drm/i915: Make intel_set_mode() static
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54 int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58 int min, max;
59 } intel_range_t;
60
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68 intel_range_t dot, vco, n, m, m1, m2, p, p1;
69 intel_p2_t p2;
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78 struct drm_i915_private *dev_priv = dev->dev_private;
79
80 WARN_ON(!HAS_PCH_SPLIT(dev));
81
82 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static inline u32 /* units of 100MHz */
86 intel_fdi_link_freq(struct drm_device *dev)
87 {
88 if (IS_GEN5(dev)) {
89 struct drm_i915_private *dev_priv = dev->dev_private;
90 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
91 } else
92 return 27;
93 }
94
95 static const intel_limit_t intel_limits_i8xx_dac = {
96 .dot = { .min = 25000, .max = 350000 },
97 .vco = { .min = 930000, .max = 1400000 },
98 .n = { .min = 3, .max = 16 },
99 .m = { .min = 96, .max = 140 },
100 .m1 = { .min = 18, .max = 26 },
101 .m2 = { .min = 6, .max = 16 },
102 .p = { .min = 4, .max = 128 },
103 .p1 = { .min = 2, .max = 33 },
104 .p2 = { .dot_limit = 165000,
105 .p2_slow = 4, .p2_fast = 2 },
106 };
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 4 },
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135 .dot = { .min = 20000, .max = 400000 },
136 .vco = { .min = 1400000, .max = 2800000 },
137 .n = { .min = 1, .max = 6 },
138 .m = { .min = 70, .max = 120 },
139 .m1 = { .min = 8, .max = 18 },
140 .m2 = { .min = 3, .max = 7 },
141 .p = { .min = 5, .max = 80 },
142 .p1 = { .min = 1, .max = 8 },
143 .p2 = { .dot_limit = 200000,
144 .p2_slow = 10, .p2_fast = 5 },
145 };
146
147 static const intel_limit_t intel_limits_i9xx_lvds = {
148 .dot = { .min = 20000, .max = 400000 },
149 .vco = { .min = 1400000, .max = 2800000 },
150 .n = { .min = 1, .max = 6 },
151 .m = { .min = 70, .max = 120 },
152 .m1 = { .min = 8, .max = 18 },
153 .m2 = { .min = 3, .max = 7 },
154 .p = { .min = 7, .max = 98 },
155 .p1 = { .min = 1, .max = 8 },
156 .p2 = { .dot_limit = 112000,
157 .p2_slow = 14, .p2_fast = 7 },
158 };
159
160
161 static const intel_limit_t intel_limits_g4x_sdvo = {
162 .dot = { .min = 25000, .max = 270000 },
163 .vco = { .min = 1750000, .max = 3500000},
164 .n = { .min = 1, .max = 4 },
165 .m = { .min = 104, .max = 138 },
166 .m1 = { .min = 17, .max = 23 },
167 .m2 = { .min = 5, .max = 11 },
168 .p = { .min = 10, .max = 30 },
169 .p1 = { .min = 1, .max = 3},
170 .p2 = { .dot_limit = 270000,
171 .p2_slow = 10,
172 .p2_fast = 10
173 },
174 };
175
176 static const intel_limit_t intel_limits_g4x_hdmi = {
177 .dot = { .min = 22000, .max = 400000 },
178 .vco = { .min = 1750000, .max = 3500000},
179 .n = { .min = 1, .max = 4 },
180 .m = { .min = 104, .max = 138 },
181 .m1 = { .min = 16, .max = 23 },
182 .m2 = { .min = 5, .max = 11 },
183 .p = { .min = 5, .max = 80 },
184 .p1 = { .min = 1, .max = 8},
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 10, .p2_fast = 5 },
187 };
188
189 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
190 .dot = { .min = 20000, .max = 115000 },
191 .vco = { .min = 1750000, .max = 3500000 },
192 .n = { .min = 1, .max = 3 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 17, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 28, .max = 112 },
197 .p1 = { .min = 2, .max = 8 },
198 .p2 = { .dot_limit = 0,
199 .p2_slow = 14, .p2_fast = 14
200 },
201 };
202
203 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
204 .dot = { .min = 80000, .max = 224000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 14, .max = 42 },
211 .p1 = { .min = 2, .max = 6 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 7, .p2_fast = 7
214 },
215 };
216
217 static const intel_limit_t intel_limits_pineview_sdvo = {
218 .dot = { .min = 20000, .max = 400000},
219 .vco = { .min = 1700000, .max = 3500000 },
220 /* Pineview's Ncounter is a ring counter */
221 .n = { .min = 3, .max = 6 },
222 .m = { .min = 2, .max = 256 },
223 /* Pineview only has one combined m divider, which we treat as m2. */
224 .m1 = { .min = 0, .max = 0 },
225 .m2 = { .min = 0, .max = 254 },
226 .p = { .min = 5, .max = 80 },
227 .p1 = { .min = 1, .max = 8 },
228 .p2 = { .dot_limit = 200000,
229 .p2_slow = 10, .p2_fast = 5 },
230 };
231
232 static const intel_limit_t intel_limits_pineview_lvds = {
233 .dot = { .min = 20000, .max = 400000 },
234 .vco = { .min = 1700000, .max = 3500000 },
235 .n = { .min = 3, .max = 6 },
236 .m = { .min = 2, .max = 256 },
237 .m1 = { .min = 0, .max = 0 },
238 .m2 = { .min = 0, .max = 254 },
239 .p = { .min = 7, .max = 112 },
240 .p1 = { .min = 1, .max = 8 },
241 .p2 = { .dot_limit = 112000,
242 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 /* Ironlake / Sandybridge
246 *
247 * We calculate clock using (register_value + 2) for N/M1/M2, so here
248 * the range value for them is (actual_value - 2).
249 */
250 static const intel_limit_t intel_limits_ironlake_dac = {
251 .dot = { .min = 25000, .max = 350000 },
252 .vco = { .min = 1760000, .max = 3510000 },
253 .n = { .min = 1, .max = 5 },
254 .m = { .min = 79, .max = 127 },
255 .m1 = { .min = 12, .max = 22 },
256 .m2 = { .min = 5, .max = 9 },
257 .p = { .min = 5, .max = 80 },
258 .p1 = { .min = 1, .max = 8 },
259 .p2 = { .dot_limit = 225000,
260 .p2_slow = 10, .p2_fast = 5 },
261 };
262
263 static const intel_limit_t intel_limits_ironlake_single_lvds = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 1760000, .max = 3510000 },
266 .n = { .min = 1, .max = 3 },
267 .m = { .min = 79, .max = 118 },
268 .m1 = { .min = 12, .max = 22 },
269 .m2 = { .min = 5, .max = 9 },
270 .p = { .min = 28, .max = 112 },
271 .p1 = { .min = 2, .max = 8 },
272 .p2 = { .dot_limit = 225000,
273 .p2_slow = 14, .p2_fast = 14 },
274 };
275
276 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 1760000, .max = 3510000 },
279 .n = { .min = 1, .max = 3 },
280 .m = { .min = 79, .max = 127 },
281 .m1 = { .min = 12, .max = 22 },
282 .m2 = { .min = 5, .max = 9 },
283 .p = { .min = 14, .max = 56 },
284 .p1 = { .min = 2, .max = 8 },
285 .p2 = { .dot_limit = 225000,
286 .p2_slow = 7, .p2_fast = 7 },
287 };
288
289 /* LVDS 100mhz refclk limits. */
290 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 2 },
294 .m = { .min = 79, .max = 126 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 28, .max = 112 },
298 .p1 = { .min = 2, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 14, .p2_fast = 14 },
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 3 },
307 .m = { .min = 79, .max = 126 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 14, .max = 42 },
311 .p1 = { .min = 2, .max = 6 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 7, .p2_fast = 7 },
314 };
315
316 static const intel_limit_t intel_limits_vlv_dac = {
317 .dot = { .min = 25000, .max = 270000 },
318 .vco = { .min = 4000000, .max = 6000000 },
319 .n = { .min = 1, .max = 7 },
320 .m = { .min = 22, .max = 450 }, /* guess */
321 .m1 = { .min = 2, .max = 3 },
322 .m2 = { .min = 11, .max = 156 },
323 .p = { .min = 10, .max = 30 },
324 .p1 = { .min = 1, .max = 3 },
325 .p2 = { .dot_limit = 270000,
326 .p2_slow = 2, .p2_fast = 20 },
327 };
328
329 static const intel_limit_t intel_limits_vlv_hdmi = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 4000000, .max = 6000000 },
332 .n = { .min = 1, .max = 7 },
333 .m = { .min = 60, .max = 300 }, /* guess */
334 .m1 = { .min = 2, .max = 3 },
335 .m2 = { .min = 11, .max = 156 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 2, .max = 3 },
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 2, .p2_fast = 20 },
340 };
341
342 static const intel_limit_t intel_limits_vlv_dp = {
343 .dot = { .min = 25000, .max = 270000 },
344 .vco = { .min = 4000000, .max = 6000000 },
345 .n = { .min = 1, .max = 7 },
346 .m = { .min = 22, .max = 450 },
347 .m1 = { .min = 2, .max = 3 },
348 .m2 = { .min = 11, .max = 156 },
349 .p = { .min = 10, .max = 30 },
350 .p1 = { .min = 1, .max = 3 },
351 .p2 = { .dot_limit = 270000,
352 .p2_slow = 2, .p2_fast = 20 },
353 };
354
355 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
356 int refclk)
357 {
358 struct drm_device *dev = crtc->dev;
359 const intel_limit_t *limit;
360
361 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
362 if (intel_is_dual_link_lvds(dev)) {
363 if (refclk == 100000)
364 limit = &intel_limits_ironlake_dual_lvds_100m;
365 else
366 limit = &intel_limits_ironlake_dual_lvds;
367 } else {
368 if (refclk == 100000)
369 limit = &intel_limits_ironlake_single_lvds_100m;
370 else
371 limit = &intel_limits_ironlake_single_lvds;
372 }
373 } else
374 limit = &intel_limits_ironlake_dac;
375
376 return limit;
377 }
378
379 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
380 {
381 struct drm_device *dev = crtc->dev;
382 const intel_limit_t *limit;
383
384 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
385 if (intel_is_dual_link_lvds(dev))
386 limit = &intel_limits_g4x_dual_channel_lvds;
387 else
388 limit = &intel_limits_g4x_single_channel_lvds;
389 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
390 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
391 limit = &intel_limits_g4x_hdmi;
392 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
393 limit = &intel_limits_g4x_sdvo;
394 } else /* The option is for other outputs */
395 limit = &intel_limits_i9xx_sdvo;
396
397 return limit;
398 }
399
400 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
401 {
402 struct drm_device *dev = crtc->dev;
403 const intel_limit_t *limit;
404
405 if (HAS_PCH_SPLIT(dev))
406 limit = intel_ironlake_limit(crtc, refclk);
407 else if (IS_G4X(dev)) {
408 limit = intel_g4x_limit(crtc);
409 } else if (IS_PINEVIEW(dev)) {
410 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
411 limit = &intel_limits_pineview_lvds;
412 else
413 limit = &intel_limits_pineview_sdvo;
414 } else if (IS_VALLEYVIEW(dev)) {
415 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
416 limit = &intel_limits_vlv_dac;
417 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
418 limit = &intel_limits_vlv_hdmi;
419 else
420 limit = &intel_limits_vlv_dp;
421 } else if (!IS_GEN2(dev)) {
422 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423 limit = &intel_limits_i9xx_lvds;
424 else
425 limit = &intel_limits_i9xx_sdvo;
426 } else {
427 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428 limit = &intel_limits_i8xx_lvds;
429 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
430 limit = &intel_limits_i8xx_dvo;
431 else
432 limit = &intel_limits_i8xx_dac;
433 }
434 return limit;
435 }
436
437 /* m1 is reserved as 0 in Pineview, n is a ring counter */
438 static void pineview_clock(int refclk, intel_clock_t *clock)
439 {
440 clock->m = clock->m2 + 2;
441 clock->p = clock->p1 * clock->p2;
442 clock->vco = refclk * clock->m / clock->n;
443 clock->dot = clock->vco / clock->p;
444 }
445
446 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
447 {
448 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
449 }
450
451 static void i9xx_clock(int refclk, intel_clock_t *clock)
452 {
453 clock->m = i9xx_dpll_compute_m(clock);
454 clock->p = clock->p1 * clock->p2;
455 clock->vco = refclk * clock->m / (clock->n + 2);
456 clock->dot = clock->vco / clock->p;
457 }
458
459 /**
460 * Returns whether any output on the specified pipe is of the specified type
461 */
462 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
463 {
464 struct drm_device *dev = crtc->dev;
465 struct intel_encoder *encoder;
466
467 for_each_encoder_on_crtc(dev, crtc, encoder)
468 if (encoder->type == type)
469 return true;
470
471 return false;
472 }
473
474 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
475 /**
476 * Returns whether the given set of divisors are valid for a given refclk with
477 * the given connectors.
478 */
479
480 static bool intel_PLL_is_valid(struct drm_device *dev,
481 const intel_limit_t *limit,
482 const intel_clock_t *clock)
483 {
484 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
485 INTELPllInvalid("p1 out of range\n");
486 if (clock->p < limit->p.min || limit->p.max < clock->p)
487 INTELPllInvalid("p out of range\n");
488 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
489 INTELPllInvalid("m2 out of range\n");
490 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
491 INTELPllInvalid("m1 out of range\n");
492 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
493 INTELPllInvalid("m1 <= m2\n");
494 if (clock->m < limit->m.min || limit->m.max < clock->m)
495 INTELPllInvalid("m out of range\n");
496 if (clock->n < limit->n.min || limit->n.max < clock->n)
497 INTELPllInvalid("n out of range\n");
498 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
499 INTELPllInvalid("vco out of range\n");
500 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
501 * connector, etc., rather than just a single range.
502 */
503 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
504 INTELPllInvalid("dot out of range\n");
505
506 return true;
507 }
508
509 static bool
510 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
511 int target, int refclk, intel_clock_t *match_clock,
512 intel_clock_t *best_clock)
513 {
514 struct drm_device *dev = crtc->dev;
515 intel_clock_t clock;
516 int err = target;
517
518 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
519 /*
520 * For LVDS just rely on its current settings for dual-channel.
521 * We haven't figured out how to reliably set up different
522 * single/dual channel state, if we even can.
523 */
524 if (intel_is_dual_link_lvds(dev))
525 clock.p2 = limit->p2.p2_fast;
526 else
527 clock.p2 = limit->p2.p2_slow;
528 } else {
529 if (target < limit->p2.dot_limit)
530 clock.p2 = limit->p2.p2_slow;
531 else
532 clock.p2 = limit->p2.p2_fast;
533 }
534
535 memset(best_clock, 0, sizeof(*best_clock));
536
537 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
538 clock.m1++) {
539 for (clock.m2 = limit->m2.min;
540 clock.m2 <= limit->m2.max; clock.m2++) {
541 if (clock.m2 >= clock.m1)
542 break;
543 for (clock.n = limit->n.min;
544 clock.n <= limit->n.max; clock.n++) {
545 for (clock.p1 = limit->p1.min;
546 clock.p1 <= limit->p1.max; clock.p1++) {
547 int this_err;
548
549 i9xx_clock(refclk, &clock);
550 if (!intel_PLL_is_valid(dev, limit,
551 &clock))
552 continue;
553 if (match_clock &&
554 clock.p != match_clock->p)
555 continue;
556
557 this_err = abs(clock.dot - target);
558 if (this_err < err) {
559 *best_clock = clock;
560 err = this_err;
561 }
562 }
563 }
564 }
565 }
566
567 return (err != target);
568 }
569
570 static bool
571 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
572 int target, int refclk, intel_clock_t *match_clock,
573 intel_clock_t *best_clock)
574 {
575 struct drm_device *dev = crtc->dev;
576 intel_clock_t clock;
577 int err = target;
578
579 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
580 /*
581 * For LVDS just rely on its current settings for dual-channel.
582 * We haven't figured out how to reliably set up different
583 * single/dual channel state, if we even can.
584 */
585 if (intel_is_dual_link_lvds(dev))
586 clock.p2 = limit->p2.p2_fast;
587 else
588 clock.p2 = limit->p2.p2_slow;
589 } else {
590 if (target < limit->p2.dot_limit)
591 clock.p2 = limit->p2.p2_slow;
592 else
593 clock.p2 = limit->p2.p2_fast;
594 }
595
596 memset(best_clock, 0, sizeof(*best_clock));
597
598 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
599 clock.m1++) {
600 for (clock.m2 = limit->m2.min;
601 clock.m2 <= limit->m2.max; clock.m2++) {
602 for (clock.n = limit->n.min;
603 clock.n <= limit->n.max; clock.n++) {
604 for (clock.p1 = limit->p1.min;
605 clock.p1 <= limit->p1.max; clock.p1++) {
606 int this_err;
607
608 pineview_clock(refclk, &clock);
609 if (!intel_PLL_is_valid(dev, limit,
610 &clock))
611 continue;
612 if (match_clock &&
613 clock.p != match_clock->p)
614 continue;
615
616 this_err = abs(clock.dot - target);
617 if (this_err < err) {
618 *best_clock = clock;
619 err = this_err;
620 }
621 }
622 }
623 }
624 }
625
626 return (err != target);
627 }
628
629 static bool
630 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
631 int target, int refclk, intel_clock_t *match_clock,
632 intel_clock_t *best_clock)
633 {
634 struct drm_device *dev = crtc->dev;
635 intel_clock_t clock;
636 int max_n;
637 bool found;
638 /* approximately equals target * 0.00585 */
639 int err_most = (target >> 8) + (target >> 9);
640 found = false;
641
642 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643 if (intel_is_dual_link_lvds(dev))
644 clock.p2 = limit->p2.p2_fast;
645 else
646 clock.p2 = limit->p2.p2_slow;
647 } else {
648 if (target < limit->p2.dot_limit)
649 clock.p2 = limit->p2.p2_slow;
650 else
651 clock.p2 = limit->p2.p2_fast;
652 }
653
654 memset(best_clock, 0, sizeof(*best_clock));
655 max_n = limit->n.max;
656 /* based on hardware requirement, prefer smaller n to precision */
657 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
658 /* based on hardware requirement, prefere larger m1,m2 */
659 for (clock.m1 = limit->m1.max;
660 clock.m1 >= limit->m1.min; clock.m1--) {
661 for (clock.m2 = limit->m2.max;
662 clock.m2 >= limit->m2.min; clock.m2--) {
663 for (clock.p1 = limit->p1.max;
664 clock.p1 >= limit->p1.min; clock.p1--) {
665 int this_err;
666
667 i9xx_clock(refclk, &clock);
668 if (!intel_PLL_is_valid(dev, limit,
669 &clock))
670 continue;
671
672 this_err = abs(clock.dot - target);
673 if (this_err < err_most) {
674 *best_clock = clock;
675 err_most = this_err;
676 max_n = clock.n;
677 found = true;
678 }
679 }
680 }
681 }
682 }
683 return found;
684 }
685
686 static bool
687 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
688 int target, int refclk, intel_clock_t *match_clock,
689 intel_clock_t *best_clock)
690 {
691 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
692 u32 m, n, fastclk;
693 u32 updrate, minupdate, fracbits, p;
694 unsigned long bestppm, ppm, absppm;
695 int dotclk, flag;
696
697 flag = 0;
698 dotclk = target * 1000;
699 bestppm = 1000000;
700 ppm = absppm = 0;
701 fastclk = dotclk / (2*100);
702 updrate = 0;
703 minupdate = 19200;
704 fracbits = 1;
705 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
706 bestm1 = bestm2 = bestp1 = bestp2 = 0;
707
708 /* based on hardware requirement, prefer smaller n to precision */
709 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
710 updrate = refclk / n;
711 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
712 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
713 if (p2 > 10)
714 p2 = p2 - 1;
715 p = p1 * p2;
716 /* based on hardware requirement, prefer bigger m1,m2 values */
717 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
718 m2 = (((2*(fastclk * p * n / m1 )) +
719 refclk) / (2*refclk));
720 m = m1 * m2;
721 vco = updrate * m;
722 if (vco >= limit->vco.min && vco < limit->vco.max) {
723 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
724 absppm = (ppm > 0) ? ppm : (-ppm);
725 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
726 bestppm = 0;
727 flag = 1;
728 }
729 if (absppm < bestppm - 10) {
730 bestppm = absppm;
731 flag = 1;
732 }
733 if (flag) {
734 bestn = n;
735 bestm1 = m1;
736 bestm2 = m2;
737 bestp1 = p1;
738 bestp2 = p2;
739 flag = 0;
740 }
741 }
742 }
743 }
744 }
745 }
746 best_clock->n = bestn;
747 best_clock->m1 = bestm1;
748 best_clock->m2 = bestm2;
749 best_clock->p1 = bestp1;
750 best_clock->p2 = bestp2;
751
752 return true;
753 }
754
755 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
756 enum pipe pipe)
757 {
758 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
760
761 return intel_crtc->config.cpu_transcoder;
762 }
763
764 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
765 {
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 u32 frame, frame_reg = PIPEFRAME(pipe);
768
769 frame = I915_READ(frame_reg);
770
771 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
772 DRM_DEBUG_KMS("vblank wait timed out\n");
773 }
774
775 /**
776 * intel_wait_for_vblank - wait for vblank on a given pipe
777 * @dev: drm device
778 * @pipe: pipe to wait for
779 *
780 * Wait for vblank to occur on a given pipe. Needed for various bits of
781 * mode setting code.
782 */
783 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
784 {
785 struct drm_i915_private *dev_priv = dev->dev_private;
786 int pipestat_reg = PIPESTAT(pipe);
787
788 if (INTEL_INFO(dev)->gen >= 5) {
789 ironlake_wait_for_vblank(dev, pipe);
790 return;
791 }
792
793 /* Clear existing vblank status. Note this will clear any other
794 * sticky status fields as well.
795 *
796 * This races with i915_driver_irq_handler() with the result
797 * that either function could miss a vblank event. Here it is not
798 * fatal, as we will either wait upon the next vblank interrupt or
799 * timeout. Generally speaking intel_wait_for_vblank() is only
800 * called during modeset at which time the GPU should be idle and
801 * should *not* be performing page flips and thus not waiting on
802 * vblanks...
803 * Currently, the result of us stealing a vblank from the irq
804 * handler is that a single frame will be skipped during swapbuffers.
805 */
806 I915_WRITE(pipestat_reg,
807 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
808
809 /* Wait for vblank interrupt bit to set */
810 if (wait_for(I915_READ(pipestat_reg) &
811 PIPE_VBLANK_INTERRUPT_STATUS,
812 50))
813 DRM_DEBUG_KMS("vblank wait timed out\n");
814 }
815
816 /*
817 * intel_wait_for_pipe_off - wait for pipe to turn off
818 * @dev: drm device
819 * @pipe: pipe to wait for
820 *
821 * After disabling a pipe, we can't wait for vblank in the usual way,
822 * spinning on the vblank interrupt status bit, since we won't actually
823 * see an interrupt when the pipe is disabled.
824 *
825 * On Gen4 and above:
826 * wait for the pipe register state bit to turn off
827 *
828 * Otherwise:
829 * wait for the display line value to settle (it usually
830 * ends up stopping at the start of the next frame).
831 *
832 */
833 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
834 {
835 struct drm_i915_private *dev_priv = dev->dev_private;
836 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
837 pipe);
838
839 if (INTEL_INFO(dev)->gen >= 4) {
840 int reg = PIPECONF(cpu_transcoder);
841
842 /* Wait for the Pipe State to go off */
843 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
844 100))
845 WARN(1, "pipe_off wait timed out\n");
846 } else {
847 u32 last_line, line_mask;
848 int reg = PIPEDSL(pipe);
849 unsigned long timeout = jiffies + msecs_to_jiffies(100);
850
851 if (IS_GEN2(dev))
852 line_mask = DSL_LINEMASK_GEN2;
853 else
854 line_mask = DSL_LINEMASK_GEN3;
855
856 /* Wait for the display line to settle */
857 do {
858 last_line = I915_READ(reg) & line_mask;
859 mdelay(5);
860 } while (((I915_READ(reg) & line_mask) != last_line) &&
861 time_after(timeout, jiffies));
862 if (time_after(jiffies, timeout))
863 WARN(1, "pipe_off wait timed out\n");
864 }
865 }
866
867 /*
868 * ibx_digital_port_connected - is the specified port connected?
869 * @dev_priv: i915 private structure
870 * @port: the port to test
871 *
872 * Returns true if @port is connected, false otherwise.
873 */
874 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
875 struct intel_digital_port *port)
876 {
877 u32 bit;
878
879 if (HAS_PCH_IBX(dev_priv->dev)) {
880 switch(port->port) {
881 case PORT_B:
882 bit = SDE_PORTB_HOTPLUG;
883 break;
884 case PORT_C:
885 bit = SDE_PORTC_HOTPLUG;
886 break;
887 case PORT_D:
888 bit = SDE_PORTD_HOTPLUG;
889 break;
890 default:
891 return true;
892 }
893 } else {
894 switch(port->port) {
895 case PORT_B:
896 bit = SDE_PORTB_HOTPLUG_CPT;
897 break;
898 case PORT_C:
899 bit = SDE_PORTC_HOTPLUG_CPT;
900 break;
901 case PORT_D:
902 bit = SDE_PORTD_HOTPLUG_CPT;
903 break;
904 default:
905 return true;
906 }
907 }
908
909 return I915_READ(SDEISR) & bit;
910 }
911
912 static const char *state_string(bool enabled)
913 {
914 return enabled ? "on" : "off";
915 }
916
917 /* Only for pre-ILK configs */
918 void assert_pll(struct drm_i915_private *dev_priv,
919 enum pipe pipe, bool state)
920 {
921 int reg;
922 u32 val;
923 bool cur_state;
924
925 reg = DPLL(pipe);
926 val = I915_READ(reg);
927 cur_state = !!(val & DPLL_VCO_ENABLE);
928 WARN(cur_state != state,
929 "PLL state assertion failure (expected %s, current %s)\n",
930 state_string(state), state_string(cur_state));
931 }
932
933 struct intel_shared_dpll *
934 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
935 {
936 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
937
938 if (crtc->config.shared_dpll < 0)
939 return NULL;
940
941 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
942 }
943
944 /* For ILK+ */
945 void assert_shared_dpll(struct drm_i915_private *dev_priv,
946 struct intel_shared_dpll *pll,
947 bool state)
948 {
949 bool cur_state;
950 struct intel_dpll_hw_state hw_state;
951
952 if (HAS_PCH_LPT(dev_priv->dev)) {
953 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
954 return;
955 }
956
957 if (WARN (!pll,
958 "asserting DPLL %s with no DPLL\n", state_string(state)))
959 return;
960
961 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
962 WARN(cur_state != state,
963 "%s assertion failure (expected %s, current %s)\n",
964 pll->name, state_string(state), state_string(cur_state));
965 }
966
967 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
968 enum pipe pipe, bool state)
969 {
970 int reg;
971 u32 val;
972 bool cur_state;
973 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
974 pipe);
975
976 if (HAS_DDI(dev_priv->dev)) {
977 /* DDI does not have a specific FDI_TX register */
978 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
979 val = I915_READ(reg);
980 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
981 } else {
982 reg = FDI_TX_CTL(pipe);
983 val = I915_READ(reg);
984 cur_state = !!(val & FDI_TX_ENABLE);
985 }
986 WARN(cur_state != state,
987 "FDI TX state assertion failure (expected %s, current %s)\n",
988 state_string(state), state_string(cur_state));
989 }
990 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
991 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
992
993 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
994 enum pipe pipe, bool state)
995 {
996 int reg;
997 u32 val;
998 bool cur_state;
999
1000 reg = FDI_RX_CTL(pipe);
1001 val = I915_READ(reg);
1002 cur_state = !!(val & FDI_RX_ENABLE);
1003 WARN(cur_state != state,
1004 "FDI RX state assertion failure (expected %s, current %s)\n",
1005 state_string(state), state_string(cur_state));
1006 }
1007 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1008 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1009
1010 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1011 enum pipe pipe)
1012 {
1013 int reg;
1014 u32 val;
1015
1016 /* ILK FDI PLL is always enabled */
1017 if (dev_priv->info->gen == 5)
1018 return;
1019
1020 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1021 if (HAS_DDI(dev_priv->dev))
1022 return;
1023
1024 reg = FDI_TX_CTL(pipe);
1025 val = I915_READ(reg);
1026 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1027 }
1028
1029 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1030 enum pipe pipe, bool state)
1031 {
1032 int reg;
1033 u32 val;
1034 bool cur_state;
1035
1036 reg = FDI_RX_CTL(pipe);
1037 val = I915_READ(reg);
1038 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1039 WARN(cur_state != state,
1040 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1041 state_string(state), state_string(cur_state));
1042 }
1043
1044 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1045 enum pipe pipe)
1046 {
1047 int pp_reg, lvds_reg;
1048 u32 val;
1049 enum pipe panel_pipe = PIPE_A;
1050 bool locked = true;
1051
1052 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1053 pp_reg = PCH_PP_CONTROL;
1054 lvds_reg = PCH_LVDS;
1055 } else {
1056 pp_reg = PP_CONTROL;
1057 lvds_reg = LVDS;
1058 }
1059
1060 val = I915_READ(pp_reg);
1061 if (!(val & PANEL_POWER_ON) ||
1062 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1063 locked = false;
1064
1065 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1066 panel_pipe = PIPE_B;
1067
1068 WARN(panel_pipe == pipe && locked,
1069 "panel assertion failure, pipe %c regs locked\n",
1070 pipe_name(pipe));
1071 }
1072
1073 void assert_pipe(struct drm_i915_private *dev_priv,
1074 enum pipe pipe, bool state)
1075 {
1076 int reg;
1077 u32 val;
1078 bool cur_state;
1079 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1080 pipe);
1081
1082 /* if we need the pipe A quirk it must be always on */
1083 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1084 state = true;
1085
1086 if (!intel_display_power_enabled(dev_priv->dev,
1087 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1088 cur_state = false;
1089 } else {
1090 reg = PIPECONF(cpu_transcoder);
1091 val = I915_READ(reg);
1092 cur_state = !!(val & PIPECONF_ENABLE);
1093 }
1094
1095 WARN(cur_state != state,
1096 "pipe %c assertion failure (expected %s, current %s)\n",
1097 pipe_name(pipe), state_string(state), state_string(cur_state));
1098 }
1099
1100 static void assert_plane(struct drm_i915_private *dev_priv,
1101 enum plane plane, bool state)
1102 {
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
1107 reg = DSPCNTR(plane);
1108 val = I915_READ(reg);
1109 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1110 WARN(cur_state != state,
1111 "plane %c assertion failure (expected %s, current %s)\n",
1112 plane_name(plane), state_string(state), state_string(cur_state));
1113 }
1114
1115 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1116 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1117
1118 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1119 enum pipe pipe)
1120 {
1121 struct drm_device *dev = dev_priv->dev;
1122 int reg, i;
1123 u32 val;
1124 int cur_pipe;
1125
1126 /* Primary planes are fixed to pipes on gen4+ */
1127 if (INTEL_INFO(dev)->gen >= 4) {
1128 reg = DSPCNTR(pipe);
1129 val = I915_READ(reg);
1130 WARN((val & DISPLAY_PLANE_ENABLE),
1131 "plane %c assertion failure, should be disabled but not\n",
1132 plane_name(pipe));
1133 return;
1134 }
1135
1136 /* Need to check both planes against the pipe */
1137 for_each_pipe(i) {
1138 reg = DSPCNTR(i);
1139 val = I915_READ(reg);
1140 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1141 DISPPLANE_SEL_PIPE_SHIFT;
1142 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1143 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1144 plane_name(i), pipe_name(pipe));
1145 }
1146 }
1147
1148 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1149 enum pipe pipe)
1150 {
1151 struct drm_device *dev = dev_priv->dev;
1152 int reg, i;
1153 u32 val;
1154
1155 if (IS_VALLEYVIEW(dev)) {
1156 for (i = 0; i < dev_priv->num_plane; i++) {
1157 reg = SPCNTR(pipe, i);
1158 val = I915_READ(reg);
1159 WARN((val & SP_ENABLE),
1160 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1161 sprite_name(pipe, i), pipe_name(pipe));
1162 }
1163 } else if (INTEL_INFO(dev)->gen >= 7) {
1164 reg = SPRCTL(pipe);
1165 val = I915_READ(reg);
1166 WARN((val & SPRITE_ENABLE),
1167 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1168 plane_name(pipe), pipe_name(pipe));
1169 } else if (INTEL_INFO(dev)->gen >= 5) {
1170 reg = DVSCNTR(pipe);
1171 val = I915_READ(reg);
1172 WARN((val & DVS_ENABLE),
1173 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1174 plane_name(pipe), pipe_name(pipe));
1175 }
1176 }
1177
1178 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1179 {
1180 u32 val;
1181 bool enabled;
1182
1183 if (HAS_PCH_LPT(dev_priv->dev)) {
1184 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1185 return;
1186 }
1187
1188 val = I915_READ(PCH_DREF_CONTROL);
1189 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1190 DREF_SUPERSPREAD_SOURCE_MASK));
1191 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1192 }
1193
1194 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1195 enum pipe pipe)
1196 {
1197 int reg;
1198 u32 val;
1199 bool enabled;
1200
1201 reg = PCH_TRANSCONF(pipe);
1202 val = I915_READ(reg);
1203 enabled = !!(val & TRANS_ENABLE);
1204 WARN(enabled,
1205 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1206 pipe_name(pipe));
1207 }
1208
1209 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, u32 port_sel, u32 val)
1211 {
1212 if ((val & DP_PORT_EN) == 0)
1213 return false;
1214
1215 if (HAS_PCH_CPT(dev_priv->dev)) {
1216 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1217 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1218 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1219 return false;
1220 } else {
1221 if ((val & DP_PIPE_MASK) != (pipe << 30))
1222 return false;
1223 }
1224 return true;
1225 }
1226
1227 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1228 enum pipe pipe, u32 val)
1229 {
1230 if ((val & SDVO_ENABLE) == 0)
1231 return false;
1232
1233 if (HAS_PCH_CPT(dev_priv->dev)) {
1234 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1235 return false;
1236 } else {
1237 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1238 return false;
1239 }
1240 return true;
1241 }
1242
1243 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1244 enum pipe pipe, u32 val)
1245 {
1246 if ((val & LVDS_PORT_EN) == 0)
1247 return false;
1248
1249 if (HAS_PCH_CPT(dev_priv->dev)) {
1250 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1251 return false;
1252 } else {
1253 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1254 return false;
1255 }
1256 return true;
1257 }
1258
1259 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1260 enum pipe pipe, u32 val)
1261 {
1262 if ((val & ADPA_DAC_ENABLE) == 0)
1263 return false;
1264 if (HAS_PCH_CPT(dev_priv->dev)) {
1265 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1266 return false;
1267 } else {
1268 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1269 return false;
1270 }
1271 return true;
1272 }
1273
1274 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1275 enum pipe pipe, int reg, u32 port_sel)
1276 {
1277 u32 val = I915_READ(reg);
1278 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1279 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1280 reg, pipe_name(pipe));
1281
1282 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1283 && (val & DP_PIPEB_SELECT),
1284 "IBX PCH dp port still using transcoder B\n");
1285 }
1286
1287 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1288 enum pipe pipe, int reg)
1289 {
1290 u32 val = I915_READ(reg);
1291 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1292 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1293 reg, pipe_name(pipe));
1294
1295 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1296 && (val & SDVO_PIPE_B_SELECT),
1297 "IBX PCH hdmi port still using transcoder B\n");
1298 }
1299
1300 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1301 enum pipe pipe)
1302 {
1303 int reg;
1304 u32 val;
1305
1306 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1307 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1308 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1309
1310 reg = PCH_ADPA;
1311 val = I915_READ(reg);
1312 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1313 "PCH VGA enabled on transcoder %c, should be disabled\n",
1314 pipe_name(pipe));
1315
1316 reg = PCH_LVDS;
1317 val = I915_READ(reg);
1318 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1319 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1320 pipe_name(pipe));
1321
1322 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1323 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1324 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1325 }
1326
1327 static void vlv_enable_pll(struct intel_crtc *crtc)
1328 {
1329 struct drm_device *dev = crtc->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 int reg = DPLL(crtc->pipe);
1332 u32 dpll = crtc->config.dpll_hw_state.dpll;
1333
1334 assert_pipe_disabled(dev_priv, crtc->pipe);
1335
1336 /* No really, not for ILK+ */
1337 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1338
1339 /* PLL is protected by panel, make sure we can write it */
1340 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1341 assert_panel_unlocked(dev_priv, crtc->pipe);
1342
1343 I915_WRITE(reg, dpll);
1344 POSTING_READ(reg);
1345 udelay(150);
1346
1347 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1348 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1349
1350 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1351 POSTING_READ(DPLL_MD(crtc->pipe));
1352
1353 /* We do this three times for luck */
1354 I915_WRITE(reg, dpll);
1355 POSTING_READ(reg);
1356 udelay(150); /* wait for warmup */
1357 I915_WRITE(reg, dpll);
1358 POSTING_READ(reg);
1359 udelay(150); /* wait for warmup */
1360 I915_WRITE(reg, dpll);
1361 POSTING_READ(reg);
1362 udelay(150); /* wait for warmup */
1363 }
1364
1365 static void i9xx_enable_pll(struct intel_crtc *crtc)
1366 {
1367 struct drm_device *dev = crtc->base.dev;
1368 struct drm_i915_private *dev_priv = dev->dev_private;
1369 int reg = DPLL(crtc->pipe);
1370 u32 dpll = crtc->config.dpll_hw_state.dpll;
1371
1372 assert_pipe_disabled(dev_priv, crtc->pipe);
1373
1374 /* No really, not for ILK+ */
1375 BUG_ON(dev_priv->info->gen >= 5);
1376
1377 /* PLL is protected by panel, make sure we can write it */
1378 if (IS_MOBILE(dev) && !IS_I830(dev))
1379 assert_panel_unlocked(dev_priv, crtc->pipe);
1380
1381 I915_WRITE(reg, dpll);
1382
1383 /* Wait for the clocks to stabilize. */
1384 POSTING_READ(reg);
1385 udelay(150);
1386
1387 if (INTEL_INFO(dev)->gen >= 4) {
1388 I915_WRITE(DPLL_MD(crtc->pipe),
1389 crtc->config.dpll_hw_state.dpll_md);
1390 } else {
1391 /* The pixel multiplier can only be updated once the
1392 * DPLL is enabled and the clocks are stable.
