Merge tag 'v3.14' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50 struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53 int x, int y, struct drm_framebuffer *old_fb);
54 static int intel_framebuffer_init(struct drm_device *dev,
55 struct intel_framebuffer *ifb,
56 struct drm_mode_fb_cmd2 *mode_cmd,
57 struct drm_i915_gem_object *obj);
58
59 typedef struct {
60 int min, max;
61 } intel_range_t;
62
63 typedef struct {
64 int dot_limit;
65 int p2_slow, p2_fast;
66 } intel_p2_t;
67
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70 intel_range_t dot, vco, n, m, m1, m2, p, p1;
71 intel_p2_t p2;
72 };
73
74 int
75 intel_pch_rawclk(struct drm_device *dev)
76 {
77 struct drm_i915_private *dev_priv = dev->dev_private;
78
79 WARN_ON(!HAS_PCH_SPLIT(dev));
80
81 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
82 }
83
84 static inline u32 /* units of 100MHz */
85 intel_fdi_link_freq(struct drm_device *dev)
86 {
87 if (IS_GEN5(dev)) {
88 struct drm_i915_private *dev_priv = dev->dev_private;
89 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
90 } else
91 return 27;
92 }
93
94 static const intel_limit_t intel_limits_i8xx_dac = {
95 .dot = { .min = 25000, .max = 350000 },
96 .vco = { .min = 908000, .max = 1512000 },
97 .n = { .min = 2, .max = 16 },
98 .m = { .min = 96, .max = 140 },
99 .m1 = { .min = 18, .max = 26 },
100 .m2 = { .min = 6, .max = 16 },
101 .p = { .min = 4, .max = 128 },
102 .p1 = { .min = 2, .max = 33 },
103 .p2 = { .dot_limit = 165000,
104 .p2_slow = 4, .p2_fast = 2 },
105 };
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108 .dot = { .min = 25000, .max = 350000 },
109 .vco = { .min = 908000, .max = 1512000 },
110 .n = { .min = 2, .max = 16 },
111 .m = { .min = 96, .max = 140 },
112 .m1 = { .min = 18, .max = 26 },
113 .m2 = { .min = 6, .max = 16 },
114 .p = { .min = 4, .max = 128 },
115 .p1 = { .min = 2, .max = 33 },
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 4, .p2_fast = 4 },
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121 .dot = { .min = 25000, .max = 350000 },
122 .vco = { .min = 908000, .max = 1512000 },
123 .n = { .min = 2, .max = 16 },
124 .m = { .min = 96, .max = 140 },
125 .m1 = { .min = 18, .max = 26 },
126 .m2 = { .min = 6, .max = 16 },
127 .p = { .min = 4, .max = 128 },
128 .p1 = { .min = 1, .max = 6 },
129 .p2 = { .dot_limit = 165000,
130 .p2_slow = 14, .p2_fast = 7 },
131 };
132
133 static const intel_limit_t intel_limits_i9xx_sdvo = {
134 .dot = { .min = 20000, .max = 400000 },
135 .vco = { .min = 1400000, .max = 2800000 },
136 .n = { .min = 1, .max = 6 },
137 .m = { .min = 70, .max = 120 },
138 .m1 = { .min = 8, .max = 18 },
139 .m2 = { .min = 3, .max = 7 },
140 .p = { .min = 5, .max = 80 },
141 .p1 = { .min = 1, .max = 8 },
142 .p2 = { .dot_limit = 200000,
143 .p2_slow = 10, .p2_fast = 5 },
144 };
145
146 static const intel_limit_t intel_limits_i9xx_lvds = {
147 .dot = { .min = 20000, .max = 400000 },
148 .vco = { .min = 1400000, .max = 2800000 },
149 .n = { .min = 1, .max = 6 },
150 .m = { .min = 70, .max = 120 },
151 .m1 = { .min = 8, .max = 18 },
152 .m2 = { .min = 3, .max = 7 },
153 .p = { .min = 7, .max = 98 },
154 .p1 = { .min = 1, .max = 8 },
155 .p2 = { .dot_limit = 112000,
156 .p2_slow = 14, .p2_fast = 7 },
157 };
158
159
160 static const intel_limit_t intel_limits_g4x_sdvo = {
161 .dot = { .min = 25000, .max = 270000 },
162 .vco = { .min = 1750000, .max = 3500000},
163 .n = { .min = 1, .max = 4 },
164 .m = { .min = 104, .max = 138 },
165 .m1 = { .min = 17, .max = 23 },
166 .m2 = { .min = 5, .max = 11 },
167 .p = { .min = 10, .max = 30 },
168 .p1 = { .min = 1, .max = 3},
169 .p2 = { .dot_limit = 270000,
170 .p2_slow = 10,
171 .p2_fast = 10
172 },
173 };
174
175 static const intel_limit_t intel_limits_g4x_hdmi = {
176 .dot = { .min = 22000, .max = 400000 },
177 .vco = { .min = 1750000, .max = 3500000},
178 .n = { .min = 1, .max = 4 },
179 .m = { .min = 104, .max = 138 },
180 .m1 = { .min = 16, .max = 23 },
181 .m2 = { .min = 5, .max = 11 },
182 .p = { .min = 5, .max = 80 },
183 .p1 = { .min = 1, .max = 8},
184 .p2 = { .dot_limit = 165000,
185 .p2_slow = 10, .p2_fast = 5 },
186 };
187
188 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
189 .dot = { .min = 20000, .max = 115000 },
190 .vco = { .min = 1750000, .max = 3500000 },
191 .n = { .min = 1, .max = 3 },
192 .m = { .min = 104, .max = 138 },
193 .m1 = { .min = 17, .max = 23 },
194 .m2 = { .min = 5, .max = 11 },
195 .p = { .min = 28, .max = 112 },
196 .p1 = { .min = 2, .max = 8 },
197 .p2 = { .dot_limit = 0,
198 .p2_slow = 14, .p2_fast = 14
199 },
200 };
201
202 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
203 .dot = { .min = 80000, .max = 224000 },
204 .vco = { .min = 1750000, .max = 3500000 },
205 .n = { .min = 1, .max = 3 },
206 .m = { .min = 104, .max = 138 },
207 .m1 = { .min = 17, .max = 23 },
208 .m2 = { .min = 5, .max = 11 },
209 .p = { .min = 14, .max = 42 },
210 .p1 = { .min = 2, .max = 6 },
211 .p2 = { .dot_limit = 0,
212 .p2_slow = 7, .p2_fast = 7
213 },
214 };
215
216 static const intel_limit_t intel_limits_pineview_sdvo = {
217 .dot = { .min = 20000, .max = 400000},
218 .vco = { .min = 1700000, .max = 3500000 },
219 /* Pineview's Ncounter is a ring counter */
220 .n = { .min = 3, .max = 6 },
221 .m = { .min = 2, .max = 256 },
222 /* Pineview only has one combined m divider, which we treat as m2. */
223 .m1 = { .min = 0, .max = 0 },
224 .m2 = { .min = 0, .max = 254 },
225 .p = { .min = 5, .max = 80 },
226 .p1 = { .min = 1, .max = 8 },
227 .p2 = { .dot_limit = 200000,
228 .p2_slow = 10, .p2_fast = 5 },
229 };
230
231 static const intel_limit_t intel_limits_pineview_lvds = {
232 .dot = { .min = 20000, .max = 400000 },
233 .vco = { .min = 1700000, .max = 3500000 },
234 .n = { .min = 3, .max = 6 },
235 .m = { .min = 2, .max = 256 },
236 .m1 = { .min = 0, .max = 0 },
237 .m2 = { .min = 0, .max = 254 },
238 .p = { .min = 7, .max = 112 },
239 .p1 = { .min = 1, .max = 8 },
240 .p2 = { .dot_limit = 112000,
241 .p2_slow = 14, .p2_fast = 14 },
242 };
243
244 /* Ironlake / Sandybridge
245 *
246 * We calculate clock using (register_value + 2) for N/M1/M2, so here
247 * the range value for them is (actual_value - 2).
248 */
249 static const intel_limit_t intel_limits_ironlake_dac = {
250 .dot = { .min = 25000, .max = 350000 },
251 .vco = { .min = 1760000, .max = 3510000 },
252 .n = { .min = 1, .max = 5 },
253 .m = { .min = 79, .max = 127 },
254 .m1 = { .min = 12, .max = 22 },
255 .m2 = { .min = 5, .max = 9 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 225000,
259 .p2_slow = 10, .p2_fast = 5 },
260 };
261
262 static const intel_limit_t intel_limits_ironlake_single_lvds = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 1760000, .max = 3510000 },
265 .n = { .min = 1, .max = 3 },
266 .m = { .min = 79, .max = 118 },
267 .m1 = { .min = 12, .max = 22 },
268 .m2 = { .min = 5, .max = 9 },
269 .p = { .min = 28, .max = 112 },
270 .p1 = { .min = 2, .max = 8 },
271 .p2 = { .dot_limit = 225000,
272 .p2_slow = 14, .p2_fast = 14 },
273 };
274
275 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
276 .dot = { .min = 25000, .max = 350000 },
277 .vco = { .min = 1760000, .max = 3510000 },
278 .n = { .min = 1, .max = 3 },
279 .m = { .min = 79, .max = 127 },
280 .m1 = { .min = 12, .max = 22 },
281 .m2 = { .min = 5, .max = 9 },
282 .p = { .min = 14, .max = 56 },
283 .p1 = { .min = 2, .max = 8 },
284 .p2 = { .dot_limit = 225000,
285 .p2_slow = 7, .p2_fast = 7 },
286 };
287
288 /* LVDS 100mhz refclk limits. */
289 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 1760000, .max = 3510000 },
292 .n = { .min = 1, .max = 2 },
293 .m = { .min = 79, .max = 126 },
294 .m1 = { .min = 12, .max = 22 },
295 .m2 = { .min = 5, .max = 9 },
296 .p = { .min = 28, .max = 112 },
297 .p1 = { .min = 2, .max = 8 },
298 .p2 = { .dot_limit = 225000,
299 .p2_slow = 14, .p2_fast = 14 },
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 126 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 42 },
310 .p1 = { .min = 2, .max = 6 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 },
313 };
314
315 static const intel_limit_t intel_limits_vlv = {
316 /*
317 * These are the data rate limits (measured in fast clocks)
318 * since those are the strictest limits we have. The fast
319 * clock and actual rate limits are more relaxed, so checking
320 * them would make no difference.
321 */
322 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
323 .vco = { .min = 4000000, .max = 6000000 },
324 .n = { .min = 1, .max = 7 },
325 .m1 = { .min = 2, .max = 3 },
326 .m2 = { .min = 11, .max = 156 },
327 .p1 = { .min = 2, .max = 3 },
328 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
329 };
330
331 static void vlv_clock(int refclk, intel_clock_t *clock)
332 {
333 clock->m = clock->m1 * clock->m2;
334 clock->p = clock->p1 * clock->p2;
335 if (WARN_ON(clock->n == 0 || clock->p == 0))
336 return;
337 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
338 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
339 }
340
341 /**
342 * Returns whether any output on the specified pipe is of the specified type
343 */
344 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
345 {
346 struct drm_device *dev = crtc->dev;
347 struct intel_encoder *encoder;
348
349 for_each_encoder_on_crtc(dev, crtc, encoder)
350 if (encoder->type == type)
351 return true;
352
353 return false;
354 }
355
356 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
357 int refclk)
358 {
359 struct drm_device *dev = crtc->dev;
360 const intel_limit_t *limit;
361
362 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
363 if (intel_is_dual_link_lvds(dev)) {
364 if (refclk == 100000)
365 limit = &intel_limits_ironlake_dual_lvds_100m;
366 else
367 limit = &intel_limits_ironlake_dual_lvds;
368 } else {
369 if (refclk == 100000)
370 limit = &intel_limits_ironlake_single_lvds_100m;
371 else
372 limit = &intel_limits_ironlake_single_lvds;
373 }
374 } else
375 limit = &intel_limits_ironlake_dac;
376
377 return limit;
378 }
379
380 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
381 {
382 struct drm_device *dev = crtc->dev;
383 const intel_limit_t *limit;
384
385 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
386 if (intel_is_dual_link_lvds(dev))
387 limit = &intel_limits_g4x_dual_channel_lvds;
388 else
389 limit = &intel_limits_g4x_single_channel_lvds;
390 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
391 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
392 limit = &intel_limits_g4x_hdmi;
393 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
394 limit = &intel_limits_g4x_sdvo;
395 } else /* The option is for other outputs */
396 limit = &intel_limits_i9xx_sdvo;
397
398 return limit;
399 }
400
401 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
402 {
403 struct drm_device *dev = crtc->dev;
404 const intel_limit_t *limit;
405
406 if (HAS_PCH_SPLIT(dev))
407 limit = intel_ironlake_limit(crtc, refclk);
408 else if (IS_G4X(dev)) {
409 limit = intel_g4x_limit(crtc);
410 } else if (IS_PINEVIEW(dev)) {
411 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
412 limit = &intel_limits_pineview_lvds;
413 else
414 limit = &intel_limits_pineview_sdvo;
415 } else if (IS_VALLEYVIEW(dev)) {
416 limit = &intel_limits_vlv;
417 } else if (!IS_GEN2(dev)) {
418 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419 limit = &intel_limits_i9xx_lvds;
420 else
421 limit = &intel_limits_i9xx_sdvo;
422 } else {
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424 limit = &intel_limits_i8xx_lvds;
425 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426 limit = &intel_limits_i8xx_dvo;
427 else
428 limit = &intel_limits_i8xx_dac;
429 }
430 return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436 clock->m = clock->m2 + 2;
437 clock->p = clock->p1 * clock->p2;
438 if (WARN_ON(clock->n == 0 || clock->p == 0))
439 return;
440 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
441 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
442 }
443
444 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
445 {
446 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
447 }
448
449 static void i9xx_clock(int refclk, intel_clock_t *clock)
450 {
451 clock->m = i9xx_dpll_compute_m(clock);
452 clock->p = clock->p1 * clock->p2;
453 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
454 return;
455 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
456 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
457 }
458
459 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
460 /**
461 * Returns whether the given set of divisors are valid for a given refclk with
462 * the given connectors.
463 */
464
465 static bool intel_PLL_is_valid(struct drm_device *dev,
466 const intel_limit_t *limit,
467 const intel_clock_t *clock)
468 {
469 if (clock->n < limit->n.min || limit->n.max < clock->n)
470 INTELPllInvalid("n out of range\n");
471 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
472 INTELPllInvalid("p1 out of range\n");
473 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
474 INTELPllInvalid("m2 out of range\n");
475 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
476 INTELPllInvalid("m1 out of range\n");
477
478 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
479 if (clock->m1 <= clock->m2)
480 INTELPllInvalid("m1 <= m2\n");
481
482 if (!IS_VALLEYVIEW(dev)) {
483 if (clock->p < limit->p.min || limit->p.max < clock->p)
484 INTELPllInvalid("p out of range\n");
485 if (clock->m < limit->m.min || limit->m.max < clock->m)
486 INTELPllInvalid("m out of range\n");
487 }
488
489 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
490 INTELPllInvalid("vco out of range\n");
491 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
492 * connector, etc., rather than just a single range.
493 */
494 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
495 INTELPllInvalid("dot out of range\n");
496
497 return true;
498 }
499
500 static bool
501 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
502 int target, int refclk, intel_clock_t *match_clock,
503 intel_clock_t *best_clock)
504 {
505 struct drm_device *dev = crtc->dev;
506 intel_clock_t clock;
507 int err = target;
508
509 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
510 /*
511 * For LVDS just rely on its current settings for dual-channel.
512 * We haven't figured out how to reliably set up different
513 * single/dual channel state, if we even can.
514 */
515 if (intel_is_dual_link_lvds(dev))
516 clock.p2 = limit->p2.p2_fast;
517 else
518 clock.p2 = limit->p2.p2_slow;
519 } else {
520 if (target < limit->p2.dot_limit)
521 clock.p2 = limit->p2.p2_slow;
522 else
523 clock.p2 = limit->p2.p2_fast;
524 }
525
526 memset(best_clock, 0, sizeof(*best_clock));
527
528 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
529 clock.m1++) {
530 for (clock.m2 = limit->m2.min;
531 clock.m2 <= limit->m2.max; clock.m2++) {
532 if (clock.m2 >= clock.m1)
533 break;
534 for (clock.n = limit->n.min;
535 clock.n <= limit->n.max; clock.n++) {
536 for (clock.p1 = limit->p1.min;
537 clock.p1 <= limit->p1.max; clock.p1++) {
538 int this_err;
539
540 i9xx_clock(refclk, &clock);
541 if (!intel_PLL_is_valid(dev, limit,
542 &clock))
543 continue;
544 if (match_clock &&
545 clock.p != match_clock->p)
546 continue;
547
548 this_err = abs(clock.dot - target);
549 if (this_err < err) {
550 *best_clock = clock;
551 err = this_err;
552 }
553 }
554 }
555 }
556 }
557
558 return (err != target);
559 }
560
561 static bool
562 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
563 int target, int refclk, intel_clock_t *match_clock,
564 intel_clock_t *best_clock)
565 {
566 struct drm_device *dev = crtc->dev;
567 intel_clock_t clock;
568 int err = target;
569
570 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
571 /*
572 * For LVDS just rely on its current settings for dual-channel.
573 * We haven't figured out how to reliably set up different
574 * single/dual channel state, if we even can.
575 */
576 if (intel_is_dual_link_lvds(dev))
577 clock.p2 = limit->p2.p2_fast;
578 else
579 clock.p2 = limit->p2.p2_slow;
580 } else {
581 if (target < limit->p2.dot_limit)
582 clock.p2 = limit->p2.p2_slow;
583 else
584 clock.p2 = limit->p2.p2_fast;
585 }
586
587 memset(best_clock, 0, sizeof(*best_clock));
588
589 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
590 clock.m1++) {
591 for (clock.m2 = limit->m2.min;
592 clock.m2 <= limit->m2.max; clock.m2++) {
593 for (clock.n = limit->n.min;
594 clock.n <= limit->n.max; clock.n++) {
595 for (clock.p1 = limit->p1.min;
596 clock.p1 <= limit->p1.max; clock.p1++) {
597 int this_err;
598
599 pineview_clock(refclk, &clock);
600 if (!intel_PLL_is_valid(dev, limit,
601 &clock))
602 continue;
603 if (match_clock &&
604 clock.p != match_clock->p)
605 continue;
606
607 this_err = abs(clock.dot - target);
608 if (this_err < err) {
609 *best_clock = clock;
610 err = this_err;
611 }
612 }
613 }
614 }
615 }
616
617 return (err != target);
618 }
619
620 static bool
621 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
622 int target, int refclk, intel_clock_t *match_clock,
623 intel_clock_t *best_clock)
624 {
625 struct drm_device *dev = crtc->dev;
626 intel_clock_t clock;
627 int max_n;
628 bool found;
629 /* approximately equals target * 0.00585 */
630 int err_most = (target >> 8) + (target >> 9);
631 found = false;
632
633 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
634 if (intel_is_dual_link_lvds(dev))
635 clock.p2 = limit->p2.p2_fast;
636 else
637 clock.p2 = limit->p2.p2_slow;
638 } else {
639 if (target < limit->p2.dot_limit)
640 clock.p2 = limit->p2.p2_slow;
641 else
642 clock.p2 = limit->p2.p2_fast;
643 }
644
645 memset(best_clock, 0, sizeof(*best_clock));
646 max_n = limit->n.max;
647 /* based on hardware requirement, prefer smaller n to precision */
648 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
649 /* based on hardware requirement, prefere larger m1,m2 */
650 for (clock.m1 = limit->m1.max;
651 clock.m1 >= limit->m1.min; clock.m1--) {
652 for (clock.m2 = limit->m2.max;
653 clock.m2 >= limit->m2.min; clock.m2--) {
654 for (clock.p1 = limit->p1.max;
655 clock.p1 >= limit->p1.min; clock.p1--) {
656 int this_err;
657
658 i9xx_clock(refclk, &clock);
659 if (!intel_PLL_is_valid(dev, limit,
660 &clock))
661 continue;
662
663 this_err = abs(clock.dot - target);
664 if (this_err < err_most) {
665 *best_clock = clock;
666 err_most = this_err;
667 max_n = clock.n;
668 found = true;
669 }
670 }
671 }
672 }
673 }
674 return found;
675 }
676
677 static bool
678 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
679 int target, int refclk, intel_clock_t *match_clock,
680 intel_clock_t *best_clock)
681 {
682 struct drm_device *dev = crtc->dev;
683 intel_clock_t clock;
684 unsigned int bestppm = 1000000;
685 /* min update 19.2 MHz */
686 int max_n = min(limit->n.max, refclk / 19200);
687 bool found = false;
688
689 target *= 5; /* fast clock */
690
691 memset(best_clock, 0, sizeof(*best_clock));
692
693 /* based on hardware requirement, prefer smaller n to precision */
694 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
695 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
696 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
697 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
698 clock.p = clock.p1 * clock.p2;
699 /* based on hardware requirement, prefer bigger m1,m2 values */
700 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
701 unsigned int ppm, diff;
702
703 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
704 refclk * clock.m1);
705
706 vlv_clock(refclk, &clock);
707
708 if (!intel_PLL_is_valid(dev, limit,
709 &clock))
710 continue;
711
712 diff = abs(clock.dot - target);
713 ppm = div_u64(1000000ULL * diff, target);
714
715 if (ppm < 100 && clock.p > best_clock->p) {
716 bestppm = 0;
717 *best_clock = clock;
718 found = true;
719 }
720
721 if (bestppm >= 10 && ppm < bestppm - 10) {
722 bestppm = ppm;
723 *best_clock = clock;
724 found = true;
725 }
726 }
727 }
728 }
729 }
730
731 return found;
732 }
733
734 bool intel_crtc_active(struct drm_crtc *crtc)
735 {
736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738 /* Be paranoid as we can arrive here with only partial
739 * state retrieved from the hardware during setup.
740 *
741 * We can ditch the adjusted_mode.crtc_clock check as soon
742 * as Haswell has gained clock readout/fastboot support.
743 *
744 * We can ditch the crtc->fb check as soon as we can
745 * properly reconstruct framebuffers.
746 */
747 return intel_crtc->active && crtc->fb &&
748 intel_crtc->config.adjusted_mode.crtc_clock;
749 }
750
751 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
752 enum pipe pipe)
753 {
754 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756
757 return intel_crtc->config.cpu_transcoder;
758 }
759
760 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762 struct drm_i915_private *dev_priv = dev->dev_private;
763 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
764
765 frame = I915_READ(frame_reg);
766
767 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
768 DRM_DEBUG_KMS("vblank wait timed out\n");
769 }
770
771 /**
772 * intel_wait_for_vblank - wait for vblank on a given pipe
773 * @dev: drm device
774 * @pipe: pipe to wait for
775 *
776 * Wait for vblank to occur on a given pipe. Needed for various bits of
777 * mode setting code.
778 */
779 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
780 {
781 struct drm_i915_private *dev_priv = dev->dev_private;
782 int pipestat_reg = PIPESTAT(pipe);
783
784 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785 g4x_wait_for_vblank(dev, pipe);
786 return;
787 }
788
789 /* Clear existing vblank status. Note this will clear any other
790 * sticky status fields as well.
791 *
792 * This races with i915_driver_irq_handler() with the result
793 * that either function could miss a vblank event. Here it is not
794 * fatal, as we will either wait upon the next vblank interrupt or
795 * timeout. Generally speaking intel_wait_for_vblank() is only
796 * called during modeset at which time the GPU should be idle and
797 * should *not* be performing page flips and thus not waiting on
798 * vblanks...
799 * Currently, the result of us stealing a vblank from the irq
800 * handler is that a single frame will be skipped during swapbuffers.
801 */
802 I915_WRITE(pipestat_reg,
803 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
804
805 /* Wait for vblank interrupt bit to set */
806 if (wait_for(I915_READ(pipestat_reg) &
807 PIPE_VBLANK_INTERRUPT_STATUS,
808 50))
809 DRM_DEBUG_KMS("vblank wait timed out\n");
810 }
811
812 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
813 {
814 struct drm_i915_private *dev_priv = dev->dev_private;
815 u32 reg = PIPEDSL(pipe);
816 u32 line1, line2;
817 u32 line_mask;
818
819 if (IS_GEN2(dev))
820 line_mask = DSL_LINEMASK_GEN2;
821 else
822 line_mask = DSL_LINEMASK_GEN3;
823
824 line1 = I915_READ(reg) & line_mask;
825 mdelay(5);
826 line2 = I915_READ(reg) & line_mask;
827
828 return line1 == line2;
829 }
830
831 /*
832 * intel_wait_for_pipe_off - wait for pipe to turn off
833 * @dev: drm device
834 * @pipe: pipe to wait for
835 *
836 * After disabling a pipe, we can't wait for vblank in the usual way,
837 * spinning on the vblank interrupt status bit, since we won't actually
838 * see an interrupt when the pipe is disabled.
839 *
840 * On Gen4 and above:
841 * wait for the pipe register state bit to turn off
842 *
843 * Otherwise:
844 * wait for the display line value to settle (it usually
845 * ends up stopping at the start of the next frame).
846 *
847 */
848 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
849 {
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
852 pipe);
853
854 if (INTEL_INFO(dev)->gen >= 4) {
855 int reg = PIPECONF(cpu_transcoder);
856
857 /* Wait for the Pipe State to go off */
858 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
859 100))
860 WARN(1, "pipe_off wait timed out\n");
861 } else {
862 /* Wait for the display line to settle */
863 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
864 WARN(1, "pipe_off wait timed out\n");
865 }
866 }
867
868 /*
869 * ibx_digital_port_connected - is the specified port connected?
870 * @dev_priv: i915 private structure
871 * @port: the port to test
872 *
873 * Returns true if @port is connected, false otherwise.
874 */
875 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
876 struct intel_digital_port *port)
877 {
878 u32 bit;
879
880 if (HAS_PCH_IBX(dev_priv->dev)) {
881 switch(port->port) {
882 case PORT_B:
883 bit = SDE_PORTB_HOTPLUG;
884 break;
885 case PORT_C:
886 bit = SDE_PORTC_HOTPLUG;
887 break;
888 case PORT_D:
889 bit = SDE_PORTD_HOTPLUG;
890 break;
891 default:
892 return true;
893 }
894 } else {
895 switch(port->port) {
896 case PORT_B:
897 bit = SDE_PORTB_HOTPLUG_CPT;
898 break;
899 case PORT_C:
900 bit = SDE_PORTC_HOTPLUG_CPT;
901 break;
902 case PORT_D:
903 bit = SDE_PORTD_HOTPLUG_CPT;
904 break;
905 default:
906 return true;
907 }
908 }
909
910 return I915_READ(SDEISR) & bit;
911 }
912
913 static const char *state_string(bool enabled)
914 {
915 return enabled ? "on" : "off";
916 }
917
918 /* Only for pre-ILK configs */
919 void assert_pll(struct drm_i915_private *dev_priv,
920 enum pipe pipe, bool state)
921 {
922 int reg;
923 u32 val;
924 bool cur_state;
925
926 reg = DPLL(pipe);
927 val = I915_READ(reg);
928 cur_state = !!(val & DPLL_VCO_ENABLE);
929 WARN(cur_state != state,
930 "PLL state assertion failure (expected %s, current %s)\n",
931 state_string(state), state_string(cur_state));
932 }
933
934 /* XXX: the dsi pll is shared between MIPI DSI ports */
935 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
936 {
937 u32 val;
938 bool cur_state;
939
940 mutex_lock(&dev_priv->dpio_lock);
941 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
942 mutex_unlock(&dev_priv->dpio_lock);
943
944 cur_state = val & DSI_PLL_VCO_EN;
945 WARN(cur_state != state,
946 "DSI PLL state assertion failure (expected %s, current %s)\n",
947 state_string(state), state_string(cur_state));
948 }
949 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
950 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
951
952 struct intel_shared_dpll *
953 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
954 {
955 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
956
957 if (crtc->config.shared_dpll < 0)
958 return NULL;
959
960 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
961 }
962
963 /* For ILK+ */
964 void assert_shared_dpll(struct drm_i915_private *dev_priv,
965 struct intel_shared_dpll *pll,
966 bool state)
967 {
968 bool cur_state;
969 struct intel_dpll_hw_state hw_state;
970
971 if (HAS_PCH_LPT(dev_priv->dev)) {
972 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
973 return;
974 }
975
976 if (WARN (!pll,
977 "asserting DPLL %s with no DPLL\n", state_string(state)))
978 return;
979
980 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
981 WARN(cur_state != state,
982 "%s assertion failure (expected %s, current %s)\n",
983 pll->name, state_string(state), state_string(cur_state));
984 }
985
986 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
987 enum pipe pipe, bool state)
988 {
989 int reg;
990 u32 val;
991 bool cur_state;
992 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
993 pipe);
994
995 if (HAS_DDI(dev_priv->dev)) {
996 /* DDI does not have a specific FDI_TX register */
997 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
998 val = I915_READ(reg);
999 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1000 } else {
1001 reg = FDI_TX_CTL(pipe);
1002 val = I915_READ(reg);
1003 cur_state = !!(val & FDI_TX_ENABLE);
1004 }
1005 WARN(cur_state != state,
1006 "FDI TX state assertion failure (expected %s, current %s)\n",
1007 state_string(state), state_string(cur_state));
1008 }
1009 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1010 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1011
1012 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1013 enum pipe pipe, bool state)
1014 {
1015 int reg;
1016 u32 val;
1017 bool cur_state;
1018
1019 reg = FDI_RX_CTL(pipe);
1020 val = I915_READ(reg);
1021 cur_state = !!(val & FDI_RX_ENABLE);
1022 WARN(cur_state != state,
1023 "FDI RX state assertion failure (expected %s, current %s)\n",
1024 state_string(state), state_string(cur_state));
1025 }
1026 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1027 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1028
1029 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1030 enum pipe pipe)
1031 {
1032 int reg;
1033 u32 val;
1034
1035 /* ILK FDI PLL is always enabled */
1036 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1037 return;
1038
1039 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1040 if (HAS_DDI(dev_priv->dev))
1041 return;
1042
1043 reg = FDI_TX_CTL(pipe);
1044 val = I915_READ(reg);
1045 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1046 }
1047
1048 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1049 enum pipe pipe, bool state)
1050 {
1051 int reg;
1052 u32 val;
1053 bool cur_state;
1054
1055 reg = FDI_RX_CTL(pipe);
1056 val = I915_READ(reg);
1057 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1058 WARN(cur_state != state,
1059 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1060 state_string(state), state_string(cur_state));
1061 }
1062
1063 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1064 enum pipe pipe)
1065 {
1066 int pp_reg, lvds_reg;
1067 u32 val;
1068 enum pipe panel_pipe = PIPE_A;
1069 bool locked = true;
1070
1071 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1072 pp_reg = PCH_PP_CONTROL;
1073 lvds_reg = PCH_LVDS;
1074 } else {
1075 pp_reg = PP_CONTROL;
1076 lvds_reg = LVDS;
1077 }
1078
1079 val = I915_READ(pp_reg);
1080 if (!(val & PANEL_POWER_ON) ||
1081 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1082 locked = false;
1083
1084 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1085 panel_pipe = PIPE_B;
1086
1087 WARN(panel_pipe == pipe && locked,
1088 "panel assertion failure, pipe %c regs locked\n",
1089 pipe_name(pipe));
1090 }
1091
1092 static void assert_cursor(struct drm_i915_private *dev_priv,
1093 enum pipe pipe, bool state)
1094 {
1095 struct drm_device *dev = dev_priv->dev;
1096 bool cur_state;
1097
1098 if (IS_845G(dev) || IS_I865G(dev))
1099 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1100 else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1101 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1102 else
1103 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1104
1105 WARN(cur_state != state,
1106 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1107 pipe_name(pipe), state_string(state), state_string(cur_state));
1108 }
1109 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1110 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1111
1112 void assert_pipe(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114 {
1115 int reg;
1116 u32 val;
1117 bool cur_state;
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
1120
1121 /* if we need the pipe A quirk it must be always on */
1122 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1123 state = true;
1124
1125 if (!intel_display_power_enabled(dev_priv,
1126 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1127 cur_state = false;
1128 } else {
1129 reg = PIPECONF(cpu_transcoder);
1130 val = I915_READ(reg);
1131 cur_state = !!(val & PIPECONF_ENABLE);
1132 }
1133
1134 WARN(cur_state != state,
1135 "pipe %c assertion failure (expected %s, current %s)\n",
1136 pipe_name(pipe), state_string(state), state_string(cur_state));
1137 }
1138
1139 static void assert_plane(struct drm_i915_private *dev_priv,
1140 enum plane plane, bool state)
1141 {
1142 int reg;
1143 u32 val;
1144 bool cur_state;
1145
1146 reg = DSPCNTR(plane);
1147 val = I915_READ(reg);
1148 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1149 WARN(cur_state != state,
1150 "plane %c assertion failure (expected %s, current %s)\n",
1151 plane_name(plane), state_string(state), state_string(cur_state));
1152 }
1153
1154 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1155 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1156
1157 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1158 enum pipe pipe)
1159 {
1160 struct drm_device *dev = dev_priv->dev;
1161 int reg, i;
1162 u32 val;
1163 int cur_pipe;
1164
1165 /* Primary planes are fixed to pipes on gen4+ */
1166 if (INTEL_INFO(dev)->gen >= 4) {
1167 reg = DSPCNTR(pipe);
1168 val = I915_READ(reg);
1169 WARN(val & DISPLAY_PLANE_ENABLE,
1170 "plane %c assertion failure, should be disabled but not\n",
1171 plane_name(pipe));
1172 return;
1173 }
1174
1175 /* Need to check both planes against the pipe */
1176 for_each_pipe(i) {
1177 reg = DSPCNTR(i);
1178 val = I915_READ(reg);
1179 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1180 DISPPLANE_SEL_PIPE_SHIFT;
1181 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1182 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1183 plane_name(i), pipe_name(pipe));
1184 }
1185 }
1186
1187 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1188 enum pipe pipe)
1189 {
1190 struct drm_device *dev = dev_priv->dev;
1191 int reg, sprite;
1192 u32 val;
1193
1194 if (IS_VALLEYVIEW(dev)) {
1195 for_each_sprite(pipe, sprite) {
1196 reg = SPCNTR(pipe, sprite);
1197 val = I915_READ(reg);
1198 WARN(val & SP_ENABLE,
1199 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1200 sprite_name(pipe, sprite), pipe_name(pipe));
1201 }
1202 } else if (INTEL_INFO(dev)->gen >= 7) {
1203 reg = SPRCTL(pipe);
1204 val = I915_READ(reg);
1205 WARN(val & SPRITE_ENABLE,
1206 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1207 plane_name(pipe), pipe_name(pipe));
1208 } else if (INTEL_INFO(dev)->gen >= 5) {
1209 reg = DVSCNTR(pipe);
1210 val = I915_READ(reg);
1211 WARN(val & DVS_ENABLE,
1212 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1213 plane_name(pipe), pipe_name(pipe));
1214 }
1215 }
1216
1217 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1218 {
1219 u32 val;
1220 bool enabled;
1221
1222 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1223
1224 val = I915_READ(PCH_DREF_CONTROL);
1225 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226 DREF_SUPERSPREAD_SOURCE_MASK));
1227 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231 enum pipe pipe)
1232 {
1233 int reg;
1234 u32 val;
1235 bool enabled;
1236
1237 reg = PCH_TRANSCONF(pipe);
1238 val = I915_READ(reg);
1239 enabled = !!(val & TRANS_ENABLE);
1240 WARN(enabled,
1241 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242 pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246 enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248 if ((val & DP_PORT_EN) == 0)
1249 return false;
1250
1251 if (HAS_PCH_CPT(dev_priv->dev)) {
1252 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255 return false;
1256 } else {
1257 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258 return false;
1259 }
1260 return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264 enum pipe pipe, u32 val)
1265 {
1266 if ((val & SDVO_ENABLE) == 0)
1267 return false;
1268
1269 if (HAS_PCH_CPT(dev_priv->dev)) {
1270 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271 return false;
1272 } else {
1273 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274 return false;
1275 }
1276 return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280 enum pipe pipe, u32 val)
1281 {
1282 if ((val & LVDS_PORT_EN) == 0)
1283 return false;
1284
1285 if (HAS_PCH_CPT(dev_priv->dev)) {
1286 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287 return false;
1288 } else {
1289 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290 return false;
1291 }
1292 return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe, u32 val)
1297 {
1298 if ((val & ADPA_DAC_ENABLE) == 0)
1299 return false;
1300 if (HAS_PCH_CPT(dev_priv->dev)) {
1301 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302 return false;
1303 } else {
1304 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305 return false;
1306 }
1307 return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe, int reg, u32 port_sel)
1312 {
1313 u32 val = I915_READ(reg);
1314 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316 reg, pipe_name(pipe));
1317
1318 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319 && (val & DP_PIPEB_SELECT),
1320 "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324 enum pipe pipe, int reg)
1325 {
1326 u32 val = I915_READ(reg);
1327 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329 reg, pipe_name(pipe));
1330
1331 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332 && (val & SDVO_PIPE_B_SELECT),
1333 "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337 enum pipe pipe)
1338 {
1339 int reg;
1340 u32 val;
1341
1342 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346 reg = PCH_ADPA;
1347 val = I915_READ(reg);
1348 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349 "PCH VGA enabled on transcoder %c, should be disabled\n",
1350 pipe_name(pipe));
1351
1352 reg = PCH_LVDS;
1353 val = I915_READ(reg);
1354 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356 pipe_name(pipe));
1357
1358 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void intel_init_dpio(struct drm_device *dev)
1364 {
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367 if (!IS_VALLEYVIEW(dev))
1368 return;
1369
1370 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1371 }
1372
1373 static void intel_reset_dpio(struct drm_device *dev)
1374 {
1375 struct drm_i915_private *dev_priv = dev->dev_private;
1376
1377 if (!IS_VALLEYVIEW(dev))
1378 return;
1379
1380 /*
1381 * Enable the CRI clock source so we can get at the display and the
1382 * reference clock for VGA hotplug / manual detection.
1383 */
1384 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1385 DPLL_REFA_CLK_ENABLE_VLV |
1386 DPLL_INTEGRATED_CRI_CLK_VLV);
1387
1388 /*
1389 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1390 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1391 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1392 * b. The other bits such as sfr settings / modesel may all be set
1393 * to 0.
1394 *
1395 * This should only be done on init and resume from S3 with both
1396 * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1397 */
1398 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1399 }
1400
1401 static void vlv_enable_pll(struct intel_crtc *crtc)
1402 {
1403 struct drm_device *dev = crtc->base.dev;
1404 struct drm_i915_private *dev_priv = dev->dev_private;
1405 int reg = DPLL(crtc->pipe);
1406 u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408 assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410 /* No really, not for ILK+ */
1411 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1412
1413 /* PLL is protected by panel, make sure we can write it */
1414 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1415 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417 I915_WRITE(reg, dpll);
1418 POSTING_READ(reg);
1419 udelay(150);
1420
1421 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1422 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1423
1424 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1425 POSTING_READ(DPLL_MD(crtc->pipe));
1426
1427 /* We do this three times for luck */
1428 I915_WRITE(reg, dpll);
1429 POSTING_READ(reg);
1430 udelay(150); /* wait for warmup */
1431 I915_WRITE(reg, dpll);
1432 POSTING_READ(reg);
1433 udelay(150); /* wait for warmup */
1434 I915_WRITE(reg, dpll);
1435 POSTING_READ(reg);
1436 udelay(150); /* wait for warmup */
1437 }
1438
1439 static void i9xx_enable_pll(struct intel_crtc *crtc)
1440 {
1441 struct drm_device *dev = crtc->base.dev;
1442 struct drm_i915_private *dev_priv = dev->dev_private;
1443 int reg = DPLL(crtc->pipe);
1444 u32 dpll = crtc->config.dpll_hw_state.dpll;
1445
1446 assert_pipe_disabled(dev_priv, crtc->pipe);
1447
1448 /* No really, not for ILK+ */
1449 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1450
1451 /* PLL is protected by panel, make sure we can write it */
1452 if (IS_MOBILE(dev) && !IS_I830(dev))
1453 assert_panel_unlocked(dev_priv, crtc->pipe);
1454
1455 I915_WRITE(reg, dpll);
1456
1457 /* Wait for the clocks to stabilize. */
1458 POSTING_READ(reg);
1459 udelay(150);
1460
1461 if (INTEL_INFO(dev)->gen >= 4) {
1462 I915_WRITE(DPLL_MD(crtc->pipe),
1463 crtc->config.dpll_hw_state.dpll_md);
1464 } else {
1465 /* The pixel multiplier can only be updated once the
1466 * DPLL is enabled and the clocks are stable.
1467 *
1468 * So write it again.
1469 */
1470 I915_WRITE(reg, dpll);
1471 }
1472
1473 /* We do this three times for luck */
1474 I915_WRITE(reg, dpll);
1475 POSTING_READ(reg);
1476 udelay(150); /* wait for warmup */
1477 I915_WRITE(reg, dpll);
1478 POSTING_READ(reg);
1479 udelay(150); /* wait for warmup */
1480 I915_WRITE(reg, dpll);
1481 POSTING_READ(reg);
1482 udelay(150); /* wait for warmup */
1483 }
1484
1485 /**
1486 * i9xx_disable_pll - disable a PLL
1487 * @dev_priv: i915 private structure
1488 * @pipe: pipe PLL to disable
1489 *
1490 * Disable the PLL for @pipe, making sure the pipe is off first.
1491 *
1492 * Note! This is for pre-ILK only.
1493 */
1494 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1495 {
1496 /* Don't disable pipe A or pipe A PLLs if needed */
1497 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1498 return;
1499
1500 /* Make sure the pipe isn't still relying on us */
1501 assert_pipe_disabled(dev_priv, pipe);
1502
1503 I915_WRITE(DPLL(pipe), 0);
1504 POSTING_READ(DPLL(pipe));
1505 }
1506
1507 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1508 {
1509 u32 val = 0;
1510
1511 /* Make sure the pipe isn't still relying on us */
1512 assert_pipe_disabled(dev_priv, pipe);
1513
1514 /*
1515 * Leave integrated clock source and reference clock enabled for pipe B.
1516 * The latter is needed for VGA hotplug / manual detection.
1517 */
1518 if (pipe == PIPE_B)
1519 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1520 I915_WRITE(DPLL(pipe), val);
1521 POSTING_READ(DPLL(pipe));
1522 }
1523
1524 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1525 struct intel_digital_port *dport)
1526 {
1527 u32 port_mask;
1528
1529 switch (dport->port) {
1530 case PORT_B:
1531 port_mask = DPLL_PORTB_READY_MASK;
1532 break;
1533 case PORT_C:
1534 port_mask = DPLL_PORTC_READY_MASK;
1535 break;
1536 default:
1537 BUG();
1538 }
1539
1540 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1541 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1542 port_name(dport->port), I915_READ(DPLL(0)));
1543 }
1544
1545 /**
1546 * ironlake_enable_shared_dpll - enable PCH PLL
1547 * @dev_priv: i915 private structure
1548 * @pipe: pipe PLL to enable
1549 *
1550 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1551 * drives the transcoder clock.
