drm/i915: make quirks more verbose
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
61 } intel_clock_t;
62
63 typedef struct {
64 int min, max;
65 } intel_range_t;
66
67 typedef struct {
68 int dot_limit;
69 int p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *match_clock,
87 intel_clock_t *best_clock);
88 static bool
89 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
90 int target, int refclk, intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
92
93 static bool
94 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static inline u32 /* units of 100MHz */
103 intel_fdi_link_freq(struct drm_device *dev)
104 {
105 if (IS_GEN5(dev)) {
106 struct drm_i915_private *dev_priv = dev->dev_private;
107 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
108 } else
109 return 27;
110 }
111
112 static const intel_limit_t intel_limits_i8xx_dvo = {
113 .dot = { .min = 25000, .max = 350000 },
114 .vco = { .min = 930000, .max = 1400000 },
115 .n = { .min = 3, .max = 16 },
116 .m = { .min = 96, .max = 140 },
117 .m1 = { .min = 18, .max = 26 },
118 .m2 = { .min = 6, .max = 16 },
119 .p = { .min = 4, .max = 128 },
120 .p1 = { .min = 2, .max = 33 },
121 .p2 = { .dot_limit = 165000,
122 .p2_slow = 4, .p2_fast = 2 },
123 .find_pll = intel_find_best_PLL,
124 };
125
126 static const intel_limit_t intel_limits_i8xx_lvds = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 1, .max = 6 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 14, .p2_fast = 7 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i9xx_sdvo = {
141 .dot = { .min = 20000, .max = 400000 },
142 .vco = { .min = 1400000, .max = 2800000 },
143 .n = { .min = 1, .max = 6 },
144 .m = { .min = 70, .max = 120 },
145 .m1 = { .min = 10, .max = 22 },
146 .m2 = { .min = 5, .max = 9 },
147 .p = { .min = 5, .max = 80 },
148 .p1 = { .min = 1, .max = 8 },
149 .p2 = { .dot_limit = 200000,
150 .p2_slow = 10, .p2_fast = 5 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_lvds = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 7, .max = 98 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 112000,
164 .p2_slow = 14, .p2_fast = 7 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168
169 static const intel_limit_t intel_limits_g4x_sdvo = {
170 .dot = { .min = 25000, .max = 270000 },
171 .vco = { .min = 1750000, .max = 3500000},
172 .n = { .min = 1, .max = 4 },
173 .m = { .min = 104, .max = 138 },
174 .m1 = { .min = 17, .max = 23 },
175 .m2 = { .min = 5, .max = 11 },
176 .p = { .min = 10, .max = 30 },
177 .p1 = { .min = 1, .max = 3},
178 .p2 = { .dot_limit = 270000,
179 .p2_slow = 10,
180 .p2_fast = 10
181 },
182 .find_pll = intel_g4x_find_best_PLL,
183 };
184
185 static const intel_limit_t intel_limits_g4x_hdmi = {
186 .dot = { .min = 22000, .max = 400000 },
187 .vco = { .min = 1750000, .max = 3500000},
188 .n = { .min = 1, .max = 4 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 16, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 5, .max = 80 },
193 .p1 = { .min = 1, .max = 8},
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 10, .p2_fast = 5 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
200 .dot = { .min = 20000, .max = 115000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 28, .max = 112 },
207 .p1 = { .min = 2, .max = 8 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 14, .p2_fast = 14
210 },
211 .find_pll = intel_g4x_find_best_PLL,
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215 .dot = { .min = 80000, .max = 224000 },
216 .vco = { .min = 1750000, .max = 3500000 },
217 .n = { .min = 1, .max = 3 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 14, .max = 42 },
222 .p1 = { .min = 2, .max = 6 },
223 .p2 = { .dot_limit = 0,
224 .p2_slow = 7, .p2_fast = 7
225 },
226 .find_pll = intel_g4x_find_best_PLL,
227 };
228
229 static const intel_limit_t intel_limits_g4x_display_port = {
230 .dot = { .min = 161670, .max = 227000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 2 },
233 .m = { .min = 97, .max = 108 },
234 .m1 = { .min = 0x10, .max = 0x12 },
235 .m2 = { .min = 0x05, .max = 0x06 },
236 .p = { .min = 10, .max = 20 },
237 .p1 = { .min = 1, .max = 2},
238 .p2 = { .dot_limit = 0,
239 .p2_slow = 10, .p2_fast = 10 },
240 .find_pll = intel_find_pll_g4x_dp,
241 };
242
243 static const intel_limit_t intel_limits_pineview_sdvo = {
244 .dot = { .min = 20000, .max = 400000},
245 .vco = { .min = 1700000, .max = 3500000 },
246 /* Pineview's Ncounter is a ring counter */
247 .n = { .min = 3, .max = 6 },
248 .m = { .min = 2, .max = 256 },
249 /* Pineview only has one combined m divider, which we treat as m2. */
250 .m1 = { .min = 0, .max = 0 },
251 .m2 = { .min = 0, .max = 254 },
252 .p = { .min = 5, .max = 80 },
253 .p1 = { .min = 1, .max = 8 },
254 .p2 = { .dot_limit = 200000,
255 .p2_slow = 10, .p2_fast = 5 },
256 .find_pll = intel_find_best_PLL,
257 };
258
259 static const intel_limit_t intel_limits_pineview_lvds = {
260 .dot = { .min = 20000, .max = 400000 },
261 .vco = { .min = 1700000, .max = 3500000 },
262 .n = { .min = 3, .max = 6 },
263 .m = { .min = 2, .max = 256 },
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 7, .max = 112 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 112000,
269 .p2_slow = 14, .p2_fast = 14 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 /* Ironlake / Sandybridge
274 *
275 * We calculate clock using (register_value + 2) for N/M1/M2, so here
276 * the range value for them is (actual_value - 2).
277 */
278 static const intel_limit_t intel_limits_ironlake_dac = {
279 .dot = { .min = 25000, .max = 350000 },
280 .vco = { .min = 1760000, .max = 3510000 },
281 .n = { .min = 1, .max = 5 },
282 .m = { .min = 79, .max = 127 },
283 .m1 = { .min = 12, .max = 22 },
284 .m2 = { .min = 5, .max = 9 },
285 .p = { .min = 5, .max = 80 },
286 .p1 = { .min = 1, .max = 8 },
287 .p2 = { .dot_limit = 225000,
288 .p2_slow = 10, .p2_fast = 5 },
289 .find_pll = intel_g4x_find_best_PLL,
290 };
291
292 static const intel_limit_t intel_limits_ironlake_single_lvds = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 3 },
296 .m = { .min = 79, .max = 118 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 28, .max = 112 },
300 .p1 = { .min = 2, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 14, .p2_fast = 14 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 14, .max = 56 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 7, .p2_fast = 7 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 /* LVDS 100mhz refclk limits. */
321 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
322 .dot = { .min = 25000, .max = 350000 },
323 .vco = { .min = 1760000, .max = 3510000 },
324 .n = { .min = 1, .max = 2 },
325 .m = { .min = 79, .max = 126 },
326 .m1 = { .min = 12, .max = 22 },
327 .m2 = { .min = 5, .max = 9 },
328 .p = { .min = 28, .max = 112 },
329 .p1 = { .min = 2, .max = 8 },
330 .p2 = { .dot_limit = 225000,
331 .p2_slow = 14, .p2_fast = 14 },
332 .find_pll = intel_g4x_find_best_PLL,
333 };
334
335 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 3 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 14, .max = 42 },
343 .p1 = { .min = 2, .max = 6 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 7, .p2_fast = 7 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_display_port = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000},
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 81, .max = 90 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 10, .max = 20 },
357 .p1 = { .min = 1, .max = 2},
358 .p2 = { .dot_limit = 0,
359 .p2_slow = 10, .p2_fast = 10 },
360 .find_pll = intel_find_pll_ironlake_dp,
361 };
362
363 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
364 {
365 unsigned long flags;
366 u32 val = 0;
367
368 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
369 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
370 DRM_ERROR("DPIO idle wait timed out\n");
371 goto out_unlock;
372 }
373
374 I915_WRITE(DPIO_REG, reg);
375 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
376 DPIO_BYTE);
377 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
378 DRM_ERROR("DPIO read wait timed out\n");
379 goto out_unlock;
380 }
381 val = I915_READ(DPIO_DATA);
382
383 out_unlock:
384 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
385 return val;
386 }
387
388 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
389 u32 val)
390 {
391 unsigned long flags;
392
393 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
394 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
395 DRM_ERROR("DPIO idle wait timed out\n");
396 goto out_unlock;
397 }
398
399 I915_WRITE(DPIO_DATA, val);
400 I915_WRITE(DPIO_REG, reg);
401 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
402 DPIO_BYTE);
403 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
404 DRM_ERROR("DPIO write wait timed out\n");
405
406 out_unlock:
407 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
408 }
409
410 static void vlv_init_dpio(struct drm_device *dev)
411 {
412 struct drm_i915_private *dev_priv = dev->dev_private;
413
414 /* Reset the DPIO config */
415 I915_WRITE(DPIO_CTL, 0);
416 POSTING_READ(DPIO_CTL);
417 I915_WRITE(DPIO_CTL, 1);
418 POSTING_READ(DPIO_CTL);
419 }
420
421 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
422 unsigned int reg)
423 {
424 unsigned int val;
425
426 /* use the module option value if specified */
427 if (i915_lvds_channel_mode > 0)
428 return i915_lvds_channel_mode == 2;
429
430 if (dev_priv->lvds_val)
431 val = dev_priv->lvds_val;
432 else {
433 /* BIOS should set the proper LVDS register value at boot, but
434 * in reality, it doesn't set the value when the lid is closed;
435 * we need to check "the value to be set" in VBT when LVDS
436 * register is uninitialized.
437 */
438 val = I915_READ(reg);
439 if (!(val & ~LVDS_DETECTED))
440 val = dev_priv->bios_lvds_val;
441 dev_priv->lvds_val = val;
442 }
443 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
444 }
445
446 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
447 int refclk)
448 {
449 struct drm_device *dev = crtc->dev;
450 struct drm_i915_private *dev_priv = dev->dev_private;
451 const intel_limit_t *limit;
452
453 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
454 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
455 /* LVDS dual channel */
456 if (refclk == 100000)
457 limit = &intel_limits_ironlake_dual_lvds_100m;
458 else
459 limit = &intel_limits_ironlake_dual_lvds;
460 } else {
461 if (refclk == 100000)
462 limit = &intel_limits_ironlake_single_lvds_100m;
463 else
464 limit = &intel_limits_ironlake_single_lvds;
465 }
466 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
467 HAS_eDP)
468 limit = &intel_limits_ironlake_display_port;
469 else
470 limit = &intel_limits_ironlake_dac;
471
472 return limit;
473 }
474
475 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
476 {
477 struct drm_device *dev = crtc->dev;
478 struct drm_i915_private *dev_priv = dev->dev_private;
479 const intel_limit_t *limit;
480
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
482 if (is_dual_link_lvds(dev_priv, LVDS))
483 /* LVDS with dual channel */
484 limit = &intel_limits_g4x_dual_channel_lvds;
485 else
486 /* LVDS with dual channel */
487 limit = &intel_limits_g4x_single_channel_lvds;
488 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
489 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
490 limit = &intel_limits_g4x_hdmi;
491 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
492 limit = &intel_limits_g4x_sdvo;
493 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
494 limit = &intel_limits_g4x_display_port;
495 } else /* The option is for other outputs */
496 limit = &intel_limits_i9xx_sdvo;
497
498 return limit;
499 }
500
501 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
502 {
503 struct drm_device *dev = crtc->dev;
504 const intel_limit_t *limit;
505
506 if (HAS_PCH_SPLIT(dev))
507 limit = intel_ironlake_limit(crtc, refclk);
508 else if (IS_G4X(dev)) {
509 limit = intel_g4x_limit(crtc);
510 } else if (IS_PINEVIEW(dev)) {
511 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
512 limit = &intel_limits_pineview_lvds;
513 else
514 limit = &intel_limits_pineview_sdvo;
515 } else if (!IS_GEN2(dev)) {
516 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
517 limit = &intel_limits_i9xx_lvds;
518 else
519 limit = &intel_limits_i9xx_sdvo;
520 } else {
521 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
522 limit = &intel_limits_i8xx_lvds;
523 else
524 limit = &intel_limits_i8xx_dvo;
525 }
526 return limit;
527 }
528
529 /* m1 is reserved as 0 in Pineview, n is a ring counter */
530 static void pineview_clock(int refclk, intel_clock_t *clock)
531 {
532 clock->m = clock->m2 + 2;
533 clock->p = clock->p1 * clock->p2;
534 clock->vco = refclk * clock->m / clock->n;
535 clock->dot = clock->vco / clock->p;
536 }
537
538 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
539 {
540 if (IS_PINEVIEW(dev)) {
541 pineview_clock(refclk, clock);
542 return;
543 }
544 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
545 clock->p = clock->p1 * clock->p2;
546 clock->vco = refclk * clock->m / (clock->n + 2);
547 clock->dot = clock->vco / clock->p;
548 }
549
550 /**
551 * Returns whether any output on the specified pipe is of the specified type
552 */
553 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
554 {
555 struct drm_device *dev = crtc->dev;
556 struct drm_mode_config *mode_config = &dev->mode_config;
557 struct intel_encoder *encoder;
558
559 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
560 if (encoder->base.crtc == crtc && encoder->type == type)
561 return true;
562
563 return false;
564 }
565
566 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
567 /**
568 * Returns whether the given set of divisors are valid for a given refclk with
569 * the given connectors.
570 */
571
572 static bool intel_PLL_is_valid(struct drm_device *dev,
573 const intel_limit_t *limit,
574 const intel_clock_t *clock)
575 {
576 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
577 INTELPllInvalid("p1 out of range\n");
578 if (clock->p < limit->p.min || limit->p.max < clock->p)
579 INTELPllInvalid("p out of range\n");
580 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
581 INTELPllInvalid("m2 out of range\n");
582 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
583 INTELPllInvalid("m1 out of range\n");
584 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
585 INTELPllInvalid("m1 <= m2\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
588 if (clock->n < limit->n.min || limit->n.max < clock->n)
589 INTELPllInvalid("n out of range\n");
590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
591 INTELPllInvalid("vco out of range\n");
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
594 */
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
596 INTELPllInvalid("dot out of range\n");
597
598 return true;
599 }
600
601 static bool
602 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
605
606 {
607 struct drm_device *dev = crtc->dev;
608 struct drm_i915_private *dev_priv = dev->dev_private;
609 intel_clock_t clock;
610 int err = target;
611
612 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
613 (I915_READ(LVDS)) != 0) {
614 /*
615 * For LVDS, if the panel is on, just rely on its current
616 * settings for dual-channel. We haven't figured out how to
617 * reliably set up different single/dual channel state, if we
618 * even can.
619 */
620 if (is_dual_link_lvds(dev_priv, LVDS))
621 clock.p2 = limit->p2.p2_fast;
622 else
623 clock.p2 = limit->p2.p2_slow;
624 } else {
625 if (target < limit->p2.dot_limit)
626 clock.p2 = limit->p2.p2_slow;
627 else
628 clock.p2 = limit->p2.p2_fast;
629 }
630
631 memset(best_clock, 0, sizeof(*best_clock));
632
633 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
634 clock.m1++) {
635 for (clock.m2 = limit->m2.min;
636 clock.m2 <= limit->m2.max; clock.m2++) {
637 /* m1 is always 0 in Pineview */
638 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
639 break;
640 for (clock.n = limit->n.min;
641 clock.n <= limit->n.max; clock.n++) {
642 for (clock.p1 = limit->p1.min;
643 clock.p1 <= limit->p1.max; clock.p1++) {
644 int this_err;
645
646 intel_clock(dev, refclk, &clock);
647 if (!intel_PLL_is_valid(dev, limit,
648 &clock))
649 continue;
650 if (match_clock &&
651 clock.p != match_clock->p)
652 continue;
653
654 this_err = abs(clock.dot - target);
655 if (this_err < err) {
656 *best_clock = clock;
657 err = this_err;
658 }
659 }
660 }
661 }
662 }
663
664 return (err != target);
665 }
666
667 static bool
668 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
669 int target, int refclk, intel_clock_t *match_clock,
670 intel_clock_t *best_clock)
671 {
672 struct drm_device *dev = crtc->dev;
673 struct drm_i915_private *dev_priv = dev->dev_private;
674 intel_clock_t clock;
675 int max_n;
676 bool found;
677 /* approximately equals target * 0.00585 */
678 int err_most = (target >> 8) + (target >> 9);
679 found = false;
680
681 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682 int lvds_reg;
683
684 if (HAS_PCH_SPLIT(dev))
685 lvds_reg = PCH_LVDS;
686 else
687 lvds_reg = LVDS;
688 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
689 LVDS_CLKB_POWER_UP)
690 clock.p2 = limit->p2.p2_fast;
691 else
692 clock.p2 = limit->p2.p2_slow;
693 } else {
694 if (target < limit->p2.dot_limit)
695 clock.p2 = limit->p2.p2_slow;
696 else
697 clock.p2 = limit->p2.p2_fast;
698 }
699
700 memset(best_clock, 0, sizeof(*best_clock));
701 max_n = limit->n.max;
702 /* based on hardware requirement, prefer smaller n to precision */
703 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
704 /* based on hardware requirement, prefere larger m1,m2 */
705 for (clock.m1 = limit->m1.max;
706 clock.m1 >= limit->m1.min; clock.m1--) {
707 for (clock.m2 = limit->m2.max;
708 clock.m2 >= limit->m2.min; clock.m2--) {
709 for (clock.p1 = limit->p1.max;
710 clock.p1 >= limit->p1.min; clock.p1--) {
711 int this_err;
712
713 intel_clock(dev, refclk, &clock);
714 if (!intel_PLL_is_valid(dev, limit,
715 &clock))
716 continue;
717 if (match_clock &&
718 clock.p != match_clock->p)
719 continue;
720
721 this_err = abs(clock.dot - target);
722 if (this_err < err_most) {
723 *best_clock = clock;
724 err_most = this_err;
725 max_n = clock.n;
726 found = true;
727 }
728 }
729 }
730 }
731 }
732 return found;
733 }
734
735 static bool
736 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
737 int target, int refclk, intel_clock_t *match_clock,
738 intel_clock_t *best_clock)
739 {
740 struct drm_device *dev = crtc->dev;
741 intel_clock_t clock;
742
743 if (target < 200000) {
744 clock.n = 1;
745 clock.p1 = 2;
746 clock.p2 = 10;
747 clock.m1 = 12;
748 clock.m2 = 9;
749 } else {
750 clock.n = 2;
751 clock.p1 = 1;
752 clock.p2 = 10;
753 clock.m1 = 14;
754 clock.m2 = 8;
755 }
756 intel_clock(dev, refclk, &clock);
757 memcpy(best_clock, &clock, sizeof(intel_clock_t));
758 return true;
759 }
760
761 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
762 static bool
763 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
764 int target, int refclk, intel_clock_t *match_clock,
765 intel_clock_t *best_clock)
766 {
767 intel_clock_t clock;
768 if (target < 200000) {
769 clock.p1 = 2;
770 clock.p2 = 10;
771 clock.n = 2;
772 clock.m1 = 23;
773 clock.m2 = 8;
774 } else {
775 clock.p1 = 1;
776 clock.p2 = 10;
777 clock.n = 1;
778 clock.m1 = 14;
779 clock.m2 = 2;
780 }
781 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
782 clock.p = (clock.p1 * clock.p2);
783 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
784 clock.vco = 0;
785 memcpy(best_clock, &clock, sizeof(intel_clock_t));
786 return true;
787 }
788
789 /**
790 * intel_wait_for_vblank - wait for vblank on a given pipe
791 * @dev: drm device
792 * @pipe: pipe to wait for
793 *
794 * Wait for vblank to occur on a given pipe. Needed for various bits of
795 * mode setting code.
796 */
797 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
798 {
799 struct drm_i915_private *dev_priv = dev->dev_private;
800 int pipestat_reg = PIPESTAT(pipe);
801
802 /* Clear existing vblank status. Note this will clear any other
803 * sticky status fields as well.
804 *
805 * This races with i915_driver_irq_handler() with the result
806 * that either function could miss a vblank event. Here it is not
807 * fatal, as we will either wait upon the next vblank interrupt or
808 * timeout. Generally speaking intel_wait_for_vblank() is only
809 * called during modeset at which time the GPU should be idle and
810 * should *not* be performing page flips and thus not waiting on
811 * vblanks...
812 * Currently, the result of us stealing a vblank from the irq
813 * handler is that a single frame will be skipped during swapbuffers.
814 */
815 I915_WRITE(pipestat_reg,
816 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
817
818 /* Wait for vblank interrupt bit to set */
819 if (wait_for(I915_READ(pipestat_reg) &
820 PIPE_VBLANK_INTERRUPT_STATUS,
821 50))
822 DRM_DEBUG_KMS("vblank wait timed out\n");
823 }
824
825 /*
826 * intel_wait_for_pipe_off - wait for pipe to turn off
827 * @dev: drm device
828 * @pipe: pipe to wait for
829 *
830 * After disabling a pipe, we can't wait for vblank in the usual way,
831 * spinning on the vblank interrupt status bit, since we won't actually
832 * see an interrupt when the pipe is disabled.
833 *
834 * On Gen4 and above:
835 * wait for the pipe register state bit to turn off
836 *
837 * Otherwise:
838 * wait for the display line value to settle (it usually
839 * ends up stopping at the start of the next frame).
840 *
841 */
842 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
843 {
844 struct drm_i915_private *dev_priv = dev->dev_private;
845
846 if (INTEL_INFO(dev)->gen >= 4) {
847 int reg = PIPECONF(pipe);
848
849 /* Wait for the Pipe State to go off */
850 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
851 100))
852 DRM_DEBUG_KMS("pipe_off wait timed out\n");
853 } else {
854 u32 last_line;
855 int reg = PIPEDSL(pipe);
856 unsigned long timeout = jiffies + msecs_to_jiffies(100);
857
858 /* Wait for the display line to settle */
859 do {
860 last_line = I915_READ(reg) & DSL_LINEMASK;
861 mdelay(5);
862 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
863 time_after(timeout, jiffies));
864 if (time_after(jiffies, timeout))
865 DRM_DEBUG_KMS("pipe_off wait timed out\n");
866 }
867 }
868
869 static const char *state_string(bool enabled)
870 {
871 return enabled ? "on" : "off";
872 }
873
874 /* Only for pre-ILK configs */
875 static void assert_pll(struct drm_i915_private *dev_priv,
876 enum pipe pipe, bool state)
877 {
878 int reg;
879 u32 val;
880 bool cur_state;
881
882 reg = DPLL(pipe);
883 val = I915_READ(reg);
884 cur_state = !!(val & DPLL_VCO_ENABLE);
885 WARN(cur_state != state,
886 "PLL state assertion failure (expected %s, current %s)\n",
887 state_string(state), state_string(cur_state));
888 }
889 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
890 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
891
892 /* For ILK+ */
893 static void assert_pch_pll(struct drm_i915_private *dev_priv,
894 enum pipe pipe, bool state)
895 {
896 int reg;
897 u32 val;
898 bool cur_state;
899
900 if (HAS_PCH_CPT(dev_priv->dev)) {
901 u32 pch_dpll;
902
903 pch_dpll = I915_READ(PCH_DPLL_SEL);
904
905 /* Make sure the selected PLL is enabled to the transcoder */
906 WARN(!((pch_dpll >> (4 * pipe)) & 8),
907 "transcoder %d PLL not enabled\n", pipe);
908
909 /* Convert the transcoder pipe number to a pll pipe number */
910 pipe = (pch_dpll >> (4 * pipe)) & 1;
911 }
912
913 reg = PCH_DPLL(pipe);
914 val = I915_READ(reg);
915 cur_state = !!(val & DPLL_VCO_ENABLE);
916 WARN(cur_state != state,
917 "PCH PLL state assertion failure (expected %s, current %s)\n",
918 state_string(state), state_string(cur_state));
919 }
920 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
921 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
922
923 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
924 enum pipe pipe, bool state)
925 {
926 int reg;
927 u32 val;
928 bool cur_state;
929
930 reg = FDI_TX_CTL(pipe);
931 val = I915_READ(reg);
932 cur_state = !!(val & FDI_TX_ENABLE);
933 WARN(cur_state != state,
934 "FDI TX state assertion failure (expected %s, current %s)\n",
935 state_string(state), state_string(cur_state));
936 }
937 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
938 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
939
940 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
941 enum pipe pipe, bool state)
942 {
943 int reg;
944 u32 val;
945 bool cur_state;
946
947 reg = FDI_RX_CTL(pipe);
948 val = I915_READ(reg);
949 cur_state = !!(val & FDI_RX_ENABLE);
950 WARN(cur_state != state,
951 "FDI RX state assertion failure (expected %s, current %s)\n",
952 state_string(state), state_string(cur_state));
953 }
954 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
955 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
956
957 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
958 enum pipe pipe)
959 {
960 int reg;
961 u32 val;
962
963 /* ILK FDI PLL is always enabled */
964 if (dev_priv->info->gen == 5)
965 return;
966
967 reg = FDI_TX_CTL(pipe);
968 val = I915_READ(reg);
969 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
970 }
971
972 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
973 enum pipe pipe)
974 {
975 int reg;
976 u32 val;
977
978 reg = FDI_RX_CTL(pipe);
979 val = I915_READ(reg);
980 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
981 }
982
983 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
984 enum pipe pipe)
985 {
986 int pp_reg, lvds_reg;
987 u32 val;
988 enum pipe panel_pipe = PIPE_A;
989 bool locked = true;
990
991 if (HAS_PCH_SPLIT(dev_priv->dev)) {
992 pp_reg = PCH_PP_CONTROL;
993 lvds_reg = PCH_LVDS;
994 } else {
995 pp_reg = PP_CONTROL;
996 lvds_reg = LVDS;
997 }
998
999 val = I915_READ(pp_reg);
1000 if (!(val & PANEL_POWER_ON) ||
1001 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1002 locked = false;
1003
1004 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1005 panel_pipe = PIPE_B;
1006
1007 WARN(panel_pipe == pipe && locked,
1008 "panel assertion failure, pipe %c regs locked\n",
1009 pipe_name(pipe));
1010 }
1011
1012 void assert_pipe(struct drm_i915_private *dev_priv,
1013 enum pipe pipe, bool state)
1014 {
1015 int reg;
1016 u32 val;
1017 bool cur_state;
1018
1019 /* if we need the pipe A quirk it must be always on */
1020 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1021 state = true;
1022
1023 reg = PIPECONF(pipe);
1024 val = I915_READ(reg);
1025 cur_state = !!(val & PIPECONF_ENABLE);
1026 WARN(cur_state != state,
1027 "pipe %c assertion failure (expected %s, current %s)\n",
1028 pipe_name(pipe), state_string(state), state_string(cur_state));
1029 }
1030
1031 static void assert_plane(struct drm_i915_private *dev_priv,
1032 enum plane plane, bool state)
1033 {
1034 int reg;
1035 u32 val;
1036 bool cur_state;
1037
1038 reg = DSPCNTR(plane);
1039 val = I915_READ(reg);
1040 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1041 WARN(cur_state != state,
1042 "plane %c assertion failure (expected %s, current %s)\n",
1043 plane_name(plane), state_string(state), state_string(cur_state));
1044 }
1045
1046 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1047 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1048
1049 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1050 enum pipe pipe)
1051 {
1052 int reg, i;
1053 u32 val;
1054 int cur_pipe;
1055
1056 /* Planes are fixed to pipes on ILK+ */
1057 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1058 reg = DSPCNTR(pipe);
1059 val = I915_READ(reg);
1060 WARN((val & DISPLAY_PLANE_ENABLE),
1061 "plane %c assertion failure, should be disabled but not\n",
1062 plane_name(pipe));
1063 return;
1064 }
1065
1066 /* Need to check both planes against the pipe */
1067 for (i = 0; i < 2; i++) {
1068 reg = DSPCNTR(i);
1069 val = I915_READ(reg);
1070 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1071 DISPPLANE_SEL_PIPE_SHIFT;
1072 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1073 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1074 plane_name(i), pipe_name(pipe));
1075 }
1076 }
1077
1078 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1079 {
1080 u32 val;
1081 bool enabled;
1082
1083 val = I915_READ(PCH_DREF_CONTROL);
1084 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1085 DREF_SUPERSPREAD_SOURCE_MASK));
1086 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1087 }
1088
1089 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1090 enum pipe pipe)
1091 {
1092 int reg;
1093 u32 val;
1094 bool enabled;
1095
1096 reg = TRANSCONF(pipe);
1097 val = I915_READ(reg);
1098 enabled = !!(val & TRANS_ENABLE);
1099 WARN(enabled,
1100 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1101 pipe_name(pipe));
1102 }
1103
1104 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1105 enum pipe pipe, u32 port_sel, u32 val)
1106 {
1107 if ((val & DP_PORT_EN) == 0)
1108 return false;
1109
1110 if (HAS_PCH_CPT(dev_priv->dev)) {
1111 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1112 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1113 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1114 return false;
1115 } else {
1116 if ((val & DP_PIPE_MASK) != (pipe << 30))
1117 return false;
1118 }
1119 return true;
1120 }
1121
1122 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe, u32 val)
1124 {
1125 if ((val & PORT_ENABLE) == 0)
1126 return false;
1127
1128 if (HAS_PCH_CPT(dev_priv->dev)) {
1129 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1130 return false;
1131 } else {
1132 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1133 return false;
1134 }
1135 return true;
1136 }
1137
1138 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, u32 val)
1140 {
1141 if ((val & LVDS_PORT_EN) == 0)
1142 return false;
1143
1144 if (HAS_PCH_CPT(dev_priv->dev)) {
1145 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1146 return false;
1147 } else {
1148 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1149 return false;
1150 }
1151 return true;
1152 }
1153
1154 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1155 enum pipe pipe, u32 val)
1156 {
1157 if ((val & ADPA_DAC_ENABLE) == 0)
1158 return false;
1159 if (HAS_PCH_CPT(dev_priv->dev)) {
1160 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1161 return false;
1162 } else {
1163 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1164 return false;
1165 }
1166 return true;
1167 }
1168
1169 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe, int reg, u32 port_sel)
1171 {
1172 u32 val = I915_READ(reg);
1173 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1174 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1175 reg, pipe_name(pipe));
1176 }
1177
1178 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1179 enum pipe pipe, int reg)
1180 {
1181 u32 val = I915_READ(reg);
1182 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1183 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1184 reg, pipe_name(pipe));
1185 }
1186
1187 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1188 enum pipe pipe)
1189 {
1190 int reg;
1191 u32 val;
1192
1193 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1194 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1195 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1196
1197 reg = PCH_ADPA;
1198 val = I915_READ(reg);
1199 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1200 "PCH VGA enabled on transcoder %c, should be disabled\n",
1201 pipe_name(pipe));
1202
1203 reg = PCH_LVDS;
1204 val = I915_READ(reg);
1205 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1206 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1207 pipe_name(pipe));
1208
1209 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1210 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1211 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1212 }
1213
1214 /**
1215 * intel_enable_pll - enable a PLL
1216 * @dev_priv: i915 private structure
1217 * @pipe: pipe PLL to enable
1218 *
1219 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1220 * make sure the PLL reg is writable first though, since the panel write
1221 * protect mechanism may be enabled.
1222 *
1223 * Note! This is for pre-ILK only.
1224 */
1225 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1226 {
1227 int reg;
1228 u32 val;
1229
1230 /* No really, not for ILK+ */
1231 BUG_ON(dev_priv->info->gen >= 5);
1232
1233 /* PLL is protected by panel, make sure we can write it */
1234 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1235 assert_panel_unlocked(dev_priv, pipe);
1236
1237 reg = DPLL(pipe);
1238 val = I915_READ(reg);
1239 val |= DPLL_VCO_ENABLE;
1240
1241 /* We do this three times for luck */
1242 I915_WRITE(reg, val);
1243 POSTING_READ(reg);
1244 udelay(150); /* wait for warmup */
1245 I915_WRITE(reg, val);
1246 POSTING_READ(reg);
1247 udelay(150); /* wait for warmup */
1248 I915_WRITE(reg, val);
1249 POSTING_READ(reg);
1250 udelay(150); /* wait for warmup */
1251 }
1252
1253 /**
1254 * intel_disable_pll - disable a PLL
1255 * @dev_priv: i915 private structure
1256 * @pipe: pipe PLL to disable
1257 *
1258 * Disable the PLL for @pipe, making sure the pipe is off first.
1259 *
1260 * Note! This is for pre-ILK only.
1261 */
1262 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1263 {
1264 int reg;
1265 u32 val;
1266
1267 /* Don't disable pipe A or pipe A PLLs if needed */
1268 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1269 return;
1270
1271 /* Make sure the pipe isn't still relying on us */
1272 assert_pipe_disabled(dev_priv, pipe);
1273
1274 reg = DPLL(pipe);
1275 val = I915_READ(reg);
1276 val &= ~DPLL_VCO_ENABLE;
1277 I915_WRITE(reg, val);
1278 POSTING_READ(reg);
1279 }
1280
1281 /**
1282 * intel_enable_pch_pll - enable PCH PLL
1283 * @dev_priv: i915 private structure
1284 * @pipe: pipe PLL to enable
1285 *
1286 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1287 * drives the transcoder clock.
1288 */
1289 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1290 enum pipe pipe)
1291 {
1292 int reg;
1293 u32 val;
1294
1295 if (pipe > 1)
1296 return;
1297
1298 /* PCH only available on ILK+ */
1299 BUG_ON(dev_priv->info->gen < 5);
1300
1301 /* PCH refclock must be enabled first */
1302 assert_pch_refclk_enabled(dev_priv);
1303
1304 reg = PCH_DPLL(pipe);
1305 val = I915_READ(reg);
1306 val |= DPLL_VCO_ENABLE;
1307 I915_WRITE(reg, val);
1308 POSTING_READ(reg);
1309 udelay(200);
1310 }
1311
1312 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1313 enum pipe pipe)
1314 {
1315 int reg;
1316 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1317 pll_sel = TRANSC_DPLL_ENABLE;
1318
1319 if (pipe > 1)
1320 return;
1321
1322 /* PCH only available on ILK+ */
1323 BUG_ON(dev_priv->info->gen < 5);
1324
1325 /* Make sure transcoder isn't still depending on us */
1326 assert_transcoder_disabled(dev_priv, pipe);
1327
1328 if (pipe == 0)
1329 pll_sel |= TRANSC_DPLLA_SEL;
1330 else if (pipe == 1)
1331 pll_sel |= TRANSC_DPLLB_SEL;
1332
1333
1334 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1335 return;
1336
1337 reg = PCH_DPLL(pipe);
1338 val = I915_READ(reg);
1339 val &= ~DPLL_VCO_ENABLE;
1340 I915_WRITE(reg, val);
1341 POSTING_READ(reg);
1342 udelay(200);
1343 }
1344
1345 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1346 enum pipe pipe)
1347 {
1348 int reg;
1349 u32 val, pipeconf_val;
1350 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1351
1352 /* PCH only available on ILK+ */
1353 BUG_ON(dev_priv->info->gen < 5);
1354
1355 /* Make sure PCH DPLL is enabled */
1356 assert_pch_pll_enabled(dev_priv, pipe);
1357
1358 /* FDI must be feeding us bits for PCH ports */
1359 assert_fdi_tx_enabled(dev_priv, pipe);
1360 assert_fdi_rx_enabled(dev_priv, pipe);
1361
1362 reg = TRANSCONF(pipe);
1363 val = I915_READ(reg);
1364 pipeconf_val = I915_READ(PIPECONF(pipe));
1365
1366 if (HAS_PCH_IBX(dev_priv->dev)) {
1367 /*
1368 * make the BPC in transcoder be consistent with
1369 * that in pipeconf reg.
1370 */
1371 val &= ~PIPE_BPC_MASK;
1372 val |= pipeconf_val & PIPE_BPC_MASK;
1373 }
1374
1375 val &= ~TRANS_INTERLACE_MASK;
1376 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1377 if (HAS_PCH_IBX(dev_priv->dev) &&
1378 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1379 val |= TRANS_LEGACY_INTERLACED_ILK;
1380 else
1381 val |= TRANS_INTERLACED;
1382 else
1383 val |= TRANS_PROGRESSIVE;
1384
1385 I915_WRITE(reg, val | TRANS_ENABLE);
1386 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1387 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1388 }
1389
1390 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1391 enum pipe pipe)
1392 {
1393 int reg;
1394 u32 val;
1395
1396 /* FDI relies on the transcoder */
1397 assert_fdi_tx_disabled(dev_priv, pipe);
1398 assert_fdi_rx_disabled(dev_priv, pipe);
1399
1400 /* Ports must be off as well */
1401 assert_pch_ports_disabled(dev_priv, pipe);
1402
1403 reg = TRANSCONF(pipe);
1404 val = I915_READ(reg);
1405 val &= ~TRANS_ENABLE;
1406 I915_WRITE(reg, val);
1407 /* wait for PCH transcoder off, transcoder state */
1408 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1409 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1410 }
1411
1412 /**
1413 * intel_enable_pipe - enable a pipe, asserting requirements
1414 * @dev_priv: i915 private structure
1415 * @pipe: pipe to enable
1416 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1417 *
1418 * Enable @pipe, making sure that various hardware specific requirements
1419 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1420 *
1421 * @pipe should be %PIPE_A or %PIPE_B.