1393 *
1394 * So write it again.
1395 */
1396 I915_WRITE(reg, dpll);
1397 }
1398
1399 /* We do this three times for luck */
1400 I915_WRITE(reg, dpll);
1401 POSTING_READ(reg);
1402 udelay(150); /* wait for warmup */
1403 I915_WRITE(reg, dpll);
1404 POSTING_READ(reg);
1405 udelay(150); /* wait for warmup */
1406 I915_WRITE(reg, dpll);
1407 POSTING_READ(reg);
1408 udelay(150); /* wait for warmup */
1409 }
1410
1411 /**
1412 * i9xx_disable_pll - disable a PLL
1413 * @dev_priv: i915 private structure
1414 * @pipe: pipe PLL to disable
1415 *
1416 * Disable the PLL for @pipe, making sure the pipe is off first.
1417 *
1418 * Note! This is for pre-ILK only.
1419 */
1420 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1421 {
1422 /* Don't disable pipe A or pipe A PLLs if needed */
1423 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1424 return;
1425
1426 /* Make sure the pipe isn't still relying on us */
1427 assert_pipe_disabled(dev_priv, pipe);
1428
1429 I915_WRITE(DPLL(pipe), 0);
1430 POSTING_READ(DPLL(pipe));
1431 }
1432
1433 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1434 {
1435 u32 port_mask;
1436
1437 if (!port)
1438 port_mask = DPLL_PORTB_READY_MASK;
1439 else
1440 port_mask = DPLL_PORTC_READY_MASK;
1441
1442 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1443 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1444 'B' + port, I915_READ(DPLL(0)));
1445 }
1446
1447 /**
1448 * ironlake_enable_shared_dpll - enable PCH PLL
1449 * @dev_priv: i915 private structure
1450 * @pipe: pipe PLL to enable
1451 *
1452 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1453 * drives the transcoder clock.
1454 */
1455 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1456 {
1457 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1458 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1459
1460 /* PCH PLLs only available on ILK, SNB and IVB */
1461 BUG_ON(dev_priv->info->gen < 5);
1462 if (WARN_ON(pll == NULL))
1463 return;
1464
1465 if (WARN_ON(pll->refcount == 0))
1466 return;
1467
1468 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1469 pll->name, pll->active, pll->on,
1470 crtc->base.base.id);
1471
1472 if (pll->active++) {
1473 WARN_ON(!pll->on);
1474 assert_shared_dpll_enabled(dev_priv, pll);
1475 return;
1476 }
1477 WARN_ON(pll->on);
1478
1479 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1480 pll->enable(dev_priv, pll);
1481 pll->on = true;
1482 }
1483
1484 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1485 {
1486 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1487 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1488
1489 /* PCH only available on ILK+ */
1490 BUG_ON(dev_priv->info->gen < 5);
1491 if (WARN_ON(pll == NULL))
1492 return;
1493
1494 if (WARN_ON(pll->refcount == 0))
1495 return;
1496
1497 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1498 pll->name, pll->active, pll->on,
1499 crtc->base.base.id);
1500
1501 if (WARN_ON(pll->active == 0)) {
1502 assert_shared_dpll_disabled(dev_priv, pll);
1503 return;
1504 }
1505
1506 assert_shared_dpll_enabled(dev_priv, pll);
1507 WARN_ON(!pll->on);
1508 if (--pll->active)
1509 return;
1510
1511 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1512 pll->disable(dev_priv, pll);
1513 pll->on = false;
1514 }
1515
1516 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1517 enum pipe pipe)
1518 {
1519 struct drm_device *dev = dev_priv->dev;
1520 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1522 uint32_t reg, val, pipeconf_val;
1523
1524 /* PCH only available on ILK+ */
1525 BUG_ON(dev_priv->info->gen < 5);
1526
1527 /* Make sure PCH DPLL is enabled */
1528 assert_shared_dpll_enabled(dev_priv,
1529 intel_crtc_to_shared_dpll(intel_crtc));
1530
1531 /* FDI must be feeding us bits for PCH ports */
1532 assert_fdi_tx_enabled(dev_priv, pipe);
1533 assert_fdi_rx_enabled(dev_priv, pipe);
1534
1535 if (HAS_PCH_CPT(dev)) {
1536 /* Workaround: Set the timing override bit before enabling the
1537 * pch transcoder. */
1538 reg = TRANS_CHICKEN2(pipe);
1539 val = I915_READ(reg);
1540 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1541 I915_WRITE(reg, val);
1542 }
1543
1544 reg = PCH_TRANSCONF(pipe);
1545 val = I915_READ(reg);
1546 pipeconf_val = I915_READ(PIPECONF(pipe));
1547
1548 if (HAS_PCH_IBX(dev_priv->dev)) {
1549 /*
1550 * make the BPC in transcoder be consistent with
1551 * that in pipeconf reg.
1552 */
1553 val &= ~PIPECONF_BPC_MASK;
1554 val |= pipeconf_val & PIPECONF_BPC_MASK;
1555 }
1556
1557 val &= ~TRANS_INTERLACE_MASK;
1558 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1559 if (HAS_PCH_IBX(dev_priv->dev) &&
1560 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1561 val |= TRANS_LEGACY_INTERLACED_ILK;
1562 else
1563 val |= TRANS_INTERLACED;
1564 else
1565 val |= TRANS_PROGRESSIVE;
1566
1567 I915_WRITE(reg, val | TRANS_ENABLE);
1568 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1569 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1570 }
1571
1572 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1573 enum transcoder cpu_transcoder)
1574 {
1575 u32 val, pipeconf_val;
1576
1577 /* PCH only available on ILK+ */
1578 BUG_ON(dev_priv->info->gen < 5);
1579
1580 /* FDI must be feeding us bits for PCH ports */
1581 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1582 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1583
1584 /* Workaround: set timing override bit. */
1585 val = I915_READ(_TRANSA_CHICKEN2);
1586 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1587 I915_WRITE(_TRANSA_CHICKEN2, val);
1588
1589 val = TRANS_ENABLE;
1590 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1591
1592 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1593 PIPECONF_INTERLACED_ILK)
1594 val |= TRANS_INTERLACED;
1595 else
1596 val |= TRANS_PROGRESSIVE;
1597
1598 I915_WRITE(LPT_TRANSCONF, val);
1599 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1600 DRM_ERROR("Failed to enable PCH transcoder\n");
1601 }
1602
1603 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1604 enum pipe pipe)
1605 {
1606 struct drm_device *dev = dev_priv->dev;
1607 uint32_t reg, val;
1608
1609 /* FDI relies on the transcoder */
1610 assert_fdi_tx_disabled(dev_priv, pipe);
1611 assert_fdi_rx_disabled(dev_priv, pipe);
1612
1613 /* Ports must be off as well */
1614 assert_pch_ports_disabled(dev_priv, pipe);
1615
1616 reg = PCH_TRANSCONF(pipe);
1617 val = I915_READ(reg);
1618 val &= ~TRANS_ENABLE;
1619 I915_WRITE(reg, val);
1620 /* wait for PCH transcoder off, transcoder state */
1621 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1622 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1623
1624 if (!HAS_PCH_IBX(dev)) {
1625 /* Workaround: Clear the timing override chicken bit again. */
1626 reg = TRANS_CHICKEN2(pipe);
1627 val = I915_READ(reg);
1628 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1629 I915_WRITE(reg, val);
1630 }
1631 }
1632
1633 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1634 {
1635 u32 val;
1636
1637 val = I915_READ(LPT_TRANSCONF);
1638 val &= ~TRANS_ENABLE;
1639 I915_WRITE(LPT_TRANSCONF, val);
1640 /* wait for PCH transcoder off, transcoder state */
1641 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1642 DRM_ERROR("Failed to disable PCH transcoder\n");
1643
1644 /* Workaround: clear timing override bit. */
1645 val = I915_READ(_TRANSA_CHICKEN2);
1646 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1647 I915_WRITE(_TRANSA_CHICKEN2, val);
1648 }
1649
1650 /**
1651 * intel_enable_pipe - enable a pipe, asserting requirements
1652 * @dev_priv: i915 private structure
1653 * @pipe: pipe to enable
1654 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1655 *
1656 * Enable @pipe, making sure that various hardware specific requirements
1657 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1658 *
1659 * @pipe should be %PIPE_A or %PIPE_B.
1660 *
1661 * Will wait until the pipe is actually running (i.e. first vblank) before
1662 * returning.
1663 */
1664 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1665 bool pch_port)
1666 {
1667 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1668 pipe);
1669 enum pipe pch_transcoder;
1670 int reg;
1671 u32 val;
1672
1673 assert_planes_disabled(dev_priv, pipe);
1674 assert_sprites_disabled(dev_priv, pipe);
1675
1676 if (HAS_PCH_LPT(dev_priv->dev))
1677 pch_transcoder = TRANSCODER_A;
1678 else
1679 pch_transcoder = pipe;
1680
1681 /*
1682 * A pipe without a PLL won't actually be able to drive bits from
1683 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1684 * need the check.
1685 */
1686 if (!HAS_PCH_SPLIT(dev_priv->dev))
1687 assert_pll_enabled(dev_priv, pipe);
1688 else {
1689 if (pch_port) {
1690 /* if driving the PCH, we need FDI enabled */
1691 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1692 assert_fdi_tx_pll_enabled(dev_priv,
1693 (enum pipe) cpu_transcoder);
1694 }
1695 /* FIXME: assert CPU port conditions for SNB+ */
1696 }
1697
1698 reg = PIPECONF(cpu_transcoder);
1699 val = I915_READ(reg);
1700 if (val & PIPECONF_ENABLE)
1701 return;
1702
1703 I915_WRITE(reg, val | PIPECONF_ENABLE);
1704 intel_wait_for_vblank(dev_priv->dev, pipe);
1705 }
1706
1707 /**
1708 * intel_disable_pipe - disable a pipe, asserting requirements
1709 * @dev_priv: i915 private structure
1710 * @pipe: pipe to disable
1711 *
1712 * Disable @pipe, making sure that various hardware specific requirements
1713 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1714 *
1715 * @pipe should be %PIPE_A or %PIPE_B.
1716 *
1717 * Will wait until the pipe has shut down before returning.
1718 */
1719 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1720 enum pipe pipe)
1721 {
1722 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1723 pipe);
1724 int reg;
1725 u32 val;
1726
1727 /*
1728 * Make sure planes won't keep trying to pump pixels to us,
1729 * or we might hang the display.
1730 */
1731 assert_planes_disabled(dev_priv, pipe);
1732 assert_sprites_disabled(dev_priv, pipe);
1733
1734 /* Don't disable pipe A or pipe A PLLs if needed */
1735 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1736 return;
1737
1738 reg = PIPECONF(cpu_transcoder);
1739 val = I915_READ(reg);
1740 if ((val & PIPECONF_ENABLE) == 0)
1741 return;
1742
1743 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1744 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1745 }
1746
1747 /*
1748 * Plane regs are double buffered, going from enabled->disabled needs a
1749 * trigger in order to latch. The display address reg provides this.
1750 */
1751 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1752 enum plane plane)
1753 {
1754 if (dev_priv->info->gen >= 4)
1755 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1756 else
1757 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1758 }
1759
1760 /**
1761 * intel_enable_plane - enable a display plane on a given pipe
1762 * @dev_priv: i915 private structure
1763 * @plane: plane to enable
1764 * @pipe: pipe being fed
1765 *
1766 * Enable @plane on @pipe, making sure that @pipe is running first.
1767 */
1768 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1769 enum plane plane, enum pipe pipe)
1770 {
1771 int reg;
1772 u32 val;
1773
1774 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1775 assert_pipe_enabled(dev_priv, pipe);
1776
1777 reg = DSPCNTR(plane);
1778 val = I915_READ(reg);
1779 if (val & DISPLAY_PLANE_ENABLE)
1780 return;
1781
1782 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1783 intel_flush_display_plane(dev_priv, plane);
1784 intel_wait_for_vblank(dev_priv->dev, pipe);
1785 }
1786
1787 /**
1788 * intel_disable_plane - disable a display plane
1789 * @dev_priv: i915 private structure
1790 * @plane: plane to disable
1791 * @pipe: pipe consuming the data
1792 *
1793 * Disable @plane; should be an independent operation.
1794 */
1795 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1796 enum plane plane, enum pipe pipe)
1797 {
1798 int reg;
1799 u32 val;
1800
1801 reg = DSPCNTR(plane);
1802 val = I915_READ(reg);
1803 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1804 return;
1805
1806 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1807 intel_flush_display_plane(dev_priv, plane);
1808 intel_wait_for_vblank(dev_priv->dev, pipe);
1809 }
1810
1811 static bool need_vtd_wa(struct drm_device *dev)
1812 {
1813 #ifdef CONFIG_INTEL_IOMMU
1814 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1815 return true;
1816 #endif
1817 return false;
1818 }
1819
1820 int
1821 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1822 struct drm_i915_gem_object *obj,
1823 struct intel_ring_buffer *pipelined)
1824 {
1825 struct drm_i915_private *dev_priv = dev->dev_private;
1826 u32 alignment;
1827 int ret;
1828
1829 switch (obj->tiling_mode) {
1830 case I915_TILING_NONE:
1831 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1832 alignment = 128 * 1024;
1833 else if (INTEL_INFO(dev)->gen >= 4)
1834 alignment = 4 * 1024;
1835 else
1836 alignment = 64 * 1024;
1837 break;
1838 case I915_TILING_X:
1839 /* pin() will align the object as required by fence */
1840 alignment = 0;
1841 break;
1842 case I915_TILING_Y:
1843 /* Despite that we check this in framebuffer_init userspace can
1844 * screw us over and change the tiling after the fact. Only
1845 * pinned buffers can't change their tiling. */
1846 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1847 return -EINVAL;
1848 default:
1849 BUG();
1850 }
1851
1852 /* Note that the w/a also requires 64 PTE of padding following the
1853 * bo. We currently fill all unused PTE with the shadow page and so
1854 * we should always have valid PTE following the scanout preventing
1855 * the VT-d warning.
1856 */
1857 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1858 alignment = 256 * 1024;
1859
1860 dev_priv->mm.interruptible = false;
1861 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1862 if (ret)
1863 goto err_interruptible;
1864
1865 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1866 * fence, whereas 965+ only requires a fence if using
1867 * framebuffer compression. For simplicity, we always install
1868 * a fence as the cost is not that onerous.
1869 */
1870 ret = i915_gem_object_get_fence(obj);
1871 if (ret)
1872 goto err_unpin;
1873
1874 i915_gem_object_pin_fence(obj);
1875
1876 dev_priv->mm.interruptible = true;
1877 return 0;
1878
1879 err_unpin:
1880 i915_gem_object_unpin(obj);
1881 err_interruptible:
1882 dev_priv->mm.interruptible = true;
1883 return ret;
1884 }
1885
1886 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1887 {
1888 i915_gem_object_unpin_fence(obj);
1889 i915_gem_object_unpin(obj);
1890 }
1891
1892 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1893 * is assumed to be a power-of-two. */
1894 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1895 unsigned int tiling_mode,
1896 unsigned int cpp,
1897 unsigned int pitch)
1898 {
1899 if (tiling_mode != I915_TILING_NONE) {
1900 unsigned int tile_rows, tiles;
1901
1902 tile_rows = *y / 8;
1903 *y %= 8;
1904
1905 tiles = *x / (512/cpp);
1906 *x %= 512/cpp;
1907
1908 return tile_rows * pitch * 8 + tiles * 4096;
1909 } else {
1910 unsigned int offset;
1911
1912 offset = *y * pitch + *x * cpp;
1913 *y = 0;
1914 *x = (offset & 4095) / cpp;
1915 return offset & -4096;
1916 }
1917 }
1918
1919 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1920 int x, int y)
1921 {
1922 struct drm_device *dev = crtc->dev;
1923 struct drm_i915_private *dev_priv = dev->dev_private;
1924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1925 struct intel_framebuffer *intel_fb;
1926 struct drm_i915_gem_object *obj;
1927 int plane = intel_crtc->plane;
1928 unsigned long linear_offset;
1929 u32 dspcntr;
1930 u32 reg;
1931
1932 switch (plane) {
1933 case 0:
1934 case 1:
1935 break;
1936 default:
1937 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1938 return -EINVAL;
1939 }
1940
1941 intel_fb = to_intel_framebuffer(fb);
1942 obj = intel_fb->obj;
1943
1944 reg = DSPCNTR(plane);
1945 dspcntr = I915_READ(reg);
1946 /* Mask out pixel format bits in case we change it */
1947 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1948 switch (fb->pixel_format) {
1949 case DRM_FORMAT_C8:
1950 dspcntr |= DISPPLANE_8BPP;
1951 break;
1952 case DRM_FORMAT_XRGB1555:
1953 case DRM_FORMAT_ARGB1555:
1954 dspcntr |= DISPPLANE_BGRX555;
1955 break;
1956 case DRM_FORMAT_RGB565:
1957 dspcntr |= DISPPLANE_BGRX565;
1958 break;
1959 case DRM_FORMAT_XRGB8888:
1960 case DRM_FORMAT_ARGB8888:
1961 dspcntr |= DISPPLANE_BGRX888;
1962 break;
1963 case DRM_FORMAT_XBGR8888:
1964 case DRM_FORMAT_ABGR8888:
1965 dspcntr |= DISPPLANE_RGBX888;
1966 break;
1967 case DRM_FORMAT_XRGB2101010:
1968 case DRM_FORMAT_ARGB2101010:
1969 dspcntr |= DISPPLANE_BGRX101010;
1970 break;
1971 case DRM_FORMAT_XBGR2101010:
1972 case DRM_FORMAT_ABGR2101010:
1973 dspcntr |= DISPPLANE_RGBX101010;
1974 break;
1975 default:
1976 BUG();
1977 }
1978
1979 if (INTEL_INFO(dev)->gen >= 4) {
1980 if (obj->tiling_mode != I915_TILING_NONE)
1981 dspcntr |= DISPPLANE_TILED;
1982 else
1983 dspcntr &= ~DISPPLANE_TILED;
1984 }
1985
1986 if (IS_G4X(dev))
1987 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1988
1989 I915_WRITE(reg, dspcntr);
1990
1991 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1992
1993 if (INTEL_INFO(dev)->gen >= 4) {
1994 intel_crtc->dspaddr_offset =
1995 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1996 fb->bits_per_pixel / 8,
1997 fb->pitches[0]);
1998 linear_offset -= intel_crtc->dspaddr_offset;
1999 } else {
2000 intel_crtc->dspaddr_offset = linear_offset;
2001 }
2002
2003 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2004 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2005 fb->pitches[0]);
2006 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2007 if (INTEL_INFO(dev)->gen >= 4) {
2008 I915_MODIFY_DISPBASE(DSPSURF(plane),
2009 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2010 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2011 I915_WRITE(DSPLINOFF(plane), linear_offset);
2012 } else
2013 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2014 POSTING_READ(reg);
2015
2016 return 0;
2017 }
2018
2019 static int ironlake_update_plane(struct drm_crtc *crtc,
2020 struct drm_framebuffer *fb, int x, int y)
2021 {
2022 struct drm_device *dev = crtc->dev;
2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025 struct intel_framebuffer *intel_fb;
2026 struct drm_i915_gem_object *obj;
2027 int plane = intel_crtc->plane;
2028 unsigned long linear_offset;
2029 u32 dspcntr;
2030 u32 reg;
2031
2032 switch (plane) {
2033 case 0:
2034 case 1:
2035 case 2:
2036 break;
2037 default:
2038 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2039 return -EINVAL;
2040 }
2041
2042 intel_fb = to_intel_framebuffer(fb);
2043 obj = intel_fb->obj;
2044
2045 reg = DSPCNTR(plane);
2046 dspcntr = I915_READ(reg);
2047 /* Mask out pixel format bits in case we change it */
2048 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2049 switch (fb->pixel_format) {
2050 case DRM_FORMAT_C8:
2051 dspcntr |= DISPPLANE_8BPP;
2052 break;
2053 case DRM_FORMAT_RGB565:
2054 dspcntr |= DISPPLANE_BGRX565;
2055 break;
2056 case DRM_FORMAT_XRGB8888:
2057 case DRM_FORMAT_ARGB8888:
2058 dspcntr |= DISPPLANE_BGRX888;
2059 break;
2060 case DRM_FORMAT_XBGR8888:
2061 case DRM_FORMAT_ABGR8888:
2062 dspcntr |= DISPPLANE_RGBX888;
2063 break;
2064 case DRM_FORMAT_XRGB2101010:
2065 case DRM_FORMAT_ARGB2101010:
2066 dspcntr |= DISPPLANE_BGRX101010;
2067 break;
2068 case DRM_FORMAT_XBGR2101010:
2069 case DRM_FORMAT_ABGR2101010:
2070 dspcntr |= DISPPLANE_RGBX101010;
2071 break;
2072 default:
2073 BUG();
2074 }
2075
2076 if (obj->tiling_mode != I915_TILING_NONE)
2077 dspcntr |= DISPPLANE_TILED;
2078 else
2079 dspcntr &= ~DISPPLANE_TILED;
2080
2081 /* must disable */
2082 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2083
2084 I915_WRITE(reg, dspcntr);
2085
2086 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2087 intel_crtc->dspaddr_offset =
2088 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2089 fb->bits_per_pixel / 8,
2090 fb->pitches[0]);
2091 linear_offset -= intel_crtc->dspaddr_offset;
2092
2093 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2094 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2095 fb->pitches[0]);
2096 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2097 I915_MODIFY_DISPBASE(DSPSURF(plane),
2098 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2099 if (IS_HASWELL(dev)) {
2100 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2101 } else {
2102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2103 I915_WRITE(DSPLINOFF(plane), linear_offset);
2104 }
2105 POSTING_READ(reg);
2106
2107 return 0;
2108 }
2109
2110 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2111 static int
2112 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2113 int x, int y, enum mode_set_atomic state)
2114 {
2115 struct drm_device *dev = crtc->dev;
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117
2118 if (dev_priv->display.disable_fbc)
2119 dev_priv->display.disable_fbc(dev);
2120 intel_increase_pllclock(crtc);
2121
2122 return dev_priv->display.update_plane(crtc, fb, x, y);
2123 }
2124
2125 void intel_display_handle_reset(struct drm_device *dev)
2126 {
2127 struct drm_i915_private *dev_priv = dev->dev_private;
2128 struct drm_crtc *crtc;
2129
2130 /*
2131 * Flips in the rings have been nuked by the reset,
2132 * so complete all pending flips so that user space
2133 * will get its events and not get stuck.
2134 *
2135 * Also update the base address of all primary
2136 * planes to the the last fb to make sure we're
2137 * showing the correct fb after a reset.
2138 *
2139 * Need to make two loops over the crtcs so that we
2140 * don't try to grab a crtc mutex before the
2141 * pending_flip_queue really got woken up.
2142 */
2143
2144 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2146 enum plane plane = intel_crtc->plane;
2147
2148 intel_prepare_page_flip(dev, plane);
2149 intel_finish_page_flip_plane(dev, plane);
2150 }
2151
2152 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2154
2155 mutex_lock(&crtc->mutex);
2156 if (intel_crtc->active)
2157 dev_priv->display.update_plane(crtc, crtc->fb,
2158 crtc->x, crtc->y);
2159 mutex_unlock(&crtc->mutex);
2160 }
2161 }
2162
2163 static int
2164 intel_finish_fb(struct drm_framebuffer *old_fb)
2165 {
2166 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2167 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2168 bool was_interruptible = dev_priv->mm.interruptible;
2169 int ret;
2170
2171 /* Big Hammer, we also need to ensure that any pending
2172 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2173 * current scanout is retired before unpinning the old
2174 * framebuffer.
2175 *
2176 * This should only fail upon a hung GPU, in which case we
2177 * can safely continue.
2178 */
2179 dev_priv->mm.interruptible = false;
2180 ret = i915_gem_object_finish_gpu(obj);
2181 dev_priv->mm.interruptible = was_interruptible;
2182
2183 return ret;
2184 }
2185
2186 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2187 {
2188 struct drm_device *dev = crtc->dev;
2189 struct drm_i915_master_private *master_priv;
2190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2191
2192 if (!dev->primary->master)
2193 return;
2194
2195 master_priv = dev->primary->master->driver_priv;
2196 if (!master_priv->sarea_priv)
2197 return;
2198
2199 switch (intel_crtc->pipe) {
2200 case 0:
2201 master_priv->sarea_priv->pipeA_x = x;
2202 master_priv->sarea_priv->pipeA_y = y;
2203 break;
2204 case 1:
2205 master_priv->sarea_priv->pipeB_x = x;
2206 master_priv->sarea_priv->pipeB_y = y;
2207 break;
2208 default:
2209 break;
2210 }
2211 }
2212
2213 static int
2214 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2215 struct drm_framebuffer *fb)
2216 {
2217 struct drm_device *dev = crtc->dev;
2218 struct drm_i915_private *dev_priv = dev->dev_private;
2219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2220 struct drm_framebuffer *old_fb;
2221 int ret;
2222
2223 /* no fb bound */
2224 if (!fb) {
2225 DRM_ERROR("No FB bound\n");
2226 return 0;
2227 }
2228
2229 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2230 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2231 plane_name(intel_crtc->plane),
2232 INTEL_INFO(dev)->num_pipes);
2233 return -EINVAL;
2234 }
2235
2236 mutex_lock(&dev->struct_mutex);
2237 ret = intel_pin_and_fence_fb_obj(dev,
2238 to_intel_framebuffer(fb)->obj,
2239 NULL);
2240 if (ret != 0) {
2241 mutex_unlock(&dev->struct_mutex);
2242 DRM_ERROR("pin & fence failed\n");
2243 return ret;
2244 }
2245
2246 /* Update pipe size and adjust fitter if needed */
2247 if (i915_fastboot) {
2248 I915_WRITE(PIPESRC(intel_crtc->pipe),
2249 ((crtc->mode.hdisplay - 1) << 16) |
2250 (crtc->mode.vdisplay - 1));
2251 if (!intel_crtc->config.pch_pfit.size &&
2252 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2253 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2254 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2255 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2256 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2257 }
2258 }
2259
2260 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2261 if (ret) {
2262 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2263 mutex_unlock(&dev->struct_mutex);
2264 DRM_ERROR("failed to update base address\n");
2265 return ret;
2266 }
2267
2268 old_fb = crtc->fb;
2269 crtc->fb = fb;
2270 crtc->x = x;
2271 crtc->y = y;
2272
2273 if (old_fb) {
2274 if (intel_crtc->active && old_fb != fb)
2275 intel_wait_for_vblank(dev, intel_crtc->pipe);
2276 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2277 }
2278
2279 intel_update_fbc(dev);
2280 intel_edp_psr_update(dev);
2281 mutex_unlock(&dev->struct_mutex);
2282
2283 intel_crtc_update_sarea_pos(crtc, x, y);
2284
2285 return 0;
2286 }
2287
2288 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2289 {
2290 struct drm_device *dev = crtc->dev;
2291 struct drm_i915_private *dev_priv = dev->dev_private;
2292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2293 int pipe = intel_crtc->pipe;
2294 u32 reg, temp;
2295
2296 /* enable normal train */
2297 reg = FDI_TX_CTL(pipe);
2298 temp = I915_READ(reg);
2299 if (IS_IVYBRIDGE(dev)) {
2300 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2301 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2302 } else {
2303 temp &= ~FDI_LINK_TRAIN_NONE;
2304 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2305 }
2306 I915_WRITE(reg, temp);
2307
2308 reg = FDI_RX_CTL(pipe);
2309 temp = I915_READ(reg);
2310 if (HAS_PCH_CPT(dev)) {
2311 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2312 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2313 } else {
2314 temp &= ~FDI_LINK_TRAIN_NONE;
2315 temp |= FDI_LINK_TRAIN_NONE;
2316 }
2317 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2318
2319 /* wait one idle pattern time */
2320 POSTING_READ(reg);
2321 udelay(1000);
2322
2323 /* IVB wants error correction enabled */
2324 if (IS_IVYBRIDGE(dev))
2325 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2326 FDI_FE_ERRC_ENABLE);
2327 }
2328
2329 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2330 {
2331 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2332 }
2333
2334 static void ivb_modeset_global_resources(struct drm_device *dev)
2335 {
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 struct intel_crtc *pipe_B_crtc =
2338 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2339 struct intel_crtc *pipe_C_crtc =
2340 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2341 uint32_t temp;
2342
2343 /*
2344 * When everything is off disable fdi C so that we could enable fdi B
2345 * with all lanes. Note that we don't care about enabled pipes without
2346 * an enabled pch encoder.
2347 */
2348 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2349 !pipe_has_enabled_pch(pipe_C_crtc)) {
2350 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2351 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2352
2353 temp = I915_READ(SOUTH_CHICKEN1);
2354 temp &= ~FDI_BC_BIFURCATION_SELECT;
2355 DRM_DEBUG_KMS("disabling fdi C rx\n");
2356 I915_WRITE(SOUTH_CHICKEN1, temp);
2357 }
2358 }
2359
2360 /* The FDI link training functions for ILK/Ibexpeak. */
2361 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2362 {
2363 struct drm_device *dev = crtc->dev;
2364 struct drm_i915_private *dev_priv = dev->dev_private;
2365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2366 int pipe = intel_crtc->pipe;
2367 int plane = intel_crtc->plane;
2368 u32 reg, temp, tries;
2369
2370 /* FDI needs bits from pipe & plane first */
2371 assert_pipe_enabled(dev_priv, pipe);
2372 assert_plane_enabled(dev_priv, plane);
2373
2374 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2375 for train result */
2376 reg = FDI_RX_IMR(pipe);
2377 temp = I915_READ(reg);
2378 temp &= ~FDI_RX_SYMBOL_LOCK;
2379 temp &= ~FDI_RX_BIT_LOCK;
2380 I915_WRITE(reg, temp);
2381 I915_READ(reg);
2382 udelay(150);
2383
2384 /* enable CPU FDI TX and PCH FDI RX */
2385 reg = FDI_TX_CTL(pipe);
2386 temp = I915_READ(reg);
2387 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2388 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2389 temp &= ~FDI_LINK_TRAIN_NONE;
2390 temp |= FDI_LINK_TRAIN_PATTERN_1;
2391 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2392
2393 reg = FDI_RX_CTL(pipe);
2394 temp = I915_READ(reg);
2395 temp &= ~FDI_LINK_TRAIN_NONE;
2396 temp |= FDI_LINK_TRAIN_PATTERN_1;
2397 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2398
2399 POSTING_READ(reg);
2400 udelay(150);
2401
2402 /* Ironlake workaround, enable clock pointer after FDI enable*/
2403 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2404 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2405 FDI_RX_PHASE_SYNC_POINTER_EN);
2406
2407 reg = FDI_RX_IIR(pipe);
2408 for (tries = 0; tries < 5; tries++) {
2409 temp = I915_READ(reg);
2410 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2411
2412 if ((temp & FDI_RX_BIT_LOCK)) {
2413 DRM_DEBUG_KMS("FDI train 1 done.\n");
2414 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2415 break;
2416 }
2417 }
2418 if (tries == 5)
2419 DRM_ERROR("FDI train 1 fail!\n");
2420
2421 /* Train 2 */
2422 reg = FDI_TX_CTL(pipe);
2423 temp = I915_READ(reg);
2424 temp &= ~FDI_LINK_TRAIN_NONE;
2425 temp |= FDI_LINK_TRAIN_PATTERN_2;
2426 I915_WRITE(reg, temp);
2427
2428 reg = FDI_RX_CTL(pipe);
2429 temp = I915_READ(reg);
2430 temp &= ~FDI_LINK_TRAIN_NONE;
2431 temp |= FDI_LINK_TRAIN_PATTERN_2;
2432 I915_WRITE(reg, temp);
2433
2434 POSTING_READ(reg);
2435 udelay(150);
2436
2437 reg = FDI_RX_IIR(pipe);
2438 for (tries = 0; tries < 5; tries++) {
2439 temp = I915_READ(reg);
2440 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2441
2442 if (temp & FDI_RX_SYMBOL_LOCK) {
2443 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2444 DRM_DEBUG_KMS("FDI train 2 done.\n");
2445 break;
2446 }
2447 }
2448 if (tries == 5)
2449 DRM_ERROR("FDI train 2 fail!\n");
2450
2451 DRM_DEBUG_KMS("FDI train done\n");
2452
2453 }
2454
2455 static const int snb_b_fdi_train_param[] = {
2456 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2457 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2458 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2459 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2460 };
2461
2462 /* The FDI link training functions for SNB/Cougarpoint. */
2463 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2464 {
2465 struct drm_device *dev = crtc->dev;
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468 int pipe = intel_crtc->pipe;
2469 u32 reg, temp, i, retry;
2470
2471 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2472 for train result */
2473 reg = FDI_RX_IMR(pipe);
2474 temp = I915_READ(reg);
2475 temp &= ~FDI_RX_SYMBOL_LOCK;
2476 temp &= ~FDI_RX_BIT_LOCK;
2477 I915_WRITE(reg, temp);
2478
2479 POSTING_READ(reg);
2480 udelay(150);
2481
2482 /* enable CPU FDI TX and PCH FDI RX */
2483 reg = FDI_TX_CTL(pipe);
2484 temp = I915_READ(reg);
2485 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2486 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2487 temp &= ~FDI_LINK_TRAIN_NONE;
2488 temp |= FDI_LINK_TRAIN_PATTERN_1;
2489 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2490 /* SNB-B */
2491 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2492 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2493
2494 I915_WRITE(FDI_RX_MISC(pipe),
2495 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2496
2497 reg = FDI_RX_CTL(pipe);
2498 temp = I915_READ(reg);
2499 if (HAS_PCH_CPT(dev)) {
2500 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2502 } else {
2503 temp &= ~FDI_LINK_TRAIN_NONE;
2504 temp |= FDI_LINK_TRAIN_PATTERN_1;
2505 }
2506 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2507
2508 POSTING_READ(reg);
2509 udelay(150);
2510
2511 for (i = 0; i < 4; i++) {
2512 reg = FDI_TX_CTL(pipe);
2513 temp = I915_READ(reg);
2514 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2515 temp |= snb_b_fdi_train_param[i];
2516 I915_WRITE(reg, temp);
2517
2518 POSTING_READ(reg);
2519 udelay(500);
2520
2521 for (retry = 0; retry < 5; retry++) {
2522 reg = FDI_RX_IIR(pipe);
2523 temp = I915_READ(reg);
2524 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2525 if (temp & FDI_RX_BIT_LOCK) {
2526 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2527 DRM_DEBUG_KMS("FDI train 1 done.\n");
2528 break;
2529 }
2530 udelay(50);
2531 }
2532 if (retry < 5)
2533 break;
2534 }
2535 if (i == 4)
2536 DRM_ERROR("FDI train 1 fail!\n");
2537
2538 /* Train 2 */
2539 reg = FDI_TX_CTL(pipe);
2540 temp = I915_READ(reg);
2541 temp &= ~FDI_LINK_TRAIN_NONE;
2542 temp |= FDI_LINK_TRAIN_PATTERN_2;
2543 if (IS_GEN6(dev)) {
2544 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2545 /* SNB-B */
2546 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2547 }
2548 I915_WRITE(reg, temp);
2549
2550 reg = FDI_RX_CTL(pipe);
2551 temp = I915_READ(reg);
2552 if (HAS_PCH_CPT(dev)) {
2553 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2554 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2555 } else {
2556 temp &= ~FDI_LINK_TRAIN_NONE;
2557 temp |= FDI_LINK_TRAIN_PATTERN_2;
2558 }
2559 I915_WRITE(reg, temp);
2560
2561 POSTING_READ(reg);
2562 udelay(150);
2563
2564 for (i = 0; i < 4; i++) {
2565 reg = FDI_TX_CTL(pipe);
2566 temp = I915_READ(reg);
2567 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2568 temp |= snb_b_fdi_train_param[i];
2569 I915_WRITE(reg, temp);
2570
2571 POSTING_READ(reg);
2572 udelay(500);
2573
2574 for (retry = 0; retry < 5; retry++) {
2575 reg = FDI_RX_IIR(pipe);
2576 temp = I915_READ(reg);
2577 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2578 if (temp & FDI_RX_SYMBOL_LOCK) {
2579 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2580 DRM_DEBUG_KMS("FDI train 2 done.\n");
2581 break;
2582 }
2583 udelay(50);
2584 }
2585 if (retry < 5)
2586 break;
2587 }
2588 if (i == 4)
2589 DRM_ERROR("FDI train 2 fail!\n");
2590
2591 DRM_DEBUG_KMS("FDI train done.\n");
2592 }
2593
2594 /* Manual link training for Ivy Bridge A0 parts */
2595 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2596 {
2597 struct drm_device *dev = crtc->dev;
2598 struct drm_i915_private *dev_priv = dev->dev_private;
2599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2600 int pipe = intel_crtc->pipe;
2601 u32 reg, temp, i;
2602
2603 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2604 for train result */
2605 reg = FDI_RX_IMR(pipe);
2606 temp = I915_READ(reg);
2607 temp &= ~FDI_RX_SYMBOL_LOCK;
2608 temp &= ~FDI_RX_BIT_LOCK;
2609 I915_WRITE(reg, temp);
2610
2611 POSTING_READ(reg);
2612 udelay(150);
2613
2614 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2615 I915_READ(FDI_RX_IIR(pipe)));
2616
2617 /* enable CPU FDI TX and PCH FDI RX */
2618 reg = FDI_TX_CTL(pipe);
2619 temp = I915_READ(reg);
2620 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2621 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2622 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2623 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2624 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2625 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2626 temp |= FDI_COMPOSITE_SYNC;
2627 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2628
2629 I915_WRITE(FDI_RX_MISC(pipe),
2630 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2631
2632 reg = FDI_RX_CTL(pipe);
2633 temp = I915_READ(reg);
2634 temp &= ~FDI_LINK_TRAIN_AUTO;
2635 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2636 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2637 temp |= FDI_COMPOSITE_SYNC;
2638 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2639
2640 POSTING_READ(reg);
2641 udelay(150);
2642
2643 for (i = 0; i < 4; i++) {
2644 reg = FDI_TX_CTL(pipe);
2645 temp = I915_READ(reg);
2646 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2647 temp |= snb_b_fdi_train_param[i];
2648 I915_WRITE(reg, temp);
2649
2650 POSTING_READ(reg);
2651 udelay(500);
2652
2653 reg = FDI_RX_IIR(pipe);
2654 temp = I915_READ(reg);
2655 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2656
2657 if (temp & FDI_RX_BIT_LOCK ||
2658 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2659 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2660 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2661 break;
2662 }
2663 }
2664 if (i == 4)
2665 DRM_ERROR("FDI train 1 fail!\n");
2666
2667 /* Train 2 */
2668 reg = FDI_TX_CTL(pipe);
2669 temp = I915_READ(reg);
2670 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2671 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2672 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2673 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2674 I915_WRITE(reg, temp);
2675
2676 reg = FDI_RX_CTL(pipe);
2677 temp = I915_READ(reg);
2678 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2679 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2680 I915_WRITE(reg, temp);
2681
2682 POSTING_READ(reg);
2683 udelay(150);
2684
2685 for (i = 0; i < 4; i++) {
2686 reg = FDI_TX_CTL(pipe);
2687 temp = I915_READ(reg);
2688 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2689 temp |= snb_b_fdi_train_param[i];
2690 I915_WRITE(reg, temp);
2691
2692 POSTING_READ(reg);
2693 udelay(500);
2694
2695 reg = FDI_RX_IIR(pipe);
2696 temp = I915_READ(reg);
2697 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2698
2699 if (temp & FDI_RX_SYMBOL_LOCK) {
2700 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2701 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2702 break;
2703 }
2704 }
2705 if (i == 4)
2706 DRM_ERROR("FDI train 2 fail!\n");
2707
2708 DRM_DEBUG_KMS("FDI train done.\n");
2709 }
2710
2711 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2712 {
2713 struct drm_device *dev = intel_crtc->base.dev;
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 int pipe = intel_crtc->pipe;
2716 u32 reg, temp;
2717
2718
2719 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2720 reg = FDI_RX_CTL(pipe);
2721 temp = I915_READ(reg);
2722 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2723 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2724 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2725 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2726
2727 POSTING_READ(reg);
2728 udelay(200);
2729
2730 /* Switch from Rawclk to PCDclk */
2731 temp = I915_READ(reg);
2732 I915_WRITE(reg, temp | FDI_PCDCLK);
2733
2734 POSTING_READ(reg);
2735 udelay(200);
2736
2737 /* Enable CPU FDI TX PLL, always on for Ironlake */
2738 reg = FDI_TX_CTL(pipe);
2739 temp = I915_READ(reg);
2740 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2741 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2742
2743 POSTING_READ(reg);
2744 udelay(100);
2745 }
2746 }
2747
2748 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2749 {
2750 struct drm_device *dev = intel_crtc->base.dev;
2751 struct drm_i915_private *dev_priv = dev->dev_private;
2752 int pipe = intel_crtc->pipe;
2753 u32 reg, temp;
2754
2755 /* Switch from PCDclk to Rawclk */
2756 reg = FDI_RX_CTL(pipe);
2757 temp = I915_READ(reg);
2758 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2759
2760 /* Disable CPU FDI TX PLL */
2761 reg = FDI_TX_CTL(pipe);
2762 temp = I915_READ(reg);
2763 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2764
2765 POSTING_READ(reg);
2766 udelay(100);
2767
2768 reg = FDI_RX_CTL(pipe);
2769 temp = I915_READ(reg);
2770 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2771
2772 /* Wait for the clocks to turn off. */
2773 POSTING_READ(reg);
2774 udelay(100);
2775 }
2776
2777 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2778 {
2779 struct drm_device *dev = crtc->dev;
2780 struct drm_i915_private *dev_priv = dev->dev_private;
2781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2782 int pipe = intel_crtc->pipe;
2783 u32 reg, temp;
2784
2785 /* disable CPU FDI tx and PCH FDI rx */
2786 reg = FDI_TX_CTL(pipe);
2787 temp = I915_READ(reg);
2788 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2789 POSTING_READ(reg);
2790
2791 reg = FDI_RX_CTL(pipe);
2792 temp = I915_READ(reg);
2793 temp &= ~(0x7 << 16);
2794 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2795 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2796
2797 POSTING_READ(reg);
2798 udelay(100);
2799
2800 /* Ironlake workaround, disable clock pointer after downing FDI */
2801 if (HAS_PCH_IBX(dev)) {
2802 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2803 }
2804
2805 /* still set train pattern 1 */
2806 reg = FDI_TX_CTL(pipe);
2807 temp = I915_READ(reg);
2808 temp &= ~FDI_LINK_TRAIN_NONE;
2809 temp |= FDI_LINK_TRAIN_PATTERN_1;
2810 I915_WRITE(reg, temp);
2811
2812 reg = FDI_RX_CTL(pipe);
2813 temp = I915_READ(reg);
2814 if (HAS_PCH_CPT(dev)) {
2815 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2816 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2817 } else {
2818 temp &= ~FDI_LINK_TRAIN_NONE;
2819 temp |= FDI_LINK_TRAIN_PATTERN_1;
2820 }
2821 /* BPC in FDI rx is consistent with that in PIPECONF */
2822 temp &= ~(0x07 << 16);
2823 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2824 I915_WRITE(reg, temp);
2825
2826 POSTING_READ(reg);
2827 udelay(100);
2828 }
2829
2830 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2831 {
2832 struct drm_device *dev = crtc->dev;
2833 struct drm_i915_private *dev_priv = dev->dev_private;
2834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2835 unsigned long flags;
2836 bool pending;
2837
2838 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2839 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2840 return false;
2841
2842 spin_lock_irqsave(&dev->event_lock, flags);
2843 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2844 spin_unlock_irqrestore(&dev->event_lock, flags);
2845
2846 return pending;
2847 }
2848
2849 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2850 {
2851 struct drm_device *dev = crtc->dev;
2852 struct drm_i915_private *dev_priv = dev->dev_private;
2853
2854 if (crtc->fb == NULL)
2855 return;
2856
2857 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2858
2859 wait_event(dev_priv->pending_flip_queue,
2860 !intel_crtc_has_pending_flip(crtc));
2861
2862 mutex_lock(&dev->struct_mutex);
2863 intel_finish_fb(crtc->fb);
2864 mutex_unlock(&dev->struct_mutex);
2865 }
2866
2867 /* Program iCLKIP clock to the desired frequency */
2868 static void lpt_program_iclkip(struct drm_crtc *crtc)
2869 {
2870 struct drm_device *dev = crtc->dev;
2871 struct drm_i915_private *dev_priv = dev->dev_private;
2872 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2873 u32 temp;
2874
2875 mutex_lock(&dev_priv->dpio_lock);
2876
2877 /* It is necessary to ungate the pixclk gate prior to programming
2878 * the divisors, and gate it back when it is done.
