drm/i915: export error state ref handling
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51 struct intel_crtc_config *pipe_config);
52
53 typedef struct {
54 int min, max;
55 } intel_range_t;
56
57 typedef struct {
58 int dot_limit;
59 int p2_slow, p2_fast;
60 } intel_p2_t;
61
62 #define INTEL_P2_NUM 2
63 typedef struct intel_limit intel_limit_t;
64 struct intel_limit {
65 intel_range_t dot, vco, n, m, m1, m2, p, p1;
66 intel_p2_t p2;
67 };
68
69 /* FDI */
70 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75 struct drm_i915_private *dev_priv = dev->dev_private;
76
77 WARN_ON(!HAS_PCH_SPLIT(dev));
78
79 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85 if (IS_GEN5(dev)) {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88 } else
89 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dvo = {
93 .dot = { .min = 25000, .max = 350000 },
94 .vco = { .min = 930000, .max = 1400000 },
95 .n = { .min = 3, .max = 16 },
96 .m = { .min = 96, .max = 140 },
97 .m1 = { .min = 18, .max = 26 },
98 .m2 = { .min = 6, .max = 16 },
99 .p = { .min = 4, .max = 128 },
100 .p1 = { .min = 2, .max = 33 },
101 .p2 = { .dot_limit = 165000,
102 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_lvds = {
106 .dot = { .min = 25000, .max = 350000 },
107 .vco = { .min = 930000, .max = 1400000 },
108 .n = { .min = 3, .max = 16 },
109 .m = { .min = 96, .max = 140 },
110 .m1 = { .min = 18, .max = 26 },
111 .m2 = { .min = 6, .max = 16 },
112 .p = { .min = 4, .max = 128 },
113 .p1 = { .min = 1, .max = 6 },
114 .p2 = { .dot_limit = 165000,
115 .p2_slow = 14, .p2_fast = 7 },
116 };
117
118 static const intel_limit_t intel_limits_i9xx_sdvo = {
119 .dot = { .min = 20000, .max = 400000 },
120 .vco = { .min = 1400000, .max = 2800000 },
121 .n = { .min = 1, .max = 6 },
122 .m = { .min = 70, .max = 120 },
123 .m1 = { .min = 8, .max = 18 },
124 .m2 = { .min = 3, .max = 7 },
125 .p = { .min = 5, .max = 80 },
126 .p1 = { .min = 1, .max = 8 },
127 .p2 = { .dot_limit = 200000,
128 .p2_slow = 10, .p2_fast = 5 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_lvds = {
132 .dot = { .min = 20000, .max = 400000 },
133 .vco = { .min = 1400000, .max = 2800000 },
134 .n = { .min = 1, .max = 6 },
135 .m = { .min = 70, .max = 120 },
136 .m1 = { .min = 8, .max = 18 },
137 .m2 = { .min = 3, .max = 7 },
138 .p = { .min = 7, .max = 98 },
139 .p1 = { .min = 1, .max = 8 },
140 .p2 = { .dot_limit = 112000,
141 .p2_slow = 14, .p2_fast = 7 },
142 };
143
144
145 static const intel_limit_t intel_limits_g4x_sdvo = {
146 .dot = { .min = 25000, .max = 270000 },
147 .vco = { .min = 1750000, .max = 3500000},
148 .n = { .min = 1, .max = 4 },
149 .m = { .min = 104, .max = 138 },
150 .m1 = { .min = 17, .max = 23 },
151 .m2 = { .min = 5, .max = 11 },
152 .p = { .min = 10, .max = 30 },
153 .p1 = { .min = 1, .max = 3},
154 .p2 = { .dot_limit = 270000,
155 .p2_slow = 10,
156 .p2_fast = 10
157 },
158 };
159
160 static const intel_limit_t intel_limits_g4x_hdmi = {
161 .dot = { .min = 22000, .max = 400000 },
162 .vco = { .min = 1750000, .max = 3500000},
163 .n = { .min = 1, .max = 4 },
164 .m = { .min = 104, .max = 138 },
165 .m1 = { .min = 16, .max = 23 },
166 .m2 = { .min = 5, .max = 11 },
167 .p = { .min = 5, .max = 80 },
168 .p1 = { .min = 1, .max = 8},
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 10, .p2_fast = 5 },
171 };
172
173 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
174 .dot = { .min = 20000, .max = 115000 },
175 .vco = { .min = 1750000, .max = 3500000 },
176 .n = { .min = 1, .max = 3 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 28, .max = 112 },
181 .p1 = { .min = 2, .max = 8 },
182 .p2 = { .dot_limit = 0,
183 .p2_slow = 14, .p2_fast = 14
184 },
185 };
186
187 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
188 .dot = { .min = 80000, .max = 224000 },
189 .vco = { .min = 1750000, .max = 3500000 },
190 .n = { .min = 1, .max = 3 },
191 .m = { .min = 104, .max = 138 },
192 .m1 = { .min = 17, .max = 23 },
193 .m2 = { .min = 5, .max = 11 },
194 .p = { .min = 14, .max = 42 },
195 .p1 = { .min = 2, .max = 6 },
196 .p2 = { .dot_limit = 0,
197 .p2_slow = 7, .p2_fast = 7
198 },
199 };
200
201 static const intel_limit_t intel_limits_pineview_sdvo = {
202 .dot = { .min = 20000, .max = 400000},
203 .vco = { .min = 1700000, .max = 3500000 },
204 /* Pineview's Ncounter is a ring counter */
205 .n = { .min = 3, .max = 6 },
206 .m = { .min = 2, .max = 256 },
207 /* Pineview only has one combined m divider, which we treat as m2. */
208 .m1 = { .min = 0, .max = 0 },
209 .m2 = { .min = 0, .max = 254 },
210 .p = { .min = 5, .max = 80 },
211 .p1 = { .min = 1, .max = 8 },
212 .p2 = { .dot_limit = 200000,
213 .p2_slow = 10, .p2_fast = 5 },
214 };
215
216 static const intel_limit_t intel_limits_pineview_lvds = {
217 .dot = { .min = 20000, .max = 400000 },
218 .vco = { .min = 1700000, .max = 3500000 },
219 .n = { .min = 3, .max = 6 },
220 .m = { .min = 2, .max = 256 },
221 .m1 = { .min = 0, .max = 0 },
222 .m2 = { .min = 0, .max = 254 },
223 .p = { .min = 7, .max = 112 },
224 .p1 = { .min = 1, .max = 8 },
225 .p2 = { .dot_limit = 112000,
226 .p2_slow = 14, .p2_fast = 14 },
227 };
228
229 /* Ironlake / Sandybridge
230 *
231 * We calculate clock using (register_value + 2) for N/M1/M2, so here
232 * the range value for them is (actual_value - 2).
233 */
234 static const intel_limit_t intel_limits_ironlake_dac = {
235 .dot = { .min = 25000, .max = 350000 },
236 .vco = { .min = 1760000, .max = 3510000 },
237 .n = { .min = 1, .max = 5 },
238 .m = { .min = 79, .max = 127 },
239 .m1 = { .min = 12, .max = 22 },
240 .m2 = { .min = 5, .max = 9 },
241 .p = { .min = 5, .max = 80 },
242 .p1 = { .min = 1, .max = 8 },
243 .p2 = { .dot_limit = 225000,
244 .p2_slow = 10, .p2_fast = 5 },
245 };
246
247 static const intel_limit_t intel_limits_ironlake_single_lvds = {
248 .dot = { .min = 25000, .max = 350000 },
249 .vco = { .min = 1760000, .max = 3510000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 79, .max = 118 },
252 .m1 = { .min = 12, .max = 22 },
253 .m2 = { .min = 5, .max = 9 },
254 .p = { .min = 28, .max = 112 },
255 .p1 = { .min = 2, .max = 8 },
256 .p2 = { .dot_limit = 225000,
257 .p2_slow = 14, .p2_fast = 14 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
261 .dot = { .min = 25000, .max = 350000 },
262 .vco = { .min = 1760000, .max = 3510000 },
263 .n = { .min = 1, .max = 3 },
264 .m = { .min = 79, .max = 127 },
265 .m1 = { .min = 12, .max = 22 },
266 .m2 = { .min = 5, .max = 9 },
267 .p = { .min = 14, .max = 56 },
268 .p1 = { .min = 2, .max = 8 },
269 .p2 = { .dot_limit = 225000,
270 .p2_slow = 7, .p2_fast = 7 },
271 };
272
273 /* LVDS 100mhz refclk limits. */
274 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 2 },
278 .m = { .min = 79, .max = 126 },
279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 28, .max = 112 },
282 .p1 = { .min = 2, .max = 8 },
283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 14, .p2_fast = 14 },
285 };
286
287 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 3 },
291 .m = { .min = 79, .max = 126 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 14, .max = 42 },
295 .p1 = { .min = 2, .max = 6 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 7, .p2_fast = 7 },
298 };
299
300 static const intel_limit_t intel_limits_vlv_dac = {
301 .dot = { .min = 25000, .max = 270000 },
302 .vco = { .min = 4000000, .max = 6000000 },
303 .n = { .min = 1, .max = 7 },
304 .m = { .min = 22, .max = 450 }, /* guess */
305 .m1 = { .min = 2, .max = 3 },
306 .m2 = { .min = 11, .max = 156 },
307 .p = { .min = 10, .max = 30 },
308 .p1 = { .min = 1, .max = 3 },
309 .p2 = { .dot_limit = 270000,
310 .p2_slow = 2, .p2_fast = 20 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_hdmi = {
314 .dot = { .min = 25000, .max = 270000 },
315 .vco = { .min = 4000000, .max = 6000000 },
316 .n = { .min = 1, .max = 7 },
317 .m = { .min = 60, .max = 300 }, /* guess */
318 .m1 = { .min = 2, .max = 3 },
319 .m2 = { .min = 11, .max = 156 },
320 .p = { .min = 10, .max = 30 },
321 .p1 = { .min = 2, .max = 3 },
322 .p2 = { .dot_limit = 270000,
323 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_dp = {
327 .dot = { .min = 25000, .max = 270000 },
328 .vco = { .min = 4000000, .max = 6000000 },
329 .n = { .min = 1, .max = 7 },
330 .m = { .min = 22, .max = 450 },
331 .m1 = { .min = 2, .max = 3 },
332 .m2 = { .min = 11, .max = 156 },
333 .p = { .min = 10, .max = 30 },
334 .p1 = { .min = 1, .max = 3 },
335 .p2 = { .dot_limit = 270000,
336 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
340 int refclk)
341 {
342 struct drm_device *dev = crtc->dev;
343 const intel_limit_t *limit;
344
345 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
346 if (intel_is_dual_link_lvds(dev)) {
347 if (refclk == 100000)
348 limit = &intel_limits_ironlake_dual_lvds_100m;
349 else
350 limit = &intel_limits_ironlake_dual_lvds;
351 } else {
352 if (refclk == 100000)
353 limit = &intel_limits_ironlake_single_lvds_100m;
354 else
355 limit = &intel_limits_ironlake_single_lvds;
356 }
357 } else
358 limit = &intel_limits_ironlake_dac;
359
360 return limit;
361 }
362
363 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
364 {
365 struct drm_device *dev = crtc->dev;
366 const intel_limit_t *limit;
367
368 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
369 if (intel_is_dual_link_lvds(dev))
370 limit = &intel_limits_g4x_dual_channel_lvds;
371 else
372 limit = &intel_limits_g4x_single_channel_lvds;
373 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
374 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
375 limit = &intel_limits_g4x_hdmi;
376 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
377 limit = &intel_limits_g4x_sdvo;
378 } else /* The option is for other outputs */
379 limit = &intel_limits_i9xx_sdvo;
380
381 return limit;
382 }
383
384 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
385 {
386 struct drm_device *dev = crtc->dev;
387 const intel_limit_t *limit;
388
389 if (HAS_PCH_SPLIT(dev))
390 limit = intel_ironlake_limit(crtc, refclk);
391 else if (IS_G4X(dev)) {
392 limit = intel_g4x_limit(crtc);
393 } else if (IS_PINEVIEW(dev)) {
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
395 limit = &intel_limits_pineview_lvds;
396 else
397 limit = &intel_limits_pineview_sdvo;
398 } else if (IS_VALLEYVIEW(dev)) {
399 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
400 limit = &intel_limits_vlv_dac;
401 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
402 limit = &intel_limits_vlv_hdmi;
403 else
404 limit = &intel_limits_vlv_dp;
405 } else if (!IS_GEN2(dev)) {
406 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407 limit = &intel_limits_i9xx_lvds;
408 else
409 limit = &intel_limits_i9xx_sdvo;
410 } else {
411 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
412 limit = &intel_limits_i8xx_lvds;
413 else
414 limit = &intel_limits_i8xx_dvo;
415 }
416 return limit;
417 }
418
419 /* m1 is reserved as 0 in Pineview, n is a ring counter */
420 static void pineview_clock(int refclk, intel_clock_t *clock)
421 {
422 clock->m = clock->m2 + 2;
423 clock->p = clock->p1 * clock->p2;
424 clock->vco = refclk * clock->m / clock->n;
425 clock->dot = clock->vco / clock->p;
426 }
427
428 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
429 {
430 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
431 }
432
433 static void i9xx_clock(int refclk, intel_clock_t *clock)
434 {
435 clock->m = i9xx_dpll_compute_m(clock);
436 clock->p = clock->p1 * clock->p2;
437 clock->vco = refclk * clock->m / (clock->n + 2);
438 clock->dot = clock->vco / clock->p;
439 }
440
441 /**
442 * Returns whether any output on the specified pipe is of the specified type
443 */
444 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
445 {
446 struct drm_device *dev = crtc->dev;
447 struct intel_encoder *encoder;
448
449 for_each_encoder_on_crtc(dev, crtc, encoder)
450 if (encoder->type == type)
451 return true;
452
453 return false;
454 }
455
456 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458 * Returns whether the given set of divisors are valid for a given refclk with
459 * the given connectors.
460 */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463 const intel_limit_t *limit,
464 const intel_clock_t *clock)
465 {
466 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
467 INTELPllInvalid("p1 out of range\n");
468 if (clock->p < limit->p.min || limit->p.max < clock->p)
469 INTELPllInvalid("p out of range\n");
470 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
471 INTELPllInvalid("m2 out of range\n");
472 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
473 INTELPllInvalid("m1 out of range\n");
474 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
475 INTELPllInvalid("m1 <= m2\n");
476 if (clock->m < limit->m.min || limit->m.max < clock->m)
477 INTELPllInvalid("m out of range\n");
478 if (clock->n < limit->n.min || limit->n.max < clock->n)
479 INTELPllInvalid("n out of range\n");
480 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481 INTELPllInvalid("vco out of range\n");
482 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483 * connector, etc., rather than just a single range.
484 */
485 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486 INTELPllInvalid("dot out of range\n");
487
488 return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493 int target, int refclk, intel_clock_t *match_clock,
494 intel_clock_t *best_clock)
495 {
496 struct drm_device *dev = crtc->dev;
497 intel_clock_t clock;
498 int err = target;
499
500 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501 /*
502 * For LVDS just rely on its current settings for dual-channel.
503 * We haven't figured out how to reliably set up different
504 * single/dual channel state, if we even can.
505 */
506 if (intel_is_dual_link_lvds(dev))
507 clock.p2 = limit->p2.p2_fast;
508 else
509 clock.p2 = limit->p2.p2_slow;
510 } else {
511 if (target < limit->p2.dot_limit)
512 clock.p2 = limit->p2.p2_slow;
513 else
514 clock.p2 = limit->p2.p2_fast;
515 }
516
517 memset(best_clock, 0, sizeof(*best_clock));
518
519 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520 clock.m1++) {
521 for (clock.m2 = limit->m2.min;
522 clock.m2 <= limit->m2.max; clock.m2++) {
523 if (clock.m2 >= clock.m1)
524 break;
525 for (clock.n = limit->n.min;
526 clock.n <= limit->n.max; clock.n++) {
527 for (clock.p1 = limit->p1.min;
528 clock.p1 <= limit->p1.max; clock.p1++) {
529 int this_err;
530
531 i9xx_clock(refclk, &clock);
532 if (!intel_PLL_is_valid(dev, limit,
533 &clock))
534 continue;
535 if (match_clock &&
536 clock.p != match_clock->p)
537 continue;
538
539 this_err = abs(clock.dot - target);
540 if (this_err < err) {
541 *best_clock = clock;
542 err = this_err;
543 }
544 }
545 }
546 }
547 }
548
549 return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554 int target, int refclk, intel_clock_t *match_clock,
555 intel_clock_t *best_clock)
556 {
557 struct drm_device *dev = crtc->dev;
558 intel_clock_t clock;
559 int err = target;
560
561 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562 /*
563 * For LVDS just rely on its current settings for dual-channel.
564 * We haven't figured out how to reliably set up different
565 * single/dual channel state, if we even can.
566 */
567 if (intel_is_dual_link_lvds(dev))
568 clock.p2 = limit->p2.p2_fast;
569 else
570 clock.p2 = limit->p2.p2_slow;
571 } else {
572 if (target < limit->p2.dot_limit)
573 clock.p2 = limit->p2.p2_slow;
574 else
575 clock.p2 = limit->p2.p2_fast;
576 }
577
578 memset(best_clock, 0, sizeof(*best_clock));
579
580 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581 clock.m1++) {
582 for (clock.m2 = limit->m2.min;
583 clock.m2 <= limit->m2.max; clock.m2++) {
584 for (clock.n = limit->n.min;
585 clock.n <= limit->n.max; clock.n++) {
586 for (clock.p1 = limit->p1.min;
587 clock.p1 <= limit->p1.max; clock.p1++) {
588 int this_err;
589
590 pineview_clock(refclk, &clock);
591 if (!intel_PLL_is_valid(dev, limit,
592 &clock))
593 continue;
594 if (match_clock &&
595 clock.p != match_clock->p)
596 continue;
597
598 this_err = abs(clock.dot - target);
599 if (this_err < err) {
600 *best_clock = clock;
601 err = this_err;
602 }
603 }
604 }
605 }
606 }
607
608 return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613 int target, int refclk, intel_clock_t *match_clock,
614 intel_clock_t *best_clock)
615 {
616 struct drm_device *dev = crtc->dev;
617 intel_clock_t clock;
618 int max_n;
619 bool found;
620 /* approximately equals target * 0.00585 */
621 int err_most = (target >> 8) + (target >> 9);
622 found = false;
623
624 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625 if (intel_is_dual_link_lvds(dev))
626 clock.p2 = limit->p2.p2_fast;
627 else
628 clock.p2 = limit->p2.p2_slow;
629 } else {
630 if (target < limit->p2.dot_limit)
631 clock.p2 = limit->p2.p2_slow;
632 else
633 clock.p2 = limit->p2.p2_fast;
634 }
635
636 memset(best_clock, 0, sizeof(*best_clock));
637 max_n = limit->n.max;
638 /* based on hardware requirement, prefer smaller n to precision */
639 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640 /* based on hardware requirement, prefere larger m1,m2 */
641 for (clock.m1 = limit->m1.max;
642 clock.m1 >= limit->m1.min; clock.m1--) {
643 for (clock.m2 = limit->m2.max;
644 clock.m2 >= limit->m2.min; clock.m2--) {
645 for (clock.p1 = limit->p1.max;
646 clock.p1 >= limit->p1.min; clock.p1--) {
647 int this_err;
648
649 i9xx_clock(refclk, &clock);
650 if (!intel_PLL_is_valid(dev, limit,
651 &clock))
652 continue;
653
654 this_err = abs(clock.dot - target);
655 if (this_err < err_most) {
656 *best_clock = clock;
657 err_most = this_err;
658 max_n = clock.n;
659 found = true;
660 }
661 }
662 }
663 }
664 }
665 return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *match_clock,
671 intel_clock_t *best_clock)
672 {
673 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
674 u32 m, n, fastclk;
675 u32 updrate, minupdate, fracbits, p;
676 unsigned long bestppm, ppm, absppm;
677 int dotclk, flag;
678
679 flag = 0;
680 dotclk = target * 1000;
681 bestppm = 1000000;
682 ppm = absppm = 0;
683 fastclk = dotclk / (2*100);
684 updrate = 0;
685 minupdate = 19200;
686 fracbits = 1;
687 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
688 bestm1 = bestm2 = bestp1 = bestp2 = 0;
689
690 /* based on hardware requirement, prefer smaller n to precision */
691 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
692 updrate = refclk / n;
693 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
694 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
695 if (p2 > 10)
696 p2 = p2 - 1;
697 p = p1 * p2;
698 /* based on hardware requirement, prefer bigger m1,m2 values */
699 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
700 m2 = (((2*(fastclk * p * n / m1 )) +
701 refclk) / (2*refclk));
702 m = m1 * m2;
703 vco = updrate * m;
704 if (vco >= limit->vco.min && vco < limit->vco.max) {
705 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
706 absppm = (ppm > 0) ? ppm : (-ppm);
707 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
708 bestppm = 0;
709 flag = 1;
710 }
711 if (absppm < bestppm - 10) {
712 bestppm = absppm;
713 flag = 1;
714 }
715 if (flag) {
716 bestn = n;
717 bestm1 = m1;
718 bestm2 = m2;
719 bestp1 = p1;
720 bestp2 = p2;
721 flag = 0;
722 }
723 }
724 }
725 }
726 }
727 }
728 best_clock->n = bestn;
729 best_clock->m1 = bestm1;
730 best_clock->m2 = bestm2;
731 best_clock->p1 = bestp1;
732 best_clock->p2 = bestp2;
733
734 return true;
735 }
736
737 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
738 enum pipe pipe)
739 {
740 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
742
743 return intel_crtc->config.cpu_transcoder;
744 }
745
746 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
747 {
748 struct drm_i915_private *dev_priv = dev->dev_private;
749 u32 frame, frame_reg = PIPEFRAME(pipe);
750
751 frame = I915_READ(frame_reg);
752
753 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
754 DRM_DEBUG_KMS("vblank wait timed out\n");
755 }
756
757 /**
758 * intel_wait_for_vblank - wait for vblank on a given pipe
759 * @dev: drm device
760 * @pipe: pipe to wait for
761 *
762 * Wait for vblank to occur on a given pipe. Needed for various bits of
763 * mode setting code.
764 */
765 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
766 {
767 struct drm_i915_private *dev_priv = dev->dev_private;
768 int pipestat_reg = PIPESTAT(pipe);
769
770 if (INTEL_INFO(dev)->gen >= 5) {
771 ironlake_wait_for_vblank(dev, pipe);
772 return;
773 }
774
775 /* Clear existing vblank status. Note this will clear any other
776 * sticky status fields as well.
777 *
778 * This races with i915_driver_irq_handler() with the result
779 * that either function could miss a vblank event. Here it is not
780 * fatal, as we will either wait upon the next vblank interrupt or
781 * timeout. Generally speaking intel_wait_for_vblank() is only
782 * called during modeset at which time the GPU should be idle and
783 * should *not* be performing page flips and thus not waiting on
784 * vblanks...
785 * Currently, the result of us stealing a vblank from the irq
786 * handler is that a single frame will be skipped during swapbuffers.
787 */
788 I915_WRITE(pipestat_reg,
789 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
790
791 /* Wait for vblank interrupt bit to set */
792 if (wait_for(I915_READ(pipestat_reg) &
793 PIPE_VBLANK_INTERRUPT_STATUS,
794 50))
795 DRM_DEBUG_KMS("vblank wait timed out\n");
796 }
797
798 /*
799 * intel_wait_for_pipe_off - wait for pipe to turn off
800 * @dev: drm device
801 * @pipe: pipe to wait for
802 *
803 * After disabling a pipe, we can't wait for vblank in the usual way,
804 * spinning on the vblank interrupt status bit, since we won't actually
805 * see an interrupt when the pipe is disabled.
806 *
807 * On Gen4 and above:
808 * wait for the pipe register state bit to turn off
809 *
810 * Otherwise:
811 * wait for the display line value to settle (it usually
812 * ends up stopping at the start of the next frame).
813 *
814 */
815 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
816 {
817 struct drm_i915_private *dev_priv = dev->dev_private;
818 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
819 pipe);
820
821 if (INTEL_INFO(dev)->gen >= 4) {
822 int reg = PIPECONF(cpu_transcoder);
823
824 /* Wait for the Pipe State to go off */
825 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
826 100))
827 WARN(1, "pipe_off wait timed out\n");
828 } else {
829 u32 last_line, line_mask;
830 int reg = PIPEDSL(pipe);
831 unsigned long timeout = jiffies + msecs_to_jiffies(100);
832
833 if (IS_GEN2(dev))
834 line_mask = DSL_LINEMASK_GEN2;
835 else
836 line_mask = DSL_LINEMASK_GEN3;
837
838 /* Wait for the display line to settle */
839 do {
840 last_line = I915_READ(reg) & line_mask;
841 mdelay(5);
842 } while (((I915_READ(reg) & line_mask) != last_line) &&
843 time_after(timeout, jiffies));
844 if (time_after(jiffies, timeout))
845 WARN(1, "pipe_off wait timed out\n");
846 }
847 }
848
849 /*
850 * ibx_digital_port_connected - is the specified port connected?
851 * @dev_priv: i915 private structure
852 * @port: the port to test
853 *
854 * Returns true if @port is connected, false otherwise.
855 */
856 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
857 struct intel_digital_port *port)
858 {
859 u32 bit;
860
861 if (HAS_PCH_IBX(dev_priv->dev)) {
862 switch(port->port) {
863 case PORT_B:
864 bit = SDE_PORTB_HOTPLUG;
865 break;
866 case PORT_C:
867 bit = SDE_PORTC_HOTPLUG;
868 break;
869 case PORT_D:
870 bit = SDE_PORTD_HOTPLUG;
871 break;
872 default:
873 return true;
874 }
875 } else {
876 switch(port->port) {
877 case PORT_B:
878 bit = SDE_PORTB_HOTPLUG_CPT;
879 break;
880 case PORT_C:
881 bit = SDE_PORTC_HOTPLUG_CPT;
882 break;
883 case PORT_D:
884 bit = SDE_PORTD_HOTPLUG_CPT;
885 break;
886 default:
887 return true;
888 }
889 }
890
891 return I915_READ(SDEISR) & bit;
892 }
893
894 static const char *state_string(bool enabled)
895 {
896 return enabled ? "on" : "off";
897 }
898
899 /* Only for pre-ILK configs */
900 void assert_pll(struct drm_i915_private *dev_priv,
901 enum pipe pipe, bool state)
902 {
903 int reg;
904 u32 val;
905 bool cur_state;
906
907 reg = DPLL(pipe);
908 val = I915_READ(reg);
909 cur_state = !!(val & DPLL_VCO_ENABLE);
910 WARN(cur_state != state,
911 "PLL state assertion failure (expected %s, current %s)\n",
912 state_string(state), state_string(cur_state));
913 }
914
915 struct intel_shared_dpll *
916 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
917 {
918 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
919
920 if (crtc->config.shared_dpll < 0)
921 return NULL;
922
923 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
924 }
925
926 /* For ILK+ */
927 void assert_shared_dpll(struct drm_i915_private *dev_priv,
928 struct intel_shared_dpll *pll,
929 bool state)
930 {
931 bool cur_state;
932 struct intel_dpll_hw_state hw_state;
933
934 if (HAS_PCH_LPT(dev_priv->dev)) {
935 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
936 return;
937 }
938
939 if (WARN (!pll,
940 "asserting DPLL %s with no DPLL\n", state_string(state)))
941 return;
942
943 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
944 WARN(cur_state != state,
945 "%s assertion failure (expected %s, current %s)\n",
946 pll->name, state_string(state), state_string(cur_state));
947 }
948
949 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
950 enum pipe pipe, bool state)
951 {
952 int reg;
953 u32 val;
954 bool cur_state;
955 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
956 pipe);
957
958 if (HAS_DDI(dev_priv->dev)) {
959 /* DDI does not have a specific FDI_TX register */
960 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
961 val = I915_READ(reg);
962 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
963 } else {
964 reg = FDI_TX_CTL(pipe);
965 val = I915_READ(reg);
966 cur_state = !!(val & FDI_TX_ENABLE);
967 }
968 WARN(cur_state != state,
969 "FDI TX state assertion failure (expected %s, current %s)\n",
970 state_string(state), state_string(cur_state));
971 }
972 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
973 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
974
975 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
976 enum pipe pipe, bool state)
977 {
978 int reg;
979 u32 val;
980 bool cur_state;
981
982 reg = FDI_RX_CTL(pipe);
983 val = I915_READ(reg);
984 cur_state = !!(val & FDI_RX_ENABLE);
985 WARN(cur_state != state,
986 "FDI RX state assertion failure (expected %s, current %s)\n",
987 state_string(state), state_string(cur_state));
988 }
989 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
990 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
991
992 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
993 enum pipe pipe)
994 {
995 int reg;
996 u32 val;
997
998 /* ILK FDI PLL is always enabled */
999 if (dev_priv->info->gen == 5)
1000 return;
1001
1002 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1003 if (HAS_DDI(dev_priv->dev))
1004 return;
1005
1006 reg = FDI_TX_CTL(pipe);
1007 val = I915_READ(reg);
1008 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1009 }
1010
1011 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1012 enum pipe pipe, bool state)
1013 {
1014 int reg;
1015 u32 val;
1016 bool cur_state;
1017
1018 reg = FDI_RX_CTL(pipe);
1019 val = I915_READ(reg);
1020 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1021 WARN(cur_state != state,
1022 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1023 state_string(state), state_string(cur_state));
1024 }
1025
1026 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028 {
1029 int pp_reg, lvds_reg;
1030 u32 val;
1031 enum pipe panel_pipe = PIPE_A;
1032 bool locked = true;
1033
1034 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1035 pp_reg = PCH_PP_CONTROL;
1036 lvds_reg = PCH_LVDS;
1037 } else {
1038 pp_reg = PP_CONTROL;
1039 lvds_reg = LVDS;
1040 }
1041
1042 val = I915_READ(pp_reg);
1043 if (!(val & PANEL_POWER_ON) ||
1044 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1045 locked = false;
1046
1047 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1048 panel_pipe = PIPE_B;
1049
1050 WARN(panel_pipe == pipe && locked,
1051 "panel assertion failure, pipe %c regs locked\n",
1052 pipe_name(pipe));
1053 }
1054
1055 void assert_pipe(struct drm_i915_private *dev_priv,
1056 enum pipe pipe, bool state)
1057 {
1058 int reg;
1059 u32 val;
1060 bool cur_state;
1061 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1062 pipe);
1063
1064 /* if we need the pipe A quirk it must be always on */
1065 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1066 state = true;
1067
1068 if (!intel_display_power_enabled(dev_priv->dev,
1069 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1070 cur_state = false;
1071 } else {
1072 reg = PIPECONF(cpu_transcoder);
1073 val = I915_READ(reg);
1074 cur_state = !!(val & PIPECONF_ENABLE);
1075 }
1076
1077 WARN(cur_state != state,
1078 "pipe %c assertion failure (expected %s, current %s)\n",
1079 pipe_name(pipe), state_string(state), state_string(cur_state));
1080 }
1081
1082 static void assert_plane(struct drm_i915_private *dev_priv,
1083 enum plane plane, bool state)
1084 {
1085 int reg;
1086 u32 val;
1087 bool cur_state;
1088
1089 reg = DSPCNTR(plane);
1090 val = I915_READ(reg);
1091 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1092 WARN(cur_state != state,
1093 "plane %c assertion failure (expected %s, current %s)\n",
1094 plane_name(plane), state_string(state), state_string(cur_state));
1095 }
1096
1097 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1098 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1099
1100 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1101 enum pipe pipe)
1102 {
1103 struct drm_device *dev = dev_priv->dev;
1104 int reg, i;
1105 u32 val;
1106 int cur_pipe;
1107
1108 /* Primary planes are fixed to pipes on gen4+ */
1109 if (INTEL_INFO(dev)->gen >= 4) {
1110 reg = DSPCNTR(pipe);
1111 val = I915_READ(reg);
1112 WARN((val & DISPLAY_PLANE_ENABLE),
1113 "plane %c assertion failure, should be disabled but not\n",
1114 plane_name(pipe));
1115 return;
1116 }
1117
1118 /* Need to check both planes against the pipe */
1119 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
1120 reg = DSPCNTR(i);
1121 val = I915_READ(reg);
1122 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1123 DISPPLANE_SEL_PIPE_SHIFT;
1124 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1125 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1126 plane_name(i), pipe_name(pipe));
1127 }
1128 }
1129
1130 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1131 enum pipe pipe)
1132 {
1133 struct drm_device *dev = dev_priv->dev;
1134 int reg, i;
1135 u32 val;
1136
1137 if (IS_VALLEYVIEW(dev)) {
1138 for (i = 0; i < dev_priv->num_plane; i++) {
1139 reg = SPCNTR(pipe, i);
1140 val = I915_READ(reg);
1141 WARN((val & SP_ENABLE),
1142 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1143 sprite_name(pipe, i), pipe_name(pipe));
1144 }
1145 } else if (INTEL_INFO(dev)->gen >= 7) {
1146 reg = SPRCTL(pipe);
1147 val = I915_READ(reg);
1148 WARN((val & SPRITE_ENABLE),
1149 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1150 plane_name(pipe), pipe_name(pipe));
1151 } else if (INTEL_INFO(dev)->gen >= 5) {
1152 reg = DVSCNTR(pipe);
1153 val = I915_READ(reg);
1154 WARN((val & DVS_ENABLE),
1155 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1156 plane_name(pipe), pipe_name(pipe));
1157 }
1158 }
1159
1160 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1161 {
1162 u32 val;
1163 bool enabled;
1164
1165 if (HAS_PCH_LPT(dev_priv->dev)) {
1166 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1167 return;
1168 }
1169
1170 val = I915_READ(PCH_DREF_CONTROL);
1171 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1172 DREF_SUPERSPREAD_SOURCE_MASK));
1173 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1174 }
1175
1176 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1177 enum pipe pipe)
1178 {
1179 int reg;
1180 u32 val;
1181 bool enabled;
1182
1183 reg = PCH_TRANSCONF(pipe);
1184 val = I915_READ(reg);
1185 enabled = !!(val & TRANS_ENABLE);
1186 WARN(enabled,
1187 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1188 pipe_name(pipe));
1189 }
1190
1191 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1192 enum pipe pipe, u32 port_sel, u32 val)
1193 {
1194 if ((val & DP_PORT_EN) == 0)
1195 return false;
1196
1197 if (HAS_PCH_CPT(dev_priv->dev)) {
1198 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1199 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1200 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1201 return false;
1202 } else {
1203 if ((val & DP_PIPE_MASK) != (pipe << 30))
1204 return false;
1205 }
1206 return true;
1207 }
1208
1209 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, u32 val)
1211 {
1212 if ((val & SDVO_ENABLE) == 0)
1213 return false;
1214
1215 if (HAS_PCH_CPT(dev_priv->dev)) {
1216 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1217 return false;
1218 } else {
1219 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1220 return false;
1221 }
1222 return true;
1223 }
1224
1225 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1226 enum pipe pipe, u32 val)
1227 {
1228 if ((val & LVDS_PORT_EN) == 0)
1229 return false;
1230
1231 if (HAS_PCH_CPT(dev_priv->dev)) {
1232 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1233 return false;
1234 } else {
1235 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1236 return false;
1237 }
1238 return true;
1239 }
1240
1241 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1242 enum pipe pipe, u32 val)
1243 {
1244 if ((val & ADPA_DAC_ENABLE) == 0)
1245 return false;
1246 if (HAS_PCH_CPT(dev_priv->dev)) {
1247 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1248 return false;
1249 } else {
1250 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1251 return false;
1252 }
1253 return true;
1254 }
1255
1256 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe, int reg, u32 port_sel)
1258 {
1259 u32 val = I915_READ(reg);
1260 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1261 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1262 reg, pipe_name(pipe));
1263
1264 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1265 && (val & DP_PIPEB_SELECT),
1266 "IBX PCH dp port still using transcoder B\n");
1267 }
1268
1269 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1270 enum pipe pipe, int reg)
1271 {
1272 u32 val = I915_READ(reg);
1273 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1274 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1275 reg, pipe_name(pipe));
1276
1277 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1278 && (val & SDVO_PIPE_B_SELECT),
1279 "IBX PCH hdmi port still using transcoder B\n");
1280 }
1281
1282 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1283 enum pipe pipe)
1284 {
1285 int reg;
1286 u32 val;
1287
1288 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1289 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1290 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1291
1292 reg = PCH_ADPA;
1293 val = I915_READ(reg);
1294 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1295 "PCH VGA enabled on transcoder %c, should be disabled\n",
1296 pipe_name(pipe));
1297
1298 reg = PCH_LVDS;
1299 val = I915_READ(reg);
1300 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1301 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1302 pipe_name(pipe));
1303
1304 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1305 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1306 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1307 }
1308
1309 static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1310 {
1311 int reg;
1312 u32 val;
1313
1314 assert_pipe_disabled(dev_priv, pipe);
1315
1316 /* No really, not for ILK+ */
1317 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1318
1319 /* PLL is protected by panel, make sure we can write it */
1320 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1321 assert_panel_unlocked(dev_priv, pipe);
1322
1323 reg = DPLL(pipe);
1324 val = I915_READ(reg);
1325 val |= DPLL_VCO_ENABLE;
1326
1327 /* We do this three times for luck */
1328 I915_WRITE(reg, val);
1329 POSTING_READ(reg);
1330 udelay(150); /* wait for warmup */
1331 I915_WRITE(reg, val);
1332 POSTING_READ(reg);
1333 udelay(150); /* wait for warmup */
1334 I915_WRITE(reg, val);
1335 POSTING_READ(reg);
1336 udelay(150); /* wait for warmup */
1337 }
1338
1339 static void i9xx_enable_pll(struct intel_crtc *crtc)
1340 {
1341 struct drm_device *dev = crtc->base.dev;
1342 struct drm_i915_private *dev_priv = dev->dev_private;
1343 int reg = DPLL(crtc->pipe);
1344 u32 dpll = crtc->config.dpll_hw_state.dpll;
1345
1346 assert_pipe_disabled(dev_priv, crtc->pipe);
1347
1348 /* No really, not for ILK+ */
1349 BUG_ON(dev_priv->info->gen >= 5);
1350
1351 /* PLL is protected by panel, make sure we can write it */
1352 if (IS_MOBILE(dev) && !IS_I830(dev))
1353 assert_panel_unlocked(dev_priv, crtc->pipe);
1354
1355 I915_WRITE(reg, dpll);
1356
1357 /* Wait for the clocks to stabilize. */
1358 POSTING_READ(reg);
1359 udelay(150);
1360
1361 if (INTEL_INFO(dev)->gen >= 4) {
1362 I915_WRITE(DPLL_MD(crtc->pipe),
1363 crtc->config.dpll_hw_state.dpll_md);
1364 } else {
1365 /* The pixel multiplier can only be updated once the
1366 * DPLL is enabled and the clocks are stable.