1422 *
1423 * Will wait until the pipe is actually running (i.e. first vblank) before
1424 * returning.
1425 */
1426 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1427 bool pch_port)
1428 {
1429 int reg;
1430 u32 val;
1431
1432 /*
1433 * A pipe without a PLL won't actually be able to drive bits from
1434 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1435 * need the check.
1436 */
1437 if (!HAS_PCH_SPLIT(dev_priv->dev))
1438 assert_pll_enabled(dev_priv, pipe);
1439 else {
1440 if (pch_port) {
1441 /* if driving the PCH, we need FDI enabled */
1442 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1443 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1444 }
1445 /* FIXME: assert CPU port conditions for SNB+ */
1446 }
1447
1448 reg = PIPECONF(pipe);
1449 val = I915_READ(reg);
1450 if (val & PIPECONF_ENABLE)
1451 return;
1452
1453 I915_WRITE(reg, val | PIPECONF_ENABLE);
1454 intel_wait_for_vblank(dev_priv->dev, pipe);
1455 }
1456
1457 /**
1458 * intel_disable_pipe - disable a pipe, asserting requirements
1459 * @dev_priv: i915 private structure
1460 * @pipe: pipe to disable
1461 *
1462 * Disable @pipe, making sure that various hardware specific requirements
1463 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1464 *
1465 * @pipe should be %PIPE_A or %PIPE_B.
1466 *
1467 * Will wait until the pipe has shut down before returning.
1468 */
1469 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471 {
1472 int reg;
1473 u32 val;
1474
1475 /*
1476 * Make sure planes won't keep trying to pump pixels to us,
1477 * or we might hang the display.
1478 */
1479 assert_planes_disabled(dev_priv, pipe);
1480
1481 /* Don't disable pipe A or pipe A PLLs if needed */
1482 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1483 return;
1484
1485 reg = PIPECONF(pipe);
1486 val = I915_READ(reg);
1487 if ((val & PIPECONF_ENABLE) == 0)
1488 return;
1489
1490 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1491 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1492 }
1493
1494 /*
1495 * Plane regs are double buffered, going from enabled->disabled needs a
1496 * trigger in order to latch. The display address reg provides this.
1497 */
1498 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1499 enum plane plane)
1500 {
1501 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1502 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1503 }
1504
1505 /**
1506 * intel_enable_plane - enable a display plane on a given pipe
1507 * @dev_priv: i915 private structure
1508 * @plane: plane to enable
1509 * @pipe: pipe being fed
1510 *
1511 * Enable @plane on @pipe, making sure that @pipe is running first.
1512 */
1513 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1514 enum plane plane, enum pipe pipe)
1515 {
1516 int reg;
1517 u32 val;
1518
1519 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1520 assert_pipe_enabled(dev_priv, pipe);
1521
1522 reg = DSPCNTR(plane);
1523 val = I915_READ(reg);
1524 if (val & DISPLAY_PLANE_ENABLE)
1525 return;
1526
1527 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1528 intel_flush_display_plane(dev_priv, plane);
1529 intel_wait_for_vblank(dev_priv->dev, pipe);
1530 }
1531
1532 /**
1533 * intel_disable_plane - disable a display plane
1534 * @dev_priv: i915 private structure
1535 * @plane: plane to disable
1536 * @pipe: pipe consuming the data
1537 *
1538 * Disable @plane; should be an independent operation.
1539 */
1540 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1541 enum plane plane, enum pipe pipe)
1542 {
1543 int reg;
1544 u32 val;
1545
1546 reg = DSPCNTR(plane);
1547 val = I915_READ(reg);
1548 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1549 return;
1550
1551 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1552 intel_flush_display_plane(dev_priv, plane);
1553 intel_wait_for_vblank(dev_priv->dev, pipe);
1554 }
1555
1556 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1557 enum pipe pipe, int reg, u32 port_sel)
1558 {
1559 u32 val = I915_READ(reg);
1560 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1561 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1562 I915_WRITE(reg, val & ~DP_PORT_EN);
1563 }
1564 }
1565
1566 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1567 enum pipe pipe, int reg)
1568 {
1569 u32 val = I915_READ(reg);
1570 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1571 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1572 reg, pipe);
1573 I915_WRITE(reg, val & ~PORT_ENABLE);
1574 }
1575 }
1576
1577 /* Disable any ports connected to this transcoder */
1578 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1579 enum pipe pipe)
1580 {
1581 u32 reg, val;
1582
1583 val = I915_READ(PCH_PP_CONTROL);
1584 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1585
1586 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1587 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1588 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1589
1590 reg = PCH_ADPA;
1591 val = I915_READ(reg);
1592 if (adpa_pipe_enabled(dev_priv, val, pipe))
1593 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1594
1595 reg = PCH_LVDS;
1596 val = I915_READ(reg);
1597 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1598 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1599 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1600 POSTING_READ(reg);
1601 udelay(100);
1602 }
1603
1604 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1605 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1606 disable_pch_hdmi(dev_priv, pipe, HDMID);
1607 }
1608
1609 static void i8xx_disable_fbc(struct drm_device *dev)
1610 {
1611 struct drm_i915_private *dev_priv = dev->dev_private;
1612 u32 fbc_ctl;
1613
1614 /* Disable compression */
1615 fbc_ctl = I915_READ(FBC_CONTROL);
1616 if ((fbc_ctl & FBC_CTL_EN) == 0)
1617 return;
1618
1619 fbc_ctl &= ~FBC_CTL_EN;
1620 I915_WRITE(FBC_CONTROL, fbc_ctl);
1621
1622 /* Wait for compressing bit to clear */
1623 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1624 DRM_DEBUG_KMS("FBC idle timed out\n");
1625 return;
1626 }
1627
1628 DRM_DEBUG_KMS("disabled FBC\n");
1629 }
1630
1631 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1632 {
1633 struct drm_device *dev = crtc->dev;
1634 struct drm_i915_private *dev_priv = dev->dev_private;
1635 struct drm_framebuffer *fb = crtc->fb;
1636 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1637 struct drm_i915_gem_object *obj = intel_fb->obj;
1638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1639 int cfb_pitch;
1640 int plane, i;
1641 u32 fbc_ctl, fbc_ctl2;
1642
1643 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1644 if (fb->pitches[0] < cfb_pitch)
1645 cfb_pitch = fb->pitches[0];
1646
1647 /* FBC_CTL wants 64B units */
1648 cfb_pitch = (cfb_pitch / 64) - 1;
1649 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1650
1651 /* Clear old tags */
1652 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1653 I915_WRITE(FBC_TAG + (i * 4), 0);
1654
1655 /* Set it up... */
1656 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1657 fbc_ctl2 |= plane;
1658 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1659 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1660
1661 /* enable it... */
1662 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1663 if (IS_I945GM(dev))
1664 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1665 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1666 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1667 fbc_ctl |= obj->fence_reg;
1668 I915_WRITE(FBC_CONTROL, fbc_ctl);
1669
1670 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1671 cfb_pitch, crtc->y, intel_crtc->plane);
1672 }
1673
1674 static bool i8xx_fbc_enabled(struct drm_device *dev)
1675 {
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677
1678 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1679 }
1680
1681 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1682 {
1683 struct drm_device *dev = crtc->dev;
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 struct drm_framebuffer *fb = crtc->fb;
1686 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1687 struct drm_i915_gem_object *obj = intel_fb->obj;
1688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1689 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1690 unsigned long stall_watermark = 200;
1691 u32 dpfc_ctl;
1692
1693 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1694 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1695 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1696
1697 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1698 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1699 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1700 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1701
1702 /* enable it... */
1703 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1704
1705 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1706 }
1707
1708 static void g4x_disable_fbc(struct drm_device *dev)
1709 {
1710 struct drm_i915_private *dev_priv = dev->dev_private;
1711 u32 dpfc_ctl;
1712
1713 /* Disable compression */
1714 dpfc_ctl = I915_READ(DPFC_CONTROL);
1715 if (dpfc_ctl & DPFC_CTL_EN) {
1716 dpfc_ctl &= ~DPFC_CTL_EN;
1717 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1718
1719 DRM_DEBUG_KMS("disabled FBC\n");
1720 }
1721 }
1722
1723 static bool g4x_fbc_enabled(struct drm_device *dev)
1724 {
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726
1727 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1728 }
1729
1730 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1731 {
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 u32 blt_ecoskpd;
1734
1735 /* Make sure blitter notifies FBC of writes */
1736 gen6_gt_force_wake_get(dev_priv);
1737 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1738 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1739 GEN6_BLITTER_LOCK_SHIFT;
1740 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1741 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1742 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1743 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1744 GEN6_BLITTER_LOCK_SHIFT);
1745 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1746 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1747 gen6_gt_force_wake_put(dev_priv);
1748 }
1749
1750 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1751 {
1752 struct drm_device *dev = crtc->dev;
1753 struct drm_i915_private *dev_priv = dev->dev_private;
1754 struct drm_framebuffer *fb = crtc->fb;
1755 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1756 struct drm_i915_gem_object *obj = intel_fb->obj;
1757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1758 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1759 unsigned long stall_watermark = 200;
1760 u32 dpfc_ctl;
1761
1762 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1763 dpfc_ctl &= DPFC_RESERVED;
1764 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1765 /* Set persistent mode for front-buffer rendering, ala X. */
1766 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1767 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1768 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1769
1770 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1771 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1772 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1773 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1774 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1775 /* enable it... */
1776 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1777
1778 if (IS_GEN6(dev)) {
1779 I915_WRITE(SNB_DPFC_CTL_SA,
1780 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1781 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1782 sandybridge_blit_fbc_update(dev);
1783 }
1784
1785 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1786 }
1787
1788 static void ironlake_disable_fbc(struct drm_device *dev)
1789 {
1790 struct drm_i915_private *dev_priv = dev->dev_private;
1791 u32 dpfc_ctl;
1792
1793 /* Disable compression */
1794 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1795 if (dpfc_ctl & DPFC_CTL_EN) {
1796 dpfc_ctl &= ~DPFC_CTL_EN;
1797 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1798
1799 DRM_DEBUG_KMS("disabled FBC\n");
1800 }
1801 }
1802
1803 static bool ironlake_fbc_enabled(struct drm_device *dev)
1804 {
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806
1807 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1808 }
1809
1810 bool intel_fbc_enabled(struct drm_device *dev)
1811 {
1812 struct drm_i915_private *dev_priv = dev->dev_private;
1813
1814 if (!dev_priv->display.fbc_enabled)
1815 return false;
1816
1817 return dev_priv->display.fbc_enabled(dev);
1818 }
1819
1820 static void intel_fbc_work_fn(struct work_struct *__work)
1821 {
1822 struct intel_fbc_work *work =
1823 container_of(to_delayed_work(__work),
1824 struct intel_fbc_work, work);
1825 struct drm_device *dev = work->crtc->dev;
1826 struct drm_i915_private *dev_priv = dev->dev_private;
1827
1828 mutex_lock(&dev->struct_mutex);
1829 if (work == dev_priv->fbc_work) {
1830 /* Double check that we haven't switched fb without cancelling
1831 * the prior work.
1832 */
1833 if (work->crtc->fb == work->fb) {
1834 dev_priv->display.enable_fbc(work->crtc,
1835 work->interval);
1836
1837 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1838 dev_priv->cfb_fb = work->crtc->fb->base.id;
1839 dev_priv->cfb_y = work->crtc->y;
1840 }
1841
1842 dev_priv->fbc_work = NULL;
1843 }
1844 mutex_unlock(&dev->struct_mutex);
1845
1846 kfree(work);
1847 }
1848
1849 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1850 {
1851 if (dev_priv->fbc_work == NULL)
1852 return;
1853
1854 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1855
1856 /* Synchronisation is provided by struct_mutex and checking of
1857 * dev_priv->fbc_work, so we can perform the cancellation
1858 * entirely asynchronously.
1859 */
1860 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1861 /* tasklet was killed before being run, clean up */
1862 kfree(dev_priv->fbc_work);
1863
1864 /* Mark the work as no longer wanted so that if it does
1865 * wake-up (because the work was already running and waiting
1866 * for our mutex), it will discover that is no longer
1867 * necessary to run.
1868 */
1869 dev_priv->fbc_work = NULL;
1870 }
1871
1872 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1873 {
1874 struct intel_fbc_work *work;
1875 struct drm_device *dev = crtc->dev;
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877
1878 if (!dev_priv->display.enable_fbc)
1879 return;
1880
1881 intel_cancel_fbc_work(dev_priv);
1882
1883 work = kzalloc(sizeof *work, GFP_KERNEL);
1884 if (work == NULL) {
1885 dev_priv->display.enable_fbc(crtc, interval);
1886 return;
1887 }
1888
1889 work->crtc = crtc;
1890 work->fb = crtc->fb;
1891 work->interval = interval;
1892 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1893
1894 dev_priv->fbc_work = work;
1895
1896 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1897
1898 /* Delay the actual enabling to let pageflipping cease and the
1899 * display to settle before starting the compression. Note that
1900 * this delay also serves a second purpose: it allows for a
1901 * vblank to pass after disabling the FBC before we attempt
1902 * to modify the control registers.
1903 *
1904 * A more complicated solution would involve tracking vblanks
1905 * following the termination of the page-flipping sequence
1906 * and indeed performing the enable as a co-routine and not
1907 * waiting synchronously upon the vblank.
1908 */
1909 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1910 }
1911
1912 void intel_disable_fbc(struct drm_device *dev)
1913 {
1914 struct drm_i915_private *dev_priv = dev->dev_private;
1915
1916 intel_cancel_fbc_work(dev_priv);
1917
1918 if (!dev_priv->display.disable_fbc)
1919 return;
1920
1921 dev_priv->display.disable_fbc(dev);
1922 dev_priv->cfb_plane = -1;
1923 }
1924
1925 /**
1926 * intel_update_fbc - enable/disable FBC as needed
1927 * @dev: the drm_device
1928 *
1929 * Set up the framebuffer compression hardware at mode set time. We
1930 * enable it if possible:
1931 * - plane A only (on pre-965)
1932 * - no pixel mulitply/line duplication
1933 * - no alpha buffer discard
1934 * - no dual wide
1935 * - framebuffer <= 2048 in width, 1536 in height
1936 *
1937 * We can't assume that any compression will take place (worst case),
1938 * so the compressed buffer has to be the same size as the uncompressed
1939 * one. It also must reside (along with the line length buffer) in
1940 * stolen memory.
1941 *
1942 * We need to enable/disable FBC on a global basis.
1943 */
1944 static void intel_update_fbc(struct drm_device *dev)
1945 {
1946 struct drm_i915_private *dev_priv = dev->dev_private;
1947 struct drm_crtc *crtc = NULL, *tmp_crtc;
1948 struct intel_crtc *intel_crtc;
1949 struct drm_framebuffer *fb;
1950 struct intel_framebuffer *intel_fb;
1951 struct drm_i915_gem_object *obj;
1952 int enable_fbc;
1953
1954 DRM_DEBUG_KMS("\n");
1955
1956 if (!i915_powersave)
1957 return;
1958
1959 if (!I915_HAS_FBC(dev))
1960 return;
1961
1962 /*
1963 * If FBC is already on, we just have to verify that we can
1964 * keep it that way...
1965 * Need to disable if:
1966 * - more than one pipe is active
1967 * - changing FBC params (stride, fence, mode)
1968 * - new fb is too large to fit in compressed buffer
1969 * - going to an unsupported config (interlace, pixel multiply, etc.)
1970 */
1971 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1972 if (tmp_crtc->enabled && tmp_crtc->fb) {
1973 if (crtc) {
1974 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1975 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1976 goto out_disable;
1977 }
1978 crtc = tmp_crtc;
1979 }
1980 }
1981
1982 if (!crtc || crtc->fb == NULL) {
1983 DRM_DEBUG_KMS("no output, disabling\n");
1984 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1985 goto out_disable;
1986 }
1987
1988 intel_crtc = to_intel_crtc(crtc);
1989 fb = crtc->fb;
1990 intel_fb = to_intel_framebuffer(fb);
1991 obj = intel_fb->obj;
1992
1993 enable_fbc = i915_enable_fbc;
1994 if (enable_fbc < 0) {
1995 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1996 enable_fbc = 1;
1997 if (INTEL_INFO(dev)->gen <= 6)
1998 enable_fbc = 0;
1999 }
2000 if (!enable_fbc) {
2001 DRM_DEBUG_KMS("fbc disabled per module param\n");
2002 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
2003 goto out_disable;
2004 }
2005 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
2006 DRM_DEBUG_KMS("framebuffer too large, disabling "
2007 "compression\n");
2008 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
2009 goto out_disable;
2010 }
2011 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
2012 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
2013 DRM_DEBUG_KMS("mode incompatible with compression, "
2014 "disabling\n");
2015 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
2016 goto out_disable;
2017 }
2018 if ((crtc->mode.hdisplay > 2048) ||
2019 (crtc->mode.vdisplay > 1536)) {
2020 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
2021 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
2022 goto out_disable;
2023 }
2024 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
2025 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
2026 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
2027 goto out_disable;
2028 }
2029
2030 /* The use of a CPU fence is mandatory in order to detect writes
2031 * by the CPU to the scanout and trigger updates to the FBC.
2032 */
2033 if (obj->tiling_mode != I915_TILING_X ||
2034 obj->fence_reg == I915_FENCE_REG_NONE) {
2035 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
2036 dev_priv->no_fbc_reason = FBC_NOT_TILED;
2037 goto out_disable;
2038 }
2039
2040 /* If the kernel debugger is active, always disable compression */
2041 if (in_dbg_master())
2042 goto out_disable;
2043
2044 /* If the scanout has not changed, don't modify the FBC settings.
2045 * Note that we make the fundamental assumption that the fb->obj
2046 * cannot be unpinned (and have its GTT offset and fence revoked)
2047 * without first being decoupled from the scanout and FBC disabled.
2048 */
2049 if (dev_priv->cfb_plane == intel_crtc->plane &&
2050 dev_priv->cfb_fb == fb->base.id &&
2051 dev_priv->cfb_y == crtc->y)
2052 return;
2053
2054 if (intel_fbc_enabled(dev)) {
2055 /* We update FBC along two paths, after changing fb/crtc
2056 * configuration (modeswitching) and after page-flipping
2057 * finishes. For the latter, we know that not only did
2058 * we disable the FBC at the start of the page-flip
2059 * sequence, but also more than one vblank has passed.
2060 *
2061 * For the former case of modeswitching, it is possible
2062 * to switch between two FBC valid configurations
2063 * instantaneously so we do need to disable the FBC
2064 * before we can modify its control registers. We also
2065 * have to wait for the next vblank for that to take
2066 * effect. However, since we delay enabling FBC we can
2067 * assume that a vblank has passed since disabling and
2068 * that we can safely alter the registers in the deferred
2069 * callback.
2070 *
2071 * In the scenario that we go from a valid to invalid
2072 * and then back to valid FBC configuration we have
2073 * no strict enforcement that a vblank occurred since
2074 * disabling the FBC. However, along all current pipe
2075 * disabling paths we do need to wait for a vblank at
2076 * some point. And we wait before enabling FBC anyway.
2077 */
2078 DRM_DEBUG_KMS("disabling active FBC for update\n");
2079 intel_disable_fbc(dev);
2080 }
2081
2082 intel_enable_fbc(crtc, 500);
2083 return;
2084
2085 out_disable:
2086 /* Multiple disables should be harmless */
2087 if (intel_fbc_enabled(dev)) {
2088 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2089 intel_disable_fbc(dev);
2090 }
2091 }
2092
2093 int
2094 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2095 struct drm_i915_gem_object *obj,
2096 struct intel_ring_buffer *pipelined)
2097 {
2098 struct drm_i915_private *dev_priv = dev->dev_private;
2099 u32 alignment;
2100 int ret;
2101
2102 switch (obj->tiling_mode) {
2103 case I915_TILING_NONE:
2104 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2105 alignment = 128 * 1024;
2106 else if (INTEL_INFO(dev)->gen >= 4)
2107 alignment = 4 * 1024;
2108 else
2109 alignment = 64 * 1024;
2110 break;
2111 case I915_TILING_X:
2112 /* pin() will align the object as required by fence */
2113 alignment = 0;
2114 break;
2115 case I915_TILING_Y:
2116 /* FIXME: Is this true? */
2117 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2118 return -EINVAL;
2119 default:
2120 BUG();
2121 }
2122
2123 dev_priv->mm.interruptible = false;
2124 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2125 if (ret)
2126 goto err_interruptible;
2127
2128 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2129 * fence, whereas 965+ only requires a fence if using
2130 * framebuffer compression. For simplicity, we always install
2131 * a fence as the cost is not that onerous.
2132 */
2133 if (obj->tiling_mode != I915_TILING_NONE) {
2134 ret = i915_gem_object_get_fence(obj, pipelined);
2135 if (ret)
2136 goto err_unpin;
2137
2138 i915_gem_object_pin_fence(obj);
2139 }
2140
2141 dev_priv->mm.interruptible = true;
2142 return 0;
2143
2144 err_unpin:
2145 i915_gem_object_unpin(obj);
2146 err_interruptible:
2147 dev_priv->mm.interruptible = true;
2148 return ret;
2149 }
2150
2151 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2152 {
2153 i915_gem_object_unpin_fence(obj);
2154 i915_gem_object_unpin(obj);
2155 }
2156
2157 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2158 int x, int y)
2159 {
2160 struct drm_device *dev = crtc->dev;
2161 struct drm_i915_private *dev_priv = dev->dev_private;
2162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2163 struct intel_framebuffer *intel_fb;
2164 struct drm_i915_gem_object *obj;
2165 int plane = intel_crtc->plane;
2166 unsigned long Start, Offset;
2167 u32 dspcntr;
2168 u32 reg;
2169
2170 switch (plane) {
2171 case 0:
2172 case 1:
2173 break;
2174 default:
2175 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2176 return -EINVAL;
2177 }
2178
2179 intel_fb = to_intel_framebuffer(fb);
2180 obj = intel_fb->obj;
2181
2182 reg = DSPCNTR(plane);
2183 dspcntr = I915_READ(reg);
2184 /* Mask out pixel format bits in case we change it */
2185 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2186 switch (fb->bits_per_pixel) {
2187 case 8:
2188 dspcntr |= DISPPLANE_8BPP;
2189 break;
2190 case 16:
2191 if (fb->depth == 15)
2192 dspcntr |= DISPPLANE_15_16BPP;
2193 else
2194 dspcntr |= DISPPLANE_16BPP;
2195 break;
2196 case 24:
2197 case 32:
2198 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2199 break;
2200 default:
2201 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2202 return -EINVAL;
2203 }
2204 if (INTEL_INFO(dev)->gen >= 4) {
2205 if (obj->tiling_mode != I915_TILING_NONE)
2206 dspcntr |= DISPPLANE_TILED;
2207 else
2208 dspcntr &= ~DISPPLANE_TILED;
2209 }
2210
2211 I915_WRITE(reg, dspcntr);
2212
2213 Start = obj->gtt_offset;
2214 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2215
2216 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2217 Start, Offset, x, y, fb->pitches[0]);
2218 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2219 if (INTEL_INFO(dev)->gen >= 4) {
2220 I915_WRITE(DSPSURF(plane), Start);
2221 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2222 I915_WRITE(DSPADDR(plane), Offset);
2223 } else
2224 I915_WRITE(DSPADDR(plane), Start + Offset);
2225 POSTING_READ(reg);
2226
2227 return 0;
2228 }
2229
2230 static int ironlake_update_plane(struct drm_crtc *crtc,
2231 struct drm_framebuffer *fb, int x, int y)
2232 {
2233 struct drm_device *dev = crtc->dev;
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2236 struct intel_framebuffer *intel_fb;
2237 struct drm_i915_gem_object *obj;
2238 int plane = intel_crtc->plane;
2239 unsigned long Start, Offset;
2240 u32 dspcntr;
2241 u32 reg;
2242
2243 switch (plane) {
2244 case 0:
2245 case 1:
2246 case 2:
2247 break;
2248 default:
2249 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2250 return -EINVAL;
2251 }
2252
2253 intel_fb = to_intel_framebuffer(fb);
2254 obj = intel_fb->obj;
2255
2256 reg = DSPCNTR(plane);
2257 dspcntr = I915_READ(reg);
2258 /* Mask out pixel format bits in case we change it */
2259 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2260 switch (fb->bits_per_pixel) {
2261 case 8:
2262 dspcntr |= DISPPLANE_8BPP;
2263 break;
2264 case 16:
2265 if (fb->depth != 16)
2266 return -EINVAL;
2267
2268 dspcntr |= DISPPLANE_16BPP;
2269 break;
2270 case 24:
2271 case 32:
2272 if (fb->depth == 24)
2273 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2274 else if (fb->depth == 30)
2275 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2276 else
2277 return -EINVAL;
2278 break;
2279 default:
2280 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2281 return -EINVAL;
2282 }
2283
2284 if (obj->tiling_mode != I915_TILING_NONE)
2285 dspcntr |= DISPPLANE_TILED;
2286 else
2287 dspcntr &= ~DISPPLANE_TILED;
2288
2289 /* must disable */
2290 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2291
2292 I915_WRITE(reg, dspcntr);
2293
2294 Start = obj->gtt_offset;
2295 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2296
2297 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2298 Start, Offset, x, y, fb->pitches[0]);
2299 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2300 I915_WRITE(DSPSURF(plane), Start);
2301 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2302 I915_WRITE(DSPADDR(plane), Offset);
2303 POSTING_READ(reg);
2304
2305 return 0;
2306 }
2307
2308 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2309 static int
2310 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2311 int x, int y, enum mode_set_atomic state)
2312 {
2313 struct drm_device *dev = crtc->dev;
2314 struct drm_i915_private *dev_priv = dev->dev_private;
2315 int ret;
2316
2317 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2318 if (ret)
2319 return ret;
2320
2321 intel_update_fbc(dev);
2322 intel_increase_pllclock(crtc);
2323
2324 return 0;
2325 }
2326
2327 static int
2328 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2329 struct drm_framebuffer *old_fb)
2330 {
2331 struct drm_device *dev = crtc->dev;
2332 struct drm_i915_master_private *master_priv;
2333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2334 int ret;
2335
2336 /* no fb bound */
2337 if (!crtc->fb) {
2338 DRM_ERROR("No FB bound\n");
2339 return 0;
2340 }
2341
2342 switch (intel_crtc->plane) {
2343 case 0:
2344 case 1:
2345 break;
2346 case 2:
2347 if (IS_IVYBRIDGE(dev))
2348 break;
2349 /* fall through otherwise */
2350 default:
2351 DRM_ERROR("no plane for crtc\n");
2352 return -EINVAL;
2353 }
2354
2355 mutex_lock(&dev->struct_mutex);
2356 ret = intel_pin_and_fence_fb_obj(dev,
2357 to_intel_framebuffer(crtc->fb)->obj,
2358 NULL);
2359 if (ret != 0) {
2360 mutex_unlock(&dev->struct_mutex);
2361 DRM_ERROR("pin & fence failed\n");
2362 return ret;
2363 }
2364
2365 if (old_fb) {
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2368
2369 wait_event(dev_priv->pending_flip_queue,
2370 atomic_read(&dev_priv->mm.wedged) ||
2371 atomic_read(&obj->pending_flip) == 0);
2372
2373 /* Big Hammer, we also need to ensure that any pending
2374 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2375 * current scanout is retired before unpinning the old
2376 * framebuffer.
2377 *
2378 * This should only fail upon a hung GPU, in which case we
2379 * can safely continue.
