drm/i915: clean up plane commit functions
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_atomic_state *state);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc,
103 const struct intel_crtc_state *pipe_config);
104 static void chv_prepare_pll(struct intel_crtc *crtc,
105 const struct intel_crtc_state *pipe_config);
106 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
107 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
108 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
109 struct intel_crtc_state *crtc_state);
110 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
111 int num_connectors);
112 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
113 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
114
115 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
116 {
117 if (!connector->mst_port)
118 return connector->encoder;
119 else
120 return &connector->mst_port->mst_encoders[pipe]->base;
121 }
122
123 typedef struct {
124 int min, max;
125 } intel_range_t;
126
127 typedef struct {
128 int dot_limit;
129 int p2_slow, p2_fast;
130 } intel_p2_t;
131
132 typedef struct intel_limit intel_limit_t;
133 struct intel_limit {
134 intel_range_t dot, vco, n, m, m1, m2, p, p1;
135 intel_p2_t p2;
136 };
137
138 int
139 intel_pch_rawclk(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142
143 WARN_ON(!HAS_PCH_SPLIT(dev));
144
145 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
146 }
147
148 static inline u32 /* units of 100MHz */
149 intel_fdi_link_freq(struct drm_device *dev)
150 {
151 if (IS_GEN5(dev)) {
152 struct drm_i915_private *dev_priv = dev->dev_private;
153 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
154 } else
155 return 27;
156 }
157
158 static const intel_limit_t intel_limits_i8xx_dac = {
159 .dot = { .min = 25000, .max = 350000 },
160 .vco = { .min = 908000, .max = 1512000 },
161 .n = { .min = 2, .max = 16 },
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 2 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_dvo = {
172 .dot = { .min = 25000, .max = 350000 },
173 .vco = { .min = 908000, .max = 1512000 },
174 .n = { .min = 2, .max = 16 },
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 2, .max = 33 },
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 4, .p2_fast = 4 },
182 };
183
184 static const intel_limit_t intel_limits_i8xx_lvds = {
185 .dot = { .min = 25000, .max = 350000 },
186 .vco = { .min = 908000, .max = 1512000 },
187 .n = { .min = 2, .max = 16 },
188 .m = { .min = 96, .max = 140 },
189 .m1 = { .min = 18, .max = 26 },
190 .m2 = { .min = 6, .max = 16 },
191 .p = { .min = 4, .max = 128 },
192 .p1 = { .min = 1, .max = 6 },
193 .p2 = { .dot_limit = 165000,
194 .p2_slow = 14, .p2_fast = 7 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_sdvo = {
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8 },
206 .p2 = { .dot_limit = 200000,
207 .p2_slow = 10, .p2_fast = 5 },
208 };
209
210 static const intel_limit_t intel_limits_i9xx_lvds = {
211 .dot = { .min = 20000, .max = 400000 },
212 .vco = { .min = 1400000, .max = 2800000 },
213 .n = { .min = 1, .max = 6 },
214 .m = { .min = 70, .max = 120 },
215 .m1 = { .min = 8, .max = 18 },
216 .m2 = { .min = 3, .max = 7 },
217 .p = { .min = 7, .max = 98 },
218 .p1 = { .min = 1, .max = 8 },
219 .p2 = { .dot_limit = 112000,
220 .p2_slow = 14, .p2_fast = 7 },
221 };
222
223
224 static const intel_limit_t intel_limits_g4x_sdvo = {
225 .dot = { .min = 25000, .max = 270000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 4 },
228 .m = { .min = 104, .max = 138 },
229 .m1 = { .min = 17, .max = 23 },
230 .m2 = { .min = 5, .max = 11 },
231 .p = { .min = 10, .max = 30 },
232 .p1 = { .min = 1, .max = 3},
233 .p2 = { .dot_limit = 270000,
234 .p2_slow = 10,
235 .p2_fast = 10
236 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_hdmi = {
240 .dot = { .min = 22000, .max = 400000 },
241 .vco = { .min = 1750000, .max = 3500000},
242 .n = { .min = 1, .max = 4 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 16, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 5, .max = 80 },
247 .p1 = { .min = 1, .max = 8},
248 .p2 = { .dot_limit = 165000,
249 .p2_slow = 10, .p2_fast = 5 },
250 };
251
252 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
253 .dot = { .min = 20000, .max = 115000 },
254 .vco = { .min = 1750000, .max = 3500000 },
255 .n = { .min = 1, .max = 3 },
256 .m = { .min = 104, .max = 138 },
257 .m1 = { .min = 17, .max = 23 },
258 .m2 = { .min = 5, .max = 11 },
259 .p = { .min = 28, .max = 112 },
260 .p1 = { .min = 2, .max = 8 },
261 .p2 = { .dot_limit = 0,
262 .p2_slow = 14, .p2_fast = 14
263 },
264 };
265
266 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
267 .dot = { .min = 80000, .max = 224000 },
268 .vco = { .min = 1750000, .max = 3500000 },
269 .n = { .min = 1, .max = 3 },
270 .m = { .min = 104, .max = 138 },
271 .m1 = { .min = 17, .max = 23 },
272 .m2 = { .min = 5, .max = 11 },
273 .p = { .min = 14, .max = 42 },
274 .p1 = { .min = 2, .max = 6 },
275 .p2 = { .dot_limit = 0,
276 .p2_slow = 7, .p2_fast = 7
277 },
278 };
279
280 static const intel_limit_t intel_limits_pineview_sdvo = {
281 .dot = { .min = 20000, .max = 400000},
282 .vco = { .min = 1700000, .max = 3500000 },
283 /* Pineview's Ncounter is a ring counter */
284 .n = { .min = 3, .max = 6 },
285 .m = { .min = 2, .max = 256 },
286 /* Pineview only has one combined m divider, which we treat as m2. */
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 200000,
292 .p2_slow = 10, .p2_fast = 5 },
293 };
294
295 static const intel_limit_t intel_limits_pineview_lvds = {
296 .dot = { .min = 20000, .max = 400000 },
297 .vco = { .min = 1700000, .max = 3500000 },
298 .n = { .min = 3, .max = 6 },
299 .m = { .min = 2, .max = 256 },
300 .m1 = { .min = 0, .max = 0 },
301 .m2 = { .min = 0, .max = 254 },
302 .p = { .min = 7, .max = 112 },
303 .p1 = { .min = 1, .max = 8 },
304 .p2 = { .dot_limit = 112000,
305 .p2_slow = 14, .p2_fast = 14 },
306 };
307
308 /* Ironlake / Sandybridge
309 *
310 * We calculate clock using (register_value + 2) for N/M1/M2, so here
311 * the range value for them is (actual_value - 2).
312 */
313 static const intel_limit_t intel_limits_ironlake_dac = {
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 5 },
317 .m = { .min = 79, .max = 127 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 5, .max = 80 },
321 .p1 = { .min = 1, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 10, .p2_fast = 5 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_single_lvds = {
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 118 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 28, .max = 112 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 14, .p2_fast = 14 },
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 127 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 56 },
347 .p1 = { .min = 2, .max = 8 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 };
351
352 /* LVDS 100mhz refclk limits. */
353 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 28, .max = 112 },
361 .p1 = { .min = 2, .max = 8 },
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 14, .p2_fast = 14 },
364 };
365
366 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
367 .dot = { .min = 25000, .max = 350000 },
368 .vco = { .min = 1760000, .max = 3510000 },
369 .n = { .min = 1, .max = 3 },
370 .m = { .min = 79, .max = 126 },
371 .m1 = { .min = 12, .max = 22 },
372 .m2 = { .min = 5, .max = 9 },
373 .p = { .min = 14, .max = 42 },
374 .p1 = { .min = 2, .max = 6 },
375 .p2 = { .dot_limit = 225000,
376 .p2_slow = 7, .p2_fast = 7 },
377 };
378
379 static const intel_limit_t intel_limits_vlv = {
380 /*
381 * These are the data rate limits (measured in fast clocks)
382 * since those are the strictest limits we have. The fast
383 * clock and actual rate limits are more relaxed, so checking
384 * them would make no difference.
385 */
386 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
387 .vco = { .min = 4000000, .max = 6000000 },
388 .n = { .min = 1, .max = 7 },
389 .m1 = { .min = 2, .max = 3 },
390 .m2 = { .min = 11, .max = 156 },
391 .p1 = { .min = 2, .max = 3 },
392 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
393 };
394
395 static const intel_limit_t intel_limits_chv = {
396 /*
397 * These are the data rate limits (measured in fast clocks)
398 * since those are the strictest limits we have. The fast
399 * clock and actual rate limits are more relaxed, so checking
400 * them would make no difference.
401 */
402 .dot = { .min = 25000 * 5, .max = 540000 * 5},
403 .vco = { .min = 4800000, .max = 6480000 },
404 .n = { .min = 1, .max = 1 },
405 .m1 = { .min = 2, .max = 2 },
406 .m2 = { .min = 24 << 22, .max = 175 << 22 },
407 .p1 = { .min = 2, .max = 4 },
408 .p2 = { .p2_slow = 1, .p2_fast = 14 },
409 };
410
411 static const intel_limit_t intel_limits_bxt = {
412 /* FIXME: find real dot limits */
413 .dot = { .min = 0, .max = INT_MAX },
414 .vco = { .min = 4800000, .max = 6480000 },
415 .n = { .min = 1, .max = 1 },
416 .m1 = { .min = 2, .max = 2 },
417 /* FIXME: find real m2 limits */
418 .m2 = { .min = 2 << 22, .max = 255 << 22 },
419 .p1 = { .min = 2, .max = 4 },
420 .p2 = { .p2_slow = 1, .p2_fast = 20 },
421 };
422
423 static void vlv_clock(int refclk, intel_clock_t *clock)
424 {
425 clock->m = clock->m1 * clock->m2;
426 clock->p = clock->p1 * clock->p2;
427 if (WARN_ON(clock->n == 0 || clock->p == 0))
428 return;
429 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
430 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
431 }
432
433 static bool
434 needs_modeset(struct drm_crtc_state *state)
435 {
436 return state->mode_changed || state->active_changed;
437 }
438
439 /**
440 * Returns whether any output on the specified pipe is of the specified type
441 */
442 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
443 {
444 struct drm_device *dev = crtc->base.dev;
445 struct intel_encoder *encoder;
446
447 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
448 if (encoder->type == type)
449 return true;
450
451 return false;
452 }
453
454 /**
455 * Returns whether any output on the specified pipe will have the specified
456 * type after a staged modeset is complete, i.e., the same as
457 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
458 * encoder->crtc.
459 */
460 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
461 int type)
462 {
463 struct drm_atomic_state *state = crtc_state->base.state;
464 struct drm_connector *connector;
465 struct drm_connector_state *connector_state;
466 struct intel_encoder *encoder;
467 int i, num_connectors = 0;
468
469 for_each_connector_in_state(state, connector, connector_state, i) {
470 if (connector_state->crtc != crtc_state->base.crtc)
471 continue;
472
473 num_connectors++;
474
475 encoder = to_intel_encoder(connector_state->best_encoder);
476 if (encoder->type == type)
477 return true;
478 }
479
480 WARN_ON(num_connectors == 0);
481
482 return false;
483 }
484
485 static const intel_limit_t *
486 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
487 {
488 struct drm_device *dev = crtc_state->base.crtc->dev;
489 const intel_limit_t *limit;
490
491 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
492 if (intel_is_dual_link_lvds(dev)) {
493 if (refclk == 100000)
494 limit = &intel_limits_ironlake_dual_lvds_100m;
495 else
496 limit = &intel_limits_ironlake_dual_lvds;
497 } else {
498 if (refclk == 100000)
499 limit = &intel_limits_ironlake_single_lvds_100m;
500 else
501 limit = &intel_limits_ironlake_single_lvds;
502 }
503 } else
504 limit = &intel_limits_ironlake_dac;
505
506 return limit;
507 }
508
509 static const intel_limit_t *
510 intel_g4x_limit(struct intel_crtc_state *crtc_state)
511 {
512 struct drm_device *dev = crtc_state->base.crtc->dev;
513 const intel_limit_t *limit;
514
515 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
516 if (intel_is_dual_link_lvds(dev))
517 limit = &intel_limits_g4x_dual_channel_lvds;
518 else
519 limit = &intel_limits_g4x_single_channel_lvds;
520 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
521 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
522 limit = &intel_limits_g4x_hdmi;
523 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
524 limit = &intel_limits_g4x_sdvo;
525 } else /* The option is for other outputs */
526 limit = &intel_limits_i9xx_sdvo;
527
528 return limit;
529 }
530
531 static const intel_limit_t *
532 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
533 {
534 struct drm_device *dev = crtc_state->base.crtc->dev;
535 const intel_limit_t *limit;
536
537 if (IS_BROXTON(dev))
538 limit = &intel_limits_bxt;
539 else if (HAS_PCH_SPLIT(dev))
540 limit = intel_ironlake_limit(crtc_state, refclk);
541 else if (IS_G4X(dev)) {
542 limit = intel_g4x_limit(crtc_state);
543 } else if (IS_PINEVIEW(dev)) {
544 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
545 limit = &intel_limits_pineview_lvds;
546 else
547 limit = &intel_limits_pineview_sdvo;
548 } else if (IS_CHERRYVIEW(dev)) {
549 limit = &intel_limits_chv;
550 } else if (IS_VALLEYVIEW(dev)) {
551 limit = &intel_limits_vlv;
552 } else if (!IS_GEN2(dev)) {
553 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
554 limit = &intel_limits_i9xx_lvds;
555 else
556 limit = &intel_limits_i9xx_sdvo;
557 } else {
558 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
559 limit = &intel_limits_i8xx_lvds;
560 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
561 limit = &intel_limits_i8xx_dvo;
562 else
563 limit = &intel_limits_i8xx_dac;
564 }
565 return limit;
566 }
567
568 /* m1 is reserved as 0 in Pineview, n is a ring counter */
569 static void pineview_clock(int refclk, intel_clock_t *clock)
570 {
571 clock->m = clock->m2 + 2;
572 clock->p = clock->p1 * clock->p2;
573 if (WARN_ON(clock->n == 0 || clock->p == 0))
574 return;
575 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
576 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
577 }
578
579 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
580 {
581 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
582 }
583
584 static void i9xx_clock(int refclk, intel_clock_t *clock)
585 {
586 clock->m = i9xx_dpll_compute_m(clock);
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
589 return;
590 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
591 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592 }
593
594 static void chv_clock(int refclk, intel_clock_t *clock)
595 {
596 clock->m = clock->m1 * clock->m2;
597 clock->p = clock->p1 * clock->p2;
598 if (WARN_ON(clock->n == 0 || clock->p == 0))
599 return;
600 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
601 clock->n << 22);
602 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603 }
604
605 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
606 /**
607 * Returns whether the given set of divisors are valid for a given refclk with
608 * the given connectors.
609 */
610
611 static bool intel_PLL_is_valid(struct drm_device *dev,
612 const intel_limit_t *limit,
613 const intel_clock_t *clock)
614 {
615 if (clock->n < limit->n.min || limit->n.max < clock->n)
616 INTELPllInvalid("n out of range\n");
617 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
618 INTELPllInvalid("p1 out of range\n");
619 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
620 INTELPllInvalid("m2 out of range\n");
621 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
622 INTELPllInvalid("m1 out of range\n");
623
624 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
625 if (clock->m1 <= clock->m2)
626 INTELPllInvalid("m1 <= m2\n");
627
628 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
629 if (clock->p < limit->p.min || limit->p.max < clock->p)
630 INTELPllInvalid("p out of range\n");
631 if (clock->m < limit->m.min || limit->m.max < clock->m)
632 INTELPllInvalid("m out of range\n");
633 }
634
635 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
636 INTELPllInvalid("vco out of range\n");
637 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
638 * connector, etc., rather than just a single range.
639 */
640 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
641 INTELPllInvalid("dot out of range\n");
642
643 return true;
644 }
645
646 static bool
647 i9xx_find_best_dpll(const intel_limit_t *limit,
648 struct intel_crtc_state *crtc_state,
649 int target, int refclk, intel_clock_t *match_clock,
650 intel_clock_t *best_clock)
651 {
652 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
653 struct drm_device *dev = crtc->base.dev;
654 intel_clock_t clock;
655 int err = target;
656
657 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
658 /*
659 * For LVDS just rely on its current settings for dual-channel.
660 * We haven't figured out how to reliably set up different
661 * single/dual channel state, if we even can.
662 */
663 if (intel_is_dual_link_lvds(dev))
664 clock.p2 = limit->p2.p2_fast;
665 else
666 clock.p2 = limit->p2.p2_slow;
667 } else {
668 if (target < limit->p2.dot_limit)
669 clock.p2 = limit->p2.p2_slow;
670 else
671 clock.p2 = limit->p2.p2_fast;
672 }
673
674 memset(best_clock, 0, sizeof(*best_clock));
675
676 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
677 clock.m1++) {
678 for (clock.m2 = limit->m2.min;
679 clock.m2 <= limit->m2.max; clock.m2++) {
680 if (clock.m2 >= clock.m1)
681 break;
682 for (clock.n = limit->n.min;
683 clock.n <= limit->n.max; clock.n++) {
684 for (clock.p1 = limit->p1.min;
685 clock.p1 <= limit->p1.max; clock.p1++) {
686 int this_err;
687
688 i9xx_clock(refclk, &clock);
689 if (!intel_PLL_is_valid(dev, limit,
690 &clock))
691 continue;
692 if (match_clock &&
693 clock.p != match_clock->p)
694 continue;
695
696 this_err = abs(clock.dot - target);
697 if (this_err < err) {
698 *best_clock = clock;
699 err = this_err;
700 }
701 }
702 }
703 }
704 }
705
706 return (err != target);
707 }
708
709 static bool
710 pnv_find_best_dpll(const intel_limit_t *limit,
711 struct intel_crtc_state *crtc_state,
712 int target, int refclk, intel_clock_t *match_clock,
713 intel_clock_t *best_clock)
714 {
715 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
716 struct drm_device *dev = crtc->base.dev;
717 intel_clock_t clock;
718 int err = target;
719
720 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
721 /*
722 * For LVDS just rely on its current settings for dual-channel.
723 * We haven't figured out how to reliably set up different
724 * single/dual channel state, if we even can.
725 */
726 if (intel_is_dual_link_lvds(dev))
727 clock.p2 = limit->p2.p2_fast;
728 else
729 clock.p2 = limit->p2.p2_slow;
730 } else {
731 if (target < limit->p2.dot_limit)
732 clock.p2 = limit->p2.p2_slow;
733 else
734 clock.p2 = limit->p2.p2_fast;
735 }
736
737 memset(best_clock, 0, sizeof(*best_clock));
738
739 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
740 clock.m1++) {
741 for (clock.m2 = limit->m2.min;
742 clock.m2 <= limit->m2.max; clock.m2++) {
743 for (clock.n = limit->n.min;
744 clock.n <= limit->n.max; clock.n++) {
745 for (clock.p1 = limit->p1.min;
746 clock.p1 <= limit->p1.max; clock.p1++) {
747 int this_err;
748
749 pineview_clock(refclk, &clock);
750 if (!intel_PLL_is_valid(dev, limit,
751 &clock))
752 continue;
753 if (match_clock &&
754 clock.p != match_clock->p)
755 continue;
756
757 this_err = abs(clock.dot - target);
758 if (this_err < err) {
759 *best_clock = clock;
760 err = this_err;
761 }
762 }
763 }
764 }
765 }
766
767 return (err != target);
768 }
769
770 static bool
771 g4x_find_best_dpll(const intel_limit_t *limit,
772 struct intel_crtc_state *crtc_state,
773 int target, int refclk, intel_clock_t *match_clock,
774 intel_clock_t *best_clock)
775 {
776 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
777 struct drm_device *dev = crtc->base.dev;
778 intel_clock_t clock;
779 int max_n;
780 bool found;
781 /* approximately equals target * 0.00585 */
782 int err_most = (target >> 8) + (target >> 9);
783 found = false;
784
785 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
786 if (intel_is_dual_link_lvds(dev))
787 clock.p2 = limit->p2.p2_fast;
788 else
789 clock.p2 = limit->p2.p2_slow;
790 } else {
791 if (target < limit->p2.dot_limit)
792 clock.p2 = limit->p2.p2_slow;
793 else
794 clock.p2 = limit->p2.p2_fast;
795 }
796
797 memset(best_clock, 0, sizeof(*best_clock));
798 max_n = limit->n.max;
799 /* based on hardware requirement, prefer smaller n to precision */
800 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
801 /* based on hardware requirement, prefere larger m1,m2 */
802 for (clock.m1 = limit->m1.max;
803 clock.m1 >= limit->m1.min; clock.m1--) {
804 for (clock.m2 = limit->m2.max;
805 clock.m2 >= limit->m2.min; clock.m2--) {
806 for (clock.p1 = limit->p1.max;
807 clock.p1 >= limit->p1.min; clock.p1--) {
808 int this_err;
809
810 i9xx_clock(refclk, &clock);
811 if (!intel_PLL_is_valid(dev, limit,
812 &clock))
813 continue;
814
815 this_err = abs(clock.dot - target);
816 if (this_err < err_most) {
817 *best_clock = clock;
818 err_most = this_err;
819 max_n = clock.n;
820 found = true;
821 }
822 }
823 }
824 }
825 }
826 return found;
827 }
828
829 /*
830 * Check if the calculated PLL configuration is more optimal compared to the
831 * best configuration and error found so far. Return the calculated error.
832 */
833 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
834 const intel_clock_t *calculated_clock,
835 const intel_clock_t *best_clock,
836 unsigned int best_error_ppm,
837 unsigned int *error_ppm)
838 {
839 /*
840 * For CHV ignore the error and consider only the P value.
841 * Prefer a bigger P value based on HW requirements.
842 */
843 if (IS_CHERRYVIEW(dev)) {
844 *error_ppm = 0;
845
846 return calculated_clock->p > best_clock->p;
847 }
848
849 if (WARN_ON_ONCE(!target_freq))
850 return false;
851
852 *error_ppm = div_u64(1000000ULL *
853 abs(target_freq - calculated_clock->dot),
854 target_freq);
855 /*
856 * Prefer a better P value over a better (smaller) error if the error
857 * is small. Ensure this preference for future configurations too by
858 * setting the error to 0.
859 */
860 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
861 *error_ppm = 0;
862
863 return true;
864 }
865
866 return *error_ppm + 10 < best_error_ppm;
867 }
868
869 static bool
870 vlv_find_best_dpll(const intel_limit_t *limit,
871 struct intel_crtc_state *crtc_state,
872 int target, int refclk, intel_clock_t *match_clock,
873 intel_clock_t *best_clock)
874 {
875 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
876 struct drm_device *dev = crtc->base.dev;
877 intel_clock_t clock;
878 unsigned int bestppm = 1000000;
879 /* min update 19.2 MHz */
880 int max_n = min(limit->n.max, refclk / 19200);
881 bool found = false;
882
883 target *= 5; /* fast clock */
884
885 memset(best_clock, 0, sizeof(*best_clock));
886
887 /* based on hardware requirement, prefer smaller n to precision */
888 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
889 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
890 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
891 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
892 clock.p = clock.p1 * clock.p2;
893 /* based on hardware requirement, prefer bigger m1,m2 values */
894 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
895 unsigned int ppm;
896
897 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
898 refclk * clock.m1);
899
900 vlv_clock(refclk, &clock);
901
902 if (!intel_PLL_is_valid(dev, limit,
903 &clock))
904 continue;
905
906 if (!vlv_PLL_is_optimal(dev, target,
907 &clock,
908 best_clock,
909 bestppm, &ppm))
910 continue;
911
912 *best_clock = clock;
913 bestppm = ppm;
914 found = true;
915 }
916 }
917 }
918 }
919
920 return found;
921 }
922
923 static bool
924 chv_find_best_dpll(const intel_limit_t *limit,
925 struct intel_crtc_state *crtc_state,
926 int target, int refclk, intel_clock_t *match_clock,
927 intel_clock_t *best_clock)
928 {
929 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
930 struct drm_device *dev = crtc->base.dev;
931 unsigned int best_error_ppm;
932 intel_clock_t clock;
933 uint64_t m2;
934 int found = false;
935
936 memset(best_clock, 0, sizeof(*best_clock));
937 best_error_ppm = 1000000;
938
939 /*
940 * Based on hardware doc, the n always set to 1, and m1 always
941 * set to 2. If requires to support 200Mhz refclk, we need to
942 * revisit this because n may not 1 anymore.
943 */
944 clock.n = 1, clock.m1 = 2;
945 target *= 5; /* fast clock */
946
947 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
948 for (clock.p2 = limit->p2.p2_fast;
949 clock.p2 >= limit->p2.p2_slow;
950 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
951 unsigned int error_ppm;
952
953 clock.p = clock.p1 * clock.p2;
954
955 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
956 clock.n) << 22, refclk * clock.m1);
957
958 if (m2 > INT_MAX/clock.m1)
959 continue;
960
961 clock.m2 = m2;
962
963 chv_clock(refclk, &clock);
964
965 if (!intel_PLL_is_valid(dev, limit, &clock))
966 continue;
967
968 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
969 best_error_ppm, &error_ppm))
970 continue;
971
972 *best_clock = clock;
973 best_error_ppm = error_ppm;
974 found = true;
975 }
976 }
977
978 return found;
979 }
980
981 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
982 intel_clock_t *best_clock)
983 {
984 int refclk = i9xx_get_refclk(crtc_state, 0);
985
986 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
987 target_clock, refclk, NULL, best_clock);
988 }
989
990 bool intel_crtc_active(struct drm_crtc *crtc)
991 {
992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
993
994 /* Be paranoid as we can arrive here with only partial
995 * state retrieved from the hardware during setup.
996 *
997 * We can ditch the adjusted_mode.crtc_clock check as soon
998 * as Haswell has gained clock readout/fastboot support.
999 *
1000 * We can ditch the crtc->primary->fb check as soon as we can
1001 * properly reconstruct framebuffers.
1002 *
1003 * FIXME: The intel_crtc->active here should be switched to
1004 * crtc->state->active once we have proper CRTC states wired up
1005 * for atomic.
1006 */
1007 return intel_crtc->active && crtc->primary->state->fb &&
1008 intel_crtc->config->base.adjusted_mode.crtc_clock;
1009 }
1010
1011 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1012 enum pipe pipe)
1013 {
1014 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1015 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1016
1017 return intel_crtc->config->cpu_transcoder;
1018 }
1019
1020 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1021 {
1022 struct drm_i915_private *dev_priv = dev->dev_private;
1023 u32 reg = PIPEDSL(pipe);
1024 u32 line1, line2;
1025 u32 line_mask;
1026
1027 if (IS_GEN2(dev))
1028 line_mask = DSL_LINEMASK_GEN2;
1029 else
1030 line_mask = DSL_LINEMASK_GEN3;
1031
1032 line1 = I915_READ(reg) & line_mask;
1033 mdelay(5);
1034 line2 = I915_READ(reg) & line_mask;
1035
1036 return line1 == line2;
1037 }
1038
1039 /*
1040 * intel_wait_for_pipe_off - wait for pipe to turn off
1041 * @crtc: crtc whose pipe to wait for
1042 *
1043 * After disabling a pipe, we can't wait for vblank in the usual way,
1044 * spinning on the vblank interrupt status bit, since we won't actually
1045 * see an interrupt when the pipe is disabled.
1046 *
1047 * On Gen4 and above:
1048 * wait for the pipe register state bit to turn off
1049 *
1050 * Otherwise:
1051 * wait for the display line value to settle (it usually
1052 * ends up stopping at the start of the next frame).
1053 *
1054 */
1055 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1056 {
1057 struct drm_device *dev = crtc->base.dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1060 enum pipe pipe = crtc->pipe;
1061
1062 if (INTEL_INFO(dev)->gen >= 4) {
1063 int reg = PIPECONF(cpu_transcoder);
1064
1065 /* Wait for the Pipe State to go off */
1066 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1067 100))
1068 WARN(1, "pipe_off wait timed out\n");
1069 } else {
1070 /* Wait for the display line to settle */
1071 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1072 WARN(1, "pipe_off wait timed out\n");
1073 }
1074 }
1075
1076 /*
1077 * ibx_digital_port_connected - is the specified port connected?
1078 * @dev_priv: i915 private structure
1079 * @port: the port to test
1080 *
1081 * Returns true if @port is connected, false otherwise.
1082 */
1083 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1084 struct intel_digital_port *port)
1085 {
1086 u32 bit;
1087
1088 if (HAS_PCH_IBX(dev_priv->dev)) {
1089 switch (port->port) {
1090 case PORT_B:
1091 bit = SDE_PORTB_HOTPLUG;
1092 break;
1093 case PORT_C:
1094 bit = SDE_PORTC_HOTPLUG;
1095 break;
1096 case PORT_D:
1097 bit = SDE_PORTD_HOTPLUG;
1098 break;
1099 default:
1100 return true;
1101 }
1102 } else {
1103 switch (port->port) {
1104 case PORT_B:
1105 bit = SDE_PORTB_HOTPLUG_CPT;
1106 break;
1107 case PORT_C:
1108 bit = SDE_PORTC_HOTPLUG_CPT;
1109 break;
1110 case PORT_D:
1111 bit = SDE_PORTD_HOTPLUG_CPT;
1112 break;
1113 default:
1114 return true;
1115 }
1116 }
1117
1118 return I915_READ(SDEISR) & bit;
1119 }
1120
1121 static const char *state_string(bool enabled)
1122 {
1123 return enabled ? "on" : "off";
1124 }
1125
1126 /* Only for pre-ILK configs */
1127 void assert_pll(struct drm_i915_private *dev_priv,
1128 enum pipe pipe, bool state)
1129 {
1130 int reg;
1131 u32 val;
1132 bool cur_state;
1133
1134 reg = DPLL(pipe);
1135 val = I915_READ(reg);
1136 cur_state = !!(val & DPLL_VCO_ENABLE);
1137 I915_STATE_WARN(cur_state != state,
1138 "PLL state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140 }
1141
1142 /* XXX: the dsi pll is shared between MIPI DSI ports */
1143 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1144 {
1145 u32 val;
1146 bool cur_state;
1147
1148 mutex_lock(&dev_priv->sb_lock);
1149 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1150 mutex_unlock(&dev_priv->sb_lock);
1151
1152 cur_state = val & DSI_PLL_VCO_EN;
1153 I915_STATE_WARN(cur_state != state,
1154 "DSI PLL state assertion failure (expected %s, current %s)\n",
1155 state_string(state), state_string(cur_state));
1156 }
1157 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1158 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1159
1160 struct intel_shared_dpll *
1161 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1162 {
1163 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1164
1165 if (crtc->config->shared_dpll < 0)
1166 return NULL;
1167
1168 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1169 }
1170
1171 /* For ILK+ */
1172 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1173 struct intel_shared_dpll *pll,
1174 bool state)
1175 {
1176 bool cur_state;
1177 struct intel_dpll_hw_state hw_state;
1178
1179 if (WARN (!pll,
1180 "asserting DPLL %s with no DPLL\n", state_string(state)))
1181 return;
1182
1183 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1184 I915_STATE_WARN(cur_state != state,
1185 "%s assertion failure (expected %s, current %s)\n",
1186 pll->name, state_string(state), state_string(cur_state));
1187 }
1188
1189 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1190 enum pipe pipe, bool state)
1191 {
1192 int reg;
1193 u32 val;
1194 bool cur_state;
1195 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1196 pipe);
1197
1198 if (HAS_DDI(dev_priv->dev)) {
1199 /* DDI does not have a specific FDI_TX register */
1200 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1201 val = I915_READ(reg);
1202 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1203 } else {
1204 reg = FDI_TX_CTL(pipe);
1205 val = I915_READ(reg);
1206 cur_state = !!(val & FDI_TX_ENABLE);
1207 }
1208 I915_STATE_WARN(cur_state != state,
1209 "FDI TX state assertion failure (expected %s, current %s)\n",
1210 state_string(state), state_string(cur_state));
1211 }
1212 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1213 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1214
1215 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1216 enum pipe pipe, bool state)
1217 {
1218 int reg;
1219 u32 val;
1220 bool cur_state;
1221
1222 reg = FDI_RX_CTL(pipe);
1223 val = I915_READ(reg);
1224 cur_state = !!(val & FDI_RX_ENABLE);
1225 I915_STATE_WARN(cur_state != state,
1226 "FDI RX state assertion failure (expected %s, current %s)\n",
1227 state_string(state), state_string(cur_state));
1228 }
1229 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1230 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1231
1232 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
1234 {
1235 int reg;
1236 u32 val;
1237
1238 /* ILK FDI PLL is always enabled */
1239 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1240 return;
1241
1242 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1243 if (HAS_DDI(dev_priv->dev))
1244 return;
1245
1246 reg = FDI_TX_CTL(pipe);
1247 val = I915_READ(reg);
1248 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1249 }
1250
1251 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1252 enum pipe pipe, bool state)
1253 {
1254 int reg;
1255 u32 val;
1256 bool cur_state;
1257
1258 reg = FDI_RX_CTL(pipe);
1259 val = I915_READ(reg);
1260 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1261 I915_STATE_WARN(cur_state != state,
1262 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1263 state_string(state), state_string(cur_state));
1264 }
1265
1266 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1267 enum pipe pipe)
1268 {
1269 struct drm_device *dev = dev_priv->dev;
1270 int pp_reg;
1271 u32 val;
1272 enum pipe panel_pipe = PIPE_A;
1273 bool locked = true;
1274
1275 if (WARN_ON(HAS_DDI(dev)))
1276 return;
1277
1278 if (HAS_PCH_SPLIT(dev)) {
1279 u32 port_sel;
1280
1281 pp_reg = PCH_PP_CONTROL;
1282 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1283
1284 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1285 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1286 panel_pipe = PIPE_B;
1287 /* XXX: else fix for eDP */
1288 } else if (IS_VALLEYVIEW(dev)) {
1289 /* presumably write lock depends on pipe, not port select */
1290 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1291 panel_pipe = pipe;
1292 } else {
1293 pp_reg = PP_CONTROL;
1294 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1295 panel_pipe = PIPE_B;
1296 }
1297
1298 val = I915_READ(pp_reg);
1299 if (!(val & PANEL_POWER_ON) ||
1300 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1301 locked = false;
1302
1303 I915_STATE_WARN(panel_pipe == pipe && locked,
1304 "panel assertion failure, pipe %c regs locked\n",
1305 pipe_name(pipe));
1306 }
1307
1308 static void assert_cursor(struct drm_i915_private *dev_priv,
1309 enum pipe pipe, bool state)
1310 {
1311 struct drm_device *dev = dev_priv->dev;
1312 bool cur_state;
1313
1314 if (IS_845G(dev) || IS_I865G(dev))
1315 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1316 else
1317 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1318
1319 I915_STATE_WARN(cur_state != state,
1320 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1321 pipe_name(pipe), state_string(state), state_string(cur_state));
1322 }
1323 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1324 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1325
1326 void assert_pipe(struct drm_i915_private *dev_priv,
1327 enum pipe pipe, bool state)
1328 {
1329 int reg;
1330 u32 val;
1331 bool cur_state;
1332 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1333 pipe);
1334
1335 /* if we need the pipe quirk it must be always on */
1336 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1337 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1338 state = true;
1339
1340 if (!intel_display_power_is_enabled(dev_priv,
1341 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1342 cur_state = false;
1343 } else {
1344 reg = PIPECONF(cpu_transcoder);
1345 val = I915_READ(reg);
1346 cur_state = !!(val & PIPECONF_ENABLE);
1347 }
1348
1349 I915_STATE_WARN(cur_state != state,
1350 "pipe %c assertion failure (expected %s, current %s)\n",
1351 pipe_name(pipe), state_string(state), state_string(cur_state));
1352 }
1353
1354 static void assert_plane(struct drm_i915_private *dev_priv,
1355 enum plane plane, bool state)
1356 {
1357 int reg;
1358 u32 val;
1359 bool cur_state;
1360
1361 reg = DSPCNTR(plane);
1362 val = I915_READ(reg);
1363 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1364 I915_STATE_WARN(cur_state != state,
1365 "plane %c assertion failure (expected %s, current %s)\n",
1366 plane_name(plane), state_string(state), state_string(cur_state));
1367 }
1368
1369 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1370 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1371
1372 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe)
1374 {
1375 struct drm_device *dev = dev_priv->dev;
1376 int reg, i;
1377 u32 val;
1378 int cur_pipe;
1379
1380 /* Primary planes are fixed to pipes on gen4+ */
1381 if (INTEL_INFO(dev)->gen >= 4) {
1382 reg = DSPCNTR(pipe);
1383 val = I915_READ(reg);
1384 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1385 "plane %c assertion failure, should be disabled but not\n",
1386 plane_name(pipe));
1387 return;
1388 }
1389
1390 /* Need to check both planes against the pipe */
1391 for_each_pipe(dev_priv, i) {
1392 reg = DSPCNTR(i);
1393 val = I915_READ(reg);
1394 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1395 DISPPLANE_SEL_PIPE_SHIFT;
1396 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1397 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1398 plane_name(i), pipe_name(pipe));
1399 }
1400 }
1401
1402 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1403 enum pipe pipe)
1404 {
1405 struct drm_device *dev = dev_priv->dev;
1406 int reg, sprite;
1407 u32 val;
1408
1409 if (INTEL_INFO(dev)->gen >= 9) {
1410 for_each_sprite(dev_priv, pipe, sprite) {
1411 val = I915_READ(PLANE_CTL(pipe, sprite));
1412 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1413 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1414 sprite, pipe_name(pipe));
1415 }
1416 } else if (IS_VALLEYVIEW(dev)) {
1417 for_each_sprite(dev_priv, pipe, sprite) {
1418 reg = SPCNTR(pipe, sprite);
1419 val = I915_READ(reg);
1420 I915_STATE_WARN(val & SP_ENABLE,
1421 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1422 sprite_name(pipe, sprite), pipe_name(pipe));
1423 }
1424 } else if (INTEL_INFO(dev)->gen >= 7) {
1425 reg = SPRCTL(pipe);
1426 val = I915_READ(reg);
1427 I915_STATE_WARN(val & SPRITE_ENABLE,
1428 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429 plane_name(pipe), pipe_name(pipe));
1430 } else if (INTEL_INFO(dev)->gen >= 5) {
1431 reg = DVSCNTR(pipe);
1432 val = I915_READ(reg);
1433 I915_STATE_WARN(val & DVS_ENABLE,
1434 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435 plane_name(pipe), pipe_name(pipe));
1436 }
1437 }
1438
1439 static void assert_vblank_disabled(struct drm_crtc *crtc)
1440 {
1441 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1442 drm_crtc_vblank_put(crtc);
1443 }
1444
1445 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1446 {
1447 u32 val;
1448 bool enabled;
1449
1450 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1451
1452 val = I915_READ(PCH_DREF_CONTROL);
1453 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1454 DREF_SUPERSPREAD_SOURCE_MASK));
1455 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1456 }
1457
1458 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1459 enum pipe pipe)
1460 {
1461 int reg;
1462 u32 val;
1463 bool enabled;
1464
1465 reg = PCH_TRANSCONF(pipe);
1466 val = I915_READ(reg);
1467 enabled = !!(val & TRANS_ENABLE);
1468 I915_STATE_WARN(enabled,
1469 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1470 pipe_name(pipe));
1471 }
1472
1473 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1474 enum pipe pipe, u32 port_sel, u32 val)
1475 {
1476 if ((val & DP_PORT_EN) == 0)
1477 return false;
1478
1479 if (HAS_PCH_CPT(dev_priv->dev)) {
1480 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1481 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1482 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1483 return false;
1484 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1485 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1486 return false;
1487 } else {
1488 if ((val & DP_PIPE_MASK) != (pipe << 30))
1489 return false;
1490 }
1491 return true;
1492 }
1493
1494 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1495 enum pipe pipe, u32 val)
1496 {
1497 if ((val & SDVO_ENABLE) == 0)
1498 return false;
1499
1500 if (HAS_PCH_CPT(dev_priv->dev)) {
1501 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1502 return false;
1503 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1504 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1505 return false;
1506 } else {
1507 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1508 return false;
1509 }
1510 return true;
1511 }
1512
1513 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1514 enum pipe pipe, u32 val)
1515 {
1516 if ((val & LVDS_PORT_EN) == 0)
1517 return false;
1518
1519 if (HAS_PCH_CPT(dev_priv->dev)) {
1520 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1521 return false;
1522 } else {
1523 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1524 return false;
1525 }
1526 return true;
1527 }
1528
1529 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1530 enum pipe pipe, u32 val)
1531 {
1532 if ((val & ADPA_DAC_ENABLE) == 0)
1533 return false;
1534 if (HAS_PCH_CPT(dev_priv->dev)) {
1535 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1536 return false;
1537 } else {
1538 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1539 return false;
1540 }
1541 return true;
1542 }
1543
1544 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1545 enum pipe pipe, int reg, u32 port_sel)
1546 {
1547 u32 val = I915_READ(reg);
1548 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1549 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1550 reg, pipe_name(pipe));
1551
1552 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1553 && (val & DP_PIPEB_SELECT),
1554 "IBX PCH dp port still using transcoder B\n");
1555 }
1556
1557 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1558 enum pipe pipe, int reg)
1559 {
1560 u32 val = I915_READ(reg);
1561 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1562 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1563 reg, pipe_name(pipe));
1564
1565 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1566 && (val & SDVO_PIPE_B_SELECT),
1567 "IBX PCH hdmi port still using transcoder B\n");
1568 }
1569
1570 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1571 enum pipe pipe)
1572 {
1573 int reg;
1574 u32 val;
1575
1576 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1577 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1578 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1579
1580 reg = PCH_ADPA;
1581 val = I915_READ(reg);
1582 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1583 "PCH VGA enabled on transcoder %c, should be disabled\n",
1584 pipe_name(pipe));
1585
1586 reg = PCH_LVDS;
1587 val = I915_READ(reg);
1588 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590 pipe_name(pipe));
1591
1592 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void intel_init_dpio(struct drm_device *dev)
1598 {
1599 struct drm_i915_private *dev_priv = dev->dev_private;
1600
1601 if (!IS_VALLEYVIEW(dev))
1602 return;
1603
1604 /*
1605 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1606 * CHV x1 PHY (DP/HDMI D)
1607 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1608 */
1609 if (IS_CHERRYVIEW(dev)) {
1610 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1611 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1612 } else {
1613 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1614 }
1615 }
1616
1617 static void vlv_enable_pll(struct intel_crtc *crtc,
1618 const struct intel_crtc_state *pipe_config)
1619 {
1620 struct drm_device *dev = crtc->base.dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 int reg = DPLL(crtc->pipe);
1623 u32 dpll = pipe_config->dpll_hw_state.dpll;
1624
1625 assert_pipe_disabled(dev_priv, crtc->pipe);
1626
1627 /* No really, not for ILK+ */
1628 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1629
1630 /* PLL is protected by panel, make sure we can write it */
1631 if (IS_MOBILE(dev_priv->dev))
1632 assert_panel_unlocked(dev_priv, crtc->pipe);
1633
1634 I915_WRITE(reg, dpll);
1635 POSTING_READ(reg);
1636 udelay(150);
1637
1638 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1639 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1640
1641 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1642 POSTING_READ(DPLL_MD(crtc->pipe));
1643
1644 /* We do this three times for luck */
1645 I915_WRITE(reg, dpll);
1646 POSTING_READ(reg);
1647 udelay(150); /* wait for warmup */
1648 I915_WRITE(reg, dpll);
1649 POSTING_READ(reg);
1650 udelay(150); /* wait for warmup */
1651 I915_WRITE(reg, dpll);
1652 POSTING_READ(reg);
1653 udelay(150); /* wait for warmup */
1654 }
1655
1656 static void chv_enable_pll(struct intel_crtc *crtc,
1657 const struct intel_crtc_state *pipe_config)
1658 {
1659 struct drm_device *dev = crtc->base.dev;
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 int pipe = crtc->pipe;
1662 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1663 u32 tmp;
1664
1665 assert_pipe_disabled(dev_priv, crtc->pipe);
1666
1667 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1668
1669 mutex_lock(&dev_priv->sb_lock);
1670
1671 /* Enable back the 10bit clock to display controller */
1672 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1673 tmp |= DPIO_DCLKP_EN;
1674 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1675
1676 mutex_unlock(&dev_priv->sb_lock);
1677
1678 /*
1679 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1680 */
1681 udelay(1);
1682
1683 /* Enable PLL */
1684 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1685
1686 /* Check PLL is locked */
1687 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1688 DRM_ERROR("PLL %d failed to lock\n", pipe);
1689
1690 /* not sure when this should be written */
1691 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1692 POSTING_READ(DPLL_MD(pipe));
1693 }
1694
1695 static int intel_num_dvo_pipes(struct drm_device *dev)
1696 {
1697 struct intel_crtc *crtc;
1698 int count = 0;
1699
1700 for_each_intel_crtc(dev, crtc)
1701 count += crtc->base.state->active &&
1702 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1703
1704 return count;
1705 }
1706
1707 static void i9xx_enable_pll(struct intel_crtc *crtc)
1708 {
1709 struct drm_device *dev = crtc->base.dev;
1710 struct drm_i915_private *dev_priv = dev->dev_private;
1711 int reg = DPLL(crtc->pipe);
1712 u32 dpll = crtc->config->dpll_hw_state.dpll;
1713
1714 assert_pipe_disabled(dev_priv, crtc->pipe);
1715
1716 /* No really, not for ILK+ */
1717 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1718
1719 /* PLL is protected by panel, make sure we can write it */
1720 if (IS_MOBILE(dev) && !IS_I830(dev))
1721 assert_panel_unlocked(dev_priv, crtc->pipe);
1722
1723 /* Enable DVO 2x clock on both PLLs if necessary */
1724 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1725 /*
1726 * It appears to be important that we don't enable this
1727 * for the current pipe before otherwise configuring the
1728 * PLL. No idea how this should be handled if multiple
1729 * DVO outputs are enabled simultaneosly.
1730 */
1731 dpll |= DPLL_DVO_2X_MODE;
1732 I915_WRITE(DPLL(!crtc->pipe),
1733 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1734 }
1735
1736 /* Wait for the clocks to stabilize. */
1737 POSTING_READ(reg);
1738 udelay(150);
1739
1740 if (INTEL_INFO(dev)->gen >= 4) {
1741 I915_WRITE(DPLL_MD(crtc->pipe),
1742 crtc->config->dpll_hw_state.dpll_md);
1743 } else {
1744 /* The pixel multiplier can only be updated once the
1745 * DPLL is enabled and the clocks are stable.
1746 *
1747 * So write it again.
1748 */
1749 I915_WRITE(reg, dpll);
1750 }
1751
1752 /* We do this three times for luck */
1753 I915_WRITE(reg, dpll);
1754 POSTING_READ(reg);
1755 udelay(150); /* wait for warmup */
1756 I915_WRITE(reg, dpll);
1757 POSTING_READ(reg);
1758 udelay(150); /* wait for warmup */
1759 I915_WRITE(reg, dpll);
1760 POSTING_READ(reg);
1761 udelay(150); /* wait for warmup */
1762 }
1763
1764 /**
1765 * i9xx_disable_pll - disable a PLL
1766 * @dev_priv: i915 private structure
1767 * @pipe: pipe PLL to disable
1768 *
1769 * Disable the PLL for @pipe, making sure the pipe is off first.
1770 *
1771 * Note! This is for pre-ILK only.
1772 */
1773 static void i9xx_disable_pll(struct intel_crtc *crtc)
1774 {
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 enum pipe pipe = crtc->pipe;
1778
1779 /* Disable DVO 2x clock on both PLLs if necessary */
1780 if (IS_I830(dev) &&
1781 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1782 !intel_num_dvo_pipes(dev)) {
1783 I915_WRITE(DPLL(PIPE_B),
1784 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1785 I915_WRITE(DPLL(PIPE_A),
1786 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1787 }
1788
1789 /* Don't disable pipe or pipe PLLs if needed */
1790 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1791 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1792 return;
1793
1794 /* Make sure the pipe isn't still relying on us */
1795 assert_pipe_disabled(dev_priv, pipe);
1796
1797 I915_WRITE(DPLL(pipe), 0);
1798 POSTING_READ(DPLL(pipe));
1799 }
1800
1801 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1802 {
1803 u32 val = 0;
1804
1805 /* Make sure the pipe isn't still relying on us */
1806 assert_pipe_disabled(dev_priv, pipe);
1807
1808 /*
1809 * Leave integrated clock source and reference clock enabled for pipe B.
1810 * The latter is needed for VGA hotplug / manual detection.
1811 */
1812 if (pipe == PIPE_B)
1813 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1814 I915_WRITE(DPLL(pipe), val);
1815 POSTING_READ(DPLL(pipe));
1816
1817 }
1818
1819 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1820 {
1821 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1822 u32 val;
1823
1824 /* Make sure the pipe isn't still relying on us */
1825 assert_pipe_disabled(dev_priv, pipe);
1826
1827 /* Set PLL en = 0 */
1828 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1829 if (pipe != PIPE_A)
1830 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1831 I915_WRITE(DPLL(pipe), val);
1832 POSTING_READ(DPLL(pipe));
1833
1834 mutex_lock(&dev_priv->sb_lock);
1835
1836 /* Disable 10bit clock to display controller */
1837 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1838 val &= ~DPIO_DCLKP_EN;
1839 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1840
1841 /* disable left/right clock distribution */
1842 if (pipe != PIPE_B) {
1843 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1844 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1845 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1846 } else {
1847 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1848 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1849 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1850 }
1851
1852 mutex_unlock(&dev_priv->sb_lock);
1853 }
1854
1855 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1856 struct intel_digital_port *dport,
1857 unsigned int expected_mask)
1858 {
1859 u32 port_mask;
1860 int dpll_reg;
1861
1862 switch (dport->port) {
1863 case PORT_B:
1864 port_mask = DPLL_PORTB_READY_MASK;
1865 dpll_reg = DPLL(0);
1866 break;
1867 case PORT_C:
1868 port_mask = DPLL_PORTC_READY_MASK;
1869 dpll_reg = DPLL(0);
1870 expected_mask <<= 4;
1871 break;
1872 case PORT_D:
1873 port_mask = DPLL_PORTD_READY_MASK;
1874 dpll_reg = DPIO_PHY_STATUS;
1875 break;
1876 default:
1877 BUG();
1878 }
1879
1880 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1881 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1882 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1883 }
1884
1885 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1886 {
1887 struct drm_device *dev = crtc->base.dev;
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1890
1891 if (WARN_ON(pll == NULL))
1892 return;
1893
1894 WARN_ON(!pll->config.crtc_mask);
1895 if (pll->active == 0) {
1896 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1897 WARN_ON(pll->on);
1898 assert_shared_dpll_disabled(dev_priv, pll);
1899
1900 pll->mode_set(dev_priv, pll);
1901 }
1902 }
1903
1904 /**
1905 * intel_enable_shared_dpll - enable PCH PLL
1906 * @dev_priv: i915 private structure
1907 * @pipe: pipe PLL to enable
1908 *
1909 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1910 * drives the transcoder clock.
1911 */
1912 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1913 {
1914 struct drm_device *dev = crtc->base.dev;
1915 struct drm_i915_private *dev_priv = dev->dev_private;
1916 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1917
1918 if (WARN_ON(pll == NULL))
1919 return;
1920
1921 if (WARN_ON(pll->config.crtc_mask == 0))
1922 return;
1923
1924 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1925 pll->name, pll->active, pll->on,
1926 crtc->base.base.id);
1927
1928 if (pll->active++) {
1929 WARN_ON(!pll->on);
1930 assert_shared_dpll_enabled(dev_priv, pll);
1931 return;
1932 }
1933 WARN_ON(pll->on);
1934
1935 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1936
1937 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1938 pll->enable(dev_priv, pll);
1939 pll->on = true;
1940 }
1941
1942 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1943 {
1944 struct drm_device *dev = crtc->base.dev;
1945 struct drm_i915_private *dev_priv = dev->dev_private;
1946 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1947
1948 /* PCH only available on ILK+ */
1949 BUG_ON(INTEL_INFO(dev)->gen < 5);
1950 if (WARN_ON(pll == NULL))
1951 return;
1952
1953 if (WARN_ON(pll->config.crtc_mask == 0))
1954 return;
1955
1956 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1957 pll->name, pll->active, pll->on,
1958 crtc->base.base.id);
1959
1960 if (WARN_ON(pll->active == 0)) {
1961 assert_shared_dpll_disabled(dev_priv, pll);
1962 return;
1963 }
1964
1965 assert_shared_dpll_enabled(dev_priv, pll);
1966 WARN_ON(!pll->on);
1967 if (--pll->active)
1968 return;
1969
1970 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1971 pll->disable(dev_priv, pll);
1972 pll->on = false;
1973
1974 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1975 }
1976
1977 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1978 enum pipe pipe)
1979 {
1980 struct drm_device *dev = dev_priv->dev;
1981 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983 uint32_t reg, val, pipeconf_val;
1984
1985 /* PCH only available on ILK+ */
1986 BUG_ON(!HAS_PCH_SPLIT(dev));
1987
1988 /* Make sure PCH DPLL is enabled */
1989 assert_shared_dpll_enabled(dev_priv,
1990 intel_crtc_to_shared_dpll(intel_crtc));
1991
1992 /* FDI must be feeding us bits for PCH ports */
1993 assert_fdi_tx_enabled(dev_priv, pipe);
1994 assert_fdi_rx_enabled(dev_priv, pipe);
1995
1996 if (HAS_PCH_CPT(dev)) {
1997 /* Workaround: Set the timing override bit before enabling the
1998 * pch transcoder. */
1999 reg = TRANS_CHICKEN2(pipe);
2000 val = I915_READ(reg);
2001 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2002 I915_WRITE(reg, val);
2003 }
2004
2005 reg = PCH_TRANSCONF(pipe);
2006 val = I915_READ(reg);
2007 pipeconf_val = I915_READ(PIPECONF(pipe));
2008
2009 if (HAS_PCH_IBX(dev_priv->dev)) {
2010 /*
2011 * Make the BPC in transcoder be consistent with
2012 * that in pipeconf reg. For HDMI we must use 8bpc
2013 * here for both 8bpc and 12bpc.
2014 */
2015 val &= ~PIPECONF_BPC_MASK;
2016 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2017 val |= PIPECONF_8BPC;
2018 else
2019 val |= pipeconf_val & PIPECONF_BPC_MASK;
2020 }
2021
2022 val &= ~TRANS_INTERLACE_MASK;
2023 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2024 if (HAS_PCH_IBX(dev_priv->dev) &&
2025 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2026 val |= TRANS_LEGACY_INTERLACED_ILK;
2027 else
2028 val |= TRANS_INTERLACED;
2029 else
2030 val |= TRANS_PROGRESSIVE;
2031
2032 I915_WRITE(reg, val | TRANS_ENABLE);
2033 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2034 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2035 }
2036
2037 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2038 enum transcoder cpu_transcoder)
2039 {
2040 u32 val, pipeconf_val;
2041
2042 /* PCH only available on ILK+ */
2043 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2044
2045 /* FDI must be feeding us bits for PCH ports */
2046 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2047 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2048
2049 /* Workaround: set timing override bit. */
2050 val = I915_READ(_TRANSA_CHICKEN2);
2051 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2052 I915_WRITE(_TRANSA_CHICKEN2, val);
2053
2054 val = TRANS_ENABLE;
2055 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2056
2057 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2058 PIPECONF_INTERLACED_ILK)
2059 val |= TRANS_INTERLACED;
2060 else
2061 val |= TRANS_PROGRESSIVE;
2062
2063 I915_WRITE(LPT_TRANSCONF, val);
2064 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2065 DRM_ERROR("Failed to enable PCH transcoder\n");
2066 }
2067
2068 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2069 enum pipe pipe)
2070 {
2071 struct drm_device *dev = dev_priv->dev;
2072 uint32_t reg, val;
2073
2074 /* FDI relies on the transcoder */
2075 assert_fdi_tx_disabled(dev_priv, pipe);
2076 assert_fdi_rx_disabled(dev_priv, pipe);
2077
2078 /* Ports must be off as well */
2079 assert_pch_ports_disabled(dev_priv, pipe);
2080
2081 reg = PCH_TRANSCONF(pipe);
2082 val = I915_READ(reg);
2083 val &= ~TRANS_ENABLE;
2084 I915_WRITE(reg, val);
2085 /* wait for PCH transcoder off, transcoder state */
2086 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2087 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2088
2089 if (!HAS_PCH_IBX(dev)) {
2090 /* Workaround: Clear the timing override chicken bit again. */
2091 reg = TRANS_CHICKEN2(pipe);
2092 val = I915_READ(reg);
2093 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2094 I915_WRITE(reg, val);
2095 }
2096 }
2097
2098 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2099 {
2100 u32 val;
2101
2102 val = I915_READ(LPT_TRANSCONF);
2103 val &= ~TRANS_ENABLE;
2104 I915_WRITE(LPT_TRANSCONF, val);
2105 /* wait for PCH transcoder off, transcoder state */
2106 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2107 DRM_ERROR("Failed to disable PCH transcoder\n");
2108
2109 /* Workaround: clear timing override bit. */
2110 val = I915_READ(_TRANSA_CHICKEN2);
2111 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2112 I915_WRITE(_TRANSA_CHICKEN2, val);
2113 }
2114
2115 /**
2116 * intel_enable_pipe - enable a pipe, asserting requirements
2117 * @crtc: crtc responsible for the pipe
2118 *
2119 * Enable @crtc's pipe, making sure that various hardware specific requirements
2120 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2121 */
2122 static void intel_enable_pipe(struct intel_crtc *crtc)
2123 {
2124 struct drm_device *dev = crtc->base.dev;
2125 struct drm_i915_private *dev_priv = dev->dev_private;
2126 enum pipe pipe = crtc->pipe;
2127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2128 pipe);
2129 enum pipe pch_transcoder;
2130 int reg;
2131 u32 val;
2132
2133 assert_planes_disabled(dev_priv, pipe);
2134 assert_cursor_disabled(dev_priv, pipe);
2135 assert_sprites_disabled(dev_priv, pipe);
2136
2137 if (HAS_PCH_LPT(dev_priv->dev))
2138 pch_transcoder = TRANSCODER_A;
2139 else
2140 pch_transcoder = pipe;
2141
2142 /*
2143 * A pipe without a PLL won't actually be able to drive bits from
2144 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2145 * need the check.