1367 *
1368 * So write it again.
1369 */
1370 I915_WRITE(reg, dpll);
1371 }
1372
1373 /* We do this three times for luck */
1374 I915_WRITE(reg, dpll);
1375 POSTING_READ(reg);
1376 udelay(150); /* wait for warmup */
1377 I915_WRITE(reg, dpll);
1378 POSTING_READ(reg);
1379 udelay(150); /* wait for warmup */
1380 I915_WRITE(reg, dpll);
1381 POSTING_READ(reg);
1382 udelay(150); /* wait for warmup */
1383 }
1384
1385 /**
1386 * intel_disable_pll - disable a PLL
1387 * @dev_priv: i915 private structure
1388 * @pipe: pipe PLL to disable
1389 *
1390 * Disable the PLL for @pipe, making sure the pipe is off first.
1391 *
1392 * Note! This is for pre-ILK only.
1393 */
1394 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1395 {
1396 int reg;
1397 u32 val;
1398
1399 /* Don't disable pipe A or pipe A PLLs if needed */
1400 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1401 return;
1402
1403 /* Make sure the pipe isn't still relying on us */
1404 assert_pipe_disabled(dev_priv, pipe);
1405
1406 reg = DPLL(pipe);
1407 val = I915_READ(reg);
1408 val &= ~DPLL_VCO_ENABLE;
1409 I915_WRITE(reg, val);
1410 POSTING_READ(reg);
1411 }
1412
1413 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1414 {
1415 u32 port_mask;
1416
1417 if (!port)
1418 port_mask = DPLL_PORTB_READY_MASK;
1419 else
1420 port_mask = DPLL_PORTC_READY_MASK;
1421
1422 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1423 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1424 'B' + port, I915_READ(DPLL(0)));
1425 }
1426
1427 /**
1428 * ironlake_enable_shared_dpll - enable PCH PLL
1429 * @dev_priv: i915 private structure
1430 * @pipe: pipe PLL to enable
1431 *
1432 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1433 * drives the transcoder clock.
1434 */
1435 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1436 {
1437 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1438 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1439
1440 /* PCH PLLs only available on ILK, SNB and IVB */
1441 BUG_ON(dev_priv->info->gen < 5);
1442 if (WARN_ON(pll == NULL))
1443 return;
1444
1445 if (WARN_ON(pll->refcount == 0))
1446 return;
1447
1448 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1449 pll->name, pll->active, pll->on,
1450 crtc->base.base.id);
1451
1452 if (pll->active++) {
1453 WARN_ON(!pll->on);
1454 assert_shared_dpll_enabled(dev_priv, pll);
1455 return;
1456 }
1457 WARN_ON(pll->on);
1458
1459 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1460 pll->enable(dev_priv, pll);
1461 pll->on = true;
1462 }
1463
1464 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1465 {
1466 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1467 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1468
1469 /* PCH only available on ILK+ */
1470 BUG_ON(dev_priv->info->gen < 5);
1471 if (WARN_ON(pll == NULL))
1472 return;
1473
1474 if (WARN_ON(pll->refcount == 0))
1475 return;
1476
1477 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1478 pll->name, pll->active, pll->on,
1479 crtc->base.base.id);
1480
1481 if (WARN_ON(pll->active == 0)) {
1482 assert_shared_dpll_disabled(dev_priv, pll);
1483 return;
1484 }
1485
1486 assert_shared_dpll_enabled(dev_priv, pll);
1487 WARN_ON(!pll->on);
1488 if (--pll->active)
1489 return;
1490
1491 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1492 pll->disable(dev_priv, pll);
1493 pll->on = false;
1494 }
1495
1496 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1497 enum pipe pipe)
1498 {
1499 struct drm_device *dev = dev_priv->dev;
1500 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1501 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1502 uint32_t reg, val, pipeconf_val;
1503
1504 /* PCH only available on ILK+ */
1505 BUG_ON(dev_priv->info->gen < 5);
1506
1507 /* Make sure PCH DPLL is enabled */
1508 assert_shared_dpll_enabled(dev_priv,
1509 intel_crtc_to_shared_dpll(intel_crtc));
1510
1511 /* FDI must be feeding us bits for PCH ports */
1512 assert_fdi_tx_enabled(dev_priv, pipe);
1513 assert_fdi_rx_enabled(dev_priv, pipe);
1514
1515 if (HAS_PCH_CPT(dev)) {
1516 /* Workaround: Set the timing override bit before enabling the
1517 * pch transcoder. */
1518 reg = TRANS_CHICKEN2(pipe);
1519 val = I915_READ(reg);
1520 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1521 I915_WRITE(reg, val);
1522 }
1523
1524 reg = PCH_TRANSCONF(pipe);
1525 val = I915_READ(reg);
1526 pipeconf_val = I915_READ(PIPECONF(pipe));
1527
1528 if (HAS_PCH_IBX(dev_priv->dev)) {
1529 /*
1530 * make the BPC in transcoder be consistent with
1531 * that in pipeconf reg.
1532 */
1533 val &= ~PIPECONF_BPC_MASK;
1534 val |= pipeconf_val & PIPECONF_BPC_MASK;
1535 }
1536
1537 val &= ~TRANS_INTERLACE_MASK;
1538 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1539 if (HAS_PCH_IBX(dev_priv->dev) &&
1540 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1541 val |= TRANS_LEGACY_INTERLACED_ILK;
1542 else
1543 val |= TRANS_INTERLACED;
1544 else
1545 val |= TRANS_PROGRESSIVE;
1546
1547 I915_WRITE(reg, val | TRANS_ENABLE);
1548 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1549 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1550 }
1551
1552 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1553 enum transcoder cpu_transcoder)
1554 {
1555 u32 val, pipeconf_val;
1556
1557 /* PCH only available on ILK+ */
1558 BUG_ON(dev_priv->info->gen < 5);
1559
1560 /* FDI must be feeding us bits for PCH ports */
1561 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1562 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1563
1564 /* Workaround: set timing override bit. */
1565 val = I915_READ(_TRANSA_CHICKEN2);
1566 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1567 I915_WRITE(_TRANSA_CHICKEN2, val);
1568
1569 val = TRANS_ENABLE;
1570 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1571
1572 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1573 PIPECONF_INTERLACED_ILK)
1574 val |= TRANS_INTERLACED;
1575 else
1576 val |= TRANS_PROGRESSIVE;
1577
1578 I915_WRITE(LPT_TRANSCONF, val);
1579 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1580 DRM_ERROR("Failed to enable PCH transcoder\n");
1581 }
1582
1583 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1584 enum pipe pipe)
1585 {
1586 struct drm_device *dev = dev_priv->dev;
1587 uint32_t reg, val;
1588
1589 /* FDI relies on the transcoder */
1590 assert_fdi_tx_disabled(dev_priv, pipe);
1591 assert_fdi_rx_disabled(dev_priv, pipe);
1592
1593 /* Ports must be off as well */
1594 assert_pch_ports_disabled(dev_priv, pipe);
1595
1596 reg = PCH_TRANSCONF(pipe);
1597 val = I915_READ(reg);
1598 val &= ~TRANS_ENABLE;
1599 I915_WRITE(reg, val);
1600 /* wait for PCH transcoder off, transcoder state */
1601 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1602 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1603
1604 if (!HAS_PCH_IBX(dev)) {
1605 /* Workaround: Clear the timing override chicken bit again. */
1606 reg = TRANS_CHICKEN2(pipe);
1607 val = I915_READ(reg);
1608 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1609 I915_WRITE(reg, val);
1610 }
1611 }
1612
1613 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1614 {
1615 u32 val;
1616
1617 val = I915_READ(LPT_TRANSCONF);
1618 val &= ~TRANS_ENABLE;
1619 I915_WRITE(LPT_TRANSCONF, val);
1620 /* wait for PCH transcoder off, transcoder state */
1621 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1622 DRM_ERROR("Failed to disable PCH transcoder\n");
1623
1624 /* Workaround: clear timing override bit. */
1625 val = I915_READ(_TRANSA_CHICKEN2);
1626 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1627 I915_WRITE(_TRANSA_CHICKEN2, val);
1628 }
1629
1630 /**
1631 * intel_enable_pipe - enable a pipe, asserting requirements
1632 * @dev_priv: i915 private structure
1633 * @pipe: pipe to enable
1634 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1635 *
1636 * Enable @pipe, making sure that various hardware specific requirements
1637 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1638 *
1639 * @pipe should be %PIPE_A or %PIPE_B.
1640 *
1641 * Will wait until the pipe is actually running (i.e. first vblank) before
1642 * returning.
1643 */
1644 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1645 bool pch_port)
1646 {
1647 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1648 pipe);
1649 enum pipe pch_transcoder;
1650 int reg;
1651 u32 val;
1652
1653 assert_planes_disabled(dev_priv, pipe);
1654 assert_sprites_disabled(dev_priv, pipe);
1655
1656 if (HAS_PCH_LPT(dev_priv->dev))
1657 pch_transcoder = TRANSCODER_A;
1658 else
1659 pch_transcoder = pipe;
1660
1661 /*
1662 * A pipe without a PLL won't actually be able to drive bits from
1663 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1664 * need the check.
1665 */
1666 if (!HAS_PCH_SPLIT(dev_priv->dev))
1667 assert_pll_enabled(dev_priv, pipe);
1668 else {
1669 if (pch_port) {
1670 /* if driving the PCH, we need FDI enabled */
1671 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1672 assert_fdi_tx_pll_enabled(dev_priv,
1673 (enum pipe) cpu_transcoder);
1674 }
1675 /* FIXME: assert CPU port conditions for SNB+ */
1676 }
1677
1678 reg = PIPECONF(cpu_transcoder);
1679 val = I915_READ(reg);
1680 if (val & PIPECONF_ENABLE)
1681 return;
1682
1683 I915_WRITE(reg, val | PIPECONF_ENABLE);
1684 intel_wait_for_vblank(dev_priv->dev, pipe);
1685 }
1686
1687 /**
1688 * intel_disable_pipe - disable a pipe, asserting requirements
1689 * @dev_priv: i915 private structure
1690 * @pipe: pipe to disable
1691 *
1692 * Disable @pipe, making sure that various hardware specific requirements
1693 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1694 *
1695 * @pipe should be %PIPE_A or %PIPE_B.
1696 *
1697 * Will wait until the pipe has shut down before returning.
1698 */
1699 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1700 enum pipe pipe)
1701 {
1702 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1703 pipe);
1704 int reg;
1705 u32 val;
1706
1707 /*
1708 * Make sure planes won't keep trying to pump pixels to us,
1709 * or we might hang the display.
1710 */
1711 assert_planes_disabled(dev_priv, pipe);
1712 assert_sprites_disabled(dev_priv, pipe);
1713
1714 /* Don't disable pipe A or pipe A PLLs if needed */
1715 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1716 return;
1717
1718 reg = PIPECONF(cpu_transcoder);
1719 val = I915_READ(reg);
1720 if ((val & PIPECONF_ENABLE) == 0)
1721 return;
1722
1723 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1724 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1725 }
1726
1727 /*
1728 * Plane regs are double buffered, going from enabled->disabled needs a
1729 * trigger in order to latch. The display address reg provides this.
1730 */
1731 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1732 enum plane plane)
1733 {
1734 if (dev_priv->info->gen >= 4)
1735 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1736 else
1737 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1738 }
1739
1740 /**
1741 * intel_enable_plane - enable a display plane on a given pipe
1742 * @dev_priv: i915 private structure
1743 * @plane: plane to enable
1744 * @pipe: pipe being fed
1745 *
1746 * Enable @plane on @pipe, making sure that @pipe is running first.
1747 */
1748 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1749 enum plane plane, enum pipe pipe)
1750 {
1751 int reg;
1752 u32 val;
1753
1754 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1755 assert_pipe_enabled(dev_priv, pipe);
1756
1757 reg = DSPCNTR(plane);
1758 val = I915_READ(reg);
1759 if (val & DISPLAY_PLANE_ENABLE)
1760 return;
1761
1762 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1763 intel_flush_display_plane(dev_priv, plane);
1764 intel_wait_for_vblank(dev_priv->dev, pipe);
1765 }
1766
1767 /**
1768 * intel_disable_plane - disable a display plane
1769 * @dev_priv: i915 private structure
1770 * @plane: plane to disable
1771 * @pipe: pipe consuming the data
1772 *
1773 * Disable @plane; should be an independent operation.
1774 */
1775 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1776 enum plane plane, enum pipe pipe)
1777 {
1778 int reg;
1779 u32 val;
1780
1781 reg = DSPCNTR(plane);
1782 val = I915_READ(reg);
1783 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1784 return;
1785
1786 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1787 intel_flush_display_plane(dev_priv, plane);
1788 intel_wait_for_vblank(dev_priv->dev, pipe);
1789 }
1790
1791 static bool need_vtd_wa(struct drm_device *dev)
1792 {
1793 #ifdef CONFIG_INTEL_IOMMU
1794 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1795 return true;
1796 #endif
1797 return false;
1798 }
1799
1800 int
1801 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1802 struct drm_i915_gem_object *obj,
1803 struct intel_ring_buffer *pipelined)
1804 {
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 u32 alignment;
1807 int ret;
1808
1809 switch (obj->tiling_mode) {
1810 case I915_TILING_NONE:
1811 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1812 alignment = 128 * 1024;
1813 else if (INTEL_INFO(dev)->gen >= 4)
1814 alignment = 4 * 1024;
1815 else
1816 alignment = 64 * 1024;
1817 break;
1818 case I915_TILING_X:
1819 /* pin() will align the object as required by fence */
1820 alignment = 0;
1821 break;
1822 case I915_TILING_Y:
1823 /* Despite that we check this in framebuffer_init userspace can
1824 * screw us over and change the tiling after the fact. Only
1825 * pinned buffers can't change their tiling. */
1826 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1827 return -EINVAL;
1828 default:
1829 BUG();
1830 }
1831
1832 /* Note that the w/a also requires 64 PTE of padding following the
1833 * bo. We currently fill all unused PTE with the shadow page and so
1834 * we should always have valid PTE following the scanout preventing
1835 * the VT-d warning.
1836 */
1837 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1838 alignment = 256 * 1024;
1839
1840 dev_priv->mm.interruptible = false;
1841 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1842 if (ret)
1843 goto err_interruptible;
1844
1845 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1846 * fence, whereas 965+ only requires a fence if using
1847 * framebuffer compression. For simplicity, we always install
1848 * a fence as the cost is not that onerous.
1849 */
1850 ret = i915_gem_object_get_fence(obj);
1851 if (ret)
1852 goto err_unpin;
1853
1854 i915_gem_object_pin_fence(obj);
1855
1856 dev_priv->mm.interruptible = true;
1857 return 0;
1858
1859 err_unpin:
1860 i915_gem_object_unpin(obj);
1861 err_interruptible:
1862 dev_priv->mm.interruptible = true;
1863 return ret;
1864 }
1865
1866 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1867 {
1868 i915_gem_object_unpin_fence(obj);
1869 i915_gem_object_unpin(obj);
1870 }
1871
1872 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1873 * is assumed to be a power-of-two. */
1874 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1875 unsigned int tiling_mode,
1876 unsigned int cpp,
1877 unsigned int pitch)
1878 {
1879 if (tiling_mode != I915_TILING_NONE) {
1880 unsigned int tile_rows, tiles;
1881
1882 tile_rows = *y / 8;
1883 *y %= 8;
1884
1885 tiles = *x / (512/cpp);
1886 *x %= 512/cpp;
1887
1888 return tile_rows * pitch * 8 + tiles * 4096;
1889 } else {
1890 unsigned int offset;
1891
1892 offset = *y * pitch + *x * cpp;
1893 *y = 0;
1894 *x = (offset & 4095) / cpp;
1895 return offset & -4096;
1896 }
1897 }
1898
1899 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1900 int x, int y)
1901 {
1902 struct drm_device *dev = crtc->dev;
1903 struct drm_i915_private *dev_priv = dev->dev_private;
1904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1905 struct intel_framebuffer *intel_fb;
1906 struct drm_i915_gem_object *obj;
1907 int plane = intel_crtc->plane;
1908 unsigned long linear_offset;
1909 u32 dspcntr;
1910 u32 reg;
1911
1912 switch (plane) {
1913 case 0:
1914 case 1:
1915 break;
1916 default:
1917 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1918 return -EINVAL;
1919 }
1920
1921 intel_fb = to_intel_framebuffer(fb);
1922 obj = intel_fb->obj;
1923
1924 reg = DSPCNTR(plane);
1925 dspcntr = I915_READ(reg);
1926 /* Mask out pixel format bits in case we change it */
1927 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1928 switch (fb->pixel_format) {
1929 case DRM_FORMAT_C8:
1930 dspcntr |= DISPPLANE_8BPP;
1931 break;
1932 case DRM_FORMAT_XRGB1555:
1933 case DRM_FORMAT_ARGB1555:
1934 dspcntr |= DISPPLANE_BGRX555;
1935 break;
1936 case DRM_FORMAT_RGB565:
1937 dspcntr |= DISPPLANE_BGRX565;
1938 break;
1939 case DRM_FORMAT_XRGB8888:
1940 case DRM_FORMAT_ARGB8888:
1941 dspcntr |= DISPPLANE_BGRX888;
1942 break;
1943 case DRM_FORMAT_XBGR8888:
1944 case DRM_FORMAT_ABGR8888:
1945 dspcntr |= DISPPLANE_RGBX888;
1946 break;
1947 case DRM_FORMAT_XRGB2101010:
1948 case DRM_FORMAT_ARGB2101010:
1949 dspcntr |= DISPPLANE_BGRX101010;
1950 break;
1951 case DRM_FORMAT_XBGR2101010:
1952 case DRM_FORMAT_ABGR2101010:
1953 dspcntr |= DISPPLANE_RGBX101010;
1954 break;
1955 default:
1956 BUG();
1957 }
1958
1959 if (INTEL_INFO(dev)->gen >= 4) {
1960 if (obj->tiling_mode != I915_TILING_NONE)
1961 dspcntr |= DISPPLANE_TILED;
1962 else
1963 dspcntr &= ~DISPPLANE_TILED;
1964 }
1965
1966 if (IS_G4X(dev))
1967 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1968
1969 I915_WRITE(reg, dspcntr);
1970
1971 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1972
1973 if (INTEL_INFO(dev)->gen >= 4) {
1974 intel_crtc->dspaddr_offset =
1975 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1976 fb->bits_per_pixel / 8,
1977 fb->pitches[0]);
1978 linear_offset -= intel_crtc->dspaddr_offset;
1979 } else {
1980 intel_crtc->dspaddr_offset = linear_offset;
1981 }
1982
1983 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
1984 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
1985 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1986 if (INTEL_INFO(dev)->gen >= 4) {
1987 I915_MODIFY_DISPBASE(DSPSURF(plane),
1988 obj->gtt_offset + intel_crtc->dspaddr_offset);
1989 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1990 I915_WRITE(DSPLINOFF(plane), linear_offset);
1991 } else
1992 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
1993 POSTING_READ(reg);
1994
1995 return 0;
1996 }
1997
1998 static int ironlake_update_plane(struct drm_crtc *crtc,
1999 struct drm_framebuffer *fb, int x, int y)
2000 {
2001 struct drm_device *dev = crtc->dev;
2002 struct drm_i915_private *dev_priv = dev->dev_private;
2003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2004 struct intel_framebuffer *intel_fb;
2005 struct drm_i915_gem_object *obj;
2006 int plane = intel_crtc->plane;
2007 unsigned long linear_offset;
2008 u32 dspcntr;
2009 u32 reg;
2010
2011 switch (plane) {
2012 case 0:
2013 case 1:
2014 case 2:
2015 break;
2016 default:
2017 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2018 return -EINVAL;
2019 }
2020
2021 intel_fb = to_intel_framebuffer(fb);
2022 obj = intel_fb->obj;
2023
2024 reg = DSPCNTR(plane);
2025 dspcntr = I915_READ(reg);
2026 /* Mask out pixel format bits in case we change it */
2027 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2028 switch (fb->pixel_format) {
2029 case DRM_FORMAT_C8:
2030 dspcntr |= DISPPLANE_8BPP;
2031 break;
2032 case DRM_FORMAT_RGB565:
2033 dspcntr |= DISPPLANE_BGRX565;
2034 break;
2035 case DRM_FORMAT_XRGB8888:
2036 case DRM_FORMAT_ARGB8888:
2037 dspcntr |= DISPPLANE_BGRX888;
2038 break;
2039 case DRM_FORMAT_XBGR8888:
2040 case DRM_FORMAT_ABGR8888:
2041 dspcntr |= DISPPLANE_RGBX888;
2042 break;
2043 case DRM_FORMAT_XRGB2101010:
2044 case DRM_FORMAT_ARGB2101010:
2045 dspcntr |= DISPPLANE_BGRX101010;
2046 break;
2047 case DRM_FORMAT_XBGR2101010:
2048 case DRM_FORMAT_ABGR2101010:
2049 dspcntr |= DISPPLANE_RGBX101010;
2050 break;
2051 default:
2052 BUG();
2053 }
2054
2055 if (obj->tiling_mode != I915_TILING_NONE)
2056 dspcntr |= DISPPLANE_TILED;
2057 else
2058 dspcntr &= ~DISPPLANE_TILED;
2059
2060 /* must disable */
2061 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2062
2063 I915_WRITE(reg, dspcntr);
2064
2065 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2066 intel_crtc->dspaddr_offset =
2067 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2068 fb->bits_per_pixel / 8,
2069 fb->pitches[0]);
2070 linear_offset -= intel_crtc->dspaddr_offset;
2071
2072 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2073 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2074 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2075 I915_MODIFY_DISPBASE(DSPSURF(plane),
2076 obj->gtt_offset + intel_crtc->dspaddr_offset);
2077 if (IS_HASWELL(dev)) {
2078 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2079 } else {
2080 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2081 I915_WRITE(DSPLINOFF(plane), linear_offset);
2082 }
2083 POSTING_READ(reg);
2084
2085 return 0;
2086 }
2087
2088 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2089 static int
2090 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2091 int x, int y, enum mode_set_atomic state)
2092 {
2093 struct drm_device *dev = crtc->dev;
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095
2096 if (dev_priv->display.disable_fbc)
2097 dev_priv->display.disable_fbc(dev);
2098 intel_increase_pllclock(crtc);
2099
2100 return dev_priv->display.update_plane(crtc, fb, x, y);
2101 }
2102
2103 void intel_display_handle_reset(struct drm_device *dev)
2104 {
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 struct drm_crtc *crtc;
2107
2108 /*
2109 * Flips in the rings have been nuked by the reset,
2110 * so complete all pending flips so that user space
2111 * will get its events and not get stuck.
2112 *
2113 * Also update the base address of all primary
2114 * planes to the the last fb to make sure we're
2115 * showing the correct fb after a reset.
2116 *
2117 * Need to make two loops over the crtcs so that we
2118 * don't try to grab a crtc mutex before the
2119 * pending_flip_queue really got woken up.
2120 */
2121
2122 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2124 enum plane plane = intel_crtc->plane;
2125
2126 intel_prepare_page_flip(dev, plane);
2127 intel_finish_page_flip_plane(dev, plane);
2128 }
2129
2130 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2132
2133 mutex_lock(&crtc->mutex);
2134 if (intel_crtc->active)
2135 dev_priv->display.update_plane(crtc, crtc->fb,
2136 crtc->x, crtc->y);
2137 mutex_unlock(&crtc->mutex);
2138 }
2139 }
2140
2141 static int
2142 intel_finish_fb(struct drm_framebuffer *old_fb)
2143 {
2144 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2145 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2146 bool was_interruptible = dev_priv->mm.interruptible;
2147 int ret;
2148
2149 /* Big Hammer, we also need to ensure that any pending
2150 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2151 * current scanout is retired before unpinning the old
2152 * framebuffer.
2153 *
2154 * This should only fail upon a hung GPU, in which case we
2155 * can safely continue.
2156 */
2157 dev_priv->mm.interruptible = false;
2158 ret = i915_gem_object_finish_gpu(obj);
2159 dev_priv->mm.interruptible = was_interruptible;
2160
2161 return ret;
2162 }
2163
2164 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2165 {
2166 struct drm_device *dev = crtc->dev;
2167 struct drm_i915_master_private *master_priv;
2168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2169
2170 if (!dev->primary->master)
2171 return;
2172
2173 master_priv = dev->primary->master->driver_priv;
2174 if (!master_priv->sarea_priv)
2175 return;
2176
2177 switch (intel_crtc->pipe) {
2178 case 0:
2179 master_priv->sarea_priv->pipeA_x = x;
2180 master_priv->sarea_priv->pipeA_y = y;
2181 break;
2182 case 1:
2183 master_priv->sarea_priv->pipeB_x = x;
2184 master_priv->sarea_priv->pipeB_y = y;
2185 break;
2186 default:
2187 break;
2188 }
2189 }
2190
2191 static int
2192 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2193 struct drm_framebuffer *fb)
2194 {
2195 struct drm_device *dev = crtc->dev;
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2198 struct drm_framebuffer *old_fb;
2199 int ret;
2200
2201 /* no fb bound */
2202 if (!fb) {
2203 DRM_ERROR("No FB bound\n");
2204 return 0;
2205 }
2206
2207 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2208 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2209 plane_name(intel_crtc->plane),
2210 INTEL_INFO(dev)->num_pipes);
2211 return -EINVAL;
2212 }
2213
2214 mutex_lock(&dev->struct_mutex);
2215 ret = intel_pin_and_fence_fb_obj(dev,
2216 to_intel_framebuffer(fb)->obj,
2217 NULL);
2218 if (ret != 0) {
2219 mutex_unlock(&dev->struct_mutex);
2220 DRM_ERROR("pin & fence failed\n");
2221 return ret;
2222 }
2223
2224 /* Update pipe size and adjust fitter if needed */
2225 if (i915_fastboot) {
2226 I915_WRITE(PIPESRC(intel_crtc->pipe),
2227 ((crtc->mode.hdisplay - 1) << 16) |
2228 (crtc->mode.vdisplay - 1));
2229 if (!intel_crtc->config.pch_pfit.size &&
2230 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2231 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2232 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2233 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2234 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2235 }
2236 }
2237
2238 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2239 if (ret) {
2240 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2241 mutex_unlock(&dev->struct_mutex);
2242 DRM_ERROR("failed to update base address\n");
2243 return ret;
2244 }
2245
2246 old_fb = crtc->fb;
2247 crtc->fb = fb;
2248 crtc->x = x;
2249 crtc->y = y;
2250
2251 if (old_fb) {
2252 if (intel_crtc->active && old_fb != fb)
2253 intel_wait_for_vblank(dev, intel_crtc->pipe);
2254 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2255 }
2256
2257 intel_update_fbc(dev);
2258 mutex_unlock(&dev->struct_mutex);
2259
2260 intel_crtc_update_sarea_pos(crtc, x, y);
2261
2262 return 0;
2263 }
2264
2265 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2266 {
2267 struct drm_device *dev = crtc->dev;
2268 struct drm_i915_private *dev_priv = dev->dev_private;
2269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2270 int pipe = intel_crtc->pipe;
2271 u32 reg, temp;
2272
2273 /* enable normal train */
2274 reg = FDI_TX_CTL(pipe);
2275 temp = I915_READ(reg);
2276 if (IS_IVYBRIDGE(dev)) {
2277 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2278 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2279 } else {
2280 temp &= ~FDI_LINK_TRAIN_NONE;
2281 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2282 }
2283 I915_WRITE(reg, temp);
2284
2285 reg = FDI_RX_CTL(pipe);
2286 temp = I915_READ(reg);
2287 if (HAS_PCH_CPT(dev)) {
2288 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2289 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2290 } else {
2291 temp &= ~FDI_LINK_TRAIN_NONE;
2292 temp |= FDI_LINK_TRAIN_NONE;
2293 }
2294 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2295
2296 /* wait one idle pattern time */
2297 POSTING_READ(reg);
2298 udelay(1000);
2299
2300 /* IVB wants error correction enabled */
2301 if (IS_IVYBRIDGE(dev))
2302 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2303 FDI_FE_ERRC_ENABLE);
2304 }
2305
2306 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2307 {
2308 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2309 }
2310
2311 static void ivb_modeset_global_resources(struct drm_device *dev)
2312 {
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314 struct intel_crtc *pipe_B_crtc =
2315 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2316 struct intel_crtc *pipe_C_crtc =
2317 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2318 uint32_t temp;
2319
2320 /*
2321 * When everything is off disable fdi C so that we could enable fdi B
2322 * with all lanes. Note that we don't care about enabled pipes without
2323 * an enabled pch encoder.
2324 */
2325 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2326 !pipe_has_enabled_pch(pipe_C_crtc)) {
2327 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2328 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2329
2330 temp = I915_READ(SOUTH_CHICKEN1);
2331 temp &= ~FDI_BC_BIFURCATION_SELECT;
2332 DRM_DEBUG_KMS("disabling fdi C rx\n");
2333 I915_WRITE(SOUTH_CHICKEN1, temp);
2334 }
2335 }
2336
2337 /* The FDI link training functions for ILK/Ibexpeak. */
2338 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2339 {
2340 struct drm_device *dev = crtc->dev;
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2343 int pipe = intel_crtc->pipe;
2344 int plane = intel_crtc->plane;
2345 u32 reg, temp, tries;
2346
2347 /* FDI needs bits from pipe & plane first */
2348 assert_pipe_enabled(dev_priv, pipe);
2349 assert_plane_enabled(dev_priv, plane);
2350
2351 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2352 for train result */
2353 reg = FDI_RX_IMR(pipe);
2354 temp = I915_READ(reg);
2355 temp &= ~FDI_RX_SYMBOL_LOCK;
2356 temp &= ~FDI_RX_BIT_LOCK;
2357 I915_WRITE(reg, temp);
2358 I915_READ(reg);
2359 udelay(150);
2360
2361 /* enable CPU FDI TX and PCH FDI RX */
2362 reg = FDI_TX_CTL(pipe);
2363 temp = I915_READ(reg);
2364 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2365 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2366 temp &= ~FDI_LINK_TRAIN_NONE;
2367 temp |= FDI_LINK_TRAIN_PATTERN_1;
2368 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2369
2370 reg = FDI_RX_CTL(pipe);
2371 temp = I915_READ(reg);
2372 temp &= ~FDI_LINK_TRAIN_NONE;
2373 temp |= FDI_LINK_TRAIN_PATTERN_1;
2374 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2375
2376 POSTING_READ(reg);
2377 udelay(150);
2378
2379 /* Ironlake workaround, enable clock pointer after FDI enable*/
2380 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2381 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2382 FDI_RX_PHASE_SYNC_POINTER_EN);
2383
2384 reg = FDI_RX_IIR(pipe);
2385 for (tries = 0; tries < 5; tries++) {
2386 temp = I915_READ(reg);
2387 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2388
2389 if ((temp & FDI_RX_BIT_LOCK)) {
2390 DRM_DEBUG_KMS("FDI train 1 done.\n");
2391 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2392 break;
2393 }
2394 }
2395 if (tries == 5)
2396 DRM_ERROR("FDI train 1 fail!\n");
2397
2398 /* Train 2 */
2399 reg = FDI_TX_CTL(pipe);
2400 temp = I915_READ(reg);
2401 temp &= ~FDI_LINK_TRAIN_NONE;
2402 temp |= FDI_LINK_TRAIN_PATTERN_2;
2403 I915_WRITE(reg, temp);
2404
2405 reg = FDI_RX_CTL(pipe);
2406 temp = I915_READ(reg);
2407 temp &= ~FDI_LINK_TRAIN_NONE;
2408 temp |= FDI_LINK_TRAIN_PATTERN_2;
2409 I915_WRITE(reg, temp);
2410
2411 POSTING_READ(reg);
2412 udelay(150);
2413
2414 reg = FDI_RX_IIR(pipe);
2415 for (tries = 0; tries < 5; tries++) {
2416 temp = I915_READ(reg);
2417 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2418
2419 if (temp & FDI_RX_SYMBOL_LOCK) {
2420 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2421 DRM_DEBUG_KMS("FDI train 2 done.\n");
2422 break;
2423 }
2424 }
2425 if (tries == 5)
2426 DRM_ERROR("FDI train 2 fail!\n");
2427
2428 DRM_DEBUG_KMS("FDI train done\n");
2429
2430 }
2431
2432 static const int snb_b_fdi_train_param[] = {
2433 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2434 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2435 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2436 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2437 };
2438
2439 /* The FDI link training functions for SNB/Cougarpoint. */
2440 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2441 {
2442 struct drm_device *dev = crtc->dev;
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2445 int pipe = intel_crtc->pipe;
2446 u32 reg, temp, i, retry;
2447
2448 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2449 for train result */
2450 reg = FDI_RX_IMR(pipe);
2451 temp = I915_READ(reg);
2452 temp &= ~FDI_RX_SYMBOL_LOCK;
2453 temp &= ~FDI_RX_BIT_LOCK;
2454 I915_WRITE(reg, temp);
2455
2456 POSTING_READ(reg);
2457 udelay(150);
2458
2459 /* enable CPU FDI TX and PCH FDI RX */
2460 reg = FDI_TX_CTL(pipe);
2461 temp = I915_READ(reg);
2462 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2463 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2464 temp &= ~FDI_LINK_TRAIN_NONE;
2465 temp |= FDI_LINK_TRAIN_PATTERN_1;
2466 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2467 /* SNB-B */
2468 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2469 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2470
2471 I915_WRITE(FDI_RX_MISC(pipe),
2472 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2473
2474 reg = FDI_RX_CTL(pipe);
2475 temp = I915_READ(reg);
2476 if (HAS_PCH_CPT(dev)) {
2477 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2478 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2479 } else {
2480 temp &= ~FDI_LINK_TRAIN_NONE;
2481 temp |= FDI_LINK_TRAIN_PATTERN_1;
2482 }
2483 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2484
2485 POSTING_READ(reg);
2486 udelay(150);
2487
2488 for (i = 0; i < 4; i++) {
2489 reg = FDI_TX_CTL(pipe);
2490 temp = I915_READ(reg);
2491 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2492 temp |= snb_b_fdi_train_param[i];
2493 I915_WRITE(reg, temp);
2494
2495 POSTING_READ(reg);
2496 udelay(500);
2497
2498 for (retry = 0; retry < 5; retry++) {
2499 reg = FDI_RX_IIR(pipe);
2500 temp = I915_READ(reg);
2501 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2502 if (temp & FDI_RX_BIT_LOCK) {
2503 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2504 DRM_DEBUG_KMS("FDI train 1 done.\n");
2505 break;
2506 }
2507 udelay(50);
2508 }
2509 if (retry < 5)
2510 break;
2511 }
2512 if (i == 4)
2513 DRM_ERROR("FDI train 1 fail!\n");
2514
2515 /* Train 2 */
2516 reg = FDI_TX_CTL(pipe);
2517 temp = I915_READ(reg);
2518 temp &= ~FDI_LINK_TRAIN_NONE;
2519 temp |= FDI_LINK_TRAIN_PATTERN_2;
2520 if (IS_GEN6(dev)) {
2521 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2522 /* SNB-B */
2523 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2524 }
2525 I915_WRITE(reg, temp);
2526
2527 reg = FDI_RX_CTL(pipe);
2528 temp = I915_READ(reg);
2529 if (HAS_PCH_CPT(dev)) {
2530 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2531 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2532 } else {
2533 temp &= ~FDI_LINK_TRAIN_NONE;
2534 temp |= FDI_LINK_TRAIN_PATTERN_2;
2535 }
2536 I915_WRITE(reg, temp);
2537
2538 POSTING_READ(reg);
2539 udelay(150);
2540
2541 for (i = 0; i < 4; i++) {
2542 reg = FDI_TX_CTL(pipe);
2543 temp = I915_READ(reg);
2544 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2545 temp |= snb_b_fdi_train_param[i];
2546 I915_WRITE(reg, temp);
2547
2548 POSTING_READ(reg);
2549 udelay(500);
2550
2551 for (retry = 0; retry < 5; retry++) {
2552 reg = FDI_RX_IIR(pipe);
2553 temp = I915_READ(reg);
2554 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2555 if (temp & FDI_RX_SYMBOL_LOCK) {
2556 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2557 DRM_DEBUG_KMS("FDI train 2 done.\n");
2558 break;
2559 }
2560 udelay(50);
2561 }
2562 if (retry < 5)
2563 break;
2564 }
2565 if (i == 4)
2566 DRM_ERROR("FDI train 2 fail!\n");
2567
2568 DRM_DEBUG_KMS("FDI train done.\n");
2569 }
2570
2571 /* Manual link training for Ivy Bridge A0 parts */
2572 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2573 {
2574 struct drm_device *dev = crtc->dev;
2575 struct drm_i915_private *dev_priv = dev->dev_private;
2576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2577 int pipe = intel_crtc->pipe;
2578 u32 reg, temp, i;
2579
2580 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2581 for train result */
2582 reg = FDI_RX_IMR(pipe);
2583 temp = I915_READ(reg);
2584 temp &= ~FDI_RX_SYMBOL_LOCK;
2585 temp &= ~FDI_RX_BIT_LOCK;
2586 I915_WRITE(reg, temp);
2587
2588 POSTING_READ(reg);
2589 udelay(150);
2590
2591 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2592 I915_READ(FDI_RX_IIR(pipe)));
2593
2594 /* enable CPU FDI TX and PCH FDI RX */
2595 reg = FDI_TX_CTL(pipe);
2596 temp = I915_READ(reg);
2597 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2598 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2599 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2600 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2601 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2602 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2603 temp |= FDI_COMPOSITE_SYNC;
2604 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2605
2606 I915_WRITE(FDI_RX_MISC(pipe),
2607 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2608
2609 reg = FDI_RX_CTL(pipe);
2610 temp = I915_READ(reg);
2611 temp &= ~FDI_LINK_TRAIN_AUTO;
2612 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2613 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2614 temp |= FDI_COMPOSITE_SYNC;
2615 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2616
2617 POSTING_READ(reg);
2618 udelay(150);
2619
2620 for (i = 0; i < 4; i++) {
2621 reg = FDI_TX_CTL(pipe);
2622 temp = I915_READ(reg);
2623 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2624 temp |= snb_b_fdi_train_param[i];
2625 I915_WRITE(reg, temp);
2626
2627 POSTING_READ(reg);
2628 udelay(500);
2629
2630 reg = FDI_RX_IIR(pipe);
2631 temp = I915_READ(reg);
2632 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2633
2634 if (temp & FDI_RX_BIT_LOCK ||
2635 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2636 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2637 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2638 break;
2639 }
2640 }
2641 if (i == 4)
2642 DRM_ERROR("FDI train 1 fail!\n");
2643
2644 /* Train 2 */
2645 reg = FDI_TX_CTL(pipe);
2646 temp = I915_READ(reg);
2647 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2648 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2649 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2650 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2651 I915_WRITE(reg, temp);
2652
2653 reg = FDI_RX_CTL(pipe);
2654 temp = I915_READ(reg);
2655 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2656 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2657 I915_WRITE(reg, temp);
2658
2659 POSTING_READ(reg);
2660 udelay(150);
2661
2662 for (i = 0; i < 4; i++) {
2663 reg = FDI_TX_CTL(pipe);
2664 temp = I915_READ(reg);
2665 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2666 temp |= snb_b_fdi_train_param[i];
2667 I915_WRITE(reg, temp);
2668
2669 POSTING_READ(reg);
2670 udelay(500);
2671
2672 reg = FDI_RX_IIR(pipe);
2673 temp = I915_READ(reg);
2674 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2675
2676 if (temp & FDI_RX_SYMBOL_LOCK) {
2677 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2678 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2679 break;
2680 }
2681 }
2682 if (i == 4)
2683 DRM_ERROR("FDI train 2 fail!\n");
2684
2685 DRM_DEBUG_KMS("FDI train done.\n");
2686 }
2687
2688 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2689 {
2690 struct drm_device *dev = intel_crtc->base.dev;
2691 struct drm_i915_private *dev_priv = dev->dev_private;
2692 int pipe = intel_crtc->pipe;
2693 u32 reg, temp;
2694
2695
2696 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2697 reg = FDI_RX_CTL(pipe);
2698 temp = I915_READ(reg);
2699 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2700 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2701 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2702 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2703
2704 POSTING_READ(reg);
2705 udelay(200);
2706
2707 /* Switch from Rawclk to PCDclk */
2708 temp = I915_READ(reg);
2709 I915_WRITE(reg, temp | FDI_PCDCLK);
2710
2711 POSTING_READ(reg);
2712 udelay(200);
2713
2714 /* Enable CPU FDI TX PLL, always on for Ironlake */
2715 reg = FDI_TX_CTL(pipe);
2716 temp = I915_READ(reg);
2717 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2718 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2719
2720 POSTING_READ(reg);
2721 udelay(100);
2722 }
2723 }
2724
2725 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2726 {
2727 struct drm_device *dev = intel_crtc->base.dev;
2728 struct drm_i915_private *dev_priv = dev->dev_private;
2729 int pipe = intel_crtc->pipe;
2730 u32 reg, temp;
2731
2732 /* Switch from PCDclk to Rawclk */
2733 reg = FDI_RX_CTL(pipe);
2734 temp = I915_READ(reg);
2735 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2736
2737 /* Disable CPU FDI TX PLL */
2738 reg = FDI_TX_CTL(pipe);
2739 temp = I915_READ(reg);
2740 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2741
2742 POSTING_READ(reg);
2743 udelay(100);
2744
2745 reg = FDI_RX_CTL(pipe);
2746 temp = I915_READ(reg);
2747 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2748
2749 /* Wait for the clocks to turn off. */
2750 POSTING_READ(reg);
2751 udelay(100);
2752 }
2753
2754 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2755 {
2756 struct drm_device *dev = crtc->dev;
2757 struct drm_i915_private *dev_priv = dev->dev_private;
2758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2759 int pipe = intel_crtc->pipe;
2760 u32 reg, temp;
2761
2762 /* disable CPU FDI tx and PCH FDI rx */
2763 reg = FDI_TX_CTL(pipe);
2764 temp = I915_READ(reg);
2765 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2766 POSTING_READ(reg);
2767
2768 reg = FDI_RX_CTL(pipe);
2769 temp = I915_READ(reg);
2770 temp &= ~(0x7 << 16);
2771 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2772 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2773
2774 POSTING_READ(reg);
2775 udelay(100);
2776
2777 /* Ironlake workaround, disable clock pointer after downing FDI */
2778 if (HAS_PCH_IBX(dev)) {
2779 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2780 }
2781
2782 /* still set train pattern 1 */
2783 reg = FDI_TX_CTL(pipe);
2784 temp = I915_READ(reg);
2785 temp &= ~FDI_LINK_TRAIN_NONE;
2786 temp |= FDI_LINK_TRAIN_PATTERN_1;
2787 I915_WRITE(reg, temp);
2788
2789 reg = FDI_RX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 if (HAS_PCH_CPT(dev)) {
2792 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2793 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2794 } else {
2795 temp &= ~FDI_LINK_TRAIN_NONE;
2796 temp |= FDI_LINK_TRAIN_PATTERN_1;
2797 }
2798 /* BPC in FDI rx is consistent with that in PIPECONF */
2799 temp &= ~(0x07 << 16);
2800 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2801 I915_WRITE(reg, temp);
2802
2803 POSTING_READ(reg);
2804 udelay(100);
2805 }
2806
2807 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2808 {
2809 struct drm_device *dev = crtc->dev;
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2812 unsigned long flags;
2813 bool pending;
2814
2815 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2816 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2817 return false;
2818
2819 spin_lock_irqsave(&dev->event_lock, flags);
2820 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2821 spin_unlock_irqrestore(&dev->event_lock, flags);
2822
2823 return pending;
2824 }
2825
2826 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2827 {
2828 struct drm_device *dev = crtc->dev;
2829 struct drm_i915_private *dev_priv = dev->dev_private;
2830
2831 if (crtc->fb == NULL)
2832 return;
2833
2834 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2835
2836 wait_event(dev_priv->pending_flip_queue,
2837 !intel_crtc_has_pending_flip(crtc));
2838
2839 mutex_lock(&dev->struct_mutex);
2840 intel_finish_fb(crtc->fb);
2841 mutex_unlock(&dev->struct_mutex);
2842 }
2843
2844 /* Program iCLKIP clock to the desired frequency */
2845 static void lpt_program_iclkip(struct drm_crtc *crtc)
2846 {
2847 struct drm_device *dev = crtc->dev;
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2850 u32 temp;
2851
2852 mutex_lock(&dev_priv->dpio_lock);
2853
2854 /* It is necessary to ungate the pixclk gate prior to programming
2855 * the divisors, and gate it back when it is done.