1552 */
1553 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1554 {
1555 struct drm_device *dev = crtc->base.dev;
1556 struct drm_i915_private *dev_priv = dev->dev_private;
1557 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1558
1559 /* PCH PLLs only available on ILK, SNB and IVB */
1560 BUG_ON(INTEL_INFO(dev)->gen < 5);
1561 if (WARN_ON(pll == NULL))
1562 return;
1563
1564 if (WARN_ON(pll->refcount == 0))
1565 return;
1566
1567 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1568 pll->name, pll->active, pll->on,
1569 crtc->base.base.id);
1570
1571 if (pll->active++) {
1572 WARN_ON(!pll->on);
1573 assert_shared_dpll_enabled(dev_priv, pll);
1574 return;
1575 }
1576 WARN_ON(pll->on);
1577
1578 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1579 pll->enable(dev_priv, pll);
1580 pll->on = true;
1581 }
1582
1583 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1584 {
1585 struct drm_device *dev = crtc->base.dev;
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1588
1589 /* PCH only available on ILK+ */
1590 BUG_ON(INTEL_INFO(dev)->gen < 5);
1591 if (WARN_ON(pll == NULL))
1592 return;
1593
1594 if (WARN_ON(pll->refcount == 0))
1595 return;
1596
1597 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1598 pll->name, pll->active, pll->on,
1599 crtc->base.base.id);
1600
1601 if (WARN_ON(pll->active == 0)) {
1602 assert_shared_dpll_disabled(dev_priv, pll);
1603 return;
1604 }
1605
1606 assert_shared_dpll_enabled(dev_priv, pll);
1607 WARN_ON(!pll->on);
1608 if (--pll->active)
1609 return;
1610
1611 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1612 pll->disable(dev_priv, pll);
1613 pll->on = false;
1614 }
1615
1616 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1617 enum pipe pipe)
1618 {
1619 struct drm_device *dev = dev_priv->dev;
1620 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1622 uint32_t reg, val, pipeconf_val;
1623
1624 /* PCH only available on ILK+ */
1625 BUG_ON(INTEL_INFO(dev)->gen < 5);
1626
1627 /* Make sure PCH DPLL is enabled */
1628 assert_shared_dpll_enabled(dev_priv,
1629 intel_crtc_to_shared_dpll(intel_crtc));
1630
1631 /* FDI must be feeding us bits for PCH ports */
1632 assert_fdi_tx_enabled(dev_priv, pipe);
1633 assert_fdi_rx_enabled(dev_priv, pipe);
1634
1635 if (HAS_PCH_CPT(dev)) {
1636 /* Workaround: Set the timing override bit before enabling the
1637 * pch transcoder. */
1638 reg = TRANS_CHICKEN2(pipe);
1639 val = I915_READ(reg);
1640 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1641 I915_WRITE(reg, val);
1642 }
1643
1644 reg = PCH_TRANSCONF(pipe);
1645 val = I915_READ(reg);
1646 pipeconf_val = I915_READ(PIPECONF(pipe));
1647
1648 if (HAS_PCH_IBX(dev_priv->dev)) {
1649 /*
1650 * make the BPC in transcoder be consistent with
1651 * that in pipeconf reg.
1652 */
1653 val &= ~PIPECONF_BPC_MASK;
1654 val |= pipeconf_val & PIPECONF_BPC_MASK;
1655 }
1656
1657 val &= ~TRANS_INTERLACE_MASK;
1658 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1659 if (HAS_PCH_IBX(dev_priv->dev) &&
1660 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1661 val |= TRANS_LEGACY_INTERLACED_ILK;
1662 else
1663 val |= TRANS_INTERLACED;
1664 else
1665 val |= TRANS_PROGRESSIVE;
1666
1667 I915_WRITE(reg, val | TRANS_ENABLE);
1668 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1669 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1670 }
1671
1672 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1673 enum transcoder cpu_transcoder)
1674 {
1675 u32 val, pipeconf_val;
1676
1677 /* PCH only available on ILK+ */
1678 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1679
1680 /* FDI must be feeding us bits for PCH ports */
1681 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1682 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1683
1684 /* Workaround: set timing override bit. */
1685 val = I915_READ(_TRANSA_CHICKEN2);
1686 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687 I915_WRITE(_TRANSA_CHICKEN2, val);
1688
1689 val = TRANS_ENABLE;
1690 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1691
1692 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1693 PIPECONF_INTERLACED_ILK)
1694 val |= TRANS_INTERLACED;
1695 else
1696 val |= TRANS_PROGRESSIVE;
1697
1698 I915_WRITE(LPT_TRANSCONF, val);
1699 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1700 DRM_ERROR("Failed to enable PCH transcoder\n");
1701 }
1702
1703 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1704 enum pipe pipe)
1705 {
1706 struct drm_device *dev = dev_priv->dev;
1707 uint32_t reg, val;
1708
1709 /* FDI relies on the transcoder */
1710 assert_fdi_tx_disabled(dev_priv, pipe);
1711 assert_fdi_rx_disabled(dev_priv, pipe);
1712
1713 /* Ports must be off as well */
1714 assert_pch_ports_disabled(dev_priv, pipe);
1715
1716 reg = PCH_TRANSCONF(pipe);
1717 val = I915_READ(reg);
1718 val &= ~TRANS_ENABLE;
1719 I915_WRITE(reg, val);
1720 /* wait for PCH transcoder off, transcoder state */
1721 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1722 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1723
1724 if (!HAS_PCH_IBX(dev)) {
1725 /* Workaround: Clear the timing override chicken bit again. */
1726 reg = TRANS_CHICKEN2(pipe);
1727 val = I915_READ(reg);
1728 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1729 I915_WRITE(reg, val);
1730 }
1731 }
1732
1733 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1734 {
1735 u32 val;
1736
1737 val = I915_READ(LPT_TRANSCONF);
1738 val &= ~TRANS_ENABLE;
1739 I915_WRITE(LPT_TRANSCONF, val);
1740 /* wait for PCH transcoder off, transcoder state */
1741 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1742 DRM_ERROR("Failed to disable PCH transcoder\n");
1743
1744 /* Workaround: clear timing override bit. */
1745 val = I915_READ(_TRANSA_CHICKEN2);
1746 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1747 I915_WRITE(_TRANSA_CHICKEN2, val);
1748 }
1749
1750 /**
1751 * intel_enable_pipe - enable a pipe, asserting requirements
1752 * @crtc: crtc responsible for the pipe
1753 *
1754 * Enable @crtc's pipe, making sure that various hardware specific requirements
1755 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1756 */
1757 static void intel_enable_pipe(struct intel_crtc *crtc)
1758 {
1759 struct drm_device *dev = crtc->base.dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 enum pipe pipe = crtc->pipe;
1762 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763 pipe);
1764 enum pipe pch_transcoder;
1765 int reg;
1766 u32 val;
1767
1768 assert_planes_disabled(dev_priv, pipe);
1769 assert_cursor_disabled(dev_priv, pipe);
1770 assert_sprites_disabled(dev_priv, pipe);
1771
1772 if (HAS_PCH_LPT(dev_priv->dev))
1773 pch_transcoder = TRANSCODER_A;
1774 else
1775 pch_transcoder = pipe;
1776
1777 /*
1778 * A pipe without a PLL won't actually be able to drive bits from
1779 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1780 * need the check.
1781 */
1782 if (!HAS_PCH_SPLIT(dev_priv->dev))
1783 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1784 assert_dsi_pll_enabled(dev_priv);
1785 else
1786 assert_pll_enabled(dev_priv, pipe);
1787 else {
1788 if (crtc->config.has_pch_encoder) {
1789 /* if driving the PCH, we need FDI enabled */
1790 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791 assert_fdi_tx_pll_enabled(dev_priv,
1792 (enum pipe) cpu_transcoder);
1793 }
1794 /* FIXME: assert CPU port conditions for SNB+ */
1795 }
1796
1797 reg = PIPECONF(cpu_transcoder);
1798 val = I915_READ(reg);
1799 if (val & PIPECONF_ENABLE) {
1800 WARN_ON(!(pipe == PIPE_A &&
1801 dev_priv->quirks & QUIRK_PIPEA_FORCE));
1802 return;
1803 }
1804
1805 I915_WRITE(reg, val | PIPECONF_ENABLE);
1806 POSTING_READ(reg);
1807
1808 /*
1809 * There's no guarantee the pipe will really start running now. It
1810 * depends on the Gen, the output type and the relative order between
1811 * pipe and plane enabling. Avoid waiting on HSW+ since it's not
1812 * necessary.
1813 * TODO: audit the previous gens.
1814 */
1815 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
1816 intel_wait_for_vblank(dev_priv->dev, pipe);
1817 }
1818
1819 /**
1820 * intel_disable_pipe - disable a pipe, asserting requirements
1821 * @dev_priv: i915 private structure
1822 * @pipe: pipe to disable
1823 *
1824 * Disable @pipe, making sure that various hardware specific requirements
1825 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1826 *
1827 * @pipe should be %PIPE_A or %PIPE_B.
1828 *
1829 * Will wait until the pipe has shut down before returning.
1830 */
1831 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1832 enum pipe pipe)
1833 {
1834 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1835 pipe);
1836 int reg;
1837 u32 val;
1838
1839 /*
1840 * Make sure planes won't keep trying to pump pixels to us,
1841 * or we might hang the display.
1842 */
1843 assert_planes_disabled(dev_priv, pipe);
1844 assert_cursor_disabled(dev_priv, pipe);
1845 assert_sprites_disabled(dev_priv, pipe);
1846
1847 /* Don't disable pipe A or pipe A PLLs if needed */
1848 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1849 return;
1850
1851 reg = PIPECONF(cpu_transcoder);
1852 val = I915_READ(reg);
1853 if ((val & PIPECONF_ENABLE) == 0)
1854 return;
1855
1856 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1857 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1858 }
1859
1860 /*
1861 * Plane regs are double buffered, going from enabled->disabled needs a
1862 * trigger in order to latch. The display address reg provides this.
1863 */
1864 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1865 enum plane plane)
1866 {
1867 struct drm_device *dev = dev_priv->dev;
1868 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1869
1870 I915_WRITE(reg, I915_READ(reg));
1871 POSTING_READ(reg);
1872 }
1873
1874 /**
1875 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
1876 * @dev_priv: i915 private structure
1877 * @plane: plane to enable
1878 * @pipe: pipe being fed
1879 *
1880 * Enable @plane on @pipe, making sure that @pipe is running first.
1881 */
1882 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
1883 enum plane plane, enum pipe pipe)
1884 {
1885 struct intel_crtc *intel_crtc =
1886 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1887 int reg;
1888 u32 val;
1889
1890 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1891 assert_pipe_enabled(dev_priv, pipe);
1892
1893 WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1894
1895 intel_crtc->primary_enabled = true;
1896
1897 reg = DSPCNTR(plane);
1898 val = I915_READ(reg);
1899 if (val & DISPLAY_PLANE_ENABLE)
1900 return;
1901
1902 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1903 intel_flush_primary_plane(dev_priv, plane);
1904 intel_wait_for_vblank(dev_priv->dev, pipe);
1905 }
1906
1907 /**
1908 * intel_disable_primary_hw_plane - disable the primary hardware plane
1909 * @dev_priv: i915 private structure
1910 * @plane: plane to disable
1911 * @pipe: pipe consuming the data
1912 *
1913 * Disable @plane; should be an independent operation.
1914 */
1915 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
1916 enum plane plane, enum pipe pipe)
1917 {
1918 struct intel_crtc *intel_crtc =
1919 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1920 int reg;
1921 u32 val;
1922
1923 WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1924
1925 intel_crtc->primary_enabled = false;
1926
1927 reg = DSPCNTR(plane);
1928 val = I915_READ(reg);
1929 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1930 return;
1931
1932 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1933 intel_flush_primary_plane(dev_priv, plane);
1934 intel_wait_for_vblank(dev_priv->dev, pipe);
1935 }
1936
1937 static bool need_vtd_wa(struct drm_device *dev)
1938 {
1939 #ifdef CONFIG_INTEL_IOMMU
1940 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1941 return true;
1942 #endif
1943 return false;
1944 }
1945
1946 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
1947 {
1948 int tile_height;
1949
1950 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
1951 return ALIGN(height, tile_height);
1952 }
1953
1954 int
1955 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1956 struct drm_i915_gem_object *obj,
1957 struct intel_ring_buffer *pipelined)
1958 {
1959 struct drm_i915_private *dev_priv = dev->dev_private;
1960 u32 alignment;
1961 int ret;
1962
1963 switch (obj->tiling_mode) {
1964 case I915_TILING_NONE:
1965 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1966 alignment = 128 * 1024;
1967 else if (INTEL_INFO(dev)->gen >= 4)
1968 alignment = 4 * 1024;
1969 else
1970 alignment = 64 * 1024;
1971 break;
1972 case I915_TILING_X:
1973 /* pin() will align the object as required by fence */
1974 alignment = 0;
1975 break;
1976 case I915_TILING_Y:
1977 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1978 return -EINVAL;
1979 default:
1980 BUG();
1981 }
1982
1983 /* Note that the w/a also requires 64 PTE of padding following the
1984 * bo. We currently fill all unused PTE with the shadow page and so
1985 * we should always have valid PTE following the scanout preventing
1986 * the VT-d warning.
1987 */
1988 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1989 alignment = 256 * 1024;
1990
1991 dev_priv->mm.interruptible = false;
1992 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1993 if (ret)
1994 goto err_interruptible;
1995
1996 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1997 * fence, whereas 965+ only requires a fence if using
1998 * framebuffer compression. For simplicity, we always install
1999 * a fence as the cost is not that onerous.
2000 */
2001 ret = i915_gem_object_get_fence(obj);
2002 if (ret)
2003 goto err_unpin;
2004
2005 i915_gem_object_pin_fence(obj);
2006
2007 dev_priv->mm.interruptible = true;
2008 return 0;
2009
2010 err_unpin:
2011 i915_gem_object_unpin_from_display_plane(obj);
2012 err_interruptible:
2013 dev_priv->mm.interruptible = true;
2014 return ret;
2015 }
2016
2017 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2018 {
2019 i915_gem_object_unpin_fence(obj);
2020 i915_gem_object_unpin_from_display_plane(obj);
2021 }
2022
2023 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2024 * is assumed to be a power-of-two. */
2025 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2026 unsigned int tiling_mode,
2027 unsigned int cpp,
2028 unsigned int pitch)
2029 {
2030 if (tiling_mode != I915_TILING_NONE) {
2031 unsigned int tile_rows, tiles;
2032
2033 tile_rows = *y / 8;
2034 *y %= 8;
2035
2036 tiles = *x / (512/cpp);
2037 *x %= 512/cpp;
2038
2039 return tile_rows * pitch * 8 + tiles * 4096;
2040 } else {
2041 unsigned int offset;
2042
2043 offset = *y * pitch + *x * cpp;
2044 *y = 0;
2045 *x = (offset & 4095) / cpp;
2046 return offset & -4096;
2047 }
2048 }
2049
2050 int intel_format_to_fourcc(int format)
2051 {
2052 switch (format) {
2053 case DISPPLANE_8BPP:
2054 return DRM_FORMAT_C8;
2055 case DISPPLANE_BGRX555:
2056 return DRM_FORMAT_XRGB1555;
2057 case DISPPLANE_BGRX565:
2058 return DRM_FORMAT_RGB565;
2059 default:
2060 case DISPPLANE_BGRX888:
2061 return DRM_FORMAT_XRGB8888;
2062 case DISPPLANE_RGBX888:
2063 return DRM_FORMAT_XBGR8888;
2064 case DISPPLANE_BGRX101010:
2065 return DRM_FORMAT_XRGB2101010;
2066 case DISPPLANE_RGBX101010:
2067 return DRM_FORMAT_XBGR2101010;
2068 }
2069 }
2070
2071 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2072 struct intel_plane_config *plane_config)
2073 {
2074 struct drm_device *dev = crtc->base.dev;
2075 struct drm_i915_gem_object *obj = NULL;
2076 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2077 u32 base = plane_config->base;
2078
2079 if (plane_config->size == 0)
2080 return false;
2081
2082 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2083 plane_config->size);
2084 if (!obj)
2085 return false;
2086
2087 if (plane_config->tiled) {
2088 obj->tiling_mode = I915_TILING_X;
2089 obj->stride = crtc->base.fb->pitches[0];
2090 }
2091
2092 mode_cmd.pixel_format = crtc->base.fb->pixel_format;
2093 mode_cmd.width = crtc->base.fb->width;
2094 mode_cmd.height = crtc->base.fb->height;
2095 mode_cmd.pitches[0] = crtc->base.fb->pitches[0];
2096
2097 mutex_lock(&dev->struct_mutex);
2098
2099 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.fb),
2100 &mode_cmd, obj)) {
2101 DRM_DEBUG_KMS("intel fb init failed\n");
2102 goto out_unref_obj;
2103 }
2104
2105 mutex_unlock(&dev->struct_mutex);
2106
2107 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2108 return true;
2109
2110 out_unref_obj:
2111 drm_gem_object_unreference(&obj->base);
2112 mutex_unlock(&dev->struct_mutex);
2113 return false;
2114 }
2115
2116 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2117 struct intel_plane_config *plane_config)
2118 {
2119 struct drm_device *dev = intel_crtc->base.dev;
2120 struct drm_crtc *c;
2121 struct intel_crtc *i;
2122 struct intel_framebuffer *fb;
2123
2124 if (!intel_crtc->base.fb)
2125 return;
2126
2127 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2128 return;
2129
2130 kfree(intel_crtc->base.fb);
2131 intel_crtc->base.fb = NULL;
2132
2133 /*
2134 * Failed to alloc the obj, check to see if we should share
2135 * an fb with another CRTC instead
2136 */
2137 list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
2138 i = to_intel_crtc(c);
2139
2140 if (c == &intel_crtc->base)
2141 continue;
2142
2143 if (!i->active || !c->fb)
2144 continue;
2145
2146 fb = to_intel_framebuffer(c->fb);
2147 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2148 drm_framebuffer_reference(c->fb);
2149 intel_crtc->base.fb = c->fb;
2150 break;
2151 }
2152 }
2153 }
2154
2155 static int i9xx_update_primary_plane(struct drm_crtc *crtc,
2156 struct drm_framebuffer *fb,
2157 int x, int y)
2158 {
2159 struct drm_device *dev = crtc->dev;
2160 struct drm_i915_private *dev_priv = dev->dev_private;
2161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162 struct intel_framebuffer *intel_fb;
2163 struct drm_i915_gem_object *obj;
2164 int plane = intel_crtc->plane;
2165 unsigned long linear_offset;
2166 u32 dspcntr;
2167 u32 reg;
2168
2169 switch (plane) {
2170 case 0:
2171 case 1:
2172 break;
2173 default:
2174 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2175 return -EINVAL;
2176 }
2177
2178 intel_fb = to_intel_framebuffer(fb);
2179 obj = intel_fb->obj;
2180
2181 reg = DSPCNTR(plane);
2182 dspcntr = I915_READ(reg);
2183 /* Mask out pixel format bits in case we change it */
2184 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2185 switch (fb->pixel_format) {
2186 case DRM_FORMAT_C8:
2187 dspcntr |= DISPPLANE_8BPP;
2188 break;
2189 case DRM_FORMAT_XRGB1555:
2190 case DRM_FORMAT_ARGB1555:
2191 dspcntr |= DISPPLANE_BGRX555;
2192 break;
2193 case DRM_FORMAT_RGB565:
2194 dspcntr |= DISPPLANE_BGRX565;
2195 break;
2196 case DRM_FORMAT_XRGB8888:
2197 case DRM_FORMAT_ARGB8888:
2198 dspcntr |= DISPPLANE_BGRX888;
2199 break;
2200 case DRM_FORMAT_XBGR8888:
2201 case DRM_FORMAT_ABGR8888:
2202 dspcntr |= DISPPLANE_RGBX888;
2203 break;
2204 case DRM_FORMAT_XRGB2101010:
2205 case DRM_FORMAT_ARGB2101010:
2206 dspcntr |= DISPPLANE_BGRX101010;
2207 break;
2208 case DRM_FORMAT_XBGR2101010:
2209 case DRM_FORMAT_ABGR2101010:
2210 dspcntr |= DISPPLANE_RGBX101010;
2211 break;
2212 default:
2213 BUG();
2214 }
2215
2216 if (INTEL_INFO(dev)->gen >= 4) {
2217 if (obj->tiling_mode != I915_TILING_NONE)
2218 dspcntr |= DISPPLANE_TILED;
2219 else
2220 dspcntr &= ~DISPPLANE_TILED;
2221 }
2222
2223 if (IS_G4X(dev))
2224 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2225
2226 I915_WRITE(reg, dspcntr);
2227
2228 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2229
2230 if (INTEL_INFO(dev)->gen >= 4) {
2231 intel_crtc->dspaddr_offset =
2232 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2233 fb->bits_per_pixel / 8,
2234 fb->pitches[0]);
2235 linear_offset -= intel_crtc->dspaddr_offset;
2236 } else {
2237 intel_crtc->dspaddr_offset = linear_offset;
2238 }
2239
2240 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2241 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2242 fb->pitches[0]);
2243 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2244 if (INTEL_INFO(dev)->gen >= 4) {
2245 I915_WRITE(DSPSURF(plane),
2246 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2247 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2248 I915_WRITE(DSPLINOFF(plane), linear_offset);
2249 } else
2250 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2251 POSTING_READ(reg);
2252
2253 return 0;
2254 }
2255
2256 static int ironlake_update_primary_plane(struct drm_crtc *crtc,
2257 struct drm_framebuffer *fb,
2258 int x, int y)
2259 {
2260 struct drm_device *dev = crtc->dev;
2261 struct drm_i915_private *dev_priv = dev->dev_private;
2262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263 struct intel_framebuffer *intel_fb;
2264 struct drm_i915_gem_object *obj;
2265 int plane = intel_crtc->plane;
2266 unsigned long linear_offset;
2267 u32 dspcntr;
2268 u32 reg;
2269
2270 switch (plane) {
2271 case 0:
2272 case 1:
2273 case 2:
2274 break;
2275 default:
2276 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2277 return -EINVAL;
2278 }
2279
2280 intel_fb = to_intel_framebuffer(fb);
2281 obj = intel_fb->obj;
2282
2283 reg = DSPCNTR(plane);
2284 dspcntr = I915_READ(reg);
2285 /* Mask out pixel format bits in case we change it */
2286 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2287 switch (fb->pixel_format) {
2288 case DRM_FORMAT_C8:
2289 dspcntr |= DISPPLANE_8BPP;
2290 break;
2291 case DRM_FORMAT_RGB565:
2292 dspcntr |= DISPPLANE_BGRX565;
2293 break;
2294 case DRM_FORMAT_XRGB8888:
2295 case DRM_FORMAT_ARGB8888:
2296 dspcntr |= DISPPLANE_BGRX888;
2297 break;
2298 case DRM_FORMAT_XBGR8888:
2299 case DRM_FORMAT_ABGR8888:
2300 dspcntr |= DISPPLANE_RGBX888;
2301 break;
2302 case DRM_FORMAT_XRGB2101010:
2303 case DRM_FORMAT_ARGB2101010:
2304 dspcntr |= DISPPLANE_BGRX101010;
2305 break;
2306 case DRM_FORMAT_XBGR2101010:
2307 case DRM_FORMAT_ABGR2101010:
2308 dspcntr |= DISPPLANE_RGBX101010;
2309 break;
2310 default:
2311 BUG();
2312 }
2313
2314 if (obj->tiling_mode != I915_TILING_NONE)
2315 dspcntr |= DISPPLANE_TILED;
2316 else
2317 dspcntr &= ~DISPPLANE_TILED;
2318
2319 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2321 else
2322 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2323
2324 I915_WRITE(reg, dspcntr);
2325
2326 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327 intel_crtc->dspaddr_offset =
2328 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2329 fb->bits_per_pixel / 8,
2330 fb->pitches[0]);
2331 linear_offset -= intel_crtc->dspaddr_offset;
2332
2333 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2334 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2335 fb->pitches[0]);
2336 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2337 I915_WRITE(DSPSURF(plane),
2338 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2339 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2340 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2341 } else {
2342 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2343 I915_WRITE(DSPLINOFF(plane), linear_offset);
2344 }
2345 POSTING_READ(reg);
2346
2347 return 0;
2348 }
2349
2350 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2351 static int
2352 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2353 int x, int y, enum mode_set_atomic state)
2354 {
2355 struct drm_device *dev = crtc->dev;
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358 if (dev_priv->display.disable_fbc)
2359 dev_priv->display.disable_fbc(dev);
2360 intel_increase_pllclock(crtc);
2361
2362 return dev_priv->display.update_primary_plane(crtc, fb, x, y);
2363 }
2364
2365 void intel_display_handle_reset(struct drm_device *dev)
2366 {
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 struct drm_crtc *crtc;
2369
2370 /*
2371 * Flips in the rings have been nuked by the reset,
2372 * so complete all pending flips so that user space
2373 * will get its events and not get stuck.
2374 *
2375 * Also update the base address of all primary
2376 * planes to the the last fb to make sure we're
2377 * showing the correct fb after a reset.
2378 *
2379 * Need to make two loops over the crtcs so that we
2380 * don't try to grab a crtc mutex before the
2381 * pending_flip_queue really got woken up.
2382 */
2383
2384 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2386 enum plane plane = intel_crtc->plane;
2387
2388 intel_prepare_page_flip(dev, plane);
2389 intel_finish_page_flip_plane(dev, plane);
2390 }
2391
2392 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394
2395 mutex_lock(&crtc->mutex);
2396 /*
2397 * FIXME: Once we have proper support for primary planes (and
2398 * disabling them without disabling the entire crtc) allow again
2399 * a NULL crtc->fb.
2400 */
2401 if (intel_crtc->active && crtc->fb)
2402 dev_priv->display.update_primary_plane(crtc,
2403 crtc->fb,
2404 crtc->x,
2405 crtc->y);
2406 mutex_unlock(&crtc->mutex);
2407 }
2408 }
2409
2410 static int
2411 intel_finish_fb(struct drm_framebuffer *old_fb)
2412 {
2413 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2414 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2415 bool was_interruptible = dev_priv->mm.interruptible;
2416 int ret;
2417
2418 /* Big Hammer, we also need to ensure that any pending
2419 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2420 * current scanout is retired before unpinning the old
2421 * framebuffer.
2422 *
2423 * This should only fail upon a hung GPU, in which case we
2424 * can safely continue.
2425 */
2426 dev_priv->mm.interruptible = false;
2427 ret = i915_gem_object_finish_gpu(obj);
2428 dev_priv->mm.interruptible = was_interruptible;
2429
2430 return ret;
2431 }
2432
2433 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2434 {
2435 struct drm_device *dev = crtc->dev;
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2438 unsigned long flags;
2439 bool pending;
2440
2441 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2442 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2443 return false;
2444
2445 spin_lock_irqsave(&dev->event_lock, flags);
2446 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2447 spin_unlock_irqrestore(&dev->event_lock, flags);
2448
2449 return pending;
2450 }
2451
2452 static int
2453 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2454 struct drm_framebuffer *fb)
2455 {
2456 struct drm_device *dev = crtc->dev;
2457 struct drm_i915_private *dev_priv = dev->dev_private;
2458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2459 struct drm_framebuffer *old_fb;
2460 int ret;
2461
2462 if (intel_crtc_has_pending_flip(crtc)) {
2463 DRM_ERROR("pipe is still busy with an old pageflip\n");
2464 return -EBUSY;
2465 }
2466
2467 /* no fb bound */
2468 if (!fb) {
2469 DRM_ERROR("No FB bound\n");
2470 return 0;
2471 }
2472
2473 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2474 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2475 plane_name(intel_crtc->plane),
2476 INTEL_INFO(dev)->num_pipes);
2477 return -EINVAL;
2478 }
2479
2480 mutex_lock(&dev->struct_mutex);
2481 ret = intel_pin_and_fence_fb_obj(dev,
2482 to_intel_framebuffer(fb)->obj,
2483 NULL);
2484 mutex_unlock(&dev->struct_mutex);
2485 if (ret != 0) {
2486 DRM_ERROR("pin & fence failed\n");
2487 return ret;
2488 }
2489
2490 /*
2491 * Update pipe size and adjust fitter if needed: the reason for this is
2492 * that in compute_mode_changes we check the native mode (not the pfit
2493 * mode) to see if we can flip rather than do a full mode set. In the
2494 * fastboot case, we'll flip, but if we don't update the pipesrc and
2495 * pfit state, we'll end up with a big fb scanned out into the wrong
2496 * sized surface.
2497 *
2498 * To fix this properly, we need to hoist the checks up into
2499 * compute_mode_changes (or above), check the actual pfit state and
2500 * whether the platform allows pfit disable with pipe active, and only
2501 * then update the pipesrc and pfit state, even on the flip path.
2502 */
2503 if (i915.fastboot) {
2504 const struct drm_display_mode *adjusted_mode =
2505 &intel_crtc->config.adjusted_mode;
2506
2507 I915_WRITE(PIPESRC(intel_crtc->pipe),
2508 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2509 (adjusted_mode->crtc_vdisplay - 1));
2510 if (!intel_crtc->config.pch_pfit.enabled &&
2511 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2512 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2513 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2514 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2515 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2516 }
2517 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2518 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2519 }
2520
2521 ret = dev_priv->display.update_primary_plane(crtc, fb, x, y);
2522 if (ret) {
2523 mutex_lock(&dev->struct_mutex);
2524 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2525 mutex_unlock(&dev->struct_mutex);
2526 DRM_ERROR("failed to update base address\n");
2527 return ret;
2528 }
2529
2530 old_fb = crtc->fb;
2531 crtc->fb = fb;
2532 crtc->x = x;
2533 crtc->y = y;
2534
2535 if (old_fb) {
2536 if (intel_crtc->active && old_fb != fb)
2537 intel_wait_for_vblank(dev, intel_crtc->pipe);
2538 mutex_lock(&dev->struct_mutex);
2539 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2540 mutex_unlock(&dev->struct_mutex);
2541 }
2542
2543 mutex_lock(&dev->struct_mutex);
2544 intel_update_fbc(dev);
2545 intel_edp_psr_update(dev);
2546 mutex_unlock(&dev->struct_mutex);
2547
2548 return 0;
2549 }
2550
2551 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2552 {
2553 struct drm_device *dev = crtc->dev;
2554 struct drm_i915_private *dev_priv = dev->dev_private;
2555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2556 int pipe = intel_crtc->pipe;
2557 u32 reg, temp;
2558
2559 /* enable normal train */
2560 reg = FDI_TX_CTL(pipe);
2561 temp = I915_READ(reg);
2562 if (IS_IVYBRIDGE(dev)) {
2563 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2564 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2565 } else {
2566 temp &= ~FDI_LINK_TRAIN_NONE;
2567 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2568 }
2569 I915_WRITE(reg, temp);
2570
2571 reg = FDI_RX_CTL(pipe);
2572 temp = I915_READ(reg);
2573 if (HAS_PCH_CPT(dev)) {
2574 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2575 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2576 } else {
2577 temp &= ~FDI_LINK_TRAIN_NONE;
2578 temp |= FDI_LINK_TRAIN_NONE;
2579 }
2580 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2581
2582 /* wait one idle pattern time */
2583 POSTING_READ(reg);
2584 udelay(1000);
2585
2586 /* IVB wants error correction enabled */
2587 if (IS_IVYBRIDGE(dev))
2588 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2589 FDI_FE_ERRC_ENABLE);
2590 }
2591
2592 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2593 {
2594 return crtc->base.enabled && crtc->active &&
2595 crtc->config.has_pch_encoder;
2596 }
2597
2598 static void ivb_modeset_global_resources(struct drm_device *dev)
2599 {
2600 struct drm_i915_private *dev_priv = dev->dev_private;
2601 struct intel_crtc *pipe_B_crtc =
2602 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2603 struct intel_crtc *pipe_C_crtc =
2604 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2605 uint32_t temp;
2606
2607 /*
2608 * When everything is off disable fdi C so that we could enable fdi B
2609 * with all lanes. Note that we don't care about enabled pipes without
2610 * an enabled pch encoder.
2611 */
2612 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2613 !pipe_has_enabled_pch(pipe_C_crtc)) {
2614 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2615 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2616
2617 temp = I915_READ(SOUTH_CHICKEN1);
2618 temp &= ~FDI_BC_BIFURCATION_SELECT;
2619 DRM_DEBUG_KMS("disabling fdi C rx\n");
2620 I915_WRITE(SOUTH_CHICKEN1, temp);
2621 }
2622 }
2623
2624 /* The FDI link training functions for ILK/Ibexpeak. */
2625 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2626 {
2627 struct drm_device *dev = crtc->dev;
2628 struct drm_i915_private *dev_priv = dev->dev_private;
2629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2630 int pipe = intel_crtc->pipe;
2631 int plane = intel_crtc->plane;
2632 u32 reg, temp, tries;
2633
2634 /* FDI needs bits from pipe & plane first */
2635 assert_pipe_enabled(dev_priv, pipe);
2636 assert_plane_enabled(dev_priv, plane);
2637
2638 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2639 for train result */
2640 reg = FDI_RX_IMR(pipe);
2641 temp = I915_READ(reg);
2642 temp &= ~FDI_RX_SYMBOL_LOCK;
2643 temp &= ~FDI_RX_BIT_LOCK;
2644 I915_WRITE(reg, temp);
2645 I915_READ(reg);
2646 udelay(150);
2647
2648 /* enable CPU FDI TX and PCH FDI RX */
2649 reg = FDI_TX_CTL(pipe);
2650 temp = I915_READ(reg);
2651 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2652 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2653 temp &= ~FDI_LINK_TRAIN_NONE;
2654 temp |= FDI_LINK_TRAIN_PATTERN_1;
2655 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2656
2657 reg = FDI_RX_CTL(pipe);
2658 temp = I915_READ(reg);
2659 temp &= ~FDI_LINK_TRAIN_NONE;
2660 temp |= FDI_LINK_TRAIN_PATTERN_1;
2661 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2662
2663 POSTING_READ(reg);
2664 udelay(150);
2665
2666 /* Ironlake workaround, enable clock pointer after FDI enable*/
2667 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2668 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2669 FDI_RX_PHASE_SYNC_POINTER_EN);
2670
2671 reg = FDI_RX_IIR(pipe);
2672 for (tries = 0; tries < 5; tries++) {
2673 temp = I915_READ(reg);
2674 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2675
2676 if ((temp & FDI_RX_BIT_LOCK)) {
2677 DRM_DEBUG_KMS("FDI train 1 done.\n");
2678 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2679 break;
2680 }
2681 }
2682 if (tries == 5)
2683 DRM_ERROR("FDI train 1 fail!\n");
2684
2685 /* Train 2 */
2686 reg = FDI_TX_CTL(pipe);
2687 temp = I915_READ(reg);
2688 temp &= ~FDI_LINK_TRAIN_NONE;
2689 temp |= FDI_LINK_TRAIN_PATTERN_2;
2690 I915_WRITE(reg, temp);
2691
2692 reg = FDI_RX_CTL(pipe);
2693 temp = I915_READ(reg);
2694 temp &= ~FDI_LINK_TRAIN_NONE;
2695 temp |= FDI_LINK_TRAIN_PATTERN_2;
2696 I915_WRITE(reg, temp);
2697
2698 POSTING_READ(reg);
2699 udelay(150);
2700
2701 reg = FDI_RX_IIR(pipe);
2702 for (tries = 0; tries < 5; tries++) {
2703 temp = I915_READ(reg);
2704 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705
2706 if (temp & FDI_RX_SYMBOL_LOCK) {
2707 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2708 DRM_DEBUG_KMS("FDI train 2 done.\n");
2709 break;
2710 }
2711 }
2712 if (tries == 5)
2713 DRM_ERROR("FDI train 2 fail!\n");
2714
2715 DRM_DEBUG_KMS("FDI train done\n");
2716
2717 }
2718
2719 static const int snb_b_fdi_train_param[] = {
2720 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2721 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2722 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2723 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2724 };
2725
2726 /* The FDI link training functions for SNB/Cougarpoint. */
2727 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2728 {
2729 struct drm_device *dev = crtc->dev;
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2732 int pipe = intel_crtc->pipe;
2733 u32 reg, temp, i, retry;
2734
2735 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2736 for train result */
2737 reg = FDI_RX_IMR(pipe);
2738 temp = I915_READ(reg);
2739 temp &= ~FDI_RX_SYMBOL_LOCK;
2740 temp &= ~FDI_RX_BIT_LOCK;
2741 I915_WRITE(reg, temp);
2742
2743 POSTING_READ(reg);
2744 udelay(150);
2745
2746 /* enable CPU FDI TX and PCH FDI RX */
2747 reg = FDI_TX_CTL(pipe);
2748 temp = I915_READ(reg);
2749 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2750 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2751 temp &= ~FDI_LINK_TRAIN_NONE;
2752 temp |= FDI_LINK_TRAIN_PATTERN_1;
2753 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2754 /* SNB-B */
2755 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2756 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2757
2758 I915_WRITE(FDI_RX_MISC(pipe),
2759 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2760
2761 reg = FDI_RX_CTL(pipe);
2762 temp = I915_READ(reg);
2763 if (HAS_PCH_CPT(dev)) {
2764 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2765 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2766 } else {
2767 temp &= ~FDI_LINK_TRAIN_NONE;
2768 temp |= FDI_LINK_TRAIN_PATTERN_1;
2769 }
2770 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2771
2772 POSTING_READ(reg);
2773 udelay(150);
2774
2775 for (i = 0; i < 4; i++) {
2776 reg = FDI_TX_CTL(pipe);
2777 temp = I915_READ(reg);
2778 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2779 temp |= snb_b_fdi_train_param[i];
2780 I915_WRITE(reg, temp);
2781
2782 POSTING_READ(reg);
2783 udelay(500);
2784
2785 for (retry = 0; retry < 5; retry++) {
2786 reg = FDI_RX_IIR(pipe);
2787 temp = I915_READ(reg);
2788 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789 if (temp & FDI_RX_BIT_LOCK) {
2790 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791 DRM_DEBUG_KMS("FDI train 1 done.\n");
2792 break;
2793 }
2794 udelay(50);
2795 }
2796 if (retry < 5)
2797 break;
2798 }
2799 if (i == 4)
2800 DRM_ERROR("FDI train 1 fail!\n");
2801
2802 /* Train 2 */
2803 reg = FDI_TX_CTL(pipe);
2804 temp = I915_READ(reg);
2805 temp &= ~FDI_LINK_TRAIN_NONE;
2806 temp |= FDI_LINK_TRAIN_PATTERN_2;
2807 if (IS_GEN6(dev)) {
2808 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2809 /* SNB-B */
2810 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2811 }
2812 I915_WRITE(reg, temp);
2813
2814 reg = FDI_RX_CTL(pipe);
2815 temp = I915_READ(reg);
2816 if (HAS_PCH_CPT(dev)) {
2817 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2818 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2819 } else {
2820 temp &= ~FDI_LINK_TRAIN_NONE;
2821 temp |= FDI_LINK_TRAIN_PATTERN_2;
2822 }
2823 I915_WRITE(reg, temp);
2824
2825 POSTING_READ(reg);
2826 udelay(150);
2827
2828 for (i = 0; i < 4; i++) {
2829 reg = FDI_TX_CTL(pipe);
2830 temp = I915_READ(reg);
2831 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2832 temp |= snb_b_fdi_train_param[i];
2833 I915_WRITE(reg, temp);
2834
2835 POSTING_READ(reg);
2836 udelay(500);
2837
2838 for (retry = 0; retry < 5; retry++) {
2839 reg = FDI_RX_IIR(pipe);
2840 temp = I915_READ(reg);
2841 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2842 if (temp & FDI_RX_SYMBOL_LOCK) {
2843 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2844 DRM_DEBUG_KMS("FDI train 2 done.\n");
2845 break;
2846 }
2847 udelay(50);
2848 }
2849 if (retry < 5)
2850 break;
2851 }
2852 if (i == 4)
2853 DRM_ERROR("FDI train 2 fail!\n");
2854
2855 DRM_DEBUG_KMS("FDI train done.\n");
2856 }
2857
2858 /* Manual link training for Ivy Bridge A0 parts */
2859 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2860 {
2861 struct drm_device *dev = crtc->dev;
2862 struct drm_i915_private *dev_priv = dev->dev_private;
2863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864 int pipe = intel_crtc->pipe;
2865 u32 reg, temp, i, j;
2866
2867 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2868 for train result */
2869 reg = FDI_RX_IMR(pipe);
2870 temp = I915_READ(reg);
2871 temp &= ~FDI_RX_SYMBOL_LOCK;
2872 temp &= ~FDI_RX_BIT_LOCK;
2873 I915_WRITE(reg, temp);
2874
2875 POSTING_READ(reg);
2876 udelay(150);
2877
2878 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2879 I915_READ(FDI_RX_IIR(pipe)));
2880
2881 /* Try each vswing and preemphasis setting twice before moving on */
2882 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2883 /* disable first in case we need to retry */
2884 reg = FDI_TX_CTL(pipe);
2885 temp = I915_READ(reg);
2886 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2887 temp &= ~FDI_TX_ENABLE;
2888 I915_WRITE(reg, temp);
2889
2890 reg = FDI_RX_CTL(pipe);
2891 temp = I915_READ(reg);
2892 temp &= ~FDI_LINK_TRAIN_AUTO;
2893 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2894 temp &= ~FDI_RX_ENABLE;
2895 I915_WRITE(reg, temp);
2896
2897 /* enable CPU FDI TX and PCH FDI RX */
2898 reg = FDI_TX_CTL(pipe);
2899 temp = I915_READ(reg);
2900 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2901 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2902 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2903 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2904 temp |= snb_b_fdi_train_param[j/2];
2905 temp |= FDI_COMPOSITE_SYNC;
2906 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2907
2908 I915_WRITE(FDI_RX_MISC(pipe),
2909 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2910
2911 reg = FDI_RX_CTL(pipe);
2912 temp = I915_READ(reg);
2913 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914 temp |= FDI_COMPOSITE_SYNC;
2915 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2916
2917 POSTING_READ(reg);
2918 udelay(1); /* should be 0.5us */
2919
2920 for (i = 0; i < 4; i++) {
2921 reg = FDI_RX_IIR(pipe);
2922 temp = I915_READ(reg);
2923 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925 if (temp & FDI_RX_BIT_LOCK ||
2926 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2927 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2928 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2929 i);
2930 break;
2931 }
2932 udelay(1); /* should be 0.5us */
2933 }
2934 if (i == 4) {
2935 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2936 continue;
2937 }
2938
2939 /* Train 2 */
2940 reg = FDI_TX_CTL(pipe);
2941 temp = I915_READ(reg);
2942 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2943 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2944 I915_WRITE(reg, temp);
2945
2946 reg = FDI_RX_CTL(pipe);
2947 temp = I915_READ(reg);
2948 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2950 I915_WRITE(reg, temp);
2951
2952 POSTING_READ(reg);
2953 udelay(2); /* should be 1.5us */
2954
2955 for (i = 0; i < 4; i++) {
2956 reg = FDI_RX_IIR(pipe);
2957 temp = I915_READ(reg);
2958 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2959
2960 if (temp & FDI_RX_SYMBOL_LOCK ||
2961 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2962 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2963 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2964 i);
2965 goto train_done;
2966 }
2967 udelay(2); /* should be 1.5us */
2968 }
2969 if (i == 4)
2970 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2971 }
2972
2973 train_done:
2974 DRM_DEBUG_KMS("FDI train done.\n");
2975 }
2976
2977 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2978 {
2979 struct drm_device *dev = intel_crtc->base.dev;
2980 struct drm_i915_private *dev_priv = dev->dev_private;
2981 int pipe = intel_crtc->pipe;
2982 u32 reg, temp;
2983
2984
2985 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2986 reg = FDI_RX_CTL(pipe);
2987 temp = I915_READ(reg);
2988 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2989 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2990 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2991 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2992
2993 POSTING_READ(reg);
2994 udelay(200);
2995
2996 /* Switch from Rawclk to PCDclk */
2997 temp = I915_READ(reg);
2998 I915_WRITE(reg, temp | FDI_PCDCLK);
2999
3000 POSTING_READ(reg);
3001 udelay(200);
3002
3003 /* Enable CPU FDI TX PLL, always on for Ironlake */
3004 reg = FDI_TX_CTL(pipe);
3005 temp = I915_READ(reg);
3006 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3007 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3008
3009 POSTING_READ(reg);
3010 udelay(100);
3011 }
3012 }
3013
3014 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3015 {
3016 struct drm_device *dev = intel_crtc->base.dev;
3017 struct drm_i915_private *dev_priv = dev->dev_private;
3018 int pipe = intel_crtc->pipe;
3019 u32 reg, temp;
3020
3021 /* Switch from PCDclk to Rawclk */
3022 reg = FDI_RX_CTL(pipe);
3023 temp = I915_READ(reg);
3024 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3025
3026 /* Disable CPU FDI TX PLL */
3027 reg = FDI_TX_CTL(pipe);
3028 temp = I915_READ(reg);
3029 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3030
3031 POSTING_READ(reg);
3032 udelay(100);
3033
3034 reg = FDI_RX_CTL(pipe);
3035 temp = I915_READ(reg);
3036 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3037
3038 /* Wait for the clocks to turn off. */
3039 POSTING_READ(reg);
3040 udelay(100);
3041 }
3042
3043 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3044 {
3045 struct drm_device *dev = crtc->dev;
3046 struct drm_i915_private *dev_priv = dev->dev_private;
3047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3048 int pipe = intel_crtc->pipe;
3049 u32 reg, temp;
3050
3051 /* disable CPU FDI tx and PCH FDI rx */
3052 reg = FDI_TX_CTL(pipe);
3053 temp = I915_READ(reg);
3054 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3055 POSTING_READ(reg);
3056
3057 reg = FDI_RX_CTL(pipe);
3058 temp = I915_READ(reg);
3059 temp &= ~(0x7 << 16);
3060 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3061 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3062
3063 POSTING_READ(reg);
3064 udelay(100);
3065
3066 /* Ironlake workaround, disable clock pointer after downing FDI */
3067 if (HAS_PCH_IBX(dev)) {
3068 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3069 }
3070
3071 /* still set train pattern 1 */
3072 reg = FDI_TX_CTL(pipe);
3073 temp = I915_READ(reg);
3074 temp &= ~FDI_LINK_TRAIN_NONE;
3075 temp |= FDI_LINK_TRAIN_PATTERN_1;
3076 I915_WRITE(reg, temp);
3077
3078 reg = FDI_RX_CTL(pipe);
3079 temp = I915_READ(reg);
3080 if (HAS_PCH_CPT(dev)) {
3081 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3082 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3083 } else {
3084 temp &= ~FDI_LINK_TRAIN_NONE;
3085 temp |= FDI_LINK_TRAIN_PATTERN_1;
3086 }
3087 /* BPC in FDI rx is consistent with that in PIPECONF */
3088 temp &= ~(0x07 << 16);
3089 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3090 I915_WRITE(reg, temp);
3091
3092 POSTING_READ(reg);
3093 udelay(100);
3094 }
3095
3096 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3097 {
3098 struct intel_crtc *crtc;
3099
3100 /* Note that we don't need to be called with mode_config.lock here
3101 * as our list of CRTC objects is static for the lifetime of the
3102 * device and so cannot disappear as we iterate. Similarly, we can
3103 * happily treat the predicates as racy, atomic checks as userspace
3104 * cannot claim and pin a new fb without at least acquring the
3105 * struct_mutex and so serialising with us.