2879 */
2880 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2881
2882 /* Disable SSCCTL */
2883 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2884 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2885 SBI_SSCCTL_DISABLE,
2886 SBI_ICLK);
2887
2888 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2889 if (crtc->mode.clock == 20000) {
2890 auxdiv = 1;
2891 divsel = 0x41;
2892 phaseinc = 0x20;
2893 } else {
2894 /* The iCLK virtual clock root frequency is in MHz,
2895 * but the crtc->mode.clock in in KHz. To get the divisors,
2896 * it is necessary to divide one by another, so we
2897 * convert the virtual clock precision to KHz here for higher
2898 * precision.
2899 */
2900 u32 iclk_virtual_root_freq = 172800 * 1000;
2901 u32 iclk_pi_range = 64;
2902 u32 desired_divisor, msb_divisor_value, pi_value;
2903
2904 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2905 msb_divisor_value = desired_divisor / iclk_pi_range;
2906 pi_value = desired_divisor % iclk_pi_range;
2907
2908 auxdiv = 0;
2909 divsel = msb_divisor_value - 2;
2910 phaseinc = pi_value;
2911 }
2912
2913 /* This should not happen with any sane values */
2914 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2915 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2916 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2917 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2918
2919 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2920 crtc->mode.clock,
2921 auxdiv,
2922 divsel,
2923 phasedir,
2924 phaseinc);
2925
2926 /* Program SSCDIVINTPHASE6 */
2927 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2928 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2929 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2930 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2931 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2932 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2933 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2934 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2935
2936 /* Program SSCAUXDIV */
2937 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2938 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2939 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2940 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2941
2942 /* Enable modulator and associated divider */
2943 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2944 temp &= ~SBI_SSCCTL_DISABLE;
2945 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2946
2947 /* Wait for initialization time */
2948 udelay(24);
2949
2950 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2951
2952 mutex_unlock(&dev_priv->dpio_lock);
2953 }
2954
2955 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2956 enum pipe pch_transcoder)
2957 {
2958 struct drm_device *dev = crtc->base.dev;
2959 struct drm_i915_private *dev_priv = dev->dev_private;
2960 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2961
2962 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2963 I915_READ(HTOTAL(cpu_transcoder)));
2964 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2965 I915_READ(HBLANK(cpu_transcoder)));
2966 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2967 I915_READ(HSYNC(cpu_transcoder)));
2968
2969 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2970 I915_READ(VTOTAL(cpu_transcoder)));
2971 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2972 I915_READ(VBLANK(cpu_transcoder)));
2973 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2974 I915_READ(VSYNC(cpu_transcoder)));
2975 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2976 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2977 }
2978
2979 /*
2980 * Enable PCH resources required for PCH ports:
2981 * - PCH PLLs
2982 * - FDI training & RX/TX
2983 * - update transcoder timings
2984 * - DP transcoding bits
2985 * - transcoder
2986 */
2987 static void ironlake_pch_enable(struct drm_crtc *crtc)
2988 {
2989 struct drm_device *dev = crtc->dev;
2990 struct drm_i915_private *dev_priv = dev->dev_private;
2991 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2992 int pipe = intel_crtc->pipe;
2993 u32 reg, temp;
2994
2995 assert_pch_transcoder_disabled(dev_priv, pipe);
2996
2997 /* Write the TU size bits before fdi link training, so that error
2998 * detection works. */
2999 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3000 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3001
3002 /* For PCH output, training FDI link */
3003 dev_priv->display.fdi_link_train(crtc);
3004
3005 /* We need to program the right clock selection before writing the pixel
3006 * mutliplier into the DPLL. */
3007 if (HAS_PCH_CPT(dev)) {
3008 u32 sel;
3009
3010 temp = I915_READ(PCH_DPLL_SEL);
3011 temp |= TRANS_DPLL_ENABLE(pipe);
3012 sel = TRANS_DPLLB_SEL(pipe);
3013 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3014 temp |= sel;
3015 else
3016 temp &= ~sel;
3017 I915_WRITE(PCH_DPLL_SEL, temp);
3018 }
3019
3020 /* XXX: pch pll's can be enabled any time before we enable the PCH
3021 * transcoder, and we actually should do this to not upset any PCH
3022 * transcoder that already use the clock when we share it.
3023 *
3024 * Note that enable_shared_dpll tries to do the right thing, but
3025 * get_shared_dpll unconditionally resets the pll - we need that to have
3026 * the right LVDS enable sequence. */
3027 ironlake_enable_shared_dpll(intel_crtc);
3028
3029 /* set transcoder timing, panel must allow it */
3030 assert_panel_unlocked(dev_priv, pipe);
3031 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3032
3033 intel_fdi_normal_train(crtc);
3034
3035 /* For PCH DP, enable TRANS_DP_CTL */
3036 if (HAS_PCH_CPT(dev) &&
3037 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3038 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3039 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3040 reg = TRANS_DP_CTL(pipe);
3041 temp = I915_READ(reg);
3042 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3043 TRANS_DP_SYNC_MASK |
3044 TRANS_DP_BPC_MASK);
3045 temp |= (TRANS_DP_OUTPUT_ENABLE |
3046 TRANS_DP_ENH_FRAMING);
3047 temp |= bpc << 9; /* same format but at 11:9 */
3048
3049 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3050 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3051 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3052 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3053
3054 switch (intel_trans_dp_port_sel(crtc)) {
3055 case PCH_DP_B:
3056 temp |= TRANS_DP_PORT_SEL_B;
3057 break;
3058 case PCH_DP_C:
3059 temp |= TRANS_DP_PORT_SEL_C;
3060 break;
3061 case PCH_DP_D:
3062 temp |= TRANS_DP_PORT_SEL_D;
3063 break;
3064 default:
3065 BUG();
3066 }
3067
3068 I915_WRITE(reg, temp);
3069 }
3070
3071 ironlake_enable_pch_transcoder(dev_priv, pipe);
3072 }
3073
3074 static void lpt_pch_enable(struct drm_crtc *crtc)
3075 {
3076 struct drm_device *dev = crtc->dev;
3077 struct drm_i915_private *dev_priv = dev->dev_private;
3078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3079 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3080
3081 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3082
3083 lpt_program_iclkip(crtc);
3084
3085 /* Set transcoder timing. */
3086 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3087
3088 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3089 }
3090
3091 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3092 {
3093 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3094
3095 if (pll == NULL)
3096 return;
3097
3098 if (pll->refcount == 0) {
3099 WARN(1, "bad %s refcount\n", pll->name);
3100 return;
3101 }
3102
3103 if (--pll->refcount == 0) {
3104 WARN_ON(pll->on);
3105 WARN_ON(pll->active);
3106 }
3107
3108 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3109 }
3110
3111 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3112 {
3113 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3114 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3115 enum intel_dpll_id i;
3116
3117 if (pll) {
3118 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3119 crtc->base.base.id, pll->name);
3120 intel_put_shared_dpll(crtc);
3121 }
3122
3123 if (HAS_PCH_IBX(dev_priv->dev)) {
3124 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3125 i = (enum intel_dpll_id) crtc->pipe;
3126 pll = &dev_priv->shared_dplls[i];
3127
3128 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3129 crtc->base.base.id, pll->name);
3130
3131 goto found;
3132 }
3133
3134 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3135 pll = &dev_priv->shared_dplls[i];
3136
3137 /* Only want to check enabled timings first */
3138 if (pll->refcount == 0)
3139 continue;
3140
3141 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3142 sizeof(pll->hw_state)) == 0) {
3143 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3144 crtc->base.base.id,
3145 pll->name, pll->refcount, pll->active);
3146
3147 goto found;
3148 }
3149 }
3150
3151 /* Ok no matching timings, maybe there's a free one? */
3152 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3153 pll = &dev_priv->shared_dplls[i];
3154 if (pll->refcount == 0) {
3155 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3156 crtc->base.base.id, pll->name);
3157 goto found;
3158 }
3159 }
3160
3161 return NULL;
3162
3163 found:
3164 crtc->config.shared_dpll = i;
3165 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3166 pipe_name(crtc->pipe));
3167
3168 if (pll->active == 0) {
3169 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3170 sizeof(pll->hw_state));
3171
3172 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3173 WARN_ON(pll->on);
3174 assert_shared_dpll_disabled(dev_priv, pll);
3175
3176 pll->mode_set(dev_priv, pll);
3177 }
3178 pll->refcount++;
3179
3180 return pll;
3181 }
3182
3183 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3184 {
3185 struct drm_i915_private *dev_priv = dev->dev_private;
3186 int dslreg = PIPEDSL(pipe);
3187 u32 temp;
3188
3189 temp = I915_READ(dslreg);
3190 udelay(500);
3191 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3192 if (wait_for(I915_READ(dslreg) != temp, 5))
3193 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3194 }
3195 }
3196
3197 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3198 {
3199 struct drm_device *dev = crtc->base.dev;
3200 struct drm_i915_private *dev_priv = dev->dev_private;
3201 int pipe = crtc->pipe;
3202
3203 if (crtc->config.pch_pfit.size) {
3204 /* Force use of hard-coded filter coefficients
3205 * as some pre-programmed values are broken,
3206 * e.g. x201.
3207 */
3208 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3209 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3210 PF_PIPE_SEL_IVB(pipe));
3211 else
3212 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3213 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3214 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3215 }
3216 }
3217
3218 static void intel_enable_planes(struct drm_crtc *crtc)
3219 {
3220 struct drm_device *dev = crtc->dev;
3221 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3222 struct intel_plane *intel_plane;
3223
3224 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3225 if (intel_plane->pipe == pipe)
3226 intel_plane_restore(&intel_plane->base);
3227 }
3228
3229 static void intel_disable_planes(struct drm_crtc *crtc)
3230 {
3231 struct drm_device *dev = crtc->dev;
3232 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3233 struct intel_plane *intel_plane;
3234
3235 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3236 if (intel_plane->pipe == pipe)
3237 intel_plane_disable(&intel_plane->base);
3238 }
3239
3240 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3241 {
3242 struct drm_device *dev = crtc->dev;
3243 struct drm_i915_private *dev_priv = dev->dev_private;
3244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3245 struct intel_encoder *encoder;
3246 int pipe = intel_crtc->pipe;
3247 int plane = intel_crtc->plane;
3248
3249 WARN_ON(!crtc->enabled);
3250
3251 if (intel_crtc->active)
3252 return;
3253
3254 intel_crtc->active = true;
3255
3256 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3257 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3258
3259 intel_update_watermarks(dev);
3260
3261 for_each_encoder_on_crtc(dev, crtc, encoder)
3262 if (encoder->pre_enable)
3263 encoder->pre_enable(encoder);
3264
3265 if (intel_crtc->config.has_pch_encoder) {
3266 /* Note: FDI PLL enabling _must_ be done before we enable the
3267 * cpu pipes, hence this is separate from all the other fdi/pch
3268 * enabling. */
3269 ironlake_fdi_pll_enable(intel_crtc);
3270 } else {
3271 assert_fdi_tx_disabled(dev_priv, pipe);
3272 assert_fdi_rx_disabled(dev_priv, pipe);
3273 }
3274
3275 ironlake_pfit_enable(intel_crtc);
3276
3277 /*
3278 * On ILK+ LUT must be loaded before the pipe is running but with
3279 * clocks enabled
3280 */
3281 intel_crtc_load_lut(crtc);
3282
3283 intel_enable_pipe(dev_priv, pipe,
3284 intel_crtc->config.has_pch_encoder);
3285 intel_enable_plane(dev_priv, plane, pipe);
3286 intel_enable_planes(crtc);
3287 intel_crtc_update_cursor(crtc, true);
3288
3289 if (intel_crtc->config.has_pch_encoder)
3290 ironlake_pch_enable(crtc);
3291
3292 mutex_lock(&dev->struct_mutex);
3293 intel_update_fbc(dev);
3294 mutex_unlock(&dev->struct_mutex);
3295
3296 for_each_encoder_on_crtc(dev, crtc, encoder)
3297 encoder->enable(encoder);
3298
3299 if (HAS_PCH_CPT(dev))
3300 cpt_verify_modeset(dev, intel_crtc->pipe);
3301
3302 /*
3303 * There seems to be a race in PCH platform hw (at least on some
3304 * outputs) where an enabled pipe still completes any pageflip right
3305 * away (as if the pipe is off) instead of waiting for vblank. As soon
3306 * as the first vblank happend, everything works as expected. Hence just
3307 * wait for one vblank before returning to avoid strange things
3308 * happening.
3309 */
3310 intel_wait_for_vblank(dev, intel_crtc->pipe);
3311 }
3312
3313 /* IPS only exists on ULT machines and is tied to pipe A. */
3314 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3315 {
3316 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3317 }
3318
3319 static void hsw_enable_ips(struct intel_crtc *crtc)
3320 {
3321 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3322
3323 if (!crtc->config.ips_enabled)
3324 return;
3325
3326 /* We can only enable IPS after we enable a plane and wait for a vblank.
3327 * We guarantee that the plane is enabled by calling intel_enable_ips
3328 * only after intel_enable_plane. And intel_enable_plane already waits
3329 * for a vblank, so all we need to do here is to enable the IPS bit. */
3330 assert_plane_enabled(dev_priv, crtc->plane);
3331 I915_WRITE(IPS_CTL, IPS_ENABLE);
3332 }
3333
3334 static void hsw_disable_ips(struct intel_crtc *crtc)
3335 {
3336 struct drm_device *dev = crtc->base.dev;
3337 struct drm_i915_private *dev_priv = dev->dev_private;
3338
3339 if (!crtc->config.ips_enabled)
3340 return;
3341
3342 assert_plane_enabled(dev_priv, crtc->plane);
3343 I915_WRITE(IPS_CTL, 0);
3344
3345 /* We need to wait for a vblank before we can disable the plane. */
3346 intel_wait_for_vblank(dev, crtc->pipe);
3347 }
3348
3349 static void haswell_crtc_enable(struct drm_crtc *crtc)
3350 {
3351 struct drm_device *dev = crtc->dev;
3352 struct drm_i915_private *dev_priv = dev->dev_private;
3353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3354 struct intel_encoder *encoder;
3355 int pipe = intel_crtc->pipe;
3356 int plane = intel_crtc->plane;
3357
3358 WARN_ON(!crtc->enabled);
3359
3360 if (intel_crtc->active)
3361 return;
3362
3363 intel_crtc->active = true;
3364
3365 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3366 if (intel_crtc->config.has_pch_encoder)
3367 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3368
3369 intel_update_watermarks(dev);
3370
3371 if (intel_crtc->config.has_pch_encoder)
3372 dev_priv->display.fdi_link_train(crtc);
3373
3374 for_each_encoder_on_crtc(dev, crtc, encoder)
3375 if (encoder->pre_enable)
3376 encoder->pre_enable(encoder);
3377
3378 intel_ddi_enable_pipe_clock(intel_crtc);
3379
3380 ironlake_pfit_enable(intel_crtc);
3381
3382 /*
3383 * On ILK+ LUT must be loaded before the pipe is running but with
3384 * clocks enabled
3385 */
3386 intel_crtc_load_lut(crtc);
3387
3388 intel_ddi_set_pipe_settings(crtc);
3389 intel_ddi_enable_transcoder_func(crtc);
3390
3391 intel_enable_pipe(dev_priv, pipe,
3392 intel_crtc->config.has_pch_encoder);
3393 intel_enable_plane(dev_priv, plane, pipe);
3394 intel_enable_planes(crtc);
3395 intel_crtc_update_cursor(crtc, true);
3396
3397 hsw_enable_ips(intel_crtc);
3398
3399 if (intel_crtc->config.has_pch_encoder)
3400 lpt_pch_enable(crtc);
3401
3402 mutex_lock(&dev->struct_mutex);
3403 intel_update_fbc(dev);
3404 mutex_unlock(&dev->struct_mutex);
3405
3406 for_each_encoder_on_crtc(dev, crtc, encoder)
3407 encoder->enable(encoder);
3408
3409 /*
3410 * There seems to be a race in PCH platform hw (at least on some
3411 * outputs) where an enabled pipe still completes any pageflip right
3412 * away (as if the pipe is off) instead of waiting for vblank. As soon
3413 * as the first vblank happend, everything works as expected. Hence just
3414 * wait for one vblank before returning to avoid strange things
3415 * happening.
3416 */
3417 intel_wait_for_vblank(dev, intel_crtc->pipe);
3418 }
3419
3420 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3421 {
3422 struct drm_device *dev = crtc->base.dev;
3423 struct drm_i915_private *dev_priv = dev->dev_private;
3424 int pipe = crtc->pipe;
3425
3426 /* To avoid upsetting the power well on haswell only disable the pfit if
3427 * it's in use. The hw state code will make sure we get this right. */
3428 if (crtc->config.pch_pfit.size) {
3429 I915_WRITE(PF_CTL(pipe), 0);
3430 I915_WRITE(PF_WIN_POS(pipe), 0);
3431 I915_WRITE(PF_WIN_SZ(pipe), 0);
3432 }
3433 }
3434
3435 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3436 {
3437 struct drm_device *dev = crtc->dev;
3438 struct drm_i915_private *dev_priv = dev->dev_private;
3439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3440 struct intel_encoder *encoder;
3441 int pipe = intel_crtc->pipe;
3442 int plane = intel_crtc->plane;
3443 u32 reg, temp;
3444
3445
3446 if (!intel_crtc->active)
3447 return;
3448
3449 for_each_encoder_on_crtc(dev, crtc, encoder)
3450 encoder->disable(encoder);
3451
3452 intel_crtc_wait_for_pending_flips(crtc);
3453 drm_vblank_off(dev, pipe);
3454
3455 if (dev_priv->fbc.plane == plane)
3456 intel_disable_fbc(dev);
3457
3458 intel_crtc_update_cursor(crtc, false);
3459 intel_disable_planes(crtc);
3460 intel_disable_plane(dev_priv, plane, pipe);
3461
3462 if (intel_crtc->config.has_pch_encoder)
3463 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3464
3465 intel_disable_pipe(dev_priv, pipe);
3466
3467 ironlake_pfit_disable(intel_crtc);
3468
3469 for_each_encoder_on_crtc(dev, crtc, encoder)
3470 if (encoder->post_disable)
3471 encoder->post_disable(encoder);
3472
3473 if (intel_crtc->config.has_pch_encoder) {
3474 ironlake_fdi_disable(crtc);
3475
3476 ironlake_disable_pch_transcoder(dev_priv, pipe);
3477 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3478
3479 if (HAS_PCH_CPT(dev)) {
3480 /* disable TRANS_DP_CTL */
3481 reg = TRANS_DP_CTL(pipe);
3482 temp = I915_READ(reg);
3483 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3484 TRANS_DP_PORT_SEL_MASK);
3485 temp |= TRANS_DP_PORT_SEL_NONE;
3486 I915_WRITE(reg, temp);
3487
3488 /* disable DPLL_SEL */
3489 temp = I915_READ(PCH_DPLL_SEL);
3490 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3491 I915_WRITE(PCH_DPLL_SEL, temp);
3492 }
3493
3494 /* disable PCH DPLL */
3495 intel_disable_shared_dpll(intel_crtc);
3496
3497 ironlake_fdi_pll_disable(intel_crtc);
3498 }
3499
3500 intel_crtc->active = false;
3501 intel_update_watermarks(dev);
3502
3503 mutex_lock(&dev->struct_mutex);
3504 intel_update_fbc(dev);
3505 mutex_unlock(&dev->struct_mutex);
3506 }
3507
3508 static void haswell_crtc_disable(struct drm_crtc *crtc)
3509 {
3510 struct drm_device *dev = crtc->dev;
3511 struct drm_i915_private *dev_priv = dev->dev_private;
3512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3513 struct intel_encoder *encoder;
3514 int pipe = intel_crtc->pipe;
3515 int plane = intel_crtc->plane;
3516 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3517
3518 if (!intel_crtc->active)
3519 return;
3520
3521 for_each_encoder_on_crtc(dev, crtc, encoder)
3522 encoder->disable(encoder);
3523
3524 intel_crtc_wait_for_pending_flips(crtc);
3525 drm_vblank_off(dev, pipe);
3526
3527 /* FBC must be disabled before disabling the plane on HSW. */
3528 if (dev_priv->fbc.plane == plane)
3529 intel_disable_fbc(dev);
3530
3531 hsw_disable_ips(intel_crtc);
3532
3533 intel_crtc_update_cursor(crtc, false);
3534 intel_disable_planes(crtc);
3535 intel_disable_plane(dev_priv, plane, pipe);
3536
3537 if (intel_crtc->config.has_pch_encoder)
3538 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3539 intel_disable_pipe(dev_priv, pipe);
3540
3541 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3542
3543 ironlake_pfit_disable(intel_crtc);
3544
3545 intel_ddi_disable_pipe_clock(intel_crtc);
3546
3547 for_each_encoder_on_crtc(dev, crtc, encoder)
3548 if (encoder->post_disable)
3549 encoder->post_disable(encoder);
3550
3551 if (intel_crtc->config.has_pch_encoder) {
3552 lpt_disable_pch_transcoder(dev_priv);
3553 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3554 intel_ddi_fdi_disable(crtc);
3555 }
3556
3557 intel_crtc->active = false;
3558 intel_update_watermarks(dev);
3559
3560 mutex_lock(&dev->struct_mutex);
3561 intel_update_fbc(dev);
3562 mutex_unlock(&dev->struct_mutex);
3563 }
3564
3565 static void ironlake_crtc_off(struct drm_crtc *crtc)
3566 {
3567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3568 intel_put_shared_dpll(intel_crtc);
3569 }
3570
3571 static void haswell_crtc_off(struct drm_crtc *crtc)
3572 {
3573 intel_ddi_put_crtc_pll(crtc);
3574 }
3575
3576 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3577 {
3578 if (!enable && intel_crtc->overlay) {
3579 struct drm_device *dev = intel_crtc->base.dev;
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581
3582 mutex_lock(&dev->struct_mutex);
3583 dev_priv->mm.interruptible = false;
3584 (void) intel_overlay_switch_off(intel_crtc->overlay);
3585 dev_priv->mm.interruptible = true;
3586 mutex_unlock(&dev->struct_mutex);
3587 }
3588
3589 /* Let userspace switch the overlay on again. In most cases userspace
3590 * has to recompute where to put it anyway.
3591 */
3592 }
3593
3594 /**
3595 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3596 * cursor plane briefly if not already running after enabling the display
3597 * plane.
3598 * This workaround avoids occasional blank screens when self refresh is
3599 * enabled.
3600 */
3601 static void
3602 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3603 {
3604 u32 cntl = I915_READ(CURCNTR(pipe));
3605
3606 if ((cntl & CURSOR_MODE) == 0) {
3607 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3608
3609 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3610 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3611 intel_wait_for_vblank(dev_priv->dev, pipe);
3612 I915_WRITE(CURCNTR(pipe), cntl);
3613 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3614 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3615 }
3616 }
3617
3618 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3619 {
3620 struct drm_device *dev = crtc->base.dev;
3621 struct drm_i915_private *dev_priv = dev->dev_private;
3622 struct intel_crtc_config *pipe_config = &crtc->config;
3623
3624 if (!crtc->config.gmch_pfit.control)
3625 return;
3626
3627 /*
3628 * The panel fitter should only be adjusted whilst the pipe is disabled,
3629 * according to register description and PRM.
3630 */
3631 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3632 assert_pipe_disabled(dev_priv, crtc->pipe);
3633
3634 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3635 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3636
3637 /* Border color in case we don't scale up to the full screen. Black by
3638 * default, change to something else for debugging. */
3639 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3640 }
3641
3642 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3643 {
3644 struct drm_device *dev = crtc->dev;
3645 struct drm_i915_private *dev_priv = dev->dev_private;
3646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3647 struct intel_encoder *encoder;
3648 int pipe = intel_crtc->pipe;
3649 int plane = intel_crtc->plane;
3650
3651 WARN_ON(!crtc->enabled);
3652
3653 if (intel_crtc->active)
3654 return;
3655
3656 intel_crtc->active = true;
3657 intel_update_watermarks(dev);
3658
3659 for_each_encoder_on_crtc(dev, crtc, encoder)
3660 if (encoder->pre_pll_enable)
3661 encoder->pre_pll_enable(encoder);
3662
3663 vlv_enable_pll(intel_crtc);
3664
3665 for_each_encoder_on_crtc(dev, crtc, encoder)
3666 if (encoder->pre_enable)
3667 encoder->pre_enable(encoder);
3668
3669 i9xx_pfit_enable(intel_crtc);
3670
3671 intel_crtc_load_lut(crtc);
3672
3673 intel_enable_pipe(dev_priv, pipe, false);
3674 intel_enable_plane(dev_priv, plane, pipe);
3675 intel_enable_planes(crtc);
3676 intel_crtc_update_cursor(crtc, true);
3677
3678 intel_update_fbc(dev);
3679
3680 for_each_encoder_on_crtc(dev, crtc, encoder)
3681 encoder->enable(encoder);
3682 }
3683
3684 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3685 {
3686 struct drm_device *dev = crtc->dev;
3687 struct drm_i915_private *dev_priv = dev->dev_private;
3688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3689 struct intel_encoder *encoder;
3690 int pipe = intel_crtc->pipe;
3691 int plane = intel_crtc->plane;
3692
3693 WARN_ON(!crtc->enabled);
3694
3695 if (intel_crtc->active)
3696 return;
3697
3698 intel_crtc->active = true;
3699 intel_update_watermarks(dev);
3700
3701 for_each_encoder_on_crtc(dev, crtc, encoder)
3702 if (encoder->pre_enable)
3703 encoder->pre_enable(encoder);
3704
3705 i9xx_enable_pll(intel_crtc);
3706
3707 i9xx_pfit_enable(intel_crtc);
3708
3709 intel_crtc_load_lut(crtc);
3710
3711 intel_enable_pipe(dev_priv, pipe, false);
3712 intel_enable_plane(dev_priv, plane, pipe);
3713 intel_enable_planes(crtc);
3714 /* The fixup needs to happen before cursor is enabled */
3715 if (IS_G4X(dev))
3716 g4x_fixup_plane(dev_priv, pipe);
3717 intel_crtc_update_cursor(crtc, true);
3718
3719 /* Give the overlay scaler a chance to enable if it's on this pipe */
3720 intel_crtc_dpms_overlay(intel_crtc, true);
3721
3722 intel_update_fbc(dev);
3723
3724 for_each_encoder_on_crtc(dev, crtc, encoder)
3725 encoder->enable(encoder);
3726 }
3727
3728 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3729 {
3730 struct drm_device *dev = crtc->base.dev;
3731 struct drm_i915_private *dev_priv = dev->dev_private;
3732
3733 if (!crtc->config.gmch_pfit.control)
3734 return;
3735
3736 assert_pipe_disabled(dev_priv, crtc->pipe);
3737
3738 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3739 I915_READ(PFIT_CONTROL));
3740 I915_WRITE(PFIT_CONTROL, 0);
3741 }
3742
3743 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3744 {
3745 struct drm_device *dev = crtc->dev;
3746 struct drm_i915_private *dev_priv = dev->dev_private;
3747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3748 struct intel_encoder *encoder;
3749 int pipe = intel_crtc->pipe;
3750 int plane = intel_crtc->plane;
3751
3752 if (!intel_crtc->active)
3753 return;
3754
3755 for_each_encoder_on_crtc(dev, crtc, encoder)
3756 encoder->disable(encoder);
3757
3758 /* Give the overlay scaler a chance to disable if it's on this pipe */
3759 intel_crtc_wait_for_pending_flips(crtc);
3760 drm_vblank_off(dev, pipe);
3761
3762 if (dev_priv->fbc.plane == plane)
3763 intel_disable_fbc(dev);
3764
3765 intel_crtc_dpms_overlay(intel_crtc, false);
3766 intel_crtc_update_cursor(crtc, false);
3767 intel_disable_planes(crtc);
3768 intel_disable_plane(dev_priv, plane, pipe);
3769
3770 intel_disable_pipe(dev_priv, pipe);
3771
3772 i9xx_pfit_disable(intel_crtc);
3773
3774 for_each_encoder_on_crtc(dev, crtc, encoder)
3775 if (encoder->post_disable)
3776 encoder->post_disable(encoder);
3777
3778 i9xx_disable_pll(dev_priv, pipe);
3779
3780 intel_crtc->active = false;
3781 intel_update_fbc(dev);
3782 intel_update_watermarks(dev);
3783 }
3784
3785 static void i9xx_crtc_off(struct drm_crtc *crtc)
3786 {
3787 }
3788
3789 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3790 bool enabled)
3791 {
3792 struct drm_device *dev = crtc->dev;
3793 struct drm_i915_master_private *master_priv;
3794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3795 int pipe = intel_crtc->pipe;
3796
3797 if (!dev->primary->master)
3798 return;
3799
3800 master_priv = dev->primary->master->driver_priv;
3801 if (!master_priv->sarea_priv)
3802 return;
3803
3804 switch (pipe) {
3805 case 0:
3806 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3807 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3808 break;
3809 case 1:
3810 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3811 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3812 break;
3813 default:
3814 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3815 break;
3816 }
3817 }
3818
3819 /**
3820 * Sets the power management mode of the pipe and plane.