2856 */
2857 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2858
2859 /* Disable SSCCTL */
2860 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2861 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2862 SBI_SSCCTL_DISABLE,
2863 SBI_ICLK);
2864
2865 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2866 if (crtc->mode.clock == 20000) {
2867 auxdiv = 1;
2868 divsel = 0x41;
2869 phaseinc = 0x20;
2870 } else {
2871 /* The iCLK virtual clock root frequency is in MHz,
2872 * but the crtc->mode.clock in in KHz. To get the divisors,
2873 * it is necessary to divide one by another, so we
2874 * convert the virtual clock precision to KHz here for higher
2875 * precision.
2876 */
2877 u32 iclk_virtual_root_freq = 172800 * 1000;
2878 u32 iclk_pi_range = 64;
2879 u32 desired_divisor, msb_divisor_value, pi_value;
2880
2881 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2882 msb_divisor_value = desired_divisor / iclk_pi_range;
2883 pi_value = desired_divisor % iclk_pi_range;
2884
2885 auxdiv = 0;
2886 divsel = msb_divisor_value - 2;
2887 phaseinc = pi_value;
2888 }
2889
2890 /* This should not happen with any sane values */
2891 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2892 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2893 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2894 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2895
2896 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2897 crtc->mode.clock,
2898 auxdiv,
2899 divsel,
2900 phasedir,
2901 phaseinc);
2902
2903 /* Program SSCDIVINTPHASE6 */
2904 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2905 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2906 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2907 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2908 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2909 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2910 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2911 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2912
2913 /* Program SSCAUXDIV */
2914 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2915 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2916 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2917 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2918
2919 /* Enable modulator and associated divider */
2920 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2921 temp &= ~SBI_SSCCTL_DISABLE;
2922 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2923
2924 /* Wait for initialization time */
2925 udelay(24);
2926
2927 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2928
2929 mutex_unlock(&dev_priv->dpio_lock);
2930 }
2931
2932 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2933 enum pipe pch_transcoder)
2934 {
2935 struct drm_device *dev = crtc->base.dev;
2936 struct drm_i915_private *dev_priv = dev->dev_private;
2937 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2938
2939 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2940 I915_READ(HTOTAL(cpu_transcoder)));
2941 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2942 I915_READ(HBLANK(cpu_transcoder)));
2943 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2944 I915_READ(HSYNC(cpu_transcoder)));
2945
2946 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2947 I915_READ(VTOTAL(cpu_transcoder)));
2948 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2949 I915_READ(VBLANK(cpu_transcoder)));
2950 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2951 I915_READ(VSYNC(cpu_transcoder)));
2952 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2953 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2954 }
2955
2956 /*
2957 * Enable PCH resources required for PCH ports:
2958 * - PCH PLLs
2959 * - FDI training & RX/TX
2960 * - update transcoder timings
2961 * - DP transcoding bits
2962 * - transcoder
2963 */
2964 static void ironlake_pch_enable(struct drm_crtc *crtc)
2965 {
2966 struct drm_device *dev = crtc->dev;
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2969 int pipe = intel_crtc->pipe;
2970 u32 reg, temp;
2971
2972 assert_pch_transcoder_disabled(dev_priv, pipe);
2973
2974 /* Write the TU size bits before fdi link training, so that error
2975 * detection works. */
2976 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2977 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2978
2979 /* For PCH output, training FDI link */
2980 dev_priv->display.fdi_link_train(crtc);
2981
2982 /* XXX: pch pll's can be enabled any time before we enable the PCH
2983 * transcoder, and we actually should do this to not upset any PCH
2984 * transcoder that already use the clock when we share it.
2985 *
2986 * Note that enable_shared_dpll tries to do the right thing, but
2987 * get_shared_dpll unconditionally resets the pll - we need that to have
2988 * the right LVDS enable sequence. */
2989 ironlake_enable_shared_dpll(intel_crtc);
2990
2991 if (HAS_PCH_CPT(dev)) {
2992 u32 sel;
2993
2994 temp = I915_READ(PCH_DPLL_SEL);
2995 temp |= TRANS_DPLL_ENABLE(pipe);
2996 sel = TRANS_DPLLB_SEL(pipe);
2997 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
2998 temp |= sel;
2999 else
3000 temp &= ~sel;
3001 I915_WRITE(PCH_DPLL_SEL, temp);
3002 }
3003
3004 /* set transcoder timing, panel must allow it */
3005 assert_panel_unlocked(dev_priv, pipe);
3006 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3007
3008 intel_fdi_normal_train(crtc);
3009
3010 /* For PCH DP, enable TRANS_DP_CTL */
3011 if (HAS_PCH_CPT(dev) &&
3012 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3013 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3014 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3015 reg = TRANS_DP_CTL(pipe);
3016 temp = I915_READ(reg);
3017 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3018 TRANS_DP_SYNC_MASK |
3019 TRANS_DP_BPC_MASK);
3020 temp |= (TRANS_DP_OUTPUT_ENABLE |
3021 TRANS_DP_ENH_FRAMING);
3022 temp |= bpc << 9; /* same format but at 11:9 */
3023
3024 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3025 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3026 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3027 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3028
3029 switch (intel_trans_dp_port_sel(crtc)) {
3030 case PCH_DP_B:
3031 temp |= TRANS_DP_PORT_SEL_B;
3032 break;
3033 case PCH_DP_C:
3034 temp |= TRANS_DP_PORT_SEL_C;
3035 break;
3036 case PCH_DP_D:
3037 temp |= TRANS_DP_PORT_SEL_D;
3038 break;
3039 default:
3040 BUG();
3041 }
3042
3043 I915_WRITE(reg, temp);
3044 }
3045
3046 ironlake_enable_pch_transcoder(dev_priv, pipe);
3047 }
3048
3049 static void lpt_pch_enable(struct drm_crtc *crtc)
3050 {
3051 struct drm_device *dev = crtc->dev;
3052 struct drm_i915_private *dev_priv = dev->dev_private;
3053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3054 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3055
3056 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3057
3058 lpt_program_iclkip(crtc);
3059
3060 /* Set transcoder timing. */
3061 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3062
3063 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3064 }
3065
3066 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3067 {
3068 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3069
3070 if (pll == NULL)
3071 return;
3072
3073 if (pll->refcount == 0) {
3074 WARN(1, "bad %s refcount\n", pll->name);
3075 return;
3076 }
3077
3078 if (--pll->refcount == 0) {
3079 WARN_ON(pll->on);
3080 WARN_ON(pll->active);
3081 }
3082
3083 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3084 }
3085
3086 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3087 {
3088 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3089 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3090 enum intel_dpll_id i;
3091
3092 if (pll) {
3093 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3094 crtc->base.base.id, pll->name);
3095 intel_put_shared_dpll(crtc);
3096 }
3097
3098 if (HAS_PCH_IBX(dev_priv->dev)) {
3099 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3100 i = crtc->pipe;
3101 pll = &dev_priv->shared_dplls[i];
3102
3103 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3104 crtc->base.base.id, pll->name);
3105
3106 goto found;
3107 }
3108
3109 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3110 pll = &dev_priv->shared_dplls[i];
3111
3112 /* Only want to check enabled timings first */
3113 if (pll->refcount == 0)
3114 continue;
3115
3116 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3117 sizeof(pll->hw_state)) == 0) {
3118 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3119 crtc->base.base.id,
3120 pll->name, pll->refcount, pll->active);
3121
3122 goto found;
3123 }
3124 }
3125
3126 /* Ok no matching timings, maybe there's a free one? */
3127 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3128 pll = &dev_priv->shared_dplls[i];
3129 if (pll->refcount == 0) {
3130 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3131 crtc->base.base.id, pll->name);
3132 goto found;
3133 }
3134 }
3135
3136 return NULL;
3137
3138 found:
3139 crtc->config.shared_dpll = i;
3140 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3141 pipe_name(crtc->pipe));
3142
3143 if (pll->active == 0) {
3144 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3145 sizeof(pll->hw_state));
3146
3147 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3148 WARN_ON(pll->on);
3149 assert_shared_dpll_disabled(dev_priv, pll);
3150
3151 pll->mode_set(dev_priv, pll);
3152 }
3153 pll->refcount++;
3154
3155 return pll;
3156 }
3157
3158 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3159 {
3160 struct drm_i915_private *dev_priv = dev->dev_private;
3161 int dslreg = PIPEDSL(pipe);
3162 u32 temp;
3163
3164 temp = I915_READ(dslreg);
3165 udelay(500);
3166 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3167 if (wait_for(I915_READ(dslreg) != temp, 5))
3168 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3169 }
3170 }
3171
3172 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3173 {
3174 struct drm_device *dev = crtc->base.dev;
3175 struct drm_i915_private *dev_priv = dev->dev_private;
3176 int pipe = crtc->pipe;
3177
3178 if (crtc->config.pch_pfit.size) {
3179 /* Force use of hard-coded filter coefficients
3180 * as some pre-programmed values are broken,
3181 * e.g. x201.
3182 */
3183 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3184 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3185 PF_PIPE_SEL_IVB(pipe));
3186 else
3187 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3188 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3189 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3190 }
3191 }
3192
3193 static void intel_enable_planes(struct drm_crtc *crtc)
3194 {
3195 struct drm_device *dev = crtc->dev;
3196 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3197 struct intel_plane *intel_plane;
3198
3199 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3200 if (intel_plane->pipe == pipe)
3201 intel_plane_restore(&intel_plane->base);
3202 }
3203
3204 static void intel_disable_planes(struct drm_crtc *crtc)
3205 {
3206 struct drm_device *dev = crtc->dev;
3207 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3208 struct intel_plane *intel_plane;
3209
3210 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3211 if (intel_plane->pipe == pipe)
3212 intel_plane_disable(&intel_plane->base);
3213 }
3214
3215 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3216 {
3217 struct drm_device *dev = crtc->dev;
3218 struct drm_i915_private *dev_priv = dev->dev_private;
3219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3220 struct intel_encoder *encoder;
3221 int pipe = intel_crtc->pipe;
3222 int plane = intel_crtc->plane;
3223
3224 WARN_ON(!crtc->enabled);
3225
3226 if (intel_crtc->active)
3227 return;
3228
3229 intel_crtc->active = true;
3230
3231 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3232 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3233
3234 intel_update_watermarks(dev);
3235
3236 for_each_encoder_on_crtc(dev, crtc, encoder)
3237 if (encoder->pre_enable)
3238 encoder->pre_enable(encoder);
3239
3240 if (intel_crtc->config.has_pch_encoder) {
3241 /* Note: FDI PLL enabling _must_ be done before we enable the
3242 * cpu pipes, hence this is separate from all the other fdi/pch
3243 * enabling. */
3244 ironlake_fdi_pll_enable(intel_crtc);
3245 } else {
3246 assert_fdi_tx_disabled(dev_priv, pipe);
3247 assert_fdi_rx_disabled(dev_priv, pipe);
3248 }
3249
3250 ironlake_pfit_enable(intel_crtc);
3251
3252 /*
3253 * On ILK+ LUT must be loaded before the pipe is running but with
3254 * clocks enabled
3255 */
3256 intel_crtc_load_lut(crtc);
3257
3258 intel_enable_pipe(dev_priv, pipe,
3259 intel_crtc->config.has_pch_encoder);
3260 intel_enable_plane(dev_priv, plane, pipe);
3261 intel_enable_planes(crtc);
3262 intel_crtc_update_cursor(crtc, true);
3263
3264 if (intel_crtc->config.has_pch_encoder)
3265 ironlake_pch_enable(crtc);
3266
3267 mutex_lock(&dev->struct_mutex);
3268 intel_update_fbc(dev);
3269 mutex_unlock(&dev->struct_mutex);
3270
3271 for_each_encoder_on_crtc(dev, crtc, encoder)
3272 encoder->enable(encoder);
3273
3274 if (HAS_PCH_CPT(dev))
3275 cpt_verify_modeset(dev, intel_crtc->pipe);
3276
3277 /*
3278 * There seems to be a race in PCH platform hw (at least on some
3279 * outputs) where an enabled pipe still completes any pageflip right
3280 * away (as if the pipe is off) instead of waiting for vblank. As soon
3281 * as the first vblank happend, everything works as expected. Hence just
3282 * wait for one vblank before returning to avoid strange things
3283 * happening.
3284 */
3285 intel_wait_for_vblank(dev, intel_crtc->pipe);
3286 }
3287
3288 /* IPS only exists on ULT machines and is tied to pipe A. */
3289 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3290 {
3291 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3292 }
3293
3294 static void hsw_enable_ips(struct intel_crtc *crtc)
3295 {
3296 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3297
3298 if (!crtc->config.ips_enabled)
3299 return;
3300
3301 /* We can only enable IPS after we enable a plane and wait for a vblank.
3302 * We guarantee that the plane is enabled by calling intel_enable_ips
3303 * only after intel_enable_plane. And intel_enable_plane already waits
3304 * for a vblank, so all we need to do here is to enable the IPS bit. */
3305 assert_plane_enabled(dev_priv, crtc->plane);
3306 I915_WRITE(IPS_CTL, IPS_ENABLE);
3307 }
3308
3309 static void hsw_disable_ips(struct intel_crtc *crtc)
3310 {
3311 struct drm_device *dev = crtc->base.dev;
3312 struct drm_i915_private *dev_priv = dev->dev_private;
3313
3314 if (!crtc->config.ips_enabled)
3315 return;
3316
3317 assert_plane_enabled(dev_priv, crtc->plane);
3318 I915_WRITE(IPS_CTL, 0);
3319
3320 /* We need to wait for a vblank before we can disable the plane. */
3321 intel_wait_for_vblank(dev, crtc->pipe);
3322 }
3323
3324 static void haswell_crtc_enable(struct drm_crtc *crtc)
3325 {
3326 struct drm_device *dev = crtc->dev;
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3329 struct intel_encoder *encoder;
3330 int pipe = intel_crtc->pipe;
3331 int plane = intel_crtc->plane;
3332
3333 WARN_ON(!crtc->enabled);
3334
3335 if (intel_crtc->active)
3336 return;
3337
3338 intel_crtc->active = true;
3339
3340 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3341 if (intel_crtc->config.has_pch_encoder)
3342 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3343
3344 intel_update_watermarks(dev);
3345
3346 if (intel_crtc->config.has_pch_encoder)
3347 dev_priv->display.fdi_link_train(crtc);
3348
3349 for_each_encoder_on_crtc(dev, crtc, encoder)
3350 if (encoder->pre_enable)
3351 encoder->pre_enable(encoder);
3352
3353 intel_ddi_enable_pipe_clock(intel_crtc);
3354
3355 ironlake_pfit_enable(intel_crtc);
3356
3357 /*
3358 * On ILK+ LUT must be loaded before the pipe is running but with
3359 * clocks enabled
3360 */
3361 intel_crtc_load_lut(crtc);
3362
3363 intel_ddi_set_pipe_settings(crtc);
3364 intel_ddi_enable_transcoder_func(crtc);
3365
3366 intel_enable_pipe(dev_priv, pipe,
3367 intel_crtc->config.has_pch_encoder);
3368 intel_enable_plane(dev_priv, plane, pipe);
3369 intel_enable_planes(crtc);
3370 intel_crtc_update_cursor(crtc, true);
3371
3372 hsw_enable_ips(intel_crtc);
3373
3374 if (intel_crtc->config.has_pch_encoder)
3375 lpt_pch_enable(crtc);
3376
3377 mutex_lock(&dev->struct_mutex);
3378 intel_update_fbc(dev);
3379 mutex_unlock(&dev->struct_mutex);
3380
3381 for_each_encoder_on_crtc(dev, crtc, encoder)
3382 encoder->enable(encoder);
3383
3384 /*
3385 * There seems to be a race in PCH platform hw (at least on some
3386 * outputs) where an enabled pipe still completes any pageflip right
3387 * away (as if the pipe is off) instead of waiting for vblank. As soon
3388 * as the first vblank happend, everything works as expected. Hence just
3389 * wait for one vblank before returning to avoid strange things
3390 * happening.
3391 */
3392 intel_wait_for_vblank(dev, intel_crtc->pipe);
3393 }
3394
3395 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3396 {
3397 struct drm_device *dev = crtc->base.dev;
3398 struct drm_i915_private *dev_priv = dev->dev_private;
3399 int pipe = crtc->pipe;
3400
3401 /* To avoid upsetting the power well on haswell only disable the pfit if
3402 * it's in use. The hw state code will make sure we get this right. */
3403 if (crtc->config.pch_pfit.size) {
3404 I915_WRITE(PF_CTL(pipe), 0);
3405 I915_WRITE(PF_WIN_POS(pipe), 0);
3406 I915_WRITE(PF_WIN_SZ(pipe), 0);
3407 }
3408 }
3409
3410 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3411 {
3412 struct drm_device *dev = crtc->dev;
3413 struct drm_i915_private *dev_priv = dev->dev_private;
3414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3415 struct intel_encoder *encoder;
3416 int pipe = intel_crtc->pipe;
3417 int plane = intel_crtc->plane;
3418 u32 reg, temp;
3419
3420
3421 if (!intel_crtc->active)
3422 return;
3423
3424 for_each_encoder_on_crtc(dev, crtc, encoder)
3425 encoder->disable(encoder);
3426
3427 intel_crtc_wait_for_pending_flips(crtc);
3428 drm_vblank_off(dev, pipe);
3429
3430 if (dev_priv->fbc.plane == plane)
3431 intel_disable_fbc(dev);
3432
3433 intel_crtc_update_cursor(crtc, false);
3434 intel_disable_planes(crtc);
3435 intel_disable_plane(dev_priv, plane, pipe);
3436
3437 if (intel_crtc->config.has_pch_encoder)
3438 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3439
3440 intel_disable_pipe(dev_priv, pipe);
3441
3442 ironlake_pfit_disable(intel_crtc);
3443
3444 for_each_encoder_on_crtc(dev, crtc, encoder)
3445 if (encoder->post_disable)
3446 encoder->post_disable(encoder);
3447
3448 if (intel_crtc->config.has_pch_encoder) {
3449 ironlake_fdi_disable(crtc);
3450
3451 ironlake_disable_pch_transcoder(dev_priv, pipe);
3452 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3453
3454 if (HAS_PCH_CPT(dev)) {
3455 /* disable TRANS_DP_CTL */
3456 reg = TRANS_DP_CTL(pipe);
3457 temp = I915_READ(reg);
3458 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3459 TRANS_DP_PORT_SEL_MASK);
3460 temp |= TRANS_DP_PORT_SEL_NONE;
3461 I915_WRITE(reg, temp);
3462
3463 /* disable DPLL_SEL */
3464 temp = I915_READ(PCH_DPLL_SEL);
3465 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3466 I915_WRITE(PCH_DPLL_SEL, temp);
3467 }
3468
3469 /* disable PCH DPLL */
3470 intel_disable_shared_dpll(intel_crtc);
3471
3472 ironlake_fdi_pll_disable(intel_crtc);
3473 }
3474
3475 intel_crtc->active = false;
3476 intel_update_watermarks(dev);
3477
3478 mutex_lock(&dev->struct_mutex);
3479 intel_update_fbc(dev);
3480 mutex_unlock(&dev->struct_mutex);
3481 }
3482
3483 static void haswell_crtc_disable(struct drm_crtc *crtc)
3484 {
3485 struct drm_device *dev = crtc->dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488 struct intel_encoder *encoder;
3489 int pipe = intel_crtc->pipe;
3490 int plane = intel_crtc->plane;
3491 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3492
3493 if (!intel_crtc->active)
3494 return;
3495
3496 for_each_encoder_on_crtc(dev, crtc, encoder)
3497 encoder->disable(encoder);
3498
3499 intel_crtc_wait_for_pending_flips(crtc);
3500 drm_vblank_off(dev, pipe);
3501
3502 /* FBC must be disabled before disabling the plane on HSW. */
3503 if (dev_priv->fbc.plane == plane)
3504 intel_disable_fbc(dev);
3505
3506 hsw_disable_ips(intel_crtc);
3507
3508 intel_crtc_update_cursor(crtc, false);
3509 intel_disable_planes(crtc);
3510 intel_disable_plane(dev_priv, plane, pipe);
3511
3512 if (intel_crtc->config.has_pch_encoder)
3513 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3514 intel_disable_pipe(dev_priv, pipe);
3515
3516 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3517
3518 ironlake_pfit_disable(intel_crtc);
3519
3520 intel_ddi_disable_pipe_clock(intel_crtc);
3521
3522 for_each_encoder_on_crtc(dev, crtc, encoder)
3523 if (encoder->post_disable)
3524 encoder->post_disable(encoder);
3525
3526 if (intel_crtc->config.has_pch_encoder) {
3527 lpt_disable_pch_transcoder(dev_priv);
3528 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3529 intel_ddi_fdi_disable(crtc);
3530 }
3531
3532 intel_crtc->active = false;
3533 intel_update_watermarks(dev);
3534
3535 mutex_lock(&dev->struct_mutex);
3536 intel_update_fbc(dev);
3537 mutex_unlock(&dev->struct_mutex);
3538 }
3539
3540 static void ironlake_crtc_off(struct drm_crtc *crtc)
3541 {
3542 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3543 intel_put_shared_dpll(intel_crtc);
3544 }
3545
3546 static void haswell_crtc_off(struct drm_crtc *crtc)
3547 {
3548 intel_ddi_put_crtc_pll(crtc);
3549 }
3550
3551 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3552 {
3553 if (!enable && intel_crtc->overlay) {
3554 struct drm_device *dev = intel_crtc->base.dev;
3555 struct drm_i915_private *dev_priv = dev->dev_private;
3556
3557 mutex_lock(&dev->struct_mutex);
3558 dev_priv->mm.interruptible = false;
3559 (void) intel_overlay_switch_off(intel_crtc->overlay);
3560 dev_priv->mm.interruptible = true;
3561 mutex_unlock(&dev->struct_mutex);
3562 }
3563
3564 /* Let userspace switch the overlay on again. In most cases userspace
3565 * has to recompute where to put it anyway.
3566 */
3567 }
3568
3569 /**
3570 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3571 * cursor plane briefly if not already running after enabling the display
3572 * plane.
3573 * This workaround avoids occasional blank screens when self refresh is
3574 * enabled.
3575 */
3576 static void
3577 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3578 {
3579 u32 cntl = I915_READ(CURCNTR(pipe));
3580
3581 if ((cntl & CURSOR_MODE) == 0) {
3582 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3583
3584 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3585 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3586 intel_wait_for_vblank(dev_priv->dev, pipe);
3587 I915_WRITE(CURCNTR(pipe), cntl);
3588 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3589 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3590 }
3591 }
3592
3593 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3594 {
3595 struct drm_device *dev = crtc->base.dev;
3596 struct drm_i915_private *dev_priv = dev->dev_private;
3597 struct intel_crtc_config *pipe_config = &crtc->config;
3598
3599 if (!crtc->config.gmch_pfit.control)
3600 return;
3601
3602 /*
3603 * The panel fitter should only be adjusted whilst the pipe is disabled,
3604 * according to register description and PRM.
3605 */
3606 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3607 assert_pipe_disabled(dev_priv, crtc->pipe);
3608
3609 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3610 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3611
3612 /* Border color in case we don't scale up to the full screen. Black by
3613 * default, change to something else for debugging. */
3614 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3615 }
3616
3617 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3618 {
3619 struct drm_device *dev = crtc->dev;
3620 struct drm_i915_private *dev_priv = dev->dev_private;
3621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3622 struct intel_encoder *encoder;
3623 int pipe = intel_crtc->pipe;
3624 int plane = intel_crtc->plane;
3625
3626 WARN_ON(!crtc->enabled);
3627
3628 if (intel_crtc->active)
3629 return;
3630
3631 intel_crtc->active = true;
3632 intel_update_watermarks(dev);
3633
3634 mutex_lock(&dev_priv->dpio_lock);
3635
3636 for_each_encoder_on_crtc(dev, crtc, encoder)
3637 if (encoder->pre_pll_enable)
3638 encoder->pre_pll_enable(encoder);
3639
3640 vlv_enable_pll(dev_priv, pipe);
3641
3642 for_each_encoder_on_crtc(dev, crtc, encoder)
3643 if (encoder->pre_enable)
3644 encoder->pre_enable(encoder);
3645
3646 /* VLV wants encoder enabling _before_ the pipe is up. */
3647 for_each_encoder_on_crtc(dev, crtc, encoder)
3648 encoder->enable(encoder);
3649
3650 i9xx_pfit_enable(intel_crtc);
3651
3652 intel_crtc_load_lut(crtc);
3653
3654 intel_enable_pipe(dev_priv, pipe, false);
3655 intel_enable_plane(dev_priv, plane, pipe);
3656 intel_enable_planes(crtc);
3657 intel_crtc_update_cursor(crtc, true);
3658
3659 intel_update_fbc(dev);
3660
3661 mutex_unlock(&dev_priv->dpio_lock);
3662 }
3663
3664 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3665 {
3666 struct drm_device *dev = crtc->dev;
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3669 struct intel_encoder *encoder;
3670 int pipe = intel_crtc->pipe;
3671 int plane = intel_crtc->plane;
3672
3673 WARN_ON(!crtc->enabled);
3674
3675 if (intel_crtc->active)
3676 return;
3677
3678 intel_crtc->active = true;
3679 intel_update_watermarks(dev);
3680
3681 for_each_encoder_on_crtc(dev, crtc, encoder)
3682 if (encoder->pre_enable)
3683 encoder->pre_enable(encoder);
3684
3685 i9xx_enable_pll(intel_crtc);
3686
3687 i9xx_pfit_enable(intel_crtc);
3688
3689 intel_crtc_load_lut(crtc);
3690
3691 intel_enable_pipe(dev_priv, pipe, false);
3692 intel_enable_plane(dev_priv, plane, pipe);
3693 intel_enable_planes(crtc);
3694 /* The fixup needs to happen before cursor is enabled */
3695 if (IS_G4X(dev))
3696 g4x_fixup_plane(dev_priv, pipe);
3697 intel_crtc_update_cursor(crtc, true);
3698
3699 /* Give the overlay scaler a chance to enable if it's on this pipe */
3700 intel_crtc_dpms_overlay(intel_crtc, true);
3701
3702 intel_update_fbc(dev);
3703
3704 for_each_encoder_on_crtc(dev, crtc, encoder)
3705 encoder->enable(encoder);
3706 }
3707
3708 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3709 {
3710 struct drm_device *dev = crtc->base.dev;
3711 struct drm_i915_private *dev_priv = dev->dev_private;
3712
3713 if (!crtc->config.gmch_pfit.control)
3714 return;
3715
3716 assert_pipe_disabled(dev_priv, crtc->pipe);
3717
3718 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3719 I915_READ(PFIT_CONTROL));
3720 I915_WRITE(PFIT_CONTROL, 0);
3721 }
3722
3723 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3724 {
3725 struct drm_device *dev = crtc->dev;
3726 struct drm_i915_private *dev_priv = dev->dev_private;
3727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3728 struct intel_encoder *encoder;
3729 int pipe = intel_crtc->pipe;
3730 int plane = intel_crtc->plane;
3731
3732 if (!intel_crtc->active)
3733 return;
3734
3735 for_each_encoder_on_crtc(dev, crtc, encoder)
3736 encoder->disable(encoder);
3737
3738 /* Give the overlay scaler a chance to disable if it's on this pipe */
3739 intel_crtc_wait_for_pending_flips(crtc);
3740 drm_vblank_off(dev, pipe);
3741
3742 if (dev_priv->fbc.plane == plane)
3743 intel_disable_fbc(dev);
3744
3745 intel_crtc_dpms_overlay(intel_crtc, false);
3746 intel_crtc_update_cursor(crtc, false);
3747 intel_disable_planes(crtc);
3748 intel_disable_plane(dev_priv, plane, pipe);
3749
3750 intel_disable_pipe(dev_priv, pipe);
3751
3752 i9xx_pfit_disable(intel_crtc);
3753
3754 for_each_encoder_on_crtc(dev, crtc, encoder)
3755 if (encoder->post_disable)
3756 encoder->post_disable(encoder);
3757
3758 intel_disable_pll(dev_priv, pipe);
3759
3760 intel_crtc->active = false;
3761 intel_update_fbc(dev);
3762 intel_update_watermarks(dev);
3763 }
3764
3765 static void i9xx_crtc_off(struct drm_crtc *crtc)
3766 {
3767 }
3768
3769 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3770 bool enabled)
3771 {
3772 struct drm_device *dev = crtc->dev;
3773 struct drm_i915_master_private *master_priv;
3774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3775 int pipe = intel_crtc->pipe;
3776
3777 if (!dev->primary->master)
3778 return;
3779
3780 master_priv = dev->primary->master->driver_priv;
3781 if (!master_priv->sarea_priv)
3782 return;
3783
3784 switch (pipe) {
3785 case 0:
3786 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3787 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3788 break;
3789 case 1:
3790 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3791 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3792 break;
3793 default:
3794 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3795 break;
3796 }
3797 }
3798
3799 /**
3800 * Sets the power management mode of the pipe and plane.