2146 */
2147 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2148 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2149 assert_dsi_pll_enabled(dev_priv);
2150 else
2151 assert_pll_enabled(dev_priv, pipe);
2152 else {
2153 if (crtc->config->has_pch_encoder) {
2154 /* if driving the PCH, we need FDI enabled */
2155 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2156 assert_fdi_tx_pll_enabled(dev_priv,
2157 (enum pipe) cpu_transcoder);
2158 }
2159 /* FIXME: assert CPU port conditions for SNB+ */
2160 }
2161
2162 reg = PIPECONF(cpu_transcoder);
2163 val = I915_READ(reg);
2164 if (val & PIPECONF_ENABLE) {
2165 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2166 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2167 return;
2168 }
2169
2170 I915_WRITE(reg, val | PIPECONF_ENABLE);
2171 POSTING_READ(reg);
2172 }
2173
2174 /**
2175 * intel_disable_pipe - disable a pipe, asserting requirements
2176 * @crtc: crtc whose pipes is to be disabled
2177 *
2178 * Disable the pipe of @crtc, making sure that various hardware
2179 * specific requirements are met, if applicable, e.g. plane
2180 * disabled, panel fitter off, etc.
2181 *
2182 * Will wait until the pipe has shut down before returning.
2183 */
2184 static void intel_disable_pipe(struct intel_crtc *crtc)
2185 {
2186 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2187 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2188 enum pipe pipe = crtc->pipe;
2189 int reg;
2190 u32 val;
2191
2192 /*
2193 * Make sure planes won't keep trying to pump pixels to us,
2194 * or we might hang the display.
2195 */
2196 assert_planes_disabled(dev_priv, pipe);
2197 assert_cursor_disabled(dev_priv, pipe);
2198 assert_sprites_disabled(dev_priv, pipe);
2199
2200 reg = PIPECONF(cpu_transcoder);
2201 val = I915_READ(reg);
2202 if ((val & PIPECONF_ENABLE) == 0)
2203 return;
2204
2205 /*
2206 * Double wide has implications for planes
2207 * so best keep it disabled when not needed.
2208 */
2209 if (crtc->config->double_wide)
2210 val &= ~PIPECONF_DOUBLE_WIDE;
2211
2212 /* Don't disable pipe or pipe PLLs if needed */
2213 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2214 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2215 val &= ~PIPECONF_ENABLE;
2216
2217 I915_WRITE(reg, val);
2218 if ((val & PIPECONF_ENABLE) == 0)
2219 intel_wait_for_pipe_off(crtc);
2220 }
2221
2222 /**
2223 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2224 * @plane: plane to be enabled
2225 * @crtc: crtc for the plane
2226 *
2227 * Enable @plane on @crtc, making sure that the pipe is running first.
2228 */
2229 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2230 struct drm_crtc *crtc)
2231 {
2232 struct drm_device *dev = plane->dev;
2233 struct drm_i915_private *dev_priv = dev->dev_private;
2234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2235
2236 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2237 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2238 to_intel_plane_state(plane->state)->visible = true;
2239
2240 dev_priv->display.update_primary_plane(crtc, plane->fb,
2241 crtc->x, crtc->y);
2242 }
2243
2244 static bool need_vtd_wa(struct drm_device *dev)
2245 {
2246 #ifdef CONFIG_INTEL_IOMMU
2247 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2248 return true;
2249 #endif
2250 return false;
2251 }
2252
2253 unsigned int
2254 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2255 uint64_t fb_format_modifier)
2256 {
2257 unsigned int tile_height;
2258 uint32_t pixel_bytes;
2259
2260 switch (fb_format_modifier) {
2261 case DRM_FORMAT_MOD_NONE:
2262 tile_height = 1;
2263 break;
2264 case I915_FORMAT_MOD_X_TILED:
2265 tile_height = IS_GEN2(dev) ? 16 : 8;
2266 break;
2267 case I915_FORMAT_MOD_Y_TILED:
2268 tile_height = 32;
2269 break;
2270 case I915_FORMAT_MOD_Yf_TILED:
2271 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2272 switch (pixel_bytes) {
2273 default:
2274 case 1:
2275 tile_height = 64;
2276 break;
2277 case 2:
2278 case 4:
2279 tile_height = 32;
2280 break;
2281 case 8:
2282 tile_height = 16;
2283 break;
2284 case 16:
2285 WARN_ONCE(1,
2286 "128-bit pixels are not supported for display!");
2287 tile_height = 16;
2288 break;
2289 }
2290 break;
2291 default:
2292 MISSING_CASE(fb_format_modifier);
2293 tile_height = 1;
2294 break;
2295 }
2296
2297 return tile_height;
2298 }
2299
2300 unsigned int
2301 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2302 uint32_t pixel_format, uint64_t fb_format_modifier)
2303 {
2304 return ALIGN(height, intel_tile_height(dev, pixel_format,
2305 fb_format_modifier));
2306 }
2307
2308 static int
2309 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2310 const struct drm_plane_state *plane_state)
2311 {
2312 struct intel_rotation_info *info = &view->rotation_info;
2313
2314 *view = i915_ggtt_view_normal;
2315
2316 if (!plane_state)
2317 return 0;
2318
2319 if (!intel_rotation_90_or_270(plane_state->rotation))
2320 return 0;
2321
2322 *view = i915_ggtt_view_rotated;
2323
2324 info->height = fb->height;
2325 info->pixel_format = fb->pixel_format;
2326 info->pitch = fb->pitches[0];
2327 info->fb_modifier = fb->modifier[0];
2328
2329 return 0;
2330 }
2331
2332 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2333 {
2334 if (INTEL_INFO(dev_priv)->gen >= 9)
2335 return 256 * 1024;
2336 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2337 IS_VALLEYVIEW(dev_priv))
2338 return 128 * 1024;
2339 else if (INTEL_INFO(dev_priv)->gen >= 4)
2340 return 4 * 1024;
2341 else
2342 return 0;
2343 }
2344
2345 int
2346 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2347 struct drm_framebuffer *fb,
2348 const struct drm_plane_state *plane_state,
2349 struct intel_engine_cs *pipelined)
2350 {
2351 struct drm_device *dev = fb->dev;
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2354 struct i915_ggtt_view view;
2355 u32 alignment;
2356 int ret;
2357
2358 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2359
2360 switch (fb->modifier[0]) {
2361 case DRM_FORMAT_MOD_NONE:
2362 alignment = intel_linear_alignment(dev_priv);
2363 break;
2364 case I915_FORMAT_MOD_X_TILED:
2365 if (INTEL_INFO(dev)->gen >= 9)
2366 alignment = 256 * 1024;
2367 else {
2368 /* pin() will align the object as required by fence */
2369 alignment = 0;
2370 }
2371 break;
2372 case I915_FORMAT_MOD_Y_TILED:
2373 case I915_FORMAT_MOD_Yf_TILED:
2374 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2375 "Y tiling bo slipped through, driver bug!\n"))
2376 return -EINVAL;
2377 alignment = 1 * 1024 * 1024;
2378 break;
2379 default:
2380 MISSING_CASE(fb->modifier[0]);
2381 return -EINVAL;
2382 }
2383
2384 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2385 if (ret)
2386 return ret;
2387
2388 /* Note that the w/a also requires 64 PTE of padding following the
2389 * bo. We currently fill all unused PTE with the shadow page and so
2390 * we should always have valid PTE following the scanout preventing
2391 * the VT-d warning.
2392 */
2393 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2394 alignment = 256 * 1024;
2395
2396 /*
2397 * Global gtt pte registers are special registers which actually forward
2398 * writes to a chunk of system memory. Which means that there is no risk
2399 * that the register values disappear as soon as we call
2400 * intel_runtime_pm_put(), so it is correct to wrap only the
2401 * pin/unpin/fence and not more.
2402 */
2403 intel_runtime_pm_get(dev_priv);
2404
2405 dev_priv->mm.interruptible = false;
2406 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2407 &view);
2408 if (ret)
2409 goto err_interruptible;
2410
2411 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2412 * fence, whereas 965+ only requires a fence if using
2413 * framebuffer compression. For simplicity, we always install
2414 * a fence as the cost is not that onerous.
2415 */
2416 ret = i915_gem_object_get_fence(obj);
2417 if (ret)
2418 goto err_unpin;
2419
2420 i915_gem_object_pin_fence(obj);
2421
2422 dev_priv->mm.interruptible = true;
2423 intel_runtime_pm_put(dev_priv);
2424 return 0;
2425
2426 err_unpin:
2427 i915_gem_object_unpin_from_display_plane(obj, &view);
2428 err_interruptible:
2429 dev_priv->mm.interruptible = true;
2430 intel_runtime_pm_put(dev_priv);
2431 return ret;
2432 }
2433
2434 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2435 const struct drm_plane_state *plane_state)
2436 {
2437 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2438 struct i915_ggtt_view view;
2439 int ret;
2440
2441 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2442
2443 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2444 WARN_ONCE(ret, "Couldn't get view from plane state!");
2445
2446 i915_gem_object_unpin_fence(obj);
2447 i915_gem_object_unpin_from_display_plane(obj, &view);
2448 }
2449
2450 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2451 * is assumed to be a power-of-two. */
2452 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2453 int *x, int *y,
2454 unsigned int tiling_mode,
2455 unsigned int cpp,
2456 unsigned int pitch)
2457 {
2458 if (tiling_mode != I915_TILING_NONE) {
2459 unsigned int tile_rows, tiles;
2460
2461 tile_rows = *y / 8;
2462 *y %= 8;
2463
2464 tiles = *x / (512/cpp);
2465 *x %= 512/cpp;
2466
2467 return tile_rows * pitch * 8 + tiles * 4096;
2468 } else {
2469 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2470 unsigned int offset;
2471
2472 offset = *y * pitch + *x * cpp;
2473 *y = (offset & alignment) / pitch;
2474 *x = ((offset & alignment) - *y * pitch) / cpp;
2475 return offset & ~alignment;
2476 }
2477 }
2478
2479 static int i9xx_format_to_fourcc(int format)
2480 {
2481 switch (format) {
2482 case DISPPLANE_8BPP:
2483 return DRM_FORMAT_C8;
2484 case DISPPLANE_BGRX555:
2485 return DRM_FORMAT_XRGB1555;
2486 case DISPPLANE_BGRX565:
2487 return DRM_FORMAT_RGB565;
2488 default:
2489 case DISPPLANE_BGRX888:
2490 return DRM_FORMAT_XRGB8888;
2491 case DISPPLANE_RGBX888:
2492 return DRM_FORMAT_XBGR8888;
2493 case DISPPLANE_BGRX101010:
2494 return DRM_FORMAT_XRGB2101010;
2495 case DISPPLANE_RGBX101010:
2496 return DRM_FORMAT_XBGR2101010;
2497 }
2498 }
2499
2500 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2501 {
2502 switch (format) {
2503 case PLANE_CTL_FORMAT_RGB_565:
2504 return DRM_FORMAT_RGB565;
2505 default:
2506 case PLANE_CTL_FORMAT_XRGB_8888:
2507 if (rgb_order) {
2508 if (alpha)
2509 return DRM_FORMAT_ABGR8888;
2510 else
2511 return DRM_FORMAT_XBGR8888;
2512 } else {
2513 if (alpha)
2514 return DRM_FORMAT_ARGB8888;
2515 else
2516 return DRM_FORMAT_XRGB8888;
2517 }
2518 case PLANE_CTL_FORMAT_XRGB_2101010:
2519 if (rgb_order)
2520 return DRM_FORMAT_XBGR2101010;
2521 else
2522 return DRM_FORMAT_XRGB2101010;
2523 }
2524 }
2525
2526 static bool
2527 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2528 struct intel_initial_plane_config *plane_config)
2529 {
2530 struct drm_device *dev = crtc->base.dev;
2531 struct drm_i915_gem_object *obj = NULL;
2532 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2533 struct drm_framebuffer *fb = &plane_config->fb->base;
2534 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2535 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2536 PAGE_SIZE);
2537
2538 size_aligned -= base_aligned;
2539
2540 if (plane_config->size == 0)
2541 return false;
2542
2543 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2544 base_aligned,
2545 base_aligned,
2546 size_aligned);
2547 if (!obj)
2548 return false;
2549
2550 obj->tiling_mode = plane_config->tiling;
2551 if (obj->tiling_mode == I915_TILING_X)
2552 obj->stride = fb->pitches[0];
2553
2554 mode_cmd.pixel_format = fb->pixel_format;
2555 mode_cmd.width = fb->width;
2556 mode_cmd.height = fb->height;
2557 mode_cmd.pitches[0] = fb->pitches[0];
2558 mode_cmd.modifier[0] = fb->modifier[0];
2559 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2560
2561 mutex_lock(&dev->struct_mutex);
2562 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2563 &mode_cmd, obj)) {
2564 DRM_DEBUG_KMS("intel fb init failed\n");
2565 goto out_unref_obj;
2566 }
2567 mutex_unlock(&dev->struct_mutex);
2568
2569 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2570 return true;
2571
2572 out_unref_obj:
2573 drm_gem_object_unreference(&obj->base);
2574 mutex_unlock(&dev->struct_mutex);
2575 return false;
2576 }
2577
2578 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2579 static void
2580 update_state_fb(struct drm_plane *plane)
2581 {
2582 if (plane->fb == plane->state->fb)
2583 return;
2584
2585 if (plane->state->fb)
2586 drm_framebuffer_unreference(plane->state->fb);
2587 plane->state->fb = plane->fb;
2588 if (plane->state->fb)
2589 drm_framebuffer_reference(plane->state->fb);
2590 }
2591
2592 static void
2593 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2594 struct intel_initial_plane_config *plane_config)
2595 {
2596 struct drm_device *dev = intel_crtc->base.dev;
2597 struct drm_i915_private *dev_priv = dev->dev_private;
2598 struct drm_crtc *c;
2599 struct intel_crtc *i;
2600 struct drm_i915_gem_object *obj;
2601 struct drm_plane *primary = intel_crtc->base.primary;
2602 struct drm_framebuffer *fb;
2603
2604 if (!plane_config->fb)
2605 return;
2606
2607 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2608 fb = &plane_config->fb->base;
2609 goto valid_fb;
2610 }
2611
2612 kfree(plane_config->fb);
2613
2614 /*
2615 * Failed to alloc the obj, check to see if we should share
2616 * an fb with another CRTC instead
2617 */
2618 for_each_crtc(dev, c) {
2619 i = to_intel_crtc(c);
2620
2621 if (c == &intel_crtc->base)
2622 continue;
2623
2624 if (!i->active)
2625 continue;
2626
2627 fb = c->primary->fb;
2628 if (!fb)
2629 continue;
2630
2631 obj = intel_fb_obj(fb);
2632 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2633 drm_framebuffer_reference(fb);
2634 goto valid_fb;
2635 }
2636 }
2637
2638 return;
2639
2640 valid_fb:
2641 obj = intel_fb_obj(fb);
2642 if (obj->tiling_mode != I915_TILING_NONE)
2643 dev_priv->preserve_bios_swizzle = true;
2644
2645 primary->fb = fb;
2646 primary->crtc = primary->state->crtc = &intel_crtc->base;
2647 update_state_fb(primary);
2648 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2649 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2650 }
2651
2652 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2653 struct drm_framebuffer *fb,
2654 int x, int y)
2655 {
2656 struct drm_device *dev = crtc->dev;
2657 struct drm_i915_private *dev_priv = dev->dev_private;
2658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2659 struct drm_plane *primary = crtc->primary;
2660 bool visible = to_intel_plane_state(primary->state)->visible;
2661 struct drm_i915_gem_object *obj;
2662 int plane = intel_crtc->plane;
2663 unsigned long linear_offset;
2664 u32 dspcntr;
2665 u32 reg = DSPCNTR(plane);
2666 int pixel_size;
2667
2668 if (!visible || !fb) {
2669 I915_WRITE(reg, 0);
2670 if (INTEL_INFO(dev)->gen >= 4)
2671 I915_WRITE(DSPSURF(plane), 0);
2672 else
2673 I915_WRITE(DSPADDR(plane), 0);
2674 POSTING_READ(reg);
2675 return;
2676 }
2677
2678 obj = intel_fb_obj(fb);
2679 if (WARN_ON(obj == NULL))
2680 return;
2681
2682 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2683
2684 dspcntr = DISPPLANE_GAMMA_ENABLE;
2685
2686 dspcntr |= DISPLAY_PLANE_ENABLE;
2687
2688 if (INTEL_INFO(dev)->gen < 4) {
2689 if (intel_crtc->pipe == PIPE_B)
2690 dspcntr |= DISPPLANE_SEL_PIPE_B;
2691
2692 /* pipesrc and dspsize control the size that is scaled from,
2693 * which should always be the user's requested size.
2694 */
2695 I915_WRITE(DSPSIZE(plane),
2696 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2697 (intel_crtc->config->pipe_src_w - 1));
2698 I915_WRITE(DSPPOS(plane), 0);
2699 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2700 I915_WRITE(PRIMSIZE(plane),
2701 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2702 (intel_crtc->config->pipe_src_w - 1));
2703 I915_WRITE(PRIMPOS(plane), 0);
2704 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2705 }
2706
2707 switch (fb->pixel_format) {
2708 case DRM_FORMAT_C8:
2709 dspcntr |= DISPPLANE_8BPP;
2710 break;
2711 case DRM_FORMAT_XRGB1555:
2712 dspcntr |= DISPPLANE_BGRX555;
2713 break;
2714 case DRM_FORMAT_RGB565:
2715 dspcntr |= DISPPLANE_BGRX565;
2716 break;
2717 case DRM_FORMAT_XRGB8888:
2718 dspcntr |= DISPPLANE_BGRX888;
2719 break;
2720 case DRM_FORMAT_XBGR8888:
2721 dspcntr |= DISPPLANE_RGBX888;
2722 break;
2723 case DRM_FORMAT_XRGB2101010:
2724 dspcntr |= DISPPLANE_BGRX101010;
2725 break;
2726 case DRM_FORMAT_XBGR2101010:
2727 dspcntr |= DISPPLANE_RGBX101010;
2728 break;
2729 default:
2730 BUG();
2731 }
2732
2733 if (INTEL_INFO(dev)->gen >= 4 &&
2734 obj->tiling_mode != I915_TILING_NONE)
2735 dspcntr |= DISPPLANE_TILED;
2736
2737 if (IS_G4X(dev))
2738 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2739
2740 linear_offset = y * fb->pitches[0] + x * pixel_size;
2741
2742 if (INTEL_INFO(dev)->gen >= 4) {
2743 intel_crtc->dspaddr_offset =
2744 intel_gen4_compute_page_offset(dev_priv,
2745 &x, &y, obj->tiling_mode,
2746 pixel_size,
2747 fb->pitches[0]);
2748 linear_offset -= intel_crtc->dspaddr_offset;
2749 } else {
2750 intel_crtc->dspaddr_offset = linear_offset;
2751 }
2752
2753 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2754 dspcntr |= DISPPLANE_ROTATE_180;
2755
2756 x += (intel_crtc->config->pipe_src_w - 1);
2757 y += (intel_crtc->config->pipe_src_h - 1);
2758
2759 /* Finding the last pixel of the last line of the display
2760 data and adding to linear_offset*/
2761 linear_offset +=
2762 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2763 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2764 }
2765
2766 I915_WRITE(reg, dspcntr);
2767
2768 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2769 if (INTEL_INFO(dev)->gen >= 4) {
2770 I915_WRITE(DSPSURF(plane),
2771 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2772 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2773 I915_WRITE(DSPLINOFF(plane), linear_offset);
2774 } else
2775 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2776 POSTING_READ(reg);
2777 }
2778
2779 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2780 struct drm_framebuffer *fb,
2781 int x, int y)
2782 {
2783 struct drm_device *dev = crtc->dev;
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2786 struct drm_plane *primary = crtc->primary;
2787 bool visible = to_intel_plane_state(primary->state)->visible;
2788 struct drm_i915_gem_object *obj;
2789 int plane = intel_crtc->plane;
2790 unsigned long linear_offset;
2791 u32 dspcntr;
2792 u32 reg = DSPCNTR(plane);
2793 int pixel_size;
2794
2795 if (!visible || !fb) {
2796 I915_WRITE(reg, 0);
2797 I915_WRITE(DSPSURF(plane), 0);
2798 POSTING_READ(reg);
2799 return;
2800 }
2801
2802 obj = intel_fb_obj(fb);
2803 if (WARN_ON(obj == NULL))
2804 return;
2805
2806 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2807
2808 dspcntr = DISPPLANE_GAMMA_ENABLE;
2809
2810 dspcntr |= DISPLAY_PLANE_ENABLE;
2811
2812 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2813 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2814
2815 switch (fb->pixel_format) {
2816 case DRM_FORMAT_C8:
2817 dspcntr |= DISPPLANE_8BPP;
2818 break;
2819 case DRM_FORMAT_RGB565:
2820 dspcntr |= DISPPLANE_BGRX565;
2821 break;
2822 case DRM_FORMAT_XRGB8888:
2823 dspcntr |= DISPPLANE_BGRX888;
2824 break;
2825 case DRM_FORMAT_XBGR8888:
2826 dspcntr |= DISPPLANE_RGBX888;
2827 break;
2828 case DRM_FORMAT_XRGB2101010:
2829 dspcntr |= DISPPLANE_BGRX101010;
2830 break;
2831 case DRM_FORMAT_XBGR2101010:
2832 dspcntr |= DISPPLANE_RGBX101010;
2833 break;
2834 default:
2835 BUG();
2836 }
2837
2838 if (obj->tiling_mode != I915_TILING_NONE)
2839 dspcntr |= DISPPLANE_TILED;
2840
2841 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2842 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2843
2844 linear_offset = y * fb->pitches[0] + x * pixel_size;
2845 intel_crtc->dspaddr_offset =
2846 intel_gen4_compute_page_offset(dev_priv,
2847 &x, &y, obj->tiling_mode,
2848 pixel_size,
2849 fb->pitches[0]);
2850 linear_offset -= intel_crtc->dspaddr_offset;
2851 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2852 dspcntr |= DISPPLANE_ROTATE_180;
2853
2854 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2855 x += (intel_crtc->config->pipe_src_w - 1);
2856 y += (intel_crtc->config->pipe_src_h - 1);
2857
2858 /* Finding the last pixel of the last line of the display
2859 data and adding to linear_offset*/
2860 linear_offset +=
2861 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2862 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2863 }
2864 }
2865
2866 I915_WRITE(reg, dspcntr);
2867
2868 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2869 I915_WRITE(DSPSURF(plane),
2870 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2871 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2872 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2873 } else {
2874 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2875 I915_WRITE(DSPLINOFF(plane), linear_offset);
2876 }
2877 POSTING_READ(reg);
2878 }
2879
2880 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2881 uint32_t pixel_format)
2882 {
2883 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2884
2885 /*
2886 * The stride is either expressed as a multiple of 64 bytes
2887 * chunks for linear buffers or in number of tiles for tiled
2888 * buffers.
2889 */
2890 switch (fb_modifier) {
2891 case DRM_FORMAT_MOD_NONE:
2892 return 64;
2893 case I915_FORMAT_MOD_X_TILED:
2894 if (INTEL_INFO(dev)->gen == 2)
2895 return 128;
2896 return 512;
2897 case I915_FORMAT_MOD_Y_TILED:
2898 /* No need to check for old gens and Y tiling since this is
2899 * about the display engine and those will be blocked before
2900 * we get here.
2901 */
2902 return 128;
2903 case I915_FORMAT_MOD_Yf_TILED:
2904 if (bits_per_pixel == 8)
2905 return 64;
2906 else
2907 return 128;
2908 default:
2909 MISSING_CASE(fb_modifier);
2910 return 64;
2911 }
2912 }
2913
2914 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2915 struct drm_i915_gem_object *obj)
2916 {
2917 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2918
2919 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2920 view = &i915_ggtt_view_rotated;
2921
2922 return i915_gem_obj_ggtt_offset_view(obj, view);
2923 }
2924
2925 /*
2926 * This function detaches (aka. unbinds) unused scalers in hardware
2927 */
2928 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2929 {
2930 struct drm_device *dev;
2931 struct drm_i915_private *dev_priv;
2932 struct intel_crtc_scaler_state *scaler_state;
2933 int i;
2934
2935 if (!intel_crtc || !intel_crtc->config)
2936 return;
2937
2938 dev = intel_crtc->base.dev;
2939 dev_priv = dev->dev_private;
2940 scaler_state = &intel_crtc->config->scaler_state;
2941
2942 /* loop through and disable scalers that aren't in use */
2943 for (i = 0; i < intel_crtc->num_scalers; i++) {
2944 if (!scaler_state->scalers[i].in_use) {
2945 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2946 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2947 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2948 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2949 intel_crtc->base.base.id, intel_crtc->pipe, i);
2950 }
2951 }
2952 }
2953
2954 u32 skl_plane_ctl_format(uint32_t pixel_format)
2955 {
2956 switch (pixel_format) {
2957 case DRM_FORMAT_C8:
2958 return PLANE_CTL_FORMAT_INDEXED;
2959 case DRM_FORMAT_RGB565:
2960 return PLANE_CTL_FORMAT_RGB_565;
2961 case DRM_FORMAT_XBGR8888:
2962 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2963 case DRM_FORMAT_XRGB8888:
2964 return PLANE_CTL_FORMAT_XRGB_8888;
2965 /*
2966 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2967 * to be already pre-multiplied. We need to add a knob (or a different
2968 * DRM_FORMAT) for user-space to configure that.
2969 */
2970 case DRM_FORMAT_ABGR8888:
2971 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2972 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2973 case DRM_FORMAT_ARGB8888:
2974 return PLANE_CTL_FORMAT_XRGB_8888 |
2975 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2976 case DRM_FORMAT_XRGB2101010:
2977 return PLANE_CTL_FORMAT_XRGB_2101010;
2978 case DRM_FORMAT_XBGR2101010:
2979 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2980 case DRM_FORMAT_YUYV:
2981 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2982 case DRM_FORMAT_YVYU:
2983 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2984 case DRM_FORMAT_UYVY:
2985 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2986 case DRM_FORMAT_VYUY:
2987 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2988 default:
2989 MISSING_CASE(pixel_format);
2990 }
2991
2992 return 0;
2993 }
2994
2995 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2996 {
2997 switch (fb_modifier) {
2998 case DRM_FORMAT_MOD_NONE:
2999 break;
3000 case I915_FORMAT_MOD_X_TILED:
3001 return PLANE_CTL_TILED_X;
3002 case I915_FORMAT_MOD_Y_TILED:
3003 return PLANE_CTL_TILED_Y;
3004 case I915_FORMAT_MOD_Yf_TILED:
3005 return PLANE_CTL_TILED_YF;
3006 default:
3007 MISSING_CASE(fb_modifier);
3008 }
3009
3010 return 0;
3011 }
3012
3013 u32 skl_plane_ctl_rotation(unsigned int rotation)
3014 {
3015 switch (rotation) {
3016 case BIT(DRM_ROTATE_0):
3017 break;
3018 /*
3019 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3020 * while i915 HW rotation is clockwise, thats why this swapping.
3021 */
3022 case BIT(DRM_ROTATE_90):
3023 return PLANE_CTL_ROTATE_270;
3024 case BIT(DRM_ROTATE_180):
3025 return PLANE_CTL_ROTATE_180;
3026 case BIT(DRM_ROTATE_270):
3027 return PLANE_CTL_ROTATE_90;
3028 default:
3029 MISSING_CASE(rotation);
3030 }
3031
3032 return 0;
3033 }
3034
3035 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3036 struct drm_framebuffer *fb,
3037 int x, int y)
3038 {
3039 struct drm_device *dev = crtc->dev;
3040 struct drm_i915_private *dev_priv = dev->dev_private;
3041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3042 struct drm_plane *plane = crtc->primary;
3043 bool visible = to_intel_plane_state(plane->state)->visible;
3044 struct drm_i915_gem_object *obj;
3045 int pipe = intel_crtc->pipe;
3046 u32 plane_ctl, stride_div, stride;
3047 u32 tile_height, plane_offset, plane_size;
3048 unsigned int rotation;
3049 int x_offset, y_offset;
3050 unsigned long surf_addr;
3051 struct intel_crtc_state *crtc_state = intel_crtc->config;
3052 struct intel_plane_state *plane_state;
3053 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3054 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3055 int scaler_id = -1;
3056
3057 plane_state = to_intel_plane_state(plane->state);
3058
3059 if (!visible || !fb) {
3060 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3061 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3062 POSTING_READ(PLANE_CTL(pipe, 0));
3063 return;
3064 }
3065
3066 plane_ctl = PLANE_CTL_ENABLE |
3067 PLANE_CTL_PIPE_GAMMA_ENABLE |
3068 PLANE_CTL_PIPE_CSC_ENABLE;
3069
3070 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3071 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3072 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3073
3074 rotation = plane->state->rotation;
3075 plane_ctl |= skl_plane_ctl_rotation(rotation);
3076
3077 obj = intel_fb_obj(fb);
3078 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3079 fb->pixel_format);
3080 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3081
3082 /*
3083 * FIXME: intel_plane_state->src, dst aren't set when transitional
3084 * update_plane helpers are called from legacy paths.
3085 * Once full atomic crtc is available, below check can be avoided.
3086 */
3087 if (drm_rect_width(&plane_state->src)) {
3088 scaler_id = plane_state->scaler_id;
3089 src_x = plane_state->src.x1 >> 16;
3090 src_y = plane_state->src.y1 >> 16;
3091 src_w = drm_rect_width(&plane_state->src) >> 16;
3092 src_h = drm_rect_height(&plane_state->src) >> 16;
3093 dst_x = plane_state->dst.x1;
3094 dst_y = plane_state->dst.y1;
3095 dst_w = drm_rect_width(&plane_state->dst);
3096 dst_h = drm_rect_height(&plane_state->dst);
3097
3098 WARN_ON(x != src_x || y != src_y);
3099 } else {
3100 src_w = intel_crtc->config->pipe_src_w;
3101 src_h = intel_crtc->config->pipe_src_h;
3102 }
3103
3104 if (intel_rotation_90_or_270(rotation)) {
3105 /* stride = Surface height in tiles */
3106 tile_height = intel_tile_height(dev, fb->pixel_format,
3107 fb->modifier[0]);
3108 stride = DIV_ROUND_UP(fb->height, tile_height);
3109 x_offset = stride * tile_height - y - src_h;
3110 y_offset = x;
3111 plane_size = (src_w - 1) << 16 | (src_h - 1);
3112 } else {
3113 stride = fb->pitches[0] / stride_div;
3114 x_offset = x;
3115 y_offset = y;
3116 plane_size = (src_h - 1) << 16 | (src_w - 1);
3117 }
3118 plane_offset = y_offset << 16 | x_offset;
3119
3120 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3121 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3122 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3123 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3124
3125 if (scaler_id >= 0) {
3126 uint32_t ps_ctrl = 0;
3127
3128 WARN_ON(!dst_w || !dst_h);
3129 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3130 crtc_state->scaler_state.scalers[scaler_id].mode;
3131 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3132 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3133 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3134 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3135 I915_WRITE(PLANE_POS(pipe, 0), 0);
3136 } else {
3137 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3138 }
3139
3140 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3141
3142 POSTING_READ(PLANE_SURF(pipe, 0));
3143 }
3144
3145 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3146 static int
3147 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3148 int x, int y, enum mode_set_atomic state)
3149 {
3150 struct drm_device *dev = crtc->dev;
3151 struct drm_i915_private *dev_priv = dev->dev_private;
3152
3153 if (dev_priv->display.disable_fbc)
3154 dev_priv->display.disable_fbc(dev);
3155
3156 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3157
3158 return 0;
3159 }
3160
3161 static void intel_complete_page_flips(struct drm_device *dev)
3162 {
3163 struct drm_crtc *crtc;
3164
3165 for_each_crtc(dev, crtc) {
3166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3167 enum plane plane = intel_crtc->plane;
3168
3169 intel_prepare_page_flip(dev, plane);
3170 intel_finish_page_flip_plane(dev, plane);
3171 }
3172 }
3173
3174 static void intel_update_primary_planes(struct drm_device *dev)
3175 {
3176 struct drm_i915_private *dev_priv = dev->dev_private;
3177 struct drm_crtc *crtc;
3178
3179 for_each_crtc(dev, crtc) {
3180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181
3182 drm_modeset_lock(&crtc->mutex, NULL);
3183 /*
3184 * FIXME: Once we have proper support for primary planes (and
3185 * disabling them without disabling the entire crtc) allow again
3186 * a NULL crtc->primary->fb.
3187 */
3188 if (intel_crtc->active && crtc->primary->fb)
3189 dev_priv->display.update_primary_plane(crtc,
3190 crtc->primary->fb,
3191 crtc->x,
3192 crtc->y);
3193 drm_modeset_unlock(&crtc->mutex);
3194 }
3195 }
3196
3197 void intel_prepare_reset(struct drm_device *dev)
3198 {
3199 /* no reset support for gen2 */
3200 if (IS_GEN2(dev))
3201 return;
3202
3203 /* reset doesn't touch the display */
3204 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3205 return;
3206
3207 drm_modeset_lock_all(dev);
3208 /*
3209 * Disabling the crtcs gracefully seems nicer. Also the
3210 * g33 docs say we should at least disable all the planes.
3211 */
3212 intel_display_suspend(dev);
3213 }
3214
3215 void intel_finish_reset(struct drm_device *dev)
3216 {
3217 struct drm_i915_private *dev_priv = to_i915(dev);
3218
3219 /*
3220 * Flips in the rings will be nuked by the reset,
3221 * so complete all pending flips so that user space
3222 * will get its events and not get stuck.
3223 */
3224 intel_complete_page_flips(dev);
3225
3226 /* no reset support for gen2 */
3227 if (IS_GEN2(dev))
3228 return;
3229
3230 /* reset doesn't touch the display */
3231 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3232 /*
3233 * Flips in the rings have been nuked by the reset,
3234 * so update the base address of all primary
3235 * planes to the the last fb to make sure we're
3236 * showing the correct fb after a reset.
3237 */
3238 intel_update_primary_planes(dev);
3239 return;
3240 }
3241
3242 /*
3243 * The display has been reset as well,
3244 * so need a full re-initialization.
3245 */
3246 intel_runtime_pm_disable_interrupts(dev_priv);
3247 intel_runtime_pm_enable_interrupts(dev_priv);
3248
3249 intel_modeset_init_hw(dev);
3250
3251 spin_lock_irq(&dev_priv->irq_lock);
3252 if (dev_priv->display.hpd_irq_setup)
3253 dev_priv->display.hpd_irq_setup(dev);
3254 spin_unlock_irq(&dev_priv->irq_lock);
3255
3256 intel_modeset_setup_hw_state(dev, true);
3257
3258 intel_hpd_init(dev_priv);
3259
3260 drm_modeset_unlock_all(dev);
3261 }
3262
3263 static void
3264 intel_finish_fb(struct drm_framebuffer *old_fb)
3265 {
3266 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3267 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3268 bool was_interruptible = dev_priv->mm.interruptible;
3269 int ret;
3270
3271 /* Big Hammer, we also need to ensure that any pending
3272 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3273 * current scanout is retired before unpinning the old
3274 * framebuffer. Note that we rely on userspace rendering
3275 * into the buffer attached to the pipe they are waiting
3276 * on. If not, userspace generates a GPU hang with IPEHR
3277 * point to the MI_WAIT_FOR_EVENT.
3278 *
3279 * This should only fail upon a hung GPU, in which case we
3280 * can safely continue.
3281 */
3282 dev_priv->mm.interruptible = false;
3283 ret = i915_gem_object_wait_rendering(obj, true);
3284 dev_priv->mm.interruptible = was_interruptible;
3285
3286 WARN_ON(ret);
3287 }
3288
3289 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3290 {
3291 struct drm_device *dev = crtc->dev;
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3294 bool pending;
3295
3296 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3297 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3298 return false;
3299
3300 spin_lock_irq(&dev->event_lock);
3301 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3302 spin_unlock_irq(&dev->event_lock);
3303
3304 return pending;
3305 }
3306
3307 static void intel_update_pipe_size(struct intel_crtc *crtc)
3308 {
3309 struct drm_device *dev = crtc->base.dev;
3310 struct drm_i915_private *dev_priv = dev->dev_private;
3311 const struct drm_display_mode *adjusted_mode;
3312
3313 if (!i915.fastboot)
3314 return;
3315
3316 /*
3317 * Update pipe size and adjust fitter if needed: the reason for this is
3318 * that in compute_mode_changes we check the native mode (not the pfit
3319 * mode) to see if we can flip rather than do a full mode set. In the
3320 * fastboot case, we'll flip, but if we don't update the pipesrc and
3321 * pfit state, we'll end up with a big fb scanned out into the wrong
3322 * sized surface.
3323 *
3324 * To fix this properly, we need to hoist the checks up into
3325 * compute_mode_changes (or above), check the actual pfit state and
3326 * whether the platform allows pfit disable with pipe active, and only
3327 * then update the pipesrc and pfit state, even on the flip path.
3328 */
3329
3330 adjusted_mode = &crtc->config->base.adjusted_mode;
3331
3332 I915_WRITE(PIPESRC(crtc->pipe),
3333 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3334 (adjusted_mode->crtc_vdisplay - 1));
3335 if (!crtc->config->pch_pfit.enabled &&
3336 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3337 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3338 I915_WRITE(PF_CTL(crtc->pipe), 0);
3339 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3340 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3341 }
3342 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3343 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3344 }
3345
3346 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3347 {
3348 struct drm_device *dev = crtc->dev;
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3351 int pipe = intel_crtc->pipe;
3352 u32 reg, temp;
3353
3354 /* enable normal train */
3355 reg = FDI_TX_CTL(pipe);
3356 temp = I915_READ(reg);
3357 if (IS_IVYBRIDGE(dev)) {
3358 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3359 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3360 } else {
3361 temp &= ~FDI_LINK_TRAIN_NONE;
3362 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3363 }
3364 I915_WRITE(reg, temp);
3365
3366 reg = FDI_RX_CTL(pipe);
3367 temp = I915_READ(reg);
3368 if (HAS_PCH_CPT(dev)) {
3369 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3370 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3371 } else {
3372 temp &= ~FDI_LINK_TRAIN_NONE;
3373 temp |= FDI_LINK_TRAIN_NONE;
3374 }
3375 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3376
3377 /* wait one idle pattern time */
3378 POSTING_READ(reg);
3379 udelay(1000);
3380
3381 /* IVB wants error correction enabled */
3382 if (IS_IVYBRIDGE(dev))
3383 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3384 FDI_FE_ERRC_ENABLE);
3385 }
3386
3387 /* The FDI link training functions for ILK/Ibexpeak. */
3388 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3389 {
3390 struct drm_device *dev = crtc->dev;
3391 struct drm_i915_private *dev_priv = dev->dev_private;
3392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3393 int pipe = intel_crtc->pipe;
3394 u32 reg, temp, tries;
3395
3396 /* FDI needs bits from pipe first */
3397 assert_pipe_enabled(dev_priv, pipe);
3398
3399 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3400 for train result */
3401 reg = FDI_RX_IMR(pipe);
3402 temp = I915_READ(reg);
3403 temp &= ~FDI_RX_SYMBOL_LOCK;
3404 temp &= ~FDI_RX_BIT_LOCK;
3405 I915_WRITE(reg, temp);
3406 I915_READ(reg);
3407 udelay(150);
3408
3409 /* enable CPU FDI TX and PCH FDI RX */
3410 reg = FDI_TX_CTL(pipe);
3411 temp = I915_READ(reg);
3412 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3413 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3414 temp &= ~FDI_LINK_TRAIN_NONE;
3415 temp |= FDI_LINK_TRAIN_PATTERN_1;
3416 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3417
3418 reg = FDI_RX_CTL(pipe);
3419 temp = I915_READ(reg);
3420 temp &= ~FDI_LINK_TRAIN_NONE;
3421 temp |= FDI_LINK_TRAIN_PATTERN_1;
3422 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3423
3424 POSTING_READ(reg);
3425 udelay(150);
3426
3427 /* Ironlake workaround, enable clock pointer after FDI enable*/
3428 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3429 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3430 FDI_RX_PHASE_SYNC_POINTER_EN);
3431
3432 reg = FDI_RX_IIR(pipe);
3433 for (tries = 0; tries < 5; tries++) {
3434 temp = I915_READ(reg);
3435 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3436
3437 if ((temp & FDI_RX_BIT_LOCK)) {
3438 DRM_DEBUG_KMS("FDI train 1 done.\n");
3439 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3440 break;
3441 }
3442 }
3443 if (tries == 5)
3444 DRM_ERROR("FDI train 1 fail!\n");
3445
3446 /* Train 2 */
3447 reg = FDI_TX_CTL(pipe);
3448 temp = I915_READ(reg);
3449 temp &= ~FDI_LINK_TRAIN_NONE;
3450 temp |= FDI_LINK_TRAIN_PATTERN_2;
3451 I915_WRITE(reg, temp);
3452
3453 reg = FDI_RX_CTL(pipe);
3454 temp = I915_READ(reg);
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_2;
3457 I915_WRITE(reg, temp);
3458
3459 POSTING_READ(reg);
3460 udelay(150);
3461
3462 reg = FDI_RX_IIR(pipe);
3463 for (tries = 0; tries < 5; tries++) {
3464 temp = I915_READ(reg);
3465 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3466
3467 if (temp & FDI_RX_SYMBOL_LOCK) {
3468 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3469 DRM_DEBUG_KMS("FDI train 2 done.\n");
3470 break;
3471 }
3472 }
3473 if (tries == 5)
3474 DRM_ERROR("FDI train 2 fail!\n");
3475
3476 DRM_DEBUG_KMS("FDI train done\n");
3477
3478 }
3479
3480 static const int snb_b_fdi_train_param[] = {
3481 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3482 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3483 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3484 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3485 };
3486
3487 /* The FDI link training functions for SNB/Cougarpoint. */
3488 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3489 {
3490 struct drm_device *dev = crtc->dev;
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493 int pipe = intel_crtc->pipe;
3494 u32 reg, temp, i, retry;
3495
3496 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3497 for train result */
3498 reg = FDI_RX_IMR(pipe);
3499 temp = I915_READ(reg);
3500 temp &= ~FDI_RX_SYMBOL_LOCK;
3501 temp &= ~FDI_RX_BIT_LOCK;
3502 I915_WRITE(reg, temp);
3503
3504 POSTING_READ(reg);
3505 udelay(150);
3506
3507 /* enable CPU FDI TX and PCH FDI RX */
3508 reg = FDI_TX_CTL(pipe);
3509 temp = I915_READ(reg);
3510 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3511 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3512 temp &= ~FDI_LINK_TRAIN_NONE;
3513 temp |= FDI_LINK_TRAIN_PATTERN_1;
3514 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3515 /* SNB-B */
3516 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3517 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3518
3519 I915_WRITE(FDI_RX_MISC(pipe),
3520 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3521
3522 reg = FDI_RX_CTL(pipe);
3523 temp = I915_READ(reg);
3524 if (HAS_PCH_CPT(dev)) {
3525 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3526 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3527 } else {
3528 temp &= ~FDI_LINK_TRAIN_NONE;
3529 temp |= FDI_LINK_TRAIN_PATTERN_1;
3530 }
3531 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3532
3533 POSTING_READ(reg);
3534 udelay(150);
3535
3536 for (i = 0; i < 4; i++) {
3537 reg = FDI_TX_CTL(pipe);
3538 temp = I915_READ(reg);
3539 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3540 temp |= snb_b_fdi_train_param[i];
3541 I915_WRITE(reg, temp);
3542
3543 POSTING_READ(reg);
3544 udelay(500);
3545
3546 for (retry = 0; retry < 5; retry++) {
3547 reg = FDI_RX_IIR(pipe);
3548 temp = I915_READ(reg);
3549 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3550 if (temp & FDI_RX_BIT_LOCK) {
3551 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3552 DRM_DEBUG_KMS("FDI train 1 done.\n");
3553 break;
3554 }
3555 udelay(50);
3556 }
3557 if (retry < 5)
3558 break;
3559 }
3560 if (i == 4)
3561 DRM_ERROR("FDI train 1 fail!\n");
3562
3563 /* Train 2 */
3564 reg = FDI_TX_CTL(pipe);
3565 temp = I915_READ(reg);
3566 temp &= ~FDI_LINK_TRAIN_NONE;
3567 temp |= FDI_LINK_TRAIN_PATTERN_2;
3568 if (IS_GEN6(dev)) {
3569 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3570 /* SNB-B */
3571 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3572 }
3573 I915_WRITE(reg, temp);
3574
3575 reg = FDI_RX_CTL(pipe);
3576 temp = I915_READ(reg);
3577 if (HAS_PCH_CPT(dev)) {
3578 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3579 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3580 } else {
3581 temp &= ~FDI_LINK_TRAIN_NONE;
3582 temp |= FDI_LINK_TRAIN_PATTERN_2;
3583 }
3584 I915_WRITE(reg, temp);
3585
3586 POSTING_READ(reg);
3587 udelay(150);
3588
3589 for (i = 0; i < 4; i++) {
3590 reg = FDI_TX_CTL(pipe);
3591 temp = I915_READ(reg);
3592 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3593 temp |= snb_b_fdi_train_param[i];
3594 I915_WRITE(reg, temp);
3595
3596 POSTING_READ(reg);
3597 udelay(500);
3598
3599 for (retry = 0; retry < 5; retry++) {
3600 reg = FDI_RX_IIR(pipe);
3601 temp = I915_READ(reg);
3602 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3603 if (temp & FDI_RX_SYMBOL_LOCK) {
3604 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3605 DRM_DEBUG_KMS("FDI train 2 done.\n");
3606 break;
3607 }
3608 udelay(50);
3609 }
3610 if (retry < 5)
3611 break;
3612 }
3613 if (i == 4)
3614 DRM_ERROR("FDI train 2 fail!\n");
3615
3616 DRM_DEBUG_KMS("FDI train done.\n");
3617 }
3618
3619 /* Manual link training for Ivy Bridge A0 parts */
3620 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3621 {
3622 struct drm_device *dev = crtc->dev;
3623 struct drm_i915_private *dev_priv = dev->dev_private;
3624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3625 int pipe = intel_crtc->pipe;
3626 u32 reg, temp, i, j;
3627
3628 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3629 for train result */
3630 reg = FDI_RX_IMR(pipe);
3631 temp = I915_READ(reg);
3632 temp &= ~FDI_RX_SYMBOL_LOCK;
3633 temp &= ~FDI_RX_BIT_LOCK;
3634 I915_WRITE(reg, temp);
3635
3636 POSTING_READ(reg);
3637 udelay(150);
3638
3639 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3640 I915_READ(FDI_RX_IIR(pipe)));
3641
3642 /* Try each vswing and preemphasis setting twice before moving on */
3643 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3644 /* disable first in case we need to retry */
3645 reg = FDI_TX_CTL(pipe);
3646 temp = I915_READ(reg);
3647 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3648 temp &= ~FDI_TX_ENABLE;
3649 I915_WRITE(reg, temp);
3650
3651 reg = FDI_RX_CTL(pipe);
3652 temp = I915_READ(reg);
3653 temp &= ~FDI_LINK_TRAIN_AUTO;
3654 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3655 temp &= ~FDI_RX_ENABLE;
3656 I915_WRITE(reg, temp);
3657
3658 /* enable CPU FDI TX and PCH FDI RX */
3659 reg = FDI_TX_CTL(pipe);
3660 temp = I915_READ(reg);
3661 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3662 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3663 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3664 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3665 temp |= snb_b_fdi_train_param[j/2];
3666 temp |= FDI_COMPOSITE_SYNC;
3667 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3668
3669 I915_WRITE(FDI_RX_MISC(pipe),
3670 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3671
3672 reg = FDI_RX_CTL(pipe);
3673 temp = I915_READ(reg);
3674 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3675 temp |= FDI_COMPOSITE_SYNC;
3676 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3677
3678 POSTING_READ(reg);
3679 udelay(1); /* should be 0.5us */
3680
3681 for (i = 0; i < 4; i++) {
3682 reg = FDI_RX_IIR(pipe);
3683 temp = I915_READ(reg);
3684 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3685
3686 if (temp & FDI_RX_BIT_LOCK ||
3687 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3688 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3689 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3690 i);
3691 break;
3692 }
3693 udelay(1); /* should be 0.5us */
3694 }
3695 if (i == 4) {
3696 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3697 continue;
3698 }
3699
3700 /* Train 2 */
3701 reg = FDI_TX_CTL(pipe);
3702 temp = I915_READ(reg);
3703 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3704 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3705 I915_WRITE(reg, temp);
3706
3707 reg = FDI_RX_CTL(pipe);
3708 temp = I915_READ(reg);
3709 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3710 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3711 I915_WRITE(reg, temp);
3712
3713 POSTING_READ(reg);
3714 udelay(2); /* should be 1.5us */
3715
3716 for (i = 0; i < 4; i++) {
3717 reg = FDI_RX_IIR(pipe);
3718 temp = I915_READ(reg);
3719 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3720
3721 if (temp & FDI_RX_SYMBOL_LOCK ||
3722 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3723 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3724 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3725 i);
3726 goto train_done;
3727 }
3728 udelay(2); /* should be 1.5us */
3729 }
3730 if (i == 4)
3731 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3732 }
3733
3734 train_done:
3735 DRM_DEBUG_KMS("FDI train done.\n");
3736 }
3737
3738 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3739 {
3740 struct drm_device *dev = intel_crtc->base.dev;
3741 struct drm_i915_private *dev_priv = dev->dev_private;
3742 int pipe = intel_crtc->pipe;
3743 u32 reg, temp;
3744
3745
3746 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3747 reg = FDI_RX_CTL(pipe);
3748 temp = I915_READ(reg);
3749 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3750 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3751 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3752 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3753
3754 POSTING_READ(reg);
3755 udelay(200);
3756
3757 /* Switch from Rawclk to PCDclk */
3758 temp = I915_READ(reg);
3759 I915_WRITE(reg, temp | FDI_PCDCLK);
3760
3761 POSTING_READ(reg);
3762 udelay(200);
3763
3764 /* Enable CPU FDI TX PLL, always on for Ironlake */
3765 reg = FDI_TX_CTL(pipe);
3766 temp = I915_READ(reg);
3767 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3768 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3769
3770 POSTING_READ(reg);
3771 udelay(100);
3772 }
3773 }
3774
3775 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3776 {
3777 struct drm_device *dev = intel_crtc->base.dev;
3778 struct drm_i915_private *dev_priv = dev->dev_private;
3779 int pipe = intel_crtc->pipe;
3780 u32 reg, temp;
3781
3782 /* Switch from PCDclk to Rawclk */
3783 reg = FDI_RX_CTL(pipe);
3784 temp = I915_READ(reg);
3785 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3786
3787 /* Disable CPU FDI TX PLL */
3788 reg = FDI_TX_CTL(pipe);
3789 temp = I915_READ(reg);
3790 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3791
3792 POSTING_READ(reg);
3793 udelay(100);
3794
3795 reg = FDI_RX_CTL(pipe);
3796 temp = I915_READ(reg);
3797 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3798
3799 /* Wait for the clocks to turn off. */
3800 POSTING_READ(reg);
3801 udelay(100);
3802 }
3803
3804 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3805 {
3806 struct drm_device *dev = crtc->dev;
3807 struct drm_i915_private *dev_priv = dev->dev_private;
3808 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3809 int pipe = intel_crtc->pipe;
3810 u32 reg, temp;
3811
3812 /* disable CPU FDI tx and PCH FDI rx */
3813 reg = FDI_TX_CTL(pipe);
3814 temp = I915_READ(reg);
3815 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3816 POSTING_READ(reg);
3817
3818 reg = FDI_RX_CTL(pipe);
3819 temp = I915_READ(reg);
3820 temp &= ~(0x7 << 16);
3821 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3822 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3823
3824 POSTING_READ(reg);
3825 udelay(100);
3826
3827 /* Ironlake workaround, disable clock pointer after downing FDI */
3828 if (HAS_PCH_IBX(dev))
3829 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3830
3831 /* still set train pattern 1 */
3832 reg = FDI_TX_CTL(pipe);
3833 temp = I915_READ(reg);
3834 temp &= ~FDI_LINK_TRAIN_NONE;
3835 temp |= FDI_LINK_TRAIN_PATTERN_1;
3836 I915_WRITE(reg, temp);
3837
3838 reg = FDI_RX_CTL(pipe);
3839 temp = I915_READ(reg);
3840 if (HAS_PCH_CPT(dev)) {
3841 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3842 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3843 } else {
3844 temp &= ~FDI_LINK_TRAIN_NONE;
3845 temp |= FDI_LINK_TRAIN_PATTERN_1;
3846 }
3847 /* BPC in FDI rx is consistent with that in PIPECONF */
3848 temp &= ~(0x07 << 16);
3849 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3850 I915_WRITE(reg, temp);
3851
3852 POSTING_READ(reg);
3853 udelay(100);
3854 }
3855
3856 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3857 {
3858 struct intel_crtc *crtc;
3859
3860 /* Note that we don't need to be called with mode_config.lock here
3861 * as our list of CRTC objects is static for the lifetime of the
3862 * device and so cannot disappear as we iterate. Similarly, we can
3863 * happily treat the predicates as racy, atomic checks as userspace
3864 * cannot claim and pin a new fb without at least acquring the
3865 * struct_mutex and so serialising with us.
3866 */
3867 for_each_intel_crtc(dev, crtc) {
3868 if (atomic_read(&crtc->unpin_work_count) == 0)
3869 continue;
3870
3871 if (crtc->unpin_work)
3872 intel_wait_for_vblank(dev, crtc->pipe);
3873
3874 return true;
3875 }
3876
3877 return false;
3878 }
3879
3880 static void page_flip_completed(struct intel_crtc *intel_crtc)
3881 {
3882 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3883 struct intel_unpin_work *work = intel_crtc->unpin_work;
3884
3885 /* ensure that the unpin work is consistent wrt ->pending. */
3886 smp_rmb();
3887 intel_crtc->unpin_work = NULL;
3888
3889 if (work->event)
3890 drm_send_vblank_event(intel_crtc->base.dev,
3891 intel_crtc->pipe,
3892 work->event);
3893
3894 drm_crtc_vblank_put(&intel_crtc->base);
3895
3896 wake_up_all(&dev_priv->pending_flip_queue);
3897 queue_work(dev_priv->wq, &work->work);
3898
3899 trace_i915_flip_complete(intel_crtc->plane,
3900 work->pending_flip_obj);
3901 }
3902
3903 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3904 {
3905 struct drm_device *dev = crtc->dev;
3906 struct drm_i915_private *dev_priv = dev->dev_private;
3907
3908 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3909 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3910 !intel_crtc_has_pending_flip(crtc),
3911 60*HZ) == 0)) {
3912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3913
3914 spin_lock_irq(&dev->event_lock);
3915 if (intel_crtc->unpin_work) {
3916 WARN_ONCE(1, "Removing stuck page flip\n");
3917 page_flip_completed(intel_crtc);
3918 }
3919 spin_unlock_irq(&dev->event_lock);
3920 }
3921
3922 if (crtc->primary->fb) {
3923 mutex_lock(&dev->struct_mutex);
3924 intel_finish_fb(crtc->primary->fb);
3925 mutex_unlock(&dev->struct_mutex);
3926 }
3927 }
3928
3929 /* Program iCLKIP clock to the desired frequency */
3930 static void lpt_program_iclkip(struct drm_crtc *crtc)
3931 {
3932 struct drm_device *dev = crtc->dev;
3933 struct drm_i915_private *dev_priv = dev->dev_private;
3934 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3935 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3936 u32 temp;
3937
3938 mutex_lock(&dev_priv->sb_lock);
3939
3940 /* It is necessary to ungate the pixclk gate prior to programming
3941 * the divisors, and gate it back when it is done.
3942 */
3943 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3944
3945 /* Disable SSCCTL */
3946 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3947 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3948 SBI_SSCCTL_DISABLE,
3949 SBI_ICLK);
3950
3951 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3952 if (clock == 20000) {
3953 auxdiv = 1;
3954 divsel = 0x41;
3955 phaseinc = 0x20;
3956 } else {
3957 /* The iCLK virtual clock root frequency is in MHz,
3958 * but the adjusted_mode->crtc_clock in in KHz. To get the
3959 * divisors, it is necessary to divide one by another, so we
3960 * convert the virtual clock precision to KHz here for higher
3961 * precision.
3962 */
3963 u32 iclk_virtual_root_freq = 172800 * 1000;
3964 u32 iclk_pi_range = 64;
3965 u32 desired_divisor, msb_divisor_value, pi_value;
3966
3967 desired_divisor = (iclk_virtual_root_freq / clock);
3968 msb_divisor_value = desired_divisor / iclk_pi_range;
3969 pi_value = desired_divisor % iclk_pi_range;
3970
3971 auxdiv = 0;
3972 divsel = msb_divisor_value - 2;
3973 phaseinc = pi_value;
3974 }
3975
3976 /* This should not happen with any sane values */
3977 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3978 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3979 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3980 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3981
3982 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3983 clock,
3984 auxdiv,
3985 divsel,
3986 phasedir,
3987 phaseinc);
3988
3989 /* Program SSCDIVINTPHASE6 */
3990 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3991 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3992 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3993 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3994 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3995 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3996 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3997 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3998
3999 /* Program SSCAUXDIV */
4000 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4001 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4002 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4003 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4004
4005 /* Enable modulator and associated divider */
4006 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4007 temp &= ~SBI_SSCCTL_DISABLE;
4008 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4009
4010 /* Wait for initialization time */
4011 udelay(24);
4012
4013 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4014
4015 mutex_unlock(&dev_priv->sb_lock);
4016 }
4017
4018 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4019 enum pipe pch_transcoder)
4020 {
4021 struct drm_device *dev = crtc->base.dev;
4022 struct drm_i915_private *dev_priv = dev->dev_private;
4023 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4024
4025 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4026 I915_READ(HTOTAL(cpu_transcoder)));
4027 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4028 I915_READ(HBLANK(cpu_transcoder)));
4029 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4030 I915_READ(HSYNC(cpu_transcoder)));
4031
4032 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4033 I915_READ(VTOTAL(cpu_transcoder)));
4034 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4035 I915_READ(VBLANK(cpu_transcoder)));
4036 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4037 I915_READ(VSYNC(cpu_transcoder)));
4038 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4039 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4040 }
4041
4042 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4043 {
4044 struct drm_i915_private *dev_priv = dev->dev_private;
4045 uint32_t temp;
4046
4047 temp = I915_READ(SOUTH_CHICKEN1);
4048 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4049 return;
4050
4051 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4052 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4053
4054 temp &= ~FDI_BC_BIFURCATION_SELECT;
4055 if (enable)
4056 temp |= FDI_BC_BIFURCATION_SELECT;
4057
4058 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4059 I915_WRITE(SOUTH_CHICKEN1, temp);
4060 POSTING_READ(SOUTH_CHICKEN1);
4061 }
4062
4063 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4064 {
4065 struct drm_device *dev = intel_crtc->base.dev;
4066
4067 switch (intel_crtc->pipe) {
4068 case PIPE_A:
4069 break;
4070 case PIPE_B:
4071 if (intel_crtc->config->fdi_lanes > 2)
4072 cpt_set_fdi_bc_bifurcation(dev, false);
4073 else
4074 cpt_set_fdi_bc_bifurcation(dev, true);
4075
4076 break;
4077 case PIPE_C:
4078 cpt_set_fdi_bc_bifurcation(dev, true);
4079
4080 break;
4081 default:
4082 BUG();
4083 }
4084 }
4085
4086 /*
4087 * Enable PCH resources required for PCH ports:
4088 * - PCH PLLs
4089 * - FDI training & RX/TX
4090 * - update transcoder timings
4091 * - DP transcoding bits
4092 * - transcoder
4093 */
4094 static void ironlake_pch_enable(struct drm_crtc *crtc)
4095 {
4096 struct drm_device *dev = crtc->dev;
4097 struct drm_i915_private *dev_priv = dev->dev_private;
4098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4099 int pipe = intel_crtc->pipe;
4100 u32 reg, temp;
4101
4102 assert_pch_transcoder_disabled(dev_priv, pipe);
4103
4104 if (IS_IVYBRIDGE(dev))
4105 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4106
4107 /* Write the TU size bits before fdi link training, so that error
4108 * detection works. */
4109 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4110 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4111
4112 /* For PCH output, training FDI link */
4113 dev_priv->display.fdi_link_train(crtc);
4114
4115 /* We need to program the right clock selection before writing the pixel
4116 * mutliplier into the DPLL. */
4117 if (HAS_PCH_CPT(dev)) {
4118 u32 sel;
4119
4120 temp = I915_READ(PCH_DPLL_SEL);
4121 temp |= TRANS_DPLL_ENABLE(pipe);
4122 sel = TRANS_DPLLB_SEL(pipe);
4123 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4124 temp |= sel;
4125 else
4126 temp &= ~sel;
4127 I915_WRITE(PCH_DPLL_SEL, temp);
4128 }
4129
4130 /* XXX: pch pll's can be enabled any time before we enable the PCH
4131 * transcoder, and we actually should do this to not upset any PCH
4132 * transcoder that already use the clock when we share it.