2380 */
2381 ret = i915_gem_object_finish_gpu(obj);
2382 (void) ret;
2383 }
2384
2385 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2386 LEAVE_ATOMIC_MODE_SET);
2387 if (ret) {
2388 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2389 mutex_unlock(&dev->struct_mutex);
2390 DRM_ERROR("failed to update base address\n");
2391 return ret;
2392 }
2393
2394 if (old_fb) {
2395 intel_wait_for_vblank(dev, intel_crtc->pipe);
2396 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2397 }
2398
2399 mutex_unlock(&dev->struct_mutex);
2400
2401 if (!dev->primary->master)
2402 return 0;
2403
2404 master_priv = dev->primary->master->driver_priv;
2405 if (!master_priv->sarea_priv)
2406 return 0;
2407
2408 if (intel_crtc->pipe) {
2409 master_priv->sarea_priv->pipeB_x = x;
2410 master_priv->sarea_priv->pipeB_y = y;
2411 } else {
2412 master_priv->sarea_priv->pipeA_x = x;
2413 master_priv->sarea_priv->pipeA_y = y;
2414 }
2415
2416 return 0;
2417 }
2418
2419 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2420 {
2421 struct drm_device *dev = crtc->dev;
2422 struct drm_i915_private *dev_priv = dev->dev_private;
2423 u32 dpa_ctl;
2424
2425 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2426 dpa_ctl = I915_READ(DP_A);
2427 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2428
2429 if (clock < 200000) {
2430 u32 temp;
2431 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2432 /* workaround for 160Mhz:
2433 1) program 0x4600c bits 15:0 = 0x8124
2434 2) program 0x46010 bit 0 = 1
2435 3) program 0x46034 bit 24 = 1
2436 4) program 0x64000 bit 14 = 1
2437 */
2438 temp = I915_READ(0x4600c);
2439 temp &= 0xffff0000;
2440 I915_WRITE(0x4600c, temp | 0x8124);
2441
2442 temp = I915_READ(0x46010);
2443 I915_WRITE(0x46010, temp | 1);
2444
2445 temp = I915_READ(0x46034);
2446 I915_WRITE(0x46034, temp | (1 << 24));
2447 } else {
2448 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2449 }
2450 I915_WRITE(DP_A, dpa_ctl);
2451
2452 POSTING_READ(DP_A);
2453 udelay(500);
2454 }
2455
2456 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2457 {
2458 struct drm_device *dev = crtc->dev;
2459 struct drm_i915_private *dev_priv = dev->dev_private;
2460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2461 int pipe = intel_crtc->pipe;
2462 u32 reg, temp;
2463
2464 /* enable normal train */
2465 reg = FDI_TX_CTL(pipe);
2466 temp = I915_READ(reg);
2467 if (IS_IVYBRIDGE(dev)) {
2468 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2469 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2470 } else {
2471 temp &= ~FDI_LINK_TRAIN_NONE;
2472 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2473 }
2474 I915_WRITE(reg, temp);
2475
2476 reg = FDI_RX_CTL(pipe);
2477 temp = I915_READ(reg);
2478 if (HAS_PCH_CPT(dev)) {
2479 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2480 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2481 } else {
2482 temp &= ~FDI_LINK_TRAIN_NONE;
2483 temp |= FDI_LINK_TRAIN_NONE;
2484 }
2485 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2486
2487 /* wait one idle pattern time */
2488 POSTING_READ(reg);
2489 udelay(1000);
2490
2491 /* IVB wants error correction enabled */
2492 if (IS_IVYBRIDGE(dev))
2493 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2494 FDI_FE_ERRC_ENABLE);
2495 }
2496
2497 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2498 {
2499 struct drm_i915_private *dev_priv = dev->dev_private;
2500 u32 flags = I915_READ(SOUTH_CHICKEN1);
2501
2502 flags |= FDI_PHASE_SYNC_OVR(pipe);
2503 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2504 flags |= FDI_PHASE_SYNC_EN(pipe);
2505 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2506 POSTING_READ(SOUTH_CHICKEN1);
2507 }
2508
2509 /* The FDI link training functions for ILK/Ibexpeak. */
2510 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2511 {
2512 struct drm_device *dev = crtc->dev;
2513 struct drm_i915_private *dev_priv = dev->dev_private;
2514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2515 int pipe = intel_crtc->pipe;
2516 int plane = intel_crtc->plane;
2517 u32 reg, temp, tries;
2518
2519 /* FDI needs bits from pipe & plane first */
2520 assert_pipe_enabled(dev_priv, pipe);
2521 assert_plane_enabled(dev_priv, plane);
2522
2523 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2524 for train result */
2525 reg = FDI_RX_IMR(pipe);
2526 temp = I915_READ(reg);
2527 temp &= ~FDI_RX_SYMBOL_LOCK;
2528 temp &= ~FDI_RX_BIT_LOCK;
2529 I915_WRITE(reg, temp);
2530 I915_READ(reg);
2531 udelay(150);
2532
2533 /* enable CPU FDI TX and PCH FDI RX */
2534 reg = FDI_TX_CTL(pipe);
2535 temp = I915_READ(reg);
2536 temp &= ~(7 << 19);
2537 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2538 temp &= ~FDI_LINK_TRAIN_NONE;
2539 temp |= FDI_LINK_TRAIN_PATTERN_1;
2540 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2541
2542 reg = FDI_RX_CTL(pipe);
2543 temp = I915_READ(reg);
2544 temp &= ~FDI_LINK_TRAIN_NONE;
2545 temp |= FDI_LINK_TRAIN_PATTERN_1;
2546 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2547
2548 POSTING_READ(reg);
2549 udelay(150);
2550
2551 /* Ironlake workaround, enable clock pointer after FDI enable*/
2552 if (HAS_PCH_IBX(dev)) {
2553 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2554 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2555 FDI_RX_PHASE_SYNC_POINTER_EN);
2556 }
2557
2558 reg = FDI_RX_IIR(pipe);
2559 for (tries = 0; tries < 5; tries++) {
2560 temp = I915_READ(reg);
2561 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2562
2563 if ((temp & FDI_RX_BIT_LOCK)) {
2564 DRM_DEBUG_KMS("FDI train 1 done.\n");
2565 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2566 break;
2567 }
2568 }
2569 if (tries == 5)
2570 DRM_ERROR("FDI train 1 fail!\n");
2571
2572 /* Train 2 */
2573 reg = FDI_TX_CTL(pipe);
2574 temp = I915_READ(reg);
2575 temp &= ~FDI_LINK_TRAIN_NONE;
2576 temp |= FDI_LINK_TRAIN_PATTERN_2;
2577 I915_WRITE(reg, temp);
2578
2579 reg = FDI_RX_CTL(pipe);
2580 temp = I915_READ(reg);
2581 temp &= ~FDI_LINK_TRAIN_NONE;
2582 temp |= FDI_LINK_TRAIN_PATTERN_2;
2583 I915_WRITE(reg, temp);
2584
2585 POSTING_READ(reg);
2586 udelay(150);
2587
2588 reg = FDI_RX_IIR(pipe);
2589 for (tries = 0; tries < 5; tries++) {
2590 temp = I915_READ(reg);
2591 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2592
2593 if (temp & FDI_RX_SYMBOL_LOCK) {
2594 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2595 DRM_DEBUG_KMS("FDI train 2 done.\n");
2596 break;
2597 }
2598 }
2599 if (tries == 5)
2600 DRM_ERROR("FDI train 2 fail!\n");
2601
2602 DRM_DEBUG_KMS("FDI train done\n");
2603
2604 }
2605
2606 static const int snb_b_fdi_train_param[] = {
2607 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2608 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2609 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2610 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2611 };
2612
2613 /* The FDI link training functions for SNB/Cougarpoint. */
2614 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2615 {
2616 struct drm_device *dev = crtc->dev;
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2619 int pipe = intel_crtc->pipe;
2620 u32 reg, temp, i, retry;
2621
2622 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2623 for train result */
2624 reg = FDI_RX_IMR(pipe);
2625 temp = I915_READ(reg);
2626 temp &= ~FDI_RX_SYMBOL_LOCK;
2627 temp &= ~FDI_RX_BIT_LOCK;
2628 I915_WRITE(reg, temp);
2629
2630 POSTING_READ(reg);
2631 udelay(150);
2632
2633 /* enable CPU FDI TX and PCH FDI RX */
2634 reg = FDI_TX_CTL(pipe);
2635 temp = I915_READ(reg);
2636 temp &= ~(7 << 19);
2637 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2638 temp &= ~FDI_LINK_TRAIN_NONE;
2639 temp |= FDI_LINK_TRAIN_PATTERN_1;
2640 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641 /* SNB-B */
2642 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2643 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2644
2645 reg = FDI_RX_CTL(pipe);
2646 temp = I915_READ(reg);
2647 if (HAS_PCH_CPT(dev)) {
2648 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2649 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2650 } else {
2651 temp &= ~FDI_LINK_TRAIN_NONE;
2652 temp |= FDI_LINK_TRAIN_PATTERN_1;
2653 }
2654 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2655
2656 POSTING_READ(reg);
2657 udelay(150);
2658
2659 if (HAS_PCH_CPT(dev))
2660 cpt_phase_pointer_enable(dev, pipe);
2661
2662 for (i = 0; i < 4; i++) {
2663 reg = FDI_TX_CTL(pipe);
2664 temp = I915_READ(reg);
2665 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2666 temp |= snb_b_fdi_train_param[i];
2667 I915_WRITE(reg, temp);
2668
2669 POSTING_READ(reg);
2670 udelay(500);
2671
2672 for (retry = 0; retry < 5; retry++) {
2673 reg = FDI_RX_IIR(pipe);
2674 temp = I915_READ(reg);
2675 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2676 if (temp & FDI_RX_BIT_LOCK) {
2677 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2678 DRM_DEBUG_KMS("FDI train 1 done.\n");
2679 break;
2680 }
2681 udelay(50);
2682 }
2683 if (retry < 5)
2684 break;
2685 }
2686 if (i == 4)
2687 DRM_ERROR("FDI train 1 fail!\n");
2688
2689 /* Train 2 */
2690 reg = FDI_TX_CTL(pipe);
2691 temp = I915_READ(reg);
2692 temp &= ~FDI_LINK_TRAIN_NONE;
2693 temp |= FDI_LINK_TRAIN_PATTERN_2;
2694 if (IS_GEN6(dev)) {
2695 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2696 /* SNB-B */
2697 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2698 }
2699 I915_WRITE(reg, temp);
2700
2701 reg = FDI_RX_CTL(pipe);
2702 temp = I915_READ(reg);
2703 if (HAS_PCH_CPT(dev)) {
2704 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2705 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2706 } else {
2707 temp &= ~FDI_LINK_TRAIN_NONE;
2708 temp |= FDI_LINK_TRAIN_PATTERN_2;
2709 }
2710 I915_WRITE(reg, temp);
2711
2712 POSTING_READ(reg);
2713 udelay(150);
2714
2715 for (i = 0; i < 4; i++) {
2716 reg = FDI_TX_CTL(pipe);
2717 temp = I915_READ(reg);
2718 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2719 temp |= snb_b_fdi_train_param[i];
2720 I915_WRITE(reg, temp);
2721
2722 POSTING_READ(reg);
2723 udelay(500);
2724
2725 for (retry = 0; retry < 5; retry++) {
2726 reg = FDI_RX_IIR(pipe);
2727 temp = I915_READ(reg);
2728 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2729 if (temp & FDI_RX_SYMBOL_LOCK) {
2730 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2731 DRM_DEBUG_KMS("FDI train 2 done.\n");
2732 break;
2733 }
2734 udelay(50);
2735 }
2736 if (retry < 5)
2737 break;
2738 }
2739 if (i == 4)
2740 DRM_ERROR("FDI train 2 fail!\n");
2741
2742 DRM_DEBUG_KMS("FDI train done.\n");
2743 }
2744
2745 /* Manual link training for Ivy Bridge A0 parts */
2746 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2747 {
2748 struct drm_device *dev = crtc->dev;
2749 struct drm_i915_private *dev_priv = dev->dev_private;
2750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2751 int pipe = intel_crtc->pipe;
2752 u32 reg, temp, i;
2753
2754 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2755 for train result */
2756 reg = FDI_RX_IMR(pipe);
2757 temp = I915_READ(reg);
2758 temp &= ~FDI_RX_SYMBOL_LOCK;
2759 temp &= ~FDI_RX_BIT_LOCK;
2760 I915_WRITE(reg, temp);
2761
2762 POSTING_READ(reg);
2763 udelay(150);
2764
2765 /* enable CPU FDI TX and PCH FDI RX */
2766 reg = FDI_TX_CTL(pipe);
2767 temp = I915_READ(reg);
2768 temp &= ~(7 << 19);
2769 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2770 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2771 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2772 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2773 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2774 temp |= FDI_COMPOSITE_SYNC;
2775 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2776
2777 reg = FDI_RX_CTL(pipe);
2778 temp = I915_READ(reg);
2779 temp &= ~FDI_LINK_TRAIN_AUTO;
2780 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2781 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2782 temp |= FDI_COMPOSITE_SYNC;
2783 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2784
2785 POSTING_READ(reg);
2786 udelay(150);
2787
2788 if (HAS_PCH_CPT(dev))
2789 cpt_phase_pointer_enable(dev, pipe);
2790
2791 for (i = 0; i < 4; i++) {
2792 reg = FDI_TX_CTL(pipe);
2793 temp = I915_READ(reg);
2794 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2795 temp |= snb_b_fdi_train_param[i];
2796 I915_WRITE(reg, temp);
2797
2798 POSTING_READ(reg);
2799 udelay(500);
2800
2801 reg = FDI_RX_IIR(pipe);
2802 temp = I915_READ(reg);
2803 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2804
2805 if (temp & FDI_RX_BIT_LOCK ||
2806 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2807 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2808 DRM_DEBUG_KMS("FDI train 1 done.\n");
2809 break;
2810 }
2811 }
2812 if (i == 4)
2813 DRM_ERROR("FDI train 1 fail!\n");
2814
2815 /* Train 2 */
2816 reg = FDI_TX_CTL(pipe);
2817 temp = I915_READ(reg);
2818 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2819 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2820 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2821 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2822 I915_WRITE(reg, temp);
2823
2824 reg = FDI_RX_CTL(pipe);
2825 temp = I915_READ(reg);
2826 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2827 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2828 I915_WRITE(reg, temp);
2829
2830 POSTING_READ(reg);
2831 udelay(150);
2832
2833 for (i = 0; i < 4; i++) {
2834 reg = FDI_TX_CTL(pipe);
2835 temp = I915_READ(reg);
2836 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2837 temp |= snb_b_fdi_train_param[i];
2838 I915_WRITE(reg, temp);
2839
2840 POSTING_READ(reg);
2841 udelay(500);
2842
2843 reg = FDI_RX_IIR(pipe);
2844 temp = I915_READ(reg);
2845 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2846
2847 if (temp & FDI_RX_SYMBOL_LOCK) {
2848 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2849 DRM_DEBUG_KMS("FDI train 2 done.\n");
2850 break;
2851 }
2852 }
2853 if (i == 4)
2854 DRM_ERROR("FDI train 2 fail!\n");
2855
2856 DRM_DEBUG_KMS("FDI train done.\n");
2857 }
2858
2859 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2860 {
2861 struct drm_device *dev = crtc->dev;
2862 struct drm_i915_private *dev_priv = dev->dev_private;
2863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864 int pipe = intel_crtc->pipe;
2865 u32 reg, temp;
2866
2867 /* Write the TU size bits so error detection works */
2868 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2869 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2870
2871 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2872 reg = FDI_RX_CTL(pipe);
2873 temp = I915_READ(reg);
2874 temp &= ~((0x7 << 19) | (0x7 << 16));
2875 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2876 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2877 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2878
2879 POSTING_READ(reg);
2880 udelay(200);
2881
2882 /* Switch from Rawclk to PCDclk */
2883 temp = I915_READ(reg);
2884 I915_WRITE(reg, temp | FDI_PCDCLK);
2885
2886 POSTING_READ(reg);
2887 udelay(200);
2888
2889 /* Enable CPU FDI TX PLL, always on for Ironlake */
2890 reg = FDI_TX_CTL(pipe);
2891 temp = I915_READ(reg);
2892 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2893 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2894
2895 POSTING_READ(reg);
2896 udelay(100);
2897 }
2898 }
2899
2900 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2901 {
2902 struct drm_i915_private *dev_priv = dev->dev_private;
2903 u32 flags = I915_READ(SOUTH_CHICKEN1);
2904
2905 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2906 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2907 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2908 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2909 POSTING_READ(SOUTH_CHICKEN1);
2910 }
2911 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2912 {
2913 struct drm_device *dev = crtc->dev;
2914 struct drm_i915_private *dev_priv = dev->dev_private;
2915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2916 int pipe = intel_crtc->pipe;
2917 u32 reg, temp;
2918
2919 /* disable CPU FDI tx and PCH FDI rx */
2920 reg = FDI_TX_CTL(pipe);
2921 temp = I915_READ(reg);
2922 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2923 POSTING_READ(reg);
2924
2925 reg = FDI_RX_CTL(pipe);
2926 temp = I915_READ(reg);
2927 temp &= ~(0x7 << 16);
2928 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2929 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2930
2931 POSTING_READ(reg);
2932 udelay(100);
2933
2934 /* Ironlake workaround, disable clock pointer after downing FDI */
2935 if (HAS_PCH_IBX(dev)) {
2936 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2937 I915_WRITE(FDI_RX_CHICKEN(pipe),
2938 I915_READ(FDI_RX_CHICKEN(pipe) &
2939 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2940 } else if (HAS_PCH_CPT(dev)) {
2941 cpt_phase_pointer_disable(dev, pipe);
2942 }
2943
2944 /* still set train pattern 1 */
2945 reg = FDI_TX_CTL(pipe);
2946 temp = I915_READ(reg);
2947 temp &= ~FDI_LINK_TRAIN_NONE;
2948 temp |= FDI_LINK_TRAIN_PATTERN_1;
2949 I915_WRITE(reg, temp);
2950
2951 reg = FDI_RX_CTL(pipe);
2952 temp = I915_READ(reg);
2953 if (HAS_PCH_CPT(dev)) {
2954 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2955 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2956 } else {
2957 temp &= ~FDI_LINK_TRAIN_NONE;
2958 temp |= FDI_LINK_TRAIN_PATTERN_1;
2959 }
2960 /* BPC in FDI rx is consistent with that in PIPECONF */
2961 temp &= ~(0x07 << 16);
2962 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2963 I915_WRITE(reg, temp);
2964
2965 POSTING_READ(reg);
2966 udelay(100);
2967 }
2968
2969 /*
2970 * When we disable a pipe, we need to clear any pending scanline wait events
2971 * to avoid hanging the ring, which we assume we are waiting on.
2972 */
2973 static void intel_clear_scanline_wait(struct drm_device *dev)
2974 {
2975 struct drm_i915_private *dev_priv = dev->dev_private;
2976 struct intel_ring_buffer *ring;
2977 u32 tmp;
2978
2979 if (IS_GEN2(dev))
2980 /* Can't break the hang on i8xx */
2981 return;
2982
2983 ring = LP_RING(dev_priv);
2984 tmp = I915_READ_CTL(ring);
2985 if (tmp & RING_WAIT)
2986 I915_WRITE_CTL(ring, tmp);
2987 }
2988
2989 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2990 {
2991 struct drm_i915_gem_object *obj;
2992 struct drm_i915_private *dev_priv;
2993
2994 if (crtc->fb == NULL)
2995 return;
2996
2997 obj = to_intel_framebuffer(crtc->fb)->obj;
2998 dev_priv = crtc->dev->dev_private;
2999 wait_event(dev_priv->pending_flip_queue,
3000 atomic_read(&obj->pending_flip) == 0);
3001 }
3002
3003 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
3004 {
3005 struct drm_device *dev = crtc->dev;
3006 struct drm_mode_config *mode_config = &dev->mode_config;
3007 struct intel_encoder *encoder;
3008
3009 /*
3010 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
3011 * must be driven by its own crtc; no sharing is possible.
3012 */
3013 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3014 if (encoder->base.crtc != crtc)
3015 continue;
3016
3017 switch (encoder->type) {
3018 case INTEL_OUTPUT_EDP:
3019 if (!intel_encoder_is_pch_edp(&encoder->base))
3020 return false;
3021 continue;
3022 }
3023 }
3024
3025 return true;
3026 }
3027
3028 /*
3029 * Enable PCH resources required for PCH ports:
3030 * - PCH PLLs
3031 * - FDI training & RX/TX
3032 * - update transcoder timings
3033 * - DP transcoding bits
3034 * - transcoder
3035 */
3036 static void ironlake_pch_enable(struct drm_crtc *crtc)
3037 {
3038 struct drm_device *dev = crtc->dev;
3039 struct drm_i915_private *dev_priv = dev->dev_private;
3040 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3041 int pipe = intel_crtc->pipe;
3042 u32 reg, temp, transc_sel;
3043
3044 /* For PCH output, training FDI link */
3045 dev_priv->display.fdi_link_train(crtc);
3046
3047 intel_enable_pch_pll(dev_priv, pipe);
3048
3049 if (HAS_PCH_CPT(dev)) {
3050 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
3051 TRANSC_DPLLB_SEL;
3052
3053 /* Be sure PCH DPLL SEL is set */
3054 temp = I915_READ(PCH_DPLL_SEL);
3055 if (pipe == 0) {
3056 temp &= ~(TRANSA_DPLLB_SEL);
3057 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3058 } else if (pipe == 1) {
3059 temp &= ~(TRANSB_DPLLB_SEL);
3060 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3061 } else if (pipe == 2) {
3062 temp &= ~(TRANSC_DPLLB_SEL);
3063 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
3064 }
3065 I915_WRITE(PCH_DPLL_SEL, temp);
3066 }
3067
3068 /* set transcoder timing, panel must allow it */
3069 assert_panel_unlocked(dev_priv, pipe);
3070 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3071 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3072 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3073
3074 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3075 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3076 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3077 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3078
3079 intel_fdi_normal_train(crtc);
3080
3081 /* For PCH DP, enable TRANS_DP_CTL */
3082 if (HAS_PCH_CPT(dev) &&
3083 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3084 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3085 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3086 reg = TRANS_DP_CTL(pipe);
3087 temp = I915_READ(reg);
3088 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3089 TRANS_DP_SYNC_MASK |
3090 TRANS_DP_BPC_MASK);
3091 temp |= (TRANS_DP_OUTPUT_ENABLE |
3092 TRANS_DP_ENH_FRAMING);
3093 temp |= bpc << 9; /* same format but at 11:9 */
3094
3095 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3096 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3097 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3098 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3099
3100 switch (intel_trans_dp_port_sel(crtc)) {
3101 case PCH_DP_B:
3102 temp |= TRANS_DP_PORT_SEL_B;
3103 break;
3104 case PCH_DP_C:
3105 temp |= TRANS_DP_PORT_SEL_C;
3106 break;
3107 case PCH_DP_D:
3108 temp |= TRANS_DP_PORT_SEL_D;
3109 break;
3110 default:
3111 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3112 temp |= TRANS_DP_PORT_SEL_B;
3113 break;
3114 }
3115
3116 I915_WRITE(reg, temp);
3117 }
3118
3119 intel_enable_transcoder(dev_priv, pipe);
3120 }
3121
3122 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3123 {
3124 struct drm_i915_private *dev_priv = dev->dev_private;
3125 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3126 u32 temp;
3127
3128 temp = I915_READ(dslreg);
3129 udelay(500);
3130 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3131 /* Without this, mode sets may fail silently on FDI */
3132 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3133 udelay(250);
3134 I915_WRITE(tc2reg, 0);
3135 if (wait_for(I915_READ(dslreg) != temp, 5))
3136 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3137 }
3138 }
3139
3140 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3141 {
3142 struct drm_device *dev = crtc->dev;
3143 struct drm_i915_private *dev_priv = dev->dev_private;
3144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3145 int pipe = intel_crtc->pipe;
3146 int plane = intel_crtc->plane;
3147 u32 temp;
3148 bool is_pch_port;
3149
3150 if (intel_crtc->active)
3151 return;
3152
3153 intel_crtc->active = true;
3154 intel_update_watermarks(dev);
3155
3156 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3157 temp = I915_READ(PCH_LVDS);
3158 if ((temp & LVDS_PORT_EN) == 0)
3159 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3160 }
3161
3162 is_pch_port = intel_crtc_driving_pch(crtc);
3163
3164 if (is_pch_port)
3165 ironlake_fdi_pll_enable(crtc);
3166 else
3167 ironlake_fdi_disable(crtc);
3168
3169 /* Enable panel fitting for LVDS */
3170 if (dev_priv->pch_pf_size &&
3171 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3172 /* Force use of hard-coded filter coefficients
3173 * as some pre-programmed values are broken,
3174 * e.g. x201.
3175 */
3176 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3177 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3178 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3179 }
3180
3181 /*
3182 * On ILK+ LUT must be loaded before the pipe is running but with
3183 * clocks enabled
3184 */
3185 intel_crtc_load_lut(crtc);
3186
3187 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3188 intel_enable_plane(dev_priv, plane, pipe);
3189
3190 if (is_pch_port)
3191 ironlake_pch_enable(crtc);
3192
3193 mutex_lock(&dev->struct_mutex);
3194 intel_update_fbc(dev);
3195 mutex_unlock(&dev->struct_mutex);
3196
3197 intel_crtc_update_cursor(crtc, true);
3198 }
3199
3200 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3201 {
3202 struct drm_device *dev = crtc->dev;
3203 struct drm_i915_private *dev_priv = dev->dev_private;
3204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3205 int pipe = intel_crtc->pipe;
3206 int plane = intel_crtc->plane;
3207 u32 reg, temp;
3208
3209 if (!intel_crtc->active)
3210 return;
3211
3212 intel_crtc_wait_for_pending_flips(crtc);
3213 drm_vblank_off(dev, pipe);
3214 intel_crtc_update_cursor(crtc, false);
3215
3216 intel_disable_plane(dev_priv, plane, pipe);
3217
3218 if (dev_priv->cfb_plane == plane)
3219 intel_disable_fbc(dev);
3220
3221 intel_disable_pipe(dev_priv, pipe);
3222
3223 /* Disable PF */
3224 I915_WRITE(PF_CTL(pipe), 0);
3225 I915_WRITE(PF_WIN_SZ(pipe), 0);
3226
3227 ironlake_fdi_disable(crtc);
3228
3229 /* This is a horrible layering violation; we should be doing this in
3230 * the connector/encoder ->prepare instead, but we don't always have
3231 * enough information there about the config to know whether it will
3232 * actually be necessary or just cause undesired flicker.
3233 */
3234 intel_disable_pch_ports(dev_priv, pipe);
3235
3236 intel_disable_transcoder(dev_priv, pipe);
3237
3238 if (HAS_PCH_CPT(dev)) {
3239 /* disable TRANS_DP_CTL */
3240 reg = TRANS_DP_CTL(pipe);
3241 temp = I915_READ(reg);
3242 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3243 temp |= TRANS_DP_PORT_SEL_NONE;
3244 I915_WRITE(reg, temp);
3245
3246 /* disable DPLL_SEL */
3247 temp = I915_READ(PCH_DPLL_SEL);
3248 switch (pipe) {
3249 case 0:
3250 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3251 break;
3252 case 1:
3253 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3254 break;
3255 case 2:
3256 /* C shares PLL A or B */
3257 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3258 break;
3259 default:
3260 BUG(); /* wtf */
3261 }
3262 I915_WRITE(PCH_DPLL_SEL, temp);
3263 }
3264
3265 /* disable PCH DPLL */
3266 if (!intel_crtc->no_pll)
3267 intel_disable_pch_pll(dev_priv, pipe);
3268
3269 /* Switch from PCDclk to Rawclk */
3270 reg = FDI_RX_CTL(pipe);
3271 temp = I915_READ(reg);
3272 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3273
3274 /* Disable CPU FDI TX PLL */
3275 reg = FDI_TX_CTL(pipe);
3276 temp = I915_READ(reg);
3277 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3278
3279 POSTING_READ(reg);
3280 udelay(100);
3281
3282 reg = FDI_RX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3285
3286 /* Wait for the clocks to turn off. */
3287 POSTING_READ(reg);
3288 udelay(100);
3289
3290 intel_crtc->active = false;
3291 intel_update_watermarks(dev);
3292
3293 mutex_lock(&dev->struct_mutex);
3294 intel_update_fbc(dev);
3295 intel_clear_scanline_wait(dev);
3296 mutex_unlock(&dev->struct_mutex);
3297 }
3298
3299 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3300 {
3301 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3302 int pipe = intel_crtc->pipe;
3303 int plane = intel_crtc->plane;
3304
3305 /* XXX: When our outputs are all unaware of DPMS modes other than off
3306 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3307 */
3308 switch (mode) {
3309 case DRM_MODE_DPMS_ON:
3310 case DRM_MODE_DPMS_STANDBY:
3311 case DRM_MODE_DPMS_SUSPEND:
3312 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3313 ironlake_crtc_enable(crtc);
3314 break;
3315
3316 case DRM_MODE_DPMS_OFF:
3317 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3318 ironlake_crtc_disable(crtc);
3319 break;
3320 }
3321 }
3322
3323 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3324 {
3325 if (!enable && intel_crtc->overlay) {
3326 struct drm_device *dev = intel_crtc->base.dev;
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328
3329 mutex_lock(&dev->struct_mutex);
3330 dev_priv->mm.interruptible = false;
3331 (void) intel_overlay_switch_off(intel_crtc->overlay);
3332 dev_priv->mm.interruptible = true;
3333 mutex_unlock(&dev->struct_mutex);
3334 }
3335
3336 /* Let userspace switch the overlay on again. In most cases userspace
3337 * has to recompute where to put it anyway.
3338 */
3339 }
3340
3341 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3342 {
3343 struct drm_device *dev = crtc->dev;
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3346 int pipe = intel_crtc->pipe;
3347 int plane = intel_crtc->plane;
3348
3349 if (intel_crtc->active)
3350 return;
3351
3352 intel_crtc->active = true;
3353 intel_update_watermarks(dev);
3354
3355 intel_enable_pll(dev_priv, pipe);
3356 intel_enable_pipe(dev_priv, pipe, false);
3357 intel_enable_plane(dev_priv, plane, pipe);
3358
3359 intel_crtc_load_lut(crtc);
3360 intel_update_fbc(dev);
3361
3362 /* Give the overlay scaler a chance to enable if it's on this pipe */
3363 intel_crtc_dpms_overlay(intel_crtc, true);
3364 intel_crtc_update_cursor(crtc, true);
3365 }
3366
3367 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3368 {
3369 struct drm_device *dev = crtc->dev;
3370 struct drm_i915_private *dev_priv = dev->dev_private;
3371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3372 int pipe = intel_crtc->pipe;
3373 int plane = intel_crtc->plane;
3374
3375 if (!intel_crtc->active)
3376 return;
3377
3378 /* Give the overlay scaler a chance to disable if it's on this pipe */
3379 intel_crtc_wait_for_pending_flips(crtc);
3380 drm_vblank_off(dev, pipe);
3381 intel_crtc_dpms_overlay(intel_crtc, false);
3382 intel_crtc_update_cursor(crtc, false);
3383
3384 if (dev_priv->cfb_plane == plane)
3385 intel_disable_fbc(dev);
3386
3387 intel_disable_plane(dev_priv, plane, pipe);
3388 intel_disable_pipe(dev_priv, pipe);
3389 intel_disable_pll(dev_priv, pipe);
3390
3391 intel_crtc->active = false;
3392 intel_update_fbc(dev);
3393 intel_update_watermarks(dev);
3394 intel_clear_scanline_wait(dev);
3395 }
3396
3397 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3398 {
3399 /* XXX: When our outputs are all unaware of DPMS modes other than off
3400 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3401 */
3402 switch (mode) {
3403 case DRM_MODE_DPMS_ON:
3404 case DRM_MODE_DPMS_STANDBY:
3405 case DRM_MODE_DPMS_SUSPEND:
3406 i9xx_crtc_enable(crtc);
3407 break;
3408 case DRM_MODE_DPMS_OFF:
3409 i9xx_crtc_disable(crtc);
3410 break;
3411 }
3412 }
3413
3414 /**
3415 * Sets the power management mode of the pipe and plane.
3416 */
3417 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3418 {
3419 struct drm_device *dev = crtc->dev;
3420 struct drm_i915_private *dev_priv = dev->dev_private;
3421 struct drm_i915_master_private *master_priv;
3422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3423 int pipe = intel_crtc->pipe;
3424 bool enabled;
3425
3426 if (intel_crtc->dpms_mode == mode)
3427 return;
3428
3429 intel_crtc->dpms_mode = mode;
3430
3431 dev_priv->display.dpms(crtc, mode);
3432
3433 if (!dev->primary->master)
3434 return;
3435
3436 master_priv = dev->primary->master->driver_priv;
3437 if (!master_priv->sarea_priv)
3438 return;
3439
3440 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3441
3442 switch (pipe) {
3443 case 0:
3444 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3445 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3446 break;
3447 case 1:
3448 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3449 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3450 break;
3451 default:
3452 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3453 break;
3454 }
3455 }
3456
3457 static void intel_crtc_disable(struct drm_crtc *crtc)
3458 {
3459 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3460 struct drm_device *dev = crtc->dev;
3461
3462 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3463 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3464 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3465
3466 if (crtc->fb) {
3467 mutex_lock(&dev->struct_mutex);
3468 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3469 mutex_unlock(&dev->struct_mutex);
3470 }
3471 }
3472
3473 /* Prepare for a mode set.
3474 *
3475 * Note we could be a lot smarter here. We need to figure out which outputs
3476 * will be enabled, which disabled (in short, how the config will changes)
3477 * and perform the minimum necessary steps to accomplish that, e.g. updating
3478 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3479 * panel fitting is in the proper state, etc.
3480 */
3481 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3482 {
3483 i9xx_crtc_disable(crtc);
3484 }
3485
3486 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3487 {
3488 i9xx_crtc_enable(crtc);
3489 }
3490
3491 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3492 {
3493 ironlake_crtc_disable(crtc);
3494 }
3495
3496 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3497 {
3498 ironlake_crtc_enable(crtc);
3499 }
3500
3501 void intel_encoder_prepare(struct drm_encoder *encoder)
3502 {
3503 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3504 /* lvds has its own version of prepare see intel_lvds_prepare */
3505 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3506 }
3507
3508 void intel_encoder_commit(struct drm_encoder *encoder)
3509 {
3510 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3511 struct drm_device *dev = encoder->dev;
3512 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3513 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3514
3515 /* lvds has its own version of commit see intel_lvds_commit */
3516 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3517
3518 if (HAS_PCH_CPT(dev))
3519 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3520 }
3521
3522 void intel_encoder_destroy(struct drm_encoder *encoder)
3523 {
3524 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3525
3526 drm_encoder_cleanup(encoder);
3527 kfree(intel_encoder);
3528 }
3529
3530 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3531 struct drm_display_mode *mode,
3532 struct drm_display_mode *adjusted_mode)
3533 {
3534 struct drm_device *dev = crtc->dev;
3535
3536 if (HAS_PCH_SPLIT(dev)) {
3537 /* FDI link clock is fixed at 2.7G */
3538 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3539 return false;
3540 }
3541
3542 /* All interlaced capable intel hw wants timings in frames. */
3543 drm_mode_set_crtcinfo(adjusted_mode, 0);
3544
3545 return true;
3546 }
3547
3548 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3549 {
3550 return 400000; /* FIXME */
3551 }
3552
3553 static int i945_get_display_clock_speed(struct drm_device *dev)
3554 {
3555 return 400000;
3556 }
3557
3558 static int i915_get_display_clock_speed(struct drm_device *dev)
3559 {
3560 return 333000;
3561 }
3562
3563 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3564 {
3565 return 200000;
3566 }
3567
3568 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3569 {
3570 u16 gcfgc = 0;
3571
3572 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3573
3574 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3575 return 133000;
3576 else {
3577 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3578 case GC_DISPLAY_CLOCK_333_MHZ:
3579 return 333000;
3580 default:
3581 case GC_DISPLAY_CLOCK_190_200_MHZ:
3582 return 190000;
3583 }
3584 }
3585 }
3586
3587 static int i865_get_display_clock_speed(struct drm_device *dev)
3588 {
3589 return 266000;
3590 }
3591
3592 static int i855_get_display_clock_speed(struct drm_device *dev)
3593 {
3594 u16 hpllcc = 0;
3595 /* Assume that the hardware is in the high speed state. This
3596 * should be the default.
3597 */
3598 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3599 case GC_CLOCK_133_200:
3600 case GC_CLOCK_100_200:
3601 return 200000;
3602 case GC_CLOCK_166_250:
3603 return 250000;
3604 case GC_CLOCK_100_133:
3605 return 133000;
3606 }
3607
3608 /* Shouldn't happen */
3609 return 0;
3610 }
3611
3612 static int i830_get_display_clock_speed(struct drm_device *dev)
3613 {
3614 return 133000;
3615 }
3616
3617 struct fdi_m_n {
3618 u32 tu;
3619 u32 gmch_m;
3620 u32 gmch_n;
3621 u32 link_m;
3622 u32 link_n;
3623 };
3624
3625 static void
3626 fdi_reduce_ratio(u32 *num, u32 *den)
3627 {
3628 while (*num > 0xffffff || *den > 0xffffff) {
3629 *num >>= 1;
3630 *den >>= 1;
3631 }
3632 }
3633
3634 static void
3635 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3636 int link_clock, struct fdi_m_n *m_n)
3637 {
3638 m_n->tu = 64; /* default size */
3639
3640 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3641 m_n->gmch_m = bits_per_pixel * pixel_clock;
3642 m_n->gmch_n = link_clock * nlanes * 8;
3643 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3644
3645 m_n->link_m = pixel_clock;
3646 m_n->link_n = link_clock;
3647 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3648 }
3649
3650
3651 struct intel_watermark_params {
3652 unsigned long fifo_size;
3653 unsigned long max_wm;
3654 unsigned long default_wm;
3655 unsigned long guard_size;
3656 unsigned long cacheline_size;
3657 };
3658
3659 /* Pineview has different values for various configs */
3660 static const struct intel_watermark_params pineview_display_wm = {
3661 PINEVIEW_DISPLAY_FIFO,
3662 PINEVIEW_MAX_WM,
3663 PINEVIEW_DFT_WM,
3664 PINEVIEW_GUARD_WM,
3665 PINEVIEW_FIFO_LINE_SIZE
3666 };
3667 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3668 PINEVIEW_DISPLAY_FIFO,
3669 PINEVIEW_MAX_WM,
3670 PINEVIEW_DFT_HPLLOFF_WM,
3671 PINEVIEW_GUARD_WM,
3672 PINEVIEW_FIFO_LINE_SIZE
3673 };
3674 static const struct intel_watermark_params pineview_cursor_wm = {
3675 PINEVIEW_CURSOR_FIFO,
3676 PINEVIEW_CURSOR_MAX_WM,
3677 PINEVIEW_CURSOR_DFT_WM,
3678 PINEVIEW_CURSOR_GUARD_WM,
3679 PINEVIEW_FIFO_LINE_SIZE,
3680 };
3681 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3682 PINEVIEW_CURSOR_FIFO,
3683 PINEVIEW_CURSOR_MAX_WM,
3684 PINEVIEW_CURSOR_DFT_WM,
3685 PINEVIEW_CURSOR_GUARD_WM,
3686 PINEVIEW_FIFO_LINE_SIZE
3687 };
3688 static const struct intel_watermark_params g4x_wm_info = {
3689 G4X_FIFO_SIZE,
3690 G4X_MAX_WM,
3691 G4X_MAX_WM,
3692 2,
3693 G4X_FIFO_LINE_SIZE,
3694 };
3695 static const struct intel_watermark_params g4x_cursor_wm_info = {
3696 I965_CURSOR_FIFO,
3697 I965_CURSOR_MAX_WM,
3698 I965_CURSOR_DFT_WM,
3699 2,
3700 G4X_FIFO_LINE_SIZE,
3701 };
3702 static const struct intel_watermark_params valleyview_wm_info = {
3703 VALLEYVIEW_FIFO_SIZE,
3704 VALLEYVIEW_MAX_WM,
3705 VALLEYVIEW_MAX_WM,
3706 2,
3707 G4X_FIFO_LINE_SIZE,
3708 };
3709 static const struct intel_watermark_params valleyview_cursor_wm_info = {
3710 I965_CURSOR_FIFO,
3711 VALLEYVIEW_CURSOR_MAX_WM,
3712 I965_CURSOR_DFT_WM,
3713 2,
3714 G4X_FIFO_LINE_SIZE,
3715 };
3716 static const struct intel_watermark_params i965_cursor_wm_info = {
3717 I965_CURSOR_FIFO,
3718 I965_CURSOR_MAX_WM,
3719 I965_CURSOR_DFT_WM,
3720 2,
3721 I915_FIFO_LINE_SIZE,
3722 };
3723 static const struct intel_watermark_params i945_wm_info = {
3724 I945_FIFO_SIZE,
3725 I915_MAX_WM,
3726 1,
3727 2,
3728 I915_FIFO_LINE_SIZE
3729 };
3730 static const struct intel_watermark_params i915_wm_info = {
3731 I915_FIFO_SIZE,
3732 I915_MAX_WM,
3733 1,
3734 2,
3735 I915_FIFO_LINE_SIZE
3736 };
3737 static const struct intel_watermark_params i855_wm_info = {
3738 I855GM_FIFO_SIZE,
3739 I915_MAX_WM,
3740 1,
3741 2,
3742 I830_FIFO_LINE_SIZE
3743 };
3744 static const struct intel_watermark_params i830_wm_info = {
3745 I830_FIFO_SIZE,
3746 I915_MAX_WM,
3747 1,
3748 2,
3749 I830_FIFO_LINE_SIZE
3750 };
3751
3752 static const struct intel_watermark_params ironlake_display_wm_info = {
3753 ILK_DISPLAY_FIFO,
3754 ILK_DISPLAY_MAXWM,
3755 ILK_DISPLAY_DFTWM,
3756 2,
3757 ILK_FIFO_LINE_SIZE
3758 };
3759 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3760 ILK_CURSOR_FIFO,
3761 ILK_CURSOR_MAXWM,
3762 ILK_CURSOR_DFTWM,
3763 2,
3764 ILK_FIFO_LINE_SIZE
3765 };
3766 static const struct intel_watermark_params ironlake_display_srwm_info = {
3767 ILK_DISPLAY_SR_FIFO,
3768 ILK_DISPLAY_MAX_SRWM,
3769 ILK_DISPLAY_DFT_SRWM,
3770 2,
3771 ILK_FIFO_LINE_SIZE
3772 };
3773 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3774 ILK_CURSOR_SR_FIFO,
3775 ILK_CURSOR_MAX_SRWM,
3776 ILK_CURSOR_DFT_SRWM,
3777 2,
3778 ILK_FIFO_LINE_SIZE
3779 };
3780
3781 static const struct intel_watermark_params sandybridge_display_wm_info = {
3782 SNB_DISPLAY_FIFO,
3783 SNB_DISPLAY_MAXWM,
3784 SNB_DISPLAY_DFTWM,
3785 2,
3786 SNB_FIFO_LINE_SIZE
3787 };
3788 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3789 SNB_CURSOR_FIFO,
3790 SNB_CURSOR_MAXWM,
3791 SNB_CURSOR_DFTWM,
3792 2,
3793 SNB_FIFO_LINE_SIZE
3794 };
3795 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3796 SNB_DISPLAY_SR_FIFO,
3797 SNB_DISPLAY_MAX_SRWM,
3798 SNB_DISPLAY_DFT_SRWM,
3799 2,
3800 SNB_FIFO_LINE_SIZE
3801 };
3802 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3803 SNB_CURSOR_SR_FIFO,
3804 SNB_CURSOR_MAX_SRWM,
3805 SNB_CURSOR_DFT_SRWM,
3806 2,
3807 SNB_FIFO_LINE_SIZE
3808 };
3809
3810
3811 /**
3812 * intel_calculate_wm - calculate watermark level
3813 * @clock_in_khz: pixel clock
3814 * @wm: chip FIFO params
3815 * @pixel_size: display pixel size
3816 * @latency_ns: memory latency for the platform
3817 *
3818 * Calculate the watermark level (the level at which the display plane will
3819 * start fetching from memory again). Each chip has a different display
3820 * FIFO size and allocation, so the caller needs to figure that out and pass
3821 * in the correct intel_watermark_params structure.
3822 *
3823 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3824 * on the pixel size. When it reaches the watermark level, it'll start
3825 * fetching FIFO line sized based chunks from memory until the FIFO fills
3826 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3827 * will occur, and a display engine hang could result.
3828 */
3829 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3830 const struct intel_watermark_params *wm,
3831 int fifo_size,
3832 int pixel_size,
3833 unsigned long latency_ns)
3834 {
3835 long entries_required, wm_size;
3836
3837 /*
3838 * Note: we need to make sure we don't overflow for various clock &
3839 * latency values.
3840 * clocks go from a few thousand to several hundred thousand.