3821 */
3822 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3823 {
3824 struct drm_device *dev = crtc->dev;
3825 struct drm_i915_private *dev_priv = dev->dev_private;
3826 struct intel_encoder *intel_encoder;
3827 bool enable = false;
3828
3829 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3830 enable |= intel_encoder->connectors_active;
3831
3832 if (enable)
3833 dev_priv->display.crtc_enable(crtc);
3834 else
3835 dev_priv->display.crtc_disable(crtc);
3836
3837 intel_crtc_update_sarea(crtc, enable);
3838 }
3839
3840 static void intel_crtc_disable(struct drm_crtc *crtc)
3841 {
3842 struct drm_device *dev = crtc->dev;
3843 struct drm_connector *connector;
3844 struct drm_i915_private *dev_priv = dev->dev_private;
3845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3846
3847 /* crtc should still be enabled when we disable it. */
3848 WARN_ON(!crtc->enabled);
3849
3850 dev_priv->display.crtc_disable(crtc);
3851 intel_crtc->eld_vld = false;
3852 intel_crtc_update_sarea(crtc, false);
3853 dev_priv->display.off(crtc);
3854
3855 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3856 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3857
3858 if (crtc->fb) {
3859 mutex_lock(&dev->struct_mutex);
3860 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3861 mutex_unlock(&dev->struct_mutex);
3862 crtc->fb = NULL;
3863 }
3864
3865 /* Update computed state. */
3866 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3867 if (!connector->encoder || !connector->encoder->crtc)
3868 continue;
3869
3870 if (connector->encoder->crtc != crtc)
3871 continue;
3872
3873 connector->dpms = DRM_MODE_DPMS_OFF;
3874 to_intel_encoder(connector->encoder)->connectors_active = false;
3875 }
3876 }
3877
3878 void intel_encoder_destroy(struct drm_encoder *encoder)
3879 {
3880 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3881
3882 drm_encoder_cleanup(encoder);
3883 kfree(intel_encoder);
3884 }
3885
3886 /* Simple dpms helper for encoders with just one connector, no cloning and only
3887 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3888 * state of the entire output pipe. */
3889 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3890 {
3891 if (mode == DRM_MODE_DPMS_ON) {
3892 encoder->connectors_active = true;
3893
3894 intel_crtc_update_dpms(encoder->base.crtc);
3895 } else {
3896 encoder->connectors_active = false;
3897
3898 intel_crtc_update_dpms(encoder->base.crtc);
3899 }
3900 }
3901
3902 /* Cross check the actual hw state with our own modeset state tracking (and it's
3903 * internal consistency). */
3904 static void intel_connector_check_state(struct intel_connector *connector)
3905 {
3906 if (connector->get_hw_state(connector)) {
3907 struct intel_encoder *encoder = connector->encoder;
3908 struct drm_crtc *crtc;
3909 bool encoder_enabled;
3910 enum pipe pipe;
3911
3912 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3913 connector->base.base.id,
3914 drm_get_connector_name(&connector->base));
3915
3916 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3917 "wrong connector dpms state\n");
3918 WARN(connector->base.encoder != &encoder->base,
3919 "active connector not linked to encoder\n");
3920 WARN(!encoder->connectors_active,
3921 "encoder->connectors_active not set\n");
3922
3923 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3924 WARN(!encoder_enabled, "encoder not enabled\n");
3925 if (WARN_ON(!encoder->base.crtc))
3926 return;
3927
3928 crtc = encoder->base.crtc;
3929
3930 WARN(!crtc->enabled, "crtc not enabled\n");
3931 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3932 WARN(pipe != to_intel_crtc(crtc)->pipe,
3933 "encoder active on the wrong pipe\n");
3934 }
3935 }
3936
3937 /* Even simpler default implementation, if there's really no special case to
3938 * consider. */
3939 void intel_connector_dpms(struct drm_connector *connector, int mode)
3940 {
3941 struct intel_encoder *encoder = intel_attached_encoder(connector);
3942
3943 /* All the simple cases only support two dpms states. */
3944 if (mode != DRM_MODE_DPMS_ON)
3945 mode = DRM_MODE_DPMS_OFF;
3946
3947 if (mode == connector->dpms)
3948 return;
3949
3950 connector->dpms = mode;
3951
3952 /* Only need to change hw state when actually enabled */
3953 if (encoder->base.crtc)
3954 intel_encoder_dpms(encoder, mode);
3955 else
3956 WARN_ON(encoder->connectors_active != false);
3957
3958 intel_modeset_check_state(connector->dev);
3959 }
3960
3961 /* Simple connector->get_hw_state implementation for encoders that support only
3962 * one connector and no cloning and hence the encoder state determines the state
3963 * of the connector. */
3964 bool intel_connector_get_hw_state(struct intel_connector *connector)
3965 {
3966 enum pipe pipe = 0;
3967 struct intel_encoder *encoder = connector->encoder;
3968
3969 return encoder->get_hw_state(encoder, &pipe);
3970 }
3971
3972 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3973 struct intel_crtc_config *pipe_config)
3974 {
3975 struct drm_i915_private *dev_priv = dev->dev_private;
3976 struct intel_crtc *pipe_B_crtc =
3977 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3978
3979 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3980 pipe_name(pipe), pipe_config->fdi_lanes);
3981 if (pipe_config->fdi_lanes > 4) {
3982 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3983 pipe_name(pipe), pipe_config->fdi_lanes);
3984 return false;
3985 }
3986
3987 if (IS_HASWELL(dev)) {
3988 if (pipe_config->fdi_lanes > 2) {
3989 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3990 pipe_config->fdi_lanes);
3991 return false;
3992 } else {
3993 return true;
3994 }
3995 }
3996
3997 if (INTEL_INFO(dev)->num_pipes == 2)
3998 return true;
3999
4000 /* Ivybridge 3 pipe is really complicated */
4001 switch (pipe) {
4002 case PIPE_A:
4003 return true;
4004 case PIPE_B:
4005 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4006 pipe_config->fdi_lanes > 2) {
4007 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4008 pipe_name(pipe), pipe_config->fdi_lanes);
4009 return false;
4010 }
4011 return true;
4012 case PIPE_C:
4013 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4014 pipe_B_crtc->config.fdi_lanes <= 2) {
4015 if (pipe_config->fdi_lanes > 2) {
4016 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4017 pipe_name(pipe), pipe_config->fdi_lanes);
4018 return false;
4019 }
4020 } else {
4021 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4022 return false;
4023 }
4024 return true;
4025 default:
4026 BUG();
4027 }
4028 }
4029
4030 #define RETRY 1
4031 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4032 struct intel_crtc_config *pipe_config)
4033 {
4034 struct drm_device *dev = intel_crtc->base.dev;
4035 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4036 int lane, link_bw, fdi_dotclock;
4037 bool setup_ok, needs_recompute = false;
4038
4039 retry:
4040 /* FDI is a binary signal running at ~2.7GHz, encoding
4041 * each output octet as 10 bits. The actual frequency
4042 * is stored as a divider into a 100MHz clock, and the
4043 * mode pixel clock is stored in units of 1KHz.
4044 * Hence the bw of each lane in terms of the mode signal
4045 * is:
4046 */
4047 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4048
4049 fdi_dotclock = adjusted_mode->clock;
4050 fdi_dotclock /= pipe_config->pixel_multiplier;
4051
4052 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4053 pipe_config->pipe_bpp);
4054
4055 pipe_config->fdi_lanes = lane;
4056
4057 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4058 link_bw, &pipe_config->fdi_m_n);
4059
4060 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4061 intel_crtc->pipe, pipe_config);
4062 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4063 pipe_config->pipe_bpp -= 2*3;
4064 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4065 pipe_config->pipe_bpp);
4066 needs_recompute = true;
4067 pipe_config->bw_constrained = true;
4068
4069 goto retry;
4070 }
4071
4072 if (needs_recompute)
4073 return RETRY;
4074
4075 return setup_ok ? 0 : -EINVAL;
4076 }
4077
4078 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4079 struct intel_crtc_config *pipe_config)
4080 {
4081 pipe_config->ips_enabled = i915_enable_ips &&
4082 hsw_crtc_supports_ips(crtc) &&
4083 pipe_config->pipe_bpp <= 24;
4084 }
4085
4086 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4087 struct intel_crtc_config *pipe_config)
4088 {
4089 struct drm_device *dev = crtc->base.dev;
4090 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4091
4092 if (HAS_PCH_SPLIT(dev)) {
4093 /* FDI link clock is fixed at 2.7G */
4094 if (pipe_config->requested_mode.clock * 3
4095 > IRONLAKE_FDI_FREQ * 4)
4096 return -EINVAL;
4097 }
4098
4099 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4100 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4101 */
4102 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4103 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4104 return -EINVAL;
4105
4106 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4107 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4108 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4109 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4110 * for lvds. */
4111 pipe_config->pipe_bpp = 8*3;
4112 }
4113
4114 if (HAS_IPS(dev))
4115 hsw_compute_ips_config(crtc, pipe_config);
4116
4117 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4118 * clock survives for now. */
4119 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4120 pipe_config->shared_dpll = crtc->config.shared_dpll;
4121
4122 if (pipe_config->has_pch_encoder)
4123 return ironlake_fdi_compute_config(crtc, pipe_config);
4124
4125 return 0;
4126 }
4127
4128 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4129 {
4130 return 400000; /* FIXME */
4131 }
4132
4133 static int i945_get_display_clock_speed(struct drm_device *dev)
4134 {
4135 return 400000;
4136 }
4137
4138 static int i915_get_display_clock_speed(struct drm_device *dev)
4139 {
4140 return 333000;
4141 }
4142
4143 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4144 {
4145 return 200000;
4146 }
4147
4148 static int pnv_get_display_clock_speed(struct drm_device *dev)
4149 {
4150 u16 gcfgc = 0;
4151
4152 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4153
4154 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4155 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4156 return 267000;
4157 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4158 return 333000;
4159 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4160 return 444000;
4161 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4162 return 200000;
4163 default:
4164 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4165 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4166 return 133000;
4167 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4168 return 167000;
4169 }
4170 }
4171
4172 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4173 {
4174 u16 gcfgc = 0;
4175
4176 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4177
4178 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4179 return 133000;
4180 else {
4181 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4182 case GC_DISPLAY_CLOCK_333_MHZ:
4183 return 333000;
4184 default:
4185 case GC_DISPLAY_CLOCK_190_200_MHZ:
4186 return 190000;
4187 }
4188 }
4189 }
4190
4191 static int i865_get_display_clock_speed(struct drm_device *dev)
4192 {
4193 return 266000;
4194 }
4195
4196 static int i855_get_display_clock_speed(struct drm_device *dev)
4197 {
4198 u16 hpllcc = 0;
4199 /* Assume that the hardware is in the high speed state. This
4200 * should be the default.
4201 */
4202 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4203 case GC_CLOCK_133_200:
4204 case GC_CLOCK_100_200:
4205 return 200000;
4206 case GC_CLOCK_166_250:
4207 return 250000;
4208 case GC_CLOCK_100_133:
4209 return 133000;
4210 }
4211
4212 /* Shouldn't happen */
4213 return 0;
4214 }
4215
4216 static int i830_get_display_clock_speed(struct drm_device *dev)
4217 {
4218 return 133000;
4219 }
4220
4221 static void
4222 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4223 {
4224 while (*num > DATA_LINK_M_N_MASK ||
4225 *den > DATA_LINK_M_N_MASK) {
4226 *num >>= 1;
4227 *den >>= 1;
4228 }
4229 }
4230
4231 static void compute_m_n(unsigned int m, unsigned int n,
4232 uint32_t *ret_m, uint32_t *ret_n)
4233 {
4234 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4235 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4236 intel_reduce_m_n_ratio(ret_m, ret_n);
4237 }
4238
4239 void
4240 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4241 int pixel_clock, int link_clock,
4242 struct intel_link_m_n *m_n)
4243 {
4244 m_n->tu = 64;
4245
4246 compute_m_n(bits_per_pixel * pixel_clock,
4247 link_clock * nlanes * 8,
4248 &m_n->gmch_m, &m_n->gmch_n);
4249
4250 compute_m_n(pixel_clock, link_clock,
4251 &m_n->link_m, &m_n->link_n);
4252 }
4253
4254 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4255 {
4256 if (i915_panel_use_ssc >= 0)
4257 return i915_panel_use_ssc != 0;
4258 return dev_priv->vbt.lvds_use_ssc
4259 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4260 }
4261
4262 static int vlv_get_refclk(struct drm_crtc *crtc)
4263 {
4264 struct drm_device *dev = crtc->dev;
4265 struct drm_i915_private *dev_priv = dev->dev_private;
4266 int refclk = 27000; /* for DP & HDMI */
4267
4268 return 100000; /* only one validated so far */
4269
4270 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4271 refclk = 96000;
4272 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4273 if (intel_panel_use_ssc(dev_priv))
4274 refclk = 100000;
4275 else
4276 refclk = 96000;
4277 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4278 refclk = 100000;
4279 }
4280
4281 return refclk;
4282 }
4283
4284 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4285 {
4286 struct drm_device *dev = crtc->dev;
4287 struct drm_i915_private *dev_priv = dev->dev_private;
4288 int refclk;
4289
4290 if (IS_VALLEYVIEW(dev)) {
4291 refclk = vlv_get_refclk(crtc);
4292 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4293 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4294 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4295 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4296 refclk / 1000);
4297 } else if (!IS_GEN2(dev)) {
4298 refclk = 96000;
4299 } else {
4300 refclk = 48000;
4301 }
4302
4303 return refclk;
4304 }
4305
4306 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4307 {
4308 return (1 << dpll->n) << 16 | dpll->m2;
4309 }
4310
4311 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4312 {
4313 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4314 }
4315
4316 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4317 intel_clock_t *reduced_clock)
4318 {
4319 struct drm_device *dev = crtc->base.dev;
4320 struct drm_i915_private *dev_priv = dev->dev_private;
4321 int pipe = crtc->pipe;
4322 u32 fp, fp2 = 0;
4323
4324 if (IS_PINEVIEW(dev)) {
4325 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4326 if (reduced_clock)
4327 fp2 = pnv_dpll_compute_fp(reduced_clock);
4328 } else {
4329 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4330 if (reduced_clock)
4331 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4332 }
4333
4334 I915_WRITE(FP0(pipe), fp);
4335 crtc->config.dpll_hw_state.fp0 = fp;
4336
4337 crtc->lowfreq_avail = false;
4338 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4339 reduced_clock && i915_powersave) {
4340 I915_WRITE(FP1(pipe), fp2);
4341 crtc->config.dpll_hw_state.fp1 = fp2;
4342 crtc->lowfreq_avail = true;
4343 } else {
4344 I915_WRITE(FP1(pipe), fp);
4345 crtc->config.dpll_hw_state.fp1 = fp;
4346 }
4347 }
4348
4349 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4350 {
4351 u32 reg_val;
4352
4353 /*
4354 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4355 * and set it to a reasonable value instead.
4356 */
4357 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4358 reg_val &= 0xffffff00;
4359 reg_val |= 0x00000030;
4360 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4361
4362 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4363 reg_val &= 0x8cffffff;
4364 reg_val = 0x8c000000;
4365 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4366
4367 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4368 reg_val &= 0xffffff00;
4369 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4370
4371 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4372 reg_val &= 0x00ffffff;
4373 reg_val |= 0xb0000000;
4374 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4375 }
4376
4377 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4378 struct intel_link_m_n *m_n)
4379 {
4380 struct drm_device *dev = crtc->base.dev;
4381 struct drm_i915_private *dev_priv = dev->dev_private;
4382 int pipe = crtc->pipe;
4383
4384 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4385 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4386 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4387 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4388 }
4389
4390 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4391 struct intel_link_m_n *m_n)
4392 {
4393 struct drm_device *dev = crtc->base.dev;
4394 struct drm_i915_private *dev_priv = dev->dev_private;
4395 int pipe = crtc->pipe;
4396 enum transcoder transcoder = crtc->config.cpu_transcoder;
4397
4398 if (INTEL_INFO(dev)->gen >= 5) {
4399 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4400 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4401 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4402 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4403 } else {
4404 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4405 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4406 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4407 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4408 }
4409 }
4410
4411 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4412 {
4413 if (crtc->config.has_pch_encoder)
4414 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4415 else
4416 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4417 }
4418
4419 static void vlv_update_pll(struct intel_crtc *crtc)
4420 {
4421 struct drm_device *dev = crtc->base.dev;
4422 struct drm_i915_private *dev_priv = dev->dev_private;
4423 int pipe = crtc->pipe;
4424 u32 dpll, mdiv;
4425 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4426 bool is_hdmi;
4427 u32 coreclk, reg_val, dpll_md;
4428
4429 mutex_lock(&dev_priv->dpio_lock);
4430
4431 is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4432
4433 bestn = crtc->config.dpll.n;
4434 bestm1 = crtc->config.dpll.m1;
4435 bestm2 = crtc->config.dpll.m2;
4436 bestp1 = crtc->config.dpll.p1;
4437 bestp2 = crtc->config.dpll.p2;
4438
4439 /* See eDP HDMI DPIO driver vbios notes doc */
4440
4441 /* PLL B needs special handling */
4442 if (pipe)
4443 vlv_pllb_recal_opamp(dev_priv);
4444
4445 /* Set up Tx target for periodic Rcomp update */
4446 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4447
4448 /* Disable target IRef on PLL */
4449 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4450 reg_val &= 0x00ffffff;
4451 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4452
4453 /* Disable fast lock */
4454 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4455
4456 /* Set idtafcrecal before PLL is enabled */
4457 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4458 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4459 mdiv |= ((bestn << DPIO_N_SHIFT));
4460 mdiv |= (1 << DPIO_K_SHIFT);
4461
4462 /*
4463 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4464 * but we don't support that).
4465 * Note: don't use the DAC post divider as it seems unstable.
4466 */
4467 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4468 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4469
4470 mdiv |= DPIO_ENABLE_CALIBRATION;
4471 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4472
4473 /* Set HBR and RBR LPF coefficients */
4474 if (crtc->config.port_clock == 162000 ||
4475 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4476 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4477 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4478 0x009f0003);
4479 else
4480 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4481 0x00d0000f);
4482
4483 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4484 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4485 /* Use SSC source */
4486 if (!pipe)
4487 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4488 0x0df40000);
4489 else
4490 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4491 0x0df70000);
4492 } else { /* HDMI or VGA */
4493 /* Use bend source */
4494 if (!pipe)
4495 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4496 0x0df70000);
4497 else
4498 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4499 0x0df40000);
4500 }
4501
4502 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4503 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4504 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4505 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4506 coreclk |= 0x01000000;
4507 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4508
4509 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4510
4511 /* Enable DPIO clock input */
4512 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4513 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4514 if (pipe)
4515 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4516
4517 dpll |= DPLL_VCO_ENABLE;
4518 crtc->config.dpll_hw_state.dpll = dpll;
4519
4520 dpll_md = (crtc->config.pixel_multiplier - 1)
4521 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4522 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4523
4524 if (crtc->config.has_dp_encoder)
4525 intel_dp_set_m_n(crtc);
4526
4527 mutex_unlock(&dev_priv->dpio_lock);
4528 }
4529
4530 static void i9xx_update_pll(struct intel_crtc *crtc,
4531 intel_clock_t *reduced_clock,
4532 int num_connectors)
4533 {
4534 struct drm_device *dev = crtc->base.dev;
4535 struct drm_i915_private *dev_priv = dev->dev_private;
4536 u32 dpll;
4537 bool is_sdvo;
4538 struct dpll *clock = &crtc->config.dpll;
4539
4540 i9xx_update_pll_dividers(crtc, reduced_clock);
4541
4542 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4543 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4544
4545 dpll = DPLL_VGA_MODE_DIS;
4546
4547 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4548 dpll |= DPLLB_MODE_LVDS;
4549 else
4550 dpll |= DPLLB_MODE_DAC_SERIAL;
4551
4552 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4553 dpll |= (crtc->config.pixel_multiplier - 1)
4554 << SDVO_MULTIPLIER_SHIFT_HIRES;
4555 }
4556
4557 if (is_sdvo)
4558 dpll |= DPLL_SDVO_HIGH_SPEED;
4559
4560 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4561 dpll |= DPLL_SDVO_HIGH_SPEED;
4562
4563 /* compute bitmask from p1 value */
4564 if (IS_PINEVIEW(dev))
4565 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4566 else {
4567 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4568 if (IS_G4X(dev) && reduced_clock)
4569 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4570 }
4571 switch (clock->p2) {
4572 case 5:
4573 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4574 break;
4575 case 7:
4576 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4577 break;
4578 case 10:
4579 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4580 break;
4581 case 14:
4582 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4583 break;
4584 }
4585 if (INTEL_INFO(dev)->gen >= 4)
4586 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4587
4588 if (crtc->config.sdvo_tv_clock)
4589 dpll |= PLL_REF_INPUT_TVCLKINBC;
4590 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4591 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4592 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4593 else
4594 dpll |= PLL_REF_INPUT_DREFCLK;
4595
4596 dpll |= DPLL_VCO_ENABLE;
4597 crtc->config.dpll_hw_state.dpll = dpll;
4598
4599 if (INTEL_INFO(dev)->gen >= 4) {
4600 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4601 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4602 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4603 }
4604
4605 if (crtc->config.has_dp_encoder)
4606 intel_dp_set_m_n(crtc);
4607 }
4608
4609 static void i8xx_update_pll(struct intel_crtc *crtc,
4610 intel_clock_t *reduced_clock,
4611 int num_connectors)
4612 {
4613 struct drm_device *dev = crtc->base.dev;
4614 struct drm_i915_private *dev_priv = dev->dev_private;
4615 u32 dpll;
4616 struct dpll *clock = &crtc->config.dpll;
4617
4618 i9xx_update_pll_dividers(crtc, reduced_clock);
4619
4620 dpll = DPLL_VGA_MODE_DIS;
4621
4622 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4623 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4624 } else {
4625 if (clock->p1 == 2)
4626 dpll |= PLL_P1_DIVIDE_BY_TWO;
4627 else
4628 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4629 if (clock->p2 == 4)
4630 dpll |= PLL_P2_DIVIDE_BY_4;
4631 }
4632
4633 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4634 dpll |= DPLL_DVO_2X_MODE;
4635
4636 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4637 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4638 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4639 else
4640 dpll |= PLL_REF_INPUT_DREFCLK;
4641
4642 dpll |= DPLL_VCO_ENABLE;
4643 crtc->config.dpll_hw_state.dpll = dpll;
4644 }
4645
4646 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4647 {
4648 struct drm_device *dev = intel_crtc->base.dev;
4649 struct drm_i915_private *dev_priv = dev->dev_private;
4650 enum pipe pipe = intel_crtc->pipe;
4651 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4652 struct drm_display_mode *adjusted_mode =
4653 &intel_crtc->config.adjusted_mode;
4654 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4655 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4656
4657 /* We need to be careful not to changed the adjusted mode, for otherwise
4658 * the hw state checker will get angry at the mismatch. */
4659 crtc_vtotal = adjusted_mode->crtc_vtotal;
4660 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4661
4662 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4663 /* the chip adds 2 halflines automatically */
4664 crtc_vtotal -= 1;
4665 crtc_vblank_end -= 1;
4666 vsyncshift = adjusted_mode->crtc_hsync_start
4667 - adjusted_mode->crtc_htotal / 2;
4668 } else {
4669 vsyncshift = 0;
4670 }
4671
4672 if (INTEL_INFO(dev)->gen > 3)
4673 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4674
4675 I915_WRITE(HTOTAL(cpu_transcoder),
4676 (adjusted_mode->crtc_hdisplay - 1) |
4677 ((adjusted_mode->crtc_htotal - 1) << 16));
4678 I915_WRITE(HBLANK(cpu_transcoder),
4679 (adjusted_mode->crtc_hblank_start - 1) |
4680 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4681 I915_WRITE(HSYNC(cpu_transcoder),
4682 (adjusted_mode->crtc_hsync_start - 1) |
4683 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4684
4685 I915_WRITE(VTOTAL(cpu_transcoder),
4686 (adjusted_mode->crtc_vdisplay - 1) |
4687 ((crtc_vtotal - 1) << 16));
4688 I915_WRITE(VBLANK(cpu_transcoder),
4689 (adjusted_mode->crtc_vblank_start - 1) |
4690 ((crtc_vblank_end - 1) << 16));
4691 I915_WRITE(VSYNC(cpu_transcoder),
4692 (adjusted_mode->crtc_vsync_start - 1) |
4693 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4694
4695 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4696 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4697 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4698 * bits. */
4699 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4700 (pipe == PIPE_B || pipe == PIPE_C))
4701 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4702
4703 /* pipesrc controls the size that is scaled from, which should
4704 * always be the user's requested size.
4705 */
4706 I915_WRITE(PIPESRC(pipe),
4707 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4708 }
4709
4710 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4711 struct intel_crtc_config *pipe_config)
4712 {
4713 struct drm_device *dev = crtc->base.dev;
4714 struct drm_i915_private *dev_priv = dev->dev_private;
4715 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4716 uint32_t tmp;
4717
4718 tmp = I915_READ(HTOTAL(cpu_transcoder));
4719 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4720 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4721 tmp = I915_READ(HBLANK(cpu_transcoder));
4722 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4723 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4724 tmp = I915_READ(HSYNC(cpu_transcoder));
4725 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4726 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4727
4728 tmp = I915_READ(VTOTAL(cpu_transcoder));
4729 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4730 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4731 tmp = I915_READ(VBLANK(cpu_transcoder));
4732 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4733 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4734 tmp = I915_READ(VSYNC(cpu_transcoder));
4735 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4736 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4737
4738 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4739 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4740 pipe_config->adjusted_mode.crtc_vtotal += 1;
4741 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4742 }
4743
4744 tmp = I915_READ(PIPESRC(crtc->pipe));
4745 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4746 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4747 }
4748
4749 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4750 struct intel_crtc_config *pipe_config)
4751 {
4752 struct drm_crtc *crtc = &intel_crtc->base;
4753
4754 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4755 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4756 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4757 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4758
4759 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4760 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4761 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4762 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4763
4764 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4765
4766 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4767 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4768 }
4769
4770 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4771 {
4772 struct drm_device *dev = intel_crtc->base.dev;
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774 uint32_t pipeconf;
4775
4776 pipeconf = 0;
4777
4778 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4779 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4780 * core speed.
4781 *
4782 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4783 * pipe == 0 check?
4784 */
4785 if (intel_crtc->config.requested_mode.clock >
4786 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4787 pipeconf |= PIPECONF_DOUBLE_WIDE;
4788 }
4789
4790 /* only g4x and later have fancy bpc/dither controls */
4791 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4792 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4793 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4794 pipeconf |= PIPECONF_DITHER_EN |
4795 PIPECONF_DITHER_TYPE_SP;
4796
4797 switch (intel_crtc->config.pipe_bpp) {
4798 case 18:
4799 pipeconf |= PIPECONF_6BPC;
4800 break;
4801 case 24:
4802 pipeconf |= PIPECONF_8BPC;
4803 break;
4804 case 30:
4805 pipeconf |= PIPECONF_10BPC;
4806 break;
4807 default:
4808 /* Case prevented by intel_choose_pipe_bpp_dither. */
4809 BUG();
4810 }
4811 }
4812
4813 if (HAS_PIPE_CXSR(dev)) {
4814 if (intel_crtc->lowfreq_avail) {
4815 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4816 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4817 } else {
4818 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4819 }
4820 }
4821
4822 if (!IS_GEN2(dev) &&
4823 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4824 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4825 else
4826 pipeconf |= PIPECONF_PROGRESSIVE;
4827
4828 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4829 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4830
4831 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4832 POSTING_READ(PIPECONF(intel_crtc->pipe));
4833 }
4834
4835 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4836 int x, int y,
4837 struct drm_framebuffer *fb)
4838 {
4839 struct drm_device *dev = crtc->dev;
4840 struct drm_i915_private *dev_priv = dev->dev_private;
4841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4842 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4843 int pipe = intel_crtc->pipe;
4844 int plane = intel_crtc->plane;
4845 int refclk, num_connectors = 0;
4846 intel_clock_t clock, reduced_clock;
4847 u32 dspcntr;
4848 bool ok, has_reduced_clock = false;
4849 bool is_lvds = false;
4850 struct intel_encoder *encoder;
4851 const intel_limit_t *limit;
4852 int ret;
4853
4854 for_each_encoder_on_crtc(dev, crtc, encoder) {
4855 switch (encoder->type) {
4856 case INTEL_OUTPUT_LVDS:
4857 is_lvds = true;
4858 break;
4859 }
4860
4861 num_connectors++;
4862 }
4863
4864 refclk = i9xx_get_refclk(crtc, num_connectors);
4865
4866 /*
4867 * Returns a set of divisors for the desired target clock with the given
4868 * refclk, or FALSE. The returned values represent the clock equation:
4869 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4870 */
4871 limit = intel_limit(crtc, refclk);
4872 ok = dev_priv->display.find_dpll(limit, crtc,
4873 intel_crtc->config.port_clock,
4874 refclk, NULL, &clock);
4875 if (!ok && !intel_crtc->config.clock_set) {
4876 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4877 return -EINVAL;
4878 }
4879
4880 /* Ensure that the cursor is valid for the new mode before changing... */
4881 intel_crtc_update_cursor(crtc, true);
4882
4883 if (is_lvds && dev_priv->lvds_downclock_avail) {
4884 /*
4885 * Ensure we match the reduced clock's P to the target clock.
4886 * If the clocks don't match, we can't switch the display clock
4887 * by using the FP0/FP1. In such case we will disable the LVDS
4888 * downclock feature.
4889 */
4890 has_reduced_clock =
4891 dev_priv->display.find_dpll(limit, crtc,
4892 dev_priv->lvds_downclock,
4893 refclk, &clock,
4894 &reduced_clock);
4895 }
4896 /* Compat-code for transition, will disappear. */
4897 if (!intel_crtc->config.clock_set) {
4898 intel_crtc->config.dpll.n = clock.n;
4899 intel_crtc->config.dpll.m1 = clock.m1;
4900 intel_crtc->config.dpll.m2 = clock.m2;
4901 intel_crtc->config.dpll.p1 = clock.p1;
4902 intel_crtc->config.dpll.p2 = clock.p2;
4903 }
4904
4905 if (IS_GEN2(dev))
4906 i8xx_update_pll(intel_crtc,
4907 has_reduced_clock ? &reduced_clock : NULL,
4908 num_connectors);
4909 else if (IS_VALLEYVIEW(dev))
4910 vlv_update_pll(intel_crtc);
4911 else
4912 i9xx_update_pll(intel_crtc,
4913 has_reduced_clock ? &reduced_clock : NULL,
4914 num_connectors);
4915
4916 /* Set up the display plane register */
4917 dspcntr = DISPPLANE_GAMMA_ENABLE;
4918
4919 if (!IS_VALLEYVIEW(dev)) {
4920 if (pipe == 0)
4921 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4922 else
4923 dspcntr |= DISPPLANE_SEL_PIPE_B;
4924 }
4925
4926 intel_set_pipe_timings(intel_crtc);
4927
4928 /* pipesrc and dspsize control the size that is scaled from,
4929 * which should always be the user's requested size.
4930 */
4931 I915_WRITE(DSPSIZE(plane),
4932 ((mode->vdisplay - 1) << 16) |
4933 (mode->hdisplay - 1));
4934 I915_WRITE(DSPPOS(plane), 0);
4935
4936 i9xx_set_pipeconf(intel_crtc);
4937
4938 I915_WRITE(DSPCNTR(plane), dspcntr);
4939 POSTING_READ(DSPCNTR(plane));
4940
4941 ret = intel_pipe_set_base(crtc, x, y, fb);
4942
4943 intel_update_watermarks(dev);
4944
4945 return ret;
4946 }
4947
4948 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4949 struct intel_crtc_config *pipe_config)
4950 {
4951 struct drm_device *dev = crtc->base.dev;
4952 struct drm_i915_private *dev_priv = dev->dev_private;
4953 uint32_t tmp;
4954
4955 tmp = I915_READ(PFIT_CONTROL);
4956 if (!(tmp & PFIT_ENABLE))
4957 return;
4958
4959 /* Check whether the pfit is attached to our pipe. */
4960 if (INTEL_INFO(dev)->gen < 4) {
4961 if (crtc->pipe != PIPE_B)
4962 return;
4963 } else {
4964 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4965 return;
4966 }
4967
4968 pipe_config->gmch_pfit.control = tmp;
4969 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4970 if (INTEL_INFO(dev)->gen < 5)
4971 pipe_config->gmch_pfit.lvds_border_bits =
4972 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4973 }
4974
4975 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4976 struct intel_crtc_config *pipe_config)
4977 {
4978 struct drm_device *dev = crtc->base.dev;
4979 struct drm_i915_private *dev_priv = dev->dev_private;
4980 uint32_t tmp;
4981
4982 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4983 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4984
4985 tmp = I915_READ(PIPECONF(crtc->pipe));
4986 if (!(tmp & PIPECONF_ENABLE))
4987 return false;
4988
4989 intel_get_pipe_timings(crtc, pipe_config);
4990
4991 i9xx_get_pfit_config(crtc, pipe_config);
4992
4993 if (INTEL_INFO(dev)->gen >= 4) {
4994 tmp = I915_READ(DPLL_MD(crtc->pipe));
4995 pipe_config->pixel_multiplier =
4996 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4997 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4998 pipe_config->dpll_hw_state.dpll_md = tmp;
4999 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5000 tmp = I915_READ(DPLL(crtc->pipe));
5001 pipe_config->pixel_multiplier =
5002 ((tmp & SDVO_MULTIPLIER_MASK)
5003 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5004 } else {
5005 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5006 * port and will be fixed up in the encoder->get_config
5007 * function. */
5008 pipe_config->pixel_multiplier = 1;
5009 }
5010 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5011 if (!IS_VALLEYVIEW(dev)) {
5012 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5013 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5014 } else {
5015 /* Mask out read-only status bits. */
5016 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5017 DPLL_PORTC_READY_MASK |
5018 DPLL_PORTB_READY_MASK);
5019 }
5020
5021 return true;
5022 }
5023
5024 static void ironlake_init_pch_refclk(struct drm_device *dev)
5025 {
5026 struct drm_i915_private *dev_priv = dev->dev_private;
5027 struct drm_mode_config *mode_config = &dev->mode_config;
5028 struct intel_encoder *encoder;
5029 u32 val, final;
5030 bool has_lvds = false;
5031 bool has_cpu_edp = false;
5032 bool has_panel = false;
5033 bool has_ck505 = false;
5034 bool can_ssc = false;
5035
5036 /* We need to take the global config into account */
5037 list_for_each_entry(encoder, &mode_config->encoder_list,
5038 base.head) {
5039 switch (encoder->type) {
5040 case INTEL_OUTPUT_LVDS:
5041 has_panel = true;
5042 has_lvds = true;
5043 break;
5044 case INTEL_OUTPUT_EDP:
5045 has_panel = true;
5046 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5047 has_cpu_edp = true;
5048 break;
5049 }
5050 }
5051
5052 if (HAS_PCH_IBX(dev)) {
5053 has_ck505 = dev_priv->vbt.display_clock_mode;
5054 can_ssc = has_ck505;
5055 } else {
5056 has_ck505 = false;
5057 can_ssc = true;
5058 }
5059
5060 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5061 has_panel, has_lvds, has_ck505);
5062
5063 /* Ironlake: try to setup display ref clock before DPLL
5064 * enabling. This is only under driver's control after
5065 * PCH B stepping, previous chipset stepping should be
5066 * ignoring this setting.
5067 */
5068 val = I915_READ(PCH_DREF_CONTROL);
5069
5070 /* As we must carefully and slowly disable/enable each source in turn,
5071 * compute the final state we want first and check if we need to
5072 * make any changes at all.
5073 */
5074 final = val;
5075 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5076 if (has_ck505)
5077 final |= DREF_NONSPREAD_CK505_ENABLE;
5078 else
5079 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5080
5081 final &= ~DREF_SSC_SOURCE_MASK;
5082 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5083 final &= ~DREF_SSC1_ENABLE;
5084
5085 if (has_panel) {
5086 final |= DREF_SSC_SOURCE_ENABLE;
5087
5088 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5089 final |= DREF_SSC1_ENABLE;
5090
5091 if (has_cpu_edp) {
5092 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5093 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5094 else
5095 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5096 } else
5097 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5098 } else {
5099 final |= DREF_SSC_SOURCE_DISABLE;
5100 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5101 }
5102
5103 if (final == val)
5104 return;
5105
5106 /* Always enable nonspread source */
5107 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5108
5109 if (has_ck505)
5110 val |= DREF_NONSPREAD_CK505_ENABLE;
5111 else
5112 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5113
5114 if (has_panel) {
5115 val &= ~DREF_SSC_SOURCE_MASK;
5116 val |= DREF_SSC_SOURCE_ENABLE;
5117
5118 /* SSC must be turned on before enabling the CPU output */
5119 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5120 DRM_DEBUG_KMS("Using SSC on panel\n");
5121 val |= DREF_SSC1_ENABLE;
5122 } else
5123 val &= ~DREF_SSC1_ENABLE;
5124
5125 /* Get SSC going before enabling the outputs */
5126 I915_WRITE(PCH_DREF_CONTROL, val);
5127 POSTING_READ(PCH_DREF_CONTROL);
5128 udelay(200);
5129
5130 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5131
5132 /* Enable CPU source on CPU attached eDP */
5133 if (has_cpu_edp) {
5134 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5135 DRM_DEBUG_KMS("Using SSC on eDP\n");
5136 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5137 }
5138 else
5139 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5140 } else
5141 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5142
5143 I915_WRITE(PCH_DREF_CONTROL, val);
5144 POSTING_READ(PCH_DREF_CONTROL);
5145 udelay(200);
5146 } else {
5147 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5148
5149 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5150
5151 /* Turn off CPU output */
5152 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5153
5154 I915_WRITE(PCH_DREF_CONTROL, val);
5155 POSTING_READ(PCH_DREF_CONTROL);
5156 udelay(200);
5157
5158 /* Turn off the SSC source */
5159 val &= ~DREF_SSC_SOURCE_MASK;
5160 val |= DREF_SSC_SOURCE_DISABLE;
5161
5162 /* Turn off SSC1 */
5163 val &= ~DREF_SSC1_ENABLE;
5164
5165 I915_WRITE(PCH_DREF_CONTROL, val);
5166 POSTING_READ(PCH_DREF_CONTROL);
5167 udelay(200);
5168 }
5169
5170 BUG_ON(val != final);
5171 }
5172
5173 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5174 {
5175 uint32_t tmp;
5176
5177 tmp = I915_READ(SOUTH_CHICKEN2);
5178 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5179 I915_WRITE(SOUTH_CHICKEN2, tmp);
5180
5181 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5182 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5183 DRM_ERROR("FDI mPHY reset assert timeout\n");
5184
5185 tmp = I915_READ(SOUTH_CHICKEN2);
5186 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5187 I915_WRITE(SOUTH_CHICKEN2, tmp);
5188
5189 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5190 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5191 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5192 }
5193
5194 /* WaMPhyProgramming:hsw */
5195 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5196 {
5197 uint32_t tmp;
5198
5199 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5200 tmp &= ~(0xFF << 24);
5201 tmp |= (0x12 << 24);
5202 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5203
5204 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5205 tmp |= (1 << 11);
5206 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5207
5208 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5209 tmp |= (1 << 11);
5210 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5211
5212 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5213 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5214 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5215
5216 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5217 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5218 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5219
5220 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5221 tmp &= ~(7 << 13);
5222 tmp |= (5 << 13);
5223 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5224
5225 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5226 tmp &= ~(7 << 13);
5227 tmp |= (5 << 13);
5228 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5229
5230 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5231 tmp &= ~0xFF;
5232 tmp |= 0x1C;
5233 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5234
5235 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5236 tmp &= ~0xFF;
5237 tmp |= 0x1C;
5238 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5239
5240 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5241 tmp &= ~(0xFF << 16);
5242 tmp |= (0x1C << 16);
5243 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5244
5245 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5246 tmp &= ~(0xFF << 16);
5247 tmp |= (0x1C << 16);
5248 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5249
5250 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5251 tmp |= (1 << 27);
5252 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5253
5254 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5255 tmp |= (1 << 27);
5256 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5257
5258 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5259 tmp &= ~(0xF << 28);
5260 tmp |= (4 << 28);
5261 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5262
5263 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5264 tmp &= ~(0xF << 28);
5265 tmp |= (4 << 28);
5266 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5267 }
5268
5269 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5270 * Programming" based on the parameters passed:
5271 * - Sequence to enable CLKOUT_DP
5272 * - Sequence to enable CLKOUT_DP without spread
5273 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5274 */
5275 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5276 bool with_fdi)
5277 {
5278 struct drm_i915_private *dev_priv = dev->dev_private;
5279 uint32_t reg, tmp;
5280
5281 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5282 with_spread = true;
5283 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5284 with_fdi, "LP PCH doesn't have FDI\n"))
5285 with_fdi = false;
5286
5287 mutex_lock(&dev_priv->dpio_lock);
5288
5289 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5290 tmp &= ~SBI_SSCCTL_DISABLE;
5291 tmp |= SBI_SSCCTL_PATHALT;
5292 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5293
5294 udelay(24);
5295
5296 if (with_spread) {
5297 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5298 tmp &= ~SBI_SSCCTL_PATHALT;
5299 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5300
5301 if (with_fdi) {
5302 lpt_reset_fdi_mphy(dev_priv);
5303 lpt_program_fdi_mphy(dev_priv);
5304 }
5305 }
5306
5307 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5308 SBI_GEN0 : SBI_DBUFF0;
5309 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5310 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5311 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5312
5313 mutex_unlock(&dev_priv->dpio_lock);
5314 }
5315
5316 /* Sequence to disable CLKOUT_DP */
5317 static void lpt_disable_clkout_dp(struct drm_device *dev)
5318 {
5319 struct drm_i915_private *dev_priv = dev->dev_private;
5320 uint32_t reg, tmp;
5321
5322 mutex_lock(&dev_priv->dpio_lock);
5323
5324 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5325 SBI_GEN0 : SBI_DBUFF0;
5326 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5327 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5328 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5329
5330 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5331 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5332 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5333 tmp |= SBI_SSCCTL_PATHALT;
5334 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5335 udelay(32);
5336 }
5337 tmp |= SBI_SSCCTL_DISABLE;
5338 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5339 }
5340
5341 mutex_unlock(&dev_priv->dpio_lock);
5342 }
5343
5344 static void lpt_init_pch_refclk(struct drm_device *dev)
5345 {
5346 struct drm_mode_config *mode_config = &dev->mode_config;
5347 struct intel_encoder *encoder;
5348 bool has_vga = false;
5349
5350 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5351 switch (encoder->type) {
5352 case INTEL_OUTPUT_ANALOG:
5353 has_vga = true;
5354 break;
5355 }
5356 }
5357
5358 if (has_vga)
5359 lpt_enable_clkout_dp(dev, true, true);
5360 else
5361 lpt_disable_clkout_dp(dev);
5362 }
5363
5364 /*
5365 * Initialize reference clocks when the driver loads
5366 */
5367 void intel_init_pch_refclk(struct drm_device *dev)
5368 {
5369 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5370 ironlake_init_pch_refclk(dev);
5371 else if (HAS_PCH_LPT(dev))
5372 lpt_init_pch_refclk(dev);
5373 }
5374
5375 static int ironlake_get_refclk(struct drm_crtc *crtc)
5376 {
5377 struct drm_device *dev = crtc->dev;
5378 struct drm_i915_private *dev_priv = dev->dev_private;
5379 struct intel_encoder *encoder;
5380 int num_connectors = 0;
5381 bool is_lvds = false;
5382
5383 for_each_encoder_on_crtc(dev, crtc, encoder) {
5384 switch (encoder->type) {
5385 case INTEL_OUTPUT_LVDS:
5386 is_lvds = true;
5387 break;
5388 }
5389 num_connectors++;
5390 }
5391
5392 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5393 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5394 dev_priv->vbt.lvds_ssc_freq);
5395 return dev_priv->vbt.lvds_ssc_freq * 1000;
5396 }
5397
5398 return 120000;
5399 }
5400
5401 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5402 {
5403 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5405 int pipe = intel_crtc->pipe;
5406 uint32_t val;
5407
5408 val = 0;
5409
5410 switch (intel_crtc->config.pipe_bpp) {
5411 case 18:
5412 val |= PIPECONF_6BPC;
5413 break;
5414 case 24:
5415 val |= PIPECONF_8BPC;
5416 break;
5417 case 30:
5418 val |= PIPECONF_10BPC;
5419 break;
5420 case 36:
5421 val |= PIPECONF_12BPC;
5422 break;
5423 default:
5424 /* Case prevented by intel_choose_pipe_bpp_dither. */
5425 BUG();
5426 }
5427
5428 if (intel_crtc->config.dither)
5429 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5430
5431 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5432 val |= PIPECONF_INTERLACED_ILK;
5433 else
5434 val |= PIPECONF_PROGRESSIVE;
5435
5436 if (intel_crtc->config.limited_color_range)
5437 val |= PIPECONF_COLOR_RANGE_SELECT;
5438
5439 I915_WRITE(PIPECONF(pipe), val);
5440 POSTING_READ(PIPECONF(pipe));
5441 }
5442
5443 /*
5444 * Set up the pipe CSC unit.