3106 */
3107 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3108 if (atomic_read(&crtc->unpin_work_count) == 0)
3109 continue;
3110
3111 if (crtc->unpin_work)
3112 intel_wait_for_vblank(dev, crtc->pipe);
3113
3114 return true;
3115 }
3116
3117 return false;
3118 }
3119
3120 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3121 {
3122 struct drm_device *dev = crtc->dev;
3123 struct drm_i915_private *dev_priv = dev->dev_private;
3124
3125 if (crtc->fb == NULL)
3126 return;
3127
3128 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3129
3130 wait_event(dev_priv->pending_flip_queue,
3131 !intel_crtc_has_pending_flip(crtc));
3132
3133 mutex_lock(&dev->struct_mutex);
3134 intel_finish_fb(crtc->fb);
3135 mutex_unlock(&dev->struct_mutex);
3136 }
3137
3138 /* Program iCLKIP clock to the desired frequency */
3139 static void lpt_program_iclkip(struct drm_crtc *crtc)
3140 {
3141 struct drm_device *dev = crtc->dev;
3142 struct drm_i915_private *dev_priv = dev->dev_private;
3143 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3144 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3145 u32 temp;
3146
3147 mutex_lock(&dev_priv->dpio_lock);
3148
3149 /* It is necessary to ungate the pixclk gate prior to programming
3150 * the divisors, and gate it back when it is done.
3151 */
3152 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3153
3154 /* Disable SSCCTL */
3155 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3156 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3157 SBI_SSCCTL_DISABLE,
3158 SBI_ICLK);
3159
3160 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3161 if (clock == 20000) {
3162 auxdiv = 1;
3163 divsel = 0x41;
3164 phaseinc = 0x20;
3165 } else {
3166 /* The iCLK virtual clock root frequency is in MHz,
3167 * but the adjusted_mode->crtc_clock in in KHz. To get the
3168 * divisors, it is necessary to divide one by another, so we
3169 * convert the virtual clock precision to KHz here for higher
3170 * precision.
3171 */
3172 u32 iclk_virtual_root_freq = 172800 * 1000;
3173 u32 iclk_pi_range = 64;
3174 u32 desired_divisor, msb_divisor_value, pi_value;
3175
3176 desired_divisor = (iclk_virtual_root_freq / clock);
3177 msb_divisor_value = desired_divisor / iclk_pi_range;
3178 pi_value = desired_divisor % iclk_pi_range;
3179
3180 auxdiv = 0;
3181 divsel = msb_divisor_value - 2;
3182 phaseinc = pi_value;
3183 }
3184
3185 /* This should not happen with any sane values */
3186 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3187 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3188 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3189 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3190
3191 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3192 clock,
3193 auxdiv,
3194 divsel,
3195 phasedir,
3196 phaseinc);
3197
3198 /* Program SSCDIVINTPHASE6 */
3199 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3200 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3201 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3202 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3203 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3204 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3205 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3206 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3207
3208 /* Program SSCAUXDIV */
3209 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3210 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3211 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3212 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3213
3214 /* Enable modulator and associated divider */
3215 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3216 temp &= ~SBI_SSCCTL_DISABLE;
3217 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3218
3219 /* Wait for initialization time */
3220 udelay(24);
3221
3222 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3223
3224 mutex_unlock(&dev_priv->dpio_lock);
3225 }
3226
3227 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3228 enum pipe pch_transcoder)
3229 {
3230 struct drm_device *dev = crtc->base.dev;
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3233
3234 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3235 I915_READ(HTOTAL(cpu_transcoder)));
3236 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3237 I915_READ(HBLANK(cpu_transcoder)));
3238 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3239 I915_READ(HSYNC(cpu_transcoder)));
3240
3241 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3242 I915_READ(VTOTAL(cpu_transcoder)));
3243 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3244 I915_READ(VBLANK(cpu_transcoder)));
3245 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3246 I915_READ(VSYNC(cpu_transcoder)));
3247 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3248 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3249 }
3250
3251 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3252 {
3253 struct drm_i915_private *dev_priv = dev->dev_private;
3254 uint32_t temp;
3255
3256 temp = I915_READ(SOUTH_CHICKEN1);
3257 if (temp & FDI_BC_BIFURCATION_SELECT)
3258 return;
3259
3260 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3261 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3262
3263 temp |= FDI_BC_BIFURCATION_SELECT;
3264 DRM_DEBUG_KMS("enabling fdi C rx\n");
3265 I915_WRITE(SOUTH_CHICKEN1, temp);
3266 POSTING_READ(SOUTH_CHICKEN1);
3267 }
3268
3269 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3270 {
3271 struct drm_device *dev = intel_crtc->base.dev;
3272 struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274 switch (intel_crtc->pipe) {
3275 case PIPE_A:
3276 break;
3277 case PIPE_B:
3278 if (intel_crtc->config.fdi_lanes > 2)
3279 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3280 else
3281 cpt_enable_fdi_bc_bifurcation(dev);
3282
3283 break;
3284 case PIPE_C:
3285 cpt_enable_fdi_bc_bifurcation(dev);
3286
3287 break;
3288 default:
3289 BUG();
3290 }
3291 }
3292
3293 /*
3294 * Enable PCH resources required for PCH ports:
3295 * - PCH PLLs
3296 * - FDI training & RX/TX
3297 * - update transcoder timings
3298 * - DP transcoding bits
3299 * - transcoder
3300 */
3301 static void ironlake_pch_enable(struct drm_crtc *crtc)
3302 {
3303 struct drm_device *dev = crtc->dev;
3304 struct drm_i915_private *dev_priv = dev->dev_private;
3305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306 int pipe = intel_crtc->pipe;
3307 u32 reg, temp;
3308
3309 assert_pch_transcoder_disabled(dev_priv, pipe);
3310
3311 if (IS_IVYBRIDGE(dev))
3312 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3313
3314 /* Write the TU size bits before fdi link training, so that error
3315 * detection works. */
3316 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3317 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3318
3319 /* For PCH output, training FDI link */
3320 dev_priv->display.fdi_link_train(crtc);
3321
3322 /* We need to program the right clock selection before writing the pixel
3323 * mutliplier into the DPLL. */
3324 if (HAS_PCH_CPT(dev)) {
3325 u32 sel;
3326
3327 temp = I915_READ(PCH_DPLL_SEL);
3328 temp |= TRANS_DPLL_ENABLE(pipe);
3329 sel = TRANS_DPLLB_SEL(pipe);
3330 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3331 temp |= sel;
3332 else
3333 temp &= ~sel;
3334 I915_WRITE(PCH_DPLL_SEL, temp);
3335 }
3336
3337 /* XXX: pch pll's can be enabled any time before we enable the PCH
3338 * transcoder, and we actually should do this to not upset any PCH
3339 * transcoder that already use the clock when we share it.
3340 *
3341 * Note that enable_shared_dpll tries to do the right thing, but
3342 * get_shared_dpll unconditionally resets the pll - we need that to have
3343 * the right LVDS enable sequence. */
3344 ironlake_enable_shared_dpll(intel_crtc);
3345
3346 /* set transcoder timing, panel must allow it */
3347 assert_panel_unlocked(dev_priv, pipe);
3348 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3349
3350 intel_fdi_normal_train(crtc);
3351
3352 /* For PCH DP, enable TRANS_DP_CTL */
3353 if (HAS_PCH_CPT(dev) &&
3354 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3355 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3356 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3357 reg = TRANS_DP_CTL(pipe);
3358 temp = I915_READ(reg);
3359 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3360 TRANS_DP_SYNC_MASK |
3361 TRANS_DP_BPC_MASK);
3362 temp |= (TRANS_DP_OUTPUT_ENABLE |
3363 TRANS_DP_ENH_FRAMING);
3364 temp |= bpc << 9; /* same format but at 11:9 */
3365
3366 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3367 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3368 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3369 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3370
3371 switch (intel_trans_dp_port_sel(crtc)) {
3372 case PCH_DP_B:
3373 temp |= TRANS_DP_PORT_SEL_B;
3374 break;
3375 case PCH_DP_C:
3376 temp |= TRANS_DP_PORT_SEL_C;
3377 break;
3378 case PCH_DP_D:
3379 temp |= TRANS_DP_PORT_SEL_D;
3380 break;
3381 default:
3382 BUG();
3383 }
3384
3385 I915_WRITE(reg, temp);
3386 }
3387
3388 ironlake_enable_pch_transcoder(dev_priv, pipe);
3389 }
3390
3391 static void lpt_pch_enable(struct drm_crtc *crtc)
3392 {
3393 struct drm_device *dev = crtc->dev;
3394 struct drm_i915_private *dev_priv = dev->dev_private;
3395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3397
3398 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3399
3400 lpt_program_iclkip(crtc);
3401
3402 /* Set transcoder timing. */
3403 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3404
3405 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3406 }
3407
3408 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3409 {
3410 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3411
3412 if (pll == NULL)
3413 return;
3414
3415 if (pll->refcount == 0) {
3416 WARN(1, "bad %s refcount\n", pll->name);
3417 return;
3418 }
3419
3420 if (--pll->refcount == 0) {
3421 WARN_ON(pll->on);
3422 WARN_ON(pll->active);
3423 }
3424
3425 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3426 }
3427
3428 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3429 {
3430 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3431 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3432 enum intel_dpll_id i;
3433
3434 if (pll) {
3435 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3436 crtc->base.base.id, pll->name);
3437 intel_put_shared_dpll(crtc);
3438 }
3439
3440 if (HAS_PCH_IBX(dev_priv->dev)) {
3441 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3442 i = (enum intel_dpll_id) crtc->pipe;
3443 pll = &dev_priv->shared_dplls[i];
3444
3445 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3446 crtc->base.base.id, pll->name);
3447
3448 goto found;
3449 }
3450
3451 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3452 pll = &dev_priv->shared_dplls[i];
3453
3454 /* Only want to check enabled timings first */
3455 if (pll->refcount == 0)
3456 continue;
3457
3458 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3459 sizeof(pll->hw_state)) == 0) {
3460 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3461 crtc->base.base.id,
3462 pll->name, pll->refcount, pll->active);
3463
3464 goto found;
3465 }
3466 }
3467
3468 /* Ok no matching timings, maybe there's a free one? */
3469 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3470 pll = &dev_priv->shared_dplls[i];
3471 if (pll->refcount == 0) {
3472 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3473 crtc->base.base.id, pll->name);
3474 goto found;
3475 }
3476 }
3477
3478 return NULL;
3479
3480 found:
3481 crtc->config.shared_dpll = i;
3482 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3483 pipe_name(crtc->pipe));
3484
3485 if (pll->active == 0) {
3486 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3487 sizeof(pll->hw_state));
3488
3489 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3490 WARN_ON(pll->on);
3491 assert_shared_dpll_disabled(dev_priv, pll);
3492
3493 pll->mode_set(dev_priv, pll);
3494 }
3495 pll->refcount++;
3496
3497 return pll;
3498 }
3499
3500 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3501 {
3502 struct drm_i915_private *dev_priv = dev->dev_private;
3503 int dslreg = PIPEDSL(pipe);
3504 u32 temp;
3505
3506 temp = I915_READ(dslreg);
3507 udelay(500);
3508 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3509 if (wait_for(I915_READ(dslreg) != temp, 5))
3510 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3511 }
3512 }
3513
3514 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3515 {
3516 struct drm_device *dev = crtc->base.dev;
3517 struct drm_i915_private *dev_priv = dev->dev_private;
3518 int pipe = crtc->pipe;
3519
3520 if (crtc->config.pch_pfit.enabled) {
3521 /* Force use of hard-coded filter coefficients
3522 * as some pre-programmed values are broken,
3523 * e.g. x201.
3524 */
3525 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3526 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3527 PF_PIPE_SEL_IVB(pipe));
3528 else
3529 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3530 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3531 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3532 }
3533 }
3534
3535 static void intel_enable_planes(struct drm_crtc *crtc)
3536 {
3537 struct drm_device *dev = crtc->dev;
3538 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3539 struct intel_plane *intel_plane;
3540
3541 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3542 if (intel_plane->pipe == pipe)
3543 intel_plane_restore(&intel_plane->base);
3544 }
3545
3546 static void intel_disable_planes(struct drm_crtc *crtc)
3547 {
3548 struct drm_device *dev = crtc->dev;
3549 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3550 struct intel_plane *intel_plane;
3551
3552 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3553 if (intel_plane->pipe == pipe)
3554 intel_plane_disable(&intel_plane->base);
3555 }
3556
3557 void hsw_enable_ips(struct intel_crtc *crtc)
3558 {
3559 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3560
3561 if (!crtc->config.ips_enabled)
3562 return;
3563
3564 /* We can only enable IPS after we enable a plane and wait for a vblank.
3565 * We guarantee that the plane is enabled by calling intel_enable_ips
3566 * only after intel_enable_plane. And intel_enable_plane already waits
3567 * for a vblank, so all we need to do here is to enable the IPS bit. */
3568 assert_plane_enabled(dev_priv, crtc->plane);
3569 if (IS_BROADWELL(crtc->base.dev)) {
3570 mutex_lock(&dev_priv->rps.hw_lock);
3571 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3572 mutex_unlock(&dev_priv->rps.hw_lock);
3573 /* Quoting Art Runyan: "its not safe to expect any particular
3574 * value in IPS_CTL bit 31 after enabling IPS through the
3575 * mailbox." Moreover, the mailbox may return a bogus state,
3576 * so we need to just enable it and continue on.
3577 */
3578 } else {
3579 I915_WRITE(IPS_CTL, IPS_ENABLE);
3580 /* The bit only becomes 1 in the next vblank, so this wait here
3581 * is essentially intel_wait_for_vblank. If we don't have this
3582 * and don't wait for vblanks until the end of crtc_enable, then
3583 * the HW state readout code will complain that the expected
3584 * IPS_CTL value is not the one we read. */
3585 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3586 DRM_ERROR("Timed out waiting for IPS enable\n");
3587 }
3588 }
3589
3590 void hsw_disable_ips(struct intel_crtc *crtc)
3591 {
3592 struct drm_device *dev = crtc->base.dev;
3593 struct drm_i915_private *dev_priv = dev->dev_private;
3594
3595 if (!crtc->config.ips_enabled)
3596 return;
3597
3598 assert_plane_enabled(dev_priv, crtc->plane);
3599 if (IS_BROADWELL(crtc->base.dev)) {
3600 mutex_lock(&dev_priv->rps.hw_lock);
3601 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3602 mutex_unlock(&dev_priv->rps.hw_lock);
3603 } else {
3604 I915_WRITE(IPS_CTL, 0);
3605 POSTING_READ(IPS_CTL);
3606 }
3607
3608 /* We need to wait for a vblank before we can disable the plane. */
3609 intel_wait_for_vblank(dev, crtc->pipe);
3610 }
3611
3612 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3613 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3614 {
3615 struct drm_device *dev = crtc->dev;
3616 struct drm_i915_private *dev_priv = dev->dev_private;
3617 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3618 enum pipe pipe = intel_crtc->pipe;
3619 int palreg = PALETTE(pipe);
3620 int i;
3621 bool reenable_ips = false;
3622
3623 /* The clocks have to be on to load the palette. */
3624 if (!crtc->enabled || !intel_crtc->active)
3625 return;
3626
3627 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3628 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3629 assert_dsi_pll_enabled(dev_priv);
3630 else
3631 assert_pll_enabled(dev_priv, pipe);
3632 }
3633
3634 /* use legacy palette for Ironlake */
3635 if (HAS_PCH_SPLIT(dev))
3636 palreg = LGC_PALETTE(pipe);
3637
3638 /* Workaround : Do not read or write the pipe palette/gamma data while
3639 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3640 */
3641 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3642 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3643 GAMMA_MODE_MODE_SPLIT)) {
3644 hsw_disable_ips(intel_crtc);
3645 reenable_ips = true;
3646 }
3647
3648 for (i = 0; i < 256; i++) {
3649 I915_WRITE(palreg + 4 * i,
3650 (intel_crtc->lut_r[i] << 16) |
3651 (intel_crtc->lut_g[i] << 8) |
3652 intel_crtc->lut_b[i]);
3653 }
3654
3655 if (reenable_ips)
3656 hsw_enable_ips(intel_crtc);
3657 }
3658
3659 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3660 {
3661 struct drm_device *dev = crtc->dev;
3662 struct drm_i915_private *dev_priv = dev->dev_private;
3663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3664 struct intel_encoder *encoder;
3665 int pipe = intel_crtc->pipe;
3666 int plane = intel_crtc->plane;
3667
3668 WARN_ON(!crtc->enabled);
3669
3670 if (intel_crtc->active)
3671 return;
3672
3673 intel_crtc->active = true;
3674
3675 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3676 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3677
3678 for_each_encoder_on_crtc(dev, crtc, encoder)
3679 if (encoder->pre_enable)
3680 encoder->pre_enable(encoder);
3681
3682 if (intel_crtc->config.has_pch_encoder) {
3683 /* Note: FDI PLL enabling _must_ be done before we enable the
3684 * cpu pipes, hence this is separate from all the other fdi/pch
3685 * enabling. */
3686 ironlake_fdi_pll_enable(intel_crtc);
3687 } else {
3688 assert_fdi_tx_disabled(dev_priv, pipe);
3689 assert_fdi_rx_disabled(dev_priv, pipe);
3690 }
3691
3692 ironlake_pfit_enable(intel_crtc);
3693
3694 /*
3695 * On ILK+ LUT must be loaded before the pipe is running but with
3696 * clocks enabled
3697 */
3698 intel_crtc_load_lut(crtc);
3699
3700 intel_update_watermarks(crtc);
3701 intel_enable_pipe(intel_crtc);
3702 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3703 intel_enable_planes(crtc);
3704 intel_crtc_update_cursor(crtc, true);
3705
3706 if (intel_crtc->config.has_pch_encoder)
3707 ironlake_pch_enable(crtc);
3708
3709 mutex_lock(&dev->struct_mutex);
3710 intel_update_fbc(dev);
3711 mutex_unlock(&dev->struct_mutex);
3712
3713 for_each_encoder_on_crtc(dev, crtc, encoder)
3714 encoder->enable(encoder);
3715
3716 if (HAS_PCH_CPT(dev))
3717 cpt_verify_modeset(dev, intel_crtc->pipe);
3718
3719 /*
3720 * There seems to be a race in PCH platform hw (at least on some
3721 * outputs) where an enabled pipe still completes any pageflip right
3722 * away (as if the pipe is off) instead of waiting for vblank. As soon
3723 * as the first vblank happend, everything works as expected. Hence just
3724 * wait for one vblank before returning to avoid strange things
3725 * happening.
3726 */
3727 intel_wait_for_vblank(dev, intel_crtc->pipe);
3728 }
3729
3730 /* IPS only exists on ULT machines and is tied to pipe A. */
3731 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3732 {
3733 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3734 }
3735
3736 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3737 {
3738 struct drm_device *dev = crtc->dev;
3739 struct drm_i915_private *dev_priv = dev->dev_private;
3740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741 int pipe = intel_crtc->pipe;
3742 int plane = intel_crtc->plane;
3743
3744 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3745 intel_enable_planes(crtc);
3746 intel_crtc_update_cursor(crtc, true);
3747
3748 hsw_enable_ips(intel_crtc);
3749
3750 mutex_lock(&dev->struct_mutex);
3751 intel_update_fbc(dev);
3752 mutex_unlock(&dev->struct_mutex);
3753 }
3754
3755 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3756 {
3757 struct drm_device *dev = crtc->dev;
3758 struct drm_i915_private *dev_priv = dev->dev_private;
3759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3760 int pipe = intel_crtc->pipe;
3761 int plane = intel_crtc->plane;
3762
3763 intel_crtc_wait_for_pending_flips(crtc);
3764 drm_vblank_off(dev, pipe);
3765
3766 /* FBC must be disabled before disabling the plane on HSW. */
3767 if (dev_priv->fbc.plane == plane)
3768 intel_disable_fbc(dev);
3769
3770 hsw_disable_ips(intel_crtc);
3771
3772 intel_crtc_update_cursor(crtc, false);
3773 intel_disable_planes(crtc);
3774 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3775 }
3776
3777 /*
3778 * This implements the workaround described in the "notes" section of the mode
3779 * set sequence documentation. When going from no pipes or single pipe to
3780 * multiple pipes, and planes are enabled after the pipe, we need to wait at
3781 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3782 */
3783 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3784 {
3785 struct drm_device *dev = crtc->base.dev;
3786 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3787
3788 /* We want to get the other_active_crtc only if there's only 1 other
3789 * active crtc. */
3790 list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3791 if (!crtc_it->active || crtc_it == crtc)
3792 continue;
3793
3794 if (other_active_crtc)
3795 return;
3796
3797 other_active_crtc = crtc_it;
3798 }
3799 if (!other_active_crtc)
3800 return;
3801
3802 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3803 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3804 }
3805
3806 static void haswell_crtc_enable(struct drm_crtc *crtc)
3807 {
3808 struct drm_device *dev = crtc->dev;
3809 struct drm_i915_private *dev_priv = dev->dev_private;
3810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3811 struct intel_encoder *encoder;
3812 int pipe = intel_crtc->pipe;
3813
3814 WARN_ON(!crtc->enabled);
3815
3816 if (intel_crtc->active)
3817 return;
3818
3819 intel_crtc->active = true;
3820
3821 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3822 if (intel_crtc->config.has_pch_encoder)
3823 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3824
3825 if (intel_crtc->config.has_pch_encoder)
3826 dev_priv->display.fdi_link_train(crtc);
3827
3828 for_each_encoder_on_crtc(dev, crtc, encoder)
3829 if (encoder->pre_enable)
3830 encoder->pre_enable(encoder);
3831
3832 intel_ddi_enable_pipe_clock(intel_crtc);
3833
3834 ironlake_pfit_enable(intel_crtc);
3835
3836 /*
3837 * On ILK+ LUT must be loaded before the pipe is running but with
3838 * clocks enabled
3839 */
3840 intel_crtc_load_lut(crtc);
3841
3842 intel_ddi_set_pipe_settings(crtc);
3843 intel_ddi_enable_transcoder_func(crtc);
3844
3845 intel_update_watermarks(crtc);
3846 intel_enable_pipe(intel_crtc);
3847
3848 if (intel_crtc->config.has_pch_encoder)
3849 lpt_pch_enable(crtc);
3850
3851 for_each_encoder_on_crtc(dev, crtc, encoder) {
3852 encoder->enable(encoder);
3853 intel_opregion_notify_encoder(encoder, true);
3854 }
3855
3856 /* If we change the relative order between pipe/planes enabling, we need
3857 * to change the workaround. */
3858 haswell_mode_set_planes_workaround(intel_crtc);
3859 haswell_crtc_enable_planes(crtc);
3860 }
3861
3862 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3863 {
3864 struct drm_device *dev = crtc->base.dev;
3865 struct drm_i915_private *dev_priv = dev->dev_private;
3866 int pipe = crtc->pipe;
3867
3868 /* To avoid upsetting the power well on haswell only disable the pfit if
3869 * it's in use. The hw state code will make sure we get this right. */
3870 if (crtc->config.pch_pfit.enabled) {
3871 I915_WRITE(PF_CTL(pipe), 0);
3872 I915_WRITE(PF_WIN_POS(pipe), 0);
3873 I915_WRITE(PF_WIN_SZ(pipe), 0);
3874 }
3875 }
3876
3877 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3878 {
3879 struct drm_device *dev = crtc->dev;
3880 struct drm_i915_private *dev_priv = dev->dev_private;
3881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3882 struct intel_encoder *encoder;
3883 int pipe = intel_crtc->pipe;
3884 int plane = intel_crtc->plane;
3885 u32 reg, temp;
3886
3887
3888 if (!intel_crtc->active)
3889 return;
3890
3891 for_each_encoder_on_crtc(dev, crtc, encoder)
3892 encoder->disable(encoder);
3893
3894 intel_crtc_wait_for_pending_flips(crtc);
3895 drm_vblank_off(dev, pipe);
3896
3897 if (dev_priv->fbc.plane == plane)
3898 intel_disable_fbc(dev);
3899
3900 intel_crtc_update_cursor(crtc, false);
3901 intel_disable_planes(crtc);
3902 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3903
3904 if (intel_crtc->config.has_pch_encoder)
3905 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3906
3907 intel_disable_pipe(dev_priv, pipe);
3908
3909 ironlake_pfit_disable(intel_crtc);
3910
3911 for_each_encoder_on_crtc(dev, crtc, encoder)
3912 if (encoder->post_disable)
3913 encoder->post_disable(encoder);
3914
3915 if (intel_crtc->config.has_pch_encoder) {
3916 ironlake_fdi_disable(crtc);
3917
3918 ironlake_disable_pch_transcoder(dev_priv, pipe);
3919 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3920
3921 if (HAS_PCH_CPT(dev)) {
3922 /* disable TRANS_DP_CTL */
3923 reg = TRANS_DP_CTL(pipe);
3924 temp = I915_READ(reg);
3925 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3926 TRANS_DP_PORT_SEL_MASK);
3927 temp |= TRANS_DP_PORT_SEL_NONE;
3928 I915_WRITE(reg, temp);
3929
3930 /* disable DPLL_SEL */
3931 temp = I915_READ(PCH_DPLL_SEL);
3932 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3933 I915_WRITE(PCH_DPLL_SEL, temp);
3934 }
3935
3936 /* disable PCH DPLL */
3937 intel_disable_shared_dpll(intel_crtc);
3938
3939 ironlake_fdi_pll_disable(intel_crtc);
3940 }
3941
3942 intel_crtc->active = false;
3943 intel_update_watermarks(crtc);
3944
3945 mutex_lock(&dev->struct_mutex);
3946 intel_update_fbc(dev);
3947 mutex_unlock(&dev->struct_mutex);
3948 }
3949
3950 static void haswell_crtc_disable(struct drm_crtc *crtc)
3951 {
3952 struct drm_device *dev = crtc->dev;
3953 struct drm_i915_private *dev_priv = dev->dev_private;
3954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3955 struct intel_encoder *encoder;
3956 int pipe = intel_crtc->pipe;
3957 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3958
3959 if (!intel_crtc->active)
3960 return;
3961
3962 haswell_crtc_disable_planes(crtc);
3963
3964 for_each_encoder_on_crtc(dev, crtc, encoder) {
3965 intel_opregion_notify_encoder(encoder, false);
3966 encoder->disable(encoder);
3967 }
3968
3969 if (intel_crtc->config.has_pch_encoder)
3970 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3971 intel_disable_pipe(dev_priv, pipe);
3972
3973 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3974
3975 ironlake_pfit_disable(intel_crtc);
3976
3977 intel_ddi_disable_pipe_clock(intel_crtc);
3978
3979 for_each_encoder_on_crtc(dev, crtc, encoder)
3980 if (encoder->post_disable)
3981 encoder->post_disable(encoder);
3982
3983 if (intel_crtc->config.has_pch_encoder) {
3984 lpt_disable_pch_transcoder(dev_priv);
3985 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3986 intel_ddi_fdi_disable(crtc);
3987 }
3988
3989 intel_crtc->active = false;
3990 intel_update_watermarks(crtc);
3991
3992 mutex_lock(&dev->struct_mutex);
3993 intel_update_fbc(dev);
3994 mutex_unlock(&dev->struct_mutex);
3995 }
3996
3997 static void ironlake_crtc_off(struct drm_crtc *crtc)
3998 {
3999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4000 intel_put_shared_dpll(intel_crtc);
4001 }
4002
4003 static void haswell_crtc_off(struct drm_crtc *crtc)
4004 {
4005 intel_ddi_put_crtc_pll(crtc);
4006 }
4007
4008 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4009 {
4010 if (!enable && intel_crtc->overlay) {
4011 struct drm_device *dev = intel_crtc->base.dev;
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013
4014 mutex_lock(&dev->struct_mutex);
4015 dev_priv->mm.interruptible = false;
4016 (void) intel_overlay_switch_off(intel_crtc->overlay);
4017 dev_priv->mm.interruptible = true;
4018 mutex_unlock(&dev->struct_mutex);
4019 }
4020
4021 /* Let userspace switch the overlay on again. In most cases userspace
4022 * has to recompute where to put it anyway.
4023 */
4024 }
4025
4026 /**
4027 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
4028 * cursor plane briefly if not already running after enabling the display
4029 * plane.
4030 * This workaround avoids occasional blank screens when self refresh is
4031 * enabled.
4032 */
4033 static void
4034 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
4035 {
4036 u32 cntl = I915_READ(CURCNTR(pipe));
4037
4038 if ((cntl & CURSOR_MODE) == 0) {
4039 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
4040
4041 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
4042 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
4043 intel_wait_for_vblank(dev_priv->dev, pipe);
4044 I915_WRITE(CURCNTR(pipe), cntl);
4045 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
4046 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
4047 }
4048 }
4049
4050 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4051 {
4052 struct drm_device *dev = crtc->base.dev;
4053 struct drm_i915_private *dev_priv = dev->dev_private;
4054 struct intel_crtc_config *pipe_config = &crtc->config;
4055
4056 if (!crtc->config.gmch_pfit.control)
4057 return;
4058
4059 /*
4060 * The panel fitter should only be adjusted whilst the pipe is disabled,
4061 * according to register description and PRM.
4062 */
4063 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4064 assert_pipe_disabled(dev_priv, crtc->pipe);
4065
4066 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4067 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4068
4069 /* Border color in case we don't scale up to the full screen. Black by
4070 * default, change to something else for debugging. */
4071 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4072 }
4073
4074 #define for_each_power_domain(domain, mask) \
4075 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4076 if ((1 << (domain)) & (mask))
4077
4078 enum intel_display_power_domain
4079 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4080 {
4081 struct drm_device *dev = intel_encoder->base.dev;
4082 struct intel_digital_port *intel_dig_port;
4083
4084 switch (intel_encoder->type) {
4085 case INTEL_OUTPUT_UNKNOWN:
4086 /* Only DDI platforms should ever use this output type */
4087 WARN_ON_ONCE(!HAS_DDI(dev));
4088 case INTEL_OUTPUT_DISPLAYPORT:
4089 case INTEL_OUTPUT_HDMI:
4090 case INTEL_OUTPUT_EDP:
4091 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4092 switch (intel_dig_port->port) {
4093 case PORT_A:
4094 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4095 case PORT_B:
4096 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4097 case PORT_C:
4098 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4099 case PORT_D:
4100 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4101 default:
4102 WARN_ON_ONCE(1);
4103 return POWER_DOMAIN_PORT_OTHER;
4104 }
4105 case INTEL_OUTPUT_ANALOG:
4106 return POWER_DOMAIN_PORT_CRT;
4107 case INTEL_OUTPUT_DSI:
4108 return POWER_DOMAIN_PORT_DSI;
4109 default:
4110 return POWER_DOMAIN_PORT_OTHER;
4111 }
4112 }
4113
4114 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4115 {
4116 struct drm_device *dev = crtc->dev;
4117 struct intel_encoder *intel_encoder;
4118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119 enum pipe pipe = intel_crtc->pipe;
4120 bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4121 unsigned long mask;
4122 enum transcoder transcoder;
4123
4124 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4125
4126 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4127 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4128 if (pfit_enabled)
4129 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4130
4131 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4132 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4133
4134 return mask;
4135 }
4136
4137 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4138 bool enable)
4139 {
4140 if (dev_priv->power_domains.init_power_on == enable)
4141 return;
4142
4143 if (enable)
4144 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4145 else
4146 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4147
4148 dev_priv->power_domains.init_power_on = enable;
4149 }
4150
4151 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4152 {
4153 struct drm_i915_private *dev_priv = dev->dev_private;
4154 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4155 struct intel_crtc *crtc;
4156
4157 /*
4158 * First get all needed power domains, then put all unneeded, to avoid
4159 * any unnecessary toggling of the power wells.
4160 */
4161 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4162 enum intel_display_power_domain domain;
4163
4164 if (!crtc->base.enabled)
4165 continue;
4166
4167 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4168
4169 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4170 intel_display_power_get(dev_priv, domain);
4171 }
4172
4173 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4174 enum intel_display_power_domain domain;
4175
4176 for_each_power_domain(domain, crtc->enabled_power_domains)
4177 intel_display_power_put(dev_priv, domain);
4178
4179 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4180 }
4181
4182 intel_display_set_init_power(dev_priv, false);
4183 }
4184
4185 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4186 {
4187 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4188
4189 /* Obtain SKU information */
4190 mutex_lock(&dev_priv->dpio_lock);
4191 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4192 CCK_FUSE_HPLL_FREQ_MASK;
4193 mutex_unlock(&dev_priv->dpio_lock);
4194
4195 return vco_freq[hpll_freq];
4196 }
4197
4198 /* Adjust CDclk dividers to allow high res or save power if possible */
4199 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4200 {
4201 struct drm_i915_private *dev_priv = dev->dev_private;
4202 u32 val, cmd;
4203
4204 if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4205 cmd = 2;
4206 else if (cdclk == 266)
4207 cmd = 1;
4208 else
4209 cmd = 0;
4210
4211 mutex_lock(&dev_priv->rps.hw_lock);
4212 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4213 val &= ~DSPFREQGUAR_MASK;
4214 val |= (cmd << DSPFREQGUAR_SHIFT);
4215 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4216 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4217 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4218 50)) {
4219 DRM_ERROR("timed out waiting for CDclk change\n");
4220 }
4221 mutex_unlock(&dev_priv->rps.hw_lock);
4222
4223 if (cdclk == 400) {
4224 u32 divider, vco;
4225
4226 vco = valleyview_get_vco(dev_priv);
4227 divider = ((vco << 1) / cdclk) - 1;
4228
4229 mutex_lock(&dev_priv->dpio_lock);
4230 /* adjust cdclk divider */
4231 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4232 val &= ~0xf;
4233 val |= divider;
4234 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4235 mutex_unlock(&dev_priv->dpio_lock);
4236 }
4237
4238 mutex_lock(&dev_priv->dpio_lock);
4239 /* adjust self-refresh exit latency value */
4240 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4241 val &= ~0x7f;
4242
4243 /*
4244 * For high bandwidth configs, we set a higher latency in the bunit
4245 * so that the core display fetch happens in time to avoid underruns.
4246 */
4247 if (cdclk == 400)
4248 val |= 4500 / 250; /* 4.5 usec */
4249 else
4250 val |= 3000 / 250; /* 3.0 usec */
4251 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4252 mutex_unlock(&dev_priv->dpio_lock);
4253
4254 /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4255 intel_i2c_reset(dev);
4256 }
4257
4258 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4259 {
4260 int cur_cdclk, vco;
4261 int divider;
4262
4263 vco = valleyview_get_vco(dev_priv);
4264
4265 mutex_lock(&dev_priv->dpio_lock);
4266 divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4267 mutex_unlock(&dev_priv->dpio_lock);
4268
4269 divider &= 0xf;
4270
4271 cur_cdclk = (vco << 1) / (divider + 1);
4272
4273 return cur_cdclk;
4274 }
4275
4276 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4277 int max_pixclk)
4278 {
4279 int cur_cdclk;
4280
4281 cur_cdclk = valleyview_cur_cdclk(dev_priv);
4282
4283 /*
4284 * Really only a few cases to deal with, as only 4 CDclks are supported:
4285 * 200MHz
4286 * 267MHz
4287 * 320MHz
4288 * 400MHz
4289 * So we check to see whether we're above 90% of the lower bin and
4290 * adjust if needed.
4291 */
4292 if (max_pixclk > 288000) {
4293 return 400;
4294 } else if (max_pixclk > 240000) {
4295 return 320;
4296 } else
4297 return 266;
4298 /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4299 }
4300
4301 /* compute the max pixel clock for new configuration */
4302 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4303 {
4304 struct drm_device *dev = dev_priv->dev;
4305 struct intel_crtc *intel_crtc;
4306 int max_pixclk = 0;
4307
4308 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4309 base.head) {
4310 if (intel_crtc->new_enabled)
4311 max_pixclk = max(max_pixclk,
4312 intel_crtc->new_config->adjusted_mode.crtc_clock);
4313 }
4314
4315 return max_pixclk;
4316 }
4317
4318 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4319 unsigned *prepare_pipes)
4320 {
4321 struct drm_i915_private *dev_priv = dev->dev_private;
4322 struct intel_crtc *intel_crtc;
4323 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4324 int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4325
4326 if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4327 return;
4328
4329 /* disable/enable all currently active pipes while we change cdclk */
4330 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4331 base.head)
4332 if (intel_crtc->base.enabled)
4333 *prepare_pipes |= (1 << intel_crtc->pipe);
4334 }
4335
4336 static void valleyview_modeset_global_resources(struct drm_device *dev)
4337 {
4338 struct drm_i915_private *dev_priv = dev->dev_private;
4339 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4340 int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4341 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4342
4343 if (req_cdclk != cur_cdclk)
4344 valleyview_set_cdclk(dev, req_cdclk);
4345 modeset_update_crtc_power_domains(dev);
4346 }
4347
4348 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4349 {
4350 struct drm_device *dev = crtc->dev;
4351 struct drm_i915_private *dev_priv = dev->dev_private;
4352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4353 struct intel_encoder *encoder;
4354 int pipe = intel_crtc->pipe;
4355 int plane = intel_crtc->plane;
4356 bool is_dsi;
4357
4358 WARN_ON(!crtc->enabled);
4359
4360 if (intel_crtc->active)
4361 return;
4362
4363 intel_crtc->active = true;
4364
4365 for_each_encoder_on_crtc(dev, crtc, encoder)
4366 if (encoder->pre_pll_enable)
4367 encoder->pre_pll_enable(encoder);
4368
4369 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4370
4371 if (!is_dsi)
4372 vlv_enable_pll(intel_crtc);
4373
4374 for_each_encoder_on_crtc(dev, crtc, encoder)
4375 if (encoder->pre_enable)
4376 encoder->pre_enable(encoder);
4377
4378 i9xx_pfit_enable(intel_crtc);
4379
4380 intel_crtc_load_lut(crtc);
4381
4382 intel_update_watermarks(crtc);
4383 intel_enable_pipe(intel_crtc);
4384 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4385 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4386 intel_enable_planes(crtc);
4387 intel_crtc_update_cursor(crtc, true);
4388
4389 intel_update_fbc(dev);
4390
4391 for_each_encoder_on_crtc(dev, crtc, encoder)
4392 encoder->enable(encoder);
4393 }
4394
4395 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4396 {
4397 struct drm_device *dev = crtc->dev;
4398 struct drm_i915_private *dev_priv = dev->dev_private;
4399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4400 struct intel_encoder *encoder;
4401 int pipe = intel_crtc->pipe;
4402 int plane = intel_crtc->plane;
4403
4404 WARN_ON(!crtc->enabled);
4405
4406 if (intel_crtc->active)
4407 return;
4408
4409 intel_crtc->active = true;
4410
4411 for_each_encoder_on_crtc(dev, crtc, encoder)
4412 if (encoder->pre_enable)
4413 encoder->pre_enable(encoder);
4414
4415 i9xx_enable_pll(intel_crtc);
4416
4417 i9xx_pfit_enable(intel_crtc);
4418
4419 intel_crtc_load_lut(crtc);
4420
4421 intel_update_watermarks(crtc);
4422 intel_enable_pipe(intel_crtc);
4423 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4424 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4425 intel_enable_planes(crtc);
4426 /* The fixup needs to happen before cursor is enabled */
4427 if (IS_G4X(dev))
4428 g4x_fixup_plane(dev_priv, pipe);
4429 intel_crtc_update_cursor(crtc, true);
4430
4431 /* Give the overlay scaler a chance to enable if it's on this pipe */
4432 intel_crtc_dpms_overlay(intel_crtc, true);
4433
4434 intel_update_fbc(dev);
4435
4436 for_each_encoder_on_crtc(dev, crtc, encoder)
4437 encoder->enable(encoder);
4438 }
4439
4440 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4441 {
4442 struct drm_device *dev = crtc->base.dev;
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445 if (!crtc->config.gmch_pfit.control)
4446 return;
4447
4448 assert_pipe_disabled(dev_priv, crtc->pipe);
4449
4450 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4451 I915_READ(PFIT_CONTROL));
4452 I915_WRITE(PFIT_CONTROL, 0);
4453 }
4454
4455 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4456 {
4457 struct drm_device *dev = crtc->dev;
4458 struct drm_i915_private *dev_priv = dev->dev_private;
4459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4460 struct intel_encoder *encoder;
4461 int pipe = intel_crtc->pipe;
4462 int plane = intel_crtc->plane;
4463
4464 if (!intel_crtc->active)
4465 return;
4466
4467 for_each_encoder_on_crtc(dev, crtc, encoder)
4468 encoder->disable(encoder);
4469
4470 /* Give the overlay scaler a chance to disable if it's on this pipe */
4471 intel_crtc_wait_for_pending_flips(crtc);
4472 drm_vblank_off(dev, pipe);
4473
4474 if (dev_priv->fbc.plane == plane)
4475 intel_disable_fbc(dev);
4476
4477 intel_crtc_dpms_overlay(intel_crtc, false);
4478 intel_crtc_update_cursor(crtc, false);
4479 intel_disable_planes(crtc);
4480 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
4481
4482 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4483 intel_disable_pipe(dev_priv, pipe);
4484
4485 i9xx_pfit_disable(intel_crtc);
4486
4487 for_each_encoder_on_crtc(dev, crtc, encoder)
4488 if (encoder->post_disable)
4489 encoder->post_disable(encoder);
4490
4491 if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4492 vlv_disable_pll(dev_priv, pipe);
4493 else if (!IS_VALLEYVIEW(dev))
4494 i9xx_disable_pll(dev_priv, pipe);
4495
4496 intel_crtc->active = false;
4497 intel_update_watermarks(crtc);
4498
4499 intel_update_fbc(dev);
4500 }
4501
4502 static void i9xx_crtc_off(struct drm_crtc *crtc)
4503 {
4504 }
4505
4506 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4507 bool enabled)
4508 {
4509 struct drm_device *dev = crtc->dev;
4510 struct drm_i915_master_private *master_priv;
4511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4512 int pipe = intel_crtc->pipe;
4513
4514 if (!dev->primary->master)
4515 return;
4516
4517 master_priv = dev->primary->master->driver_priv;
4518 if (!master_priv->sarea_priv)
4519 return;
4520
4521 switch (pipe) {
4522 case 0:
4523 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4524 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4525 break;
4526 case 1:
4527 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4528 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4529 break;
4530 default:
4531 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4532 break;
4533 }
4534 }
4535
4536 /**
4537 * Sets the power management mode of the pipe and plane.