3841 * latency is usually a few thousand
3842 */
3843 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3844 1000;
3845 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3846
3847 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3848
3849 wm_size = fifo_size - (entries_required + wm->guard_size);
3850
3851 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3852
3853 /* Don't promote wm_size to unsigned... */
3854 if (wm_size > (long)wm->max_wm)
3855 wm_size = wm->max_wm;
3856 if (wm_size <= 0)
3857 wm_size = wm->default_wm;
3858 return wm_size;
3859 }
3860
3861 struct cxsr_latency {
3862 int is_desktop;
3863 int is_ddr3;
3864 unsigned long fsb_freq;
3865 unsigned long mem_freq;
3866 unsigned long display_sr;
3867 unsigned long display_hpll_disable;
3868 unsigned long cursor_sr;
3869 unsigned long cursor_hpll_disable;
3870 };
3871
3872 static const struct cxsr_latency cxsr_latency_table[] = {
3873 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3874 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3875 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3876 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3877 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3878
3879 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3880 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3881 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3882 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3883 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3884
3885 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3886 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3887 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3888 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3889 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3890
3891 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3892 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3893 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3894 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3895 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3896
3897 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3898 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3899 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3900 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3901 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3902
3903 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3904 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3905 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3906 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3907 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3908 };
3909
3910 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3911 int is_ddr3,
3912 int fsb,
3913 int mem)
3914 {
3915 const struct cxsr_latency *latency;
3916 int i;
3917
3918 if (fsb == 0 || mem == 0)
3919 return NULL;
3920
3921 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3922 latency = &cxsr_latency_table[i];
3923 if (is_desktop == latency->is_desktop &&
3924 is_ddr3 == latency->is_ddr3 &&
3925 fsb == latency->fsb_freq && mem == latency->mem_freq)
3926 return latency;
3927 }
3928
3929 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3930
3931 return NULL;
3932 }
3933
3934 static void pineview_disable_cxsr(struct drm_device *dev)
3935 {
3936 struct drm_i915_private *dev_priv = dev->dev_private;
3937
3938 /* deactivate cxsr */
3939 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3940 }
3941
3942 /*
3943 * Latency for FIFO fetches is dependent on several factors:
3944 * - memory configuration (speed, channels)
3945 * - chipset
3946 * - current MCH state
3947 * It can be fairly high in some situations, so here we assume a fairly
3948 * pessimal value. It's a tradeoff between extra memory fetches (if we
3949 * set this value too high, the FIFO will fetch frequently to stay full)
3950 * and power consumption (set it too low to save power and we might see
3951 * FIFO underruns and display "flicker").
3952 *
3953 * A value of 5us seems to be a good balance; safe for very low end
3954 * platforms but not overly aggressive on lower latency configs.
3955 */
3956 static const int latency_ns = 5000;
3957
3958 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3959 {
3960 struct drm_i915_private *dev_priv = dev->dev_private;
3961 uint32_t dsparb = I915_READ(DSPARB);
3962 int size;
3963
3964 size = dsparb & 0x7f;
3965 if (plane)
3966 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3967
3968 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3969 plane ? "B" : "A", size);
3970
3971 return size;
3972 }
3973
3974 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3975 {
3976 struct drm_i915_private *dev_priv = dev->dev_private;
3977 uint32_t dsparb = I915_READ(DSPARB);
3978 int size;
3979
3980 size = dsparb & 0x1ff;
3981 if (plane)
3982 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3983 size >>= 1; /* Convert to cachelines */
3984
3985 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3986 plane ? "B" : "A", size);
3987
3988 return size;
3989 }
3990
3991 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3992 {
3993 struct drm_i915_private *dev_priv = dev->dev_private;
3994 uint32_t dsparb = I915_READ(DSPARB);
3995 int size;
3996
3997 size = dsparb & 0x7f;
3998 size >>= 2; /* Convert to cachelines */
3999
4000 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4001 plane ? "B" : "A",
4002 size);
4003
4004 return size;
4005 }
4006
4007 static int i830_get_fifo_size(struct drm_device *dev, int plane)
4008 {
4009 struct drm_i915_private *dev_priv = dev->dev_private;
4010 uint32_t dsparb = I915_READ(DSPARB);
4011 int size;
4012
4013 size = dsparb & 0x7f;
4014 size >>= 1; /* Convert to cachelines */
4015
4016 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4017 plane ? "B" : "A", size);
4018
4019 return size;
4020 }
4021
4022 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
4023 {
4024 struct drm_crtc *crtc, *enabled = NULL;
4025
4026 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4027 if (crtc->enabled && crtc->fb) {
4028 if (enabled)
4029 return NULL;
4030 enabled = crtc;
4031 }
4032 }
4033
4034 return enabled;
4035 }
4036
4037 static void pineview_update_wm(struct drm_device *dev)
4038 {
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 struct drm_crtc *crtc;
4041 const struct cxsr_latency *latency;
4042 u32 reg;
4043 unsigned long wm;
4044
4045 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
4046 dev_priv->fsb_freq, dev_priv->mem_freq);
4047 if (!latency) {
4048 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
4049 pineview_disable_cxsr(dev);
4050 return;
4051 }
4052
4053 crtc = single_enabled_crtc(dev);
4054 if (crtc) {
4055 int clock = crtc->mode.clock;
4056 int pixel_size = crtc->fb->bits_per_pixel / 8;
4057
4058 /* Display SR */
4059 wm = intel_calculate_wm(clock, &pineview_display_wm,
4060 pineview_display_wm.fifo_size,
4061 pixel_size, latency->display_sr);
4062 reg = I915_READ(DSPFW1);
4063 reg &= ~DSPFW_SR_MASK;
4064 reg |= wm << DSPFW_SR_SHIFT;
4065 I915_WRITE(DSPFW1, reg);
4066 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
4067
4068 /* cursor SR */
4069 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
4070 pineview_display_wm.fifo_size,
4071 pixel_size, latency->cursor_sr);
4072 reg = I915_READ(DSPFW3);
4073 reg &= ~DSPFW_CURSOR_SR_MASK;
4074 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
4075 I915_WRITE(DSPFW3, reg);
4076
4077 /* Display HPLL off SR */
4078 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4079 pineview_display_hplloff_wm.fifo_size,
4080 pixel_size, latency->display_hpll_disable);
4081 reg = I915_READ(DSPFW3);
4082 reg &= ~DSPFW_HPLL_SR_MASK;
4083 reg |= wm & DSPFW_HPLL_SR_MASK;
4084 I915_WRITE(DSPFW3, reg);
4085
4086 /* cursor HPLL off SR */
4087 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4088 pineview_display_hplloff_wm.fifo_size,
4089 pixel_size, latency->cursor_hpll_disable);
4090 reg = I915_READ(DSPFW3);
4091 reg &= ~DSPFW_HPLL_CURSOR_MASK;
4092 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4093 I915_WRITE(DSPFW3, reg);
4094 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4095
4096 /* activate cxsr */
4097 I915_WRITE(DSPFW3,
4098 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4099 DRM_DEBUG_KMS("Self-refresh is enabled\n");
4100 } else {
4101 pineview_disable_cxsr(dev);
4102 DRM_DEBUG_KMS("Self-refresh is disabled\n");
4103 }
4104 }
4105
4106 static bool g4x_compute_wm0(struct drm_device *dev,
4107 int plane,
4108 const struct intel_watermark_params *display,
4109 int display_latency_ns,
4110 const struct intel_watermark_params *cursor,
4111 int cursor_latency_ns,
4112 int *plane_wm,
4113 int *cursor_wm)
4114 {
4115 struct drm_crtc *crtc;
4116 int htotal, hdisplay, clock, pixel_size;
4117 int line_time_us, line_count;
4118 int entries, tlb_miss;
4119
4120 crtc = intel_get_crtc_for_plane(dev, plane);
4121 if (crtc->fb == NULL || !crtc->enabled) {
4122 *cursor_wm = cursor->guard_size;
4123 *plane_wm = display->guard_size;
4124 return false;
4125 }
4126
4127 htotal = crtc->mode.htotal;
4128 hdisplay = crtc->mode.hdisplay;
4129 clock = crtc->mode.clock;
4130 pixel_size = crtc->fb->bits_per_pixel / 8;
4131
4132 /* Use the small buffer method to calculate plane watermark */
4133 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4134 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4135 if (tlb_miss > 0)
4136 entries += tlb_miss;
4137 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4138 *plane_wm = entries + display->guard_size;
4139 if (*plane_wm > (int)display->max_wm)
4140 *plane_wm = display->max_wm;
4141
4142 /* Use the large buffer method to calculate cursor watermark */
4143 line_time_us = ((htotal * 1000) / clock);
4144 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4145 entries = line_count * 64 * pixel_size;
4146 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4147 if (tlb_miss > 0)
4148 entries += tlb_miss;
4149 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4150 *cursor_wm = entries + cursor->guard_size;
4151 if (*cursor_wm > (int)cursor->max_wm)
4152 *cursor_wm = (int)cursor->max_wm;
4153
4154 return true;
4155 }
4156
4157 /*
4158 * Check the wm result.
4159 *
4160 * If any calculated watermark values is larger than the maximum value that
4161 * can be programmed into the associated watermark register, that watermark
4162 * must be disabled.
4163 */
4164 static bool g4x_check_srwm(struct drm_device *dev,
4165 int display_wm, int cursor_wm,
4166 const struct intel_watermark_params *display,
4167 const struct intel_watermark_params *cursor)
4168 {
4169 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4170 display_wm, cursor_wm);
4171
4172 if (display_wm > display->max_wm) {
4173 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4174 display_wm, display->max_wm);
4175 return false;
4176 }
4177
4178 if (cursor_wm > cursor->max_wm) {
4179 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4180 cursor_wm, cursor->max_wm);
4181 return false;
4182 }
4183
4184 if (!(display_wm || cursor_wm)) {
4185 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4186 return false;
4187 }
4188
4189 return true;
4190 }
4191
4192 static bool g4x_compute_srwm(struct drm_device *dev,
4193 int plane,
4194 int latency_ns,
4195 const struct intel_watermark_params *display,
4196 const struct intel_watermark_params *cursor,
4197 int *display_wm, int *cursor_wm)
4198 {
4199 struct drm_crtc *crtc;
4200 int hdisplay, htotal, pixel_size, clock;
4201 unsigned long line_time_us;
4202 int line_count, line_size;
4203 int small, large;
4204 int entries;
4205
4206 if (!latency_ns) {
4207 *display_wm = *cursor_wm = 0;
4208 return false;
4209 }
4210
4211 crtc = intel_get_crtc_for_plane(dev, plane);
4212 hdisplay = crtc->mode.hdisplay;
4213 htotal = crtc->mode.htotal;
4214 clock = crtc->mode.clock;
4215 pixel_size = crtc->fb->bits_per_pixel / 8;
4216
4217 line_time_us = (htotal * 1000) / clock;
4218 line_count = (latency_ns / line_time_us + 1000) / 1000;
4219 line_size = hdisplay * pixel_size;
4220
4221 /* Use the minimum of the small and large buffer method for primary */
4222 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4223 large = line_count * line_size;
4224
4225 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4226 *display_wm = entries + display->guard_size;
4227
4228 /* calculate the self-refresh watermark for display cursor */
4229 entries = line_count * pixel_size * 64;
4230 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4231 *cursor_wm = entries + cursor->guard_size;
4232
4233 return g4x_check_srwm(dev,
4234 *display_wm, *cursor_wm,
4235 display, cursor);
4236 }
4237
4238 static bool vlv_compute_drain_latency(struct drm_device *dev,
4239 int plane,
4240 int *plane_prec_mult,
4241 int *plane_dl,
4242 int *cursor_prec_mult,
4243 int *cursor_dl)
4244 {
4245 struct drm_crtc *crtc;
4246 int clock, pixel_size;
4247 int entries;
4248
4249 crtc = intel_get_crtc_for_plane(dev, plane);
4250 if (crtc->fb == NULL || !crtc->enabled)
4251 return false;
4252
4253 clock = crtc->mode.clock; /* VESA DOT Clock */
4254 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
4255
4256 entries = (clock / 1000) * pixel_size;
4257 *plane_prec_mult = (entries > 256) ?
4258 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
4259 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
4260 pixel_size);
4261
4262 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
4263 *cursor_prec_mult = (entries > 256) ?
4264 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
4265 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
4266
4267 return true;
4268 }
4269
4270 /*
4271 * Update drain latency registers of memory arbiter
4272 *
4273 * Valleyview SoC has a new memory arbiter and needs drain latency registers
4274 * to be programmed. Each plane has a drain latency multiplier and a drain
4275 * latency value.
4276 */
4277
4278 static void vlv_update_drain_latency(struct drm_device *dev)
4279 {
4280 struct drm_i915_private *dev_priv = dev->dev_private;
4281 int planea_prec, planea_dl, planeb_prec, planeb_dl;
4282 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
4283 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
4284 either 16 or 32 */
4285
4286 /* For plane A, Cursor A */
4287 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
4288 &cursor_prec_mult, &cursora_dl)) {
4289 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4290 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
4291 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4292 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
4293
4294 I915_WRITE(VLV_DDL1, cursora_prec |
4295 (cursora_dl << DDL_CURSORA_SHIFT) |
4296 planea_prec | planea_dl);
4297 }
4298
4299 /* For plane B, Cursor B */
4300 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
4301 &cursor_prec_mult, &cursorb_dl)) {
4302 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4303 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
4304 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4305 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
4306
4307 I915_WRITE(VLV_DDL2, cursorb_prec |
4308 (cursorb_dl << DDL_CURSORB_SHIFT) |
4309 planeb_prec | planeb_dl);
4310 }
4311 }
4312
4313 #define single_plane_enabled(mask) is_power_of_2(mask)
4314
4315 static void valleyview_update_wm(struct drm_device *dev)
4316 {
4317 static const int sr_latency_ns = 12000;
4318 struct drm_i915_private *dev_priv = dev->dev_private;
4319 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4320 int plane_sr, cursor_sr;
4321 unsigned int enabled = 0;
4322
4323 vlv_update_drain_latency(dev);
4324
4325 if (g4x_compute_wm0(dev, 0,
4326 &valleyview_wm_info, latency_ns,
4327 &valleyview_cursor_wm_info, latency_ns,
4328 &planea_wm, &cursora_wm))
4329 enabled |= 1;
4330
4331 if (g4x_compute_wm0(dev, 1,
4332 &valleyview_wm_info, latency_ns,
4333 &valleyview_cursor_wm_info, latency_ns,
4334 &planeb_wm, &cursorb_wm))
4335 enabled |= 2;
4336
4337 plane_sr = cursor_sr = 0;
4338 if (single_plane_enabled(enabled) &&
4339 g4x_compute_srwm(dev, ffs(enabled) - 1,
4340 sr_latency_ns,
4341 &valleyview_wm_info,
4342 &valleyview_cursor_wm_info,
4343 &plane_sr, &cursor_sr))
4344 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
4345 else
4346 I915_WRITE(FW_BLC_SELF_VLV,
4347 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
4348
4349 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4350 planea_wm, cursora_wm,
4351 planeb_wm, cursorb_wm,
4352 plane_sr, cursor_sr);
4353
4354 I915_WRITE(DSPFW1,
4355 (plane_sr << DSPFW_SR_SHIFT) |
4356 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4357 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4358 planea_wm);
4359 I915_WRITE(DSPFW2,
4360 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4361 (cursora_wm << DSPFW_CURSORA_SHIFT));
4362 I915_WRITE(DSPFW3,
4363 (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
4364 }
4365
4366 static void g4x_update_wm(struct drm_device *dev)
4367 {
4368 static const int sr_latency_ns = 12000;
4369 struct drm_i915_private *dev_priv = dev->dev_private;
4370 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4371 int plane_sr, cursor_sr;
4372 unsigned int enabled = 0;
4373
4374 if (g4x_compute_wm0(dev, 0,
4375 &g4x_wm_info, latency_ns,
4376 &g4x_cursor_wm_info, latency_ns,
4377 &planea_wm, &cursora_wm))
4378 enabled |= 1;
4379
4380 if (g4x_compute_wm0(dev, 1,
4381 &g4x_wm_info, latency_ns,
4382 &g4x_cursor_wm_info, latency_ns,
4383 &planeb_wm, &cursorb_wm))
4384 enabled |= 2;
4385
4386 plane_sr = cursor_sr = 0;
4387 if (single_plane_enabled(enabled) &&
4388 g4x_compute_srwm(dev, ffs(enabled) - 1,
4389 sr_latency_ns,
4390 &g4x_wm_info,
4391 &g4x_cursor_wm_info,
4392 &plane_sr, &cursor_sr))
4393 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4394 else
4395 I915_WRITE(FW_BLC_SELF,
4396 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4397
4398 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4399 planea_wm, cursora_wm,
4400 planeb_wm, cursorb_wm,
4401 plane_sr, cursor_sr);
4402
4403 I915_WRITE(DSPFW1,
4404 (plane_sr << DSPFW_SR_SHIFT) |
4405 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4406 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4407 planea_wm);
4408 I915_WRITE(DSPFW2,
4409 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4410 (cursora_wm << DSPFW_CURSORA_SHIFT));
4411 /* HPLL off in SR has some issues on G4x... disable it */
4412 I915_WRITE(DSPFW3,
4413 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4414 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4415 }
4416
4417 static void i965_update_wm(struct drm_device *dev)
4418 {
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 struct drm_crtc *crtc;
4421 int srwm = 1;
4422 int cursor_sr = 16;
4423
4424 /* Calc sr entries for one plane configs */
4425 crtc = single_enabled_crtc(dev);
4426 if (crtc) {
4427 /* self-refresh has much higher latency */
4428 static const int sr_latency_ns = 12000;
4429 int clock = crtc->mode.clock;
4430 int htotal = crtc->mode.htotal;
4431 int hdisplay = crtc->mode.hdisplay;
4432 int pixel_size = crtc->fb->bits_per_pixel / 8;
4433 unsigned long line_time_us;
4434 int entries;
4435
4436 line_time_us = ((htotal * 1000) / clock);
4437
4438 /* Use ns/us then divide to preserve precision */
4439 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4440 pixel_size * hdisplay;
4441 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4442 srwm = I965_FIFO_SIZE - entries;
4443 if (srwm < 0)
4444 srwm = 1;
4445 srwm &= 0x1ff;
4446 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4447 entries, srwm);
4448
4449 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4450 pixel_size * 64;
4451 entries = DIV_ROUND_UP(entries,
4452 i965_cursor_wm_info.cacheline_size);
4453 cursor_sr = i965_cursor_wm_info.fifo_size -
4454 (entries + i965_cursor_wm_info.guard_size);
4455
4456 if (cursor_sr > i965_cursor_wm_info.max_wm)
4457 cursor_sr = i965_cursor_wm_info.max_wm;
4458
4459 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4460 "cursor %d\n", srwm, cursor_sr);
4461
4462 if (IS_CRESTLINE(dev))
4463 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4464 } else {
4465 /* Turn off self refresh if both pipes are enabled */
4466 if (IS_CRESTLINE(dev))
4467 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4468 & ~FW_BLC_SELF_EN);
4469 }
4470
4471 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4472 srwm);
4473
4474 /* 965 has limitations... */
4475 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4476 (8 << 16) | (8 << 8) | (8 << 0));
4477 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4478 /* update cursor SR watermark */
4479 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4480 }
4481
4482 static void i9xx_update_wm(struct drm_device *dev)
4483 {
4484 struct drm_i915_private *dev_priv = dev->dev_private;
4485 const struct intel_watermark_params *wm_info;
4486 uint32_t fwater_lo;
4487 uint32_t fwater_hi;
4488 int cwm, srwm = 1;
4489 int fifo_size;
4490 int planea_wm, planeb_wm;
4491 struct drm_crtc *crtc, *enabled = NULL;
4492
4493 if (IS_I945GM(dev))
4494 wm_info = &i945_wm_info;
4495 else if (!IS_GEN2(dev))
4496 wm_info = &i915_wm_info;
4497 else
4498 wm_info = &i855_wm_info;
4499
4500 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4501 crtc = intel_get_crtc_for_plane(dev, 0);
4502 if (crtc->enabled && crtc->fb) {
4503 planea_wm = intel_calculate_wm(crtc->mode.clock,
4504 wm_info, fifo_size,
4505 crtc->fb->bits_per_pixel / 8,
4506 latency_ns);
4507 enabled = crtc;
4508 } else
4509 planea_wm = fifo_size - wm_info->guard_size;
4510
4511 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4512 crtc = intel_get_crtc_for_plane(dev, 1);
4513 if (crtc->enabled && crtc->fb) {
4514 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4515 wm_info, fifo_size,
4516 crtc->fb->bits_per_pixel / 8,
4517 latency_ns);
4518 if (enabled == NULL)
4519 enabled = crtc;
4520 else
4521 enabled = NULL;
4522 } else
4523 planeb_wm = fifo_size - wm_info->guard_size;
4524
4525 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4526
4527 /*
4528 * Overlay gets an aggressive default since video jitter is bad.
4529 */
4530 cwm = 2;
4531
4532 /* Play safe and disable self-refresh before adjusting watermarks. */
4533 if (IS_I945G(dev) || IS_I945GM(dev))
4534 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4535 else if (IS_I915GM(dev))
4536 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4537
4538 /* Calc sr entries for one plane configs */
4539 if (HAS_FW_BLC(dev) && enabled) {
4540 /* self-refresh has much higher latency */
4541 static const int sr_latency_ns = 6000;
4542 int clock = enabled->mode.clock;
4543 int htotal = enabled->mode.htotal;
4544 int hdisplay = enabled->mode.hdisplay;
4545 int pixel_size = enabled->fb->bits_per_pixel / 8;
4546 unsigned long line_time_us;
4547 int entries;
4548
4549 line_time_us = (htotal * 1000) / clock;
4550
4551 /* Use ns/us then divide to preserve precision */
4552 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4553 pixel_size * hdisplay;
4554 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4555 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4556 srwm = wm_info->fifo_size - entries;
4557 if (srwm < 0)
4558 srwm = 1;
4559
4560 if (IS_I945G(dev) || IS_I945GM(dev))
4561 I915_WRITE(FW_BLC_SELF,
4562 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4563 else if (IS_I915GM(dev))
4564 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4565 }
4566
4567 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4568 planea_wm, planeb_wm, cwm, srwm);
4569
4570 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4571 fwater_hi = (cwm & 0x1f);
4572
4573 /* Set request length to 8 cachelines per fetch */
4574 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4575 fwater_hi = fwater_hi | (1 << 8);
4576
4577 I915_WRITE(FW_BLC, fwater_lo);
4578 I915_WRITE(FW_BLC2, fwater_hi);
4579
4580 if (HAS_FW_BLC(dev)) {
4581 if (enabled) {
4582 if (IS_I945G(dev) || IS_I945GM(dev))
4583 I915_WRITE(FW_BLC_SELF,
4584 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4585 else if (IS_I915GM(dev))
4586 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4587 DRM_DEBUG_KMS("memory self refresh enabled\n");
4588 } else
4589 DRM_DEBUG_KMS("memory self refresh disabled\n");
4590 }
4591 }
4592
4593 static void i830_update_wm(struct drm_device *dev)
4594 {
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4596 struct drm_crtc *crtc;
4597 uint32_t fwater_lo;
4598 int planea_wm;
4599
4600 crtc = single_enabled_crtc(dev);
4601 if (crtc == NULL)
4602 return;
4603
4604 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4605 dev_priv->display.get_fifo_size(dev, 0),
4606 crtc->fb->bits_per_pixel / 8,
4607 latency_ns);
4608 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4609 fwater_lo |= (3<<8) | planea_wm;
4610
4611 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4612
4613 I915_WRITE(FW_BLC, fwater_lo);
4614 }
4615
4616 #define ILK_LP0_PLANE_LATENCY 700
4617 #define ILK_LP0_CURSOR_LATENCY 1300
4618
4619 /*
4620 * Check the wm result.
4621 *
4622 * If any calculated watermark values is larger than the maximum value that
4623 * can be programmed into the associated watermark register, that watermark
4624 * must be disabled.
4625 */
4626 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4627 int fbc_wm, int display_wm, int cursor_wm,
4628 const struct intel_watermark_params *display,
4629 const struct intel_watermark_params *cursor)
4630 {
4631 struct drm_i915_private *dev_priv = dev->dev_private;
4632
4633 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4634 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4635
4636 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4637 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4638 fbc_wm, SNB_FBC_MAX_SRWM, level);
4639
4640 /* fbc has it's own way to disable FBC WM */
4641 I915_WRITE(DISP_ARB_CTL,
4642 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4643 return false;
4644 }
4645
4646 if (display_wm > display->max_wm) {
4647 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4648 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4649 return false;
4650 }
4651
4652 if (cursor_wm > cursor->max_wm) {
4653 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4654 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4655 return false;
4656 }
4657
4658 if (!(fbc_wm || display_wm || cursor_wm)) {
4659 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4660 return false;
4661 }
4662
4663 return true;
4664 }
4665
4666 /*
4667 * Compute watermark values of WM[1-3],
4668 */
4669 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4670 int latency_ns,
4671 const struct intel_watermark_params *display,
4672 const struct intel_watermark_params *cursor,
4673 int *fbc_wm, int *display_wm, int *cursor_wm)
4674 {
4675 struct drm_crtc *crtc;
4676 unsigned long line_time_us;
4677 int hdisplay, htotal, pixel_size, clock;
4678 int line_count, line_size;
4679 int small, large;
4680 int entries;
4681
4682 if (!latency_ns) {
4683 *fbc_wm = *display_wm = *cursor_wm = 0;
4684 return false;
4685 }
4686
4687 crtc = intel_get_crtc_for_plane(dev, plane);
4688 hdisplay = crtc->mode.hdisplay;
4689 htotal = crtc->mode.htotal;
4690 clock = crtc->mode.clock;
4691 pixel_size = crtc->fb->bits_per_pixel / 8;
4692
4693 line_time_us = (htotal * 1000) / clock;
4694 line_count = (latency_ns / line_time_us + 1000) / 1000;
4695 line_size = hdisplay * pixel_size;
4696
4697 /* Use the minimum of the small and large buffer method for primary */
4698 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4699 large = line_count * line_size;
4700
4701 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4702 *display_wm = entries + display->guard_size;
4703
4704 /*
4705 * Spec says:
4706 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4707 */
4708 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4709
4710 /* calculate the self-refresh watermark for display cursor */
4711 entries = line_count * pixel_size * 64;
4712 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4713 *cursor_wm = entries + cursor->guard_size;
4714
4715 return ironlake_check_srwm(dev, level,
4716 *fbc_wm, *display_wm, *cursor_wm,
4717 display, cursor);
4718 }
4719
4720 static void ironlake_update_wm(struct drm_device *dev)
4721 {
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723 int fbc_wm, plane_wm, cursor_wm;
4724 unsigned int enabled;
4725
4726 enabled = 0;
4727 if (g4x_compute_wm0(dev, 0,
4728 &ironlake_display_wm_info,
4729 ILK_LP0_PLANE_LATENCY,
4730 &ironlake_cursor_wm_info,
4731 ILK_LP0_CURSOR_LATENCY,
4732 &plane_wm, &cursor_wm)) {
4733 I915_WRITE(WM0_PIPEA_ILK,
4734 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4735 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4736 " plane %d, " "cursor: %d\n",
4737 plane_wm, cursor_wm);
4738 enabled |= 1;
4739 }
4740
4741 if (g4x_compute_wm0(dev, 1,
4742 &ironlake_display_wm_info,
4743 ILK_LP0_PLANE_LATENCY,
4744 &ironlake_cursor_wm_info,
4745 ILK_LP0_CURSOR_LATENCY,
4746 &plane_wm, &cursor_wm)) {
4747 I915_WRITE(WM0_PIPEB_ILK,
4748 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4749 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4750 " plane %d, cursor: %d\n",
4751 plane_wm, cursor_wm);
4752 enabled |= 2;
4753 }
4754
4755 /*
4756 * Calculate and update the self-refresh watermark only when one
4757 * display plane is used.
4758 */
4759 I915_WRITE(WM3_LP_ILK, 0);
4760 I915_WRITE(WM2_LP_ILK, 0);
4761 I915_WRITE(WM1_LP_ILK, 0);
4762
4763 if (!single_plane_enabled(enabled))
4764 return;
4765 enabled = ffs(enabled) - 1;
4766
4767 /* WM1 */
4768 if (!ironlake_compute_srwm(dev, 1, enabled,
4769 ILK_READ_WM1_LATENCY() * 500,
4770 &ironlake_display_srwm_info,
4771 &ironlake_cursor_srwm_info,
4772 &fbc_wm, &plane_wm, &cursor_wm))
4773 return;
4774
4775 I915_WRITE(WM1_LP_ILK,
4776 WM1_LP_SR_EN |
4777 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4778 (fbc_wm << WM1_LP_FBC_SHIFT) |
4779 (plane_wm << WM1_LP_SR_SHIFT) |
4780 cursor_wm);
4781
4782 /* WM2 */
4783 if (!ironlake_compute_srwm(dev, 2, enabled,
4784 ILK_READ_WM2_LATENCY() * 500,
4785 &ironlake_display_srwm_info,
4786 &ironlake_cursor_srwm_info,
4787 &fbc_wm, &plane_wm, &cursor_wm))
4788 return;
4789
4790 I915_WRITE(WM2_LP_ILK,
4791 WM2_LP_EN |
4792 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4793 (fbc_wm << WM1_LP_FBC_SHIFT) |
4794 (plane_wm << WM1_LP_SR_SHIFT) |
4795 cursor_wm);
4796
4797 /*
4798 * WM3 is unsupported on ILK, probably because we don't have latency
4799 * data for that power state
4800 */
4801 }
4802
4803 void sandybridge_update_wm(struct drm_device *dev)
4804 {
4805 struct drm_i915_private *dev_priv = dev->dev_private;
4806 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4807 u32 val;
4808 int fbc_wm, plane_wm, cursor_wm;
4809 unsigned int enabled;
4810
4811 enabled = 0;
4812 if (g4x_compute_wm0(dev, 0,
4813 &sandybridge_display_wm_info, latency,
4814 &sandybridge_cursor_wm_info, latency,
4815 &plane_wm, &cursor_wm)) {
4816 val = I915_READ(WM0_PIPEA_ILK);
4817 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4818 I915_WRITE(WM0_PIPEA_ILK, val |
4819 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4820 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4821 " plane %d, " "cursor: %d\n",
4822 plane_wm, cursor_wm);
4823 enabled |= 1;
4824 }
4825
4826 if (g4x_compute_wm0(dev, 1,
4827 &sandybridge_display_wm_info, latency,
4828 &sandybridge_cursor_wm_info, latency,
4829 &plane_wm, &cursor_wm)) {
4830 val = I915_READ(WM0_PIPEB_ILK);
4831 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4832 I915_WRITE(WM0_PIPEB_ILK, val |
4833 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4834 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4835 " plane %d, cursor: %d\n",
4836 plane_wm, cursor_wm);
4837 enabled |= 2;
4838 }
4839
4840 /* IVB has 3 pipes */
4841 if (IS_IVYBRIDGE(dev) &&
4842 g4x_compute_wm0(dev, 2,
4843 &sandybridge_display_wm_info, latency,
4844 &sandybridge_cursor_wm_info, latency,
4845 &plane_wm, &cursor_wm)) {
4846 val = I915_READ(WM0_PIPEC_IVB);
4847 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4848 I915_WRITE(WM0_PIPEC_IVB, val |
4849 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4850 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4851 " plane %d, cursor: %d\n",
4852 plane_wm, cursor_wm);
4853 enabled |= 3;
4854 }
4855
4856 /*
4857 * Calculate and update the self-refresh watermark only when one
4858 * display plane is used.
4859 *
4860 * SNB support 3 levels of watermark.
4861 *
4862 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4863 * and disabled in the descending order
4864 *
4865 */
4866 I915_WRITE(WM3_LP_ILK, 0);
4867 I915_WRITE(WM2_LP_ILK, 0);
4868 I915_WRITE(WM1_LP_ILK, 0);
4869
4870 if (!single_plane_enabled(enabled) ||
4871 dev_priv->sprite_scaling_enabled)
4872 return;
4873 enabled = ffs(enabled) - 1;
4874
4875 /* WM1 */
4876 if (!ironlake_compute_srwm(dev, 1, enabled,
4877 SNB_READ_WM1_LATENCY() * 500,
4878 &sandybridge_display_srwm_info,
4879 &sandybridge_cursor_srwm_info,
4880 &fbc_wm, &plane_wm, &cursor_wm))
4881 return;
4882
4883 I915_WRITE(WM1_LP_ILK,
4884 WM1_LP_SR_EN |
4885 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4886 (fbc_wm << WM1_LP_FBC_SHIFT) |
4887 (plane_wm << WM1_LP_SR_SHIFT) |
4888 cursor_wm);
4889
4890 /* WM2 */
4891 if (!ironlake_compute_srwm(dev, 2, enabled,
4892 SNB_READ_WM2_LATENCY() * 500,
4893 &sandybridge_display_srwm_info,
4894 &sandybridge_cursor_srwm_info,
4895 &fbc_wm, &plane_wm, &cursor_wm))
4896 return;
4897
4898 I915_WRITE(WM2_LP_ILK,
4899 WM2_LP_EN |
4900 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4901 (fbc_wm << WM1_LP_FBC_SHIFT) |
4902 (plane_wm << WM1_LP_SR_SHIFT) |
4903 cursor_wm);
4904
4905 /* WM3 */
4906 if (!ironlake_compute_srwm(dev, 3, enabled,
4907 SNB_READ_WM3_LATENCY() * 500,
4908 &sandybridge_display_srwm_info,
4909 &sandybridge_cursor_srwm_info,
4910 &fbc_wm, &plane_wm, &cursor_wm))
4911 return;
4912
4913 I915_WRITE(WM3_LP_ILK,
4914 WM3_LP_EN |
4915 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4916 (fbc_wm << WM1_LP_FBC_SHIFT) |
4917 (plane_wm << WM1_LP_SR_SHIFT) |
4918 cursor_wm);
4919 }
4920
4921 static bool
4922 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4923 uint32_t sprite_width, int pixel_size,
4924 const struct intel_watermark_params *display,
4925 int display_latency_ns, int *sprite_wm)
4926 {
4927 struct drm_crtc *crtc;
4928 int clock;
4929 int entries, tlb_miss;
4930
4931 crtc = intel_get_crtc_for_plane(dev, plane);
4932 if (crtc->fb == NULL || !crtc->enabled) {
4933 *sprite_wm = display->guard_size;
4934 return false;
4935 }
4936
4937 clock = crtc->mode.clock;
4938
4939 /* Use the small buffer method to calculate the sprite watermark */
4940 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4941 tlb_miss = display->fifo_size*display->cacheline_size -
4942 sprite_width * 8;
4943 if (tlb_miss > 0)
4944 entries += tlb_miss;
4945 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4946 *sprite_wm = entries + display->guard_size;
4947 if (*sprite_wm > (int)display->max_wm)
4948 *sprite_wm = display->max_wm;
4949
4950 return true;
4951 }
4952
4953 static bool
4954 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4955 uint32_t sprite_width, int pixel_size,
4956 const struct intel_watermark_params *display,
4957 int latency_ns, int *sprite_wm)
4958 {
4959 struct drm_crtc *crtc;
4960 unsigned long line_time_us;
4961 int clock;
4962 int line_count, line_size;
4963 int small, large;
4964 int entries;
4965
4966 if (!latency_ns) {
4967 *sprite_wm = 0;
4968 return false;
4969 }
4970
4971 crtc = intel_get_crtc_for_plane(dev, plane);
4972 clock = crtc->mode.clock;
4973
4974 line_time_us = (sprite_width * 1000) / clock;
4975 line_count = (latency_ns / line_time_us + 1000) / 1000;
4976 line_size = sprite_width * pixel_size;
4977
4978 /* Use the minimum of the small and large buffer method for primary */
4979 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4980 large = line_count * line_size;
4981
4982 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4983 *sprite_wm = entries + display->guard_size;
4984
4985 return *sprite_wm > 0x3ff ? false : true;
4986 }
4987
4988 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4989 uint32_t sprite_width, int pixel_size)
4990 {
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4993 u32 val;
4994 int sprite_wm, reg;
4995 int ret;
4996
4997 switch (pipe) {
4998 case 0:
4999 reg = WM0_PIPEA_ILK;
5000 break;
5001 case 1:
5002 reg = WM0_PIPEB_ILK;
5003 break;
5004 case 2:
5005 reg = WM0_PIPEC_IVB;
5006 break;
5007 default:
5008 return; /* bad pipe */
5009 }
5010
5011 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
5012 &sandybridge_display_wm_info,
5013 latency, &sprite_wm);
5014 if (!ret) {
5015 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
5016 pipe);
5017 return;
5018 }
5019
5020 val = I915_READ(reg);
5021 val &= ~WM0_PIPE_SPRITE_MASK;
5022 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
5023 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
5024
5025
5026 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5027 pixel_size,
5028 &sandybridge_display_srwm_info,
5029 SNB_READ_WM1_LATENCY() * 500,
5030 &sprite_wm);
5031 if (!ret) {
5032 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
5033 pipe);
5034 return;
5035 }
5036 I915_WRITE(WM1S_LP_ILK, sprite_wm);
5037
5038 /* Only IVB has two more LP watermarks for sprite */
5039 if (!IS_IVYBRIDGE(dev))
5040 return;
5041
5042 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5043 pixel_size,
5044 &sandybridge_display_srwm_info,
5045 SNB_READ_WM2_LATENCY() * 500,
5046 &sprite_wm);
5047 if (!ret) {
5048 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
5049 pipe);
5050 return;
5051 }
5052 I915_WRITE(WM2S_LP_IVB, sprite_wm);
5053
5054 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5055 pixel_size,
5056 &sandybridge_display_srwm_info,
5057 SNB_READ_WM3_LATENCY() * 500,
5058 &sprite_wm);
5059 if (!ret) {
5060 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
5061 pipe);
5062 return;
5063 }
5064 I915_WRITE(WM3S_LP_IVB, sprite_wm);
5065 }
5066
5067 /**
5068 * intel_update_watermarks - update FIFO watermark values based on current modes
5069 *
5070 * Calculate watermark values for the various WM regs based on current mode
5071 * and plane configuration.