5445 *
5446 * Currently only full range RGB to limited range RGB conversion
5447 * is supported, but eventually this should handle various
5448 * RGB<->YCbCr scenarios as well.
5449 */
5450 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5451 {
5452 struct drm_device *dev = crtc->dev;
5453 struct drm_i915_private *dev_priv = dev->dev_private;
5454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5455 int pipe = intel_crtc->pipe;
5456 uint16_t coeff = 0x7800; /* 1.0 */
5457
5458 /*
5459 * TODO: Check what kind of values actually come out of the pipe
5460 * with these coeff/postoff values and adjust to get the best
5461 * accuracy. Perhaps we even need to take the bpc value into
5462 * consideration.
5463 */
5464
5465 if (intel_crtc->config.limited_color_range)
5466 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5467
5468 /*
5469 * GY/GU and RY/RU should be the other way around according
5470 * to BSpec, but reality doesn't agree. Just set them up in
5471 * a way that results in the correct picture.
5472 */
5473 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5474 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5475
5476 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5477 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5478
5479 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5480 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5481
5482 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5483 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5484 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5485
5486 if (INTEL_INFO(dev)->gen > 6) {
5487 uint16_t postoff = 0;
5488
5489 if (intel_crtc->config.limited_color_range)
5490 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5491
5492 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5493 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5494 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5495
5496 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5497 } else {
5498 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5499
5500 if (intel_crtc->config.limited_color_range)
5501 mode |= CSC_BLACK_SCREEN_OFFSET;
5502
5503 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5504 }
5505 }
5506
5507 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5508 {
5509 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5511 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5512 uint32_t val;
5513
5514 val = 0;
5515
5516 if (intel_crtc->config.dither)
5517 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5518
5519 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5520 val |= PIPECONF_INTERLACED_ILK;
5521 else
5522 val |= PIPECONF_PROGRESSIVE;
5523
5524 I915_WRITE(PIPECONF(cpu_transcoder), val);
5525 POSTING_READ(PIPECONF(cpu_transcoder));
5526
5527 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5528 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5529 }
5530
5531 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5532 intel_clock_t *clock,
5533 bool *has_reduced_clock,
5534 intel_clock_t *reduced_clock)
5535 {
5536 struct drm_device *dev = crtc->dev;
5537 struct drm_i915_private *dev_priv = dev->dev_private;
5538 struct intel_encoder *intel_encoder;
5539 int refclk;
5540 const intel_limit_t *limit;
5541 bool ret, is_lvds = false;
5542
5543 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5544 switch (intel_encoder->type) {
5545 case INTEL_OUTPUT_LVDS:
5546 is_lvds = true;
5547 break;
5548 }
5549 }
5550
5551 refclk = ironlake_get_refclk(crtc);
5552
5553 /*
5554 * Returns a set of divisors for the desired target clock with the given
5555 * refclk, or FALSE. The returned values represent the clock equation:
5556 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5557 */
5558 limit = intel_limit(crtc, refclk);
5559 ret = dev_priv->display.find_dpll(limit, crtc,
5560 to_intel_crtc(crtc)->config.port_clock,
5561 refclk, NULL, clock);
5562 if (!ret)
5563 return false;
5564
5565 if (is_lvds && dev_priv->lvds_downclock_avail) {
5566 /*
5567 * Ensure we match the reduced clock's P to the target clock.
5568 * If the clocks don't match, we can't switch the display clock
5569 * by using the FP0/FP1. In such case we will disable the LVDS
5570 * downclock feature.
5571 */
5572 *has_reduced_clock =
5573 dev_priv->display.find_dpll(limit, crtc,
5574 dev_priv->lvds_downclock,
5575 refclk, clock,
5576 reduced_clock);
5577 }
5578
5579 return true;
5580 }
5581
5582 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5583 {
5584 struct drm_i915_private *dev_priv = dev->dev_private;
5585 uint32_t temp;
5586
5587 temp = I915_READ(SOUTH_CHICKEN1);
5588 if (temp & FDI_BC_BIFURCATION_SELECT)
5589 return;
5590
5591 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5592 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5593
5594 temp |= FDI_BC_BIFURCATION_SELECT;
5595 DRM_DEBUG_KMS("enabling fdi C rx\n");
5596 I915_WRITE(SOUTH_CHICKEN1, temp);
5597 POSTING_READ(SOUTH_CHICKEN1);
5598 }
5599
5600 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5601 {
5602 struct drm_device *dev = intel_crtc->base.dev;
5603 struct drm_i915_private *dev_priv = dev->dev_private;
5604
5605 switch (intel_crtc->pipe) {
5606 case PIPE_A:
5607 break;
5608 case PIPE_B:
5609 if (intel_crtc->config.fdi_lanes > 2)
5610 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5611 else
5612 cpt_enable_fdi_bc_bifurcation(dev);
5613
5614 break;
5615 case PIPE_C:
5616 cpt_enable_fdi_bc_bifurcation(dev);
5617
5618 break;
5619 default:
5620 BUG();
5621 }
5622 }
5623
5624 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5625 {
5626 /*
5627 * Account for spread spectrum to avoid
5628 * oversubscribing the link. Max center spread
5629 * is 2.5%; use 5% for safety's sake.
5630 */
5631 u32 bps = target_clock * bpp * 21 / 20;
5632 return bps / (link_bw * 8) + 1;
5633 }
5634
5635 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5636 {
5637 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5638 }
5639
5640 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5641 u32 *fp,
5642 intel_clock_t *reduced_clock, u32 *fp2)
5643 {
5644 struct drm_crtc *crtc = &intel_crtc->base;
5645 struct drm_device *dev = crtc->dev;
5646 struct drm_i915_private *dev_priv = dev->dev_private;
5647 struct intel_encoder *intel_encoder;
5648 uint32_t dpll;
5649 int factor, num_connectors = 0;
5650 bool is_lvds = false, is_sdvo = false;
5651
5652 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5653 switch (intel_encoder->type) {
5654 case INTEL_OUTPUT_LVDS:
5655 is_lvds = true;
5656 break;
5657 case INTEL_OUTPUT_SDVO:
5658 case INTEL_OUTPUT_HDMI:
5659 is_sdvo = true;
5660 break;
5661 }
5662
5663 num_connectors++;
5664 }
5665
5666 /* Enable autotuning of the PLL clock (if permissible) */
5667 factor = 21;
5668 if (is_lvds) {
5669 if ((intel_panel_use_ssc(dev_priv) &&
5670 dev_priv->vbt.lvds_ssc_freq == 100) ||
5671 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5672 factor = 25;
5673 } else if (intel_crtc->config.sdvo_tv_clock)
5674 factor = 20;
5675
5676 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5677 *fp |= FP_CB_TUNE;
5678
5679 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5680 *fp2 |= FP_CB_TUNE;
5681
5682 dpll = 0;
5683
5684 if (is_lvds)
5685 dpll |= DPLLB_MODE_LVDS;
5686 else
5687 dpll |= DPLLB_MODE_DAC_SERIAL;
5688
5689 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5690 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5691
5692 if (is_sdvo)
5693 dpll |= DPLL_SDVO_HIGH_SPEED;
5694 if (intel_crtc->config.has_dp_encoder)
5695 dpll |= DPLL_SDVO_HIGH_SPEED;
5696
5697 /* compute bitmask from p1 value */
5698 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5699 /* also FPA1 */
5700 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5701
5702 switch (intel_crtc->config.dpll.p2) {
5703 case 5:
5704 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5705 break;
5706 case 7:
5707 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5708 break;
5709 case 10:
5710 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5711 break;
5712 case 14:
5713 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5714 break;
5715 }
5716
5717 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5718 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5719 else
5720 dpll |= PLL_REF_INPUT_DREFCLK;
5721
5722 return dpll | DPLL_VCO_ENABLE;
5723 }
5724
5725 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5726 int x, int y,
5727 struct drm_framebuffer *fb)
5728 {
5729 struct drm_device *dev = crtc->dev;
5730 struct drm_i915_private *dev_priv = dev->dev_private;
5731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5732 int pipe = intel_crtc->pipe;
5733 int plane = intel_crtc->plane;
5734 int num_connectors = 0;
5735 intel_clock_t clock, reduced_clock;
5736 u32 dpll = 0, fp = 0, fp2 = 0;
5737 bool ok, has_reduced_clock = false;
5738 bool is_lvds = false;
5739 struct intel_encoder *encoder;
5740 struct intel_shared_dpll *pll;
5741 int ret;
5742
5743 for_each_encoder_on_crtc(dev, crtc, encoder) {
5744 switch (encoder->type) {
5745 case INTEL_OUTPUT_LVDS:
5746 is_lvds = true;
5747 break;
5748 }
5749
5750 num_connectors++;
5751 }
5752
5753 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5754 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5755
5756 ok = ironlake_compute_clocks(crtc, &clock,
5757 &has_reduced_clock, &reduced_clock);
5758 if (!ok && !intel_crtc->config.clock_set) {
5759 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5760 return -EINVAL;
5761 }
5762 /* Compat-code for transition, will disappear. */
5763 if (!intel_crtc->config.clock_set) {
5764 intel_crtc->config.dpll.n = clock.n;
5765 intel_crtc->config.dpll.m1 = clock.m1;
5766 intel_crtc->config.dpll.m2 = clock.m2;
5767 intel_crtc->config.dpll.p1 = clock.p1;
5768 intel_crtc->config.dpll.p2 = clock.p2;
5769 }
5770
5771 /* Ensure that the cursor is valid for the new mode before changing... */
5772 intel_crtc_update_cursor(crtc, true);
5773
5774 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5775 if (intel_crtc->config.has_pch_encoder) {
5776 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5777 if (has_reduced_clock)
5778 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5779
5780 dpll = ironlake_compute_dpll(intel_crtc,
5781 &fp, &reduced_clock,
5782 has_reduced_clock ? &fp2 : NULL);
5783
5784 intel_crtc->config.dpll_hw_state.dpll = dpll;
5785 intel_crtc->config.dpll_hw_state.fp0 = fp;
5786 if (has_reduced_clock)
5787 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5788 else
5789 intel_crtc->config.dpll_hw_state.fp1 = fp;
5790
5791 pll = intel_get_shared_dpll(intel_crtc);
5792 if (pll == NULL) {
5793 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5794 pipe_name(pipe));
5795 return -EINVAL;
5796 }
5797 } else
5798 intel_put_shared_dpll(intel_crtc);
5799
5800 if (intel_crtc->config.has_dp_encoder)
5801 intel_dp_set_m_n(intel_crtc);
5802
5803 if (is_lvds && has_reduced_clock && i915_powersave)
5804 intel_crtc->lowfreq_avail = true;
5805 else
5806 intel_crtc->lowfreq_avail = false;
5807
5808 if (intel_crtc->config.has_pch_encoder) {
5809 pll = intel_crtc_to_shared_dpll(intel_crtc);
5810
5811 }
5812
5813 intel_set_pipe_timings(intel_crtc);
5814
5815 if (intel_crtc->config.has_pch_encoder) {
5816 intel_cpu_transcoder_set_m_n(intel_crtc,
5817 &intel_crtc->config.fdi_m_n);
5818 }
5819
5820 if (IS_IVYBRIDGE(dev))
5821 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5822
5823 ironlake_set_pipeconf(crtc);
5824
5825 /* Set up the display plane register */
5826 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5827 POSTING_READ(DSPCNTR(plane));
5828
5829 ret = intel_pipe_set_base(crtc, x, y, fb);
5830
5831 intel_update_watermarks(dev);
5832
5833 return ret;
5834 }
5835
5836 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5837 struct intel_crtc_config *pipe_config)
5838 {
5839 struct drm_device *dev = crtc->base.dev;
5840 struct drm_i915_private *dev_priv = dev->dev_private;
5841 enum transcoder transcoder = pipe_config->cpu_transcoder;
5842
5843 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5844 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5845 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5846 & ~TU_SIZE_MASK;
5847 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5848 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5849 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5850 }
5851
5852 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5853 struct intel_crtc_config *pipe_config)
5854 {
5855 struct drm_device *dev = crtc->base.dev;
5856 struct drm_i915_private *dev_priv = dev->dev_private;
5857 uint32_t tmp;
5858
5859 tmp = I915_READ(PF_CTL(crtc->pipe));
5860
5861 if (tmp & PF_ENABLE) {
5862 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5863 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5864
5865 /* We currently do not free assignements of panel fitters on
5866 * ivb/hsw (since we don't use the higher upscaling modes which
5867 * differentiates them) so just WARN about this case for now. */
5868 if (IS_GEN7(dev)) {
5869 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5870 PF_PIPE_SEL_IVB(crtc->pipe));
5871 }
5872 }
5873 }
5874
5875 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5876 struct intel_crtc_config *pipe_config)
5877 {
5878 struct drm_device *dev = crtc->base.dev;
5879 struct drm_i915_private *dev_priv = dev->dev_private;
5880 uint32_t tmp;
5881
5882 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5883 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5884
5885 tmp = I915_READ(PIPECONF(crtc->pipe));
5886 if (!(tmp & PIPECONF_ENABLE))
5887 return false;
5888
5889 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5890 struct intel_shared_dpll *pll;
5891
5892 pipe_config->has_pch_encoder = true;
5893
5894 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5895 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5896 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5897
5898 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5899
5900 if (HAS_PCH_IBX(dev_priv->dev)) {
5901 pipe_config->shared_dpll =
5902 (enum intel_dpll_id) crtc->pipe;
5903 } else {
5904 tmp = I915_READ(PCH_DPLL_SEL);
5905 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5906 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5907 else
5908 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5909 }
5910
5911 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5912
5913 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5914 &pipe_config->dpll_hw_state));
5915
5916 tmp = pipe_config->dpll_hw_state.dpll;
5917 pipe_config->pixel_multiplier =
5918 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5919 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5920 } else {
5921 pipe_config->pixel_multiplier = 1;
5922 }
5923
5924 intel_get_pipe_timings(crtc, pipe_config);
5925
5926 ironlake_get_pfit_config(crtc, pipe_config);
5927
5928 return true;
5929 }
5930
5931 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5932 {
5933 struct drm_device *dev = dev_priv->dev;
5934 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5935 struct intel_crtc *crtc;
5936 unsigned long irqflags;
5937 uint32_t val, pch_hpd_mask;
5938
5939 pch_hpd_mask = SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT;
5940 if (!(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE))
5941 pch_hpd_mask |= SDE_PORTD_HOTPLUG_CPT | SDE_CRT_HOTPLUG_CPT;
5942
5943 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5944 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5945 pipe_name(crtc->pipe));
5946
5947 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5948 WARN(plls->spll_refcount, "SPLL enabled\n");
5949 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5950 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5951 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5952 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5953 "CPU PWM1 enabled\n");
5954 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5955 "CPU PWM2 enabled\n");
5956 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5957 "PCH PWM1 enabled\n");
5958 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5959 "Utility pin enabled\n");
5960 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5961
5962 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5963 val = I915_READ(DEIMR);
5964 WARN((val & ~DE_PCH_EVENT_IVB) != val,
5965 "Unexpected DEIMR bits enabled: 0x%x\n", val);
5966 val = I915_READ(SDEIMR);
5967 WARN((val & ~pch_hpd_mask) != val,
5968 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5969 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5970 }
5971
5972 /*
5973 * This function implements pieces of two sequences from BSpec:
5974 * - Sequence for display software to disable LCPLL
5975 * - Sequence for display software to allow package C8+
5976 * The steps implemented here are just the steps that actually touch the LCPLL
5977 * register. Callers should take care of disabling all the display engine
5978 * functions, doing the mode unset, fixing interrupts, etc.
5979 */
5980 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5981 bool switch_to_fclk, bool allow_power_down)
5982 {
5983 uint32_t val;
5984
5985 assert_can_disable_lcpll(dev_priv);
5986
5987 val = I915_READ(LCPLL_CTL);
5988
5989 if (switch_to_fclk) {
5990 val |= LCPLL_CD_SOURCE_FCLK;
5991 I915_WRITE(LCPLL_CTL, val);
5992
5993 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5994 LCPLL_CD_SOURCE_FCLK_DONE, 1))
5995 DRM_ERROR("Switching to FCLK failed\n");
5996
5997 val = I915_READ(LCPLL_CTL);
5998 }
5999
6000 val |= LCPLL_PLL_DISABLE;
6001 I915_WRITE(LCPLL_CTL, val);
6002 POSTING_READ(LCPLL_CTL);
6003
6004 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6005 DRM_ERROR("LCPLL still locked\n");
6006
6007 val = I915_READ(D_COMP);
6008 val |= D_COMP_COMP_DISABLE;
6009 I915_WRITE(D_COMP, val);
6010 POSTING_READ(D_COMP);
6011 ndelay(100);
6012
6013 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6014 DRM_ERROR("D_COMP RCOMP still in progress\n");
6015
6016 if (allow_power_down) {
6017 val = I915_READ(LCPLL_CTL);
6018 val |= LCPLL_POWER_DOWN_ALLOW;
6019 I915_WRITE(LCPLL_CTL, val);
6020 POSTING_READ(LCPLL_CTL);
6021 }
6022 }
6023
6024 /*
6025 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6026 * source.
6027 */
6028 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6029 {
6030 uint32_t val;
6031
6032 val = I915_READ(LCPLL_CTL);
6033
6034 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6035 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6036 return;
6037
6038 if (val & LCPLL_POWER_DOWN_ALLOW) {
6039 val &= ~LCPLL_POWER_DOWN_ALLOW;
6040 I915_WRITE(LCPLL_CTL, val);
6041 }
6042
6043 val = I915_READ(D_COMP);
6044 val |= D_COMP_COMP_FORCE;
6045 val &= ~D_COMP_COMP_DISABLE;
6046 I915_WRITE(D_COMP, val);
6047 I915_READ(D_COMP);
6048
6049 val = I915_READ(LCPLL_CTL);
6050 val &= ~LCPLL_PLL_DISABLE;
6051 I915_WRITE(LCPLL_CTL, val);
6052
6053 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6054 DRM_ERROR("LCPLL not locked yet\n");
6055
6056 if (val & LCPLL_CD_SOURCE_FCLK) {
6057 val = I915_READ(LCPLL_CTL);
6058 val &= ~LCPLL_CD_SOURCE_FCLK;
6059 I915_WRITE(LCPLL_CTL, val);
6060
6061 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6062 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6063 DRM_ERROR("Switching back to LCPLL failed\n");
6064 }
6065 }
6066
6067 static void haswell_modeset_global_resources(struct drm_device *dev)
6068 {
6069 bool enable = false;
6070 struct intel_crtc *crtc;
6071
6072 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6073 if (!crtc->base.enabled)
6074 continue;
6075
6076 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6077 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6078 enable = true;
6079 }
6080
6081 intel_set_power_well(dev, enable);
6082 }
6083
6084 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6085 int x, int y,
6086 struct drm_framebuffer *fb)
6087 {
6088 struct drm_device *dev = crtc->dev;
6089 struct drm_i915_private *dev_priv = dev->dev_private;
6090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6091 int plane = intel_crtc->plane;
6092 int ret;
6093
6094 if (!intel_ddi_pll_mode_set(crtc))
6095 return -EINVAL;
6096
6097 /* Ensure that the cursor is valid for the new mode before changing... */
6098 intel_crtc_update_cursor(crtc, true);
6099
6100 if (intel_crtc->config.has_dp_encoder)
6101 intel_dp_set_m_n(intel_crtc);
6102
6103 intel_crtc->lowfreq_avail = false;
6104
6105 intel_set_pipe_timings(intel_crtc);
6106
6107 if (intel_crtc->config.has_pch_encoder) {
6108 intel_cpu_transcoder_set_m_n(intel_crtc,
6109 &intel_crtc->config.fdi_m_n);
6110 }
6111
6112 haswell_set_pipeconf(crtc);
6113
6114 intel_set_pipe_csc(crtc);
6115
6116 /* Set up the display plane register */
6117 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6118 POSTING_READ(DSPCNTR(plane));
6119
6120 ret = intel_pipe_set_base(crtc, x, y, fb);
6121
6122 intel_update_watermarks(dev);
6123
6124 return ret;
6125 }
6126
6127 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6128 struct intel_crtc_config *pipe_config)
6129 {
6130 struct drm_device *dev = crtc->base.dev;
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 enum intel_display_power_domain pfit_domain;
6133 uint32_t tmp;
6134
6135 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6136 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6137
6138 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6139 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6140 enum pipe trans_edp_pipe;
6141 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6142 default:
6143 WARN(1, "unknown pipe linked to edp transcoder\n");
6144 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6145 case TRANS_DDI_EDP_INPUT_A_ON:
6146 trans_edp_pipe = PIPE_A;
6147 break;
6148 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6149 trans_edp_pipe = PIPE_B;
6150 break;
6151 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6152 trans_edp_pipe = PIPE_C;
6153 break;
6154 }
6155
6156 if (trans_edp_pipe == crtc->pipe)
6157 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6158 }
6159
6160 if (!intel_display_power_enabled(dev,
6161 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6162 return false;
6163
6164 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6165 if (!(tmp & PIPECONF_ENABLE))
6166 return false;
6167
6168 /*
6169 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6170 * DDI E. So just check whether this pipe is wired to DDI E and whether
6171 * the PCH transcoder is on.
6172 */
6173 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6174 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6175 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6176 pipe_config->has_pch_encoder = true;
6177
6178 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6179 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6180 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6181
6182 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6183 }
6184
6185 intel_get_pipe_timings(crtc, pipe_config);
6186
6187 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6188 if (intel_display_power_enabled(dev, pfit_domain))
6189 ironlake_get_pfit_config(crtc, pipe_config);
6190
6191 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6192 (I915_READ(IPS_CTL) & IPS_ENABLE);
6193
6194 pipe_config->pixel_multiplier = 1;
6195
6196 return true;
6197 }
6198
6199 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6200 int x, int y,
6201 struct drm_framebuffer *fb)
6202 {
6203 struct drm_device *dev = crtc->dev;
6204 struct drm_i915_private *dev_priv = dev->dev_private;
6205 struct intel_encoder *encoder;
6206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6208 int pipe = intel_crtc->pipe;
6209 int ret;
6210
6211 drm_vblank_pre_modeset(dev, pipe);
6212
6213 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6214
6215 drm_vblank_post_modeset(dev, pipe);
6216
6217 if (ret != 0)
6218 return ret;
6219
6220 for_each_encoder_on_crtc(dev, crtc, encoder) {
6221 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6222 encoder->base.base.id,
6223 drm_get_encoder_name(&encoder->base),
6224 mode->base.id, mode->name);
6225 encoder->mode_set(encoder);
6226 }
6227
6228 return 0;
6229 }
6230
6231 static bool intel_eld_uptodate(struct drm_connector *connector,
6232 int reg_eldv, uint32_t bits_eldv,
6233 int reg_elda, uint32_t bits_elda,
6234 int reg_edid)
6235 {
6236 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6237 uint8_t *eld = connector->eld;
6238 uint32_t i;
6239
6240 i = I915_READ(reg_eldv);
6241 i &= bits_eldv;
6242
6243 if (!eld[0])
6244 return !i;
6245
6246 if (!i)
6247 return false;
6248
6249 i = I915_READ(reg_elda);
6250 i &= ~bits_elda;
6251 I915_WRITE(reg_elda, i);
6252
6253 for (i = 0; i < eld[2]; i++)
6254 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6255 return false;
6256
6257 return true;
6258 }
6259
6260 static void g4x_write_eld(struct drm_connector *connector,
6261 struct drm_crtc *crtc)
6262 {
6263 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6264 uint8_t *eld = connector->eld;
6265 uint32_t eldv;
6266 uint32_t len;
6267 uint32_t i;
6268
6269 i = I915_READ(G4X_AUD_VID_DID);
6270
6271 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6272 eldv = G4X_ELDV_DEVCL_DEVBLC;
6273 else
6274 eldv = G4X_ELDV_DEVCTG;
6275
6276 if (intel_eld_uptodate(connector,
6277 G4X_AUD_CNTL_ST, eldv,
6278 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6279 G4X_HDMIW_HDMIEDID))
6280 return;
6281
6282 i = I915_READ(G4X_AUD_CNTL_ST);
6283 i &= ~(eldv | G4X_ELD_ADDR);
6284 len = (i >> 9) & 0x1f; /* ELD buffer size */
6285 I915_WRITE(G4X_AUD_CNTL_ST, i);
6286
6287 if (!eld[0])
6288 return;
6289
6290 len = min_t(uint8_t, eld[2], len);
6291 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6292 for (i = 0; i < len; i++)
6293 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6294
6295 i = I915_READ(G4X_AUD_CNTL_ST);
6296 i |= eldv;
6297 I915_WRITE(G4X_AUD_CNTL_ST, i);
6298 }
6299
6300 static void haswell_write_eld(struct drm_connector *connector,
6301 struct drm_crtc *crtc)
6302 {
6303 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6304 uint8_t *eld = connector->eld;
6305 struct drm_device *dev = crtc->dev;
6306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6307 uint32_t eldv;
6308 uint32_t i;
6309 int len;
6310 int pipe = to_intel_crtc(crtc)->pipe;
6311 int tmp;
6312
6313 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6314 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6315 int aud_config = HSW_AUD_CFG(pipe);
6316 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6317
6318
6319 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6320
6321 /* Audio output enable */
6322 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6323 tmp = I915_READ(aud_cntrl_st2);
6324 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6325 I915_WRITE(aud_cntrl_st2, tmp);
6326
6327 /* Wait for 1 vertical blank */
6328 intel_wait_for_vblank(dev, pipe);
6329
6330 /* Set ELD valid state */
6331 tmp = I915_READ(aud_cntrl_st2);
6332 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6333 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6334 I915_WRITE(aud_cntrl_st2, tmp);
6335 tmp = I915_READ(aud_cntrl_st2);
6336 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6337
6338 /* Enable HDMI mode */
6339 tmp = I915_READ(aud_config);
6340 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6341 /* clear N_programing_enable and N_value_index */
6342 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6343 I915_WRITE(aud_config, tmp);
6344
6345 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6346
6347 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6348 intel_crtc->eld_vld = true;
6349
6350 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6351 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6352 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6353 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6354 } else
6355 I915_WRITE(aud_config, 0);
6356
6357 if (intel_eld_uptodate(connector,
6358 aud_cntrl_st2, eldv,
6359 aud_cntl_st, IBX_ELD_ADDRESS,
6360 hdmiw_hdmiedid))
6361 return;
6362
6363 i = I915_READ(aud_cntrl_st2);
6364 i &= ~eldv;
6365 I915_WRITE(aud_cntrl_st2, i);
6366
6367 if (!eld[0])
6368 return;
6369
6370 i = I915_READ(aud_cntl_st);
6371 i &= ~IBX_ELD_ADDRESS;
6372 I915_WRITE(aud_cntl_st, i);
6373 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6374 DRM_DEBUG_DRIVER("port num:%d\n", i);
6375
6376 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6377 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6378 for (i = 0; i < len; i++)
6379 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6380
6381 i = I915_READ(aud_cntrl_st2);
6382 i |= eldv;
6383 I915_WRITE(aud_cntrl_st2, i);
6384
6385 }
6386
6387 static void ironlake_write_eld(struct drm_connector *connector,
6388 struct drm_crtc *crtc)
6389 {
6390 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6391 uint8_t *eld = connector->eld;
6392 uint32_t eldv;
6393 uint32_t i;
6394 int len;
6395 int hdmiw_hdmiedid;
6396 int aud_config;
6397 int aud_cntl_st;
6398 int aud_cntrl_st2;
6399 int pipe = to_intel_crtc(crtc)->pipe;
6400
6401 if (HAS_PCH_IBX(connector->dev)) {
6402 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6403 aud_config = IBX_AUD_CFG(pipe);
6404 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6405 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6406 } else {
6407 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6408 aud_config = CPT_AUD_CFG(pipe);
6409 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6410 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6411 }
6412
6413 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6414
6415 i = I915_READ(aud_cntl_st);
6416 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6417 if (!i) {
6418 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6419 /* operate blindly on all ports */
6420 eldv = IBX_ELD_VALIDB;
6421 eldv |= IBX_ELD_VALIDB << 4;
6422 eldv |= IBX_ELD_VALIDB << 8;
6423 } else {
6424 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6425 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6426 }
6427
6428 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6429 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6430 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6431 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6432 } else
6433 I915_WRITE(aud_config, 0);
6434
6435 if (intel_eld_uptodate(connector,
6436 aud_cntrl_st2, eldv,
6437 aud_cntl_st, IBX_ELD_ADDRESS,
6438 hdmiw_hdmiedid))
6439 return;
6440
6441 i = I915_READ(aud_cntrl_st2);
6442 i &= ~eldv;
6443 I915_WRITE(aud_cntrl_st2, i);
6444
6445 if (!eld[0])
6446 return;
6447
6448 i = I915_READ(aud_cntl_st);
6449 i &= ~IBX_ELD_ADDRESS;
6450 I915_WRITE(aud_cntl_st, i);
6451
6452 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6453 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6454 for (i = 0; i < len; i++)
6455 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6456
6457 i = I915_READ(aud_cntrl_st2);
6458 i |= eldv;
6459 I915_WRITE(aud_cntrl_st2, i);
6460 }
6461
6462 void intel_write_eld(struct drm_encoder *encoder,
6463 struct drm_display_mode *mode)
6464 {
6465 struct drm_crtc *crtc = encoder->crtc;
6466 struct drm_connector *connector;
6467 struct drm_device *dev = encoder->dev;
6468 struct drm_i915_private *dev_priv = dev->dev_private;
6469
6470 connector = drm_select_eld(encoder, mode);
6471 if (!connector)
6472 return;
6473
6474 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6475 connector->base.id,
6476 drm_get_connector_name(connector),
6477 connector->encoder->base.id,
6478 drm_get_encoder_name(connector->encoder));
6479
6480 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6481
6482 if (dev_priv->display.write_eld)
6483 dev_priv->display.write_eld(connector, crtc);
6484 }
6485
6486 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6487 void intel_crtc_load_lut(struct drm_crtc *crtc)
6488 {
6489 struct drm_device *dev = crtc->dev;
6490 struct drm_i915_private *dev_priv = dev->dev_private;
6491 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6492 enum pipe pipe = intel_crtc->pipe;
6493 int palreg = PALETTE(pipe);
6494 int i;
6495 bool reenable_ips = false;
6496
6497 /* The clocks have to be on to load the palette. */
6498 if (!crtc->enabled || !intel_crtc->active)
6499 return;
6500
6501 if (!HAS_PCH_SPLIT(dev_priv->dev))
6502 assert_pll_enabled(dev_priv, pipe);
6503
6504 /* use legacy palette for Ironlake */
6505 if (HAS_PCH_SPLIT(dev))
6506 palreg = LGC_PALETTE(pipe);
6507
6508 /* Workaround : Do not read or write the pipe palette/gamma data while
6509 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6510 */
6511 if (intel_crtc->config.ips_enabled &&
6512 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6513 GAMMA_MODE_MODE_SPLIT)) {
6514 hsw_disable_ips(intel_crtc);
6515 reenable_ips = true;
6516 }
6517
6518 for (i = 0; i < 256; i++) {
6519 I915_WRITE(palreg + 4 * i,
6520 (intel_crtc->lut_r[i] << 16) |
6521 (intel_crtc->lut_g[i] << 8) |
6522 intel_crtc->lut_b[i]);
6523 }
6524
6525 if (reenable_ips)
6526 hsw_enable_ips(intel_crtc);
6527 }
6528
6529 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6530 {
6531 struct drm_device *dev = crtc->dev;
6532 struct drm_i915_private *dev_priv = dev->dev_private;
6533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6534 bool visible = base != 0;
6535 u32 cntl;
6536
6537 if (intel_crtc->cursor_visible == visible)
6538 return;
6539
6540 cntl = I915_READ(_CURACNTR);
6541 if (visible) {
6542 /* On these chipsets we can only modify the base whilst
6543 * the cursor is disabled.