4538 */
4539 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4540 {
4541 struct drm_device *dev = crtc->dev;
4542 struct drm_i915_private *dev_priv = dev->dev_private;
4543 struct intel_encoder *intel_encoder;
4544 bool enable = false;
4545
4546 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4547 enable |= intel_encoder->connectors_active;
4548
4549 if (enable)
4550 dev_priv->display.crtc_enable(crtc);
4551 else
4552 dev_priv->display.crtc_disable(crtc);
4553
4554 intel_crtc_update_sarea(crtc, enable);
4555 }
4556
4557 static void intel_crtc_disable(struct drm_crtc *crtc)
4558 {
4559 struct drm_device *dev = crtc->dev;
4560 struct drm_connector *connector;
4561 struct drm_i915_private *dev_priv = dev->dev_private;
4562 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4563
4564 /* crtc should still be enabled when we disable it. */
4565 WARN_ON(!crtc->enabled);
4566
4567 dev_priv->display.crtc_disable(crtc);
4568 intel_crtc->eld_vld = false;
4569 intel_crtc_update_sarea(crtc, false);
4570 dev_priv->display.off(crtc);
4571
4572 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4573 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4574 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4575
4576 if (crtc->fb) {
4577 mutex_lock(&dev->struct_mutex);
4578 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4579 mutex_unlock(&dev->struct_mutex);
4580 crtc->fb = NULL;
4581 }
4582
4583 /* Update computed state. */
4584 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4585 if (!connector->encoder || !connector->encoder->crtc)
4586 continue;
4587
4588 if (connector->encoder->crtc != crtc)
4589 continue;
4590
4591 connector->dpms = DRM_MODE_DPMS_OFF;
4592 to_intel_encoder(connector->encoder)->connectors_active = false;
4593 }
4594 }
4595
4596 void intel_encoder_destroy(struct drm_encoder *encoder)
4597 {
4598 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4599
4600 drm_encoder_cleanup(encoder);
4601 kfree(intel_encoder);
4602 }
4603
4604 /* Simple dpms helper for encoders with just one connector, no cloning and only
4605 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4606 * state of the entire output pipe. */
4607 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4608 {
4609 if (mode == DRM_MODE_DPMS_ON) {
4610 encoder->connectors_active = true;
4611
4612 intel_crtc_update_dpms(encoder->base.crtc);
4613 } else {
4614 encoder->connectors_active = false;
4615
4616 intel_crtc_update_dpms(encoder->base.crtc);
4617 }
4618 }
4619
4620 /* Cross check the actual hw state with our own modeset state tracking (and it's
4621 * internal consistency). */
4622 static void intel_connector_check_state(struct intel_connector *connector)
4623 {
4624 if (connector->get_hw_state(connector)) {
4625 struct intel_encoder *encoder = connector->encoder;
4626 struct drm_crtc *crtc;
4627 bool encoder_enabled;
4628 enum pipe pipe;
4629
4630 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4631 connector->base.base.id,
4632 drm_get_connector_name(&connector->base));
4633
4634 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4635 "wrong connector dpms state\n");
4636 WARN(connector->base.encoder != &encoder->base,
4637 "active connector not linked to encoder\n");
4638 WARN(!encoder->connectors_active,
4639 "encoder->connectors_active not set\n");
4640
4641 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4642 WARN(!encoder_enabled, "encoder not enabled\n");
4643 if (WARN_ON(!encoder->base.crtc))
4644 return;
4645
4646 crtc = encoder->base.crtc;
4647
4648 WARN(!crtc->enabled, "crtc not enabled\n");
4649 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4650 WARN(pipe != to_intel_crtc(crtc)->pipe,
4651 "encoder active on the wrong pipe\n");
4652 }
4653 }
4654
4655 /* Even simpler default implementation, if there's really no special case to
4656 * consider. */
4657 void intel_connector_dpms(struct drm_connector *connector, int mode)
4658 {
4659 /* All the simple cases only support two dpms states. */
4660 if (mode != DRM_MODE_DPMS_ON)
4661 mode = DRM_MODE_DPMS_OFF;
4662
4663 if (mode == connector->dpms)
4664 return;
4665
4666 connector->dpms = mode;
4667
4668 /* Only need to change hw state when actually enabled */
4669 if (connector->encoder)
4670 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4671
4672 intel_modeset_check_state(connector->dev);
4673 }
4674
4675 /* Simple connector->get_hw_state implementation for encoders that support only
4676 * one connector and no cloning and hence the encoder state determines the state
4677 * of the connector. */
4678 bool intel_connector_get_hw_state(struct intel_connector *connector)
4679 {
4680 enum pipe pipe = 0;
4681 struct intel_encoder *encoder = connector->encoder;
4682
4683 return encoder->get_hw_state(encoder, &pipe);
4684 }
4685
4686 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4687 struct intel_crtc_config *pipe_config)
4688 {
4689 struct drm_i915_private *dev_priv = dev->dev_private;
4690 struct intel_crtc *pipe_B_crtc =
4691 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4692
4693 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4694 pipe_name(pipe), pipe_config->fdi_lanes);
4695 if (pipe_config->fdi_lanes > 4) {
4696 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4697 pipe_name(pipe), pipe_config->fdi_lanes);
4698 return false;
4699 }
4700
4701 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4702 if (pipe_config->fdi_lanes > 2) {
4703 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4704 pipe_config->fdi_lanes);
4705 return false;
4706 } else {
4707 return true;
4708 }
4709 }
4710
4711 if (INTEL_INFO(dev)->num_pipes == 2)
4712 return true;
4713
4714 /* Ivybridge 3 pipe is really complicated */
4715 switch (pipe) {
4716 case PIPE_A:
4717 return true;
4718 case PIPE_B:
4719 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4720 pipe_config->fdi_lanes > 2) {
4721 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4722 pipe_name(pipe), pipe_config->fdi_lanes);
4723 return false;
4724 }
4725 return true;
4726 case PIPE_C:
4727 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4728 pipe_B_crtc->config.fdi_lanes <= 2) {
4729 if (pipe_config->fdi_lanes > 2) {
4730 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4731 pipe_name(pipe), pipe_config->fdi_lanes);
4732 return false;
4733 }
4734 } else {
4735 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4736 return false;
4737 }
4738 return true;
4739 default:
4740 BUG();
4741 }
4742 }
4743
4744 #define RETRY 1
4745 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4746 struct intel_crtc_config *pipe_config)
4747 {
4748 struct drm_device *dev = intel_crtc->base.dev;
4749 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4750 int lane, link_bw, fdi_dotclock;
4751 bool setup_ok, needs_recompute = false;
4752
4753 retry:
4754 /* FDI is a binary signal running at ~2.7GHz, encoding
4755 * each output octet as 10 bits. The actual frequency
4756 * is stored as a divider into a 100MHz clock, and the
4757 * mode pixel clock is stored in units of 1KHz.
4758 * Hence the bw of each lane in terms of the mode signal
4759 * is:
4760 */
4761 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4762
4763 fdi_dotclock = adjusted_mode->crtc_clock;
4764
4765 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4766 pipe_config->pipe_bpp);
4767
4768 pipe_config->fdi_lanes = lane;
4769
4770 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4771 link_bw, &pipe_config->fdi_m_n);
4772
4773 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4774 intel_crtc->pipe, pipe_config);
4775 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4776 pipe_config->pipe_bpp -= 2*3;
4777 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4778 pipe_config->pipe_bpp);
4779 needs_recompute = true;
4780 pipe_config->bw_constrained = true;
4781
4782 goto retry;
4783 }
4784
4785 if (needs_recompute)
4786 return RETRY;
4787
4788 return setup_ok ? 0 : -EINVAL;
4789 }
4790
4791 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4792 struct intel_crtc_config *pipe_config)
4793 {
4794 pipe_config->ips_enabled = i915.enable_ips &&
4795 hsw_crtc_supports_ips(crtc) &&
4796 pipe_config->pipe_bpp <= 24;
4797 }
4798
4799 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4800 struct intel_crtc_config *pipe_config)
4801 {
4802 struct drm_device *dev = crtc->base.dev;
4803 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4804
4805 /* FIXME should check pixel clock limits on all platforms */
4806 if (INTEL_INFO(dev)->gen < 4) {
4807 struct drm_i915_private *dev_priv = dev->dev_private;
4808 int clock_limit =
4809 dev_priv->display.get_display_clock_speed(dev);
4810
4811 /*
4812 * Enable pixel doubling when the dot clock
4813 * is > 90% of the (display) core speed.
4814 *
4815 * GDG double wide on either pipe,
4816 * otherwise pipe A only.
4817 */
4818 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4819 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4820 clock_limit *= 2;
4821 pipe_config->double_wide = true;
4822 }
4823
4824 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4825 return -EINVAL;
4826 }
4827
4828 /*
4829 * Pipe horizontal size must be even in:
4830 * - DVO ganged mode
4831 * - LVDS dual channel mode
4832 * - Double wide pipe
4833 */
4834 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4835 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4836 pipe_config->pipe_src_w &= ~1;
4837
4838 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4839 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4840 */
4841 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4842 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4843 return -EINVAL;
4844
4845 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4846 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4847 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4848 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4849 * for lvds. */
4850 pipe_config->pipe_bpp = 8*3;
4851 }
4852
4853 if (HAS_IPS(dev))
4854 hsw_compute_ips_config(crtc, pipe_config);
4855
4856 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4857 * clock survives for now. */
4858 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4859 pipe_config->shared_dpll = crtc->config.shared_dpll;
4860
4861 if (pipe_config->has_pch_encoder)
4862 return ironlake_fdi_compute_config(crtc, pipe_config);
4863
4864 return 0;
4865 }
4866
4867 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4868 {
4869 return 400000; /* FIXME */
4870 }
4871
4872 static int i945_get_display_clock_speed(struct drm_device *dev)
4873 {
4874 return 400000;
4875 }
4876
4877 static int i915_get_display_clock_speed(struct drm_device *dev)
4878 {
4879 return 333000;
4880 }
4881
4882 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4883 {
4884 return 200000;
4885 }
4886
4887 static int pnv_get_display_clock_speed(struct drm_device *dev)
4888 {
4889 u16 gcfgc = 0;
4890
4891 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4892
4893 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4894 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4895 return 267000;
4896 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4897 return 333000;
4898 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4899 return 444000;
4900 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4901 return 200000;
4902 default:
4903 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4904 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4905 return 133000;
4906 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4907 return 167000;
4908 }
4909 }
4910
4911 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4912 {
4913 u16 gcfgc = 0;
4914
4915 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4916
4917 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4918 return 133000;
4919 else {
4920 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4921 case GC_DISPLAY_CLOCK_333_MHZ:
4922 return 333000;
4923 default:
4924 case GC_DISPLAY_CLOCK_190_200_MHZ:
4925 return 190000;
4926 }
4927 }
4928 }
4929
4930 static int i865_get_display_clock_speed(struct drm_device *dev)
4931 {
4932 return 266000;
4933 }
4934
4935 static int i855_get_display_clock_speed(struct drm_device *dev)
4936 {
4937 u16 hpllcc = 0;
4938 /* Assume that the hardware is in the high speed state. This
4939 * should be the default.
4940 */
4941 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4942 case GC_CLOCK_133_200:
4943 case GC_CLOCK_100_200:
4944 return 200000;
4945 case GC_CLOCK_166_250:
4946 return 250000;
4947 case GC_CLOCK_100_133:
4948 return 133000;
4949 }
4950
4951 /* Shouldn't happen */
4952 return 0;
4953 }
4954
4955 static int i830_get_display_clock_speed(struct drm_device *dev)
4956 {
4957 return 133000;
4958 }
4959
4960 static void
4961 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4962 {
4963 while (*num > DATA_LINK_M_N_MASK ||
4964 *den > DATA_LINK_M_N_MASK) {
4965 *num >>= 1;
4966 *den >>= 1;
4967 }
4968 }
4969
4970 static void compute_m_n(unsigned int m, unsigned int n,
4971 uint32_t *ret_m, uint32_t *ret_n)
4972 {
4973 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4974 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4975 intel_reduce_m_n_ratio(ret_m, ret_n);
4976 }
4977
4978 void
4979 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4980 int pixel_clock, int link_clock,
4981 struct intel_link_m_n *m_n)
4982 {
4983 m_n->tu = 64;
4984
4985 compute_m_n(bits_per_pixel * pixel_clock,
4986 link_clock * nlanes * 8,
4987 &m_n->gmch_m, &m_n->gmch_n);
4988
4989 compute_m_n(pixel_clock, link_clock,
4990 &m_n->link_m, &m_n->link_n);
4991 }
4992
4993 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4994 {
4995 if (i915.panel_use_ssc >= 0)
4996 return i915.panel_use_ssc != 0;
4997 return dev_priv->vbt.lvds_use_ssc
4998 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4999 }
5000
5001 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5002 {
5003 struct drm_device *dev = crtc->dev;
5004 struct drm_i915_private *dev_priv = dev->dev_private;
5005 int refclk;
5006
5007 if (IS_VALLEYVIEW(dev)) {
5008 refclk = 100000;
5009 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5010 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5011 refclk = dev_priv->vbt.lvds_ssc_freq;
5012 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5013 } else if (!IS_GEN2(dev)) {
5014 refclk = 96000;
5015 } else {
5016 refclk = 48000;
5017 }
5018
5019 return refclk;
5020 }
5021
5022 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5023 {
5024 return (1 << dpll->n) << 16 | dpll->m2;
5025 }
5026
5027 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5028 {
5029 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5030 }
5031
5032 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5033 intel_clock_t *reduced_clock)
5034 {
5035 struct drm_device *dev = crtc->base.dev;
5036 struct drm_i915_private *dev_priv = dev->dev_private;
5037 int pipe = crtc->pipe;
5038 u32 fp, fp2 = 0;
5039
5040 if (IS_PINEVIEW(dev)) {
5041 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5042 if (reduced_clock)
5043 fp2 = pnv_dpll_compute_fp(reduced_clock);
5044 } else {
5045 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5046 if (reduced_clock)
5047 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5048 }
5049
5050 I915_WRITE(FP0(pipe), fp);
5051 crtc->config.dpll_hw_state.fp0 = fp;
5052
5053 crtc->lowfreq_avail = false;
5054 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5055 reduced_clock && i915.powersave) {
5056 I915_WRITE(FP1(pipe), fp2);
5057 crtc->config.dpll_hw_state.fp1 = fp2;
5058 crtc->lowfreq_avail = true;
5059 } else {
5060 I915_WRITE(FP1(pipe), fp);
5061 crtc->config.dpll_hw_state.fp1 = fp;
5062 }
5063 }
5064
5065 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5066 pipe)
5067 {
5068 u32 reg_val;
5069
5070 /*
5071 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5072 * and set it to a reasonable value instead.
5073 */
5074 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5075 reg_val &= 0xffffff00;
5076 reg_val |= 0x00000030;
5077 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5078
5079 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5080 reg_val &= 0x8cffffff;
5081 reg_val = 0x8c000000;
5082 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5083
5084 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5085 reg_val &= 0xffffff00;
5086 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5087
5088 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5089 reg_val &= 0x00ffffff;
5090 reg_val |= 0xb0000000;
5091 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5092 }
5093
5094 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5095 struct intel_link_m_n *m_n)
5096 {
5097 struct drm_device *dev = crtc->base.dev;
5098 struct drm_i915_private *dev_priv = dev->dev_private;
5099 int pipe = crtc->pipe;
5100
5101 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5102 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5103 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5104 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5105 }
5106
5107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5108 struct intel_link_m_n *m_n)
5109 {
5110 struct drm_device *dev = crtc->base.dev;
5111 struct drm_i915_private *dev_priv = dev->dev_private;
5112 int pipe = crtc->pipe;
5113 enum transcoder transcoder = crtc->config.cpu_transcoder;
5114
5115 if (INTEL_INFO(dev)->gen >= 5) {
5116 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5117 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5118 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5119 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5120 } else {
5121 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5122 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5123 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5124 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5125 }
5126 }
5127
5128 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5129 {
5130 if (crtc->config.has_pch_encoder)
5131 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5132 else
5133 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5134 }
5135
5136 static void vlv_update_pll(struct intel_crtc *crtc)
5137 {
5138 struct drm_device *dev = crtc->base.dev;
5139 struct drm_i915_private *dev_priv = dev->dev_private;
5140 int pipe = crtc->pipe;
5141 u32 dpll, mdiv;
5142 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5143 u32 coreclk, reg_val, dpll_md;
5144
5145 mutex_lock(&dev_priv->dpio_lock);
5146
5147 bestn = crtc->config.dpll.n;
5148 bestm1 = crtc->config.dpll.m1;
5149 bestm2 = crtc->config.dpll.m2;
5150 bestp1 = crtc->config.dpll.p1;
5151 bestp2 = crtc->config.dpll.p2;
5152
5153 /* See eDP HDMI DPIO driver vbios notes doc */
5154
5155 /* PLL B needs special handling */
5156 if (pipe)
5157 vlv_pllb_recal_opamp(dev_priv, pipe);
5158
5159 /* Set up Tx target for periodic Rcomp update */
5160 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5161
5162 /* Disable target IRef on PLL */
5163 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5164 reg_val &= 0x00ffffff;
5165 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5166
5167 /* Disable fast lock */
5168 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5169
5170 /* Set idtafcrecal before PLL is enabled */
5171 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5172 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5173 mdiv |= ((bestn << DPIO_N_SHIFT));
5174 mdiv |= (1 << DPIO_K_SHIFT);
5175
5176 /*
5177 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5178 * but we don't support that).
5179 * Note: don't use the DAC post divider as it seems unstable.
5180 */
5181 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5182 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5183
5184 mdiv |= DPIO_ENABLE_CALIBRATION;
5185 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5186
5187 /* Set HBR and RBR LPF coefficients */
5188 if (crtc->config.port_clock == 162000 ||
5189 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5190 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5191 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5192 0x009f0003);
5193 else
5194 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5195 0x00d0000f);
5196
5197 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5198 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5199 /* Use SSC source */
5200 if (!pipe)
5201 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5202 0x0df40000);
5203 else
5204 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5205 0x0df70000);
5206 } else { /* HDMI or VGA */
5207 /* Use bend source */
5208 if (!pipe)
5209 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5210 0x0df70000);
5211 else
5212 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5213 0x0df40000);
5214 }
5215
5216 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5217 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5218 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5219 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5220 coreclk |= 0x01000000;
5221 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5222
5223 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5224
5225 /*
5226 * Enable DPIO clock input. We should never disable the reference
5227 * clock for pipe B, since VGA hotplug / manual detection depends
5228 * on it.
5229 */
5230 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5231 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5232 /* We should never disable this, set it here for state tracking */
5233 if (pipe == PIPE_B)
5234 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5235 dpll |= DPLL_VCO_ENABLE;
5236 crtc->config.dpll_hw_state.dpll = dpll;
5237
5238 dpll_md = (crtc->config.pixel_multiplier - 1)
5239 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5240 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5241
5242 if (crtc->config.has_dp_encoder)
5243 intel_dp_set_m_n(crtc);
5244
5245 mutex_unlock(&dev_priv->dpio_lock);
5246 }
5247
5248 static void i9xx_update_pll(struct intel_crtc *crtc,
5249 intel_clock_t *reduced_clock,
5250 int num_connectors)
5251 {
5252 struct drm_device *dev = crtc->base.dev;
5253 struct drm_i915_private *dev_priv = dev->dev_private;
5254 u32 dpll;
5255 bool is_sdvo;
5256 struct dpll *clock = &crtc->config.dpll;
5257
5258 i9xx_update_pll_dividers(crtc, reduced_clock);
5259
5260 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5261 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5262
5263 dpll = DPLL_VGA_MODE_DIS;
5264
5265 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5266 dpll |= DPLLB_MODE_LVDS;
5267 else
5268 dpll |= DPLLB_MODE_DAC_SERIAL;
5269
5270 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5271 dpll |= (crtc->config.pixel_multiplier - 1)
5272 << SDVO_MULTIPLIER_SHIFT_HIRES;
5273 }
5274
5275 if (is_sdvo)
5276 dpll |= DPLL_SDVO_HIGH_SPEED;
5277
5278 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5279 dpll |= DPLL_SDVO_HIGH_SPEED;
5280
5281 /* compute bitmask from p1 value */
5282 if (IS_PINEVIEW(dev))
5283 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5284 else {
5285 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5286 if (IS_G4X(dev) && reduced_clock)
5287 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5288 }
5289 switch (clock->p2) {
5290 case 5:
5291 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5292 break;
5293 case 7:
5294 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5295 break;
5296 case 10:
5297 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5298 break;
5299 case 14:
5300 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5301 break;
5302 }
5303 if (INTEL_INFO(dev)->gen >= 4)
5304 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5305
5306 if (crtc->config.sdvo_tv_clock)
5307 dpll |= PLL_REF_INPUT_TVCLKINBC;
5308 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5309 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5310 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5311 else
5312 dpll |= PLL_REF_INPUT_DREFCLK;
5313
5314 dpll |= DPLL_VCO_ENABLE;
5315 crtc->config.dpll_hw_state.dpll = dpll;
5316
5317 if (INTEL_INFO(dev)->gen >= 4) {
5318 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5319 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5320 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5321 }
5322
5323 if (crtc->config.has_dp_encoder)
5324 intel_dp_set_m_n(crtc);
5325 }
5326
5327 static void i8xx_update_pll(struct intel_crtc *crtc,
5328 intel_clock_t *reduced_clock,
5329 int num_connectors)
5330 {
5331 struct drm_device *dev = crtc->base.dev;
5332 struct drm_i915_private *dev_priv = dev->dev_private;
5333 u32 dpll;
5334 struct dpll *clock = &crtc->config.dpll;
5335
5336 i9xx_update_pll_dividers(crtc, reduced_clock);
5337
5338 dpll = DPLL_VGA_MODE_DIS;
5339
5340 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5341 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5342 } else {
5343 if (clock->p1 == 2)
5344 dpll |= PLL_P1_DIVIDE_BY_TWO;
5345 else
5346 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5347 if (clock->p2 == 4)
5348 dpll |= PLL_P2_DIVIDE_BY_4;
5349 }
5350
5351 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5352 dpll |= DPLL_DVO_2X_MODE;
5353
5354 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5355 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5356 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5357 else
5358 dpll |= PLL_REF_INPUT_DREFCLK;
5359
5360 dpll |= DPLL_VCO_ENABLE;
5361 crtc->config.dpll_hw_state.dpll = dpll;
5362 }
5363
5364 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5365 {
5366 struct drm_device *dev = intel_crtc->base.dev;
5367 struct drm_i915_private *dev_priv = dev->dev_private;
5368 enum pipe pipe = intel_crtc->pipe;
5369 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5370 struct drm_display_mode *adjusted_mode =
5371 &intel_crtc->config.adjusted_mode;
5372 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5373
5374 /* We need to be careful not to changed the adjusted mode, for otherwise
5375 * the hw state checker will get angry at the mismatch. */
5376 crtc_vtotal = adjusted_mode->crtc_vtotal;
5377 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5378
5379 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5380 /* the chip adds 2 halflines automatically */
5381 crtc_vtotal -= 1;
5382 crtc_vblank_end -= 1;
5383 vsyncshift = adjusted_mode->crtc_hsync_start
5384 - adjusted_mode->crtc_htotal / 2;
5385 } else {
5386 vsyncshift = 0;
5387 }
5388
5389 if (INTEL_INFO(dev)->gen > 3)
5390 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5391
5392 I915_WRITE(HTOTAL(cpu_transcoder),
5393 (adjusted_mode->crtc_hdisplay - 1) |
5394 ((adjusted_mode->crtc_htotal - 1) << 16));
5395 I915_WRITE(HBLANK(cpu_transcoder),
5396 (adjusted_mode->crtc_hblank_start - 1) |
5397 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5398 I915_WRITE(HSYNC(cpu_transcoder),
5399 (adjusted_mode->crtc_hsync_start - 1) |
5400 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5401
5402 I915_WRITE(VTOTAL(cpu_transcoder),
5403 (adjusted_mode->crtc_vdisplay - 1) |
5404 ((crtc_vtotal - 1) << 16));
5405 I915_WRITE(VBLANK(cpu_transcoder),
5406 (adjusted_mode->crtc_vblank_start - 1) |
5407 ((crtc_vblank_end - 1) << 16));
5408 I915_WRITE(VSYNC(cpu_transcoder),
5409 (adjusted_mode->crtc_vsync_start - 1) |
5410 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5411
5412 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5413 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5414 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5415 * bits. */
5416 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5417 (pipe == PIPE_B || pipe == PIPE_C))
5418 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5419
5420 /* pipesrc controls the size that is scaled from, which should
5421 * always be the user's requested size.
5422 */
5423 I915_WRITE(PIPESRC(pipe),
5424 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5425 (intel_crtc->config.pipe_src_h - 1));
5426 }
5427
5428 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5429 struct intel_crtc_config *pipe_config)
5430 {
5431 struct drm_device *dev = crtc->base.dev;
5432 struct drm_i915_private *dev_priv = dev->dev_private;
5433 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5434 uint32_t tmp;
5435
5436 tmp = I915_READ(HTOTAL(cpu_transcoder));
5437 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5438 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5439 tmp = I915_READ(HBLANK(cpu_transcoder));
5440 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5441 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5442 tmp = I915_READ(HSYNC(cpu_transcoder));
5443 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5444 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5445
5446 tmp = I915_READ(VTOTAL(cpu_transcoder));
5447 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5448 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5449 tmp = I915_READ(VBLANK(cpu_transcoder));
5450 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5451 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5452 tmp = I915_READ(VSYNC(cpu_transcoder));
5453 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5454 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5455
5456 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5457 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5458 pipe_config->adjusted_mode.crtc_vtotal += 1;
5459 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5460 }
5461
5462 tmp = I915_READ(PIPESRC(crtc->pipe));
5463 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5464 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5465
5466 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5467 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5468 }
5469
5470 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5471 struct intel_crtc_config *pipe_config)
5472 {
5473 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5474 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5475 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5476 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5477
5478 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5479 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5480 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5481 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5482
5483 mode->flags = pipe_config->adjusted_mode.flags;
5484
5485 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5486 mode->flags |= pipe_config->adjusted_mode.flags;
5487 }
5488
5489 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5490 {
5491 struct drm_device *dev = intel_crtc->base.dev;
5492 struct drm_i915_private *dev_priv = dev->dev_private;
5493 uint32_t pipeconf;
5494
5495 pipeconf = 0;
5496
5497 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5498 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5499 pipeconf |= PIPECONF_ENABLE;
5500
5501 if (intel_crtc->config.double_wide)
5502 pipeconf |= PIPECONF_DOUBLE_WIDE;
5503
5504 /* only g4x and later have fancy bpc/dither controls */
5505 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5506 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5507 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5508 pipeconf |= PIPECONF_DITHER_EN |
5509 PIPECONF_DITHER_TYPE_SP;
5510
5511 switch (intel_crtc->config.pipe_bpp) {
5512 case 18:
5513 pipeconf |= PIPECONF_6BPC;
5514 break;
5515 case 24:
5516 pipeconf |= PIPECONF_8BPC;
5517 break;
5518 case 30:
5519 pipeconf |= PIPECONF_10BPC;
5520 break;
5521 default:
5522 /* Case prevented by intel_choose_pipe_bpp_dither. */
5523 BUG();
5524 }
5525 }
5526
5527 if (HAS_PIPE_CXSR(dev)) {
5528 if (intel_crtc->lowfreq_avail) {
5529 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5530 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5531 } else {
5532 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5533 }
5534 }
5535
5536 if (!IS_GEN2(dev) &&
5537 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5538 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5539 else
5540 pipeconf |= PIPECONF_PROGRESSIVE;
5541
5542 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5543 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5544
5545 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5546 POSTING_READ(PIPECONF(intel_crtc->pipe));
5547 }
5548
5549 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5550 int x, int y,
5551 struct drm_framebuffer *fb)
5552 {
5553 struct drm_device *dev = crtc->dev;
5554 struct drm_i915_private *dev_priv = dev->dev_private;
5555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5556 int pipe = intel_crtc->pipe;
5557 int plane = intel_crtc->plane;
5558 int refclk, num_connectors = 0;
5559 intel_clock_t clock, reduced_clock;
5560 u32 dspcntr;
5561 bool ok, has_reduced_clock = false;
5562 bool is_lvds = false, is_dsi = false;
5563 struct intel_encoder *encoder;
5564 const intel_limit_t *limit;
5565 int ret;
5566
5567 for_each_encoder_on_crtc(dev, crtc, encoder) {
5568 switch (encoder->type) {
5569 case INTEL_OUTPUT_LVDS:
5570 is_lvds = true;
5571 break;
5572 case INTEL_OUTPUT_DSI:
5573 is_dsi = true;
5574 break;
5575 }
5576
5577 num_connectors++;
5578 }
5579
5580 if (is_dsi)
5581 goto skip_dpll;
5582
5583 if (!intel_crtc->config.clock_set) {
5584 refclk = i9xx_get_refclk(crtc, num_connectors);
5585
5586 /*
5587 * Returns a set of divisors for the desired target clock with
5588 * the given refclk, or FALSE. The returned values represent
5589 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5590 * 2) / p1 / p2.
5591 */
5592 limit = intel_limit(crtc, refclk);
5593 ok = dev_priv->display.find_dpll(limit, crtc,
5594 intel_crtc->config.port_clock,
5595 refclk, NULL, &clock);
5596 if (!ok) {
5597 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5598 return -EINVAL;
5599 }
5600
5601 if (is_lvds && dev_priv->lvds_downclock_avail) {
5602 /*
5603 * Ensure we match the reduced clock's P to the target
5604 * clock. If the clocks don't match, we can't switch
5605 * the display clock by using the FP0/FP1. In such case
5606 * we will disable the LVDS downclock feature.
5607 */
5608 has_reduced_clock =
5609 dev_priv->display.find_dpll(limit, crtc,
5610 dev_priv->lvds_downclock,
5611 refclk, &clock,
5612 &reduced_clock);
5613 }
5614 /* Compat-code for transition, will disappear. */
5615 intel_crtc->config.dpll.n = clock.n;
5616 intel_crtc->config.dpll.m1 = clock.m1;
5617 intel_crtc->config.dpll.m2 = clock.m2;
5618 intel_crtc->config.dpll.p1 = clock.p1;
5619 intel_crtc->config.dpll.p2 = clock.p2;
5620 }
5621
5622 if (IS_GEN2(dev)) {
5623 i8xx_update_pll(intel_crtc,
5624 has_reduced_clock ? &reduced_clock : NULL,
5625 num_connectors);
5626 } else if (IS_VALLEYVIEW(dev)) {
5627 vlv_update_pll(intel_crtc);
5628 } else {
5629 i9xx_update_pll(intel_crtc,
5630 has_reduced_clock ? &reduced_clock : NULL,
5631 num_connectors);
5632 }
5633
5634 skip_dpll:
5635 /* Set up the display plane register */
5636 dspcntr = DISPPLANE_GAMMA_ENABLE;
5637
5638 if (!IS_VALLEYVIEW(dev)) {
5639 if (pipe == 0)
5640 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5641 else
5642 dspcntr |= DISPPLANE_SEL_PIPE_B;
5643 }
5644
5645 intel_set_pipe_timings(intel_crtc);
5646
5647 /* pipesrc and dspsize control the size that is scaled from,
5648 * which should always be the user's requested size.
5649 */
5650 I915_WRITE(DSPSIZE(plane),
5651 ((intel_crtc->config.pipe_src_h - 1) << 16) |
5652 (intel_crtc->config.pipe_src_w - 1));
5653 I915_WRITE(DSPPOS(plane), 0);
5654
5655 i9xx_set_pipeconf(intel_crtc);
5656
5657 I915_WRITE(DSPCNTR(plane), dspcntr);
5658 POSTING_READ(DSPCNTR(plane));
5659
5660 ret = intel_pipe_set_base(crtc, x, y, fb);
5661
5662 return ret;
5663 }
5664
5665 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5666 struct intel_crtc_config *pipe_config)
5667 {
5668 struct drm_device *dev = crtc->base.dev;
5669 struct drm_i915_private *dev_priv = dev->dev_private;
5670 uint32_t tmp;
5671
5672 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5673 return;
5674
5675 tmp = I915_READ(PFIT_CONTROL);
5676 if (!(tmp & PFIT_ENABLE))
5677 return;
5678
5679 /* Check whether the pfit is attached to our pipe. */
5680 if (INTEL_INFO(dev)->gen < 4) {
5681 if (crtc->pipe != PIPE_B)
5682 return;
5683 } else {
5684 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5685 return;
5686 }
5687
5688 pipe_config->gmch_pfit.control = tmp;
5689 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5690 if (INTEL_INFO(dev)->gen < 5)
5691 pipe_config->gmch_pfit.lvds_border_bits =
5692 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5693 }
5694
5695 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5696 struct intel_crtc_config *pipe_config)
5697 {
5698 struct drm_device *dev = crtc->base.dev;
5699 struct drm_i915_private *dev_priv = dev->dev_private;
5700 int pipe = pipe_config->cpu_transcoder;
5701 intel_clock_t clock;
5702 u32 mdiv;
5703 int refclk = 100000;
5704
5705 mutex_lock(&dev_priv->dpio_lock);
5706 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5707 mutex_unlock(&dev_priv->dpio_lock);
5708
5709 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5710 clock.m2 = mdiv & DPIO_M2DIV_MASK;
5711 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5712 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5713 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5714
5715 vlv_clock(refclk, &clock);
5716
5717 /* clock.dot is the fast clock */
5718 pipe_config->port_clock = clock.dot / 5;
5719 }
5720
5721 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5722 struct intel_plane_config *plane_config)
5723 {
5724 struct drm_device *dev = crtc->base.dev;
5725 struct drm_i915_private *dev_priv = dev->dev_private;
5726 u32 val, base, offset;
5727 int pipe = crtc->pipe, plane = crtc->plane;
5728 int fourcc, pixel_format;
5729 int aligned_height;
5730
5731 crtc->base.fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5732 if (!crtc->base.fb) {
5733 DRM_DEBUG_KMS("failed to alloc fb\n");
5734 return;
5735 }
5736
5737 val = I915_READ(DSPCNTR(plane));
5738
5739 if (INTEL_INFO(dev)->gen >= 4)
5740 if (val & DISPPLANE_TILED)
5741 plane_config->tiled = true;
5742
5743 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5744 fourcc = intel_format_to_fourcc(pixel_format);
5745 crtc->base.fb->pixel_format = fourcc;
5746 crtc->base.fb->bits_per_pixel =
5747 drm_format_plane_cpp(fourcc, 0) * 8;
5748
5749 if (INTEL_INFO(dev)->gen >= 4) {
5750 if (plane_config->tiled)
5751 offset = I915_READ(DSPTILEOFF(plane));
5752 else
5753 offset = I915_READ(DSPLINOFF(plane));
5754 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5755 } else {
5756 base = I915_READ(DSPADDR(plane));
5757 }
5758 plane_config->base = base;
5759
5760 val = I915_READ(PIPESRC(pipe));
5761 crtc->base.fb->width = ((val >> 16) & 0xfff) + 1;
5762 crtc->base.fb->height = ((val >> 0) & 0xfff) + 1;
5763
5764 val = I915_READ(DSPSTRIDE(pipe));
5765 crtc->base.fb->pitches[0] = val & 0xffffff80;
5766
5767 aligned_height = intel_align_height(dev, crtc->base.fb->height,
5768 plane_config->tiled);
5769
5770 plane_config->size = ALIGN(crtc->base.fb->pitches[0] *
5771 aligned_height, PAGE_SIZE);
5772
5773 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5774 pipe, plane, crtc->base.fb->width,
5775 crtc->base.fb->height,
5776 crtc->base.fb->bits_per_pixel, base,
5777 crtc->base.fb->pitches[0],
5778 plane_config->size);
5779
5780 }
5781
5782 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5783 struct intel_crtc_config *pipe_config)
5784 {
5785 struct drm_device *dev = crtc->base.dev;
5786 struct drm_i915_private *dev_priv = dev->dev_private;
5787 uint32_t tmp;
5788
5789 if (!intel_display_power_enabled(dev_priv,
5790 POWER_DOMAIN_PIPE(crtc->pipe)))
5791 return false;
5792
5793 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5794 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5795
5796 tmp = I915_READ(PIPECONF(crtc->pipe));
5797 if (!(tmp & PIPECONF_ENABLE))
5798 return false;
5799
5800 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5801 switch (tmp & PIPECONF_BPC_MASK) {
5802 case PIPECONF_6BPC:
5803 pipe_config->pipe_bpp = 18;
5804 break;
5805 case PIPECONF_8BPC:
5806 pipe_config->pipe_bpp = 24;
5807 break;
5808 case PIPECONF_10BPC:
5809 pipe_config->pipe_bpp = 30;
5810 break;
5811 default:
5812 break;
5813 }
5814 }
5815
5816 if (INTEL_INFO(dev)->gen < 4)
5817 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5818
5819 intel_get_pipe_timings(crtc, pipe_config);
5820
5821 i9xx_get_pfit_config(crtc, pipe_config);
5822
5823 if (INTEL_INFO(dev)->gen >= 4) {
5824 tmp = I915_READ(DPLL_MD(crtc->pipe));
5825 pipe_config->pixel_multiplier =
5826 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5827 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5828 pipe_config->dpll_hw_state.dpll_md = tmp;
5829 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5830 tmp = I915_READ(DPLL(crtc->pipe));
5831 pipe_config->pixel_multiplier =
5832 ((tmp & SDVO_MULTIPLIER_MASK)
5833 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5834 } else {
5835 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5836 * port and will be fixed up in the encoder->get_config
5837 * function. */
5838 pipe_config->pixel_multiplier = 1;
5839 }
5840 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5841 if (!IS_VALLEYVIEW(dev)) {
5842 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5843 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5844 } else {
5845 /* Mask out read-only status bits. */
5846 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5847 DPLL_PORTC_READY_MASK |
5848 DPLL_PORTB_READY_MASK);
5849 }
5850
5851 if (IS_VALLEYVIEW(dev))
5852 vlv_crtc_clock_get(crtc, pipe_config);
5853 else
5854 i9xx_crtc_clock_get(crtc, pipe_config);
5855
5856 return true;
5857 }
5858
5859 static void ironlake_init_pch_refclk(struct drm_device *dev)
5860 {
5861 struct drm_i915_private *dev_priv = dev->dev_private;
5862 struct drm_mode_config *mode_config = &dev->mode_config;
5863 struct intel_encoder *encoder;
5864 u32 val, final;
5865 bool has_lvds = false;
5866 bool has_cpu_edp = false;
5867 bool has_panel = false;
5868 bool has_ck505 = false;
5869 bool can_ssc = false;
5870
5871 /* We need to take the global config into account */
5872 list_for_each_entry(encoder, &mode_config->encoder_list,
5873 base.head) {
5874 switch (encoder->type) {
5875 case INTEL_OUTPUT_LVDS:
5876 has_panel = true;
5877 has_lvds = true;
5878 break;
5879 case INTEL_OUTPUT_EDP:
5880 has_panel = true;
5881 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5882 has_cpu_edp = true;
5883 break;
5884 }
5885 }
5886
5887 if (HAS_PCH_IBX(dev)) {
5888 has_ck505 = dev_priv->vbt.display_clock_mode;
5889 can_ssc = has_ck505;
5890 } else {
5891 has_ck505 = false;
5892 can_ssc = true;
5893 }
5894
5895 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5896 has_panel, has_lvds, has_ck505);
5897
5898 /* Ironlake: try to setup display ref clock before DPLL
5899 * enabling. This is only under driver's control after
5900 * PCH B stepping, previous chipset stepping should be
5901 * ignoring this setting.
5902 */
5903 val = I915_READ(PCH_DREF_CONTROL);
5904
5905 /* As we must carefully and slowly disable/enable each source in turn,
5906 * compute the final state we want first and check if we need to
5907 * make any changes at all.