4133 *
4134 * Note that enable_shared_dpll tries to do the right thing, but
4135 * get_shared_dpll unconditionally resets the pll - we need that to have
4136 * the right LVDS enable sequence. */
4137 intel_enable_shared_dpll(intel_crtc);
4138
4139 /* set transcoder timing, panel must allow it */
4140 assert_panel_unlocked(dev_priv, pipe);
4141 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4142
4143 intel_fdi_normal_train(crtc);
4144
4145 /* For PCH DP, enable TRANS_DP_CTL */
4146 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4147 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4148 reg = TRANS_DP_CTL(pipe);
4149 temp = I915_READ(reg);
4150 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4151 TRANS_DP_SYNC_MASK |
4152 TRANS_DP_BPC_MASK);
4153 temp |= TRANS_DP_OUTPUT_ENABLE;
4154 temp |= bpc << 9; /* same format but at 11:9 */
4155
4156 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4157 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4158 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4159 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4160
4161 switch (intel_trans_dp_port_sel(crtc)) {
4162 case PCH_DP_B:
4163 temp |= TRANS_DP_PORT_SEL_B;
4164 break;
4165 case PCH_DP_C:
4166 temp |= TRANS_DP_PORT_SEL_C;
4167 break;
4168 case PCH_DP_D:
4169 temp |= TRANS_DP_PORT_SEL_D;
4170 break;
4171 default:
4172 BUG();
4173 }
4174
4175 I915_WRITE(reg, temp);
4176 }
4177
4178 ironlake_enable_pch_transcoder(dev_priv, pipe);
4179 }
4180
4181 static void lpt_pch_enable(struct drm_crtc *crtc)
4182 {
4183 struct drm_device *dev = crtc->dev;
4184 struct drm_i915_private *dev_priv = dev->dev_private;
4185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4186 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4187
4188 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4189
4190 lpt_program_iclkip(crtc);
4191
4192 /* Set transcoder timing. */
4193 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4194
4195 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4196 }
4197
4198 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4199 struct intel_crtc_state *crtc_state)
4200 {
4201 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4202 struct intel_shared_dpll *pll;
4203 struct intel_shared_dpll_config *shared_dpll;
4204 enum intel_dpll_id i;
4205
4206 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4207
4208 if (HAS_PCH_IBX(dev_priv->dev)) {
4209 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4210 i = (enum intel_dpll_id) crtc->pipe;
4211 pll = &dev_priv->shared_dplls[i];
4212
4213 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4214 crtc->base.base.id, pll->name);
4215
4216 WARN_ON(shared_dpll[i].crtc_mask);
4217
4218 goto found;
4219 }
4220
4221 if (IS_BROXTON(dev_priv->dev)) {
4222 /* PLL is attached to port in bxt */
4223 struct intel_encoder *encoder;
4224 struct intel_digital_port *intel_dig_port;
4225
4226 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4227 if (WARN_ON(!encoder))
4228 return NULL;
4229
4230 intel_dig_port = enc_to_dig_port(&encoder->base);
4231 /* 1:1 mapping between ports and PLLs */
4232 i = (enum intel_dpll_id)intel_dig_port->port;
4233 pll = &dev_priv->shared_dplls[i];
4234 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4235 crtc->base.base.id, pll->name);
4236 WARN_ON(shared_dpll[i].crtc_mask);
4237
4238 goto found;
4239 }
4240
4241 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4242 pll = &dev_priv->shared_dplls[i];
4243
4244 /* Only want to check enabled timings first */
4245 if (shared_dpll[i].crtc_mask == 0)
4246 continue;
4247
4248 if (memcmp(&crtc_state->dpll_hw_state,
4249 &shared_dpll[i].hw_state,
4250 sizeof(crtc_state->dpll_hw_state)) == 0) {
4251 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4252 crtc->base.base.id, pll->name,
4253 shared_dpll[i].crtc_mask,
4254 pll->active);
4255 goto found;
4256 }
4257 }
4258
4259 /* Ok no matching timings, maybe there's a free one? */
4260 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4261 pll = &dev_priv->shared_dplls[i];
4262 if (shared_dpll[i].crtc_mask == 0) {
4263 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4264 crtc->base.base.id, pll->name);
4265 goto found;
4266 }
4267 }
4268
4269 return NULL;
4270
4271 found:
4272 if (shared_dpll[i].crtc_mask == 0)
4273 shared_dpll[i].hw_state =
4274 crtc_state->dpll_hw_state;
4275
4276 crtc_state->shared_dpll = i;
4277 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4278 pipe_name(crtc->pipe));
4279
4280 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4281
4282 return pll;
4283 }
4284
4285 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4286 {
4287 struct drm_i915_private *dev_priv = to_i915(state->dev);
4288 struct intel_shared_dpll_config *shared_dpll;
4289 struct intel_shared_dpll *pll;
4290 enum intel_dpll_id i;
4291
4292 if (!to_intel_atomic_state(state)->dpll_set)
4293 return;
4294
4295 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4296 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4297 pll = &dev_priv->shared_dplls[i];
4298 pll->config = shared_dpll[i];
4299 }
4300 }
4301
4302 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4303 {
4304 struct drm_i915_private *dev_priv = dev->dev_private;
4305 int dslreg = PIPEDSL(pipe);
4306 u32 temp;
4307
4308 temp = I915_READ(dslreg);
4309 udelay(500);
4310 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4311 if (wait_for(I915_READ(dslreg) != temp, 5))
4312 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4313 }
4314 }
4315
4316 static int
4317 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4318 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4319 int src_w, int src_h, int dst_w, int dst_h)
4320 {
4321 struct intel_crtc_scaler_state *scaler_state =
4322 &crtc_state->scaler_state;
4323 struct intel_crtc *intel_crtc =
4324 to_intel_crtc(crtc_state->base.crtc);
4325 int need_scaling;
4326
4327 need_scaling = intel_rotation_90_or_270(rotation) ?
4328 (src_h != dst_w || src_w != dst_h):
4329 (src_w != dst_w || src_h != dst_h);
4330
4331 /*
4332 * if plane is being disabled or scaler is no more required or force detach
4333 * - free scaler binded to this plane/crtc
4334 * - in order to do this, update crtc->scaler_usage
4335 *
4336 * Here scaler state in crtc_state is set free so that
4337 * scaler can be assigned to other user. Actual register
4338 * update to free the scaler is done in plane/panel-fit programming.
4339 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4340 */
4341 if (force_detach || !need_scaling) {
4342 if (*scaler_id >= 0) {
4343 scaler_state->scaler_users &= ~(1 << scaler_user);
4344 scaler_state->scalers[*scaler_id].in_use = 0;
4345
4346 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4347 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4348 intel_crtc->pipe, scaler_user, *scaler_id,
4349 scaler_state->scaler_users);
4350 *scaler_id = -1;
4351 }
4352 return 0;
4353 }
4354
4355 /* range checks */
4356 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4357 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4358
4359 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4360 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4361 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4362 "size is out of scaler range\n",
4363 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4364 return -EINVAL;
4365 }
4366
4367 /* mark this plane as a scaler user in crtc_state */
4368 scaler_state->scaler_users |= (1 << scaler_user);
4369 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4370 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4371 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4372 scaler_state->scaler_users);
4373
4374 return 0;
4375 }
4376
4377 /**
4378 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4379 *
4380 * @state: crtc's scaler state
4381 * @force_detach: whether to forcibly disable scaler
4382 *
4383 * Return
4384 * 0 - scaler_usage updated successfully
4385 * error - requested scaling cannot be supported or other error condition
4386 */
4387 int skl_update_scaler_crtc(struct intel_crtc_state *state, int force_detach)
4388 {
4389 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4390 struct drm_display_mode *adjusted_mode =
4391 &state->base.adjusted_mode;
4392
4393 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4394 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4395
4396 return skl_update_scaler(state, force_detach, SKL_CRTC_INDEX,
4397 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4398 state->pipe_src_w, state->pipe_src_h,
4399 adjusted_mode->hdisplay, adjusted_mode->hdisplay);
4400 }
4401
4402 /**
4403 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4404 *
4405 * @state: crtc's scaler state
4406 * @plane_state: atomic plane state to update
4407 *
4408 * Return
4409 * 0 - scaler_usage updated successfully
4410 * error - requested scaling cannot be supported or other error condition
4411 */
4412 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4413 struct intel_plane_state *plane_state)
4414 {
4415
4416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4417 struct intel_plane *intel_plane =
4418 to_intel_plane(plane_state->base.plane);
4419 struct drm_framebuffer *fb = plane_state->base.fb;
4420 int ret;
4421
4422 bool force_detach = !fb || !plane_state->visible;
4423
4424 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4425 intel_plane->base.base.id, intel_crtc->pipe,
4426 drm_plane_index(&intel_plane->base));
4427
4428 ret = skl_update_scaler(crtc_state, force_detach,
4429 drm_plane_index(&intel_plane->base),
4430 &plane_state->scaler_id,
4431 plane_state->base.rotation,
4432 drm_rect_width(&plane_state->src) >> 16,
4433 drm_rect_height(&plane_state->src) >> 16,
4434 drm_rect_width(&plane_state->dst),
4435 drm_rect_height(&plane_state->dst));
4436
4437 if (ret || plane_state->scaler_id < 0)
4438 return ret;
4439
4440 /* check colorkey */
4441 if (WARN_ON(intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4442 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4443 intel_plane->base.base.id);
4444 return -EINVAL;
4445 }
4446
4447 /* Check src format */
4448 switch (fb->pixel_format) {
4449 case DRM_FORMAT_RGB565:
4450 case DRM_FORMAT_XBGR8888:
4451 case DRM_FORMAT_XRGB8888:
4452 case DRM_FORMAT_ABGR8888:
4453 case DRM_FORMAT_ARGB8888:
4454 case DRM_FORMAT_XRGB2101010:
4455 case DRM_FORMAT_XBGR2101010:
4456 case DRM_FORMAT_YUYV:
4457 case DRM_FORMAT_YVYU:
4458 case DRM_FORMAT_UYVY:
4459 case DRM_FORMAT_VYUY:
4460 break;
4461 default:
4462 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4463 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4464 return -EINVAL;
4465 }
4466
4467 return 0;
4468 }
4469
4470 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4471 {
4472 struct drm_device *dev = crtc->base.dev;
4473 struct drm_i915_private *dev_priv = dev->dev_private;
4474 int pipe = crtc->pipe;
4475 struct intel_crtc_scaler_state *scaler_state =
4476 &crtc->config->scaler_state;
4477
4478 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4479
4480 /* To update pfit, first update scaler state */
4481 skl_update_scaler_crtc(crtc->config, !enable);
4482 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4483 skl_detach_scalers(crtc);
4484 if (!enable)
4485 return;
4486
4487 if (crtc->config->pch_pfit.enabled) {
4488 int id;
4489
4490 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4491 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4492 return;
4493 }
4494
4495 id = scaler_state->scaler_id;
4496 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4497 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4498 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4499 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4500
4501 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4502 }
4503 }
4504
4505 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4506 {
4507 struct drm_device *dev = crtc->base.dev;
4508 struct drm_i915_private *dev_priv = dev->dev_private;
4509 int pipe = crtc->pipe;
4510
4511 if (crtc->config->pch_pfit.enabled) {
4512 /* Force use of hard-coded filter coefficients
4513 * as some pre-programmed values are broken,
4514 * e.g. x201.
4515 */
4516 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4517 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4518 PF_PIPE_SEL_IVB(pipe));
4519 else
4520 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4521 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4522 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4523 }
4524 }
4525
4526 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4527 {
4528 struct drm_device *dev = crtc->dev;
4529 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4530 struct drm_plane *plane;
4531 struct intel_plane *intel_plane;
4532
4533 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4534 intel_plane = to_intel_plane(plane);
4535 if (intel_plane->pipe == pipe)
4536 intel_plane_restore(&intel_plane->base);
4537 }
4538 }
4539
4540 void hsw_enable_ips(struct intel_crtc *crtc)
4541 {
4542 struct drm_device *dev = crtc->base.dev;
4543 struct drm_i915_private *dev_priv = dev->dev_private;
4544
4545 if (!crtc->config->ips_enabled)
4546 return;
4547
4548 /* We can only enable IPS after we enable a plane and wait for a vblank */
4549 intel_wait_for_vblank(dev, crtc->pipe);
4550
4551 assert_plane_enabled(dev_priv, crtc->plane);
4552 if (IS_BROADWELL(dev)) {
4553 mutex_lock(&dev_priv->rps.hw_lock);
4554 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4555 mutex_unlock(&dev_priv->rps.hw_lock);
4556 /* Quoting Art Runyan: "its not safe to expect any particular
4557 * value in IPS_CTL bit 31 after enabling IPS through the
4558 * mailbox." Moreover, the mailbox may return a bogus state,
4559 * so we need to just enable it and continue on.
4560 */
4561 } else {
4562 I915_WRITE(IPS_CTL, IPS_ENABLE);
4563 /* The bit only becomes 1 in the next vblank, so this wait here
4564 * is essentially intel_wait_for_vblank. If we don't have this
4565 * and don't wait for vblanks until the end of crtc_enable, then
4566 * the HW state readout code will complain that the expected
4567 * IPS_CTL value is not the one we read. */
4568 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4569 DRM_ERROR("Timed out waiting for IPS enable\n");
4570 }
4571 }
4572
4573 void hsw_disable_ips(struct intel_crtc *crtc)
4574 {
4575 struct drm_device *dev = crtc->base.dev;
4576 struct drm_i915_private *dev_priv = dev->dev_private;
4577
4578 if (!crtc->config->ips_enabled)
4579 return;
4580
4581 assert_plane_enabled(dev_priv, crtc->plane);
4582 if (IS_BROADWELL(dev)) {
4583 mutex_lock(&dev_priv->rps.hw_lock);
4584 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4585 mutex_unlock(&dev_priv->rps.hw_lock);
4586 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4587 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4588 DRM_ERROR("Timed out waiting for IPS disable\n");
4589 } else {
4590 I915_WRITE(IPS_CTL, 0);
4591 POSTING_READ(IPS_CTL);
4592 }
4593
4594 /* We need to wait for a vblank before we can disable the plane. */
4595 intel_wait_for_vblank(dev, crtc->pipe);
4596 }
4597
4598 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4599 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4600 {
4601 struct drm_device *dev = crtc->dev;
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4604 enum pipe pipe = intel_crtc->pipe;
4605 int palreg = PALETTE(pipe);
4606 int i;
4607 bool reenable_ips = false;
4608
4609 /* The clocks have to be on to load the palette. */
4610 if (!crtc->state->active)
4611 return;
4612
4613 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4614 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4615 assert_dsi_pll_enabled(dev_priv);
4616 else
4617 assert_pll_enabled(dev_priv, pipe);
4618 }
4619
4620 /* use legacy palette for Ironlake */
4621 if (!HAS_GMCH_DISPLAY(dev))
4622 palreg = LGC_PALETTE(pipe);
4623
4624 /* Workaround : Do not read or write the pipe palette/gamma data while
4625 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4626 */
4627 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4628 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4629 GAMMA_MODE_MODE_SPLIT)) {
4630 hsw_disable_ips(intel_crtc);
4631 reenable_ips = true;
4632 }
4633
4634 for (i = 0; i < 256; i++) {
4635 I915_WRITE(palreg + 4 * i,
4636 (intel_crtc->lut_r[i] << 16) |
4637 (intel_crtc->lut_g[i] << 8) |
4638 intel_crtc->lut_b[i]);
4639 }
4640
4641 if (reenable_ips)
4642 hsw_enable_ips(intel_crtc);
4643 }
4644
4645 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4646 {
4647 if (intel_crtc->overlay) {
4648 struct drm_device *dev = intel_crtc->base.dev;
4649 struct drm_i915_private *dev_priv = dev->dev_private;
4650
4651 mutex_lock(&dev->struct_mutex);
4652 dev_priv->mm.interruptible = false;
4653 (void) intel_overlay_switch_off(intel_crtc->overlay);
4654 dev_priv->mm.interruptible = true;
4655 mutex_unlock(&dev->struct_mutex);
4656 }
4657
4658 /* Let userspace switch the overlay on again. In most cases userspace
4659 * has to recompute where to put it anyway.
4660 */
4661 }
4662
4663 /**
4664 * intel_post_enable_primary - Perform operations after enabling primary plane
4665 * @crtc: the CRTC whose primary plane was just enabled
4666 *
4667 * Performs potentially sleeping operations that must be done after the primary
4668 * plane is enabled, such as updating FBC and IPS. Note that this may be
4669 * called due to an explicit primary plane update, or due to an implicit
4670 * re-enable that is caused when a sprite plane is updated to no longer
4671 * completely hide the primary plane.
4672 */
4673 static void
4674 intel_post_enable_primary(struct drm_crtc *crtc)
4675 {
4676 struct drm_device *dev = crtc->dev;
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4679 int pipe = intel_crtc->pipe;
4680
4681 /*
4682 * BDW signals flip done immediately if the plane
4683 * is disabled, even if the plane enable is already
4684 * armed to occur at the next vblank :(
4685 */
4686 if (IS_BROADWELL(dev))
4687 intel_wait_for_vblank(dev, pipe);
4688
4689 /*
4690 * FIXME IPS should be fine as long as one plane is
4691 * enabled, but in practice it seems to have problems
4692 * when going from primary only to sprite only and vice
4693 * versa.
4694 */
4695 hsw_enable_ips(intel_crtc);
4696
4697 mutex_lock(&dev->struct_mutex);
4698 intel_fbc_update(dev);
4699 mutex_unlock(&dev->struct_mutex);
4700
4701 /*
4702 * Gen2 reports pipe underruns whenever all planes are disabled.
4703 * So don't enable underrun reporting before at least some planes
4704 * are enabled.
4705 * FIXME: Need to fix the logic to work when we turn off all planes
4706 * but leave the pipe running.
4707 */
4708 if (IS_GEN2(dev))
4709 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4710
4711 /* Underruns don't raise interrupts, so check manually. */
4712 if (HAS_GMCH_DISPLAY(dev))
4713 i9xx_check_fifo_underruns(dev_priv);
4714 }
4715
4716 /**
4717 * intel_pre_disable_primary - Perform operations before disabling primary plane
4718 * @crtc: the CRTC whose primary plane is to be disabled
4719 *
4720 * Performs potentially sleeping operations that must be done before the
4721 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4722 * be called due to an explicit primary plane update, or due to an implicit
4723 * disable that is caused when a sprite plane completely hides the primary
4724 * plane.
4725 */
4726 static void
4727 intel_pre_disable_primary(struct drm_crtc *crtc)
4728 {
4729 struct drm_device *dev = crtc->dev;
4730 struct drm_i915_private *dev_priv = dev->dev_private;
4731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4732 int pipe = intel_crtc->pipe;
4733
4734 /*
4735 * Gen2 reports pipe underruns whenever all planes are disabled.
4736 * So diasble underrun reporting before all the planes get disabled.
4737 * FIXME: Need to fix the logic to work when we turn off all planes
4738 * but leave the pipe running.
4739 */
4740 if (IS_GEN2(dev))
4741 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4742
4743 /*
4744 * Vblank time updates from the shadow to live plane control register
4745 * are blocked if the memory self-refresh mode is active at that
4746 * moment. So to make sure the plane gets truly disabled, disable
4747 * first the self-refresh mode. The self-refresh enable bit in turn
4748 * will be checked/applied by the HW only at the next frame start
4749 * event which is after the vblank start event, so we need to have a
4750 * wait-for-vblank between disabling the plane and the pipe.
4751 */
4752 if (HAS_GMCH_DISPLAY(dev))
4753 intel_set_memory_cxsr(dev_priv, false);
4754
4755 mutex_lock(&dev->struct_mutex);
4756 if (dev_priv->fbc.crtc == intel_crtc)
4757 intel_fbc_disable(dev);
4758 mutex_unlock(&dev->struct_mutex);
4759
4760 /*
4761 * FIXME IPS should be fine as long as one plane is
4762 * enabled, but in practice it seems to have problems
4763 * when going from primary only to sprite only and vice
4764 * versa.
4765 */
4766 hsw_disable_ips(intel_crtc);
4767 }
4768
4769 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4770 {
4771 struct drm_device *dev = crtc->dev;
4772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4773 int pipe = intel_crtc->pipe;
4774
4775 intel_enable_primary_hw_plane(crtc->primary, crtc);
4776 intel_enable_sprite_planes(crtc);
4777 if (to_intel_plane_state(crtc->cursor->state)->visible)
4778 intel_crtc_update_cursor(crtc, true);
4779
4780 intel_post_enable_primary(crtc);
4781
4782 /*
4783 * FIXME: Once we grow proper nuclear flip support out of this we need
4784 * to compute the mask of flip planes precisely. For the time being
4785 * consider this a flip to a NULL plane.
4786 */
4787 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4788 }
4789
4790 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4791 {
4792 struct drm_device *dev = crtc->dev;
4793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4794 struct intel_plane *intel_plane;
4795 int pipe = intel_crtc->pipe;
4796
4797 intel_crtc_wait_for_pending_flips(crtc);
4798
4799 intel_pre_disable_primary(crtc);
4800
4801 intel_crtc_dpms_overlay_disable(intel_crtc);
4802 for_each_intel_plane(dev, intel_plane) {
4803 if (intel_plane->pipe == pipe) {
4804 struct drm_crtc *from = intel_plane->base.crtc;
4805
4806 intel_plane->disable_plane(&intel_plane->base,
4807 from ?: crtc, true);
4808 }
4809 }
4810
4811 /*
4812 * FIXME: Once we grow proper nuclear flip support out of this we need
4813 * to compute the mask of flip planes precisely. For the time being
4814 * consider this a flip to a NULL plane.
4815 */
4816 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4817 }
4818
4819 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4820 {
4821 struct drm_device *dev = crtc->dev;
4822 struct drm_i915_private *dev_priv = dev->dev_private;
4823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4824 struct intel_encoder *encoder;
4825 int pipe = intel_crtc->pipe;
4826
4827 if (WARN_ON(intel_crtc->active))
4828 return;
4829
4830 if (intel_crtc->config->has_pch_encoder)
4831 intel_prepare_shared_dpll(intel_crtc);
4832
4833 if (intel_crtc->config->has_dp_encoder)
4834 intel_dp_set_m_n(intel_crtc, M1_N1);
4835
4836 intel_set_pipe_timings(intel_crtc);
4837
4838 if (intel_crtc->config->has_pch_encoder) {
4839 intel_cpu_transcoder_set_m_n(intel_crtc,
4840 &intel_crtc->config->fdi_m_n, NULL);
4841 }
4842
4843 ironlake_set_pipeconf(crtc);
4844
4845 intel_crtc->active = true;
4846
4847 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4848 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4849
4850 for_each_encoder_on_crtc(dev, crtc, encoder)
4851 if (encoder->pre_enable)
4852 encoder->pre_enable(encoder);
4853
4854 if (intel_crtc->config->has_pch_encoder) {
4855 /* Note: FDI PLL enabling _must_ be done before we enable the
4856 * cpu pipes, hence this is separate from all the other fdi/pch
4857 * enabling. */
4858 ironlake_fdi_pll_enable(intel_crtc);
4859 } else {
4860 assert_fdi_tx_disabled(dev_priv, pipe);
4861 assert_fdi_rx_disabled(dev_priv, pipe);
4862 }
4863
4864 ironlake_pfit_enable(intel_crtc);
4865
4866 /*
4867 * On ILK+ LUT must be loaded before the pipe is running but with
4868 * clocks enabled
4869 */
4870 intel_crtc_load_lut(crtc);
4871
4872 intel_update_watermarks(crtc);
4873 intel_enable_pipe(intel_crtc);
4874
4875 if (intel_crtc->config->has_pch_encoder)
4876 ironlake_pch_enable(crtc);
4877
4878 assert_vblank_disabled(crtc);
4879 drm_crtc_vblank_on(crtc);
4880
4881 for_each_encoder_on_crtc(dev, crtc, encoder)
4882 encoder->enable(encoder);
4883
4884 if (HAS_PCH_CPT(dev))
4885 cpt_verify_modeset(dev, intel_crtc->pipe);
4886 }
4887
4888 /* IPS only exists on ULT machines and is tied to pipe A. */
4889 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4890 {
4891 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4892 }
4893
4894 static void haswell_crtc_enable(struct drm_crtc *crtc)
4895 {
4896 struct drm_device *dev = crtc->dev;
4897 struct drm_i915_private *dev_priv = dev->dev_private;
4898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4899 struct intel_encoder *encoder;
4900 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4901 struct intel_crtc_state *pipe_config =
4902 to_intel_crtc_state(crtc->state);
4903
4904 if (WARN_ON(intel_crtc->active))
4905 return;
4906
4907 if (intel_crtc_to_shared_dpll(intel_crtc))
4908 intel_enable_shared_dpll(intel_crtc);
4909
4910 if (intel_crtc->config->has_dp_encoder)
4911 intel_dp_set_m_n(intel_crtc, M1_N1);
4912
4913 intel_set_pipe_timings(intel_crtc);
4914
4915 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4916 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4917 intel_crtc->config->pixel_multiplier - 1);
4918 }
4919
4920 if (intel_crtc->config->has_pch_encoder) {
4921 intel_cpu_transcoder_set_m_n(intel_crtc,
4922 &intel_crtc->config->fdi_m_n, NULL);
4923 }
4924
4925 haswell_set_pipeconf(crtc);
4926
4927 intel_set_pipe_csc(crtc);
4928
4929 intel_crtc->active = true;
4930
4931 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4932 for_each_encoder_on_crtc(dev, crtc, encoder)
4933 if (encoder->pre_enable)
4934 encoder->pre_enable(encoder);
4935
4936 if (intel_crtc->config->has_pch_encoder) {
4937 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4938 true);
4939 dev_priv->display.fdi_link_train(crtc);
4940 }
4941
4942 intel_ddi_enable_pipe_clock(intel_crtc);
4943
4944 if (INTEL_INFO(dev)->gen == 9)
4945 skylake_pfit_update(intel_crtc, 1);
4946 else if (INTEL_INFO(dev)->gen < 9)
4947 ironlake_pfit_enable(intel_crtc);
4948 else
4949 MISSING_CASE(INTEL_INFO(dev)->gen);
4950
4951 /*
4952 * On ILK+ LUT must be loaded before the pipe is running but with
4953 * clocks enabled
4954 */
4955 intel_crtc_load_lut(crtc);
4956
4957 intel_ddi_set_pipe_settings(crtc);
4958 intel_ddi_enable_transcoder_func(crtc);
4959
4960 intel_update_watermarks(crtc);
4961 intel_enable_pipe(intel_crtc);
4962
4963 if (intel_crtc->config->has_pch_encoder)
4964 lpt_pch_enable(crtc);
4965
4966 if (intel_crtc->config->dp_encoder_is_mst)
4967 intel_ddi_set_vc_payload_alloc(crtc, true);
4968
4969 assert_vblank_disabled(crtc);
4970 drm_crtc_vblank_on(crtc);
4971
4972 for_each_encoder_on_crtc(dev, crtc, encoder) {
4973 encoder->enable(encoder);
4974 intel_opregion_notify_encoder(encoder, true);
4975 }
4976
4977 /* If we change the relative order between pipe/planes enabling, we need
4978 * to change the workaround. */
4979 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4980 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4981 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4982 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4983 }
4984 }
4985
4986 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4987 {
4988 struct drm_device *dev = crtc->base.dev;
4989 struct drm_i915_private *dev_priv = dev->dev_private;
4990 int pipe = crtc->pipe;
4991
4992 /* To avoid upsetting the power well on haswell only disable the pfit if
4993 * it's in use. The hw state code will make sure we get this right. */
4994 if (crtc->config->pch_pfit.enabled) {
4995 I915_WRITE(PF_CTL(pipe), 0);
4996 I915_WRITE(PF_WIN_POS(pipe), 0);
4997 I915_WRITE(PF_WIN_SZ(pipe), 0);
4998 }
4999 }
5000
5001 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5002 {
5003 struct drm_device *dev = crtc->dev;
5004 struct drm_i915_private *dev_priv = dev->dev_private;
5005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5006 struct intel_encoder *encoder;
5007 int pipe = intel_crtc->pipe;
5008 u32 reg, temp;
5009
5010 if (WARN_ON(!intel_crtc->active))
5011 return;
5012
5013 for_each_encoder_on_crtc(dev, crtc, encoder)
5014 encoder->disable(encoder);
5015
5016 drm_crtc_vblank_off(crtc);
5017 assert_vblank_disabled(crtc);
5018
5019 if (intel_crtc->config->has_pch_encoder)
5020 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5021
5022 intel_disable_pipe(intel_crtc);
5023
5024 ironlake_pfit_disable(intel_crtc);
5025
5026 if (intel_crtc->config->has_pch_encoder)
5027 ironlake_fdi_disable(crtc);
5028
5029 for_each_encoder_on_crtc(dev, crtc, encoder)
5030 if (encoder->post_disable)
5031 encoder->post_disable(encoder);
5032
5033 if (intel_crtc->config->has_pch_encoder) {
5034 ironlake_disable_pch_transcoder(dev_priv, pipe);
5035
5036 if (HAS_PCH_CPT(dev)) {
5037 /* disable TRANS_DP_CTL */
5038 reg = TRANS_DP_CTL(pipe);
5039 temp = I915_READ(reg);
5040 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5041 TRANS_DP_PORT_SEL_MASK);
5042 temp |= TRANS_DP_PORT_SEL_NONE;
5043 I915_WRITE(reg, temp);
5044
5045 /* disable DPLL_SEL */
5046 temp = I915_READ(PCH_DPLL_SEL);
5047 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5048 I915_WRITE(PCH_DPLL_SEL, temp);
5049 }
5050
5051 /* disable PCH DPLL */
5052 intel_disable_shared_dpll(intel_crtc);
5053
5054 ironlake_fdi_pll_disable(intel_crtc);
5055 }
5056
5057 intel_crtc->active = false;
5058 intel_update_watermarks(crtc);
5059
5060 mutex_lock(&dev->struct_mutex);
5061 intel_fbc_update(dev);
5062 mutex_unlock(&dev->struct_mutex);
5063 }
5064
5065 static void haswell_crtc_disable(struct drm_crtc *crtc)
5066 {
5067 struct drm_device *dev = crtc->dev;
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5070 struct intel_encoder *encoder;
5071 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5072
5073 if (WARN_ON(!intel_crtc->active))
5074 return;
5075
5076 for_each_encoder_on_crtc(dev, crtc, encoder) {
5077 intel_opregion_notify_encoder(encoder, false);
5078 encoder->disable(encoder);
5079 }
5080
5081 drm_crtc_vblank_off(crtc);
5082 assert_vblank_disabled(crtc);
5083
5084 if (intel_crtc->config->has_pch_encoder)
5085 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5086 false);
5087 intel_disable_pipe(intel_crtc);
5088
5089 if (intel_crtc->config->dp_encoder_is_mst)
5090 intel_ddi_set_vc_payload_alloc(crtc, false);
5091
5092 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5093
5094 if (INTEL_INFO(dev)->gen == 9)
5095 skylake_pfit_update(intel_crtc, 0);
5096 else if (INTEL_INFO(dev)->gen < 9)
5097 ironlake_pfit_disable(intel_crtc);
5098 else
5099 MISSING_CASE(INTEL_INFO(dev)->gen);
5100
5101 intel_ddi_disable_pipe_clock(intel_crtc);
5102
5103 if (intel_crtc->config->has_pch_encoder) {
5104 lpt_disable_pch_transcoder(dev_priv);
5105 intel_ddi_fdi_disable(crtc);
5106 }
5107
5108 for_each_encoder_on_crtc(dev, crtc, encoder)
5109 if (encoder->post_disable)
5110 encoder->post_disable(encoder);
5111
5112 intel_crtc->active = false;
5113 intel_update_watermarks(crtc);
5114
5115 mutex_lock(&dev->struct_mutex);
5116 intel_fbc_update(dev);
5117 mutex_unlock(&dev->struct_mutex);
5118
5119 if (intel_crtc_to_shared_dpll(intel_crtc))
5120 intel_disable_shared_dpll(intel_crtc);
5121 }
5122
5123 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5124 {
5125 struct drm_device *dev = crtc->base.dev;
5126 struct drm_i915_private *dev_priv = dev->dev_private;
5127 struct intel_crtc_state *pipe_config = crtc->config;
5128
5129 if (!pipe_config->gmch_pfit.control)
5130 return;
5131
5132 /*
5133 * The panel fitter should only be adjusted whilst the pipe is disabled,
5134 * according to register description and PRM.
5135 */
5136 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5137 assert_pipe_disabled(dev_priv, crtc->pipe);
5138
5139 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5140 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5141
5142 /* Border color in case we don't scale up to the full screen. Black by
5143 * default, change to something else for debugging. */
5144 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5145 }
5146
5147 static enum intel_display_power_domain port_to_power_domain(enum port port)
5148 {
5149 switch (port) {
5150 case PORT_A:
5151 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5152 case PORT_B:
5153 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5154 case PORT_C:
5155 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5156 case PORT_D:
5157 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5158 default:
5159 WARN_ON_ONCE(1);
5160 return POWER_DOMAIN_PORT_OTHER;
5161 }
5162 }
5163
5164 #define for_each_power_domain(domain, mask) \
5165 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5166 if ((1 << (domain)) & (mask))
5167
5168 enum intel_display_power_domain
5169 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5170 {
5171 struct drm_device *dev = intel_encoder->base.dev;
5172 struct intel_digital_port *intel_dig_port;
5173
5174 switch (intel_encoder->type) {
5175 case INTEL_OUTPUT_UNKNOWN:
5176 /* Only DDI platforms should ever use this output type */
5177 WARN_ON_ONCE(!HAS_DDI(dev));
5178 case INTEL_OUTPUT_DISPLAYPORT:
5179 case INTEL_OUTPUT_HDMI:
5180 case INTEL_OUTPUT_EDP:
5181 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5182 return port_to_power_domain(intel_dig_port->port);
5183 case INTEL_OUTPUT_DP_MST:
5184 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5185 return port_to_power_domain(intel_dig_port->port);
5186 case INTEL_OUTPUT_ANALOG:
5187 return POWER_DOMAIN_PORT_CRT;
5188 case INTEL_OUTPUT_DSI:
5189 return POWER_DOMAIN_PORT_DSI;
5190 default:
5191 return POWER_DOMAIN_PORT_OTHER;
5192 }
5193 }
5194
5195 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5196 {
5197 struct drm_device *dev = crtc->dev;
5198 struct intel_encoder *intel_encoder;
5199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5200 enum pipe pipe = intel_crtc->pipe;
5201 unsigned long mask;
5202 enum transcoder transcoder;
5203
5204 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5205
5206 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5207 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5208 if (intel_crtc->config->pch_pfit.enabled ||
5209 intel_crtc->config->pch_pfit.force_thru)
5210 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5211
5212 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5213 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5214
5215 return mask;
5216 }
5217
5218 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5219 {
5220 struct drm_device *dev = state->dev;
5221 struct drm_i915_private *dev_priv = dev->dev_private;
5222 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5223 struct intel_crtc *crtc;
5224
5225 /*
5226 * First get all needed power domains, then put all unneeded, to avoid
5227 * any unnecessary toggling of the power wells.
5228 */
5229 for_each_intel_crtc(dev, crtc) {
5230 enum intel_display_power_domain domain;
5231
5232 if (!crtc->base.state->enable)
5233 continue;
5234
5235 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5236
5237 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5238 intel_display_power_get(dev_priv, domain);
5239 }
5240
5241 if (dev_priv->display.modeset_global_resources)
5242 dev_priv->display.modeset_global_resources(state);
5243
5244 for_each_intel_crtc(dev, crtc) {
5245 enum intel_display_power_domain domain;
5246
5247 for_each_power_domain(domain, crtc->enabled_power_domains)
5248 intel_display_power_put(dev_priv, domain);
5249
5250 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5251 }
5252
5253 intel_display_set_init_power(dev_priv, false);
5254 }
5255
5256 static void intel_update_max_cdclk(struct drm_device *dev)
5257 {
5258 struct drm_i915_private *dev_priv = dev->dev_private;
5259
5260 if (IS_SKYLAKE(dev)) {
5261 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5262
5263 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5264 dev_priv->max_cdclk_freq = 675000;
5265 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5266 dev_priv->max_cdclk_freq = 540000;
5267 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5268 dev_priv->max_cdclk_freq = 450000;
5269 else
5270 dev_priv->max_cdclk_freq = 337500;
5271 } else if (IS_BROADWELL(dev)) {
5272 /*
5273 * FIXME with extra cooling we can allow
5274 * 540 MHz for ULX and 675 Mhz for ULT.
5275 * How can we know if extra cooling is
5276 * available? PCI ID, VTB, something else?
5277 */
5278 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5279 dev_priv->max_cdclk_freq = 450000;
5280 else if (IS_BDW_ULX(dev))
5281 dev_priv->max_cdclk_freq = 450000;
5282 else if (IS_BDW_ULT(dev))
5283 dev_priv->max_cdclk_freq = 540000;
5284 else
5285 dev_priv->max_cdclk_freq = 675000;
5286 } else if (IS_CHERRYVIEW(dev)) {
5287 dev_priv->max_cdclk_freq = 320000;
5288 } else if (IS_VALLEYVIEW(dev)) {
5289 dev_priv->max_cdclk_freq = 400000;
5290 } else {
5291 /* otherwise assume cdclk is fixed */
5292 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5293 }
5294
5295 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5296 dev_priv->max_cdclk_freq);
5297 }
5298
5299 static void intel_update_cdclk(struct drm_device *dev)
5300 {
5301 struct drm_i915_private *dev_priv = dev->dev_private;
5302
5303 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5304 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5305 dev_priv->cdclk_freq);
5306
5307 /*
5308 * Program the gmbus_freq based on the cdclk frequency.
5309 * BSpec erroneously claims we should aim for 4MHz, but
5310 * in fact 1MHz is the correct frequency.
5311 */
5312 if (IS_VALLEYVIEW(dev)) {
5313 /*
5314 * Program the gmbus_freq based on the cdclk frequency.
5315 * BSpec erroneously claims we should aim for 4MHz, but
5316 * in fact 1MHz is the correct frequency.
5317 */
5318 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5319 }
5320
5321 if (dev_priv->max_cdclk_freq == 0)
5322 intel_update_max_cdclk(dev);
5323 }
5324
5325 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5326 {
5327 struct drm_i915_private *dev_priv = dev->dev_private;
5328 uint32_t divider;
5329 uint32_t ratio;
5330 uint32_t current_freq;
5331 int ret;
5332
5333 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5334 switch (frequency) {
5335 case 144000:
5336 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5337 ratio = BXT_DE_PLL_RATIO(60);
5338 break;
5339 case 288000:
5340 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5341 ratio = BXT_DE_PLL_RATIO(60);
5342 break;
5343 case 384000:
5344 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5345 ratio = BXT_DE_PLL_RATIO(60);
5346 break;
5347 case 576000:
5348 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5349 ratio = BXT_DE_PLL_RATIO(60);
5350 break;
5351 case 624000:
5352 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5353 ratio = BXT_DE_PLL_RATIO(65);
5354 break;
5355 case 19200:
5356 /*
5357 * Bypass frequency with DE PLL disabled. Init ratio, divider
5358 * to suppress GCC warning.
5359 */
5360 ratio = 0;
5361 divider = 0;
5362 break;
5363 default:
5364 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5365
5366 return;
5367 }
5368
5369 mutex_lock(&dev_priv->rps.hw_lock);
5370 /* Inform power controller of upcoming frequency change */
5371 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5372 0x80000000);
5373 mutex_unlock(&dev_priv->rps.hw_lock);
5374
5375 if (ret) {
5376 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5377 ret, frequency);
5378 return;
5379 }
5380
5381 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5382 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5383 current_freq = current_freq * 500 + 1000;
5384
5385 /*
5386 * DE PLL has to be disabled when
5387 * - setting to 19.2MHz (bypass, PLL isn't used)
5388 * - before setting to 624MHz (PLL needs toggling)
5389 * - before setting to any frequency from 624MHz (PLL needs toggling)
5390 */
5391 if (frequency == 19200 || frequency == 624000 ||
5392 current_freq == 624000) {
5393 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5394 /* Timeout 200us */
5395 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5396 1))
5397 DRM_ERROR("timout waiting for DE PLL unlock\n");
5398 }
5399
5400 if (frequency != 19200) {
5401 uint32_t val;
5402
5403 val = I915_READ(BXT_DE_PLL_CTL);
5404 val &= ~BXT_DE_PLL_RATIO_MASK;
5405 val |= ratio;
5406 I915_WRITE(BXT_DE_PLL_CTL, val);
5407
5408 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5409 /* Timeout 200us */
5410 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5411 DRM_ERROR("timeout waiting for DE PLL lock\n");
5412
5413 val = I915_READ(CDCLK_CTL);
5414 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5415 val |= divider;
5416 /*
5417 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5418 * enable otherwise.
5419 */
5420 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5421 if (frequency >= 500000)
5422 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5423
5424 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5425 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5426 val |= (frequency - 1000) / 500;
5427 I915_WRITE(CDCLK_CTL, val);
5428 }
5429
5430 mutex_lock(&dev_priv->rps.hw_lock);
5431 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5432 DIV_ROUND_UP(frequency, 25000));
5433 mutex_unlock(&dev_priv->rps.hw_lock);
5434
5435 if (ret) {
5436 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5437 ret, frequency);
5438 return;
5439 }
5440
5441 intel_update_cdclk(dev);
5442 }
5443
5444 void broxton_init_cdclk(struct drm_device *dev)
5445 {
5446 struct drm_i915_private *dev_priv = dev->dev_private;
5447 uint32_t val;
5448
5449 /*
5450 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5451 * or else the reset will hang because there is no PCH to respond.
5452 * Move the handshake programming to initialization sequence.
5453 * Previously was left up to BIOS.
5454 */
5455 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5456 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5457 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5458
5459 /* Enable PG1 for cdclk */
5460 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5461
5462 /* check if cd clock is enabled */
5463 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5464 DRM_DEBUG_KMS("Display already initialized\n");
5465 return;
5466 }
5467
5468 /*
5469 * FIXME:
5470 * - The initial CDCLK needs to be read from VBT.
5471 * Need to make this change after VBT has changes for BXT.
5472 * - check if setting the max (or any) cdclk freq is really necessary
5473 * here, it belongs to modeset time
5474 */
5475 broxton_set_cdclk(dev, 624000);
5476
5477 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5478 POSTING_READ(DBUF_CTL);
5479
5480 udelay(10);
5481
5482 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5483 DRM_ERROR("DBuf power enable timeout!\n");
5484 }
5485
5486 void broxton_uninit_cdclk(struct drm_device *dev)
5487 {
5488 struct drm_i915_private *dev_priv = dev->dev_private;
5489
5490 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5491 POSTING_READ(DBUF_CTL);
5492
5493 udelay(10);
5494
5495 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5496 DRM_ERROR("DBuf power disable timeout!\n");
5497
5498 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5499 broxton_set_cdclk(dev, 19200);
5500
5501 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5502 }
5503
5504 static const struct skl_cdclk_entry {
5505 unsigned int freq;
5506 unsigned int vco;
5507 } skl_cdclk_frequencies[] = {
5508 { .freq = 308570, .vco = 8640 },
5509 { .freq = 337500, .vco = 8100 },
5510 { .freq = 432000, .vco = 8640 },
5511 { .freq = 450000, .vco = 8100 },
5512 { .freq = 540000, .vco = 8100 },
5513 { .freq = 617140, .vco = 8640 },
5514 { .freq = 675000, .vco = 8100 },
5515 };
5516
5517 static unsigned int skl_cdclk_decimal(unsigned int freq)
5518 {
5519 return (freq - 1000) / 500;
5520 }
5521
5522 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5523 {
5524 unsigned int i;
5525
5526 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5527 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5528
5529 if (e->freq == freq)
5530 return e->vco;
5531 }
5532
5533 return 8100;
5534 }
5535
5536 static void
5537 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5538 {
5539 unsigned int min_freq;
5540 u32 val;
5541
5542 /* select the minimum CDCLK before enabling DPLL 0 */
5543 val = I915_READ(CDCLK_CTL);
5544 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5545 val |= CDCLK_FREQ_337_308;
5546
5547 if (required_vco == 8640)
5548 min_freq = 308570;
5549 else
5550 min_freq = 337500;
5551
5552 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5553
5554 I915_WRITE(CDCLK_CTL, val);
5555 POSTING_READ(CDCLK_CTL);
5556
5557 /*
5558 * We always enable DPLL0 with the lowest link rate possible, but still
5559 * taking into account the VCO required to operate the eDP panel at the
5560 * desired frequency. The usual DP link rates operate with a VCO of
5561 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5562 * The modeset code is responsible for the selection of the exact link
5563 * rate later on, with the constraint of choosing a frequency that
5564 * works with required_vco.
5565 */
5566 val = I915_READ(DPLL_CTRL1);
5567
5568 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5569 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5570 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5571 if (required_vco == 8640)
5572 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5573 SKL_DPLL0);
5574 else
5575 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5576 SKL_DPLL0);
5577
5578 I915_WRITE(DPLL_CTRL1, val);
5579 POSTING_READ(DPLL_CTRL1);
5580
5581 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5582
5583 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5584 DRM_ERROR("DPLL0 not locked\n");
5585 }
5586
5587 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5588 {
5589 int ret;
5590 u32 val;
5591
5592 /* inform PCU we want to change CDCLK */
5593 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5594 mutex_lock(&dev_priv->rps.hw_lock);
5595 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5596 mutex_unlock(&dev_priv->rps.hw_lock);
5597
5598 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5599 }
5600
5601 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5602 {
5603 unsigned int i;
5604
5605 for (i = 0; i < 15; i++) {
5606 if (skl_cdclk_pcu_ready(dev_priv))
5607 return true;
5608 udelay(10);
5609 }
5610
5611 return false;
5612 }
5613
5614 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5615 {
5616 struct drm_device *dev = dev_priv->dev;
5617 u32 freq_select, pcu_ack;
5618
5619 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5620
5621 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5622 DRM_ERROR("failed to inform PCU about cdclk change\n");
5623 return;
5624 }
5625
5626 /* set CDCLK_CTL */
5627 switch(freq) {
5628 case 450000:
5629 case 432000:
5630 freq_select = CDCLK_FREQ_450_432;
5631 pcu_ack = 1;
5632 break;
5633 case 540000:
5634 freq_select = CDCLK_FREQ_540;
5635 pcu_ack = 2;
5636 break;
5637 case 308570:
5638 case 337500:
5639 default:
5640 freq_select = CDCLK_FREQ_337_308;
5641 pcu_ack = 0;
5642 break;
5643 case 617140:
5644 case 675000:
5645 freq_select = CDCLK_FREQ_675_617;
5646 pcu_ack = 3;
5647 break;
5648 }
5649
5650 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5651 POSTING_READ(CDCLK_CTL);
5652
5653 /* inform PCU of the change */
5654 mutex_lock(&dev_priv->rps.hw_lock);
5655 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5656 mutex_unlock(&dev_priv->rps.hw_lock);
5657
5658 intel_update_cdclk(dev);
5659 }
5660
5661 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5662 {
5663 /* disable DBUF power */
5664 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5665 POSTING_READ(DBUF_CTL);
5666
5667 udelay(10);
5668
5669 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5670 DRM_ERROR("DBuf power disable timeout\n");
5671
5672 /* disable DPLL0 */
5673 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5674 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5675 DRM_ERROR("Couldn't disable DPLL0\n");
5676
5677 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5678 }
5679
5680 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5681 {
5682 u32 val;
5683 unsigned int required_vco;
5684
5685 /* enable PCH reset handshake */
5686 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5687 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5688
5689 /* enable PG1 and Misc I/O */
5690 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5691
5692 /* DPLL0 already enabed !? */
5693 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5694 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5695 return;
5696 }
5697
5698 /* enable DPLL0 */
5699 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5700 skl_dpll0_enable(dev_priv, required_vco);
5701
5702 /* set CDCLK to the frequency the BIOS chose */
5703 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5704
5705 /* enable DBUF power */
5706 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5707 POSTING_READ(DBUF_CTL);
5708
5709 udelay(10);
5710
5711 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5712 DRM_ERROR("DBuf power enable timeout\n");
5713 }
5714
5715 /* returns HPLL frequency in kHz */
5716 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5717 {
5718 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5719
5720 /* Obtain SKU information */
5721 mutex_lock(&dev_priv->sb_lock);
5722 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5723 CCK_FUSE_HPLL_FREQ_MASK;
5724 mutex_unlock(&dev_priv->sb_lock);
5725
5726 return vco_freq[hpll_freq] * 1000;
5727 }
5728
5729 /* Adjust CDclk dividers to allow high res or save power if possible */
5730 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5731 {
5732 struct drm_i915_private *dev_priv = dev->dev_private;
5733 u32 val, cmd;
5734
5735 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5736 != dev_priv->cdclk_freq);
5737
5738 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5739 cmd = 2;
5740 else if (cdclk == 266667)
5741 cmd = 1;
5742 else
5743 cmd = 0;
5744
5745 mutex_lock(&dev_priv->rps.hw_lock);
5746 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5747 val &= ~DSPFREQGUAR_MASK;
5748 val |= (cmd << DSPFREQGUAR_SHIFT);
5749 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5750 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5751 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5752 50)) {
5753 DRM_ERROR("timed out waiting for CDclk change\n");
5754 }
5755 mutex_unlock(&dev_priv->rps.hw_lock);
5756
5757 mutex_lock(&dev_priv->sb_lock);
5758
5759 if (cdclk == 400000) {
5760 u32 divider;
5761
5762 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5763
5764 /* adjust cdclk divider */
5765 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5766 val &= ~DISPLAY_FREQUENCY_VALUES;
5767 val |= divider;
5768 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5769
5770 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5771 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5772 50))
5773 DRM_ERROR("timed out waiting for CDclk change\n");
5774 }
5775
5776 /* adjust self-refresh exit latency value */
5777 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5778 val &= ~0x7f;
5779
5780 /*
5781 * For high bandwidth configs, we set a higher latency in the bunit
5782 * so that the core display fetch happens in time to avoid underruns.
5783 */
5784 if (cdclk == 400000)
5785 val |= 4500 / 250; /* 4.5 usec */
5786 else
5787 val |= 3000 / 250; /* 3.0 usec */
5788 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5789
5790 mutex_unlock(&dev_priv->sb_lock);
5791
5792 intel_update_cdclk(dev);
5793 }
5794
5795 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5796 {
5797 struct drm_i915_private *dev_priv = dev->dev_private;
5798 u32 val, cmd;
5799
5800 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5801 != dev_priv->cdclk_freq);
5802
5803 switch (cdclk) {
5804 case 333333:
5805 case 320000:
5806 case 266667:
5807 case 200000:
5808 break;
5809 default:
5810 MISSING_CASE(cdclk);
5811 return;
5812 }
5813
5814 /*
5815 * Specs are full of misinformation, but testing on actual
5816 * hardware has shown that we just need to write the desired
5817 * CCK divider into the Punit register.
5818 */
5819 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5820
5821 mutex_lock(&dev_priv->rps.hw_lock);
5822 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5823 val &= ~DSPFREQGUAR_MASK_CHV;
5824 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5825 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5826 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5827 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5828 50)) {
5829 DRM_ERROR("timed out waiting for CDclk change\n");
5830 }
5831 mutex_unlock(&dev_priv->rps.hw_lock);
5832
5833 intel_update_cdclk(dev);
5834 }
5835
5836 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5837 int max_pixclk)
5838 {
5839 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5840 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5841
5842 /*
5843 * Really only a few cases to deal with, as only 4 CDclks are supported:
5844 * 200MHz
5845 * 267MHz
5846 * 320/333MHz (depends on HPLL freq)
5847 * 400MHz (VLV only)
5848 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5849 * of the lower bin and adjust if needed.
5850 *
5851 * We seem to get an unstable or solid color picture at 200MHz.
5852 * Not sure what's wrong. For now use 200MHz only when all pipes
5853 * are off.
5854 */
5855 if (!IS_CHERRYVIEW(dev_priv) &&
5856 max_pixclk > freq_320*limit/100)
5857 return 400000;
5858 else if (max_pixclk > 266667*limit/100)
5859 return freq_320;
5860 else if (max_pixclk > 0)
5861 return 266667;
5862 else
5863 return 200000;
5864 }
5865
5866 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5867 int max_pixclk)
5868 {
5869 /*
5870 * FIXME:
5871 * - remove the guardband, it's not needed on BXT
5872 * - set 19.2MHz bypass frequency if there are no active pipes
5873 */
5874 if (max_pixclk > 576000*9/10)
5875 return 624000;
5876 else if (max_pixclk > 384000*9/10)
5877 return 576000;
5878 else if (max_pixclk > 288000*9/10)
5879 return 384000;
5880 else if (max_pixclk > 144000*9/10)
5881 return 288000;
5882 else
5883 return 144000;
5884 }
5885
5886 /* Compute the max pixel clock for new configuration. Uses atomic state if
5887 * that's non-NULL, look at current state otherwise. */
5888 static int intel_mode_max_pixclk(struct drm_device *dev,
5889 struct drm_atomic_state *state)
5890 {
5891 struct intel_crtc *intel_crtc;
5892 struct intel_crtc_state *crtc_state;
5893 int max_pixclk = 0;
5894
5895 for_each_intel_crtc(dev, intel_crtc) {
5896 if (state)
5897 crtc_state =
5898 intel_atomic_get_crtc_state(state, intel_crtc);
5899 else
5900 crtc_state = intel_crtc->config;
5901 if (IS_ERR(crtc_state))
5902 return PTR_ERR(crtc_state);
5903
5904 if (!crtc_state->base.enable)
5905 continue;
5906
5907 max_pixclk = max(max_pixclk,
5908 crtc_state->base.adjusted_mode.crtc_clock);
5909 }
5910
5911 return max_pixclk;
5912 }
5913
5914 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5915 {
5916 struct drm_i915_private *dev_priv = to_i915(state->dev);
5917 struct drm_crtc *crtc;
5918 struct drm_crtc_state *crtc_state;
5919 int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5920 int cdclk, ret = 0;
5921
5922 if (max_pixclk < 0)
5923 return max_pixclk;
5924
5925 if (IS_VALLEYVIEW(dev_priv))
5926 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5927 else
5928 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5929
5930 if (cdclk == dev_priv->cdclk_freq)
5931 return 0;
5932
5933 /* add all active pipes to the state */
5934 for_each_crtc(state->dev, crtc) {
5935 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5936 if (IS_ERR(crtc_state))
5937 return PTR_ERR(crtc_state);
5938
5939 if (!crtc_state->active || needs_modeset(crtc_state))
5940 continue;
5941
5942 crtc_state->mode_changed = true;
5943
5944 ret = drm_atomic_add_affected_connectors(state, crtc);
5945 if (ret)
5946 break;
5947
5948 ret = drm_atomic_add_affected_planes(state, crtc);
5949 if (ret)
5950 break;
5951 }
5952
5953 return ret;
5954 }
5955
5956 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5957 {
5958 unsigned int credits, default_credits;
5959
5960 if (IS_CHERRYVIEW(dev_priv))
5961 default_credits = PFI_CREDIT(12);
5962 else
5963 default_credits = PFI_CREDIT(8);
5964
5965 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5966 /* CHV suggested value is 31 or 63 */
5967 if (IS_CHERRYVIEW(dev_priv))
5968 credits = PFI_CREDIT_63;
5969 else
5970 credits = PFI_CREDIT(15);
5971 } else {
5972 credits = default_credits;
5973 }
5974
5975 /*
5976 * WA - write default credits before re-programming
5977 * FIXME: should we also set the resend bit here?
5978 */
5979 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5980 default_credits);
5981
5982 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5983 credits | PFI_CREDIT_RESEND);
5984
5985 /*
5986 * FIXME is this guaranteed to clear
5987 * immediately or should we poll for it?
5988 */
5989 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5990 }
5991
5992 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
5993 {
5994 struct drm_device *dev = old_state->dev;
5995 struct drm_i915_private *dev_priv = dev->dev_private;
5996 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
5997 int req_cdclk;
5998
5999 /* The path in intel_mode_max_pixclk() with a NULL atomic state should
6000 * never fail. */
6001 if (WARN_ON(max_pixclk < 0))
6002 return;
6003
6004 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
6005
6006 if (req_cdclk != dev_priv->cdclk_freq) {
6007 /*
6008 * FIXME: We can end up here with all power domains off, yet
6009 * with a CDCLK frequency other than the minimum. To account
6010 * for this take the PIPE-A power domain, which covers the HW
6011 * blocks needed for the following programming. This can be
6012 * removed once it's guaranteed that we get here either with
6013 * the minimum CDCLK set, or the required power domains
6014 * enabled.