6544 */
6545 I915_WRITE(_CURABASE, base);
6546
6547 cntl &= ~(CURSOR_FORMAT_MASK);
6548 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6549 cntl |= CURSOR_ENABLE |
6550 CURSOR_GAMMA_ENABLE |
6551 CURSOR_FORMAT_ARGB;
6552 } else
6553 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6554 I915_WRITE(_CURACNTR, cntl);
6555
6556 intel_crtc->cursor_visible = visible;
6557 }
6558
6559 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6560 {
6561 struct drm_device *dev = crtc->dev;
6562 struct drm_i915_private *dev_priv = dev->dev_private;
6563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6564 int pipe = intel_crtc->pipe;
6565 bool visible = base != 0;
6566
6567 if (intel_crtc->cursor_visible != visible) {
6568 uint32_t cntl = I915_READ(CURCNTR(pipe));
6569 if (base) {
6570 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6571 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6572 cntl |= pipe << 28; /* Connect to correct pipe */
6573 } else {
6574 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6575 cntl |= CURSOR_MODE_DISABLE;
6576 }
6577 I915_WRITE(CURCNTR(pipe), cntl);
6578
6579 intel_crtc->cursor_visible = visible;
6580 }
6581 /* and commit changes on next vblank */
6582 I915_WRITE(CURBASE(pipe), base);
6583 }
6584
6585 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6586 {
6587 struct drm_device *dev = crtc->dev;
6588 struct drm_i915_private *dev_priv = dev->dev_private;
6589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6590 int pipe = intel_crtc->pipe;
6591 bool visible = base != 0;
6592
6593 if (intel_crtc->cursor_visible != visible) {
6594 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6595 if (base) {
6596 cntl &= ~CURSOR_MODE;
6597 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6598 } else {
6599 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6600 cntl |= CURSOR_MODE_DISABLE;
6601 }
6602 if (IS_HASWELL(dev))
6603 cntl |= CURSOR_PIPE_CSC_ENABLE;
6604 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6605
6606 intel_crtc->cursor_visible = visible;
6607 }
6608 /* and commit changes on next vblank */
6609 I915_WRITE(CURBASE_IVB(pipe), base);
6610 }
6611
6612 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6613 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6614 bool on)
6615 {
6616 struct drm_device *dev = crtc->dev;
6617 struct drm_i915_private *dev_priv = dev->dev_private;
6618 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6619 int pipe = intel_crtc->pipe;
6620 int x = intel_crtc->cursor_x;
6621 int y = intel_crtc->cursor_y;
6622 u32 base, pos;
6623 bool visible;
6624
6625 pos = 0;
6626
6627 if (on && crtc->enabled && crtc->fb) {
6628 base = intel_crtc->cursor_addr;
6629 if (x > (int) crtc->fb->width)
6630 base = 0;
6631
6632 if (y > (int) crtc->fb->height)
6633 base = 0;
6634 } else
6635 base = 0;
6636
6637 if (x < 0) {
6638 if (x + intel_crtc->cursor_width < 0)
6639 base = 0;
6640
6641 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6642 x = -x;
6643 }
6644 pos |= x << CURSOR_X_SHIFT;
6645
6646 if (y < 0) {
6647 if (y + intel_crtc->cursor_height < 0)
6648 base = 0;
6649
6650 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6651 y = -y;
6652 }
6653 pos |= y << CURSOR_Y_SHIFT;
6654
6655 visible = base != 0;
6656 if (!visible && !intel_crtc->cursor_visible)
6657 return;
6658
6659 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6660 I915_WRITE(CURPOS_IVB(pipe), pos);
6661 ivb_update_cursor(crtc, base);
6662 } else {
6663 I915_WRITE(CURPOS(pipe), pos);
6664 if (IS_845G(dev) || IS_I865G(dev))
6665 i845_update_cursor(crtc, base);
6666 else
6667 i9xx_update_cursor(crtc, base);
6668 }
6669 }
6670
6671 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6672 struct drm_file *file,
6673 uint32_t handle,
6674 uint32_t width, uint32_t height)
6675 {
6676 struct drm_device *dev = crtc->dev;
6677 struct drm_i915_private *dev_priv = dev->dev_private;
6678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6679 struct drm_i915_gem_object *obj;
6680 uint32_t addr;
6681 int ret;
6682
6683 /* if we want to turn off the cursor ignore width and height */
6684 if (!handle) {
6685 DRM_DEBUG_KMS("cursor off\n");
6686 addr = 0;
6687 obj = NULL;
6688 mutex_lock(&dev->struct_mutex);
6689 goto finish;
6690 }
6691
6692 /* Currently we only support 64x64 cursors */
6693 if (width != 64 || height != 64) {
6694 DRM_ERROR("we currently only support 64x64 cursors\n");
6695 return -EINVAL;
6696 }
6697
6698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6699 if (&obj->base == NULL)
6700 return -ENOENT;
6701
6702 if (obj->base.size < width * height * 4) {
6703 DRM_ERROR("buffer is to small\n");
6704 ret = -ENOMEM;
6705 goto fail;
6706 }
6707
6708 /* we only need to pin inside GTT if cursor is non-phy */
6709 mutex_lock(&dev->struct_mutex);
6710 if (!dev_priv->info->cursor_needs_physical) {
6711 unsigned alignment;
6712
6713 if (obj->tiling_mode) {
6714 DRM_ERROR("cursor cannot be tiled\n");
6715 ret = -EINVAL;
6716 goto fail_locked;
6717 }
6718
6719 /* Note that the w/a also requires 2 PTE of padding following
6720 * the bo. We currently fill all unused PTE with the shadow
6721 * page and so we should always have valid PTE following the
6722 * cursor preventing the VT-d warning.
6723 */
6724 alignment = 0;
6725 if (need_vtd_wa(dev))
6726 alignment = 64*1024;
6727
6728 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6729 if (ret) {
6730 DRM_ERROR("failed to move cursor bo into the GTT\n");
6731 goto fail_locked;
6732 }
6733
6734 ret = i915_gem_object_put_fence(obj);
6735 if (ret) {
6736 DRM_ERROR("failed to release fence for cursor");
6737 goto fail_unpin;
6738 }
6739
6740 addr = i915_gem_obj_ggtt_offset(obj);
6741 } else {
6742 int align = IS_I830(dev) ? 16 * 1024 : 256;
6743 ret = i915_gem_attach_phys_object(dev, obj,
6744 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6745 align);
6746 if (ret) {
6747 DRM_ERROR("failed to attach phys object\n");
6748 goto fail_locked;
6749 }
6750 addr = obj->phys_obj->handle->busaddr;
6751 }
6752
6753 if (IS_GEN2(dev))
6754 I915_WRITE(CURSIZE, (height << 12) | width);
6755
6756 finish:
6757 if (intel_crtc->cursor_bo) {
6758 if (dev_priv->info->cursor_needs_physical) {
6759 if (intel_crtc->cursor_bo != obj)
6760 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6761 } else
6762 i915_gem_object_unpin(intel_crtc->cursor_bo);
6763 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6764 }
6765
6766 mutex_unlock(&dev->struct_mutex);
6767
6768 intel_crtc->cursor_addr = addr;
6769 intel_crtc->cursor_bo = obj;
6770 intel_crtc->cursor_width = width;
6771 intel_crtc->cursor_height = height;
6772
6773 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6774
6775 return 0;
6776 fail_unpin:
6777 i915_gem_object_unpin(obj);
6778 fail_locked:
6779 mutex_unlock(&dev->struct_mutex);
6780 fail:
6781 drm_gem_object_unreference_unlocked(&obj->base);
6782 return ret;
6783 }
6784
6785 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6786 {
6787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6788
6789 intel_crtc->cursor_x = x;
6790 intel_crtc->cursor_y = y;
6791
6792 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6793
6794 return 0;
6795 }
6796
6797 /** Sets the color ramps on behalf of RandR */
6798 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6799 u16 blue, int regno)
6800 {
6801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6802
6803 intel_crtc->lut_r[regno] = red >> 8;
6804 intel_crtc->lut_g[regno] = green >> 8;
6805 intel_crtc->lut_b[regno] = blue >> 8;
6806 }
6807
6808 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6809 u16 *blue, int regno)
6810 {
6811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6812
6813 *red = intel_crtc->lut_r[regno] << 8;
6814 *green = intel_crtc->lut_g[regno] << 8;
6815 *blue = intel_crtc->lut_b[regno] << 8;
6816 }
6817
6818 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6819 u16 *blue, uint32_t start, uint32_t size)
6820 {
6821 int end = (start + size > 256) ? 256 : start + size, i;
6822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6823
6824 for (i = start; i < end; i++) {
6825 intel_crtc->lut_r[i] = red[i] >> 8;
6826 intel_crtc->lut_g[i] = green[i] >> 8;
6827 intel_crtc->lut_b[i] = blue[i] >> 8;
6828 }
6829
6830 intel_crtc_load_lut(crtc);
6831 }
6832
6833 /* VESA 640x480x72Hz mode to set on the pipe */
6834 static struct drm_display_mode load_detect_mode = {
6835 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6836 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6837 };
6838
6839 static struct drm_framebuffer *
6840 intel_framebuffer_create(struct drm_device *dev,
6841 struct drm_mode_fb_cmd2 *mode_cmd,
6842 struct drm_i915_gem_object *obj)
6843 {
6844 struct intel_framebuffer *intel_fb;
6845 int ret;
6846
6847 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6848 if (!intel_fb) {
6849 drm_gem_object_unreference_unlocked(&obj->base);
6850 return ERR_PTR(-ENOMEM);
6851 }
6852
6853 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6854 if (ret) {
6855 drm_gem_object_unreference_unlocked(&obj->base);
6856 kfree(intel_fb);
6857 return ERR_PTR(ret);
6858 }
6859
6860 return &intel_fb->base;
6861 }
6862
6863 static u32
6864 intel_framebuffer_pitch_for_width(int width, int bpp)
6865 {
6866 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6867 return ALIGN(pitch, 64);
6868 }
6869
6870 static u32
6871 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6872 {
6873 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6874 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6875 }
6876
6877 static struct drm_framebuffer *
6878 intel_framebuffer_create_for_mode(struct drm_device *dev,
6879 struct drm_display_mode *mode,
6880 int depth, int bpp)
6881 {
6882 struct drm_i915_gem_object *obj;
6883 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6884
6885 obj = i915_gem_alloc_object(dev,
6886 intel_framebuffer_size_for_mode(mode, bpp));
6887 if (obj == NULL)
6888 return ERR_PTR(-ENOMEM);
6889
6890 mode_cmd.width = mode->hdisplay;
6891 mode_cmd.height = mode->vdisplay;
6892 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6893 bpp);
6894 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6895
6896 return intel_framebuffer_create(dev, &mode_cmd, obj);
6897 }
6898
6899 static struct drm_framebuffer *
6900 mode_fits_in_fbdev(struct drm_device *dev,
6901 struct drm_display_mode *mode)
6902 {
6903 struct drm_i915_private *dev_priv = dev->dev_private;
6904 struct drm_i915_gem_object *obj;
6905 struct drm_framebuffer *fb;
6906
6907 if (dev_priv->fbdev == NULL)
6908 return NULL;
6909
6910 obj = dev_priv->fbdev->ifb.obj;
6911 if (obj == NULL)
6912 return NULL;
6913
6914 fb = &dev_priv->fbdev->ifb.base;
6915 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6916 fb->bits_per_pixel))
6917 return NULL;
6918
6919 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6920 return NULL;
6921
6922 return fb;
6923 }
6924
6925 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6926 struct drm_display_mode *mode,
6927 struct intel_load_detect_pipe *old)
6928 {
6929 struct intel_crtc *intel_crtc;
6930 struct intel_encoder *intel_encoder =
6931 intel_attached_encoder(connector);
6932 struct drm_crtc *possible_crtc;
6933 struct drm_encoder *encoder = &intel_encoder->base;
6934 struct drm_crtc *crtc = NULL;
6935 struct drm_device *dev = encoder->dev;
6936 struct drm_framebuffer *fb;
6937 int i = -1;
6938
6939 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6940 connector->base.id, drm_get_connector_name(connector),
6941 encoder->base.id, drm_get_encoder_name(encoder));
6942
6943 /*
6944 * Algorithm gets a little messy:
6945 *
6946 * - if the connector already has an assigned crtc, use it (but make
6947 * sure it's on first)
6948 *
6949 * - try to find the first unused crtc that can drive this connector,
6950 * and use that if we find one
6951 */
6952
6953 /* See if we already have a CRTC for this connector */
6954 if (encoder->crtc) {
6955 crtc = encoder->crtc;
6956
6957 mutex_lock(&crtc->mutex);
6958
6959 old->dpms_mode = connector->dpms;
6960 old->load_detect_temp = false;
6961
6962 /* Make sure the crtc and connector are running */
6963 if (connector->dpms != DRM_MODE_DPMS_ON)
6964 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6965
6966 return true;
6967 }
6968
6969 /* Find an unused one (if possible) */
6970 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6971 i++;
6972 if (!(encoder->possible_crtcs & (1 << i)))
6973 continue;
6974 if (!possible_crtc->enabled) {
6975 crtc = possible_crtc;
6976 break;
6977 }
6978 }
6979
6980 /*
6981 * If we didn't find an unused CRTC, don't use any.
6982 */
6983 if (!crtc) {
6984 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6985 return false;
6986 }
6987
6988 mutex_lock(&crtc->mutex);
6989 intel_encoder->new_crtc = to_intel_crtc(crtc);
6990 to_intel_connector(connector)->new_encoder = intel_encoder;
6991
6992 intel_crtc = to_intel_crtc(crtc);
6993 old->dpms_mode = connector->dpms;
6994 old->load_detect_temp = true;
6995 old->release_fb = NULL;
6996
6997 if (!mode)
6998 mode = &load_detect_mode;
6999
7000 /* We need a framebuffer large enough to accommodate all accesses
7001 * that the plane may generate whilst we perform load detection.
7002 * We can not rely on the fbcon either being present (we get called
7003 * during its initialisation to detect all boot displays, or it may
7004 * not even exist) or that it is large enough to satisfy the
7005 * requested mode.
7006 */
7007 fb = mode_fits_in_fbdev(dev, mode);
7008 if (fb == NULL) {
7009 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7010 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7011 old->release_fb = fb;
7012 } else
7013 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7014 if (IS_ERR(fb)) {
7015 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7016 mutex_unlock(&crtc->mutex);
7017 return false;
7018 }
7019
7020 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7021 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7022 if (old->release_fb)
7023 old->release_fb->funcs->destroy(old->release_fb);
7024 mutex_unlock(&crtc->mutex);
7025 return false;
7026 }
7027
7028 /* let the connector get through one full cycle before testing */
7029 intel_wait_for_vblank(dev, intel_crtc->pipe);
7030 return true;
7031 }
7032
7033 void intel_release_load_detect_pipe(struct drm_connector *connector,
7034 struct intel_load_detect_pipe *old)
7035 {
7036 struct intel_encoder *intel_encoder =
7037 intel_attached_encoder(connector);
7038 struct drm_encoder *encoder = &intel_encoder->base;
7039 struct drm_crtc *crtc = encoder->crtc;
7040
7041 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7042 connector->base.id, drm_get_connector_name(connector),
7043 encoder->base.id, drm_get_encoder_name(encoder));
7044
7045 if (old->load_detect_temp) {
7046 to_intel_connector(connector)->new_encoder = NULL;
7047 intel_encoder->new_crtc = NULL;
7048 intel_set_mode(crtc, NULL, 0, 0, NULL);
7049
7050 if (old->release_fb) {
7051 drm_framebuffer_unregister_private(old->release_fb);
7052 drm_framebuffer_unreference(old->release_fb);
7053 }
7054
7055 mutex_unlock(&crtc->mutex);
7056 return;
7057 }
7058
7059 /* Switch crtc and encoder back off if necessary */
7060 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7061 connector->funcs->dpms(connector, old->dpms_mode);
7062
7063 mutex_unlock(&crtc->mutex);
7064 }
7065
7066 /* Returns the clock of the currently programmed mode of the given pipe. */
7067 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7068 struct intel_crtc_config *pipe_config)
7069 {
7070 struct drm_device *dev = crtc->base.dev;
7071 struct drm_i915_private *dev_priv = dev->dev_private;
7072 int pipe = pipe_config->cpu_transcoder;
7073 u32 dpll = I915_READ(DPLL(pipe));
7074 u32 fp;
7075 intel_clock_t clock;
7076
7077 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7078 fp = I915_READ(FP0(pipe));
7079 else
7080 fp = I915_READ(FP1(pipe));
7081
7082 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7083 if (IS_PINEVIEW(dev)) {
7084 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7085 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7086 } else {
7087 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7088 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7089 }
7090
7091 if (!IS_GEN2(dev)) {
7092 if (IS_PINEVIEW(dev))
7093 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7094 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7095 else
7096 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7097 DPLL_FPA01_P1_POST_DIV_SHIFT);
7098
7099 switch (dpll & DPLL_MODE_MASK) {
7100 case DPLLB_MODE_DAC_SERIAL:
7101 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7102 5 : 10;
7103 break;
7104 case DPLLB_MODE_LVDS:
7105 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7106 7 : 14;
7107 break;
7108 default:
7109 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7110 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7111 pipe_config->adjusted_mode.clock = 0;
7112 return;
7113 }
7114
7115 if (IS_PINEVIEW(dev))
7116 pineview_clock(96000, &clock);
7117 else
7118 i9xx_clock(96000, &clock);
7119 } else {
7120 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7121
7122 if (is_lvds) {
7123 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7124 DPLL_FPA01_P1_POST_DIV_SHIFT);
7125 clock.p2 = 14;
7126
7127 if ((dpll & PLL_REF_INPUT_MASK) ==
7128 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7129 /* XXX: might not be 66MHz */
7130 i9xx_clock(66000, &clock);
7131 } else
7132 i9xx_clock(48000, &clock);
7133 } else {
7134 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7135 clock.p1 = 2;
7136 else {
7137 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7138 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7139 }
7140 if (dpll & PLL_P2_DIVIDE_BY_4)
7141 clock.p2 = 4;
7142 else
7143 clock.p2 = 2;
7144
7145 i9xx_clock(48000, &clock);
7146 }
7147 }
7148
7149 pipe_config->adjusted_mode.clock = clock.dot *
7150 pipe_config->pixel_multiplier;
7151 }
7152
7153 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7154 struct intel_crtc_config *pipe_config)
7155 {
7156 struct drm_device *dev = crtc->base.dev;
7157 struct drm_i915_private *dev_priv = dev->dev_private;
7158 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7159 int link_freq, repeat;
7160 u64 clock;
7161 u32 link_m, link_n;
7162
7163 repeat = pipe_config->pixel_multiplier;
7164
7165 /*
7166 * The calculation for the data clock is:
7167 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7168 * But we want to avoid losing precison if possible, so:
7169 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7170 *
7171 * and the link clock is simpler:
7172 * link_clock = (m * link_clock * repeat) / n
7173 */
7174
7175 /*
7176 * We need to get the FDI or DP link clock here to derive
7177 * the M/N dividers.
7178 *
7179 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7180 * For DP, it's either 1.62GHz or 2.7GHz.
7181 * We do our calculations in 10*MHz since we don't need much precison.
7182 */
7183 if (pipe_config->has_pch_encoder)
7184 link_freq = intel_fdi_link_freq(dev) * 10000;
7185 else
7186 link_freq = pipe_config->port_clock;
7187
7188 link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7189 link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7190
7191 if (!link_m || !link_n)
7192 return;
7193
7194 clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7195 do_div(clock, link_n);
7196
7197 pipe_config->adjusted_mode.clock = clock;
7198 }
7199
7200 /** Returns the currently programmed mode of the given pipe. */
7201 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7202 struct drm_crtc *crtc)
7203 {
7204 struct drm_i915_private *dev_priv = dev->dev_private;
7205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7206 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7207 struct drm_display_mode *mode;
7208 struct intel_crtc_config pipe_config;
7209 int htot = I915_READ(HTOTAL(cpu_transcoder));
7210 int hsync = I915_READ(HSYNC(cpu_transcoder));
7211 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7212 int vsync = I915_READ(VSYNC(cpu_transcoder));
7213
7214 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7215 if (!mode)
7216 return NULL;
7217
7218 /*
7219 * Construct a pipe_config sufficient for getting the clock info
7220 * back out of crtc_clock_get.
7221 *
7222 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7223 * to use a real value here instead.
7224 */
7225 pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7226 pipe_config.pixel_multiplier = 1;
7227 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7228
7229 mode->clock = pipe_config.adjusted_mode.clock;
7230 mode->hdisplay = (htot & 0xffff) + 1;
7231 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7232 mode->hsync_start = (hsync & 0xffff) + 1;
7233 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7234 mode->vdisplay = (vtot & 0xffff) + 1;
7235 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7236 mode->vsync_start = (vsync & 0xffff) + 1;
7237 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7238
7239 drm_mode_set_name(mode);
7240
7241 return mode;
7242 }
7243
7244 static void intel_increase_pllclock(struct drm_crtc *crtc)
7245 {
7246 struct drm_device *dev = crtc->dev;
7247 drm_i915_private_t *dev_priv = dev->dev_private;
7248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7249 int pipe = intel_crtc->pipe;
7250 int dpll_reg = DPLL(pipe);
7251 int dpll;
7252
7253 if (HAS_PCH_SPLIT(dev))
7254 return;
7255
7256 if (!dev_priv->lvds_downclock_avail)
7257 return;
7258
7259 dpll = I915_READ(dpll_reg);
7260 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7261 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7262
7263 assert_panel_unlocked(dev_priv, pipe);
7264
7265 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7266 I915_WRITE(dpll_reg, dpll);
7267 intel_wait_for_vblank(dev, pipe);
7268
7269 dpll = I915_READ(dpll_reg);
7270 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7271 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7272 }
7273 }
7274
7275 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7276 {
7277 struct drm_device *dev = crtc->dev;
7278 drm_i915_private_t *dev_priv = dev->dev_private;
7279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7280
7281 if (HAS_PCH_SPLIT(dev))
7282 return;
7283
7284 if (!dev_priv->lvds_downclock_avail)
7285 return;
7286
7287 /*
7288 * Since this is called by a timer, we should never get here in
7289 * the manual case.
7290 */
7291 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7292 int pipe = intel_crtc->pipe;
7293 int dpll_reg = DPLL(pipe);
7294 int dpll;
7295
7296 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7297
7298 assert_panel_unlocked(dev_priv, pipe);
7299
7300 dpll = I915_READ(dpll_reg);
7301 dpll |= DISPLAY_RATE_SELECT_FPA1;
7302 I915_WRITE(dpll_reg, dpll);
7303 intel_wait_for_vblank(dev, pipe);
7304 dpll = I915_READ(dpll_reg);
7305 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7306 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7307 }
7308
7309 }
7310
7311 void intel_mark_busy(struct drm_device *dev)
7312 {
7313 i915_update_gfx_val(dev->dev_private);
7314 }
7315
7316 void intel_mark_idle(struct drm_device *dev)
7317 {
7318 struct drm_crtc *crtc;
7319
7320 if (!i915_powersave)
7321 return;
7322
7323 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7324 if (!crtc->fb)
7325 continue;
7326
7327 intel_decrease_pllclock(crtc);
7328 }
7329 }
7330
7331 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7332 struct intel_ring_buffer *ring)
7333 {
7334 struct drm_device *dev = obj->base.dev;
7335 struct drm_crtc *crtc;
7336
7337 if (!i915_powersave)
7338 return;
7339
7340 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7341 if (!crtc->fb)
7342 continue;
7343
7344 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7345 continue;
7346
7347 intel_increase_pllclock(crtc);
7348 if (ring && intel_fbc_enabled(dev))
7349 ring->fbc_dirty = true;
7350 }
7351 }
7352
7353 static void intel_crtc_destroy(struct drm_crtc *crtc)
7354 {
7355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7356 struct drm_device *dev = crtc->dev;
7357 struct intel_unpin_work *work;
7358 unsigned long flags;
7359
7360 spin_lock_irqsave(&dev->event_lock, flags);
7361 work = intel_crtc->unpin_work;
7362 intel_crtc->unpin_work = NULL;
7363 spin_unlock_irqrestore(&dev->event_lock, flags);
7364
7365 if (work) {
7366 cancel_work_sync(&work->work);
7367 kfree(work);
7368 }
7369
7370 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7371
7372 drm_crtc_cleanup(crtc);
7373
7374 kfree(intel_crtc);
7375 }
7376
7377 static void intel_unpin_work_fn(struct work_struct *__work)
7378 {
7379 struct intel_unpin_work *work =
7380 container_of(__work, struct intel_unpin_work, work);
7381 struct drm_device *dev = work->crtc->dev;
7382
7383 mutex_lock(&dev->struct_mutex);
7384 intel_unpin_fb_obj(work->old_fb_obj);
7385 drm_gem_object_unreference(&work->pending_flip_obj->base);
7386 drm_gem_object_unreference(&work->old_fb_obj->base);
7387
7388 intel_update_fbc(dev);
7389 mutex_unlock(&dev->struct_mutex);
7390
7391 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7392 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7393
7394 kfree(work);
7395 }
7396
7397 static void do_intel_finish_page_flip(struct drm_device *dev,
7398 struct drm_crtc *crtc)
7399 {
7400 drm_i915_private_t *dev_priv = dev->dev_private;
7401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7402 struct intel_unpin_work *work;
7403 unsigned long flags;
7404
7405 /* Ignore early vblank irqs */
7406 if (intel_crtc == NULL)
7407 return;
7408
7409 spin_lock_irqsave(&dev->event_lock, flags);
7410 work = intel_crtc->unpin_work;
7411
7412 /* Ensure we don't miss a work->pending update ... */
7413 smp_rmb();
7414
7415 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7416 spin_unlock_irqrestore(&dev->event_lock, flags);
7417 return;
7418 }
7419
7420 /* and that the unpin work is consistent wrt ->pending. */
7421 smp_rmb();
7422
7423 intel_crtc->unpin_work = NULL;
7424
7425 if (work->event)
7426 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7427
7428 drm_vblank_put(dev, intel_crtc->pipe);
7429
7430 spin_unlock_irqrestore(&dev->event_lock, flags);
7431
7432 wake_up_all(&dev_priv->pending_flip_queue);
7433
7434 queue_work(dev_priv->wq, &work->work);
7435
7436 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7437 }
7438
7439 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7440 {
7441 drm_i915_private_t *dev_priv = dev->dev_private;
7442 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7443
7444 do_intel_finish_page_flip(dev, crtc);
7445 }
7446
7447 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7448 {
7449 drm_i915_private_t *dev_priv = dev->dev_private;
7450 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7451
7452 do_intel_finish_page_flip(dev, crtc);
7453 }
7454
7455 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7456 {
7457 drm_i915_private_t *dev_priv = dev->dev_private;
7458 struct intel_crtc *intel_crtc =
7459 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7460 unsigned long flags;
7461
7462 /* NB: An MMIO update of the plane base pointer will also
7463 * generate a page-flip completion irq, i.e. every modeset
7464 * is also accompanied by a spurious intel_prepare_page_flip().
7465 */
7466 spin_lock_irqsave(&dev->event_lock, flags);
7467 if (intel_crtc->unpin_work)
7468 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7469 spin_unlock_irqrestore(&dev->event_lock, flags);
7470 }
7471
7472 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7473 {
7474 /* Ensure that the work item is consistent when activating it ... */
7475 smp_wmb();
7476 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7477 /* and that it is marked active as soon as the irq could fire. */
7478 smp_wmb();
7479 }
7480
7481 static int intel_gen2_queue_flip(struct drm_device *dev,
7482 struct drm_crtc *crtc,
7483 struct drm_framebuffer *fb,
7484 struct drm_i915_gem_object *obj)
7485 {
7486 struct drm_i915_private *dev_priv = dev->dev_private;
7487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7488 u32 flip_mask;
7489 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7490 int ret;
7491
7492 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7493 if (ret)
7494 goto err;
7495
7496 ret = intel_ring_begin(ring, 6);
7497 if (ret)
7498 goto err_unpin;
7499
7500 /* Can't queue multiple flips, so wait for the previous
7501 * one to finish before executing the next.
7502 */
7503 if (intel_crtc->plane)
7504 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7505 else
7506 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7507 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7508 intel_ring_emit(ring, MI_NOOP);
7509 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7510 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7511 intel_ring_emit(ring, fb->pitches[0]);
7512 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7513 intel_ring_emit(ring, 0); /* aux display base address, unused */
7514
7515 intel_mark_page_flip_active(intel_crtc);
7516 intel_ring_advance(ring);
7517 return 0;
7518
7519 err_unpin:
7520 intel_unpin_fb_obj(obj);
7521 err:
7522 return ret;
7523 }
7524
7525 static int intel_gen3_queue_flip(struct drm_device *dev,
7526 struct drm_crtc *crtc,
7527 struct drm_framebuffer *fb,
7528 struct drm_i915_gem_object *obj)
7529 {
7530 struct drm_i915_private *dev_priv = dev->dev_private;
7531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7532 u32 flip_mask;
7533 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7534 int ret;
7535
7536 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7537 if (ret)
7538 goto err;
7539
7540 ret = intel_ring_begin(ring, 6);
7541 if (ret)
7542 goto err_unpin;
7543
7544 if (intel_crtc->plane)
7545 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7546 else
7547 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7548 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7549 intel_ring_emit(ring, MI_NOOP);
7550 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7551 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7552 intel_ring_emit(ring, fb->pitches[0]);
7553 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7554 intel_ring_emit(ring, MI_NOOP);
7555
7556 intel_mark_page_flip_active(intel_crtc);
7557 intel_ring_advance(ring);
7558 return 0;
7559
7560 err_unpin:
7561 intel_unpin_fb_obj(obj);
7562 err:
7563 return ret;
7564 }
7565
7566 static int intel_gen4_queue_flip(struct drm_device *dev,
7567 struct drm_crtc *crtc,
7568 struct drm_framebuffer *fb,
7569 struct drm_i915_gem_object *obj)
7570 {
7571 struct drm_i915_private *dev_priv = dev->dev_private;
7572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7573 uint32_t pf, pipesrc;
7574 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7575 int ret;
7576
7577 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7578 if (ret)
7579 goto err;
7580
7581 ret = intel_ring_begin(ring, 4);
7582 if (ret)
7583 goto err_unpin;
7584
7585 /* i965+ uses the linear or tiled offsets from the
7586 * Display Registers (which do not change across a page-flip)
7587 * so we need only reprogram the base address.
7588 */
7589 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7590 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7591 intel_ring_emit(ring, fb->pitches[0]);
7592 intel_ring_emit(ring,
7593 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7594 obj->tiling_mode);
7595
7596 /* XXX Enabling the panel-fitter across page-flip is so far
7597 * untested on non-native modes, so ignore it for now.
7598 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7599 */
7600 pf = 0;
7601 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7602 intel_ring_emit(ring, pf | pipesrc);
7603
7604 intel_mark_page_flip_active(intel_crtc);
7605 intel_ring_advance(ring);
7606 return 0;
7607
7608 err_unpin:
7609 intel_unpin_fb_obj(obj);
7610 err:
7611 return ret;
7612 }
7613
7614 static int intel_gen6_queue_flip(struct drm_device *dev,
7615 struct drm_crtc *crtc,
7616 struct drm_framebuffer *fb,
7617 struct drm_i915_gem_object *obj)
7618 {
7619 struct drm_i915_private *dev_priv = dev->dev_private;
7620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7621 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7622 uint32_t pf, pipesrc;
7623 int ret;
7624
7625 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7626 if (ret)
7627 goto err;
7628
7629 ret = intel_ring_begin(ring, 4);
7630 if (ret)
7631 goto err_unpin;
7632
7633 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7634 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7635 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7636 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7637
7638 /* Contrary to the suggestions in the documentation,
7639 * "Enable Panel Fitter" does not seem to be required when page
7640 * flipping with a non-native mode, and worse causes a normal
7641 * modeset to fail.
7642 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7643 */
7644 pf = 0;
7645 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7646 intel_ring_emit(ring, pf | pipesrc);
7647
7648 intel_mark_page_flip_active(intel_crtc);
7649 intel_ring_advance(ring);
7650 return 0;
7651
7652 err_unpin:
7653 intel_unpin_fb_obj(obj);
7654 err:
7655 return ret;
7656 }
7657
7658 /*
7659 * On gen7 we currently use the blit ring because (in early silicon at least)
7660 * the render ring doesn't give us interrpts for page flip completion, which
7661 * means clients will hang after the first flip is queued. Fortunately the
7662 * blit ring generates interrupts properly, so use it instead.
7663 */
7664 static int intel_gen7_queue_flip(struct drm_device *dev,
7665 struct drm_crtc *crtc,
7666 struct drm_framebuffer *fb,
7667 struct drm_i915_gem_object *obj)
7668 {
7669 struct drm_i915_private *dev_priv = dev->dev_private;
7670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7671 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7672 uint32_t plane_bit = 0;
7673 int ret;
7674
7675 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7676 if (ret)
7677 goto err;
7678
7679 switch(intel_crtc->plane) {
7680 case PLANE_A:
7681 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7682 break;
7683 case PLANE_B:
7684 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7685 break;
7686 case PLANE_C:
7687 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7688 break;
7689 default:
7690 WARN_ONCE(1, "unknown plane in flip command\n");
7691 ret = -ENODEV;
7692 goto err_unpin;
7693 }
7694
7695 ret = intel_ring_begin(ring, 4);
7696 if (ret)
7697 goto err_unpin;
7698
7699 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7700 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7701 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7702 intel_ring_emit(ring, (MI_NOOP));
7703
7704 intel_mark_page_flip_active(intel_crtc);
7705 intel_ring_advance(ring);
7706 return 0;
7707
7708 err_unpin:
7709 intel_unpin_fb_obj(obj);
7710 err:
7711 return ret;
7712 }
7713
7714 static int intel_default_queue_flip(struct drm_device *dev,
7715 struct drm_crtc *crtc,
7716 struct drm_framebuffer *fb,
7717 struct drm_i915_gem_object *obj)
7718 {
7719 return -ENODEV;
7720 }
7721
7722 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7723 struct drm_framebuffer *fb,
7724 struct drm_pending_vblank_event *event)
7725 {
7726 struct drm_device *dev = crtc->dev;
7727 struct drm_i915_private *dev_priv = dev->dev_private;
7728 struct drm_framebuffer *old_fb = crtc->fb;
7729 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7731 struct intel_unpin_work *work;
7732 unsigned long flags;
7733 int ret;
7734
7735 /* Can't change pixel format via MI display flips. */
7736 if (fb->pixel_format != crtc->fb->pixel_format)
7737 return -EINVAL;
7738
7739 /*
7740 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7741 * Note that pitch changes could also affect these register.
7742 */
7743 if (INTEL_INFO(dev)->gen > 3 &&
7744 (fb->offsets[0] != crtc->fb->offsets[0] ||
7745 fb->pitches[0] != crtc->fb->pitches[0]))
7746 return -EINVAL;
7747
7748 work = kzalloc(sizeof *work, GFP_KERNEL);
7749 if (work == NULL)
7750 return -ENOMEM;
7751
7752 work->event = event;
7753 work->crtc = crtc;
7754 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7755 INIT_WORK(&work->work, intel_unpin_work_fn);
7756
7757 ret = drm_vblank_get(dev, intel_crtc->pipe);
7758 if (ret)
7759 goto free_work;
7760
7761 /* We borrow the event spin lock for protecting unpin_work */
7762 spin_lock_irqsave(&dev->event_lock, flags);
7763 if (intel_crtc->unpin_work) {
7764 spin_unlock_irqrestore(&dev->event_lock, flags);
7765 kfree(work);
7766 drm_vblank_put(dev, intel_crtc->pipe);
7767
7768 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7769 return -EBUSY;
7770 }
7771 intel_crtc->unpin_work = work;
7772 spin_unlock_irqrestore(&dev->event_lock, flags);
7773
7774 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7775 flush_workqueue(dev_priv->wq);
7776
7777 ret = i915_mutex_lock_interruptible(dev);
7778 if (ret)
7779 goto cleanup;
7780
7781 /* Reference the objects for the scheduled work. */
7782 drm_gem_object_reference(&work->old_fb_obj->base);
7783 drm_gem_object_reference(&obj->base);
7784
7785 crtc->fb = fb;
7786
7787 work->pending_flip_obj = obj;
7788
7789 work->enable_stall_check = true;
7790
7791 atomic_inc(&intel_crtc->unpin_work_count);
7792 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7793
7794 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7795 if (ret)
7796 goto cleanup_pending;
7797
7798 intel_disable_fbc(dev);
7799 intel_mark_fb_busy(obj, NULL);
7800 mutex_unlock(&dev->struct_mutex);
7801
7802 trace_i915_flip_request(intel_crtc->plane, obj);
7803
7804 return 0;
7805
7806 cleanup_pending:
7807 atomic_dec(&intel_crtc->unpin_work_count);
7808 crtc->fb = old_fb;
7809 drm_gem_object_unreference(&work->old_fb_obj->base);
7810 drm_gem_object_unreference(&obj->base);
7811 mutex_unlock(&dev->struct_mutex);
7812
7813 cleanup:
7814 spin_lock_irqsave(&dev->event_lock, flags);
7815 intel_crtc->unpin_work = NULL;
7816 spin_unlock_irqrestore(&dev->event_lock, flags);
7817
7818 drm_vblank_put(dev, intel_crtc->pipe);
7819 free_work:
7820 kfree(work);
7821
7822 return ret;
7823 }
7824
7825 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7826 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7827 .load_lut = intel_crtc_load_lut,
7828 };
7829
7830 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7831 struct drm_crtc *crtc)
7832 {
7833 struct drm_device *dev;
7834 struct drm_crtc *tmp;
7835 int crtc_mask = 1;
7836
7837 WARN(!crtc, "checking null crtc?\n");
7838
7839 dev = crtc->dev;
7840
7841 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7842 if (tmp == crtc)
7843 break;
7844 crtc_mask <<= 1;
7845 }
7846
7847 if (encoder->possible_crtcs & crtc_mask)
7848 return true;
7849 return false;
7850 }
7851
7852 /**
7853 * intel_modeset_update_staged_output_state
7854 *
7855 * Updates the staged output configuration state, e.g. after we've read out the
7856 * current hw state.
7857 */
7858 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7859 {
7860 struct intel_encoder *encoder;
7861 struct intel_connector *connector;
7862
7863 list_for_each_entry(connector, &dev->mode_config.connector_list,
7864 base.head) {
7865 connector->new_encoder =
7866 to_intel_encoder(connector->base.encoder);
7867 }
7868
7869 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7870 base.head) {
7871 encoder->new_crtc =
7872 to_intel_crtc(encoder->base.crtc);
7873 }
7874 }
7875
7876 /**
7877 * intel_modeset_commit_output_state
7878 *
7879 * This function copies the stage display pipe configuration to the real one.