5908 */
5909 final = val;
5910 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5911 if (has_ck505)
5912 final |= DREF_NONSPREAD_CK505_ENABLE;
5913 else
5914 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5915
5916 final &= ~DREF_SSC_SOURCE_MASK;
5917 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5918 final &= ~DREF_SSC1_ENABLE;
5919
5920 if (has_panel) {
5921 final |= DREF_SSC_SOURCE_ENABLE;
5922
5923 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5924 final |= DREF_SSC1_ENABLE;
5925
5926 if (has_cpu_edp) {
5927 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5928 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5929 else
5930 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5931 } else
5932 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5933 } else {
5934 final |= DREF_SSC_SOURCE_DISABLE;
5935 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5936 }
5937
5938 if (final == val)
5939 return;
5940
5941 /* Always enable nonspread source */
5942 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5943
5944 if (has_ck505)
5945 val |= DREF_NONSPREAD_CK505_ENABLE;
5946 else
5947 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5948
5949 if (has_panel) {
5950 val &= ~DREF_SSC_SOURCE_MASK;
5951 val |= DREF_SSC_SOURCE_ENABLE;
5952
5953 /* SSC must be turned on before enabling the CPU output */
5954 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5955 DRM_DEBUG_KMS("Using SSC on panel\n");
5956 val |= DREF_SSC1_ENABLE;
5957 } else
5958 val &= ~DREF_SSC1_ENABLE;
5959
5960 /* Get SSC going before enabling the outputs */
5961 I915_WRITE(PCH_DREF_CONTROL, val);
5962 POSTING_READ(PCH_DREF_CONTROL);
5963 udelay(200);
5964
5965 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5966
5967 /* Enable CPU source on CPU attached eDP */
5968 if (has_cpu_edp) {
5969 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5970 DRM_DEBUG_KMS("Using SSC on eDP\n");
5971 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5972 }
5973 else
5974 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5975 } else
5976 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5977
5978 I915_WRITE(PCH_DREF_CONTROL, val);
5979 POSTING_READ(PCH_DREF_CONTROL);
5980 udelay(200);
5981 } else {
5982 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5983
5984 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5985
5986 /* Turn off CPU output */
5987 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5988
5989 I915_WRITE(PCH_DREF_CONTROL, val);
5990 POSTING_READ(PCH_DREF_CONTROL);
5991 udelay(200);
5992
5993 /* Turn off the SSC source */
5994 val &= ~DREF_SSC_SOURCE_MASK;
5995 val |= DREF_SSC_SOURCE_DISABLE;
5996
5997 /* Turn off SSC1 */
5998 val &= ~DREF_SSC1_ENABLE;
5999
6000 I915_WRITE(PCH_DREF_CONTROL, val);
6001 POSTING_READ(PCH_DREF_CONTROL);
6002 udelay(200);
6003 }
6004
6005 BUG_ON(val != final);
6006 }
6007
6008 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6009 {
6010 uint32_t tmp;
6011
6012 tmp = I915_READ(SOUTH_CHICKEN2);
6013 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6014 I915_WRITE(SOUTH_CHICKEN2, tmp);
6015
6016 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6017 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6018 DRM_ERROR("FDI mPHY reset assert timeout\n");
6019
6020 tmp = I915_READ(SOUTH_CHICKEN2);
6021 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6022 I915_WRITE(SOUTH_CHICKEN2, tmp);
6023
6024 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6025 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6026 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6027 }
6028
6029 /* WaMPhyProgramming:hsw */
6030 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6031 {
6032 uint32_t tmp;
6033
6034 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6035 tmp &= ~(0xFF << 24);
6036 tmp |= (0x12 << 24);
6037 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6038
6039 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6040 tmp |= (1 << 11);
6041 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6042
6043 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6044 tmp |= (1 << 11);
6045 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6046
6047 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6048 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6049 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6050
6051 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6052 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6053 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6054
6055 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6056 tmp &= ~(7 << 13);
6057 tmp |= (5 << 13);
6058 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6059
6060 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6061 tmp &= ~(7 << 13);
6062 tmp |= (5 << 13);
6063 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6064
6065 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6066 tmp &= ~0xFF;
6067 tmp |= 0x1C;
6068 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6069
6070 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6071 tmp &= ~0xFF;
6072 tmp |= 0x1C;
6073 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6074
6075 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6076 tmp &= ~(0xFF << 16);
6077 tmp |= (0x1C << 16);
6078 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6079
6080 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6081 tmp &= ~(0xFF << 16);
6082 tmp |= (0x1C << 16);
6083 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6084
6085 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6086 tmp |= (1 << 27);
6087 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6088
6089 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6090 tmp |= (1 << 27);
6091 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6092
6093 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6094 tmp &= ~(0xF << 28);
6095 tmp |= (4 << 28);
6096 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6097
6098 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6099 tmp &= ~(0xF << 28);
6100 tmp |= (4 << 28);
6101 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6102 }
6103
6104 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6105 * Programming" based on the parameters passed:
6106 * - Sequence to enable CLKOUT_DP
6107 * - Sequence to enable CLKOUT_DP without spread
6108 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6109 */
6110 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6111 bool with_fdi)
6112 {
6113 struct drm_i915_private *dev_priv = dev->dev_private;
6114 uint32_t reg, tmp;
6115
6116 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6117 with_spread = true;
6118 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6119 with_fdi, "LP PCH doesn't have FDI\n"))
6120 with_fdi = false;
6121
6122 mutex_lock(&dev_priv->dpio_lock);
6123
6124 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6125 tmp &= ~SBI_SSCCTL_DISABLE;
6126 tmp |= SBI_SSCCTL_PATHALT;
6127 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6128
6129 udelay(24);
6130
6131 if (with_spread) {
6132 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6133 tmp &= ~SBI_SSCCTL_PATHALT;
6134 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6135
6136 if (with_fdi) {
6137 lpt_reset_fdi_mphy(dev_priv);
6138 lpt_program_fdi_mphy(dev_priv);
6139 }
6140 }
6141
6142 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6143 SBI_GEN0 : SBI_DBUFF0;
6144 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6145 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6146 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6147
6148 mutex_unlock(&dev_priv->dpio_lock);
6149 }
6150
6151 /* Sequence to disable CLKOUT_DP */
6152 static void lpt_disable_clkout_dp(struct drm_device *dev)
6153 {
6154 struct drm_i915_private *dev_priv = dev->dev_private;
6155 uint32_t reg, tmp;
6156
6157 mutex_lock(&dev_priv->dpio_lock);
6158
6159 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6160 SBI_GEN0 : SBI_DBUFF0;
6161 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6162 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6163 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6164
6165 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6166 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6167 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6168 tmp |= SBI_SSCCTL_PATHALT;
6169 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6170 udelay(32);
6171 }
6172 tmp |= SBI_SSCCTL_DISABLE;
6173 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6174 }
6175
6176 mutex_unlock(&dev_priv->dpio_lock);
6177 }
6178
6179 static void lpt_init_pch_refclk(struct drm_device *dev)
6180 {
6181 struct drm_mode_config *mode_config = &dev->mode_config;
6182 struct intel_encoder *encoder;
6183 bool has_vga = false;
6184
6185 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6186 switch (encoder->type) {
6187 case INTEL_OUTPUT_ANALOG:
6188 has_vga = true;
6189 break;
6190 }
6191 }
6192
6193 if (has_vga)
6194 lpt_enable_clkout_dp(dev, true, true);
6195 else
6196 lpt_disable_clkout_dp(dev);
6197 }
6198
6199 /*
6200 * Initialize reference clocks when the driver loads
6201 */
6202 void intel_init_pch_refclk(struct drm_device *dev)
6203 {
6204 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6205 ironlake_init_pch_refclk(dev);
6206 else if (HAS_PCH_LPT(dev))
6207 lpt_init_pch_refclk(dev);
6208 }
6209
6210 static int ironlake_get_refclk(struct drm_crtc *crtc)
6211 {
6212 struct drm_device *dev = crtc->dev;
6213 struct drm_i915_private *dev_priv = dev->dev_private;
6214 struct intel_encoder *encoder;
6215 int num_connectors = 0;
6216 bool is_lvds = false;
6217
6218 for_each_encoder_on_crtc(dev, crtc, encoder) {
6219 switch (encoder->type) {
6220 case INTEL_OUTPUT_LVDS:
6221 is_lvds = true;
6222 break;
6223 }
6224 num_connectors++;
6225 }
6226
6227 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6228 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6229 dev_priv->vbt.lvds_ssc_freq);
6230 return dev_priv->vbt.lvds_ssc_freq;
6231 }
6232
6233 return 120000;
6234 }
6235
6236 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6237 {
6238 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240 int pipe = intel_crtc->pipe;
6241 uint32_t val;
6242
6243 val = 0;
6244
6245 switch (intel_crtc->config.pipe_bpp) {
6246 case 18:
6247 val |= PIPECONF_6BPC;
6248 break;
6249 case 24:
6250 val |= PIPECONF_8BPC;
6251 break;
6252 case 30:
6253 val |= PIPECONF_10BPC;
6254 break;
6255 case 36:
6256 val |= PIPECONF_12BPC;
6257 break;
6258 default:
6259 /* Case prevented by intel_choose_pipe_bpp_dither. */
6260 BUG();
6261 }
6262
6263 if (intel_crtc->config.dither)
6264 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6265
6266 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6267 val |= PIPECONF_INTERLACED_ILK;
6268 else
6269 val |= PIPECONF_PROGRESSIVE;
6270
6271 if (intel_crtc->config.limited_color_range)
6272 val |= PIPECONF_COLOR_RANGE_SELECT;
6273
6274 I915_WRITE(PIPECONF(pipe), val);
6275 POSTING_READ(PIPECONF(pipe));
6276 }
6277
6278 /*
6279 * Set up the pipe CSC unit.
6280 *
6281 * Currently only full range RGB to limited range RGB conversion
6282 * is supported, but eventually this should handle various
6283 * RGB<->YCbCr scenarios as well.
6284 */
6285 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6286 {
6287 struct drm_device *dev = crtc->dev;
6288 struct drm_i915_private *dev_priv = dev->dev_private;
6289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290 int pipe = intel_crtc->pipe;
6291 uint16_t coeff = 0x7800; /* 1.0 */
6292
6293 /*
6294 * TODO: Check what kind of values actually come out of the pipe
6295 * with these coeff/postoff values and adjust to get the best
6296 * accuracy. Perhaps we even need to take the bpc value into
6297 * consideration.
6298 */
6299
6300 if (intel_crtc->config.limited_color_range)
6301 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6302
6303 /*
6304 * GY/GU and RY/RU should be the other way around according
6305 * to BSpec, but reality doesn't agree. Just set them up in
6306 * a way that results in the correct picture.
6307 */
6308 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6309 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6310
6311 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6312 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6313
6314 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6315 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6316
6317 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6318 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6319 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6320
6321 if (INTEL_INFO(dev)->gen > 6) {
6322 uint16_t postoff = 0;
6323
6324 if (intel_crtc->config.limited_color_range)
6325 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6326
6327 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6328 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6329 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6330
6331 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6332 } else {
6333 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6334
6335 if (intel_crtc->config.limited_color_range)
6336 mode |= CSC_BLACK_SCREEN_OFFSET;
6337
6338 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6339 }
6340 }
6341
6342 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6343 {
6344 struct drm_device *dev = crtc->dev;
6345 struct drm_i915_private *dev_priv = dev->dev_private;
6346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347 enum pipe pipe = intel_crtc->pipe;
6348 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6349 uint32_t val;
6350
6351 val = 0;
6352
6353 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6354 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6355
6356 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6357 val |= PIPECONF_INTERLACED_ILK;
6358 else
6359 val |= PIPECONF_PROGRESSIVE;
6360
6361 I915_WRITE(PIPECONF(cpu_transcoder), val);
6362 POSTING_READ(PIPECONF(cpu_transcoder));
6363
6364 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6365 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6366
6367 if (IS_BROADWELL(dev)) {
6368 val = 0;
6369
6370 switch (intel_crtc->config.pipe_bpp) {
6371 case 18:
6372 val |= PIPEMISC_DITHER_6_BPC;
6373 break;
6374 case 24:
6375 val |= PIPEMISC_DITHER_8_BPC;
6376 break;
6377 case 30:
6378 val |= PIPEMISC_DITHER_10_BPC;
6379 break;
6380 case 36:
6381 val |= PIPEMISC_DITHER_12_BPC;
6382 break;
6383 default:
6384 /* Case prevented by pipe_config_set_bpp. */
6385 BUG();
6386 }
6387
6388 if (intel_crtc->config.dither)
6389 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6390
6391 I915_WRITE(PIPEMISC(pipe), val);
6392 }
6393 }
6394
6395 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6396 intel_clock_t *clock,
6397 bool *has_reduced_clock,
6398 intel_clock_t *reduced_clock)
6399 {
6400 struct drm_device *dev = crtc->dev;
6401 struct drm_i915_private *dev_priv = dev->dev_private;
6402 struct intel_encoder *intel_encoder;
6403 int refclk;
6404 const intel_limit_t *limit;
6405 bool ret, is_lvds = false;
6406
6407 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6408 switch (intel_encoder->type) {
6409 case INTEL_OUTPUT_LVDS:
6410 is_lvds = true;
6411 break;
6412 }
6413 }
6414
6415 refclk = ironlake_get_refclk(crtc);
6416
6417 /*
6418 * Returns a set of divisors for the desired target clock with the given
6419 * refclk, or FALSE. The returned values represent the clock equation:
6420 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6421 */
6422 limit = intel_limit(crtc, refclk);
6423 ret = dev_priv->display.find_dpll(limit, crtc,
6424 to_intel_crtc(crtc)->config.port_clock,
6425 refclk, NULL, clock);
6426 if (!ret)
6427 return false;
6428
6429 if (is_lvds && dev_priv->lvds_downclock_avail) {
6430 /*
6431 * Ensure we match the reduced clock's P to the target clock.
6432 * If the clocks don't match, we can't switch the display clock
6433 * by using the FP0/FP1. In such case we will disable the LVDS
6434 * downclock feature.
6435 */
6436 *has_reduced_clock =
6437 dev_priv->display.find_dpll(limit, crtc,
6438 dev_priv->lvds_downclock,
6439 refclk, clock,
6440 reduced_clock);
6441 }
6442
6443 return true;
6444 }
6445
6446 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6447 {
6448 /*
6449 * Account for spread spectrum to avoid
6450 * oversubscribing the link. Max center spread
6451 * is 2.5%; use 5% for safety's sake.
6452 */
6453 u32 bps = target_clock * bpp * 21 / 20;
6454 return DIV_ROUND_UP(bps, link_bw * 8);
6455 }
6456
6457 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6458 {
6459 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6460 }
6461
6462 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6463 u32 *fp,
6464 intel_clock_t *reduced_clock, u32 *fp2)
6465 {
6466 struct drm_crtc *crtc = &intel_crtc->base;
6467 struct drm_device *dev = crtc->dev;
6468 struct drm_i915_private *dev_priv = dev->dev_private;
6469 struct intel_encoder *intel_encoder;
6470 uint32_t dpll;
6471 int factor, num_connectors = 0;
6472 bool is_lvds = false, is_sdvo = false;
6473
6474 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6475 switch (intel_encoder->type) {
6476 case INTEL_OUTPUT_LVDS:
6477 is_lvds = true;
6478 break;
6479 case INTEL_OUTPUT_SDVO:
6480 case INTEL_OUTPUT_HDMI:
6481 is_sdvo = true;
6482 break;
6483 }
6484
6485 num_connectors++;
6486 }
6487
6488 /* Enable autotuning of the PLL clock (if permissible) */
6489 factor = 21;
6490 if (is_lvds) {
6491 if ((intel_panel_use_ssc(dev_priv) &&
6492 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6493 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6494 factor = 25;
6495 } else if (intel_crtc->config.sdvo_tv_clock)
6496 factor = 20;
6497
6498 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6499 *fp |= FP_CB_TUNE;
6500
6501 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6502 *fp2 |= FP_CB_TUNE;
6503
6504 dpll = 0;
6505
6506 if (is_lvds)
6507 dpll |= DPLLB_MODE_LVDS;
6508 else
6509 dpll |= DPLLB_MODE_DAC_SERIAL;
6510
6511 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6512 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6513
6514 if (is_sdvo)
6515 dpll |= DPLL_SDVO_HIGH_SPEED;
6516 if (intel_crtc->config.has_dp_encoder)
6517 dpll |= DPLL_SDVO_HIGH_SPEED;
6518
6519 /* compute bitmask from p1 value */
6520 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6521 /* also FPA1 */
6522 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6523
6524 switch (intel_crtc->config.dpll.p2) {
6525 case 5:
6526 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6527 break;
6528 case 7:
6529 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6530 break;
6531 case 10:
6532 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6533 break;
6534 case 14:
6535 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6536 break;
6537 }
6538
6539 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6540 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6541 else
6542 dpll |= PLL_REF_INPUT_DREFCLK;
6543
6544 return dpll | DPLL_VCO_ENABLE;
6545 }
6546
6547 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6548 int x, int y,
6549 struct drm_framebuffer *fb)
6550 {
6551 struct drm_device *dev = crtc->dev;
6552 struct drm_i915_private *dev_priv = dev->dev_private;
6553 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6554 int pipe = intel_crtc->pipe;
6555 int plane = intel_crtc->plane;
6556 int num_connectors = 0;
6557 intel_clock_t clock, reduced_clock;
6558 u32 dpll = 0, fp = 0, fp2 = 0;
6559 bool ok, has_reduced_clock = false;
6560 bool is_lvds = false;
6561 struct intel_encoder *encoder;
6562 struct intel_shared_dpll *pll;
6563 int ret;
6564
6565 for_each_encoder_on_crtc(dev, crtc, encoder) {
6566 switch (encoder->type) {
6567 case INTEL_OUTPUT_LVDS:
6568 is_lvds = true;
6569 break;
6570 }
6571
6572 num_connectors++;
6573 }
6574
6575 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6576 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6577
6578 ok = ironlake_compute_clocks(crtc, &clock,
6579 &has_reduced_clock, &reduced_clock);
6580 if (!ok && !intel_crtc->config.clock_set) {
6581 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6582 return -EINVAL;
6583 }
6584 /* Compat-code for transition, will disappear. */
6585 if (!intel_crtc->config.clock_set) {
6586 intel_crtc->config.dpll.n = clock.n;
6587 intel_crtc->config.dpll.m1 = clock.m1;
6588 intel_crtc->config.dpll.m2 = clock.m2;
6589 intel_crtc->config.dpll.p1 = clock.p1;
6590 intel_crtc->config.dpll.p2 = clock.p2;
6591 }
6592
6593 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6594 if (intel_crtc->config.has_pch_encoder) {
6595 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6596 if (has_reduced_clock)
6597 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6598
6599 dpll = ironlake_compute_dpll(intel_crtc,
6600 &fp, &reduced_clock,
6601 has_reduced_clock ? &fp2 : NULL);
6602
6603 intel_crtc->config.dpll_hw_state.dpll = dpll;
6604 intel_crtc->config.dpll_hw_state.fp0 = fp;
6605 if (has_reduced_clock)
6606 intel_crtc->config.dpll_hw_state.fp1 = fp2;
6607 else
6608 intel_crtc->config.dpll_hw_state.fp1 = fp;
6609
6610 pll = intel_get_shared_dpll(intel_crtc);
6611 if (pll == NULL) {
6612 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6613 pipe_name(pipe));
6614 return -EINVAL;
6615 }
6616 } else
6617 intel_put_shared_dpll(intel_crtc);
6618
6619 if (intel_crtc->config.has_dp_encoder)
6620 intel_dp_set_m_n(intel_crtc);
6621
6622 if (is_lvds && has_reduced_clock && i915.powersave)
6623 intel_crtc->lowfreq_avail = true;
6624 else
6625 intel_crtc->lowfreq_avail = false;
6626
6627 intel_set_pipe_timings(intel_crtc);
6628
6629 if (intel_crtc->config.has_pch_encoder) {
6630 intel_cpu_transcoder_set_m_n(intel_crtc,
6631 &intel_crtc->config.fdi_m_n);
6632 }
6633
6634 ironlake_set_pipeconf(crtc);
6635
6636 /* Set up the display plane register */
6637 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6638 POSTING_READ(DSPCNTR(plane));
6639
6640 ret = intel_pipe_set_base(crtc, x, y, fb);
6641
6642 return ret;
6643 }
6644
6645 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6646 struct intel_link_m_n *m_n)
6647 {
6648 struct drm_device *dev = crtc->base.dev;
6649 struct drm_i915_private *dev_priv = dev->dev_private;
6650 enum pipe pipe = crtc->pipe;
6651
6652 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6653 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6654 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6655 & ~TU_SIZE_MASK;
6656 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6657 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6658 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6659 }
6660
6661 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6662 enum transcoder transcoder,
6663 struct intel_link_m_n *m_n)
6664 {
6665 struct drm_device *dev = crtc->base.dev;
6666 struct drm_i915_private *dev_priv = dev->dev_private;
6667 enum pipe pipe = crtc->pipe;
6668
6669 if (INTEL_INFO(dev)->gen >= 5) {
6670 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6671 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6672 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6673 & ~TU_SIZE_MASK;
6674 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6675 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6676 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6677 } else {
6678 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6679 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6680 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6681 & ~TU_SIZE_MASK;
6682 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6683 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6684 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6685 }
6686 }
6687
6688 void intel_dp_get_m_n(struct intel_crtc *crtc,
6689 struct intel_crtc_config *pipe_config)
6690 {
6691 if (crtc->config.has_pch_encoder)
6692 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6693 else
6694 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6695 &pipe_config->dp_m_n);
6696 }
6697
6698 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6699 struct intel_crtc_config *pipe_config)
6700 {
6701 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6702 &pipe_config->fdi_m_n);
6703 }
6704
6705 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6706 struct intel_crtc_config *pipe_config)
6707 {
6708 struct drm_device *dev = crtc->base.dev;
6709 struct drm_i915_private *dev_priv = dev->dev_private;
6710 uint32_t tmp;
6711
6712 tmp = I915_READ(PF_CTL(crtc->pipe));
6713
6714 if (tmp & PF_ENABLE) {
6715 pipe_config->pch_pfit.enabled = true;
6716 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6717 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6718
6719 /* We currently do not free assignements of panel fitters on
6720 * ivb/hsw (since we don't use the higher upscaling modes which
6721 * differentiates them) so just WARN about this case for now. */
6722 if (IS_GEN7(dev)) {
6723 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6724 PF_PIPE_SEL_IVB(crtc->pipe));
6725 }
6726 }
6727 }
6728
6729 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6730 struct intel_plane_config *plane_config)
6731 {
6732 struct drm_device *dev = crtc->base.dev;
6733 struct drm_i915_private *dev_priv = dev->dev_private;
6734 u32 val, base, offset;
6735 int pipe = crtc->pipe, plane = crtc->plane;
6736 int fourcc, pixel_format;
6737 int aligned_height;
6738
6739 crtc->base.fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6740 if (!crtc->base.fb) {
6741 DRM_DEBUG_KMS("failed to alloc fb\n");
6742 return;
6743 }
6744
6745 val = I915_READ(DSPCNTR(plane));
6746
6747 if (INTEL_INFO(dev)->gen >= 4)
6748 if (val & DISPPLANE_TILED)
6749 plane_config->tiled = true;
6750
6751 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6752 fourcc = intel_format_to_fourcc(pixel_format);
6753 crtc->base.fb->pixel_format = fourcc;
6754 crtc->base.fb->bits_per_pixel =
6755 drm_format_plane_cpp(fourcc, 0) * 8;
6756
6757 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6758 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6759 offset = I915_READ(DSPOFFSET(plane));
6760 } else {
6761 if (plane_config->tiled)
6762 offset = I915_READ(DSPTILEOFF(plane));
6763 else
6764 offset = I915_READ(DSPLINOFF(plane));
6765 }
6766 plane_config->base = base;
6767
6768 val = I915_READ(PIPESRC(pipe));
6769 crtc->base.fb->width = ((val >> 16) & 0xfff) + 1;
6770 crtc->base.fb->height = ((val >> 0) & 0xfff) + 1;
6771
6772 val = I915_READ(DSPSTRIDE(pipe));
6773 crtc->base.fb->pitches[0] = val & 0xffffff80;
6774
6775 aligned_height = intel_align_height(dev, crtc->base.fb->height,
6776 plane_config->tiled);
6777
6778 plane_config->size = ALIGN(crtc->base.fb->pitches[0] *
6779 aligned_height, PAGE_SIZE);
6780
6781 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6782 pipe, plane, crtc->base.fb->width,
6783 crtc->base.fb->height,
6784 crtc->base.fb->bits_per_pixel, base,
6785 crtc->base.fb->pitches[0],
6786 plane_config->size);
6787 }
6788
6789 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6790 struct intel_crtc_config *pipe_config)
6791 {
6792 struct drm_device *dev = crtc->base.dev;
6793 struct drm_i915_private *dev_priv = dev->dev_private;
6794 uint32_t tmp;
6795
6796 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6797 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6798
6799 tmp = I915_READ(PIPECONF(crtc->pipe));
6800 if (!(tmp & PIPECONF_ENABLE))
6801 return false;
6802
6803 switch (tmp & PIPECONF_BPC_MASK) {
6804 case PIPECONF_6BPC:
6805 pipe_config->pipe_bpp = 18;
6806 break;
6807 case PIPECONF_8BPC:
6808 pipe_config->pipe_bpp = 24;
6809 break;
6810 case PIPECONF_10BPC:
6811 pipe_config->pipe_bpp = 30;
6812 break;
6813 case PIPECONF_12BPC:
6814 pipe_config->pipe_bpp = 36;
6815 break;
6816 default:
6817 break;
6818 }
6819
6820 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6821 struct intel_shared_dpll *pll;
6822
6823 pipe_config->has_pch_encoder = true;
6824
6825 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6826 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6827 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6828
6829 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6830
6831 if (HAS_PCH_IBX(dev_priv->dev)) {
6832 pipe_config->shared_dpll =
6833 (enum intel_dpll_id) crtc->pipe;
6834 } else {
6835 tmp = I915_READ(PCH_DPLL_SEL);
6836 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6837 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6838 else
6839 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6840 }
6841
6842 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6843
6844 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6845 &pipe_config->dpll_hw_state));
6846
6847 tmp = pipe_config->dpll_hw_state.dpll;
6848 pipe_config->pixel_multiplier =
6849 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6850 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6851
6852 ironlake_pch_clock_get(crtc, pipe_config);
6853 } else {
6854 pipe_config->pixel_multiplier = 1;
6855 }
6856
6857 intel_get_pipe_timings(crtc, pipe_config);
6858
6859 ironlake_get_pfit_config(crtc, pipe_config);
6860
6861 return true;
6862 }
6863
6864 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6865 {
6866 struct drm_device *dev = dev_priv->dev;
6867 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6868 struct intel_crtc *crtc;
6869 unsigned long irqflags;
6870 uint32_t val;
6871
6872 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6873 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6874 pipe_name(crtc->pipe));
6875
6876 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6877 WARN(plls->spll_refcount, "SPLL enabled\n");
6878 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6879 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6880 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6881 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6882 "CPU PWM1 enabled\n");
6883 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6884 "CPU PWM2 enabled\n");
6885 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6886 "PCH PWM1 enabled\n");
6887 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6888 "Utility pin enabled\n");
6889 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6890
6891 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6892 val = I915_READ(DEIMR);
6893 WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6894 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6895 val = I915_READ(SDEIMR);
6896 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6897 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6898 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6899 }
6900
6901 /*
6902 * This function implements pieces of two sequences from BSpec:
6903 * - Sequence for display software to disable LCPLL
6904 * - Sequence for display software to allow package C8+
6905 * The steps implemented here are just the steps that actually touch the LCPLL
6906 * register. Callers should take care of disabling all the display engine
6907 * functions, doing the mode unset, fixing interrupts, etc.
6908 */
6909 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6910 bool switch_to_fclk, bool allow_power_down)
6911 {
6912 uint32_t val;
6913
6914 assert_can_disable_lcpll(dev_priv);
6915
6916 val = I915_READ(LCPLL_CTL);
6917
6918 if (switch_to_fclk) {
6919 val |= LCPLL_CD_SOURCE_FCLK;
6920 I915_WRITE(LCPLL_CTL, val);
6921
6922 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6923 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6924 DRM_ERROR("Switching to FCLK failed\n");
6925
6926 val = I915_READ(LCPLL_CTL);
6927 }
6928
6929 val |= LCPLL_PLL_DISABLE;
6930 I915_WRITE(LCPLL_CTL, val);
6931 POSTING_READ(LCPLL_CTL);
6932
6933 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6934 DRM_ERROR("LCPLL still locked\n");
6935
6936 val = I915_READ(D_COMP);
6937 val |= D_COMP_COMP_DISABLE;
6938 mutex_lock(&dev_priv->rps.hw_lock);
6939 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6940 DRM_ERROR("Failed to disable D_COMP\n");
6941 mutex_unlock(&dev_priv->rps.hw_lock);
6942 POSTING_READ(D_COMP);
6943 ndelay(100);
6944
6945 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6946 DRM_ERROR("D_COMP RCOMP still in progress\n");
6947
6948 if (allow_power_down) {
6949 val = I915_READ(LCPLL_CTL);
6950 val |= LCPLL_POWER_DOWN_ALLOW;
6951 I915_WRITE(LCPLL_CTL, val);
6952 POSTING_READ(LCPLL_CTL);
6953 }
6954 }
6955
6956 /*
6957 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6958 * source.
6959 */
6960 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6961 {
6962 uint32_t val;
6963 unsigned long irqflags;
6964
6965 val = I915_READ(LCPLL_CTL);
6966
6967 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6968 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6969 return;
6970
6971 /*
6972 * Make sure we're not on PC8 state before disabling PC8, otherwise
6973 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
6974 *
6975 * The other problem is that hsw_restore_lcpll() is called as part of
6976 * the runtime PM resume sequence, so we can't just call
6977 * gen6_gt_force_wake_get() because that function calls
6978 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
6979 * while we are on the resume sequence. So to solve this problem we have
6980 * to call special forcewake code that doesn't touch runtime PM and
6981 * doesn't enable the forcewake delayed work.
6982 */
6983 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6984 if (dev_priv->uncore.forcewake_count++ == 0)
6985 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
6986 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6987
6988 if (val & LCPLL_POWER_DOWN_ALLOW) {
6989 val &= ~LCPLL_POWER_DOWN_ALLOW;
6990 I915_WRITE(LCPLL_CTL, val);
6991 POSTING_READ(LCPLL_CTL);
6992 }
6993
6994 val = I915_READ(D_COMP);
6995 val |= D_COMP_COMP_FORCE;
6996 val &= ~D_COMP_COMP_DISABLE;
6997 mutex_lock(&dev_priv->rps.hw_lock);
6998 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6999 DRM_ERROR("Failed to enable D_COMP\n");
7000 mutex_unlock(&dev_priv->rps.hw_lock);
7001 POSTING_READ(D_COMP);
7002
7003 val = I915_READ(LCPLL_CTL);
7004 val &= ~LCPLL_PLL_DISABLE;
7005 I915_WRITE(LCPLL_CTL, val);
7006
7007 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7008 DRM_ERROR("LCPLL not locked yet\n");
7009
7010 if (val & LCPLL_CD_SOURCE_FCLK) {
7011 val = I915_READ(LCPLL_CTL);
7012 val &= ~LCPLL_CD_SOURCE_FCLK;
7013 I915_WRITE(LCPLL_CTL, val);
7014
7015 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7016 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7017 DRM_ERROR("Switching back to LCPLL failed\n");
7018 }
7019
7020 /* See the big comment above. */
7021 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7022 if (--dev_priv->uncore.forcewake_count == 0)
7023 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7024 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7025 }
7026
7027 /*
7028 * Package states C8 and deeper are really deep PC states that can only be
7029 * reached when all the devices on the system allow it, so even if the graphics
7030 * device allows PC8+, it doesn't mean the system will actually get to these
7031 * states. Our driver only allows PC8+ when going into runtime PM.
7032 *
7033 * The requirements for PC8+ are that all the outputs are disabled, the power
7034 * well is disabled and most interrupts are disabled, and these are also
7035 * requirements for runtime PM. When these conditions are met, we manually do
7036 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7037 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7038 * hang the machine.
7039 *
7040 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7041 * the state of some registers, so when we come back from PC8+ we need to
7042 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7043 * need to take care of the registers kept by RC6. Notice that this happens even
7044 * if we don't put the device in PCI D3 state (which is what currently happens
7045 * because of the runtime PM support).
7046 *
7047 * For more, read "Display Sequences for Package C8" on the hardware
7048 * documentation.
7049 */
7050 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7051 {
7052 struct drm_device *dev = dev_priv->dev;
7053 uint32_t val;
7054
7055 WARN_ON(!HAS_PC8(dev));
7056
7057 DRM_DEBUG_KMS("Enabling package C8+\n");
7058
7059 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7060 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7061 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7062 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7063 }
7064
7065 lpt_disable_clkout_dp(dev);
7066 hsw_runtime_pm_disable_interrupts(dev);
7067 hsw_disable_lcpll(dev_priv, true, true);
7068 }
7069
7070 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7071 {
7072 struct drm_device *dev = dev_priv->dev;
7073 uint32_t val;
7074
7075 WARN_ON(!HAS_PC8(dev));
7076
7077 DRM_DEBUG_KMS("Disabling package C8+\n");
7078
7079 hsw_restore_lcpll(dev_priv);
7080 hsw_runtime_pm_restore_interrupts(dev);
7081 lpt_init_pch_refclk(dev);
7082
7083 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7084 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7085 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7086 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7087 }
7088
7089 intel_prepare_ddi(dev);
7090 i915_gem_init_swizzling(dev);
7091 mutex_lock(&dev_priv->rps.hw_lock);
7092 gen6_update_ring_freq(dev);
7093 mutex_unlock(&dev_priv->rps.hw_lock);
7094 }
7095
7096 static void haswell_modeset_global_resources(struct drm_device *dev)
7097 {
7098 modeset_update_crtc_power_domains(dev);
7099 }
7100
7101 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7102 int x, int y,
7103 struct drm_framebuffer *fb)
7104 {
7105 struct drm_device *dev = crtc->dev;
7106 struct drm_i915_private *dev_priv = dev->dev_private;
7107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7108 int plane = intel_crtc->plane;
7109 int ret;
7110
7111 if (!intel_ddi_pll_select(intel_crtc))
7112 return -EINVAL;
7113 intel_ddi_pll_enable(intel_crtc);
7114
7115 if (intel_crtc->config.has_dp_encoder)
7116 intel_dp_set_m_n(intel_crtc);
7117
7118 intel_crtc->lowfreq_avail = false;
7119
7120 intel_set_pipe_timings(intel_crtc);
7121
7122 if (intel_crtc->config.has_pch_encoder) {
7123 intel_cpu_transcoder_set_m_n(intel_crtc,
7124 &intel_crtc->config.fdi_m_n);
7125 }
7126
7127 haswell_set_pipeconf(crtc);
7128
7129 intel_set_pipe_csc(crtc);
7130
7131 /* Set up the display plane register */
7132 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7133 POSTING_READ(DSPCNTR(plane));
7134
7135 ret = intel_pipe_set_base(crtc, x, y, fb);
7136
7137 return ret;
7138 }
7139
7140 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7141 struct intel_crtc_config *pipe_config)
7142 {
7143 struct drm_device *dev = crtc->base.dev;
7144 struct drm_i915_private *dev_priv = dev->dev_private;
7145 enum intel_display_power_domain pfit_domain;
7146 uint32_t tmp;
7147
7148 if (!intel_display_power_enabled(dev_priv,
7149 POWER_DOMAIN_PIPE(crtc->pipe)))
7150 return false;
7151
7152 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7153 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7154
7155 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7156 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7157 enum pipe trans_edp_pipe;
7158 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7159 default:
7160 WARN(1, "unknown pipe linked to edp transcoder\n");
7161 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7162 case TRANS_DDI_EDP_INPUT_A_ON:
7163 trans_edp_pipe = PIPE_A;
7164 break;
7165 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7166 trans_edp_pipe = PIPE_B;
7167 break;
7168 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7169 trans_edp_pipe = PIPE_C;
7170 break;
7171 }
7172
7173 if (trans_edp_pipe == crtc->pipe)
7174 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7175 }
7176
7177 if (!intel_display_power_enabled(dev_priv,
7178 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7179 return false;
7180
7181 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7182 if (!(tmp & PIPECONF_ENABLE))
7183 return false;
7184
7185 /*
7186 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7187 * DDI E. So just check whether this pipe is wired to DDI E and whether
7188 * the PCH transcoder is on.
7189 */
7190 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7191 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7192 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7193 pipe_config->has_pch_encoder = true;
7194
7195 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7196 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7197 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7198
7199 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7200 }
7201
7202 intel_get_pipe_timings(crtc, pipe_config);
7203
7204 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7205 if (intel_display_power_enabled(dev_priv, pfit_domain))
7206 ironlake_get_pfit_config(crtc, pipe_config);
7207
7208 if (IS_HASWELL(dev))
7209 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7210 (I915_READ(IPS_CTL) & IPS_ENABLE);
7211
7212 pipe_config->pixel_multiplier = 1;
7213
7214 return true;
7215 }
7216
7217 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7218 int x, int y,
7219 struct drm_framebuffer *fb)
7220 {
7221 struct drm_device *dev = crtc->dev;
7222 struct drm_i915_private *dev_priv = dev->dev_private;
7223 struct intel_encoder *encoder;
7224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7225 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7226 int pipe = intel_crtc->pipe;
7227 int ret;
7228
7229 drm_vblank_pre_modeset(dev, pipe);
7230
7231 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7232
7233 drm_vblank_post_modeset(dev, pipe);
7234
7235 if (ret != 0)
7236 return ret;
7237
7238 for_each_encoder_on_crtc(dev, crtc, encoder) {
7239 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7240 encoder->base.base.id,
7241 drm_get_encoder_name(&encoder->base),
7242 mode->base.id, mode->name);
7243 encoder->mode_set(encoder);
7244 }
7245
7246 return 0;
7247 }
7248
7249 static struct {
7250 int clock;
7251 u32 config;
7252 } hdmi_audio_clock[] = {
7253 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7254 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7255 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7256 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7257 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7258 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7259 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7260 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7261 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7262 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7263 };
7264
7265 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7266 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7267 {
7268 int i;
7269
7270 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7271 if (mode->clock == hdmi_audio_clock[i].clock)
7272 break;
7273 }
7274
7275 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7276 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7277 i = 1;
7278 }
7279
7280 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7281 hdmi_audio_clock[i].clock,
7282 hdmi_audio_clock[i].config);
7283
7284 return hdmi_audio_clock[i].config;
7285 }
7286
7287 static bool intel_eld_uptodate(struct drm_connector *connector,
7288 int reg_eldv, uint32_t bits_eldv,
7289 int reg_elda, uint32_t bits_elda,
7290 int reg_edid)
7291 {
7292 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7293 uint8_t *eld = connector->eld;
7294 uint32_t i;
7295
7296 i = I915_READ(reg_eldv);
7297 i &= bits_eldv;
7298
7299 if (!eld[0])
7300 return !i;
7301
7302 if (!i)
7303 return false;
7304
7305 i = I915_READ(reg_elda);
7306 i &= ~bits_elda;
7307 I915_WRITE(reg_elda, i);
7308
7309 for (i = 0; i < eld[2]; i++)
7310 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7311 return false;
7312
7313 return true;
7314 }
7315
7316 static void g4x_write_eld(struct drm_connector *connector,
7317 struct drm_crtc *crtc,
7318 struct drm_display_mode *mode)
7319 {
7320 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7321 uint8_t *eld = connector->eld;
7322 uint32_t eldv;
7323 uint32_t len;
7324 uint32_t i;
7325
7326 i = I915_READ(G4X_AUD_VID_DID);
7327
7328 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7329 eldv = G4X_ELDV_DEVCL_DEVBLC;
7330 else
7331 eldv = G4X_ELDV_DEVCTG;
7332
7333 if (intel_eld_uptodate(connector,
7334 G4X_AUD_CNTL_ST, eldv,
7335 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7336 G4X_HDMIW_HDMIEDID))
7337 return;
7338
7339 i = I915_READ(G4X_AUD_CNTL_ST);
7340 i &= ~(eldv | G4X_ELD_ADDR);
7341 len = (i >> 9) & 0x1f; /* ELD buffer size */
7342 I915_WRITE(G4X_AUD_CNTL_ST, i);
7343
7344 if (!eld[0])
7345 return;
7346
7347 len = min_t(uint8_t, eld[2], len);
7348 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7349 for (i = 0; i < len; i++)
7350 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7351
7352 i = I915_READ(G4X_AUD_CNTL_ST);
7353 i |= eldv;
7354 I915_WRITE(G4X_AUD_CNTL_ST, i);
7355 }
7356
7357 static void haswell_write_eld(struct drm_connector *connector,
7358 struct drm_crtc *crtc,
7359 struct drm_display_mode *mode)
7360 {
7361 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7362 uint8_t *eld = connector->eld;
7363 struct drm_device *dev = crtc->dev;
7364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7365 uint32_t eldv;
7366 uint32_t i;
7367 int len;
7368 int pipe = to_intel_crtc(crtc)->pipe;
7369 int tmp;
7370
7371 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7372 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7373 int aud_config = HSW_AUD_CFG(pipe);
7374 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7375
7376
7377 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7378
7379 /* Audio output enable */
7380 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7381 tmp = I915_READ(aud_cntrl_st2);
7382 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7383 I915_WRITE(aud_cntrl_st2, tmp);
7384
7385 /* Wait for 1 vertical blank */
7386 intel_wait_for_vblank(dev, pipe);
7387
7388 /* Set ELD valid state */
7389 tmp = I915_READ(aud_cntrl_st2);
7390 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7391 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7392 I915_WRITE(aud_cntrl_st2, tmp);
7393 tmp = I915_READ(aud_cntrl_st2);
7394 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7395
7396 /* Enable HDMI mode */
7397 tmp = I915_READ(aud_config);
7398 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7399 /* clear N_programing_enable and N_value_index */
7400 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7401 I915_WRITE(aud_config, tmp);
7402
7403 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7404
7405 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7406 intel_crtc->eld_vld = true;
7407
7408 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7409 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7410 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7411 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7412 } else {
7413 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7414 }
7415
7416 if (intel_eld_uptodate(connector,
7417 aud_cntrl_st2, eldv,
7418 aud_cntl_st, IBX_ELD_ADDRESS,
7419 hdmiw_hdmiedid))
7420 return;
7421
7422 i = I915_READ(aud_cntrl_st2);
7423 i &= ~eldv;
7424 I915_WRITE(aud_cntrl_st2, i);
7425
7426 if (!eld[0])
7427 return;
7428
7429 i = I915_READ(aud_cntl_st);
7430 i &= ~IBX_ELD_ADDRESS;
7431 I915_WRITE(aud_cntl_st, i);
7432 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7433 DRM_DEBUG_DRIVER("port num:%d\n", i);
7434
7435 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7436 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7437 for (i = 0; i < len; i++)
7438 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7439
7440 i = I915_READ(aud_cntrl_st2);
7441 i |= eldv;
7442 I915_WRITE(aud_cntrl_st2, i);
7443
7444 }
7445
7446 static void ironlake_write_eld(struct drm_connector *connector,
7447 struct drm_crtc *crtc,
7448 struct drm_display_mode *mode)
7449 {
7450 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7451 uint8_t *eld = connector->eld;
7452 uint32_t eldv;
7453 uint32_t i;
7454 int len;
7455 int hdmiw_hdmiedid;
7456 int aud_config;
7457 int aud_cntl_st;
7458 int aud_cntrl_st2;
7459 int pipe = to_intel_crtc(crtc)->pipe;
7460
7461 if (HAS_PCH_IBX(connector->dev)) {
7462 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7463 aud_config = IBX_AUD_CFG(pipe);
7464 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7465 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7466 } else if (IS_VALLEYVIEW(connector->dev)) {
7467 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7468 aud_config = VLV_AUD_CFG(pipe);
7469 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7470 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7471 } else {
7472 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7473 aud_config = CPT_AUD_CFG(pipe);
7474 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7475 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7476 }
7477
7478 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7479
7480 if (IS_VALLEYVIEW(connector->dev)) {
7481 struct intel_encoder *intel_encoder;
7482 struct intel_digital_port *intel_dig_port;
7483
7484 intel_encoder = intel_attached_encoder(connector);
7485 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7486 i = intel_dig_port->port;
7487 } else {
7488 i = I915_READ(aud_cntl_st);
7489 i = (i >> 29) & DIP_PORT_SEL_MASK;
7490 /* DIP_Port_Select, 0x1 = PortB */
7491 }
7492
7493 if (!i) {
7494 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7495 /* operate blindly on all ports */
7496 eldv = IBX_ELD_VALIDB;
7497 eldv |= IBX_ELD_VALIDB << 4;
7498 eldv |= IBX_ELD_VALIDB << 8;
7499 } else {
7500 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7501 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7502 }
7503
7504 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7505 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7506 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7507 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7508 } else {
7509 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7510 }
7511
7512 if (intel_eld_uptodate(connector,
7513 aud_cntrl_st2, eldv,
7514 aud_cntl_st, IBX_ELD_ADDRESS,
7515 hdmiw_hdmiedid))
7516 return;
7517
7518 i = I915_READ(aud_cntrl_st2);
7519 i &= ~eldv;
7520 I915_WRITE(aud_cntrl_st2, i);
7521
7522 if (!eld[0])
7523 return;
7524
7525 i = I915_READ(aud_cntl_st);
7526 i &= ~IBX_ELD_ADDRESS;
7527 I915_WRITE(aud_cntl_st, i);
7528
7529 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7530 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7531 for (i = 0; i < len; i++)
7532 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7533
7534 i = I915_READ(aud_cntrl_st2);
7535 i |= eldv;
7536 I915_WRITE(aud_cntrl_st2, i);
7537 }
7538
7539 void intel_write_eld(struct drm_encoder *encoder,
7540 struct drm_display_mode *mode)
7541 {
7542 struct drm_crtc *crtc = encoder->crtc;
7543 struct drm_connector *connector;
7544 struct drm_device *dev = encoder->dev;
7545 struct drm_i915_private *dev_priv = dev->dev_private;
7546
7547 connector = drm_select_eld(encoder, mode);
7548 if (!connector)
7549 return;
7550
7551 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7552 connector->base.id,
7553 drm_get_connector_name(connector),
7554 connector->encoder->base.id,
7555 drm_get_encoder_name(connector->encoder));
7556
7557 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7558
7559 if (dev_priv->display.write_eld)
7560 dev_priv->display.write_eld(connector, crtc, mode);
7561 }
7562
7563 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7564 {
7565 struct drm_device *dev = crtc->dev;
7566 struct drm_i915_private *dev_priv = dev->dev_private;
7567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7568 bool visible = base != 0;
7569 u32 cntl;
7570
7571 if (intel_crtc->cursor_visible == visible)
7572 return;
7573
7574 cntl = I915_READ(_CURACNTR);
7575 if (visible) {
7576 /* On these chipsets we can only modify the base whilst
7577 * the cursor is disabled.