5072 *
5073 * There are several cases to deal with here:
5074 * - normal (i.e. non-self-refresh)
5075 * - self-refresh (SR) mode
5076 * - lines are large relative to FIFO size (buffer can hold up to 2)
5077 * - lines are small relative to FIFO size (buffer can hold more than 2
5078 * lines), so need to account for TLB latency
5079 *
5080 * The normal calculation is:
5081 * watermark = dotclock * bytes per pixel * latency
5082 * where latency is platform & configuration dependent (we assume pessimal
5083 * values here).
5084 *
5085 * The SR calculation is:
5086 * watermark = (trunc(latency/line time)+1) * surface width *
5087 * bytes per pixel
5088 * where
5089 * line time = htotal / dotclock
5090 * surface width = hdisplay for normal plane and 64 for cursor
5091 * and latency is assumed to be high, as above.
5092 *
5093 * The final value programmed to the register should always be rounded up,
5094 * and include an extra 2 entries to account for clock crossings.
5095 *
5096 * We don't use the sprite, so we can ignore that. And on Crestline we have
5097 * to set the non-SR watermarks to 8.
5098 */
5099 static void intel_update_watermarks(struct drm_device *dev)
5100 {
5101 struct drm_i915_private *dev_priv = dev->dev_private;
5102
5103 if (dev_priv->display.update_wm)
5104 dev_priv->display.update_wm(dev);
5105 }
5106
5107 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
5108 uint32_t sprite_width, int pixel_size)
5109 {
5110 struct drm_i915_private *dev_priv = dev->dev_private;
5111
5112 if (dev_priv->display.update_sprite_wm)
5113 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
5114 pixel_size);
5115 }
5116
5117 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5118 {
5119 if (i915_panel_use_ssc >= 0)
5120 return i915_panel_use_ssc != 0;
5121 return dev_priv->lvds_use_ssc
5122 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5123 }
5124
5125 /**
5126 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
5127 * @crtc: CRTC structure
5128 * @mode: requested mode
5129 *
5130 * A pipe may be connected to one or more outputs. Based on the depth of the
5131 * attached framebuffer, choose a good color depth to use on the pipe.
5132 *
5133 * If possible, match the pipe depth to the fb depth. In some cases, this
5134 * isn't ideal, because the connected output supports a lesser or restricted
5135 * set of depths. Resolve that here:
5136 * LVDS typically supports only 6bpc, so clamp down in that case
5137 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
5138 * Displays may support a restricted set as well, check EDID and clamp as
5139 * appropriate.
5140 * DP may want to dither down to 6bpc to fit larger modes
5141 *
5142 * RETURNS:
5143 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
5144 * true if they don't match).
5145 */
5146 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
5147 unsigned int *pipe_bpp,
5148 struct drm_display_mode *mode)
5149 {
5150 struct drm_device *dev = crtc->dev;
5151 struct drm_i915_private *dev_priv = dev->dev_private;
5152 struct drm_encoder *encoder;
5153 struct drm_connector *connector;
5154 unsigned int display_bpc = UINT_MAX, bpc;
5155
5156 /* Walk the encoders & connectors on this crtc, get min bpc */
5157 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5158 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5159
5160 if (encoder->crtc != crtc)
5161 continue;
5162
5163 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
5164 unsigned int lvds_bpc;
5165
5166 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
5167 LVDS_A3_POWER_UP)
5168 lvds_bpc = 8;
5169 else
5170 lvds_bpc = 6;
5171
5172 if (lvds_bpc < display_bpc) {
5173 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5174 display_bpc = lvds_bpc;
5175 }
5176 continue;
5177 }
5178
5179 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
5180 /* Use VBT settings if we have an eDP panel */
5181 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
5182
5183 if (edp_bpc < display_bpc) {
5184 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5185 display_bpc = edp_bpc;
5186 }
5187 continue;
5188 }
5189
5190 /* Not one of the known troublemakers, check the EDID */
5191 list_for_each_entry(connector, &dev->mode_config.connector_list,
5192 head) {
5193 if (connector->encoder != encoder)
5194 continue;
5195
5196 /* Don't use an invalid EDID bpc value */
5197 if (connector->display_info.bpc &&
5198 connector->display_info.bpc < display_bpc) {
5199 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5200 display_bpc = connector->display_info.bpc;
5201 }
5202 }
5203
5204 /*
5205 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5206 * through, clamp it down. (Note: >12bpc will be caught below.)
5207 */
5208 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5209 if (display_bpc > 8 && display_bpc < 12) {
5210 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5211 display_bpc = 12;
5212 } else {
5213 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5214 display_bpc = 8;
5215 }
5216 }
5217 }
5218
5219 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5220 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5221 display_bpc = 6;
5222 }
5223
5224 /*
5225 * We could just drive the pipe at the highest bpc all the time and
5226 * enable dithering as needed, but that costs bandwidth. So choose
5227 * the minimum value that expresses the full color range of the fb but
5228 * also stays within the max display bpc discovered above.
5229 */
5230
5231 switch (crtc->fb->depth) {
5232 case 8:
5233 bpc = 8; /* since we go through a colormap */
5234 break;
5235 case 15:
5236 case 16:
5237 bpc = 6; /* min is 18bpp */
5238 break;
5239 case 24:
5240 bpc = 8;
5241 break;
5242 case 30:
5243 bpc = 10;
5244 break;
5245 case 48:
5246 bpc = 12;
5247 break;
5248 default:
5249 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5250 bpc = min((unsigned int)8, display_bpc);
5251 break;
5252 }
5253
5254 display_bpc = min(display_bpc, bpc);
5255
5256 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5257 bpc, display_bpc);
5258
5259 *pipe_bpp = display_bpc * 3;
5260
5261 return display_bpc != bpc;
5262 }
5263
5264 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5265 {
5266 struct drm_device *dev = crtc->dev;
5267 struct drm_i915_private *dev_priv = dev->dev_private;
5268 int refclk;
5269
5270 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5271 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5272 refclk = dev_priv->lvds_ssc_freq * 1000;
5273 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5274 refclk / 1000);
5275 } else if (!IS_GEN2(dev)) {
5276 refclk = 96000;
5277 } else {
5278 refclk = 48000;
5279 }
5280
5281 return refclk;
5282 }
5283
5284 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5285 intel_clock_t *clock)
5286 {
5287 /* SDVO TV has fixed PLL values depend on its clock range,
5288 this mirrors vbios setting. */
5289 if (adjusted_mode->clock >= 100000
5290 && adjusted_mode->clock < 140500) {
5291 clock->p1 = 2;
5292 clock->p2 = 10;
5293 clock->n = 3;
5294 clock->m1 = 16;
5295 clock->m2 = 8;
5296 } else if (adjusted_mode->clock >= 140500
5297 && adjusted_mode->clock <= 200000) {
5298 clock->p1 = 1;
5299 clock->p2 = 10;
5300 clock->n = 6;
5301 clock->m1 = 12;
5302 clock->m2 = 8;
5303 }
5304 }
5305
5306 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5307 intel_clock_t *clock,
5308 intel_clock_t *reduced_clock)
5309 {
5310 struct drm_device *dev = crtc->dev;
5311 struct drm_i915_private *dev_priv = dev->dev_private;
5312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5313 int pipe = intel_crtc->pipe;
5314 u32 fp, fp2 = 0;
5315
5316 if (IS_PINEVIEW(dev)) {
5317 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5318 if (reduced_clock)
5319 fp2 = (1 << reduced_clock->n) << 16 |
5320 reduced_clock->m1 << 8 | reduced_clock->m2;
5321 } else {
5322 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5323 if (reduced_clock)
5324 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5325 reduced_clock->m2;
5326 }
5327
5328 I915_WRITE(FP0(pipe), fp);
5329
5330 intel_crtc->lowfreq_avail = false;
5331 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5332 reduced_clock && i915_powersave) {
5333 I915_WRITE(FP1(pipe), fp2);
5334 intel_crtc->lowfreq_avail = true;
5335 } else {
5336 I915_WRITE(FP1(pipe), fp);
5337 }
5338 }
5339
5340 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
5341 struct drm_display_mode *adjusted_mode)
5342 {
5343 struct drm_device *dev = crtc->dev;
5344 struct drm_i915_private *dev_priv = dev->dev_private;
5345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5346 int pipe = intel_crtc->pipe;
5347 u32 temp, lvds_sync = 0;
5348
5349 temp = I915_READ(LVDS);
5350 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5351 if (pipe == 1) {
5352 temp |= LVDS_PIPEB_SELECT;
5353 } else {
5354 temp &= ~LVDS_PIPEB_SELECT;
5355 }
5356 /* set the corresponsding LVDS_BORDER bit */
5357 temp |= dev_priv->lvds_border_bits;
5358 /* Set the B0-B3 data pairs corresponding to whether we're going to
5359 * set the DPLLs for dual-channel mode or not.
5360 */
5361 if (clock->p2 == 7)
5362 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5363 else
5364 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5365
5366 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5367 * appropriately here, but we need to look more thoroughly into how
5368 * panels behave in the two modes.
5369 */
5370 /* set the dithering flag on LVDS as needed */
5371 if (INTEL_INFO(dev)->gen >= 4) {
5372 if (dev_priv->lvds_dither)
5373 temp |= LVDS_ENABLE_DITHER;
5374 else
5375 temp &= ~LVDS_ENABLE_DITHER;
5376 }
5377 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5378 lvds_sync |= LVDS_HSYNC_POLARITY;
5379 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5380 lvds_sync |= LVDS_VSYNC_POLARITY;
5381 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5382 != lvds_sync) {
5383 char flags[2] = "-+";
5384 DRM_INFO("Changing LVDS panel from "
5385 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5386 flags[!(temp & LVDS_HSYNC_POLARITY)],
5387 flags[!(temp & LVDS_VSYNC_POLARITY)],
5388 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5389 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5390 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5391 temp |= lvds_sync;
5392 }
5393 I915_WRITE(LVDS, temp);
5394 }
5395
5396 static void i9xx_update_pll(struct drm_crtc *crtc,
5397 struct drm_display_mode *mode,
5398 struct drm_display_mode *adjusted_mode,
5399 intel_clock_t *clock, intel_clock_t *reduced_clock,
5400 int num_connectors)
5401 {
5402 struct drm_device *dev = crtc->dev;
5403 struct drm_i915_private *dev_priv = dev->dev_private;
5404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5405 int pipe = intel_crtc->pipe;
5406 u32 dpll;
5407 bool is_sdvo;
5408
5409 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
5410 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
5411
5412 dpll = DPLL_VGA_MODE_DIS;
5413
5414 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5415 dpll |= DPLLB_MODE_LVDS;
5416 else
5417 dpll |= DPLLB_MODE_DAC_SERIAL;
5418 if (is_sdvo) {
5419 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5420 if (pixel_multiplier > 1) {
5421 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5422 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5423 }
5424 dpll |= DPLL_DVO_HIGH_SPEED;
5425 }
5426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
5427 dpll |= DPLL_DVO_HIGH_SPEED;
5428
5429 /* compute bitmask from p1 value */
5430 if (IS_PINEVIEW(dev))
5431 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5432 else {
5433 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5434 if (IS_G4X(dev) && reduced_clock)
5435 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5436 }
5437 switch (clock->p2) {
5438 case 5:
5439 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5440 break;
5441 case 7:
5442 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5443 break;
5444 case 10:
5445 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5446 break;
5447 case 14:
5448 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5449 break;
5450 }
5451 if (INTEL_INFO(dev)->gen >= 4)
5452 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5453
5454 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5455 dpll |= PLL_REF_INPUT_TVCLKINBC;
5456 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5457 /* XXX: just matching BIOS for now */
5458 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5459 dpll |= 3;
5460 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5461 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5462 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5463 else
5464 dpll |= PLL_REF_INPUT_DREFCLK;
5465
5466 dpll |= DPLL_VCO_ENABLE;
5467 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5468 POSTING_READ(DPLL(pipe));
5469 udelay(150);
5470
5471 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5472 * This is an exception to the general rule that mode_set doesn't turn
5473 * things on.
5474 */
5475 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5476 intel_update_lvds(crtc, clock, adjusted_mode);
5477
5478 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
5479 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5480
5481 I915_WRITE(DPLL(pipe), dpll);
5482
5483 /* Wait for the clocks to stabilize. */
5484 POSTING_READ(DPLL(pipe));
5485 udelay(150);
5486
5487 if (INTEL_INFO(dev)->gen >= 4) {
5488 u32 temp = 0;
5489 if (is_sdvo) {
5490 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5491 if (temp > 1)
5492 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5493 else
5494 temp = 0;
5495 }
5496 I915_WRITE(DPLL_MD(pipe), temp);
5497 } else {
5498 /* The pixel multiplier can only be updated once the
5499 * DPLL is enabled and the clocks are stable.
5500 *
5501 * So write it again.
5502 */
5503 I915_WRITE(DPLL(pipe), dpll);
5504 }
5505 }
5506
5507 static void i8xx_update_pll(struct drm_crtc *crtc,
5508 struct drm_display_mode *adjusted_mode,
5509 intel_clock_t *clock,
5510 int num_connectors)
5511 {
5512 struct drm_device *dev = crtc->dev;
5513 struct drm_i915_private *dev_priv = dev->dev_private;
5514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5515 int pipe = intel_crtc->pipe;
5516 u32 dpll;
5517
5518 dpll = DPLL_VGA_MODE_DIS;
5519
5520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
5521 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5522 } else {
5523 if (clock->p1 == 2)
5524 dpll |= PLL_P1_DIVIDE_BY_TWO;
5525 else
5526 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5527 if (clock->p2 == 4)
5528 dpll |= PLL_P2_DIVIDE_BY_4;
5529 }
5530
5531 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5532 /* XXX: just matching BIOS for now */
5533 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5534 dpll |= 3;
5535 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5536 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5537 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5538 else
5539 dpll |= PLL_REF_INPUT_DREFCLK;
5540
5541 dpll |= DPLL_VCO_ENABLE;
5542 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5543 POSTING_READ(DPLL(pipe));
5544 udelay(150);
5545
5546 I915_WRITE(DPLL(pipe), dpll);
5547
5548 /* Wait for the clocks to stabilize. */
5549 POSTING_READ(DPLL(pipe));
5550 udelay(150);
5551
5552 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5553 * This is an exception to the general rule that mode_set doesn't turn
5554 * things on.
5555 */
5556 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5557 intel_update_lvds(crtc, clock, adjusted_mode);
5558
5559 /* The pixel multiplier can only be updated once the
5560 * DPLL is enabled and the clocks are stable.
5561 *
5562 * So write it again.
5563 */
5564 I915_WRITE(DPLL(pipe), dpll);
5565 }
5566
5567 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5568 struct drm_display_mode *mode,
5569 struct drm_display_mode *adjusted_mode,
5570 int x, int y,
5571 struct drm_framebuffer *old_fb)
5572 {
5573 struct drm_device *dev = crtc->dev;
5574 struct drm_i915_private *dev_priv = dev->dev_private;
5575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5576 int pipe = intel_crtc->pipe;
5577 int plane = intel_crtc->plane;
5578 int refclk, num_connectors = 0;
5579 intel_clock_t clock, reduced_clock;
5580 u32 dspcntr, pipeconf, vsyncshift;
5581 bool ok, has_reduced_clock = false, is_sdvo = false;
5582 bool is_lvds = false, is_tv = false, is_dp = false;
5583 struct drm_mode_config *mode_config = &dev->mode_config;
5584 struct intel_encoder *encoder;
5585 const intel_limit_t *limit;
5586 int ret;
5587
5588 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5589 if (encoder->base.crtc != crtc)
5590 continue;
5591
5592 switch (encoder->type) {
5593 case INTEL_OUTPUT_LVDS:
5594 is_lvds = true;
5595 break;
5596 case INTEL_OUTPUT_SDVO:
5597 case INTEL_OUTPUT_HDMI:
5598 is_sdvo = true;
5599 if (encoder->needs_tv_clock)
5600 is_tv = true;
5601 break;
5602 case INTEL_OUTPUT_TVOUT:
5603 is_tv = true;
5604 break;
5605 case INTEL_OUTPUT_DISPLAYPORT:
5606 is_dp = true;
5607 break;
5608 }
5609
5610 num_connectors++;
5611 }
5612
5613 refclk = i9xx_get_refclk(crtc, num_connectors);
5614
5615 /*
5616 * Returns a set of divisors for the desired target clock with the given
5617 * refclk, or FALSE. The returned values represent the clock equation:
5618 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5619 */
5620 limit = intel_limit(crtc, refclk);
5621 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5622 &clock);
5623 if (!ok) {
5624 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5625 return -EINVAL;
5626 }
5627
5628 /* Ensure that the cursor is valid for the new mode before changing... */
5629 intel_crtc_update_cursor(crtc, true);
5630
5631 if (is_lvds && dev_priv->lvds_downclock_avail) {
5632 /*
5633 * Ensure we match the reduced clock's P to the target clock.
5634 * If the clocks don't match, we can't switch the display clock
5635 * by using the FP0/FP1. In such case we will disable the LVDS
5636 * downclock feature.
5637 */
5638 has_reduced_clock = limit->find_pll(limit, crtc,
5639 dev_priv->lvds_downclock,
5640 refclk,
5641 &clock,
5642 &reduced_clock);
5643 }
5644
5645 if (is_sdvo && is_tv)
5646 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5647
5648 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5649 &reduced_clock : NULL);
5650
5651 if (IS_GEN2(dev))
5652 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
5653 else
5654 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
5655 has_reduced_clock ? &reduced_clock : NULL,
5656 num_connectors);
5657
5658 /* setup pipeconf */
5659 pipeconf = I915_READ(PIPECONF(pipe));
5660
5661 /* Set up the display plane register */
5662 dspcntr = DISPPLANE_GAMMA_ENABLE;
5663
5664 if (pipe == 0)
5665 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5666 else
5667 dspcntr |= DISPPLANE_SEL_PIPE_B;
5668
5669 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5670 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5671 * core speed.
5672 *
5673 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5674 * pipe == 0 check?
5675 */
5676 if (mode->clock >
5677 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5678 pipeconf |= PIPECONF_DOUBLE_WIDE;
5679 else
5680 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5681 }
5682
5683 /* default to 8bpc */
5684 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5685 if (is_dp) {
5686 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5687 pipeconf |= PIPECONF_BPP_6 |
5688 PIPECONF_DITHER_EN |
5689 PIPECONF_DITHER_TYPE_SP;
5690 }
5691 }
5692
5693 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5694 drm_mode_debug_printmodeline(mode);
5695
5696 if (HAS_PIPE_CXSR(dev)) {
5697 if (intel_crtc->lowfreq_avail) {
5698 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5699 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5700 } else {
5701 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5702 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5703 }
5704 }
5705
5706 pipeconf &= ~PIPECONF_INTERLACE_MASK;
5707 if (!IS_GEN2(dev) &&
5708 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5709 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5710 /* the chip adds 2 halflines automatically */
5711 adjusted_mode->crtc_vtotal -= 1;
5712 adjusted_mode->crtc_vblank_end -= 1;
5713 vsyncshift = adjusted_mode->crtc_hsync_start
5714 - adjusted_mode->crtc_htotal/2;
5715 } else {
5716 pipeconf |= PIPECONF_PROGRESSIVE;
5717 vsyncshift = 0;
5718 }
5719
5720 if (!IS_GEN3(dev))
5721 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5722
5723 I915_WRITE(HTOTAL(pipe),
5724 (adjusted_mode->crtc_hdisplay - 1) |
5725 ((adjusted_mode->crtc_htotal - 1) << 16));
5726 I915_WRITE(HBLANK(pipe),
5727 (adjusted_mode->crtc_hblank_start - 1) |
5728 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5729 I915_WRITE(HSYNC(pipe),
5730 (adjusted_mode->crtc_hsync_start - 1) |
5731 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5732
5733 I915_WRITE(VTOTAL(pipe),
5734 (adjusted_mode->crtc_vdisplay - 1) |
5735 ((adjusted_mode->crtc_vtotal - 1) << 16));
5736 I915_WRITE(VBLANK(pipe),
5737 (adjusted_mode->crtc_vblank_start - 1) |
5738 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5739 I915_WRITE(VSYNC(pipe),
5740 (adjusted_mode->crtc_vsync_start - 1) |
5741 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5742
5743 /* pipesrc and dspsize control the size that is scaled from,
5744 * which should always be the user's requested size.
5745 */
5746 I915_WRITE(DSPSIZE(plane),
5747 ((mode->vdisplay - 1) << 16) |
5748 (mode->hdisplay - 1));
5749 I915_WRITE(DSPPOS(plane), 0);
5750 I915_WRITE(PIPESRC(pipe),
5751 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5752
5753 I915_WRITE(PIPECONF(pipe), pipeconf);
5754 POSTING_READ(PIPECONF(pipe));
5755 intel_enable_pipe(dev_priv, pipe, false);
5756
5757 intel_wait_for_vblank(dev, pipe);
5758
5759 I915_WRITE(DSPCNTR(plane), dspcntr);
5760 POSTING_READ(DSPCNTR(plane));
5761 intel_enable_plane(dev_priv, plane, pipe);
5762
5763 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5764
5765 intel_update_watermarks(dev);
5766
5767 return ret;
5768 }
5769
5770 /*
5771 * Initialize reference clocks when the driver loads
5772 */
5773 void ironlake_init_pch_refclk(struct drm_device *dev)
5774 {
5775 struct drm_i915_private *dev_priv = dev->dev_private;
5776 struct drm_mode_config *mode_config = &dev->mode_config;
5777 struct intel_encoder *encoder;
5778 u32 temp;
5779 bool has_lvds = false;
5780 bool has_cpu_edp = false;
5781 bool has_pch_edp = false;
5782 bool has_panel = false;
5783 bool has_ck505 = false;
5784 bool can_ssc = false;
5785
5786 /* We need to take the global config into account */
5787 list_for_each_entry(encoder, &mode_config->encoder_list,
5788 base.head) {
5789 switch (encoder->type) {
5790 case INTEL_OUTPUT_LVDS:
5791 has_panel = true;
5792 has_lvds = true;
5793 break;
5794 case INTEL_OUTPUT_EDP:
5795 has_panel = true;
5796 if (intel_encoder_is_pch_edp(&encoder->base))
5797 has_pch_edp = true;
5798 else
5799 has_cpu_edp = true;
5800 break;
5801 }
5802 }
5803
5804 if (HAS_PCH_IBX(dev)) {
5805 has_ck505 = dev_priv->display_clock_mode;
5806 can_ssc = has_ck505;
5807 } else {
5808 has_ck505 = false;
5809 can_ssc = true;
5810 }
5811
5812 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5813 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5814 has_ck505);
5815
5816 /* Ironlake: try to setup display ref clock before DPLL
5817 * enabling. This is only under driver's control after
5818 * PCH B stepping, previous chipset stepping should be
5819 * ignoring this setting.
5820 */
5821 temp = I915_READ(PCH_DREF_CONTROL);
5822 /* Always enable nonspread source */
5823 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5824
5825 if (has_ck505)
5826 temp |= DREF_NONSPREAD_CK505_ENABLE;
5827 else
5828 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5829
5830 if (has_panel) {
5831 temp &= ~DREF_SSC_SOURCE_MASK;
5832 temp |= DREF_SSC_SOURCE_ENABLE;
5833
5834 /* SSC must be turned on before enabling the CPU output */
5835 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5836 DRM_DEBUG_KMS("Using SSC on panel\n");
5837 temp |= DREF_SSC1_ENABLE;
5838 }
5839
5840 /* Get SSC going before enabling the outputs */
5841 I915_WRITE(PCH_DREF_CONTROL, temp);
5842 POSTING_READ(PCH_DREF_CONTROL);
5843 udelay(200);
5844
5845 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5846
5847 /* Enable CPU source on CPU attached eDP */
5848 if (has_cpu_edp) {
5849 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5850 DRM_DEBUG_KMS("Using SSC on eDP\n");
5851 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5852 }
5853 else
5854 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5855 } else
5856 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5857
5858 I915_WRITE(PCH_DREF_CONTROL, temp);
5859 POSTING_READ(PCH_DREF_CONTROL);
5860 udelay(200);
5861 } else {
5862 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5863
5864 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5865
5866 /* Turn off CPU output */
5867 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5868
5869 I915_WRITE(PCH_DREF_CONTROL, temp);
5870 POSTING_READ(PCH_DREF_CONTROL);
5871 udelay(200);
5872
5873 /* Turn off the SSC source */
5874 temp &= ~DREF_SSC_SOURCE_MASK;
5875 temp |= DREF_SSC_SOURCE_DISABLE;
5876
5877 /* Turn off SSC1 */
5878 temp &= ~ DREF_SSC1_ENABLE;
5879
5880 I915_WRITE(PCH_DREF_CONTROL, temp);
5881 POSTING_READ(PCH_DREF_CONTROL);
5882 udelay(200);
5883 }
5884 }
5885
5886 static int ironlake_get_refclk(struct drm_crtc *crtc)
5887 {
5888 struct drm_device *dev = crtc->dev;
5889 struct drm_i915_private *dev_priv = dev->dev_private;
5890 struct intel_encoder *encoder;
5891 struct drm_mode_config *mode_config = &dev->mode_config;
5892 struct intel_encoder *edp_encoder = NULL;
5893 int num_connectors = 0;
5894 bool is_lvds = false;
5895
5896 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5897 if (encoder->base.crtc != crtc)
5898 continue;
5899
5900 switch (encoder->type) {
5901 case INTEL_OUTPUT_LVDS:
5902 is_lvds = true;
5903 break;
5904 case INTEL_OUTPUT_EDP:
5905 edp_encoder = encoder;
5906 break;
5907 }
5908 num_connectors++;
5909 }
5910
5911 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5912 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5913 dev_priv->lvds_ssc_freq);
5914 return dev_priv->lvds_ssc_freq * 1000;
5915 }
5916
5917 return 120000;
5918 }
5919
5920 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5921 struct drm_display_mode *mode,
5922 struct drm_display_mode *adjusted_mode,
5923 int x, int y,
5924 struct drm_framebuffer *old_fb)
5925 {
5926 struct drm_device *dev = crtc->dev;
5927 struct drm_i915_private *dev_priv = dev->dev_private;
5928 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5929 int pipe = intel_crtc->pipe;
5930 int plane = intel_crtc->plane;
5931 int refclk, num_connectors = 0;
5932 intel_clock_t clock, reduced_clock;
5933 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5934 bool ok, has_reduced_clock = false, is_sdvo = false;
5935 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5936 struct intel_encoder *has_edp_encoder = NULL;
5937 struct drm_mode_config *mode_config = &dev->mode_config;
5938 struct intel_encoder *encoder;
5939 const intel_limit_t *limit;
5940 int ret;
5941 struct fdi_m_n m_n = {0};
5942 u32 temp;
5943 u32 lvds_sync = 0;
5944 int target_clock, pixel_multiplier, lane, link_bw, factor;
5945 unsigned int pipe_bpp;
5946 bool dither;
5947
5948 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5949 if (encoder->base.crtc != crtc)
5950 continue;
5951
5952 switch (encoder->type) {
5953 case INTEL_OUTPUT_LVDS:
5954 is_lvds = true;
5955 break;
5956 case INTEL_OUTPUT_SDVO:
5957 case INTEL_OUTPUT_HDMI:
5958 is_sdvo = true;
5959 if (encoder->needs_tv_clock)
5960 is_tv = true;
5961 break;
5962 case INTEL_OUTPUT_TVOUT:
5963 is_tv = true;
5964 break;
5965 case INTEL_OUTPUT_ANALOG:
5966 is_crt = true;
5967 break;
5968 case INTEL_OUTPUT_DISPLAYPORT:
5969 is_dp = true;
5970 break;
5971 case INTEL_OUTPUT_EDP:
5972 has_edp_encoder = encoder;
5973 break;
5974 }
5975
5976 num_connectors++;
5977 }
5978
5979 refclk = ironlake_get_refclk(crtc);
5980
5981 /*
5982 * Returns a set of divisors for the desired target clock with the given
5983 * refclk, or FALSE. The returned values represent the clock equation:
5984 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5985 */
5986 limit = intel_limit(crtc, refclk);
5987 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5988 &clock);
5989 if (!ok) {
5990 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5991 return -EINVAL;
5992 }
5993
5994 /* Ensure that the cursor is valid for the new mode before changing... */
5995 intel_crtc_update_cursor(crtc, true);
5996
5997 if (is_lvds && dev_priv->lvds_downclock_avail) {
5998 /*
5999 * Ensure we match the reduced clock's P to the target clock.
6000 * If the clocks don't match, we can't switch the display clock
6001 * by using the FP0/FP1. In such case we will disable the LVDS
6002 * downclock feature.
6003 */
6004 has_reduced_clock = limit->find_pll(limit, crtc,
6005 dev_priv->lvds_downclock,
6006 refclk,
6007 &clock,
6008 &reduced_clock);
6009 }
6010 /* SDVO TV has fixed PLL values depend on its clock range,
6011 this mirrors vbios setting. */
6012 if (is_sdvo && is_tv) {
6013 if (adjusted_mode->clock >= 100000
6014 && adjusted_mode->clock < 140500) {
6015 clock.p1 = 2;
6016 clock.p2 = 10;
6017 clock.n = 3;
6018 clock.m1 = 16;
6019 clock.m2 = 8;
6020 } else if (adjusted_mode->clock >= 140500
6021 && adjusted_mode->clock <= 200000) {
6022 clock.p1 = 1;
6023 clock.p2 = 10;
6024 clock.n = 6;
6025 clock.m1 = 12;
6026 clock.m2 = 8;
6027 }
6028 }
6029
6030 /* FDI link */
6031 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
6032 lane = 0;
6033 /* CPU eDP doesn't require FDI link, so just set DP M/N
6034 according to current link config */
6035 if (has_edp_encoder &&
6036 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6037 target_clock = mode->clock;
6038 intel_edp_link_config(has_edp_encoder,
6039 &lane, &link_bw);
6040 } else {
6041 /* [e]DP over FDI requires target mode clock
6042 instead of link clock */
6043 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
6044 target_clock = mode->clock;
6045 else
6046 target_clock = adjusted_mode->clock;
6047
6048 /* FDI is a binary signal running at ~2.7GHz, encoding
6049 * each output octet as 10 bits. The actual frequency
6050 * is stored as a divider into a 100MHz clock, and the
6051 * mode pixel clock is stored in units of 1KHz.
6052 * Hence the bw of each lane in terms of the mode signal
6053 * is:
6054 */
6055 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6056 }
6057
6058 /* determine panel color depth */
6059 temp = I915_READ(PIPECONF(pipe));
6060 temp &= ~PIPE_BPC_MASK;
6061 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
6062 switch (pipe_bpp) {
6063 case 18:
6064 temp |= PIPE_6BPC;
6065 break;
6066 case 24:
6067 temp |= PIPE_8BPC;
6068 break;
6069 case 30:
6070 temp |= PIPE_10BPC;
6071 break;
6072 case 36:
6073 temp |= PIPE_12BPC;
6074 break;
6075 default:
6076 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
6077 pipe_bpp);
6078 temp |= PIPE_8BPC;
6079 pipe_bpp = 24;
6080 break;
6081 }
6082
6083 intel_crtc->bpp = pipe_bpp;
6084 I915_WRITE(PIPECONF(pipe), temp);
6085
6086 if (!lane) {
6087 /*
6088 * Account for spread spectrum to avoid
6089 * oversubscribing the link. Max center spread
6090 * is 2.5%; use 5% for safety's sake.
6091 */
6092 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
6093 lane = bps / (link_bw * 8) + 1;
6094 }
6095
6096 intel_crtc->fdi_lanes = lane;
6097
6098 if (pixel_multiplier > 1)
6099 link_bw *= pixel_multiplier;
6100 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
6101 &m_n);
6102
6103 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
6104 if (has_reduced_clock)
6105 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
6106 reduced_clock.m2;
6107
6108 /* Enable autotuning of the PLL clock (if permissible) */
6109 factor = 21;
6110 if (is_lvds) {
6111 if ((intel_panel_use_ssc(dev_priv) &&
6112 dev_priv->lvds_ssc_freq == 100) ||
6113 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
6114 factor = 25;
6115 } else if (is_sdvo && is_tv)
6116 factor = 20;
6117
6118 if (clock.m < factor * clock.n)
6119 fp |= FP_CB_TUNE;
6120
6121 dpll = 0;
6122
6123 if (is_lvds)
6124 dpll |= DPLLB_MODE_LVDS;
6125 else
6126 dpll |= DPLLB_MODE_DAC_SERIAL;
6127 if (is_sdvo) {
6128 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
6129 if (pixel_multiplier > 1) {
6130 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6131 }
6132 dpll |= DPLL_DVO_HIGH_SPEED;
6133 }
6134 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
6135 dpll |= DPLL_DVO_HIGH_SPEED;
6136
6137 /* compute bitmask from p1 value */
6138 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6139 /* also FPA1 */
6140 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6141
6142 switch (clock.p2) {
6143 case 5:
6144 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6145 break;
6146 case 7:
6147 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6148 break;
6149 case 10:
6150 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6151 break;
6152 case 14:
6153 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6154 break;
6155 }
6156
6157 if (is_sdvo && is_tv)
6158 dpll |= PLL_REF_INPUT_TVCLKINBC;
6159 else if (is_tv)
6160 /* XXX: just matching BIOS for now */
6161 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
6162 dpll |= 3;
6163 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6164 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6165 else
6166 dpll |= PLL_REF_INPUT_DREFCLK;
6167
6168 /* setup pipeconf */
6169 pipeconf = I915_READ(PIPECONF(pipe));
6170
6171 /* Set up the display plane register */
6172 dspcntr = DISPPLANE_GAMMA_ENABLE;
6173
6174 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
6175 drm_mode_debug_printmodeline(mode);
6176
6177 /* PCH eDP needs FDI, but CPU eDP does not */
6178 if (!intel_crtc->no_pll) {
6179 if (!has_edp_encoder ||
6180 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6181 I915_WRITE(PCH_FP0(pipe), fp);
6182 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
6183
6184 POSTING_READ(PCH_DPLL(pipe));
6185 udelay(150);
6186 }
6187 } else {
6188 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
6189 fp == I915_READ(PCH_FP0(0))) {
6190 intel_crtc->use_pll_a = true;
6191 DRM_DEBUG_KMS("using pipe a dpll\n");
6192 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
6193 fp == I915_READ(PCH_FP0(1))) {
6194 intel_crtc->use_pll_a = false;
6195 DRM_DEBUG_KMS("using pipe b dpll\n");
6196 } else {
6197 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
6198 return -EINVAL;
6199 }
6200 }
6201
6202 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
6203 * This is an exception to the general rule that mode_set doesn't turn
6204 * things on.
6205 */
6206 if (is_lvds) {
6207 temp = I915_READ(PCH_LVDS);
6208 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
6209 if (HAS_PCH_CPT(dev)) {
6210 temp &= ~PORT_TRANS_SEL_MASK;
6211 temp |= PORT_TRANS_SEL_CPT(pipe);
6212 } else {
6213 if (pipe == 1)
6214 temp |= LVDS_PIPEB_SELECT;
6215 else
6216 temp &= ~LVDS_PIPEB_SELECT;
6217 }
6218
6219 /* set the corresponsding LVDS_BORDER bit */
6220 temp |= dev_priv->lvds_border_bits;
6221 /* Set the B0-B3 data pairs corresponding to whether we're going to
6222 * set the DPLLs for dual-channel mode or not.
6223 */
6224 if (clock.p2 == 7)
6225 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
6226 else
6227 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
6228
6229 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
6230 * appropriately here, but we need to look more thoroughly into how
6231 * panels behave in the two modes.