7880 */
7881 static void intel_modeset_commit_output_state(struct drm_device *dev)
7882 {
7883 struct intel_encoder *encoder;
7884 struct intel_connector *connector;
7885
7886 list_for_each_entry(connector, &dev->mode_config.connector_list,
7887 base.head) {
7888 connector->base.encoder = &connector->new_encoder->base;
7889 }
7890
7891 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7892 base.head) {
7893 encoder->base.crtc = &encoder->new_crtc->base;
7894 }
7895 }
7896
7897 static void
7898 connected_sink_compute_bpp(struct intel_connector * connector,
7899 struct intel_crtc_config *pipe_config)
7900 {
7901 int bpp = pipe_config->pipe_bpp;
7902
7903 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7904 connector->base.base.id,
7905 drm_get_connector_name(&connector->base));
7906
7907 /* Don't use an invalid EDID bpc value */
7908 if (connector->base.display_info.bpc &&
7909 connector->base.display_info.bpc * 3 < bpp) {
7910 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7911 bpp, connector->base.display_info.bpc*3);
7912 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7913 }
7914
7915 /* Clamp bpp to 8 on screens without EDID 1.4 */
7916 if (connector->base.display_info.bpc == 0 && bpp > 24) {
7917 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7918 bpp);
7919 pipe_config->pipe_bpp = 24;
7920 }
7921 }
7922
7923 static int
7924 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7925 struct drm_framebuffer *fb,
7926 struct intel_crtc_config *pipe_config)
7927 {
7928 struct drm_device *dev = crtc->base.dev;
7929 struct intel_connector *connector;
7930 int bpp;
7931
7932 switch (fb->pixel_format) {
7933 case DRM_FORMAT_C8:
7934 bpp = 8*3; /* since we go through a colormap */
7935 break;
7936 case DRM_FORMAT_XRGB1555:
7937 case DRM_FORMAT_ARGB1555:
7938 /* checked in intel_framebuffer_init already */
7939 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7940 return -EINVAL;
7941 case DRM_FORMAT_RGB565:
7942 bpp = 6*3; /* min is 18bpp */
7943 break;
7944 case DRM_FORMAT_XBGR8888:
7945 case DRM_FORMAT_ABGR8888:
7946 /* checked in intel_framebuffer_init already */
7947 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7948 return -EINVAL;
7949 case DRM_FORMAT_XRGB8888:
7950 case DRM_FORMAT_ARGB8888:
7951 bpp = 8*3;
7952 break;
7953 case DRM_FORMAT_XRGB2101010:
7954 case DRM_FORMAT_ARGB2101010:
7955 case DRM_FORMAT_XBGR2101010:
7956 case DRM_FORMAT_ABGR2101010:
7957 /* checked in intel_framebuffer_init already */
7958 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7959 return -EINVAL;
7960 bpp = 10*3;
7961 break;
7962 /* TODO: gen4+ supports 16 bpc floating point, too. */
7963 default:
7964 DRM_DEBUG_KMS("unsupported depth\n");
7965 return -EINVAL;
7966 }
7967
7968 pipe_config->pipe_bpp = bpp;
7969
7970 /* Clamp display bpp to EDID value */
7971 list_for_each_entry(connector, &dev->mode_config.connector_list,
7972 base.head) {
7973 if (!connector->new_encoder ||
7974 connector->new_encoder->new_crtc != crtc)
7975 continue;
7976
7977 connected_sink_compute_bpp(connector, pipe_config);
7978 }
7979
7980 return bpp;
7981 }
7982
7983 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7984 struct intel_crtc_config *pipe_config,
7985 const char *context)
7986 {
7987 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7988 context, pipe_name(crtc->pipe));
7989
7990 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7991 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7992 pipe_config->pipe_bpp, pipe_config->dither);
7993 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7994 pipe_config->has_pch_encoder,
7995 pipe_config->fdi_lanes,
7996 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7997 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7998 pipe_config->fdi_m_n.tu);
7999 DRM_DEBUG_KMS("requested mode:\n");
8000 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8001 DRM_DEBUG_KMS("adjusted mode:\n");
8002 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8003 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8004 pipe_config->gmch_pfit.control,
8005 pipe_config->gmch_pfit.pgm_ratios,
8006 pipe_config->gmch_pfit.lvds_border_bits);
8007 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8008 pipe_config->pch_pfit.pos,
8009 pipe_config->pch_pfit.size);
8010 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8011 }
8012
8013 static bool check_encoder_cloning(struct drm_crtc *crtc)
8014 {
8015 int num_encoders = 0;
8016 bool uncloneable_encoders = false;
8017 struct intel_encoder *encoder;
8018
8019 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8020 base.head) {
8021 if (&encoder->new_crtc->base != crtc)
8022 continue;
8023
8024 num_encoders++;
8025 if (!encoder->cloneable)
8026 uncloneable_encoders = true;
8027 }
8028
8029 return !(num_encoders > 1 && uncloneable_encoders);
8030 }
8031
8032 static struct intel_crtc_config *
8033 intel_modeset_pipe_config(struct drm_crtc *crtc,
8034 struct drm_framebuffer *fb,
8035 struct drm_display_mode *mode)
8036 {
8037 struct drm_device *dev = crtc->dev;
8038 struct intel_encoder *encoder;
8039 struct intel_crtc_config *pipe_config;
8040 int plane_bpp, ret = -EINVAL;
8041 bool retry = true;
8042
8043 if (!check_encoder_cloning(crtc)) {
8044 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8045 return ERR_PTR(-EINVAL);
8046 }
8047
8048 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8049 if (!pipe_config)
8050 return ERR_PTR(-ENOMEM);
8051
8052 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8053 drm_mode_copy(&pipe_config->requested_mode, mode);
8054 pipe_config->cpu_transcoder =
8055 (enum transcoder) to_intel_crtc(crtc)->pipe;
8056 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8057
8058 /*
8059 * Sanitize sync polarity flags based on requested ones. If neither
8060 * positive or negative polarity is requested, treat this as meaning
8061 * negative polarity.
8062 */
8063 if (!(pipe_config->adjusted_mode.flags &
8064 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8065 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8066
8067 if (!(pipe_config->adjusted_mode.flags &
8068 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8069 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8070
8071 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8072 * plane pixel format and any sink constraints into account. Returns the
8073 * source plane bpp so that dithering can be selected on mismatches
8074 * after encoders and crtc also have had their say. */
8075 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8076 fb, pipe_config);
8077 if (plane_bpp < 0)
8078 goto fail;
8079
8080 encoder_retry:
8081 /* Ensure the port clock defaults are reset when retrying. */
8082 pipe_config->port_clock = 0;
8083 pipe_config->pixel_multiplier = 1;
8084
8085 /* Fill in default crtc timings, allow encoders to overwrite them. */
8086 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8087
8088 /* Pass our mode to the connectors and the CRTC to give them a chance to
8089 * adjust it according to limitations or connector properties, and also
8090 * a chance to reject the mode entirely.
8091 */
8092 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8093 base.head) {
8094
8095 if (&encoder->new_crtc->base != crtc)
8096 continue;
8097
8098 if (!(encoder->compute_config(encoder, pipe_config))) {
8099 DRM_DEBUG_KMS("Encoder config failure\n");
8100 goto fail;
8101 }
8102 }
8103
8104 /* Set default port clock if not overwritten by the encoder. Needs to be
8105 * done afterwards in case the encoder adjusts the mode. */
8106 if (!pipe_config->port_clock)
8107 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8108
8109 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8110 if (ret < 0) {
8111 DRM_DEBUG_KMS("CRTC fixup failed\n");
8112 goto fail;
8113 }
8114
8115 if (ret == RETRY) {
8116 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8117 ret = -EINVAL;
8118 goto fail;
8119 }
8120
8121 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8122 retry = false;
8123 goto encoder_retry;
8124 }
8125
8126 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8127 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8128 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8129
8130 return pipe_config;
8131 fail:
8132 kfree(pipe_config);
8133 return ERR_PTR(ret);
8134 }
8135
8136 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8137 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8138 static void
8139 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8140 unsigned *prepare_pipes, unsigned *disable_pipes)
8141 {
8142 struct intel_crtc *intel_crtc;
8143 struct drm_device *dev = crtc->dev;
8144 struct intel_encoder *encoder;
8145 struct intel_connector *connector;
8146 struct drm_crtc *tmp_crtc;
8147
8148 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8149
8150 /* Check which crtcs have changed outputs connected to them, these need
8151 * to be part of the prepare_pipes mask. We don't (yet) support global
8152 * modeset across multiple crtcs, so modeset_pipes will only have one
8153 * bit set at most. */
8154 list_for_each_entry(connector, &dev->mode_config.connector_list,
8155 base.head) {
8156 if (connector->base.encoder == &connector->new_encoder->base)
8157 continue;
8158
8159 if (connector->base.encoder) {
8160 tmp_crtc = connector->base.encoder->crtc;
8161
8162 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8163 }
8164
8165 if (connector->new_encoder)
8166 *prepare_pipes |=
8167 1 << connector->new_encoder->new_crtc->pipe;
8168 }
8169
8170 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8171 base.head) {
8172 if (encoder->base.crtc == &encoder->new_crtc->base)
8173 continue;
8174
8175 if (encoder->base.crtc) {
8176 tmp_crtc = encoder->base.crtc;
8177
8178 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8179 }
8180
8181 if (encoder->new_crtc)
8182 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8183 }
8184
8185 /* Check for any pipes that will be fully disabled ... */
8186 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8187 base.head) {
8188 bool used = false;
8189
8190 /* Don't try to disable disabled crtcs. */
8191 if (!intel_crtc->base.enabled)
8192 continue;
8193
8194 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8195 base.head) {
8196 if (encoder->new_crtc == intel_crtc)
8197 used = true;
8198 }
8199
8200 if (!used)
8201 *disable_pipes |= 1 << intel_crtc->pipe;
8202 }
8203
8204
8205 /* set_mode is also used to update properties on life display pipes. */
8206 intel_crtc = to_intel_crtc(crtc);
8207 if (crtc->enabled)
8208 *prepare_pipes |= 1 << intel_crtc->pipe;
8209
8210 /*
8211 * For simplicity do a full modeset on any pipe where the output routing
8212 * changed. We could be more clever, but that would require us to be
8213 * more careful with calling the relevant encoder->mode_set functions.
8214 */
8215 if (*prepare_pipes)
8216 *modeset_pipes = *prepare_pipes;
8217
8218 /* ... and mask these out. */
8219 *modeset_pipes &= ~(*disable_pipes);
8220 *prepare_pipes &= ~(*disable_pipes);
8221
8222 /*
8223 * HACK: We don't (yet) fully support global modesets. intel_set_config
8224 * obies this rule, but the modeset restore mode of
8225 * intel_modeset_setup_hw_state does not.
8226 */
8227 *modeset_pipes &= 1 << intel_crtc->pipe;
8228 *prepare_pipes &= 1 << intel_crtc->pipe;
8229
8230 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8231 *modeset_pipes, *prepare_pipes, *disable_pipes);
8232 }
8233
8234 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8235 {
8236 struct drm_encoder *encoder;
8237 struct drm_device *dev = crtc->dev;
8238
8239 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8240 if (encoder->crtc == crtc)
8241 return true;
8242
8243 return false;
8244 }
8245
8246 static void
8247 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8248 {
8249 struct intel_encoder *intel_encoder;
8250 struct intel_crtc *intel_crtc;
8251 struct drm_connector *connector;
8252
8253 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8254 base.head) {
8255 if (!intel_encoder->base.crtc)
8256 continue;
8257
8258 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8259
8260 if (prepare_pipes & (1 << intel_crtc->pipe))
8261 intel_encoder->connectors_active = false;
8262 }
8263
8264 intel_modeset_commit_output_state(dev);
8265
8266 /* Update computed state. */
8267 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8268 base.head) {
8269 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8270 }
8271
8272 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8273 if (!connector->encoder || !connector->encoder->crtc)
8274 continue;
8275
8276 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8277
8278 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8279 struct drm_property *dpms_property =
8280 dev->mode_config.dpms_property;
8281
8282 connector->dpms = DRM_MODE_DPMS_ON;
8283 drm_object_property_set_value(&connector->base,
8284 dpms_property,
8285 DRM_MODE_DPMS_ON);
8286
8287 intel_encoder = to_intel_encoder(connector->encoder);
8288 intel_encoder->connectors_active = true;
8289 }
8290 }
8291
8292 }
8293
8294 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8295 struct intel_crtc_config *new)
8296 {
8297 int clock1, clock2, diff;
8298
8299 clock1 = cur->adjusted_mode.clock;
8300 clock2 = new->adjusted_mode.clock;
8301
8302 if (clock1 == clock2)
8303 return true;
8304
8305 if (!clock1 || !clock2)
8306 return false;
8307
8308 diff = abs(clock1 - clock2);
8309
8310 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8311 return true;
8312
8313 return false;
8314 }
8315
8316 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8317 list_for_each_entry((intel_crtc), \
8318 &(dev)->mode_config.crtc_list, \
8319 base.head) \
8320 if (mask & (1 <<(intel_crtc)->pipe))
8321
8322 static bool
8323 intel_pipe_config_compare(struct drm_device *dev,
8324 struct intel_crtc_config *current_config,
8325 struct intel_crtc_config *pipe_config)
8326 {
8327 #define PIPE_CONF_CHECK_X(name) \
8328 if (current_config->name != pipe_config->name) { \
8329 DRM_ERROR("mismatch in " #name " " \
8330 "(expected 0x%08x, found 0x%08x)\n", \
8331 current_config->name, \
8332 pipe_config->name); \
8333 return false; \
8334 }
8335
8336 #define PIPE_CONF_CHECK_I(name) \
8337 if (current_config->name != pipe_config->name) { \
8338 DRM_ERROR("mismatch in " #name " " \
8339 "(expected %i, found %i)\n", \
8340 current_config->name, \
8341 pipe_config->name); \
8342 return false; \
8343 }
8344
8345 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8346 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8347 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8348 "(expected %i, found %i)\n", \
8349 current_config->name & (mask), \
8350 pipe_config->name & (mask)); \
8351 return false; \
8352 }
8353
8354 #define PIPE_CONF_QUIRK(quirk) \
8355 ((current_config->quirks | pipe_config->quirks) & (quirk))
8356
8357 PIPE_CONF_CHECK_I(cpu_transcoder);
8358
8359 PIPE_CONF_CHECK_I(has_pch_encoder);
8360 PIPE_CONF_CHECK_I(fdi_lanes);
8361 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8362 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8363 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8364 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8365 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8366
8367 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8368 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8369 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8370 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8371 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8372 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8373
8374 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8375 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8376 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8377 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8378 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8379 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8380
8381 PIPE_CONF_CHECK_I(pixel_multiplier);
8382
8383 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8384 DRM_MODE_FLAG_INTERLACE);
8385
8386 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8387 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8388 DRM_MODE_FLAG_PHSYNC);
8389 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8390 DRM_MODE_FLAG_NHSYNC);
8391 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8392 DRM_MODE_FLAG_PVSYNC);
8393 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8394 DRM_MODE_FLAG_NVSYNC);
8395 }
8396
8397 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8398 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8399
8400 PIPE_CONF_CHECK_I(gmch_pfit.control);
8401 /* pfit ratios are autocomputed by the hw on gen4+ */
8402 if (INTEL_INFO(dev)->gen < 4)
8403 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8404 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8405 PIPE_CONF_CHECK_I(pch_pfit.pos);
8406 PIPE_CONF_CHECK_I(pch_pfit.size);
8407
8408 PIPE_CONF_CHECK_I(ips_enabled);
8409
8410 PIPE_CONF_CHECK_I(shared_dpll);
8411 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8412 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8413 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8414 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8415
8416 #undef PIPE_CONF_CHECK_X
8417 #undef PIPE_CONF_CHECK_I
8418 #undef PIPE_CONF_CHECK_FLAGS
8419 #undef PIPE_CONF_QUIRK
8420
8421 if (!IS_HASWELL(dev)) {
8422 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8423 DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8424 current_config->adjusted_mode.clock,
8425 pipe_config->adjusted_mode.clock);
8426 return false;
8427 }
8428 }
8429
8430 return true;
8431 }
8432
8433 static void
8434 check_connector_state(struct drm_device *dev)
8435 {
8436 struct intel_connector *connector;
8437
8438 list_for_each_entry(connector, &dev->mode_config.connector_list,
8439 base.head) {
8440 /* This also checks the encoder/connector hw state with the
8441 * ->get_hw_state callbacks. */
8442 intel_connector_check_state(connector);
8443
8444 WARN(&connector->new_encoder->base != connector->base.encoder,
8445 "connector's staged encoder doesn't match current encoder\n");
8446 }
8447 }
8448
8449 static void
8450 check_encoder_state(struct drm_device *dev)
8451 {
8452 struct intel_encoder *encoder;
8453 struct intel_connector *connector;
8454
8455 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8456 base.head) {
8457 bool enabled = false;
8458 bool active = false;
8459 enum pipe pipe, tracked_pipe;
8460
8461 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8462 encoder->base.base.id,
8463 drm_get_encoder_name(&encoder->base));
8464
8465 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8466 "encoder's stage crtc doesn't match current crtc\n");
8467 WARN(encoder->connectors_active && !encoder->base.crtc,
8468 "encoder's active_connectors set, but no crtc\n");
8469
8470 list_for_each_entry(connector, &dev->mode_config.connector_list,
8471 base.head) {
8472 if (connector->base.encoder != &encoder->base)
8473 continue;
8474 enabled = true;
8475 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8476 active = true;
8477 }
8478 WARN(!!encoder->base.crtc != enabled,
8479 "encoder's enabled state mismatch "
8480 "(expected %i, found %i)\n",
8481 !!encoder->base.crtc, enabled);
8482 WARN(active && !encoder->base.crtc,
8483 "active encoder with no crtc\n");
8484
8485 WARN(encoder->connectors_active != active,
8486 "encoder's computed active state doesn't match tracked active state "
8487 "(expected %i, found %i)\n", active, encoder->connectors_active);
8488
8489 active = encoder->get_hw_state(encoder, &pipe);
8490 WARN(active != encoder->connectors_active,
8491 "encoder's hw state doesn't match sw tracking "
8492 "(expected %i, found %i)\n",
8493 encoder->connectors_active, active);
8494
8495 if (!encoder->base.crtc)
8496 continue;
8497
8498 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8499 WARN(active && pipe != tracked_pipe,
8500 "active encoder's pipe doesn't match"
8501 "(expected %i, found %i)\n",
8502 tracked_pipe, pipe);
8503
8504 }
8505 }
8506
8507 static void
8508 check_crtc_state(struct drm_device *dev)
8509 {
8510 drm_i915_private_t *dev_priv = dev->dev_private;
8511 struct intel_crtc *crtc;
8512 struct intel_encoder *encoder;
8513 struct intel_crtc_config pipe_config;
8514
8515 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8516 base.head) {
8517 bool enabled = false;
8518 bool active = false;
8519
8520 memset(&pipe_config, 0, sizeof(pipe_config));
8521
8522 DRM_DEBUG_KMS("[CRTC:%d]\n",
8523 crtc->base.base.id);
8524
8525 WARN(crtc->active && !crtc->base.enabled,
8526 "active crtc, but not enabled in sw tracking\n");
8527
8528 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8529 base.head) {
8530 if (encoder->base.crtc != &crtc->base)
8531 continue;
8532 enabled = true;
8533 if (encoder->connectors_active)
8534 active = true;
8535 }
8536
8537 WARN(active != crtc->active,
8538 "crtc's computed active state doesn't match tracked active state "
8539 "(expected %i, found %i)\n", active, crtc->active);
8540 WARN(enabled != crtc->base.enabled,
8541 "crtc's computed enabled state doesn't match tracked enabled state "
8542 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8543
8544 active = dev_priv->display.get_pipe_config(crtc,
8545 &pipe_config);
8546
8547 /* hw state is inconsistent with the pipe A quirk */
8548 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8549 active = crtc->active;
8550
8551 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8552 base.head) {
8553 if (encoder->base.crtc != &crtc->base)
8554 continue;
8555 if (encoder->get_config)
8556 encoder->get_config(encoder, &pipe_config);
8557 }
8558
8559 if (dev_priv->display.get_clock)
8560 dev_priv->display.get_clock(crtc, &pipe_config);
8561
8562 WARN(crtc->active != active,
8563 "crtc active state doesn't match with hw state "
8564 "(expected %i, found %i)\n", crtc->active, active);
8565
8566 if (active &&
8567 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8568 WARN(1, "pipe state doesn't match!\n");
8569 intel_dump_pipe_config(crtc, &pipe_config,
8570 "[hw state]");
8571 intel_dump_pipe_config(crtc, &crtc->config,
8572 "[sw state]");
8573 }
8574 }
8575 }
8576
8577 static void
8578 check_shared_dpll_state(struct drm_device *dev)
8579 {
8580 drm_i915_private_t *dev_priv = dev->dev_private;
8581 struct intel_crtc *crtc;
8582 struct intel_dpll_hw_state dpll_hw_state;
8583 int i;
8584
8585 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8586 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8587 int enabled_crtcs = 0, active_crtcs = 0;
8588 bool active;
8589
8590 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8591
8592 DRM_DEBUG_KMS("%s\n", pll->name);
8593
8594 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8595
8596 WARN(pll->active > pll->refcount,
8597 "more active pll users than references: %i vs %i\n",
8598 pll->active, pll->refcount);
8599 WARN(pll->active && !pll->on,
8600 "pll in active use but not on in sw tracking\n");
8601 WARN(pll->on && !pll->active,
8602 "pll in on but not on in use in sw tracking\n");
8603 WARN(pll->on != active,
8604 "pll on state mismatch (expected %i, found %i)\n",
8605 pll->on, active);
8606
8607 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8608 base.head) {
8609 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8610 enabled_crtcs++;
8611 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8612 active_crtcs++;
8613 }
8614 WARN(pll->active != active_crtcs,
8615 "pll active crtcs mismatch (expected %i, found %i)\n",
8616 pll->active, active_crtcs);
8617 WARN(pll->refcount != enabled_crtcs,
8618 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8619 pll->refcount, enabled_crtcs);
8620
8621 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8622 sizeof(dpll_hw_state)),
8623 "pll hw state mismatch\n");
8624 }
8625 }
8626
8627 void
8628 intel_modeset_check_state(struct drm_device *dev)
8629 {
8630 check_connector_state(dev);
8631 check_encoder_state(dev);
8632 check_crtc_state(dev);
8633 check_shared_dpll_state(dev);
8634 }
8635
8636 static int __intel_set_mode(struct drm_crtc *crtc,
8637 struct drm_display_mode *mode,
8638 int x, int y, struct drm_framebuffer *fb)
8639 {
8640 struct drm_device *dev = crtc->dev;
8641 drm_i915_private_t *dev_priv = dev->dev_private;
8642 struct drm_display_mode *saved_mode, *saved_hwmode;
8643 struct intel_crtc_config *pipe_config = NULL;
8644 struct intel_crtc *intel_crtc;
8645 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8646 int ret = 0;
8647
8648 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8649 if (!saved_mode)
8650 return -ENOMEM;
8651 saved_hwmode = saved_mode + 1;
8652
8653 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8654 &prepare_pipes, &disable_pipes);
8655
8656 *saved_hwmode = crtc->hwmode;
8657 *saved_mode = crtc->mode;
8658
8659 /* Hack: Because we don't (yet) support global modeset on multiple
8660 * crtcs, we don't keep track of the new mode for more than one crtc.
8661 * Hence simply check whether any bit is set in modeset_pipes in all the
8662 * pieces of code that are not yet converted to deal with mutliple crtcs
8663 * changing their mode at the same time. */
8664 if (modeset_pipes) {
8665 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8666 if (IS_ERR(pipe_config)) {
8667 ret = PTR_ERR(pipe_config);
8668 pipe_config = NULL;
8669
8670 goto out;
8671 }
8672 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8673 "[modeset]");
8674 }
8675
8676 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8677 intel_crtc_disable(&intel_crtc->base);
8678
8679 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8680 if (intel_crtc->base.enabled)
8681 dev_priv->display.crtc_disable(&intel_crtc->base);
8682 }
8683
8684 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8685 * to set it here already despite that we pass it down the callchain.
8686 */
8687 if (modeset_pipes) {
8688 crtc->mode = *mode;
8689 /* mode_set/enable/disable functions rely on a correct pipe
8690 * config. */
8691 to_intel_crtc(crtc)->config = *pipe_config;
8692 }
8693
8694 /* Only after disabling all output pipelines that will be changed can we
8695 * update the the output configuration. */
8696 intel_modeset_update_state(dev, prepare_pipes);
8697
8698 if (dev_priv->display.modeset_global_resources)
8699 dev_priv->display.modeset_global_resources(dev);
8700
8701 /* Set up the DPLL and any encoders state that needs to adjust or depend
8702 * on the DPLL.
8703 */
8704 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8705 ret = intel_crtc_mode_set(&intel_crtc->base,
8706 x, y, fb);
8707 if (ret)
8708 goto done;
8709 }
8710
8711 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8712 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8713 dev_priv->display.crtc_enable(&intel_crtc->base);
8714
8715 if (modeset_pipes) {
8716 /* Store real post-adjustment hardware mode. */
8717 crtc->hwmode = pipe_config->adjusted_mode;
8718
8719 /* Calculate and store various constants which
8720 * are later needed by vblank and swap-completion
8721 * timestamping. They are derived from true hwmode.
8722 */
8723 drm_calc_timestamping_constants(crtc);
8724 }
8725
8726 /* FIXME: add subpixel order */
8727 done:
8728 if (ret && crtc->enabled) {
8729 crtc->hwmode = *saved_hwmode;
8730 crtc->mode = *saved_mode;
8731 }
8732
8733 out:
8734 kfree(pipe_config);
8735 kfree(saved_mode);
8736 return ret;
8737 }
8738
8739 static int intel_set_mode(struct drm_crtc *crtc,
8740 struct drm_display_mode *mode,
8741 int x, int y, struct drm_framebuffer *fb)
8742 {
8743 int ret;
8744
8745 ret = __intel_set_mode(crtc, mode, x, y, fb);
8746
8747 if (ret == 0)
8748 intel_modeset_check_state(crtc->dev);
8749
8750 return ret;
8751 }
8752
8753 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8754 {
8755 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8756 }
8757
8758 #undef for_each_intel_crtc_masked
8759
8760 static void intel_set_config_free(struct intel_set_config *config)
8761 {
8762 if (!config)
8763 return;
8764
8765 kfree(config->save_connector_encoders);
8766 kfree(config->save_encoder_crtcs);
8767 kfree(config);
8768 }
8769
8770 static int intel_set_config_save_state(struct drm_device *dev,
8771 struct intel_set_config *config)
8772 {
8773 struct drm_encoder *encoder;
8774 struct drm_connector *connector;
8775 int count;
8776
8777 config->save_encoder_crtcs =
8778 kcalloc(dev->mode_config.num_encoder,
8779 sizeof(struct drm_crtc *), GFP_KERNEL);
8780 if (!config->save_encoder_crtcs)
8781 return -ENOMEM;
8782
8783 config->save_connector_encoders =
8784 kcalloc(dev->mode_config.num_connector,
8785 sizeof(struct drm_encoder *), GFP_KERNEL);
8786 if (!config->save_connector_encoders)
8787 return -ENOMEM;
8788
8789 /* Copy data. Note that driver private data is not affected.
8790 * Should anything bad happen only the expected state is
8791 * restored, not the drivers personal bookkeeping.
8792 */
8793 count = 0;
8794 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8795 config->save_encoder_crtcs[count++] = encoder->crtc;
8796 }
8797
8798 count = 0;
8799 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8800 config->save_connector_encoders[count++] = connector->encoder;
8801 }
8802
8803 return 0;
8804 }
8805
8806 static void intel_set_config_restore_state(struct drm_device *dev,
8807 struct intel_set_config *config)
8808 {
8809 struct intel_encoder *encoder;
8810 struct intel_connector *connector;
8811 int count;
8812
8813 count = 0;
8814 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8815 encoder->new_crtc =
8816 to_intel_crtc(config->save_encoder_crtcs[count++]);
8817 }
8818
8819 count = 0;
8820 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8821 connector->new_encoder =
8822 to_intel_encoder(config->save_connector_encoders[count++]);
8823 }
8824 }
8825
8826 static bool
8827 is_crtc_connector_off(struct drm_mode_set *set)
8828 {
8829 int i;
8830
8831 if (set->num_connectors == 0)
8832 return false;
8833
8834 if (WARN_ON(set->connectors == NULL))
8835 return false;
8836
8837 for (i = 0; i < set->num_connectors; i++)
8838 if (set->connectors[i]->encoder &&
8839 set->connectors[i]->encoder->crtc == set->crtc &&
8840 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
8841 return true;
8842
8843 return false;
8844 }
8845
8846 static void
8847 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8848 struct intel_set_config *config)
8849 {
8850
8851 /* We should be able to check here if the fb has the same properties
8852 * and then just flip_or_move it */
8853 if (is_crtc_connector_off(set)) {
8854 config->mode_changed = true;
8855 } else if (set->crtc->fb != set->fb) {
8856 /* If we have no fb then treat it as a full mode set */
8857 if (set->crtc->fb == NULL) {
8858 struct intel_crtc *intel_crtc =
8859 to_intel_crtc(set->crtc);
8860
8861 if (intel_crtc->active && i915_fastboot) {
8862 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8863 config->fb_changed = true;
8864 } else {
8865 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8866 config->mode_changed = true;
8867 }
8868 } else if (set->fb == NULL) {
8869 config->mode_changed = true;
8870 } else if (set->fb->pixel_format !=
8871 set->crtc->fb->pixel_format) {
8872 config->mode_changed = true;
8873 } else {
8874 config->fb_changed = true;
8875 }
8876 }
8877
8878 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8879 config->fb_changed = true;
8880
8881 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8882 DRM_DEBUG_KMS("modes are different, full mode set\n");
8883 drm_mode_debug_printmodeline(&set->crtc->mode);
8884 drm_mode_debug_printmodeline(set->mode);
8885 config->mode_changed = true;
8886 }
8887 }
8888
8889 static int
8890 intel_modeset_stage_output_state(struct drm_device *dev,
8891 struct drm_mode_set *set,
8892 struct intel_set_config *config)
8893 {
8894 struct drm_crtc *new_crtc;
8895 struct intel_connector *connector;
8896 struct intel_encoder *encoder;
8897 int count, ro;
8898
8899 /* The upper layers ensure that we either disable a crtc or have a list
8900 * of connectors. For paranoia, double-check this. */
8901 WARN_ON(!set->fb && (set->num_connectors != 0));
8902 WARN_ON(set->fb && (set->num_connectors == 0));
8903
8904 count = 0;
8905 list_for_each_entry(connector, &dev->mode_config.connector_list,
8906 base.head) {
8907 /* Otherwise traverse passed in connector list and get encoders
8908 * for them. */
8909 for (ro = 0; ro < set->num_connectors; ro++) {
8910 if (set->connectors[ro] == &connector->base) {
8911 connector->new_encoder = connector->encoder;
8912 break;
8913 }
8914 }
8915
8916 /* If we disable the crtc, disable all its connectors. Also, if
8917 * the connector is on the changing crtc but not on the new
8918 * connector list, disable it. */
8919 if ((!set->fb || ro == set->num_connectors) &&
8920 connector->base.encoder &&
8921 connector->base.encoder->crtc == set->crtc) {
8922 connector->new_encoder = NULL;
8923
8924 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8925 connector->base.base.id,
8926 drm_get_connector_name(&connector->base));
8927 }
8928
8929
8930 if (&connector->new_encoder->base != connector->base.encoder) {
8931 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8932 config->mode_changed = true;
8933 }
8934 }
8935 /* connector->new_encoder is now updated for all connectors. */
8936
8937 /* Update crtc of enabled connectors. */
8938 count = 0;
8939 list_for_each_entry(connector, &dev->mode_config.connector_list,
8940 base.head) {
8941 if (!connector->new_encoder)
8942 continue;
8943
8944 new_crtc = connector->new_encoder->base.crtc;
8945
8946 for (ro = 0; ro < set->num_connectors; ro++) {
8947 if (set->connectors[ro] == &connector->base)
8948 new_crtc = set->crtc;
8949 }
8950
8951 /* Make sure the new CRTC will work with the encoder */
8952 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8953 new_crtc)) {
8954 return -EINVAL;
8955 }
8956 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8957
8958 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8959 connector->base.base.id,
8960 drm_get_connector_name(&connector->base),
8961 new_crtc->base.id);
8962 }
8963
8964 /* Check for any encoders that needs to be disabled. */
8965 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8966 base.head) {
8967 list_for_each_entry(connector,
8968 &dev->mode_config.connector_list,
8969 base.head) {
8970 if (connector->new_encoder == encoder) {
8971 WARN_ON(!connector->new_encoder->new_crtc);
8972
8973 goto next_encoder;
8974 }
8975 }
8976 encoder->new_crtc = NULL;
8977 next_encoder:
8978 /* Only now check for crtc changes so we don't miss encoders
8979 * that will be disabled. */
8980 if (&encoder->new_crtc->base != encoder->base.crtc) {
8981 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8982 config->mode_changed = true;
8983 }
8984 }
8985 /* Now we've also updated encoder->new_crtc for all encoders. */
8986
8987 return 0;
8988 }
8989
8990 static int intel_crtc_set_config(struct drm_mode_set *set)
8991 {
8992 struct drm_device *dev;
8993 struct drm_mode_set save_set;
8994 struct intel_set_config *config;
8995 int ret;
8996
8997 BUG_ON(!set);
8998 BUG_ON(!set->crtc);
8999 BUG_ON(!set->crtc->helper_private);
9000
9001 /* Enforce sane interface api - has been abused by the fb helper. */
9002 BUG_ON(!set->mode && set->fb);
9003 BUG_ON(set->fb && set->num_connectors == 0);
9004
9005 if (set->fb) {
9006 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9007 set->crtc->base.id, set->fb->base.id,
9008 (int)set->num_connectors, set->x, set->y);
9009 } else {
9010 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9011 }
9012
9013 dev = set->crtc->dev;
9014
9015 ret = -ENOMEM;
9016 config = kzalloc(sizeof(*config), GFP_KERNEL);
9017 if (!config)
9018 goto out_config;
9019
9020 ret = intel_set_config_save_state(dev, config);
9021 if (ret)
9022 goto out_config;
9023
9024 save_set.crtc = set->crtc;
9025 save_set.mode = &set->crtc->mode;
9026 save_set.x = set->crtc->x;
9027 save_set.y = set->crtc->y;
9028 save_set.fb = set->crtc->fb;
9029
9030 /* Compute whether we need a full modeset, only an fb base update or no
9031 * change at all. In the future we might also check whether only the
9032 * mode changed, e.g. for LVDS where we only change the panel fitter in
9033 * such cases. */
9034 intel_set_config_compute_mode_changes(set, config);
9035
9036 ret = intel_modeset_stage_output_state(dev, set, config);
9037 if (ret)
9038 goto fail;
9039
9040 if (config->mode_changed) {
9041 ret = intel_set_mode(set->crtc, set->mode,
9042 set->x, set->y, set->fb);
9043 } else if (config->fb_changed) {
9044 intel_crtc_wait_for_pending_flips(set->crtc);
9045
9046 ret = intel_pipe_set_base(set->crtc,
9047 set->x, set->y, set->fb);
9048 }
9049
9050 if (ret) {
9051 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9052 set->crtc->base.id, ret);
9053 fail:
9054 intel_set_config_restore_state(dev, config);
9055
9056 /* Try to restore the config */
9057 if (config->mode_changed &&
9058 intel_set_mode(save_set.crtc, save_set.mode,
9059 save_set.x, save_set.y, save_set.fb))
9060 DRM_ERROR("failed to restore config after modeset failure\n");
9061 }
9062
9063 out_config:
9064 intel_set_config_free(config);
9065 return ret;
9066 }
9067
9068 static const struct drm_crtc_funcs intel_crtc_funcs = {
9069 .cursor_set = intel_crtc_cursor_set,
9070 .cursor_move = intel_crtc_cursor_move,
9071 .gamma_set = intel_crtc_gamma_set,
9072 .set_config = intel_crtc_set_config,
9073 .destroy = intel_crtc_destroy,
9074 .page_flip = intel_crtc_page_flip,
9075 };
9076
9077 static void intel_cpu_pll_init(struct drm_device *dev)
9078 {
9079 if (HAS_DDI(dev))
9080 intel_ddi_pll_init(dev);
9081 }
9082
9083 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9084 struct intel_shared_dpll *pll,
9085 struct intel_dpll_hw_state *hw_state)
9086 {
9087 uint32_t val;
9088
9089 val = I915_READ(PCH_DPLL(pll->id));
9090 hw_state->dpll = val;
9091 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9092 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9093
9094 return val & DPLL_VCO_ENABLE;
9095 }
9096
9097 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9098 struct intel_shared_dpll *pll)
9099 {
9100 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9101 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9102 }
9103
9104 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9105 struct intel_shared_dpll *pll)
9106 {
9107 /* PCH refclock must be enabled first */
9108 assert_pch_refclk_enabled(dev_priv);
9109
9110 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9111
9112 /* Wait for the clocks to stabilize. */
9113 POSTING_READ(PCH_DPLL(pll->id));
9114 udelay(150);
9115
9116 /* The pixel multiplier can only be updated once the
9117 * DPLL is enabled and the clocks are stable.
9118 *
9119 * So write it again.