7578 */
7579 I915_WRITE(_CURABASE, base);
7580
7581 cntl &= ~(CURSOR_FORMAT_MASK);
7582 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7583 cntl |= CURSOR_ENABLE |
7584 CURSOR_GAMMA_ENABLE |
7585 CURSOR_FORMAT_ARGB;
7586 } else
7587 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7588 I915_WRITE(_CURACNTR, cntl);
7589
7590 intel_crtc->cursor_visible = visible;
7591 }
7592
7593 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7594 {
7595 struct drm_device *dev = crtc->dev;
7596 struct drm_i915_private *dev_priv = dev->dev_private;
7597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7598 int pipe = intel_crtc->pipe;
7599 bool visible = base != 0;
7600
7601 if (intel_crtc->cursor_visible != visible) {
7602 int16_t width = intel_crtc->cursor_width;
7603 uint32_t cntl = I915_READ(CURCNTR(pipe));
7604 if (base) {
7605 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7606 cntl |= MCURSOR_GAMMA_ENABLE;
7607
7608 switch (width) {
7609 case 64:
7610 cntl |= CURSOR_MODE_64_ARGB_AX;
7611 break;
7612 case 128:
7613 cntl |= CURSOR_MODE_128_ARGB_AX;
7614 break;
7615 case 256:
7616 cntl |= CURSOR_MODE_256_ARGB_AX;
7617 break;
7618 default:
7619 WARN_ON(1);
7620 return;
7621 }
7622 cntl |= pipe << 28; /* Connect to correct pipe */
7623 } else {
7624 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7625 cntl |= CURSOR_MODE_DISABLE;
7626 }
7627 I915_WRITE(CURCNTR(pipe), cntl);
7628
7629 intel_crtc->cursor_visible = visible;
7630 }
7631 /* and commit changes on next vblank */
7632 POSTING_READ(CURCNTR(pipe));
7633 I915_WRITE(CURBASE(pipe), base);
7634 POSTING_READ(CURBASE(pipe));
7635 }
7636
7637 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7638 {
7639 struct drm_device *dev = crtc->dev;
7640 struct drm_i915_private *dev_priv = dev->dev_private;
7641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7642 int pipe = intel_crtc->pipe;
7643 bool visible = base != 0;
7644
7645 if (intel_crtc->cursor_visible != visible) {
7646 int16_t width = intel_crtc->cursor_width;
7647 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7648 if (base) {
7649 cntl &= ~CURSOR_MODE;
7650 cntl |= MCURSOR_GAMMA_ENABLE;
7651 switch (width) {
7652 case 64:
7653 cntl |= CURSOR_MODE_64_ARGB_AX;
7654 break;
7655 case 128:
7656 cntl |= CURSOR_MODE_128_ARGB_AX;
7657 break;
7658 case 256:
7659 cntl |= CURSOR_MODE_256_ARGB_AX;
7660 break;
7661 default:
7662 WARN_ON(1);
7663 return;
7664 }
7665 } else {
7666 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7667 cntl |= CURSOR_MODE_DISABLE;
7668 }
7669 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7670 cntl |= CURSOR_PIPE_CSC_ENABLE;
7671 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7672 }
7673 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7674
7675 intel_crtc->cursor_visible = visible;
7676 }
7677 /* and commit changes on next vblank */
7678 POSTING_READ(CURCNTR_IVB(pipe));
7679 I915_WRITE(CURBASE_IVB(pipe), base);
7680 POSTING_READ(CURBASE_IVB(pipe));
7681 }
7682
7683 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7684 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7685 bool on)
7686 {
7687 struct drm_device *dev = crtc->dev;
7688 struct drm_i915_private *dev_priv = dev->dev_private;
7689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7690 int pipe = intel_crtc->pipe;
7691 int x = intel_crtc->cursor_x;
7692 int y = intel_crtc->cursor_y;
7693 u32 base = 0, pos = 0;
7694 bool visible;
7695
7696 if (on)
7697 base = intel_crtc->cursor_addr;
7698
7699 if (x >= intel_crtc->config.pipe_src_w)
7700 base = 0;
7701
7702 if (y >= intel_crtc->config.pipe_src_h)
7703 base = 0;
7704
7705 if (x < 0) {
7706 if (x + intel_crtc->cursor_width <= 0)
7707 base = 0;
7708
7709 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7710 x = -x;
7711 }
7712 pos |= x << CURSOR_X_SHIFT;
7713
7714 if (y < 0) {
7715 if (y + intel_crtc->cursor_height <= 0)
7716 base = 0;
7717
7718 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7719 y = -y;
7720 }
7721 pos |= y << CURSOR_Y_SHIFT;
7722
7723 visible = base != 0;
7724 if (!visible && !intel_crtc->cursor_visible)
7725 return;
7726
7727 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7728 I915_WRITE(CURPOS_IVB(pipe), pos);
7729 ivb_update_cursor(crtc, base);
7730 } else {
7731 I915_WRITE(CURPOS(pipe), pos);
7732 if (IS_845G(dev) || IS_I865G(dev))
7733 i845_update_cursor(crtc, base);
7734 else
7735 i9xx_update_cursor(crtc, base);
7736 }
7737 }
7738
7739 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7740 struct drm_file *file,
7741 uint32_t handle,
7742 uint32_t width, uint32_t height)
7743 {
7744 struct drm_device *dev = crtc->dev;
7745 struct drm_i915_private *dev_priv = dev->dev_private;
7746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7747 struct drm_i915_gem_object *obj;
7748 unsigned old_width;
7749 uint32_t addr;
7750 int ret;
7751
7752 /* if we want to turn off the cursor ignore width and height */
7753 if (!handle) {
7754 DRM_DEBUG_KMS("cursor off\n");
7755 addr = 0;
7756 obj = NULL;
7757 mutex_lock(&dev->struct_mutex);
7758 goto finish;
7759 }
7760
7761 /* Check for which cursor types we support */
7762 if (!((width == 64 && height == 64) ||
7763 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7764 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7765 DRM_DEBUG("Cursor dimension not supported\n");
7766 return -EINVAL;
7767 }
7768
7769 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7770 if (&obj->base == NULL)
7771 return -ENOENT;
7772
7773 if (obj->base.size < width * height * 4) {
7774 DRM_DEBUG_KMS("buffer is to small\n");
7775 ret = -ENOMEM;
7776 goto fail;
7777 }
7778
7779 /* we only need to pin inside GTT if cursor is non-phy */
7780 mutex_lock(&dev->struct_mutex);
7781 if (!INTEL_INFO(dev)->cursor_needs_physical) {
7782 unsigned alignment;
7783
7784 if (obj->tiling_mode) {
7785 DRM_DEBUG_KMS("cursor cannot be tiled\n");
7786 ret = -EINVAL;
7787 goto fail_locked;
7788 }
7789
7790 /* Note that the w/a also requires 2 PTE of padding following
7791 * the bo. We currently fill all unused PTE with the shadow
7792 * page and so we should always have valid PTE following the
7793 * cursor preventing the VT-d warning.
7794 */
7795 alignment = 0;
7796 if (need_vtd_wa(dev))
7797 alignment = 64*1024;
7798
7799 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7800 if (ret) {
7801 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
7802 goto fail_locked;
7803 }
7804
7805 ret = i915_gem_object_put_fence(obj);
7806 if (ret) {
7807 DRM_DEBUG_KMS("failed to release fence for cursor");
7808 goto fail_unpin;
7809 }
7810
7811 addr = i915_gem_obj_ggtt_offset(obj);
7812 } else {
7813 int align = IS_I830(dev) ? 16 * 1024 : 256;
7814 ret = i915_gem_attach_phys_object(dev, obj,
7815 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7816 align);
7817 if (ret) {
7818 DRM_DEBUG_KMS("failed to attach phys object\n");
7819 goto fail_locked;
7820 }
7821 addr = obj->phys_obj->handle->busaddr;
7822 }
7823
7824 if (IS_GEN2(dev))
7825 I915_WRITE(CURSIZE, (height << 12) | width);
7826
7827 finish:
7828 if (intel_crtc->cursor_bo) {
7829 if (INTEL_INFO(dev)->cursor_needs_physical) {
7830 if (intel_crtc->cursor_bo != obj)
7831 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7832 } else
7833 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7834 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7835 }
7836
7837 mutex_unlock(&dev->struct_mutex);
7838
7839 old_width = intel_crtc->cursor_width;
7840
7841 intel_crtc->cursor_addr = addr;
7842 intel_crtc->cursor_bo = obj;
7843 intel_crtc->cursor_width = width;
7844 intel_crtc->cursor_height = height;
7845
7846 if (intel_crtc->active) {
7847 if (old_width != width)
7848 intel_update_watermarks(crtc);
7849 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7850 }
7851
7852 return 0;
7853 fail_unpin:
7854 i915_gem_object_unpin_from_display_plane(obj);
7855 fail_locked:
7856 mutex_unlock(&dev->struct_mutex);
7857 fail:
7858 drm_gem_object_unreference_unlocked(&obj->base);
7859 return ret;
7860 }
7861
7862 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7863 {
7864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7865
7866 intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7867 intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7868
7869 if (intel_crtc->active)
7870 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7871
7872 return 0;
7873 }
7874
7875 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7876 u16 *blue, uint32_t start, uint32_t size)
7877 {
7878 int end = (start + size > 256) ? 256 : start + size, i;
7879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7880
7881 for (i = start; i < end; i++) {
7882 intel_crtc->lut_r[i] = red[i] >> 8;
7883 intel_crtc->lut_g[i] = green[i] >> 8;
7884 intel_crtc->lut_b[i] = blue[i] >> 8;
7885 }
7886
7887 intel_crtc_load_lut(crtc);
7888 }
7889
7890 /* VESA 640x480x72Hz mode to set on the pipe */
7891 static struct drm_display_mode load_detect_mode = {
7892 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7893 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7894 };
7895
7896 struct drm_framebuffer *
7897 __intel_framebuffer_create(struct drm_device *dev,
7898 struct drm_mode_fb_cmd2 *mode_cmd,
7899 struct drm_i915_gem_object *obj)
7900 {
7901 struct intel_framebuffer *intel_fb;
7902 int ret;
7903
7904 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7905 if (!intel_fb) {
7906 drm_gem_object_unreference_unlocked(&obj->base);
7907 return ERR_PTR(-ENOMEM);
7908 }
7909
7910 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7911 if (ret)
7912 goto err;
7913
7914 return &intel_fb->base;
7915 err:
7916 drm_gem_object_unreference_unlocked(&obj->base);
7917 kfree(intel_fb);
7918
7919 return ERR_PTR(ret);
7920 }
7921
7922 static struct drm_framebuffer *
7923 intel_framebuffer_create(struct drm_device *dev,
7924 struct drm_mode_fb_cmd2 *mode_cmd,
7925 struct drm_i915_gem_object *obj)
7926 {
7927 struct drm_framebuffer *fb;
7928 int ret;
7929
7930 ret = i915_mutex_lock_interruptible(dev);
7931 if (ret)
7932 return ERR_PTR(ret);
7933 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
7934 mutex_unlock(&dev->struct_mutex);
7935
7936 return fb;
7937 }
7938
7939 static u32
7940 intel_framebuffer_pitch_for_width(int width, int bpp)
7941 {
7942 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7943 return ALIGN(pitch, 64);
7944 }
7945
7946 static u32
7947 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7948 {
7949 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7950 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7951 }
7952
7953 static struct drm_framebuffer *
7954 intel_framebuffer_create_for_mode(struct drm_device *dev,
7955 struct drm_display_mode *mode,
7956 int depth, int bpp)
7957 {
7958 struct drm_i915_gem_object *obj;
7959 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7960
7961 obj = i915_gem_alloc_object(dev,
7962 intel_framebuffer_size_for_mode(mode, bpp));
7963 if (obj == NULL)
7964 return ERR_PTR(-ENOMEM);
7965
7966 mode_cmd.width = mode->hdisplay;
7967 mode_cmd.height = mode->vdisplay;
7968 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7969 bpp);
7970 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7971
7972 return intel_framebuffer_create(dev, &mode_cmd, obj);
7973 }
7974
7975 static struct drm_framebuffer *
7976 mode_fits_in_fbdev(struct drm_device *dev,
7977 struct drm_display_mode *mode)
7978 {
7979 #ifdef CONFIG_DRM_I915_FBDEV
7980 struct drm_i915_private *dev_priv = dev->dev_private;
7981 struct drm_i915_gem_object *obj;
7982 struct drm_framebuffer *fb;
7983
7984 if (!dev_priv->fbdev)
7985 return NULL;
7986
7987 if (!dev_priv->fbdev->fb)
7988 return NULL;
7989
7990 obj = dev_priv->fbdev->fb->obj;
7991 BUG_ON(!obj);
7992
7993 fb = &dev_priv->fbdev->fb->base;
7994 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7995 fb->bits_per_pixel))
7996 return NULL;
7997
7998 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7999 return NULL;
8000
8001 return fb;
8002 #else
8003 return NULL;
8004 #endif
8005 }
8006
8007 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8008 struct drm_display_mode *mode,
8009 struct intel_load_detect_pipe *old)
8010 {
8011 struct intel_crtc *intel_crtc;
8012 struct intel_encoder *intel_encoder =
8013 intel_attached_encoder(connector);
8014 struct drm_crtc *possible_crtc;
8015 struct drm_encoder *encoder = &intel_encoder->base;
8016 struct drm_crtc *crtc = NULL;
8017 struct drm_device *dev = encoder->dev;
8018 struct drm_framebuffer *fb;
8019 int i = -1;
8020
8021 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8022 connector->base.id, drm_get_connector_name(connector),
8023 encoder->base.id, drm_get_encoder_name(encoder));
8024
8025 /*
8026 * Algorithm gets a little messy:
8027 *
8028 * - if the connector already has an assigned crtc, use it (but make
8029 * sure it's on first)
8030 *
8031 * - try to find the first unused crtc that can drive this connector,
8032 * and use that if we find one
8033 */
8034
8035 /* See if we already have a CRTC for this connector */
8036 if (encoder->crtc) {
8037 crtc = encoder->crtc;
8038
8039 mutex_lock(&crtc->mutex);
8040
8041 old->dpms_mode = connector->dpms;
8042 old->load_detect_temp = false;
8043
8044 /* Make sure the crtc and connector are running */
8045 if (connector->dpms != DRM_MODE_DPMS_ON)
8046 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8047
8048 return true;
8049 }
8050
8051 /* Find an unused one (if possible) */
8052 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
8053 i++;
8054 if (!(encoder->possible_crtcs & (1 << i)))
8055 continue;
8056 if (!possible_crtc->enabled) {
8057 crtc = possible_crtc;
8058 break;
8059 }
8060 }
8061
8062 /*
8063 * If we didn't find an unused CRTC, don't use any.
8064 */
8065 if (!crtc) {
8066 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8067 return false;
8068 }
8069
8070 mutex_lock(&crtc->mutex);
8071 intel_encoder->new_crtc = to_intel_crtc(crtc);
8072 to_intel_connector(connector)->new_encoder = intel_encoder;
8073
8074 intel_crtc = to_intel_crtc(crtc);
8075 intel_crtc->new_enabled = true;
8076 intel_crtc->new_config = &intel_crtc->config;
8077 old->dpms_mode = connector->dpms;
8078 old->load_detect_temp = true;
8079 old->release_fb = NULL;
8080
8081 if (!mode)
8082 mode = &load_detect_mode;
8083
8084 /* We need a framebuffer large enough to accommodate all accesses
8085 * that the plane may generate whilst we perform load detection.
8086 * We can not rely on the fbcon either being present (we get called
8087 * during its initialisation to detect all boot displays, or it may
8088 * not even exist) or that it is large enough to satisfy the
8089 * requested mode.
8090 */
8091 fb = mode_fits_in_fbdev(dev, mode);
8092 if (fb == NULL) {
8093 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8094 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8095 old->release_fb = fb;
8096 } else
8097 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8098 if (IS_ERR(fb)) {
8099 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8100 goto fail;
8101 }
8102
8103 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8104 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8105 if (old->release_fb)
8106 old->release_fb->funcs->destroy(old->release_fb);
8107 goto fail;
8108 }
8109
8110 /* let the connector get through one full cycle before testing */
8111 intel_wait_for_vblank(dev, intel_crtc->pipe);
8112 return true;
8113
8114 fail:
8115 intel_crtc->new_enabled = crtc->enabled;
8116 if (intel_crtc->new_enabled)
8117 intel_crtc->new_config = &intel_crtc->config;
8118 else
8119 intel_crtc->new_config = NULL;
8120 mutex_unlock(&crtc->mutex);
8121 return false;
8122 }
8123
8124 void intel_release_load_detect_pipe(struct drm_connector *connector,
8125 struct intel_load_detect_pipe *old)
8126 {
8127 struct intel_encoder *intel_encoder =
8128 intel_attached_encoder(connector);
8129 struct drm_encoder *encoder = &intel_encoder->base;
8130 struct drm_crtc *crtc = encoder->crtc;
8131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8132
8133 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8134 connector->base.id, drm_get_connector_name(connector),
8135 encoder->base.id, drm_get_encoder_name(encoder));
8136
8137 if (old->load_detect_temp) {
8138 to_intel_connector(connector)->new_encoder = NULL;
8139 intel_encoder->new_crtc = NULL;
8140 intel_crtc->new_enabled = false;
8141 intel_crtc->new_config = NULL;
8142 intel_set_mode(crtc, NULL, 0, 0, NULL);
8143
8144 if (old->release_fb) {
8145 drm_framebuffer_unregister_private(old->release_fb);
8146 drm_framebuffer_unreference(old->release_fb);
8147 }
8148
8149 mutex_unlock(&crtc->mutex);
8150 return;
8151 }
8152
8153 /* Switch crtc and encoder back off if necessary */
8154 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8155 connector->funcs->dpms(connector, old->dpms_mode);
8156
8157 mutex_unlock(&crtc->mutex);
8158 }
8159
8160 static int i9xx_pll_refclk(struct drm_device *dev,
8161 const struct intel_crtc_config *pipe_config)
8162 {
8163 struct drm_i915_private *dev_priv = dev->dev_private;
8164 u32 dpll = pipe_config->dpll_hw_state.dpll;
8165
8166 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8167 return dev_priv->vbt.lvds_ssc_freq;
8168 else if (HAS_PCH_SPLIT(dev))
8169 return 120000;
8170 else if (!IS_GEN2(dev))
8171 return 96000;
8172 else
8173 return 48000;
8174 }
8175
8176 /* Returns the clock of the currently programmed mode of the given pipe. */
8177 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8178 struct intel_crtc_config *pipe_config)
8179 {
8180 struct drm_device *dev = crtc->base.dev;
8181 struct drm_i915_private *dev_priv = dev->dev_private;
8182 int pipe = pipe_config->cpu_transcoder;
8183 u32 dpll = pipe_config->dpll_hw_state.dpll;
8184 u32 fp;
8185 intel_clock_t clock;
8186 int refclk = i9xx_pll_refclk(dev, pipe_config);
8187
8188 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8189 fp = pipe_config->dpll_hw_state.fp0;
8190 else
8191 fp = pipe_config->dpll_hw_state.fp1;
8192
8193 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8194 if (IS_PINEVIEW(dev)) {
8195 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8196 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8197 } else {
8198 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8199 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8200 }
8201
8202 if (!IS_GEN2(dev)) {
8203 if (IS_PINEVIEW(dev))
8204 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8205 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8206 else
8207 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8208 DPLL_FPA01_P1_POST_DIV_SHIFT);
8209
8210 switch (dpll & DPLL_MODE_MASK) {
8211 case DPLLB_MODE_DAC_SERIAL:
8212 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8213 5 : 10;
8214 break;
8215 case DPLLB_MODE_LVDS:
8216 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8217 7 : 14;
8218 break;
8219 default:
8220 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8221 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8222 return;
8223 }
8224
8225 if (IS_PINEVIEW(dev))
8226 pineview_clock(refclk, &clock);
8227 else
8228 i9xx_clock(refclk, &clock);
8229 } else {
8230 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8231 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8232
8233 if (is_lvds) {
8234 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8235 DPLL_FPA01_P1_POST_DIV_SHIFT);
8236
8237 if (lvds & LVDS_CLKB_POWER_UP)
8238 clock.p2 = 7;
8239 else
8240 clock.p2 = 14;
8241 } else {
8242 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8243 clock.p1 = 2;
8244 else {
8245 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8246 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8247 }
8248 if (dpll & PLL_P2_DIVIDE_BY_4)
8249 clock.p2 = 4;
8250 else
8251 clock.p2 = 2;
8252 }
8253
8254 i9xx_clock(refclk, &clock);
8255 }
8256
8257 /*
8258 * This value includes pixel_multiplier. We will use
8259 * port_clock to compute adjusted_mode.crtc_clock in the
8260 * encoder's get_config() function.
8261 */
8262 pipe_config->port_clock = clock.dot;
8263 }
8264
8265 int intel_dotclock_calculate(int link_freq,
8266 const struct intel_link_m_n *m_n)
8267 {
8268 /*
8269 * The calculation for the data clock is:
8270 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8271 * But we want to avoid losing precison if possible, so:
8272 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8273 *
8274 * and the link clock is simpler:
8275 * link_clock = (m * link_clock) / n
8276 */
8277
8278 if (!m_n->link_n)
8279 return 0;
8280
8281 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8282 }
8283
8284 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8285 struct intel_crtc_config *pipe_config)
8286 {
8287 struct drm_device *dev = crtc->base.dev;
8288
8289 /* read out port_clock from the DPLL */
8290 i9xx_crtc_clock_get(crtc, pipe_config);
8291
8292 /*
8293 * This value does not include pixel_multiplier.
8294 * We will check that port_clock and adjusted_mode.crtc_clock
8295 * agree once we know their relationship in the encoder's
8296 * get_config() function.
8297 */
8298 pipe_config->adjusted_mode.crtc_clock =
8299 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8300 &pipe_config->fdi_m_n);
8301 }
8302
8303 /** Returns the currently programmed mode of the given pipe. */
8304 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8305 struct drm_crtc *crtc)
8306 {
8307 struct drm_i915_private *dev_priv = dev->dev_private;
8308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8309 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8310 struct drm_display_mode *mode;
8311 struct intel_crtc_config pipe_config;
8312 int htot = I915_READ(HTOTAL(cpu_transcoder));
8313 int hsync = I915_READ(HSYNC(cpu_transcoder));
8314 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8315 int vsync = I915_READ(VSYNC(cpu_transcoder));
8316 enum pipe pipe = intel_crtc->pipe;
8317
8318 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8319 if (!mode)
8320 return NULL;
8321
8322 /*
8323 * Construct a pipe_config sufficient for getting the clock info
8324 * back out of crtc_clock_get.
8325 *
8326 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8327 * to use a real value here instead.
8328 */
8329 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8330 pipe_config.pixel_multiplier = 1;
8331 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8332 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8333 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8334 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8335
8336 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8337 mode->hdisplay = (htot & 0xffff) + 1;
8338 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8339 mode->hsync_start = (hsync & 0xffff) + 1;
8340 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8341 mode->vdisplay = (vtot & 0xffff) + 1;
8342 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8343 mode->vsync_start = (vsync & 0xffff) + 1;
8344 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8345
8346 drm_mode_set_name(mode);
8347
8348 return mode;
8349 }
8350
8351 static void intel_increase_pllclock(struct drm_crtc *crtc)
8352 {
8353 struct drm_device *dev = crtc->dev;
8354 drm_i915_private_t *dev_priv = dev->dev_private;
8355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8356 int pipe = intel_crtc->pipe;
8357 int dpll_reg = DPLL(pipe);
8358 int dpll;
8359
8360 if (HAS_PCH_SPLIT(dev))
8361 return;
8362
8363 if (!dev_priv->lvds_downclock_avail)
8364 return;
8365
8366 dpll = I915_READ(dpll_reg);
8367 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8368 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8369
8370 assert_panel_unlocked(dev_priv, pipe);
8371
8372 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8373 I915_WRITE(dpll_reg, dpll);
8374 intel_wait_for_vblank(dev, pipe);
8375
8376 dpll = I915_READ(dpll_reg);
8377 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8378 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8379 }
8380 }
8381
8382 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8383 {
8384 struct drm_device *dev = crtc->dev;
8385 drm_i915_private_t *dev_priv = dev->dev_private;
8386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8387
8388 if (HAS_PCH_SPLIT(dev))
8389 return;
8390
8391 if (!dev_priv->lvds_downclock_avail)
8392 return;
8393
8394 /*
8395 * Since this is called by a timer, we should never get here in
8396 * the manual case.
8397 */
8398 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8399 int pipe = intel_crtc->pipe;
8400 int dpll_reg = DPLL(pipe);
8401 int dpll;
8402
8403 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8404
8405 assert_panel_unlocked(dev_priv, pipe);
8406
8407 dpll = I915_READ(dpll_reg);
8408 dpll |= DISPLAY_RATE_SELECT_FPA1;
8409 I915_WRITE(dpll_reg, dpll);
8410 intel_wait_for_vblank(dev, pipe);
8411 dpll = I915_READ(dpll_reg);
8412 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8413 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8414 }
8415
8416 }
8417
8418 void intel_mark_busy(struct drm_device *dev)
8419 {
8420 struct drm_i915_private *dev_priv = dev->dev_private;
8421
8422 if (dev_priv->mm.busy)
8423 return;
8424
8425 intel_runtime_pm_get(dev_priv);
8426 i915_update_gfx_val(dev_priv);
8427 dev_priv->mm.busy = true;
8428 }
8429
8430 void intel_mark_idle(struct drm_device *dev)
8431 {
8432 struct drm_i915_private *dev_priv = dev->dev_private;
8433 struct drm_crtc *crtc;
8434
8435 if (!dev_priv->mm.busy)
8436 return;
8437
8438 dev_priv->mm.busy = false;
8439
8440 if (!i915.powersave)
8441 goto out;
8442
8443 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8444 if (!crtc->fb)
8445 continue;
8446
8447 intel_decrease_pllclock(crtc);
8448 }
8449
8450 if (INTEL_INFO(dev)->gen >= 6)
8451 gen6_rps_idle(dev->dev_private);
8452
8453 out:
8454 intel_runtime_pm_put(dev_priv);
8455 }
8456
8457 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8458 struct intel_ring_buffer *ring)
8459 {
8460 struct drm_device *dev = obj->base.dev;
8461 struct drm_crtc *crtc;
8462
8463 if (!i915.powersave)
8464 return;
8465
8466 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8467 if (!crtc->fb)
8468 continue;
8469
8470 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8471 continue;
8472
8473 intel_increase_pllclock(crtc);
8474 if (ring && intel_fbc_enabled(dev))
8475 ring->fbc_dirty = true;
8476 }
8477 }
8478
8479 static void intel_crtc_destroy(struct drm_crtc *crtc)
8480 {
8481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8482 struct drm_device *dev = crtc->dev;
8483 struct intel_unpin_work *work;
8484 unsigned long flags;
8485
8486 spin_lock_irqsave(&dev->event_lock, flags);
8487 work = intel_crtc->unpin_work;
8488 intel_crtc->unpin_work = NULL;
8489 spin_unlock_irqrestore(&dev->event_lock, flags);
8490
8491 if (work) {
8492 cancel_work_sync(&work->work);
8493 kfree(work);
8494 }
8495
8496 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8497
8498 drm_crtc_cleanup(crtc);
8499
8500 kfree(intel_crtc);
8501 }
8502
8503 static void intel_unpin_work_fn(struct work_struct *__work)
8504 {
8505 struct intel_unpin_work *work =
8506 container_of(__work, struct intel_unpin_work, work);
8507 struct drm_device *dev = work->crtc->dev;
8508
8509 mutex_lock(&dev->struct_mutex);
8510 intel_unpin_fb_obj(work->old_fb_obj);
8511 drm_gem_object_unreference(&work->pending_flip_obj->base);
8512 drm_gem_object_unreference(&work->old_fb_obj->base);
8513
8514 intel_update_fbc(dev);
8515 mutex_unlock(&dev->struct_mutex);
8516
8517 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8518 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8519
8520 kfree(work);
8521 }
8522
8523 static void do_intel_finish_page_flip(struct drm_device *dev,
8524 struct drm_crtc *crtc)
8525 {
8526 drm_i915_private_t *dev_priv = dev->dev_private;
8527 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8528 struct intel_unpin_work *work;
8529 unsigned long flags;
8530
8531 /* Ignore early vblank irqs */
8532 if (intel_crtc == NULL)
8533 return;
8534
8535 spin_lock_irqsave(&dev->event_lock, flags);
8536 work = intel_crtc->unpin_work;
8537
8538 /* Ensure we don't miss a work->pending update ... */
8539 smp_rmb();
8540
8541 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8542 spin_unlock_irqrestore(&dev->event_lock, flags);
8543 return;
8544 }
8545
8546 /* and that the unpin work is consistent wrt ->pending. */
8547 smp_rmb();
8548
8549 intel_crtc->unpin_work = NULL;
8550
8551 if (work->event)
8552 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8553
8554 drm_vblank_put(dev, intel_crtc->pipe);
8555
8556 spin_unlock_irqrestore(&dev->event_lock, flags);
8557
8558 wake_up_all(&dev_priv->pending_flip_queue);
8559
8560 queue_work(dev_priv->wq, &work->work);
8561
8562 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8563 }
8564
8565 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8566 {
8567 drm_i915_private_t *dev_priv = dev->dev_private;
8568 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8569
8570 do_intel_finish_page_flip(dev, crtc);
8571 }
8572
8573 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8574 {
8575 drm_i915_private_t *dev_priv = dev->dev_private;
8576 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8577
8578 do_intel_finish_page_flip(dev, crtc);
8579 }
8580
8581 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8582 {
8583 drm_i915_private_t *dev_priv = dev->dev_private;
8584 struct intel_crtc *intel_crtc =
8585 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8586 unsigned long flags;
8587
8588 /* NB: An MMIO update of the plane base pointer will also
8589 * generate a page-flip completion irq, i.e. every modeset
8590 * is also accompanied by a spurious intel_prepare_page_flip().
8591 */
8592 spin_lock_irqsave(&dev->event_lock, flags);
8593 if (intel_crtc->unpin_work)
8594 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8595 spin_unlock_irqrestore(&dev->event_lock, flags);
8596 }
8597
8598 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8599 {
8600 /* Ensure that the work item is consistent when activating it ... */
8601 smp_wmb();
8602 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8603 /* and that it is marked active as soon as the irq could fire. */
8604 smp_wmb();
8605 }
8606
8607 static int intel_gen2_queue_flip(struct drm_device *dev,
8608 struct drm_crtc *crtc,
8609 struct drm_framebuffer *fb,
8610 struct drm_i915_gem_object *obj,
8611 uint32_t flags)
8612 {
8613 struct drm_i915_private *dev_priv = dev->dev_private;
8614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8615 u32 flip_mask;
8616 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8617 int ret;
8618
8619 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8620 if (ret)
8621 goto err;
8622
8623 ret = intel_ring_begin(ring, 6);
8624 if (ret)
8625 goto err_unpin;
8626
8627 /* Can't queue multiple flips, so wait for the previous
8628 * one to finish before executing the next.
8629 */
8630 if (intel_crtc->plane)
8631 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8632 else
8633 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8634 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8635 intel_ring_emit(ring, MI_NOOP);
8636 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8637 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8638 intel_ring_emit(ring, fb->pitches[0]);
8639 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8640 intel_ring_emit(ring, 0); /* aux display base address, unused */
8641
8642 intel_mark_page_flip_active(intel_crtc);
8643 __intel_ring_advance(ring);
8644 return 0;
8645
8646 err_unpin:
8647 intel_unpin_fb_obj(obj);
8648 err:
8649 return ret;
8650 }
8651
8652 static int intel_gen3_queue_flip(struct drm_device *dev,
8653 struct drm_crtc *crtc,
8654 struct drm_framebuffer *fb,
8655 struct drm_i915_gem_object *obj,
8656 uint32_t flags)
8657 {
8658 struct drm_i915_private *dev_priv = dev->dev_private;
8659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8660 u32 flip_mask;
8661 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8662 int ret;
8663
8664 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8665 if (ret)
8666 goto err;
8667
8668 ret = intel_ring_begin(ring, 6);
8669 if (ret)
8670 goto err_unpin;
8671
8672 if (intel_crtc->plane)
8673 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8674 else
8675 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8676 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8677 intel_ring_emit(ring, MI_NOOP);
8678 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8679 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8680 intel_ring_emit(ring, fb->pitches[0]);
8681 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8682 intel_ring_emit(ring, MI_NOOP);
8683
8684 intel_mark_page_flip_active(intel_crtc);
8685 __intel_ring_advance(ring);
8686 return 0;
8687
8688 err_unpin:
8689 intel_unpin_fb_obj(obj);
8690 err:
8691 return ret;
8692 }
8693
8694 static int intel_gen4_queue_flip(struct drm_device *dev,
8695 struct drm_crtc *crtc,
8696 struct drm_framebuffer *fb,
8697 struct drm_i915_gem_object *obj,
8698 uint32_t flags)
8699 {
8700 struct drm_i915_private *dev_priv = dev->dev_private;
8701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8702 uint32_t pf, pipesrc;
8703 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8704 int ret;
8705
8706 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8707 if (ret)
8708 goto err;
8709
8710 ret = intel_ring_begin(ring, 4);
8711 if (ret)
8712 goto err_unpin;
8713
8714 /* i965+ uses the linear or tiled offsets from the
8715 * Display Registers (which do not change across a page-flip)
8716 * so we need only reprogram the base address.
8717 */
8718 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8719 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8720 intel_ring_emit(ring, fb->pitches[0]);
8721 intel_ring_emit(ring,
8722 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8723 obj->tiling_mode);
8724
8725 /* XXX Enabling the panel-fitter across page-flip is so far
8726 * untested on non-native modes, so ignore it for now.
8727 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8728 */
8729 pf = 0;
8730 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8731 intel_ring_emit(ring, pf | pipesrc);
8732
8733 intel_mark_page_flip_active(intel_crtc);
8734 __intel_ring_advance(ring);
8735 return 0;
8736
8737 err_unpin:
8738 intel_unpin_fb_obj(obj);
8739 err:
8740 return ret;
8741 }
8742
8743 static int intel_gen6_queue_flip(struct drm_device *dev,
8744 struct drm_crtc *crtc,
8745 struct drm_framebuffer *fb,
8746 struct drm_i915_gem_object *obj,
8747 uint32_t flags)
8748 {
8749 struct drm_i915_private *dev_priv = dev->dev_private;
8750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8751 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8752 uint32_t pf, pipesrc;
8753 int ret;
8754
8755 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8756 if (ret)
8757 goto err;
8758
8759 ret = intel_ring_begin(ring, 4);
8760 if (ret)
8761 goto err_unpin;
8762
8763 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8764 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8765 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8766 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8767
8768 /* Contrary to the suggestions in the documentation,
8769 * "Enable Panel Fitter" does not seem to be required when page
8770 * flipping with a non-native mode, and worse causes a normal
8771 * modeset to fail.
8772 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8773 */
8774 pf = 0;
8775 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8776 intel_ring_emit(ring, pf | pipesrc);
8777
8778 intel_mark_page_flip_active(intel_crtc);
8779 __intel_ring_advance(ring);
8780 return 0;
8781
8782 err_unpin:
8783 intel_unpin_fb_obj(obj);
8784 err:
8785 return ret;
8786 }
8787
8788 static int intel_gen7_queue_flip(struct drm_device *dev,
8789 struct drm_crtc *crtc,
8790 struct drm_framebuffer *fb,
8791 struct drm_i915_gem_object *obj,
8792 uint32_t flags)
8793 {
8794 struct drm_i915_private *dev_priv = dev->dev_private;
8795 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8796 struct intel_ring_buffer *ring;
8797 uint32_t plane_bit = 0;
8798 int len, ret;
8799
8800 ring = obj->ring;
8801 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8802 ring = &dev_priv->ring[BCS];
8803
8804 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8805 if (ret)
8806 goto err;
8807
8808 switch(intel_crtc->plane) {
8809 case PLANE_A:
8810 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8811 break;
8812 case PLANE_B:
8813 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8814 break;
8815 case PLANE_C:
8816 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8817 break;
8818 default:
8819 WARN_ONCE(1, "unknown plane in flip command\n");
8820 ret = -ENODEV;
8821 goto err_unpin;
8822 }
8823
8824 len = 4;
8825 if (ring->id == RCS)
8826 len += 6;
8827
8828 /*
8829 * BSpec MI_DISPLAY_FLIP for IVB:
8830 * "The full packet must be contained within the same cache line."
8831 *
8832 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8833 * cacheline, if we ever start emitting more commands before
8834 * the MI_DISPLAY_FLIP we may need to first emit everything else,
8835 * then do the cacheline alignment, and finally emit the
8836 * MI_DISPLAY_FLIP.
8837 */
8838 ret = intel_ring_cacheline_align(ring);
8839 if (ret)
8840 goto err_unpin;
8841
8842 ret = intel_ring_begin(ring, len);
8843 if (ret)
8844 goto err_unpin;
8845
8846 /* Unmask the flip-done completion message. Note that the bspec says that
8847 * we should do this for both the BCS and RCS, and that we must not unmask
8848 * more than one flip event at any time (or ensure that one flip message
8849 * can be sent by waiting for flip-done prior to queueing new flips).
8850 * Experimentation says that BCS works despite DERRMR masking all
8851 * flip-done completion events and that unmasking all planes at once
8852 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8853 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8854 */
8855 if (ring->id == RCS) {
8856 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8857 intel_ring_emit(ring, DERRMR);
8858 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8859 DERRMR_PIPEB_PRI_FLIP_DONE |
8860 DERRMR_PIPEC_PRI_FLIP_DONE));
8861 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8862 MI_SRM_LRM_GLOBAL_GTT);
8863 intel_ring_emit(ring, DERRMR);
8864 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8865 }
8866
8867 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8868 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8869 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8870 intel_ring_emit(ring, (MI_NOOP));
8871
8872 intel_mark_page_flip_active(intel_crtc);
8873 __intel_ring_advance(ring);
8874 return 0;
8875
8876 err_unpin:
8877 intel_unpin_fb_obj(obj);
8878 err:
8879 return ret;
8880 }
8881
8882 static int intel_default_queue_flip(struct drm_device *dev,
8883 struct drm_crtc *crtc,
8884 struct drm_framebuffer *fb,
8885 struct drm_i915_gem_object *obj,
8886 uint32_t flags)
8887 {
8888 return -ENODEV;
8889 }
8890
8891 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8892 struct drm_framebuffer *fb,
8893 struct drm_pending_vblank_event *event,
8894 uint32_t page_flip_flags)
8895 {
8896 struct drm_device *dev = crtc->dev;
8897 struct drm_i915_private *dev_priv = dev->dev_private;
8898 struct drm_framebuffer *old_fb = crtc->fb;
8899 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8901 struct intel_unpin_work *work;
8902 unsigned long flags;
8903 int ret;
8904
8905 /* Can't change pixel format via MI display flips. */
8906 if (fb->pixel_format != crtc->fb->pixel_format)
8907 return -EINVAL;
8908
8909 /*
8910 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8911 * Note that pitch changes could also affect these register.
8912 */
8913 if (INTEL_INFO(dev)->gen > 3 &&
8914 (fb->offsets[0] != crtc->fb->offsets[0] ||
8915 fb->pitches[0] != crtc->fb->pitches[0]))
8916 return -EINVAL;
8917
8918 if (i915_terminally_wedged(&dev_priv->gpu_error))
8919 goto out_hang;
8920
8921 work = kzalloc(sizeof(*work), GFP_KERNEL);
8922 if (work == NULL)
8923 return -ENOMEM;
8924
8925 work->event = event;
8926 work->crtc = crtc;
8927 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8928 INIT_WORK(&work->work, intel_unpin_work_fn);
8929
8930 ret = drm_vblank_get(dev, intel_crtc->pipe);
8931 if (ret)
8932 goto free_work;
8933
8934 /* We borrow the event spin lock for protecting unpin_work */
8935 spin_lock_irqsave(&dev->event_lock, flags);
8936 if (intel_crtc->unpin_work) {
8937 spin_unlock_irqrestore(&dev->event_lock, flags);
8938 kfree(work);
8939 drm_vblank_put(dev, intel_crtc->pipe);
8940
8941 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8942 return -EBUSY;
8943 }
8944 intel_crtc->unpin_work = work;
8945 spin_unlock_irqrestore(&dev->event_lock, flags);
8946
8947 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8948 flush_workqueue(dev_priv->wq);
8949
8950 ret = i915_mutex_lock_interruptible(dev);
8951 if (ret)
8952 goto cleanup;
8953
8954 /* Reference the objects for the scheduled work. */
8955 drm_gem_object_reference(&work->old_fb_obj->base);
8956 drm_gem_object_reference(&obj->base);
8957
8958 crtc->fb = fb;
8959
8960 work->pending_flip_obj = obj;
8961
8962 work->enable_stall_check = true;
8963
8964 atomic_inc(&intel_crtc->unpin_work_count);
8965 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8966
8967 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8968 if (ret)
8969 goto cleanup_pending;
8970
8971 intel_disable_fbc(dev);
8972 intel_mark_fb_busy(obj, NULL);
8973 mutex_unlock(&dev->struct_mutex);
8974
8975 trace_i915_flip_request(intel_crtc->plane, obj);
8976
8977 return 0;
8978
8979 cleanup_pending:
8980 atomic_dec(&intel_crtc->unpin_work_count);
8981 crtc->fb = old_fb;
8982 drm_gem_object_unreference(&work->old_fb_obj->base);
8983 drm_gem_object_unreference(&obj->base);
8984 mutex_unlock(&dev->struct_mutex);
8985
8986 cleanup:
8987 spin_lock_irqsave(&dev->event_lock, flags);
8988 intel_crtc->unpin_work = NULL;
8989 spin_unlock_irqrestore(&dev->event_lock, flags);
8990
8991 drm_vblank_put(dev, intel_crtc->pipe);
8992 free_work:
8993 kfree(work);
8994
8995 if (ret == -EIO) {
8996 out_hang:
8997 intel_crtc_wait_for_pending_flips(crtc);
8998 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
8999 if (ret == 0 && event)
9000 drm_send_vblank_event(dev, intel_crtc->pipe, event);
9001 }
9002 return ret;
9003 }
9004
9005 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9006 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9007 .load_lut = intel_crtc_load_lut,
9008 };
9009
9010 /**
9011 * intel_modeset_update_staged_output_state
9012 *
9013 * Updates the staged output configuration state, e.g. after we've read out the
9014 * current hw state.
9015 */
9016 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9017 {
9018 struct intel_crtc *crtc;
9019 struct intel_encoder *encoder;
9020 struct intel_connector *connector;
9021
9022 list_for_each_entry(connector, &dev->mode_config.connector_list,
9023 base.head) {
9024 connector->new_encoder =
9025 to_intel_encoder(connector->base.encoder);
9026 }
9027
9028 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9029 base.head) {
9030 encoder->new_crtc =
9031 to_intel_crtc(encoder->base.crtc);
9032 }
9033
9034 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9035 base.head) {
9036 crtc->new_enabled = crtc->base.enabled;
9037
9038 if (crtc->new_enabled)
9039 crtc->new_config = &crtc->config;
9040 else
9041 crtc->new_config = NULL;
9042 }
9043 }
9044
9045 /**
9046 * intel_modeset_commit_output_state
9047 *
9048 * This function copies the stage display pipe configuration to the real one.