6232 */
6233 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
6234 lvds_sync |= LVDS_HSYNC_POLARITY;
6235 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
6236 lvds_sync |= LVDS_VSYNC_POLARITY;
6237 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
6238 != lvds_sync) {
6239 char flags[2] = "-+";
6240 DRM_INFO("Changing LVDS panel from "
6241 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
6242 flags[!(temp & LVDS_HSYNC_POLARITY)],
6243 flags[!(temp & LVDS_VSYNC_POLARITY)],
6244 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
6245 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
6246 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
6247 temp |= lvds_sync;
6248 }
6249 I915_WRITE(PCH_LVDS, temp);
6250 }
6251
6252 pipeconf &= ~PIPECONF_DITHER_EN;
6253 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
6254 if ((is_lvds && dev_priv->lvds_dither) || dither) {
6255 pipeconf |= PIPECONF_DITHER_EN;
6256 pipeconf |= PIPECONF_DITHER_TYPE_SP;
6257 }
6258 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6259 intel_dp_set_m_n(crtc, mode, adjusted_mode);
6260 } else {
6261 /* For non-DP output, clear any trans DP clock recovery setting.*/
6262 I915_WRITE(TRANSDATA_M1(pipe), 0);
6263 I915_WRITE(TRANSDATA_N1(pipe), 0);
6264 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6265 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6266 }
6267
6268 if (!intel_crtc->no_pll &&
6269 (!has_edp_encoder ||
6270 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
6271 I915_WRITE(PCH_DPLL(pipe), dpll);
6272
6273 /* Wait for the clocks to stabilize. */
6274 POSTING_READ(PCH_DPLL(pipe));
6275 udelay(150);
6276
6277 /* The pixel multiplier can only be updated once the
6278 * DPLL is enabled and the clocks are stable.
6279 *
6280 * So write it again.
6281 */
6282 I915_WRITE(PCH_DPLL(pipe), dpll);
6283 }
6284
6285 intel_crtc->lowfreq_avail = false;
6286 if (!intel_crtc->no_pll) {
6287 if (is_lvds && has_reduced_clock && i915_powersave) {
6288 I915_WRITE(PCH_FP1(pipe), fp2);
6289 intel_crtc->lowfreq_avail = true;
6290 if (HAS_PIPE_CXSR(dev)) {
6291 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6292 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6293 }
6294 } else {
6295 I915_WRITE(PCH_FP1(pipe), fp);
6296 if (HAS_PIPE_CXSR(dev)) {
6297 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6298 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6299 }
6300 }
6301 }
6302
6303 pipeconf &= ~PIPECONF_INTERLACE_MASK;
6304 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6305 pipeconf |= PIPECONF_INTERLACED_ILK;
6306 /* the chip adds 2 halflines automatically */
6307 adjusted_mode->crtc_vtotal -= 1;
6308 adjusted_mode->crtc_vblank_end -= 1;
6309 I915_WRITE(VSYNCSHIFT(pipe),
6310 adjusted_mode->crtc_hsync_start
6311 - adjusted_mode->crtc_htotal/2);
6312 } else {
6313 pipeconf |= PIPECONF_PROGRESSIVE;
6314 I915_WRITE(VSYNCSHIFT(pipe), 0);
6315 }
6316
6317 I915_WRITE(HTOTAL(pipe),
6318 (adjusted_mode->crtc_hdisplay - 1) |
6319 ((adjusted_mode->crtc_htotal - 1) << 16));
6320 I915_WRITE(HBLANK(pipe),
6321 (adjusted_mode->crtc_hblank_start - 1) |
6322 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6323 I915_WRITE(HSYNC(pipe),
6324 (adjusted_mode->crtc_hsync_start - 1) |
6325 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6326
6327 I915_WRITE(VTOTAL(pipe),
6328 (adjusted_mode->crtc_vdisplay - 1) |
6329 ((adjusted_mode->crtc_vtotal - 1) << 16));
6330 I915_WRITE(VBLANK(pipe),
6331 (adjusted_mode->crtc_vblank_start - 1) |
6332 ((adjusted_mode->crtc_vblank_end - 1) << 16));
6333 I915_WRITE(VSYNC(pipe),
6334 (adjusted_mode->crtc_vsync_start - 1) |
6335 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6336
6337 /* pipesrc controls the size that is scaled from, which should
6338 * always be the user's requested size.
6339 */
6340 I915_WRITE(PIPESRC(pipe),
6341 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6342
6343 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6344 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6345 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6346 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6347
6348 if (has_edp_encoder &&
6349 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6350 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6351 }
6352
6353 I915_WRITE(PIPECONF(pipe), pipeconf);
6354 POSTING_READ(PIPECONF(pipe));
6355
6356 intel_wait_for_vblank(dev, pipe);
6357
6358 I915_WRITE(DSPCNTR(plane), dspcntr);
6359 POSTING_READ(DSPCNTR(plane));
6360
6361 ret = intel_pipe_set_base(crtc, x, y, old_fb);
6362
6363 intel_update_watermarks(dev);
6364
6365 return ret;
6366 }
6367
6368 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6369 struct drm_display_mode *mode,
6370 struct drm_display_mode *adjusted_mode,
6371 int x, int y,
6372 struct drm_framebuffer *old_fb)
6373 {
6374 struct drm_device *dev = crtc->dev;
6375 struct drm_i915_private *dev_priv = dev->dev_private;
6376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6377 int pipe = intel_crtc->pipe;
6378 int ret;
6379
6380 drm_vblank_pre_modeset(dev, pipe);
6381
6382 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6383 x, y, old_fb);
6384 drm_vblank_post_modeset(dev, pipe);
6385
6386 if (ret)
6387 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6388 else
6389 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6390
6391 return ret;
6392 }
6393
6394 static bool intel_eld_uptodate(struct drm_connector *connector,
6395 int reg_eldv, uint32_t bits_eldv,
6396 int reg_elda, uint32_t bits_elda,
6397 int reg_edid)
6398 {
6399 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6400 uint8_t *eld = connector->eld;
6401 uint32_t i;
6402
6403 i = I915_READ(reg_eldv);
6404 i &= bits_eldv;
6405
6406 if (!eld[0])
6407 return !i;
6408
6409 if (!i)
6410 return false;
6411
6412 i = I915_READ(reg_elda);
6413 i &= ~bits_elda;
6414 I915_WRITE(reg_elda, i);
6415
6416 for (i = 0; i < eld[2]; i++)
6417 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6418 return false;
6419
6420 return true;
6421 }
6422
6423 static void g4x_write_eld(struct drm_connector *connector,
6424 struct drm_crtc *crtc)
6425 {
6426 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6427 uint8_t *eld = connector->eld;
6428 uint32_t eldv;
6429 uint32_t len;
6430 uint32_t i;
6431
6432 i = I915_READ(G4X_AUD_VID_DID);
6433
6434 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6435 eldv = G4X_ELDV_DEVCL_DEVBLC;
6436 else
6437 eldv = G4X_ELDV_DEVCTG;
6438
6439 if (intel_eld_uptodate(connector,
6440 G4X_AUD_CNTL_ST, eldv,
6441 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6442 G4X_HDMIW_HDMIEDID))
6443 return;
6444
6445 i = I915_READ(G4X_AUD_CNTL_ST);
6446 i &= ~(eldv | G4X_ELD_ADDR);
6447 len = (i >> 9) & 0x1f; /* ELD buffer size */
6448 I915_WRITE(G4X_AUD_CNTL_ST, i);
6449
6450 if (!eld[0])
6451 return;
6452
6453 len = min_t(uint8_t, eld[2], len);
6454 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6455 for (i = 0; i < len; i++)
6456 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6457
6458 i = I915_READ(G4X_AUD_CNTL_ST);
6459 i |= eldv;
6460 I915_WRITE(G4X_AUD_CNTL_ST, i);
6461 }
6462
6463 static void ironlake_write_eld(struct drm_connector *connector,
6464 struct drm_crtc *crtc)
6465 {
6466 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6467 uint8_t *eld = connector->eld;
6468 uint32_t eldv;
6469 uint32_t i;
6470 int len;
6471 int hdmiw_hdmiedid;
6472 int aud_config;
6473 int aud_cntl_st;
6474 int aud_cntrl_st2;
6475
6476 if (HAS_PCH_IBX(connector->dev)) {
6477 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6478 aud_config = IBX_AUD_CONFIG_A;
6479 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6480 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6481 } else {
6482 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6483 aud_config = CPT_AUD_CONFIG_A;
6484 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6485 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6486 }
6487
6488 i = to_intel_crtc(crtc)->pipe;
6489 hdmiw_hdmiedid += i * 0x100;
6490 aud_cntl_st += i * 0x100;
6491 aud_config += i * 0x100;
6492
6493 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6494
6495 i = I915_READ(aud_cntl_st);
6496 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6497 if (!i) {
6498 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6499 /* operate blindly on all ports */
6500 eldv = IBX_ELD_VALIDB;
6501 eldv |= IBX_ELD_VALIDB << 4;
6502 eldv |= IBX_ELD_VALIDB << 8;
6503 } else {
6504 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6505 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6506 }
6507
6508 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6509 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6510 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6511 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6512 } else
6513 I915_WRITE(aud_config, 0);
6514
6515 if (intel_eld_uptodate(connector,
6516 aud_cntrl_st2, eldv,
6517 aud_cntl_st, IBX_ELD_ADDRESS,
6518 hdmiw_hdmiedid))
6519 return;
6520
6521 i = I915_READ(aud_cntrl_st2);
6522 i &= ~eldv;
6523 I915_WRITE(aud_cntrl_st2, i);
6524
6525 if (!eld[0])
6526 return;
6527
6528 i = I915_READ(aud_cntl_st);
6529 i &= ~IBX_ELD_ADDRESS;
6530 I915_WRITE(aud_cntl_st, i);
6531
6532 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6533 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6534 for (i = 0; i < len; i++)
6535 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6536
6537 i = I915_READ(aud_cntrl_st2);
6538 i |= eldv;
6539 I915_WRITE(aud_cntrl_st2, i);
6540 }
6541
6542 void intel_write_eld(struct drm_encoder *encoder,
6543 struct drm_display_mode *mode)
6544 {
6545 struct drm_crtc *crtc = encoder->crtc;
6546 struct drm_connector *connector;
6547 struct drm_device *dev = encoder->dev;
6548 struct drm_i915_private *dev_priv = dev->dev_private;
6549
6550 connector = drm_select_eld(encoder, mode);
6551 if (!connector)
6552 return;
6553
6554 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6555 connector->base.id,
6556 drm_get_connector_name(connector),
6557 connector->encoder->base.id,
6558 drm_get_encoder_name(connector->encoder));
6559
6560 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6561
6562 if (dev_priv->display.write_eld)
6563 dev_priv->display.write_eld(connector, crtc);
6564 }
6565
6566 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6567 void intel_crtc_load_lut(struct drm_crtc *crtc)
6568 {
6569 struct drm_device *dev = crtc->dev;
6570 struct drm_i915_private *dev_priv = dev->dev_private;
6571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6572 int palreg = PALETTE(intel_crtc->pipe);
6573 int i;
6574
6575 /* The clocks have to be on to load the palette. */
6576 if (!crtc->enabled)
6577 return;
6578
6579 /* use legacy palette for Ironlake */
6580 if (HAS_PCH_SPLIT(dev))
6581 palreg = LGC_PALETTE(intel_crtc->pipe);
6582
6583 for (i = 0; i < 256; i++) {
6584 I915_WRITE(palreg + 4 * i,
6585 (intel_crtc->lut_r[i] << 16) |
6586 (intel_crtc->lut_g[i] << 8) |
6587 intel_crtc->lut_b[i]);
6588 }
6589 }
6590
6591 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6592 {
6593 struct drm_device *dev = crtc->dev;
6594 struct drm_i915_private *dev_priv = dev->dev_private;
6595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6596 bool visible = base != 0;
6597 u32 cntl;
6598
6599 if (intel_crtc->cursor_visible == visible)
6600 return;
6601
6602 cntl = I915_READ(_CURACNTR);
6603 if (visible) {
6604 /* On these chipsets we can only modify the base whilst
6605 * the cursor is disabled.
6606 */
6607 I915_WRITE(_CURABASE, base);
6608
6609 cntl &= ~(CURSOR_FORMAT_MASK);
6610 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6611 cntl |= CURSOR_ENABLE |
6612 CURSOR_GAMMA_ENABLE |
6613 CURSOR_FORMAT_ARGB;
6614 } else
6615 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6616 I915_WRITE(_CURACNTR, cntl);
6617
6618 intel_crtc->cursor_visible = visible;
6619 }
6620
6621 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6622 {
6623 struct drm_device *dev = crtc->dev;
6624 struct drm_i915_private *dev_priv = dev->dev_private;
6625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6626 int pipe = intel_crtc->pipe;
6627 bool visible = base != 0;
6628
6629 if (intel_crtc->cursor_visible != visible) {
6630 uint32_t cntl = I915_READ(CURCNTR(pipe));
6631 if (base) {
6632 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6633 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6634 cntl |= pipe << 28; /* Connect to correct pipe */
6635 } else {
6636 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6637 cntl |= CURSOR_MODE_DISABLE;
6638 }
6639 I915_WRITE(CURCNTR(pipe), cntl);
6640
6641 intel_crtc->cursor_visible = visible;
6642 }
6643 /* and commit changes on next vblank */
6644 I915_WRITE(CURBASE(pipe), base);
6645 }
6646
6647 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6648 {
6649 struct drm_device *dev = crtc->dev;
6650 struct drm_i915_private *dev_priv = dev->dev_private;
6651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6652 int pipe = intel_crtc->pipe;
6653 bool visible = base != 0;
6654
6655 if (intel_crtc->cursor_visible != visible) {
6656 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6657 if (base) {
6658 cntl &= ~CURSOR_MODE;
6659 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6660 } else {
6661 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6662 cntl |= CURSOR_MODE_DISABLE;
6663 }
6664 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6665
6666 intel_crtc->cursor_visible = visible;
6667 }
6668 /* and commit changes on next vblank */
6669 I915_WRITE(CURBASE_IVB(pipe), base);
6670 }
6671
6672 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6673 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6674 bool on)
6675 {
6676 struct drm_device *dev = crtc->dev;
6677 struct drm_i915_private *dev_priv = dev->dev_private;
6678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6679 int pipe = intel_crtc->pipe;
6680 int x = intel_crtc->cursor_x;
6681 int y = intel_crtc->cursor_y;
6682 u32 base, pos;
6683 bool visible;
6684
6685 pos = 0;
6686
6687 if (on && crtc->enabled && crtc->fb) {
6688 base = intel_crtc->cursor_addr;
6689 if (x > (int) crtc->fb->width)
6690 base = 0;
6691
6692 if (y > (int) crtc->fb->height)
6693 base = 0;
6694 } else
6695 base = 0;
6696
6697 if (x < 0) {
6698 if (x + intel_crtc->cursor_width < 0)
6699 base = 0;
6700
6701 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6702 x = -x;
6703 }
6704 pos |= x << CURSOR_X_SHIFT;
6705
6706 if (y < 0) {
6707 if (y + intel_crtc->cursor_height < 0)
6708 base = 0;
6709
6710 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6711 y = -y;
6712 }
6713 pos |= y << CURSOR_Y_SHIFT;
6714
6715 visible = base != 0;
6716 if (!visible && !intel_crtc->cursor_visible)
6717 return;
6718
6719 if (IS_IVYBRIDGE(dev)) {
6720 I915_WRITE(CURPOS_IVB(pipe), pos);
6721 ivb_update_cursor(crtc, base);
6722 } else {
6723 I915_WRITE(CURPOS(pipe), pos);
6724 if (IS_845G(dev) || IS_I865G(dev))
6725 i845_update_cursor(crtc, base);
6726 else
6727 i9xx_update_cursor(crtc, base);
6728 }
6729
6730 if (visible)
6731 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6732 }
6733
6734 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6735 struct drm_file *file,
6736 uint32_t handle,
6737 uint32_t width, uint32_t height)
6738 {
6739 struct drm_device *dev = crtc->dev;
6740 struct drm_i915_private *dev_priv = dev->dev_private;
6741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6742 struct drm_i915_gem_object *obj;
6743 uint32_t addr;
6744 int ret;
6745
6746 DRM_DEBUG_KMS("\n");
6747
6748 /* if we want to turn off the cursor ignore width and height */
6749 if (!handle) {
6750 DRM_DEBUG_KMS("cursor off\n");
6751 addr = 0;
6752 obj = NULL;
6753 mutex_lock(&dev->struct_mutex);
6754 goto finish;
6755 }
6756
6757 /* Currently we only support 64x64 cursors */
6758 if (width != 64 || height != 64) {
6759 DRM_ERROR("we currently only support 64x64 cursors\n");
6760 return -EINVAL;
6761 }
6762
6763 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6764 if (&obj->base == NULL)
6765 return -ENOENT;
6766
6767 if (obj->base.size < width * height * 4) {
6768 DRM_ERROR("buffer is to small\n");
6769 ret = -ENOMEM;
6770 goto fail;
6771 }
6772
6773 /* we only need to pin inside GTT if cursor is non-phy */
6774 mutex_lock(&dev->struct_mutex);
6775 if (!dev_priv->info->cursor_needs_physical) {
6776 if (obj->tiling_mode) {
6777 DRM_ERROR("cursor cannot be tiled\n");
6778 ret = -EINVAL;
6779 goto fail_locked;
6780 }
6781
6782 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6783 if (ret) {
6784 DRM_ERROR("failed to move cursor bo into the GTT\n");
6785 goto fail_locked;
6786 }
6787
6788 ret = i915_gem_object_put_fence(obj);
6789 if (ret) {
6790 DRM_ERROR("failed to release fence for cursor");
6791 goto fail_unpin;
6792 }
6793
6794 addr = obj->gtt_offset;
6795 } else {
6796 int align = IS_I830(dev) ? 16 * 1024 : 256;
6797 ret = i915_gem_attach_phys_object(dev, obj,
6798 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6799 align);
6800 if (ret) {
6801 DRM_ERROR("failed to attach phys object\n");
6802 goto fail_locked;
6803 }
6804 addr = obj->phys_obj->handle->busaddr;
6805 }
6806
6807 if (IS_GEN2(dev))
6808 I915_WRITE(CURSIZE, (height << 12) | width);
6809
6810 finish:
6811 if (intel_crtc->cursor_bo) {
6812 if (dev_priv->info->cursor_needs_physical) {
6813 if (intel_crtc->cursor_bo != obj)
6814 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6815 } else
6816 i915_gem_object_unpin(intel_crtc->cursor_bo);
6817 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6818 }
6819
6820 mutex_unlock(&dev->struct_mutex);
6821
6822 intel_crtc->cursor_addr = addr;
6823 intel_crtc->cursor_bo = obj;
6824 intel_crtc->cursor_width = width;
6825 intel_crtc->cursor_height = height;
6826
6827 intel_crtc_update_cursor(crtc, true);
6828
6829 return 0;
6830 fail_unpin:
6831 i915_gem_object_unpin(obj);
6832 fail_locked:
6833 mutex_unlock(&dev->struct_mutex);
6834 fail:
6835 drm_gem_object_unreference_unlocked(&obj->base);
6836 return ret;
6837 }
6838
6839 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6840 {
6841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6842
6843 intel_crtc->cursor_x = x;
6844 intel_crtc->cursor_y = y;
6845
6846 intel_crtc_update_cursor(crtc, true);
6847
6848 return 0;
6849 }
6850
6851 /** Sets the color ramps on behalf of RandR */
6852 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6853 u16 blue, int regno)
6854 {
6855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6856
6857 intel_crtc->lut_r[regno] = red >> 8;
6858 intel_crtc->lut_g[regno] = green >> 8;
6859 intel_crtc->lut_b[regno] = blue >> 8;
6860 }
6861
6862 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6863 u16 *blue, int regno)
6864 {
6865 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6866
6867 *red = intel_crtc->lut_r[regno] << 8;
6868 *green = intel_crtc->lut_g[regno] << 8;
6869 *blue = intel_crtc->lut_b[regno] << 8;
6870 }
6871
6872 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6873 u16 *blue, uint32_t start, uint32_t size)
6874 {
6875 int end = (start + size > 256) ? 256 : start + size, i;
6876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6877
6878 for (i = start; i < end; i++) {
6879 intel_crtc->lut_r[i] = red[i] >> 8;
6880 intel_crtc->lut_g[i] = green[i] >> 8;
6881 intel_crtc->lut_b[i] = blue[i] >> 8;
6882 }
6883
6884 intel_crtc_load_lut(crtc);
6885 }
6886
6887 /**
6888 * Get a pipe with a simple mode set on it for doing load-based monitor
6889 * detection.
6890 *
6891 * It will be up to the load-detect code to adjust the pipe as appropriate for
6892 * its requirements. The pipe will be connected to no other encoders.
6893 *
6894 * Currently this code will only succeed if there is a pipe with no encoders
6895 * configured for it. In the future, it could choose to temporarily disable
6896 * some outputs to free up a pipe for its use.
6897 *
6898 * \return crtc, or NULL if no pipes are available.
6899 */
6900
6901 /* VESA 640x480x72Hz mode to set on the pipe */
6902 static struct drm_display_mode load_detect_mode = {
6903 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6904 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6905 };
6906
6907 static struct drm_framebuffer *
6908 intel_framebuffer_create(struct drm_device *dev,
6909 struct drm_mode_fb_cmd2 *mode_cmd,
6910 struct drm_i915_gem_object *obj)
6911 {
6912 struct intel_framebuffer *intel_fb;
6913 int ret;
6914
6915 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6916 if (!intel_fb) {
6917 drm_gem_object_unreference_unlocked(&obj->base);
6918 return ERR_PTR(-ENOMEM);
6919 }
6920
6921 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6922 if (ret) {
6923 drm_gem_object_unreference_unlocked(&obj->base);
6924 kfree(intel_fb);
6925 return ERR_PTR(ret);
6926 }
6927
6928 return &intel_fb->base;
6929 }
6930
6931 static u32
6932 intel_framebuffer_pitch_for_width(int width, int bpp)
6933 {
6934 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6935 return ALIGN(pitch, 64);
6936 }
6937
6938 static u32
6939 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6940 {
6941 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6942 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6943 }
6944
6945 static struct drm_framebuffer *
6946 intel_framebuffer_create_for_mode(struct drm_device *dev,
6947 struct drm_display_mode *mode,
6948 int depth, int bpp)
6949 {
6950 struct drm_i915_gem_object *obj;
6951 struct drm_mode_fb_cmd2 mode_cmd;
6952
6953 obj = i915_gem_alloc_object(dev,
6954 intel_framebuffer_size_for_mode(mode, bpp));
6955 if (obj == NULL)
6956 return ERR_PTR(-ENOMEM);
6957
6958 mode_cmd.width = mode->hdisplay;
6959 mode_cmd.height = mode->vdisplay;
6960 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6961 bpp);
6962 mode_cmd.pixel_format = 0;
6963
6964 return intel_framebuffer_create(dev, &mode_cmd, obj);
6965 }
6966
6967 static struct drm_framebuffer *
6968 mode_fits_in_fbdev(struct drm_device *dev,
6969 struct drm_display_mode *mode)
6970 {
6971 struct drm_i915_private *dev_priv = dev->dev_private;
6972 struct drm_i915_gem_object *obj;
6973 struct drm_framebuffer *fb;
6974
6975 if (dev_priv->fbdev == NULL)
6976 return NULL;
6977
6978 obj = dev_priv->fbdev->ifb.obj;
6979 if (obj == NULL)
6980 return NULL;
6981
6982 fb = &dev_priv->fbdev->ifb.base;
6983 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6984 fb->bits_per_pixel))
6985 return NULL;
6986
6987 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6988 return NULL;
6989
6990 return fb;
6991 }
6992
6993 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6994 struct drm_connector *connector,
6995 struct drm_display_mode *mode,
6996 struct intel_load_detect_pipe *old)
6997 {
6998 struct intel_crtc *intel_crtc;
6999 struct drm_crtc *possible_crtc;
7000 struct drm_encoder *encoder = &intel_encoder->base;
7001 struct drm_crtc *crtc = NULL;
7002 struct drm_device *dev = encoder->dev;
7003 struct drm_framebuffer *old_fb;
7004 int i = -1;
7005
7006 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7007 connector->base.id, drm_get_connector_name(connector),
7008 encoder->base.id, drm_get_encoder_name(encoder));
7009
7010 /*
7011 * Algorithm gets a little messy:
7012 *
7013 * - if the connector already has an assigned crtc, use it (but make
7014 * sure it's on first)
7015 *
7016 * - try to find the first unused crtc that can drive this connector,
7017 * and use that if we find one
7018 */
7019
7020 /* See if we already have a CRTC for this connector */
7021 if (encoder->crtc) {
7022 crtc = encoder->crtc;
7023
7024 intel_crtc = to_intel_crtc(crtc);
7025 old->dpms_mode = intel_crtc->dpms_mode;
7026 old->load_detect_temp = false;
7027
7028 /* Make sure the crtc and connector are running */
7029 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
7030 struct drm_encoder_helper_funcs *encoder_funcs;
7031 struct drm_crtc_helper_funcs *crtc_funcs;
7032
7033 crtc_funcs = crtc->helper_private;
7034 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
7035
7036 encoder_funcs = encoder->helper_private;
7037 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
7038 }
7039
7040 return true;
7041 }
7042
7043 /* Find an unused one (if possible) */
7044 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7045 i++;
7046 if (!(encoder->possible_crtcs & (1 << i)))
7047 continue;
7048 if (!possible_crtc->enabled) {
7049 crtc = possible_crtc;
7050 break;
7051 }
7052 }
7053
7054 /*
7055 * If we didn't find an unused CRTC, don't use any.
7056 */
7057 if (!crtc) {
7058 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7059 return false;
7060 }
7061
7062 encoder->crtc = crtc;
7063 connector->encoder = encoder;
7064
7065 intel_crtc = to_intel_crtc(crtc);
7066 old->dpms_mode = intel_crtc->dpms_mode;
7067 old->load_detect_temp = true;
7068 old->release_fb = NULL;
7069
7070 if (!mode)
7071 mode = &load_detect_mode;
7072
7073 old_fb = crtc->fb;
7074
7075 /* We need a framebuffer large enough to accommodate all accesses
7076 * that the plane may generate whilst we perform load detection.
7077 * We can not rely on the fbcon either being present (we get called
7078 * during its initialisation to detect all boot displays, or it may
7079 * not even exist) or that it is large enough to satisfy the
7080 * requested mode.
7081 */
7082 crtc->fb = mode_fits_in_fbdev(dev, mode);
7083 if (crtc->fb == NULL) {
7084 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7085 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7086 old->release_fb = crtc->fb;
7087 } else
7088 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7089 if (IS_ERR(crtc->fb)) {
7090 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7091 crtc->fb = old_fb;
7092 return false;
7093 }
7094
7095 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
7096 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7097 if (old->release_fb)
7098 old->release_fb->funcs->destroy(old->release_fb);
7099 crtc->fb = old_fb;
7100 return false;
7101 }
7102
7103 /* let the connector get through one full cycle before testing */
7104 intel_wait_for_vblank(dev, intel_crtc->pipe);
7105
7106 return true;
7107 }
7108
7109 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
7110 struct drm_connector *connector,
7111 struct intel_load_detect_pipe *old)
7112 {
7113 struct drm_encoder *encoder = &intel_encoder->base;
7114 struct drm_device *dev = encoder->dev;
7115 struct drm_crtc *crtc = encoder->crtc;
7116 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
7117 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
7118
7119 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7120 connector->base.id, drm_get_connector_name(connector),
7121 encoder->base.id, drm_get_encoder_name(encoder));
7122
7123 if (old->load_detect_temp) {
7124 connector->encoder = NULL;
7125 drm_helper_disable_unused_functions(dev);
7126
7127 if (old->release_fb)
7128 old->release_fb->funcs->destroy(old->release_fb);
7129
7130 return;
7131 }
7132
7133 /* Switch crtc and encoder back off if necessary */
7134 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
7135 encoder_funcs->dpms(encoder, old->dpms_mode);
7136 crtc_funcs->dpms(crtc, old->dpms_mode);
7137 }
7138 }
7139
7140 /* Returns the clock of the currently programmed mode of the given pipe. */
7141 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
7142 {
7143 struct drm_i915_private *dev_priv = dev->dev_private;
7144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7145 int pipe = intel_crtc->pipe;
7146 u32 dpll = I915_READ(DPLL(pipe));
7147 u32 fp;
7148 intel_clock_t clock;
7149
7150 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7151 fp = I915_READ(FP0(pipe));
7152 else
7153 fp = I915_READ(FP1(pipe));
7154
7155 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7156 if (IS_PINEVIEW(dev)) {
7157 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7158 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7159 } else {
7160 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7161 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7162 }
7163
7164 if (!IS_GEN2(dev)) {
7165 if (IS_PINEVIEW(dev))
7166 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7167 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7168 else
7169 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7170 DPLL_FPA01_P1_POST_DIV_SHIFT);
7171
7172 switch (dpll & DPLL_MODE_MASK) {
7173 case DPLLB_MODE_DAC_SERIAL:
7174 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7175 5 : 10;
7176 break;
7177 case DPLLB_MODE_LVDS:
7178 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7179 7 : 14;
7180 break;
7181 default:
7182 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7183 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7184 return 0;
7185 }
7186
7187 /* XXX: Handle the 100Mhz refclk */
7188 intel_clock(dev, 96000, &clock);
7189 } else {
7190 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7191
7192 if (is_lvds) {
7193 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7194 DPLL_FPA01_P1_POST_DIV_SHIFT);
7195 clock.p2 = 14;
7196
7197 if ((dpll & PLL_REF_INPUT_MASK) ==
7198 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7199 /* XXX: might not be 66MHz */
7200 intel_clock(dev, 66000, &clock);
7201 } else
7202 intel_clock(dev, 48000, &clock);
7203 } else {
7204 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7205 clock.p1 = 2;
7206 else {
7207 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7208 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7209 }
7210 if (dpll & PLL_P2_DIVIDE_BY_4)
7211 clock.p2 = 4;
7212 else
7213 clock.p2 = 2;
7214
7215 intel_clock(dev, 48000, &clock);
7216 }
7217 }
7218
7219 /* XXX: It would be nice to validate the clocks, but we can't reuse
7220 * i830PllIsValid() because it relies on the xf86_config connector
7221 * configuration being accurate, which it isn't necessarily.
7222 */
7223
7224 return clock.dot;
7225 }
7226
7227 /** Returns the currently programmed mode of the given pipe. */
7228 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7229 struct drm_crtc *crtc)
7230 {
7231 struct drm_i915_private *dev_priv = dev->dev_private;
7232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7233 int pipe = intel_crtc->pipe;
7234 struct drm_display_mode *mode;
7235 int htot = I915_READ(HTOTAL(pipe));
7236 int hsync = I915_READ(HSYNC(pipe));
7237 int vtot = I915_READ(VTOTAL(pipe));
7238 int vsync = I915_READ(VSYNC(pipe));
7239
7240 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7241 if (!mode)
7242 return NULL;
7243
7244 mode->clock = intel_crtc_clock_get(dev, crtc);
7245 mode->hdisplay = (htot & 0xffff) + 1;
7246 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7247 mode->hsync_start = (hsync & 0xffff) + 1;
7248 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7249 mode->vdisplay = (vtot & 0xffff) + 1;
7250 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7251 mode->vsync_start = (vsync & 0xffff) + 1;
7252 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7253
7254 drm_mode_set_name(mode);
7255 drm_mode_set_crtcinfo(mode, 0);
7256
7257 return mode;
7258 }
7259
7260 #define GPU_IDLE_TIMEOUT 500 /* ms */
7261
7262 /* When this timer fires, we've been idle for awhile */
7263 static void intel_gpu_idle_timer(unsigned long arg)
7264 {
7265 struct drm_device *dev = (struct drm_device *)arg;
7266 drm_i915_private_t *dev_priv = dev->dev_private;
7267
7268 if (!list_empty(&dev_priv->mm.active_list)) {
7269 /* Still processing requests, so just re-arm the timer. */
7270 mod_timer(&dev_priv->idle_timer, jiffies +
7271 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7272 return;
7273 }
7274
7275 dev_priv->busy = false;
7276 queue_work(dev_priv->wq, &dev_priv->idle_work);
7277 }
7278
7279 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
7280
7281 static void intel_crtc_idle_timer(unsigned long arg)
7282 {
7283 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
7284 struct drm_crtc *crtc = &intel_crtc->base;
7285 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7286 struct intel_framebuffer *intel_fb;
7287
7288 intel_fb = to_intel_framebuffer(crtc->fb);
7289 if (intel_fb && intel_fb->obj->active) {
7290 /* The framebuffer is still being accessed by the GPU. */
7291 mod_timer(&intel_crtc->idle_timer, jiffies +
7292 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7293 return;
7294 }
7295
7296 intel_crtc->busy = false;
7297 queue_work(dev_priv->wq, &dev_priv->idle_work);
7298 }
7299
7300 static void intel_increase_pllclock(struct drm_crtc *crtc)
7301 {
7302 struct drm_device *dev = crtc->dev;
7303 drm_i915_private_t *dev_priv = dev->dev_private;
7304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7305 int pipe = intel_crtc->pipe;
7306 int dpll_reg = DPLL(pipe);
7307 int dpll;
7308
7309 if (HAS_PCH_SPLIT(dev))
7310 return;
7311
7312 if (!dev_priv->lvds_downclock_avail)
7313 return;
7314
7315 dpll = I915_READ(dpll_reg);
7316 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7317 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7318
7319 assert_panel_unlocked(dev_priv, pipe);
7320
7321 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7322 I915_WRITE(dpll_reg, dpll);
7323 intel_wait_for_vblank(dev, pipe);
7324
7325 dpll = I915_READ(dpll_reg);
7326 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7327 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7328 }
7329
7330 /* Schedule downclock */
7331 mod_timer(&intel_crtc->idle_timer, jiffies +
7332 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7333 }
7334
7335 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7336 {
7337 struct drm_device *dev = crtc->dev;
7338 drm_i915_private_t *dev_priv = dev->dev_private;
7339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7340 int pipe = intel_crtc->pipe;
7341 int dpll_reg = DPLL(pipe);
7342 int dpll = I915_READ(dpll_reg);
7343
7344 if (HAS_PCH_SPLIT(dev))
7345 return;
7346
7347 if (!dev_priv->lvds_downclock_avail)
7348 return;
7349
7350 /*
7351 * Since this is called by a timer, we should never get here in
7352 * the manual case.
7353 */
7354 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7355 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7356
7357 assert_panel_unlocked(dev_priv, pipe);
7358
7359 dpll |= DISPLAY_RATE_SELECT_FPA1;
7360 I915_WRITE(dpll_reg, dpll);
7361 intel_wait_for_vblank(dev, pipe);
7362 dpll = I915_READ(dpll_reg);
7363 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7364 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7365 }
7366
7367 }
7368
7369 /**
7370 * intel_idle_update - adjust clocks for idleness
7371 * @work: work struct
7372 *
7373 * Either the GPU or display (or both) went idle. Check the busy status
7374 * here and adjust the CRTC and GPU clocks as necessary.
7375 */
7376 static void intel_idle_update(struct work_struct *work)
7377 {
7378 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7379 idle_work);
7380 struct drm_device *dev = dev_priv->dev;
7381 struct drm_crtc *crtc;
7382 struct intel_crtc *intel_crtc;
7383
7384 if (!i915_powersave)
7385 return;
7386
7387 mutex_lock(&dev->struct_mutex);
7388
7389 i915_update_gfx_val(dev_priv);
7390
7391 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7392 /* Skip inactive CRTCs */
7393 if (!crtc->fb)
7394 continue;
7395
7396 intel_crtc = to_intel_crtc(crtc);
7397 if (!intel_crtc->busy)
7398 intel_decrease_pllclock(crtc);
7399 }
7400
7401
7402 mutex_unlock(&dev->struct_mutex);
7403 }
7404
7405 /**
7406 * intel_mark_busy - mark the GPU and possibly the display busy
7407 * @dev: drm device
7408 * @obj: object we're operating on
7409 *
7410 * Callers can use this function to indicate that the GPU is busy processing
7411 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7412 * buffer), we'll also mark the display as busy, so we know to increase its
7413 * clock frequency.