3801 */
3802 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3803 {
3804 struct drm_device *dev = crtc->dev;
3805 struct drm_i915_private *dev_priv = dev->dev_private;
3806 struct intel_encoder *intel_encoder;
3807 bool enable = false;
3808
3809 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3810 enable |= intel_encoder->connectors_active;
3811
3812 if (enable)
3813 dev_priv->display.crtc_enable(crtc);
3814 else
3815 dev_priv->display.crtc_disable(crtc);
3816
3817 intel_crtc_update_sarea(crtc, enable);
3818 }
3819
3820 static void intel_crtc_disable(struct drm_crtc *crtc)
3821 {
3822 struct drm_device *dev = crtc->dev;
3823 struct drm_connector *connector;
3824 struct drm_i915_private *dev_priv = dev->dev_private;
3825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3826
3827 /* crtc should still be enabled when we disable it. */
3828 WARN_ON(!crtc->enabled);
3829
3830 dev_priv->display.crtc_disable(crtc);
3831 intel_crtc->eld_vld = false;
3832 intel_crtc_update_sarea(crtc, false);
3833 dev_priv->display.off(crtc);
3834
3835 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3836 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3837
3838 if (crtc->fb) {
3839 mutex_lock(&dev->struct_mutex);
3840 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3841 mutex_unlock(&dev->struct_mutex);
3842 crtc->fb = NULL;
3843 }
3844
3845 /* Update computed state. */
3846 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3847 if (!connector->encoder || !connector->encoder->crtc)
3848 continue;
3849
3850 if (connector->encoder->crtc != crtc)
3851 continue;
3852
3853 connector->dpms = DRM_MODE_DPMS_OFF;
3854 to_intel_encoder(connector->encoder)->connectors_active = false;
3855 }
3856 }
3857
3858 void intel_modeset_disable(struct drm_device *dev)
3859 {
3860 struct drm_crtc *crtc;
3861
3862 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3863 if (crtc->enabled)
3864 intel_crtc_disable(crtc);
3865 }
3866 }
3867
3868 void intel_encoder_destroy(struct drm_encoder *encoder)
3869 {
3870 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3871
3872 drm_encoder_cleanup(encoder);
3873 kfree(intel_encoder);
3874 }
3875
3876 /* Simple dpms helper for encodres with just one connector, no cloning and only
3877 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3878 * state of the entire output pipe. */
3879 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3880 {
3881 if (mode == DRM_MODE_DPMS_ON) {
3882 encoder->connectors_active = true;
3883
3884 intel_crtc_update_dpms(encoder->base.crtc);
3885 } else {
3886 encoder->connectors_active = false;
3887
3888 intel_crtc_update_dpms(encoder->base.crtc);
3889 }
3890 }
3891
3892 /* Cross check the actual hw state with our own modeset state tracking (and it's
3893 * internal consistency). */
3894 static void intel_connector_check_state(struct intel_connector *connector)
3895 {
3896 if (connector->get_hw_state(connector)) {
3897 struct intel_encoder *encoder = connector->encoder;
3898 struct drm_crtc *crtc;
3899 bool encoder_enabled;
3900 enum pipe pipe;
3901
3902 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3903 connector->base.base.id,
3904 drm_get_connector_name(&connector->base));
3905
3906 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3907 "wrong connector dpms state\n");
3908 WARN(connector->base.encoder != &encoder->base,
3909 "active connector not linked to encoder\n");
3910 WARN(!encoder->connectors_active,
3911 "encoder->connectors_active not set\n");
3912
3913 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3914 WARN(!encoder_enabled, "encoder not enabled\n");
3915 if (WARN_ON(!encoder->base.crtc))
3916 return;
3917
3918 crtc = encoder->base.crtc;
3919
3920 WARN(!crtc->enabled, "crtc not enabled\n");
3921 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3922 WARN(pipe != to_intel_crtc(crtc)->pipe,
3923 "encoder active on the wrong pipe\n");
3924 }
3925 }
3926
3927 /* Even simpler default implementation, if there's really no special case to
3928 * consider. */
3929 void intel_connector_dpms(struct drm_connector *connector, int mode)
3930 {
3931 struct intel_encoder *encoder = intel_attached_encoder(connector);
3932
3933 /* All the simple cases only support two dpms states. */
3934 if (mode != DRM_MODE_DPMS_ON)
3935 mode = DRM_MODE_DPMS_OFF;
3936
3937 if (mode == connector->dpms)
3938 return;
3939
3940 connector->dpms = mode;
3941
3942 /* Only need to change hw state when actually enabled */
3943 if (encoder->base.crtc)
3944 intel_encoder_dpms(encoder, mode);
3945 else
3946 WARN_ON(encoder->connectors_active != false);
3947
3948 intel_modeset_check_state(connector->dev);
3949 }
3950
3951 /* Simple connector->get_hw_state implementation for encoders that support only
3952 * one connector and no cloning and hence the encoder state determines the state
3953 * of the connector. */
3954 bool intel_connector_get_hw_state(struct intel_connector *connector)
3955 {
3956 enum pipe pipe = 0;
3957 struct intel_encoder *encoder = connector->encoder;
3958
3959 return encoder->get_hw_state(encoder, &pipe);
3960 }
3961
3962 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3963 struct intel_crtc_config *pipe_config)
3964 {
3965 struct drm_i915_private *dev_priv = dev->dev_private;
3966 struct intel_crtc *pipe_B_crtc =
3967 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3968
3969 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3970 pipe_name(pipe), pipe_config->fdi_lanes);
3971 if (pipe_config->fdi_lanes > 4) {
3972 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3973 pipe_name(pipe), pipe_config->fdi_lanes);
3974 return false;
3975 }
3976
3977 if (IS_HASWELL(dev)) {
3978 if (pipe_config->fdi_lanes > 2) {
3979 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3980 pipe_config->fdi_lanes);
3981 return false;
3982 } else {
3983 return true;
3984 }
3985 }
3986
3987 if (INTEL_INFO(dev)->num_pipes == 2)
3988 return true;
3989
3990 /* Ivybridge 3 pipe is really complicated */
3991 switch (pipe) {
3992 case PIPE_A:
3993 return true;
3994 case PIPE_B:
3995 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
3996 pipe_config->fdi_lanes > 2) {
3997 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3998 pipe_name(pipe), pipe_config->fdi_lanes);
3999 return false;
4000 }
4001 return true;
4002 case PIPE_C:
4003 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4004 pipe_B_crtc->config.fdi_lanes <= 2) {
4005 if (pipe_config->fdi_lanes > 2) {
4006 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4007 pipe_name(pipe), pipe_config->fdi_lanes);
4008 return false;
4009 }
4010 } else {
4011 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4012 return false;
4013 }
4014 return true;
4015 default:
4016 BUG();
4017 }
4018 }
4019
4020 #define RETRY 1
4021 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4022 struct intel_crtc_config *pipe_config)
4023 {
4024 struct drm_device *dev = intel_crtc->base.dev;
4025 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4026 int lane, link_bw, fdi_dotclock;
4027 bool setup_ok, needs_recompute = false;
4028
4029 retry:
4030 /* FDI is a binary signal running at ~2.7GHz, encoding
4031 * each output octet as 10 bits. The actual frequency
4032 * is stored as a divider into a 100MHz clock, and the
4033 * mode pixel clock is stored in units of 1KHz.
4034 * Hence the bw of each lane in terms of the mode signal
4035 * is:
4036 */
4037 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4038
4039 fdi_dotclock = adjusted_mode->clock;
4040 fdi_dotclock /= pipe_config->pixel_multiplier;
4041
4042 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4043 pipe_config->pipe_bpp);
4044
4045 pipe_config->fdi_lanes = lane;
4046
4047 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4048 link_bw, &pipe_config->fdi_m_n);
4049
4050 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4051 intel_crtc->pipe, pipe_config);
4052 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4053 pipe_config->pipe_bpp -= 2*3;
4054 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4055 pipe_config->pipe_bpp);
4056 needs_recompute = true;
4057 pipe_config->bw_constrained = true;
4058
4059 goto retry;
4060 }
4061
4062 if (needs_recompute)
4063 return RETRY;
4064
4065 return setup_ok ? 0 : -EINVAL;
4066 }
4067
4068 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4069 struct intel_crtc_config *pipe_config)
4070 {
4071 pipe_config->ips_enabled = i915_enable_ips &&
4072 hsw_crtc_supports_ips(crtc) &&
4073 pipe_config->pipe_bpp == 24;
4074 }
4075
4076 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4077 struct intel_crtc_config *pipe_config)
4078 {
4079 struct drm_device *dev = crtc->base.dev;
4080 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4081
4082 if (HAS_PCH_SPLIT(dev)) {
4083 /* FDI link clock is fixed at 2.7G */
4084 if (pipe_config->requested_mode.clock * 3
4085 > IRONLAKE_FDI_FREQ * 4)
4086 return -EINVAL;
4087 }
4088
4089 /* All interlaced capable intel hw wants timings in frames. Note though
4090 * that intel_lvds_mode_fixup does some funny tricks with the crtc
4091 * timings, so we need to be careful not to clobber these.*/
4092 if (!pipe_config->timings_set)
4093 drm_mode_set_crtcinfo(adjusted_mode, 0);
4094
4095 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4096 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4097 */
4098 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4099 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4100 return -EINVAL;
4101
4102 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4103 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4104 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4105 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4106 * for lvds. */
4107 pipe_config->pipe_bpp = 8*3;
4108 }
4109
4110 if (HAS_IPS(dev))
4111 hsw_compute_ips_config(crtc, pipe_config);
4112
4113 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4114 * clock survives for now. */
4115 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4116 pipe_config->shared_dpll = crtc->config.shared_dpll;
4117
4118 if (pipe_config->has_pch_encoder)
4119 return ironlake_fdi_compute_config(crtc, pipe_config);
4120
4121 return 0;
4122 }
4123
4124 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4125 {
4126 return 400000; /* FIXME */
4127 }
4128
4129 static int i945_get_display_clock_speed(struct drm_device *dev)
4130 {
4131 return 400000;
4132 }
4133
4134 static int i915_get_display_clock_speed(struct drm_device *dev)
4135 {
4136 return 333000;
4137 }
4138
4139 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4140 {
4141 return 200000;
4142 }
4143
4144 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4145 {
4146 u16 gcfgc = 0;
4147
4148 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4149
4150 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4151 return 133000;
4152 else {
4153 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4154 case GC_DISPLAY_CLOCK_333_MHZ:
4155 return 333000;
4156 default:
4157 case GC_DISPLAY_CLOCK_190_200_MHZ:
4158 return 190000;
4159 }
4160 }
4161 }
4162
4163 static int i865_get_display_clock_speed(struct drm_device *dev)
4164 {
4165 return 266000;
4166 }
4167
4168 static int i855_get_display_clock_speed(struct drm_device *dev)
4169 {
4170 u16 hpllcc = 0;
4171 /* Assume that the hardware is in the high speed state. This
4172 * should be the default.
4173 */
4174 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4175 case GC_CLOCK_133_200:
4176 case GC_CLOCK_100_200:
4177 return 200000;
4178 case GC_CLOCK_166_250:
4179 return 250000;
4180 case GC_CLOCK_100_133:
4181 return 133000;
4182 }
4183
4184 /* Shouldn't happen */
4185 return 0;
4186 }
4187
4188 static int i830_get_display_clock_speed(struct drm_device *dev)
4189 {
4190 return 133000;
4191 }
4192
4193 static void
4194 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4195 {
4196 while (*num > DATA_LINK_M_N_MASK ||
4197 *den > DATA_LINK_M_N_MASK) {
4198 *num >>= 1;
4199 *den >>= 1;
4200 }
4201 }
4202
4203 static void compute_m_n(unsigned int m, unsigned int n,
4204 uint32_t *ret_m, uint32_t *ret_n)
4205 {
4206 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4207 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4208 intel_reduce_m_n_ratio(ret_m, ret_n);
4209 }
4210
4211 void
4212 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4213 int pixel_clock, int link_clock,
4214 struct intel_link_m_n *m_n)
4215 {
4216 m_n->tu = 64;
4217
4218 compute_m_n(bits_per_pixel * pixel_clock,
4219 link_clock * nlanes * 8,
4220 &m_n->gmch_m, &m_n->gmch_n);
4221
4222 compute_m_n(pixel_clock, link_clock,
4223 &m_n->link_m, &m_n->link_n);
4224 }
4225
4226 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4227 {
4228 if (i915_panel_use_ssc >= 0)
4229 return i915_panel_use_ssc != 0;
4230 return dev_priv->vbt.lvds_use_ssc
4231 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4232 }
4233
4234 static int vlv_get_refclk(struct drm_crtc *crtc)
4235 {
4236 struct drm_device *dev = crtc->dev;
4237 struct drm_i915_private *dev_priv = dev->dev_private;
4238 int refclk = 27000; /* for DP & HDMI */
4239
4240 return 100000; /* only one validated so far */
4241
4242 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4243 refclk = 96000;
4244 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4245 if (intel_panel_use_ssc(dev_priv))
4246 refclk = 100000;
4247 else
4248 refclk = 96000;
4249 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4250 refclk = 100000;
4251 }
4252
4253 return refclk;
4254 }
4255
4256 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4257 {
4258 struct drm_device *dev = crtc->dev;
4259 struct drm_i915_private *dev_priv = dev->dev_private;
4260 int refclk;
4261
4262 if (IS_VALLEYVIEW(dev)) {
4263 refclk = vlv_get_refclk(crtc);
4264 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4265 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4266 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4267 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4268 refclk / 1000);
4269 } else if (!IS_GEN2(dev)) {
4270 refclk = 96000;
4271 } else {
4272 refclk = 48000;
4273 }
4274
4275 return refclk;
4276 }
4277
4278 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4279 {
4280 return (1 << dpll->n) << 16 | dpll->m2;
4281 }
4282
4283 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4284 {
4285 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4286 }
4287
4288 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4289 intel_clock_t *reduced_clock)
4290 {
4291 struct drm_device *dev = crtc->base.dev;
4292 struct drm_i915_private *dev_priv = dev->dev_private;
4293 int pipe = crtc->pipe;
4294 u32 fp, fp2 = 0;
4295
4296 if (IS_PINEVIEW(dev)) {
4297 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4298 if (reduced_clock)
4299 fp2 = pnv_dpll_compute_fp(reduced_clock);
4300 } else {
4301 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4302 if (reduced_clock)
4303 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4304 }
4305
4306 I915_WRITE(FP0(pipe), fp);
4307 crtc->config.dpll_hw_state.fp0 = fp;
4308
4309 crtc->lowfreq_avail = false;
4310 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4311 reduced_clock && i915_powersave) {
4312 I915_WRITE(FP1(pipe), fp2);
4313 crtc->config.dpll_hw_state.fp1 = fp2;
4314 crtc->lowfreq_avail = true;
4315 } else {
4316 I915_WRITE(FP1(pipe), fp);
4317 crtc->config.dpll_hw_state.fp1 = fp;
4318 }
4319 }
4320
4321 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4322 {
4323 u32 reg_val;
4324
4325 /*
4326 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4327 * and set it to a reasonable value instead.
4328 */
4329 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4330 reg_val &= 0xffffff00;
4331 reg_val |= 0x00000030;
4332 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4333
4334 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4335 reg_val &= 0x8cffffff;
4336 reg_val = 0x8c000000;
4337 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4338
4339 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4340 reg_val &= 0xffffff00;
4341 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4342
4343 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4344 reg_val &= 0x00ffffff;
4345 reg_val |= 0xb0000000;
4346 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4347 }
4348
4349 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4350 struct intel_link_m_n *m_n)
4351 {
4352 struct drm_device *dev = crtc->base.dev;
4353 struct drm_i915_private *dev_priv = dev->dev_private;
4354 int pipe = crtc->pipe;
4355
4356 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4357 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4358 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4359 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4360 }
4361
4362 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4363 struct intel_link_m_n *m_n)
4364 {
4365 struct drm_device *dev = crtc->base.dev;
4366 struct drm_i915_private *dev_priv = dev->dev_private;
4367 int pipe = crtc->pipe;
4368 enum transcoder transcoder = crtc->config.cpu_transcoder;
4369
4370 if (INTEL_INFO(dev)->gen >= 5) {
4371 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4372 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4373 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4374 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4375 } else {
4376 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4377 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4378 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4379 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4380 }
4381 }
4382
4383 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4384 {
4385 if (crtc->config.has_pch_encoder)
4386 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4387 else
4388 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4389 }
4390
4391 static void vlv_update_pll(struct intel_crtc *crtc)
4392 {
4393 struct drm_device *dev = crtc->base.dev;
4394 struct drm_i915_private *dev_priv = dev->dev_private;
4395 struct intel_encoder *encoder;
4396 int pipe = crtc->pipe;
4397 u32 dpll, mdiv;
4398 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4399 bool is_hdmi;
4400 u32 coreclk, reg_val, dpll_md;
4401
4402 mutex_lock(&dev_priv->dpio_lock);
4403
4404 is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4405
4406 bestn = crtc->config.dpll.n;
4407 bestm1 = crtc->config.dpll.m1;
4408 bestm2 = crtc->config.dpll.m2;
4409 bestp1 = crtc->config.dpll.p1;
4410 bestp2 = crtc->config.dpll.p2;
4411
4412 /* See eDP HDMI DPIO driver vbios notes doc */
4413
4414 /* PLL B needs special handling */
4415 if (pipe)
4416 vlv_pllb_recal_opamp(dev_priv);
4417
4418 /* Set up Tx target for periodic Rcomp update */
4419 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4420
4421 /* Disable target IRef on PLL */
4422 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4423 reg_val &= 0x00ffffff;
4424 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4425
4426 /* Disable fast lock */
4427 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4428
4429 /* Set idtafcrecal before PLL is enabled */
4430 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4431 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4432 mdiv |= ((bestn << DPIO_N_SHIFT));
4433 mdiv |= (1 << DPIO_K_SHIFT);
4434
4435 /*
4436 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4437 * but we don't support that).
4438 * Note: don't use the DAC post divider as it seems unstable.
4439 */
4440 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4441 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4442
4443 mdiv |= DPIO_ENABLE_CALIBRATION;
4444 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4445
4446 /* Set HBR and RBR LPF coefficients */
4447 if (crtc->config.port_clock == 162000 ||
4448 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4449 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4450 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4451 0x005f0021);
4452 else
4453 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4454 0x00d0000f);
4455
4456 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4457 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4458 /* Use SSC source */
4459 if (!pipe)
4460 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4461 0x0df40000);
4462 else
4463 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4464 0x0df70000);
4465 } else { /* HDMI or VGA */
4466 /* Use bend source */
4467 if (!pipe)
4468 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4469 0x0df70000);
4470 else
4471 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4472 0x0df40000);
4473 }
4474
4475 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4476 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4477 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4478 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4479 coreclk |= 0x01000000;
4480 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4481
4482 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4483
4484 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4485 if (encoder->pre_pll_enable)
4486 encoder->pre_pll_enable(encoder);
4487
4488 /* Enable DPIO clock input */
4489 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4490 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4491 if (pipe)
4492 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4493
4494 dpll |= DPLL_VCO_ENABLE;
4495 crtc->config.dpll_hw_state.dpll = dpll;
4496
4497 I915_WRITE(DPLL(pipe), dpll);
4498 POSTING_READ(DPLL(pipe));
4499 udelay(150);
4500
4501 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4502 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4503
4504 dpll_md = (crtc->config.pixel_multiplier - 1)
4505 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4506 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4507
4508 I915_WRITE(DPLL_MD(pipe), dpll_md);
4509 POSTING_READ(DPLL_MD(pipe));
4510
4511 if (crtc->config.has_dp_encoder)
4512 intel_dp_set_m_n(crtc);
4513
4514 mutex_unlock(&dev_priv->dpio_lock);
4515 }
4516
4517 static void i9xx_update_pll(struct intel_crtc *crtc,
4518 intel_clock_t *reduced_clock,
4519 int num_connectors)
4520 {
4521 struct drm_device *dev = crtc->base.dev;
4522 struct drm_i915_private *dev_priv = dev->dev_private;
4523 u32 dpll;
4524 bool is_sdvo;
4525 struct dpll *clock = &crtc->config.dpll;
4526
4527 i9xx_update_pll_dividers(crtc, reduced_clock);
4528
4529 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4530 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4531
4532 dpll = DPLL_VGA_MODE_DIS;
4533
4534 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4535 dpll |= DPLLB_MODE_LVDS;
4536 else
4537 dpll |= DPLLB_MODE_DAC_SERIAL;
4538
4539 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4540 dpll |= (crtc->config.pixel_multiplier - 1)
4541 << SDVO_MULTIPLIER_SHIFT_HIRES;
4542 }
4543
4544 if (is_sdvo)
4545 dpll |= DPLL_DVO_HIGH_SPEED;
4546
4547 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4548 dpll |= DPLL_DVO_HIGH_SPEED;
4549
4550 /* compute bitmask from p1 value */
4551 if (IS_PINEVIEW(dev))
4552 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4553 else {
4554 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4555 if (IS_G4X(dev) && reduced_clock)
4556 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4557 }
4558 switch (clock->p2) {
4559 case 5:
4560 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4561 break;
4562 case 7:
4563 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4564 break;
4565 case 10:
4566 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4567 break;
4568 case 14:
4569 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4570 break;
4571 }
4572 if (INTEL_INFO(dev)->gen >= 4)
4573 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4574
4575 if (crtc->config.sdvo_tv_clock)
4576 dpll |= PLL_REF_INPUT_TVCLKINBC;
4577 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4578 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4579 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4580 else
4581 dpll |= PLL_REF_INPUT_DREFCLK;
4582
4583 dpll |= DPLL_VCO_ENABLE;
4584 crtc->config.dpll_hw_state.dpll = dpll;
4585
4586 if (INTEL_INFO(dev)->gen >= 4) {
4587 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4588 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4589 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4590 }
4591
4592 if (crtc->config.has_dp_encoder)
4593 intel_dp_set_m_n(crtc);
4594 }
4595
4596 static void i8xx_update_pll(struct intel_crtc *crtc,
4597 intel_clock_t *reduced_clock,
4598 int num_connectors)
4599 {
4600 struct drm_device *dev = crtc->base.dev;
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602 u32 dpll;
4603 struct dpll *clock = &crtc->config.dpll;
4604
4605 i9xx_update_pll_dividers(crtc, reduced_clock);
4606
4607 dpll = DPLL_VGA_MODE_DIS;
4608
4609 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4610 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4611 } else {
4612 if (clock->p1 == 2)
4613 dpll |= PLL_P1_DIVIDE_BY_TWO;
4614 else
4615 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4616 if (clock->p2 == 4)
4617 dpll |= PLL_P2_DIVIDE_BY_4;
4618 }
4619
4620 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4621 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4622 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4623 else
4624 dpll |= PLL_REF_INPUT_DREFCLK;
4625
4626 dpll |= DPLL_VCO_ENABLE;
4627 crtc->config.dpll_hw_state.dpll = dpll;
4628 }
4629
4630 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4631 {
4632 struct drm_device *dev = intel_crtc->base.dev;
4633 struct drm_i915_private *dev_priv = dev->dev_private;
4634 enum pipe pipe = intel_crtc->pipe;
4635 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4636 struct drm_display_mode *adjusted_mode =
4637 &intel_crtc->config.adjusted_mode;
4638 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4639 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4640
4641 /* We need to be careful not to changed the adjusted mode, for otherwise
4642 * the hw state checker will get angry at the mismatch. */
4643 crtc_vtotal = adjusted_mode->crtc_vtotal;
4644 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4645
4646 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4647 /* the chip adds 2 halflines automatically */
4648 crtc_vtotal -= 1;
4649 crtc_vblank_end -= 1;
4650 vsyncshift = adjusted_mode->crtc_hsync_start
4651 - adjusted_mode->crtc_htotal / 2;
4652 } else {
4653 vsyncshift = 0;
4654 }
4655
4656 if (INTEL_INFO(dev)->gen > 3)
4657 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4658
4659 I915_WRITE(HTOTAL(cpu_transcoder),
4660 (adjusted_mode->crtc_hdisplay - 1) |
4661 ((adjusted_mode->crtc_htotal - 1) << 16));
4662 I915_WRITE(HBLANK(cpu_transcoder),
4663 (adjusted_mode->crtc_hblank_start - 1) |
4664 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4665 I915_WRITE(HSYNC(cpu_transcoder),
4666 (adjusted_mode->crtc_hsync_start - 1) |
4667 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4668
4669 I915_WRITE(VTOTAL(cpu_transcoder),
4670 (adjusted_mode->crtc_vdisplay - 1) |
4671 ((crtc_vtotal - 1) << 16));
4672 I915_WRITE(VBLANK(cpu_transcoder),
4673 (adjusted_mode->crtc_vblank_start - 1) |
4674 ((crtc_vblank_end - 1) << 16));
4675 I915_WRITE(VSYNC(cpu_transcoder),
4676 (adjusted_mode->crtc_vsync_start - 1) |
4677 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4678
4679 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4680 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4681 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4682 * bits. */
4683 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4684 (pipe == PIPE_B || pipe == PIPE_C))
4685 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4686
4687 /* pipesrc controls the size that is scaled from, which should
4688 * always be the user's requested size.
4689 */
4690 I915_WRITE(PIPESRC(pipe),
4691 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4692 }
4693
4694 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4695 struct intel_crtc_config *pipe_config)
4696 {
4697 struct drm_device *dev = crtc->base.dev;
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4700 uint32_t tmp;
4701
4702 tmp = I915_READ(HTOTAL(cpu_transcoder));
4703 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4704 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4705 tmp = I915_READ(HBLANK(cpu_transcoder));
4706 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4707 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4708 tmp = I915_READ(HSYNC(cpu_transcoder));
4709 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4710 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4711
4712 tmp = I915_READ(VTOTAL(cpu_transcoder));
4713 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4714 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4715 tmp = I915_READ(VBLANK(cpu_transcoder));
4716 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4717 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4718 tmp = I915_READ(VSYNC(cpu_transcoder));
4719 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4720 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4721
4722 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4723 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4724 pipe_config->adjusted_mode.crtc_vtotal += 1;
4725 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4726 }
4727
4728 tmp = I915_READ(PIPESRC(crtc->pipe));
4729 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4730 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4731 }
4732
4733 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4734 struct intel_crtc_config *pipe_config)
4735 {
4736 struct drm_crtc *crtc = &intel_crtc->base;
4737
4738 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4739 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4740 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4741 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4742
4743 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4744 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4745 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4746 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4747
4748 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4749
4750 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4751 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4752 }
4753
4754 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4755 {
4756 struct drm_device *dev = intel_crtc->base.dev;
4757 struct drm_i915_private *dev_priv = dev->dev_private;
4758 uint32_t pipeconf;
4759
4760 pipeconf = 0;
4761
4762 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4763 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4764 * core speed.
4765 *
4766 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4767 * pipe == 0 check?
4768 */
4769 if (intel_crtc->config.requested_mode.clock >
4770 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4771 pipeconf |= PIPECONF_DOUBLE_WIDE;
4772 }
4773
4774 /* only g4x and later have fancy bpc/dither controls */
4775 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4776 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4777 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4778 pipeconf |= PIPECONF_DITHER_EN |
4779 PIPECONF_DITHER_TYPE_SP;
4780
4781 switch (intel_crtc->config.pipe_bpp) {
4782 case 18:
4783 pipeconf |= PIPECONF_6BPC;
4784 break;
4785 case 24:
4786 pipeconf |= PIPECONF_8BPC;
4787 break;
4788 case 30:
4789 pipeconf |= PIPECONF_10BPC;
4790 break;
4791 default:
4792 /* Case prevented by intel_choose_pipe_bpp_dither. */
4793 BUG();
4794 }
4795 }
4796
4797 if (HAS_PIPE_CXSR(dev)) {
4798 if (intel_crtc->lowfreq_avail) {
4799 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4800 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4801 } else {
4802 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4803 }
4804 }
4805
4806 if (!IS_GEN2(dev) &&
4807 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4808 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4809 else
4810 pipeconf |= PIPECONF_PROGRESSIVE;
4811
4812 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4813 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4814
4815 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4816 POSTING_READ(PIPECONF(intel_crtc->pipe));
4817 }
4818
4819 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4820 int x, int y,
4821 struct drm_framebuffer *fb)
4822 {
4823 struct drm_device *dev = crtc->dev;
4824 struct drm_i915_private *dev_priv = dev->dev_private;
4825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4826 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4827 int pipe = intel_crtc->pipe;
4828 int plane = intel_crtc->plane;
4829 int refclk, num_connectors = 0;
4830 intel_clock_t clock, reduced_clock;
4831 u32 dspcntr;
4832 bool ok, has_reduced_clock = false;
4833 bool is_lvds = false;
4834 struct intel_encoder *encoder;
4835 const intel_limit_t *limit;
4836 int ret;
4837
4838 for_each_encoder_on_crtc(dev, crtc, encoder) {
4839 switch (encoder->type) {
4840 case INTEL_OUTPUT_LVDS:
4841 is_lvds = true;
4842 break;
4843 }
4844
4845 num_connectors++;
4846 }
4847
4848 refclk = i9xx_get_refclk(crtc, num_connectors);
4849
4850 /*
4851 * Returns a set of divisors for the desired target clock with the given
4852 * refclk, or FALSE. The returned values represent the clock equation:
4853 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4854 */
4855 limit = intel_limit(crtc, refclk);
4856 ok = dev_priv->display.find_dpll(limit, crtc,
4857 intel_crtc->config.port_clock,
4858 refclk, NULL, &clock);
4859 if (!ok && !intel_crtc->config.clock_set) {
4860 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4861 return -EINVAL;
4862 }
4863
4864 /* Ensure that the cursor is valid for the new mode before changing... */
4865 intel_crtc_update_cursor(crtc, true);
4866
4867 if (is_lvds && dev_priv->lvds_downclock_avail) {
4868 /*
4869 * Ensure we match the reduced clock's P to the target clock.
4870 * If the clocks don't match, we can't switch the display clock
4871 * by using the FP0/FP1. In such case we will disable the LVDS
4872 * downclock feature.
4873 */
4874 has_reduced_clock =
4875 dev_priv->display.find_dpll(limit, crtc,
4876 dev_priv->lvds_downclock,
4877 refclk, &clock,
4878 &reduced_clock);
4879 }
4880 /* Compat-code for transition, will disappear. */
4881 if (!intel_crtc->config.clock_set) {
4882 intel_crtc->config.dpll.n = clock.n;
4883 intel_crtc->config.dpll.m1 = clock.m1;
4884 intel_crtc->config.dpll.m2 = clock.m2;
4885 intel_crtc->config.dpll.p1 = clock.p1;
4886 intel_crtc->config.dpll.p2 = clock.p2;
4887 }
4888
4889 if (IS_GEN2(dev))
4890 i8xx_update_pll(intel_crtc,
4891 has_reduced_clock ? &reduced_clock : NULL,
4892 num_connectors);
4893 else if (IS_VALLEYVIEW(dev))
4894 vlv_update_pll(intel_crtc);
4895 else
4896 i9xx_update_pll(intel_crtc,
4897 has_reduced_clock ? &reduced_clock : NULL,
4898 num_connectors);
4899
4900 /* Set up the display plane register */
4901 dspcntr = DISPPLANE_GAMMA_ENABLE;
4902
4903 if (!IS_VALLEYVIEW(dev)) {
4904 if (pipe == 0)
4905 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4906 else
4907 dspcntr |= DISPPLANE_SEL_PIPE_B;
4908 }
4909
4910 intel_set_pipe_timings(intel_crtc);
4911
4912 /* pipesrc and dspsize control the size that is scaled from,
4913 * which should always be the user's requested size.
4914 */
4915 I915_WRITE(DSPSIZE(plane),
4916 ((mode->vdisplay - 1) << 16) |
4917 (mode->hdisplay - 1));
4918 I915_WRITE(DSPPOS(plane), 0);
4919
4920 i9xx_set_pipeconf(intel_crtc);
4921
4922 I915_WRITE(DSPCNTR(plane), dspcntr);
4923 POSTING_READ(DSPCNTR(plane));
4924
4925 ret = intel_pipe_set_base(crtc, x, y, fb);
4926
4927 intel_update_watermarks(dev);
4928
4929 return ret;
4930 }
4931
4932 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4933 struct intel_crtc_config *pipe_config)
4934 {
4935 struct drm_device *dev = crtc->base.dev;
4936 struct drm_i915_private *dev_priv = dev->dev_private;
4937 uint32_t tmp;
4938
4939 tmp = I915_READ(PFIT_CONTROL);
4940
4941 if (INTEL_INFO(dev)->gen < 4) {
4942 if (crtc->pipe != PIPE_B)
4943 return;
4944
4945 /* gen2/3 store dither state in pfit control, needs to match */
4946 pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
4947 } else {
4948 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4949 return;
4950 }
4951
4952 if (!(tmp & PFIT_ENABLE))
4953 return;
4954
4955 pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
4956 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4957 if (INTEL_INFO(dev)->gen < 5)
4958 pipe_config->gmch_pfit.lvds_border_bits =
4959 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4960 }
4961
4962 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4963 struct intel_crtc_config *pipe_config)
4964 {
4965 struct drm_device *dev = crtc->base.dev;
4966 struct drm_i915_private *dev_priv = dev->dev_private;
4967 uint32_t tmp;
4968
4969 pipe_config->cpu_transcoder = crtc->pipe;
4970 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4971
4972 tmp = I915_READ(PIPECONF(crtc->pipe));
4973 if (!(tmp & PIPECONF_ENABLE))
4974 return false;
4975
4976 intel_get_pipe_timings(crtc, pipe_config);
4977
4978 i9xx_get_pfit_config(crtc, pipe_config);
4979
4980 if (INTEL_INFO(dev)->gen >= 4) {
4981 tmp = I915_READ(DPLL_MD(crtc->pipe));
4982 pipe_config->pixel_multiplier =
4983 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4984 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4985 pipe_config->dpll_hw_state.dpll_md = tmp;
4986 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4987 tmp = I915_READ(DPLL(crtc->pipe));
4988 pipe_config->pixel_multiplier =
4989 ((tmp & SDVO_MULTIPLIER_MASK)
4990 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
4991 } else {
4992 /* Note that on i915G/GM the pixel multiplier is in the sdvo
4993 * port and will be fixed up in the encoder->get_config
4994 * function. */
4995 pipe_config->pixel_multiplier = 1;
4996 }
4997 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
4998 if (!IS_VALLEYVIEW(dev)) {
4999 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5000 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5001 } else {
5002 /* Mask out read-only status bits. */
5003 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5004 DPLL_PORTC_READY_MASK |
5005 DPLL_PORTB_READY_MASK);
5006 }
5007
5008 return true;
5009 }
5010
5011 static void ironlake_init_pch_refclk(struct drm_device *dev)
5012 {
5013 struct drm_i915_private *dev_priv = dev->dev_private;
5014 struct drm_mode_config *mode_config = &dev->mode_config;
5015 struct intel_encoder *encoder;
5016 u32 val, final;
5017 bool has_lvds = false;
5018 bool has_cpu_edp = false;
5019 bool has_panel = false;
5020 bool has_ck505 = false;
5021 bool can_ssc = false;
5022
5023 /* We need to take the global config into account */
5024 list_for_each_entry(encoder, &mode_config->encoder_list,
5025 base.head) {
5026 switch (encoder->type) {
5027 case INTEL_OUTPUT_LVDS:
5028 has_panel = true;
5029 has_lvds = true;
5030 break;
5031 case INTEL_OUTPUT_EDP:
5032 has_panel = true;
5033 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5034 has_cpu_edp = true;
5035 break;
5036 }
5037 }
5038
5039 if (HAS_PCH_IBX(dev)) {
5040 has_ck505 = dev_priv->vbt.display_clock_mode;
5041 can_ssc = has_ck505;
5042 } else {
5043 has_ck505 = false;
5044 can_ssc = true;
5045 }
5046
5047 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5048 has_panel, has_lvds, has_ck505);
5049
5050 /* Ironlake: try to setup display ref clock before DPLL
5051 * enabling. This is only under driver's control after
5052 * PCH B stepping, previous chipset stepping should be
5053 * ignoring this setting.
5054 */
5055 val = I915_READ(PCH_DREF_CONTROL);
5056
5057 /* As we must carefully and slowly disable/enable each source in turn,
5058 * compute the final state we want first and check if we need to
5059 * make any changes at all.