6015 */
6016 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6017
6018 if (IS_CHERRYVIEW(dev))
6019 cherryview_set_cdclk(dev, req_cdclk);
6020 else
6021 valleyview_set_cdclk(dev, req_cdclk);
6022
6023 vlv_program_pfi_credits(dev_priv);
6024
6025 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6026 }
6027 }
6028
6029 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6030 {
6031 struct drm_device *dev = crtc->dev;
6032 struct drm_i915_private *dev_priv = to_i915(dev);
6033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6034 struct intel_encoder *encoder;
6035 int pipe = intel_crtc->pipe;
6036 bool is_dsi;
6037
6038 if (WARN_ON(intel_crtc->active))
6039 return;
6040
6041 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6042
6043 if (!is_dsi) {
6044 if (IS_CHERRYVIEW(dev))
6045 chv_prepare_pll(intel_crtc, intel_crtc->config);
6046 else
6047 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6048 }
6049
6050 if (intel_crtc->config->has_dp_encoder)
6051 intel_dp_set_m_n(intel_crtc, M1_N1);
6052
6053 intel_set_pipe_timings(intel_crtc);
6054
6055 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6056 struct drm_i915_private *dev_priv = dev->dev_private;
6057
6058 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6059 I915_WRITE(CHV_CANVAS(pipe), 0);
6060 }
6061
6062 i9xx_set_pipeconf(intel_crtc);
6063
6064 intel_crtc->active = true;
6065
6066 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6067
6068 for_each_encoder_on_crtc(dev, crtc, encoder)
6069 if (encoder->pre_pll_enable)
6070 encoder->pre_pll_enable(encoder);
6071
6072 if (!is_dsi) {
6073 if (IS_CHERRYVIEW(dev))
6074 chv_enable_pll(intel_crtc, intel_crtc->config);
6075 else
6076 vlv_enable_pll(intel_crtc, intel_crtc->config);
6077 }
6078
6079 for_each_encoder_on_crtc(dev, crtc, encoder)
6080 if (encoder->pre_enable)
6081 encoder->pre_enable(encoder);
6082
6083 i9xx_pfit_enable(intel_crtc);
6084
6085 intel_crtc_load_lut(crtc);
6086
6087 intel_update_watermarks(crtc);
6088 intel_enable_pipe(intel_crtc);
6089
6090 assert_vblank_disabled(crtc);
6091 drm_crtc_vblank_on(crtc);
6092
6093 for_each_encoder_on_crtc(dev, crtc, encoder)
6094 encoder->enable(encoder);
6095 }
6096
6097 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6098 {
6099 struct drm_device *dev = crtc->base.dev;
6100 struct drm_i915_private *dev_priv = dev->dev_private;
6101
6102 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6103 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6104 }
6105
6106 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6107 {
6108 struct drm_device *dev = crtc->dev;
6109 struct drm_i915_private *dev_priv = to_i915(dev);
6110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6111 struct intel_encoder *encoder;
6112 int pipe = intel_crtc->pipe;
6113
6114 if (WARN_ON(intel_crtc->active))
6115 return;
6116
6117 i9xx_set_pll_dividers(intel_crtc);
6118
6119 if (intel_crtc->config->has_dp_encoder)
6120 intel_dp_set_m_n(intel_crtc, M1_N1);
6121
6122 intel_set_pipe_timings(intel_crtc);
6123
6124 i9xx_set_pipeconf(intel_crtc);
6125
6126 intel_crtc->active = true;
6127
6128 if (!IS_GEN2(dev))
6129 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6130
6131 for_each_encoder_on_crtc(dev, crtc, encoder)
6132 if (encoder->pre_enable)
6133 encoder->pre_enable(encoder);
6134
6135 i9xx_enable_pll(intel_crtc);
6136
6137 i9xx_pfit_enable(intel_crtc);
6138
6139 intel_crtc_load_lut(crtc);
6140
6141 intel_update_watermarks(crtc);
6142 intel_enable_pipe(intel_crtc);
6143
6144 assert_vblank_disabled(crtc);
6145 drm_crtc_vblank_on(crtc);
6146
6147 for_each_encoder_on_crtc(dev, crtc, encoder)
6148 encoder->enable(encoder);
6149 }
6150
6151 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6152 {
6153 struct drm_device *dev = crtc->base.dev;
6154 struct drm_i915_private *dev_priv = dev->dev_private;
6155
6156 if (!crtc->config->gmch_pfit.control)
6157 return;
6158
6159 assert_pipe_disabled(dev_priv, crtc->pipe);
6160
6161 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6162 I915_READ(PFIT_CONTROL));
6163 I915_WRITE(PFIT_CONTROL, 0);
6164 }
6165
6166 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6167 {
6168 struct drm_device *dev = crtc->dev;
6169 struct drm_i915_private *dev_priv = dev->dev_private;
6170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6171 struct intel_encoder *encoder;
6172 int pipe = intel_crtc->pipe;
6173
6174 if (WARN_ON(!intel_crtc->active))
6175 return;
6176
6177 /*
6178 * On gen2 planes are double buffered but the pipe isn't, so we must
6179 * wait for planes to fully turn off before disabling the pipe.
6180 * We also need to wait on all gmch platforms because of the
6181 * self-refresh mode constraint explained above.
6182 */
6183 intel_wait_for_vblank(dev, pipe);
6184
6185 for_each_encoder_on_crtc(dev, crtc, encoder)
6186 encoder->disable(encoder);
6187
6188 drm_crtc_vblank_off(crtc);
6189 assert_vblank_disabled(crtc);
6190
6191 intel_disable_pipe(intel_crtc);
6192
6193 i9xx_pfit_disable(intel_crtc);
6194
6195 for_each_encoder_on_crtc(dev, crtc, encoder)
6196 if (encoder->post_disable)
6197 encoder->post_disable(encoder);
6198
6199 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6200 if (IS_CHERRYVIEW(dev))
6201 chv_disable_pll(dev_priv, pipe);
6202 else if (IS_VALLEYVIEW(dev))
6203 vlv_disable_pll(dev_priv, pipe);
6204 else
6205 i9xx_disable_pll(intel_crtc);
6206 }
6207
6208 if (!IS_GEN2(dev))
6209 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6210
6211 intel_crtc->active = false;
6212 intel_update_watermarks(crtc);
6213
6214 mutex_lock(&dev->struct_mutex);
6215 intel_fbc_update(dev);
6216 mutex_unlock(&dev->struct_mutex);
6217 }
6218
6219 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6220 {
6221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6222 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6223 enum intel_display_power_domain domain;
6224 unsigned long domains;
6225
6226 if (!intel_crtc->active)
6227 return;
6228
6229 intel_crtc_disable_planes(crtc);
6230 dev_priv->display.crtc_disable(crtc);
6231
6232 domains = intel_crtc->enabled_power_domains;
6233 for_each_power_domain(domain, domains)
6234 intel_display_power_put(dev_priv, domain);
6235 intel_crtc->enabled_power_domains = 0;
6236 }
6237
6238 /*
6239 * turn all crtc's off, but do not adjust state
6240 * This has to be paired with a call to intel_modeset_setup_hw_state.
6241 */
6242 void intel_display_suspend(struct drm_device *dev)
6243 {
6244 struct drm_crtc *crtc;
6245
6246 for_each_crtc(dev, crtc)
6247 intel_crtc_disable_noatomic(crtc);
6248 }
6249
6250 /* Master function to enable/disable CRTC and corresponding power wells */
6251 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6252 {
6253 struct drm_device *dev = crtc->dev;
6254 struct drm_mode_config *config = &dev->mode_config;
6255 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6257 struct intel_crtc_state *pipe_config;
6258 struct drm_atomic_state *state;
6259 int ret;
6260
6261 if (enable == intel_crtc->active)
6262 return 0;
6263
6264 if (enable && !crtc->state->enable)
6265 return 0;
6266
6267 /* this function should be called with drm_modeset_lock_all for now */
6268 if (WARN_ON(!ctx))
6269 return -EIO;
6270 lockdep_assert_held(&ctx->ww_ctx);
6271
6272 state = drm_atomic_state_alloc(dev);
6273 if (WARN_ON(!state))
6274 return -ENOMEM;
6275
6276 state->acquire_ctx = ctx;
6277 state->allow_modeset = true;
6278
6279 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6280 if (IS_ERR(pipe_config)) {
6281 ret = PTR_ERR(pipe_config);
6282 goto err;
6283 }
6284 pipe_config->base.active = enable;
6285
6286 ret = intel_set_mode(state);
6287 if (!ret)
6288 return ret;
6289
6290 err:
6291 DRM_ERROR("Updating crtc active failed with %i\n", ret);
6292 drm_atomic_state_free(state);
6293 return ret;
6294 }
6295
6296 /**
6297 * Sets the power management mode of the pipe and plane.
6298 */
6299 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6300 {
6301 struct drm_device *dev = crtc->dev;
6302 struct intel_encoder *intel_encoder;
6303 bool enable = false;
6304
6305 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6306 enable |= intel_encoder->connectors_active;
6307
6308 intel_crtc_control(crtc, enable);
6309 }
6310
6311 void intel_encoder_destroy(struct drm_encoder *encoder)
6312 {
6313 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6314
6315 drm_encoder_cleanup(encoder);
6316 kfree(intel_encoder);
6317 }
6318
6319 /* Simple dpms helper for encoders with just one connector, no cloning and only
6320 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6321 * state of the entire output pipe. */
6322 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6323 {
6324 if (mode == DRM_MODE_DPMS_ON) {
6325 encoder->connectors_active = true;
6326
6327 intel_crtc_update_dpms(encoder->base.crtc);
6328 } else {
6329 encoder->connectors_active = false;
6330
6331 intel_crtc_update_dpms(encoder->base.crtc);
6332 }
6333 }
6334
6335 /* Cross check the actual hw state with our own modeset state tracking (and it's
6336 * internal consistency). */
6337 static void intel_connector_check_state(struct intel_connector *connector)
6338 {
6339 if (connector->get_hw_state(connector)) {
6340 struct intel_encoder *encoder = connector->encoder;
6341 struct drm_crtc *crtc;
6342 bool encoder_enabled;
6343 enum pipe pipe;
6344
6345 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6346 connector->base.base.id,
6347 connector->base.name);
6348
6349 /* there is no real hw state for MST connectors */
6350 if (connector->mst_port)
6351 return;
6352
6353 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6354 "wrong connector dpms state\n");
6355 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6356 "active connector not linked to encoder\n");
6357
6358 if (encoder) {
6359 I915_STATE_WARN(!encoder->connectors_active,
6360 "encoder->connectors_active not set\n");
6361
6362 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6363 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6364 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6365 return;
6366
6367 crtc = encoder->base.crtc;
6368
6369 I915_STATE_WARN(!crtc->state->enable,
6370 "crtc not enabled\n");
6371 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6372 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6373 "encoder active on the wrong pipe\n");
6374 }
6375 }
6376 }
6377
6378 int intel_connector_init(struct intel_connector *connector)
6379 {
6380 struct drm_connector_state *connector_state;
6381
6382 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6383 if (!connector_state)
6384 return -ENOMEM;
6385
6386 connector->base.state = connector_state;
6387 return 0;
6388 }
6389
6390 struct intel_connector *intel_connector_alloc(void)
6391 {
6392 struct intel_connector *connector;
6393
6394 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6395 if (!connector)
6396 return NULL;
6397
6398 if (intel_connector_init(connector) < 0) {
6399 kfree(connector);
6400 return NULL;
6401 }
6402
6403 return connector;
6404 }
6405
6406 /* Even simpler default implementation, if there's really no special case to
6407 * consider. */
6408 void intel_connector_dpms(struct drm_connector *connector, int mode)
6409 {
6410 /* All the simple cases only support two dpms states. */
6411 if (mode != DRM_MODE_DPMS_ON)
6412 mode = DRM_MODE_DPMS_OFF;
6413
6414 if (mode == connector->dpms)
6415 return;
6416
6417 connector->dpms = mode;
6418
6419 /* Only need to change hw state when actually enabled */
6420 if (connector->encoder)
6421 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6422
6423 intel_modeset_check_state(connector->dev);
6424 }
6425
6426 /* Simple connector->get_hw_state implementation for encoders that support only
6427 * one connector and no cloning and hence the encoder state determines the state
6428 * of the connector. */
6429 bool intel_connector_get_hw_state(struct intel_connector *connector)
6430 {
6431 enum pipe pipe = 0;
6432 struct intel_encoder *encoder = connector->encoder;
6433
6434 return encoder->get_hw_state(encoder, &pipe);
6435 }
6436
6437 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6438 {
6439 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6440 return crtc_state->fdi_lanes;
6441
6442 return 0;
6443 }
6444
6445 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6446 struct intel_crtc_state *pipe_config)
6447 {
6448 struct drm_atomic_state *state = pipe_config->base.state;
6449 struct intel_crtc *other_crtc;
6450 struct intel_crtc_state *other_crtc_state;
6451
6452 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6453 pipe_name(pipe), pipe_config->fdi_lanes);
6454 if (pipe_config->fdi_lanes > 4) {
6455 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6456 pipe_name(pipe), pipe_config->fdi_lanes);
6457 return -EINVAL;
6458 }
6459
6460 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6461 if (pipe_config->fdi_lanes > 2) {
6462 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6463 pipe_config->fdi_lanes);
6464 return -EINVAL;
6465 } else {
6466 return 0;
6467 }
6468 }
6469
6470 if (INTEL_INFO(dev)->num_pipes == 2)
6471 return 0;
6472
6473 /* Ivybridge 3 pipe is really complicated */
6474 switch (pipe) {
6475 case PIPE_A:
6476 return 0;
6477 case PIPE_B:
6478 if (pipe_config->fdi_lanes <= 2)
6479 return 0;
6480
6481 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6482 other_crtc_state =
6483 intel_atomic_get_crtc_state(state, other_crtc);
6484 if (IS_ERR(other_crtc_state))
6485 return PTR_ERR(other_crtc_state);
6486
6487 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6488 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6489 pipe_name(pipe), pipe_config->fdi_lanes);
6490 return -EINVAL;
6491 }
6492 return 0;
6493 case PIPE_C:
6494 if (pipe_config->fdi_lanes > 2) {
6495 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6496 pipe_name(pipe), pipe_config->fdi_lanes);
6497 return -EINVAL;
6498 }
6499
6500 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6501 other_crtc_state =
6502 intel_atomic_get_crtc_state(state, other_crtc);
6503 if (IS_ERR(other_crtc_state))
6504 return PTR_ERR(other_crtc_state);
6505
6506 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6507 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6508 return -EINVAL;
6509 }
6510 return 0;
6511 default:
6512 BUG();
6513 }
6514 }
6515
6516 #define RETRY 1
6517 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6518 struct intel_crtc_state *pipe_config)
6519 {
6520 struct drm_device *dev = intel_crtc->base.dev;
6521 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6522 int lane, link_bw, fdi_dotclock, ret;
6523 bool needs_recompute = false;
6524
6525 retry:
6526 /* FDI is a binary signal running at ~2.7GHz, encoding
6527 * each output octet as 10 bits. The actual frequency
6528 * is stored as a divider into a 100MHz clock, and the
6529 * mode pixel clock is stored in units of 1KHz.
6530 * Hence the bw of each lane in terms of the mode signal
6531 * is:
6532 */
6533 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6534
6535 fdi_dotclock = adjusted_mode->crtc_clock;
6536
6537 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6538 pipe_config->pipe_bpp);
6539
6540 pipe_config->fdi_lanes = lane;
6541
6542 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6543 link_bw, &pipe_config->fdi_m_n);
6544
6545 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6546 intel_crtc->pipe, pipe_config);
6547 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6548 pipe_config->pipe_bpp -= 2*3;
6549 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6550 pipe_config->pipe_bpp);
6551 needs_recompute = true;
6552 pipe_config->bw_constrained = true;
6553
6554 goto retry;
6555 }
6556
6557 if (needs_recompute)
6558 return RETRY;
6559
6560 return ret;
6561 }
6562
6563 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6564 struct intel_crtc_state *pipe_config)
6565 {
6566 if (pipe_config->pipe_bpp > 24)
6567 return false;
6568
6569 /* HSW can handle pixel rate up to cdclk? */
6570 if (IS_HASWELL(dev_priv->dev))
6571 return true;
6572
6573 /*
6574 * We compare against max which means we must take
6575 * the increased cdclk requirement into account when
6576 * calculating the new cdclk.
6577 *
6578 * Should measure whether using a lower cdclk w/o IPS
6579 */
6580 return ilk_pipe_pixel_rate(pipe_config) <=
6581 dev_priv->max_cdclk_freq * 95 / 100;
6582 }
6583
6584 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6585 struct intel_crtc_state *pipe_config)
6586 {
6587 struct drm_device *dev = crtc->base.dev;
6588 struct drm_i915_private *dev_priv = dev->dev_private;
6589
6590 pipe_config->ips_enabled = i915.enable_ips &&
6591 hsw_crtc_supports_ips(crtc) &&
6592 pipe_config_supports_ips(dev_priv, pipe_config);
6593 }
6594
6595 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6596 struct intel_crtc_state *pipe_config)
6597 {
6598 struct drm_device *dev = crtc->base.dev;
6599 struct drm_i915_private *dev_priv = dev->dev_private;
6600 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6601
6602 /* FIXME should check pixel clock limits on all platforms */
6603 if (INTEL_INFO(dev)->gen < 4) {
6604 int clock_limit = dev_priv->max_cdclk_freq;
6605
6606 /*
6607 * Enable pixel doubling when the dot clock
6608 * is > 90% of the (display) core speed.
6609 *
6610 * GDG double wide on either pipe,
6611 * otherwise pipe A only.
6612 */
6613 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6614 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6615 clock_limit *= 2;
6616 pipe_config->double_wide = true;
6617 }
6618
6619 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6620 return -EINVAL;
6621 }
6622
6623 /*
6624 * Pipe horizontal size must be even in:
6625 * - DVO ganged mode
6626 * - LVDS dual channel mode
6627 * - Double wide pipe
6628 */
6629 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6630 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6631 pipe_config->pipe_src_w &= ~1;
6632
6633 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6634 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6635 */
6636 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6637 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6638 return -EINVAL;
6639
6640 if (HAS_IPS(dev))
6641 hsw_compute_ips_config(crtc, pipe_config);
6642
6643 if (pipe_config->has_pch_encoder)
6644 return ironlake_fdi_compute_config(crtc, pipe_config);
6645
6646 return 0;
6647 }
6648
6649 static int skylake_get_display_clock_speed(struct drm_device *dev)
6650 {
6651 struct drm_i915_private *dev_priv = to_i915(dev);
6652 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6653 uint32_t cdctl = I915_READ(CDCLK_CTL);
6654 uint32_t linkrate;
6655
6656 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6657 return 24000; /* 24MHz is the cd freq with NSSC ref */
6658
6659 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6660 return 540000;
6661
6662 linkrate = (I915_READ(DPLL_CTRL1) &
6663 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6664
6665 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6666 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6667 /* vco 8640 */
6668 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6669 case CDCLK_FREQ_450_432:
6670 return 432000;
6671 case CDCLK_FREQ_337_308:
6672 return 308570;
6673 case CDCLK_FREQ_675_617:
6674 return 617140;
6675 default:
6676 WARN(1, "Unknown cd freq selection\n");
6677 }
6678 } else {
6679 /* vco 8100 */
6680 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6681 case CDCLK_FREQ_450_432:
6682 return 450000;
6683 case CDCLK_FREQ_337_308:
6684 return 337500;
6685 case CDCLK_FREQ_675_617:
6686 return 675000;
6687 default:
6688 WARN(1, "Unknown cd freq selection\n");
6689 }
6690 }
6691
6692 /* error case, do as if DPLL0 isn't enabled */
6693 return 24000;
6694 }
6695
6696 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6697 {
6698 struct drm_i915_private *dev_priv = dev->dev_private;
6699 uint32_t lcpll = I915_READ(LCPLL_CTL);
6700 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6701
6702 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6703 return 800000;
6704 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6705 return 450000;
6706 else if (freq == LCPLL_CLK_FREQ_450)
6707 return 450000;
6708 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6709 return 540000;
6710 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6711 return 337500;
6712 else
6713 return 675000;
6714 }
6715
6716 static int haswell_get_display_clock_speed(struct drm_device *dev)
6717 {
6718 struct drm_i915_private *dev_priv = dev->dev_private;
6719 uint32_t lcpll = I915_READ(LCPLL_CTL);
6720 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6721
6722 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6723 return 800000;
6724 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6725 return 450000;
6726 else if (freq == LCPLL_CLK_FREQ_450)
6727 return 450000;
6728 else if (IS_HSW_ULT(dev))
6729 return 337500;
6730 else
6731 return 540000;
6732 }
6733
6734 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6735 {
6736 struct drm_i915_private *dev_priv = dev->dev_private;
6737 u32 val;
6738 int divider;
6739
6740 if (dev_priv->hpll_freq == 0)
6741 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6742
6743 mutex_lock(&dev_priv->sb_lock);
6744 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6745 mutex_unlock(&dev_priv->sb_lock);
6746
6747 divider = val & DISPLAY_FREQUENCY_VALUES;
6748
6749 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6750 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6751 "cdclk change in progress\n");
6752
6753 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6754 }
6755
6756 static int ilk_get_display_clock_speed(struct drm_device *dev)
6757 {
6758 return 450000;
6759 }
6760
6761 static int i945_get_display_clock_speed(struct drm_device *dev)
6762 {
6763 return 400000;
6764 }
6765
6766 static int i915_get_display_clock_speed(struct drm_device *dev)
6767 {
6768 return 333333;
6769 }
6770
6771 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6772 {
6773 return 200000;
6774 }
6775
6776 static int pnv_get_display_clock_speed(struct drm_device *dev)
6777 {
6778 u16 gcfgc = 0;
6779
6780 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6781
6782 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6783 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6784 return 266667;
6785 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6786 return 333333;
6787 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6788 return 444444;
6789 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6790 return 200000;
6791 default:
6792 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6793 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6794 return 133333;
6795 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6796 return 166667;
6797 }
6798 }
6799
6800 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6801 {
6802 u16 gcfgc = 0;
6803
6804 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6805
6806 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6807 return 133333;
6808 else {
6809 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6810 case GC_DISPLAY_CLOCK_333_MHZ:
6811 return 333333;
6812 default:
6813 case GC_DISPLAY_CLOCK_190_200_MHZ:
6814 return 190000;
6815 }
6816 }
6817 }
6818
6819 static int i865_get_display_clock_speed(struct drm_device *dev)
6820 {
6821 return 266667;
6822 }
6823
6824 static int i85x_get_display_clock_speed(struct drm_device *dev)
6825 {
6826 u16 hpllcc = 0;
6827
6828 /*
6829 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6830 * encoding is different :(
6831 * FIXME is this the right way to detect 852GM/852GMV?
6832 */
6833 if (dev->pdev->revision == 0x1)
6834 return 133333;
6835
6836 pci_bus_read_config_word(dev->pdev->bus,
6837 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6838
6839 /* Assume that the hardware is in the high speed state. This
6840 * should be the default.
6841 */
6842 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6843 case GC_CLOCK_133_200:
6844 case GC_CLOCK_133_200_2:
6845 case GC_CLOCK_100_200:
6846 return 200000;
6847 case GC_CLOCK_166_250:
6848 return 250000;
6849 case GC_CLOCK_100_133:
6850 return 133333;
6851 case GC_CLOCK_133_266:
6852 case GC_CLOCK_133_266_2:
6853 case GC_CLOCK_166_266:
6854 return 266667;
6855 }
6856
6857 /* Shouldn't happen */
6858 return 0;
6859 }
6860
6861 static int i830_get_display_clock_speed(struct drm_device *dev)
6862 {
6863 return 133333;
6864 }
6865
6866 static unsigned int intel_hpll_vco(struct drm_device *dev)
6867 {
6868 struct drm_i915_private *dev_priv = dev->dev_private;
6869 static const unsigned int blb_vco[8] = {
6870 [0] = 3200000,
6871 [1] = 4000000,
6872 [2] = 5333333,
6873 [3] = 4800000,
6874 [4] = 6400000,
6875 };
6876 static const unsigned int pnv_vco[8] = {
6877 [0] = 3200000,
6878 [1] = 4000000,
6879 [2] = 5333333,
6880 [3] = 4800000,
6881 [4] = 2666667,
6882 };
6883 static const unsigned int cl_vco[8] = {
6884 [0] = 3200000,
6885 [1] = 4000000,
6886 [2] = 5333333,
6887 [3] = 6400000,
6888 [4] = 3333333,
6889 [5] = 3566667,
6890 [6] = 4266667,
6891 };
6892 static const unsigned int elk_vco[8] = {
6893 [0] = 3200000,
6894 [1] = 4000000,
6895 [2] = 5333333,
6896 [3] = 4800000,
6897 };
6898 static const unsigned int ctg_vco[8] = {
6899 [0] = 3200000,
6900 [1] = 4000000,
6901 [2] = 5333333,
6902 [3] = 6400000,
6903 [4] = 2666667,
6904 [5] = 4266667,
6905 };
6906 const unsigned int *vco_table;
6907 unsigned int vco;
6908 uint8_t tmp = 0;
6909
6910 /* FIXME other chipsets? */
6911 if (IS_GM45(dev))
6912 vco_table = ctg_vco;
6913 else if (IS_G4X(dev))
6914 vco_table = elk_vco;
6915 else if (IS_CRESTLINE(dev))
6916 vco_table = cl_vco;
6917 else if (IS_PINEVIEW(dev))
6918 vco_table = pnv_vco;
6919 else if (IS_G33(dev))
6920 vco_table = blb_vco;
6921 else
6922 return 0;
6923
6924 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6925
6926 vco = vco_table[tmp & 0x7];
6927 if (vco == 0)
6928 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6929 else
6930 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6931
6932 return vco;
6933 }
6934
6935 static int gm45_get_display_clock_speed(struct drm_device *dev)
6936 {
6937 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6938 uint16_t tmp = 0;
6939
6940 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6941
6942 cdclk_sel = (tmp >> 12) & 0x1;
6943
6944 switch (vco) {
6945 case 2666667:
6946 case 4000000:
6947 case 5333333:
6948 return cdclk_sel ? 333333 : 222222;
6949 case 3200000:
6950 return cdclk_sel ? 320000 : 228571;
6951 default:
6952 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6953 return 222222;
6954 }
6955 }
6956
6957 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6958 {
6959 static const uint8_t div_3200[] = { 16, 10, 8 };
6960 static const uint8_t div_4000[] = { 20, 12, 10 };
6961 static const uint8_t div_5333[] = { 24, 16, 14 };
6962 const uint8_t *div_table;
6963 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6964 uint16_t tmp = 0;
6965
6966 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6967
6968 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6969
6970 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6971 goto fail;
6972
6973 switch (vco) {
6974 case 3200000:
6975 div_table = div_3200;
6976 break;
6977 case 4000000:
6978 div_table = div_4000;
6979 break;
6980 case 5333333:
6981 div_table = div_5333;
6982 break;
6983 default:
6984 goto fail;
6985 }
6986
6987 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6988
6989 fail:
6990 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6991 return 200000;
6992 }
6993
6994 static int g33_get_display_clock_speed(struct drm_device *dev)
6995 {
6996 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6997 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6998 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6999 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7000 const uint8_t *div_table;
7001 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7002 uint16_t tmp = 0;
7003
7004 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7005
7006 cdclk_sel = (tmp >> 4) & 0x7;
7007
7008 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7009 goto fail;
7010
7011 switch (vco) {
7012 case 3200000:
7013 div_table = div_3200;
7014 break;
7015 case 4000000:
7016 div_table = div_4000;
7017 break;
7018 case 4800000:
7019 div_table = div_4800;
7020 break;
7021 case 5333333:
7022 div_table = div_5333;
7023 break;
7024 default:
7025 goto fail;
7026 }
7027
7028 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7029
7030 fail:
7031 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7032 return 190476;
7033 }
7034
7035 static void
7036 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7037 {
7038 while (*num > DATA_LINK_M_N_MASK ||
7039 *den > DATA_LINK_M_N_MASK) {
7040 *num >>= 1;
7041 *den >>= 1;
7042 }
7043 }
7044
7045 static void compute_m_n(unsigned int m, unsigned int n,
7046 uint32_t *ret_m, uint32_t *ret_n)
7047 {
7048 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7049 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7050 intel_reduce_m_n_ratio(ret_m, ret_n);
7051 }
7052
7053 void
7054 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7055 int pixel_clock, int link_clock,
7056 struct intel_link_m_n *m_n)
7057 {
7058 m_n->tu = 64;
7059
7060 compute_m_n(bits_per_pixel * pixel_clock,
7061 link_clock * nlanes * 8,
7062 &m_n->gmch_m, &m_n->gmch_n);
7063
7064 compute_m_n(pixel_clock, link_clock,
7065 &m_n->link_m, &m_n->link_n);
7066 }
7067
7068 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7069 {
7070 if (i915.panel_use_ssc >= 0)
7071 return i915.panel_use_ssc != 0;
7072 return dev_priv->vbt.lvds_use_ssc
7073 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7074 }
7075
7076 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7077 int num_connectors)
7078 {
7079 struct drm_device *dev = crtc_state->base.crtc->dev;
7080 struct drm_i915_private *dev_priv = dev->dev_private;
7081 int refclk;
7082
7083 WARN_ON(!crtc_state->base.state);
7084
7085 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7086 refclk = 100000;
7087 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7088 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7089 refclk = dev_priv->vbt.lvds_ssc_freq;
7090 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7091 } else if (!IS_GEN2(dev)) {
7092 refclk = 96000;
7093 } else {
7094 refclk = 48000;
7095 }
7096
7097 return refclk;
7098 }
7099
7100 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7101 {
7102 return (1 << dpll->n) << 16 | dpll->m2;
7103 }
7104
7105 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7106 {
7107 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7108 }
7109
7110 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7111 struct intel_crtc_state *crtc_state,
7112 intel_clock_t *reduced_clock)
7113 {
7114 struct drm_device *dev = crtc->base.dev;
7115 u32 fp, fp2 = 0;
7116
7117 if (IS_PINEVIEW(dev)) {
7118 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7119 if (reduced_clock)
7120 fp2 = pnv_dpll_compute_fp(reduced_clock);
7121 } else {
7122 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7123 if (reduced_clock)
7124 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7125 }
7126
7127 crtc_state->dpll_hw_state.fp0 = fp;
7128
7129 crtc->lowfreq_avail = false;
7130 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7131 reduced_clock) {
7132 crtc_state->dpll_hw_state.fp1 = fp2;
7133 crtc->lowfreq_avail = true;
7134 } else {
7135 crtc_state->dpll_hw_state.fp1 = fp;
7136 }
7137 }
7138
7139 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7140 pipe)
7141 {
7142 u32 reg_val;
7143
7144 /*
7145 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7146 * and set it to a reasonable value instead.
7147 */
7148 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7149 reg_val &= 0xffffff00;
7150 reg_val |= 0x00000030;
7151 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7152
7153 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7154 reg_val &= 0x8cffffff;
7155 reg_val = 0x8c000000;
7156 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7157
7158 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7159 reg_val &= 0xffffff00;
7160 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7161
7162 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7163 reg_val &= 0x00ffffff;
7164 reg_val |= 0xb0000000;
7165 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7166 }
7167
7168 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7169 struct intel_link_m_n *m_n)
7170 {
7171 struct drm_device *dev = crtc->base.dev;
7172 struct drm_i915_private *dev_priv = dev->dev_private;
7173 int pipe = crtc->pipe;
7174
7175 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7176 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7177 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7178 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7179 }
7180
7181 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7182 struct intel_link_m_n *m_n,
7183 struct intel_link_m_n *m2_n2)
7184 {
7185 struct drm_device *dev = crtc->base.dev;
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 int pipe = crtc->pipe;
7188 enum transcoder transcoder = crtc->config->cpu_transcoder;
7189
7190 if (INTEL_INFO(dev)->gen >= 5) {
7191 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7192 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7193 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7194 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7195 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7196 * for gen < 8) and if DRRS is supported (to make sure the
7197 * registers are not unnecessarily accessed).
7198 */
7199 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7200 crtc->config->has_drrs) {
7201 I915_WRITE(PIPE_DATA_M2(transcoder),
7202 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7203 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7204 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7205 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7206 }
7207 } else {
7208 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7209 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7210 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7211 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7212 }
7213 }
7214
7215 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7216 {
7217 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7218
7219 if (m_n == M1_N1) {
7220 dp_m_n = &crtc->config->dp_m_n;
7221 dp_m2_n2 = &crtc->config->dp_m2_n2;
7222 } else if (m_n == M2_N2) {
7223
7224 /*
7225 * M2_N2 registers are not supported. Hence m2_n2 divider value
7226 * needs to be programmed into M1_N1.
7227 */
7228 dp_m_n = &crtc->config->dp_m2_n2;
7229 } else {
7230 DRM_ERROR("Unsupported divider value\n");
7231 return;
7232 }
7233
7234 if (crtc->config->has_pch_encoder)
7235 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7236 else
7237 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7238 }
7239
7240 static void vlv_update_pll(struct intel_crtc *crtc,
7241 struct intel_crtc_state *pipe_config)
7242 {
7243 u32 dpll, dpll_md;
7244
7245 /*
7246 * Enable DPIO clock input. We should never disable the reference
7247 * clock for pipe B, since VGA hotplug / manual detection depends
7248 * on it.
7249 */
7250 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7251 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7252 /* We should never disable this, set it here for state tracking */
7253 if (crtc->pipe == PIPE_B)
7254 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7255 dpll |= DPLL_VCO_ENABLE;
7256 pipe_config->dpll_hw_state.dpll = dpll;
7257
7258 dpll_md = (pipe_config->pixel_multiplier - 1)
7259 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7260 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7261 }
7262
7263 static void vlv_prepare_pll(struct intel_crtc *crtc,
7264 const struct intel_crtc_state *pipe_config)
7265 {
7266 struct drm_device *dev = crtc->base.dev;
7267 struct drm_i915_private *dev_priv = dev->dev_private;
7268 int pipe = crtc->pipe;
7269 u32 mdiv;
7270 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7271 u32 coreclk, reg_val;
7272
7273 mutex_lock(&dev_priv->sb_lock);
7274
7275 bestn = pipe_config->dpll.n;
7276 bestm1 = pipe_config->dpll.m1;
7277 bestm2 = pipe_config->dpll.m2;
7278 bestp1 = pipe_config->dpll.p1;
7279 bestp2 = pipe_config->dpll.p2;
7280
7281 /* See eDP HDMI DPIO driver vbios notes doc */
7282
7283 /* PLL B needs special handling */
7284 if (pipe == PIPE_B)
7285 vlv_pllb_recal_opamp(dev_priv, pipe);
7286
7287 /* Set up Tx target for periodic Rcomp update */
7288 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7289
7290 /* Disable target IRef on PLL */
7291 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7292 reg_val &= 0x00ffffff;
7293 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7294
7295 /* Disable fast lock */
7296 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7297
7298 /* Set idtafcrecal before PLL is enabled */
7299 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7300 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7301 mdiv |= ((bestn << DPIO_N_SHIFT));
7302 mdiv |= (1 << DPIO_K_SHIFT);
7303
7304 /*
7305 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7306 * but we don't support that).
7307 * Note: don't use the DAC post divider as it seems unstable.
7308 */
7309 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7310 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7311
7312 mdiv |= DPIO_ENABLE_CALIBRATION;
7313 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7314
7315 /* Set HBR and RBR LPF coefficients */
7316 if (pipe_config->port_clock == 162000 ||
7317 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7318 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7319 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7320 0x009f0003);
7321 else
7322 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7323 0x00d0000f);
7324
7325 if (pipe_config->has_dp_encoder) {
7326 /* Use SSC source */
7327 if (pipe == PIPE_A)
7328 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7329 0x0df40000);
7330 else
7331 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7332 0x0df70000);
7333 } else { /* HDMI or VGA */
7334 /* Use bend source */
7335 if (pipe == PIPE_A)
7336 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7337 0x0df70000);
7338 else
7339 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7340 0x0df40000);
7341 }
7342
7343 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7344 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7345 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7346 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7347 coreclk |= 0x01000000;
7348 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7349
7350 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7351 mutex_unlock(&dev_priv->sb_lock);
7352 }
7353
7354 static void chv_update_pll(struct intel_crtc *crtc,
7355 struct intel_crtc_state *pipe_config)
7356 {
7357 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7358 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7359 DPLL_VCO_ENABLE;
7360 if (crtc->pipe != PIPE_A)
7361 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7362
7363 pipe_config->dpll_hw_state.dpll_md =
7364 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7365 }
7366
7367 static void chv_prepare_pll(struct intel_crtc *crtc,
7368 const struct intel_crtc_state *pipe_config)
7369 {
7370 struct drm_device *dev = crtc->base.dev;
7371 struct drm_i915_private *dev_priv = dev->dev_private;
7372 int pipe = crtc->pipe;
7373 int dpll_reg = DPLL(crtc->pipe);
7374 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7375 u32 loopfilter, tribuf_calcntr;
7376 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7377 u32 dpio_val;
7378 int vco;
7379
7380 bestn = pipe_config->dpll.n;
7381 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7382 bestm1 = pipe_config->dpll.m1;
7383 bestm2 = pipe_config->dpll.m2 >> 22;
7384 bestp1 = pipe_config->dpll.p1;
7385 bestp2 = pipe_config->dpll.p2;
7386 vco = pipe_config->dpll.vco;
7387 dpio_val = 0;
7388 loopfilter = 0;
7389
7390 /*
7391 * Enable Refclk and SSC
7392 */
7393 I915_WRITE(dpll_reg,
7394 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7395
7396 mutex_lock(&dev_priv->sb_lock);
7397
7398 /* p1 and p2 divider */
7399 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7400 5 << DPIO_CHV_S1_DIV_SHIFT |
7401 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7402 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7403 1 << DPIO_CHV_K_DIV_SHIFT);
7404
7405 /* Feedback post-divider - m2 */
7406 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7407
7408 /* Feedback refclk divider - n and m1 */
7409 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7410 DPIO_CHV_M1_DIV_BY_2 |
7411 1 << DPIO_CHV_N_DIV_SHIFT);
7412
7413 /* M2 fraction division */
7414 if (bestm2_frac)
7415 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7416
7417 /* M2 fraction division enable */
7418 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7419 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7420 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7421 if (bestm2_frac)
7422 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7423 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7424
7425 /* Program digital lock detect threshold */
7426 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7427 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7428 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7429 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7430 if (!bestm2_frac)
7431 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7432 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7433
7434 /* Loop filter */
7435 if (vco == 5400000) {
7436 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7437 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7438 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7439 tribuf_calcntr = 0x9;
7440 } else if (vco <= 6200000) {
7441 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7442 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7443 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7444 tribuf_calcntr = 0x9;
7445 } else if (vco <= 6480000) {
7446 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7447 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7448 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7449 tribuf_calcntr = 0x8;
7450 } else {
7451 /* Not supported. Apply the same limits as in the max case */
7452 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7453 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7454 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7455 tribuf_calcntr = 0;
7456 }
7457 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7458
7459 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7460 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7461 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7462 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7463
7464 /* AFC Recal */
7465 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7466 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7467 DPIO_AFC_RECAL);
7468
7469 mutex_unlock(&dev_priv->sb_lock);
7470 }
7471
7472 /**
7473 * vlv_force_pll_on - forcibly enable just the PLL
7474 * @dev_priv: i915 private structure
7475 * @pipe: pipe PLL to enable
7476 * @dpll: PLL configuration
7477 *
7478 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7479 * in cases where we need the PLL enabled even when @pipe is not going to
7480 * be enabled.
7481 */
7482 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7483 const struct dpll *dpll)
7484 {
7485 struct intel_crtc *crtc =
7486 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7487 struct intel_crtc_state pipe_config = {
7488 .base.crtc = &crtc->base,
7489 .pixel_multiplier = 1,
7490 .dpll = *dpll,
7491 };
7492
7493 if (IS_CHERRYVIEW(dev)) {
7494 chv_update_pll(crtc, &pipe_config);
7495 chv_prepare_pll(crtc, &pipe_config);
7496 chv_enable_pll(crtc, &pipe_config);
7497 } else {
7498 vlv_update_pll(crtc, &pipe_config);
7499 vlv_prepare_pll(crtc, &pipe_config);
7500 vlv_enable_pll(crtc, &pipe_config);
7501 }
7502 }
7503
7504 /**
7505 * vlv_force_pll_off - forcibly disable just the PLL
7506 * @dev_priv: i915 private structure
7507 * @pipe: pipe PLL to disable
7508 *
7509 * Disable the PLL for @pipe. To be used in cases where we need
7510 * the PLL enabled even when @pipe is not going to be enabled.
7511 */
7512 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7513 {
7514 if (IS_CHERRYVIEW(dev))
7515 chv_disable_pll(to_i915(dev), pipe);
7516 else
7517 vlv_disable_pll(to_i915(dev), pipe);
7518 }
7519
7520 static void i9xx_update_pll(struct intel_crtc *crtc,
7521 struct intel_crtc_state *crtc_state,
7522 intel_clock_t *reduced_clock,
7523 int num_connectors)
7524 {
7525 struct drm_device *dev = crtc->base.dev;
7526 struct drm_i915_private *dev_priv = dev->dev_private;
7527 u32 dpll;
7528 bool is_sdvo;
7529 struct dpll *clock = &crtc_state->dpll;
7530
7531 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7532
7533 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7534 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7535
7536 dpll = DPLL_VGA_MODE_DIS;
7537
7538 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7539 dpll |= DPLLB_MODE_LVDS;
7540 else
7541 dpll |= DPLLB_MODE_DAC_SERIAL;
7542
7543 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7544 dpll |= (crtc_state->pixel_multiplier - 1)
7545 << SDVO_MULTIPLIER_SHIFT_HIRES;
7546 }
7547
7548 if (is_sdvo)
7549 dpll |= DPLL_SDVO_HIGH_SPEED;
7550
7551 if (crtc_state->has_dp_encoder)
7552 dpll |= DPLL_SDVO_HIGH_SPEED;
7553
7554 /* compute bitmask from p1 value */
7555 if (IS_PINEVIEW(dev))
7556 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7557 else {
7558 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7559 if (IS_G4X(dev) && reduced_clock)
7560 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7561 }
7562 switch (clock->p2) {
7563 case 5:
7564 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7565 break;
7566 case 7:
7567 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7568 break;
7569 case 10:
7570 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7571 break;
7572 case 14:
7573 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7574 break;
7575 }
7576 if (INTEL_INFO(dev)->gen >= 4)
7577 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7578
7579 if (crtc_state->sdvo_tv_clock)
7580 dpll |= PLL_REF_INPUT_TVCLKINBC;
7581 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7582 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7583 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7584 else
7585 dpll |= PLL_REF_INPUT_DREFCLK;
7586
7587 dpll |= DPLL_VCO_ENABLE;
7588 crtc_state->dpll_hw_state.dpll = dpll;
7589
7590 if (INTEL_INFO(dev)->gen >= 4) {
7591 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7592 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7593 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7594 }
7595 }
7596
7597 static void i8xx_update_pll(struct intel_crtc *crtc,
7598 struct intel_crtc_state *crtc_state,
7599 intel_clock_t *reduced_clock,
7600 int num_connectors)
7601 {
7602 struct drm_device *dev = crtc->base.dev;
7603 struct drm_i915_private *dev_priv = dev->dev_private;
7604 u32 dpll;
7605 struct dpll *clock = &crtc_state->dpll;
7606
7607 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7608
7609 dpll = DPLL_VGA_MODE_DIS;
7610
7611 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7612 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7613 } else {
7614 if (clock->p1 == 2)
7615 dpll |= PLL_P1_DIVIDE_BY_TWO;
7616 else
7617 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7618 if (clock->p2 == 4)
7619 dpll |= PLL_P2_DIVIDE_BY_4;
7620 }
7621
7622 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7623 dpll |= DPLL_DVO_2X_MODE;
7624
7625 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7626 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7627 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7628 else
7629 dpll |= PLL_REF_INPUT_DREFCLK;
7630
7631 dpll |= DPLL_VCO_ENABLE;
7632 crtc_state->dpll_hw_state.dpll = dpll;
7633 }
7634
7635 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7636 {
7637 struct drm_device *dev = intel_crtc->base.dev;
7638 struct drm_i915_private *dev_priv = dev->dev_private;
7639 enum pipe pipe = intel_crtc->pipe;
7640 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7641 struct drm_display_mode *adjusted_mode =
7642 &intel_crtc->config->base.adjusted_mode;
7643 uint32_t crtc_vtotal, crtc_vblank_end;
7644 int vsyncshift = 0;
7645
7646 /* We need to be careful not to changed the adjusted mode, for otherwise
7647 * the hw state checker will get angry at the mismatch. */
7648 crtc_vtotal = adjusted_mode->crtc_vtotal;
7649 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7650
7651 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7652 /* the chip adds 2 halflines automatically */
7653 crtc_vtotal -= 1;
7654 crtc_vblank_end -= 1;
7655
7656 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7657 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7658 else
7659 vsyncshift = adjusted_mode->crtc_hsync_start -
7660 adjusted_mode->crtc_htotal / 2;
7661 if (vsyncshift < 0)
7662 vsyncshift += adjusted_mode->crtc_htotal;
7663 }
7664
7665 if (INTEL_INFO(dev)->gen > 3)
7666 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7667
7668 I915_WRITE(HTOTAL(cpu_transcoder),
7669 (adjusted_mode->crtc_hdisplay - 1) |
7670 ((adjusted_mode->crtc_htotal - 1) << 16));
7671 I915_WRITE(HBLANK(cpu_transcoder),
7672 (adjusted_mode->crtc_hblank_start - 1) |
7673 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7674 I915_WRITE(HSYNC(cpu_transcoder),
7675 (adjusted_mode->crtc_hsync_start - 1) |
7676 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7677
7678 I915_WRITE(VTOTAL(cpu_transcoder),
7679 (adjusted_mode->crtc_vdisplay - 1) |
7680 ((crtc_vtotal - 1) << 16));
7681 I915_WRITE(VBLANK(cpu_transcoder),
7682 (adjusted_mode->crtc_vblank_start - 1) |
7683 ((crtc_vblank_end - 1) << 16));
7684 I915_WRITE(VSYNC(cpu_transcoder),
7685 (adjusted_mode->crtc_vsync_start - 1) |
7686 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7687
7688 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7689 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7690 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7691 * bits. */
7692 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7693 (pipe == PIPE_B || pipe == PIPE_C))
7694 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7695
7696 /* pipesrc controls the size that is scaled from, which should
7697 * always be the user's requested size.
7698 */
7699 I915_WRITE(PIPESRC(pipe),
7700 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7701 (intel_crtc->config->pipe_src_h - 1));
7702 }
7703
7704 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7705 struct intel_crtc_state *pipe_config)
7706 {
7707 struct drm_device *dev = crtc->base.dev;
7708 struct drm_i915_private *dev_priv = dev->dev_private;
7709 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7710 uint32_t tmp;
7711
7712 tmp = I915_READ(HTOTAL(cpu_transcoder));
7713 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7714 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7715 tmp = I915_READ(HBLANK(cpu_transcoder));
7716 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7717 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7718 tmp = I915_READ(HSYNC(cpu_transcoder));
7719 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7720 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7721
7722 tmp = I915_READ(VTOTAL(cpu_transcoder));
7723 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7724 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7725 tmp = I915_READ(VBLANK(cpu_transcoder));
7726 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7727 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7728 tmp = I915_READ(VSYNC(cpu_transcoder));
7729 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7730 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7731
7732 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7733 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7734 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7735 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7736 }
7737
7738 tmp = I915_READ(PIPESRC(crtc->pipe));
7739 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7740 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7741
7742 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7743 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7744 }
7745
7746 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7747 struct intel_crtc_state *pipe_config)
7748 {
7749 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7750 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7751 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7752 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7753
7754 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7755 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7756 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7757 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7758
7759 mode->flags = pipe_config->base.adjusted_mode.flags;
7760
7761 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7762 mode->flags |= pipe_config->base.adjusted_mode.flags;
7763 }
7764
7765 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7766 {
7767 struct drm_device *dev = intel_crtc->base.dev;
7768 struct drm_i915_private *dev_priv = dev->dev_private;
7769 uint32_t pipeconf;
7770
7771 pipeconf = 0;
7772
7773 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7774 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7775 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7776
7777 if (intel_crtc->config->double_wide)
7778 pipeconf |= PIPECONF_DOUBLE_WIDE;
7779
7780 /* only g4x and later have fancy bpc/dither controls */
7781 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7782 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7783 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7784 pipeconf |= PIPECONF_DITHER_EN |
7785 PIPECONF_DITHER_TYPE_SP;
7786
7787 switch (intel_crtc->config->pipe_bpp) {
7788 case 18:
7789 pipeconf |= PIPECONF_6BPC;
7790 break;
7791 case 24:
7792 pipeconf |= PIPECONF_8BPC;
7793 break;
7794 case 30:
7795 pipeconf |= PIPECONF_10BPC;
7796 break;
7797 default:
7798 /* Case prevented by intel_choose_pipe_bpp_dither. */
7799 BUG();
7800 }
7801 }
7802
7803 if (HAS_PIPE_CXSR(dev)) {
7804 if (intel_crtc->lowfreq_avail) {
7805 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7806 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7807 } else {
7808 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7809 }
7810 }
7811
7812 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7813 if (INTEL_INFO(dev)->gen < 4 ||
7814 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7815 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7816 else
7817 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7818 } else
7819 pipeconf |= PIPECONF_PROGRESSIVE;
7820
7821 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7822 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7823
7824 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7825 POSTING_READ(PIPECONF(intel_crtc->pipe));
7826 }
7827
7828 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7829 struct intel_crtc_state *crtc_state)
7830 {
7831 struct drm_device *dev = crtc->base.dev;
7832 struct drm_i915_private *dev_priv = dev->dev_private;
7833 int refclk, num_connectors = 0;
7834 intel_clock_t clock, reduced_clock;
7835 bool ok, has_reduced_clock = false;
7836 bool is_lvds = false, is_dsi = false;
7837 struct intel_encoder *encoder;
7838 const intel_limit_t *limit;
7839 struct drm_atomic_state *state = crtc_state->base.state;
7840 struct drm_connector *connector;
7841 struct drm_connector_state *connector_state;
7842 int i;
7843
7844 memset(&crtc_state->dpll_hw_state, 0,
7845 sizeof(crtc_state->dpll_hw_state));
7846
7847 for_each_connector_in_state(state, connector, connector_state, i) {
7848 if (connector_state->crtc != &crtc->base)
7849 continue;
7850
7851 encoder = to_intel_encoder(connector_state->best_encoder);
7852
7853 switch (encoder->type) {
7854 case INTEL_OUTPUT_LVDS:
7855 is_lvds = true;
7856 break;
7857 case INTEL_OUTPUT_DSI:
7858 is_dsi = true;
7859 break;
7860 default:
7861 break;
7862 }
7863
7864 num_connectors++;
7865 }
7866
7867 if (is_dsi)
7868 return 0;
7869
7870 if (!crtc_state->clock_set) {
7871 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7872
7873 /*
7874 * Returns a set of divisors for the desired target clock with
7875 * the given refclk, or FALSE. The returned values represent
7876 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7877 * 2) / p1 / p2.
7878 */
7879 limit = intel_limit(crtc_state, refclk);
7880 ok = dev_priv->display.find_dpll(limit, crtc_state,
7881 crtc_state->port_clock,
7882 refclk, NULL, &clock);
7883 if (!ok) {
7884 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7885 return -EINVAL;
7886 }
7887
7888 if (is_lvds && dev_priv->lvds_downclock_avail) {
7889 /*
7890 * Ensure we match the reduced clock's P to the target
7891 * clock. If the clocks don't match, we can't switch
7892 * the display clock by using the FP0/FP1. In such case
7893 * we will disable the LVDS downclock feature.
7894 */
7895 has_reduced_clock =
7896 dev_priv->display.find_dpll(limit, crtc_state,
7897 dev_priv->lvds_downclock,
7898 refclk, &clock,
7899 &reduced_clock);
7900 }
7901 /* Compat-code for transition, will disappear. */
7902 crtc_state->dpll.n = clock.n;
7903 crtc_state->dpll.m1 = clock.m1;
7904 crtc_state->dpll.m2 = clock.m2;
7905 crtc_state->dpll.p1 = clock.p1;
7906 crtc_state->dpll.p2 = clock.p2;
7907 }
7908
7909 if (IS_GEN2(dev)) {
7910 i8xx_update_pll(crtc, crtc_state,
7911 has_reduced_clock ? &reduced_clock : NULL,
7912 num_connectors);
7913 } else if (IS_CHERRYVIEW(dev)) {
7914 chv_update_pll(crtc, crtc_state);
7915 } else if (IS_VALLEYVIEW(dev)) {
7916 vlv_update_pll(crtc, crtc_state);
7917 } else {
7918 i9xx_update_pll(crtc, crtc_state,
7919 has_reduced_clock ? &reduced_clock : NULL,
7920 num_connectors);
7921 }
7922
7923 return 0;
7924 }
7925
7926 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7927 struct intel_crtc_state *pipe_config)
7928 {
7929 struct drm_device *dev = crtc->base.dev;
7930 struct drm_i915_private *dev_priv = dev->dev_private;
7931 uint32_t tmp;
7932
7933 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7934 return;
7935
7936 tmp = I915_READ(PFIT_CONTROL);
7937 if (!(tmp & PFIT_ENABLE))
7938 return;
7939
7940 /* Check whether the pfit is attached to our pipe. */
7941 if (INTEL_INFO(dev)->gen < 4) {
7942 if (crtc->pipe != PIPE_B)
7943 return;
7944 } else {
7945 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7946 return;
7947 }
7948
7949 pipe_config->gmch_pfit.control = tmp;
7950 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7951 if (INTEL_INFO(dev)->gen < 5)
7952 pipe_config->gmch_pfit.lvds_border_bits =
7953 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7954 }
7955
7956 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7957 struct intel_crtc_state *pipe_config)
7958 {
7959 struct drm_device *dev = crtc->base.dev;
7960 struct drm_i915_private *dev_priv = dev->dev_private;
7961 int pipe = pipe_config->cpu_transcoder;
7962 intel_clock_t clock;
7963 u32 mdiv;
7964 int refclk = 100000;
7965
7966 /* In case of MIPI DPLL will not even be used */
7967 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7968 return;
7969
7970 mutex_lock(&dev_priv->sb_lock);
7971 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7972 mutex_unlock(&dev_priv->sb_lock);
7973
7974 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7975 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7976 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7977 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7978 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7979
7980 vlv_clock(refclk, &clock);
7981
7982 /* clock.dot is the fast clock */
7983 pipe_config->port_clock = clock.dot / 5;
7984 }
7985
7986 static void
7987 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7988 struct intel_initial_plane_config *plane_config)
7989 {
7990 struct drm_device *dev = crtc->base.dev;
7991 struct drm_i915_private *dev_priv = dev->dev_private;
7992 u32 val, base, offset;
7993 int pipe = crtc->pipe, plane = crtc->plane;
7994 int fourcc, pixel_format;
7995 unsigned int aligned_height;
7996 struct drm_framebuffer *fb;
7997 struct intel_framebuffer *intel_fb;
7998
7999 val = I915_READ(DSPCNTR(plane));
8000 if (!(val & DISPLAY_PLANE_ENABLE))
8001 return;
8002
8003 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8004 if (!intel_fb) {
8005 DRM_DEBUG_KMS("failed to alloc fb\n");
8006 return;
8007 }
8008
8009 fb = &intel_fb->base;
8010
8011 if (INTEL_INFO(dev)->gen >= 4) {
8012 if (val & DISPPLANE_TILED) {
8013 plane_config->tiling = I915_TILING_X;
8014 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8015 }
8016 }
8017
8018 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8019 fourcc = i9xx_format_to_fourcc(pixel_format);
8020 fb->pixel_format = fourcc;
8021 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8022
8023 if (INTEL_INFO(dev)->gen >= 4) {
8024 if (plane_config->tiling)
8025 offset = I915_READ(DSPTILEOFF(plane));
8026 else
8027 offset = I915_READ(DSPLINOFF(plane));
8028 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8029 } else {
8030 base = I915_READ(DSPADDR(plane));
8031 }
8032 plane_config->base = base;
8033
8034 val = I915_READ(PIPESRC(pipe));
8035 fb->width = ((val >> 16) & 0xfff) + 1;
8036 fb->height = ((val >> 0) & 0xfff) + 1;
8037
8038 val = I915_READ(DSPSTRIDE(pipe));
8039 fb->pitches[0] = val & 0xffffffc0;
8040
8041 aligned_height = intel_fb_align_height(dev, fb->height,
8042 fb->pixel_format,
8043 fb->modifier[0]);
8044
8045 plane_config->size = fb->pitches[0] * aligned_height;
8046
8047 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8048 pipe_name(pipe), plane, fb->width, fb->height,
8049 fb->bits_per_pixel, base, fb->pitches[0],
8050 plane_config->size);
8051
8052 plane_config->fb = intel_fb;
8053 }
8054
8055 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8056 struct intel_crtc_state *pipe_config)
8057 {
8058 struct drm_device *dev = crtc->base.dev;
8059 struct drm_i915_private *dev_priv = dev->dev_private;
8060 int pipe = pipe_config->cpu_transcoder;
8061 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8062 intel_clock_t clock;
8063 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
8064 int refclk = 100000;
8065
8066 mutex_lock(&dev_priv->sb_lock);
8067 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8068 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8069 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8070 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8071 mutex_unlock(&dev_priv->sb_lock);
8072
8073 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8074 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
8075 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8076 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8077 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8078
8079 chv_clock(refclk, &clock);
8080
8081 /* clock.dot is the fast clock */
8082 pipe_config->port_clock = clock.dot / 5;
8083 }
8084
8085 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8086 struct intel_crtc_state *pipe_config)
8087 {
8088 struct drm_device *dev = crtc->base.dev;
8089 struct drm_i915_private *dev_priv = dev->dev_private;
8090 uint32_t tmp;
8091
8092 if (!intel_display_power_is_enabled(dev_priv,
8093 POWER_DOMAIN_PIPE(crtc->pipe)))
8094 return false;
8095
8096 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8097 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8098
8099 tmp = I915_READ(PIPECONF(crtc->pipe));
8100 if (!(tmp & PIPECONF_ENABLE))
8101 return false;
8102
8103 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8104 switch (tmp & PIPECONF_BPC_MASK) {
8105 case PIPECONF_6BPC:
8106 pipe_config->pipe_bpp = 18;
8107 break;
8108 case PIPECONF_8BPC:
8109 pipe_config->pipe_bpp = 24;
8110 break;
8111 case PIPECONF_10BPC:
8112 pipe_config->pipe_bpp = 30;
8113 break;
8114 default:
8115 break;
8116 }
8117 }
8118
8119 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8120 pipe_config->limited_color_range = true;
8121
8122 if (INTEL_INFO(dev)->gen < 4)
8123 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8124
8125 intel_get_pipe_timings(crtc, pipe_config);
8126
8127 i9xx_get_pfit_config(crtc, pipe_config);
8128
8129 if (INTEL_INFO(dev)->gen >= 4) {
8130 tmp = I915_READ(DPLL_MD(crtc->pipe));
8131 pipe_config->pixel_multiplier =
8132 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8133 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8134 pipe_config->dpll_hw_state.dpll_md = tmp;
8135 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8136 tmp = I915_READ(DPLL(crtc->pipe));
8137 pipe_config->pixel_multiplier =
8138 ((tmp & SDVO_MULTIPLIER_MASK)
8139 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8140 } else {
8141 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8142 * port and will be fixed up in the encoder->get_config
8143 * function. */
8144 pipe_config->pixel_multiplier = 1;
8145 }
8146 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8147 if (!IS_VALLEYVIEW(dev)) {
8148 /*
8149 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8150 * on 830. Filter it out here so that we don't
8151 * report errors due to that.