7414 */
7415 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7416 {
7417 drm_i915_private_t *dev_priv = dev->dev_private;
7418 struct drm_crtc *crtc = NULL;
7419 struct intel_framebuffer *intel_fb;
7420 struct intel_crtc *intel_crtc;
7421
7422 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7423 return;
7424
7425 if (!dev_priv->busy)
7426 dev_priv->busy = true;
7427 else
7428 mod_timer(&dev_priv->idle_timer, jiffies +
7429 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7430
7431 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7432 if (!crtc->fb)
7433 continue;
7434
7435 intel_crtc = to_intel_crtc(crtc);
7436 intel_fb = to_intel_framebuffer(crtc->fb);
7437 if (intel_fb->obj == obj) {
7438 if (!intel_crtc->busy) {
7439 /* Non-busy -> busy, upclock */
7440 intel_increase_pllclock(crtc);
7441 intel_crtc->busy = true;
7442 } else {
7443 /* Busy -> busy, put off timer */
7444 mod_timer(&intel_crtc->idle_timer, jiffies +
7445 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7446 }
7447 }
7448 }
7449 }
7450
7451 static void intel_crtc_destroy(struct drm_crtc *crtc)
7452 {
7453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7454 struct drm_device *dev = crtc->dev;
7455 struct intel_unpin_work *work;
7456 unsigned long flags;
7457
7458 spin_lock_irqsave(&dev->event_lock, flags);
7459 work = intel_crtc->unpin_work;
7460 intel_crtc->unpin_work = NULL;
7461 spin_unlock_irqrestore(&dev->event_lock, flags);
7462
7463 if (work) {
7464 cancel_work_sync(&work->work);
7465 kfree(work);
7466 }
7467
7468 drm_crtc_cleanup(crtc);
7469
7470 kfree(intel_crtc);
7471 }
7472
7473 static void intel_unpin_work_fn(struct work_struct *__work)
7474 {
7475 struct intel_unpin_work *work =
7476 container_of(__work, struct intel_unpin_work, work);
7477
7478 mutex_lock(&work->dev->struct_mutex);
7479 intel_unpin_fb_obj(work->old_fb_obj);
7480 drm_gem_object_unreference(&work->pending_flip_obj->base);
7481 drm_gem_object_unreference(&work->old_fb_obj->base);
7482
7483 intel_update_fbc(work->dev);
7484 mutex_unlock(&work->dev->struct_mutex);
7485 kfree(work);
7486 }
7487
7488 static void do_intel_finish_page_flip(struct drm_device *dev,
7489 struct drm_crtc *crtc)
7490 {
7491 drm_i915_private_t *dev_priv = dev->dev_private;
7492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7493 struct intel_unpin_work *work;
7494 struct drm_i915_gem_object *obj;
7495 struct drm_pending_vblank_event *e;
7496 struct timeval tnow, tvbl;
7497 unsigned long flags;
7498
7499 /* Ignore early vblank irqs */
7500 if (intel_crtc == NULL)
7501 return;
7502
7503 do_gettimeofday(&tnow);
7504
7505 spin_lock_irqsave(&dev->event_lock, flags);
7506 work = intel_crtc->unpin_work;
7507 if (work == NULL || !work->pending) {
7508 spin_unlock_irqrestore(&dev->event_lock, flags);
7509 return;
7510 }
7511
7512 intel_crtc->unpin_work = NULL;
7513
7514 if (work->event) {
7515 e = work->event;
7516 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7517
7518 /* Called before vblank count and timestamps have
7519 * been updated for the vblank interval of flip
7520 * completion? Need to increment vblank count and
7521 * add one videorefresh duration to returned timestamp
7522 * to account for this. We assume this happened if we
7523 * get called over 0.9 frame durations after the last
7524 * timestamped vblank.
7525 *
7526 * This calculation can not be used with vrefresh rates
7527 * below 5Hz (10Hz to be on the safe side) without
7528 * promoting to 64 integers.
7529 */
7530 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7531 9 * crtc->framedur_ns) {
7532 e->event.sequence++;
7533 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7534 crtc->framedur_ns);
7535 }
7536
7537 e->event.tv_sec = tvbl.tv_sec;
7538 e->event.tv_usec = tvbl.tv_usec;
7539
7540 list_add_tail(&e->base.link,
7541 &e->base.file_priv->event_list);
7542 wake_up_interruptible(&e->base.file_priv->event_wait);
7543 }
7544
7545 drm_vblank_put(dev, intel_crtc->pipe);
7546
7547 spin_unlock_irqrestore(&dev->event_lock, flags);
7548
7549 obj = work->old_fb_obj;
7550
7551 atomic_clear_mask(1 << intel_crtc->plane,
7552 &obj->pending_flip.counter);
7553 if (atomic_read(&obj->pending_flip) == 0)
7554 wake_up(&dev_priv->pending_flip_queue);
7555
7556 schedule_work(&work->work);
7557
7558 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7559 }
7560
7561 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7562 {
7563 drm_i915_private_t *dev_priv = dev->dev_private;
7564 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7565
7566 do_intel_finish_page_flip(dev, crtc);
7567 }
7568
7569 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7570 {
7571 drm_i915_private_t *dev_priv = dev->dev_private;
7572 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7573
7574 do_intel_finish_page_flip(dev, crtc);
7575 }
7576
7577 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7578 {
7579 drm_i915_private_t *dev_priv = dev->dev_private;
7580 struct intel_crtc *intel_crtc =
7581 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7582 unsigned long flags;
7583
7584 spin_lock_irqsave(&dev->event_lock, flags);
7585 if (intel_crtc->unpin_work) {
7586 if ((++intel_crtc->unpin_work->pending) > 1)
7587 DRM_ERROR("Prepared flip multiple times\n");
7588 } else {
7589 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7590 }
7591 spin_unlock_irqrestore(&dev->event_lock, flags);
7592 }
7593
7594 static int intel_gen2_queue_flip(struct drm_device *dev,
7595 struct drm_crtc *crtc,
7596 struct drm_framebuffer *fb,
7597 struct drm_i915_gem_object *obj)
7598 {
7599 struct drm_i915_private *dev_priv = dev->dev_private;
7600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7601 unsigned long offset;
7602 u32 flip_mask;
7603 int ret;
7604
7605 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7606 if (ret)
7607 goto out;
7608
7609 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7610 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7611
7612 ret = BEGIN_LP_RING(6);
7613 if (ret)
7614 goto out;
7615
7616 /* Can't queue multiple flips, so wait for the previous
7617 * one to finish before executing the next.
7618 */
7619 if (intel_crtc->plane)
7620 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7621 else
7622 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7623 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7624 OUT_RING(MI_NOOP);
7625 OUT_RING(MI_DISPLAY_FLIP |
7626 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7627 OUT_RING(fb->pitches[0]);
7628 OUT_RING(obj->gtt_offset + offset);
7629 OUT_RING(0); /* aux display base address, unused */
7630 ADVANCE_LP_RING();
7631 out:
7632 return ret;
7633 }
7634
7635 static int intel_gen3_queue_flip(struct drm_device *dev,
7636 struct drm_crtc *crtc,
7637 struct drm_framebuffer *fb,
7638 struct drm_i915_gem_object *obj)
7639 {
7640 struct drm_i915_private *dev_priv = dev->dev_private;
7641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7642 unsigned long offset;
7643 u32 flip_mask;
7644 int ret;
7645
7646 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7647 if (ret)
7648 goto out;
7649
7650 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7651 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7652
7653 ret = BEGIN_LP_RING(6);
7654 if (ret)
7655 goto out;
7656
7657 if (intel_crtc->plane)
7658 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7659 else
7660 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7661 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7662 OUT_RING(MI_NOOP);
7663 OUT_RING(MI_DISPLAY_FLIP_I915 |
7664 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7665 OUT_RING(fb->pitches[0]);
7666 OUT_RING(obj->gtt_offset + offset);
7667 OUT_RING(MI_NOOP);
7668
7669 ADVANCE_LP_RING();
7670 out:
7671 return ret;
7672 }
7673
7674 static int intel_gen4_queue_flip(struct drm_device *dev,
7675 struct drm_crtc *crtc,
7676 struct drm_framebuffer *fb,
7677 struct drm_i915_gem_object *obj)
7678 {
7679 struct drm_i915_private *dev_priv = dev->dev_private;
7680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7681 uint32_t pf, pipesrc;
7682 int ret;
7683
7684 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7685 if (ret)
7686 goto out;
7687
7688 ret = BEGIN_LP_RING(4);
7689 if (ret)
7690 goto out;
7691
7692 /* i965+ uses the linear or tiled offsets from the
7693 * Display Registers (which do not change across a page-flip)
7694 * so we need only reprogram the base address.
7695 */
7696 OUT_RING(MI_DISPLAY_FLIP |
7697 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7698 OUT_RING(fb->pitches[0]);
7699 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7700
7701 /* XXX Enabling the panel-fitter across page-flip is so far
7702 * untested on non-native modes, so ignore it for now.
7703 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7704 */
7705 pf = 0;
7706 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7707 OUT_RING(pf | pipesrc);
7708 ADVANCE_LP_RING();
7709 out:
7710 return ret;
7711 }
7712
7713 static int intel_gen6_queue_flip(struct drm_device *dev,
7714 struct drm_crtc *crtc,
7715 struct drm_framebuffer *fb,
7716 struct drm_i915_gem_object *obj)
7717 {
7718 struct drm_i915_private *dev_priv = dev->dev_private;
7719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7720 uint32_t pf, pipesrc;
7721 int ret;
7722
7723 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7724 if (ret)
7725 goto out;
7726
7727 ret = BEGIN_LP_RING(4);
7728 if (ret)
7729 goto out;
7730
7731 OUT_RING(MI_DISPLAY_FLIP |
7732 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7733 OUT_RING(fb->pitches[0] | obj->tiling_mode);
7734 OUT_RING(obj->gtt_offset);
7735
7736 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7737 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7738 OUT_RING(pf | pipesrc);
7739 ADVANCE_LP_RING();
7740 out:
7741 return ret;
7742 }
7743
7744 /*
7745 * On gen7 we currently use the blit ring because (in early silicon at least)
7746 * the render ring doesn't give us interrpts for page flip completion, which
7747 * means clients will hang after the first flip is queued. Fortunately the
7748 * blit ring generates interrupts properly, so use it instead.
7749 */
7750 static int intel_gen7_queue_flip(struct drm_device *dev,
7751 struct drm_crtc *crtc,
7752 struct drm_framebuffer *fb,
7753 struct drm_i915_gem_object *obj)
7754 {
7755 struct drm_i915_private *dev_priv = dev->dev_private;
7756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7757 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7758 int ret;
7759
7760 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7761 if (ret)
7762 goto out;
7763
7764 ret = intel_ring_begin(ring, 4);
7765 if (ret)
7766 goto out;
7767
7768 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7769 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7770 intel_ring_emit(ring, (obj->gtt_offset));
7771 intel_ring_emit(ring, (MI_NOOP));
7772 intel_ring_advance(ring);
7773 out:
7774 return ret;
7775 }
7776
7777 static int intel_default_queue_flip(struct drm_device *dev,
7778 struct drm_crtc *crtc,
7779 struct drm_framebuffer *fb,
7780 struct drm_i915_gem_object *obj)
7781 {
7782 return -ENODEV;
7783 }
7784
7785 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7786 struct drm_framebuffer *fb,
7787 struct drm_pending_vblank_event *event)
7788 {
7789 struct drm_device *dev = crtc->dev;
7790 struct drm_i915_private *dev_priv = dev->dev_private;
7791 struct intel_framebuffer *intel_fb;
7792 struct drm_i915_gem_object *obj;
7793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7794 struct intel_unpin_work *work;
7795 unsigned long flags;
7796 int ret;
7797
7798 work = kzalloc(sizeof *work, GFP_KERNEL);
7799 if (work == NULL)
7800 return -ENOMEM;
7801
7802 work->event = event;
7803 work->dev = crtc->dev;
7804 intel_fb = to_intel_framebuffer(crtc->fb);
7805 work->old_fb_obj = intel_fb->obj;
7806 INIT_WORK(&work->work, intel_unpin_work_fn);
7807
7808 ret = drm_vblank_get(dev, intel_crtc->pipe);
7809 if (ret)
7810 goto free_work;
7811
7812 /* We borrow the event spin lock for protecting unpin_work */
7813 spin_lock_irqsave(&dev->event_lock, flags);
7814 if (intel_crtc->unpin_work) {
7815 spin_unlock_irqrestore(&dev->event_lock, flags);
7816 kfree(work);
7817 drm_vblank_put(dev, intel_crtc->pipe);
7818
7819 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7820 return -EBUSY;
7821 }
7822 intel_crtc->unpin_work = work;
7823 spin_unlock_irqrestore(&dev->event_lock, flags);
7824
7825 intel_fb = to_intel_framebuffer(fb);
7826 obj = intel_fb->obj;
7827
7828 mutex_lock(&dev->struct_mutex);
7829
7830 /* Reference the objects for the scheduled work. */
7831 drm_gem_object_reference(&work->old_fb_obj->base);
7832 drm_gem_object_reference(&obj->base);
7833
7834 crtc->fb = fb;
7835
7836 work->pending_flip_obj = obj;
7837
7838 work->enable_stall_check = true;
7839
7840 /* Block clients from rendering to the new back buffer until
7841 * the flip occurs and the object is no longer visible.
7842 */
7843 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7844
7845 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7846 if (ret)
7847 goto cleanup_pending;
7848
7849 intel_disable_fbc(dev);
7850 mutex_unlock(&dev->struct_mutex);
7851
7852 trace_i915_flip_request(intel_crtc->plane, obj);
7853
7854 return 0;
7855
7856 cleanup_pending:
7857 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7858 drm_gem_object_unreference(&work->old_fb_obj->base);
7859 drm_gem_object_unreference(&obj->base);
7860 mutex_unlock(&dev->struct_mutex);
7861
7862 spin_lock_irqsave(&dev->event_lock, flags);
7863 intel_crtc->unpin_work = NULL;
7864 spin_unlock_irqrestore(&dev->event_lock, flags);
7865
7866 drm_vblank_put(dev, intel_crtc->pipe);
7867 free_work:
7868 kfree(work);
7869
7870 return ret;
7871 }
7872
7873 static void intel_sanitize_modesetting(struct drm_device *dev,
7874 int pipe, int plane)
7875 {
7876 struct drm_i915_private *dev_priv = dev->dev_private;
7877 u32 reg, val;
7878
7879 if (HAS_PCH_SPLIT(dev))
7880 return;
7881
7882 /* Who knows what state these registers were left in by the BIOS or
7883 * grub?
7884 *
7885 * If we leave the registers in a conflicting state (e.g. with the
7886 * display plane reading from the other pipe than the one we intend
7887 * to use) then when we attempt to teardown the active mode, we will
7888 * not disable the pipes and planes in the correct order -- leaving
7889 * a plane reading from a disabled pipe and possibly leading to
7890 * undefined behaviour.
7891 */
7892
7893 reg = DSPCNTR(plane);
7894 val = I915_READ(reg);
7895
7896 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7897 return;
7898 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7899 return;
7900
7901 /* This display plane is active and attached to the other CPU pipe. */
7902 pipe = !pipe;
7903
7904 /* Disable the plane and wait for it to stop reading from the pipe. */
7905 intel_disable_plane(dev_priv, plane, pipe);
7906 intel_disable_pipe(dev_priv, pipe);
7907 }
7908
7909 static void intel_crtc_reset(struct drm_crtc *crtc)
7910 {
7911 struct drm_device *dev = crtc->dev;
7912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7913
7914 /* Reset flags back to the 'unknown' status so that they
7915 * will be correctly set on the initial modeset.
7916 */
7917 intel_crtc->dpms_mode = -1;
7918
7919 /* We need to fix up any BIOS configuration that conflicts with
7920 * our expectations.
7921 */
7922 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7923 }
7924
7925 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7926 .dpms = intel_crtc_dpms,
7927 .mode_fixup = intel_crtc_mode_fixup,
7928 .mode_set = intel_crtc_mode_set,
7929 .mode_set_base = intel_pipe_set_base,
7930 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7931 .load_lut = intel_crtc_load_lut,
7932 .disable = intel_crtc_disable,
7933 };
7934
7935 static const struct drm_crtc_funcs intel_crtc_funcs = {
7936 .reset = intel_crtc_reset,
7937 .cursor_set = intel_crtc_cursor_set,
7938 .cursor_move = intel_crtc_cursor_move,
7939 .gamma_set = intel_crtc_gamma_set,
7940 .set_config = drm_crtc_helper_set_config,
7941 .destroy = intel_crtc_destroy,
7942 .page_flip = intel_crtc_page_flip,
7943 };
7944
7945 static void intel_crtc_init(struct drm_device *dev, int pipe)
7946 {
7947 drm_i915_private_t *dev_priv = dev->dev_private;
7948 struct intel_crtc *intel_crtc;
7949 int i;
7950
7951 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7952 if (intel_crtc == NULL)
7953 return;
7954
7955 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7956
7957 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7958 for (i = 0; i < 256; i++) {
7959 intel_crtc->lut_r[i] = i;
7960 intel_crtc->lut_g[i] = i;
7961 intel_crtc->lut_b[i] = i;
7962 }
7963
7964 /* Swap pipes & planes for FBC on pre-965 */
7965 intel_crtc->pipe = pipe;
7966 intel_crtc->plane = pipe;
7967 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7968 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7969 intel_crtc->plane = !pipe;
7970 }
7971
7972 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7973 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7974 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7975 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7976
7977 intel_crtc_reset(&intel_crtc->base);
7978 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7979 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7980
7981 if (HAS_PCH_SPLIT(dev)) {
7982 if (pipe == 2 && IS_IVYBRIDGE(dev))
7983 intel_crtc->no_pll = true;
7984 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7985 intel_helper_funcs.commit = ironlake_crtc_commit;
7986 } else {
7987 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7988 intel_helper_funcs.commit = i9xx_crtc_commit;
7989 }
7990
7991 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7992
7993 intel_crtc->busy = false;
7994
7995 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7996 (unsigned long)intel_crtc);
7997 }
7998
7999 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8000 struct drm_file *file)
8001 {
8002 drm_i915_private_t *dev_priv = dev->dev_private;
8003 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8004 struct drm_mode_object *drmmode_obj;
8005 struct intel_crtc *crtc;
8006
8007 if (!dev_priv) {
8008 DRM_ERROR("called with no initialization\n");
8009 return -EINVAL;
8010 }
8011
8012 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8013 DRM_MODE_OBJECT_CRTC);
8014
8015 if (!drmmode_obj) {
8016 DRM_ERROR("no such CRTC id\n");
8017 return -EINVAL;
8018 }
8019
8020 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8021 pipe_from_crtc_id->pipe = crtc->pipe;
8022
8023 return 0;
8024 }
8025
8026 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
8027 {
8028 struct intel_encoder *encoder;
8029 int index_mask = 0;
8030 int entry = 0;
8031
8032 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8033 if (type_mask & encoder->clone_mask)
8034 index_mask |= (1 << entry);
8035 entry++;
8036 }
8037
8038 return index_mask;
8039 }
8040
8041 static bool has_edp_a(struct drm_device *dev)
8042 {
8043 struct drm_i915_private *dev_priv = dev->dev_private;
8044
8045 if (!IS_MOBILE(dev))
8046 return false;
8047
8048 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8049 return false;
8050
8051 if (IS_GEN5(dev) &&
8052 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8053 return false;
8054
8055 return true;
8056 }
8057
8058 static void intel_setup_outputs(struct drm_device *dev)
8059 {
8060 struct drm_i915_private *dev_priv = dev->dev_private;
8061 struct intel_encoder *encoder;
8062 bool dpd_is_edp = false;
8063 bool has_lvds;
8064
8065 has_lvds = intel_lvds_init(dev);
8066 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8067 /* disable the panel fitter on everything but LVDS */
8068 I915_WRITE(PFIT_CONTROL, 0);
8069 }
8070
8071 if (HAS_PCH_SPLIT(dev)) {
8072 dpd_is_edp = intel_dpd_is_edp(dev);
8073
8074 if (has_edp_a(dev))
8075 intel_dp_init(dev, DP_A);
8076
8077 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8078 intel_dp_init(dev, PCH_DP_D);
8079 }
8080
8081 intel_crt_init(dev);
8082
8083 if (HAS_PCH_SPLIT(dev)) {
8084 int found;
8085
8086 if (I915_READ(HDMIB) & PORT_DETECTED) {
8087 /* PCH SDVOB multiplex with HDMIB */
8088 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8089 if (!found)
8090 intel_hdmi_init(dev, HDMIB);
8091 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8092 intel_dp_init(dev, PCH_DP_B);
8093 }
8094
8095 if (I915_READ(HDMIC) & PORT_DETECTED)
8096 intel_hdmi_init(dev, HDMIC);
8097
8098 if (I915_READ(HDMID) & PORT_DETECTED)
8099 intel_hdmi_init(dev, HDMID);
8100
8101 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8102 intel_dp_init(dev, PCH_DP_C);
8103
8104 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8105 intel_dp_init(dev, PCH_DP_D);
8106
8107 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8108 bool found = false;
8109
8110 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8111 DRM_DEBUG_KMS("probing SDVOB\n");
8112 found = intel_sdvo_init(dev, SDVOB, true);
8113 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8114 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8115 intel_hdmi_init(dev, SDVOB);
8116 }
8117
8118 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8119 DRM_DEBUG_KMS("probing DP_B\n");
8120 intel_dp_init(dev, DP_B);
8121 }
8122 }
8123
8124 /* Before G4X SDVOC doesn't have its own detect register */
8125
8126 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8127 DRM_DEBUG_KMS("probing SDVOC\n");
8128 found = intel_sdvo_init(dev, SDVOC, false);
8129 }
8130
8131 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8132
8133 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8134 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8135 intel_hdmi_init(dev, SDVOC);
8136 }
8137 if (SUPPORTS_INTEGRATED_DP(dev)) {
8138 DRM_DEBUG_KMS("probing DP_C\n");
8139 intel_dp_init(dev, DP_C);
8140 }
8141 }
8142
8143 if (SUPPORTS_INTEGRATED_DP(dev) &&
8144 (I915_READ(DP_D) & DP_DETECTED)) {
8145 DRM_DEBUG_KMS("probing DP_D\n");
8146 intel_dp_init(dev, DP_D);
8147 }
8148 } else if (IS_GEN2(dev))
8149 intel_dvo_init(dev);
8150
8151 if (SUPPORTS_TV(dev))
8152 intel_tv_init(dev);
8153
8154 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8155 encoder->base.possible_crtcs = encoder->crtc_mask;
8156 encoder->base.possible_clones =
8157 intel_encoder_clones(dev, encoder->clone_mask);
8158 }
8159
8160 /* disable all the possible outputs/crtcs before entering KMS mode */
8161 drm_helper_disable_unused_functions(dev);
8162
8163 if (HAS_PCH_SPLIT(dev))
8164 ironlake_init_pch_refclk(dev);
8165 }
8166
8167 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8168 {
8169 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8170
8171 drm_framebuffer_cleanup(fb);
8172 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8173
8174 kfree(intel_fb);
8175 }
8176
8177 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8178 struct drm_file *file,
8179 unsigned int *handle)
8180 {
8181 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8182 struct drm_i915_gem_object *obj = intel_fb->obj;
8183
8184 return drm_gem_handle_create(file, &obj->base, handle);
8185 }
8186
8187 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8188 .destroy = intel_user_framebuffer_destroy,
8189 .create_handle = intel_user_framebuffer_create_handle,
8190 };
8191
8192 int intel_framebuffer_init(struct drm_device *dev,
8193 struct intel_framebuffer *intel_fb,
8194 struct drm_mode_fb_cmd2 *mode_cmd,
8195 struct drm_i915_gem_object *obj)
8196 {
8197 int ret;
8198
8199 if (obj->tiling_mode == I915_TILING_Y)
8200 return -EINVAL;
8201
8202 if (mode_cmd->pitches[0] & 63)
8203 return -EINVAL;
8204
8205 switch (mode_cmd->pixel_format) {
8206 case DRM_FORMAT_RGB332:
8207 case DRM_FORMAT_RGB565:
8208 case DRM_FORMAT_XRGB8888:
8209 case DRM_FORMAT_ARGB8888:
8210 case DRM_FORMAT_XRGB2101010:
8211 case DRM_FORMAT_ARGB2101010:
8212 /* RGB formats are common across chipsets */
8213 break;
8214 case DRM_FORMAT_YUYV:
8215 case DRM_FORMAT_UYVY:
8216 case DRM_FORMAT_YVYU:
8217 case DRM_FORMAT_VYUY:
8218 break;
8219 default:
8220 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8221 mode_cmd->pixel_format);
8222 return -EINVAL;
8223 }
8224
8225 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8226 if (ret) {
8227 DRM_ERROR("framebuffer init failed %d\n", ret);
8228 return ret;
8229 }
8230
8231 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8232 intel_fb->obj = obj;
8233 return 0;
8234 }
8235
8236 static struct drm_framebuffer *
8237 intel_user_framebuffer_create(struct drm_device *dev,
8238 struct drm_file *filp,
8239 struct drm_mode_fb_cmd2 *mode_cmd)
8240 {
8241 struct drm_i915_gem_object *obj;
8242
8243 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8244 mode_cmd->handles[0]));
8245 if (&obj->base == NULL)
8246 return ERR_PTR(-ENOENT);
8247
8248 return intel_framebuffer_create(dev, mode_cmd, obj);
8249 }
8250
8251 static const struct drm_mode_config_funcs intel_mode_funcs = {
8252 .fb_create = intel_user_framebuffer_create,
8253 .output_poll_changed = intel_fb_output_poll_changed,
8254 };
8255
8256 static struct drm_i915_gem_object *
8257 intel_alloc_context_page(struct drm_device *dev)
8258 {
8259 struct drm_i915_gem_object *ctx;
8260 int ret;
8261
8262 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8263
8264 ctx = i915_gem_alloc_object(dev, 4096);
8265 if (!ctx) {
8266 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8267 return NULL;
8268 }
8269
8270 ret = i915_gem_object_pin(ctx, 4096, true);
8271 if (ret) {
8272 DRM_ERROR("failed to pin power context: %d\n", ret);
8273 goto err_unref;
8274 }
8275
8276 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8277 if (ret) {
8278 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8279 goto err_unpin;
8280 }
8281
8282 return ctx;
8283
8284 err_unpin:
8285 i915_gem_object_unpin(ctx);
8286 err_unref:
8287 drm_gem_object_unreference(&ctx->base);
8288 mutex_unlock(&dev->struct_mutex);
8289 return NULL;
8290 }
8291
8292 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8293 {
8294 struct drm_i915_private *dev_priv = dev->dev_private;
8295 u16 rgvswctl;
8296
8297 rgvswctl = I915_READ16(MEMSWCTL);
8298 if (rgvswctl & MEMCTL_CMD_STS) {
8299 DRM_DEBUG("gpu busy, RCS change rejected\n");
8300 return false; /* still busy with another command */
8301 }
8302
8303 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8304 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8305 I915_WRITE16(MEMSWCTL, rgvswctl);
8306 POSTING_READ16(MEMSWCTL);
8307
8308 rgvswctl |= MEMCTL_CMD_STS;
8309 I915_WRITE16(MEMSWCTL, rgvswctl);
8310
8311 return true;
8312 }
8313
8314 void ironlake_enable_drps(struct drm_device *dev)
8315 {
8316 struct drm_i915_private *dev_priv = dev->dev_private;
8317 u32 rgvmodectl = I915_READ(MEMMODECTL);
8318 u8 fmax, fmin, fstart, vstart;
8319
8320 /* Enable temp reporting */
8321 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8322 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8323
8324 /* 100ms RC evaluation intervals */
8325 I915_WRITE(RCUPEI, 100000);
8326 I915_WRITE(RCDNEI, 100000);
8327
8328 /* Set max/min thresholds to 90ms and 80ms respectively */
8329 I915_WRITE(RCBMAXAVG, 90000);
8330 I915_WRITE(RCBMINAVG, 80000);
8331
8332 I915_WRITE(MEMIHYST, 1);
8333
8334 /* Set up min, max, and cur for interrupt handling */
8335 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8336 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8337 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8338 MEMMODE_FSTART_SHIFT;
8339
8340 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8341 PXVFREQ_PX_SHIFT;
8342
8343 dev_priv->fmax = fmax; /* IPS callback will increase this */
8344 dev_priv->fstart = fstart;
8345
8346 dev_priv->max_delay = fstart;
8347 dev_priv->min_delay = fmin;
8348 dev_priv->cur_delay = fstart;
8349
8350 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8351 fmax, fmin, fstart);
8352
8353 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8354
8355 /*
8356 * Interrupts will be enabled in ironlake_irq_postinstall
8357 */
8358
8359 I915_WRITE(VIDSTART, vstart);
8360 POSTING_READ(VIDSTART);
8361
8362 rgvmodectl |= MEMMODE_SWMODE_EN;
8363 I915_WRITE(MEMMODECTL, rgvmodectl);
8364
8365 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8366 DRM_ERROR("stuck trying to change perf mode\n");
8367 msleep(1);
8368
8369 ironlake_set_drps(dev, fstart);
8370
8371 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8372 I915_READ(0x112e0);
8373 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8374 dev_priv->last_count2 = I915_READ(0x112f4);
8375 getrawmonotonic(&dev_priv->last_time2);
8376 }
8377
8378 void ironlake_disable_drps(struct drm_device *dev)
8379 {
8380 struct drm_i915_private *dev_priv = dev->dev_private;
8381 u16 rgvswctl = I915_READ16(MEMSWCTL);
8382
8383 /* Ack interrupts, disable EFC interrupt */
8384 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8385 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8386 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8387 I915_WRITE(DEIIR, DE_PCU_EVENT);
8388 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8389
8390 /* Go back to the starting frequency */
8391 ironlake_set_drps(dev, dev_priv->fstart);
8392 msleep(1);
8393 rgvswctl |= MEMCTL_CMD_STS;
8394 I915_WRITE(MEMSWCTL, rgvswctl);
8395 msleep(1);
8396
8397 }
8398
8399 void gen6_set_rps(struct drm_device *dev, u8 val)
8400 {
8401 struct drm_i915_private *dev_priv = dev->dev_private;
8402 u32 swreq;
8403
8404 swreq = (val & 0x3ff) << 25;
8405 I915_WRITE(GEN6_RPNSWREQ, swreq);
8406 }
8407
8408 void gen6_disable_rps(struct drm_device *dev)
8409 {
8410 struct drm_i915_private *dev_priv = dev->dev_private;
8411
8412 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8413 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8414 I915_WRITE(GEN6_PMIER, 0);
8415 /* Complete PM interrupt masking here doesn't race with the rps work
8416 * item again unmasking PM interrupts because that is using a different
8417 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8418 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8419
8420 spin_lock_irq(&dev_priv->rps_lock);
8421 dev_priv->pm_iir = 0;
8422 spin_unlock_irq(&dev_priv->rps_lock);
8423
8424 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8425 }
8426
8427 static unsigned long intel_pxfreq(u32 vidfreq)
8428 {
8429 unsigned long freq;
8430 int div = (vidfreq & 0x3f0000) >> 16;
8431 int post = (vidfreq & 0x3000) >> 12;
8432 int pre = (vidfreq & 0x7);
8433
8434 if (!pre)
8435 return 0;
8436
8437 freq = ((div * 133333) / ((1<<post) * pre));
8438
8439 return freq;
8440 }
8441
8442 void intel_init_emon(struct drm_device *dev)
8443 {
8444 struct drm_i915_private *dev_priv = dev->dev_private;
8445 u32 lcfuse;
8446 u8 pxw[16];
8447 int i;
8448
8449 /* Disable to program */
8450 I915_WRITE(ECR, 0);
8451 POSTING_READ(ECR);
8452
8453 /* Program energy weights for various events */
8454 I915_WRITE(SDEW, 0x15040d00);
8455 I915_WRITE(CSIEW0, 0x007f0000);
8456 I915_WRITE(CSIEW1, 0x1e220004);
8457 I915_WRITE(CSIEW2, 0x04000004);
8458
8459 for (i = 0; i < 5; i++)
8460 I915_WRITE(PEW + (i * 4), 0);
8461 for (i = 0; i < 3; i++)
8462 I915_WRITE(DEW + (i * 4), 0);
8463
8464 /* Program P-state weights to account for frequency power adjustment */
8465 for (i = 0; i < 16; i++) {
8466 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8467 unsigned long freq = intel_pxfreq(pxvidfreq);
8468 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8469 PXVFREQ_PX_SHIFT;
8470 unsigned long val;
8471
8472 val = vid * vid;
8473 val *= (freq / 1000);
8474 val *= 255;
8475 val /= (127*127*900);
8476 if (val > 0xff)
8477 DRM_ERROR("bad pxval: %ld\n", val);
8478 pxw[i] = val;
8479 }
8480 /* Render standby states get 0 weight */
8481 pxw[14] = 0;
8482 pxw[15] = 0;
8483
8484 for (i = 0; i < 4; i++) {
8485 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8486 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8487 I915_WRITE(PXW + (i * 4), val);
8488 }
8489
8490 /* Adjust magic regs to magic values (more experimental results) */
8491 I915_WRITE(OGW0, 0);
8492 I915_WRITE(OGW1, 0);
8493 I915_WRITE(EG0, 0x00007f00);
8494 I915_WRITE(EG1, 0x0000000e);
8495 I915_WRITE(EG2, 0x000e0000);
8496 I915_WRITE(EG3, 0x68000300);
8497 I915_WRITE(EG4, 0x42000000);
8498 I915_WRITE(EG5, 0x00140031);
8499 I915_WRITE(EG6, 0);
8500 I915_WRITE(EG7, 0);
8501
8502 for (i = 0; i < 8; i++)
8503 I915_WRITE(PXWL + (i * 4), 0);
8504
8505 /* Enable PMON + select events */
8506 I915_WRITE(ECR, 0x80000019);
8507
8508 lcfuse = I915_READ(LCFUSE02);
8509
8510 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8511 }
8512
8513 static bool intel_enable_rc6(struct drm_device *dev)
8514 {
8515 /*
8516 * Respect the kernel parameter if it is set
8517 */
8518 if (i915_enable_rc6 >= 0)
8519 return i915_enable_rc6;
8520
8521 /*
8522 * Disable RC6 on Ironlake
8523 */
8524 if (INTEL_INFO(dev)->gen == 5)
8525 return 0;
8526
8527 /*
8528 * Disable rc6 on Sandybridge
8529 */
8530 if (INTEL_INFO(dev)->gen == 6) {
8531 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8532 return 0;
8533 }
8534 DRM_DEBUG_DRIVER("RC6 enabled\n");
8535 return 1;
8536 }
8537
8538 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8539 {
8540 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8541 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8542 u32 pcu_mbox, rc6_mask = 0;
8543 u32 gtfifodbg;
8544 int cur_freq, min_freq, max_freq;
8545 int i;
8546
8547 /* Here begins a magic sequence of register writes to enable
8548 * auto-downclocking.
8549 *
8550 * Perhaps there might be some value in exposing these to
8551 * userspace...