5060 */
5061 final = val;
5062 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5063 if (has_ck505)
5064 final |= DREF_NONSPREAD_CK505_ENABLE;
5065 else
5066 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5067
5068 final &= ~DREF_SSC_SOURCE_MASK;
5069 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5070 final &= ~DREF_SSC1_ENABLE;
5071
5072 if (has_panel) {
5073 final |= DREF_SSC_SOURCE_ENABLE;
5074
5075 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5076 final |= DREF_SSC1_ENABLE;
5077
5078 if (has_cpu_edp) {
5079 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5080 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5081 else
5082 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5083 } else
5084 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5085 } else {
5086 final |= DREF_SSC_SOURCE_DISABLE;
5087 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5088 }
5089
5090 if (final == val)
5091 return;
5092
5093 /* Always enable nonspread source */
5094 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5095
5096 if (has_ck505)
5097 val |= DREF_NONSPREAD_CK505_ENABLE;
5098 else
5099 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5100
5101 if (has_panel) {
5102 val &= ~DREF_SSC_SOURCE_MASK;
5103 val |= DREF_SSC_SOURCE_ENABLE;
5104
5105 /* SSC must be turned on before enabling the CPU output */
5106 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5107 DRM_DEBUG_KMS("Using SSC on panel\n");
5108 val |= DREF_SSC1_ENABLE;
5109 } else
5110 val &= ~DREF_SSC1_ENABLE;
5111
5112 /* Get SSC going before enabling the outputs */
5113 I915_WRITE(PCH_DREF_CONTROL, val);
5114 POSTING_READ(PCH_DREF_CONTROL);
5115 udelay(200);
5116
5117 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5118
5119 /* Enable CPU source on CPU attached eDP */
5120 if (has_cpu_edp) {
5121 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5122 DRM_DEBUG_KMS("Using SSC on eDP\n");
5123 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5124 }
5125 else
5126 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5127 } else
5128 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5129
5130 I915_WRITE(PCH_DREF_CONTROL, val);
5131 POSTING_READ(PCH_DREF_CONTROL);
5132 udelay(200);
5133 } else {
5134 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5135
5136 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5137
5138 /* Turn off CPU output */
5139 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5140
5141 I915_WRITE(PCH_DREF_CONTROL, val);
5142 POSTING_READ(PCH_DREF_CONTROL);
5143 udelay(200);
5144
5145 /* Turn off the SSC source */
5146 val &= ~DREF_SSC_SOURCE_MASK;
5147 val |= DREF_SSC_SOURCE_DISABLE;
5148
5149 /* Turn off SSC1 */
5150 val &= ~DREF_SSC1_ENABLE;
5151
5152 I915_WRITE(PCH_DREF_CONTROL, val);
5153 POSTING_READ(PCH_DREF_CONTROL);
5154 udelay(200);
5155 }
5156
5157 BUG_ON(val != final);
5158 }
5159
5160 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5161 static void lpt_init_pch_refclk(struct drm_device *dev)
5162 {
5163 struct drm_i915_private *dev_priv = dev->dev_private;
5164 struct drm_mode_config *mode_config = &dev->mode_config;
5165 struct intel_encoder *encoder;
5166 bool has_vga = false;
5167 bool is_sdv = false;
5168 u32 tmp;
5169
5170 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5171 switch (encoder->type) {
5172 case INTEL_OUTPUT_ANALOG:
5173 has_vga = true;
5174 break;
5175 }
5176 }
5177
5178 if (!has_vga)
5179 return;
5180
5181 mutex_lock(&dev_priv->dpio_lock);
5182
5183 /* XXX: Rip out SDV support once Haswell ships for real. */
5184 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5185 is_sdv = true;
5186
5187 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5188 tmp &= ~SBI_SSCCTL_DISABLE;
5189 tmp |= SBI_SSCCTL_PATHALT;
5190 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5191
5192 udelay(24);
5193
5194 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5195 tmp &= ~SBI_SSCCTL_PATHALT;
5196 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5197
5198 if (!is_sdv) {
5199 tmp = I915_READ(SOUTH_CHICKEN2);
5200 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5201 I915_WRITE(SOUTH_CHICKEN2, tmp);
5202
5203 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5204 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5205 DRM_ERROR("FDI mPHY reset assert timeout\n");
5206
5207 tmp = I915_READ(SOUTH_CHICKEN2);
5208 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5209 I915_WRITE(SOUTH_CHICKEN2, tmp);
5210
5211 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5212 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5213 100))
5214 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5215 }
5216
5217 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5218 tmp &= ~(0xFF << 24);
5219 tmp |= (0x12 << 24);
5220 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5221
5222 if (is_sdv) {
5223 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5224 tmp |= 0x7FFF;
5225 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5226 }
5227
5228 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5229 tmp |= (1 << 11);
5230 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5231
5232 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5233 tmp |= (1 << 11);
5234 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5235
5236 if (is_sdv) {
5237 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5238 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5239 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5240
5241 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5242 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5243 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5244
5245 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5246 tmp |= (0x3F << 8);
5247 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5248
5249 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5250 tmp |= (0x3F << 8);
5251 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5252 }
5253
5254 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5255 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5256 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5257
5258 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5259 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5260 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5261
5262 if (!is_sdv) {
5263 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5264 tmp &= ~(7 << 13);
5265 tmp |= (5 << 13);
5266 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5267
5268 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5269 tmp &= ~(7 << 13);
5270 tmp |= (5 << 13);
5271 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5272 }
5273
5274 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5275 tmp &= ~0xFF;
5276 tmp |= 0x1C;
5277 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5278
5279 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5280 tmp &= ~0xFF;
5281 tmp |= 0x1C;
5282 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5283
5284 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5285 tmp &= ~(0xFF << 16);
5286 tmp |= (0x1C << 16);
5287 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5288
5289 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5290 tmp &= ~(0xFF << 16);
5291 tmp |= (0x1C << 16);
5292 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5293
5294 if (!is_sdv) {
5295 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5296 tmp |= (1 << 27);
5297 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5298
5299 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5300 tmp |= (1 << 27);
5301 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5302
5303 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5304 tmp &= ~(0xF << 28);
5305 tmp |= (4 << 28);
5306 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5307
5308 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5309 tmp &= ~(0xF << 28);
5310 tmp |= (4 << 28);
5311 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5312 }
5313
5314 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5315 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5316 tmp |= SBI_DBUFF0_ENABLE;
5317 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5318
5319 mutex_unlock(&dev_priv->dpio_lock);
5320 }
5321
5322 /*
5323 * Initialize reference clocks when the driver loads
5324 */
5325 void intel_init_pch_refclk(struct drm_device *dev)
5326 {
5327 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5328 ironlake_init_pch_refclk(dev);
5329 else if (HAS_PCH_LPT(dev))
5330 lpt_init_pch_refclk(dev);
5331 }
5332
5333 static int ironlake_get_refclk(struct drm_crtc *crtc)
5334 {
5335 struct drm_device *dev = crtc->dev;
5336 struct drm_i915_private *dev_priv = dev->dev_private;
5337 struct intel_encoder *encoder;
5338 int num_connectors = 0;
5339 bool is_lvds = false;
5340
5341 for_each_encoder_on_crtc(dev, crtc, encoder) {
5342 switch (encoder->type) {
5343 case INTEL_OUTPUT_LVDS:
5344 is_lvds = true;
5345 break;
5346 }
5347 num_connectors++;
5348 }
5349
5350 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5351 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5352 dev_priv->vbt.lvds_ssc_freq);
5353 return dev_priv->vbt.lvds_ssc_freq * 1000;
5354 }
5355
5356 return 120000;
5357 }
5358
5359 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5360 {
5361 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5363 int pipe = intel_crtc->pipe;
5364 uint32_t val;
5365
5366 val = 0;
5367
5368 switch (intel_crtc->config.pipe_bpp) {
5369 case 18:
5370 val |= PIPECONF_6BPC;
5371 break;
5372 case 24:
5373 val |= PIPECONF_8BPC;
5374 break;
5375 case 30:
5376 val |= PIPECONF_10BPC;
5377 break;
5378 case 36:
5379 val |= PIPECONF_12BPC;
5380 break;
5381 default:
5382 /* Case prevented by intel_choose_pipe_bpp_dither. */
5383 BUG();
5384 }
5385
5386 if (intel_crtc->config.dither)
5387 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5388
5389 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5390 val |= PIPECONF_INTERLACED_ILK;
5391 else
5392 val |= PIPECONF_PROGRESSIVE;
5393
5394 if (intel_crtc->config.limited_color_range)
5395 val |= PIPECONF_COLOR_RANGE_SELECT;
5396
5397 I915_WRITE(PIPECONF(pipe), val);
5398 POSTING_READ(PIPECONF(pipe));
5399 }
5400
5401 /*
5402 * Set up the pipe CSC unit.
5403 *
5404 * Currently only full range RGB to limited range RGB conversion
5405 * is supported, but eventually this should handle various
5406 * RGB<->YCbCr scenarios as well.
5407 */
5408 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5409 {
5410 struct drm_device *dev = crtc->dev;
5411 struct drm_i915_private *dev_priv = dev->dev_private;
5412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5413 int pipe = intel_crtc->pipe;
5414 uint16_t coeff = 0x7800; /* 1.0 */
5415
5416 /*
5417 * TODO: Check what kind of values actually come out of the pipe
5418 * with these coeff/postoff values and adjust to get the best
5419 * accuracy. Perhaps we even need to take the bpc value into
5420 * consideration.
5421 */
5422
5423 if (intel_crtc->config.limited_color_range)
5424 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5425
5426 /*
5427 * GY/GU and RY/RU should be the other way around according
5428 * to BSpec, but reality doesn't agree. Just set them up in
5429 * a way that results in the correct picture.
5430 */
5431 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5432 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5433
5434 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5435 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5436
5437 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5438 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5439
5440 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5441 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5442 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5443
5444 if (INTEL_INFO(dev)->gen > 6) {
5445 uint16_t postoff = 0;
5446
5447 if (intel_crtc->config.limited_color_range)
5448 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5449
5450 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5451 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5452 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5453
5454 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5455 } else {
5456 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5457
5458 if (intel_crtc->config.limited_color_range)
5459 mode |= CSC_BLACK_SCREEN_OFFSET;
5460
5461 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5462 }
5463 }
5464
5465 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5466 {
5467 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5469 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5470 uint32_t val;
5471
5472 val = 0;
5473
5474 if (intel_crtc->config.dither)
5475 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5476
5477 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5478 val |= PIPECONF_INTERLACED_ILK;
5479 else
5480 val |= PIPECONF_PROGRESSIVE;
5481
5482 I915_WRITE(PIPECONF(cpu_transcoder), val);
5483 POSTING_READ(PIPECONF(cpu_transcoder));
5484
5485 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5486 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5487 }
5488
5489 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5490 intel_clock_t *clock,
5491 bool *has_reduced_clock,
5492 intel_clock_t *reduced_clock)
5493 {
5494 struct drm_device *dev = crtc->dev;
5495 struct drm_i915_private *dev_priv = dev->dev_private;
5496 struct intel_encoder *intel_encoder;
5497 int refclk;
5498 const intel_limit_t *limit;
5499 bool ret, is_lvds = false;
5500
5501 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5502 switch (intel_encoder->type) {
5503 case INTEL_OUTPUT_LVDS:
5504 is_lvds = true;
5505 break;
5506 }
5507 }
5508
5509 refclk = ironlake_get_refclk(crtc);
5510
5511 /*
5512 * Returns a set of divisors for the desired target clock with the given
5513 * refclk, or FALSE. The returned values represent the clock equation:
5514 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5515 */
5516 limit = intel_limit(crtc, refclk);
5517 ret = dev_priv->display.find_dpll(limit, crtc,
5518 to_intel_crtc(crtc)->config.port_clock,
5519 refclk, NULL, clock);
5520 if (!ret)
5521 return false;
5522
5523 if (is_lvds && dev_priv->lvds_downclock_avail) {
5524 /*
5525 * Ensure we match the reduced clock's P to the target clock.
5526 * If the clocks don't match, we can't switch the display clock
5527 * by using the FP0/FP1. In such case we will disable the LVDS
5528 * downclock feature.
5529 */
5530 *has_reduced_clock =
5531 dev_priv->display.find_dpll(limit, crtc,
5532 dev_priv->lvds_downclock,
5533 refclk, clock,
5534 reduced_clock);
5535 }
5536
5537 return true;
5538 }
5539
5540 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5541 {
5542 struct drm_i915_private *dev_priv = dev->dev_private;
5543 uint32_t temp;
5544
5545 temp = I915_READ(SOUTH_CHICKEN1);
5546 if (temp & FDI_BC_BIFURCATION_SELECT)
5547 return;
5548
5549 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5550 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5551
5552 temp |= FDI_BC_BIFURCATION_SELECT;
5553 DRM_DEBUG_KMS("enabling fdi C rx\n");
5554 I915_WRITE(SOUTH_CHICKEN1, temp);
5555 POSTING_READ(SOUTH_CHICKEN1);
5556 }
5557
5558 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5559 {
5560 struct drm_device *dev = intel_crtc->base.dev;
5561 struct drm_i915_private *dev_priv = dev->dev_private;
5562
5563 switch (intel_crtc->pipe) {
5564 case PIPE_A:
5565 break;
5566 case PIPE_B:
5567 if (intel_crtc->config.fdi_lanes > 2)
5568 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5569 else
5570 cpt_enable_fdi_bc_bifurcation(dev);
5571
5572 break;
5573 case PIPE_C:
5574 cpt_enable_fdi_bc_bifurcation(dev);
5575
5576 break;
5577 default:
5578 BUG();
5579 }
5580 }
5581
5582 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5583 {
5584 /*
5585 * Account for spread spectrum to avoid
5586 * oversubscribing the link. Max center spread
5587 * is 2.5%; use 5% for safety's sake.
5588 */
5589 u32 bps = target_clock * bpp * 21 / 20;
5590 return bps / (link_bw * 8) + 1;
5591 }
5592
5593 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5594 {
5595 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5596 }
5597
5598 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5599 u32 *fp,
5600 intel_clock_t *reduced_clock, u32 *fp2)
5601 {
5602 struct drm_crtc *crtc = &intel_crtc->base;
5603 struct drm_device *dev = crtc->dev;
5604 struct drm_i915_private *dev_priv = dev->dev_private;
5605 struct intel_encoder *intel_encoder;
5606 uint32_t dpll;
5607 int factor, num_connectors = 0;
5608 bool is_lvds = false, is_sdvo = false;
5609
5610 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5611 switch (intel_encoder->type) {
5612 case INTEL_OUTPUT_LVDS:
5613 is_lvds = true;
5614 break;
5615 case INTEL_OUTPUT_SDVO:
5616 case INTEL_OUTPUT_HDMI:
5617 is_sdvo = true;
5618 break;
5619 }
5620
5621 num_connectors++;
5622 }
5623
5624 /* Enable autotuning of the PLL clock (if permissible) */
5625 factor = 21;
5626 if (is_lvds) {
5627 if ((intel_panel_use_ssc(dev_priv) &&
5628 dev_priv->vbt.lvds_ssc_freq == 100) ||
5629 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5630 factor = 25;
5631 } else if (intel_crtc->config.sdvo_tv_clock)
5632 factor = 20;
5633
5634 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5635 *fp |= FP_CB_TUNE;
5636
5637 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5638 *fp2 |= FP_CB_TUNE;
5639
5640 dpll = 0;
5641
5642 if (is_lvds)
5643 dpll |= DPLLB_MODE_LVDS;
5644 else
5645 dpll |= DPLLB_MODE_DAC_SERIAL;
5646
5647 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5648 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5649
5650 if (is_sdvo)
5651 dpll |= DPLL_DVO_HIGH_SPEED;
5652 if (intel_crtc->config.has_dp_encoder)
5653 dpll |= DPLL_DVO_HIGH_SPEED;
5654
5655 /* compute bitmask from p1 value */
5656 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5657 /* also FPA1 */
5658 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5659
5660 switch (intel_crtc->config.dpll.p2) {
5661 case 5:
5662 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5663 break;
5664 case 7:
5665 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5666 break;
5667 case 10:
5668 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5669 break;
5670 case 14:
5671 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5672 break;
5673 }
5674
5675 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5676 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5677 else
5678 dpll |= PLL_REF_INPUT_DREFCLK;
5679
5680 return dpll | DPLL_VCO_ENABLE;
5681 }
5682
5683 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5684 int x, int y,
5685 struct drm_framebuffer *fb)
5686 {
5687 struct drm_device *dev = crtc->dev;
5688 struct drm_i915_private *dev_priv = dev->dev_private;
5689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5690 int pipe = intel_crtc->pipe;
5691 int plane = intel_crtc->plane;
5692 int num_connectors = 0;
5693 intel_clock_t clock, reduced_clock;
5694 u32 dpll = 0, fp = 0, fp2 = 0;
5695 bool ok, has_reduced_clock = false;
5696 bool is_lvds = false;
5697 struct intel_encoder *encoder;
5698 struct intel_shared_dpll *pll;
5699 int ret;
5700
5701 for_each_encoder_on_crtc(dev, crtc, encoder) {
5702 switch (encoder->type) {
5703 case INTEL_OUTPUT_LVDS:
5704 is_lvds = true;
5705 break;
5706 }
5707
5708 num_connectors++;
5709 }
5710
5711 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5712 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5713
5714 ok = ironlake_compute_clocks(crtc, &clock,
5715 &has_reduced_clock, &reduced_clock);
5716 if (!ok && !intel_crtc->config.clock_set) {
5717 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5718 return -EINVAL;
5719 }
5720 /* Compat-code for transition, will disappear. */
5721 if (!intel_crtc->config.clock_set) {
5722 intel_crtc->config.dpll.n = clock.n;
5723 intel_crtc->config.dpll.m1 = clock.m1;
5724 intel_crtc->config.dpll.m2 = clock.m2;
5725 intel_crtc->config.dpll.p1 = clock.p1;
5726 intel_crtc->config.dpll.p2 = clock.p2;
5727 }
5728
5729 /* Ensure that the cursor is valid for the new mode before changing... */
5730 intel_crtc_update_cursor(crtc, true);
5731
5732 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5733 if (intel_crtc->config.has_pch_encoder) {
5734 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5735 if (has_reduced_clock)
5736 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5737
5738 dpll = ironlake_compute_dpll(intel_crtc,
5739 &fp, &reduced_clock,
5740 has_reduced_clock ? &fp2 : NULL);
5741
5742 intel_crtc->config.dpll_hw_state.dpll = dpll;
5743 intel_crtc->config.dpll_hw_state.fp0 = fp;
5744 if (has_reduced_clock)
5745 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5746 else
5747 intel_crtc->config.dpll_hw_state.fp1 = fp;
5748
5749 pll = intel_get_shared_dpll(intel_crtc);
5750 if (pll == NULL) {
5751 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5752 pipe_name(pipe));
5753 return -EINVAL;
5754 }
5755 } else
5756 intel_put_shared_dpll(intel_crtc);
5757
5758 if (intel_crtc->config.has_dp_encoder)
5759 intel_dp_set_m_n(intel_crtc);
5760
5761 if (is_lvds && has_reduced_clock && i915_powersave)
5762 intel_crtc->lowfreq_avail = true;
5763 else
5764 intel_crtc->lowfreq_avail = false;
5765
5766 if (intel_crtc->config.has_pch_encoder) {
5767 pll = intel_crtc_to_shared_dpll(intel_crtc);
5768
5769 }
5770
5771 intel_set_pipe_timings(intel_crtc);
5772
5773 if (intel_crtc->config.has_pch_encoder) {
5774 intel_cpu_transcoder_set_m_n(intel_crtc,
5775 &intel_crtc->config.fdi_m_n);
5776 }
5777
5778 if (IS_IVYBRIDGE(dev))
5779 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5780
5781 ironlake_set_pipeconf(crtc);
5782
5783 /* Set up the display plane register */
5784 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5785 POSTING_READ(DSPCNTR(plane));
5786
5787 ret = intel_pipe_set_base(crtc, x, y, fb);
5788
5789 intel_update_watermarks(dev);
5790
5791 return ret;
5792 }
5793
5794 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5795 struct intel_crtc_config *pipe_config)
5796 {
5797 struct drm_device *dev = crtc->base.dev;
5798 struct drm_i915_private *dev_priv = dev->dev_private;
5799 enum transcoder transcoder = pipe_config->cpu_transcoder;
5800
5801 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5802 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5803 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5804 & ~TU_SIZE_MASK;
5805 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5806 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5807 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5808 }
5809
5810 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5811 struct intel_crtc_config *pipe_config)
5812 {
5813 struct drm_device *dev = crtc->base.dev;
5814 struct drm_i915_private *dev_priv = dev->dev_private;
5815 uint32_t tmp;
5816
5817 tmp = I915_READ(PF_CTL(crtc->pipe));
5818
5819 if (tmp & PF_ENABLE) {
5820 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5821 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5822
5823 /* We currently do not free assignements of panel fitters on
5824 * ivb/hsw (since we don't use the higher upscaling modes which
5825 * differentiates them) so just WARN about this case for now. */
5826 if (IS_GEN7(dev)) {
5827 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5828 PF_PIPE_SEL_IVB(crtc->pipe));
5829 }
5830 }
5831 }
5832
5833 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5834 struct intel_crtc_config *pipe_config)
5835 {
5836 struct drm_device *dev = crtc->base.dev;
5837 struct drm_i915_private *dev_priv = dev->dev_private;
5838 uint32_t tmp;
5839
5840 pipe_config->cpu_transcoder = crtc->pipe;
5841 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5842
5843 tmp = I915_READ(PIPECONF(crtc->pipe));
5844 if (!(tmp & PIPECONF_ENABLE))
5845 return false;
5846
5847 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5848 struct intel_shared_dpll *pll;
5849
5850 pipe_config->has_pch_encoder = true;
5851
5852 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5853 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5854 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5855
5856 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5857
5858 if (HAS_PCH_IBX(dev_priv->dev)) {
5859 pipe_config->shared_dpll = crtc->pipe;
5860 } else {
5861 tmp = I915_READ(PCH_DPLL_SEL);
5862 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5863 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5864 else
5865 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5866 }
5867
5868 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5869
5870 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5871 &pipe_config->dpll_hw_state));
5872
5873 tmp = pipe_config->dpll_hw_state.dpll;
5874 pipe_config->pixel_multiplier =
5875 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5876 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5877 } else {
5878 pipe_config->pixel_multiplier = 1;
5879 }
5880
5881 intel_get_pipe_timings(crtc, pipe_config);
5882
5883 ironlake_get_pfit_config(crtc, pipe_config);
5884
5885 return true;
5886 }
5887
5888 static void haswell_modeset_global_resources(struct drm_device *dev)
5889 {
5890 bool enable = false;
5891 struct intel_crtc *crtc;
5892
5893 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5894 if (!crtc->base.enabled)
5895 continue;
5896
5897 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
5898 crtc->config.cpu_transcoder != TRANSCODER_EDP)
5899 enable = true;
5900 }
5901
5902 intel_set_power_well(dev, enable);
5903 }
5904
5905 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5906 int x, int y,
5907 struct drm_framebuffer *fb)
5908 {
5909 struct drm_device *dev = crtc->dev;
5910 struct drm_i915_private *dev_priv = dev->dev_private;
5911 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5912 int plane = intel_crtc->plane;
5913 int ret;
5914
5915 if (!intel_ddi_pll_mode_set(crtc))
5916 return -EINVAL;
5917
5918 /* Ensure that the cursor is valid for the new mode before changing... */
5919 intel_crtc_update_cursor(crtc, true);
5920
5921 if (intel_crtc->config.has_dp_encoder)
5922 intel_dp_set_m_n(intel_crtc);
5923
5924 intel_crtc->lowfreq_avail = false;
5925
5926 intel_set_pipe_timings(intel_crtc);
5927
5928 if (intel_crtc->config.has_pch_encoder) {
5929 intel_cpu_transcoder_set_m_n(intel_crtc,
5930 &intel_crtc->config.fdi_m_n);
5931 }
5932
5933 haswell_set_pipeconf(crtc);
5934
5935 intel_set_pipe_csc(crtc);
5936
5937 /* Set up the display plane register */
5938 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5939 POSTING_READ(DSPCNTR(plane));
5940
5941 ret = intel_pipe_set_base(crtc, x, y, fb);
5942
5943 intel_update_watermarks(dev);
5944
5945 return ret;
5946 }
5947
5948 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5949 struct intel_crtc_config *pipe_config)
5950 {
5951 struct drm_device *dev = crtc->base.dev;
5952 struct drm_i915_private *dev_priv = dev->dev_private;
5953 enum intel_display_power_domain pfit_domain;
5954 uint32_t tmp;
5955
5956 pipe_config->cpu_transcoder = crtc->pipe;
5957 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5958
5959 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
5960 if (tmp & TRANS_DDI_FUNC_ENABLE) {
5961 enum pipe trans_edp_pipe;
5962 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
5963 default:
5964 WARN(1, "unknown pipe linked to edp transcoder\n");
5965 case TRANS_DDI_EDP_INPUT_A_ONOFF:
5966 case TRANS_DDI_EDP_INPUT_A_ON:
5967 trans_edp_pipe = PIPE_A;
5968 break;
5969 case TRANS_DDI_EDP_INPUT_B_ONOFF:
5970 trans_edp_pipe = PIPE_B;
5971 break;
5972 case TRANS_DDI_EDP_INPUT_C_ONOFF:
5973 trans_edp_pipe = PIPE_C;
5974 break;
5975 }
5976
5977 if (trans_edp_pipe == crtc->pipe)
5978 pipe_config->cpu_transcoder = TRANSCODER_EDP;
5979 }
5980
5981 if (!intel_display_power_enabled(dev,
5982 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
5983 return false;
5984
5985 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
5986 if (!(tmp & PIPECONF_ENABLE))
5987 return false;
5988
5989 /*
5990 * Haswell has only FDI/PCH transcoder A. It is which is connected to
5991 * DDI E. So just check whether this pipe is wired to DDI E and whether
5992 * the PCH transcoder is on.
5993 */
5994 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
5995 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5996 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5997 pipe_config->has_pch_encoder = true;
5998
5999 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6000 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6001 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6002
6003 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6004 }
6005
6006 intel_get_pipe_timings(crtc, pipe_config);
6007
6008 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6009 if (intel_display_power_enabled(dev, pfit_domain))
6010 ironlake_get_pfit_config(crtc, pipe_config);
6011
6012 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6013 (I915_READ(IPS_CTL) & IPS_ENABLE);
6014
6015 pipe_config->pixel_multiplier = 1;
6016
6017 return true;
6018 }
6019
6020 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6021 int x, int y,
6022 struct drm_framebuffer *fb)
6023 {
6024 struct drm_device *dev = crtc->dev;
6025 struct drm_i915_private *dev_priv = dev->dev_private;
6026 struct drm_encoder_helper_funcs *encoder_funcs;
6027 struct intel_encoder *encoder;
6028 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6029 struct drm_display_mode *adjusted_mode =
6030 &intel_crtc->config.adjusted_mode;
6031 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6032 int pipe = intel_crtc->pipe;
6033 int ret;
6034
6035 drm_vblank_pre_modeset(dev, pipe);
6036
6037 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6038
6039 drm_vblank_post_modeset(dev, pipe);
6040
6041 if (ret != 0)
6042 return ret;
6043
6044 for_each_encoder_on_crtc(dev, crtc, encoder) {
6045 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6046 encoder->base.base.id,
6047 drm_get_encoder_name(&encoder->base),
6048 mode->base.id, mode->name);
6049 if (encoder->mode_set) {
6050 encoder->mode_set(encoder);
6051 } else {
6052 encoder_funcs = encoder->base.helper_private;
6053 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6054 }
6055 }
6056
6057 return 0;
6058 }
6059
6060 static bool intel_eld_uptodate(struct drm_connector *connector,
6061 int reg_eldv, uint32_t bits_eldv,
6062 int reg_elda, uint32_t bits_elda,
6063 int reg_edid)
6064 {
6065 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6066 uint8_t *eld = connector->eld;
6067 uint32_t i;
6068
6069 i = I915_READ(reg_eldv);
6070 i &= bits_eldv;
6071
6072 if (!eld[0])
6073 return !i;
6074
6075 if (!i)
6076 return false;
6077
6078 i = I915_READ(reg_elda);
6079 i &= ~bits_elda;
6080 I915_WRITE(reg_elda, i);
6081
6082 for (i = 0; i < eld[2]; i++)
6083 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6084 return false;
6085
6086 return true;
6087 }
6088
6089 static void g4x_write_eld(struct drm_connector *connector,
6090 struct drm_crtc *crtc)
6091 {
6092 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6093 uint8_t *eld = connector->eld;
6094 uint32_t eldv;
6095 uint32_t len;
6096 uint32_t i;
6097
6098 i = I915_READ(G4X_AUD_VID_DID);
6099
6100 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6101 eldv = G4X_ELDV_DEVCL_DEVBLC;
6102 else
6103 eldv = G4X_ELDV_DEVCTG;
6104
6105 if (intel_eld_uptodate(connector,
6106 G4X_AUD_CNTL_ST, eldv,
6107 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6108 G4X_HDMIW_HDMIEDID))
6109 return;
6110
6111 i = I915_READ(G4X_AUD_CNTL_ST);
6112 i &= ~(eldv | G4X_ELD_ADDR);
6113 len = (i >> 9) & 0x1f; /* ELD buffer size */
6114 I915_WRITE(G4X_AUD_CNTL_ST, i);
6115
6116 if (!eld[0])
6117 return;
6118
6119 len = min_t(uint8_t, eld[2], len);
6120 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6121 for (i = 0; i < len; i++)
6122 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6123
6124 i = I915_READ(G4X_AUD_CNTL_ST);
6125 i |= eldv;
6126 I915_WRITE(G4X_AUD_CNTL_ST, i);
6127 }
6128
6129 static void haswell_write_eld(struct drm_connector *connector,
6130 struct drm_crtc *crtc)
6131 {
6132 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6133 uint8_t *eld = connector->eld;
6134 struct drm_device *dev = crtc->dev;
6135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6136 uint32_t eldv;
6137 uint32_t i;
6138 int len;
6139 int pipe = to_intel_crtc(crtc)->pipe;
6140 int tmp;
6141
6142 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6143 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6144 int aud_config = HSW_AUD_CFG(pipe);
6145 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6146
6147
6148 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6149
6150 /* Audio output enable */
6151 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6152 tmp = I915_READ(aud_cntrl_st2);
6153 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6154 I915_WRITE(aud_cntrl_st2, tmp);
6155
6156 /* Wait for 1 vertical blank */
6157 intel_wait_for_vblank(dev, pipe);
6158
6159 /* Set ELD valid state */
6160 tmp = I915_READ(aud_cntrl_st2);
6161 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6162 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6163 I915_WRITE(aud_cntrl_st2, tmp);
6164 tmp = I915_READ(aud_cntrl_st2);
6165 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6166
6167 /* Enable HDMI mode */
6168 tmp = I915_READ(aud_config);
6169 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6170 /* clear N_programing_enable and N_value_index */
6171 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6172 I915_WRITE(aud_config, tmp);
6173
6174 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6175
6176 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6177 intel_crtc->eld_vld = true;
6178
6179 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6180 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6181 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6182 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6183 } else
6184 I915_WRITE(aud_config, 0);
6185
6186 if (intel_eld_uptodate(connector,
6187 aud_cntrl_st2, eldv,
6188 aud_cntl_st, IBX_ELD_ADDRESS,
6189 hdmiw_hdmiedid))
6190 return;
6191
6192 i = I915_READ(aud_cntrl_st2);
6193 i &= ~eldv;
6194 I915_WRITE(aud_cntrl_st2, i);
6195
6196 if (!eld[0])
6197 return;
6198
6199 i = I915_READ(aud_cntl_st);
6200 i &= ~IBX_ELD_ADDRESS;
6201 I915_WRITE(aud_cntl_st, i);
6202 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6203 DRM_DEBUG_DRIVER("port num:%d\n", i);
6204
6205 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6206 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6207 for (i = 0; i < len; i++)
6208 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6209
6210 i = I915_READ(aud_cntrl_st2);
6211 i |= eldv;
6212 I915_WRITE(aud_cntrl_st2, i);
6213
6214 }
6215
6216 static void ironlake_write_eld(struct drm_connector *connector,
6217 struct drm_crtc *crtc)
6218 {
6219 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6220 uint8_t *eld = connector->eld;
6221 uint32_t eldv;
6222 uint32_t i;
6223 int len;
6224 int hdmiw_hdmiedid;
6225 int aud_config;
6226 int aud_cntl_st;
6227 int aud_cntrl_st2;
6228 int pipe = to_intel_crtc(crtc)->pipe;
6229
6230 if (HAS_PCH_IBX(connector->dev)) {
6231 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6232 aud_config = IBX_AUD_CFG(pipe);
6233 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6234 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6235 } else {
6236 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6237 aud_config = CPT_AUD_CFG(pipe);
6238 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6239 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6240 }
6241
6242 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6243
6244 i = I915_READ(aud_cntl_st);
6245 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6246 if (!i) {
6247 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6248 /* operate blindly on all ports */
6249 eldv = IBX_ELD_VALIDB;
6250 eldv |= IBX_ELD_VALIDB << 4;
6251 eldv |= IBX_ELD_VALIDB << 8;
6252 } else {
6253 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6254 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6255 }
6256
6257 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6258 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6259 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6260 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6261 } else
6262 I915_WRITE(aud_config, 0);
6263
6264 if (intel_eld_uptodate(connector,
6265 aud_cntrl_st2, eldv,
6266 aud_cntl_st, IBX_ELD_ADDRESS,
6267 hdmiw_hdmiedid))
6268 return;
6269
6270 i = I915_READ(aud_cntrl_st2);
6271 i &= ~eldv;
6272 I915_WRITE(aud_cntrl_st2, i);
6273
6274 if (!eld[0])
6275 return;
6276
6277 i = I915_READ(aud_cntl_st);
6278 i &= ~IBX_ELD_ADDRESS;
6279 I915_WRITE(aud_cntl_st, i);
6280
6281 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6282 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6283 for (i = 0; i < len; i++)
6284 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6285
6286 i = I915_READ(aud_cntrl_st2);
6287 i |= eldv;
6288 I915_WRITE(aud_cntrl_st2, i);
6289 }
6290
6291 void intel_write_eld(struct drm_encoder *encoder,
6292 struct drm_display_mode *mode)
6293 {
6294 struct drm_crtc *crtc = encoder->crtc;
6295 struct drm_connector *connector;
6296 struct drm_device *dev = encoder->dev;
6297 struct drm_i915_private *dev_priv = dev->dev_private;
6298
6299 connector = drm_select_eld(encoder, mode);
6300 if (!connector)
6301 return;
6302
6303 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6304 connector->base.id,
6305 drm_get_connector_name(connector),
6306 connector->encoder->base.id,
6307 drm_get_encoder_name(connector->encoder));
6308
6309 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6310
6311 if (dev_priv->display.write_eld)
6312 dev_priv->display.write_eld(connector, crtc);
6313 }
6314
6315 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6316 void intel_crtc_load_lut(struct drm_crtc *crtc)
6317 {
6318 struct drm_device *dev = crtc->dev;
6319 struct drm_i915_private *dev_priv = dev->dev_private;
6320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6321 enum pipe pipe = intel_crtc->pipe;
6322 int palreg = PALETTE(pipe);
6323 int i;
6324 bool reenable_ips = false;
6325
6326 /* The clocks have to be on to load the palette. */
6327 if (!crtc->enabled || !intel_crtc->active)
6328 return;
6329
6330 if (!HAS_PCH_SPLIT(dev_priv->dev))
6331 assert_pll_enabled(dev_priv, pipe);
6332
6333 /* use legacy palette for Ironlake */
6334 if (HAS_PCH_SPLIT(dev))
6335 palreg = LGC_PALETTE(pipe);
6336
6337 /* Workaround : Do not read or write the pipe palette/gamma data while
6338 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6339 */
6340 if (intel_crtc->config.ips_enabled &&
6341 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6342 GAMMA_MODE_MODE_SPLIT)) {
6343 hsw_disable_ips(intel_crtc);
6344 reenable_ips = true;
6345 }
6346
6347 for (i = 0; i < 256; i++) {
6348 I915_WRITE(palreg + 4 * i,
6349 (intel_crtc->lut_r[i] << 16) |
6350 (intel_crtc->lut_g[i] << 8) |
6351 intel_crtc->lut_b[i]);
6352 }
6353
6354 if (reenable_ips)
6355 hsw_enable_ips(intel_crtc);
6356 }
6357
6358 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6359 {
6360 struct drm_device *dev = crtc->dev;
6361 struct drm_i915_private *dev_priv = dev->dev_private;
6362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6363 bool visible = base != 0;
6364 u32 cntl;
6365
6366 if (intel_crtc->cursor_visible == visible)
6367 return;
6368
6369 cntl = I915_READ(_CURACNTR);
6370 if (visible) {
6371 /* On these chipsets we can only modify the base whilst
6372 * the cursor is disabled.
6373 */
6374 I915_WRITE(_CURABASE, base);
6375
6376 cntl &= ~(CURSOR_FORMAT_MASK);
6377 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6378 cntl |= CURSOR_ENABLE |
6379 CURSOR_GAMMA_ENABLE |
6380 CURSOR_FORMAT_ARGB;
6381 } else
6382 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6383 I915_WRITE(_CURACNTR, cntl);
6384
6385 intel_crtc->cursor_visible = visible;
6386 }
6387
6388 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6389 {
6390 struct drm_device *dev = crtc->dev;
6391 struct drm_i915_private *dev_priv = dev->dev_private;
6392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6393 int pipe = intel_crtc->pipe;
6394 bool visible = base != 0;
6395
6396 if (intel_crtc->cursor_visible != visible) {
6397 uint32_t cntl = I915_READ(CURCNTR(pipe));
6398 if (base) {
6399 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6400 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6401 cntl |= pipe << 28; /* Connect to correct pipe */
6402 } else {
6403 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6404 cntl |= CURSOR_MODE_DISABLE;
6405 }
6406 I915_WRITE(CURCNTR(pipe), cntl);
6407
6408 intel_crtc->cursor_visible = visible;
6409 }
6410 /* and commit changes on next vblank */
6411 I915_WRITE(CURBASE(pipe), base);
6412 }
6413
6414 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6415 {
6416 struct drm_device *dev = crtc->dev;
6417 struct drm_i915_private *dev_priv = dev->dev_private;
6418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6419 int pipe = intel_crtc->pipe;
6420 bool visible = base != 0;
6421
6422 if (intel_crtc->cursor_visible != visible) {
6423 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6424 if (base) {
6425 cntl &= ~CURSOR_MODE;
6426 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6427 } else {
6428 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6429 cntl |= CURSOR_MODE_DISABLE;
6430 }
6431 if (IS_HASWELL(dev))
6432 cntl |= CURSOR_PIPE_CSC_ENABLE;
6433 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6434
6435 intel_crtc->cursor_visible = visible;
6436 }
6437 /* and commit changes on next vblank */
6438 I915_WRITE(CURBASE_IVB(pipe), base);
6439 }
6440
6441 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6442 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6443 bool on)
6444 {
6445 struct drm_device *dev = crtc->dev;
6446 struct drm_i915_private *dev_priv = dev->dev_private;
6447 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6448 int pipe = intel_crtc->pipe;
6449 int x = intel_crtc->cursor_x;
6450 int y = intel_crtc->cursor_y;
6451 u32 base, pos;
6452 bool visible;
6453
6454 pos = 0;
6455
6456 if (on && crtc->enabled && crtc->fb) {
6457 base = intel_crtc->cursor_addr;
6458 if (x > (int) crtc->fb->width)
6459 base = 0;
6460
6461 if (y > (int) crtc->fb->height)
6462 base = 0;
6463 } else
6464 base = 0;
6465
6466 if (x < 0) {
6467 if (x + intel_crtc->cursor_width < 0)
6468 base = 0;
6469
6470 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6471 x = -x;
6472 }
6473 pos |= x << CURSOR_X_SHIFT;
6474
6475 if (y < 0) {
6476 if (y + intel_crtc->cursor_height < 0)
6477 base = 0;
6478
6479 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6480 y = -y;
6481 }
6482 pos |= y << CURSOR_Y_SHIFT;
6483
6484 visible = base != 0;
6485 if (!visible && !intel_crtc->cursor_visible)
6486 return;
6487
6488 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6489 I915_WRITE(CURPOS_IVB(pipe), pos);
6490 ivb_update_cursor(crtc, base);
6491 } else {
6492 I915_WRITE(CURPOS(pipe), pos);
6493 if (IS_845G(dev) || IS_I865G(dev))
6494 i845_update_cursor(crtc, base);
6495 else
6496 i9xx_update_cursor(crtc, base);
6497 }
6498 }
6499
6500 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6501 struct drm_file *file,
6502 uint32_t handle,
6503 uint32_t width, uint32_t height)
6504 {
6505 struct drm_device *dev = crtc->dev;
6506 struct drm_i915_private *dev_priv = dev->dev_private;
6507 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6508 struct drm_i915_gem_object *obj;
6509 uint32_t addr;
6510 int ret;
6511
6512 /* if we want to turn off the cursor ignore width and height */
6513 if (!handle) {
6514 DRM_DEBUG_KMS("cursor off\n");
6515 addr = 0;
6516 obj = NULL;
6517 mutex_lock(&dev->struct_mutex);
6518 goto finish;
6519 }
6520
6521 /* Currently we only support 64x64 cursors */
6522 if (width != 64 || height != 64) {
6523 DRM_ERROR("we currently only support 64x64 cursors\n");
6524 return -EINVAL;
6525 }
6526
6527 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6528 if (&obj->base == NULL)
6529 return -ENOENT;
6530
6531 if (obj->base.size < width * height * 4) {
6532 DRM_ERROR("buffer is to small\n");
6533 ret = -ENOMEM;
6534 goto fail;
6535 }
6536
6537 /* we only need to pin inside GTT if cursor is non-phy */
6538 mutex_lock(&dev->struct_mutex);
6539 if (!dev_priv->info->cursor_needs_physical) {
6540 unsigned alignment;
6541
6542 if (obj->tiling_mode) {
6543 DRM_ERROR("cursor cannot be tiled\n");
6544 ret = -EINVAL;
6545 goto fail_locked;
6546 }
6547
6548 /* Note that the w/a also requires 2 PTE of padding following
6549 * the bo. We currently fill all unused PTE with the shadow
6550 * page and so we should always have valid PTE following the
6551 * cursor preventing the VT-d warning.