9120 */
9121 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9122 POSTING_READ(PCH_DPLL(pll->id));
9123 udelay(200);
9124 }
9125
9126 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9127 struct intel_shared_dpll *pll)
9128 {
9129 struct drm_device *dev = dev_priv->dev;
9130 struct intel_crtc *crtc;
9131
9132 /* Make sure no transcoder isn't still depending on us. */
9133 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9134 if (intel_crtc_to_shared_dpll(crtc) == pll)
9135 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9136 }
9137
9138 I915_WRITE(PCH_DPLL(pll->id), 0);
9139 POSTING_READ(PCH_DPLL(pll->id));
9140 udelay(200);
9141 }
9142
9143 static char *ibx_pch_dpll_names[] = {
9144 "PCH DPLL A",
9145 "PCH DPLL B",
9146 };
9147
9148 static void ibx_pch_dpll_init(struct drm_device *dev)
9149 {
9150 struct drm_i915_private *dev_priv = dev->dev_private;
9151 int i;
9152
9153 dev_priv->num_shared_dpll = 2;
9154
9155 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9156 dev_priv->shared_dplls[i].id = i;
9157 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9158 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9159 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9160 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9161 dev_priv->shared_dplls[i].get_hw_state =
9162 ibx_pch_dpll_get_hw_state;
9163 }
9164 }
9165
9166 static void intel_shared_dpll_init(struct drm_device *dev)
9167 {
9168 struct drm_i915_private *dev_priv = dev->dev_private;
9169
9170 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9171 ibx_pch_dpll_init(dev);
9172 else
9173 dev_priv->num_shared_dpll = 0;
9174
9175 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9176 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9177 dev_priv->num_shared_dpll);
9178 }
9179
9180 static void intel_crtc_init(struct drm_device *dev, int pipe)
9181 {
9182 drm_i915_private_t *dev_priv = dev->dev_private;
9183 struct intel_crtc *intel_crtc;
9184 int i;
9185
9186 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9187 if (intel_crtc == NULL)
9188 return;
9189
9190 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9191
9192 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9193 for (i = 0; i < 256; i++) {
9194 intel_crtc->lut_r[i] = i;
9195 intel_crtc->lut_g[i] = i;
9196 intel_crtc->lut_b[i] = i;
9197 }
9198
9199 /* Swap pipes & planes for FBC on pre-965 */
9200 intel_crtc->pipe = pipe;
9201 intel_crtc->plane = pipe;
9202 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9203 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9204 intel_crtc->plane = !pipe;
9205 }
9206
9207 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9208 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9209 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9210 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9211
9212 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9213 }
9214
9215 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9216 struct drm_file *file)
9217 {
9218 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9219 struct drm_mode_object *drmmode_obj;
9220 struct intel_crtc *crtc;
9221
9222 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9223 return -ENODEV;
9224
9225 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9226 DRM_MODE_OBJECT_CRTC);
9227
9228 if (!drmmode_obj) {
9229 DRM_ERROR("no such CRTC id\n");
9230 return -EINVAL;
9231 }
9232
9233 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9234 pipe_from_crtc_id->pipe = crtc->pipe;
9235
9236 return 0;
9237 }
9238
9239 static int intel_encoder_clones(struct intel_encoder *encoder)
9240 {
9241 struct drm_device *dev = encoder->base.dev;
9242 struct intel_encoder *source_encoder;
9243 int index_mask = 0;
9244 int entry = 0;
9245
9246 list_for_each_entry(source_encoder,
9247 &dev->mode_config.encoder_list, base.head) {
9248
9249 if (encoder == source_encoder)
9250 index_mask |= (1 << entry);
9251
9252 /* Intel hw has only one MUX where enocoders could be cloned. */
9253 if (encoder->cloneable && source_encoder->cloneable)
9254 index_mask |= (1 << entry);
9255
9256 entry++;
9257 }
9258
9259 return index_mask;
9260 }
9261
9262 static bool has_edp_a(struct drm_device *dev)
9263 {
9264 struct drm_i915_private *dev_priv = dev->dev_private;
9265
9266 if (!IS_MOBILE(dev))
9267 return false;
9268
9269 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9270 return false;
9271
9272 if (IS_GEN5(dev) &&
9273 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9274 return false;
9275
9276 return true;
9277 }
9278
9279 static void intel_setup_outputs(struct drm_device *dev)
9280 {
9281 struct drm_i915_private *dev_priv = dev->dev_private;
9282 struct intel_encoder *encoder;
9283 bool dpd_is_edp = false;
9284
9285 intel_lvds_init(dev);
9286
9287 if (!IS_ULT(dev))
9288 intel_crt_init(dev);
9289
9290 if (HAS_DDI(dev)) {
9291 int found;
9292
9293 /* Haswell uses DDI functions to detect digital outputs */
9294 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9295 /* DDI A only supports eDP */
9296 if (found)
9297 intel_ddi_init(dev, PORT_A);
9298
9299 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9300 * register */
9301 found = I915_READ(SFUSE_STRAP);
9302
9303 if (found & SFUSE_STRAP_DDIB_DETECTED)
9304 intel_ddi_init(dev, PORT_B);
9305 if (found & SFUSE_STRAP_DDIC_DETECTED)
9306 intel_ddi_init(dev, PORT_C);
9307 if (found & SFUSE_STRAP_DDID_DETECTED)
9308 intel_ddi_init(dev, PORT_D);
9309 } else if (HAS_PCH_SPLIT(dev)) {
9310 int found;
9311 dpd_is_edp = intel_dpd_is_edp(dev);
9312
9313 if (has_edp_a(dev))
9314 intel_dp_init(dev, DP_A, PORT_A);
9315
9316 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9317 /* PCH SDVOB multiplex with HDMIB */
9318 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9319 if (!found)
9320 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9321 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9322 intel_dp_init(dev, PCH_DP_B, PORT_B);
9323 }
9324
9325 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9326 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9327
9328 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9329 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9330
9331 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9332 intel_dp_init(dev, PCH_DP_C, PORT_C);
9333
9334 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9335 intel_dp_init(dev, PCH_DP_D, PORT_D);
9336 } else if (IS_VALLEYVIEW(dev)) {
9337 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9338 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9339 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9340
9341 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9342 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9343 PORT_B);
9344 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9345 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9346 }
9347 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9348 bool found = false;
9349
9350 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9351 DRM_DEBUG_KMS("probing SDVOB\n");
9352 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9353 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9354 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9355 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9356 }
9357
9358 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9359 intel_dp_init(dev, DP_B, PORT_B);
9360 }
9361
9362 /* Before G4X SDVOC doesn't have its own detect register */
9363
9364 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9365 DRM_DEBUG_KMS("probing SDVOC\n");
9366 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9367 }
9368
9369 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9370
9371 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9372 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9373 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9374 }
9375 if (SUPPORTS_INTEGRATED_DP(dev))
9376 intel_dp_init(dev, DP_C, PORT_C);
9377 }
9378
9379 if (SUPPORTS_INTEGRATED_DP(dev) &&
9380 (I915_READ(DP_D) & DP_DETECTED))
9381 intel_dp_init(dev, DP_D, PORT_D);
9382 } else if (IS_GEN2(dev))
9383 intel_dvo_init(dev);
9384
9385 if (SUPPORTS_TV(dev))
9386 intel_tv_init(dev);
9387
9388 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9389 encoder->base.possible_crtcs = encoder->crtc_mask;
9390 encoder->base.possible_clones =
9391 intel_encoder_clones(encoder);
9392 }
9393
9394 intel_init_pch_refclk(dev);
9395
9396 drm_helper_move_panel_connectors_to_head(dev);
9397 }
9398
9399 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9400 {
9401 drm_framebuffer_cleanup(&fb->base);
9402 drm_gem_object_unreference_unlocked(&fb->obj->base);
9403 }
9404
9405 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9406 {
9407 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9408
9409 intel_framebuffer_fini(intel_fb);
9410 kfree(intel_fb);
9411 }
9412
9413 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9414 struct drm_file *file,
9415 unsigned int *handle)
9416 {
9417 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9418 struct drm_i915_gem_object *obj = intel_fb->obj;
9419
9420 return drm_gem_handle_create(file, &obj->base, handle);
9421 }
9422
9423 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9424 .destroy = intel_user_framebuffer_destroy,
9425 .create_handle = intel_user_framebuffer_create_handle,
9426 };
9427
9428 int intel_framebuffer_init(struct drm_device *dev,
9429 struct intel_framebuffer *intel_fb,
9430 struct drm_mode_fb_cmd2 *mode_cmd,
9431 struct drm_i915_gem_object *obj)
9432 {
9433 int pitch_limit;
9434 int ret;
9435
9436 if (obj->tiling_mode == I915_TILING_Y) {
9437 DRM_DEBUG("hardware does not support tiling Y\n");
9438 return -EINVAL;
9439 }
9440
9441 if (mode_cmd->pitches[0] & 63) {
9442 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9443 mode_cmd->pitches[0]);
9444 return -EINVAL;
9445 }
9446
9447 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9448 pitch_limit = 32*1024;
9449 } else if (INTEL_INFO(dev)->gen >= 4) {
9450 if (obj->tiling_mode)
9451 pitch_limit = 16*1024;
9452 else
9453 pitch_limit = 32*1024;
9454 } else if (INTEL_INFO(dev)->gen >= 3) {
9455 if (obj->tiling_mode)
9456 pitch_limit = 8*1024;
9457 else
9458 pitch_limit = 16*1024;
9459 } else
9460 /* XXX DSPC is limited to 4k tiled */
9461 pitch_limit = 8*1024;
9462
9463 if (mode_cmd->pitches[0] > pitch_limit) {
9464 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9465 obj->tiling_mode ? "tiled" : "linear",
9466 mode_cmd->pitches[0], pitch_limit);
9467 return -EINVAL;
9468 }
9469
9470 if (obj->tiling_mode != I915_TILING_NONE &&
9471 mode_cmd->pitches[0] != obj->stride) {
9472 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9473 mode_cmd->pitches[0], obj->stride);
9474 return -EINVAL;
9475 }
9476
9477 /* Reject formats not supported by any plane early. */
9478 switch (mode_cmd->pixel_format) {
9479 case DRM_FORMAT_C8:
9480 case DRM_FORMAT_RGB565:
9481 case DRM_FORMAT_XRGB8888:
9482 case DRM_FORMAT_ARGB8888:
9483 break;
9484 case DRM_FORMAT_XRGB1555:
9485 case DRM_FORMAT_ARGB1555:
9486 if (INTEL_INFO(dev)->gen > 3) {
9487 DRM_DEBUG("unsupported pixel format: %s\n",
9488 drm_get_format_name(mode_cmd->pixel_format));
9489 return -EINVAL;
9490 }
9491 break;
9492 case DRM_FORMAT_XBGR8888:
9493 case DRM_FORMAT_ABGR8888:
9494 case DRM_FORMAT_XRGB2101010:
9495 case DRM_FORMAT_ARGB2101010:
9496 case DRM_FORMAT_XBGR2101010:
9497 case DRM_FORMAT_ABGR2101010:
9498 if (INTEL_INFO(dev)->gen < 4) {
9499 DRM_DEBUG("unsupported pixel format: %s\n",
9500 drm_get_format_name(mode_cmd->pixel_format));
9501 return -EINVAL;
9502 }
9503 break;
9504 case DRM_FORMAT_YUYV:
9505 case DRM_FORMAT_UYVY:
9506 case DRM_FORMAT_YVYU:
9507 case DRM_FORMAT_VYUY:
9508 if (INTEL_INFO(dev)->gen < 5) {
9509 DRM_DEBUG("unsupported pixel format: %s\n",
9510 drm_get_format_name(mode_cmd->pixel_format));
9511 return -EINVAL;
9512 }
9513 break;
9514 default:
9515 DRM_DEBUG("unsupported pixel format: %s\n",
9516 drm_get_format_name(mode_cmd->pixel_format));
9517 return -EINVAL;
9518 }
9519
9520 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9521 if (mode_cmd->offsets[0] != 0)
9522 return -EINVAL;
9523
9524 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9525 intel_fb->obj = obj;
9526
9527 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9528 if (ret) {
9529 DRM_ERROR("framebuffer init failed %d\n", ret);
9530 return ret;
9531 }
9532
9533 return 0;
9534 }
9535
9536 static struct drm_framebuffer *
9537 intel_user_framebuffer_create(struct drm_device *dev,
9538 struct drm_file *filp,
9539 struct drm_mode_fb_cmd2 *mode_cmd)
9540 {
9541 struct drm_i915_gem_object *obj;
9542
9543 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9544 mode_cmd->handles[0]));
9545 if (&obj->base == NULL)
9546 return ERR_PTR(-ENOENT);
9547
9548 return intel_framebuffer_create(dev, mode_cmd, obj);
9549 }
9550
9551 static const struct drm_mode_config_funcs intel_mode_funcs = {
9552 .fb_create = intel_user_framebuffer_create,
9553 .output_poll_changed = intel_fb_output_poll_changed,
9554 };
9555
9556 /* Set up chip specific display functions */
9557 static void intel_init_display(struct drm_device *dev)
9558 {
9559 struct drm_i915_private *dev_priv = dev->dev_private;
9560
9561 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9562 dev_priv->display.find_dpll = g4x_find_best_dpll;
9563 else if (IS_VALLEYVIEW(dev))
9564 dev_priv->display.find_dpll = vlv_find_best_dpll;
9565 else if (IS_PINEVIEW(dev))
9566 dev_priv->display.find_dpll = pnv_find_best_dpll;
9567 else
9568 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9569
9570 if (HAS_DDI(dev)) {
9571 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9572 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9573 dev_priv->display.crtc_enable = haswell_crtc_enable;
9574 dev_priv->display.crtc_disable = haswell_crtc_disable;
9575 dev_priv->display.off = haswell_crtc_off;
9576 dev_priv->display.update_plane = ironlake_update_plane;
9577 } else if (HAS_PCH_SPLIT(dev)) {
9578 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9579 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9580 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9581 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9582 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9583 dev_priv->display.off = ironlake_crtc_off;
9584 dev_priv->display.update_plane = ironlake_update_plane;
9585 } else if (IS_VALLEYVIEW(dev)) {
9586 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9587 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9588 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9589 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9590 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9591 dev_priv->display.off = i9xx_crtc_off;
9592 dev_priv->display.update_plane = i9xx_update_plane;
9593 } else {
9594 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9595 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9596 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9597 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9598 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9599 dev_priv->display.off = i9xx_crtc_off;
9600 dev_priv->display.update_plane = i9xx_update_plane;
9601 }
9602
9603 /* Returns the core display clock speed */
9604 if (IS_VALLEYVIEW(dev))
9605 dev_priv->display.get_display_clock_speed =
9606 valleyview_get_display_clock_speed;
9607 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9608 dev_priv->display.get_display_clock_speed =
9609 i945_get_display_clock_speed;
9610 else if (IS_I915G(dev))
9611 dev_priv->display.get_display_clock_speed =
9612 i915_get_display_clock_speed;
9613 else if (IS_I945GM(dev) || IS_845G(dev))
9614 dev_priv->display.get_display_clock_speed =
9615 i9xx_misc_get_display_clock_speed;
9616 else if (IS_PINEVIEW(dev))
9617 dev_priv->display.get_display_clock_speed =
9618 pnv_get_display_clock_speed;
9619 else if (IS_I915GM(dev))
9620 dev_priv->display.get_display_clock_speed =
9621 i915gm_get_display_clock_speed;
9622 else if (IS_I865G(dev))
9623 dev_priv->display.get_display_clock_speed =
9624 i865_get_display_clock_speed;
9625 else if (IS_I85X(dev))
9626 dev_priv->display.get_display_clock_speed =
9627 i855_get_display_clock_speed;
9628 else /* 852, 830 */
9629 dev_priv->display.get_display_clock_speed =
9630 i830_get_display_clock_speed;
9631
9632 if (HAS_PCH_SPLIT(dev)) {
9633 if (IS_GEN5(dev)) {
9634 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9635 dev_priv->display.write_eld = ironlake_write_eld;
9636 } else if (IS_GEN6(dev)) {
9637 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9638 dev_priv->display.write_eld = ironlake_write_eld;
9639 } else if (IS_IVYBRIDGE(dev)) {
9640 /* FIXME: detect B0+ stepping and use auto training */
9641 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9642 dev_priv->display.write_eld = ironlake_write_eld;
9643 dev_priv->display.modeset_global_resources =
9644 ivb_modeset_global_resources;
9645 } else if (IS_HASWELL(dev)) {
9646 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9647 dev_priv->display.write_eld = haswell_write_eld;
9648 dev_priv->display.modeset_global_resources =
9649 haswell_modeset_global_resources;
9650 }
9651 } else if (IS_G4X(dev)) {
9652 dev_priv->display.write_eld = g4x_write_eld;
9653 }
9654
9655 /* Default just returns -ENODEV to indicate unsupported */
9656 dev_priv->display.queue_flip = intel_default_queue_flip;
9657
9658 switch (INTEL_INFO(dev)->gen) {
9659 case 2:
9660 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9661 break;
9662
9663 case 3:
9664 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9665 break;
9666
9667 case 4:
9668 case 5:
9669 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9670 break;
9671
9672 case 6:
9673 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9674 break;
9675 case 7:
9676 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9677 break;
9678 }
9679 }
9680
9681 /*
9682 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9683 * resume, or other times. This quirk makes sure that's the case for
9684 * affected systems.
9685 */
9686 static void quirk_pipea_force(struct drm_device *dev)
9687 {
9688 struct drm_i915_private *dev_priv = dev->dev_private;
9689
9690 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9691 DRM_INFO("applying pipe a force quirk\n");
9692 }
9693
9694 /*
9695 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9696 */
9697 static void quirk_ssc_force_disable(struct drm_device *dev)
9698 {
9699 struct drm_i915_private *dev_priv = dev->dev_private;
9700 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9701 DRM_INFO("applying lvds SSC disable quirk\n");
9702 }
9703
9704 /*
9705 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9706 * brightness value
9707 */
9708 static void quirk_invert_brightness(struct drm_device *dev)
9709 {
9710 struct drm_i915_private *dev_priv = dev->dev_private;
9711 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9712 DRM_INFO("applying inverted panel brightness quirk\n");
9713 }
9714
9715 /*
9716 * Some machines (Dell XPS13) suffer broken backlight controls if
9717 * BLM_PCH_PWM_ENABLE is set.
9718 */
9719 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9720 {
9721 struct drm_i915_private *dev_priv = dev->dev_private;
9722 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9723 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9724 }
9725
9726 struct intel_quirk {
9727 int device;
9728 int subsystem_vendor;
9729 int subsystem_device;
9730 void (*hook)(struct drm_device *dev);
9731 };
9732
9733 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9734 struct intel_dmi_quirk {
9735 void (*hook)(struct drm_device *dev);
9736 const struct dmi_system_id (*dmi_id_list)[];
9737 };
9738
9739 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9740 {
9741 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9742 return 1;
9743 }
9744
9745 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9746 {
9747 .dmi_id_list = &(const struct dmi_system_id[]) {
9748 {
9749 .callback = intel_dmi_reverse_brightness,
9750 .ident = "NCR Corporation",
9751 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9752 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9753 },
9754 },
9755 { } /* terminating entry */
9756 },
9757 .hook = quirk_invert_brightness,
9758 },
9759 };
9760
9761 static struct intel_quirk intel_quirks[] = {
9762 /* HP Mini needs pipe A force quirk (LP: #322104) */
9763 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9764
9765 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9766 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9767
9768 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9769 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9770
9771 /* 830/845 need to leave pipe A & dpll A up */
9772 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9773 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9774
9775 /* Lenovo U160 cannot use SSC on LVDS */
9776 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9777
9778 /* Sony Vaio Y cannot use SSC on LVDS */
9779 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9780
9781 /* Acer Aspire 5734Z must invert backlight brightness */
9782 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9783
9784 /* Acer/eMachines G725 */
9785 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9786
9787 /* Acer/eMachines e725 */
9788 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9789
9790 /* Acer/Packard Bell NCL20 */
9791 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9792
9793 /* Acer Aspire 4736Z */
9794 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9795
9796 /* Dell XPS13 HD Sandy Bridge */
9797 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9798 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9799 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
9800 };
9801
9802 static void intel_init_quirks(struct drm_device *dev)
9803 {
9804 struct pci_dev *d = dev->pdev;
9805 int i;
9806
9807 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9808 struct intel_quirk *q = &intel_quirks[i];
9809
9810 if (d->device == q->device &&
9811 (d->subsystem_vendor == q->subsystem_vendor ||
9812 q->subsystem_vendor == PCI_ANY_ID) &&
9813 (d->subsystem_device == q->subsystem_device ||
9814 q->subsystem_device == PCI_ANY_ID))
9815 q->hook(dev);
9816 }
9817 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9818 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9819 intel_dmi_quirks[i].hook(dev);
9820 }
9821 }
9822
9823 /* Disable the VGA plane that we never use */
9824 static void i915_disable_vga(struct drm_device *dev)
9825 {
9826 struct drm_i915_private *dev_priv = dev->dev_private;
9827 u8 sr1;
9828 u32 vga_reg = i915_vgacntrl_reg(dev);
9829
9830 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9831 outb(SR01, VGA_SR_INDEX);
9832 sr1 = inb(VGA_SR_DATA);
9833 outb(sr1 | 1<<5, VGA_SR_DATA);
9834 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9835 udelay(300);
9836
9837 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9838 POSTING_READ(vga_reg);
9839 }
9840
9841 void intel_modeset_init_hw(struct drm_device *dev)
9842 {
9843 intel_init_power_well(dev);
9844
9845 intel_prepare_ddi(dev);
9846
9847 intel_init_clock_gating(dev);
9848
9849 mutex_lock(&dev->struct_mutex);
9850 intel_enable_gt_powersave(dev);
9851 mutex_unlock(&dev->struct_mutex);
9852 }
9853
9854 void intel_modeset_suspend_hw(struct drm_device *dev)
9855 {
9856 intel_suspend_hw(dev);
9857 }
9858
9859 void intel_modeset_init(struct drm_device *dev)
9860 {
9861 struct drm_i915_private *dev_priv = dev->dev_private;
9862 int i, j, ret;
9863
9864 drm_mode_config_init(dev);
9865
9866 dev->mode_config.min_width = 0;
9867 dev->mode_config.min_height = 0;
9868
9869 dev->mode_config.preferred_depth = 24;
9870 dev->mode_config.prefer_shadow = 1;
9871
9872 dev->mode_config.funcs = &intel_mode_funcs;
9873
9874 intel_init_quirks(dev);
9875
9876 intel_init_pm(dev);
9877
9878 if (INTEL_INFO(dev)->num_pipes == 0)
9879 return;
9880
9881 intel_init_display(dev);
9882
9883 if (IS_GEN2(dev)) {
9884 dev->mode_config.max_width = 2048;
9885 dev->mode_config.max_height = 2048;
9886 } else if (IS_GEN3(dev)) {
9887 dev->mode_config.max_width = 4096;
9888 dev->mode_config.max_height = 4096;
9889 } else {
9890 dev->mode_config.max_width = 8192;
9891 dev->mode_config.max_height = 8192;
9892 }
9893 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9894
9895 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9896 INTEL_INFO(dev)->num_pipes,
9897 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9898
9899 for_each_pipe(i) {
9900 intel_crtc_init(dev, i);
9901 for (j = 0; j < dev_priv->num_plane; j++) {
9902 ret = intel_plane_init(dev, i, j);
9903 if (ret)
9904 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9905 pipe_name(i), sprite_name(i, j), ret);
9906 }
9907 }
9908
9909 intel_cpu_pll_init(dev);
9910 intel_shared_dpll_init(dev);
9911
9912 /* Just disable it once at startup */
9913 i915_disable_vga(dev);
9914 intel_setup_outputs(dev);
9915
9916 /* Just in case the BIOS is doing something questionable. */
9917 intel_disable_fbc(dev);
9918 }
9919
9920 static void
9921 intel_connector_break_all_links(struct intel_connector *connector)
9922 {
9923 connector->base.dpms = DRM_MODE_DPMS_OFF;
9924 connector->base.encoder = NULL;
9925 connector->encoder->connectors_active = false;
9926 connector->encoder->base.crtc = NULL;
9927 }
9928
9929 static void intel_enable_pipe_a(struct drm_device *dev)
9930 {
9931 struct intel_connector *connector;
9932 struct drm_connector *crt = NULL;
9933 struct intel_load_detect_pipe load_detect_temp;
9934
9935 /* We can't just switch on the pipe A, we need to set things up with a
9936 * proper mode and output configuration. As a gross hack, enable pipe A
9937 * by enabling the load detect pipe once. */
9938 list_for_each_entry(connector,
9939 &dev->mode_config.connector_list,
9940 base.head) {
9941 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9942 crt = &connector->base;
9943 break;
9944 }
9945 }
9946
9947 if (!crt)
9948 return;
9949
9950 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9951 intel_release_load_detect_pipe(crt, &load_detect_temp);
9952
9953
9954 }
9955
9956 static bool
9957 intel_check_plane_mapping(struct intel_crtc *crtc)
9958 {
9959 struct drm_device *dev = crtc->base.dev;
9960 struct drm_i915_private *dev_priv = dev->dev_private;
9961 u32 reg, val;
9962
9963 if (INTEL_INFO(dev)->num_pipes == 1)
9964 return true;
9965
9966 reg = DSPCNTR(!crtc->plane);
9967 val = I915_READ(reg);
9968
9969 if ((val & DISPLAY_PLANE_ENABLE) &&
9970 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9971 return false;
9972
9973 return true;
9974 }
9975
9976 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9977 {
9978 struct drm_device *dev = crtc->base.dev;
9979 struct drm_i915_private *dev_priv = dev->dev_private;
9980 u32 reg;
9981
9982 /* Clear any frame start delays used for debugging left by the BIOS */
9983 reg = PIPECONF(crtc->config.cpu_transcoder);
9984 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9985
9986 /* We need to sanitize the plane -> pipe mapping first because this will
9987 * disable the crtc (and hence change the state) if it is wrong. Note
9988 * that gen4+ has a fixed plane -> pipe mapping. */
9989 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9990 struct intel_connector *connector;
9991 bool plane;
9992
9993 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9994 crtc->base.base.id);
9995
9996 /* Pipe has the wrong plane attached and the plane is active.
9997 * Temporarily change the plane mapping and disable everything
9998 * ... */
9999 plane = crtc->plane;
10000 crtc->plane = !plane;
10001 dev_priv->display.crtc_disable(&crtc->base);
10002 crtc->plane = plane;
10003
10004 /* ... and break all links. */
10005 list_for_each_entry(connector, &dev->mode_config.connector_list,
10006 base.head) {
10007 if (connector->encoder->base.crtc != &crtc->base)
10008 continue;
10009
10010 intel_connector_break_all_links(connector);
10011 }
10012
10013 WARN_ON(crtc->active);
10014 crtc->base.enabled = false;
10015 }
10016
10017 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10018 crtc->pipe == PIPE_A && !crtc->active) {
10019 /* BIOS forgot to enable pipe A, this mostly happens after
10020 * resume. Force-enable the pipe to fix this, the update_dpms
10021 * call below we restore the pipe to the right state, but leave
10022 * the required bits on. */
10023 intel_enable_pipe_a(dev);
10024 }
10025
10026 /* Adjust the state of the output pipe according to whether we
10027 * have active connectors/encoders. */
10028 intel_crtc_update_dpms(&crtc->base);
10029
10030 if (crtc->active != crtc->base.enabled) {
10031 struct intel_encoder *encoder;
10032
10033 /* This can happen either due to bugs in the get_hw_state
10034 * functions or because the pipe is force-enabled due to the
10035 * pipe A quirk. */
10036 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10037 crtc->base.base.id,
10038 crtc->base.enabled ? "enabled" : "disabled",
10039 crtc->active ? "enabled" : "disabled");
10040
10041 crtc->base.enabled = crtc->active;
10042
10043 /* Because we only establish the connector -> encoder ->
10044 * crtc links if something is active, this means the
10045 * crtc is now deactivated. Break the links. connector
10046 * -> encoder links are only establish when things are
10047 * actually up, hence no need to break them. */
10048 WARN_ON(crtc->active);
10049
10050 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10051 WARN_ON(encoder->connectors_active);
10052 encoder->base.crtc = NULL;
10053 }
10054 }
10055 }
10056
10057 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10058 {
10059 struct intel_connector *connector;
10060 struct drm_device *dev = encoder->base.dev;
10061
10062 /* We need to check both for a crtc link (meaning that the
10063 * encoder is active and trying to read from a pipe) and the
10064 * pipe itself being active. */
10065 bool has_active_crtc = encoder->base.crtc &&
10066 to_intel_crtc(encoder->base.crtc)->active;
10067
10068 if (encoder->connectors_active && !has_active_crtc) {
10069 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10070 encoder->base.base.id,
10071 drm_get_encoder_name(&encoder->base));
10072
10073 /* Connector is active, but has no active pipe. This is
10074 * fallout from our resume register restoring. Disable
10075 * the encoder manually again. */
10076 if (encoder->base.crtc) {
10077 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10078 encoder->base.base.id,
10079 drm_get_encoder_name(&encoder->base));
10080 encoder->disable(encoder);
10081 }
10082
10083 /* Inconsistent output/port/pipe state happens presumably due to
10084 * a bug in one of the get_hw_state functions. Or someplace else
10085 * in our code, like the register restore mess on resume. Clamp
10086 * things to off as a safer default. */
10087 list_for_each_entry(connector,
10088 &dev->mode_config.connector_list,
10089 base.head) {
10090 if (connector->encoder != encoder)
10091 continue;
10092
10093 intel_connector_break_all_links(connector);
10094 }
10095 }
10096 /* Enabled encoders without active connectors will be fixed in
10097 * the crtc fixup. */
10098 }
10099
10100 void i915_redisable_vga(struct drm_device *dev)
10101 {
10102 struct drm_i915_private *dev_priv = dev->dev_private;
10103 u32 vga_reg = i915_vgacntrl_reg(dev);
10104
10105 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10106 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10107 i915_disable_vga(dev);
10108 }
10109 }
10110
10111 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10112 {
10113 struct drm_i915_private *dev_priv = dev->dev_private;
10114 enum pipe pipe;
10115 struct intel_crtc *crtc;
10116 struct intel_encoder *encoder;
10117 struct intel_connector *connector;
10118 int i;
10119
10120 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10121 base.head) {
10122 memset(&crtc->config, 0, sizeof(crtc->config));
10123
10124 crtc->active = dev_priv->display.get_pipe_config(crtc,
10125 &crtc->config);
10126
10127 crtc->base.enabled = crtc->active;
10128
10129 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10130 crtc->base.base.id,
10131 crtc->active ? "enabled" : "disabled");
10132 }
10133
10134 /* FIXME: Smash this into the new shared dpll infrastructure. */
10135 if (HAS_DDI(dev))
10136 intel_ddi_setup_hw_pll_state(dev);
10137
10138 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10139 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10140
10141 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10142 pll->active = 0;
10143 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10144 base.head) {
10145 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10146 pll->active++;
10147 }
10148 pll->refcount = pll->active;
10149
10150 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10151 pll->name, pll->refcount, pll->on);
10152 }
10153
10154 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10155 base.head) {
10156 pipe = 0;
10157
10158 if (encoder->get_hw_state(encoder, &pipe)) {
10159 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10160 encoder->base.crtc = &crtc->base;
10161 if (encoder->get_config)
10162 encoder->get_config(encoder, &crtc->config);
10163 } else {
10164 encoder->base.crtc = NULL;
10165 }
10166
10167 encoder->connectors_active = false;
10168 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10169 encoder->base.base.id,
10170 drm_get_encoder_name(&encoder->base),
10171 encoder->base.crtc ? "enabled" : "disabled",
10172 pipe);
10173 }
10174
10175 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10176 base.head) {
10177 if (!crtc->active)
10178 continue;
10179 if (dev_priv->display.get_clock)
10180 dev_priv->display.get_clock(crtc,
10181 &crtc->config);
10182 }
10183
10184 list_for_each_entry(connector, &dev->mode_config.connector_list,
10185 base.head) {
10186 if (connector->get_hw_state(connector)) {
10187 connector->base.dpms = DRM_MODE_DPMS_ON;
10188 connector->encoder->connectors_active = true;
10189 connector->base.encoder = &connector->encoder->base;
10190 } else {
10191 connector->base.dpms = DRM_MODE_DPMS_OFF;
10192 connector->base.encoder = NULL;
10193 }
10194 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10195 connector->base.base.id,
10196 drm_get_connector_name(&connector->base),
10197 connector->base.encoder ? "enabled" : "disabled");
10198 }
10199 }
10200
10201 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10202 * and i915 state tracking structures. */
10203 void intel_modeset_setup_hw_state(struct drm_device *dev,
10204 bool force_restore)
10205 {
10206 struct drm_i915_private *dev_priv = dev->dev_private;
10207 enum pipe pipe;
10208 struct drm_plane *plane;
10209 struct intel_crtc *crtc;
10210 struct intel_encoder *encoder;
10211 int i;
10212
10213 intel_modeset_readout_hw_state(dev);
10214
10215 /*
10216 * Now that we have the config, copy it to each CRTC struct
10217 * Note that this could go away if we move to using crtc_config
10218 * checking everywhere.
10219 */
10220 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10221 base.head) {
10222 if (crtc->active && i915_fastboot) {
10223 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10224
10225 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10226 crtc->base.base.id);
10227 drm_mode_debug_printmodeline(&crtc->base.mode);
10228 }
10229 }
10230
10231 /* HW state is read out, now we need to sanitize this mess. */
10232 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10233 base.head) {
10234 intel_sanitize_encoder(encoder);
10235 }
10236
10237 for_each_pipe(pipe) {
10238 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10239 intel_sanitize_crtc(crtc);
10240 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10241 }
10242
10243 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10244 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10245
10246 if (!pll->on || pll->active)
10247 continue;
10248
10249 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10250
10251 pll->disable(dev_priv, pll);
10252 pll->on = false;
10253 }
10254
10255 if (force_restore) {
10256 /*
10257 * We need to use raw interfaces for restoring state to avoid
10258 * checking (bogus) intermediate states.
10259 */
10260 for_each_pipe(pipe) {
10261 struct drm_crtc *crtc =
10262 dev_priv->pipe_to_crtc_mapping[pipe];
10263
10264 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10265 crtc->fb);
10266 }
10267 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10268 intel_plane_restore(plane);
10269
10270 i915_redisable_vga(dev);
10271 } else {
10272 intel_modeset_update_staged_output_state(dev);
10273 }
10274
10275 intel_modeset_check_state(dev);
10276
10277 drm_mode_config_reset(dev);
10278 }
10279
10280 void intel_modeset_gem_init(struct drm_device *dev)
10281 {
10282 intel_modeset_init_hw(dev);
10283
10284 intel_setup_overlay(dev);
10285
10286 intel_modeset_setup_hw_state(dev, false);
10287 }
10288
10289 void intel_modeset_cleanup(struct drm_device *dev)
10290 {
10291 struct drm_i915_private *dev_priv = dev->dev_private;
10292 struct drm_crtc *crtc;
10293 struct intel_crtc *intel_crtc;
10294
10295 /*
10296 * Interrupts and polling as the first thing to avoid creating havoc.
10297 * Too much stuff here (turning of rps, connectors, ...) would
10298 * experience fancy races otherwise.
10299 */
10300 drm_irq_uninstall(dev);
10301 cancel_work_sync(&dev_priv->hotplug_work);
10302 /*
10303 * Due to the hpd irq storm handling the hotplug work can re-arm the
10304 * poll handlers. Hence disable polling after hpd handling is shut down.
10305 */
10306 drm_kms_helper_poll_fini(dev);
10307
10308 mutex_lock(&dev->struct_mutex);
10309
10310 intel_unregister_dsm_handler();
10311
10312 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10313 /* Skip inactive CRTCs */
10314 if (!crtc->fb)
10315 continue;
10316
10317 intel_crtc = to_intel_crtc(crtc);
10318 intel_increase_pllclock(crtc);
10319 }
10320
10321 intel_disable_fbc(dev);
10322
10323 intel_disable_gt_powersave(dev);
10324
10325 ironlake_teardown_rc6(dev);
10326
10327 mutex_unlock(&dev->struct_mutex);
10328
10329 /* flush any delayed tasks or pending work */
10330 flush_scheduled_work();
10331
10332 /* destroy backlight, if any, before the connectors */
10333 intel_panel_destroy_backlight(dev);
10334
10335 drm_mode_config_cleanup(dev);
10336
10337 intel_cleanup_overlay(dev);
10338 }
10339
10340 /*
10341 * Return which encoder is currently attached for connector.
10342 */
10343 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10344 {
10345 return &intel_attached_encoder(connector)->base;
10346 }
10347
10348 void intel_connector_attach_encoder(struct intel_connector *connector,
10349 struct intel_encoder *encoder)
10350 {
10351 connector->encoder = encoder;
10352 drm_mode_connector_attach_encoder(&connector->base,
10353 &encoder->base);
10354 }
10355
10356 /*
10357 * set vga decode state - true == enable VGA decode
10358 */
10359 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10360 {
10361 struct drm_i915_private *dev_priv = dev->dev_private;
10362 u16 gmch_ctrl;
10363
10364 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10365 if (state)
10366 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10367 else
10368 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10369 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10370 return 0;
10371 }
10372
10373 struct intel_display_error_state {
10374
10375 u32 power_well_driver;
10376
10377 struct intel_cursor_error_state {
10378 u32 control;
10379 u32 position;
10380 u32 base;
10381 u32 size;
10382 } cursor[I915_MAX_PIPES];
10383
10384 struct intel_pipe_error_state {
10385 enum transcoder cpu_transcoder;
10386 u32 conf;
10387 u32 source;
10388
10389 u32 htotal;
10390 u32 hblank;
10391 u32 hsync;
10392 u32 vtotal;
10393 u32 vblank;
10394 u32 vsync;
10395 } pipe[I915_MAX_PIPES];
10396
10397 struct intel_plane_error_state {
10398 u32 control;
10399 u32 stride;
10400 u32 size;
10401 u32 pos;
10402 u32 addr;
10403 u32 surface;
10404 u32 tile_offset;
10405 } plane[I915_MAX_PIPES];
10406 };
10407
10408 struct intel_display_error_state *
10409 intel_display_capture_error_state(struct drm_device *dev)
10410 {
10411 drm_i915_private_t *dev_priv = dev->dev_private;
10412 struct intel_display_error_state *error;
10413 enum transcoder cpu_transcoder;
10414 int i;
10415
10416 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10417 if (error == NULL)
10418 return NULL;
10419
10420 if (HAS_POWER_WELL(dev))
10421 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10422
10423 for_each_pipe(i) {
10424 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10425 error->pipe[i].cpu_transcoder = cpu_transcoder;
10426
10427 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10428 error->cursor[i].control = I915_READ(CURCNTR(i));
10429 error->cursor[i].position = I915_READ(CURPOS(i));
10430 error->cursor[i].base = I915_READ(CURBASE(i));
10431 } else {
10432 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10433 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10434 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10435 }
10436
10437 error->plane[i].control = I915_READ(DSPCNTR(i));
10438 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10439 if (INTEL_INFO(dev)->gen <= 3) {
10440 error->plane[i].size = I915_READ(DSPSIZE(i));
10441 error->plane[i].pos = I915_READ(DSPPOS(i));
10442 }
10443 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10444 error->plane[i].addr = I915_READ(DSPADDR(i));
10445 if (INTEL_INFO(dev)->gen >= 4) {
10446 error->plane[i].surface = I915_READ(DSPSURF(i));
10447 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10448 }
10449
10450 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10451 error->pipe[i].source = I915_READ(PIPESRC(i));
10452 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10453 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10454 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10455 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10456 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10457 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10458 }
10459
10460 /* In the code above we read the registers without checking if the power
10461 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10462 * prevent the next I915_WRITE from detecting it and printing an error
10463 * message. */
10464 intel_uncore_clear_errors(dev);
10465
10466 return error;
10467 }
10468
10469 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10470
10471 void
10472 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10473 struct drm_device *dev,
10474 struct intel_display_error_state *error)
10475 {
10476 int i;
10477
10478 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10479 if (HAS_POWER_WELL(dev))
10480 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10481 error->power_well_driver);
10482 for_each_pipe(i) {
10483 err_printf(m, "Pipe [%d]:\n", i);
10484 err_printf(m, " CPU transcoder: %c\n",
10485 transcoder_name(error->pipe[i].cpu_transcoder));
10486 err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
10487 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10488 err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
10489 err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
10490 err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
10491 err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
10492 err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
10493 err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
10494
10495 err_printf(m, "Plane [%d]:\n", i);
10496 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10497 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10498 if (INTEL_INFO(dev)->gen <= 3) {
10499 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10500 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10501 }
10502 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10503 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10504 if (INTEL_INFO(dev)->gen >= 4) {
10505 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10506 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10507 }
10508
10509 err_printf(m, "Cursor [%d]:\n", i);
10510 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10511 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10512 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10513 }
10514 }
This page took 0.358624 seconds and 5 git commands to generate.