8552 */
8553 I915_WRITE(GEN6_RC_STATE, 0);
8554 mutex_lock(&dev_priv->dev->struct_mutex);
8555
8556 /* Clear the DBG now so we don't confuse earlier errors */
8557 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8558 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8559 I915_WRITE(GTFIFODBG, gtfifodbg);
8560 }
8561
8562 gen6_gt_force_wake_get(dev_priv);
8563
8564 /* disable the counters and set deterministic thresholds */
8565 I915_WRITE(GEN6_RC_CONTROL, 0);
8566
8567 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8568 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8569 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8570 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8571 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8572
8573 for (i = 0; i < I915_NUM_RINGS; i++)
8574 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8575
8576 I915_WRITE(GEN6_RC_SLEEP, 0);
8577 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8578 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8579 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8580 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8581
8582 if (intel_enable_rc6(dev_priv->dev))
8583 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
8584 GEN6_RC_CTL_RC6_ENABLE;
8585
8586 I915_WRITE(GEN6_RC_CONTROL,
8587 rc6_mask |
8588 GEN6_RC_CTL_EI_MODE(1) |
8589 GEN6_RC_CTL_HW_ENABLE);
8590
8591 I915_WRITE(GEN6_RPNSWREQ,
8592 GEN6_FREQUENCY(10) |
8593 GEN6_OFFSET(0) |
8594 GEN6_AGGRESSIVE_TURBO);
8595 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8596 GEN6_FREQUENCY(12));
8597
8598 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8599 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8600 18 << 24 |
8601 6 << 16);
8602 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8603 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8604 I915_WRITE(GEN6_RP_UP_EI, 100000);
8605 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8606 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8607 I915_WRITE(GEN6_RP_CONTROL,
8608 GEN6_RP_MEDIA_TURBO |
8609 GEN6_RP_MEDIA_HW_MODE |
8610 GEN6_RP_MEDIA_IS_GFX |
8611 GEN6_RP_ENABLE |
8612 GEN6_RP_UP_BUSY_AVG |
8613 GEN6_RP_DOWN_IDLE_CONT);
8614
8615 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8616 500))
8617 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8618
8619 I915_WRITE(GEN6_PCODE_DATA, 0);
8620 I915_WRITE(GEN6_PCODE_MAILBOX,
8621 GEN6_PCODE_READY |
8622 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8623 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8624 500))
8625 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8626
8627 min_freq = (rp_state_cap & 0xff0000) >> 16;
8628 max_freq = rp_state_cap & 0xff;
8629 cur_freq = (gt_perf_status & 0xff00) >> 8;
8630
8631 /* Check for overclock support */
8632 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8633 500))
8634 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8635 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8636 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8637 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8638 500))
8639 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8640 if (pcu_mbox & (1<<31)) { /* OC supported */
8641 max_freq = pcu_mbox & 0xff;
8642 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8643 }
8644
8645 /* In units of 100MHz */
8646 dev_priv->max_delay = max_freq;
8647 dev_priv->min_delay = min_freq;
8648 dev_priv->cur_delay = cur_freq;
8649
8650 /* requires MSI enabled */
8651 I915_WRITE(GEN6_PMIER,
8652 GEN6_PM_MBOX_EVENT |
8653 GEN6_PM_THERMAL_EVENT |
8654 GEN6_PM_RP_DOWN_TIMEOUT |
8655 GEN6_PM_RP_UP_THRESHOLD |
8656 GEN6_PM_RP_DOWN_THRESHOLD |
8657 GEN6_PM_RP_UP_EI_EXPIRED |
8658 GEN6_PM_RP_DOWN_EI_EXPIRED);
8659 spin_lock_irq(&dev_priv->rps_lock);
8660 WARN_ON(dev_priv->pm_iir != 0);
8661 I915_WRITE(GEN6_PMIMR, 0);
8662 spin_unlock_irq(&dev_priv->rps_lock);
8663 /* enable all PM interrupts */
8664 I915_WRITE(GEN6_PMINTRMSK, 0);
8665
8666 gen6_gt_force_wake_put(dev_priv);
8667 mutex_unlock(&dev_priv->dev->struct_mutex);
8668 }
8669
8670 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8671 {
8672 int min_freq = 15;
8673 int gpu_freq, ia_freq, max_ia_freq;
8674 int scaling_factor = 180;
8675
8676 max_ia_freq = cpufreq_quick_get_max(0);
8677 /*
8678 * Default to measured freq if none found, PCU will ensure we don't go
8679 * over
8680 */
8681 if (!max_ia_freq)
8682 max_ia_freq = tsc_khz;
8683
8684 /* Convert from kHz to MHz */
8685 max_ia_freq /= 1000;
8686
8687 mutex_lock(&dev_priv->dev->struct_mutex);
8688
8689 /*
8690 * For each potential GPU frequency, load a ring frequency we'd like
8691 * to use for memory access. We do this by specifying the IA frequency
8692 * the PCU should use as a reference to determine the ring frequency.
8693 */
8694 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8695 gpu_freq--) {
8696 int diff = dev_priv->max_delay - gpu_freq;
8697
8698 /*
8699 * For GPU frequencies less than 750MHz, just use the lowest
8700 * ring freq.
8701 */
8702 if (gpu_freq < min_freq)
8703 ia_freq = 800;
8704 else
8705 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8706 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8707
8708 I915_WRITE(GEN6_PCODE_DATA,
8709 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8710 gpu_freq);
8711 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8712 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8713 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8714 GEN6_PCODE_READY) == 0, 10)) {
8715 DRM_ERROR("pcode write of freq table timed out\n");
8716 continue;
8717 }
8718 }
8719
8720 mutex_unlock(&dev_priv->dev->struct_mutex);
8721 }
8722
8723 static void ironlake_init_clock_gating(struct drm_device *dev)
8724 {
8725 struct drm_i915_private *dev_priv = dev->dev_private;
8726 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8727
8728 /* Required for FBC */
8729 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8730 DPFCRUNIT_CLOCK_GATE_DISABLE |
8731 DPFDUNIT_CLOCK_GATE_DISABLE;
8732 /* Required for CxSR */
8733 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8734
8735 I915_WRITE(PCH_3DCGDIS0,
8736 MARIUNIT_CLOCK_GATE_DISABLE |
8737 SVSMUNIT_CLOCK_GATE_DISABLE);
8738 I915_WRITE(PCH_3DCGDIS1,
8739 VFMUNIT_CLOCK_GATE_DISABLE);
8740
8741 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8742
8743 /*
8744 * According to the spec the following bits should be set in
8745 * order to enable memory self-refresh
8746 * The bit 22/21 of 0x42004
8747 * The bit 5 of 0x42020
8748 * The bit 15 of 0x45000
8749 */
8750 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8751 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8752 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8753 I915_WRITE(ILK_DSPCLK_GATE,
8754 (I915_READ(ILK_DSPCLK_GATE) |
8755 ILK_DPARB_CLK_GATE));
8756 I915_WRITE(DISP_ARB_CTL,
8757 (I915_READ(DISP_ARB_CTL) |
8758 DISP_FBC_WM_DIS));
8759 I915_WRITE(WM3_LP_ILK, 0);
8760 I915_WRITE(WM2_LP_ILK, 0);
8761 I915_WRITE(WM1_LP_ILK, 0);
8762
8763 /*
8764 * Based on the document from hardware guys the following bits
8765 * should be set unconditionally in order to enable FBC.
8766 * The bit 22 of 0x42000
8767 * The bit 22 of 0x42004
8768 * The bit 7,8,9 of 0x42020.
8769 */
8770 if (IS_IRONLAKE_M(dev)) {
8771 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8772 I915_READ(ILK_DISPLAY_CHICKEN1) |
8773 ILK_FBCQ_DIS);
8774 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8775 I915_READ(ILK_DISPLAY_CHICKEN2) |
8776 ILK_DPARB_GATE);
8777 I915_WRITE(ILK_DSPCLK_GATE,
8778 I915_READ(ILK_DSPCLK_GATE) |
8779 ILK_DPFC_DIS1 |
8780 ILK_DPFC_DIS2 |
8781 ILK_CLK_FBC);
8782 }
8783
8784 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8785 I915_READ(ILK_DISPLAY_CHICKEN2) |
8786 ILK_ELPIN_409_SELECT);
8787 I915_WRITE(_3D_CHICKEN2,
8788 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8789 _3D_CHICKEN2_WM_READ_PIPELINED);
8790 }
8791
8792 static void gen6_init_clock_gating(struct drm_device *dev)
8793 {
8794 struct drm_i915_private *dev_priv = dev->dev_private;
8795 int pipe;
8796 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8797
8798 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8799
8800 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8801 I915_READ(ILK_DISPLAY_CHICKEN2) |
8802 ILK_ELPIN_409_SELECT);
8803
8804 I915_WRITE(WM3_LP_ILK, 0);
8805 I915_WRITE(WM2_LP_ILK, 0);
8806 I915_WRITE(WM1_LP_ILK, 0);
8807
8808 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8809 * gating disable must be set. Failure to set it results in
8810 * flickering pixels due to Z write ordering failures after
8811 * some amount of runtime in the Mesa "fire" demo, and Unigine
8812 * Sanctuary and Tropics, and apparently anything else with
8813 * alpha test or pixel discard.
8814 *
8815 * According to the spec, bit 11 (RCCUNIT) must also be set,
8816 * but we didn't debug actual testcases to find it out.
8817 */
8818 I915_WRITE(GEN6_UCGCTL2,
8819 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8820 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8821
8822 /*
8823 * According to the spec the following bits should be
8824 * set in order to enable memory self-refresh and fbc:
8825 * The bit21 and bit22 of 0x42000
8826 * The bit21 and bit22 of 0x42004
8827 * The bit5 and bit7 of 0x42020
8828 * The bit14 of 0x70180
8829 * The bit14 of 0x71180
8830 */
8831 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8832 I915_READ(ILK_DISPLAY_CHICKEN1) |
8833 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8834 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8835 I915_READ(ILK_DISPLAY_CHICKEN2) |
8836 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8837 I915_WRITE(ILK_DSPCLK_GATE,
8838 I915_READ(ILK_DSPCLK_GATE) |
8839 ILK_DPARB_CLK_GATE |
8840 ILK_DPFD_CLK_GATE);
8841
8842 for_each_pipe(pipe) {
8843 I915_WRITE(DSPCNTR(pipe),
8844 I915_READ(DSPCNTR(pipe)) |
8845 DISPPLANE_TRICKLE_FEED_DISABLE);
8846 intel_flush_display_plane(dev_priv, pipe);
8847 }
8848 }
8849
8850 static void ivybridge_init_clock_gating(struct drm_device *dev)
8851 {
8852 struct drm_i915_private *dev_priv = dev->dev_private;
8853 int pipe;
8854 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8855
8856 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8857
8858 I915_WRITE(WM3_LP_ILK, 0);
8859 I915_WRITE(WM2_LP_ILK, 0);
8860 I915_WRITE(WM1_LP_ILK, 0);
8861
8862 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8863
8864 I915_WRITE(IVB_CHICKEN3,
8865 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8866 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8867
8868 for_each_pipe(pipe) {
8869 I915_WRITE(DSPCNTR(pipe),
8870 I915_READ(DSPCNTR(pipe)) |
8871 DISPPLANE_TRICKLE_FEED_DISABLE);
8872 intel_flush_display_plane(dev_priv, pipe);
8873 }
8874 }
8875
8876 static void valleyview_init_clock_gating(struct drm_device *dev)
8877 {
8878 struct drm_i915_private *dev_priv = dev->dev_private;
8879 int pipe;
8880 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8881
8882 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8883
8884 I915_WRITE(WM3_LP_ILK, 0);
8885 I915_WRITE(WM2_LP_ILK, 0);
8886 I915_WRITE(WM1_LP_ILK, 0);
8887
8888 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8889 * This implements the WaDisableRCZUnitClockGating workaround.
8890 */
8891 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8892
8893 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8894
8895 I915_WRITE(IVB_CHICKEN3,
8896 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8897 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8898
8899 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8900 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8901 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8902
8903 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8904 I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
8905 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
8906
8907 /* This is required by WaCatErrorRejectionIssue */
8908 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8909 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8910 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8911
8912 for_each_pipe(pipe) {
8913 I915_WRITE(DSPCNTR(pipe),
8914 I915_READ(DSPCNTR(pipe)) |
8915 DISPPLANE_TRICKLE_FEED_DISABLE);
8916 intel_flush_display_plane(dev_priv, pipe);
8917 }
8918
8919 I915_WRITE(CACHE_MODE_1, I915_READ(CACHE_MODE_1) |
8920 (PIXEL_SUBSPAN_COLLECT_OPT_DISABLE << 16) |
8921 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
8922 }
8923
8924 static void g4x_init_clock_gating(struct drm_device *dev)
8925 {
8926 struct drm_i915_private *dev_priv = dev->dev_private;
8927 uint32_t dspclk_gate;
8928
8929 I915_WRITE(RENCLK_GATE_D1, 0);
8930 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8931 GS_UNIT_CLOCK_GATE_DISABLE |
8932 CL_UNIT_CLOCK_GATE_DISABLE);
8933 I915_WRITE(RAMCLK_GATE_D, 0);
8934 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8935 OVRUNIT_CLOCK_GATE_DISABLE |
8936 OVCUNIT_CLOCK_GATE_DISABLE;
8937 if (IS_GM45(dev))
8938 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8939 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8940 }
8941
8942 static void crestline_init_clock_gating(struct drm_device *dev)
8943 {
8944 struct drm_i915_private *dev_priv = dev->dev_private;
8945
8946 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8947 I915_WRITE(RENCLK_GATE_D2, 0);
8948 I915_WRITE(DSPCLK_GATE_D, 0);
8949 I915_WRITE(RAMCLK_GATE_D, 0);
8950 I915_WRITE16(DEUC, 0);
8951 }
8952
8953 static void broadwater_init_clock_gating(struct drm_device *dev)
8954 {
8955 struct drm_i915_private *dev_priv = dev->dev_private;
8956
8957 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8958 I965_RCC_CLOCK_GATE_DISABLE |
8959 I965_RCPB_CLOCK_GATE_DISABLE |
8960 I965_ISC_CLOCK_GATE_DISABLE |
8961 I965_FBC_CLOCK_GATE_DISABLE);
8962 I915_WRITE(RENCLK_GATE_D2, 0);
8963 }
8964
8965 static void gen3_init_clock_gating(struct drm_device *dev)
8966 {
8967 struct drm_i915_private *dev_priv = dev->dev_private;
8968 u32 dstate = I915_READ(D_STATE);
8969
8970 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8971 DSTATE_DOT_CLOCK_GATING;
8972 I915_WRITE(D_STATE, dstate);
8973 }
8974
8975 static void i85x_init_clock_gating(struct drm_device *dev)
8976 {
8977 struct drm_i915_private *dev_priv = dev->dev_private;
8978
8979 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8980 }
8981
8982 static void i830_init_clock_gating(struct drm_device *dev)
8983 {
8984 struct drm_i915_private *dev_priv = dev->dev_private;
8985
8986 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8987 }
8988
8989 static void ibx_init_clock_gating(struct drm_device *dev)
8990 {
8991 struct drm_i915_private *dev_priv = dev->dev_private;
8992
8993 /*
8994 * On Ibex Peak and Cougar Point, we need to disable clock
8995 * gating for the panel power sequencer or it will fail to
8996 * start up when no ports are active.
8997 */
8998 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8999 }
9000
9001 static void cpt_init_clock_gating(struct drm_device *dev)
9002 {
9003 struct drm_i915_private *dev_priv = dev->dev_private;
9004 int pipe;
9005
9006 /*
9007 * On Ibex Peak and Cougar Point, we need to disable clock
9008 * gating for the panel power sequencer or it will fail to
9009 * start up when no ports are active.
9010 */
9011 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
9012 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
9013 DPLS_EDP_PPS_FIX_DIS);
9014 /* Without this, mode sets may fail silently on FDI */
9015 for_each_pipe(pipe)
9016 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
9017 }
9018
9019 static void ironlake_teardown_rc6(struct drm_device *dev)
9020 {
9021 struct drm_i915_private *dev_priv = dev->dev_private;
9022
9023 if (dev_priv->renderctx) {
9024 i915_gem_object_unpin(dev_priv->renderctx);
9025 drm_gem_object_unreference(&dev_priv->renderctx->base);
9026 dev_priv->renderctx = NULL;
9027 }
9028
9029 if (dev_priv->pwrctx) {
9030 i915_gem_object_unpin(dev_priv->pwrctx);
9031 drm_gem_object_unreference(&dev_priv->pwrctx->base);
9032 dev_priv->pwrctx = NULL;
9033 }
9034 }
9035
9036 static void ironlake_disable_rc6(struct drm_device *dev)
9037 {
9038 struct drm_i915_private *dev_priv = dev->dev_private;
9039
9040 if (I915_READ(PWRCTXA)) {
9041 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
9042 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
9043 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
9044 50);
9045
9046 I915_WRITE(PWRCTXA, 0);
9047 POSTING_READ(PWRCTXA);
9048
9049 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
9050 POSTING_READ(RSTDBYCTL);
9051 }
9052
9053 ironlake_teardown_rc6(dev);
9054 }
9055
9056 static int ironlake_setup_rc6(struct drm_device *dev)
9057 {
9058 struct drm_i915_private *dev_priv = dev->dev_private;
9059
9060 if (dev_priv->renderctx == NULL)
9061 dev_priv->renderctx = intel_alloc_context_page(dev);
9062 if (!dev_priv->renderctx)
9063 return -ENOMEM;
9064
9065 if (dev_priv->pwrctx == NULL)
9066 dev_priv->pwrctx = intel_alloc_context_page(dev);
9067 if (!dev_priv->pwrctx) {
9068 ironlake_teardown_rc6(dev);
9069 return -ENOMEM;
9070 }
9071
9072 return 0;
9073 }
9074
9075 void ironlake_enable_rc6(struct drm_device *dev)
9076 {
9077 struct drm_i915_private *dev_priv = dev->dev_private;
9078 int ret;
9079
9080 /* rc6 disabled by default due to repeated reports of hanging during
9081 * boot and resume.
9082 */
9083 if (!intel_enable_rc6(dev))
9084 return;
9085
9086 mutex_lock(&dev->struct_mutex);
9087 ret = ironlake_setup_rc6(dev);
9088 if (ret) {
9089 mutex_unlock(&dev->struct_mutex);
9090 return;
9091 }
9092
9093 /*
9094 * GPU can automatically power down the render unit if given a page
9095 * to save state.
9096 */
9097 ret = BEGIN_LP_RING(6);
9098 if (ret) {
9099 ironlake_teardown_rc6(dev);
9100 mutex_unlock(&dev->struct_mutex);
9101 return;
9102 }
9103
9104 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
9105 OUT_RING(MI_SET_CONTEXT);
9106 OUT_RING(dev_priv->renderctx->gtt_offset |
9107 MI_MM_SPACE_GTT |
9108 MI_SAVE_EXT_STATE_EN |
9109 MI_RESTORE_EXT_STATE_EN |
9110 MI_RESTORE_INHIBIT);
9111 OUT_RING(MI_SUSPEND_FLUSH);
9112 OUT_RING(MI_NOOP);
9113 OUT_RING(MI_FLUSH);
9114 ADVANCE_LP_RING();
9115
9116 /*
9117 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
9118 * does an implicit flush, combined with MI_FLUSH above, it should be
9119 * safe to assume that renderctx is valid
9120 */
9121 ret = intel_wait_ring_idle(LP_RING(dev_priv));
9122 if (ret) {
9123 DRM_ERROR("failed to enable ironlake power power savings\n");
9124 ironlake_teardown_rc6(dev);
9125 mutex_unlock(&dev->struct_mutex);
9126 return;
9127 }
9128
9129 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
9130 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
9131 mutex_unlock(&dev->struct_mutex);
9132 }
9133
9134 void intel_init_clock_gating(struct drm_device *dev)
9135 {
9136 struct drm_i915_private *dev_priv = dev->dev_private;
9137
9138 dev_priv->display.init_clock_gating(dev);
9139
9140 if (dev_priv->display.init_pch_clock_gating)
9141 dev_priv->display.init_pch_clock_gating(dev);
9142 }
9143
9144 /* Set up chip specific display functions */
9145 static void intel_init_display(struct drm_device *dev)
9146 {
9147 struct drm_i915_private *dev_priv = dev->dev_private;
9148
9149 /* We always want a DPMS function */
9150 if (HAS_PCH_SPLIT(dev)) {
9151 dev_priv->display.dpms = ironlake_crtc_dpms;
9152 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9153 dev_priv->display.update_plane = ironlake_update_plane;
9154 } else {
9155 dev_priv->display.dpms = i9xx_crtc_dpms;
9156 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9157 dev_priv->display.update_plane = i9xx_update_plane;
9158 }
9159
9160 if (I915_HAS_FBC(dev)) {
9161 if (HAS_PCH_SPLIT(dev)) {
9162 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
9163 dev_priv->display.enable_fbc = ironlake_enable_fbc;
9164 dev_priv->display.disable_fbc = ironlake_disable_fbc;
9165 } else if (IS_GM45(dev)) {
9166 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
9167 dev_priv->display.enable_fbc = g4x_enable_fbc;
9168 dev_priv->display.disable_fbc = g4x_disable_fbc;
9169 } else if (IS_CRESTLINE(dev)) {
9170 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
9171 dev_priv->display.enable_fbc = i8xx_enable_fbc;
9172 dev_priv->display.disable_fbc = i8xx_disable_fbc;
9173 }
9174 /* 855GM needs testing */
9175 }
9176
9177 /* Returns the core display clock speed */
9178 if (IS_VALLEYVIEW(dev))
9179 dev_priv->display.get_display_clock_speed =
9180 valleyview_get_display_clock_speed;
9181 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9182 dev_priv->display.get_display_clock_speed =
9183 i945_get_display_clock_speed;
9184 else if (IS_I915G(dev))
9185 dev_priv->display.get_display_clock_speed =
9186 i915_get_display_clock_speed;
9187 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9188 dev_priv->display.get_display_clock_speed =
9189 i9xx_misc_get_display_clock_speed;
9190 else if (IS_I915GM(dev))
9191 dev_priv->display.get_display_clock_speed =
9192 i915gm_get_display_clock_speed;
9193 else if (IS_I865G(dev))
9194 dev_priv->display.get_display_clock_speed =
9195 i865_get_display_clock_speed;
9196 else if (IS_I85X(dev))
9197 dev_priv->display.get_display_clock_speed =
9198 i855_get_display_clock_speed;
9199 else /* 852, 830 */
9200 dev_priv->display.get_display_clock_speed =
9201 i830_get_display_clock_speed;
9202
9203 /* For FIFO watermark updates */
9204 if (HAS_PCH_SPLIT(dev)) {
9205 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
9206 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
9207
9208 /* IVB configs may use multi-threaded forcewake */
9209 if (IS_IVYBRIDGE(dev)) {
9210 u32 ecobus;
9211
9212 /* A small trick here - if the bios hasn't configured MT forcewake,
9213 * and if the device is in RC6, then force_wake_mt_get will not wake
9214 * the device and the ECOBUS read will return zero. Which will be
9215 * (correctly) interpreted by the test below as MT forcewake being
9216 * disabled.
9217 */
9218 mutex_lock(&dev->struct_mutex);
9219 __gen6_gt_force_wake_mt_get(dev_priv);
9220 ecobus = I915_READ_NOTRACE(ECOBUS);
9221 __gen6_gt_force_wake_mt_put(dev_priv);
9222 mutex_unlock(&dev->struct_mutex);
9223
9224 if (ecobus & FORCEWAKE_MT_ENABLE) {
9225 DRM_DEBUG_KMS("Using MT version of forcewake\n");
9226 dev_priv->display.force_wake_get =
9227 __gen6_gt_force_wake_mt_get;
9228 dev_priv->display.force_wake_put =
9229 __gen6_gt_force_wake_mt_put;
9230 }
9231 }
9232
9233 if (HAS_PCH_IBX(dev))
9234 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
9235 else if (HAS_PCH_CPT(dev))
9236 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
9237
9238 if (IS_GEN5(dev)) {
9239 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
9240 dev_priv->display.update_wm = ironlake_update_wm;
9241 else {
9242 DRM_DEBUG_KMS("Failed to get proper latency. "
9243 "Disable CxSR\n");
9244 dev_priv->display.update_wm = NULL;
9245 }
9246 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9247 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
9248 dev_priv->display.write_eld = ironlake_write_eld;
9249 } else if (IS_GEN6(dev)) {
9250 if (SNB_READ_WM0_LATENCY()) {
9251 dev_priv->display.update_wm = sandybridge_update_wm;
9252 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9253 } else {
9254 DRM_DEBUG_KMS("Failed to read display plane latency. "
9255 "Disable CxSR\n");
9256 dev_priv->display.update_wm = NULL;
9257 }
9258 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9259 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9260 dev_priv->display.write_eld = ironlake_write_eld;
9261 } else if (IS_IVYBRIDGE(dev)) {
9262 /* FIXME: detect B0+ stepping and use auto training */
9263 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9264 if (SNB_READ_WM0_LATENCY()) {
9265 dev_priv->display.update_wm = sandybridge_update_wm;
9266 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9267 } else {
9268 DRM_DEBUG_KMS("Failed to read display plane latency. "
9269 "Disable CxSR\n");
9270 dev_priv->display.update_wm = NULL;
9271 }
9272 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9273 dev_priv->display.write_eld = ironlake_write_eld;
9274 } else
9275 dev_priv->display.update_wm = NULL;
9276 } else if (IS_VALLEYVIEW(dev)) {
9277 dev_priv->display.update_wm = valleyview_update_wm;
9278 dev_priv->display.init_clock_gating =
9279 valleyview_init_clock_gating;
9280 dev_priv->display.force_wake_get = vlv_force_wake_get;
9281 dev_priv->display.force_wake_put = vlv_force_wake_put;
9282 } else if (IS_PINEVIEW(dev)) {
9283 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9284 dev_priv->is_ddr3,
9285 dev_priv->fsb_freq,
9286 dev_priv->mem_freq)) {
9287 DRM_INFO("failed to find known CxSR latency "
9288 "(found ddr%s fsb freq %d, mem freq %d), "
9289 "disabling CxSR\n",
9290 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9291 dev_priv->fsb_freq, dev_priv->mem_freq);
9292 /* Disable CxSR and never update its watermark again */
9293 pineview_disable_cxsr(dev);
9294 dev_priv->display.update_wm = NULL;
9295 } else
9296 dev_priv->display.update_wm = pineview_update_wm;
9297 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9298 } else if (IS_G4X(dev)) {
9299 dev_priv->display.write_eld = g4x_write_eld;
9300 dev_priv->display.update_wm = g4x_update_wm;
9301 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9302 } else if (IS_GEN4(dev)) {
9303 dev_priv->display.update_wm = i965_update_wm;
9304 if (IS_CRESTLINE(dev))
9305 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9306 else if (IS_BROADWATER(dev))
9307 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9308 } else if (IS_GEN3(dev)) {
9309 dev_priv->display.update_wm = i9xx_update_wm;
9310 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9311 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9312 } else if (IS_I865G(dev)) {
9313 dev_priv->display.update_wm = i830_update_wm;
9314 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9315 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9316 } else if (IS_I85X(dev)) {
9317 dev_priv->display.update_wm = i9xx_update_wm;
9318 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9319 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9320 } else {
9321 dev_priv->display.update_wm = i830_update_wm;
9322 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9323 if (IS_845G(dev))
9324 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9325 else
9326 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9327 }
9328
9329 /* Default just returns -ENODEV to indicate unsupported */
9330 dev_priv->display.queue_flip = intel_default_queue_flip;
9331
9332 switch (INTEL_INFO(dev)->gen) {
9333 case 2:
9334 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9335 break;
9336
9337 case 3:
9338 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9339 break;
9340
9341 case 4:
9342 case 5:
9343 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9344 break;
9345
9346 case 6:
9347 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9348 break;
9349 case 7:
9350 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9351 break;
9352 }
9353 }
9354
9355 /*
9356 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9357 * resume, or other times. This quirk makes sure that's the case for
9358 * affected systems.
9359 */
9360 static void quirk_pipea_force(struct drm_device *dev)
9361 {
9362 struct drm_i915_private *dev_priv = dev->dev_private;
9363
9364 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9365 DRM_INFO("applying pipe a force quirk\n");
9366 }
9367
9368 /*
9369 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9370 */
9371 static void quirk_ssc_force_disable(struct drm_device *dev)
9372 {
9373 struct drm_i915_private *dev_priv = dev->dev_private;
9374 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9375 DRM_INFO("applying lvds SSC disable quirk\n");
9376 }
9377
9378 /*
9379 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9380 * brightness value
9381 */
9382 static void quirk_invert_brightness(struct drm_device *dev)
9383 {
9384 struct drm_i915_private *dev_priv = dev->dev_private;
9385 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9386 DRM_INFO("applying inverted panel brightness quirk\n");
9387 }
9388
9389 struct intel_quirk {
9390 int device;
9391 int subsystem_vendor;
9392 int subsystem_device;
9393 void (*hook)(struct drm_device *dev);
9394 };
9395
9396 struct intel_quirk intel_quirks[] = {
9397 /* HP Mini needs pipe A force quirk (LP: #322104) */
9398 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9399
9400 /* Thinkpad R31 needs pipe A force quirk */
9401 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9402 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9403 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9404
9405 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9406 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
9407 /* ThinkPad X40 needs pipe A force quirk */
9408
9409 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9410 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9411
9412 /* 855 & before need to leave pipe A & dpll A up */
9413 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9414 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9415
9416 /* Lenovo U160 cannot use SSC on LVDS */
9417 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9418
9419 /* Sony Vaio Y cannot use SSC on LVDS */
9420 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9421
9422 /* Acer Aspire 5734Z must invert backlight brightness */
9423 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9424 };
9425
9426 static void intel_init_quirks(struct drm_device *dev)
9427 {
9428 struct pci_dev *d = dev->pdev;
9429 int i;
9430
9431 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9432 struct intel_quirk *q = &intel_quirks[i];
9433
9434 if (d->device == q->device &&
9435 (d->subsystem_vendor == q->subsystem_vendor ||
9436 q->subsystem_vendor == PCI_ANY_ID) &&
9437 (d->subsystem_device == q->subsystem_device ||
9438 q->subsystem_device == PCI_ANY_ID))
9439 q->hook(dev);
9440 }
9441 }
9442
9443 /* Disable the VGA plane that we never use */
9444 static void i915_disable_vga(struct drm_device *dev)
9445 {
9446 struct drm_i915_private *dev_priv = dev->dev_private;
9447 u8 sr1;
9448 u32 vga_reg;
9449
9450 if (HAS_PCH_SPLIT(dev))
9451 vga_reg = CPU_VGACNTRL;
9452 else
9453 vga_reg = VGACNTRL;
9454
9455 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9456 outb(1, VGA_SR_INDEX);
9457 sr1 = inb(VGA_SR_DATA);
9458 outb(sr1 | 1<<5, VGA_SR_DATA);
9459 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9460 udelay(300);
9461
9462 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9463 POSTING_READ(vga_reg);
9464 }
9465
9466 void intel_modeset_init(struct drm_device *dev)
9467 {
9468 struct drm_i915_private *dev_priv = dev->dev_private;
9469 int i, ret;
9470
9471 drm_mode_config_init(dev);
9472
9473 dev->mode_config.min_width = 0;
9474 dev->mode_config.min_height = 0;
9475
9476 dev->mode_config.preferred_depth = 24;
9477 dev->mode_config.prefer_shadow = 1;
9478
9479 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9480
9481 intel_init_quirks(dev);
9482
9483 intel_init_display(dev);
9484
9485 if (IS_GEN2(dev)) {
9486 dev->mode_config.max_width = 2048;
9487 dev->mode_config.max_height = 2048;
9488 } else if (IS_GEN3(dev)) {
9489 dev->mode_config.max_width = 4096;
9490 dev->mode_config.max_height = 4096;
9491 } else {
9492 dev->mode_config.max_width = 8192;
9493 dev->mode_config.max_height = 8192;
9494 }
9495 dev->mode_config.fb_base = dev->agp->base;
9496
9497 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9498 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9499
9500 for (i = 0; i < dev_priv->num_pipe; i++) {
9501 intel_crtc_init(dev, i);
9502 ret = intel_plane_init(dev, i);
9503 if (ret)
9504 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9505 }
9506
9507 /* Just disable it once at startup */
9508 i915_disable_vga(dev);
9509 intel_setup_outputs(dev);
9510
9511 intel_init_clock_gating(dev);
9512
9513 if (IS_IRONLAKE_M(dev)) {
9514 ironlake_enable_drps(dev);
9515 intel_init_emon(dev);
9516 }
9517
9518 if (IS_GEN6(dev) || IS_GEN7(dev)) {
9519 gen6_enable_rps(dev_priv);
9520 gen6_update_ring_freq(dev_priv);
9521 }
9522
9523 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9524 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9525 (unsigned long)dev);
9526 }
9527
9528 void intel_modeset_gem_init(struct drm_device *dev)
9529 {
9530 if (IS_IRONLAKE_M(dev))
9531 ironlake_enable_rc6(dev);
9532
9533 intel_setup_overlay(dev);
9534 }
9535
9536 void intel_modeset_cleanup(struct drm_device *dev)
9537 {
9538 struct drm_i915_private *dev_priv = dev->dev_private;
9539 struct drm_crtc *crtc;
9540 struct intel_crtc *intel_crtc;
9541
9542 drm_kms_helper_poll_fini(dev);
9543 mutex_lock(&dev->struct_mutex);
9544
9545 intel_unregister_dsm_handler();
9546
9547
9548 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9549 /* Skip inactive CRTCs */
9550 if (!crtc->fb)
9551 continue;
9552
9553 intel_crtc = to_intel_crtc(crtc);
9554 intel_increase_pllclock(crtc);
9555 }
9556
9557 intel_disable_fbc(dev);
9558
9559 if (IS_IRONLAKE_M(dev))
9560 ironlake_disable_drps(dev);
9561 if (IS_GEN6(dev) || IS_GEN7(dev))
9562 gen6_disable_rps(dev);
9563
9564 if (IS_IRONLAKE_M(dev))
9565 ironlake_disable_rc6(dev);
9566
9567 if (IS_VALLEYVIEW(dev))
9568 vlv_init_dpio(dev);
9569
9570 mutex_unlock(&dev->struct_mutex);
9571
9572 /* Disable the irq before mode object teardown, for the irq might
9573 * enqueue unpin/hotplug work. */
9574 drm_irq_uninstall(dev);
9575 cancel_work_sync(&dev_priv->hotplug_work);
9576 cancel_work_sync(&dev_priv->rps_work);
9577
9578 /* flush any delayed tasks or pending work */
9579 flush_scheduled_work();
9580
9581 /* Shut off idle work before the crtcs get freed. */
9582 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9583 intel_crtc = to_intel_crtc(crtc);
9584 del_timer_sync(&intel_crtc->idle_timer);
9585 }
9586 del_timer_sync(&dev_priv->idle_timer);
9587 cancel_work_sync(&dev_priv->idle_work);
9588
9589 drm_mode_config_cleanup(dev);
9590 }
9591
9592 /*
9593 * Return which encoder is currently attached for connector.
9594 */
9595 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9596 {
9597 return &intel_attached_encoder(connector)->base;
9598 }
9599
9600 void intel_connector_attach_encoder(struct intel_connector *connector,
9601 struct intel_encoder *encoder)
9602 {
9603 connector->encoder = encoder;
9604 drm_mode_connector_attach_encoder(&connector->base,
9605 &encoder->base);
9606 }
9607
9608 /*
9609 * set vga decode state - true == enable VGA decode
9610 */
9611 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9612 {
9613 struct drm_i915_private *dev_priv = dev->dev_private;
9614 u16 gmch_ctrl;
9615
9616 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9617 if (state)
9618 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9619 else
9620 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9621 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9622 return 0;
9623 }
9624
9625 #ifdef CONFIG_DEBUG_FS
9626 #include <linux/seq_file.h>
9627
9628 struct intel_display_error_state {
9629 struct intel_cursor_error_state {
9630 u32 control;
9631 u32 position;
9632 u32 base;
9633 u32 size;
9634 } cursor[2];
9635
9636 struct intel_pipe_error_state {
9637 u32 conf;
9638 u32 source;
9639
9640 u32 htotal;
9641 u32 hblank;
9642 u32 hsync;
9643 u32 vtotal;
9644 u32 vblank;
9645 u32 vsync;
9646 } pipe[2];
9647
9648 struct intel_plane_error_state {
9649 u32 control;
9650 u32 stride;
9651 u32 size;
9652 u32 pos;
9653 u32 addr;
9654 u32 surface;
9655 u32 tile_offset;
9656 } plane[2];
9657 };
9658
9659 struct intel_display_error_state *
9660 intel_display_capture_error_state(struct drm_device *dev)
9661 {
9662 drm_i915_private_t *dev_priv = dev->dev_private;
9663 struct intel_display_error_state *error;
9664 int i;
9665
9666 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9667 if (error == NULL)
9668 return NULL;
9669
9670 for (i = 0; i < 2; i++) {
9671 error->cursor[i].control = I915_READ(CURCNTR(i));
9672 error->cursor[i].position = I915_READ(CURPOS(i));
9673 error->cursor[i].base = I915_READ(CURBASE(i));
9674
9675 error->plane[i].control = I915_READ(DSPCNTR(i));
9676 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9677 error->plane[i].size = I915_READ(DSPSIZE(i));
9678 error->plane[i].pos = I915_READ(DSPPOS(i));
9679 error->plane[i].addr = I915_READ(DSPADDR(i));
9680 if (INTEL_INFO(dev)->gen >= 4) {
9681 error->plane[i].surface = I915_READ(DSPSURF(i));
9682 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9683 }
9684
9685 error->pipe[i].conf = I915_READ(PIPECONF(i));
9686 error->pipe[i].source = I915_READ(PIPESRC(i));
9687 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9688 error->pipe[i].hblank = I915_READ(HBLANK(i));
9689 error->pipe[i].hsync = I915_READ(HSYNC(i));
9690 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9691 error->pipe[i].vblank = I915_READ(VBLANK(i));
9692 error->pipe[i].vsync = I915_READ(VSYNC(i));
9693 }
9694
9695 return error;
9696 }
9697
9698 void
9699 intel_display_print_error_state(struct seq_file *m,
9700 struct drm_device *dev,
9701 struct intel_display_error_state *error)
9702 {
9703 int i;
9704
9705 for (i = 0; i < 2; i++) {
9706 seq_printf(m, "Pipe [%d]:\n", i);
9707 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9708 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9709 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9710 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9711 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9712 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9713 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9714 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9715
9716 seq_printf(m, "Plane [%d]:\n", i);
9717 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9718 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9719 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9720 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9721 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9722 if (INTEL_INFO(dev)->gen >= 4) {
9723 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9724 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9725 }
9726
9727 seq_printf(m, "Cursor [%d]:\n", i);
9728 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9729 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9730 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9731 }
9732 }
9733 #endif
This page took 0.396964 seconds and 5 git commands to generate.