6552 */
6553 alignment = 0;
6554 if (need_vtd_wa(dev))
6555 alignment = 64*1024;
6556
6557 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6558 if (ret) {
6559 DRM_ERROR("failed to move cursor bo into the GTT\n");
6560 goto fail_locked;
6561 }
6562
6563 ret = i915_gem_object_put_fence(obj);
6564 if (ret) {
6565 DRM_ERROR("failed to release fence for cursor");
6566 goto fail_unpin;
6567 }
6568
6569 addr = obj->gtt_offset;
6570 } else {
6571 int align = IS_I830(dev) ? 16 * 1024 : 256;
6572 ret = i915_gem_attach_phys_object(dev, obj,
6573 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6574 align);
6575 if (ret) {
6576 DRM_ERROR("failed to attach phys object\n");
6577 goto fail_locked;
6578 }
6579 addr = obj->phys_obj->handle->busaddr;
6580 }
6581
6582 if (IS_GEN2(dev))
6583 I915_WRITE(CURSIZE, (height << 12) | width);
6584
6585 finish:
6586 if (intel_crtc->cursor_bo) {
6587 if (dev_priv->info->cursor_needs_physical) {
6588 if (intel_crtc->cursor_bo != obj)
6589 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6590 } else
6591 i915_gem_object_unpin(intel_crtc->cursor_bo);
6592 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6593 }
6594
6595 mutex_unlock(&dev->struct_mutex);
6596
6597 intel_crtc->cursor_addr = addr;
6598 intel_crtc->cursor_bo = obj;
6599 intel_crtc->cursor_width = width;
6600 intel_crtc->cursor_height = height;
6601
6602 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6603
6604 return 0;
6605 fail_unpin:
6606 i915_gem_object_unpin(obj);
6607 fail_locked:
6608 mutex_unlock(&dev->struct_mutex);
6609 fail:
6610 drm_gem_object_unreference_unlocked(&obj->base);
6611 return ret;
6612 }
6613
6614 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6615 {
6616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6617
6618 intel_crtc->cursor_x = x;
6619 intel_crtc->cursor_y = y;
6620
6621 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6622
6623 return 0;
6624 }
6625
6626 /** Sets the color ramps on behalf of RandR */
6627 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6628 u16 blue, int regno)
6629 {
6630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6631
6632 intel_crtc->lut_r[regno] = red >> 8;
6633 intel_crtc->lut_g[regno] = green >> 8;
6634 intel_crtc->lut_b[regno] = blue >> 8;
6635 }
6636
6637 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6638 u16 *blue, int regno)
6639 {
6640 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6641
6642 *red = intel_crtc->lut_r[regno] << 8;
6643 *green = intel_crtc->lut_g[regno] << 8;
6644 *blue = intel_crtc->lut_b[regno] << 8;
6645 }
6646
6647 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6648 u16 *blue, uint32_t start, uint32_t size)
6649 {
6650 int end = (start + size > 256) ? 256 : start + size, i;
6651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6652
6653 for (i = start; i < end; i++) {
6654 intel_crtc->lut_r[i] = red[i] >> 8;
6655 intel_crtc->lut_g[i] = green[i] >> 8;
6656 intel_crtc->lut_b[i] = blue[i] >> 8;
6657 }
6658
6659 intel_crtc_load_lut(crtc);
6660 }
6661
6662 /* VESA 640x480x72Hz mode to set on the pipe */
6663 static struct drm_display_mode load_detect_mode = {
6664 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6665 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6666 };
6667
6668 static struct drm_framebuffer *
6669 intel_framebuffer_create(struct drm_device *dev,
6670 struct drm_mode_fb_cmd2 *mode_cmd,
6671 struct drm_i915_gem_object *obj)
6672 {
6673 struct intel_framebuffer *intel_fb;
6674 int ret;
6675
6676 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6677 if (!intel_fb) {
6678 drm_gem_object_unreference_unlocked(&obj->base);
6679 return ERR_PTR(-ENOMEM);
6680 }
6681
6682 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6683 if (ret) {
6684 drm_gem_object_unreference_unlocked(&obj->base);
6685 kfree(intel_fb);
6686 return ERR_PTR(ret);
6687 }
6688
6689 return &intel_fb->base;
6690 }
6691
6692 static u32
6693 intel_framebuffer_pitch_for_width(int width, int bpp)
6694 {
6695 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6696 return ALIGN(pitch, 64);
6697 }
6698
6699 static u32
6700 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6701 {
6702 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6703 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6704 }
6705
6706 static struct drm_framebuffer *
6707 intel_framebuffer_create_for_mode(struct drm_device *dev,
6708 struct drm_display_mode *mode,
6709 int depth, int bpp)
6710 {
6711 struct drm_i915_gem_object *obj;
6712 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6713
6714 obj = i915_gem_alloc_object(dev,
6715 intel_framebuffer_size_for_mode(mode, bpp));
6716 if (obj == NULL)
6717 return ERR_PTR(-ENOMEM);
6718
6719 mode_cmd.width = mode->hdisplay;
6720 mode_cmd.height = mode->vdisplay;
6721 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6722 bpp);
6723 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6724
6725 return intel_framebuffer_create(dev, &mode_cmd, obj);
6726 }
6727
6728 static struct drm_framebuffer *
6729 mode_fits_in_fbdev(struct drm_device *dev,
6730 struct drm_display_mode *mode)
6731 {
6732 struct drm_i915_private *dev_priv = dev->dev_private;
6733 struct drm_i915_gem_object *obj;
6734 struct drm_framebuffer *fb;
6735
6736 if (dev_priv->fbdev == NULL)
6737 return NULL;
6738
6739 obj = dev_priv->fbdev->ifb.obj;
6740 if (obj == NULL)
6741 return NULL;
6742
6743 fb = &dev_priv->fbdev->ifb.base;
6744 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6745 fb->bits_per_pixel))
6746 return NULL;
6747
6748 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6749 return NULL;
6750
6751 return fb;
6752 }
6753
6754 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6755 struct drm_display_mode *mode,
6756 struct intel_load_detect_pipe *old)
6757 {
6758 struct intel_crtc *intel_crtc;
6759 struct intel_encoder *intel_encoder =
6760 intel_attached_encoder(connector);
6761 struct drm_crtc *possible_crtc;
6762 struct drm_encoder *encoder = &intel_encoder->base;
6763 struct drm_crtc *crtc = NULL;
6764 struct drm_device *dev = encoder->dev;
6765 struct drm_framebuffer *fb;
6766 int i = -1;
6767
6768 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6769 connector->base.id, drm_get_connector_name(connector),
6770 encoder->base.id, drm_get_encoder_name(encoder));
6771
6772 /*
6773 * Algorithm gets a little messy:
6774 *
6775 * - if the connector already has an assigned crtc, use it (but make
6776 * sure it's on first)
6777 *
6778 * - try to find the first unused crtc that can drive this connector,
6779 * and use that if we find one
6780 */
6781
6782 /* See if we already have a CRTC for this connector */
6783 if (encoder->crtc) {
6784 crtc = encoder->crtc;
6785
6786 mutex_lock(&crtc->mutex);
6787
6788 old->dpms_mode = connector->dpms;
6789 old->load_detect_temp = false;
6790
6791 /* Make sure the crtc and connector are running */
6792 if (connector->dpms != DRM_MODE_DPMS_ON)
6793 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6794
6795 return true;
6796 }
6797
6798 /* Find an unused one (if possible) */
6799 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6800 i++;
6801 if (!(encoder->possible_crtcs & (1 << i)))
6802 continue;
6803 if (!possible_crtc->enabled) {
6804 crtc = possible_crtc;
6805 break;
6806 }
6807 }
6808
6809 /*
6810 * If we didn't find an unused CRTC, don't use any.
6811 */
6812 if (!crtc) {
6813 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6814 return false;
6815 }
6816
6817 mutex_lock(&crtc->mutex);
6818 intel_encoder->new_crtc = to_intel_crtc(crtc);
6819 to_intel_connector(connector)->new_encoder = intel_encoder;
6820
6821 intel_crtc = to_intel_crtc(crtc);
6822 old->dpms_mode = connector->dpms;
6823 old->load_detect_temp = true;
6824 old->release_fb = NULL;
6825
6826 if (!mode)
6827 mode = &load_detect_mode;
6828
6829 /* We need a framebuffer large enough to accommodate all accesses
6830 * that the plane may generate whilst we perform load detection.
6831 * We can not rely on the fbcon either being present (we get called
6832 * during its initialisation to detect all boot displays, or it may
6833 * not even exist) or that it is large enough to satisfy the
6834 * requested mode.
6835 */
6836 fb = mode_fits_in_fbdev(dev, mode);
6837 if (fb == NULL) {
6838 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6839 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6840 old->release_fb = fb;
6841 } else
6842 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6843 if (IS_ERR(fb)) {
6844 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6845 mutex_unlock(&crtc->mutex);
6846 return false;
6847 }
6848
6849 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6850 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6851 if (old->release_fb)
6852 old->release_fb->funcs->destroy(old->release_fb);
6853 mutex_unlock(&crtc->mutex);
6854 return false;
6855 }
6856
6857 /* let the connector get through one full cycle before testing */
6858 intel_wait_for_vblank(dev, intel_crtc->pipe);
6859 return true;
6860 }
6861
6862 void intel_release_load_detect_pipe(struct drm_connector *connector,
6863 struct intel_load_detect_pipe *old)
6864 {
6865 struct intel_encoder *intel_encoder =
6866 intel_attached_encoder(connector);
6867 struct drm_encoder *encoder = &intel_encoder->base;
6868 struct drm_crtc *crtc = encoder->crtc;
6869
6870 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6871 connector->base.id, drm_get_connector_name(connector),
6872 encoder->base.id, drm_get_encoder_name(encoder));
6873
6874 if (old->load_detect_temp) {
6875 to_intel_connector(connector)->new_encoder = NULL;
6876 intel_encoder->new_crtc = NULL;
6877 intel_set_mode(crtc, NULL, 0, 0, NULL);
6878
6879 if (old->release_fb) {
6880 drm_framebuffer_unregister_private(old->release_fb);
6881 drm_framebuffer_unreference(old->release_fb);
6882 }
6883
6884 mutex_unlock(&crtc->mutex);
6885 return;
6886 }
6887
6888 /* Switch crtc and encoder back off if necessary */
6889 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6890 connector->funcs->dpms(connector, old->dpms_mode);
6891
6892 mutex_unlock(&crtc->mutex);
6893 }
6894
6895 /* Returns the clock of the currently programmed mode of the given pipe. */
6896 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
6897 struct intel_crtc_config *pipe_config)
6898 {
6899 struct drm_device *dev = crtc->base.dev;
6900 struct drm_i915_private *dev_priv = dev->dev_private;
6901 int pipe = pipe_config->cpu_transcoder;
6902 u32 dpll = I915_READ(DPLL(pipe));
6903 u32 fp;
6904 intel_clock_t clock;
6905
6906 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6907 fp = I915_READ(FP0(pipe));
6908 else
6909 fp = I915_READ(FP1(pipe));
6910
6911 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6912 if (IS_PINEVIEW(dev)) {
6913 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6914 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6915 } else {
6916 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6917 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6918 }
6919
6920 if (!IS_GEN2(dev)) {
6921 if (IS_PINEVIEW(dev))
6922 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6923 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6924 else
6925 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6926 DPLL_FPA01_P1_POST_DIV_SHIFT);
6927
6928 switch (dpll & DPLL_MODE_MASK) {
6929 case DPLLB_MODE_DAC_SERIAL:
6930 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6931 5 : 10;
6932 break;
6933 case DPLLB_MODE_LVDS:
6934 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6935 7 : 14;
6936 break;
6937 default:
6938 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6939 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6940 pipe_config->adjusted_mode.clock = 0;
6941 return;
6942 }
6943
6944 if (IS_PINEVIEW(dev))
6945 pineview_clock(96000, &clock);
6946 else
6947 i9xx_clock(96000, &clock);
6948 } else {
6949 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6950
6951 if (is_lvds) {
6952 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6953 DPLL_FPA01_P1_POST_DIV_SHIFT);
6954 clock.p2 = 14;
6955
6956 if ((dpll & PLL_REF_INPUT_MASK) ==
6957 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6958 /* XXX: might not be 66MHz */
6959 i9xx_clock(66000, &clock);
6960 } else
6961 i9xx_clock(48000, &clock);
6962 } else {
6963 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6964 clock.p1 = 2;
6965 else {
6966 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6967 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6968 }
6969 if (dpll & PLL_P2_DIVIDE_BY_4)
6970 clock.p2 = 4;
6971 else
6972 clock.p2 = 2;
6973
6974 i9xx_clock(48000, &clock);
6975 }
6976 }
6977
6978 pipe_config->adjusted_mode.clock = clock.dot *
6979 pipe_config->pixel_multiplier;
6980 }
6981
6982 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
6983 struct intel_crtc_config *pipe_config)
6984 {
6985 struct drm_device *dev = crtc->base.dev;
6986 struct drm_i915_private *dev_priv = dev->dev_private;
6987 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6988 int link_freq, repeat;
6989 u64 clock;
6990 u32 link_m, link_n;
6991
6992 repeat = pipe_config->pixel_multiplier;
6993
6994 /*
6995 * The calculation for the data clock is:
6996 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
6997 * But we want to avoid losing precison if possible, so:
6998 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
6999 *
7000 * and the link clock is simpler:
7001 * link_clock = (m * link_clock * repeat) / n
7002 */
7003
7004 /*
7005 * We need to get the FDI or DP link clock here to derive
7006 * the M/N dividers.
7007 *
7008 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7009 * For DP, it's either 1.62GHz or 2.7GHz.
7010 * We do our calculations in 10*MHz since we don't need much precison.
7011 */
7012 if (pipe_config->has_pch_encoder)
7013 link_freq = intel_fdi_link_freq(dev) * 10000;
7014 else
7015 link_freq = pipe_config->port_clock;
7016
7017 link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7018 link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7019
7020 if (!link_m || !link_n)
7021 return;
7022
7023 clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7024 do_div(clock, link_n);
7025
7026 pipe_config->adjusted_mode.clock = clock;
7027 }
7028
7029 /** Returns the currently programmed mode of the given pipe. */
7030 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7031 struct drm_crtc *crtc)
7032 {
7033 struct drm_i915_private *dev_priv = dev->dev_private;
7034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7035 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7036 struct drm_display_mode *mode;
7037 struct intel_crtc_config pipe_config;
7038 int htot = I915_READ(HTOTAL(cpu_transcoder));
7039 int hsync = I915_READ(HSYNC(cpu_transcoder));
7040 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7041 int vsync = I915_READ(VSYNC(cpu_transcoder));
7042
7043 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7044 if (!mode)
7045 return NULL;
7046
7047 /*
7048 * Construct a pipe_config sufficient for getting the clock info
7049 * back out of crtc_clock_get.
7050 *
7051 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7052 * to use a real value here instead.
7053 */
7054 pipe_config.cpu_transcoder = intel_crtc->pipe;
7055 pipe_config.pixel_multiplier = 1;
7056 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7057
7058 mode->clock = pipe_config.adjusted_mode.clock;
7059 mode->hdisplay = (htot & 0xffff) + 1;
7060 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7061 mode->hsync_start = (hsync & 0xffff) + 1;
7062 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7063 mode->vdisplay = (vtot & 0xffff) + 1;
7064 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7065 mode->vsync_start = (vsync & 0xffff) + 1;
7066 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7067
7068 drm_mode_set_name(mode);
7069
7070 return mode;
7071 }
7072
7073 static void intel_increase_pllclock(struct drm_crtc *crtc)
7074 {
7075 struct drm_device *dev = crtc->dev;
7076 drm_i915_private_t *dev_priv = dev->dev_private;
7077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7078 int pipe = intel_crtc->pipe;
7079 int dpll_reg = DPLL(pipe);
7080 int dpll;
7081
7082 if (HAS_PCH_SPLIT(dev))
7083 return;
7084
7085 if (!dev_priv->lvds_downclock_avail)
7086 return;
7087
7088 dpll = I915_READ(dpll_reg);
7089 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7090 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7091
7092 assert_panel_unlocked(dev_priv, pipe);
7093
7094 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7095 I915_WRITE(dpll_reg, dpll);
7096 intel_wait_for_vblank(dev, pipe);
7097
7098 dpll = I915_READ(dpll_reg);
7099 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7100 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7101 }
7102 }
7103
7104 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7105 {
7106 struct drm_device *dev = crtc->dev;
7107 drm_i915_private_t *dev_priv = dev->dev_private;
7108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7109
7110 if (HAS_PCH_SPLIT(dev))
7111 return;
7112
7113 if (!dev_priv->lvds_downclock_avail)
7114 return;
7115
7116 /*
7117 * Since this is called by a timer, we should never get here in
7118 * the manual case.
7119 */
7120 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7121 int pipe = intel_crtc->pipe;
7122 int dpll_reg = DPLL(pipe);
7123 int dpll;
7124
7125 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7126
7127 assert_panel_unlocked(dev_priv, pipe);
7128
7129 dpll = I915_READ(dpll_reg);
7130 dpll |= DISPLAY_RATE_SELECT_FPA1;
7131 I915_WRITE(dpll_reg, dpll);
7132 intel_wait_for_vblank(dev, pipe);
7133 dpll = I915_READ(dpll_reg);
7134 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7135 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7136 }
7137
7138 }
7139
7140 void intel_mark_busy(struct drm_device *dev)
7141 {
7142 i915_update_gfx_val(dev->dev_private);
7143 }
7144
7145 void intel_mark_idle(struct drm_device *dev)
7146 {
7147 struct drm_crtc *crtc;
7148
7149 if (!i915_powersave)
7150 return;
7151
7152 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7153 if (!crtc->fb)
7154 continue;
7155
7156 intel_decrease_pllclock(crtc);
7157 }
7158 }
7159
7160 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7161 struct intel_ring_buffer *ring)
7162 {
7163 struct drm_device *dev = obj->base.dev;
7164 struct drm_crtc *crtc;
7165
7166 if (!i915_powersave)
7167 return;
7168
7169 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7170 if (!crtc->fb)
7171 continue;
7172
7173 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7174 continue;
7175
7176 intel_increase_pllclock(crtc);
7177 if (ring && intel_fbc_enabled(dev))
7178 ring->fbc_dirty = true;
7179 }
7180 }
7181
7182 static void intel_crtc_destroy(struct drm_crtc *crtc)
7183 {
7184 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7185 struct drm_device *dev = crtc->dev;
7186 struct intel_unpin_work *work;
7187 unsigned long flags;
7188
7189 spin_lock_irqsave(&dev->event_lock, flags);
7190 work = intel_crtc->unpin_work;
7191 intel_crtc->unpin_work = NULL;
7192 spin_unlock_irqrestore(&dev->event_lock, flags);
7193
7194 if (work) {
7195 cancel_work_sync(&work->work);
7196 kfree(work);
7197 }
7198
7199 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7200
7201 drm_crtc_cleanup(crtc);
7202
7203 kfree(intel_crtc);
7204 }
7205
7206 static void intel_unpin_work_fn(struct work_struct *__work)
7207 {
7208 struct intel_unpin_work *work =
7209 container_of(__work, struct intel_unpin_work, work);
7210 struct drm_device *dev = work->crtc->dev;
7211
7212 mutex_lock(&dev->struct_mutex);
7213 intel_unpin_fb_obj(work->old_fb_obj);
7214 drm_gem_object_unreference(&work->pending_flip_obj->base);
7215 drm_gem_object_unreference(&work->old_fb_obj->base);
7216
7217 intel_update_fbc(dev);
7218 mutex_unlock(&dev->struct_mutex);
7219
7220 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7221 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7222
7223 kfree(work);
7224 }
7225
7226 static void do_intel_finish_page_flip(struct drm_device *dev,
7227 struct drm_crtc *crtc)
7228 {
7229 drm_i915_private_t *dev_priv = dev->dev_private;
7230 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7231 struct intel_unpin_work *work;
7232 unsigned long flags;
7233
7234 /* Ignore early vblank irqs */
7235 if (intel_crtc == NULL)
7236 return;
7237
7238 spin_lock_irqsave(&dev->event_lock, flags);
7239 work = intel_crtc->unpin_work;
7240
7241 /* Ensure we don't miss a work->pending update ... */
7242 smp_rmb();
7243
7244 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7245 spin_unlock_irqrestore(&dev->event_lock, flags);
7246 return;
7247 }
7248
7249 /* and that the unpin work is consistent wrt ->pending. */
7250 smp_rmb();
7251
7252 intel_crtc->unpin_work = NULL;
7253
7254 if (work->event)
7255 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7256
7257 drm_vblank_put(dev, intel_crtc->pipe);
7258
7259 spin_unlock_irqrestore(&dev->event_lock, flags);
7260
7261 wake_up_all(&dev_priv->pending_flip_queue);
7262
7263 queue_work(dev_priv->wq, &work->work);
7264
7265 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7266 }
7267
7268 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7269 {
7270 drm_i915_private_t *dev_priv = dev->dev_private;
7271 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7272
7273 do_intel_finish_page_flip(dev, crtc);
7274 }
7275
7276 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7277 {
7278 drm_i915_private_t *dev_priv = dev->dev_private;
7279 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7280
7281 do_intel_finish_page_flip(dev, crtc);
7282 }
7283
7284 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7285 {
7286 drm_i915_private_t *dev_priv = dev->dev_private;
7287 struct intel_crtc *intel_crtc =
7288 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7289 unsigned long flags;
7290
7291 /* NB: An MMIO update of the plane base pointer will also
7292 * generate a page-flip completion irq, i.e. every modeset
7293 * is also accompanied by a spurious intel_prepare_page_flip().
7294 */
7295 spin_lock_irqsave(&dev->event_lock, flags);
7296 if (intel_crtc->unpin_work)
7297 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7298 spin_unlock_irqrestore(&dev->event_lock, flags);
7299 }
7300
7301 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7302 {
7303 /* Ensure that the work item is consistent when activating it ... */
7304 smp_wmb();
7305 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7306 /* and that it is marked active as soon as the irq could fire. */
7307 smp_wmb();
7308 }
7309
7310 static int intel_gen2_queue_flip(struct drm_device *dev,
7311 struct drm_crtc *crtc,
7312 struct drm_framebuffer *fb,
7313 struct drm_i915_gem_object *obj)
7314 {
7315 struct drm_i915_private *dev_priv = dev->dev_private;
7316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7317 u32 flip_mask;
7318 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7319 int ret;
7320
7321 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7322 if (ret)
7323 goto err;
7324
7325 ret = intel_ring_begin(ring, 6);
7326 if (ret)
7327 goto err_unpin;
7328
7329 /* Can't queue multiple flips, so wait for the previous
7330 * one to finish before executing the next.
7331 */
7332 if (intel_crtc->plane)
7333 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7334 else
7335 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7336 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7337 intel_ring_emit(ring, MI_NOOP);
7338 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7339 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7340 intel_ring_emit(ring, fb->pitches[0]);
7341 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7342 intel_ring_emit(ring, 0); /* aux display base address, unused */
7343
7344 intel_mark_page_flip_active(intel_crtc);
7345 intel_ring_advance(ring);
7346 return 0;
7347
7348 err_unpin:
7349 intel_unpin_fb_obj(obj);
7350 err:
7351 return ret;
7352 }
7353
7354 static int intel_gen3_queue_flip(struct drm_device *dev,
7355 struct drm_crtc *crtc,
7356 struct drm_framebuffer *fb,
7357 struct drm_i915_gem_object *obj)
7358 {
7359 struct drm_i915_private *dev_priv = dev->dev_private;
7360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7361 u32 flip_mask;
7362 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7363 int ret;
7364
7365 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7366 if (ret)
7367 goto err;
7368
7369 ret = intel_ring_begin(ring, 6);
7370 if (ret)
7371 goto err_unpin;
7372
7373 if (intel_crtc->plane)
7374 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7375 else
7376 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7377 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7378 intel_ring_emit(ring, MI_NOOP);
7379 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7380 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7381 intel_ring_emit(ring, fb->pitches[0]);
7382 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7383 intel_ring_emit(ring, MI_NOOP);
7384
7385 intel_mark_page_flip_active(intel_crtc);
7386 intel_ring_advance(ring);
7387 return 0;
7388
7389 err_unpin:
7390 intel_unpin_fb_obj(obj);
7391 err:
7392 return ret;
7393 }
7394
7395 static int intel_gen4_queue_flip(struct drm_device *dev,
7396 struct drm_crtc *crtc,
7397 struct drm_framebuffer *fb,
7398 struct drm_i915_gem_object *obj)
7399 {
7400 struct drm_i915_private *dev_priv = dev->dev_private;
7401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7402 uint32_t pf, pipesrc;
7403 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7404 int ret;
7405
7406 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7407 if (ret)
7408 goto err;
7409
7410 ret = intel_ring_begin(ring, 4);
7411 if (ret)
7412 goto err_unpin;
7413
7414 /* i965+ uses the linear or tiled offsets from the
7415 * Display Registers (which do not change across a page-flip)
7416 * so we need only reprogram the base address.
7417 */
7418 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7419 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7420 intel_ring_emit(ring, fb->pitches[0]);
7421 intel_ring_emit(ring,
7422 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7423 obj->tiling_mode);
7424
7425 /* XXX Enabling the panel-fitter across page-flip is so far
7426 * untested on non-native modes, so ignore it for now.
7427 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7428 */
7429 pf = 0;
7430 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7431 intel_ring_emit(ring, pf | pipesrc);
7432
7433 intel_mark_page_flip_active(intel_crtc);
7434 intel_ring_advance(ring);
7435 return 0;
7436
7437 err_unpin:
7438 intel_unpin_fb_obj(obj);
7439 err:
7440 return ret;
7441 }
7442
7443 static int intel_gen6_queue_flip(struct drm_device *dev,
7444 struct drm_crtc *crtc,
7445 struct drm_framebuffer *fb,
7446 struct drm_i915_gem_object *obj)
7447 {
7448 struct drm_i915_private *dev_priv = dev->dev_private;
7449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7450 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7451 uint32_t pf, pipesrc;
7452 int ret;
7453
7454 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7455 if (ret)
7456 goto err;
7457
7458 ret = intel_ring_begin(ring, 4);
7459 if (ret)
7460 goto err_unpin;
7461
7462 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7463 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7464 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7465 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7466
7467 /* Contrary to the suggestions in the documentation,
7468 * "Enable Panel Fitter" does not seem to be required when page
7469 * flipping with a non-native mode, and worse causes a normal
7470 * modeset to fail.
7471 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7472 */
7473 pf = 0;
7474 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7475 intel_ring_emit(ring, pf | pipesrc);
7476
7477 intel_mark_page_flip_active(intel_crtc);
7478 intel_ring_advance(ring);
7479 return 0;
7480
7481 err_unpin:
7482 intel_unpin_fb_obj(obj);
7483 err:
7484 return ret;
7485 }
7486
7487 /*
7488 * On gen7 we currently use the blit ring because (in early silicon at least)
7489 * the render ring doesn't give us interrpts for page flip completion, which
7490 * means clients will hang after the first flip is queued. Fortunately the
7491 * blit ring generates interrupts properly, so use it instead.
7492 */
7493 static int intel_gen7_queue_flip(struct drm_device *dev,
7494 struct drm_crtc *crtc,
7495 struct drm_framebuffer *fb,
7496 struct drm_i915_gem_object *obj)
7497 {
7498 struct drm_i915_private *dev_priv = dev->dev_private;
7499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7500 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7501 uint32_t plane_bit = 0;
7502 int ret;
7503
7504 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7505 if (ret)
7506 goto err;
7507
7508 switch(intel_crtc->plane) {
7509 case PLANE_A:
7510 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7511 break;
7512 case PLANE_B:
7513 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7514 break;
7515 case PLANE_C:
7516 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7517 break;
7518 default:
7519 WARN_ONCE(1, "unknown plane in flip command\n");
7520 ret = -ENODEV;
7521 goto err_unpin;
7522 }
7523
7524 ret = intel_ring_begin(ring, 4);
7525 if (ret)
7526 goto err_unpin;
7527
7528 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7529 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7530 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7531 intel_ring_emit(ring, (MI_NOOP));
7532
7533 intel_mark_page_flip_active(intel_crtc);
7534 intel_ring_advance(ring);
7535 return 0;
7536
7537 err_unpin:
7538 intel_unpin_fb_obj(obj);
7539 err:
7540 return ret;
7541 }
7542
7543 static int intel_default_queue_flip(struct drm_device *dev,
7544 struct drm_crtc *crtc,
7545 struct drm_framebuffer *fb,
7546 struct drm_i915_gem_object *obj)
7547 {
7548 return -ENODEV;
7549 }
7550
7551 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7552 struct drm_framebuffer *fb,
7553 struct drm_pending_vblank_event *event)
7554 {
7555 struct drm_device *dev = crtc->dev;
7556 struct drm_i915_private *dev_priv = dev->dev_private;
7557 struct drm_framebuffer *old_fb = crtc->fb;
7558 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7560 struct intel_unpin_work *work;
7561 unsigned long flags;
7562 int ret;
7563
7564 /* Can't change pixel format via MI display flips. */
7565 if (fb->pixel_format != crtc->fb->pixel_format)
7566 return -EINVAL;
7567
7568 /*
7569 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7570 * Note that pitch changes could also affect these register.
7571 */
7572 if (INTEL_INFO(dev)->gen > 3 &&
7573 (fb->offsets[0] != crtc->fb->offsets[0] ||
7574 fb->pitches[0] != crtc->fb->pitches[0]))
7575 return -EINVAL;
7576
7577 work = kzalloc(sizeof *work, GFP_KERNEL);
7578 if (work == NULL)
7579 return -ENOMEM;
7580
7581 work->event = event;
7582 work->crtc = crtc;
7583 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7584 INIT_WORK(&work->work, intel_unpin_work_fn);
7585
7586 ret = drm_vblank_get(dev, intel_crtc->pipe);
7587 if (ret)
7588 goto free_work;
7589
7590 /* We borrow the event spin lock for protecting unpin_work */
7591 spin_lock_irqsave(&dev->event_lock, flags);
7592 if (intel_crtc->unpin_work) {
7593 spin_unlock_irqrestore(&dev->event_lock, flags);
7594 kfree(work);
7595 drm_vblank_put(dev, intel_crtc->pipe);
7596
7597 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7598 return -EBUSY;
7599 }
7600 intel_crtc->unpin_work = work;
7601 spin_unlock_irqrestore(&dev->event_lock, flags);
7602
7603 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7604 flush_workqueue(dev_priv->wq);
7605
7606 ret = i915_mutex_lock_interruptible(dev);
7607 if (ret)
7608 goto cleanup;
7609
7610 /* Reference the objects for the scheduled work. */
7611 drm_gem_object_reference(&work->old_fb_obj->base);
7612 drm_gem_object_reference(&obj->base);
7613
7614 crtc->fb = fb;
7615
7616 work->pending_flip_obj = obj;
7617
7618 work->enable_stall_check = true;
7619
7620 atomic_inc(&intel_crtc->unpin_work_count);
7621 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7622
7623 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7624 if (ret)
7625 goto cleanup_pending;
7626
7627 intel_disable_fbc(dev);
7628 intel_mark_fb_busy(obj, NULL);
7629 mutex_unlock(&dev->struct_mutex);
7630
7631 trace_i915_flip_request(intel_crtc->plane, obj);
7632
7633 return 0;
7634
7635 cleanup_pending:
7636 atomic_dec(&intel_crtc->unpin_work_count);
7637 crtc->fb = old_fb;
7638 drm_gem_object_unreference(&work->old_fb_obj->base);
7639 drm_gem_object_unreference(&obj->base);
7640 mutex_unlock(&dev->struct_mutex);
7641
7642 cleanup:
7643 spin_lock_irqsave(&dev->event_lock, flags);
7644 intel_crtc->unpin_work = NULL;
7645 spin_unlock_irqrestore(&dev->event_lock, flags);
7646
7647 drm_vblank_put(dev, intel_crtc->pipe);
7648 free_work:
7649 kfree(work);
7650
7651 return ret;
7652 }
7653
7654 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7655 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7656 .load_lut = intel_crtc_load_lut,
7657 };
7658
7659 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7660 struct drm_crtc *crtc)
7661 {
7662 struct drm_device *dev;
7663 struct drm_crtc *tmp;
7664 int crtc_mask = 1;
7665
7666 WARN(!crtc, "checking null crtc?\n");
7667
7668 dev = crtc->dev;
7669
7670 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7671 if (tmp == crtc)
7672 break;
7673 crtc_mask <<= 1;
7674 }
7675
7676 if (encoder->possible_crtcs & crtc_mask)
7677 return true;
7678 return false;
7679 }
7680
7681 /**
7682 * intel_modeset_update_staged_output_state
7683 *
7684 * Updates the staged output configuration state, e.g. after we've read out the
7685 * current hw state.
7686 */
7687 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7688 {
7689 struct intel_encoder *encoder;
7690 struct intel_connector *connector;
7691
7692 list_for_each_entry(connector, &dev->mode_config.connector_list,
7693 base.head) {
7694 connector->new_encoder =
7695 to_intel_encoder(connector->base.encoder);
7696 }
7697
7698 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7699 base.head) {
7700 encoder->new_crtc =
7701 to_intel_crtc(encoder->base.crtc);
7702 }
7703 }
7704
7705 /**
7706 * intel_modeset_commit_output_state
7707 *
7708 * This function copies the stage display pipe configuration to the real one.
