel_modeset_cleanup(struct drm_device *dev)
10538 {
10539 struct drm_i915_private *dev_priv = dev->dev_private;
10540 struct drm_crtc *crtc;
10541
10542 /*
10543 * Interrupts and polling as the first thing to avoid creating havoc.
10544 * Too much stuff here (turning of rps, connectors, ...) would
10545 * experience fancy races otherwise.
10546 */
10547 drm_irq_uninstall(dev);
10548 cancel_work_sync(&dev_priv->hotplug_work);
10549 /*
10550 * Due to the hpd irq storm handling the hotplug work can re-arm the
10551 * poll handlers. Hence disable polling after hpd handling is shut down.
10552 */
10553 drm_kms_helper_poll_fini(dev);
10554
10555 mutex_lock(&dev->struct_mutex);
10556
10557 intel_unregister_dsm_handler();
10558
10559 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10560 /* Skip inactive CRTCs */
10561 if (!crtc->fb)
10562 continue;
10563
10564 intel_increase_pllclock(crtc);
10565 }
10566
10567 intel_disable_fbc(dev);
10568
10569 i915_enable_vga_mem(dev);
10570
10571 intel_disable_gt_powersave(dev);
10572
10573 ironlake_teardown_rc6(dev);
10574
10575 mutex_unlock(&dev->struct_mutex);
10576
10577 /* flush any delayed tasks or pending work */
10578 flush_scheduled_work();
10579
10580 /* destroy backlight, if any, before the connectors */
10581 intel_panel_destroy_backlight(dev);
10582
10583 drm_mode_config_cleanup(dev);
10584
10585 intel_cleanup_overlay(dev);
10586 }
10587
10588 /*
10589 * Return which encoder is currently attached for connector.
10590 */
10591 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10592 {
10593 return &intel_attached_encoder(connector)->base;
10594 }
10595
10596 void intel_connector_attach_encoder(struct intel_connector *connector,
10597 struct intel_encoder *encoder)
10598 {
10599 connector->encoder = encoder;
10600 drm_mode_connector_attach_encoder(&connector->base,
10601 &encoder->base);
10602 }
10603
10604 /*
10605 * set vga decode state - true == enable VGA decode
10606 */
10607 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10608 {
10609 struct drm_i915_private *dev_priv = dev->dev_private;
10610 u16 gmch_ctrl;
10611
10612 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10613 if (state)
10614 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10615 else
10616 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10617 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10618 return 0;
10619 }
10620
10621 struct intel_display_error_state {
10622
10623 u32 power_well_driver;
10624
10625 int num_transcoders;
10626
10627 struct intel_cursor_error_state {
10628 u32 control;
10629 u32 position;
10630 u32 base;
10631 u32 size;
10632 } cursor[I915_MAX_PIPES];
10633
10634 struct intel_pipe_error_state {
10635 u32 source;
10636 } pipe[I915_MAX_PIPES];
10637
10638 struct intel_plane_error_state {
10639 u32 control;
10640 u32 stride;
10641 u32 size;
10642 u32 pos;
10643 u32 addr;
10644 u32 surface;
10645 u32 tile_offset;
10646 } plane[I915_MAX_PIPES];
10647
10648 struct intel_transcoder_error_state {
10649 enum transcoder cpu_transcoder;
10650
10651 u32 conf;
10652
10653 u32 htotal;
10654 u32 hblank;
10655 u32 hsync;
10656 u32 vtotal;
10657 u32 vblank;
10658 u32 vsync;
10659 } transcoder[4];
10660 };
10661
10662 struct intel_display_error_state *
10663 intel_display_capture_error_state(struct drm_device *dev)
10664 {
10665 drm_i915_private_t *dev_priv = dev->dev_private;
10666 struct intel_display_error_state *error;
10667 int transcoders[] = {
10668 TRANSCODER_A,
10669 TRANSCODER_B,
10670 TRANSCODER_C,
10671 TRANSCODER_EDP,
10672 };
10673 int i;
10674
10675 if (INTEL_INFO(dev)->num_pipes == 0)
10676 return NULL;
10677
10678 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10679 if (error == NULL)
10680 return NULL;
10681
10682 if (HAS_POWER_WELL(dev))
10683 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10684
10685 for_each_pipe(i) {
10686 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10687 error->cursor[i].control = I915_READ(CURCNTR(i));
10688 error->cursor[i].position = I915_READ(CURPOS(i));
10689 error->cursor[i].base = I915_READ(CURBASE(i));
10690 } else {
10691 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10692 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10693 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10694 }
10695
10696 error->plane[i].control = I915_READ(DSPCNTR(i));
10697 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10698 if (INTEL_INFO(dev)->gen <= 3) {
10699 error->plane[i].size = I915_READ(DSPSIZE(i));
10700 error->plane[i].pos = I915_READ(DSPPOS(i));
10701 }
10702 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10703 error->plane[i].addr = I915_READ(DSPADDR(i));
10704 if (INTEL_INFO(dev)->gen >= 4) {
10705 error->plane[i].surface = I915_READ(DSPSURF(i));
10706 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10707 }
10708
10709 error->pipe[i].source = I915_READ(PIPESRC(i));
10710 }
10711
10712 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10713 if (HAS_DDI(dev_priv->dev))
10714 error->num_transcoders++; /* Account for eDP. */
10715
10716 for (i = 0; i < error->num_transcoders; i++) {
10717 enum transcoder cpu_transcoder = transcoders[i];
10718
10719 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10720
10721 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10722 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10723 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10724 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10725 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10726 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10727 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10728 }
10729
10730 /* In the code above we read the registers without checking if the power
10731 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10732 * prevent the next I915_WRITE from detecting it and printing an error
10733 * message. */
10734 intel_uncore_clear_errors(dev);
10735
10736 return error;
10737 }
10738
10739 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10740
10741 void
10742 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10743 struct drm_device *dev,
10744 struct intel_display_error_state *error)
10745 {
10746 int i;
10747
10748 if (!error)
10749 return;
10750
10751 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10752 if (HAS_POWER_WELL(dev))
10753 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10754 error->power_well_driver);
10755 for_each_pipe(i) {
10756 err_printf(m, "Pipe [%d]:\n", i);
10757 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10758
10759 err_printf(m, "Plane [%d]:\n", i);
10760 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10761 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10762 if (INTEL_INFO(dev)->gen <= 3) {
10763 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10764 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10765 }
10766 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10767 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10768 if (INTEL_INFO(dev)->gen >= 4) {
10769 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10770 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10771 }
10772
10773 err_printf(m, "Cursor [%d]:\n", i);
10774 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10775 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10776 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10777 }
10778
10779 for (i = 0; i < error->num_transcoders; i++) {
10780 err_printf(m, " CPU transcoder: %c\n",
10781 transcoder_name(error->transcoder[i].cpu_transcoder));
10782 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
10783 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
10784 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
10785 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
10786 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
10787 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
10788 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
10789 }
10790 }
This page took 0.436705 seconds and 5 git commands to generate.