8152 */
8153 if (IS_I830(dev))
8154 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8155
8156 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8157 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8158 } else {
8159 /* Mask out read-only status bits. */
8160 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8161 DPLL_PORTC_READY_MASK |
8162 DPLL_PORTB_READY_MASK);
8163 }
8164
8165 if (IS_CHERRYVIEW(dev))
8166 chv_crtc_clock_get(crtc, pipe_config);
8167 else if (IS_VALLEYVIEW(dev))
8168 vlv_crtc_clock_get(crtc, pipe_config);
8169 else
8170 i9xx_crtc_clock_get(crtc, pipe_config);
8171
8172 return true;
8173 }
8174
8175 static void ironlake_init_pch_refclk(struct drm_device *dev)
8176 {
8177 struct drm_i915_private *dev_priv = dev->dev_private;
8178 struct intel_encoder *encoder;
8179 u32 val, final;
8180 bool has_lvds = false;
8181 bool has_cpu_edp = false;
8182 bool has_panel = false;
8183 bool has_ck505 = false;
8184 bool can_ssc = false;
8185
8186 /* We need to take the global config into account */
8187 for_each_intel_encoder(dev, encoder) {
8188 switch (encoder->type) {
8189 case INTEL_OUTPUT_LVDS:
8190 has_panel = true;
8191 has_lvds = true;
8192 break;
8193 case INTEL_OUTPUT_EDP:
8194 has_panel = true;
8195 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8196 has_cpu_edp = true;
8197 break;
8198 default:
8199 break;
8200 }
8201 }
8202
8203 if (HAS_PCH_IBX(dev)) {
8204 has_ck505 = dev_priv->vbt.display_clock_mode;
8205 can_ssc = has_ck505;
8206 } else {
8207 has_ck505 = false;
8208 can_ssc = true;
8209 }
8210
8211 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8212 has_panel, has_lvds, has_ck505);
8213
8214 /* Ironlake: try to setup display ref clock before DPLL
8215 * enabling. This is only under driver's control after
8216 * PCH B stepping, previous chipset stepping should be
8217 * ignoring this setting.
8218 */
8219 val = I915_READ(PCH_DREF_CONTROL);
8220
8221 /* As we must carefully and slowly disable/enable each source in turn,
8222 * compute the final state we want first and check if we need to
8223 * make any changes at all.
8224 */
8225 final = val;
8226 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8227 if (has_ck505)
8228 final |= DREF_NONSPREAD_CK505_ENABLE;
8229 else
8230 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8231
8232 final &= ~DREF_SSC_SOURCE_MASK;
8233 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8234 final &= ~DREF_SSC1_ENABLE;
8235
8236 if (has_panel) {
8237 final |= DREF_SSC_SOURCE_ENABLE;
8238
8239 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8240 final |= DREF_SSC1_ENABLE;
8241
8242 if (has_cpu_edp) {
8243 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8244 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8245 else
8246 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8247 } else
8248 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8249 } else {
8250 final |= DREF_SSC_SOURCE_DISABLE;
8251 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8252 }
8253
8254 if (final == val)
8255 return;
8256
8257 /* Always enable nonspread source */
8258 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8259
8260 if (has_ck505)
8261 val |= DREF_NONSPREAD_CK505_ENABLE;
8262 else
8263 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8264
8265 if (has_panel) {
8266 val &= ~DREF_SSC_SOURCE_MASK;
8267 val |= DREF_SSC_SOURCE_ENABLE;
8268
8269 /* SSC must be turned on before enabling the CPU output */
8270 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8271 DRM_DEBUG_KMS("Using SSC on panel\n");
8272 val |= DREF_SSC1_ENABLE;
8273 } else
8274 val &= ~DREF_SSC1_ENABLE;
8275
8276 /* Get SSC going before enabling the outputs */
8277 I915_WRITE(PCH_DREF_CONTROL, val);
8278 POSTING_READ(PCH_DREF_CONTROL);
8279 udelay(200);
8280
8281 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8282
8283 /* Enable CPU source on CPU attached eDP */
8284 if (has_cpu_edp) {
8285 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8286 DRM_DEBUG_KMS("Using SSC on eDP\n");
8287 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8288 } else
8289 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8290 } else
8291 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8292
8293 I915_WRITE(PCH_DREF_CONTROL, val);
8294 POSTING_READ(PCH_DREF_CONTROL);
8295 udelay(200);
8296 } else {
8297 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8298
8299 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8300
8301 /* Turn off CPU output */
8302 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8303
8304 I915_WRITE(PCH_DREF_CONTROL, val);
8305 POSTING_READ(PCH_DREF_CONTROL);
8306 udelay(200);
8307
8308 /* Turn off the SSC source */
8309 val &= ~DREF_SSC_SOURCE_MASK;
8310 val |= DREF_SSC_SOURCE_DISABLE;
8311
8312 /* Turn off SSC1 */
8313 val &= ~DREF_SSC1_ENABLE;
8314
8315 I915_WRITE(PCH_DREF_CONTROL, val);
8316 POSTING_READ(PCH_DREF_CONTROL);
8317 udelay(200);
8318 }
8319
8320 BUG_ON(val != final);
8321 }
8322
8323 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8324 {
8325 uint32_t tmp;
8326
8327 tmp = I915_READ(SOUTH_CHICKEN2);
8328 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8329 I915_WRITE(SOUTH_CHICKEN2, tmp);
8330
8331 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8332 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8333 DRM_ERROR("FDI mPHY reset assert timeout\n");
8334
8335 tmp = I915_READ(SOUTH_CHICKEN2);
8336 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8337 I915_WRITE(SOUTH_CHICKEN2, tmp);
8338
8339 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8340 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8341 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8342 }
8343
8344 /* WaMPhyProgramming:hsw */
8345 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8346 {
8347 uint32_t tmp;
8348
8349 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8350 tmp &= ~(0xFF << 24);
8351 tmp |= (0x12 << 24);
8352 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8353
8354 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8355 tmp |= (1 << 11);
8356 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8357
8358 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8359 tmp |= (1 << 11);
8360 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8361
8362 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8363 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8364 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8365
8366 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8367 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8368 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8369
8370 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8371 tmp &= ~(7 << 13);
8372 tmp |= (5 << 13);
8373 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8374
8375 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8376 tmp &= ~(7 << 13);
8377 tmp |= (5 << 13);
8378 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8379
8380 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8381 tmp &= ~0xFF;
8382 tmp |= 0x1C;
8383 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8384
8385 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8386 tmp &= ~0xFF;
8387 tmp |= 0x1C;
8388 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8389
8390 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8391 tmp &= ~(0xFF << 16);
8392 tmp |= (0x1C << 16);
8393 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8394
8395 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8396 tmp &= ~(0xFF << 16);
8397 tmp |= (0x1C << 16);
8398 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8399
8400 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8401 tmp |= (1 << 27);
8402 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8403
8404 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8405 tmp |= (1 << 27);
8406 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8407
8408 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8409 tmp &= ~(0xF << 28);
8410 tmp |= (4 << 28);
8411 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8412
8413 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8414 tmp &= ~(0xF << 28);
8415 tmp |= (4 << 28);
8416 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8417 }
8418
8419 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8420 * Programming" based on the parameters passed:
8421 * - Sequence to enable CLKOUT_DP
8422 * - Sequence to enable CLKOUT_DP without spread
8423 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8424 */
8425 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8426 bool with_fdi)
8427 {
8428 struct drm_i915_private *dev_priv = dev->dev_private;
8429 uint32_t reg, tmp;
8430
8431 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8432 with_spread = true;
8433 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8434 with_fdi, "LP PCH doesn't have FDI\n"))
8435 with_fdi = false;
8436
8437 mutex_lock(&dev_priv->sb_lock);
8438
8439 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8440 tmp &= ~SBI_SSCCTL_DISABLE;
8441 tmp |= SBI_SSCCTL_PATHALT;
8442 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8443
8444 udelay(24);
8445
8446 if (with_spread) {
8447 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8448 tmp &= ~SBI_SSCCTL_PATHALT;
8449 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8450
8451 if (with_fdi) {
8452 lpt_reset_fdi_mphy(dev_priv);
8453 lpt_program_fdi_mphy(dev_priv);
8454 }
8455 }
8456
8457 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8458 SBI_GEN0 : SBI_DBUFF0;
8459 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8460 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8461 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8462
8463 mutex_unlock(&dev_priv->sb_lock);
8464 }
8465
8466 /* Sequence to disable CLKOUT_DP */
8467 static void lpt_disable_clkout_dp(struct drm_device *dev)
8468 {
8469 struct drm_i915_private *dev_priv = dev->dev_private;
8470 uint32_t reg, tmp;
8471
8472 mutex_lock(&dev_priv->sb_lock);
8473
8474 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8475 SBI_GEN0 : SBI_DBUFF0;
8476 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8477 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8478 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8479
8480 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8481 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8482 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8483 tmp |= SBI_SSCCTL_PATHALT;
8484 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8485 udelay(32);
8486 }
8487 tmp |= SBI_SSCCTL_DISABLE;
8488 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8489 }
8490
8491 mutex_unlock(&dev_priv->sb_lock);
8492 }
8493
8494 static void lpt_init_pch_refclk(struct drm_device *dev)
8495 {
8496 struct intel_encoder *encoder;
8497 bool has_vga = false;
8498
8499 for_each_intel_encoder(dev, encoder) {
8500 switch (encoder->type) {
8501 case INTEL_OUTPUT_ANALOG:
8502 has_vga = true;
8503 break;
8504 default:
8505 break;
8506 }
8507 }
8508
8509 if (has_vga)
8510 lpt_enable_clkout_dp(dev, true, true);
8511 else
8512 lpt_disable_clkout_dp(dev);
8513 }
8514
8515 /*
8516 * Initialize reference clocks when the driver loads
8517 */
8518 void intel_init_pch_refclk(struct drm_device *dev)
8519 {
8520 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8521 ironlake_init_pch_refclk(dev);
8522 else if (HAS_PCH_LPT(dev))
8523 lpt_init_pch_refclk(dev);
8524 }
8525
8526 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8527 {
8528 struct drm_device *dev = crtc_state->base.crtc->dev;
8529 struct drm_i915_private *dev_priv = dev->dev_private;
8530 struct drm_atomic_state *state = crtc_state->base.state;
8531 struct drm_connector *connector;
8532 struct drm_connector_state *connector_state;
8533 struct intel_encoder *encoder;
8534 int num_connectors = 0, i;
8535 bool is_lvds = false;
8536
8537 for_each_connector_in_state(state, connector, connector_state, i) {
8538 if (connector_state->crtc != crtc_state->base.crtc)
8539 continue;
8540
8541 encoder = to_intel_encoder(connector_state->best_encoder);
8542
8543 switch (encoder->type) {
8544 case INTEL_OUTPUT_LVDS:
8545 is_lvds = true;
8546 break;
8547 default:
8548 break;
8549 }
8550 num_connectors++;
8551 }
8552
8553 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8554 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8555 dev_priv->vbt.lvds_ssc_freq);
8556 return dev_priv->vbt.lvds_ssc_freq;
8557 }
8558
8559 return 120000;
8560 }
8561
8562 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8563 {
8564 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8566 int pipe = intel_crtc->pipe;
8567 uint32_t val;
8568
8569 val = 0;
8570
8571 switch (intel_crtc->config->pipe_bpp) {
8572 case 18:
8573 val |= PIPECONF_6BPC;
8574 break;
8575 case 24:
8576 val |= PIPECONF_8BPC;
8577 break;
8578 case 30:
8579 val |= PIPECONF_10BPC;
8580 break;
8581 case 36:
8582 val |= PIPECONF_12BPC;
8583 break;
8584 default:
8585 /* Case prevented by intel_choose_pipe_bpp_dither. */
8586 BUG();
8587 }
8588
8589 if (intel_crtc->config->dither)
8590 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8591
8592 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8593 val |= PIPECONF_INTERLACED_ILK;
8594 else
8595 val |= PIPECONF_PROGRESSIVE;
8596
8597 if (intel_crtc->config->limited_color_range)
8598 val |= PIPECONF_COLOR_RANGE_SELECT;
8599
8600 I915_WRITE(PIPECONF(pipe), val);
8601 POSTING_READ(PIPECONF(pipe));
8602 }
8603
8604 /*
8605 * Set up the pipe CSC unit.
8606 *
8607 * Currently only full range RGB to limited range RGB conversion
8608 * is supported, but eventually this should handle various
8609 * RGB<->YCbCr scenarios as well.
8610 */
8611 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8612 {
8613 struct drm_device *dev = crtc->dev;
8614 struct drm_i915_private *dev_priv = dev->dev_private;
8615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8616 int pipe = intel_crtc->pipe;
8617 uint16_t coeff = 0x7800; /* 1.0 */
8618
8619 /*
8620 * TODO: Check what kind of values actually come out of the pipe
8621 * with these coeff/postoff values and adjust to get the best
8622 * accuracy. Perhaps we even need to take the bpc value into
8623 * consideration.
8624 */
8625
8626 if (intel_crtc->config->limited_color_range)
8627 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8628
8629 /*
8630 * GY/GU and RY/RU should be the other way around according
8631 * to BSpec, but reality doesn't agree. Just set them up in
8632 * a way that results in the correct picture.
8633 */
8634 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8635 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8636
8637 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8638 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8639
8640 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8641 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8642
8643 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8644 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8645 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8646
8647 if (INTEL_INFO(dev)->gen > 6) {
8648 uint16_t postoff = 0;
8649
8650 if (intel_crtc->config->limited_color_range)
8651 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8652
8653 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8654 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8655 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8656
8657 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8658 } else {
8659 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8660
8661 if (intel_crtc->config->limited_color_range)
8662 mode |= CSC_BLACK_SCREEN_OFFSET;
8663
8664 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8665 }
8666 }
8667
8668 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8669 {
8670 struct drm_device *dev = crtc->dev;
8671 struct drm_i915_private *dev_priv = dev->dev_private;
8672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8673 enum pipe pipe = intel_crtc->pipe;
8674 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8675 uint32_t val;
8676
8677 val = 0;
8678
8679 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8680 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8681
8682 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8683 val |= PIPECONF_INTERLACED_ILK;
8684 else
8685 val |= PIPECONF_PROGRESSIVE;
8686
8687 I915_WRITE(PIPECONF(cpu_transcoder), val);
8688 POSTING_READ(PIPECONF(cpu_transcoder));
8689
8690 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8691 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8692
8693 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8694 val = 0;
8695
8696 switch (intel_crtc->config->pipe_bpp) {
8697 case 18:
8698 val |= PIPEMISC_DITHER_6_BPC;
8699 break;
8700 case 24:
8701 val |= PIPEMISC_DITHER_8_BPC;
8702 break;
8703 case 30:
8704 val |= PIPEMISC_DITHER_10_BPC;
8705 break;
8706 case 36:
8707 val |= PIPEMISC_DITHER_12_BPC;
8708 break;
8709 default:
8710 /* Case prevented by pipe_config_set_bpp. */
8711 BUG();
8712 }
8713
8714 if (intel_crtc->config->dither)
8715 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8716
8717 I915_WRITE(PIPEMISC(pipe), val);
8718 }
8719 }
8720
8721 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8722 struct intel_crtc_state *crtc_state,
8723 intel_clock_t *clock,
8724 bool *has_reduced_clock,
8725 intel_clock_t *reduced_clock)
8726 {
8727 struct drm_device *dev = crtc->dev;
8728 struct drm_i915_private *dev_priv = dev->dev_private;
8729 int refclk;
8730 const intel_limit_t *limit;
8731 bool ret, is_lvds = false;
8732
8733 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8734
8735 refclk = ironlake_get_refclk(crtc_state);
8736
8737 /*
8738 * Returns a set of divisors for the desired target clock with the given
8739 * refclk, or FALSE. The returned values represent the clock equation:
8740 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8741 */
8742 limit = intel_limit(crtc_state, refclk);
8743 ret = dev_priv->display.find_dpll(limit, crtc_state,
8744 crtc_state->port_clock,
8745 refclk, NULL, clock);
8746 if (!ret)
8747 return false;
8748
8749 if (is_lvds && dev_priv->lvds_downclock_avail) {
8750 /*
8751 * Ensure we match the reduced clock's P to the target clock.
8752 * If the clocks don't match, we can't switch the display clock
8753 * by using the FP0/FP1. In such case we will disable the LVDS
8754 * downclock feature.
8755 */
8756 *has_reduced_clock =
8757 dev_priv->display.find_dpll(limit, crtc_state,
8758 dev_priv->lvds_downclock,
8759 refclk, clock,
8760 reduced_clock);
8761 }
8762
8763 return true;
8764 }
8765
8766 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8767 {
8768 /*
8769 * Account for spread spectrum to avoid
8770 * oversubscribing the link. Max center spread
8771 * is 2.5%; use 5% for safety's sake.
8772 */
8773 u32 bps = target_clock * bpp * 21 / 20;
8774 return DIV_ROUND_UP(bps, link_bw * 8);
8775 }
8776
8777 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8778 {
8779 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8780 }
8781
8782 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8783 struct intel_crtc_state *crtc_state,
8784 u32 *fp,
8785 intel_clock_t *reduced_clock, u32 *fp2)
8786 {
8787 struct drm_crtc *crtc = &intel_crtc->base;
8788 struct drm_device *dev = crtc->dev;
8789 struct drm_i915_private *dev_priv = dev->dev_private;
8790 struct drm_atomic_state *state = crtc_state->base.state;
8791 struct drm_connector *connector;
8792 struct drm_connector_state *connector_state;
8793 struct intel_encoder *encoder;
8794 uint32_t dpll;
8795 int factor, num_connectors = 0, i;
8796 bool is_lvds = false, is_sdvo = false;
8797
8798 for_each_connector_in_state(state, connector, connector_state, i) {
8799 if (connector_state->crtc != crtc_state->base.crtc)
8800 continue;
8801
8802 encoder = to_intel_encoder(connector_state->best_encoder);
8803
8804 switch (encoder->type) {
8805 case INTEL_OUTPUT_LVDS:
8806 is_lvds = true;
8807 break;
8808 case INTEL_OUTPUT_SDVO:
8809 case INTEL_OUTPUT_HDMI:
8810 is_sdvo = true;
8811 break;
8812 default:
8813 break;
8814 }
8815
8816 num_connectors++;
8817 }
8818
8819 /* Enable autotuning of the PLL clock (if permissible) */
8820 factor = 21;
8821 if (is_lvds) {
8822 if ((intel_panel_use_ssc(dev_priv) &&
8823 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8824 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8825 factor = 25;
8826 } else if (crtc_state->sdvo_tv_clock)
8827 factor = 20;
8828
8829 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8830 *fp |= FP_CB_TUNE;
8831
8832 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8833 *fp2 |= FP_CB_TUNE;
8834
8835 dpll = 0;
8836
8837 if (is_lvds)
8838 dpll |= DPLLB_MODE_LVDS;
8839 else
8840 dpll |= DPLLB_MODE_DAC_SERIAL;
8841
8842 dpll |= (crtc_state->pixel_multiplier - 1)
8843 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8844
8845 if (is_sdvo)
8846 dpll |= DPLL_SDVO_HIGH_SPEED;
8847 if (crtc_state->has_dp_encoder)
8848 dpll |= DPLL_SDVO_HIGH_SPEED;
8849
8850 /* compute bitmask from p1 value */
8851 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8852 /* also FPA1 */
8853 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8854
8855 switch (crtc_state->dpll.p2) {
8856 case 5:
8857 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8858 break;
8859 case 7:
8860 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8861 break;
8862 case 10:
8863 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8864 break;
8865 case 14:
8866 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8867 break;
8868 }
8869
8870 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8871 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8872 else
8873 dpll |= PLL_REF_INPUT_DREFCLK;
8874
8875 return dpll | DPLL_VCO_ENABLE;
8876 }
8877
8878 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8879 struct intel_crtc_state *crtc_state)
8880 {
8881 struct drm_device *dev = crtc->base.dev;
8882 intel_clock_t clock, reduced_clock;
8883 u32 dpll = 0, fp = 0, fp2 = 0;
8884 bool ok, has_reduced_clock = false;
8885 bool is_lvds = false;
8886 struct intel_shared_dpll *pll;
8887
8888 memset(&crtc_state->dpll_hw_state, 0,
8889 sizeof(crtc_state->dpll_hw_state));
8890
8891 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8892
8893 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8894 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8895
8896 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8897 &has_reduced_clock, &reduced_clock);
8898 if (!ok && !crtc_state->clock_set) {
8899 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8900 return -EINVAL;
8901 }
8902 /* Compat-code for transition, will disappear. */
8903 if (!crtc_state->clock_set) {
8904 crtc_state->dpll.n = clock.n;
8905 crtc_state->dpll.m1 = clock.m1;
8906 crtc_state->dpll.m2 = clock.m2;
8907 crtc_state->dpll.p1 = clock.p1;
8908 crtc_state->dpll.p2 = clock.p2;
8909 }
8910
8911 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8912 if (crtc_state->has_pch_encoder) {
8913 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8914 if (has_reduced_clock)
8915 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8916
8917 dpll = ironlake_compute_dpll(crtc, crtc_state,
8918 &fp, &reduced_clock,
8919 has_reduced_clock ? &fp2 : NULL);
8920
8921 crtc_state->dpll_hw_state.dpll = dpll;
8922 crtc_state->dpll_hw_state.fp0 = fp;
8923 if (has_reduced_clock)
8924 crtc_state->dpll_hw_state.fp1 = fp2;
8925 else
8926 crtc_state->dpll_hw_state.fp1 = fp;
8927
8928 pll = intel_get_shared_dpll(crtc, crtc_state);
8929 if (pll == NULL) {
8930 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8931 pipe_name(crtc->pipe));
8932 return -EINVAL;
8933 }
8934 }
8935
8936 if (is_lvds && has_reduced_clock)
8937 crtc->lowfreq_avail = true;
8938 else
8939 crtc->lowfreq_avail = false;
8940
8941 return 0;
8942 }
8943
8944 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8945 struct intel_link_m_n *m_n)
8946 {
8947 struct drm_device *dev = crtc->base.dev;
8948 struct drm_i915_private *dev_priv = dev->dev_private;
8949 enum pipe pipe = crtc->pipe;
8950
8951 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8952 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8953 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8954 & ~TU_SIZE_MASK;
8955 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8956 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8957 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8958 }
8959
8960 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8961 enum transcoder transcoder,
8962 struct intel_link_m_n *m_n,
8963 struct intel_link_m_n *m2_n2)
8964 {
8965 struct drm_device *dev = crtc->base.dev;
8966 struct drm_i915_private *dev_priv = dev->dev_private;
8967 enum pipe pipe = crtc->pipe;
8968
8969 if (INTEL_INFO(dev)->gen >= 5) {
8970 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8971 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8972 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8973 & ~TU_SIZE_MASK;
8974 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8975 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8976 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8977 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8978 * gen < 8) and if DRRS is supported (to make sure the
8979 * registers are not unnecessarily read).
8980 */
8981 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8982 crtc->config->has_drrs) {
8983 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8984 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8985 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8986 & ~TU_SIZE_MASK;
8987 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8988 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8989 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8990 }
8991 } else {
8992 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8993 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8994 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8995 & ~TU_SIZE_MASK;
8996 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8997 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8998 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8999 }
9000 }
9001
9002 void intel_dp_get_m_n(struct intel_crtc *crtc,
9003 struct intel_crtc_state *pipe_config)
9004 {
9005 if (pipe_config->has_pch_encoder)
9006 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9007 else
9008 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9009 &pipe_config->dp_m_n,
9010 &pipe_config->dp_m2_n2);
9011 }
9012
9013 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9014 struct intel_crtc_state *pipe_config)
9015 {
9016 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9017 &pipe_config->fdi_m_n, NULL);
9018 }
9019
9020 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9021 struct intel_crtc_state *pipe_config)
9022 {
9023 struct drm_device *dev = crtc->base.dev;
9024 struct drm_i915_private *dev_priv = dev->dev_private;
9025 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9026 uint32_t ps_ctrl = 0;
9027 int id = -1;
9028 int i;
9029
9030 /* find scaler attached to this pipe */
9031 for (i = 0; i < crtc->num_scalers; i++) {
9032 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9033 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9034 id = i;
9035 pipe_config->pch_pfit.enabled = true;
9036 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9037 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9038 break;
9039 }
9040 }
9041
9042 scaler_state->scaler_id = id;
9043 if (id >= 0) {
9044 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9045 } else {
9046 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9047 }
9048 }
9049
9050 static void
9051 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9052 struct intel_initial_plane_config *plane_config)
9053 {
9054 struct drm_device *dev = crtc->base.dev;
9055 struct drm_i915_private *dev_priv = dev->dev_private;
9056 u32 val, base, offset, stride_mult, tiling;
9057 int pipe = crtc->pipe;
9058 int fourcc, pixel_format;
9059 unsigned int aligned_height;
9060 struct drm_framebuffer *fb;
9061 struct intel_framebuffer *intel_fb;
9062
9063 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9064 if (!intel_fb) {
9065 DRM_DEBUG_KMS("failed to alloc fb\n");
9066 return;
9067 }
9068
9069 fb = &intel_fb->base;
9070
9071 val = I915_READ(PLANE_CTL(pipe, 0));
9072 if (!(val & PLANE_CTL_ENABLE))
9073 goto error;
9074
9075 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9076 fourcc = skl_format_to_fourcc(pixel_format,
9077 val & PLANE_CTL_ORDER_RGBX,
9078 val & PLANE_CTL_ALPHA_MASK);
9079 fb->pixel_format = fourcc;
9080 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9081
9082 tiling = val & PLANE_CTL_TILED_MASK;
9083 switch (tiling) {
9084 case PLANE_CTL_TILED_LINEAR:
9085 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9086 break;
9087 case PLANE_CTL_TILED_X:
9088 plane_config->tiling = I915_TILING_X;
9089 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9090 break;
9091 case PLANE_CTL_TILED_Y:
9092 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9093 break;
9094 case PLANE_CTL_TILED_YF:
9095 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9096 break;
9097 default:
9098 MISSING_CASE(tiling);
9099 goto error;
9100 }
9101
9102 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9103 plane_config->base = base;
9104
9105 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9106
9107 val = I915_READ(PLANE_SIZE(pipe, 0));
9108 fb->height = ((val >> 16) & 0xfff) + 1;
9109 fb->width = ((val >> 0) & 0x1fff) + 1;
9110
9111 val = I915_READ(PLANE_STRIDE(pipe, 0));
9112 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9113 fb->pixel_format);
9114 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9115
9116 aligned_height = intel_fb_align_height(dev, fb->height,
9117 fb->pixel_format,
9118 fb->modifier[0]);
9119
9120 plane_config->size = fb->pitches[0] * aligned_height;
9121
9122 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9123 pipe_name(pipe), fb->width, fb->height,
9124 fb->bits_per_pixel, base, fb->pitches[0],
9125 plane_config->size);
9126
9127 plane_config->fb = intel_fb;
9128 return;
9129
9130 error:
9131 kfree(fb);
9132 }
9133
9134 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9135 struct intel_crtc_state *pipe_config)
9136 {
9137 struct drm_device *dev = crtc->base.dev;
9138 struct drm_i915_private *dev_priv = dev->dev_private;
9139 uint32_t tmp;
9140
9141 tmp = I915_READ(PF_CTL(crtc->pipe));
9142
9143 if (tmp & PF_ENABLE) {
9144 pipe_config->pch_pfit.enabled = true;
9145 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9146 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9147
9148 /* We currently do not free assignements of panel fitters on
9149 * ivb/hsw (since we don't use the higher upscaling modes which
9150 * differentiates them) so just WARN about this case for now. */
9151 if (IS_GEN7(dev)) {
9152 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9153 PF_PIPE_SEL_IVB(crtc->pipe));
9154 }
9155 }
9156 }
9157
9158 static void
9159 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9160 struct intel_initial_plane_config *plane_config)
9161 {
9162 struct drm_device *dev = crtc->base.dev;
9163 struct drm_i915_private *dev_priv = dev->dev_private;
9164 u32 val, base, offset;
9165 int pipe = crtc->pipe;
9166 int fourcc, pixel_format;
9167 unsigned int aligned_height;
9168 struct drm_framebuffer *fb;
9169 struct intel_framebuffer *intel_fb;
9170
9171 val = I915_READ(DSPCNTR(pipe));
9172 if (!(val & DISPLAY_PLANE_ENABLE))
9173 return;
9174
9175 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9176 if (!intel_fb) {
9177 DRM_DEBUG_KMS("failed to alloc fb\n");
9178 return;
9179 }
9180
9181 fb = &intel_fb->base;
9182
9183 if (INTEL_INFO(dev)->gen >= 4) {
9184 if (val & DISPPLANE_TILED) {
9185 plane_config->tiling = I915_TILING_X;
9186 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9187 }
9188 }
9189
9190 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9191 fourcc = i9xx_format_to_fourcc(pixel_format);
9192 fb->pixel_format = fourcc;
9193 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9194
9195 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9196 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9197 offset = I915_READ(DSPOFFSET(pipe));
9198 } else {
9199 if (plane_config->tiling)
9200 offset = I915_READ(DSPTILEOFF(pipe));
9201 else
9202 offset = I915_READ(DSPLINOFF(pipe));
9203 }
9204 plane_config->base = base;
9205
9206 val = I915_READ(PIPESRC(pipe));
9207 fb->width = ((val >> 16) & 0xfff) + 1;
9208 fb->height = ((val >> 0) & 0xfff) + 1;
9209
9210 val = I915_READ(DSPSTRIDE(pipe));
9211 fb->pitches[0] = val & 0xffffffc0;
9212
9213 aligned_height = intel_fb_align_height(dev, fb->height,
9214 fb->pixel_format,
9215 fb->modifier[0]);
9216
9217 plane_config->size = fb->pitches[0] * aligned_height;
9218
9219 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9220 pipe_name(pipe), fb->width, fb->height,
9221 fb->bits_per_pixel, base, fb->pitches[0],
9222 plane_config->size);
9223
9224 plane_config->fb = intel_fb;
9225 }
9226
9227 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9228 struct intel_crtc_state *pipe_config)
9229 {
9230 struct drm_device *dev = crtc->base.dev;
9231 struct drm_i915_private *dev_priv = dev->dev_private;
9232 uint32_t tmp;
9233
9234 if (!intel_display_power_is_enabled(dev_priv,
9235 POWER_DOMAIN_PIPE(crtc->pipe)))
9236 return false;
9237
9238 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9239 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9240
9241 tmp = I915_READ(PIPECONF(crtc->pipe));
9242 if (!(tmp & PIPECONF_ENABLE))
9243 return false;
9244
9245 switch (tmp & PIPECONF_BPC_MASK) {
9246 case PIPECONF_6BPC:
9247 pipe_config->pipe_bpp = 18;
9248 break;
9249 case PIPECONF_8BPC:
9250 pipe_config->pipe_bpp = 24;
9251 break;
9252 case PIPECONF_10BPC:
9253 pipe_config->pipe_bpp = 30;
9254 break;
9255 case PIPECONF_12BPC:
9256 pipe_config->pipe_bpp = 36;
9257 break;
9258 default:
9259 break;
9260 }
9261
9262 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9263 pipe_config->limited_color_range = true;
9264
9265 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9266 struct intel_shared_dpll *pll;
9267
9268 pipe_config->has_pch_encoder = true;
9269
9270 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9271 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9272 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9273
9274 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9275
9276 if (HAS_PCH_IBX(dev_priv->dev)) {
9277 pipe_config->shared_dpll =
9278 (enum intel_dpll_id) crtc->pipe;
9279 } else {
9280 tmp = I915_READ(PCH_DPLL_SEL);
9281 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9282 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9283 else
9284 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9285 }
9286
9287 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9288
9289 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9290 &pipe_config->dpll_hw_state));
9291
9292 tmp = pipe_config->dpll_hw_state.dpll;
9293 pipe_config->pixel_multiplier =
9294 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9295 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9296
9297 ironlake_pch_clock_get(crtc, pipe_config);
9298 } else {
9299 pipe_config->pixel_multiplier = 1;
9300 }
9301
9302 intel_get_pipe_timings(crtc, pipe_config);
9303
9304 ironlake_get_pfit_config(crtc, pipe_config);
9305
9306 return true;
9307 }
9308
9309 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9310 {
9311 struct drm_device *dev = dev_priv->dev;
9312 struct intel_crtc *crtc;
9313
9314 for_each_intel_crtc(dev, crtc)
9315 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9316 pipe_name(crtc->pipe));
9317
9318 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9319 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9320 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9321 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9322 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9323 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9324 "CPU PWM1 enabled\n");
9325 if (IS_HASWELL(dev))
9326 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9327 "CPU PWM2 enabled\n");
9328 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9329 "PCH PWM1 enabled\n");
9330 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9331 "Utility pin enabled\n");
9332 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9333
9334 /*
9335 * In theory we can still leave IRQs enabled, as long as only the HPD
9336 * interrupts remain enabled. We used to check for that, but since it's
9337 * gen-specific and since we only disable LCPLL after we fully disable
9338 * the interrupts, the check below should be enough.
9339 */
9340 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9341 }
9342
9343 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9344 {
9345 struct drm_device *dev = dev_priv->dev;
9346
9347 if (IS_HASWELL(dev))
9348 return I915_READ(D_COMP_HSW);
9349 else
9350 return I915_READ(D_COMP_BDW);
9351 }
9352
9353 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9354 {
9355 struct drm_device *dev = dev_priv->dev;
9356
9357 if (IS_HASWELL(dev)) {
9358 mutex_lock(&dev_priv->rps.hw_lock);
9359 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9360 val))
9361 DRM_ERROR("Failed to write to D_COMP\n");
9362 mutex_unlock(&dev_priv->rps.hw_lock);
9363 } else {
9364 I915_WRITE(D_COMP_BDW, val);
9365 POSTING_READ(D_COMP_BDW);
9366 }
9367 }
9368
9369 /*
9370 * This function implements pieces of two sequences from BSpec:
9371 * - Sequence for display software to disable LCPLL
9372 * - Sequence for display software to allow package C8+
9373 * The steps implemented here are just the steps that actually touch the LCPLL
9374 * register. Callers should take care of disabling all the display engine
9375 * functions, doing the mode unset, fixing interrupts, etc.
9376 */
9377 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9378 bool switch_to_fclk, bool allow_power_down)
9379 {
9380 uint32_t val;
9381
9382 assert_can_disable_lcpll(dev_priv);
9383
9384 val = I915_READ(LCPLL_CTL);
9385
9386 if (switch_to_fclk) {
9387 val |= LCPLL_CD_SOURCE_FCLK;
9388 I915_WRITE(LCPLL_CTL, val);
9389
9390 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9391 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9392 DRM_ERROR("Switching to FCLK failed\n");
9393
9394 val = I915_READ(LCPLL_CTL);
9395 }
9396
9397 val |= LCPLL_PLL_DISABLE;
9398 I915_WRITE(LCPLL_CTL, val);
9399 POSTING_READ(LCPLL_CTL);
9400
9401 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9402 DRM_ERROR("LCPLL still locked\n");
9403
9404 val = hsw_read_dcomp(dev_priv);
9405 val |= D_COMP_COMP_DISABLE;
9406 hsw_write_dcomp(dev_priv, val);
9407 ndelay(100);
9408
9409 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9410 1))
9411 DRM_ERROR("D_COMP RCOMP still in progress\n");
9412
9413 if (allow_power_down) {
9414 val = I915_READ(LCPLL_CTL);
9415 val |= LCPLL_POWER_DOWN_ALLOW;
9416 I915_WRITE(LCPLL_CTL, val);
9417 POSTING_READ(LCPLL_CTL);
9418 }
9419 }
9420
9421 /*
9422 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9423 * source.
9424 */
9425 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9426 {
9427 uint32_t val;
9428
9429 val = I915_READ(LCPLL_CTL);
9430
9431 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9432 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9433 return;
9434
9435 /*
9436 * Make sure we're not on PC8 state before disabling PC8, otherwise
9437 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9438 */
9439 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9440
9441 if (val & LCPLL_POWER_DOWN_ALLOW) {
9442 val &= ~LCPLL_POWER_DOWN_ALLOW;
9443 I915_WRITE(LCPLL_CTL, val);
9444 POSTING_READ(LCPLL_CTL);
9445 }
9446
9447 val = hsw_read_dcomp(dev_priv);
9448 val |= D_COMP_COMP_FORCE;
9449 val &= ~D_COMP_COMP_DISABLE;
9450 hsw_write_dcomp(dev_priv, val);
9451
9452 val = I915_READ(LCPLL_CTL);
9453 val &= ~LCPLL_PLL_DISABLE;
9454 I915_WRITE(LCPLL_CTL, val);
9455
9456 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9457 DRM_ERROR("LCPLL not locked yet\n");
9458
9459 if (val & LCPLL_CD_SOURCE_FCLK) {
9460 val = I915_READ(LCPLL_CTL);
9461 val &= ~LCPLL_CD_SOURCE_FCLK;
9462 I915_WRITE(LCPLL_CTL, val);
9463
9464 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9465 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9466 DRM_ERROR("Switching back to LCPLL failed\n");
9467 }
9468
9469 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9470 intel_update_cdclk(dev_priv->dev);
9471 }
9472
9473 /*
9474 * Package states C8 and deeper are really deep PC states that can only be
9475 * reached when all the devices on the system allow it, so even if the graphics
9476 * device allows PC8+, it doesn't mean the system will actually get to these
9477 * states. Our driver only allows PC8+ when going into runtime PM.
9478 *
9479 * The requirements for PC8+ are that all the outputs are disabled, the power
9480 * well is disabled and most interrupts are disabled, and these are also
9481 * requirements for runtime PM. When these conditions are met, we manually do
9482 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9483 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9484 * hang the machine.
9485 *
9486 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9487 * the state of some registers, so when we come back from PC8+ we need to
9488 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9489 * need to take care of the registers kept by RC6. Notice that this happens even
9490 * if we don't put the device in PCI D3 state (which is what currently happens
9491 * because of the runtime PM support).
9492 *
9493 * For more, read "Display Sequences for Package C8" on the hardware
9494 * documentation.
9495 */
9496 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9497 {
9498 struct drm_device *dev = dev_priv->dev;
9499 uint32_t val;
9500
9501 DRM_DEBUG_KMS("Enabling package C8+\n");
9502
9503 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9504 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9505 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9506 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9507 }
9508
9509 lpt_disable_clkout_dp(dev);
9510 hsw_disable_lcpll(dev_priv, true, true);
9511 }
9512
9513 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9514 {
9515 struct drm_device *dev = dev_priv->dev;
9516 uint32_t val;
9517
9518 DRM_DEBUG_KMS("Disabling package C8+\n");
9519
9520 hsw_restore_lcpll(dev_priv);
9521 lpt_init_pch_refclk(dev);
9522
9523 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9524 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9525 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9526 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9527 }
9528
9529 intel_prepare_ddi(dev);
9530 }
9531
9532 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9533 {
9534 struct drm_device *dev = old_state->dev;
9535 struct drm_i915_private *dev_priv = dev->dev_private;
9536 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9537 int req_cdclk;
9538
9539 /* see the comment in valleyview_modeset_global_resources */
9540 if (WARN_ON(max_pixclk < 0))
9541 return;
9542
9543 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9544
9545 if (req_cdclk != dev_priv->cdclk_freq)
9546 broxton_set_cdclk(dev, req_cdclk);
9547 }
9548
9549 /* compute the max rate for new configuration */
9550 static int ilk_max_pixel_rate(struct drm_i915_private *dev_priv)
9551 {
9552 struct drm_device *dev = dev_priv->dev;
9553 struct intel_crtc *intel_crtc;
9554 struct drm_crtc *crtc;
9555 int max_pixel_rate = 0;
9556 int pixel_rate;
9557
9558 for_each_crtc(dev, crtc) {
9559 if (!crtc->state->enable)
9560 continue;
9561
9562 intel_crtc = to_intel_crtc(crtc);
9563 pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
9564
9565 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9566 if (IS_BROADWELL(dev) && intel_crtc->config->ips_enabled)
9567 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9568
9569 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9570 }
9571
9572 return max_pixel_rate;
9573 }
9574
9575 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9576 {
9577 struct drm_i915_private *dev_priv = dev->dev_private;
9578 uint32_t val, data;
9579 int ret;
9580
9581 if (WARN((I915_READ(LCPLL_CTL) &
9582 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9583 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9584 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9585 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9586 "trying to change cdclk frequency with cdclk not enabled\n"))
9587 return;
9588
9589 mutex_lock(&dev_priv->rps.hw_lock);
9590 ret = sandybridge_pcode_write(dev_priv,
9591 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9592 mutex_unlock(&dev_priv->rps.hw_lock);
9593 if (ret) {
9594 DRM_ERROR("failed to inform pcode about cdclk change\n");
9595 return;
9596 }
9597
9598 val = I915_READ(LCPLL_CTL);
9599 val |= LCPLL_CD_SOURCE_FCLK;
9600 I915_WRITE(LCPLL_CTL, val);
9601
9602 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9603 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9604 DRM_ERROR("Switching to FCLK failed\n");
9605
9606 val = I915_READ(LCPLL_CTL);
9607 val &= ~LCPLL_CLK_FREQ_MASK;
9608
9609 switch (cdclk) {
9610 case 450000:
9611 val |= LCPLL_CLK_FREQ_450;
9612 data = 0;
9613 break;
9614 case 540000:
9615 val |= LCPLL_CLK_FREQ_54O_BDW;
9616 data = 1;
9617 break;
9618 case 337500:
9619 val |= LCPLL_CLK_FREQ_337_5_BDW;
9620 data = 2;
9621 break;
9622 case 675000:
9623 val |= LCPLL_CLK_FREQ_675_BDW;
9624 data = 3;
9625 break;
9626 default:
9627 WARN(1, "invalid cdclk frequency\n");
9628 return;
9629 }
9630
9631 I915_WRITE(LCPLL_CTL, val);
9632
9633 val = I915_READ(LCPLL_CTL);
9634 val &= ~LCPLL_CD_SOURCE_FCLK;
9635 I915_WRITE(LCPLL_CTL, val);
9636
9637 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9638 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9639 DRM_ERROR("Switching back to LCPLL failed\n");
9640
9641 mutex_lock(&dev_priv->rps.hw_lock);
9642 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9643 mutex_unlock(&dev_priv->rps.hw_lock);
9644
9645 intel_update_cdclk(dev);
9646
9647 WARN(cdclk != dev_priv->cdclk_freq,
9648 "cdclk requested %d kHz but got %d kHz\n",
9649 cdclk, dev_priv->cdclk_freq);
9650 }
9651
9652 static int broadwell_calc_cdclk(struct drm_i915_private *dev_priv,
9653 int max_pixel_rate)
9654 {
9655 int cdclk;
9656
9657 /*
9658 * FIXME should also account for plane ratio
9659 * once 64bpp pixel formats are supported.
9660 */
9661 if (max_pixel_rate > 540000)
9662 cdclk = 675000;
9663 else if (max_pixel_rate > 450000)
9664 cdclk = 540000;
9665 else if (max_pixel_rate > 337500)
9666 cdclk = 450000;
9667 else
9668 cdclk = 337500;
9669
9670 /*
9671 * FIXME move the cdclk caclulation to
9672 * compute_config() so we can fail gracegully.
9673 */
9674 if (cdclk > dev_priv->max_cdclk_freq) {
9675 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9676 cdclk, dev_priv->max_cdclk_freq);
9677 cdclk = dev_priv->max_cdclk_freq;
9678 }
9679
9680 return cdclk;
9681 }
9682
9683 static int broadwell_modeset_global_pipes(struct drm_atomic_state *state)
9684 {
9685 struct drm_i915_private *dev_priv = to_i915(state->dev);
9686 struct drm_crtc *crtc;
9687 struct drm_crtc_state *crtc_state;
9688 int max_pixclk = ilk_max_pixel_rate(dev_priv);
9689 int cdclk, i;
9690
9691 cdclk = broadwell_calc_cdclk(dev_priv, max_pixclk);
9692
9693 if (cdclk == dev_priv->cdclk_freq)
9694 return 0;
9695
9696 /* add all active pipes to the state */
9697 for_each_crtc(state->dev, crtc) {
9698 if (!crtc->state->enable)
9699 continue;
9700
9701 crtc_state = drm_atomic_get_crtc_state(state, crtc);
9702 if (IS_ERR(crtc_state))
9703 return PTR_ERR(crtc_state);
9704 }
9705
9706 /* disable/enable all currently active pipes while we change cdclk */
9707 for_each_crtc_in_state(state, crtc, crtc_state, i)
9708 if (crtc_state->enable)
9709 crtc_state->mode_changed = true;
9710
9711 return 0;
9712 }
9713
9714 static void broadwell_modeset_global_resources(struct drm_atomic_state *state)
9715 {
9716 struct drm_device *dev = state->dev;
9717 struct drm_i915_private *dev_priv = dev->dev_private;
9718 int max_pixel_rate = ilk_max_pixel_rate(dev_priv);
9719 int req_cdclk = broadwell_calc_cdclk(dev_priv, max_pixel_rate);
9720
9721 if (req_cdclk != dev_priv->cdclk_freq)
9722 broadwell_set_cdclk(dev, req_cdclk);
9723 }
9724
9725 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9726 struct intel_crtc_state *crtc_state)
9727 {
9728 if (!intel_ddi_pll_select(crtc, crtc_state))
9729 return -EINVAL;
9730
9731 crtc->lowfreq_avail = false;
9732
9733 return 0;
9734 }
9735
9736 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9737 enum port port,
9738 struct intel_crtc_state *pipe_config)
9739 {
9740 switch (port) {
9741 case PORT_A:
9742 pipe_config->ddi_pll_sel = SKL_DPLL0;
9743 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9744 break;
9745 case PORT_B:
9746 pipe_config->ddi_pll_sel = SKL_DPLL1;
9747 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9748 break;
9749 case PORT_C:
9750 pipe_config->ddi_pll_sel = SKL_DPLL2;
9751 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9752 break;
9753 default:
9754 DRM_ERROR("Incorrect port type\n");
9755 }
9756 }
9757
9758 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9759 enum port port,
9760 struct intel_crtc_state *pipe_config)
9761 {
9762 u32 temp, dpll_ctl1;
9763
9764 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9765 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9766
9767 switch (pipe_config->ddi_pll_sel) {
9768 case SKL_DPLL0:
9769 /*
9770 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9771 * of the shared DPLL framework and thus needs to be read out
9772 * separately
9773 */
9774 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9775 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9776 break;
9777 case SKL_DPLL1:
9778 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9779 break;
9780 case SKL_DPLL2:
9781 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9782 break;
9783 case SKL_DPLL3:
9784 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9785 break;
9786 }
9787 }
9788
9789 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9790 enum port port,
9791 struct intel_crtc_state *pipe_config)
9792 {
9793 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9794
9795 switch (pipe_config->ddi_pll_sel) {
9796 case PORT_CLK_SEL_WRPLL1:
9797 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9798 break;
9799 case PORT_CLK_SEL_WRPLL2:
9800 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9801 break;
9802 }
9803 }
9804
9805 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9806 struct intel_crtc_state *pipe_config)
9807 {
9808 struct drm_device *dev = crtc->base.dev;
9809 struct drm_i915_private *dev_priv = dev->dev_private;
9810 struct intel_shared_dpll *pll;
9811 enum port port;
9812 uint32_t tmp;
9813
9814 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9815
9816 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9817
9818 if (IS_SKYLAKE(dev))
9819 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9820 else if (IS_BROXTON(dev))
9821 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9822 else
9823 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9824
9825 if (pipe_config->shared_dpll >= 0) {
9826 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9827
9828 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9829 &pipe_config->dpll_hw_state));
9830 }
9831
9832 /*
9833 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9834 * DDI E. So just check whether this pipe is wired to DDI E and whether
9835 * the PCH transcoder is on.
9836 */
9837 if (INTEL_INFO(dev)->gen < 9 &&
9838 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9839 pipe_config->has_pch_encoder = true;
9840
9841 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9842 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9843 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9844
9845 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9846 }
9847 }
9848
9849 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9850 struct intel_crtc_state *pipe_config)
9851 {
9852 struct drm_device *dev = crtc->base.dev;
9853 struct drm_i915_private *dev_priv = dev->dev_private;
9854 enum intel_display_power_domain pfit_domain;
9855 uint32_t tmp;
9856
9857 if (!intel_display_power_is_enabled(dev_priv,
9858 POWER_DOMAIN_PIPE(crtc->pipe)))
9859 return false;
9860
9861 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9862 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9863
9864 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9865 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9866 enum pipe trans_edp_pipe;
9867 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9868 default:
9869 WARN(1, "unknown pipe linked to edp transcoder\n");
9870 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9871 case TRANS_DDI_EDP_INPUT_A_ON:
9872 trans_edp_pipe = PIPE_A;
9873 break;
9874 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9875 trans_edp_pipe = PIPE_B;
9876 break;
9877 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9878 trans_edp_pipe = PIPE_C;
9879 break;
9880 }
9881
9882 if (trans_edp_pipe == crtc->pipe)
9883 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9884 }
9885
9886 if (!intel_display_power_is_enabled(dev_priv,
9887 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9888 return false;
9889
9890 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9891 if (!(tmp & PIPECONF_ENABLE))
9892 return false;
9893
9894 haswell_get_ddi_port_state(crtc, pipe_config);
9895
9896 intel_get_pipe_timings(crtc, pipe_config);
9897
9898 if (INTEL_INFO(dev)->gen >= 9) {
9899 skl_init_scalers(dev, crtc, pipe_config);
9900 }
9901
9902 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9903
9904 if (INTEL_INFO(dev)->gen >= 9) {
9905 pipe_config->scaler_state.scaler_id = -1;
9906 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9907 }
9908
9909 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9910 if (INTEL_INFO(dev)->gen == 9)
9911 skylake_get_pfit_config(crtc, pipe_config);
9912 else if (INTEL_INFO(dev)->gen < 9)
9913 ironlake_get_pfit_config(crtc, pipe_config);
9914 else
9915 MISSING_CASE(INTEL_INFO(dev)->gen);
9916 }
9917
9918 if (IS_HASWELL(dev))
9919 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9920 (I915_READ(IPS_CTL) & IPS_ENABLE);
9921
9922 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9923 pipe_config->pixel_multiplier =
9924 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9925 } else {
9926 pipe_config->pixel_multiplier = 1;
9927 }
9928
9929 return true;
9930 }
9931
9932 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9933 {
9934 struct drm_device *dev = crtc->dev;
9935 struct drm_i915_private *dev_priv = dev->dev_private;
9936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9937 uint32_t cntl = 0, size = 0;
9938
9939 if (base) {
9940 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9941 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9942 unsigned int stride = roundup_pow_of_two(width) * 4;
9943
9944 switch (stride) {
9945 default:
9946 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9947 width, stride);
9948 stride = 256;
9949 /* fallthrough */
9950 case 256:
9951 case 512:
9952 case 1024:
9953 case 2048:
9954 break;
9955 }
9956
9957 cntl |= CURSOR_ENABLE |
9958 CURSOR_GAMMA_ENABLE |
9959 CURSOR_FORMAT_ARGB |
9960 CURSOR_STRIDE(stride);
9961
9962 size = (height << 12) | width;
9963 }
9964
9965 if (intel_crtc->cursor_cntl != 0 &&
9966 (intel_crtc->cursor_base != base ||
9967 intel_crtc->cursor_size != size ||
9968 intel_crtc->cursor_cntl != cntl)) {
9969 /* On these chipsets we can only modify the base/size/stride
9970 * whilst the cursor is disabled.
9971 */
9972 I915_WRITE(_CURACNTR, 0);
9973 POSTING_READ(_CURACNTR);
9974 intel_crtc->cursor_cntl = 0;
9975 }
9976
9977 if (intel_crtc->cursor_base != base) {
9978 I915_WRITE(_CURABASE, base);
9979 intel_crtc->cursor_base = base;
9980 }
9981
9982 if (intel_crtc->cursor_size != size) {
9983 I915_WRITE(CURSIZE, size);
9984 intel_crtc->cursor_size = size;
9985 }
9986
9987 if (intel_crtc->cursor_cntl != cntl) {
9988 I915_WRITE(_CURACNTR, cntl);
9989 POSTING_READ(_CURACNTR);
9990 intel_crtc->cursor_cntl = cntl;
9991 }
9992 }
9993
9994 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9995 {
9996 struct drm_device *dev = crtc->dev;
9997 struct drm_i915_private *dev_priv = dev->dev_private;
9998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9999 int pipe = intel_crtc->pipe;
10000 uint32_t cntl;
10001
10002 cntl = 0;
10003 if (base) {
10004 cntl = MCURSOR_GAMMA_ENABLE;
10005 switch (intel_crtc->base.cursor->state->crtc_w) {
10006 case 64:
10007 cntl |= CURSOR_MODE_64_ARGB_AX;
10008 break;
10009 case 128:
10010 cntl |= CURSOR_MODE_128_ARGB_AX;
10011 break;
10012 case 256:
10013 cntl |= CURSOR_MODE_256_ARGB_AX;
10014 break;
10015 default:
10016 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10017 return;
10018 }
10019 cntl |= pipe << 28; /* Connect to correct pipe */
10020
10021 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10022 cntl |= CURSOR_PIPE_CSC_ENABLE;
10023 }
10024
10025 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10026 cntl |= CURSOR_ROTATE_180;
10027
10028 if (intel_crtc->cursor_cntl != cntl) {
10029 I915_WRITE(CURCNTR(pipe), cntl);
10030 POSTING_READ(CURCNTR(pipe));
10031 intel_crtc->cursor_cntl = cntl;
10032 }
10033
10034 /* and commit changes on next vblank */
10035 I915_WRITE(CURBASE(pipe), base);
10036 POSTING_READ(CURBASE(pipe));
10037
10038 intel_crtc->cursor_base = base;
10039 }
10040
10041 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10042 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10043 bool on)
10044 {
10045 struct drm_device *dev = crtc->dev;
10046 struct drm_i915_private *dev_priv = dev->dev_private;
10047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10048 int pipe = intel_crtc->pipe;
10049 int x = crtc->cursor_x;
10050 int y = crtc->cursor_y;
10051 u32 base = 0, pos = 0;
10052
10053 if (on)
10054 base = intel_crtc->cursor_addr;
10055
10056 if (x >= intel_crtc->config->pipe_src_w)
10057 base = 0;
10058
10059 if (y >= intel_crtc->config->pipe_src_h)
10060 base = 0;
10061
10062 if (x < 0) {
10063 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
10064 base = 0;
10065
10066 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10067 x = -x;
10068 }
10069 pos |= x << CURSOR_X_SHIFT;
10070
10071 if (y < 0) {
10072 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
10073 base = 0;
10074
10075 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10076 y = -y;
10077 }
10078 pos |= y << CURSOR_Y_SHIFT;
10079
10080 if (base == 0 && intel_crtc->cursor_base == 0)
10081 return;
10082
10083 I915_WRITE(CURPOS(pipe), pos);
10084
10085 /* ILK+ do this automagically */
10086 if (HAS_GMCH_DISPLAY(dev) &&
10087 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10088 base += (intel_crtc->base.cursor->state->crtc_h *
10089 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
10090 }
10091
10092 if (IS_845G(dev) || IS_I865G(dev))
10093 i845_update_cursor(crtc, base);
10094 else
10095 i9xx_update_cursor(crtc, base);
10096 }
10097
10098 static bool cursor_size_ok(struct drm_device *dev,
10099 uint32_t width, uint32_t height)
10100 {
10101 if (width == 0 || height == 0)
10102 return false;
10103
10104 /*
10105 * 845g/865g are special in that they are only limited by
10106 * the width of their cursors, the height is arbitrary up to
10107 * the precision of the register. Everything else requires
10108 * square cursors, limited to a few power-of-two sizes.