7709 */
7710 static void intel_modeset_commit_output_state(struct drm_device *dev)
7711 {
7712 struct intel_encoder *encoder;
7713 struct intel_connector *connector;
7714
7715 list_for_each_entry(connector, &dev->mode_config.connector_list,
7716 base.head) {
7717 connector->base.encoder = &connector->new_encoder->base;
7718 }
7719
7720 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7721 base.head) {
7722 encoder->base.crtc = &encoder->new_crtc->base;
7723 }
7724 }
7725
7726 static void
7727 connected_sink_compute_bpp(struct intel_connector * connector,
7728 struct intel_crtc_config *pipe_config)
7729 {
7730 int bpp = pipe_config->pipe_bpp;
7731
7732 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7733 connector->base.base.id,
7734 drm_get_connector_name(&connector->base));
7735
7736 /* Don't use an invalid EDID bpc value */
7737 if (connector->base.display_info.bpc &&
7738 connector->base.display_info.bpc * 3 < bpp) {
7739 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7740 bpp, connector->base.display_info.bpc*3);
7741 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7742 }
7743
7744 /* Clamp bpp to 8 on screens without EDID 1.4 */
7745 if (connector->base.display_info.bpc == 0 && bpp > 24) {
7746 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7747 bpp);
7748 pipe_config->pipe_bpp = 24;
7749 }
7750 }
7751
7752 static int
7753 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7754 struct drm_framebuffer *fb,
7755 struct intel_crtc_config *pipe_config)
7756 {
7757 struct drm_device *dev = crtc->base.dev;
7758 struct intel_connector *connector;
7759 int bpp;
7760
7761 switch (fb->pixel_format) {
7762 case DRM_FORMAT_C8:
7763 bpp = 8*3; /* since we go through a colormap */
7764 break;
7765 case DRM_FORMAT_XRGB1555:
7766 case DRM_FORMAT_ARGB1555:
7767 /* checked in intel_framebuffer_init already */
7768 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7769 return -EINVAL;
7770 case DRM_FORMAT_RGB565:
7771 bpp = 6*3; /* min is 18bpp */
7772 break;
7773 case DRM_FORMAT_XBGR8888:
7774 case DRM_FORMAT_ABGR8888:
7775 /* checked in intel_framebuffer_init already */
7776 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7777 return -EINVAL;
7778 case DRM_FORMAT_XRGB8888:
7779 case DRM_FORMAT_ARGB8888:
7780 bpp = 8*3;
7781 break;
7782 case DRM_FORMAT_XRGB2101010:
7783 case DRM_FORMAT_ARGB2101010:
7784 case DRM_FORMAT_XBGR2101010:
7785 case DRM_FORMAT_ABGR2101010:
7786 /* checked in intel_framebuffer_init already */
7787 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7788 return -EINVAL;
7789 bpp = 10*3;
7790 break;
7791 /* TODO: gen4+ supports 16 bpc floating point, too. */
7792 default:
7793 DRM_DEBUG_KMS("unsupported depth\n");
7794 return -EINVAL;
7795 }
7796
7797 pipe_config->pipe_bpp = bpp;
7798
7799 /* Clamp display bpp to EDID value */
7800 list_for_each_entry(connector, &dev->mode_config.connector_list,
7801 base.head) {
7802 if (!connector->new_encoder ||
7803 connector->new_encoder->new_crtc != crtc)
7804 continue;
7805
7806 connected_sink_compute_bpp(connector, pipe_config);
7807 }
7808
7809 return bpp;
7810 }
7811
7812 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7813 struct intel_crtc_config *pipe_config,
7814 const char *context)
7815 {
7816 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7817 context, pipe_name(crtc->pipe));
7818
7819 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7820 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7821 pipe_config->pipe_bpp, pipe_config->dither);
7822 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7823 pipe_config->has_pch_encoder,
7824 pipe_config->fdi_lanes,
7825 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7826 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7827 pipe_config->fdi_m_n.tu);
7828 DRM_DEBUG_KMS("requested mode:\n");
7829 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7830 DRM_DEBUG_KMS("adjusted mode:\n");
7831 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7832 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
7833 pipe_config->gmch_pfit.control,
7834 pipe_config->gmch_pfit.pgm_ratios,
7835 pipe_config->gmch_pfit.lvds_border_bits);
7836 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
7837 pipe_config->pch_pfit.pos,
7838 pipe_config->pch_pfit.size);
7839 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
7840 }
7841
7842 static bool check_encoder_cloning(struct drm_crtc *crtc)
7843 {
7844 int num_encoders = 0;
7845 bool uncloneable_encoders = false;
7846 struct intel_encoder *encoder;
7847
7848 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
7849 base.head) {
7850 if (&encoder->new_crtc->base != crtc)
7851 continue;
7852
7853 num_encoders++;
7854 if (!encoder->cloneable)
7855 uncloneable_encoders = true;
7856 }
7857
7858 return !(num_encoders > 1 && uncloneable_encoders);
7859 }
7860
7861 static struct intel_crtc_config *
7862 intel_modeset_pipe_config(struct drm_crtc *crtc,
7863 struct drm_framebuffer *fb,
7864 struct drm_display_mode *mode)
7865 {
7866 struct drm_device *dev = crtc->dev;
7867 struct drm_encoder_helper_funcs *encoder_funcs;
7868 struct intel_encoder *encoder;
7869 struct intel_crtc_config *pipe_config;
7870 int plane_bpp, ret = -EINVAL;
7871 bool retry = true;
7872
7873 if (!check_encoder_cloning(crtc)) {
7874 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
7875 return ERR_PTR(-EINVAL);
7876 }
7877
7878 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7879 if (!pipe_config)
7880 return ERR_PTR(-ENOMEM);
7881
7882 drm_mode_copy(&pipe_config->adjusted_mode, mode);
7883 drm_mode_copy(&pipe_config->requested_mode, mode);
7884 pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
7885 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7886
7887 /* Compute a starting value for pipe_config->pipe_bpp taking the source
7888 * plane pixel format and any sink constraints into account. Returns the
7889 * source plane bpp so that dithering can be selected on mismatches
7890 * after encoders and crtc also have had their say. */
7891 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
7892 fb, pipe_config);
7893 if (plane_bpp < 0)
7894 goto fail;
7895
7896 encoder_retry:
7897 /* Ensure the port clock defaults are reset when retrying. */
7898 pipe_config->port_clock = 0;
7899 pipe_config->pixel_multiplier = 1;
7900
7901 /* Pass our mode to the connectors and the CRTC to give them a chance to
7902 * adjust it according to limitations or connector properties, and also
7903 * a chance to reject the mode entirely.
7904 */
7905 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7906 base.head) {
7907
7908 if (&encoder->new_crtc->base != crtc)
7909 continue;
7910
7911 if (encoder->compute_config) {
7912 if (!(encoder->compute_config(encoder, pipe_config))) {
7913 DRM_DEBUG_KMS("Encoder config failure\n");
7914 goto fail;
7915 }
7916
7917 continue;
7918 }
7919
7920 encoder_funcs = encoder->base.helper_private;
7921 if (!(encoder_funcs->mode_fixup(&encoder->base,
7922 &pipe_config->requested_mode,
7923 &pipe_config->adjusted_mode))) {
7924 DRM_DEBUG_KMS("Encoder fixup failed\n");
7925 goto fail;
7926 }
7927 }
7928
7929 /* Set default port clock if not overwritten by the encoder. Needs to be
7930 * done afterwards in case the encoder adjusts the mode. */
7931 if (!pipe_config->port_clock)
7932 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
7933
7934 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
7935 if (ret < 0) {
7936 DRM_DEBUG_KMS("CRTC fixup failed\n");
7937 goto fail;
7938 }
7939
7940 if (ret == RETRY) {
7941 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7942 ret = -EINVAL;
7943 goto fail;
7944 }
7945
7946 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7947 retry = false;
7948 goto encoder_retry;
7949 }
7950
7951 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7952 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7953 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7954
7955 return pipe_config;
7956 fail:
7957 kfree(pipe_config);
7958 return ERR_PTR(ret);
7959 }
7960
7961 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7962 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7963 static void
7964 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7965 unsigned *prepare_pipes, unsigned *disable_pipes)
7966 {
7967 struct intel_crtc *intel_crtc;
7968 struct drm_device *dev = crtc->dev;
7969 struct intel_encoder *encoder;
7970 struct intel_connector *connector;
7971 struct drm_crtc *tmp_crtc;
7972
7973 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7974
7975 /* Check which crtcs have changed outputs connected to them, these need
7976 * to be part of the prepare_pipes mask. We don't (yet) support global
7977 * modeset across multiple crtcs, so modeset_pipes will only have one
7978 * bit set at most. */
7979 list_for_each_entry(connector, &dev->mode_config.connector_list,
7980 base.head) {
7981 if (connector->base.encoder == &connector->new_encoder->base)
7982 continue;
7983
7984 if (connector->base.encoder) {
7985 tmp_crtc = connector->base.encoder->crtc;
7986
7987 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7988 }
7989
7990 if (connector->new_encoder)
7991 *prepare_pipes |=
7992 1 << connector->new_encoder->new_crtc->pipe;
7993 }
7994
7995 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7996 base.head) {
7997 if (encoder->base.crtc == &encoder->new_crtc->base)
7998 continue;
7999
8000 if (encoder->base.crtc) {
8001 tmp_crtc = encoder->base.crtc;
8002
8003 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8004 }
8005
8006 if (encoder->new_crtc)
8007 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8008 }
8009
8010 /* Check for any pipes that will be fully disabled ... */
8011 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8012 base.head) {
8013 bool used = false;
8014
8015 /* Don't try to disable disabled crtcs. */
8016 if (!intel_crtc->base.enabled)
8017 continue;
8018
8019 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8020 base.head) {
8021 if (encoder->new_crtc == intel_crtc)
8022 used = true;
8023 }
8024
8025 if (!used)
8026 *disable_pipes |= 1 << intel_crtc->pipe;
8027 }
8028
8029
8030 /* set_mode is also used to update properties on life display pipes. */
8031 intel_crtc = to_intel_crtc(crtc);
8032 if (crtc->enabled)
8033 *prepare_pipes |= 1 << intel_crtc->pipe;
8034
8035 /*
8036 * For simplicity do a full modeset on any pipe where the output routing
8037 * changed. We could be more clever, but that would require us to be
8038 * more careful with calling the relevant encoder->mode_set functions.
8039 */
8040 if (*prepare_pipes)
8041 *modeset_pipes = *prepare_pipes;
8042
8043 /* ... and mask these out. */
8044 *modeset_pipes &= ~(*disable_pipes);
8045 *prepare_pipes &= ~(*disable_pipes);
8046
8047 /*
8048 * HACK: We don't (yet) fully support global modesets. intel_set_config
8049 * obies this rule, but the modeset restore mode of
8050 * intel_modeset_setup_hw_state does not.
8051 */
8052 *modeset_pipes &= 1 << intel_crtc->pipe;
8053 *prepare_pipes &= 1 << intel_crtc->pipe;
8054
8055 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8056 *modeset_pipes, *prepare_pipes, *disable_pipes);
8057 }
8058
8059 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8060 {
8061 struct drm_encoder *encoder;
8062 struct drm_device *dev = crtc->dev;
8063
8064 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8065 if (encoder->crtc == crtc)
8066 return true;
8067
8068 return false;
8069 }
8070
8071 static void
8072 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8073 {
8074 struct intel_encoder *intel_encoder;
8075 struct intel_crtc *intel_crtc;
8076 struct drm_connector *connector;
8077
8078 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8079 base.head) {
8080 if (!intel_encoder->base.crtc)
8081 continue;
8082
8083 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8084
8085 if (prepare_pipes & (1 << intel_crtc->pipe))
8086 intel_encoder->connectors_active = false;
8087 }
8088
8089 intel_modeset_commit_output_state(dev);
8090
8091 /* Update computed state. */
8092 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8093 base.head) {
8094 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8095 }
8096
8097 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8098 if (!connector->encoder || !connector->encoder->crtc)
8099 continue;
8100
8101 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8102
8103 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8104 struct drm_property *dpms_property =
8105 dev->mode_config.dpms_property;
8106
8107 connector->dpms = DRM_MODE_DPMS_ON;
8108 drm_object_property_set_value(&connector->base,
8109 dpms_property,
8110 DRM_MODE_DPMS_ON);
8111
8112 intel_encoder = to_intel_encoder(connector->encoder);
8113 intel_encoder->connectors_active = true;
8114 }
8115 }
8116
8117 }
8118
8119 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8120 struct intel_crtc_config *new)
8121 {
8122 int clock1, clock2, diff;
8123
8124 clock1 = cur->adjusted_mode.clock;
8125 clock2 = new->adjusted_mode.clock;
8126
8127 if (clock1 == clock2)
8128 return true;
8129
8130 if (!clock1 || !clock2)
8131 return false;
8132
8133 diff = abs(clock1 - clock2);
8134
8135 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8136 return true;
8137
8138 return false;
8139 }
8140
8141 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8142 list_for_each_entry((intel_crtc), \
8143 &(dev)->mode_config.crtc_list, \
8144 base.head) \
8145 if (mask & (1 <<(intel_crtc)->pipe))
8146
8147 static bool
8148 intel_pipe_config_compare(struct drm_device *dev,
8149 struct intel_crtc_config *current_config,
8150 struct intel_crtc_config *pipe_config)
8151 {
8152 #define PIPE_CONF_CHECK_X(name) \
8153 if (current_config->name != pipe_config->name) { \
8154 DRM_ERROR("mismatch in " #name " " \
8155 "(expected 0x%08x, found 0x%08x)\n", \
8156 current_config->name, \
8157 pipe_config->name); \
8158 return false; \
8159 }
8160
8161 #define PIPE_CONF_CHECK_I(name) \
8162 if (current_config->name != pipe_config->name) { \
8163 DRM_ERROR("mismatch in " #name " " \
8164 "(expected %i, found %i)\n", \
8165 current_config->name, \
8166 pipe_config->name); \
8167 return false; \
8168 }
8169
8170 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8171 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8172 DRM_ERROR("mismatch in " #name " " \
8173 "(expected %i, found %i)\n", \
8174 current_config->name & (mask), \
8175 pipe_config->name & (mask)); \
8176 return false; \
8177 }
8178
8179 #define PIPE_CONF_QUIRK(quirk) \
8180 ((current_config->quirks | pipe_config->quirks) & (quirk))
8181
8182 PIPE_CONF_CHECK_I(cpu_transcoder);
8183
8184 PIPE_CONF_CHECK_I(has_pch_encoder);
8185 PIPE_CONF_CHECK_I(fdi_lanes);
8186 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8187 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8188 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8189 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8190 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8191
8192 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8193 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8194 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8195 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8196 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8197 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8198
8199 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8200 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8201 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8202 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8203 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8204 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8205
8206 PIPE_CONF_CHECK_I(pixel_multiplier);
8207
8208 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8209 DRM_MODE_FLAG_INTERLACE);
8210
8211 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8212 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8213 DRM_MODE_FLAG_PHSYNC);
8214 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8215 DRM_MODE_FLAG_NHSYNC);
8216 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8217 DRM_MODE_FLAG_PVSYNC);
8218 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8219 DRM_MODE_FLAG_NVSYNC);
8220 }
8221
8222 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8223 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8224
8225 PIPE_CONF_CHECK_I(gmch_pfit.control);
8226 /* pfit ratios are autocomputed by the hw on gen4+ */
8227 if (INTEL_INFO(dev)->gen < 4)
8228 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8229 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8230 PIPE_CONF_CHECK_I(pch_pfit.pos);
8231 PIPE_CONF_CHECK_I(pch_pfit.size);
8232
8233 PIPE_CONF_CHECK_I(ips_enabled);
8234
8235 PIPE_CONF_CHECK_I(shared_dpll);
8236 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8237 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8238 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8239 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8240
8241 #undef PIPE_CONF_CHECK_X
8242 #undef PIPE_CONF_CHECK_I
8243 #undef PIPE_CONF_CHECK_FLAGS
8244 #undef PIPE_CONF_QUIRK
8245
8246 if (!IS_HASWELL(dev)) {
8247 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8248 DRM_ERROR("mismatch in clock (expected %d, found %d\n",
8249 current_config->adjusted_mode.clock,
8250 pipe_config->adjusted_mode.clock);
8251 return false;
8252 }
8253 }
8254
8255 return true;
8256 }
8257
8258 static void
8259 check_connector_state(struct drm_device *dev)
8260 {
8261 struct intel_connector *connector;
8262
8263 list_for_each_entry(connector, &dev->mode_config.connector_list,
8264 base.head) {
8265 /* This also checks the encoder/connector hw state with the
8266 * ->get_hw_state callbacks. */
8267 intel_connector_check_state(connector);
8268
8269 WARN(&connector->new_encoder->base != connector->base.encoder,
8270 "connector's staged encoder doesn't match current encoder\n");
8271 }
8272 }
8273
8274 static void
8275 check_encoder_state(struct drm_device *dev)
8276 {
8277 struct intel_encoder *encoder;
8278 struct intel_connector *connector;
8279
8280 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8281 base.head) {
8282 bool enabled = false;
8283 bool active = false;
8284 enum pipe pipe, tracked_pipe;
8285
8286 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8287 encoder->base.base.id,
8288 drm_get_encoder_name(&encoder->base));
8289
8290 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8291 "encoder's stage crtc doesn't match current crtc\n");
8292 WARN(encoder->connectors_active && !encoder->base.crtc,
8293 "encoder's active_connectors set, but no crtc\n");
8294
8295 list_for_each_entry(connector, &dev->mode_config.connector_list,
8296 base.head) {
8297 if (connector->base.encoder != &encoder->base)
8298 continue;
8299 enabled = true;
8300 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8301 active = true;
8302 }
8303 WARN(!!encoder->base.crtc != enabled,
8304 "encoder's enabled state mismatch "
8305 "(expected %i, found %i)\n",
8306 !!encoder->base.crtc, enabled);
8307 WARN(active && !encoder->base.crtc,
8308 "active encoder with no crtc\n");
8309
8310 WARN(encoder->connectors_active != active,
8311 "encoder's computed active state doesn't match tracked active state "
8312 "(expected %i, found %i)\n", active, encoder->connectors_active);
8313
8314 active = encoder->get_hw_state(encoder, &pipe);
8315 WARN(active != encoder->connectors_active,
8316 "encoder's hw state doesn't match sw tracking "
8317 "(expected %i, found %i)\n",
8318 encoder->connectors_active, active);
8319
8320 if (!encoder->base.crtc)
8321 continue;
8322
8323 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8324 WARN(active && pipe != tracked_pipe,
8325 "active encoder's pipe doesn't match"
8326 "(expected %i, found %i)\n",
8327 tracked_pipe, pipe);
8328
8329 }
8330 }
8331
8332 static void
8333 check_crtc_state(struct drm_device *dev)
8334 {
8335 drm_i915_private_t *dev_priv = dev->dev_private;
8336 struct intel_crtc *crtc;
8337 struct intel_encoder *encoder;
8338 struct intel_crtc_config pipe_config;
8339
8340 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8341 base.head) {
8342 bool enabled = false;
8343 bool active = false;
8344
8345 memset(&pipe_config, 0, sizeof(pipe_config));
8346
8347 DRM_DEBUG_KMS("[CRTC:%d]\n",
8348 crtc->base.base.id);
8349
8350 WARN(crtc->active && !crtc->base.enabled,
8351 "active crtc, but not enabled in sw tracking\n");
8352
8353 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8354 base.head) {
8355 if (encoder->base.crtc != &crtc->base)
8356 continue;
8357 enabled = true;
8358 if (encoder->connectors_active)
8359 active = true;
8360 }
8361
8362 WARN(active != crtc->active,
8363 "crtc's computed active state doesn't match tracked active state "
8364 "(expected %i, found %i)\n", active, crtc->active);
8365 WARN(enabled != crtc->base.enabled,
8366 "crtc's computed enabled state doesn't match tracked enabled state "
8367 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8368
8369 active = dev_priv->display.get_pipe_config(crtc,
8370 &pipe_config);
8371
8372 /* hw state is inconsistent with the pipe A quirk */
8373 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8374 active = crtc->active;
8375
8376 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8377 base.head) {
8378 if (encoder->base.crtc != &crtc->base)
8379 continue;
8380 if (encoder->get_config &&
8381 dev_priv->display.get_clock) {
8382 encoder->get_config(encoder, &pipe_config);
8383 dev_priv->display.get_clock(crtc,
8384 &pipe_config);
8385 }
8386 }
8387
8388 WARN(crtc->active != active,
8389 "crtc active state doesn't match with hw state "
8390 "(expected %i, found %i)\n", crtc->active, active);
8391
8392 if (active &&
8393 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8394 WARN(1, "pipe state doesn't match!\n");
8395 intel_dump_pipe_config(crtc, &pipe_config,
8396 "[hw state]");
8397 intel_dump_pipe_config(crtc, &crtc->config,
8398 "[sw state]");
8399 }
8400 }
8401 }
8402
8403 static void
8404 check_shared_dpll_state(struct drm_device *dev)
8405 {
8406 drm_i915_private_t *dev_priv = dev->dev_private;
8407 struct intel_crtc *crtc;
8408 struct intel_dpll_hw_state dpll_hw_state;
8409 int i;
8410
8411 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8412 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8413 int enabled_crtcs = 0, active_crtcs = 0;
8414 bool active;
8415
8416 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8417
8418 DRM_DEBUG_KMS("%s\n", pll->name);
8419
8420 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8421
8422 WARN(pll->active > pll->refcount,
8423 "more active pll users than references: %i vs %i\n",
8424 pll->active, pll->refcount);
8425 WARN(pll->active && !pll->on,
8426 "pll in active use but not on in sw tracking\n");
8427 WARN(pll->on != active,
8428 "pll on state mismatch (expected %i, found %i)\n",
8429 pll->on, active);
8430
8431 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8432 base.head) {
8433 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8434 enabled_crtcs++;
8435 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8436 active_crtcs++;
8437 }
8438 WARN(pll->active != active_crtcs,
8439 "pll active crtcs mismatch (expected %i, found %i)\n",
8440 pll->active, active_crtcs);
8441 WARN(pll->refcount != enabled_crtcs,
8442 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8443 pll->refcount, enabled_crtcs);
8444
8445 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8446 sizeof(dpll_hw_state)),
8447 "pll hw state mismatch\n");
8448 }
8449 }
8450
8451 void
8452 intel_modeset_check_state(struct drm_device *dev)
8453 {
8454 check_connector_state(dev);
8455 check_encoder_state(dev);
8456 check_crtc_state(dev);
8457 check_shared_dpll_state(dev);
8458 }
8459
8460 static int __intel_set_mode(struct drm_crtc *crtc,
8461 struct drm_display_mode *mode,
8462 int x, int y, struct drm_framebuffer *fb)
8463 {
8464 struct drm_device *dev = crtc->dev;
8465 drm_i915_private_t *dev_priv = dev->dev_private;
8466 struct drm_display_mode *saved_mode, *saved_hwmode;
8467 struct intel_crtc_config *pipe_config = NULL;
8468 struct intel_crtc *intel_crtc;
8469 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8470 int ret = 0;
8471
8472 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8473 if (!saved_mode)
8474 return -ENOMEM;
8475 saved_hwmode = saved_mode + 1;
8476
8477 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8478 &prepare_pipes, &disable_pipes);
8479
8480 *saved_hwmode = crtc->hwmode;
8481 *saved_mode = crtc->mode;
8482
8483 /* Hack: Because we don't (yet) support global modeset on multiple
8484 * crtcs, we don't keep track of the new mode for more than one crtc.
8485 * Hence simply check whether any bit is set in modeset_pipes in all the
8486 * pieces of code that are not yet converted to deal with mutliple crtcs
8487 * changing their mode at the same time. */
8488 if (modeset_pipes) {
8489 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8490 if (IS_ERR(pipe_config)) {
8491 ret = PTR_ERR(pipe_config);
8492 pipe_config = NULL;
8493
8494 goto out;
8495 }
8496 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8497 "[modeset]");
8498 }
8499
8500 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8501 intel_crtc_disable(&intel_crtc->base);
8502
8503 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8504 if (intel_crtc->base.enabled)
8505 dev_priv->display.crtc_disable(&intel_crtc->base);
8506 }
8507
8508 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8509 * to set it here already despite that we pass it down the callchain.
8510 */
8511 if (modeset_pipes) {
8512 crtc->mode = *mode;
8513 /* mode_set/enable/disable functions rely on a correct pipe
8514 * config. */
8515 to_intel_crtc(crtc)->config = *pipe_config;
8516 }
8517
8518 /* Only after disabling all output pipelines that will be changed can we
8519 * update the the output configuration. */
8520 intel_modeset_update_state(dev, prepare_pipes);
8521
8522 if (dev_priv->display.modeset_global_resources)
8523 dev_priv->display.modeset_global_resources(dev);
8524
8525 /* Set up the DPLL and any encoders state that needs to adjust or depend
8526 * on the DPLL.
8527 */
8528 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8529 ret = intel_crtc_mode_set(&intel_crtc->base,
8530 x, y, fb);
8531 if (ret)
8532 goto done;
8533 }
8534
8535 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8536 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8537 dev_priv->display.crtc_enable(&intel_crtc->base);
8538
8539 if (modeset_pipes) {
8540 /* Store real post-adjustment hardware mode. */
8541 crtc->hwmode = pipe_config->adjusted_mode;
8542
8543 /* Calculate and store various constants which
8544 * are later needed by vblank and swap-completion
8545 * timestamping. They are derived from true hwmode.
8546 */
8547 drm_calc_timestamping_constants(crtc);
8548 }
8549
8550 /* FIXME: add subpixel order */
8551 done:
8552 if (ret && crtc->enabled) {
8553 crtc->hwmode = *saved_hwmode;
8554 crtc->mode = *saved_mode;
8555 }
8556
8557 out:
8558 kfree(pipe_config);
8559 kfree(saved_mode);
8560 return ret;
8561 }
8562
8563 int intel_set_mode(struct drm_crtc *crtc,
8564 struct drm_display_mode *mode,
8565 int x, int y, struct drm_framebuffer *fb)
8566 {
8567 int ret;
8568
8569 ret = __intel_set_mode(crtc, mode, x, y, fb);
8570
8571 if (ret == 0)
8572 intel_modeset_check_state(crtc->dev);
8573
8574 return ret;
8575 }
8576
8577 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8578 {
8579 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8580 }
8581
8582 #undef for_each_intel_crtc_masked
8583
8584 static void intel_set_config_free(struct intel_set_config *config)
8585 {
8586 if (!config)
8587 return;
8588
8589 kfree(config->save_connector_encoders);
8590 kfree(config->save_encoder_crtcs);
8591 kfree(config);
8592 }
8593
8594 static int intel_set_config_save_state(struct drm_device *dev,
8595 struct intel_set_config *config)
8596 {
8597 struct drm_encoder *encoder;
8598 struct drm_connector *connector;
8599 int count;
8600
8601 config->save_encoder_crtcs =
8602 kcalloc(dev->mode_config.num_encoder,
8603 sizeof(struct drm_crtc *), GFP_KERNEL);
8604 if (!config->save_encoder_crtcs)
8605 return -ENOMEM;
8606
8607 config->save_connector_encoders =
8608 kcalloc(dev->mode_config.num_connector,
8609 sizeof(struct drm_encoder *), GFP_KERNEL);
8610 if (!config->save_connector_encoders)
8611 return -ENOMEM;
8612
8613 /* Copy data. Note that driver private data is not affected.
8614 * Should anything bad happen only the expected state is
8615 * restored, not the drivers personal bookkeeping.
8616 */
8617 count = 0;
8618 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8619 config->save_encoder_crtcs[count++] = encoder->crtc;
8620 }
8621
8622 count = 0;
8623 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8624 config->save_connector_encoders[count++] = connector->encoder;
8625 }
8626
8627 return 0;
8628 }
8629
8630 static void intel_set_config_restore_state(struct drm_device *dev,
8631 struct intel_set_config *config)
8632 {
8633 struct intel_encoder *encoder;
8634 struct intel_connector *connector;
8635 int count;
8636
8637 count = 0;
8638 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8639 encoder->new_crtc =
8640 to_intel_crtc(config->save_encoder_crtcs[count++]);
8641 }
8642
8643 count = 0;
8644 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8645 connector->new_encoder =
8646 to_intel_encoder(config->save_connector_encoders[count++]);
8647 }
8648 }
8649
8650 static bool
8651 is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
8652 int num_connectors)
8653 {
8654 int i;
8655
8656 for (i = 0; i < num_connectors; i++)
8657 if (connectors[i].encoder &&
8658 connectors[i].encoder->crtc == crtc &&
8659 connectors[i].dpms != DRM_MODE_DPMS_ON)
8660 return true;
8661
8662 return false;
8663 }
8664
8665 static void
8666 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8667 struct intel_set_config *config)
8668 {
8669
8670 /* We should be able to check here if the fb has the same properties
8671 * and then just flip_or_move it */
8672 if (set->connectors != NULL &&
8673 is_crtc_connector_off(set->crtc, *set->connectors,
8674 set->num_connectors)) {
8675 config->mode_changed = true;
8676 } else if (set->crtc->fb != set->fb) {
8677 /* If we have no fb then treat it as a full mode set */
8678 if (set->crtc->fb == NULL) {
8679 struct intel_crtc *intel_crtc =
8680 to_intel_crtc(set->crtc);
8681
8682 if (intel_crtc->active && i915_fastboot) {
8683 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8684 config->fb_changed = true;
8685 } else {
8686 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8687 config->mode_changed = true;
8688 }
8689 } else if (set->fb == NULL) {
8690 config->mode_changed = true;
8691 } else if (set->fb->pixel_format !=
8692 set->crtc->fb->pixel_format) {
8693 config->mode_changed = true;
8694 } else {
8695 config->fb_changed = true;
8696 }
8697 }
8698
8699 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8700 config->fb_changed = true;
8701
8702 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8703 DRM_DEBUG_KMS("modes are different, full mode set\n");
8704 drm_mode_debug_printmodeline(&set->crtc->mode);
8705 drm_mode_debug_printmodeline(set->mode);
8706 config->mode_changed = true;
8707 }
8708 }
8709
8710 static int
8711 intel_modeset_stage_output_state(struct drm_device *dev,
8712 struct drm_mode_set *set,
8713 struct intel_set_config *config)
8714 {
8715 struct drm_crtc *new_crtc;
8716 struct intel_connector *connector;
8717 struct intel_encoder *encoder;
8718 int count, ro;
8719
8720 /* The upper layers ensure that we either disable a crtc or have a list
8721 * of connectors. For paranoia, double-check this. */
8722 WARN_ON(!set->fb && (set->num_connectors != 0));
8723 WARN_ON(set->fb && (set->num_connectors == 0));
8724
8725 count = 0;
8726 list_for_each_entry(connector, &dev->mode_config.connector_list,
8727 base.head) {
8728 /* Otherwise traverse passed in connector list and get encoders
8729 * for them. */
8730 for (ro = 0; ro < set->num_connectors; ro++) {
8731 if (set->connectors[ro] == &connector->base) {
8732 connector->new_encoder = connector->encoder;
8733 break;
8734 }
8735 }
8736
8737 /* If we disable the crtc, disable all its connectors. Also, if
8738 * the connector is on the changing crtc but not on the new
8739 * connector list, disable it. */
8740 if ((!set->fb || ro == set->num_connectors) &&
8741 connector->base.encoder &&
8742 connector->base.encoder->crtc == set->crtc) {
8743 connector->new_encoder = NULL;
8744
8745 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8746 connector->base.base.id,
8747 drm_get_connector_name(&connector->base));
8748 }
8749
8750
8751 if (&connector->new_encoder->base != connector->base.encoder) {
8752 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8753 config->mode_changed = true;
8754 }
8755 }
8756 /* connector->new_encoder is now updated for all connectors. */
8757
8758 /* Update crtc of enabled connectors. */
8759 count = 0;
8760 list_for_each_entry(connector, &dev->mode_config.connector_list,
8761 base.head) {
8762 if (!connector->new_encoder)
8763 continue;
8764
8765 new_crtc = connector->new_encoder->base.crtc;
8766
8767 for (ro = 0; ro < set->num_connectors; ro++) {
8768 if (set->connectors[ro] == &connector->base)
8769 new_crtc = set->crtc;
8770 }
8771
8772 /* Make sure the new CRTC will work with the encoder */
8773 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8774 new_crtc)) {
8775 return -EINVAL;
8776 }
8777 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8778
8779 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8780 connector->base.base.id,
8781 drm_get_connector_name(&connector->base),
8782 new_crtc->base.id);
8783 }
8784
8785 /* Check for any encoders that needs to be disabled. */
8786 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8787 base.head) {
8788 list_for_each_entry(connector,
8789 &dev->mode_config.connector_list,
8790 base.head) {
8791 if (connector->new_encoder == encoder) {
8792 WARN_ON(!connector->new_encoder->new_crtc);
8793
8794 goto next_encoder;
8795 }
8796 }
8797 encoder->new_crtc = NULL;
8798 next_encoder:
8799 /* Only now check for crtc changes so we don't miss encoders
8800 * that will be disabled. */
8801 if (&encoder->new_crtc->base != encoder->base.crtc) {
8802 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8803 config->mode_changed = true;
8804 }
8805 }
8806 /* Now we've also updated encoder->new_crtc for all encoders. */
8807
8808 return 0;
8809 }
8810
8811 static int intel_crtc_set_config(struct drm_mode_set *set)
8812 {
8813 struct drm_device *dev;
8814 struct drm_mode_set save_set;
8815 struct intel_set_config *config;
8816 int ret;
8817
8818 BUG_ON(!set);
8819 BUG_ON(!set->crtc);
8820 BUG_ON(!set->crtc->helper_private);
8821
8822 /* Enforce sane interface api - has been abused by the fb helper. */
8823 BUG_ON(!set->mode && set->fb);
8824 BUG_ON(set->fb && set->num_connectors == 0);
8825
8826 if (set->fb) {
8827 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8828 set->crtc->base.id, set->fb->base.id,
8829 (int)set->num_connectors, set->x, set->y);
8830 } else {
8831 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8832 }
8833
8834 dev = set->crtc->dev;
8835
8836 ret = -ENOMEM;
8837 config = kzalloc(sizeof(*config), GFP_KERNEL);
8838 if (!config)
8839 goto out_config;
8840
8841 ret = intel_set_config_save_state(dev, config);
8842 if (ret)
8843 goto out_config;
8844
8845 save_set.crtc = set->crtc;
8846 save_set.mode = &set->crtc->mode;
8847 save_set.x = set->crtc->x;
8848 save_set.y = set->crtc->y;
8849 save_set.fb = set->crtc->fb;
8850
8851 /* Compute whether we need a full modeset, only an fb base update or no
8852 * change at all. In the future we might also check whether only the
8853 * mode changed, e.g. for LVDS where we only change the panel fitter in
8854 * such cases. */
8855 intel_set_config_compute_mode_changes(set, config);
8856
8857 ret = intel_modeset_stage_output_state(dev, set, config);
8858 if (ret)
8859 goto fail;
8860
8861 if (config->mode_changed) {
8862 ret = intel_set_mode(set->crtc, set->mode,
8863 set->x, set->y, set->fb);
8864 } else if (config->fb_changed) {
8865 intel_crtc_wait_for_pending_flips(set->crtc);
8866
8867 ret = intel_pipe_set_base(set->crtc,
8868 set->x, set->y, set->fb);
8869 }
8870
8871 if (ret) {
8872 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
8873 set->crtc->base.id, ret);
8874 fail:
8875 intel_set_config_restore_state(dev, config);
8876
8877 /* Try to restore the config */
8878 if (config->mode_changed &&
8879 intel_set_mode(save_set.crtc, save_set.mode,
8880 save_set.x, save_set.y, save_set.fb))
8881 DRM_ERROR("failed to restore config after modeset failure\n");
8882 }
8883
8884 out_config:
8885 intel_set_config_free(config);
8886 return ret;
8887 }
8888
8889 static const struct drm_crtc_funcs intel_crtc_funcs = {
8890 .cursor_set = intel_crtc_cursor_set,
8891 .cursor_move = intel_crtc_cursor_move,
8892 .gamma_set = intel_crtc_gamma_set,
8893 .set_config = intel_crtc_set_config,
8894 .destroy = intel_crtc_destroy,
8895 .page_flip = intel_crtc_page_flip,
8896 };
8897
8898 static void intel_cpu_pll_init(struct drm_device *dev)
8899 {
8900 if (HAS_DDI(dev))
8901 intel_ddi_pll_init(dev);
8902 }
8903
8904 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
8905 struct intel_shared_dpll *pll,
8906 struct intel_dpll_hw_state *hw_state)
8907 {
8908 uint32_t val;
8909
8910 val = I915_READ(PCH_DPLL(pll->id));
8911 hw_state->dpll = val;
8912 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
8913 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
8914
8915 return val & DPLL_VCO_ENABLE;
8916 }
8917
8918 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
8919 struct intel_shared_dpll *pll)
8920 {
8921 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
8922 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
8923 }
8924
8925 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
8926 struct intel_shared_dpll *pll)
8927 {
8928 /* PCH refclock must be enabled first */
8929 assert_pch_refclk_enabled(dev_priv);
8930
8931 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8932
8933 /* Wait for the clocks to stabilize. */
8934 POSTING_READ(PCH_DPLL(pll->id));
8935 udelay(150);
8936
8937 /* The pixel multiplier can only be updated once the
8938 * DPLL is enabled and the clocks are stable.
8939 *
8940 * So write it again.