9049 */
9050 static void intel_modeset_commit_output_state(struct drm_device *dev)
9051 {
9052 struct intel_crtc *crtc;
9053 struct intel_encoder *encoder;
9054 struct intel_connector *connector;
9055
9056 list_for_each_entry(connector, &dev->mode_config.connector_list,
9057 base.head) {
9058 connector->base.encoder = &connector->new_encoder->base;
9059 }
9060
9061 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9062 base.head) {
9063 encoder->base.crtc = &encoder->new_crtc->base;
9064 }
9065
9066 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9067 base.head) {
9068 crtc->base.enabled = crtc->new_enabled;
9069 }
9070 }
9071
9072 static void
9073 connected_sink_compute_bpp(struct intel_connector * connector,
9074 struct intel_crtc_config *pipe_config)
9075 {
9076 int bpp = pipe_config->pipe_bpp;
9077
9078 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9079 connector->base.base.id,
9080 drm_get_connector_name(&connector->base));
9081
9082 /* Don't use an invalid EDID bpc value */
9083 if (connector->base.display_info.bpc &&
9084 connector->base.display_info.bpc * 3 < bpp) {
9085 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9086 bpp, connector->base.display_info.bpc*3);
9087 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9088 }
9089
9090 /* Clamp bpp to 8 on screens without EDID 1.4 */
9091 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9092 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9093 bpp);
9094 pipe_config->pipe_bpp = 24;
9095 }
9096 }
9097
9098 static int
9099 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9100 struct drm_framebuffer *fb,
9101 struct intel_crtc_config *pipe_config)
9102 {
9103 struct drm_device *dev = crtc->base.dev;
9104 struct intel_connector *connector;
9105 int bpp;
9106
9107 switch (fb->pixel_format) {
9108 case DRM_FORMAT_C8:
9109 bpp = 8*3; /* since we go through a colormap */
9110 break;
9111 case DRM_FORMAT_XRGB1555:
9112 case DRM_FORMAT_ARGB1555:
9113 /* checked in intel_framebuffer_init already */
9114 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9115 return -EINVAL;
9116 case DRM_FORMAT_RGB565:
9117 bpp = 6*3; /* min is 18bpp */
9118 break;
9119 case DRM_FORMAT_XBGR8888:
9120 case DRM_FORMAT_ABGR8888:
9121 /* checked in intel_framebuffer_init already */
9122 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9123 return -EINVAL;
9124 case DRM_FORMAT_XRGB8888:
9125 case DRM_FORMAT_ARGB8888:
9126 bpp = 8*3;
9127 break;
9128 case DRM_FORMAT_XRGB2101010:
9129 case DRM_FORMAT_ARGB2101010:
9130 case DRM_FORMAT_XBGR2101010:
9131 case DRM_FORMAT_ABGR2101010:
9132 /* checked in intel_framebuffer_init already */
9133 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9134 return -EINVAL;
9135 bpp = 10*3;
9136 break;
9137 /* TODO: gen4+ supports 16 bpc floating point, too. */
9138 default:
9139 DRM_DEBUG_KMS("unsupported depth\n");
9140 return -EINVAL;
9141 }
9142
9143 pipe_config->pipe_bpp = bpp;
9144
9145 /* Clamp display bpp to EDID value */
9146 list_for_each_entry(connector, &dev->mode_config.connector_list,
9147 base.head) {
9148 if (!connector->new_encoder ||
9149 connector->new_encoder->new_crtc != crtc)
9150 continue;
9151
9152 connected_sink_compute_bpp(connector, pipe_config);
9153 }
9154
9155 return bpp;
9156 }
9157
9158 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9159 {
9160 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9161 "type: 0x%x flags: 0x%x\n",
9162 mode->crtc_clock,
9163 mode->crtc_hdisplay, mode->crtc_hsync_start,
9164 mode->crtc_hsync_end, mode->crtc_htotal,
9165 mode->crtc_vdisplay, mode->crtc_vsync_start,
9166 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9167 }
9168
9169 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9170 struct intel_crtc_config *pipe_config,
9171 const char *context)
9172 {
9173 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9174 context, pipe_name(crtc->pipe));
9175
9176 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9177 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9178 pipe_config->pipe_bpp, pipe_config->dither);
9179 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9180 pipe_config->has_pch_encoder,
9181 pipe_config->fdi_lanes,
9182 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9183 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9184 pipe_config->fdi_m_n.tu);
9185 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9186 pipe_config->has_dp_encoder,
9187 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9188 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9189 pipe_config->dp_m_n.tu);
9190 DRM_DEBUG_KMS("requested mode:\n");
9191 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9192 DRM_DEBUG_KMS("adjusted mode:\n");
9193 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9194 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9195 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9196 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9197 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9198 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9199 pipe_config->gmch_pfit.control,
9200 pipe_config->gmch_pfit.pgm_ratios,
9201 pipe_config->gmch_pfit.lvds_border_bits);
9202 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9203 pipe_config->pch_pfit.pos,
9204 pipe_config->pch_pfit.size,
9205 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9206 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9207 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9208 }
9209
9210 static bool encoders_cloneable(const struct intel_encoder *a,
9211 const struct intel_encoder *b)
9212 {
9213 /* masks could be asymmetric, so check both ways */
9214 return a == b || (a->cloneable & (1 << b->type) &&
9215 b->cloneable & (1 << a->type));
9216 }
9217
9218 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9219 struct intel_encoder *encoder)
9220 {
9221 struct drm_device *dev = crtc->base.dev;
9222 struct intel_encoder *source_encoder;
9223
9224 list_for_each_entry(source_encoder,
9225 &dev->mode_config.encoder_list, base.head) {
9226 if (source_encoder->new_crtc != crtc)
9227 continue;
9228
9229 if (!encoders_cloneable(encoder, source_encoder))
9230 return false;
9231 }
9232
9233 return true;
9234 }
9235
9236 static bool check_encoder_cloning(struct intel_crtc *crtc)
9237 {
9238 struct drm_device *dev = crtc->base.dev;
9239 struct intel_encoder *encoder;
9240
9241 list_for_each_entry(encoder,
9242 &dev->mode_config.encoder_list, base.head) {
9243 if (encoder->new_crtc != crtc)
9244 continue;
9245
9246 if (!check_single_encoder_cloning(crtc, encoder))
9247 return false;
9248 }
9249
9250 return true;
9251 }
9252
9253 static struct intel_crtc_config *
9254 intel_modeset_pipe_config(struct drm_crtc *crtc,
9255 struct drm_framebuffer *fb,
9256 struct drm_display_mode *mode)
9257 {
9258 struct drm_device *dev = crtc->dev;
9259 struct intel_encoder *encoder;
9260 struct intel_crtc_config *pipe_config;
9261 int plane_bpp, ret = -EINVAL;
9262 bool retry = true;
9263
9264 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9265 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9266 return ERR_PTR(-EINVAL);
9267 }
9268
9269 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9270 if (!pipe_config)
9271 return ERR_PTR(-ENOMEM);
9272
9273 drm_mode_copy(&pipe_config->adjusted_mode, mode);
9274 drm_mode_copy(&pipe_config->requested_mode, mode);
9275
9276 pipe_config->cpu_transcoder =
9277 (enum transcoder) to_intel_crtc(crtc)->pipe;
9278 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9279
9280 /*
9281 * Sanitize sync polarity flags based on requested ones. If neither
9282 * positive or negative polarity is requested, treat this as meaning
9283 * negative polarity.
9284 */
9285 if (!(pipe_config->adjusted_mode.flags &
9286 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9287 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9288
9289 if (!(pipe_config->adjusted_mode.flags &
9290 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9291 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9292
9293 /* Compute a starting value for pipe_config->pipe_bpp taking the source
9294 * plane pixel format and any sink constraints into account. Returns the
9295 * source plane bpp so that dithering can be selected on mismatches
9296 * after encoders and crtc also have had their say. */
9297 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9298 fb, pipe_config);
9299 if (plane_bpp < 0)
9300 goto fail;
9301
9302 /*
9303 * Determine the real pipe dimensions. Note that stereo modes can
9304 * increase the actual pipe size due to the frame doubling and
9305 * insertion of additional space for blanks between the frame. This
9306 * is stored in the crtc timings. We use the requested mode to do this
9307 * computation to clearly distinguish it from the adjusted mode, which
9308 * can be changed by the connectors in the below retry loop.
9309 */
9310 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9311 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9312 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9313
9314 encoder_retry:
9315 /* Ensure the port clock defaults are reset when retrying. */
9316 pipe_config->port_clock = 0;
9317 pipe_config->pixel_multiplier = 1;
9318
9319 /* Fill in default crtc timings, allow encoders to overwrite them. */
9320 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9321
9322 /* Pass our mode to the connectors and the CRTC to give them a chance to
9323 * adjust it according to limitations or connector properties, and also
9324 * a chance to reject the mode entirely.
9325 */
9326 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9327 base.head) {
9328
9329 if (&encoder->new_crtc->base != crtc)
9330 continue;
9331
9332 if (!(encoder->compute_config(encoder, pipe_config))) {
9333 DRM_DEBUG_KMS("Encoder config failure\n");
9334 goto fail;
9335 }
9336 }
9337
9338 /* Set default port clock if not overwritten by the encoder. Needs to be
9339 * done afterwards in case the encoder adjusts the mode. */
9340 if (!pipe_config->port_clock)
9341 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9342 * pipe_config->pixel_multiplier;
9343
9344 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9345 if (ret < 0) {
9346 DRM_DEBUG_KMS("CRTC fixup failed\n");
9347 goto fail;
9348 }
9349
9350 if (ret == RETRY) {
9351 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9352 ret = -EINVAL;
9353 goto fail;
9354 }
9355
9356 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9357 retry = false;
9358 goto encoder_retry;
9359 }
9360
9361 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9362 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9363 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9364
9365 return pipe_config;
9366 fail:
9367 kfree(pipe_config);
9368 return ERR_PTR(ret);
9369 }
9370
9371 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9372 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9373 static void
9374 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9375 unsigned *prepare_pipes, unsigned *disable_pipes)
9376 {
9377 struct intel_crtc *intel_crtc;
9378 struct drm_device *dev = crtc->dev;
9379 struct intel_encoder *encoder;
9380 struct intel_connector *connector;
9381 struct drm_crtc *tmp_crtc;
9382
9383 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9384
9385 /* Check which crtcs have changed outputs connected to them, these need
9386 * to be part of the prepare_pipes mask. We don't (yet) support global
9387 * modeset across multiple crtcs, so modeset_pipes will only have one
9388 * bit set at most. */
9389 list_for_each_entry(connector, &dev->mode_config.connector_list,
9390 base.head) {
9391 if (connector->base.encoder == &connector->new_encoder->base)
9392 continue;
9393
9394 if (connector->base.encoder) {
9395 tmp_crtc = connector->base.encoder->crtc;
9396
9397 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9398 }
9399
9400 if (connector->new_encoder)
9401 *prepare_pipes |=
9402 1 << connector->new_encoder->new_crtc->pipe;
9403 }
9404
9405 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9406 base.head) {
9407 if (encoder->base.crtc == &encoder->new_crtc->base)
9408 continue;
9409
9410 if (encoder->base.crtc) {
9411 tmp_crtc = encoder->base.crtc;
9412
9413 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9414 }
9415
9416 if (encoder->new_crtc)
9417 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9418 }
9419
9420 /* Check for pipes that will be enabled/disabled ... */
9421 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9422 base.head) {
9423 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9424 continue;
9425
9426 if (!intel_crtc->new_enabled)
9427 *disable_pipes |= 1 << intel_crtc->pipe;
9428 else
9429 *prepare_pipes |= 1 << intel_crtc->pipe;
9430 }
9431
9432
9433 /* set_mode is also used to update properties on life display pipes. */
9434 intel_crtc = to_intel_crtc(crtc);
9435 if (intel_crtc->new_enabled)
9436 *prepare_pipes |= 1 << intel_crtc->pipe;
9437
9438 /*
9439 * For simplicity do a full modeset on any pipe where the output routing
9440 * changed. We could be more clever, but that would require us to be
9441 * more careful with calling the relevant encoder->mode_set functions.
9442 */
9443 if (*prepare_pipes)
9444 *modeset_pipes = *prepare_pipes;
9445
9446 /* ... and mask these out. */
9447 *modeset_pipes &= ~(*disable_pipes);
9448 *prepare_pipes &= ~(*disable_pipes);
9449
9450 /*
9451 * HACK: We don't (yet) fully support global modesets. intel_set_config
9452 * obies this rule, but the modeset restore mode of
9453 * intel_modeset_setup_hw_state does not.
9454 */
9455 *modeset_pipes &= 1 << intel_crtc->pipe;
9456 *prepare_pipes &= 1 << intel_crtc->pipe;
9457
9458 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9459 *modeset_pipes, *prepare_pipes, *disable_pipes);
9460 }
9461
9462 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9463 {
9464 struct drm_encoder *encoder;
9465 struct drm_device *dev = crtc->dev;
9466
9467 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9468 if (encoder->crtc == crtc)
9469 return true;
9470
9471 return false;
9472 }
9473
9474 static void
9475 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9476 {
9477 struct intel_encoder *intel_encoder;
9478 struct intel_crtc *intel_crtc;
9479 struct drm_connector *connector;
9480
9481 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9482 base.head) {
9483 if (!intel_encoder->base.crtc)
9484 continue;
9485
9486 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9487
9488 if (prepare_pipes & (1 << intel_crtc->pipe))
9489 intel_encoder->connectors_active = false;
9490 }
9491
9492 intel_modeset_commit_output_state(dev);
9493
9494 /* Double check state. */
9495 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9496 base.head) {
9497 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9498 WARN_ON(intel_crtc->new_config &&
9499 intel_crtc->new_config != &intel_crtc->config);
9500 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9501 }
9502
9503 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9504 if (!connector->encoder || !connector->encoder->crtc)
9505 continue;
9506
9507 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9508
9509 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9510 struct drm_property *dpms_property =
9511 dev->mode_config.dpms_property;
9512
9513 connector->dpms = DRM_MODE_DPMS_ON;
9514 drm_object_property_set_value(&connector->base,
9515 dpms_property,
9516 DRM_MODE_DPMS_ON);
9517
9518 intel_encoder = to_intel_encoder(connector->encoder);
9519 intel_encoder->connectors_active = true;
9520 }
9521 }
9522
9523 }
9524
9525 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9526 {
9527 int diff;
9528
9529 if (clock1 == clock2)
9530 return true;
9531
9532 if (!clock1 || !clock2)
9533 return false;
9534
9535 diff = abs(clock1 - clock2);
9536
9537 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9538 return true;
9539
9540 return false;
9541 }
9542
9543 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9544 list_for_each_entry((intel_crtc), \
9545 &(dev)->mode_config.crtc_list, \
9546 base.head) \
9547 if (mask & (1 <<(intel_crtc)->pipe))
9548
9549 static bool
9550 intel_pipe_config_compare(struct drm_device *dev,
9551 struct intel_crtc_config *current_config,
9552 struct intel_crtc_config *pipe_config)
9553 {
9554 #define PIPE_CONF_CHECK_X(name) \
9555 if (current_config->name != pipe_config->name) { \
9556 DRM_ERROR("mismatch in " #name " " \
9557 "(expected 0x%08x, found 0x%08x)\n", \
9558 current_config->name, \
9559 pipe_config->name); \
9560 return false; \
9561 }
9562
9563 #define PIPE_CONF_CHECK_I(name) \
9564 if (current_config->name != pipe_config->name) { \
9565 DRM_ERROR("mismatch in " #name " " \
9566 "(expected %i, found %i)\n", \
9567 current_config->name, \
9568 pipe_config->name); \
9569 return false; \
9570 }
9571
9572 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
9573 if ((current_config->name ^ pipe_config->name) & (mask)) { \
9574 DRM_ERROR("mismatch in " #name "(" #mask ") " \
9575 "(expected %i, found %i)\n", \
9576 current_config->name & (mask), \
9577 pipe_config->name & (mask)); \
9578 return false; \
9579 }
9580
9581 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9582 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9583 DRM_ERROR("mismatch in " #name " " \
9584 "(expected %i, found %i)\n", \
9585 current_config->name, \
9586 pipe_config->name); \
9587 return false; \
9588 }
9589
9590 #define PIPE_CONF_QUIRK(quirk) \
9591 ((current_config->quirks | pipe_config->quirks) & (quirk))
9592
9593 PIPE_CONF_CHECK_I(cpu_transcoder);
9594
9595 PIPE_CONF_CHECK_I(has_pch_encoder);
9596 PIPE_CONF_CHECK_I(fdi_lanes);
9597 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9598 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9599 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9600 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9601 PIPE_CONF_CHECK_I(fdi_m_n.tu);
9602
9603 PIPE_CONF_CHECK_I(has_dp_encoder);
9604 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9605 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9606 PIPE_CONF_CHECK_I(dp_m_n.link_m);
9607 PIPE_CONF_CHECK_I(dp_m_n.link_n);
9608 PIPE_CONF_CHECK_I(dp_m_n.tu);
9609
9610 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9611 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9612 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9613 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9614 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9615 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9616
9617 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9618 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9619 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9620 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9621 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9622 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9623
9624 PIPE_CONF_CHECK_I(pixel_multiplier);
9625
9626 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9627 DRM_MODE_FLAG_INTERLACE);
9628
9629 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9630 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9631 DRM_MODE_FLAG_PHSYNC);
9632 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9633 DRM_MODE_FLAG_NHSYNC);
9634 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9635 DRM_MODE_FLAG_PVSYNC);
9636 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9637 DRM_MODE_FLAG_NVSYNC);
9638 }
9639
9640 PIPE_CONF_CHECK_I(pipe_src_w);
9641 PIPE_CONF_CHECK_I(pipe_src_h);
9642
9643 PIPE_CONF_CHECK_I(gmch_pfit.control);
9644 /* pfit ratios are autocomputed by the hw on gen4+ */
9645 if (INTEL_INFO(dev)->gen < 4)
9646 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9647 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9648 PIPE_CONF_CHECK_I(pch_pfit.enabled);
9649 if (current_config->pch_pfit.enabled) {
9650 PIPE_CONF_CHECK_I(pch_pfit.pos);
9651 PIPE_CONF_CHECK_I(pch_pfit.size);
9652 }
9653
9654 /* BDW+ don't expose a synchronous way to read the state */
9655 if (IS_HASWELL(dev))
9656 PIPE_CONF_CHECK_I(ips_enabled);
9657
9658 PIPE_CONF_CHECK_I(double_wide);
9659
9660 PIPE_CONF_CHECK_I(shared_dpll);
9661 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9662 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9663 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9664 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9665
9666 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9667 PIPE_CONF_CHECK_I(pipe_bpp);
9668
9669 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9670 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9671
9672 #undef PIPE_CONF_CHECK_X
9673 #undef PIPE_CONF_CHECK_I
9674 #undef PIPE_CONF_CHECK_FLAGS
9675 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9676 #undef PIPE_CONF_QUIRK
9677
9678 return true;
9679 }
9680
9681 static void
9682 check_connector_state(struct drm_device *dev)
9683 {
9684 struct intel_connector *connector;
9685
9686 list_for_each_entry(connector, &dev->mode_config.connector_list,
9687 base.head) {
9688 /* This also checks the encoder/connector hw state with the
9689 * ->get_hw_state callbacks. */
9690 intel_connector_check_state(connector);
9691
9692 WARN(&connector->new_encoder->base != connector->base.encoder,
9693 "connector's staged encoder doesn't match current encoder\n");
9694 }
9695 }
9696
9697 static void
9698 check_encoder_state(struct drm_device *dev)
9699 {
9700 struct intel_encoder *encoder;
9701 struct intel_connector *connector;
9702
9703 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9704 base.head) {
9705 bool enabled = false;
9706 bool active = false;
9707 enum pipe pipe, tracked_pipe;
9708
9709 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9710 encoder->base.base.id,
9711 drm_get_encoder_name(&encoder->base));
9712
9713 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9714 "encoder's stage crtc doesn't match current crtc\n");
9715 WARN(encoder->connectors_active && !encoder->base.crtc,
9716 "encoder's active_connectors set, but no crtc\n");
9717
9718 list_for_each_entry(connector, &dev->mode_config.connector_list,
9719 base.head) {
9720 if (connector->base.encoder != &encoder->base)
9721 continue;
9722 enabled = true;
9723 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9724 active = true;
9725 }
9726 WARN(!!encoder->base.crtc != enabled,
9727 "encoder's enabled state mismatch "
9728 "(expected %i, found %i)\n",
9729 !!encoder->base.crtc, enabled);
9730 WARN(active && !encoder->base.crtc,
9731 "active encoder with no crtc\n");
9732
9733 WARN(encoder->connectors_active != active,
9734 "encoder's computed active state doesn't match tracked active state "
9735 "(expected %i, found %i)\n", active, encoder->connectors_active);
9736
9737 active = encoder->get_hw_state(encoder, &pipe);
9738 WARN(active != encoder->connectors_active,
9739 "encoder's hw state doesn't match sw tracking "
9740 "(expected %i, found %i)\n",
9741 encoder->connectors_active, active);
9742
9743 if (!encoder->base.crtc)
9744 continue;
9745
9746 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9747 WARN(active && pipe != tracked_pipe,
9748 "active encoder's pipe doesn't match"
9749 "(expected %i, found %i)\n",
9750 tracked_pipe, pipe);
9751
9752 }
9753 }
9754
9755 static void
9756 check_crtc_state(struct drm_device *dev)
9757 {
9758 drm_i915_private_t *dev_priv = dev->dev_private;
9759 struct intel_crtc *crtc;
9760 struct intel_encoder *encoder;
9761 struct intel_crtc_config pipe_config;
9762
9763 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9764 base.head) {
9765 bool enabled = false;
9766 bool active = false;
9767
9768 memset(&pipe_config, 0, sizeof(pipe_config));
9769
9770 DRM_DEBUG_KMS("[CRTC:%d]\n",
9771 crtc->base.base.id);
9772
9773 WARN(crtc->active && !crtc->base.enabled,
9774 "active crtc, but not enabled in sw tracking\n");
9775
9776 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9777 base.head) {
9778 if (encoder->base.crtc != &crtc->base)
9779 continue;
9780 enabled = true;
9781 if (encoder->connectors_active)
9782 active = true;
9783 }
9784
9785 WARN(active != crtc->active,
9786 "crtc's computed active state doesn't match tracked active state "
9787 "(expected %i, found %i)\n", active, crtc->active);
9788 WARN(enabled != crtc->base.enabled,
9789 "crtc's computed enabled state doesn't match tracked enabled state "
9790 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9791
9792 active = dev_priv->display.get_pipe_config(crtc,
9793 &pipe_config);
9794
9795 /* hw state is inconsistent with the pipe A quirk */
9796 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9797 active = crtc->active;
9798
9799 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9800 base.head) {
9801 enum pipe pipe;
9802 if (encoder->base.crtc != &crtc->base)
9803 continue;
9804 if (encoder->get_hw_state(encoder, &pipe))
9805 encoder->get_config(encoder, &pipe_config);
9806 }
9807
9808 WARN(crtc->active != active,
9809 "crtc active state doesn't match with hw state "
9810 "(expected %i, found %i)\n", crtc->active, active);
9811
9812 if (active &&
9813 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9814 WARN(1, "pipe state doesn't match!\n");
9815 intel_dump_pipe_config(crtc, &pipe_config,
9816 "[hw state]");
9817 intel_dump_pipe_config(crtc, &crtc->config,
9818 "[sw state]");
9819 }
9820 }
9821 }
9822
9823 static void
9824 check_shared_dpll_state(struct drm_device *dev)
9825 {
9826 drm_i915_private_t *dev_priv = dev->dev_private;
9827 struct intel_crtc *crtc;
9828 struct intel_dpll_hw_state dpll_hw_state;
9829 int i;
9830
9831 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9832 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9833 int enabled_crtcs = 0, active_crtcs = 0;
9834 bool active;
9835
9836 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9837
9838 DRM_DEBUG_KMS("%s\n", pll->name);
9839
9840 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9841
9842 WARN(pll->active > pll->refcount,
9843 "more active pll users than references: %i vs %i\n",
9844 pll->active, pll->refcount);
9845 WARN(pll->active && !pll->on,
9846 "pll in active use but not on in sw tracking\n");
9847 WARN(pll->on && !pll->active,
9848 "pll in on but not on in use in sw tracking\n");
9849 WARN(pll->on != active,
9850 "pll on state mismatch (expected %i, found %i)\n",
9851 pll->on, active);
9852
9853 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9854 base.head) {
9855 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9856 enabled_crtcs++;
9857 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9858 active_crtcs++;
9859 }
9860 WARN(pll->active != active_crtcs,
9861 "pll active crtcs mismatch (expected %i, found %i)\n",
9862 pll->active, active_crtcs);
9863 WARN(pll->refcount != enabled_crtcs,
9864 "pll enabled crtcs mismatch (expected %i, found %i)\n",
9865 pll->refcount, enabled_crtcs);
9866
9867 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9868 sizeof(dpll_hw_state)),
9869 "pll hw state mismatch\n");
9870 }
9871 }
9872
9873 void
9874 intel_modeset_check_state(struct drm_device *dev)
9875 {
9876 check_connector_state(dev);
9877 check_encoder_state(dev);
9878 check_crtc_state(dev);
9879 check_shared_dpll_state(dev);
9880 }
9881
9882 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9883 int dotclock)
9884 {
9885 /*
9886 * FDI already provided one idea for the dotclock.
9887 * Yell if the encoder disagrees.
9888 */
9889 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9890 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9891 pipe_config->adjusted_mode.crtc_clock, dotclock);
9892 }
9893
9894 static int __intel_set_mode(struct drm_crtc *crtc,
9895 struct drm_display_mode *mode,
9896 int x, int y, struct drm_framebuffer *fb)
9897 {
9898 struct drm_device *dev = crtc->dev;
9899 drm_i915_private_t *dev_priv = dev->dev_private;
9900 struct drm_display_mode *saved_mode;
9901 struct intel_crtc_config *pipe_config = NULL;
9902 struct intel_crtc *intel_crtc;
9903 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9904 int ret = 0;
9905
9906 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9907 if (!saved_mode)
9908 return -ENOMEM;
9909
9910 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9911 &prepare_pipes, &disable_pipes);
9912
9913 *saved_mode = crtc->mode;
9914
9915 /* Hack: Because we don't (yet) support global modeset on multiple
9916 * crtcs, we don't keep track of the new mode for more than one crtc.
9917 * Hence simply check whether any bit is set in modeset_pipes in all the
9918 * pieces of code that are not yet converted to deal with mutliple crtcs
9919 * changing their mode at the same time. */
9920 if (modeset_pipes) {
9921 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9922 if (IS_ERR(pipe_config)) {
9923 ret = PTR_ERR(pipe_config);
9924 pipe_config = NULL;
9925
9926 goto out;
9927 }
9928 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9929 "[modeset]");
9930 to_intel_crtc(crtc)->new_config = pipe_config;
9931 }
9932
9933 /*
9934 * See if the config requires any additional preparation, e.g.
9935 * to adjust global state with pipes off. We need to do this
9936 * here so we can get the modeset_pipe updated config for the new
9937 * mode set on this crtc. For other crtcs we need to use the
9938 * adjusted_mode bits in the crtc directly.
9939 */
9940 if (IS_VALLEYVIEW(dev)) {
9941 valleyview_modeset_global_pipes(dev, &prepare_pipes);
9942
9943 /* may have added more to prepare_pipes than we should */
9944 prepare_pipes &= ~disable_pipes;
9945 }
9946
9947 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9948 intel_crtc_disable(&intel_crtc->base);
9949
9950 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9951 if (intel_crtc->base.enabled)
9952 dev_priv->display.crtc_disable(&intel_crtc->base);
9953 }
9954
9955 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9956 * to set it here already despite that we pass it down the callchain.
9957 */
9958 if (modeset_pipes) {
9959 crtc->mode = *mode;
9960 /* mode_set/enable/disable functions rely on a correct pipe
9961 * config. */
9962 to_intel_crtc(crtc)->config = *pipe_config;
9963 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
9964
9965 /*
9966 * Calculate and store various constants which
9967 * are later needed by vblank and swap-completion
9968 * timestamping. They are derived from true hwmode.
9969 */
9970 drm_calc_timestamping_constants(crtc,
9971 &pipe_config->adjusted_mode);
9972 }
9973
9974 /* Only after disabling all output pipelines that will be changed can we
9975 * update the the output configuration. */
9976 intel_modeset_update_state(dev, prepare_pipes);
9977
9978 if (dev_priv->display.modeset_global_resources)
9979 dev_priv->display.modeset_global_resources(dev);
9980
9981 /* Set up the DPLL and any encoders state that needs to adjust or depend
9982 * on the DPLL.
9983 */
9984 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9985 ret = intel_crtc_mode_set(&intel_crtc->base,
9986 x, y, fb);
9987 if (ret)
9988 goto done;
9989 }
9990
9991 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9992 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9993 dev_priv->display.crtc_enable(&intel_crtc->base);
9994
9995 /* FIXME: add subpixel order */
9996 done:
9997 if (ret && crtc->enabled)
9998 crtc->mode = *saved_mode;
9999
10000 out:
10001 kfree(pipe_config);
10002 kfree(saved_mode);
10003 return ret;
10004 }
10005
10006 static int intel_set_mode(struct drm_crtc *crtc,
10007 struct drm_display_mode *mode,
10008 int x, int y, struct drm_framebuffer *fb)
10009 {
10010 int ret;
10011
10012 ret = __intel_set_mode(crtc, mode, x, y, fb);
10013
10014 if (ret == 0)
10015 intel_modeset_check_state(crtc->dev);
10016
10017 return ret;
10018 }
10019
10020 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10021 {
10022 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
10023 }
10024
10025 #undef for_each_intel_crtc_masked
10026
10027 static void intel_set_config_free(struct intel_set_config *config)
10028 {
10029 if (!config)
10030 return;
10031
10032 kfree(config->save_connector_encoders);
10033 kfree(config->save_encoder_crtcs);
10034 kfree(config->save_crtc_enabled);
10035 kfree(config);
10036 }
10037
10038 static int intel_set_config_save_state(struct drm_device *dev,
10039 struct intel_set_config *config)
10040 {
10041 struct drm_crtc *crtc;
10042 struct drm_encoder *encoder;
10043 struct drm_connector *connector;
10044 int count;
10045
10046 config->save_crtc_enabled =
10047 kcalloc(dev->mode_config.num_crtc,
10048 sizeof(bool), GFP_KERNEL);
10049 if (!config->save_crtc_enabled)
10050 return -ENOMEM;
10051
10052 config->save_encoder_crtcs =
10053 kcalloc(dev->mode_config.num_encoder,
10054 sizeof(struct drm_crtc *), GFP_KERNEL);
10055 if (!config->save_encoder_crtcs)
10056 return -ENOMEM;
10057
10058 config->save_connector_encoders =
10059 kcalloc(dev->mode_config.num_connector,
10060 sizeof(struct drm_encoder *), GFP_KERNEL);
10061 if (!config->save_connector_encoders)
10062 return -ENOMEM;
10063
10064 /* Copy data. Note that driver private data is not affected.
10065 * Should anything bad happen only the expected state is
10066 * restored, not the drivers personal bookkeeping.
10067 */
10068 count = 0;
10069 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10070 config->save_crtc_enabled[count++] = crtc->enabled;
10071 }
10072
10073 count = 0;
10074 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10075 config->save_encoder_crtcs[count++] = encoder->crtc;
10076 }
10077
10078 count = 0;
10079 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10080 config->save_connector_encoders[count++] = connector->encoder;
10081 }
10082
10083 return 0;
10084 }
10085
10086 static void intel_set_config_restore_state(struct drm_device *dev,
10087 struct intel_set_config *config)
10088 {
10089 struct intel_crtc *crtc;
10090 struct intel_encoder *encoder;
10091 struct intel_connector *connector;
10092 int count;
10093
10094 count = 0;
10095 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10096 crtc->new_enabled = config->save_crtc_enabled[count++];
10097
10098 if (crtc->new_enabled)
10099 crtc->new_config = &crtc->config;
10100 else
10101 crtc->new_config = NULL;
10102 }
10103
10104 count = 0;
10105 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10106 encoder->new_crtc =
10107 to_intel_crtc(config->save_encoder_crtcs[count++]);
10108 }
10109
10110 count = 0;
10111 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10112 connector->new_encoder =
10113 to_intel_encoder(config->save_connector_encoders[count++]);
10114 }
10115 }
10116
10117 static bool
10118 is_crtc_connector_off(struct drm_mode_set *set)
10119 {
10120 int i;
10121
10122 if (set->num_connectors == 0)
10123 return false;
10124
10125 if (WARN_ON(set->connectors == NULL))
10126 return false;
10127
10128 for (i = 0; i < set->num_connectors; i++)
10129 if (set->connectors[i]->encoder &&
10130 set->connectors[i]->encoder->crtc == set->crtc &&
10131 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10132 return true;
10133
10134 return false;
10135 }
10136
10137 static void
10138 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10139 struct intel_set_config *config)
10140 {
10141
10142 /* We should be able to check here if the fb has the same properties
10143 * and then just flip_or_move it */
10144 if (is_crtc_connector_off(set)) {
10145 config->mode_changed = true;
10146 } else if (set->crtc->fb != set->fb) {
10147 /* If we have no fb then treat it as a full mode set */
10148 if (set->crtc->fb == NULL) {
10149 struct intel_crtc *intel_crtc =
10150 to_intel_crtc(set->crtc);
10151
10152 if (intel_crtc->active && i915.fastboot) {
10153 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10154 config->fb_changed = true;
10155 } else {
10156 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10157 config->mode_changed = true;
10158 }
10159 } else if (set->fb == NULL) {
10160 config->mode_changed = true;
10161 } else if (set->fb->pixel_format !=
10162 set->crtc->fb->pixel_format) {
10163 config->mode_changed = true;
10164 } else {
10165 config->fb_changed = true;
10166 }
10167 }
10168
10169 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10170 config->fb_changed = true;
10171
10172 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10173 DRM_DEBUG_KMS("modes are different, full mode set\n");
10174 drm_mode_debug_printmodeline(&set->crtc->mode);
10175 drm_mode_debug_printmodeline(set->mode);
10176 config->mode_changed = true;
10177 }
10178
10179 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10180 set->crtc->base.id, config->mode_changed, config->fb_changed);
10181 }
10182
10183 static int
10184 intel_modeset_stage_output_state(struct drm_device *dev,
10185 struct drm_mode_set *set,
10186 struct intel_set_config *config)
10187 {
10188 struct intel_connector *connector;
10189 struct intel_encoder *encoder;
10190 struct intel_crtc *crtc;
10191 int ro;
10192
10193 /* The upper layers ensure that we either disable a crtc or have a list
10194 * of connectors. For paranoia, double-check this. */
10195 WARN_ON(!set->fb && (set->num_connectors != 0));
10196 WARN_ON(set->fb && (set->num_connectors == 0));
10197
10198 list_for_each_entry(connector, &dev->mode_config.connector_list,
10199 base.head) {
10200 /* Otherwise traverse passed in connector list and get encoders
10201 * for them. */
10202 for (ro = 0; ro < set->num_connectors; ro++) {
10203 if (set->connectors[ro] == &connector->base) {
10204 connector->new_encoder = connector->encoder;
10205 break;
10206 }
10207 }
10208
10209 /* If we disable the crtc, disable all its connectors. Also, if
10210 * the connector is on the changing crtc but not on the new
10211 * connector list, disable it. */
10212 if ((!set->fb || ro == set->num_connectors) &&
10213 connector->base.encoder &&
10214 connector->base.encoder->crtc == set->crtc) {
10215 connector->new_encoder = NULL;
10216
10217 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10218 connector->base.base.id,
10219 drm_get_connector_name(&connector->base));
10220 }
10221
10222
10223 if (&connector->new_encoder->base != connector->base.encoder) {
10224 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10225 config->mode_changed = true;
10226 }
10227 }
10228 /* connector->new_encoder is now updated for all connectors. */
10229
10230 /* Update crtc of enabled connectors. */
10231 list_for_each_entry(connector, &dev->mode_config.connector_list,
10232 base.head) {
10233 struct drm_crtc *new_crtc;
10234
10235 if (!connector->new_encoder)
10236 continue;
10237
10238 new_crtc = connector->new_encoder->base.crtc;
10239
10240 for (ro = 0; ro < set->num_connectors; ro++) {
10241 if (set->connectors[ro] == &connector->base)
10242 new_crtc = set->crtc;
10243 }
10244
10245 /* Make sure the new CRTC will work with the encoder */
10246 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10247 new_crtc)) {
10248 return -EINVAL;
10249 }
10250 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10251
10252 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10253 connector->base.base.id,
10254 drm_get_connector_name(&connector->base),
10255 new_crtc->base.id);
10256 }
10257
10258 /* Check for any encoders that needs to be disabled. */
10259 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10260 base.head) {
10261 int num_connectors = 0;
10262 list_for_each_entry(connector,
10263 &dev->mode_config.connector_list,
10264 base.head) {
10265 if (connector->new_encoder == encoder) {
10266 WARN_ON(!connector->new_encoder->new_crtc);
10267 num_connectors++;
10268 }
10269 }
10270
10271 if (num_connectors == 0)
10272 encoder->new_crtc = NULL;
10273 else if (num_connectors > 1)
10274 return -EINVAL;
10275
10276 /* Only now check for crtc changes so we don't miss encoders
10277 * that will be disabled. */
10278 if (&encoder->new_crtc->base != encoder->base.crtc) {
10279 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10280 config->mode_changed = true;
10281 }
10282 }
10283 /* Now we've also updated encoder->new_crtc for all encoders. */
10284
10285 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10286 base.head) {
10287 crtc->new_enabled = false;
10288
10289 list_for_each_entry(encoder,
10290 &dev->mode_config.encoder_list,
10291 base.head) {
10292 if (encoder->new_crtc == crtc) {
10293 crtc->new_enabled = true;
10294 break;
10295 }
10296 }
10297
10298 if (crtc->new_enabled != crtc->base.enabled) {
10299 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10300 crtc->new_enabled ? "en" : "dis");
10301 config->mode_changed = true;
10302 }
10303
10304 if (crtc->new_enabled)
10305 crtc->new_config = &crtc->config;
10306 else
10307 crtc->new_config = NULL;
10308 }
10309
10310 return 0;
10311 }
10312
10313 static void disable_crtc_nofb(struct intel_crtc *crtc)
10314 {
10315 struct drm_device *dev = crtc->base.dev;
10316 struct intel_encoder *encoder;
10317 struct intel_connector *connector;
10318
10319 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10320 pipe_name(crtc->pipe));
10321
10322 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10323 if (connector->new_encoder &&
10324 connector->new_encoder->new_crtc == crtc)
10325 connector->new_encoder = NULL;
10326 }
10327
10328 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10329 if (encoder->new_crtc == crtc)
10330 encoder->new_crtc = NULL;
10331 }
10332
10333 crtc->new_enabled = false;
10334 crtc->new_config = NULL;
10335 }
10336
10337 static int intel_crtc_set_config(struct drm_mode_set *set)
10338 {
10339 struct drm_device *dev;
10340 struct drm_mode_set save_set;
10341 struct intel_set_config *config;
10342 int ret;
10343
10344 BUG_ON(!set);
10345 BUG_ON(!set->crtc);
10346 BUG_ON(!set->crtc->helper_private);
10347
10348 /* Enforce sane interface api - has been abused by the fb helper. */
10349 BUG_ON(!set->mode && set->fb);
10350 BUG_ON(set->fb && set->num_connectors == 0);
10351
10352 if (set->fb) {
10353 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10354 set->crtc->base.id, set->fb->base.id,
10355 (int)set->num_connectors, set->x, set->y);
10356 } else {
10357 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10358 }
10359
10360 dev = set->crtc->dev;
10361
10362 ret = -ENOMEM;
10363 config = kzalloc(sizeof(*config), GFP_KERNEL);
10364 if (!config)
10365 goto out_config;
10366
10367 ret = intel_set_config_save_state(dev, config);
10368 if (ret)
10369 goto out_config;
10370
10371 save_set.crtc = set->crtc;
10372 save_set.mode = &set->crtc->mode;
10373 save_set.x = set->crtc->x;
10374 save_set.y = set->crtc->y;
10375 save_set.fb = set->crtc->fb;
10376
10377 /* Compute whether we need a full modeset, only an fb base update or no
10378 * change at all. In the future we might also check whether only the
10379 * mode changed, e.g. for LVDS where we only change the panel fitter in
10380 * such cases. */
10381 intel_set_config_compute_mode_changes(set, config);
10382
10383 ret = intel_modeset_stage_output_state(dev, set, config);
10384 if (ret)
10385 goto fail;
10386
10387 if (config->mode_changed) {
10388 ret = intel_set_mode(set->crtc, set->mode,
10389 set->x, set->y, set->fb);
10390 } else if (config->fb_changed) {
10391 intel_crtc_wait_for_pending_flips(set->crtc);
10392
10393 ret = intel_pipe_set_base(set->crtc,
10394 set->x, set->y, set->fb);
10395 /*
10396 * In the fastboot case this may be our only check of the
10397 * state after boot. It would be better to only do it on
10398 * the first update, but we don't have a nice way of doing that
10399 * (and really, set_config isn't used much for high freq page
10400 * flipping, so increasing its cost here shouldn't be a big
10401 * deal).
10402 */
10403 if (i915.fastboot && ret == 0)
10404 intel_modeset_check_state(set->crtc->dev);
10405 }
10406
10407 if (ret) {
10408 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10409 set->crtc->base.id, ret);
10410 fail:
10411 intel_set_config_restore_state(dev, config);
10412
10413 /*
10414 * HACK: if the pipe was on, but we didn't have a framebuffer,
10415 * force the pipe off to avoid oopsing in the modeset code
10416 * due to fb==NULL. This should only happen during boot since
10417 * we don't yet reconstruct the FB from the hardware state.
10418 */
10419 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10420 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10421
10422 /* Try to restore the config */
10423 if (config->mode_changed &&
10424 intel_set_mode(save_set.crtc, save_set.mode,
10425 save_set.x, save_set.y, save_set.fb))
10426 DRM_ERROR("failed to restore config after modeset failure\n");
10427 }
10428
10429 out_config:
10430 intel_set_config_free(config);
10431 return ret;
10432 }
10433
10434 static const struct drm_crtc_funcs intel_crtc_funcs = {
10435 .cursor_set = intel_crtc_cursor_set,
10436 .cursor_move = intel_crtc_cursor_move,
10437 .gamma_set = intel_crtc_gamma_set,
10438 .set_config = intel_crtc_set_config,
10439 .destroy = intel_crtc_destroy,
10440 .page_flip = intel_crtc_page_flip,
10441 };
10442
10443 static void intel_cpu_pll_init(struct drm_device *dev)
10444 {
10445 if (HAS_DDI(dev))
10446 intel_ddi_pll_init(dev);
10447 }
10448
10449 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10450 struct intel_shared_dpll *pll,
10451 struct intel_dpll_hw_state *hw_state)
10452 {
10453 uint32_t val;
10454
10455 val = I915_READ(PCH_DPLL(pll->id));
10456 hw_state->dpll = val;
10457 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10458 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10459
10460 return val & DPLL_VCO_ENABLE;
10461 }
10462
10463 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10464 struct intel_shared_dpll *pll)
10465 {
10466 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10467 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10468 }
10469
10470 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10471 struct intel_shared_dpll *pll)
10472 {
10473 /* PCH refclock must be enabled first */
10474 ibx_assert_pch_refclk_enabled(dev_priv);
10475
10476 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10477
10478 /* Wait for the clocks to stabilize. */
10479 POSTING_READ(PCH_DPLL(pll->id));
10480 udelay(150);
10481
10482 /* The pixel multiplier can only be updated once the
10483 * DPLL is enabled and the clocks are stable.
10484 *
10485 * So write it again.
10486 */
10487 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10488 POSTING_READ(PCH_DPLL(pll->id));
10489 udelay(200);
10490 }
10491
10492 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10493 struct intel_shared_dpll *pll)
10494 {
10495 struct drm_device *dev = dev_priv->dev;
10496 struct intel_crtc *crtc;
10497
10498 /* Make sure no transcoder isn't still depending on us. */
10499 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10500 if (intel_crtc_to_shared_dpll(crtc) == pll)
10501 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10502 }
10503
10504 I915_WRITE(PCH_DPLL(pll->id), 0);
10505 POSTING_READ(PCH_DPLL(pll->id));
10506 udelay(200);
10507 }
10508
10509 static char *ibx_pch_dpll_names[] = {
10510 "PCH DPLL A",
10511 "PCH DPLL B",
10512 };
10513
10514 static void ibx_pch_dpll_init(struct drm_device *dev)
10515 {
10516 struct drm_i915_private *dev_priv = dev->dev_private;
10517 int i;
10518
10519 dev_priv->num_shared_dpll = 2;
10520
10521 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10522 dev_priv->shared_dplls[i].id = i;
10523 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10524 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10525 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10526 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10527 dev_priv->shared_dplls[i].get_hw_state =
10528 ibx_pch_dpll_get_hw_state;
10529 }
10530 }
10531
10532 static void intel_shared_dpll_init(struct drm_device *dev)
10533 {
10534 struct drm_i915_private *dev_priv = dev->dev_private;
10535
10536 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10537 ibx_pch_dpll_init(dev);
10538 else
10539 dev_priv->num_shared_dpll = 0;
10540
10541 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10542 }
10543
10544 static void intel_crtc_init(struct drm_device *dev, int pipe)
10545 {
10546 drm_i915_private_t *dev_priv = dev->dev_private;
10547 struct intel_crtc *intel_crtc;
10548 int i;
10549
10550 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10551 if (intel_crtc == NULL)
10552 return;
10553
10554 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10555
10556 if (IS_GEN2(dev)) {
10557 intel_crtc->max_cursor_width = GEN2_CURSOR_WIDTH;
10558 intel_crtc->max_cursor_height = GEN2_CURSOR_HEIGHT;
10559 } else {
10560 intel_crtc->max_cursor_width = CURSOR_WIDTH;
10561 intel_crtc->max_cursor_height = CURSOR_HEIGHT;
10562 }
10563 dev->mode_config.cursor_width = intel_crtc->max_cursor_width;
10564 dev->mode_config.cursor_height = intel_crtc->max_cursor_height;
10565
10566 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10567 for (i = 0; i < 256; i++) {
10568 intel_crtc->lut_r[i] = i;
10569 intel_crtc->lut_g[i] = i;
10570 intel_crtc->lut_b[i] = i;
10571 }
10572
10573 /*
10574 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10575 * is hooked to plane B. Hence we want plane A feeding pipe B.