10109 */
10110 if (IS_845G(dev) || IS_I865G(dev)) {
10111 if ((width & 63) != 0)
10112 return false;
10113
10114 if (width > (IS_845G(dev) ? 64 : 512))
10115 return false;
10116
10117 if (height > 1023)
10118 return false;
10119 } else {
10120 switch (width | height) {
10121 case 256:
10122 case 128:
10123 if (IS_GEN2(dev))
10124 return false;
10125 case 64:
10126 break;
10127 default:
10128 return false;
10129 }
10130 }
10131
10132 return true;
10133 }
10134
10135 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10136 u16 *blue, uint32_t start, uint32_t size)
10137 {
10138 int end = (start + size > 256) ? 256 : start + size, i;
10139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10140
10141 for (i = start; i < end; i++) {
10142 intel_crtc->lut_r[i] = red[i] >> 8;
10143 intel_crtc->lut_g[i] = green[i] >> 8;
10144 intel_crtc->lut_b[i] = blue[i] >> 8;
10145 }
10146
10147 intel_crtc_load_lut(crtc);
10148 }
10149
10150 /* VESA 640x480x72Hz mode to set on the pipe */
10151 static struct drm_display_mode load_detect_mode = {
10152 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10153 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10154 };
10155
10156 struct drm_framebuffer *
10157 __intel_framebuffer_create(struct drm_device *dev,
10158 struct drm_mode_fb_cmd2 *mode_cmd,
10159 struct drm_i915_gem_object *obj)
10160 {
10161 struct intel_framebuffer *intel_fb;
10162 int ret;
10163
10164 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10165 if (!intel_fb) {
10166 drm_gem_object_unreference(&obj->base);
10167 return ERR_PTR(-ENOMEM);
10168 }
10169
10170 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10171 if (ret)
10172 goto err;
10173
10174 return &intel_fb->base;
10175 err:
10176 drm_gem_object_unreference(&obj->base);
10177 kfree(intel_fb);
10178
10179 return ERR_PTR(ret);
10180 }
10181
10182 static struct drm_framebuffer *
10183 intel_framebuffer_create(struct drm_device *dev,
10184 struct drm_mode_fb_cmd2 *mode_cmd,
10185 struct drm_i915_gem_object *obj)
10186 {
10187 struct drm_framebuffer *fb;
10188 int ret;
10189
10190 ret = i915_mutex_lock_interruptible(dev);
10191 if (ret)
10192 return ERR_PTR(ret);
10193 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10194 mutex_unlock(&dev->struct_mutex);
10195
10196 return fb;
10197 }
10198
10199 static u32
10200 intel_framebuffer_pitch_for_width(int width, int bpp)
10201 {
10202 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10203 return ALIGN(pitch, 64);
10204 }
10205
10206 static u32
10207 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10208 {
10209 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10210 return PAGE_ALIGN(pitch * mode->vdisplay);
10211 }
10212
10213 static struct drm_framebuffer *
10214 intel_framebuffer_create_for_mode(struct drm_device *dev,
10215 struct drm_display_mode *mode,
10216 int depth, int bpp)
10217 {
10218 struct drm_i915_gem_object *obj;
10219 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10220
10221 obj = i915_gem_alloc_object(dev,
10222 intel_framebuffer_size_for_mode(mode, bpp));
10223 if (obj == NULL)
10224 return ERR_PTR(-ENOMEM);
10225
10226 mode_cmd.width = mode->hdisplay;
10227 mode_cmd.height = mode->vdisplay;
10228 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10229 bpp);
10230 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10231
10232 return intel_framebuffer_create(dev, &mode_cmd, obj);
10233 }
10234
10235 static struct drm_framebuffer *
10236 mode_fits_in_fbdev(struct drm_device *dev,
10237 struct drm_display_mode *mode)
10238 {
10239 #ifdef CONFIG_DRM_I915_FBDEV
10240 struct drm_i915_private *dev_priv = dev->dev_private;
10241 struct drm_i915_gem_object *obj;
10242 struct drm_framebuffer *fb;
10243
10244 if (!dev_priv->fbdev)
10245 return NULL;
10246
10247 if (!dev_priv->fbdev->fb)
10248 return NULL;
10249
10250 obj = dev_priv->fbdev->fb->obj;
10251 BUG_ON(!obj);
10252
10253 fb = &dev_priv->fbdev->fb->base;
10254 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10255 fb->bits_per_pixel))
10256 return NULL;
10257
10258 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10259 return NULL;
10260
10261 return fb;
10262 #else
10263 return NULL;
10264 #endif
10265 }
10266
10267 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10268 struct drm_crtc *crtc,
10269 struct drm_display_mode *mode,
10270 struct drm_framebuffer *fb,
10271 int x, int y)
10272 {
10273 struct drm_plane_state *plane_state;
10274 int hdisplay, vdisplay;
10275 int ret;
10276
10277 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10278 if (IS_ERR(plane_state))
10279 return PTR_ERR(plane_state);
10280
10281 if (mode)
10282 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10283 else
10284 hdisplay = vdisplay = 0;
10285
10286 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10287 if (ret)
10288 return ret;
10289 drm_atomic_set_fb_for_plane(plane_state, fb);
10290 plane_state->crtc_x = 0;
10291 plane_state->crtc_y = 0;
10292 plane_state->crtc_w = hdisplay;
10293 plane_state->crtc_h = vdisplay;
10294 plane_state->src_x = x << 16;
10295 plane_state->src_y = y << 16;
10296 plane_state->src_w = hdisplay << 16;
10297 plane_state->src_h = vdisplay << 16;
10298
10299 return 0;
10300 }
10301
10302 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10303 struct drm_display_mode *mode,
10304 struct intel_load_detect_pipe *old,
10305 struct drm_modeset_acquire_ctx *ctx)
10306 {
10307 struct intel_crtc *intel_crtc;
10308 struct intel_encoder *intel_encoder =
10309 intel_attached_encoder(connector);
10310 struct drm_crtc *possible_crtc;
10311 struct drm_encoder *encoder = &intel_encoder->base;
10312 struct drm_crtc *crtc = NULL;
10313 struct drm_device *dev = encoder->dev;
10314 struct drm_framebuffer *fb;
10315 struct drm_mode_config *config = &dev->mode_config;
10316 struct drm_atomic_state *state = NULL;
10317 struct drm_connector_state *connector_state;
10318 struct intel_crtc_state *crtc_state;
10319 int ret, i = -1;
10320
10321 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10322 connector->base.id, connector->name,
10323 encoder->base.id, encoder->name);
10324
10325 retry:
10326 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10327 if (ret)
10328 goto fail_unlock;
10329
10330 /*
10331 * Algorithm gets a little messy:
10332 *
10333 * - if the connector already has an assigned crtc, use it (but make
10334 * sure it's on first)
10335 *
10336 * - try to find the first unused crtc that can drive this connector,
10337 * and use that if we find one
10338 */
10339
10340 /* See if we already have a CRTC for this connector */
10341 if (encoder->crtc) {
10342 crtc = encoder->crtc;
10343
10344 ret = drm_modeset_lock(&crtc->mutex, ctx);
10345 if (ret)
10346 goto fail_unlock;
10347 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10348 if (ret)
10349 goto fail_unlock;
10350
10351 old->dpms_mode = connector->dpms;
10352 old->load_detect_temp = false;
10353
10354 /* Make sure the crtc and connector are running */
10355 if (connector->dpms != DRM_MODE_DPMS_ON)
10356 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10357
10358 return true;
10359 }
10360
10361 /* Find an unused one (if possible) */
10362 for_each_crtc(dev, possible_crtc) {
10363 i++;
10364 if (!(encoder->possible_crtcs & (1 << i)))
10365 continue;
10366 if (possible_crtc->state->enable)
10367 continue;
10368 /* This can occur when applying the pipe A quirk on resume. */
10369 if (to_intel_crtc(possible_crtc)->new_enabled)
10370 continue;
10371
10372 crtc = possible_crtc;
10373 break;
10374 }
10375
10376 /*
10377 * If we didn't find an unused CRTC, don't use any.
10378 */
10379 if (!crtc) {
10380 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10381 goto fail_unlock;
10382 }
10383
10384 ret = drm_modeset_lock(&crtc->mutex, ctx);
10385 if (ret)
10386 goto fail_unlock;
10387 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10388 if (ret)
10389 goto fail_unlock;
10390 intel_encoder->new_crtc = to_intel_crtc(crtc);
10391 to_intel_connector(connector)->new_encoder = intel_encoder;
10392
10393 intel_crtc = to_intel_crtc(crtc);
10394 intel_crtc->new_enabled = true;
10395 old->dpms_mode = connector->dpms;
10396 old->load_detect_temp = true;
10397 old->release_fb = NULL;
10398
10399 state = drm_atomic_state_alloc(dev);
10400 if (!state)
10401 return false;
10402
10403 state->acquire_ctx = ctx;
10404
10405 connector_state = drm_atomic_get_connector_state(state, connector);
10406 if (IS_ERR(connector_state)) {
10407 ret = PTR_ERR(connector_state);
10408 goto fail;
10409 }
10410
10411 connector_state->crtc = crtc;
10412 connector_state->best_encoder = &intel_encoder->base;
10413
10414 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10415 if (IS_ERR(crtc_state)) {
10416 ret = PTR_ERR(crtc_state);
10417 goto fail;
10418 }
10419
10420 crtc_state->base.active = crtc_state->base.enable = true;
10421
10422 if (!mode)
10423 mode = &load_detect_mode;
10424
10425 /* We need a framebuffer large enough to accommodate all accesses
10426 * that the plane may generate whilst we perform load detection.
10427 * We can not rely on the fbcon either being present (we get called
10428 * during its initialisation to detect all boot displays, or it may
10429 * not even exist) or that it is large enough to satisfy the
10430 * requested mode.
10431 */
10432 fb = mode_fits_in_fbdev(dev, mode);
10433 if (fb == NULL) {
10434 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10435 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10436 old->release_fb = fb;
10437 } else
10438 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10439 if (IS_ERR(fb)) {
10440 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10441 goto fail;
10442 }
10443
10444 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10445 if (ret)
10446 goto fail;
10447
10448 drm_mode_copy(&crtc_state->base.mode, mode);
10449
10450 if (intel_set_mode(state)) {
10451 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10452 if (old->release_fb)
10453 old->release_fb->funcs->destroy(old->release_fb);
10454 goto fail;
10455 }
10456 crtc->primary->crtc = crtc;
10457
10458 /* let the connector get through one full cycle before testing */
10459 intel_wait_for_vblank(dev, intel_crtc->pipe);
10460 return true;
10461
10462 fail:
10463 intel_crtc->new_enabled = crtc->state->enable;
10464 fail_unlock:
10465 drm_atomic_state_free(state);
10466 state = NULL;
10467
10468 if (ret == -EDEADLK) {
10469 drm_modeset_backoff(ctx);
10470 goto retry;
10471 }
10472
10473 return false;
10474 }
10475
10476 void intel_release_load_detect_pipe(struct drm_connector *connector,
10477 struct intel_load_detect_pipe *old,
10478 struct drm_modeset_acquire_ctx *ctx)
10479 {
10480 struct drm_device *dev = connector->dev;
10481 struct intel_encoder *intel_encoder =
10482 intel_attached_encoder(connector);
10483 struct drm_encoder *encoder = &intel_encoder->base;
10484 struct drm_crtc *crtc = encoder->crtc;
10485 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10486 struct drm_atomic_state *state;
10487 struct drm_connector_state *connector_state;
10488 struct intel_crtc_state *crtc_state;
10489 int ret;
10490
10491 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10492 connector->base.id, connector->name,
10493 encoder->base.id, encoder->name);
10494
10495 if (old->load_detect_temp) {
10496 state = drm_atomic_state_alloc(dev);
10497 if (!state)
10498 goto fail;
10499
10500 state->acquire_ctx = ctx;
10501
10502 connector_state = drm_atomic_get_connector_state(state, connector);
10503 if (IS_ERR(connector_state))
10504 goto fail;
10505
10506 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10507 if (IS_ERR(crtc_state))
10508 goto fail;
10509
10510 to_intel_connector(connector)->new_encoder = NULL;
10511 intel_encoder->new_crtc = NULL;
10512 intel_crtc->new_enabled = false;
10513
10514 connector_state->best_encoder = NULL;
10515 connector_state->crtc = NULL;
10516
10517 crtc_state->base.enable = crtc_state->base.active = false;
10518
10519 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10520 0, 0);
10521 if (ret)
10522 goto fail;
10523
10524 ret = intel_set_mode(state);
10525 if (ret)
10526 goto fail;
10527
10528 if (old->release_fb) {
10529 drm_framebuffer_unregister_private(old->release_fb);
10530 drm_framebuffer_unreference(old->release_fb);
10531 }
10532
10533 return;
10534 }
10535
10536 /* Switch crtc and encoder back off if necessary */
10537 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10538 connector->funcs->dpms(connector, old->dpms_mode);
10539
10540 return;
10541 fail:
10542 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10543 drm_atomic_state_free(state);
10544 }
10545
10546 static int i9xx_pll_refclk(struct drm_device *dev,
10547 const struct intel_crtc_state *pipe_config)
10548 {
10549 struct drm_i915_private *dev_priv = dev->dev_private;
10550 u32 dpll = pipe_config->dpll_hw_state.dpll;
10551
10552 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10553 return dev_priv->vbt.lvds_ssc_freq;
10554 else if (HAS_PCH_SPLIT(dev))
10555 return 120000;
10556 else if (!IS_GEN2(dev))
10557 return 96000;
10558 else
10559 return 48000;
10560 }
10561
10562 /* Returns the clock of the currently programmed mode of the given pipe. */
10563 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10564 struct intel_crtc_state *pipe_config)
10565 {
10566 struct drm_device *dev = crtc->base.dev;
10567 struct drm_i915_private *dev_priv = dev->dev_private;
10568 int pipe = pipe_config->cpu_transcoder;
10569 u32 dpll = pipe_config->dpll_hw_state.dpll;
10570 u32 fp;
10571 intel_clock_t clock;
10572 int refclk = i9xx_pll_refclk(dev, pipe_config);
10573
10574 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10575 fp = pipe_config->dpll_hw_state.fp0;
10576 else
10577 fp = pipe_config->dpll_hw_state.fp1;
10578
10579 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10580 if (IS_PINEVIEW(dev)) {
10581 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10582 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10583 } else {
10584 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10585 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10586 }
10587
10588 if (!IS_GEN2(dev)) {
10589 if (IS_PINEVIEW(dev))
10590 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10591 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10592 else
10593 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10594 DPLL_FPA01_P1_POST_DIV_SHIFT);
10595
10596 switch (dpll & DPLL_MODE_MASK) {
10597 case DPLLB_MODE_DAC_SERIAL:
10598 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10599 5 : 10;
10600 break;
10601 case DPLLB_MODE_LVDS:
10602 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10603 7 : 14;
10604 break;
10605 default:
10606 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10607 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10608 return;
10609 }
10610
10611 if (IS_PINEVIEW(dev))
10612 pineview_clock(refclk, &clock);
10613 else
10614 i9xx_clock(refclk, &clock);
10615 } else {
10616 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10617 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10618
10619 if (is_lvds) {
10620 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10621 DPLL_FPA01_P1_POST_DIV_SHIFT);
10622
10623 if (lvds & LVDS_CLKB_POWER_UP)
10624 clock.p2 = 7;
10625 else
10626 clock.p2 = 14;
10627 } else {
10628 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10629 clock.p1 = 2;
10630 else {
10631 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10632 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10633 }
10634 if (dpll & PLL_P2_DIVIDE_BY_4)
10635 clock.p2 = 4;
10636 else
10637 clock.p2 = 2;
10638 }
10639
10640 i9xx_clock(refclk, &clock);
10641 }
10642
10643 /*
10644 * This value includes pixel_multiplier. We will use
10645 * port_clock to compute adjusted_mode.crtc_clock in the
10646 * encoder's get_config() function.
10647 */
10648 pipe_config->port_clock = clock.dot;
10649 }
10650
10651 int intel_dotclock_calculate(int link_freq,
10652 const struct intel_link_m_n *m_n)
10653 {
10654 /*
10655 * The calculation for the data clock is:
10656 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10657 * But we want to avoid losing precison if possible, so:
10658 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10659 *
10660 * and the link clock is simpler:
10661 * link_clock = (m * link_clock) / n
10662 */
10663
10664 if (!m_n->link_n)
10665 return 0;
10666
10667 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10668 }
10669
10670 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10671 struct intel_crtc_state *pipe_config)
10672 {
10673 struct drm_device *dev = crtc->base.dev;
10674
10675 /* read out port_clock from the DPLL */
10676 i9xx_crtc_clock_get(crtc, pipe_config);
10677
10678 /*
10679 * This value does not include pixel_multiplier.
10680 * We will check that port_clock and adjusted_mode.crtc_clock
10681 * agree once we know their relationship in the encoder's
10682 * get_config() function.
10683 */
10684 pipe_config->base.adjusted_mode.crtc_clock =
10685 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10686 &pipe_config->fdi_m_n);
10687 }
10688
10689 /** Returns the currently programmed mode of the given pipe. */
10690 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10691 struct drm_crtc *crtc)
10692 {
10693 struct drm_i915_private *dev_priv = dev->dev_private;
10694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10695 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10696 struct drm_display_mode *mode;
10697 struct intel_crtc_state pipe_config;
10698 int htot = I915_READ(HTOTAL(cpu_transcoder));
10699 int hsync = I915_READ(HSYNC(cpu_transcoder));
10700 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10701 int vsync = I915_READ(VSYNC(cpu_transcoder));
10702 enum pipe pipe = intel_crtc->pipe;
10703
10704 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10705 if (!mode)
10706 return NULL;
10707
10708 /*
10709 * Construct a pipe_config sufficient for getting the clock info
10710 * back out of crtc_clock_get.
10711 *
10712 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10713 * to use a real value here instead.
10714 */
10715 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10716 pipe_config.pixel_multiplier = 1;
10717 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10718 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10719 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10720 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10721
10722 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10723 mode->hdisplay = (htot & 0xffff) + 1;
10724 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10725 mode->hsync_start = (hsync & 0xffff) + 1;
10726 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10727 mode->vdisplay = (vtot & 0xffff) + 1;
10728 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10729 mode->vsync_start = (vsync & 0xffff) + 1;
10730 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10731
10732 drm_mode_set_name(mode);
10733
10734 return mode;
10735 }
10736
10737 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10738 {
10739 struct drm_device *dev = crtc->dev;
10740 struct drm_i915_private *dev_priv = dev->dev_private;
10741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10742
10743 if (!HAS_GMCH_DISPLAY(dev))
10744 return;
10745
10746 if (!dev_priv->lvds_downclock_avail)
10747 return;
10748
10749 /*
10750 * Since this is called by a timer, we should never get here in
10751 * the manual case.
10752 */
10753 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10754 int pipe = intel_crtc->pipe;
10755 int dpll_reg = DPLL(pipe);
10756 int dpll;
10757
10758 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10759
10760 assert_panel_unlocked(dev_priv, pipe);
10761
10762 dpll = I915_READ(dpll_reg);
10763 dpll |= DISPLAY_RATE_SELECT_FPA1;
10764 I915_WRITE(dpll_reg, dpll);
10765 intel_wait_for_vblank(dev, pipe);
10766 dpll = I915_READ(dpll_reg);
10767 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10768 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10769 }
10770
10771 }
10772
10773 void intel_mark_busy(struct drm_device *dev)
10774 {
10775 struct drm_i915_private *dev_priv = dev->dev_private;
10776
10777 if (dev_priv->mm.busy)
10778 return;
10779
10780 intel_runtime_pm_get(dev_priv);
10781 i915_update_gfx_val(dev_priv);
10782 if (INTEL_INFO(dev)->gen >= 6)
10783 gen6_rps_busy(dev_priv);
10784 dev_priv->mm.busy = true;
10785 }
10786
10787 void intel_mark_idle(struct drm_device *dev)
10788 {
10789 struct drm_i915_private *dev_priv = dev->dev_private;
10790 struct drm_crtc *crtc;
10791
10792 if (!dev_priv->mm.busy)
10793 return;
10794
10795 dev_priv->mm.busy = false;
10796
10797 for_each_crtc(dev, crtc) {
10798 if (!crtc->primary->fb)
10799 continue;
10800
10801 intel_decrease_pllclock(crtc);
10802 }
10803
10804 if (INTEL_INFO(dev)->gen >= 6)
10805 gen6_rps_idle(dev->dev_private);
10806
10807 intel_runtime_pm_put(dev_priv);
10808 }
10809
10810 static void intel_crtc_destroy(struct drm_crtc *crtc)
10811 {
10812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10813 struct drm_device *dev = crtc->dev;
10814 struct intel_unpin_work *work;
10815
10816 spin_lock_irq(&dev->event_lock);
10817 work = intel_crtc->unpin_work;
10818 intel_crtc->unpin_work = NULL;
10819 spin_unlock_irq(&dev->event_lock);
10820
10821 if (work) {
10822 cancel_work_sync(&work->work);
10823 kfree(work);
10824 }
10825
10826 drm_crtc_cleanup(crtc);
10827
10828 kfree(intel_crtc);
10829 }
10830
10831 static void intel_unpin_work_fn(struct work_struct *__work)
10832 {
10833 struct intel_unpin_work *work =
10834 container_of(__work, struct intel_unpin_work, work);
10835 struct drm_device *dev = work->crtc->dev;
10836 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10837
10838 mutex_lock(&dev->struct_mutex);
10839 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10840 drm_gem_object_unreference(&work->pending_flip_obj->base);
10841
10842 intel_fbc_update(dev);
10843
10844 if (work->flip_queued_req)
10845 i915_gem_request_assign(&work->flip_queued_req, NULL);
10846 mutex_unlock(&dev->struct_mutex);
10847
10848 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10849 drm_framebuffer_unreference(work->old_fb);
10850
10851 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10852 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10853
10854 kfree(work);
10855 }
10856
10857 static void do_intel_finish_page_flip(struct drm_device *dev,
10858 struct drm_crtc *crtc)
10859 {
10860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10861 struct intel_unpin_work *work;
10862 unsigned long flags;
10863
10864 /* Ignore early vblank irqs */
10865 if (intel_crtc == NULL)
10866 return;
10867
10868 /*
10869 * This is called both by irq handlers and the reset code (to complete
10870 * lost pageflips) so needs the full irqsave spinlocks.
10871 */
10872 spin_lock_irqsave(&dev->event_lock, flags);
10873 work = intel_crtc->unpin_work;
10874
10875 /* Ensure we don't miss a work->pending update ... */
10876 smp_rmb();
10877
10878 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10879 spin_unlock_irqrestore(&dev->event_lock, flags);
10880 return;
10881 }
10882
10883 page_flip_completed(intel_crtc);
10884
10885 spin_unlock_irqrestore(&dev->event_lock, flags);
10886 }
10887
10888 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10889 {
10890 struct drm_i915_private *dev_priv = dev->dev_private;
10891 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10892
10893 do_intel_finish_page_flip(dev, crtc);
10894 }
10895
10896 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10897 {
10898 struct drm_i915_private *dev_priv = dev->dev_private;
10899 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10900
10901 do_intel_finish_page_flip(dev, crtc);
10902 }
10903
10904 /* Is 'a' after or equal to 'b'? */
10905 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10906 {
10907 return !((a - b) & 0x80000000);
10908 }
10909
10910 static bool page_flip_finished(struct intel_crtc *crtc)
10911 {
10912 struct drm_device *dev = crtc->base.dev;
10913 struct drm_i915_private *dev_priv = dev->dev_private;
10914
10915 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10916 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10917 return true;
10918
10919 /*
10920 * The relevant registers doen't exist on pre-ctg.
10921 * As the flip done interrupt doesn't trigger for mmio
10922 * flips on gmch platforms, a flip count check isn't
10923 * really needed there. But since ctg has the registers,
10924 * include it in the check anyway.
10925 */
10926 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10927 return true;
10928
10929 /*
10930 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10931 * used the same base address. In that case the mmio flip might
10932 * have completed, but the CS hasn't even executed the flip yet.
10933 *
10934 * A flip count check isn't enough as the CS might have updated
10935 * the base address just after start of vblank, but before we
10936 * managed to process the interrupt. This means we'd complete the
10937 * CS flip too soon.
10938 *
10939 * Combining both checks should get us a good enough result. It may
10940 * still happen that the CS flip has been executed, but has not
10941 * yet actually completed. But in case the base address is the same
10942 * anyway, we don't really care.
10943 */
10944 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10945 crtc->unpin_work->gtt_offset &&
10946 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10947 crtc->unpin_work->flip_count);
10948 }
10949
10950 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10951 {
10952 struct drm_i915_private *dev_priv = dev->dev_private;
10953 struct intel_crtc *intel_crtc =
10954 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10955 unsigned long flags;
10956
10957
10958 /*
10959 * This is called both by irq handlers and the reset code (to complete
10960 * lost pageflips) so needs the full irqsave spinlocks.
10961 *
10962 * NB: An MMIO update of the plane base pointer will also
10963 * generate a page-flip completion irq, i.e. every modeset
10964 * is also accompanied by a spurious intel_prepare_page_flip().
10965 */
10966 spin_lock_irqsave(&dev->event_lock, flags);
10967 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10968 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10969 spin_unlock_irqrestore(&dev->event_lock, flags);
10970 }
10971
10972 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10973 {
10974 /* Ensure that the work item is consistent when activating it ... */
10975 smp_wmb();
10976 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10977 /* and that it is marked active as soon as the irq could fire. */
10978 smp_wmb();
10979 }
10980
10981 static int intel_gen2_queue_flip(struct drm_device *dev,
10982 struct drm_crtc *crtc,
10983 struct drm_framebuffer *fb,
10984 struct drm_i915_gem_object *obj,
10985 struct intel_engine_cs *ring,
10986 uint32_t flags)
10987 {
10988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10989 u32 flip_mask;
10990 int ret;
10991
10992 ret = intel_ring_begin(ring, 6);
10993 if (ret)
10994 return ret;
10995
10996 /* Can't queue multiple flips, so wait for the previous
10997 * one to finish before executing the next.
10998 */
10999 if (intel_crtc->plane)
11000 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11001 else
11002 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11003 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11004 intel_ring_emit(ring, MI_NOOP);
11005 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11006 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11007 intel_ring_emit(ring, fb->pitches[0]);
11008 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11009 intel_ring_emit(ring, 0); /* aux display base address, unused */
11010
11011 intel_mark_page_flip_active(intel_crtc);
11012 __intel_ring_advance(ring);
11013 return 0;
11014 }
11015
11016 static int intel_gen3_queue_flip(struct drm_device *dev,
11017 struct drm_crtc *crtc,
11018 struct drm_framebuffer *fb,
11019 struct drm_i915_gem_object *obj,
11020 struct intel_engine_cs *ring,
11021 uint32_t flags)
11022 {
11023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11024 u32 flip_mask;
11025 int ret;
11026
11027 ret = intel_ring_begin(ring, 6);
11028 if (ret)
11029 return ret;
11030
11031 if (intel_crtc->plane)
11032 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11033 else
11034 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11035 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11036 intel_ring_emit(ring, MI_NOOP);
11037 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11038 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11039 intel_ring_emit(ring, fb->pitches[0]);
11040 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11041 intel_ring_emit(ring, MI_NOOP);
11042
11043 intel_mark_page_flip_active(intel_crtc);
11044 __intel_ring_advance(ring);
11045 return 0;
11046 }
11047
11048 static int intel_gen4_queue_flip(struct drm_device *dev,
11049 struct drm_crtc *crtc,
11050 struct drm_framebuffer *fb,
11051 struct drm_i915_gem_object *obj,
11052 struct intel_engine_cs *ring,
11053 uint32_t flags)
11054 {
11055 struct drm_i915_private *dev_priv = dev->dev_private;
11056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11057 uint32_t pf, pipesrc;
11058 int ret;
11059
11060 ret = intel_ring_begin(ring, 4);
11061 if (ret)
11062 return ret;
11063
11064 /* i965+ uses the linear or tiled offsets from the
11065 * Display Registers (which do not change across a page-flip)
11066 * so we need only reprogram the base address.
11067 */
11068 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11069 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11070 intel_ring_emit(ring, fb->pitches[0]);
11071 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11072 obj->tiling_mode);
11073
11074 /* XXX Enabling the panel-fitter across page-flip is so far
11075 * untested on non-native modes, so ignore it for now.
11076 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11077 */
11078 pf = 0;
11079 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11080 intel_ring_emit(ring, pf | pipesrc);
11081
11082 intel_mark_page_flip_active(intel_crtc);
11083 __intel_ring_advance(ring);
11084 return 0;
11085 }
11086
11087 static int intel_gen6_queue_flip(struct drm_device *dev,
11088 struct drm_crtc *crtc,
11089 struct drm_framebuffer *fb,
11090 struct drm_i915_gem_object *obj,
11091 struct intel_engine_cs *ring,
11092 uint32_t flags)
11093 {
11094 struct drm_i915_private *dev_priv = dev->dev_private;
11095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11096 uint32_t pf, pipesrc;
11097 int ret;
11098
11099 ret = intel_ring_begin(ring, 4);
11100 if (ret)
11101 return ret;
11102
11103 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11104 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11105 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11106 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11107
11108 /* Contrary to the suggestions in the documentation,
11109 * "Enable Panel Fitter" does not seem to be required when page
11110 * flipping with a non-native mode, and worse causes a normal
11111 * modeset to fail.
11112 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11113 */
11114 pf = 0;
11115 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11116 intel_ring_emit(ring, pf | pipesrc);
11117
11118 intel_mark_page_flip_active(intel_crtc);
11119 __intel_ring_advance(ring);
11120 return 0;
11121 }
11122
11123 static int intel_gen7_queue_flip(struct drm_device *dev,
11124 struct drm_crtc *crtc,
11125 struct drm_framebuffer *fb,
11126 struct drm_i915_gem_object *obj,
11127 struct intel_engine_cs *ring,
11128 uint32_t flags)
11129 {
11130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11131 uint32_t plane_bit = 0;
11132 int len, ret;
11133
11134 switch (intel_crtc->plane) {
11135 case PLANE_A:
11136 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11137 break;
11138 case PLANE_B:
11139 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11140 break;
11141 case PLANE_C:
11142 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11143 break;
11144 default:
11145 WARN_ONCE(1, "unknown plane in flip command\n");
11146 return -ENODEV;
11147 }
11148
11149 len = 4;
11150 if (ring->id == RCS) {
11151 len += 6;
11152 /*
11153 * On Gen 8, SRM is now taking an extra dword to accommodate
11154 * 48bits addresses, and we need a NOOP for the batch size to
11155 * stay even.
11156 */
11157 if (IS_GEN8(dev))
11158 len += 2;
11159 }
11160
11161 /*
11162 * BSpec MI_DISPLAY_FLIP for IVB:
11163 * "The full packet must be contained within the same cache line."
11164 *
11165 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11166 * cacheline, if we ever start emitting more commands before
11167 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11168 * then do the cacheline alignment, and finally emit the
11169 * MI_DISPLAY_FLIP.
11170 */
11171 ret = intel_ring_cacheline_align(ring);
11172 if (ret)
11173 return ret;
11174
11175 ret = intel_ring_begin(ring, len);
11176 if (ret)
11177 return ret;
11178
11179 /* Unmask the flip-done completion message. Note that the bspec says that
11180 * we should do this for both the BCS and RCS, and that we must not unmask
11181 * more than one flip event at any time (or ensure that one flip message
11182 * can be sent by waiting for flip-done prior to queueing new flips).
11183 * Experimentation says that BCS works despite DERRMR masking all
11184 * flip-done completion events and that unmasking all planes at once
11185 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11186 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11187 */
11188 if (ring->id == RCS) {
11189 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11190 intel_ring_emit(ring, DERRMR);
11191 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11192 DERRMR_PIPEB_PRI_FLIP_DONE |
11193 DERRMR_PIPEC_PRI_FLIP_DONE));
11194 if (IS_GEN8(dev))
11195 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11196 MI_SRM_LRM_GLOBAL_GTT);
11197 else
11198 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11199 MI_SRM_LRM_GLOBAL_GTT);
11200 intel_ring_emit(ring, DERRMR);
11201 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11202 if (IS_GEN8(dev)) {
11203 intel_ring_emit(ring, 0);
11204 intel_ring_emit(ring, MI_NOOP);
11205 }
11206 }
11207
11208 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11209 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11210 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11211 intel_ring_emit(ring, (MI_NOOP));
11212
11213 intel_mark_page_flip_active(intel_crtc);
11214 __intel_ring_advance(ring);
11215 return 0;
11216 }
11217
11218 static bool use_mmio_flip(struct intel_engine_cs *ring,
11219 struct drm_i915_gem_object *obj)
11220 {
11221 /*
11222 * This is not being used for older platforms, because
11223 * non-availability of flip done interrupt forces us to use
11224 * CS flips. Older platforms derive flip done using some clever
11225 * tricks involving the flip_pending status bits and vblank irqs.
11226 * So using MMIO flips there would disrupt this mechanism.
11227 */
11228
11229 if (ring == NULL)
11230 return true;
11231
11232 if (INTEL_INFO(ring->dev)->gen < 5)
11233 return false;
11234
11235 if (i915.use_mmio_flip < 0)
11236 return false;
11237 else if (i915.use_mmio_flip > 0)
11238 return true;
11239 else if (i915.enable_execlists)
11240 return true;
11241 else
11242 return ring != i915_gem_request_get_ring(obj->last_write_req);
11243 }
11244
11245 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11246 {
11247 struct drm_device *dev = intel_crtc->base.dev;
11248 struct drm_i915_private *dev_priv = dev->dev_private;
11249 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11250 const enum pipe pipe = intel_crtc->pipe;
11251 u32 ctl, stride;
11252
11253 ctl = I915_READ(PLANE_CTL(pipe, 0));
11254 ctl &= ~PLANE_CTL_TILED_MASK;
11255 switch (fb->modifier[0]) {
11256 case DRM_FORMAT_MOD_NONE:
11257 break;
11258 case I915_FORMAT_MOD_X_TILED:
11259 ctl |= PLANE_CTL_TILED_X;
11260 break;
11261 case I915_FORMAT_MOD_Y_TILED:
11262 ctl |= PLANE_CTL_TILED_Y;
11263 break;
11264 case I915_FORMAT_MOD_Yf_TILED:
11265 ctl |= PLANE_CTL_TILED_YF;
11266 break;
11267 default:
11268 MISSING_CASE(fb->modifier[0]);
11269 }
11270
11271 /*
11272 * The stride is either expressed as a multiple of 64 bytes chunks for
11273 * linear buffers or in number of tiles for tiled buffers.
11274 */
11275 stride = fb->pitches[0] /
11276 intel_fb_stride_alignment(dev, fb->modifier[0],
11277 fb->pixel_format);
11278
11279 /*
11280 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11281 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11282 */
11283 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11284 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11285
11286 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11287 POSTING_READ(PLANE_SURF(pipe, 0));
11288 }
11289
11290 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11291 {
11292 struct drm_device *dev = intel_crtc->base.dev;
11293 struct drm_i915_private *dev_priv = dev->dev_private;
11294 struct intel_framebuffer *intel_fb =
11295 to_intel_framebuffer(intel_crtc->base.primary->fb);
11296 struct drm_i915_gem_object *obj = intel_fb->obj;
11297 u32 dspcntr;
11298 u32 reg;
11299
11300 reg = DSPCNTR(intel_crtc->plane);
11301 dspcntr = I915_READ(reg);
11302
11303 if (obj->tiling_mode != I915_TILING_NONE)
11304 dspcntr |= DISPPLANE_TILED;
11305 else
11306 dspcntr &= ~DISPPLANE_TILED;
11307
11308 I915_WRITE(reg, dspcntr);
11309
11310 I915_WRITE(DSPSURF(intel_crtc->plane),
11311 intel_crtc->unpin_work->gtt_offset);
11312 POSTING_READ(DSPSURF(intel_crtc->plane));
11313
11314 }
11315
11316 /*
11317 * XXX: This is the temporary way to update the plane registers until we get
11318 * around to using the usual plane update functions for MMIO flips
11319 */
11320 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11321 {
11322 struct drm_device *dev = intel_crtc->base.dev;
11323 bool atomic_update;
11324 u32 start_vbl_count;
11325
11326 intel_mark_page_flip_active(intel_crtc);
11327
11328 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
11329
11330 if (INTEL_INFO(dev)->gen >= 9)
11331 skl_do_mmio_flip(intel_crtc);
11332 else
11333 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11334 ilk_do_mmio_flip(intel_crtc);
11335
11336 if (atomic_update)
11337 intel_pipe_update_end(intel_crtc, start_vbl_count);
11338 }
11339
11340 static void intel_mmio_flip_work_func(struct work_struct *work)
11341 {
11342 struct intel_mmio_flip *mmio_flip =
11343 container_of(work, struct intel_mmio_flip, work);
11344
11345 if (mmio_flip->req)
11346 WARN_ON(__i915_wait_request(mmio_flip->req,
11347 mmio_flip->crtc->reset_counter,
11348 false, NULL,
11349 &mmio_flip->i915->rps.mmioflips));
11350
11351 intel_do_mmio_flip(mmio_flip->crtc);
11352
11353 i915_gem_request_unreference__unlocked(mmio_flip->req);
11354 kfree(mmio_flip);
11355 }
11356
11357 static int intel_queue_mmio_flip(struct drm_device *dev,
11358 struct drm_crtc *crtc,
11359 struct drm_framebuffer *fb,
11360 struct drm_i915_gem_object *obj,
11361 struct intel_engine_cs *ring,
11362 uint32_t flags)
11363 {
11364 struct intel_mmio_flip *mmio_flip;
11365
11366 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11367 if (mmio_flip == NULL)
11368 return -ENOMEM;
11369
11370 mmio_flip->i915 = to_i915(dev);
11371 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11372 mmio_flip->crtc = to_intel_crtc(crtc);
11373
11374 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11375 schedule_work(&mmio_flip->work);
11376
11377 return 0;
11378 }
11379
11380 static int intel_default_queue_flip(struct drm_device *dev,
11381 struct drm_crtc *crtc,
11382 struct drm_framebuffer *fb,
11383 struct drm_i915_gem_object *obj,
11384 struct intel_engine_cs *ring,
11385 uint32_t flags)
11386 {
11387 return -ENODEV;
11388 }
11389
11390 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11391 struct drm_crtc *crtc)
11392 {
11393 struct drm_i915_private *dev_priv = dev->dev_private;
11394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11395 struct intel_unpin_work *work = intel_crtc->unpin_work;
11396 u32 addr;
11397
11398 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11399 return true;
11400
11401 if (!work->enable_stall_check)
11402 return false;
11403
11404 if (work->flip_ready_vblank == 0) {
11405 if (work->flip_queued_req &&
11406 !i915_gem_request_completed(work->flip_queued_req, true))
11407 return false;
11408
11409 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11410 }
11411
11412 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11413 return false;
11414
11415 /* Potential stall - if we see that the flip has happened,
11416 * assume a missed interrupt. */
11417 if (INTEL_INFO(dev)->gen >= 4)
11418 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11419 else
11420 addr = I915_READ(DSPADDR(intel_crtc->plane));
11421
11422 /* There is a potential issue here with a false positive after a flip
11423 * to the same address. We could address this by checking for a
11424 * non-incrementing frame counter.
11425 */
11426 return addr == work->gtt_offset;
11427 }
11428
11429 void intel_check_page_flip(struct drm_device *dev, int pipe)
11430 {
11431 struct drm_i915_private *dev_priv = dev->dev_private;
11432 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11434 struct intel_unpin_work *work;
11435
11436 WARN_ON(!in_interrupt());
11437
11438 if (crtc == NULL)
11439 return;
11440
11441 spin_lock(&dev->event_lock);
11442 work = intel_crtc->unpin_work;
11443 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11444 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11445 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11446 page_flip_completed(intel_crtc);
11447 work = NULL;
11448 }
11449 if (work != NULL &&
11450 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11451 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11452 spin_unlock(&dev->event_lock);
11453 }
11454
11455 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11456 struct drm_framebuffer *fb,
11457 struct drm_pending_vblank_event *event,
11458 uint32_t page_flip_flags)
11459 {
11460 struct drm_device *dev = crtc->dev;
11461 struct drm_i915_private *dev_priv = dev->dev_private;
11462 struct drm_framebuffer *old_fb = crtc->primary->fb;
11463 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11465 struct drm_plane *primary = crtc->primary;
11466 enum pipe pipe = intel_crtc->pipe;
11467 struct intel_unpin_work *work;
11468 struct intel_engine_cs *ring;
11469 bool mmio_flip;
11470 int ret;
11471
11472 /*
11473 * drm_mode_page_flip_ioctl() should already catch this, but double
11474 * check to be safe. In the future we may enable pageflipping from
11475 * a disabled primary plane.
11476 */
11477 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11478 return -EBUSY;
11479
11480 /* Can't change pixel format via MI display flips. */
11481 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11482 return -EINVAL;
11483
11484 /*
11485 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11486 * Note that pitch changes could also affect these register.
11487 */
11488 if (INTEL_INFO(dev)->gen > 3 &&
11489 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11490 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11491 return -EINVAL;
11492
11493 if (i915_terminally_wedged(&dev_priv->gpu_error))
11494 goto out_hang;
11495
11496 work = kzalloc(sizeof(*work), GFP_KERNEL);
11497 if (work == NULL)
11498 return -ENOMEM;
11499
11500 work->event = event;
11501 work->crtc = crtc;
11502 work->old_fb = old_fb;
11503 INIT_WORK(&work->work, intel_unpin_work_fn);
11504
11505 ret = drm_crtc_vblank_get(crtc);
11506 if (ret)
11507 goto free_work;
11508
11509 /* We borrow the event spin lock for protecting unpin_work */
11510 spin_lock_irq(&dev->event_lock);
11511 if (intel_crtc->unpin_work) {
11512 /* Before declaring the flip queue wedged, check if
11513 * the hardware completed the operation behind our backs.
11514 */
11515 if (__intel_pageflip_stall_check(dev, crtc)) {
11516 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11517 page_flip_completed(intel_crtc);
11518 } else {
11519 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11520 spin_unlock_irq(&dev->event_lock);
11521
11522 drm_crtc_vblank_put(crtc);
11523 kfree(work);
11524 return -EBUSY;
11525 }
11526 }
11527 intel_crtc->unpin_work = work;
11528 spin_unlock_irq(&dev->event_lock);
11529
11530 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11531 flush_workqueue(dev_priv->wq);
11532
11533 /* Reference the objects for the scheduled work. */
11534 drm_framebuffer_reference(work->old_fb);
11535 drm_gem_object_reference(&obj->base);
11536
11537 crtc->primary->fb = fb;
11538 update_state_fb(crtc->primary);
11539
11540 work->pending_flip_obj = obj;
11541
11542 ret = i915_mutex_lock_interruptible(dev);
11543 if (ret)
11544 goto cleanup;
11545
11546 atomic_inc(&intel_crtc->unpin_work_count);
11547 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11548
11549 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11550 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11551
11552 if (IS_VALLEYVIEW(dev)) {
11553 ring = &dev_priv->ring[BCS];
11554 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11555 /* vlv: DISPLAY_FLIP fails to change tiling */
11556 ring = NULL;
11557 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11558 ring = &dev_priv->ring[BCS];
11559 } else if (INTEL_INFO(dev)->gen >= 7) {
11560 ring = i915_gem_request_get_ring(obj->last_write_req);
11561 if (ring == NULL || ring->id != RCS)
11562 ring = &dev_priv->ring[BCS];
11563 } else {
11564 ring = &dev_priv->ring[RCS];
11565 }
11566
11567 mmio_flip = use_mmio_flip(ring, obj);
11568
11569 /* When using CS flips, we want to emit semaphores between rings.
11570 * However, when using mmio flips we will create a task to do the
11571 * synchronisation, so all we want here is to pin the framebuffer
11572 * into the display plane and skip any waits.
11573 */
11574 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11575 crtc->primary->state,
11576 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
11577 if (ret)
11578 goto cleanup_pending;
11579
11580 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11581 + intel_crtc->dspaddr_offset;
11582
11583 if (mmio_flip) {
11584 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11585 page_flip_flags);
11586 if (ret)
11587 goto cleanup_unpin;
11588
11589 i915_gem_request_assign(&work->flip_queued_req,
11590 obj->last_write_req);
11591 } else {
11592 if (obj->last_write_req) {
11593 ret = i915_gem_check_olr(obj->last_write_req);
11594 if (ret)
11595 goto cleanup_unpin;
11596 }
11597
11598 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11599 page_flip_flags);
11600 if (ret)
11601 goto cleanup_unpin;
11602
11603 i915_gem_request_assign(&work->flip_queued_req,
11604 intel_ring_get_request(ring));
11605 }
11606
11607 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11608 work->enable_stall_check = true;
11609
11610 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11611 INTEL_FRONTBUFFER_PRIMARY(pipe));
11612
11613 intel_fbc_disable(dev);
11614 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11615 mutex_unlock(&dev->struct_mutex);
11616
11617 trace_i915_flip_request(intel_crtc->plane, obj);
11618
11619 return 0;
11620
11621 cleanup_unpin:
11622 intel_unpin_fb_obj(fb, crtc->primary->state);
11623 cleanup_pending:
11624 atomic_dec(&intel_crtc->unpin_work_count);
11625 mutex_unlock(&dev->struct_mutex);
11626 cleanup:
11627 crtc->primary->fb = old_fb;
11628 update_state_fb(crtc->primary);
11629
11630 drm_gem_object_unreference_unlocked(&obj->base);
11631 drm_framebuffer_unreference(work->old_fb);
11632
11633 spin_lock_irq(&dev->event_lock);
11634 intel_crtc->unpin_work = NULL;
11635 spin_unlock_irq(&dev->event_lock);
11636
11637 drm_crtc_vblank_put(crtc);
11638 free_work:
11639 kfree(work);
11640
11641 if (ret == -EIO) {
11642 struct drm_atomic_state *state;
11643 struct drm_plane_state *plane_state;
11644
11645 out_hang:
11646 state = drm_atomic_state_alloc(dev);
11647 if (!state)
11648 return -ENOMEM;
11649 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11650
11651 retry:
11652 plane_state = drm_atomic_get_plane_state(state, primary);
11653 ret = PTR_ERR_OR_ZERO(plane_state);
11654 if (!ret) {
11655 drm_atomic_set_fb_for_plane(plane_state, fb);
11656
11657 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11658 if (!ret)
11659 ret = drm_atomic_commit(state);
11660 }
11661
11662 if (ret == -EDEADLK) {
11663 drm_modeset_backoff(state->acquire_ctx);
11664 drm_atomic_state_clear(state);
11665 goto retry;
11666 }
11667
11668 if (ret)
11669 drm_atomic_state_free(state);
11670
11671 if (ret == 0 && event) {
11672 spin_lock_irq(&dev->event_lock);
11673 drm_send_vblank_event(dev, pipe, event);
11674 spin_unlock_irq(&dev->event_lock);
11675 }
11676 }
11677 return ret;
11678 }
11679
11680
11681 /**
11682 * intel_wm_need_update - Check whether watermarks need updating
11683 * @plane: drm plane
11684 * @state: new plane state
11685 *
11686 * Check current plane state versus the new one to determine whether
11687 * watermarks need to be recalculated.
11688 *
11689 * Returns true or false.
11690 */
11691 static bool intel_wm_need_update(struct drm_plane *plane,
11692 struct drm_plane_state *state)
11693 {
11694 /* Update watermarks on tiling changes. */
11695 if (!plane->state->fb || !state->fb ||
11696 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11697 plane->state->rotation != state->rotation)
11698 return true;
11699
11700 if (plane->state->crtc_w != state->crtc_w)
11701 return true;
11702
11703 return false;
11704 }
11705
11706 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11707 struct drm_plane_state *plane_state)
11708 {
11709 struct drm_crtc *crtc = crtc_state->crtc;
11710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11711 struct drm_plane *plane = plane_state->plane;
11712 struct drm_device *dev = crtc->dev;
11713 struct drm_i915_private *dev_priv = dev->dev_private;
11714 struct intel_plane_state *old_plane_state =
11715 to_intel_plane_state(plane->state);
11716 int idx = intel_crtc->base.base.id, ret;
11717 int i = drm_plane_index(plane);
11718 bool mode_changed = needs_modeset(crtc_state);
11719 bool was_crtc_enabled = crtc->state->active;
11720 bool is_crtc_enabled = crtc_state->active;
11721
11722 bool turn_off, turn_on, visible, was_visible;
11723 struct drm_framebuffer *fb = plane_state->fb;
11724
11725 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11726 plane->type != DRM_PLANE_TYPE_CURSOR) {
11727 ret = skl_update_scaler_plane(
11728 to_intel_crtc_state(crtc_state),
11729 to_intel_plane_state(plane_state));
11730 if (ret)
11731 return ret;
11732 }
11733
11734 /*
11735 * Disabling a plane is always okay; we just need to update
11736 * fb tracking in a special way since cleanup_fb() won't
11737 * get called by the plane helpers.
11738 */
11739 if (old_plane_state->base.fb && !fb)
11740 intel_crtc->atomic.disabled_planes |= 1 << i;
11741
11742 /* don't run rest during modeset yet */
11743 if (!intel_crtc->active || mode_changed)
11744 return 0;
11745
11746 was_visible = old_plane_state->visible;
11747 visible = to_intel_plane_state(plane_state)->visible;
11748
11749 if (!was_crtc_enabled && WARN_ON(was_visible))
11750 was_visible = false;
11751
11752 if (!is_crtc_enabled && WARN_ON(visible))
11753 visible = false;
11754
11755 if (!was_visible && !visible)
11756 return 0;
11757
11758 turn_off = was_visible && (!visible || mode_changed);
11759 turn_on = visible && (!was_visible || mode_changed);
11760
11761 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11762 plane->base.id, fb ? fb->base.id : -1);
11763
11764 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11765 plane->base.id, was_visible, visible,
11766 turn_off, turn_on, mode_changed);
11767
11768 if (intel_wm_need_update(plane, plane_state))
11769 intel_crtc->atomic.update_wm = true;
11770
11771 switch (plane->type) {
11772 case DRM_PLANE_TYPE_PRIMARY:
11773 if (visible)
11774 intel_crtc->atomic.fb_bits |=
11775 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11776
11777 intel_crtc->atomic.wait_for_flips = true;
11778 intel_crtc->atomic.pre_disable_primary = turn_off;
11779 intel_crtc->atomic.post_enable_primary = turn_on;
11780
11781 if (turn_off)
11782 intel_crtc->atomic.disable_fbc = true;
11783
11784 /*
11785 * FBC does not work on some platforms for rotated
11786 * planes, so disable it when rotation is not 0 and
11787 * update it when rotation is set back to 0.
11788 *
11789 * FIXME: This is redundant with the fbc update done in
11790 * the primary plane enable function except that that
11791 * one is done too late. We eventually need to unify
11792 * this.
11793 */
11794
11795 if (visible &&
11796 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11797 dev_priv->fbc.crtc == intel_crtc &&
11798 plane_state->rotation != BIT(DRM_ROTATE_0))
11799 intel_crtc->atomic.disable_fbc = true;
11800
11801 /*
11802 * BDW signals flip done immediately if the plane
11803 * is disabled, even if the plane enable is already
11804 * armed to occur at the next vblank :(
11805 */
11806 if (turn_on && IS_BROADWELL(dev))
11807 intel_crtc->atomic.wait_vblank = true;
11808
11809 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11810 break;
11811 case DRM_PLANE_TYPE_CURSOR:
11812 if (visible)
11813 intel_crtc->atomic.fb_bits |=
11814 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
11815 break;
11816 case DRM_PLANE_TYPE_OVERLAY:
11817 /*
11818 * 'prepare' is never called when plane is being disabled, so
11819 * we need to handle frontbuffer tracking as a special case
11820 */
11821 if (visible)
11822 intel_crtc->atomic.fb_bits |=
11823 INTEL_FRONTBUFFER_SPRITE(intel_crtc->pipe);
11824
11825 if (turn_off && is_crtc_enabled) {
11826 intel_crtc->atomic.wait_vblank = true;
11827 intel_crtc->atomic.update_sprite_watermarks |=
11828 1 << i;
11829 }
11830 break;
11831 }
11832 return 0;
11833 }
11834
11835 static bool encoders_cloneable(const struct intel_encoder *a,
11836 const struct intel_encoder *b)
11837 {
11838 /* masks could be asymmetric, so check both ways */
11839 return a == b || (a->cloneable & (1 << b->type) &&
11840 b->cloneable & (1 << a->type));
11841 }
11842
11843 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11844 struct intel_crtc *crtc,
11845 struct intel_encoder *encoder)
11846 {
11847 struct intel_encoder *source_encoder;
11848 struct drm_connector *connector;
11849 struct drm_connector_state *connector_state;
11850 int i;
11851
11852 for_each_connector_in_state(state, connector, connector_state, i) {
11853 if (connector_state->crtc != &crtc->base)
11854 continue;
11855
11856 source_encoder =
11857 to_intel_encoder(connector_state->best_encoder);
11858 if (!encoders_cloneable(encoder, source_encoder))
11859 return false;
11860 }
11861
11862 return true;
11863 }
11864
11865 static bool check_encoder_cloning(struct drm_atomic_state *state,
11866 struct intel_crtc *crtc)
11867 {
11868 struct intel_encoder *encoder;
11869 struct drm_connector *connector;
11870 struct drm_connector_state *connector_state;
11871 int i;
11872
11873 for_each_connector_in_state(state, connector, connector_state, i) {
11874 if (connector_state->crtc != &crtc->base)
11875 continue;
11876
11877 encoder = to_intel_encoder(connector_state->best_encoder);
11878 if (!check_single_encoder_cloning(state, crtc, encoder))
11879 return false;
11880 }
11881
11882 return true;
11883 }
11884
11885 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11886 struct drm_crtc_state *crtc_state)
11887 {
11888 struct drm_device *dev = crtc->dev;
11889 struct drm_i915_private *dev_priv = dev->dev_private;
11890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11891 struct intel_crtc_state *pipe_config =
11892 to_intel_crtc_state(crtc_state);
11893 struct drm_atomic_state *state = crtc_state->state;
11894 int ret, idx = crtc->base.id;
11895 bool mode_changed = needs_modeset(crtc_state);
11896
11897 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11898 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11899 return -EINVAL;
11900 }
11901
11902 I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11903 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11904 idx, crtc->state->active, intel_crtc->active);
11905
11906 if (mode_changed && crtc_state->enable &&
11907 dev_priv->display.crtc_compute_clock &&
11908 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11909 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11910 pipe_config);
11911 if (ret)
11912 return ret;
11913 }
11914
11915 return intel_atomic_setup_scalers(dev, intel_crtc, pipe_config);
11916 }
11917
11918 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11919 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11920 .load_lut = intel_crtc_load_lut,
11921 .atomic_begin = intel_begin_crtc_commit,
11922 .atomic_flush = intel_finish_crtc_commit,
11923 .atomic_check = intel_crtc_atomic_check,
11924 };
11925
11926 /**
11927 * intel_modeset_update_staged_output_state
11928 *
11929 * Updates the staged output configuration state, e.g. after we've read out the
11930 * current hw state.
11931 */
11932 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11933 {
11934 struct intel_crtc *crtc;
11935 struct intel_encoder *encoder;
11936 struct intel_connector *connector;
11937
11938 for_each_intel_connector(dev, connector) {
11939 connector->new_encoder =
11940 to_intel_encoder(connector->base.encoder);
11941 }
11942
11943 for_each_intel_encoder(dev, encoder) {
11944 encoder->new_crtc =
11945 to_intel_crtc(encoder->base.crtc);
11946 }
11947
11948 for_each_intel_crtc(dev, crtc) {
11949 crtc->new_enabled = crtc->base.state->enable;
11950 }
11951 }
11952
11953 /* Transitional helper to copy current connector/encoder state to
11954 * connector->state. This is needed so that code that is partially
11955 * converted to atomic does the right thing.
11956 */
11957 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11958 {
11959 struct intel_connector *connector;
11960
11961 for_each_intel_connector(dev, connector) {
11962 if (connector->base.encoder) {
11963 connector->base.state->best_encoder =
11964 connector->base.encoder;
11965 connector->base.state->crtc =
11966 connector->base.encoder->crtc;
11967 } else {
11968 connector->base.state->best_encoder = NULL;
11969 connector->base.state->crtc = NULL;
11970 }
11971 }
11972 }
11973
11974 static void
11975 connected_sink_compute_bpp(struct intel_connector *connector,
11976 struct intel_crtc_state *pipe_config)
11977 {
11978 int bpp = pipe_config->pipe_bpp;
11979
11980 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11981 connector->base.base.id,
11982 connector->base.name);
11983
11984 /* Don't use an invalid EDID bpc value */
11985 if (connector->base.display_info.bpc &&
11986 connector->base.display_info.bpc * 3 < bpp) {
11987 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11988 bpp, connector->base.display_info.bpc*3);
11989 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11990 }
11991
11992 /* Clamp bpp to 8 on screens without EDID 1.4 */
11993 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11994 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11995 bpp);
11996 pipe_config->pipe_bpp = 24;
11997 }
11998 }
11999
12000 static int
12001 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12002 struct intel_crtc_state *pipe_config)
12003 {
12004 struct drm_device *dev = crtc->base.dev;
12005 struct drm_atomic_state *state;
12006 struct drm_connector *connector;
12007 struct drm_connector_state *connector_state;
12008 int bpp, i;
12009
12010 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
12011 bpp = 10*3;
12012 else if (INTEL_INFO(dev)->gen >= 5)
12013 bpp = 12*3;
12014 else
12015 bpp = 8*3;
12016
12017
12018 pipe_config->pipe_bpp = bpp;
12019
12020 state = pipe_config->base.state;
12021
12022 /* Clamp display bpp to EDID value */
12023 for_each_connector_in_state(state, connector, connector_state, i) {
12024 if (connector_state->crtc != &crtc->base)
12025 continue;
12026
12027 connected_sink_compute_bpp(to_intel_connector(connector),
12028 pipe_config);
12029 }
12030
12031 return bpp;
12032 }
12033
12034 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12035 {
12036 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12037 "type: 0x%x flags: 0x%x\n",
12038 mode->crtc_clock,
12039 mode->crtc_hdisplay, mode->crtc_hsync_start,
12040 mode->crtc_hsync_end, mode->crtc_htotal,
12041 mode->crtc_vdisplay, mode->crtc_vsync_start,
12042 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12043 }
12044
12045 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12046 struct intel_crtc_state *pipe_config,
12047 const char *context)
12048 {
12049 struct drm_device *dev = crtc->base.dev;
12050 struct drm_plane *plane;
12051 struct intel_plane *intel_plane;
12052 struct intel_plane_state *state;
12053 struct drm_framebuffer *fb;
12054
12055 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12056 context, pipe_config, pipe_name(crtc->pipe));
12057
12058 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12059 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12060 pipe_config->pipe_bpp, pipe_config->dither);
12061 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12062 pipe_config->has_pch_encoder,
12063 pipe_config->fdi_lanes,
12064 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12065 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12066 pipe_config->fdi_m_n.tu);
12067 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12068 pipe_config->has_dp_encoder,
12069 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12070 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12071 pipe_config->dp_m_n.tu);
12072
12073 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12074 pipe_config->has_dp_encoder,
12075 pipe_config->dp_m2_n2.gmch_m,
12076 pipe_config->dp_m2_n2.gmch_n,
12077 pipe_config->dp_m2_n2.link_m,
12078 pipe_config->dp_m2_n2.link_n,
12079 pipe_config->dp_m2_n2.tu);
12080
12081 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12082 pipe_config->has_audio,
12083 pipe_config->has_infoframe);
12084
12085 DRM_DEBUG_KMS("requested mode:\n");
12086 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12087 DRM_DEBUG_KMS("adjusted mode:\n");
12088 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12089 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12090 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12091 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12092 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12093 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12094 crtc->num_scalers,
12095 pipe_config->scaler_state.scaler_users,
12096 pipe_config->scaler_state.scaler_id);
12097 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12098 pipe_config->gmch_pfit.control,
12099 pipe_config->gmch_pfit.pgm_ratios,
12100 pipe_config->gmch_pfit.lvds_border_bits);
12101 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12102 pipe_config->pch_pfit.pos,
12103 pipe_config->pch_pfit.size,
12104 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12105 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12106 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12107
12108 if (IS_BROXTON(dev)) {
12109 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
12110 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12111 "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
12112 pipe_config->ddi_pll_sel,
12113 pipe_config->dpll_hw_state.ebb0,
12114 pipe_config->dpll_hw_state.pll0,
12115 pipe_config->dpll_hw_state.pll1,
12116 pipe_config->dpll_hw_state.pll2,
12117 pipe_config->dpll_hw_state.pll3,
12118 pipe_config->dpll_hw_state.pll6,
12119 pipe_config->dpll_hw_state.pll8,
12120 pipe_config->dpll_hw_state.pcsdw12);
12121 } else if (IS_SKYLAKE(dev)) {
12122 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12123 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12124 pipe_config->ddi_pll_sel,
12125 pipe_config->dpll_hw_state.ctrl1,
12126 pipe_config->dpll_hw_state.cfgcr1,
12127 pipe_config->dpll_hw_state.cfgcr2);
12128 } else if (HAS_DDI(dev)) {
12129 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12130 pipe_config->ddi_pll_sel,
12131 pipe_config->dpll_hw_state.wrpll);
12132 } else {
12133 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12134 "fp0: 0x%x, fp1: 0x%x\n",
12135 pipe_config->dpll_hw_state.dpll,
12136 pipe_config->dpll_hw_state.dpll_md,
12137 pipe_config->dpll_hw_state.fp0,
12138 pipe_config->dpll_hw_state.fp1);
12139 }
12140
12141 DRM_DEBUG_KMS("planes on this crtc\n");
12142 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12143 intel_plane = to_intel_plane(plane);
12144 if (intel_plane->pipe != crtc->pipe)
12145 continue;
12146
12147 state = to_intel_plane_state(plane->state);
12148 fb = state->base.fb;
12149 if (!fb) {
12150 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12151 "disabled, scaler_id = %d\n",
12152 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12153 plane->base.id, intel_plane->pipe,
12154 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12155 drm_plane_index(plane), state->scaler_id);
12156 continue;
12157 }
12158
12159 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12160 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12161 plane->base.id, intel_plane->pipe,
12162 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12163 drm_plane_index(plane));
12164 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12165 fb->base.id, fb->width, fb->height, fb->pixel_format);
12166 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12167 state->scaler_id,
12168 state->src.x1 >> 16, state->src.y1 >> 16,
12169 drm_rect_width(&state->src) >> 16,
12170 drm_rect_height(&state->src) >> 16,
12171 state->dst.x1, state->dst.y1,
12172 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12173 }
12174 }
12175
12176 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12177 {
12178 struct drm_device *dev = state->dev;
12179 struct intel_encoder *encoder;
12180 struct drm_connector *connector;
12181 struct drm_connector_state *connector_state;
12182 unsigned int used_ports = 0;
12183 int i;
12184
12185 /*
12186 * Walk the connector list instead of the encoder
12187 * list to detect the problem on ddi platforms
12188 * where there's just one encoder per digital port.