8941 */
8942 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8943 POSTING_READ(PCH_DPLL(pll->id));
8944 udelay(200);
8945 }
8946
8947 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
8948 struct intel_shared_dpll *pll)
8949 {
8950 struct drm_device *dev = dev_priv->dev;
8951 struct intel_crtc *crtc;
8952
8953 /* Make sure no transcoder isn't still depending on us. */
8954 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
8955 if (intel_crtc_to_shared_dpll(crtc) == pll)
8956 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
8957 }
8958
8959 I915_WRITE(PCH_DPLL(pll->id), 0);
8960 POSTING_READ(PCH_DPLL(pll->id));
8961 udelay(200);
8962 }
8963
8964 static char *ibx_pch_dpll_names[] = {
8965 "PCH DPLL A",
8966 "PCH DPLL B",
8967 };
8968
8969 static void ibx_pch_dpll_init(struct drm_device *dev)
8970 {
8971 struct drm_i915_private *dev_priv = dev->dev_private;
8972 int i;
8973
8974 dev_priv->num_shared_dpll = 2;
8975
8976 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8977 dev_priv->shared_dplls[i].id = i;
8978 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
8979 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
8980 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
8981 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
8982 dev_priv->shared_dplls[i].get_hw_state =
8983 ibx_pch_dpll_get_hw_state;
8984 }
8985 }
8986
8987 static void intel_shared_dpll_init(struct drm_device *dev)
8988 {
8989 struct drm_i915_private *dev_priv = dev->dev_private;
8990
8991 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8992 ibx_pch_dpll_init(dev);
8993 else
8994 dev_priv->num_shared_dpll = 0;
8995
8996 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
8997 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
8998 dev_priv->num_shared_dpll);
8999 }
9000
9001 static void intel_crtc_init(struct drm_device *dev, int pipe)
9002 {
9003 drm_i915_private_t *dev_priv = dev->dev_private;
9004 struct intel_crtc *intel_crtc;
9005 int i;
9006
9007 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9008 if (intel_crtc == NULL)
9009 return;
9010
9011 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9012
9013 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9014 for (i = 0; i < 256; i++) {
9015 intel_crtc->lut_r[i] = i;
9016 intel_crtc->lut_g[i] = i;
9017 intel_crtc->lut_b[i] = i;
9018 }
9019
9020 /* Swap pipes & planes for FBC on pre-965 */
9021 intel_crtc->pipe = pipe;
9022 intel_crtc->plane = pipe;
9023 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9024 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9025 intel_crtc->plane = !pipe;
9026 }
9027
9028 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9029 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9030 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9031 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9032
9033 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9034 }
9035
9036 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9037 struct drm_file *file)
9038 {
9039 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9040 struct drm_mode_object *drmmode_obj;
9041 struct intel_crtc *crtc;
9042
9043 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9044 return -ENODEV;
9045
9046 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9047 DRM_MODE_OBJECT_CRTC);
9048
9049 if (!drmmode_obj) {
9050 DRM_ERROR("no such CRTC id\n");
9051 return -EINVAL;
9052 }
9053
9054 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9055 pipe_from_crtc_id->pipe = crtc->pipe;
9056
9057 return 0;
9058 }
9059
9060 static int intel_encoder_clones(struct intel_encoder *encoder)
9061 {
9062 struct drm_device *dev = encoder->base.dev;
9063 struct intel_encoder *source_encoder;
9064 int index_mask = 0;
9065 int entry = 0;
9066
9067 list_for_each_entry(source_encoder,
9068 &dev->mode_config.encoder_list, base.head) {
9069
9070 if (encoder == source_encoder)
9071 index_mask |= (1 << entry);
9072
9073 /* Intel hw has only one MUX where enocoders could be cloned. */
9074 if (encoder->cloneable && source_encoder->cloneable)
9075 index_mask |= (1 << entry);
9076
9077 entry++;
9078 }
9079
9080 return index_mask;
9081 }
9082
9083 static bool has_edp_a(struct drm_device *dev)
9084 {
9085 struct drm_i915_private *dev_priv = dev->dev_private;
9086
9087 if (!IS_MOBILE(dev))
9088 return false;
9089
9090 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9091 return false;
9092
9093 if (IS_GEN5(dev) &&
9094 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9095 return false;
9096
9097 return true;
9098 }
9099
9100 static void intel_setup_outputs(struct drm_device *dev)
9101 {
9102 struct drm_i915_private *dev_priv = dev->dev_private;
9103 struct intel_encoder *encoder;
9104 bool dpd_is_edp = false;
9105
9106 intel_lvds_init(dev);
9107
9108 if (!IS_ULT(dev))
9109 intel_crt_init(dev);
9110
9111 if (HAS_DDI(dev)) {
9112 int found;
9113
9114 /* Haswell uses DDI functions to detect digital outputs */
9115 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9116 /* DDI A only supports eDP */
9117 if (found)
9118 intel_ddi_init(dev, PORT_A);
9119
9120 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9121 * register */
9122 found = I915_READ(SFUSE_STRAP);
9123
9124 if (found & SFUSE_STRAP_DDIB_DETECTED)
9125 intel_ddi_init(dev, PORT_B);
9126 if (found & SFUSE_STRAP_DDIC_DETECTED)
9127 intel_ddi_init(dev, PORT_C);
9128 if (found & SFUSE_STRAP_DDID_DETECTED)
9129 intel_ddi_init(dev, PORT_D);
9130 } else if (HAS_PCH_SPLIT(dev)) {
9131 int found;
9132 dpd_is_edp = intel_dpd_is_edp(dev);
9133
9134 if (has_edp_a(dev))
9135 intel_dp_init(dev, DP_A, PORT_A);
9136
9137 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9138 /* PCH SDVOB multiplex with HDMIB */
9139 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9140 if (!found)
9141 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9142 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9143 intel_dp_init(dev, PCH_DP_B, PORT_B);
9144 }
9145
9146 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9147 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9148
9149 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9150 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9151
9152 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9153 intel_dp_init(dev, PCH_DP_C, PORT_C);
9154
9155 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9156 intel_dp_init(dev, PCH_DP_D, PORT_D);
9157 } else if (IS_VALLEYVIEW(dev)) {
9158 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9159 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9160 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9161
9162 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9163 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9164 PORT_B);
9165 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9166 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9167 }
9168 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9169 bool found = false;
9170
9171 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9172 DRM_DEBUG_KMS("probing SDVOB\n");
9173 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9174 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9175 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9176 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9177 }
9178
9179 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9180 intel_dp_init(dev, DP_B, PORT_B);
9181 }
9182
9183 /* Before G4X SDVOC doesn't have its own detect register */
9184
9185 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9186 DRM_DEBUG_KMS("probing SDVOC\n");
9187 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9188 }
9189
9190 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9191
9192 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9193 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9194 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9195 }
9196 if (SUPPORTS_INTEGRATED_DP(dev))
9197 intel_dp_init(dev, DP_C, PORT_C);
9198 }
9199
9200 if (SUPPORTS_INTEGRATED_DP(dev) &&
9201 (I915_READ(DP_D) & DP_DETECTED))
9202 intel_dp_init(dev, DP_D, PORT_D);
9203 } else if (IS_GEN2(dev))
9204 intel_dvo_init(dev);
9205
9206 if (SUPPORTS_TV(dev))
9207 intel_tv_init(dev);
9208
9209 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9210 encoder->base.possible_crtcs = encoder->crtc_mask;
9211 encoder->base.possible_clones =
9212 intel_encoder_clones(encoder);
9213 }
9214
9215 intel_init_pch_refclk(dev);
9216
9217 drm_helper_move_panel_connectors_to_head(dev);
9218 }
9219
9220 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9221 {
9222 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9223
9224 drm_framebuffer_cleanup(fb);
9225 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9226
9227 kfree(intel_fb);
9228 }
9229
9230 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9231 struct drm_file *file,
9232 unsigned int *handle)
9233 {
9234 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9235 struct drm_i915_gem_object *obj = intel_fb->obj;
9236
9237 return drm_gem_handle_create(file, &obj->base, handle);
9238 }
9239
9240 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9241 .destroy = intel_user_framebuffer_destroy,
9242 .create_handle = intel_user_framebuffer_create_handle,
9243 };
9244
9245 int intel_framebuffer_init(struct drm_device *dev,
9246 struct intel_framebuffer *intel_fb,
9247 struct drm_mode_fb_cmd2 *mode_cmd,
9248 struct drm_i915_gem_object *obj)
9249 {
9250 int pitch_limit;
9251 int ret;
9252
9253 if (obj->tiling_mode == I915_TILING_Y) {
9254 DRM_DEBUG("hardware does not support tiling Y\n");
9255 return -EINVAL;
9256 }
9257
9258 if (mode_cmd->pitches[0] & 63) {
9259 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9260 mode_cmd->pitches[0]);
9261 return -EINVAL;
9262 }
9263
9264 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9265 pitch_limit = 32*1024;
9266 } else if (INTEL_INFO(dev)->gen >= 4) {
9267 if (obj->tiling_mode)
9268 pitch_limit = 16*1024;
9269 else
9270 pitch_limit = 32*1024;
9271 } else if (INTEL_INFO(dev)->gen >= 3) {
9272 if (obj->tiling_mode)
9273 pitch_limit = 8*1024;
9274 else
9275 pitch_limit = 16*1024;
9276 } else
9277 /* XXX DSPC is limited to 4k tiled */
9278 pitch_limit = 8*1024;
9279
9280 if (mode_cmd->pitches[0] > pitch_limit) {
9281 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9282 obj->tiling_mode ? "tiled" : "linear",
9283 mode_cmd->pitches[0], pitch_limit);
9284 return -EINVAL;
9285 }
9286
9287 if (obj->tiling_mode != I915_TILING_NONE &&
9288 mode_cmd->pitches[0] != obj->stride) {
9289 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9290 mode_cmd->pitches[0], obj->stride);
9291 return -EINVAL;
9292 }
9293
9294 /* Reject formats not supported by any plane early. */
9295 switch (mode_cmd->pixel_format) {
9296 case DRM_FORMAT_C8:
9297 case DRM_FORMAT_RGB565:
9298 case DRM_FORMAT_XRGB8888:
9299 case DRM_FORMAT_ARGB8888:
9300 break;
9301 case DRM_FORMAT_XRGB1555:
9302 case DRM_FORMAT_ARGB1555:
9303 if (INTEL_INFO(dev)->gen > 3) {
9304 DRM_DEBUG("unsupported pixel format: %s\n",
9305 drm_get_format_name(mode_cmd->pixel_format));
9306 return -EINVAL;
9307 }
9308 break;
9309 case DRM_FORMAT_XBGR8888:
9310 case DRM_FORMAT_ABGR8888:
9311 case DRM_FORMAT_XRGB2101010:
9312 case DRM_FORMAT_ARGB2101010:
9313 case DRM_FORMAT_XBGR2101010:
9314 case DRM_FORMAT_ABGR2101010:
9315 if (INTEL_INFO(dev)->gen < 4) {
9316 DRM_DEBUG("unsupported pixel format: %s\n",
9317 drm_get_format_name(mode_cmd->pixel_format));
9318 return -EINVAL;
9319 }
9320 break;
9321 case DRM_FORMAT_YUYV:
9322 case DRM_FORMAT_UYVY:
9323 case DRM_FORMAT_YVYU:
9324 case DRM_FORMAT_VYUY:
9325 if (INTEL_INFO(dev)->gen < 5) {
9326 DRM_DEBUG("unsupported pixel format: %s\n",
9327 drm_get_format_name(mode_cmd->pixel_format));
9328 return -EINVAL;
9329 }
9330 break;
9331 default:
9332 DRM_DEBUG("unsupported pixel format: %s\n",
9333 drm_get_format_name(mode_cmd->pixel_format));
9334 return -EINVAL;
9335 }
9336
9337 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9338 if (mode_cmd->offsets[0] != 0)
9339 return -EINVAL;
9340
9341 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9342 intel_fb->obj = obj;
9343
9344 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9345 if (ret) {
9346 DRM_ERROR("framebuffer init failed %d\n", ret);
9347 return ret;
9348 }
9349
9350 return 0;
9351 }
9352
9353 static struct drm_framebuffer *
9354 intel_user_framebuffer_create(struct drm_device *dev,
9355 struct drm_file *filp,
9356 struct drm_mode_fb_cmd2 *mode_cmd)
9357 {
9358 struct drm_i915_gem_object *obj;
9359
9360 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9361 mode_cmd->handles[0]));
9362 if (&obj->base == NULL)
9363 return ERR_PTR(-ENOENT);
9364
9365 return intel_framebuffer_create(dev, mode_cmd, obj);
9366 }
9367
9368 static const struct drm_mode_config_funcs intel_mode_funcs = {
9369 .fb_create = intel_user_framebuffer_create,
9370 .output_poll_changed = intel_fb_output_poll_changed,
9371 };
9372
9373 /* Set up chip specific display functions */
9374 static void intel_init_display(struct drm_device *dev)
9375 {
9376 struct drm_i915_private *dev_priv = dev->dev_private;
9377
9378 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9379 dev_priv->display.find_dpll = g4x_find_best_dpll;
9380 else if (IS_VALLEYVIEW(dev))
9381 dev_priv->display.find_dpll = vlv_find_best_dpll;
9382 else if (IS_PINEVIEW(dev))
9383 dev_priv->display.find_dpll = pnv_find_best_dpll;
9384 else
9385 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9386
9387 if (HAS_DDI(dev)) {
9388 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9389 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9390 dev_priv->display.crtc_enable = haswell_crtc_enable;
9391 dev_priv->display.crtc_disable = haswell_crtc_disable;
9392 dev_priv->display.off = haswell_crtc_off;
9393 dev_priv->display.update_plane = ironlake_update_plane;
9394 } else if (HAS_PCH_SPLIT(dev)) {
9395 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9396 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9397 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9398 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9399 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9400 dev_priv->display.off = ironlake_crtc_off;
9401 dev_priv->display.update_plane = ironlake_update_plane;
9402 } else if (IS_VALLEYVIEW(dev)) {
9403 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9404 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9405 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9406 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9407 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9408 dev_priv->display.off = i9xx_crtc_off;
9409 dev_priv->display.update_plane = i9xx_update_plane;
9410 } else {
9411 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9412 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9413 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9414 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9415 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9416 dev_priv->display.off = i9xx_crtc_off;
9417 dev_priv->display.update_plane = i9xx_update_plane;
9418 }
9419
9420 /* Returns the core display clock speed */
9421 if (IS_VALLEYVIEW(dev))
9422 dev_priv->display.get_display_clock_speed =
9423 valleyview_get_display_clock_speed;
9424 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9425 dev_priv->display.get_display_clock_speed =
9426 i945_get_display_clock_speed;
9427 else if (IS_I915G(dev))
9428 dev_priv->display.get_display_clock_speed =
9429 i915_get_display_clock_speed;
9430 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9431 dev_priv->display.get_display_clock_speed =
9432 i9xx_misc_get_display_clock_speed;
9433 else if (IS_I915GM(dev))
9434 dev_priv->display.get_display_clock_speed =
9435 i915gm_get_display_clock_speed;
9436 else if (IS_I865G(dev))
9437 dev_priv->display.get_display_clock_speed =
9438 i865_get_display_clock_speed;
9439 else if (IS_I85X(dev))
9440 dev_priv->display.get_display_clock_speed =
9441 i855_get_display_clock_speed;
9442 else /* 852, 830 */
9443 dev_priv->display.get_display_clock_speed =
9444 i830_get_display_clock_speed;
9445
9446 if (HAS_PCH_SPLIT(dev)) {
9447 if (IS_GEN5(dev)) {
9448 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9449 dev_priv->display.write_eld = ironlake_write_eld;
9450 } else if (IS_GEN6(dev)) {
9451 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9452 dev_priv->display.write_eld = ironlake_write_eld;
9453 } else if (IS_IVYBRIDGE(dev)) {
9454 /* FIXME: detect B0+ stepping and use auto training */
9455 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9456 dev_priv->display.write_eld = ironlake_write_eld;
9457 dev_priv->display.modeset_global_resources =
9458 ivb_modeset_global_resources;
9459 } else if (IS_HASWELL(dev)) {
9460 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9461 dev_priv->display.write_eld = haswell_write_eld;
9462 dev_priv->display.modeset_global_resources =
9463 haswell_modeset_global_resources;
9464 }
9465 } else if (IS_G4X(dev)) {
9466 dev_priv->display.write_eld = g4x_write_eld;
9467 }
9468
9469 /* Default just returns -ENODEV to indicate unsupported */
9470 dev_priv->display.queue_flip = intel_default_queue_flip;
9471
9472 switch (INTEL_INFO(dev)->gen) {
9473 case 2:
9474 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9475 break;
9476
9477 case 3:
9478 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9479 break;
9480
9481 case 4:
9482 case 5:
9483 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9484 break;
9485
9486 case 6:
9487 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9488 break;
9489 case 7:
9490 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9491 break;
9492 }
9493 }
9494
9495 /*
9496 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9497 * resume, or other times. This quirk makes sure that's the case for
9498 * affected systems.
9499 */
9500 static void quirk_pipea_force(struct drm_device *dev)
9501 {
9502 struct drm_i915_private *dev_priv = dev->dev_private;
9503
9504 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9505 DRM_INFO("applying pipe a force quirk\n");
9506 }
9507
9508 /*
9509 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9510 */
9511 static void quirk_ssc_force_disable(struct drm_device *dev)
9512 {
9513 struct drm_i915_private *dev_priv = dev->dev_private;
9514 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9515 DRM_INFO("applying lvds SSC disable quirk\n");
9516 }
9517
9518 /*
9519 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9520 * brightness value
9521 */
9522 static void quirk_invert_brightness(struct drm_device *dev)
9523 {
9524 struct drm_i915_private *dev_priv = dev->dev_private;
9525 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9526 DRM_INFO("applying inverted panel brightness quirk\n");
9527 }
9528
9529 struct intel_quirk {
9530 int device;
9531 int subsystem_vendor;
9532 int subsystem_device;
9533 void (*hook)(struct drm_device *dev);
9534 };
9535
9536 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9537 struct intel_dmi_quirk {
9538 void (*hook)(struct drm_device *dev);
9539 const struct dmi_system_id (*dmi_id_list)[];
9540 };
9541
9542 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9543 {
9544 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9545 return 1;
9546 }
9547
9548 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9549 {
9550 .dmi_id_list = &(const struct dmi_system_id[]) {
9551 {
9552 .callback = intel_dmi_reverse_brightness,
9553 .ident = "NCR Corporation",
9554 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9555 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9556 },
9557 },
9558 { } /* terminating entry */
9559 },
9560 .hook = quirk_invert_brightness,
9561 },
9562 };
9563
9564 static struct intel_quirk intel_quirks[] = {
9565 /* HP Mini needs pipe A force quirk (LP: #322104) */
9566 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9567
9568 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9569 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9570
9571 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9572 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9573
9574 /* 830/845 need to leave pipe A & dpll A up */
9575 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9576 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9577
9578 /* Lenovo U160 cannot use SSC on LVDS */
9579 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9580
9581 /* Sony Vaio Y cannot use SSC on LVDS */
9582 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9583
9584 /* Acer Aspire 5734Z must invert backlight brightness */
9585 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9586
9587 /* Acer/eMachines G725 */
9588 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9589
9590 /* Acer/eMachines e725 */
9591 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9592
9593 /* Acer/Packard Bell NCL20 */
9594 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9595
9596 /* Acer Aspire 4736Z */
9597 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9598 };
9599
9600 static void intel_init_quirks(struct drm_device *dev)
9601 {
9602 struct pci_dev *d = dev->pdev;
9603 int i;
9604
9605 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9606 struct intel_quirk *q = &intel_quirks[i];
9607
9608 if (d->device == q->device &&
9609 (d->subsystem_vendor == q->subsystem_vendor ||
9610 q->subsystem_vendor == PCI_ANY_ID) &&
9611 (d->subsystem_device == q->subsystem_device ||
9612 q->subsystem_device == PCI_ANY_ID))
9613 q->hook(dev);
9614 }
9615 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9616 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9617 intel_dmi_quirks[i].hook(dev);
9618 }
9619 }
9620
9621 /* Disable the VGA plane that we never use */
9622 static void i915_disable_vga(struct drm_device *dev)
9623 {
9624 struct drm_i915_private *dev_priv = dev->dev_private;
9625 u8 sr1;
9626 u32 vga_reg = i915_vgacntrl_reg(dev);
9627
9628 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9629 outb(SR01, VGA_SR_INDEX);
9630 sr1 = inb(VGA_SR_DATA);
9631 outb(sr1 | 1<<5, VGA_SR_DATA);
9632 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9633 udelay(300);
9634
9635 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9636 POSTING_READ(vga_reg);
9637 }
9638
9639 void intel_modeset_init_hw(struct drm_device *dev)
9640 {
9641 intel_init_power_well(dev);
9642
9643 intel_prepare_ddi(dev);
9644
9645 intel_init_clock_gating(dev);
9646
9647 mutex_lock(&dev->struct_mutex);
9648 intel_enable_gt_powersave(dev);
9649 mutex_unlock(&dev->struct_mutex);
9650 }
9651
9652 void intel_modeset_suspend_hw(struct drm_device *dev)
9653 {
9654 intel_suspend_hw(dev);
9655 }
9656
9657 void intel_modeset_init(struct drm_device *dev)
9658 {
9659 struct drm_i915_private *dev_priv = dev->dev_private;
9660 int i, j, ret;
9661
9662 drm_mode_config_init(dev);
9663
9664 dev->mode_config.min_width = 0;
9665 dev->mode_config.min_height = 0;
9666
9667 dev->mode_config.preferred_depth = 24;
9668 dev->mode_config.prefer_shadow = 1;
9669
9670 dev->mode_config.funcs = &intel_mode_funcs;
9671
9672 intel_init_quirks(dev);
9673
9674 intel_init_pm(dev);
9675
9676 if (INTEL_INFO(dev)->num_pipes == 0)
9677 return;
9678
9679 intel_init_display(dev);
9680
9681 if (IS_GEN2(dev)) {
9682 dev->mode_config.max_width = 2048;
9683 dev->mode_config.max_height = 2048;
9684 } else if (IS_GEN3(dev)) {
9685 dev->mode_config.max_width = 4096;
9686 dev->mode_config.max_height = 4096;
9687 } else {
9688 dev->mode_config.max_width = 8192;
9689 dev->mode_config.max_height = 8192;
9690 }
9691 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9692
9693 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9694 INTEL_INFO(dev)->num_pipes,
9695 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9696
9697 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9698 intel_crtc_init(dev, i);
9699 for (j = 0; j < dev_priv->num_plane; j++) {
9700 ret = intel_plane_init(dev, i, j);
9701 if (ret)
9702 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9703 pipe_name(i), sprite_name(i, j), ret);
9704 }
9705 }
9706
9707 intel_cpu_pll_init(dev);
9708 intel_shared_dpll_init(dev);
9709
9710 /* Just disable it once at startup */
9711 i915_disable_vga(dev);
9712 intel_setup_outputs(dev);
9713
9714 /* Just in case the BIOS is doing something questionable. */
9715 intel_disable_fbc(dev);
9716 }
9717
9718 static void
9719 intel_connector_break_all_links(struct intel_connector *connector)
9720 {
9721 connector->base.dpms = DRM_MODE_DPMS_OFF;
9722 connector->base.encoder = NULL;
9723 connector->encoder->connectors_active = false;
9724 connector->encoder->base.crtc = NULL;
9725 }
9726
9727 static void intel_enable_pipe_a(struct drm_device *dev)
9728 {
9729 struct intel_connector *connector;
9730 struct drm_connector *crt = NULL;
9731 struct intel_load_detect_pipe load_detect_temp;
9732
9733 /* We can't just switch on the pipe A, we need to set things up with a
9734 * proper mode and output configuration. As a gross hack, enable pipe A
9735 * by enabling the load detect pipe once. */
9736 list_for_each_entry(connector,
9737 &dev->mode_config.connector_list,
9738 base.head) {
9739 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9740 crt = &connector->base;
9741 break;
9742 }
9743 }
9744
9745 if (!crt)
9746 return;
9747
9748 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9749 intel_release_load_detect_pipe(crt, &load_detect_temp);
9750
9751
9752 }
9753
9754 static bool
9755 intel_check_plane_mapping(struct intel_crtc *crtc)
9756 {
9757 struct drm_device *dev = crtc->base.dev;
9758 struct drm_i915_private *dev_priv = dev->dev_private;
9759 u32 reg, val;
9760
9761 if (INTEL_INFO(dev)->num_pipes == 1)
9762 return true;
9763
9764 reg = DSPCNTR(!crtc->plane);
9765 val = I915_READ(reg);
9766
9767 if ((val & DISPLAY_PLANE_ENABLE) &&
9768 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9769 return false;
9770
9771 return true;
9772 }
9773
9774 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9775 {
9776 struct drm_device *dev = crtc->base.dev;
9777 struct drm_i915_private *dev_priv = dev->dev_private;
9778 u32 reg;
9779
9780 /* Clear any frame start delays used for debugging left by the BIOS */
9781 reg = PIPECONF(crtc->config.cpu_transcoder);
9782 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9783
9784 /* We need to sanitize the plane -> pipe mapping first because this will
9785 * disable the crtc (and hence change the state) if it is wrong. Note
9786 * that gen4+ has a fixed plane -> pipe mapping. */
9787 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9788 struct intel_connector *connector;
9789 bool plane;
9790
9791 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9792 crtc->base.base.id);
9793
9794 /* Pipe has the wrong plane attached and the plane is active.
9795 * Temporarily change the plane mapping and disable everything
9796 * ... */
9797 plane = crtc->plane;
9798 crtc->plane = !plane;
9799 dev_priv->display.crtc_disable(&crtc->base);
9800 crtc->plane = plane;
9801
9802 /* ... and break all links. */
9803 list_for_each_entry(connector, &dev->mode_config.connector_list,
9804 base.head) {
9805 if (connector->encoder->base.crtc != &crtc->base)
9806 continue;
9807
9808 intel_connector_break_all_links(connector);
9809 }
9810
9811 WARN_ON(crtc->active);
9812 crtc->base.enabled = false;
9813 }
9814
9815 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9816 crtc->pipe == PIPE_A && !crtc->active) {
9817 /* BIOS forgot to enable pipe A, this mostly happens after
9818 * resume. Force-enable the pipe to fix this, the update_dpms
9819 * call below we restore the pipe to the right state, but leave
9820 * the required bits on. */
9821 intel_enable_pipe_a(dev);
9822 }
9823
9824 /* Adjust the state of the output pipe according to whether we
9825 * have active connectors/encoders. */
9826 intel_crtc_update_dpms(&crtc->base);
9827
9828 if (crtc->active != crtc->base.enabled) {
9829 struct intel_encoder *encoder;
9830
9831 /* This can happen either due to bugs in the get_hw_state
9832 * functions or because the pipe is force-enabled due to the
9833 * pipe A quirk. */
9834 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9835 crtc->base.base.id,
9836 crtc->base.enabled ? "enabled" : "disabled",
9837 crtc->active ? "enabled" : "disabled");
9838
9839 crtc->base.enabled = crtc->active;
9840
9841 /* Because we only establish the connector -> encoder ->
9842 * crtc links if something is active, this means the
9843 * crtc is now deactivated. Break the links. connector
9844 * -> encoder links are only establish when things are
9845 * actually up, hence no need to break them. */
9846 WARN_ON(crtc->active);
9847
9848 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9849 WARN_ON(encoder->connectors_active);
9850 encoder->base.crtc = NULL;
9851 }
9852 }
9853 }
9854
9855 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9856 {
9857 struct intel_connector *connector;
9858 struct drm_device *dev = encoder->base.dev;
9859
9860 /* We need to check both for a crtc link (meaning that the
9861 * encoder is active and trying to read from a pipe) and the
9862 * pipe itself being active. */
9863 bool has_active_crtc = encoder->base.crtc &&
9864 to_intel_crtc(encoder->base.crtc)->active;
9865
9866 if (encoder->connectors_active && !has_active_crtc) {
9867 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9868 encoder->base.base.id,
9869 drm_get_encoder_name(&encoder->base));
9870
9871 /* Connector is active, but has no active pipe. This is
9872 * fallout from our resume register restoring. Disable
9873 * the encoder manually again. */
9874 if (encoder->base.crtc) {
9875 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9876 encoder->base.base.id,
9877 drm_get_encoder_name(&encoder->base));
9878 encoder->disable(encoder);
9879 }
9880
9881 /* Inconsistent output/port/pipe state happens presumably due to
9882 * a bug in one of the get_hw_state functions. Or someplace else
9883 * in our code, like the register restore mess on resume. Clamp
9884 * things to off as a safer default. */
9885 list_for_each_entry(connector,
9886 &dev->mode_config.connector_list,
9887 base.head) {
9888 if (connector->encoder != encoder)
9889 continue;
9890
9891 intel_connector_break_all_links(connector);
9892 }
9893 }
9894 /* Enabled encoders without active connectors will be fixed in
9895 * the crtc fixup. */
9896 }
9897
9898 void i915_redisable_vga(struct drm_device *dev)
9899 {
9900 struct drm_i915_private *dev_priv = dev->dev_private;
9901 u32 vga_reg = i915_vgacntrl_reg(dev);
9902
9903 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9904 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9905 i915_disable_vga(dev);
9906 }
9907 }
9908
9909 static void intel_modeset_readout_hw_state(struct drm_device *dev)
9910 {
9911 struct drm_i915_private *dev_priv = dev->dev_private;
9912 enum pipe pipe;
9913 struct intel_crtc *crtc;
9914 struct intel_encoder *encoder;
9915 struct intel_connector *connector;
9916 int i;
9917
9918 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9919 base.head) {
9920 memset(&crtc->config, 0, sizeof(crtc->config));
9921
9922 crtc->active = dev_priv->display.get_pipe_config(crtc,
9923 &crtc->config);
9924
9925 crtc->base.enabled = crtc->active;
9926
9927 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9928 crtc->base.base.id,
9929 crtc->active ? "enabled" : "disabled");
9930 }
9931
9932 /* FIXME: Smash this into the new shared dpll infrastructure. */
9933 if (HAS_DDI(dev))
9934 intel_ddi_setup_hw_pll_state(dev);
9935
9936 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9937 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9938
9939 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
9940 pll->active = 0;
9941 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9942 base.head) {
9943 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9944 pll->active++;
9945 }
9946 pll->refcount = pll->active;
9947
9948 DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
9949 pll->name, pll->refcount);
9950 }
9951
9952 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9953 base.head) {
9954 pipe = 0;
9955
9956 if (encoder->get_hw_state(encoder, &pipe)) {
9957 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9958 encoder->base.crtc = &crtc->base;
9959 if (encoder->get_config &&
9960 dev_priv->display.get_clock) {
9961 encoder->get_config(encoder, &crtc->config);
9962 dev_priv->display.get_clock(crtc,
9963 &crtc->config);
9964 }
9965 } else {
9966 encoder->base.crtc = NULL;
9967 }
9968
9969 encoder->connectors_active = false;
9970 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9971 encoder->base.base.id,
9972 drm_get_encoder_name(&encoder->base),
9973 encoder->base.crtc ? "enabled" : "disabled",
9974 pipe);
9975 }
9976
9977 list_for_each_entry(connector, &dev->mode_config.connector_list,
9978 base.head) {
9979 if (connector->get_hw_state(connector)) {
9980 connector->base.dpms = DRM_MODE_DPMS_ON;
9981 connector->encoder->connectors_active = true;
9982 connector->base.encoder = &connector->encoder->base;
9983 } else {
9984 connector->base.dpms = DRM_MODE_DPMS_OFF;
9985 connector->base.encoder = NULL;
9986 }
9987 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9988 connector->base.base.id,
9989 drm_get_connector_name(&connector->base),
9990 connector->base.encoder ? "enabled" : "disabled");
9991 }
9992 }
9993
9994 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9995 * and i915 state tracking structures. */
9996 void intel_modeset_setup_hw_state(struct drm_device *dev,
9997 bool force_restore)
9998 {
9999 struct drm_i915_private *dev_priv = dev->dev_private;
10000 enum pipe pipe;
10001 struct drm_plane *plane;
10002 struct intel_crtc *crtc;
10003 struct intel_encoder *encoder;
10004
10005 intel_modeset_readout_hw_state(dev);
10006
10007 /*
10008 * Now that we have the config, copy it to each CRTC struct
10009 * Note that this could go away if we move to using crtc_config
10010 * checking everywhere.
10011 */
10012 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10013 base.head) {
10014 if (crtc->active && i915_fastboot) {
10015 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10016
10017 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10018 crtc->base.base.id);
10019 drm_mode_debug_printmodeline(&crtc->base.mode);
10020 }
10021 }
10022
10023 /* HW state is read out, now we need to sanitize this mess. */
10024 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10025 base.head) {
10026 intel_sanitize_encoder(encoder);
10027 }
10028
10029 for_each_pipe(pipe) {
10030 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10031 intel_sanitize_crtc(crtc);
10032 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10033 }
10034
10035 if (force_restore) {
10036 /*
10037 * We need to use raw interfaces for restoring state to avoid
10038 * checking (bogus) intermediate states.
10039 */
10040 for_each_pipe(pipe) {
10041 struct drm_crtc *crtc =
10042 dev_priv->pipe_to_crtc_mapping[pipe];
10043
10044 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10045 crtc->fb);
10046 }
10047 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10048 intel_plane_restore(plane);
10049
10050 i915_redisable_vga(dev);
10051 } else {
10052 intel_modeset_update_staged_output_state(dev);
10053 }
10054
10055 intel_modeset_check_state(dev);
10056
10057 drm_mode_config_reset(dev);
10058 }
10059
10060 void intel_modeset_gem_init(struct drm_device *dev)
10061 {
10062 intel_modeset_init_hw(dev);
10063
10064 intel_setup_overlay(dev);
10065
10066 intel_modeset_setup_hw_state(dev, false);
10067 }
10068
10069 void intel_modeset_cleanup(struct drm_device *dev)
10070 {
10071 struct drm_i915_private *dev_priv = dev->dev_private;
10072 struct drm_crtc *crtc;
10073 struct intel_crtc *intel_crtc;
10074
10075 /*
10076 * Interrupts and polling as the first thing to avoid creating havoc.
10077 * Too much stuff here (turning of rps, connectors, ...) would
10078 * experience fancy races otherwise.
10079 */
10080 drm_irq_uninstall(dev);
10081 cancel_work_sync(&dev_priv->hotplug_work);
10082 /*
10083 * Due to the hpd irq storm handling the hotplug work can re-arm the
10084 * poll handlers. Hence disable polling after hpd handling is shut down.
10085 */
10086 drm_kms_helper_poll_fini(dev);
10087
10088 mutex_lock(&dev->struct_mutex);
10089
10090 intel_unregister_dsm_handler();
10091
10092 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10093 /* Skip inactive CRTCs */
10094 if (!crtc->fb)
10095 continue;
10096
10097 intel_crtc = to_intel_crtc(crtc);
10098 intel_increase_pllclock(crtc);
10099 }
10100
10101 intel_disable_fbc(dev);
10102
10103 intel_disable_gt_powersave(dev);
10104
10105 ironlake_teardown_rc6(dev);
10106
10107 mutex_unlock(&dev->struct_mutex);
10108
10109 /* flush any delayed tasks or pending work */
10110 flush_scheduled_work();
10111
10112 /* destroy backlight, if any, before the connectors */
10113 intel_panel_destroy_backlight(dev);
10114
10115 drm_mode_config_cleanup(dev);
10116
10117 intel_cleanup_overlay(dev);
10118 }
10119
10120 /*
10121 * Return which encoder is currently attached for connector.
10122 */
10123 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10124 {
10125 return &intel_attached_encoder(connector)->base;
10126 }
10127
10128 void intel_connector_attach_encoder(struct intel_connector *connector,
10129 struct intel_encoder *encoder)
10130 {
10131 connector->encoder = encoder;
10132 drm_mode_connector_attach_encoder(&connector->base,
10133 &encoder->base);
10134 }
10135
10136 /*
10137 * set vga decode state - true == enable VGA decode
10138 */
10139 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10140 {
10141 struct drm_i915_private *dev_priv = dev->dev_private;
10142 u16 gmch_ctrl;
10143
10144 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10145 if (state)
10146 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10147 else
10148 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10149 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10150 return 0;
10151 }
10152
10153 #ifdef CONFIG_DEBUG_FS
10154 #include <linux/seq_file.h>
10155
10156 struct intel_display_error_state {
10157
10158 u32 power_well_driver;
10159
10160 struct intel_cursor_error_state {
10161 u32 control;
10162 u32 position;
10163 u32 base;
10164 u32 size;
10165 } cursor[I915_MAX_PIPES];
10166
10167 struct intel_pipe_error_state {
10168 enum transcoder cpu_transcoder;
10169 u32 conf;
10170 u32 source;
10171
10172 u32 htotal;
10173 u32 hblank;
10174 u32 hsync;
10175 u32 vtotal;
10176 u32 vblank;
10177 u32 vsync;
10178 } pipe[I915_MAX_PIPES];
10179
10180 struct intel_plane_error_state {
10181 u32 control;
10182 u32 stride;
10183 u32 size;
10184 u32 pos;
10185 u32 addr;
10186 u32 surface;
10187 u32 tile_offset;
10188 } plane[I915_MAX_PIPES];
10189 };
10190
10191 struct intel_display_error_state *
10192 intel_display_capture_error_state(struct drm_device *dev)
10193 {
10194 drm_i915_private_t *dev_priv = dev->dev_private;
10195 struct intel_display_error_state *error;
10196 enum transcoder cpu_transcoder;
10197 int i;
10198
10199 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10200 if (error == NULL)
10201 return NULL;
10202
10203 if (HAS_POWER_WELL(dev))
10204 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10205
10206 for_each_pipe(i) {
10207 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10208 error->pipe[i].cpu_transcoder = cpu_transcoder;
10209
10210 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10211 error->cursor[i].control = I915_READ(CURCNTR(i));
10212 error->cursor[i].position = I915_READ(CURPOS(i));
10213 error->cursor[i].base = I915_READ(CURBASE(i));
10214 } else {
10215 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10216 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10217 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10218 }
10219
10220 error->plane[i].control = I915_READ(DSPCNTR(i));
10221 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10222 if (INTEL_INFO(dev)->gen <= 3) {
10223 error->plane[i].size = I915_READ(DSPSIZE(i));
10224 error->plane[i].pos = I915_READ(DSPPOS(i));
10225 }
10226 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10227 error->plane[i].addr = I915_READ(DSPADDR(i));
10228 if (INTEL_INFO(dev)->gen >= 4) {
10229 error->plane[i].surface = I915_READ(DSPSURF(i));
10230 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10231 }
10232
10233 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10234 error->pipe[i].source = I915_READ(PIPESRC(i));
10235 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10236 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10237 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10238 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10239 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10240 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10241 }
10242
10243 /* In the code above we read the registers without checking if the power
10244 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10245 * prevent the next I915_WRITE from detecting it and printing an error
10246 * message. */
10247 if (HAS_POWER_WELL(dev))
10248 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
10249
10250 return error;
10251 }
10252
10253 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10254
10255 void
10256 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10257 struct drm_device *dev,
10258 struct intel_display_error_state *error)
10259 {
10260 int i;
10261
10262 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10263 if (HAS_POWER_WELL(dev))
10264 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10265 error->power_well_driver);
10266 for_each_pipe(i) {
10267 err_printf(m, "Pipe [%d]:\n", i);
10268 err_printf(m, " CPU transcoder: %c\n",
10269 transcoder_name(error->pipe[i].cpu_transcoder));
10270 err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
10271 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10272 err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
10273 err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
10274 err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
10275 err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
10276 err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
10277 err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
10278
10279 err_printf(m, "Plane [%d]:\n", i);
10280 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10281 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10282 if (INTEL_INFO(dev)->gen <= 3) {
10283 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10284 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10285 }
10286 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10287 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10288 if (INTEL_INFO(dev)->gen >= 4) {
10289 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10290 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10291 }
10292
10293 err_printf(m, "Cursor [%d]:\n", i);
10294 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10295 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10296 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10297 }
10298 }
10299 #endif
This page took 0.255695 seconds and 5 git commands to generate.