10576 */
10577 intel_crtc->pipe = pipe;
10578 intel_crtc->plane = pipe;
10579 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10580 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10581 intel_crtc->plane = !pipe;
10582 }
10583
10584 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10585 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10586 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10587 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10588
10589 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10590 }
10591
10592 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10593 {
10594 struct drm_encoder *encoder = connector->base.encoder;
10595
10596 WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10597
10598 if (!encoder)
10599 return INVALID_PIPE;
10600
10601 return to_intel_crtc(encoder->crtc)->pipe;
10602 }
10603
10604 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10605 struct drm_file *file)
10606 {
10607 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10608 struct drm_mode_object *drmmode_obj;
10609 struct intel_crtc *crtc;
10610
10611 if (!drm_core_check_feature(dev, DRIVER_MODESET))
10612 return -ENODEV;
10613
10614 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10615 DRM_MODE_OBJECT_CRTC);
10616
10617 if (!drmmode_obj) {
10618 DRM_ERROR("no such CRTC id\n");
10619 return -ENOENT;
10620 }
10621
10622 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10623 pipe_from_crtc_id->pipe = crtc->pipe;
10624
10625 return 0;
10626 }
10627
10628 static int intel_encoder_clones(struct intel_encoder *encoder)
10629 {
10630 struct drm_device *dev = encoder->base.dev;
10631 struct intel_encoder *source_encoder;
10632 int index_mask = 0;
10633 int entry = 0;
10634
10635 list_for_each_entry(source_encoder,
10636 &dev->mode_config.encoder_list, base.head) {
10637 if (encoders_cloneable(encoder, source_encoder))
10638 index_mask |= (1 << entry);
10639
10640 entry++;
10641 }
10642
10643 return index_mask;
10644 }
10645
10646 static bool has_edp_a(struct drm_device *dev)
10647 {
10648 struct drm_i915_private *dev_priv = dev->dev_private;
10649
10650 if (!IS_MOBILE(dev))
10651 return false;
10652
10653 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10654 return false;
10655
10656 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10657 return false;
10658
10659 return true;
10660 }
10661
10662 const char *intel_output_name(int output)
10663 {
10664 static const char *names[] = {
10665 [INTEL_OUTPUT_UNUSED] = "Unused",
10666 [INTEL_OUTPUT_ANALOG] = "Analog",
10667 [INTEL_OUTPUT_DVO] = "DVO",
10668 [INTEL_OUTPUT_SDVO] = "SDVO",
10669 [INTEL_OUTPUT_LVDS] = "LVDS",
10670 [INTEL_OUTPUT_TVOUT] = "TV",
10671 [INTEL_OUTPUT_HDMI] = "HDMI",
10672 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10673 [INTEL_OUTPUT_EDP] = "eDP",
10674 [INTEL_OUTPUT_DSI] = "DSI",
10675 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10676 };
10677
10678 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10679 return "Invalid";
10680
10681 return names[output];
10682 }
10683
10684 static void intel_setup_outputs(struct drm_device *dev)
10685 {
10686 struct drm_i915_private *dev_priv = dev->dev_private;
10687 struct intel_encoder *encoder;
10688 bool dpd_is_edp = false;
10689
10690 intel_lvds_init(dev);
10691
10692 if (!IS_ULT(dev))
10693 intel_crt_init(dev);
10694
10695 if (HAS_DDI(dev)) {
10696 int found;
10697
10698 /* Haswell uses DDI functions to detect digital outputs */
10699 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10700 /* DDI A only supports eDP */
10701 if (found)
10702 intel_ddi_init(dev, PORT_A);
10703
10704 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10705 * register */
10706 found = I915_READ(SFUSE_STRAP);
10707
10708 if (found & SFUSE_STRAP_DDIB_DETECTED)
10709 intel_ddi_init(dev, PORT_B);
10710 if (found & SFUSE_STRAP_DDIC_DETECTED)
10711 intel_ddi_init(dev, PORT_C);
10712 if (found & SFUSE_STRAP_DDID_DETECTED)
10713 intel_ddi_init(dev, PORT_D);
10714 } else if (HAS_PCH_SPLIT(dev)) {
10715 int found;
10716 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10717
10718 if (has_edp_a(dev))
10719 intel_dp_init(dev, DP_A, PORT_A);
10720
10721 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10722 /* PCH SDVOB multiplex with HDMIB */
10723 found = intel_sdvo_init(dev, PCH_SDVOB, true);
10724 if (!found)
10725 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10726 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10727 intel_dp_init(dev, PCH_DP_B, PORT_B);
10728 }
10729
10730 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10731 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10732
10733 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10734 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10735
10736 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10737 intel_dp_init(dev, PCH_DP_C, PORT_C);
10738
10739 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10740 intel_dp_init(dev, PCH_DP_D, PORT_D);
10741 } else if (IS_VALLEYVIEW(dev)) {
10742 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10743 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10744 PORT_B);
10745 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10746 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10747 }
10748
10749 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10750 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10751 PORT_C);
10752 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10753 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10754 }
10755
10756 intel_dsi_init(dev);
10757 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10758 bool found = false;
10759
10760 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10761 DRM_DEBUG_KMS("probing SDVOB\n");
10762 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10763 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10764 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10765 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10766 }
10767
10768 if (!found && SUPPORTS_INTEGRATED_DP(dev))
10769 intel_dp_init(dev, DP_B, PORT_B);
10770 }
10771
10772 /* Before G4X SDVOC doesn't have its own detect register */
10773
10774 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10775 DRM_DEBUG_KMS("probing SDVOC\n");
10776 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10777 }
10778
10779 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10780
10781 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10782 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10783 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10784 }
10785 if (SUPPORTS_INTEGRATED_DP(dev))
10786 intel_dp_init(dev, DP_C, PORT_C);
10787 }
10788
10789 if (SUPPORTS_INTEGRATED_DP(dev) &&
10790 (I915_READ(DP_D) & DP_DETECTED))
10791 intel_dp_init(dev, DP_D, PORT_D);
10792 } else if (IS_GEN2(dev))
10793 intel_dvo_init(dev);
10794
10795 if (SUPPORTS_TV(dev))
10796 intel_tv_init(dev);
10797
10798 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10799 encoder->base.possible_crtcs = encoder->crtc_mask;
10800 encoder->base.possible_clones =
10801 intel_encoder_clones(encoder);
10802 }
10803
10804 intel_init_pch_refclk(dev);
10805
10806 drm_helper_move_panel_connectors_to_head(dev);
10807 }
10808
10809 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10810 {
10811 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10812
10813 drm_framebuffer_cleanup(fb);
10814 WARN_ON(!intel_fb->obj->framebuffer_references--);
10815 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
10816 kfree(intel_fb);
10817 }
10818
10819 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10820 struct drm_file *file,
10821 unsigned int *handle)
10822 {
10823 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10824 struct drm_i915_gem_object *obj = intel_fb->obj;
10825
10826 return drm_gem_handle_create(file, &obj->base, handle);
10827 }
10828
10829 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10830 .destroy = intel_user_framebuffer_destroy,
10831 .create_handle = intel_user_framebuffer_create_handle,
10832 };
10833
10834 static int intel_framebuffer_init(struct drm_device *dev,
10835 struct intel_framebuffer *intel_fb,
10836 struct drm_mode_fb_cmd2 *mode_cmd,
10837 struct drm_i915_gem_object *obj)
10838 {
10839 int aligned_height;
10840 int pitch_limit;
10841 int ret;
10842
10843 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10844
10845 if (obj->tiling_mode == I915_TILING_Y) {
10846 DRM_DEBUG("hardware does not support tiling Y\n");
10847 return -EINVAL;
10848 }
10849
10850 if (mode_cmd->pitches[0] & 63) {
10851 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10852 mode_cmd->pitches[0]);
10853 return -EINVAL;
10854 }
10855
10856 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10857 pitch_limit = 32*1024;
10858 } else if (INTEL_INFO(dev)->gen >= 4) {
10859 if (obj->tiling_mode)
10860 pitch_limit = 16*1024;
10861 else
10862 pitch_limit = 32*1024;
10863 } else if (INTEL_INFO(dev)->gen >= 3) {
10864 if (obj->tiling_mode)
10865 pitch_limit = 8*1024;
10866 else
10867 pitch_limit = 16*1024;
10868 } else
10869 /* XXX DSPC is limited to 4k tiled */
10870 pitch_limit = 8*1024;
10871
10872 if (mode_cmd->pitches[0] > pitch_limit) {
10873 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10874 obj->tiling_mode ? "tiled" : "linear",
10875 mode_cmd->pitches[0], pitch_limit);
10876 return -EINVAL;
10877 }
10878
10879 if (obj->tiling_mode != I915_TILING_NONE &&
10880 mode_cmd->pitches[0] != obj->stride) {
10881 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10882 mode_cmd->pitches[0], obj->stride);
10883 return -EINVAL;
10884 }
10885
10886 /* Reject formats not supported by any plane early. */
10887 switch (mode_cmd->pixel_format) {
10888 case DRM_FORMAT_C8:
10889 case DRM_FORMAT_RGB565:
10890 case DRM_FORMAT_XRGB8888:
10891 case DRM_FORMAT_ARGB8888:
10892 break;
10893 case DRM_FORMAT_XRGB1555:
10894 case DRM_FORMAT_ARGB1555:
10895 if (INTEL_INFO(dev)->gen > 3) {
10896 DRM_DEBUG("unsupported pixel format: %s\n",
10897 drm_get_format_name(mode_cmd->pixel_format));
10898 return -EINVAL;
10899 }
10900 break;
10901 case DRM_FORMAT_XBGR8888:
10902 case DRM_FORMAT_ABGR8888:
10903 case DRM_FORMAT_XRGB2101010:
10904 case DRM_FORMAT_ARGB2101010:
10905 case DRM_FORMAT_XBGR2101010:
10906 case DRM_FORMAT_ABGR2101010:
10907 if (INTEL_INFO(dev)->gen < 4) {
10908 DRM_DEBUG("unsupported pixel format: %s\n",
10909 drm_get_format_name(mode_cmd->pixel_format));
10910 return -EINVAL;
10911 }
10912 break;
10913 case DRM_FORMAT_YUYV:
10914 case DRM_FORMAT_UYVY:
10915 case DRM_FORMAT_YVYU:
10916 case DRM_FORMAT_VYUY:
10917 if (INTEL_INFO(dev)->gen < 5) {
10918 DRM_DEBUG("unsupported pixel format: %s\n",
10919 drm_get_format_name(mode_cmd->pixel_format));
10920 return -EINVAL;
10921 }
10922 break;
10923 default:
10924 DRM_DEBUG("unsupported pixel format: %s\n",
10925 drm_get_format_name(mode_cmd->pixel_format));
10926 return -EINVAL;
10927 }
10928
10929 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10930 if (mode_cmd->offsets[0] != 0)
10931 return -EINVAL;
10932
10933 aligned_height = intel_align_height(dev, mode_cmd->height,
10934 obj->tiling_mode);
10935 /* FIXME drm helper for size checks (especially planar formats)? */
10936 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10937 return -EINVAL;
10938
10939 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10940 intel_fb->obj = obj;
10941 intel_fb->obj->framebuffer_references++;
10942
10943 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10944 if (ret) {
10945 DRM_ERROR("framebuffer init failed %d\n", ret);
10946 return ret;
10947 }
10948
10949 return 0;
10950 }
10951
10952 static struct drm_framebuffer *
10953 intel_user_framebuffer_create(struct drm_device *dev,
10954 struct drm_file *filp,
10955 struct drm_mode_fb_cmd2 *mode_cmd)
10956 {
10957 struct drm_i915_gem_object *obj;
10958
10959 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10960 mode_cmd->handles[0]));
10961 if (&obj->base == NULL)
10962 return ERR_PTR(-ENOENT);
10963
10964 return intel_framebuffer_create(dev, mode_cmd, obj);
10965 }
10966
10967 #ifndef CONFIG_DRM_I915_FBDEV
10968 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10969 {
10970 }
10971 #endif
10972
10973 static const struct drm_mode_config_funcs intel_mode_funcs = {
10974 .fb_create = intel_user_framebuffer_create,
10975 .output_poll_changed = intel_fbdev_output_poll_changed,
10976 };
10977
10978 /* Set up chip specific display functions */
10979 static void intel_init_display(struct drm_device *dev)
10980 {
10981 struct drm_i915_private *dev_priv = dev->dev_private;
10982
10983 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10984 dev_priv->display.find_dpll = g4x_find_best_dpll;
10985 else if (IS_VALLEYVIEW(dev))
10986 dev_priv->display.find_dpll = vlv_find_best_dpll;
10987 else if (IS_PINEVIEW(dev))
10988 dev_priv->display.find_dpll = pnv_find_best_dpll;
10989 else
10990 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10991
10992 if (HAS_DDI(dev)) {
10993 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10994 dev_priv->display.get_plane_config = ironlake_get_plane_config;
10995 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10996 dev_priv->display.crtc_enable = haswell_crtc_enable;
10997 dev_priv->display.crtc_disable = haswell_crtc_disable;
10998 dev_priv->display.off = haswell_crtc_off;
10999 dev_priv->display.update_primary_plane =
11000 ironlake_update_primary_plane;
11001 } else if (HAS_PCH_SPLIT(dev)) {
11002 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11003 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11004 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11005 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11006 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11007 dev_priv->display.off = ironlake_crtc_off;
11008 dev_priv->display.update_primary_plane =
11009 ironlake_update_primary_plane;
11010 } else if (IS_VALLEYVIEW(dev)) {
11011 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11012 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11013 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11014 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11015 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11016 dev_priv->display.off = i9xx_crtc_off;
11017 dev_priv->display.update_primary_plane =
11018 i9xx_update_primary_plane;
11019 } else {
11020 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11021 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11022 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11023 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11024 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11025 dev_priv->display.off = i9xx_crtc_off;
11026 dev_priv->display.update_primary_plane =
11027 i9xx_update_primary_plane;
11028 }
11029
11030 /* Returns the core display clock speed */
11031 if (IS_VALLEYVIEW(dev))
11032 dev_priv->display.get_display_clock_speed =
11033 valleyview_get_display_clock_speed;
11034 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11035 dev_priv->display.get_display_clock_speed =
11036 i945_get_display_clock_speed;
11037 else if (IS_I915G(dev))
11038 dev_priv->display.get_display_clock_speed =
11039 i915_get_display_clock_speed;
11040 else if (IS_I945GM(dev) || IS_845G(dev))
11041 dev_priv->display.get_display_clock_speed =
11042 i9xx_misc_get_display_clock_speed;
11043 else if (IS_PINEVIEW(dev))
11044 dev_priv->display.get_display_clock_speed =
11045 pnv_get_display_clock_speed;
11046 else if (IS_I915GM(dev))
11047 dev_priv->display.get_display_clock_speed =
11048 i915gm_get_display_clock_speed;
11049 else if (IS_I865G(dev))
11050 dev_priv->display.get_display_clock_speed =
11051 i865_get_display_clock_speed;
11052 else if (IS_I85X(dev))
11053 dev_priv->display.get_display_clock_speed =
11054 i855_get_display_clock_speed;
11055 else /* 852, 830 */
11056 dev_priv->display.get_display_clock_speed =
11057 i830_get_display_clock_speed;
11058
11059 if (HAS_PCH_SPLIT(dev)) {
11060 if (IS_GEN5(dev)) {
11061 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11062 dev_priv->display.write_eld = ironlake_write_eld;
11063 } else if (IS_GEN6(dev)) {
11064 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11065 dev_priv->display.write_eld = ironlake_write_eld;
11066 } else if (IS_IVYBRIDGE(dev)) {
11067 /* FIXME: detect B0+ stepping and use auto training */
11068 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11069 dev_priv->display.write_eld = ironlake_write_eld;
11070 dev_priv->display.modeset_global_resources =
11071 ivb_modeset_global_resources;
11072 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11073 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11074 dev_priv->display.write_eld = haswell_write_eld;
11075 dev_priv->display.modeset_global_resources =
11076 haswell_modeset_global_resources;
11077 }
11078 } else if (IS_G4X(dev)) {
11079 dev_priv->display.write_eld = g4x_write_eld;
11080 } else if (IS_VALLEYVIEW(dev)) {
11081 dev_priv->display.modeset_global_resources =
11082 valleyview_modeset_global_resources;
11083 dev_priv->display.write_eld = ironlake_write_eld;
11084 }
11085
11086 /* Default just returns -ENODEV to indicate unsupported */
11087 dev_priv->display.queue_flip = intel_default_queue_flip;
11088
11089 switch (INTEL_INFO(dev)->gen) {
11090 case 2:
11091 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11092 break;
11093
11094 case 3:
11095 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11096 break;
11097
11098 case 4:
11099 case 5:
11100 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11101 break;
11102
11103 case 6:
11104 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11105 break;
11106 case 7:
11107 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11108 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11109 break;
11110 }
11111
11112 intel_panel_init_backlight_funcs(dev);
11113 }
11114
11115 /*
11116 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11117 * resume, or other times. This quirk makes sure that's the case for
11118 * affected systems.
11119 */
11120 static void quirk_pipea_force(struct drm_device *dev)
11121 {
11122 struct drm_i915_private *dev_priv = dev->dev_private;
11123
11124 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11125 DRM_INFO("applying pipe a force quirk\n");
11126 }
11127
11128 /*
11129 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11130 */
11131 static void quirk_ssc_force_disable(struct drm_device *dev)
11132 {
11133 struct drm_i915_private *dev_priv = dev->dev_private;
11134 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11135 DRM_INFO("applying lvds SSC disable quirk\n");
11136 }
11137
11138 /*
11139 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11140 * brightness value
11141 */
11142 static void quirk_invert_brightness(struct drm_device *dev)
11143 {
11144 struct drm_i915_private *dev_priv = dev->dev_private;
11145 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11146 DRM_INFO("applying inverted panel brightness quirk\n");
11147 }
11148
11149 struct intel_quirk {
11150 int device;
11151 int subsystem_vendor;
11152 int subsystem_device;
11153 void (*hook)(struct drm_device *dev);
11154 };
11155
11156 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11157 struct intel_dmi_quirk {
11158 void (*hook)(struct drm_device *dev);
11159 const struct dmi_system_id (*dmi_id_list)[];
11160 };
11161
11162 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11163 {
11164 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11165 return 1;
11166 }
11167
11168 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11169 {
11170 .dmi_id_list = &(const struct dmi_system_id[]) {
11171 {
11172 .callback = intel_dmi_reverse_brightness,
11173 .ident = "NCR Corporation",
11174 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11175 DMI_MATCH(DMI_PRODUCT_NAME, ""),
11176 },
11177 },
11178 { } /* terminating entry */
11179 },
11180 .hook = quirk_invert_brightness,
11181 },
11182 };
11183
11184 static struct intel_quirk intel_quirks[] = {
11185 /* HP Mini needs pipe A force quirk (LP: #322104) */
11186 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11187
11188 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11189 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11190
11191 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11192 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11193
11194 /* 830 needs to leave pipe A & dpll A up */
11195 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11196
11197 /* Lenovo U160 cannot use SSC on LVDS */
11198 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11199
11200 /* Sony Vaio Y cannot use SSC on LVDS */
11201 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11202
11203 /* Acer Aspire 5734Z must invert backlight brightness */
11204 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11205
11206 /* Acer/eMachines G725 */
11207 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11208
11209 /* Acer/eMachines e725 */
11210 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11211
11212 /* Acer/Packard Bell NCL20 */
11213 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11214
11215 /* Acer Aspire 4736Z */
11216 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11217
11218 /* Acer Aspire 5336 */
11219 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11220 };
11221
11222 static void intel_init_quirks(struct drm_device *dev)
11223 {
11224 struct pci_dev *d = dev->pdev;
11225 int i;
11226
11227 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11228 struct intel_quirk *q = &intel_quirks[i];
11229
11230 if (d->device == q->device &&
11231 (d->subsystem_vendor == q->subsystem_vendor ||
11232 q->subsystem_vendor == PCI_ANY_ID) &&
11233 (d->subsystem_device == q->subsystem_device ||
11234 q->subsystem_device == PCI_ANY_ID))
11235 q->hook(dev);
11236 }
11237 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11238 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11239 intel_dmi_quirks[i].hook(dev);
11240 }
11241 }
11242
11243 /* Disable the VGA plane that we never use */
11244 static void i915_disable_vga(struct drm_device *dev)
11245 {
11246 struct drm_i915_private *dev_priv = dev->dev_private;
11247 u8 sr1;
11248 u32 vga_reg = i915_vgacntrl_reg(dev);
11249
11250 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11251 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11252 outb(SR01, VGA_SR_INDEX);
11253 sr1 = inb(VGA_SR_DATA);
11254 outb(sr1 | 1<<5, VGA_SR_DATA);
11255 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11256 udelay(300);
11257
11258 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11259 POSTING_READ(vga_reg);
11260 }
11261
11262 void intel_modeset_init_hw(struct drm_device *dev)
11263 {
11264 intel_prepare_ddi(dev);
11265
11266 intel_init_clock_gating(dev);
11267
11268 intel_reset_dpio(dev);
11269
11270 mutex_lock(&dev->struct_mutex);
11271 intel_enable_gt_powersave(dev);
11272 mutex_unlock(&dev->struct_mutex);
11273 }
11274
11275 void intel_modeset_suspend_hw(struct drm_device *dev)
11276 {
11277 intel_suspend_hw(dev);
11278 }
11279
11280 void intel_modeset_init(struct drm_device *dev)
11281 {
11282 struct drm_i915_private *dev_priv = dev->dev_private;
11283 int sprite, ret;
11284 enum pipe pipe;
11285 struct intel_crtc *crtc;
11286
11287 drm_mode_config_init(dev);
11288
11289 dev->mode_config.min_width = 0;
11290 dev->mode_config.min_height = 0;
11291
11292 dev->mode_config.preferred_depth = 24;
11293 dev->mode_config.prefer_shadow = 1;
11294
11295 dev->mode_config.funcs = &intel_mode_funcs;
11296
11297 intel_init_quirks(dev);
11298
11299 intel_init_pm(dev);
11300
11301 if (INTEL_INFO(dev)->num_pipes == 0)
11302 return;
11303
11304 intel_init_display(dev);
11305
11306 if (IS_GEN2(dev)) {
11307 dev->mode_config.max_width = 2048;
11308 dev->mode_config.max_height = 2048;
11309 } else if (IS_GEN3(dev)) {
11310 dev->mode_config.max_width = 4096;
11311 dev->mode_config.max_height = 4096;
11312 } else {
11313 dev->mode_config.max_width = 8192;
11314 dev->mode_config.max_height = 8192;
11315 }
11316 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11317
11318 DRM_DEBUG_KMS("%d display pipe%s available.\n",
11319 INTEL_INFO(dev)->num_pipes,
11320 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11321
11322 for_each_pipe(pipe) {
11323 intel_crtc_init(dev, pipe);
11324 for_each_sprite(pipe, sprite) {
11325 ret = intel_plane_init(dev, pipe, sprite);
11326 if (ret)
11327 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11328 pipe_name(pipe), sprite_name(pipe, sprite), ret);
11329 }
11330 }
11331
11332 intel_init_dpio(dev);
11333 intel_reset_dpio(dev);
11334
11335 intel_cpu_pll_init(dev);
11336 intel_shared_dpll_init(dev);
11337
11338 /* Just disable it once at startup */
11339 i915_disable_vga(dev);
11340 intel_setup_outputs(dev);
11341
11342 /* Just in case the BIOS is doing something questionable. */
11343 intel_disable_fbc(dev);
11344
11345 mutex_lock(&dev->mode_config.mutex);
11346 intel_modeset_setup_hw_state(dev, false);
11347 mutex_unlock(&dev->mode_config.mutex);
11348
11349 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11350 base.head) {
11351 if (!crtc->active)
11352 continue;
11353
11354 /*
11355 * Note that reserving the BIOS fb up front prevents us
11356 * from stuffing other stolen allocations like the ring
11357 * on top. This prevents some ugliness at boot time, and
11358 * can even allow for smooth boot transitions if the BIOS
11359 * fb is large enough for the active pipe configuration.
11360 */
11361 if (dev_priv->display.get_plane_config) {
11362 dev_priv->display.get_plane_config(crtc,
11363 &crtc->plane_config);
11364 /*
11365 * If the fb is shared between multiple heads, we'll
11366 * just get the first one.
11367 */
11368 intel_find_plane_obj(crtc, &crtc->plane_config);
11369 }
11370 }
11371 }
11372
11373 static void
11374 intel_connector_break_all_links(struct intel_connector *connector)
11375 {
11376 connector->base.dpms = DRM_MODE_DPMS_OFF;
11377 connector->base.encoder = NULL;
11378 connector->encoder->connectors_active = false;
11379 connector->encoder->base.crtc = NULL;
11380 }
11381
11382 static void intel_enable_pipe_a(struct drm_device *dev)
11383 {
11384 struct intel_connector *connector;
11385 struct drm_connector *crt = NULL;
11386 struct intel_load_detect_pipe load_detect_temp;
11387
11388 /* We can't just switch on the pipe A, we need to set things up with a
11389 * proper mode and output configuration. As a gross hack, enable pipe A
11390 * by enabling the load detect pipe once. */
11391 list_for_each_entry(connector,
11392 &dev->mode_config.connector_list,
11393 base.head) {
11394 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11395 crt = &connector->base;
11396 break;
11397 }
11398 }
11399
11400 if (!crt)
11401 return;
11402
11403 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11404 intel_release_load_detect_pipe(crt, &load_detect_temp);
11405
11406
11407 }
11408
11409 static bool
11410 intel_check_plane_mapping(struct intel_crtc *crtc)
11411 {
11412 struct drm_device *dev = crtc->base.dev;
11413 struct drm_i915_private *dev_priv = dev->dev_private;
11414 u32 reg, val;
11415
11416 if (INTEL_INFO(dev)->num_pipes == 1)
11417 return true;
11418
11419 reg = DSPCNTR(!crtc->plane);
11420 val = I915_READ(reg);
11421
11422 if ((val & DISPLAY_PLANE_ENABLE) &&
11423 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11424 return false;
11425
11426 return true;
11427 }
11428
11429 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11430 {
11431 struct drm_device *dev = crtc->base.dev;
11432 struct drm_i915_private *dev_priv = dev->dev_private;
11433 u32 reg;
11434
11435 /* Clear any frame start delays used for debugging left by the BIOS */
11436 reg = PIPECONF(crtc->config.cpu_transcoder);
11437 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11438
11439 /* We need to sanitize the plane -> pipe mapping first because this will
11440 * disable the crtc (and hence change the state) if it is wrong. Note
11441 * that gen4+ has a fixed plane -> pipe mapping. */
11442 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11443 struct intel_connector *connector;
11444 bool plane;
11445
11446 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11447 crtc->base.base.id);
11448
11449 /* Pipe has the wrong plane attached and the plane is active.
11450 * Temporarily change the plane mapping and disable everything
11451 * ... */
11452 plane = crtc->plane;
11453 crtc->plane = !plane;
11454 dev_priv->display.crtc_disable(&crtc->base);
11455 crtc->plane = plane;
11456
11457 /* ... and break all links. */
11458 list_for_each_entry(connector, &dev->mode_config.connector_list,
11459 base.head) {
11460 if (connector->encoder->base.crtc != &crtc->base)
11461 continue;
11462
11463 intel_connector_break_all_links(connector);
11464 }
11465
11466 WARN_ON(crtc->active);
11467 crtc->base.enabled = false;
11468 }
11469
11470 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11471 crtc->pipe == PIPE_A && !crtc->active) {
11472 /* BIOS forgot to enable pipe A, this mostly happens after
11473 * resume. Force-enable the pipe to fix this, the update_dpms
11474 * call below we restore the pipe to the right state, but leave
11475 * the required bits on. */
11476 intel_enable_pipe_a(dev);
11477 }
11478
11479 /* Adjust the state of the output pipe according to whether we
11480 * have active connectors/encoders. */
11481 intel_crtc_update_dpms(&crtc->base);
11482
11483 if (crtc->active != crtc->base.enabled) {
11484 struct intel_encoder *encoder;
11485
11486 /* This can happen either due to bugs in the get_hw_state
11487 * functions or because the pipe is force-enabled due to the
11488 * pipe A quirk. */
11489 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11490 crtc->base.base.id,
11491 crtc->base.enabled ? "enabled" : "disabled",
11492 crtc->active ? "enabled" : "disabled");
11493
11494 crtc->base.enabled = crtc->active;
11495
11496 /* Because we only establish the connector -> encoder ->
11497 * crtc links if something is active, this means the
11498 * crtc is now deactivated. Break the links. connector
11499 * -> encoder links are only establish when things are
11500 * actually up, hence no need to break them. */
11501 WARN_ON(crtc->active);
11502
11503 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11504 WARN_ON(encoder->connectors_active);
11505 encoder->base.crtc = NULL;
11506 }
11507 }
11508 if (crtc->active) {
11509 /*
11510 * We start out with underrun reporting disabled to avoid races.
11511 * For correct bookkeeping mark this on active crtcs.
11512 *
11513 * No protection against concurrent access is required - at
11514 * worst a fifo underrun happens which also sets this to false.
11515 */
11516 crtc->cpu_fifo_underrun_disabled = true;
11517 crtc->pch_fifo_underrun_disabled = true;
11518 }
11519 }
11520
11521 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11522 {
11523 struct intel_connector *connector;
11524 struct drm_device *dev = encoder->base.dev;
11525
11526 /* We need to check both for a crtc link (meaning that the
11527 * encoder is active and trying to read from a pipe) and the
11528 * pipe itself being active. */
11529 bool has_active_crtc = encoder->base.crtc &&
11530 to_intel_crtc(encoder->base.crtc)->active;
11531
11532 if (encoder->connectors_active && !has_active_crtc) {
11533 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11534 encoder->base.base.id,
11535 drm_get_encoder_name(&encoder->base));
11536
11537 /* Connector is active, but has no active pipe. This is
11538 * fallout from our resume register restoring. Disable
11539 * the encoder manually again. */
11540 if (encoder->base.crtc) {
11541 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11542 encoder->base.base.id,
11543 drm_get_encoder_name(&encoder->base));
11544 encoder->disable(encoder);
11545 }
11546
11547 /* Inconsistent output/port/pipe state happens presumably due to
11548 * a bug in one of the get_hw_state functions. Or someplace else
11549 * in our code, like the register restore mess on resume. Clamp
11550 * things to off as a safer default. */
11551 list_for_each_entry(connector,
11552 &dev->mode_config.connector_list,
11553 base.head) {
11554 if (connector->encoder != encoder)
11555 continue;
11556
11557 intel_connector_break_all_links(connector);
11558 }
11559 }
11560 /* Enabled encoders without active connectors will be fixed in
11561 * the crtc fixup. */
11562 }
11563
11564 void i915_redisable_vga_power_on(struct drm_device *dev)
11565 {
11566 struct drm_i915_private *dev_priv = dev->dev_private;
11567 u32 vga_reg = i915_vgacntrl_reg(dev);
11568
11569 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11570 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11571 i915_disable_vga(dev);
11572 }
11573 }
11574
11575 void i915_redisable_vga(struct drm_device *dev)
11576 {
11577 struct drm_i915_private *dev_priv = dev->dev_private;
11578
11579 /* This function can be called both from intel_modeset_setup_hw_state or
11580 * at a very early point in our resume sequence, where the power well
11581 * structures are not yet restored. Since this function is at a very
11582 * paranoid "someone might have enabled VGA while we were not looking"
11583 * level, just check if the power well is enabled instead of trying to
11584 * follow the "don't touch the power well if we don't need it" policy
11585 * the rest of the driver uses. */
11586 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11587 return;
11588
11589 i915_redisable_vga_power_on(dev);
11590 }
11591
11592 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11593 {
11594 struct drm_i915_private *dev_priv = dev->dev_private;
11595 enum pipe pipe;
11596 struct intel_crtc *crtc;
11597 struct intel_encoder *encoder;
11598 struct intel_connector *connector;
11599 int i;
11600
11601 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11602 base.head) {
11603 memset(&crtc->config, 0, sizeof(crtc->config));
11604
11605 crtc->active = dev_priv->display.get_pipe_config(crtc,
11606 &crtc->config);
11607
11608 crtc->base.enabled = crtc->active;
11609 crtc->primary_enabled = crtc->active;
11610
11611 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11612 crtc->base.base.id,
11613 crtc->active ? "enabled" : "disabled");
11614 }
11615
11616 /* FIXME: Smash this into the new shared dpll infrastructure. */
11617 if (HAS_DDI(dev))
11618 intel_ddi_setup_hw_pll_state(dev);
11619
11620 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11621 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11622
11623 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11624 pll->active = 0;
11625 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11626 base.head) {
11627 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11628 pll->active++;
11629 }
11630 pll->refcount = pll->active;
11631
11632 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11633 pll->name, pll->refcount, pll->on);
11634 }
11635
11636 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11637 base.head) {
11638 pipe = 0;
11639
11640 if (encoder->get_hw_state(encoder, &pipe)) {
11641 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11642 encoder->base.crtc = &crtc->base;
11643 encoder->get_config(encoder, &crtc->config);
11644 } else {
11645 encoder->base.crtc = NULL;
11646 }
11647
11648 encoder->connectors_active = false;
11649 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11650 encoder->base.base.id,
11651 drm_get_encoder_name(&encoder->base),
11652 encoder->base.crtc ? "enabled" : "disabled",
11653 pipe_name(pipe));
11654 }
11655
11656 list_for_each_entry(connector, &dev->mode_config.connector_list,
11657 base.head) {
11658 if (connector->get_hw_state(connector)) {
11659 connector->base.dpms = DRM_MODE_DPMS_ON;
11660 connector->encoder->connectors_active = true;
11661 connector->base.encoder = &connector->encoder->base;
11662 } else {
11663 connector->base.dpms = DRM_MODE_DPMS_OFF;
11664 connector->base.encoder = NULL;
11665 }
11666 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11667 connector->base.base.id,
11668 drm_get_connector_name(&connector->base),
11669 connector->base.encoder ? "enabled" : "disabled");
11670 }
11671 }
11672
11673 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11674 * and i915 state tracking structures. */
11675 void intel_modeset_setup_hw_state(struct drm_device *dev,
11676 bool force_restore)
11677 {
11678 struct drm_i915_private *dev_priv = dev->dev_private;
11679 enum pipe pipe;
11680 struct intel_crtc *crtc;
11681 struct intel_encoder *encoder;
11682 int i;
11683
11684 intel_modeset_readout_hw_state(dev);
11685
11686 /*
11687 * Now that we have the config, copy it to each CRTC struct
11688 * Note that this could go away if we move to using crtc_config
11689 * checking everywhere.
11690 */
11691 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11692 base.head) {
11693 if (crtc->active && i915.fastboot) {
11694 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11695 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11696 crtc->base.base.id);
11697 drm_mode_debug_printmodeline(&crtc->base.mode);
11698 }
11699 }
11700
11701 /* HW state is read out, now we need to sanitize this mess. */
11702 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11703 base.head) {
11704 intel_sanitize_encoder(encoder);
11705 }
11706
11707 for_each_pipe(pipe) {
11708 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11709 intel_sanitize_crtc(crtc);
11710 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11711 }
11712
11713 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11714 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11715
11716 if (!pll->on || pll->active)
11717 continue;
11718
11719 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11720
11721 pll->disable(dev_priv, pll);
11722 pll->on = false;
11723 }
11724
11725 if (HAS_PCH_SPLIT(dev))
11726 ilk_wm_get_hw_state(dev);
11727
11728 if (force_restore) {
11729 i915_redisable_vga(dev);
11730
11731 /*
11732 * We need to use raw interfaces for restoring state to avoid
11733 * checking (bogus) intermediate states.
11734 */
11735 for_each_pipe(pipe) {
11736 struct drm_crtc *crtc =
11737 dev_priv->pipe_to_crtc_mapping[pipe];
11738
11739 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11740 crtc->fb);
11741 }
11742 } else {
11743 intel_modeset_update_staged_output_state(dev);
11744 }
11745
11746 intel_modeset_check_state(dev);
11747 }
11748
11749 void intel_modeset_gem_init(struct drm_device *dev)
11750 {
11751 struct drm_crtc *c;
11752 struct intel_framebuffer *fb;
11753
11754 intel_modeset_init_hw(dev);
11755
11756 intel_setup_overlay(dev);
11757
11758 /*
11759 * Make sure any fbs we allocated at startup are properly
11760 * pinned & fenced. When we do the allocation it's too early
11761 * for this.
11762 */
11763 mutex_lock(&dev->struct_mutex);
11764 list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
11765 if (!c->fb)
11766 continue;
11767
11768 fb = to_intel_framebuffer(c->fb);
11769 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
11770 DRM_ERROR("failed to pin boot fb on pipe %d\n",
11771 to_intel_crtc(c)->pipe);
11772 drm_framebuffer_unreference(c->fb);
11773 c->fb = NULL;
11774 }
11775 }
11776 mutex_unlock(&dev->struct_mutex);
11777 }
11778
11779 void intel_connector_unregister(struct intel_connector *intel_connector)
11780 {
11781 struct drm_connector *connector = &intel_connector->base;
11782
11783 intel_panel_destroy_backlight(connector);
11784 drm_sysfs_connector_remove(connector);
11785 }
11786
11787 void intel_modeset_cleanup(struct drm_device *dev)
11788 {
11789 struct drm_i915_private *dev_priv = dev->dev_private;
11790 struct drm_crtc *crtc;
11791 struct drm_connector *connector;
11792
11793 /*
11794 * Interrupts and polling as the first thing to avoid creating havoc.
11795 * Too much stuff here (turning of rps, connectors, ...) would
11796 * experience fancy races otherwise.
11797 */
11798 drm_irq_uninstall(dev);
11799 cancel_work_sync(&dev_priv->hotplug_work);
11800 /*
11801 * Due to the hpd irq storm handling the hotplug work can re-arm the
11802 * poll handlers. Hence disable polling after hpd handling is shut down.
11803 */
11804 drm_kms_helper_poll_fini(dev);
11805
11806 mutex_lock(&dev->struct_mutex);
11807
11808 intel_unregister_dsm_handler();
11809
11810 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11811 /* Skip inactive CRTCs */
11812 if (!crtc->fb)
11813 continue;
11814
11815 intel_increase_pllclock(crtc);
11816 }
11817
11818 intel_disable_fbc(dev);
11819
11820 intel_disable_gt_powersave(dev);
11821
11822 ironlake_teardown_rc6(dev);
11823
11824 mutex_unlock(&dev->struct_mutex);
11825
11826 /* flush any delayed tasks or pending work */
11827 flush_scheduled_work();
11828
11829 /* destroy the backlight and sysfs files before encoders/connectors */
11830 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11831 struct intel_connector *intel_connector;
11832
11833 intel_connector = to_intel_connector(connector);
11834 intel_connector->unregister(intel_connector);
11835 }
11836
11837 drm_mode_config_cleanup(dev);
11838
11839 intel_cleanup_overlay(dev);
11840 }
11841
11842 /*
11843 * Return which encoder is currently attached for connector.
11844 */
11845 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11846 {
11847 return &intel_attached_encoder(connector)->base;
11848 }
11849
11850 void intel_connector_attach_encoder(struct intel_connector *connector,
11851 struct intel_encoder *encoder)
11852 {
11853 connector->encoder = encoder;
11854 drm_mode_connector_attach_encoder(&connector->base,
11855 &encoder->base);
11856 }
11857
11858 /*
11859 * set vga decode state - true == enable VGA decode
11860 */
11861 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11862 {
11863 struct drm_i915_private *dev_priv = dev->dev_private;
11864 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11865 u16 gmch_ctrl;
11866
11867 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
11868 DRM_ERROR("failed to read control word\n");
11869 return -EIO;
11870 }
11871
11872 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
11873 return 0;
11874
11875 if (state)
11876 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11877 else
11878 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11879
11880 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
11881 DRM_ERROR("failed to write control word\n");
11882 return -EIO;
11883 }
11884
11885 return 0;
11886 }
11887
11888 struct intel_display_error_state {
11889
11890 u32 power_well_driver;
11891
11892 int num_transcoders;
11893
11894 struct intel_cursor_error_state {
11895 u32 control;
11896 u32 position;
11897 u32 base;
11898 u32 size;
11899 } cursor[I915_MAX_PIPES];
11900
11901 struct intel_pipe_error_state {
11902 bool power_domain_on;
11903 u32 source;
11904 } pipe[I915_MAX_PIPES];
11905
11906 struct intel_plane_error_state {
11907 u32 control;
11908 u32 stride;
11909 u32 size;
11910 u32 pos;
11911 u32 addr;
11912 u32 surface;
11913 u32 tile_offset;
11914 } plane[I915_MAX_PIPES];
11915
11916 struct intel_transcoder_error_state {
11917 bool power_domain_on;
11918 enum transcoder cpu_transcoder;
11919
11920 u32 conf;
11921
11922 u32 htotal;
11923 u32 hblank;
11924 u32 hsync;
11925 u32 vtotal;
11926 u32 vblank;
11927 u32 vsync;
11928 } transcoder[4];
11929 };
11930
11931 struct intel_display_error_state *
11932 intel_display_capture_error_state(struct drm_device *dev)
11933 {
11934 drm_i915_private_t *dev_priv = dev->dev_private;
11935 struct intel_display_error_state *error;
11936 int transcoders[] = {
11937 TRANSCODER_A,
11938 TRANSCODER_B,
11939 TRANSCODER_C,
11940 TRANSCODER_EDP,
11941 };
11942 int i;
11943
11944 if (INTEL_INFO(dev)->num_pipes == 0)
11945 return NULL;
11946
11947 error = kzalloc(sizeof(*error), GFP_ATOMIC);
11948 if (error == NULL)
11949 return NULL;
11950
11951 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11952 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11953
11954 for_each_pipe(i) {
11955 error->pipe[i].power_domain_on =
11956 intel_display_power_enabled_sw(dev_priv,
11957 POWER_DOMAIN_PIPE(i));
11958 if (!error->pipe[i].power_domain_on)
11959 continue;
11960
11961 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11962 error->cursor[i].control = I915_READ(CURCNTR(i));
11963 error->cursor[i].position = I915_READ(CURPOS(i));
11964 error->cursor[i].base = I915_READ(CURBASE(i));
11965 } else {
11966 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11967 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11968 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11969 }
11970
11971 error->plane[i].control = I915_READ(DSPCNTR(i));
11972 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11973 if (INTEL_INFO(dev)->gen <= 3) {
11974 error->plane[i].size = I915_READ(DSPSIZE(i));
11975 error->plane[i].pos = I915_READ(DSPPOS(i));
11976 }
11977 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11978 error->plane[i].addr = I915_READ(DSPADDR(i));
11979 if (INTEL_INFO(dev)->gen >= 4) {
11980 error->plane[i].surface = I915_READ(DSPSURF(i));
11981 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11982 }
11983
11984 error->pipe[i].source = I915_READ(PIPESRC(i));
11985 }
11986
11987 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11988 if (HAS_DDI(dev_priv->dev))
11989 error->num_transcoders++; /* Account for eDP. */
11990
11991 for (i = 0; i < error->num_transcoders; i++) {
11992 enum transcoder cpu_transcoder = transcoders[i];
11993
11994 error->transcoder[i].power_domain_on =
11995 intel_display_power_enabled_sw(dev_priv,
11996 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
11997 if (!error->transcoder[i].power_domain_on)
11998 continue;
11999
12000 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12001
12002 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12003 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12004 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12005 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12006 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12007 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12008 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12009 }
12010
12011 return error;
12012 }
12013
12014 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12015
12016 void
12017 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12018 struct drm_device *dev,
12019 struct intel_display_error_state *error)
12020 {
12021 int i;
12022
12023 if (!error)
12024 return;
12025
12026 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12027 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12028 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12029 error->power_well_driver);
12030 for_each_pipe(i) {
12031 err_printf(m, "Pipe [%d]:\n", i);
12032 err_printf(m, " Power: %s\n",
12033 error->pipe[i].power_domain_on ? "on" : "off");
12034 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
12035
12036 err_printf(m, "Plane [%d]:\n", i);
12037 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
12038 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
12039 if (INTEL_INFO(dev)->gen <= 3) {
12040 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
12041 err_printf(m, " POS: %08x\n", error->plane[i].pos);
12042 }
12043 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12044 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
12045 if (INTEL_INFO(dev)->gen >= 4) {
12046 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
12047 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
12048 }
12049
12050 err_printf(m, "Cursor [%d]:\n", i);
12051 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
12052 err_printf(m, " POS: %08x\n", error->cursor[i].position);
12053 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
12054 }
12055
12056 for (i = 0; i < error->num_transcoders; i++) {
12057 err_printf(m, "CPU transcoder: %c\n",
12058 transcoder_name(error->transcoder[i].cpu_transcoder));
12059 err_printf(m, " Power: %s\n",
12060 error->transcoder[i].power_domain_on ? "on" : "off");
12061 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
12062 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
12063 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
12064 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
12065 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
12066 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
12067 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
12068 }
12069 }
This page took 0.292828 seconds and 5 git commands to generate.