12189 */
12190 for_each_connector_in_state(state, connector, connector_state, i) {
12191 if (!connector_state->best_encoder)
12192 continue;
12193
12194 encoder = to_intel_encoder(connector_state->best_encoder);
12195
12196 WARN_ON(!connector_state->crtc);
12197
12198 switch (encoder->type) {
12199 unsigned int port_mask;
12200 case INTEL_OUTPUT_UNKNOWN:
12201 if (WARN_ON(!HAS_DDI(dev)))
12202 break;
12203 case INTEL_OUTPUT_DISPLAYPORT:
12204 case INTEL_OUTPUT_HDMI:
12205 case INTEL_OUTPUT_EDP:
12206 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12207
12208 /* the same port mustn't appear more than once */
12209 if (used_ports & port_mask)
12210 return false;
12211
12212 used_ports |= port_mask;
12213 default:
12214 break;
12215 }
12216 }
12217
12218 return true;
12219 }
12220
12221 static void
12222 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12223 {
12224 struct drm_crtc_state tmp_state;
12225 struct intel_crtc_scaler_state scaler_state;
12226 struct intel_dpll_hw_state dpll_hw_state;
12227 enum intel_dpll_id shared_dpll;
12228 uint32_t ddi_pll_sel;
12229
12230 /* FIXME: before the switch to atomic started, a new pipe_config was
12231 * kzalloc'd. Code that depends on any field being zero should be
12232 * fixed, so that the crtc_state can be safely duplicated. For now,
12233 * only fields that are know to not cause problems are preserved. */
12234
12235 tmp_state = crtc_state->base;
12236 scaler_state = crtc_state->scaler_state;
12237 shared_dpll = crtc_state->shared_dpll;
12238 dpll_hw_state = crtc_state->dpll_hw_state;
12239 ddi_pll_sel = crtc_state->ddi_pll_sel;
12240
12241 memset(crtc_state, 0, sizeof *crtc_state);
12242
12243 crtc_state->base = tmp_state;
12244 crtc_state->scaler_state = scaler_state;
12245 crtc_state->shared_dpll = shared_dpll;
12246 crtc_state->dpll_hw_state = dpll_hw_state;
12247 crtc_state->ddi_pll_sel = ddi_pll_sel;
12248 }
12249
12250 static int
12251 intel_modeset_pipe_config(struct drm_crtc *crtc,
12252 struct intel_crtc_state *pipe_config)
12253 {
12254 struct drm_atomic_state *state = pipe_config->base.state;
12255 struct intel_encoder *encoder;
12256 struct drm_connector *connector;
12257 struct drm_connector_state *connector_state;
12258 int base_bpp, ret = -EINVAL;
12259 int i;
12260 bool retry = true;
12261
12262 clear_intel_crtc_state(pipe_config);
12263
12264 pipe_config->cpu_transcoder =
12265 (enum transcoder) to_intel_crtc(crtc)->pipe;
12266
12267 /*
12268 * Sanitize sync polarity flags based on requested ones. If neither
12269 * positive or negative polarity is requested, treat this as meaning
12270 * negative polarity.
12271 */
12272 if (!(pipe_config->base.adjusted_mode.flags &
12273 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12274 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12275
12276 if (!(pipe_config->base.adjusted_mode.flags &
12277 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12278 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12279
12280 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12281 * plane pixel format and any sink constraints into account. Returns the
12282 * source plane bpp so that dithering can be selected on mismatches
12283 * after encoders and crtc also have had their say. */
12284 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12285 pipe_config);
12286 if (base_bpp < 0)
12287 goto fail;
12288
12289 /*
12290 * Determine the real pipe dimensions. Note that stereo modes can
12291 * increase the actual pipe size due to the frame doubling and
12292 * insertion of additional space for blanks between the frame. This
12293 * is stored in the crtc timings. We use the requested mode to do this
12294 * computation to clearly distinguish it from the adjusted mode, which
12295 * can be changed by the connectors in the below retry loop.
12296 */
12297 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12298 &pipe_config->pipe_src_w,
12299 &pipe_config->pipe_src_h);
12300
12301 encoder_retry:
12302 /* Ensure the port clock defaults are reset when retrying. */
12303 pipe_config->port_clock = 0;
12304 pipe_config->pixel_multiplier = 1;
12305
12306 /* Fill in default crtc timings, allow encoders to overwrite them. */
12307 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12308 CRTC_STEREO_DOUBLE);
12309
12310 /* Pass our mode to the connectors and the CRTC to give them a chance to
12311 * adjust it according to limitations or connector properties, and also
12312 * a chance to reject the mode entirely.
12313 */
12314 for_each_connector_in_state(state, connector, connector_state, i) {
12315 if (connector_state->crtc != crtc)
12316 continue;
12317
12318 encoder = to_intel_encoder(connector_state->best_encoder);
12319
12320 if (!(encoder->compute_config(encoder, pipe_config))) {
12321 DRM_DEBUG_KMS("Encoder config failure\n");
12322 goto fail;
12323 }
12324 }
12325
12326 /* Set default port clock if not overwritten by the encoder. Needs to be
12327 * done afterwards in case the encoder adjusts the mode. */
12328 if (!pipe_config->port_clock)
12329 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12330 * pipe_config->pixel_multiplier;
12331
12332 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12333 if (ret < 0) {
12334 DRM_DEBUG_KMS("CRTC fixup failed\n");
12335 goto fail;
12336 }
12337
12338 if (ret == RETRY) {
12339 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12340 ret = -EINVAL;
12341 goto fail;
12342 }
12343
12344 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12345 retry = false;
12346 goto encoder_retry;
12347 }
12348
12349 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12350 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12351 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12352
12353 /* Check if we need to force a modeset */
12354 if (pipe_config->has_audio !=
12355 to_intel_crtc_state(crtc->state)->has_audio) {
12356 pipe_config->base.mode_changed = true;
12357 ret = drm_atomic_add_affected_planes(state, crtc);
12358 }
12359
12360 /*
12361 * Note we have an issue here with infoframes: current code
12362 * only updates them on the full mode set path per hw
12363 * requirements. So here we should be checking for any
12364 * required changes and forcing a mode set.
12365 */
12366 fail:
12367 return ret;
12368 }
12369
12370 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12371 {
12372 struct drm_encoder *encoder;
12373 struct drm_device *dev = crtc->dev;
12374
12375 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12376 if (encoder->crtc == crtc)
12377 return true;
12378
12379 return false;
12380 }
12381
12382 static void
12383 intel_modeset_update_state(struct drm_atomic_state *state)
12384 {
12385 struct drm_device *dev = state->dev;
12386 struct intel_encoder *intel_encoder;
12387 struct drm_crtc *crtc;
12388 struct drm_crtc_state *crtc_state;
12389 struct drm_connector *connector;
12390
12391 intel_shared_dpll_commit(state);
12392
12393 for_each_intel_encoder(dev, intel_encoder) {
12394 if (!intel_encoder->base.crtc)
12395 continue;
12396
12397 crtc = intel_encoder->base.crtc;
12398 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12399 if (!crtc_state || !needs_modeset(crtc->state))
12400 continue;
12401
12402 intel_encoder->connectors_active = false;
12403 }
12404
12405 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12406 intel_modeset_update_staged_output_state(state->dev);
12407
12408 /* Double check state. */
12409 for_each_crtc(dev, crtc) {
12410 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12411
12412 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12413
12414 /* Update hwmode for vblank functions */
12415 if (crtc->state->active)
12416 crtc->hwmode = crtc->state->adjusted_mode;
12417 else
12418 crtc->hwmode.crtc_clock = 0;
12419 }
12420
12421 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12422 if (!connector->encoder || !connector->encoder->crtc)
12423 continue;
12424
12425 crtc = connector->encoder->crtc;
12426 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12427 if (!crtc_state || !needs_modeset(crtc->state))
12428 continue;
12429
12430 if (crtc->state->active) {
12431 struct drm_property *dpms_property =
12432 dev->mode_config.dpms_property;
12433
12434 connector->dpms = DRM_MODE_DPMS_ON;
12435 drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON);
12436
12437 intel_encoder = to_intel_encoder(connector->encoder);
12438 intel_encoder->connectors_active = true;
12439 } else
12440 connector->dpms = DRM_MODE_DPMS_OFF;
12441 }
12442 }
12443
12444 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12445 {
12446 int diff;
12447
12448 if (clock1 == clock2)
12449 return true;
12450
12451 if (!clock1 || !clock2)
12452 return false;
12453
12454 diff = abs(clock1 - clock2);
12455
12456 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12457 return true;
12458
12459 return false;
12460 }
12461
12462 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12463 list_for_each_entry((intel_crtc), \
12464 &(dev)->mode_config.crtc_list, \
12465 base.head) \
12466 if (mask & (1 <<(intel_crtc)->pipe))
12467
12468 static bool
12469 intel_pipe_config_compare(struct drm_device *dev,
12470 struct intel_crtc_state *current_config,
12471 struct intel_crtc_state *pipe_config)
12472 {
12473 #define PIPE_CONF_CHECK_X(name) \
12474 if (current_config->name != pipe_config->name) { \
12475 DRM_ERROR("mismatch in " #name " " \
12476 "(expected 0x%08x, found 0x%08x)\n", \
12477 current_config->name, \
12478 pipe_config->name); \
12479 return false; \
12480 }
12481
12482 #define PIPE_CONF_CHECK_I(name) \
12483 if (current_config->name != pipe_config->name) { \
12484 DRM_ERROR("mismatch in " #name " " \
12485 "(expected %i, found %i)\n", \
12486 current_config->name, \
12487 pipe_config->name); \
12488 return false; \
12489 }
12490
12491 /* This is required for BDW+ where there is only one set of registers for
12492 * switching between high and low RR.
12493 * This macro can be used whenever a comparison has to be made between one
12494 * hw state and multiple sw state variables.
12495 */
12496 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12497 if ((current_config->name != pipe_config->name) && \
12498 (current_config->alt_name != pipe_config->name)) { \
12499 DRM_ERROR("mismatch in " #name " " \
12500 "(expected %i or %i, found %i)\n", \
12501 current_config->name, \
12502 current_config->alt_name, \
12503 pipe_config->name); \
12504 return false; \
12505 }
12506
12507 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12508 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12509 DRM_ERROR("mismatch in " #name "(" #mask ") " \
12510 "(expected %i, found %i)\n", \
12511 current_config->name & (mask), \
12512 pipe_config->name & (mask)); \
12513 return false; \
12514 }
12515
12516 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12517 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12518 DRM_ERROR("mismatch in " #name " " \
12519 "(expected %i, found %i)\n", \
12520 current_config->name, \
12521 pipe_config->name); \
12522 return false; \
12523 }
12524
12525 #define PIPE_CONF_QUIRK(quirk) \
12526 ((current_config->quirks | pipe_config->quirks) & (quirk))
12527
12528 PIPE_CONF_CHECK_I(cpu_transcoder);
12529
12530 PIPE_CONF_CHECK_I(has_pch_encoder);
12531 PIPE_CONF_CHECK_I(fdi_lanes);
12532 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12533 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12534 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12535 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12536 PIPE_CONF_CHECK_I(fdi_m_n.tu);
12537
12538 PIPE_CONF_CHECK_I(has_dp_encoder);
12539
12540 if (INTEL_INFO(dev)->gen < 8) {
12541 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12542 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12543 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12544 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12545 PIPE_CONF_CHECK_I(dp_m_n.tu);
12546
12547 if (current_config->has_drrs) {
12548 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12549 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12550 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12551 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12552 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12553 }
12554 } else {
12555 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12556 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12557 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12558 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12559 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12560 }
12561
12562 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12563 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12564 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12565 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12566 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12567 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12568
12569 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12570 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12571 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12572 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12573 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12574 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12575
12576 PIPE_CONF_CHECK_I(pixel_multiplier);
12577 PIPE_CONF_CHECK_I(has_hdmi_sink);
12578 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12579 IS_VALLEYVIEW(dev))
12580 PIPE_CONF_CHECK_I(limited_color_range);
12581 PIPE_CONF_CHECK_I(has_infoframe);
12582
12583 PIPE_CONF_CHECK_I(has_audio);
12584
12585 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12586 DRM_MODE_FLAG_INTERLACE);
12587
12588 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12589 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12590 DRM_MODE_FLAG_PHSYNC);
12591 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12592 DRM_MODE_FLAG_NHSYNC);
12593 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12594 DRM_MODE_FLAG_PVSYNC);
12595 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12596 DRM_MODE_FLAG_NVSYNC);
12597 }
12598
12599 PIPE_CONF_CHECK_I(pipe_src_w);
12600 PIPE_CONF_CHECK_I(pipe_src_h);
12601
12602 /*
12603 * FIXME: BIOS likes to set up a cloned config with lvds+external
12604 * screen. Since we don't yet re-compute the pipe config when moving
12605 * just the lvds port away to another pipe the sw tracking won't match.
12606 *
12607 * Proper atomic modesets with recomputed global state will fix this.
12608 * Until then just don't check gmch state for inherited modes.
12609 */
12610 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12611 PIPE_CONF_CHECK_I(gmch_pfit.control);
12612 /* pfit ratios are autocomputed by the hw on gen4+ */
12613 if (INTEL_INFO(dev)->gen < 4)
12614 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12615 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12616 }
12617
12618 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12619 if (current_config->pch_pfit.enabled) {
12620 PIPE_CONF_CHECK_I(pch_pfit.pos);
12621 PIPE_CONF_CHECK_I(pch_pfit.size);
12622 }
12623
12624 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12625
12626 /* BDW+ don't expose a synchronous way to read the state */
12627 if (IS_HASWELL(dev))
12628 PIPE_CONF_CHECK_I(ips_enabled);
12629
12630 PIPE_CONF_CHECK_I(double_wide);
12631
12632 PIPE_CONF_CHECK_X(ddi_pll_sel);
12633
12634 PIPE_CONF_CHECK_I(shared_dpll);
12635 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12636 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12637 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12638 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12639 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12640 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12641 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12642 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12643
12644 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12645 PIPE_CONF_CHECK_I(pipe_bpp);
12646
12647 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12648 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12649
12650 #undef PIPE_CONF_CHECK_X
12651 #undef PIPE_CONF_CHECK_I
12652 #undef PIPE_CONF_CHECK_I_ALT
12653 #undef PIPE_CONF_CHECK_FLAGS
12654 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12655 #undef PIPE_CONF_QUIRK
12656
12657 return true;
12658 }
12659
12660 static void check_wm_state(struct drm_device *dev)
12661 {
12662 struct drm_i915_private *dev_priv = dev->dev_private;
12663 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12664 struct intel_crtc *intel_crtc;
12665 int plane;
12666
12667 if (INTEL_INFO(dev)->gen < 9)
12668 return;
12669
12670 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12671 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12672
12673 for_each_intel_crtc(dev, intel_crtc) {
12674 struct skl_ddb_entry *hw_entry, *sw_entry;
12675 const enum pipe pipe = intel_crtc->pipe;
12676
12677 if (!intel_crtc->active)
12678 continue;
12679
12680 /* planes */
12681 for_each_plane(dev_priv, pipe, plane) {
12682 hw_entry = &hw_ddb.plane[pipe][plane];
12683 sw_entry = &sw_ddb->plane[pipe][plane];
12684
12685 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12686 continue;
12687
12688 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12689 "(expected (%u,%u), found (%u,%u))\n",
12690 pipe_name(pipe), plane + 1,
12691 sw_entry->start, sw_entry->end,
12692 hw_entry->start, hw_entry->end);
12693 }
12694
12695 /* cursor */
12696 hw_entry = &hw_ddb.cursor[pipe];
12697 sw_entry = &sw_ddb->cursor[pipe];
12698
12699 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12700 continue;
12701
12702 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12703 "(expected (%u,%u), found (%u,%u))\n",
12704 pipe_name(pipe),
12705 sw_entry->start, sw_entry->end,
12706 hw_entry->start, hw_entry->end);
12707 }
12708 }
12709
12710 static void
12711 check_connector_state(struct drm_device *dev)
12712 {
12713 struct intel_connector *connector;
12714
12715 for_each_intel_connector(dev, connector) {
12716 /* This also checks the encoder/connector hw state with the
12717 * ->get_hw_state callbacks. */
12718 intel_connector_check_state(connector);
12719
12720 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12721 "connector's staged encoder doesn't match current encoder\n");
12722 }
12723 }
12724
12725 static void
12726 check_encoder_state(struct drm_device *dev)
12727 {
12728 struct intel_encoder *encoder;
12729 struct intel_connector *connector;
12730
12731 for_each_intel_encoder(dev, encoder) {
12732 bool enabled = false;
12733 bool active = false;
12734 enum pipe pipe, tracked_pipe;
12735
12736 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12737 encoder->base.base.id,
12738 encoder->base.name);
12739
12740 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12741 "encoder's stage crtc doesn't match current crtc\n");
12742 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12743 "encoder's active_connectors set, but no crtc\n");
12744
12745 for_each_intel_connector(dev, connector) {
12746 if (connector->base.encoder != &encoder->base)
12747 continue;
12748 enabled = true;
12749 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12750 active = true;
12751 }
12752 /*
12753 * for MST connectors if we unplug the connector is gone
12754 * away but the encoder is still connected to a crtc
12755 * until a modeset happens in response to the hotplug.
12756 */
12757 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12758 continue;
12759
12760 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12761 "encoder's enabled state mismatch "
12762 "(expected %i, found %i)\n",
12763 !!encoder->base.crtc, enabled);
12764 I915_STATE_WARN(active && !encoder->base.crtc,
12765 "active encoder with no crtc\n");
12766
12767 I915_STATE_WARN(encoder->connectors_active != active,
12768 "encoder's computed active state doesn't match tracked active state "
12769 "(expected %i, found %i)\n", active, encoder->connectors_active);
12770
12771 active = encoder->get_hw_state(encoder, &pipe);
12772 I915_STATE_WARN(active != encoder->connectors_active,
12773 "encoder's hw state doesn't match sw tracking "
12774 "(expected %i, found %i)\n",
12775 encoder->connectors_active, active);
12776
12777 if (!encoder->base.crtc)
12778 continue;
12779
12780 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12781 I915_STATE_WARN(active && pipe != tracked_pipe,
12782 "active encoder's pipe doesn't match"
12783 "(expected %i, found %i)\n",
12784 tracked_pipe, pipe);
12785
12786 }
12787 }
12788
12789 static void
12790 check_crtc_state(struct drm_device *dev)
12791 {
12792 struct drm_i915_private *dev_priv = dev->dev_private;
12793 struct intel_crtc *crtc;
12794 struct intel_encoder *encoder;
12795 struct intel_crtc_state pipe_config;
12796
12797 for_each_intel_crtc(dev, crtc) {
12798 bool enabled = false;
12799 bool active = false;
12800
12801 memset(&pipe_config, 0, sizeof(pipe_config));
12802
12803 DRM_DEBUG_KMS("[CRTC:%d]\n",
12804 crtc->base.base.id);
12805
12806 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12807 "active crtc, but not enabled in sw tracking\n");
12808
12809 for_each_intel_encoder(dev, encoder) {
12810 if (encoder->base.crtc != &crtc->base)
12811 continue;
12812 enabled = true;
12813 if (encoder->connectors_active)
12814 active = true;
12815 }
12816
12817 I915_STATE_WARN(active != crtc->active,
12818 "crtc's computed active state doesn't match tracked active state "
12819 "(expected %i, found %i)\n", active, crtc->active);
12820 I915_STATE_WARN(enabled != crtc->base.state->enable,
12821 "crtc's computed enabled state doesn't match tracked enabled state "
12822 "(expected %i, found %i)\n", enabled,
12823 crtc->base.state->enable);
12824
12825 active = dev_priv->display.get_pipe_config(crtc,
12826 &pipe_config);
12827
12828 /* hw state is inconsistent with the pipe quirk */
12829 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12830 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12831 active = crtc->active;
12832
12833 for_each_intel_encoder(dev, encoder) {
12834 enum pipe pipe;
12835 if (encoder->base.crtc != &crtc->base)
12836 continue;
12837 if (encoder->get_hw_state(encoder, &pipe))
12838 encoder->get_config(encoder, &pipe_config);
12839 }
12840
12841 I915_STATE_WARN(crtc->active != active,
12842 "crtc active state doesn't match with hw state "
12843 "(expected %i, found %i)\n", crtc->active, active);
12844
12845 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12846 "transitional active state does not match atomic hw state "
12847 "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12848
12849 if (active &&
12850 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12851 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12852 intel_dump_pipe_config(crtc, &pipe_config,
12853 "[hw state]");
12854 intel_dump_pipe_config(crtc, crtc->config,
12855 "[sw state]");
12856 }
12857 }
12858 }
12859
12860 static void
12861 check_shared_dpll_state(struct drm_device *dev)
12862 {
12863 struct drm_i915_private *dev_priv = dev->dev_private;
12864 struct intel_crtc *crtc;
12865 struct intel_dpll_hw_state dpll_hw_state;
12866 int i;
12867
12868 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12869 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12870 int enabled_crtcs = 0, active_crtcs = 0;
12871 bool active;
12872
12873 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12874
12875 DRM_DEBUG_KMS("%s\n", pll->name);
12876
12877 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12878
12879 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12880 "more active pll users than references: %i vs %i\n",
12881 pll->active, hweight32(pll->config.crtc_mask));
12882 I915_STATE_WARN(pll->active && !pll->on,
12883 "pll in active use but not on in sw tracking\n");
12884 I915_STATE_WARN(pll->on && !pll->active,
12885 "pll in on but not on in use in sw tracking\n");
12886 I915_STATE_WARN(pll->on != active,
12887 "pll on state mismatch (expected %i, found %i)\n",
12888 pll->on, active);
12889
12890 for_each_intel_crtc(dev, crtc) {
12891 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12892 enabled_crtcs++;
12893 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12894 active_crtcs++;
12895 }
12896 I915_STATE_WARN(pll->active != active_crtcs,
12897 "pll active crtcs mismatch (expected %i, found %i)\n",
12898 pll->active, active_crtcs);
12899 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12900 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12901 hweight32(pll->config.crtc_mask), enabled_crtcs);
12902
12903 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12904 sizeof(dpll_hw_state)),
12905 "pll hw state mismatch\n");
12906 }
12907 }
12908
12909 void
12910 intel_modeset_check_state(struct drm_device *dev)
12911 {
12912 check_wm_state(dev);
12913 check_connector_state(dev);
12914 check_encoder_state(dev);
12915 check_crtc_state(dev);
12916 check_shared_dpll_state(dev);
12917 }
12918
12919 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12920 int dotclock)
12921 {
12922 /*
12923 * FDI already provided one idea for the dotclock.
12924 * Yell if the encoder disagrees.
12925 */
12926 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12927 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12928 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12929 }
12930
12931 static void update_scanline_offset(struct intel_crtc *crtc)
12932 {
12933 struct drm_device *dev = crtc->base.dev;
12934
12935 /*
12936 * The scanline counter increments at the leading edge of hsync.
12937 *
12938 * On most platforms it starts counting from vtotal-1 on the
12939 * first active line. That means the scanline counter value is
12940 * always one less than what we would expect. Ie. just after
12941 * start of vblank, which also occurs at start of hsync (on the
12942 * last active line), the scanline counter will read vblank_start-1.
12943 *
12944 * On gen2 the scanline counter starts counting from 1 instead
12945 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12946 * to keep the value positive), instead of adding one.
12947 *
12948 * On HSW+ the behaviour of the scanline counter depends on the output
12949 * type. For DP ports it behaves like most other platforms, but on HDMI
12950 * there's an extra 1 line difference. So we need to add two instead of
12951 * one to the value.
12952 */
12953 if (IS_GEN2(dev)) {
12954 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12955 int vtotal;
12956
12957 vtotal = mode->crtc_vtotal;
12958 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12959 vtotal /= 2;
12960
12961 crtc->scanline_offset = vtotal - 1;
12962 } else if (HAS_DDI(dev) &&
12963 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12964 crtc->scanline_offset = 2;
12965 } else
12966 crtc->scanline_offset = 1;
12967 }
12968
12969 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12970 {
12971 struct drm_device *dev = state->dev;
12972 struct drm_i915_private *dev_priv = to_i915(dev);
12973 struct intel_shared_dpll_config *shared_dpll = NULL;
12974 struct intel_crtc *intel_crtc;
12975 struct intel_crtc_state *intel_crtc_state;
12976 struct drm_crtc *crtc;
12977 struct drm_crtc_state *crtc_state;
12978 int i;
12979
12980 if (!dev_priv->display.crtc_compute_clock)
12981 return;
12982
12983 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12984 int dpll;
12985
12986 intel_crtc = to_intel_crtc(crtc);
12987 intel_crtc_state = to_intel_crtc_state(crtc_state);
12988 dpll = intel_crtc_state->shared_dpll;
12989
12990 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12991 continue;
12992
12993 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12994
12995 if (!shared_dpll)
12996 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12997
12998 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12999 }
13000 }
13001
13002 /*
13003 * This implements the workaround described in the "notes" section of the mode
13004 * set sequence documentation. When going from no pipes or single pipe to
13005 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13006 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13007 */
13008 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13009 {
13010 struct drm_crtc_state *crtc_state;
13011 struct intel_crtc *intel_crtc;
13012 struct drm_crtc *crtc;
13013 struct intel_crtc_state *first_crtc_state = NULL;
13014 struct intel_crtc_state *other_crtc_state = NULL;
13015 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13016 int i;
13017
13018 /* look at all crtc's that are going to be enabled in during modeset */
13019 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13020 intel_crtc = to_intel_crtc(crtc);
13021
13022 if (!crtc_state->active || !needs_modeset(crtc_state))
13023 continue;
13024
13025 if (first_crtc_state) {
13026 other_crtc_state = to_intel_crtc_state(crtc_state);
13027 break;
13028 } else {
13029 first_crtc_state = to_intel_crtc_state(crtc_state);
13030 first_pipe = intel_crtc->pipe;
13031 }
13032 }
13033
13034 /* No workaround needed? */
13035 if (!first_crtc_state)
13036 return 0;
13037
13038 /* w/a possibly needed, check how many crtc's are already enabled. */
13039 for_each_intel_crtc(state->dev, intel_crtc) {
13040 struct intel_crtc_state *pipe_config;
13041
13042 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13043 if (IS_ERR(pipe_config))
13044 return PTR_ERR(pipe_config);
13045
13046 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13047
13048 if (!pipe_config->base.active ||
13049 needs_modeset(&pipe_config->base))
13050 continue;
13051
13052 /* 2 or more enabled crtcs means no need for w/a */
13053 if (enabled_pipe != INVALID_PIPE)
13054 return 0;
13055
13056 enabled_pipe = intel_crtc->pipe;
13057 }
13058
13059 if (enabled_pipe != INVALID_PIPE)
13060 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13061 else if (other_crtc_state)
13062 other_crtc_state->hsw_workaround_pipe = first_pipe;
13063
13064 return 0;
13065 }
13066
13067 /* Code that should eventually be part of atomic_check() */
13068 static int intel_modeset_checks(struct drm_atomic_state *state)
13069 {
13070 struct drm_device *dev = state->dev;
13071 int ret;
13072
13073 if (!check_digital_port_conflicts(state)) {
13074 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13075 return -EINVAL;
13076 }
13077
13078 /*
13079 * See if the config requires any additional preparation, e.g.
13080 * to adjust global state with pipes off. We need to do this
13081 * here so we can get the modeset_pipe updated config for the new
13082 * mode set on this crtc. For other crtcs we need to use the
13083 * adjusted_mode bits in the crtc directly.
13084 */
13085 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev) || IS_BROADWELL(dev)) {
13086 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev))
13087 ret = valleyview_modeset_global_pipes(state);
13088 else
13089 ret = broadwell_modeset_global_pipes(state);
13090
13091 if (ret)
13092 return ret;
13093 }
13094
13095 intel_modeset_clear_plls(state);
13096
13097 if (IS_HASWELL(dev))
13098 return haswell_mode_set_planes_workaround(state);
13099
13100 return 0;
13101 }
13102
13103 static int
13104 intel_modeset_compute_config(struct drm_atomic_state *state)
13105 {
13106 struct drm_crtc *crtc;
13107 struct drm_crtc_state *crtc_state;
13108 int ret, i;
13109
13110 ret = drm_atomic_helper_check_modeset(state->dev, state);
13111 if (ret)
13112 return ret;
13113
13114 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13115 if (!crtc_state->enable &&
13116 WARN_ON(crtc_state->active))
13117 crtc_state->active = false;
13118
13119 if (!crtc_state->enable)
13120 continue;
13121
13122 if (!needs_modeset(crtc_state)) {
13123 ret = drm_atomic_add_affected_connectors(state, crtc);
13124 if (ret)
13125 return ret;
13126 }
13127
13128 ret = intel_modeset_pipe_config(crtc,
13129 to_intel_crtc_state(crtc_state));
13130 if (ret)
13131 return ret;
13132
13133 intel_dump_pipe_config(to_intel_crtc(crtc),
13134 to_intel_crtc_state(crtc_state),
13135 "[modeset]");
13136 }
13137
13138 ret = intel_modeset_checks(state);
13139 if (ret)
13140 return ret;
13141
13142 return drm_atomic_helper_check_planes(state->dev, state);
13143 }
13144
13145 static int __intel_set_mode(struct drm_atomic_state *state)
13146 {
13147 struct drm_device *dev = state->dev;
13148 struct drm_i915_private *dev_priv = dev->dev_private;
13149 struct drm_crtc *crtc;
13150 struct drm_crtc_state *crtc_state;
13151 int ret = 0;
13152 int i;
13153
13154 ret = drm_atomic_helper_prepare_planes(dev, state);
13155 if (ret)
13156 return ret;
13157
13158 drm_atomic_helper_swap_state(dev, state);
13159
13160 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13161 if (!needs_modeset(crtc->state) || !crtc_state->active)
13162 continue;
13163
13164 intel_crtc_disable_planes(crtc);
13165 dev_priv->display.crtc_disable(crtc);
13166 }
13167
13168 /* Only after disabling all output pipelines that will be changed can we
13169 * update the the output configuration. */
13170 intel_modeset_update_state(state);
13171
13172 /* The state has been swaped above, so state actually contains the
13173 * old state now. */
13174
13175 modeset_update_crtc_power_domains(state);
13176
13177 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13178 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13179 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13180
13181 if (!needs_modeset(crtc->state) || !crtc->state->active)
13182 continue;
13183
13184 update_scanline_offset(to_intel_crtc(crtc));
13185
13186 dev_priv->display.crtc_enable(crtc);
13187 intel_crtc_enable_planes(crtc);
13188 }
13189
13190 /* FIXME: add subpixel order */
13191
13192 drm_atomic_helper_cleanup_planes(dev, state);
13193
13194 drm_atomic_state_free(state);
13195
13196 return 0;
13197 }
13198
13199 static int intel_set_mode_checked(struct drm_atomic_state *state)
13200 {
13201 struct drm_device *dev = state->dev;
13202 int ret;
13203
13204 ret = __intel_set_mode(state);
13205 if (ret == 0)
13206 intel_modeset_check_state(dev);
13207
13208 return ret;
13209 }
13210
13211 static int intel_set_mode(struct drm_atomic_state *state)
13212 {
13213 int ret;
13214
13215 ret = intel_modeset_compute_config(state);
13216 if (ret)
13217 return ret;
13218
13219 return intel_set_mode_checked(state);
13220 }
13221
13222 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13223 {
13224 struct drm_device *dev = crtc->dev;
13225 struct drm_atomic_state *state;
13226 struct intel_crtc *intel_crtc;
13227 struct intel_encoder *encoder;
13228 struct intel_connector *connector;
13229 struct drm_connector_state *connector_state;
13230 struct intel_crtc_state *crtc_state;
13231 int ret;
13232
13233 state = drm_atomic_state_alloc(dev);
13234 if (!state) {
13235 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
13236 crtc->base.id);
13237 return;
13238 }
13239
13240 state->acquire_ctx = dev->mode_config.acquire_ctx;
13241
13242 /* The force restore path in the HW readout code relies on the staged
13243 * config still keeping the user requested config while the actual
13244 * state has been overwritten by the configuration read from HW. We
13245 * need to copy the staged config to the atomic state, otherwise the
13246 * mode set will just reapply the state the HW is already in. */
13247 for_each_intel_encoder(dev, encoder) {
13248 if (&encoder->new_crtc->base != crtc)
13249 continue;
13250
13251 for_each_intel_connector(dev, connector) {
13252 if (connector->new_encoder != encoder)
13253 continue;
13254
13255 connector_state = drm_atomic_get_connector_state(state, &connector->base);
13256 if (IS_ERR(connector_state)) {
13257 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
13258 connector->base.base.id,
13259 connector->base.name,
13260 PTR_ERR(connector_state));
13261 continue;
13262 }
13263
13264 connector_state->crtc = crtc;
13265 connector_state->best_encoder = &encoder->base;
13266 }
13267 }
13268
13269 for_each_intel_crtc(dev, intel_crtc) {
13270 if (intel_crtc->new_enabled == intel_crtc->base.enabled)
13271 continue;
13272
13273 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
13274 if (IS_ERR(crtc_state)) {
13275 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
13276 intel_crtc->base.base.id,
13277 PTR_ERR(crtc_state));
13278 continue;
13279 }
13280
13281 crtc_state->base.active = crtc_state->base.enable =
13282 intel_crtc->new_enabled;
13283
13284 if (&intel_crtc->base == crtc)
13285 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
13286 }
13287
13288 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
13289 crtc->primary->fb, crtc->x, crtc->y);
13290
13291 ret = intel_set_mode(state);
13292 if (ret)
13293 drm_atomic_state_free(state);
13294 }
13295
13296 #undef for_each_intel_crtc_masked
13297
13298 static bool intel_connector_in_mode_set(struct intel_connector *connector,
13299 struct drm_mode_set *set)
13300 {
13301 int ro;
13302
13303 for (ro = 0; ro < set->num_connectors; ro++)
13304 if (set->connectors[ro] == &connector->base)
13305 return true;
13306
13307 return false;
13308 }
13309
13310 static int
13311 intel_modeset_stage_output_state(struct drm_device *dev,
13312 struct drm_mode_set *set,
13313 struct drm_atomic_state *state)
13314 {
13315 struct intel_connector *connector;
13316 struct drm_connector *drm_connector;
13317 struct drm_connector_state *connector_state;
13318 struct drm_crtc *crtc;
13319 struct drm_crtc_state *crtc_state;
13320 int i, ret;
13321
13322 /* The upper layers ensure that we either disable a crtc or have a list
13323 * of connectors. For paranoia, double-check this. */
13324 WARN_ON(!set->fb && (set->num_connectors != 0));
13325 WARN_ON(set->fb && (set->num_connectors == 0));
13326
13327 for_each_intel_connector(dev, connector) {
13328 bool in_mode_set = intel_connector_in_mode_set(connector, set);
13329
13330 if (!in_mode_set && connector->base.state->crtc != set->crtc)
13331 continue;
13332
13333 connector_state =
13334 drm_atomic_get_connector_state(state, &connector->base);
13335 if (IS_ERR(connector_state))
13336 return PTR_ERR(connector_state);
13337
13338 if (in_mode_set) {
13339 int pipe = to_intel_crtc(set->crtc)->pipe;
13340 connector_state->best_encoder =
13341 &intel_find_encoder(connector, pipe)->base;
13342 }
13343
13344 if (connector->base.state->crtc != set->crtc)
13345 continue;
13346
13347 /* If we disable the crtc, disable all its connectors. Also, if
13348 * the connector is on the changing crtc but not on the new
13349 * connector list, disable it. */
13350 if (!set->fb || !in_mode_set) {
13351 connector_state->best_encoder = NULL;
13352
13353 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
13354 connector->base.base.id,
13355 connector->base.name);
13356 }
13357 }
13358 /* connector->new_encoder is now updated for all connectors. */
13359
13360 for_each_connector_in_state(state, drm_connector, connector_state, i) {
13361 connector = to_intel_connector(drm_connector);
13362
13363 if (!connector_state->best_encoder) {
13364 ret = drm_atomic_set_crtc_for_connector(connector_state,
13365 NULL);
13366 if (ret)
13367 return ret;
13368
13369 continue;
13370 }
13371
13372 if (intel_connector_in_mode_set(connector, set)) {
13373 struct drm_crtc *crtc = connector->base.state->crtc;
13374
13375 /* If this connector was in a previous crtc, add it
13376 * to the state. We might need to disable it. */
13377 if (crtc) {
13378 crtc_state =
13379 drm_atomic_get_crtc_state(state, crtc);
13380 if (IS_ERR(crtc_state))
13381 return PTR_ERR(crtc_state);
13382 }
13383
13384 ret = drm_atomic_set_crtc_for_connector(connector_state,
13385 set->crtc);
13386 if (ret)
13387 return ret;
13388 }
13389
13390 /* Make sure the new CRTC will work with the encoder */
13391 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
13392 connector_state->crtc)) {
13393 return -EINVAL;
13394 }
13395
13396 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
13397 connector->base.base.id,
13398 connector->base.name,
13399 connector_state->crtc->base.id);
13400
13401 if (connector_state->best_encoder != &connector->encoder->base)
13402 connector->encoder =
13403 to_intel_encoder(connector_state->best_encoder);
13404 }
13405
13406 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13407 bool has_connectors;
13408
13409 ret = drm_atomic_add_affected_connectors(state, crtc);
13410 if (ret)
13411 return ret;
13412
13413 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
13414 if (has_connectors != crtc_state->enable)
13415 crtc_state->enable =
13416 crtc_state->active = has_connectors;
13417 }
13418
13419 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
13420 set->fb, set->x, set->y);
13421 if (ret)
13422 return ret;
13423
13424 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
13425 if (IS_ERR(crtc_state))
13426 return PTR_ERR(crtc_state);
13427
13428 ret = drm_atomic_set_mode_for_crtc(crtc_state, set->mode);
13429 if (ret)
13430 return ret;
13431
13432 if (set->num_connectors)
13433 crtc_state->active = true;
13434
13435 return 0;
13436 }
13437
13438 static int intel_crtc_set_config(struct drm_mode_set *set)
13439 {
13440 struct drm_device *dev;
13441 struct drm_atomic_state *state = NULL;
13442 int ret;
13443
13444 BUG_ON(!set);
13445 BUG_ON(!set->crtc);
13446 BUG_ON(!set->crtc->helper_private);
13447
13448 /* Enforce sane interface api - has been abused by the fb helper. */
13449 BUG_ON(!set->mode && set->fb);
13450 BUG_ON(set->fb && set->num_connectors == 0);
13451
13452 if (set->fb) {
13453 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
13454 set->crtc->base.id, set->fb->base.id,
13455 (int)set->num_connectors, set->x, set->y);
13456 } else {
13457 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
13458 }
13459
13460 dev = set->crtc->dev;
13461
13462 state = drm_atomic_state_alloc(dev);
13463 if (!state)
13464 return -ENOMEM;
13465
13466 state->acquire_ctx = dev->mode_config.acquire_ctx;
13467
13468 ret = intel_modeset_stage_output_state(dev, set, state);
13469 if (ret)
13470 goto out;
13471
13472 ret = intel_modeset_compute_config(state);
13473 if (ret)
13474 goto out;
13475
13476 intel_update_pipe_size(to_intel_crtc(set->crtc));
13477
13478 ret = intel_set_mode_checked(state);
13479 if (ret) {
13480 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
13481 set->crtc->base.id, ret);
13482 }
13483
13484 out:
13485 if (ret)
13486 drm_atomic_state_free(state);
13487 return ret;
13488 }
13489
13490 static const struct drm_crtc_funcs intel_crtc_funcs = {
13491 .gamma_set = intel_crtc_gamma_set,
13492 .set_config = intel_crtc_set_config,
13493 .destroy = intel_crtc_destroy,
13494 .page_flip = intel_crtc_page_flip,
13495 .atomic_duplicate_state = intel_crtc_duplicate_state,
13496 .atomic_destroy_state = intel_crtc_destroy_state,
13497 };
13498
13499 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13500 struct intel_shared_dpll *pll,
13501 struct intel_dpll_hw_state *hw_state)
13502 {
13503 uint32_t val;
13504
13505 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13506 return false;
13507
13508 val = I915_READ(PCH_DPLL(pll->id));
13509 hw_state->dpll = val;
13510 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13511 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13512
13513 return val & DPLL_VCO_ENABLE;
13514 }
13515
13516 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13517 struct intel_shared_dpll *pll)
13518 {
13519 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13520 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13521 }
13522
13523 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13524 struct intel_shared_dpll *pll)
13525 {
13526 /* PCH refclock must be enabled first */
13527 ibx_assert_pch_refclk_enabled(dev_priv);
13528
13529 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13530
13531 /* Wait for the clocks to stabilize. */
13532 POSTING_READ(PCH_DPLL(pll->id));
13533 udelay(150);
13534
13535 /* The pixel multiplier can only be updated once the
13536 * DPLL is enabled and the clocks are stable.
13537 *
13538 * So write it again.
13539 */
13540 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13541 POSTING_READ(PCH_DPLL(pll->id));
13542 udelay(200);
13543 }
13544
13545 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13546 struct intel_shared_dpll *pll)
13547 {
13548 struct drm_device *dev = dev_priv->dev;
13549 struct intel_crtc *crtc;
13550
13551 /* Make sure no transcoder isn't still depending on us. */
13552 for_each_intel_crtc(dev, crtc) {
13553 if (intel_crtc_to_shared_dpll(crtc) == pll)
13554 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13555 }
13556
13557 I915_WRITE(PCH_DPLL(pll->id), 0);
13558 POSTING_READ(PCH_DPLL(pll->id));
13559 udelay(200);
13560 }
13561
13562 static char *ibx_pch_dpll_names[] = {
13563 "PCH DPLL A",
13564 "PCH DPLL B",
13565 };
13566
13567 static void ibx_pch_dpll_init(struct drm_device *dev)
13568 {
13569 struct drm_i915_private *dev_priv = dev->dev_private;
13570 int i;
13571
13572 dev_priv->num_shared_dpll = 2;
13573
13574 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13575 dev_priv->shared_dplls[i].id = i;
13576 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13577 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13578 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13579 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13580 dev_priv->shared_dplls[i].get_hw_state =
13581 ibx_pch_dpll_get_hw_state;
13582 }
13583 }
13584
13585 static void intel_shared_dpll_init(struct drm_device *dev)
13586 {
13587 struct drm_i915_private *dev_priv = dev->dev_private;
13588
13589 intel_update_cdclk(dev);
13590
13591 if (HAS_DDI(dev))
13592 intel_ddi_pll_init(dev);
13593 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13594 ibx_pch_dpll_init(dev);
13595 else
13596 dev_priv->num_shared_dpll = 0;
13597
13598 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13599 }
13600
13601 /**
13602 * intel_prepare_plane_fb - Prepare fb for usage on plane
13603 * @plane: drm plane to prepare for
13604 * @fb: framebuffer to prepare for presentation
13605 *
13606 * Prepares a framebuffer for usage on a display plane. Generally this
13607 * involves pinning the underlying object and updating the frontbuffer tracking
13608 * bits. Some older platforms need special physical address handling for
13609 * cursor planes.
13610 *
13611 * Returns 0 on success, negative error code on failure.
13612 */
13613 int
13614 intel_prepare_plane_fb(struct drm_plane *plane,
13615 struct drm_framebuffer *fb,
13616 const struct drm_plane_state *new_state)
13617 {
13618 struct drm_device *dev = plane->dev;
13619 struct intel_plane *intel_plane = to_intel_plane(plane);
13620 enum pipe pipe = intel_plane->pipe;
13621 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13622 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13623 unsigned frontbuffer_bits = 0;
13624 int ret = 0;
13625
13626 if (!obj)
13627 return 0;
13628
13629 switch (plane->type) {
13630 case DRM_PLANE_TYPE_PRIMARY:
13631 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13632 break;
13633 case DRM_PLANE_TYPE_CURSOR:
13634 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13635 break;
13636 case DRM_PLANE_TYPE_OVERLAY:
13637 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13638 break;
13639 }
13640
13641 mutex_lock(&dev->struct_mutex);
13642
13643 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13644 INTEL_INFO(dev)->cursor_needs_physical) {
13645 int align = IS_I830(dev) ? 16 * 1024 : 256;
13646 ret = i915_gem_object_attach_phys(obj, align);
13647 if (ret)
13648 DRM_DEBUG_KMS("failed to attach phys object\n");
13649 } else {
13650 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13651 }
13652
13653 if (ret == 0)
13654 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13655
13656 mutex_unlock(&dev->struct_mutex);
13657
13658 return ret;
13659 }
13660
13661 /**
13662 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13663 * @plane: drm plane to clean up for
13664 * @fb: old framebuffer that was on plane
13665 *
13666 * Cleans up a framebuffer that has just been removed from a plane.
13667 */
13668 void
13669 intel_cleanup_plane_fb(struct drm_plane *plane,
13670 struct drm_framebuffer *fb,
13671 const struct drm_plane_state *old_state)
13672 {
13673 struct drm_device *dev = plane->dev;
13674 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13675
13676 if (WARN_ON(!obj))
13677 return;
13678
13679 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13680 !INTEL_INFO(dev)->cursor_needs_physical) {
13681 mutex_lock(&dev->struct_mutex);
13682 intel_unpin_fb_obj(fb, old_state);
13683 mutex_unlock(&dev->struct_mutex);
13684 }
13685 }
13686
13687 int
13688 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13689 {
13690 int max_scale;
13691 struct drm_device *dev;
13692 struct drm_i915_private *dev_priv;
13693 int crtc_clock, cdclk;
13694
13695 if (!intel_crtc || !crtc_state)
13696 return DRM_PLANE_HELPER_NO_SCALING;
13697
13698 dev = intel_crtc->base.dev;
13699 dev_priv = dev->dev_private;
13700 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13701 cdclk = dev_priv->display.get_display_clock_speed(dev);
13702
13703 if (!crtc_clock || !cdclk)
13704 return DRM_PLANE_HELPER_NO_SCALING;
13705
13706 /*
13707 * skl max scale is lower of:
13708 * close to 3 but not 3, -1 is for that purpose
13709 * or
13710 * cdclk/crtc_clock
13711 */
13712 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13713
13714 return max_scale;
13715 }
13716
13717 static int
13718 intel_check_primary_plane(struct drm_plane *plane,
13719 struct intel_plane_state *state)
13720 {
13721 struct drm_device *dev = plane->dev;
13722 struct drm_crtc *crtc = state->base.crtc;
13723 struct intel_crtc *intel_crtc;
13724 struct intel_crtc_state *crtc_state;
13725 struct drm_framebuffer *fb = state->base.fb;
13726 struct drm_rect *dest = &state->dst;
13727 struct drm_rect *src = &state->src;
13728 const struct drm_rect *clip = &state->clip;
13729 bool can_position = false;
13730 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13731 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13732
13733 crtc = crtc ? crtc : plane->crtc;
13734 intel_crtc = to_intel_crtc(crtc);
13735 crtc_state = state->base.state ?
13736 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13737
13738 if (INTEL_INFO(dev)->gen >= 9) {
13739 /* use scaler when colorkey is not required */
13740 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13741 min_scale = 1;
13742 max_scale = skl_max_scale(intel_crtc, crtc_state);
13743 }
13744 can_position = true;
13745 }
13746
13747 return drm_plane_helper_check_update(plane, crtc, fb,
13748 src, dest, clip,
13749 min_scale, max_scale,
13750 can_position, true,
13751 &state->visible);
13752 }
13753
13754 static void
13755 intel_commit_primary_plane(struct drm_plane *plane,
13756 struct intel_plane_state *state)
13757 {
13758 struct drm_crtc *crtc = state->base.crtc;
13759 struct drm_framebuffer *fb = state->base.fb;
13760 struct drm_device *dev = plane->dev;
13761 struct drm_i915_private *dev_priv = dev->dev_private;
13762 struct intel_crtc *intel_crtc;
13763 struct drm_rect *src = &state->src;
13764
13765 crtc = crtc ? crtc : plane->crtc;
13766 intel_crtc = to_intel_crtc(crtc);
13767
13768 plane->fb = fb;
13769 crtc->x = src->x1 >> 16;
13770 crtc->y = src->y1 >> 16;
13771
13772 if (!intel_crtc->active)
13773 return;
13774
13775 if (state->visible)
13776 /* FIXME: kill this fastboot hack */
13777 intel_update_pipe_size(intel_crtc);
13778
13779 dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13780 }
13781
13782 static void
13783 intel_disable_primary_plane(struct drm_plane *plane,
13784 struct drm_crtc *crtc,
13785 bool force)
13786 {
13787 struct drm_device *dev = plane->dev;
13788 struct drm_i915_private *dev_priv = dev->dev_private;
13789
13790 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13791 }
13792
13793 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13794 {
13795 struct drm_device *dev = crtc->dev;
13796 struct drm_i915_private *dev_priv = dev->dev_private;
13797 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13798 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
13799 struct intel_plane *intel_plane;
13800 struct drm_plane *p;
13801 unsigned fb_bits = 0;
13802
13803 /* Track fb's for any planes being disabled */
13804 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13805 intel_plane = to_intel_plane(p);
13806
13807 if (intel_crtc->atomic.disabled_planes &
13808 (1 << drm_plane_index(p))) {
13809 switch (p->type) {
13810 case DRM_PLANE_TYPE_PRIMARY:
13811 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13812 break;
13813 case DRM_PLANE_TYPE_CURSOR:
13814 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13815 break;
13816 case DRM_PLANE_TYPE_OVERLAY:
13817 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13818 break;
13819 }
13820
13821 mutex_lock(&dev->struct_mutex);
13822 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13823 mutex_unlock(&dev->struct_mutex);
13824 }
13825 }
13826
13827 if (intel_crtc->atomic.wait_for_flips)
13828 intel_crtc_wait_for_pending_flips(crtc);
13829
13830 if (intel_crtc->atomic.disable_fbc)
13831 intel_fbc_disable(dev);
13832
13833 if (intel_crtc->atomic.pre_disable_primary)
13834 intel_pre_disable_primary(crtc);
13835
13836 if (intel_crtc->atomic.update_wm)
13837 intel_update_watermarks(crtc);
13838
13839 intel_runtime_pm_get(dev_priv);
13840
13841 /* Perform vblank evasion around commit operation */
13842 if (crtc_state->active && !needs_modeset(crtc_state))
13843 intel_crtc->atomic.evade =
13844 intel_pipe_update_start(intel_crtc,
13845 &intel_crtc->atomic.start_vbl_count);
13846 }
13847
13848 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13849 {
13850 struct drm_device *dev = crtc->dev;
13851 struct drm_i915_private *dev_priv = dev->dev_private;
13852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13853 struct drm_plane *p;
13854
13855 if (intel_crtc->atomic.evade)
13856 intel_pipe_update_end(intel_crtc,
13857 intel_crtc->atomic.start_vbl_count);
13858
13859 intel_runtime_pm_put(dev_priv);
13860
13861 if (intel_crtc->atomic.wait_vblank && intel_crtc->active)
13862 intel_wait_for_vblank(dev, intel_crtc->pipe);
13863
13864 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13865
13866 if (intel_crtc->atomic.update_fbc) {
13867 mutex_lock(&dev->struct_mutex);
13868 intel_fbc_update(dev);
13869 mutex_unlock(&dev->struct_mutex);
13870 }
13871
13872 if (intel_crtc->atomic.post_enable_primary)
13873 intel_post_enable_primary(crtc);
13874
13875 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13876 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13877 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13878 false, false);
13879
13880 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13881 }
13882
13883 /**
13884 * intel_plane_destroy - destroy a plane
13885 * @plane: plane to destroy
13886 *
13887 * Common destruction function for all types of planes (primary, cursor,
13888 * sprite).
13889 */
13890 void intel_plane_destroy(struct drm_plane *plane)
13891 {
13892 struct intel_plane *intel_plane = to_intel_plane(plane);
13893 drm_plane_cleanup(plane);
13894 kfree(intel_plane);
13895 }
13896
13897 const struct drm_plane_funcs intel_plane_funcs = {
13898 .update_plane = drm_atomic_helper_update_plane,
13899 .disable_plane = drm_atomic_helper_disable_plane,
13900 .destroy = intel_plane_destroy,
13901 .set_property = drm_atomic_helper_plane_set_property,
13902 .atomic_get_property = intel_plane_atomic_get_property,
13903 .atomic_set_property = intel_plane_atomic_set_property,
13904 .atomic_duplicate_state = intel_plane_duplicate_state,
13905 .atomic_destroy_state = intel_plane_destroy_state,
13906
13907 };
13908
13909 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13910 int pipe)
13911 {
13912 struct intel_plane *primary;
13913 struct intel_plane_state *state;
13914 const uint32_t *intel_primary_formats;
13915 int num_formats;
13916
13917 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13918 if (primary == NULL)
13919 return NULL;
13920
13921 state = intel_create_plane_state(&primary->base);
13922 if (!state) {
13923 kfree(primary);
13924 return NULL;
13925 }
13926 primary->base.state = &state->base;
13927
13928 primary->can_scale = false;
13929 primary->max_downscale = 1;
13930 if (INTEL_INFO(dev)->gen >= 9) {
13931 primary->can_scale = true;
13932 state->scaler_id = -1;
13933 }
13934 primary->pipe = pipe;
13935 primary->plane = pipe;
13936 primary->check_plane = intel_check_primary_plane;
13937 primary->commit_plane = intel_commit_primary_plane;
13938 primary->disable_plane = intel_disable_primary_plane;
13939 primary->ckey.flags = I915_SET_COLORKEY_NONE;
13940 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13941 primary->plane = !pipe;
13942
13943 if (INTEL_INFO(dev)->gen >= 9) {
13944 intel_primary_formats = skl_primary_formats;
13945 num_formats = ARRAY_SIZE(skl_primary_formats);
13946 } else if (INTEL_INFO(dev)->gen >= 4) {
13947 intel_primary_formats = i965_primary_formats;
13948 num_formats = ARRAY_SIZE(i965_primary_formats);
13949 } else {
13950 intel_primary_formats = i8xx_primary_formats;
13951 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13952 }
13953
13954 drm_universal_plane_init(dev, &primary->base, 0,
13955 &intel_plane_funcs,
13956 intel_primary_formats, num_formats,
13957 DRM_PLANE_TYPE_PRIMARY);
13958
13959 if (INTEL_INFO(dev)->gen >= 4)
13960 intel_create_rotation_property(dev, primary);
13961
13962 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13963
13964 return &primary->base;
13965 }
13966
13967 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13968 {
13969 if (!dev->mode_config.rotation_property) {
13970 unsigned long flags = BIT(DRM_ROTATE_0) |
13971 BIT(DRM_ROTATE_180);
13972
13973 if (INTEL_INFO(dev)->gen >= 9)
13974 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13975
13976 dev->mode_config.rotation_property =
13977 drm_mode_create_rotation_property(dev, flags);
13978 }
13979 if (dev->mode_config.rotation_property)
13980 drm_object_attach_property(&plane->base.base,
13981 dev->mode_config.rotation_property,
13982 plane->base.state->rotation);
13983 }
13984
13985 static int
13986 intel_check_cursor_plane(struct drm_plane *plane,
13987 struct intel_plane_state *state)
13988 {
13989 struct drm_crtc *crtc = state->base.crtc;
13990 struct drm_device *dev = plane->dev;
13991 struct drm_framebuffer *fb = state->base.fb;
13992 struct drm_rect *dest = &state->dst;
13993 struct drm_rect *src = &state->src;
13994 const struct drm_rect *clip = &state->clip;
13995 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13996 struct intel_crtc *intel_crtc;
13997 unsigned stride;
13998 int ret;
13999
14000 crtc = crtc ? crtc : plane->crtc;
14001 intel_crtc = to_intel_crtc(crtc);
14002
14003 ret = drm_plane_helper_check_update(plane, crtc, fb,
14004 src, dest, clip,
14005 DRM_PLANE_HELPER_NO_SCALING,
14006 DRM_PLANE_HELPER_NO_SCALING,
14007 true, true, &state->visible);
14008 if (ret)
14009 return ret;
14010
14011 /* if we want to turn off the cursor ignore width and height */
14012 if (!obj)
14013 return 0;
14014
14015 /* Check for which cursor types we support */
14016 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
14017 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14018 state->base.crtc_w, state->base.crtc_h);
14019 return -EINVAL;
14020 }
14021
14022 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14023 if (obj->base.size < stride * state->base.crtc_h) {
14024 DRM_DEBUG_KMS("buffer is too small\n");
14025 return -ENOMEM;
14026 }
14027
14028 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14029 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14030 return -EINVAL;
14031 }
14032
14033 return 0;
14034 }
14035
14036 static void
14037 intel_disable_cursor_plane(struct drm_plane *plane,
14038 struct drm_crtc *crtc,
14039 bool force)
14040 {
14041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14042
14043 if (!force) {
14044 plane->fb = NULL;
14045 intel_crtc->cursor_bo = NULL;
14046 intel_crtc->cursor_addr = 0;
14047 }
14048
14049 intel_crtc_update_cursor(crtc, false);
14050 }
14051
14052 static void
14053 intel_commit_cursor_plane(struct drm_plane *plane,
14054 struct intel_plane_state *state)
14055 {
14056 struct drm_crtc *crtc = state->base.crtc;
14057 struct drm_device *dev = plane->dev;
14058 struct intel_crtc *intel_crtc;
14059 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14060 uint32_t addr;
14061
14062 crtc = crtc ? crtc : plane->crtc;
14063 intel_crtc = to_intel_crtc(crtc);
14064
14065 plane->fb = state->base.fb;
14066 crtc->cursor_x = state->base.crtc_x;
14067 crtc->cursor_y = state->base.crtc_y;
14068
14069 if (intel_crtc->cursor_bo == obj)
14070 goto update;
14071
14072 if (!obj)
14073 addr = 0;
14074 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14075 addr = i915_gem_obj_ggtt_offset(obj);
14076 else
14077 addr = obj->phys_handle->busaddr;
14078
14079 intel_crtc->cursor_addr = addr;
14080 intel_crtc->cursor_bo = obj;
14081
14082 update:
14083 if (intel_crtc->active)
14084 intel_crtc_update_cursor(crtc, state->visible);
14085 }
14086
14087 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14088 int pipe)
14089 {
14090 struct intel_plane *cursor;
14091 struct intel_plane_state *state;
14092
14093 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14094 if (cursor == NULL)
14095 return NULL;
14096
14097 state = intel_create_plane_state(&cursor->base);
14098 if (!state) {
14099 kfree(cursor);
14100 return NULL;
14101 }
14102 cursor->base.state = &state->base;
14103
14104 cursor->can_scale = false;
14105 cursor->max_downscale = 1;
14106 cursor->pipe = pipe;
14107 cursor->plane = pipe;
14108 cursor->check_plane = intel_check_cursor_plane;
14109 cursor->commit_plane = intel_commit_cursor_plane;
14110 cursor->disable_plane = intel_disable_cursor_plane;
14111
14112 drm_universal_plane_init(dev, &cursor->base, 0,
14113 &intel_plane_funcs,
14114 intel_cursor_formats,
14115 ARRAY_SIZE(intel_cursor_formats),
14116 DRM_PLANE_TYPE_CURSOR);
14117
14118 if (INTEL_INFO(dev)->gen >= 4) {
14119 if (!dev->mode_config.rotation_property)
14120 dev->mode_config.rotation_property =
14121 drm_mode_create_rotation_property(dev,
14122 BIT(DRM_ROTATE_0) |
14123 BIT(DRM_ROTATE_180));
14124 if (dev->mode_config.rotation_property)
14125 drm_object_attach_property(&cursor->base.base,
14126 dev->mode_config.rotation_property,
14127 state->base.rotation);
14128 }
14129
14130 if (INTEL_INFO(dev)->gen >=9)
14131 state->scaler_id = -1;
14132
14133 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14134
14135 return &cursor->base;
14136 }
14137
14138 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14139 struct intel_crtc_state *crtc_state)
14140 {
14141 int i;
14142 struct intel_scaler *intel_scaler;
14143 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14144
14145 for (i = 0; i < intel_crtc->num_scalers; i++) {
14146 intel_scaler = &scaler_state->scalers[i];
14147 intel_scaler->in_use = 0;
14148 intel_scaler->mode = PS_SCALER_MODE_DYN;
14149 }
14150
14151 scaler_state->scaler_id = -1;
14152 }
14153
14154 static void intel_crtc_init(struct drm_device *dev, int pipe)
14155 {
14156 struct drm_i915_private *dev_priv = dev->dev_private;
14157 struct intel_crtc *intel_crtc;
14158 struct intel_crtc_state *crtc_state = NULL;
14159 struct drm_plane *primary = NULL;
14160 struct drm_plane *cursor = NULL;
14161 int i, ret;
14162
14163 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14164 if (intel_crtc == NULL)
14165 return;
14166
14167 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14168 if (!crtc_state)
14169 goto fail;
14170 intel_crtc->config = crtc_state;
14171 intel_crtc->base.state = &crtc_state->base;
14172 crtc_state->base.crtc = &intel_crtc->base;
14173
14174 /* initialize shared scalers */
14175 if (INTEL_INFO(dev)->gen >= 9) {
14176 if (pipe == PIPE_C)
14177 intel_crtc->num_scalers = 1;
14178 else
14179 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14180
14181 skl_init_scalers(dev, intel_crtc, crtc_state);
14182 }
14183
14184 primary = intel_primary_plane_create(dev, pipe);
14185 if (!primary)
14186 goto fail;
14187
14188 cursor = intel_cursor_plane_create(dev, pipe);
14189 if (!cursor)
14190 goto fail;
14191
14192 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14193 cursor, &intel_crtc_funcs);
14194 if (ret)
14195 goto fail;
14196
14197 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14198 for (i = 0; i < 256; i++) {
14199 intel_crtc->lut_r[i] = i;
14200 intel_crtc->lut_g[i] = i;
14201 intel_crtc->lut_b[i] = i;
14202 }
14203
14204 /*
14205 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14206 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14207 */
14208 intel_crtc->pipe = pipe;
14209 intel_crtc->plane = pipe;
14210 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14211 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14212 intel_crtc->plane = !pipe;
14213 }
14214
14215 intel_crtc->cursor_base = ~0;
14216 intel_crtc->cursor_cntl = ~0;
14217 intel_crtc->cursor_size = ~0;
14218
14219 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14220 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14221 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14222 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14223
14224 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14225
14226 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14227 return;
14228
14229 fail:
14230 if (primary)
14231 drm_plane_cleanup(primary);
14232 if (cursor)
14233 drm_plane_cleanup(cursor);
14234 kfree(crtc_state);
14235 kfree(intel_crtc);
14236 }
14237
14238 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14239 {
14240 struct drm_encoder *encoder = connector->base.encoder;
14241 struct drm_device *dev = connector->base.dev;
14242
14243 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14244
14245 if (!encoder || WARN_ON(!encoder->crtc))
14246 return INVALID_PIPE;
14247
14248 return to_intel_crtc(encoder->crtc)->pipe;
14249 }
14250
14251 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14252 struct drm_file *file)
14253 {
14254 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14255 struct drm_crtc *drmmode_crtc;
14256 struct intel_crtc *crtc;
14257
14258 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14259
14260 if (!drmmode_crtc) {
14261 DRM_ERROR("no such CRTC id\n");
14262 return -ENOENT;
14263 }
14264
14265 crtc = to_intel_crtc(drmmode_crtc);
14266 pipe_from_crtc_id->pipe = crtc->pipe;
14267
14268 return 0;
14269 }
14270
14271 static int intel_encoder_clones(struct intel_encoder *encoder)
14272 {
14273 struct drm_device *dev = encoder->base.dev;
14274 struct intel_encoder *source_encoder;
14275 int index_mask = 0;
14276 int entry = 0;
14277
14278 for_each_intel_encoder(dev, source_encoder) {
14279 if (encoders_cloneable(encoder, source_encoder))
14280 index_mask |= (1 << entry);
14281
14282 entry++;
14283 }
14284
14285 return index_mask;
14286 }
14287
14288 static bool has_edp_a(struct drm_device *dev)
14289 {
14290 struct drm_i915_private *dev_priv = dev->dev_private;
14291
14292 if (!IS_MOBILE(dev))
14293 return false;
14294
14295 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14296 return false;
14297
14298 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14299 return false;
14300
14301 return true;
14302 }
14303
14304 static bool intel_crt_present(struct drm_device *dev)
14305 {
14306 struct drm_i915_private *dev_priv = dev->dev_private;
14307
14308 if (INTEL_INFO(dev)->gen >= 9)
14309 return false;
14310
14311 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14312 return false;
14313
14314 if (IS_CHERRYVIEW(dev))
14315 return false;
14316
14317 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14318 return false;
14319
14320 return true;
14321 }
14322
14323 static void intel_setup_outputs(struct drm_device *dev)
14324 {
14325 struct drm_i915_private *dev_priv = dev->dev_private;
14326 struct intel_encoder *encoder;
14327 bool dpd_is_edp = false;
14328
14329 intel_lvds_init(dev);
14330
14331 if (intel_crt_present(dev))
14332 intel_crt_init(dev);
14333
14334 if (IS_BROXTON(dev)) {
14335 /*
14336 * FIXME: Broxton doesn't support port detection via the
14337 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14338 * detect the ports.
14339 */
14340 intel_ddi_init(dev, PORT_A);
14341 intel_ddi_init(dev, PORT_B);
14342 intel_ddi_init(dev, PORT_C);
14343 } else if (HAS_DDI(dev)) {
14344 int found;
14345
14346 /*
14347 * Haswell uses DDI functions to detect digital outputs.
14348 * On SKL pre-D0 the strap isn't connected, so we assume
14349 * it's there.
14350 */
14351 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14352 /* WaIgnoreDDIAStrap: skl */
14353 if (found ||
14354 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14355 intel_ddi_init(dev, PORT_A);
14356
14357 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14358 * register */
14359 found = I915_READ(SFUSE_STRAP);
14360
14361 if (found & SFUSE_STRAP_DDIB_DETECTED)
14362 intel_ddi_init(dev, PORT_B);
14363 if (found & SFUSE_STRAP_DDIC_DETECTED)
14364 intel_ddi_init(dev, PORT_C);
14365 if (found & SFUSE_STRAP_DDID_DETECTED)
14366 intel_ddi_init(dev, PORT_D);
14367 } else if (HAS_PCH_SPLIT(dev)) {
14368 int found;
14369 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14370
14371 if (has_edp_a(dev))
14372 intel_dp_init(dev, DP_A, PORT_A);
14373
14374 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14375 /* PCH SDVOB multiplex with HDMIB */
14376 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14377 if (!found)
14378 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14379 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14380 intel_dp_init(dev, PCH_DP_B, PORT_B);
14381 }
14382
14383 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14384 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14385
14386 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14387 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14388
14389 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14390 intel_dp_init(dev, PCH_DP_C, PORT_C);
14391
14392 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14393 intel_dp_init(dev, PCH_DP_D, PORT_D);
14394 } else if (IS_VALLEYVIEW(dev)) {
14395 /*
14396 * The DP_DETECTED bit is the latched state of the DDC
14397 * SDA pin at boot. However since eDP doesn't require DDC
14398 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14399 * eDP ports may have been muxed to an alternate function.
14400 * Thus we can't rely on the DP_DETECTED bit alone to detect
14401 * eDP ports. Consult the VBT as well as DP_DETECTED to
14402 * detect eDP ports.
14403 */
14404 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14405 !intel_dp_is_edp(dev, PORT_B))
14406 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14407 PORT_B);
14408 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14409 intel_dp_is_edp(dev, PORT_B))
14410 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14411
14412 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14413 !intel_dp_is_edp(dev, PORT_C))
14414 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14415 PORT_C);
14416 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14417 intel_dp_is_edp(dev, PORT_C))
14418 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14419
14420 if (IS_CHERRYVIEW(dev)) {
14421 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14422 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14423 PORT_D);
14424 /* eDP not supported on port D, so don't check VBT */
14425 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14426 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14427 }
14428
14429 intel_dsi_init(dev);
14430 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14431 bool found = false;
14432
14433 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14434 DRM_DEBUG_KMS("probing SDVOB\n");
14435 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14436 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14437 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14438 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14439 }
14440
14441 if (!found && SUPPORTS_INTEGRATED_DP(dev))
14442 intel_dp_init(dev, DP_B, PORT_B);
14443 }
14444
14445 /* Before G4X SDVOC doesn't have its own detect register */
14446
14447 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14448 DRM_DEBUG_KMS("probing SDVOC\n");
14449 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14450 }
14451
14452 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14453
14454 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14455 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14456 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14457 }
14458 if (SUPPORTS_INTEGRATED_DP(dev))
14459 intel_dp_init(dev, DP_C, PORT_C);
14460 }
14461
14462 if (SUPPORTS_INTEGRATED_DP(dev) &&
14463 (I915_READ(DP_D) & DP_DETECTED))
14464 intel_dp_init(dev, DP_D, PORT_D);
14465 } else if (IS_GEN2(dev))
14466 intel_dvo_init(dev);
14467
14468 if (SUPPORTS_TV(dev))
14469 intel_tv_init(dev);
14470
14471 intel_psr_init(dev);
14472
14473 for_each_intel_encoder(dev, encoder) {
14474 encoder->base.possible_crtcs = encoder->crtc_mask;
14475 encoder->base.possible_clones =
14476 intel_encoder_clones(encoder);
14477 }
14478
14479 intel_init_pch_refclk(dev);
14480
14481 drm_helper_move_panel_connectors_to_head(dev);
14482 }
14483
14484 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14485 {
14486 struct drm_device *dev = fb->dev;
14487 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14488
14489 drm_framebuffer_cleanup(fb);
14490 mutex_lock(&dev->struct_mutex);
14491 WARN_ON(!intel_fb->obj->framebuffer_references--);
14492 drm_gem_object_unreference(&intel_fb->obj->base);
14493 mutex_unlock(&dev->struct_mutex);
14494 kfree(intel_fb);
14495 }
14496
14497 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14498 struct drm_file *file,
14499 unsigned int *handle)
14500 {
14501 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14502 struct drm_i915_gem_object *obj = intel_fb->obj;
14503
14504 return drm_gem_handle_create(file, &obj->base, handle);
14505 }
14506
14507 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14508 .destroy = intel_user_framebuffer_destroy,
14509 .create_handle = intel_user_framebuffer_create_handle,
14510 };
14511
14512 static
14513 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14514 uint32_t pixel_format)
14515 {
14516 u32 gen = INTEL_INFO(dev)->gen;
14517
14518 if (gen >= 9) {
14519 /* "The stride in bytes must not exceed the of the size of 8K
14520 * pixels and 32K bytes."
14521 */
14522 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14523 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14524 return 32*1024;
14525 } else if (gen >= 4) {
14526 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14527 return 16*1024;
14528 else
14529 return 32*1024;
14530 } else if (gen >= 3) {
14531 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14532 return 8*1024;
14533 else
14534 return 16*1024;
14535 } else {
14536 /* XXX DSPC is limited to 4k tiled */
14537 return 8*1024;
14538 }
14539 }
14540
14541 static int intel_framebuffer_init(struct drm_device *dev,
14542 struct intel_framebuffer *intel_fb,
14543 struct drm_mode_fb_cmd2 *mode_cmd,
14544 struct drm_i915_gem_object *obj)
14545 {
14546 unsigned int aligned_height;
14547 int ret;
14548 u32 pitch_limit, stride_alignment;
14549
14550 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14551
14552 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14553 /* Enforce that fb modifier and tiling mode match, but only for
14554 * X-tiled. This is needed for FBC. */
14555 if (!!(obj->tiling_mode == I915_TILING_X) !=
14556 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14557 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14558 return -EINVAL;
14559 }
14560 } else {
14561 if (obj->tiling_mode == I915_TILING_X)
14562 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14563 else if (obj->tiling_mode == I915_TILING_Y) {
14564 DRM_DEBUG("No Y tiling for legacy addfb\n");
14565 return -EINVAL;
14566 }
14567 }
14568
14569 /* Passed in modifier sanity checking. */
14570 switch (mode_cmd->modifier[0]) {
14571 case I915_FORMAT_MOD_Y_TILED:
14572 case I915_FORMAT_MOD_Yf_TILED:
14573 if (INTEL_INFO(dev)->gen < 9) {
14574 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14575 mode_cmd->modifier[0]);
14576 return -EINVAL;
14577 }
14578 case DRM_FORMAT_MOD_NONE:
14579 case I915_FORMAT_MOD_X_TILED:
14580 break;
14581 default:
14582 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14583 mode_cmd->modifier[0]);
14584 return -EINVAL;
14585 }
14586
14587 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14588 mode_cmd->pixel_format);
14589 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14590 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14591 mode_cmd->pitches[0], stride_alignment);
14592 return -EINVAL;
14593 }
14594
14595 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14596 mode_cmd->pixel_format);
14597 if (mode_cmd->pitches[0] > pitch_limit) {
14598 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14599 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14600 "tiled" : "linear",
14601 mode_cmd->pitches[0], pitch_limit);
14602 return -EINVAL;
14603 }
14604
14605 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14606 mode_cmd->pitches[0] != obj->stride) {
14607 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14608 mode_cmd->pitches[0], obj->stride);
14609 return -EINVAL;
14610 }
14611
14612 /* Reject formats not supported by any plane early. */
14613 switch (mode_cmd->pixel_format) {
14614 case DRM_FORMAT_C8:
14615 case DRM_FORMAT_RGB565:
14616 case DRM_FORMAT_XRGB8888:
14617 case DRM_FORMAT_ARGB8888:
14618 break;
14619 case DRM_FORMAT_XRGB1555:
14620 if (INTEL_INFO(dev)->gen > 3) {
14621 DRM_DEBUG("unsupported pixel format: %s\n",
14622 drm_get_format_name(mode_cmd->pixel_format));
14623 return -EINVAL;
14624 }
14625 break;
14626 case DRM_FORMAT_ABGR8888:
14627 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14628 DRM_DEBUG("unsupported pixel format: %s\n",
14629 drm_get_format_name(mode_cmd->pixel_format));
14630 return -EINVAL;
14631 }
14632 break;
14633 case DRM_FORMAT_XBGR8888:
14634 case DRM_FORMAT_XRGB2101010:
14635 case DRM_FORMAT_XBGR2101010:
14636 if (INTEL_INFO(dev)->gen < 4) {
14637 DRM_DEBUG("unsupported pixel format: %s\n",
14638 drm_get_format_name(mode_cmd->pixel_format));
14639 return -EINVAL;
14640 }
14641 break;
14642 case DRM_FORMAT_ABGR2101010:
14643 if (!IS_VALLEYVIEW(dev)) {
14644 DRM_DEBUG("unsupported pixel format: %s\n",
14645 drm_get_format_name(mode_cmd->pixel_format));
14646 return -EINVAL;
14647 }
14648 break;
14649 case DRM_FORMAT_YUYV:
14650 case DRM_FORMAT_UYVY:
14651 case DRM_FORMAT_YVYU:
14652 case DRM_FORMAT_VYUY:
14653 if (INTEL_INFO(dev)->gen < 5) {
14654 DRM_DEBUG("unsupported pixel format: %s\n",
14655 drm_get_format_name(mode_cmd->pixel_format));
14656 return -EINVAL;
14657 }
14658 break;
14659 default:
14660 DRM_DEBUG("unsupported pixel format: %s\n",
14661 drm_get_format_name(mode_cmd->pixel_format));
14662 return -EINVAL;
14663 }
14664
14665 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14666 if (mode_cmd->offsets[0] != 0)
14667 return -EINVAL;
14668
14669 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14670 mode_cmd->pixel_format,
14671 mode_cmd->modifier[0]);
14672 /* FIXME drm helper for size checks (especially planar formats)? */
14673 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14674 return -EINVAL;
14675
14676 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14677 intel_fb->obj = obj;
14678 intel_fb->obj->framebuffer_references++;
14679
14680 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14681 if (ret) {
14682 DRM_ERROR("framebuffer init failed %d\n", ret);
14683 return ret;
14684 }
14685
14686 return 0;
14687 }
14688
14689 static struct drm_framebuffer *
14690 intel_user_framebuffer_create(struct drm_device *dev,
14691 struct drm_file *filp,
14692 struct drm_mode_fb_cmd2 *mode_cmd)
14693 {
14694 struct drm_i915_gem_object *obj;
14695
14696 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14697 mode_cmd->handles[0]));
14698 if (&obj->base == NULL)
14699 return ERR_PTR(-ENOENT);
14700
14701 return intel_framebuffer_create(dev, mode_cmd, obj);
14702 }
14703
14704 #ifndef CONFIG_DRM_I915_FBDEV
14705 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14706 {
14707 }
14708 #endif
14709
14710 static const struct drm_mode_config_funcs intel_mode_funcs = {
14711 .fb_create = intel_user_framebuffer_create,
14712 .output_poll_changed = intel_fbdev_output_poll_changed,
14713 .atomic_check = intel_atomic_check,
14714 .atomic_commit = intel_atomic_commit,
14715 .atomic_state_alloc = intel_atomic_state_alloc,
14716 .atomic_state_clear = intel_atomic_state_clear,
14717 };
14718
14719 /* Set up chip specific display functions */
14720 static void intel_init_display(struct drm_device *dev)
14721 {
14722 struct drm_i915_private *dev_priv = dev->dev_private;
14723
14724 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14725 dev_priv->display.find_dpll = g4x_find_best_dpll;
14726 else if (IS_CHERRYVIEW(dev))
14727 dev_priv->display.find_dpll = chv_find_best_dpll;
14728 else if (IS_VALLEYVIEW(dev))
14729 dev_priv->display.find_dpll = vlv_find_best_dpll;
14730 else if (IS_PINEVIEW(dev))
14731 dev_priv->display.find_dpll = pnv_find_best_dpll;
14732 else
14733 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14734
14735 if (INTEL_INFO(dev)->gen >= 9) {
14736 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14737 dev_priv->display.get_initial_plane_config =
14738 skylake_get_initial_plane_config;
14739 dev_priv->display.crtc_compute_clock =
14740 haswell_crtc_compute_clock;
14741 dev_priv->display.crtc_enable = haswell_crtc_enable;
14742 dev_priv->display.crtc_disable = haswell_crtc_disable;
14743 dev_priv->display.update_primary_plane =
14744 skylake_update_primary_plane;
14745 } else if (HAS_DDI(dev)) {
14746 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14747 dev_priv->display.get_initial_plane_config =
14748 ironlake_get_initial_plane_config;
14749 dev_priv->display.crtc_compute_clock =
14750 haswell_crtc_compute_clock;
14751 dev_priv->display.crtc_enable = haswell_crtc_enable;
14752 dev_priv->display.crtc_disable = haswell_crtc_disable;
14753 dev_priv->display.update_primary_plane =
14754 ironlake_update_primary_plane;
14755 } else if (HAS_PCH_SPLIT(dev)) {
14756 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14757 dev_priv->display.get_initial_plane_config =
14758 ironlake_get_initial_plane_config;
14759 dev_priv->display.crtc_compute_clock =
14760 ironlake_crtc_compute_clock;
14761 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14762 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14763 dev_priv->display.update_primary_plane =
14764 ironlake_update_primary_plane;
14765 } else if (IS_VALLEYVIEW(dev)) {
14766 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14767 dev_priv->display.get_initial_plane_config =
14768 i9xx_get_initial_plane_config;
14769 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14770 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14771 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14772 dev_priv->display.update_primary_plane =
14773 i9xx_update_primary_plane;
14774 } else {
14775 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14776 dev_priv->display.get_initial_plane_config =
14777 i9xx_get_initial_plane_config;
14778 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14779 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14780 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14781 dev_priv->display.update_primary_plane =
14782 i9xx_update_primary_plane;
14783 }
14784
14785 /* Returns the core display clock speed */
14786 if (IS_SKYLAKE(dev))
14787 dev_priv->display.get_display_clock_speed =
14788 skylake_get_display_clock_speed;
14789 else if (IS_BROADWELL(dev))
14790 dev_priv->display.get_display_clock_speed =
14791 broadwell_get_display_clock_speed;
14792 else if (IS_HASWELL(dev))
14793 dev_priv->display.get_display_clock_speed =
14794 haswell_get_display_clock_speed;
14795 else if (IS_VALLEYVIEW(dev))
14796 dev_priv->display.get_display_clock_speed =
14797 valleyview_get_display_clock_speed;
14798 else if (IS_GEN5(dev))
14799 dev_priv->display.get_display_clock_speed =
14800 ilk_get_display_clock_speed;
14801 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14802 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14803 dev_priv->display.get_display_clock_speed =
14804 i945_get_display_clock_speed;
14805 else if (IS_GM45(dev))
14806 dev_priv->display.get_display_clock_speed =
14807 gm45_get_display_clock_speed;
14808 else if (IS_CRESTLINE(dev))
14809 dev_priv->display.get_display_clock_speed =
14810 i965gm_get_display_clock_speed;
14811 else if (IS_PINEVIEW(dev))
14812 dev_priv->display.get_display_clock_speed =
14813 pnv_get_display_clock_speed;
14814 else if (IS_G33(dev) || IS_G4X(dev))
14815 dev_priv->display.get_display_clock_speed =
14816 g33_get_display_clock_speed;
14817 else if (IS_I915G(dev))
14818 dev_priv->display.get_display_clock_speed =
14819 i915_get_display_clock_speed;
14820 else if (IS_I945GM(dev) || IS_845G(dev))
14821 dev_priv->display.get_display_clock_speed =
14822 i9xx_misc_get_display_clock_speed;
14823 else if (IS_PINEVIEW(dev))
14824 dev_priv->display.get_display_clock_speed =
14825 pnv_get_display_clock_speed;
14826 else if (IS_I915GM(dev))
14827 dev_priv->display.get_display_clock_speed =
14828 i915gm_get_display_clock_speed;
14829 else if (IS_I865G(dev))
14830 dev_priv->display.get_display_clock_speed =
14831 i865_get_display_clock_speed;
14832 else if (IS_I85X(dev))
14833 dev_priv->display.get_display_clock_speed =
14834 i85x_get_display_clock_speed;
14835 else { /* 830 */
14836 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14837 dev_priv->display.get_display_clock_speed =
14838 i830_get_display_clock_speed;
14839 }
14840
14841 if (IS_GEN5(dev)) {
14842 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14843 } else if (IS_GEN6(dev)) {
14844 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14845 } else if (IS_IVYBRIDGE(dev)) {
14846 /* FIXME: detect B0+ stepping and use auto training */
14847 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14848 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14849 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14850 if (IS_BROADWELL(dev))
14851 dev_priv->display.modeset_global_resources =
14852 broadwell_modeset_global_resources;
14853 } else if (IS_VALLEYVIEW(dev)) {
14854 dev_priv->display.modeset_global_resources =
14855 valleyview_modeset_global_resources;
14856 } else if (IS_BROXTON(dev)) {
14857 dev_priv->display.modeset_global_resources =
14858 broxton_modeset_global_resources;
14859 }
14860
14861 switch (INTEL_INFO(dev)->gen) {
14862 case 2:
14863 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14864 break;
14865
14866 case 3:
14867 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14868 break;
14869
14870 case 4:
14871 case 5:
14872 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14873 break;
14874
14875 case 6:
14876 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14877 break;
14878 case 7:
14879 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14880 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14881 break;
14882 case 9:
14883 /* Drop through - unsupported since execlist only. */
14884 default:
14885 /* Default just returns -ENODEV to indicate unsupported */
14886 dev_priv->display.queue_flip = intel_default_queue_flip;
14887 }
14888
14889 intel_panel_init_backlight_funcs(dev);
14890
14891 mutex_init(&dev_priv->pps_mutex);
14892 }
14893
14894 /*
14895 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14896 * resume, or other times. This quirk makes sure that's the case for
14897 * affected systems.
14898 */
14899 static void quirk_pipea_force(struct drm_device *dev)
14900 {
14901 struct drm_i915_private *dev_priv = dev->dev_private;
14902
14903 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14904 DRM_INFO("applying pipe a force quirk\n");
14905 }
14906
14907 static void quirk_pipeb_force(struct drm_device *dev)
14908 {
14909 struct drm_i915_private *dev_priv = dev->dev_private;
14910
14911 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14912 DRM_INFO("applying pipe b force quirk\n");
14913 }
14914
14915 /*
14916 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14917 */
14918 static void quirk_ssc_force_disable(struct drm_device *dev)
14919 {
14920 struct drm_i915_private *dev_priv = dev->dev_private;
14921 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14922 DRM_INFO("applying lvds SSC disable quirk\n");
14923 }
14924
14925 /*
14926 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14927 * brightness value
14928 */
14929 static void quirk_invert_brightness(struct drm_device *dev)
14930 {
14931 struct drm_i915_private *dev_priv = dev->dev_private;
14932 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14933 DRM_INFO("applying inverted panel brightness quirk\n");
14934 }
14935
14936 /* Some VBT's incorrectly indicate no backlight is present */
14937 static void quirk_backlight_present(struct drm_device *dev)
14938 {
14939 struct drm_i915_private *dev_priv = dev->dev_private;
14940 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14941 DRM_INFO("applying backlight present quirk\n");
14942 }
14943
14944 struct intel_quirk {
14945 int device;
14946 int subsystem_vendor;
14947 int subsystem_device;
14948 void (*hook)(struct drm_device *dev);
14949 };
14950
14951 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14952 struct intel_dmi_quirk {
14953 void (*hook)(struct drm_device *dev);
14954 const struct dmi_system_id (*dmi_id_list)[];
14955 };
14956
14957 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14958 {
14959 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14960 return 1;
14961 }
14962
14963 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14964 {
14965 .dmi_id_list = &(const struct dmi_system_id[]) {
14966 {
14967 .callback = intel_dmi_reverse_brightness,
14968 .ident = "NCR Corporation",
14969 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14970 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14971 },
14972 },
14973 { } /* terminating entry */
14974 },
14975 .hook = quirk_invert_brightness,
14976 },
14977 };
14978
14979 static struct intel_quirk intel_quirks[] = {
14980 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14981 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14982
14983 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14984 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14985
14986 /* 830 needs to leave pipe A & dpll A up */
14987 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14988
14989 /* 830 needs to leave pipe B & dpll B up */
14990 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14991
14992 /* Lenovo U160 cannot use SSC on LVDS */
14993 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14994
14995 /* Sony Vaio Y cannot use SSC on LVDS */
14996 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14997
14998 /* Acer Aspire 5734Z must invert backlight brightness */
14999 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15000
15001 /* Acer/eMachines G725 */
15002 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15003
15004 /* Acer/eMachines e725 */
15005 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15006
15007 /* Acer/Packard Bell NCL20 */
15008 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15009
15010 /* Acer Aspire 4736Z */
15011 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15012
15013 /* Acer Aspire 5336 */
15014 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15015
15016 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15017 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15018
15019 /* Acer C720 Chromebook (Core i3 4005U) */
15020 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15021
15022 /* Apple Macbook 2,1 (Core 2 T7400) */
15023 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15024
15025 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15026 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15027
15028 /* HP Chromebook 14 (Celeron 2955U) */
15029 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15030
15031 /* Dell Chromebook 11 */
15032 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15033 };
15034
15035 static void intel_init_quirks(struct drm_device *dev)
15036 {
15037 struct pci_dev *d = dev->pdev;
15038 int i;
15039
15040 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15041 struct intel_quirk *q = &intel_quirks[i];
15042
15043 if (d->device == q->device &&
15044 (d->subsystem_vendor == q->subsystem_vendor ||
15045 q->subsystem_vendor == PCI_ANY_ID) &&
15046 (d->subsystem_device == q->subsystem_device ||
15047 q->subsystem_device == PCI_ANY_ID))
15048 q->hook(dev);
15049 }
15050 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15051 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15052 intel_dmi_quirks[i].hook(dev);
15053 }
15054 }
15055
15056 /* Disable the VGA plane that we never use */
15057 static void i915_disable_vga(struct drm_device *dev)
15058 {
15059 struct drm_i915_private *dev_priv = dev->dev_private;
15060 u8 sr1;
15061 u32 vga_reg = i915_vgacntrl_reg(dev);
15062
15063 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15064 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15065 outb(SR01, VGA_SR_INDEX);
15066 sr1 = inb(VGA_SR_DATA);
15067 outb(sr1 | 1<<5, VGA_SR_DATA);
15068 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15069 udelay(300);
15070
15071 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15072 POSTING_READ(vga_reg);
15073 }
15074
15075 void intel_modeset_init_hw(struct drm_device *dev)
15076 {
15077 intel_update_cdclk(dev);
15078 intel_prepare_ddi(dev);
15079 intel_init_clock_gating(dev);
15080 intel_enable_gt_powersave(dev);
15081 }
15082
15083 void intel_modeset_init(struct drm_device *dev)
15084 {
15085 struct drm_i915_private *dev_priv = dev->dev_private;
15086 int sprite, ret;
15087 enum pipe pipe;
15088 struct intel_crtc *crtc;
15089
15090 drm_mode_config_init(dev);
15091
15092 dev->mode_config.min_width = 0;
15093 dev->mode_config.min_height = 0;
15094
15095 dev->mode_config.preferred_depth = 24;
15096 dev->mode_config.prefer_shadow = 1;
15097
15098 dev->mode_config.allow_fb_modifiers = true;
15099
15100 dev->mode_config.funcs = &intel_mode_funcs;
15101
15102 intel_init_quirks(dev);
15103
15104 intel_init_pm(dev);
15105
15106 if (INTEL_INFO(dev)->num_pipes == 0)
15107 return;
15108
15109 intel_init_display(dev);
15110 intel_init_audio(dev);
15111
15112 if (IS_GEN2(dev)) {
15113 dev->mode_config.max_width = 2048;
15114 dev->mode_config.max_height = 2048;
15115 } else if (IS_GEN3(dev)) {
15116 dev->mode_config.max_width = 4096;
15117 dev->mode_config.max_height = 4096;
15118 } else {
15119 dev->mode_config.max_width = 8192;
15120 dev->mode_config.max_height = 8192;
15121 }
15122
15123 if (IS_845G(dev) || IS_I865G(dev)) {
15124 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15125 dev->mode_config.cursor_height = 1023;
15126 } else if (IS_GEN2(dev)) {
15127 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15128 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15129 } else {
15130 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15131 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15132 }
15133
15134 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15135
15136 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15137 INTEL_INFO(dev)->num_pipes,
15138 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15139
15140 for_each_pipe(dev_priv, pipe) {
15141 intel_crtc_init(dev, pipe);
15142 for_each_sprite(dev_priv, pipe, sprite) {
15143 ret = intel_plane_init(dev, pipe, sprite);
15144 if (ret)
15145 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15146 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15147 }
15148 }
15149
15150 intel_init_dpio(dev);
15151
15152 intel_shared_dpll_init(dev);
15153
15154 /* Just disable it once at startup */
15155 i915_disable_vga(dev);
15156 intel_setup_outputs(dev);
15157
15158 /* Just in case the BIOS is doing something questionable. */
15159 intel_fbc_disable(dev);
15160
15161 drm_modeset_lock_all(dev);
15162 intel_modeset_setup_hw_state(dev, false);
15163 drm_modeset_unlock_all(dev);
15164
15165 for_each_intel_crtc(dev, crtc) {
15166 if (!crtc->active)
15167 continue;
15168
15169 /*
15170 * Note that reserving the BIOS fb up front prevents us
15171 * from stuffing other stolen allocations like the ring
15172 * on top. This prevents some ugliness at boot time, and
15173 * can even allow for smooth boot transitions if the BIOS
15174 * fb is large enough for the active pipe configuration.
15175 */
15176 if (dev_priv->display.get_initial_plane_config) {
15177 dev_priv->display.get_initial_plane_config(crtc,
15178 &crtc->plane_config);
15179 /*
15180 * If the fb is shared between multiple heads, we'll
15181 * just get the first one.
15182 */
15183 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
15184 }
15185 }
15186 }
15187
15188 static void intel_enable_pipe_a(struct drm_device *dev)
15189 {
15190 struct intel_connector *connector;
15191 struct drm_connector *crt = NULL;
15192 struct intel_load_detect_pipe load_detect_temp;
15193 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15194
15195 /* We can't just switch on the pipe A, we need to set things up with a
15196 * proper mode and output configuration. As a gross hack, enable pipe A
15197 * by enabling the load detect pipe once. */
15198 for_each_intel_connector(dev, connector) {
15199 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15200 crt = &connector->base;
15201 break;
15202 }
15203 }
15204
15205 if (!crt)
15206 return;
15207
15208 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15209 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15210 }
15211
15212 static bool
15213 intel_check_plane_mapping(struct intel_crtc *crtc)
15214 {
15215 struct drm_device *dev = crtc->base.dev;
15216 struct drm_i915_private *dev_priv = dev->dev_private;
15217 u32 reg, val;
15218
15219 if (INTEL_INFO(dev)->num_pipes == 1)
15220 return true;
15221
15222 reg = DSPCNTR(!crtc->plane);
15223 val = I915_READ(reg);
15224
15225 if ((val & DISPLAY_PLANE_ENABLE) &&
15226 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15227 return false;
15228
15229 return true;
15230 }
15231
15232 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15233 {
15234 struct drm_device *dev = crtc->base.dev;
15235 struct drm_i915_private *dev_priv = dev->dev_private;
15236 struct intel_encoder *encoder;
15237 u32 reg;
15238 bool enable;
15239
15240 /* Clear any frame start delays used for debugging left by the BIOS */
15241 reg = PIPECONF(crtc->config->cpu_transcoder);
15242 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15243
15244 /* restore vblank interrupts to correct state */
15245 drm_crtc_vblank_reset(&crtc->base);
15246 if (crtc->active) {
15247 update_scanline_offset(crtc);
15248 drm_crtc_vblank_on(&crtc->base);
15249 }
15250
15251 /* We need to sanitize the plane -> pipe mapping first because this will
15252 * disable the crtc (and hence change the state) if it is wrong. Note
15253 * that gen4+ has a fixed plane -> pipe mapping. */
15254 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15255 bool plane;
15256
15257 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15258 crtc->base.base.id);
15259
15260 /* Pipe has the wrong plane attached and the plane is active.
15261 * Temporarily change the plane mapping and disable everything
15262 * ... */
15263 plane = crtc->plane;
15264 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15265 crtc->plane = !plane;
15266 intel_crtc_disable_noatomic(&crtc->base);
15267 crtc->plane = plane;
15268 }
15269
15270 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15271 crtc->pipe == PIPE_A && !crtc->active) {
15272 /* BIOS forgot to enable pipe A, this mostly happens after
15273 * resume. Force-enable the pipe to fix this, the update_dpms
15274 * call below we restore the pipe to the right state, but leave
15275 * the required bits on. */
15276 intel_enable_pipe_a(dev);
15277 }
15278
15279 /* Adjust the state of the output pipe according to whether we
15280 * have active connectors/encoders. */
15281 enable = false;
15282 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15283 enable |= encoder->connectors_active;
15284
15285 if (!enable)
15286 intel_crtc_disable_noatomic(&crtc->base);
15287
15288 if (crtc->active != crtc->base.state->active) {
15289
15290 /* This can happen either due to bugs in the get_hw_state
15291 * functions or because of calls to intel_crtc_disable_noatomic,
15292 * or because the pipe is force-enabled due to the
15293 * pipe A quirk. */
15294 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15295 crtc->base.base.id,
15296 crtc->base.state->enable ? "enabled" : "disabled",
15297 crtc->active ? "enabled" : "disabled");
15298
15299 crtc->base.state->enable = crtc->active;
15300 crtc->base.state->active = crtc->active;
15301 crtc->base.enabled = crtc->active;
15302
15303 /* Because we only establish the connector -> encoder ->
15304 * crtc links if something is active, this means the
15305 * crtc is now deactivated. Break the links. connector
15306 * -> encoder links are only establish when things are
15307 * actually up, hence no need to break them. */
15308 WARN_ON(crtc->active);
15309
15310 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15311 WARN_ON(encoder->connectors_active);
15312 encoder->base.crtc = NULL;
15313 }
15314 }
15315
15316 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15317 /*
15318 * We start out with underrun reporting disabled to avoid races.
15319 * For correct bookkeeping mark this on active crtcs.
15320 *
15321 * Also on gmch platforms we dont have any hardware bits to
15322 * disable the underrun reporting. Which means we need to start
15323 * out with underrun reporting disabled also on inactive pipes,
15324 * since otherwise we'll complain about the garbage we read when
15325 * e.g. coming up after runtime pm.
15326 *
15327 * No protection against concurrent access is required - at
15328 * worst a fifo underrun happens which also sets this to false.
15329 */
15330 crtc->cpu_fifo_underrun_disabled = true;
15331 crtc->pch_fifo_underrun_disabled = true;
15332 }
15333 }
15334
15335 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15336 {
15337 struct intel_connector *connector;
15338 struct drm_device *dev = encoder->base.dev;
15339
15340 /* We need to check both for a crtc link (meaning that the
15341 * encoder is active and trying to read from a pipe) and the
15342 * pipe itself being active. */
15343 bool has_active_crtc = encoder->base.crtc &&
15344 to_intel_crtc(encoder->base.crtc)->active;
15345
15346 if (encoder->connectors_active && !has_active_crtc) {
15347 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15348 encoder->base.base.id,
15349 encoder->base.name);
15350
15351 /* Connector is active, but has no active pipe. This is
15352 * fallout from our resume register restoring. Disable
15353 * the encoder manually again. */
15354 if (encoder->base.crtc) {
15355 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15356 encoder->base.base.id,
15357 encoder->base.name);
15358 encoder->disable(encoder);
15359 if (encoder->post_disable)
15360 encoder->post_disable(encoder);
15361 }
15362 encoder->base.crtc = NULL;
15363 encoder->connectors_active = false;
15364
15365 /* Inconsistent output/port/pipe state happens presumably due to
15366 * a bug in one of the get_hw_state functions. Or someplace else
15367 * in our code, like the register restore mess on resume. Clamp
15368 * things to off as a safer default. */
15369 for_each_intel_connector(dev, connector) {
15370 if (connector->encoder != encoder)
15371 continue;
15372 connector->base.dpms = DRM_MODE_DPMS_OFF;
15373 connector->base.encoder = NULL;
15374 }
15375 }
15376 /* Enabled encoders without active connectors will be fixed in
15377 * the crtc fixup. */
15378 }
15379
15380 void i915_redisable_vga_power_on(struct drm_device *dev)
15381 {
15382 struct drm_i915_private *dev_priv = dev->dev_private;
15383 u32 vga_reg = i915_vgacntrl_reg(dev);
15384
15385 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15386 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15387 i915_disable_vga(dev);
15388 }
15389 }
15390
15391 void i915_redisable_vga(struct drm_device *dev)
15392 {
15393 struct drm_i915_private *dev_priv = dev->dev_private;
15394
15395 /* This function can be called both from intel_modeset_setup_hw_state or
15396 * at a very early point in our resume sequence, where the power well
15397 * structures are not yet restored. Since this function is at a very
15398 * paranoid "someone might have enabled VGA while we were not looking"
15399 * level, just check if the power well is enabled instead of trying to
15400 * follow the "don't touch the power well if we don't need it" policy
15401 * the rest of the driver uses. */
15402 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15403 return;
15404
15405 i915_redisable_vga_power_on(dev);
15406 }
15407
15408 static bool primary_get_hw_state(struct intel_crtc *crtc)
15409 {
15410 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15411
15412 if (!crtc->active)
15413 return false;
15414
15415 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15416 }
15417
15418 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15419 {
15420 struct drm_i915_private *dev_priv = dev->dev_private;
15421 enum pipe pipe;
15422 struct intel_crtc *crtc;
15423 struct intel_encoder *encoder;
15424 struct intel_connector *connector;
15425 int i;
15426
15427 for_each_intel_crtc(dev, crtc) {
15428 struct drm_plane *primary = crtc->base.primary;
15429 struct intel_plane_state *plane_state;
15430
15431 memset(crtc->config, 0, sizeof(*crtc->config));
15432 crtc->config->base.crtc = &crtc->base;
15433
15434 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15435
15436 crtc->active = dev_priv->display.get_pipe_config(crtc,
15437 crtc->config);
15438
15439 crtc->base.state->enable = crtc->active;
15440 crtc->base.state->active = crtc->active;
15441 crtc->base.enabled = crtc->active;
15442 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15443
15444 plane_state = to_intel_plane_state(primary->state);
15445 plane_state->visible = primary_get_hw_state(crtc);
15446
15447 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15448 crtc->base.base.id,
15449 crtc->active ? "enabled" : "disabled");
15450 }
15451
15452 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15453 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15454
15455 pll->on = pll->get_hw_state(dev_priv, pll,
15456 &pll->config.hw_state);
15457 pll->active = 0;
15458 pll->config.crtc_mask = 0;
15459 for_each_intel_crtc(dev, crtc) {
15460 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15461 pll->active++;
15462 pll->config.crtc_mask |= 1 << crtc->pipe;
15463 }
15464 }
15465
15466 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15467 pll->name, pll->config.crtc_mask, pll->on);
15468
15469 if (pll->config.crtc_mask)
15470 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15471 }
15472
15473 for_each_intel_encoder(dev, encoder) {
15474 pipe = 0;
15475
15476 if (encoder->get_hw_state(encoder, &pipe)) {
15477 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15478 encoder->base.crtc = &crtc->base;
15479 encoder->get_config(encoder, crtc->config);
15480 } else {
15481 encoder->base.crtc = NULL;
15482 }
15483
15484 encoder->connectors_active = false;
15485 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15486 encoder->base.base.id,
15487 encoder->base.name,
15488 encoder->base.crtc ? "enabled" : "disabled",
15489 pipe_name(pipe));
15490 }
15491
15492 for_each_intel_connector(dev, connector) {
15493 if (connector->get_hw_state(connector)) {
15494 connector->base.dpms = DRM_MODE_DPMS_ON;
15495 connector->encoder->connectors_active = true;
15496 connector->base.encoder = &connector->encoder->base;
15497 } else {
15498 connector->base.dpms = DRM_MODE_DPMS_OFF;
15499 connector->base.encoder = NULL;
15500 }
15501 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15502 connector->base.base.id,
15503 connector->base.name,
15504 connector->base.encoder ? "enabled" : "disabled");
15505 }
15506 }
15507
15508 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15509 * and i915 state tracking structures. */
15510 void intel_modeset_setup_hw_state(struct drm_device *dev,
15511 bool force_restore)
15512 {
15513 struct drm_i915_private *dev_priv = dev->dev_private;
15514 enum pipe pipe;
15515 struct intel_crtc *crtc;
15516 struct intel_encoder *encoder;
15517 int i;
15518
15519 intel_modeset_readout_hw_state(dev);
15520
15521 /*
15522 * Now that we have the config, copy it to each CRTC struct
15523 * Note that this could go away if we move to using crtc_config
15524 * checking everywhere.
15525 */
15526 for_each_intel_crtc(dev, crtc) {
15527 if (crtc->active && i915.fastboot) {
15528 intel_mode_from_pipe_config(&crtc->base.mode,
15529 crtc->config);
15530 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15531 crtc->base.base.id);
15532 drm_mode_debug_printmodeline(&crtc->base.mode);
15533 }
15534 }
15535
15536 /* HW state is read out, now we need to sanitize this mess. */
15537 for_each_intel_encoder(dev, encoder) {
15538 intel_sanitize_encoder(encoder);
15539 }
15540
15541 for_each_pipe(dev_priv, pipe) {
15542 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15543 intel_sanitize_crtc(crtc);
15544 intel_dump_pipe_config(crtc, crtc->config,
15545 "[setup_hw_state]");
15546 }
15547
15548 intel_modeset_update_connector_atomic_state(dev);
15549
15550 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15551 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15552
15553 if (!pll->on || pll->active)
15554 continue;
15555
15556 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15557
15558 pll->disable(dev_priv, pll);
15559 pll->on = false;
15560 }
15561
15562 if (IS_GEN9(dev))
15563 skl_wm_get_hw_state(dev);
15564 else if (HAS_PCH_SPLIT(dev))
15565 ilk_wm_get_hw_state(dev);
15566
15567 if (force_restore) {
15568 i915_redisable_vga(dev);
15569
15570 /*
15571 * We need to use raw interfaces for restoring state to avoid
15572 * checking (bogus) intermediate states.
15573 */
15574 for_each_pipe(dev_priv, pipe) {
15575 struct drm_crtc *crtc =
15576 dev_priv->pipe_to_crtc_mapping[pipe];
15577
15578 intel_crtc_restore_mode(crtc);
15579 }
15580 } else {
15581 intel_modeset_update_staged_output_state(dev);
15582 }
15583
15584 intel_modeset_check_state(dev);
15585 }
15586
15587 void intel_modeset_gem_init(struct drm_device *dev)
15588 {
15589 struct drm_i915_private *dev_priv = dev->dev_private;
15590 struct drm_crtc *c;
15591 struct drm_i915_gem_object *obj;
15592 int ret;
15593
15594 mutex_lock(&dev->struct_mutex);
15595 intel_init_gt_powersave(dev);
15596 mutex_unlock(&dev->struct_mutex);
15597
15598 /*
15599 * There may be no VBT; and if the BIOS enabled SSC we can
15600 * just keep using it to avoid unnecessary flicker. Whereas if the
15601 * BIOS isn't using it, don't assume it will work even if the VBT
15602 * indicates as much.
15603 */
15604 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15605 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15606 DREF_SSC1_ENABLE);
15607
15608 intel_modeset_init_hw(dev);
15609
15610 intel_setup_overlay(dev);
15611
15612 /*
15613 * Make sure any fbs we allocated at startup are properly
15614 * pinned & fenced. When we do the allocation it's too early
15615 * for this.
15616 */
15617 for_each_crtc(dev, c) {
15618 obj = intel_fb_obj(c->primary->fb);
15619 if (obj == NULL)
15620 continue;
15621
15622 mutex_lock(&dev->struct_mutex);
15623 ret = intel_pin_and_fence_fb_obj(c->primary,
15624 c->primary->fb,
15625 c->primary->state,
15626 NULL);
15627 mutex_unlock(&dev->struct_mutex);
15628 if (ret) {
15629 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15630 to_intel_crtc(c)->pipe);
15631 drm_framebuffer_unreference(c->primary->fb);
15632 c->primary->fb = NULL;
15633 c->primary->crtc = c->primary->state->crtc = NULL;
15634 update_state_fb(c->primary);
15635 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15636 }
15637 }
15638
15639 intel_backlight_register(dev);
15640 }
15641
15642 void intel_connector_unregister(struct intel_connector *intel_connector)
15643 {
15644 struct drm_connector *connector = &intel_connector->base;
15645
15646 intel_panel_destroy_backlight(connector);
15647 drm_connector_unregister(connector);
15648 }
15649
15650 void intel_modeset_cleanup(struct drm_device *dev)
15651 {
15652 struct drm_i915_private *dev_priv = dev->dev_private;
15653 struct drm_connector *connector;
15654
15655 intel_disable_gt_powersave(dev);
15656
15657 intel_backlight_unregister(dev);
15658
15659 /*
15660 * Interrupts and polling as the first thing to avoid creating havoc.
15661 * Too much stuff here (turning of connectors, ...) would
15662 * experience fancy races otherwise.
15663 */
15664 intel_irq_uninstall(dev_priv);
15665
15666 /*
15667 * Due to the hpd irq storm handling the hotplug work can re-arm the
15668 * poll handlers. Hence disable polling after hpd handling is shut down.
15669 */
15670 drm_kms_helper_poll_fini(dev);
15671
15672 mutex_lock(&dev->struct_mutex);
15673
15674 intel_unregister_dsm_handler();
15675
15676 intel_fbc_disable(dev);
15677
15678 mutex_unlock(&dev->struct_mutex);
15679
15680 /* flush any delayed tasks or pending work */
15681 flush_scheduled_work();
15682
15683 /* destroy the backlight and sysfs files before encoders/connectors */
15684 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15685 struct intel_connector *intel_connector;
15686
15687 intel_connector = to_intel_connector(connector);
15688 intel_connector->unregister(intel_connector);
15689 }
15690
15691 drm_mode_config_cleanup(dev);
15692
15693 intel_cleanup_overlay(dev);
15694
15695 mutex_lock(&dev->struct_mutex);
15696 intel_cleanup_gt_powersave(dev);
15697 mutex_unlock(&dev->struct_mutex);
15698 }
15699
15700 /*
15701 * Return which encoder is currently attached for connector.
15702 */
15703 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15704 {
15705 return &intel_attached_encoder(connector)->base;
15706 }
15707
15708 void intel_connector_attach_encoder(struct intel_connector *connector,
15709 struct intel_encoder *encoder)
15710 {
15711 connector->encoder = encoder;
15712 drm_mode_connector_attach_encoder(&connector->base,
15713 &encoder->base);
15714 }
15715
15716 /*
15717 * set vga decode state - true == enable VGA decode
15718 */
15719 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15720 {
15721 struct drm_i915_private *dev_priv = dev->dev_private;
15722 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15723 u16 gmch_ctrl;
15724
15725 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15726 DRM_ERROR("failed to read control word\n");
15727 return -EIO;
15728 }
15729
15730 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15731 return 0;
15732
15733 if (state)
15734 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15735 else
15736 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15737
15738 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15739 DRM_ERROR("failed to write control word\n");
15740 return -EIO;
15741 }
15742
15743 return 0;
15744 }
15745
15746 struct intel_display_error_state {
15747
15748 u32 power_well_driver;
15749
15750 int num_transcoders;
15751
15752 struct intel_cursor_error_state {
15753 u32 control;
15754 u32 position;
15755 u32 base;
15756 u32 size;
15757 } cursor[I915_MAX_PIPES];
15758
15759 struct intel_pipe_error_state {
15760 bool power_domain_on;
15761 u32 source;
15762 u32 stat;
15763 } pipe[I915_MAX_PIPES];
15764
15765 struct intel_plane_error_state {
15766 u32 control;
15767 u32 stride;
15768 u32 size;
15769 u32 pos;
15770 u32 addr;
15771 u32 surface;
15772 u32 tile_offset;
15773 } plane[I915_MAX_PIPES];
15774
15775 struct intel_transcoder_error_state {
15776 bool power_domain_on;
15777 enum transcoder cpu_transcoder;
15778
15779 u32 conf;
15780
15781 u32 htotal;
15782 u32 hblank;
15783 u32 hsync;
15784 u32 vtotal;
15785 u32 vblank;
15786 u32 vsync;
15787 } transcoder[4];
15788 };
15789
15790 struct intel_display_error_state *
15791 intel_display_capture_error_state(struct drm_device *dev)
15792 {
15793 struct drm_i915_private *dev_priv = dev->dev_private;
15794 struct intel_display_error_state *error;
15795 int transcoders[] = {
15796 TRANSCODER_A,
15797 TRANSCODER_B,
15798 TRANSCODER_C,
15799 TRANSCODER_EDP,
15800 };
15801 int i;
15802
15803 if (INTEL_INFO(dev)->num_pipes == 0)
15804 return NULL;
15805
15806 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15807 if (error == NULL)
15808 return NULL;
15809
15810 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15811 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15812
15813 for_each_pipe(dev_priv, i) {
15814 error->pipe[i].power_domain_on =
15815 __intel_display_power_is_enabled(dev_priv,
15816 POWER_DOMAIN_PIPE(i));
15817 if (!error->pipe[i].power_domain_on)
15818 continue;
15819
15820 error->cursor[i].control = I915_READ(CURCNTR(i));
15821 error->cursor[i].position = I915_READ(CURPOS(i));
15822 error->cursor[i].base = I915_READ(CURBASE(i));
15823
15824 error->plane[i].control = I915_READ(DSPCNTR(i));
15825 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15826 if (INTEL_INFO(dev)->gen <= 3) {
15827 error->plane[i].size = I915_READ(DSPSIZE(i));
15828 error->plane[i].pos = I915_READ(DSPPOS(i));
15829 }
15830 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15831 error->plane[i].addr = I915_READ(DSPADDR(i));
15832 if (INTEL_INFO(dev)->gen >= 4) {
15833 error->plane[i].surface = I915_READ(DSPSURF(i));
15834 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15835 }
15836
15837 error->pipe[i].source = I915_READ(PIPESRC(i));
15838
15839 if (HAS_GMCH_DISPLAY(dev))
15840 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15841 }
15842
15843 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15844 if (HAS_DDI(dev_priv->dev))
15845 error->num_transcoders++; /* Account for eDP. */
15846
15847 for (i = 0; i < error->num_transcoders; i++) {
15848 enum transcoder cpu_transcoder = transcoders[i];
15849
15850 error->transcoder[i].power_domain_on =
15851 __intel_display_power_is_enabled(dev_priv,
15852 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15853 if (!error->transcoder[i].power_domain_on)
15854 continue;
15855
15856 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15857
15858 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15859 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15860 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15861 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15862 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15863 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15864 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15865 }
15866
15867 return error;
15868 }
15869
15870 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15871
15872 void
15873 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15874 struct drm_device *dev,
15875 struct intel_display_error_state *error)
15876 {
15877 struct drm_i915_private *dev_priv = dev->dev_private;
15878 int i;
15879
15880 if (!error)
15881 return;
15882
15883 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15884 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15885 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15886 error->power_well_driver);
15887 for_each_pipe(dev_priv, i) {
15888 err_printf(m, "Pipe [%d]:\n", i);
15889 err_printf(m, " Power: %s\n",
15890 error->pipe[i].power_domain_on ? "on" : "off");
15891 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15892 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15893
15894 err_printf(m, "Plane [%d]:\n", i);
15895 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15896 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15897 if (INTEL_INFO(dev)->gen <= 3) {
15898 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15899 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15900 }
15901 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15902 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15903 if (INTEL_INFO(dev)->gen >= 4) {
15904 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15905 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15906 }
15907
15908 err_printf(m, "Cursor [%d]:\n", i);
15909 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15910 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15911 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15912 }
15913
15914 for (i = 0; i < error->num_transcoders; i++) {
15915 err_printf(m, "CPU transcoder: %c\n",
15916 transcoder_name(error->transcoder[i].cpu_transcoder));
15917 err_printf(m, " Power: %s\n",
15918 error->transcoder[i].power_domain_on ? "on" : "off");
15919 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15920 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15921 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15922 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15923 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15924 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15925 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15926 }
15927 }
15928
15929 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15930 {
15931 struct intel_crtc *crtc;
15932
15933 for_each_intel_crtc(dev, crtc) {
15934 struct intel_unpin_work *work;
15935
15936 spin_lock_irq(&dev->event_lock);
15937
15938 work = crtc->unpin_work;
15939
15940 if (work && work->event &&
15941 work->event->base.file_priv == file) {
15942 kfree(work->event);
15943 work->event = NULL;
15944 }
15945
15946 spin_unlock_irq(&dev->event_lock);
15947 }
15948 }
This page took 0.691026 seconds and 5 git commands to generate.