drm/i915: Constify adjusted_mode
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121 int min, max;
122 } intel_range_t;
123
124 typedef struct {
125 int dot_limit;
126 int p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131 intel_range_t dot, vco, n, m, m1, m2, p, p1;
132 intel_p2_t p2;
133 };
134
135 int
136 intel_pch_rawclk(struct drm_device *dev)
137 {
138 struct drm_i915_private *dev_priv = dev->dev_private;
139
140 WARN_ON(!HAS_PCH_SPLIT(dev));
141
142 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
143 }
144
145 /* hrawclock is 1/4 the FSB frequency */
146 int intel_hrawclk(struct drm_device *dev)
147 {
148 struct drm_i915_private *dev_priv = dev->dev_private;
149 uint32_t clkcfg;
150
151 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
152 if (IS_VALLEYVIEW(dev))
153 return 200;
154
155 clkcfg = I915_READ(CLKCFG);
156 switch (clkcfg & CLKCFG_FSB_MASK) {
157 case CLKCFG_FSB_400:
158 return 100;
159 case CLKCFG_FSB_533:
160 return 133;
161 case CLKCFG_FSB_667:
162 return 166;
163 case CLKCFG_FSB_800:
164 return 200;
165 case CLKCFG_FSB_1067:
166 return 266;
167 case CLKCFG_FSB_1333:
168 return 333;
169 /* these two are just a guess; one of them might be right */
170 case CLKCFG_FSB_1600:
171 case CLKCFG_FSB_1600_ALT:
172 return 400;
173 default:
174 return 133;
175 }
176 }
177
178 static inline u32 /* units of 100MHz */
179 intel_fdi_link_freq(struct drm_device *dev)
180 {
181 if (IS_GEN5(dev)) {
182 struct drm_i915_private *dev_priv = dev->dev_private;
183 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
184 } else
185 return 27;
186 }
187
188 static const intel_limit_t intel_limits_i8xx_dac = {
189 .dot = { .min = 25000, .max = 350000 },
190 .vco = { .min = 908000, .max = 1512000 },
191 .n = { .min = 2, .max = 16 },
192 .m = { .min = 96, .max = 140 },
193 .m1 = { .min = 18, .max = 26 },
194 .m2 = { .min = 6, .max = 16 },
195 .p = { .min = 4, .max = 128 },
196 .p1 = { .min = 2, .max = 33 },
197 .p2 = { .dot_limit = 165000,
198 .p2_slow = 4, .p2_fast = 2 },
199 };
200
201 static const intel_limit_t intel_limits_i8xx_dvo = {
202 .dot = { .min = 25000, .max = 350000 },
203 .vco = { .min = 908000, .max = 1512000 },
204 .n = { .min = 2, .max = 16 },
205 .m = { .min = 96, .max = 140 },
206 .m1 = { .min = 18, .max = 26 },
207 .m2 = { .min = 6, .max = 16 },
208 .p = { .min = 4, .max = 128 },
209 .p1 = { .min = 2, .max = 33 },
210 .p2 = { .dot_limit = 165000,
211 .p2_slow = 4, .p2_fast = 4 },
212 };
213
214 static const intel_limit_t intel_limits_i8xx_lvds = {
215 .dot = { .min = 25000, .max = 350000 },
216 .vco = { .min = 908000, .max = 1512000 },
217 .n = { .min = 2, .max = 16 },
218 .m = { .min = 96, .max = 140 },
219 .m1 = { .min = 18, .max = 26 },
220 .m2 = { .min = 6, .max = 16 },
221 .p = { .min = 4, .max = 128 },
222 .p1 = { .min = 1, .max = 6 },
223 .p2 = { .dot_limit = 165000,
224 .p2_slow = 14, .p2_fast = 7 },
225 };
226
227 static const intel_limit_t intel_limits_i9xx_sdvo = {
228 .dot = { .min = 20000, .max = 400000 },
229 .vco = { .min = 1400000, .max = 2800000 },
230 .n = { .min = 1, .max = 6 },
231 .m = { .min = 70, .max = 120 },
232 .m1 = { .min = 8, .max = 18 },
233 .m2 = { .min = 3, .max = 7 },
234 .p = { .min = 5, .max = 80 },
235 .p1 = { .min = 1, .max = 8 },
236 .p2 = { .dot_limit = 200000,
237 .p2_slow = 10, .p2_fast = 5 },
238 };
239
240 static const intel_limit_t intel_limits_i9xx_lvds = {
241 .dot = { .min = 20000, .max = 400000 },
242 .vco = { .min = 1400000, .max = 2800000 },
243 .n = { .min = 1, .max = 6 },
244 .m = { .min = 70, .max = 120 },
245 .m1 = { .min = 8, .max = 18 },
246 .m2 = { .min = 3, .max = 7 },
247 .p = { .min = 7, .max = 98 },
248 .p1 = { .min = 1, .max = 8 },
249 .p2 = { .dot_limit = 112000,
250 .p2_slow = 14, .p2_fast = 7 },
251 };
252
253
254 static const intel_limit_t intel_limits_g4x_sdvo = {
255 .dot = { .min = 25000, .max = 270000 },
256 .vco = { .min = 1750000, .max = 3500000},
257 .n = { .min = 1, .max = 4 },
258 .m = { .min = 104, .max = 138 },
259 .m1 = { .min = 17, .max = 23 },
260 .m2 = { .min = 5, .max = 11 },
261 .p = { .min = 10, .max = 30 },
262 .p1 = { .min = 1, .max = 3},
263 .p2 = { .dot_limit = 270000,
264 .p2_slow = 10,
265 .p2_fast = 10
266 },
267 };
268
269 static const intel_limit_t intel_limits_g4x_hdmi = {
270 .dot = { .min = 22000, .max = 400000 },
271 .vco = { .min = 1750000, .max = 3500000},
272 .n = { .min = 1, .max = 4 },
273 .m = { .min = 104, .max = 138 },
274 .m1 = { .min = 16, .max = 23 },
275 .m2 = { .min = 5, .max = 11 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8},
278 .p2 = { .dot_limit = 165000,
279 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
283 .dot = { .min = 20000, .max = 115000 },
284 .vco = { .min = 1750000, .max = 3500000 },
285 .n = { .min = 1, .max = 3 },
286 .m = { .min = 104, .max = 138 },
287 .m1 = { .min = 17, .max = 23 },
288 .m2 = { .min = 5, .max = 11 },
289 .p = { .min = 28, .max = 112 },
290 .p1 = { .min = 2, .max = 8 },
291 .p2 = { .dot_limit = 0,
292 .p2_slow = 14, .p2_fast = 14
293 },
294 };
295
296 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
297 .dot = { .min = 80000, .max = 224000 },
298 .vco = { .min = 1750000, .max = 3500000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 104, .max = 138 },
301 .m1 = { .min = 17, .max = 23 },
302 .m2 = { .min = 5, .max = 11 },
303 .p = { .min = 14, .max = 42 },
304 .p1 = { .min = 2, .max = 6 },
305 .p2 = { .dot_limit = 0,
306 .p2_slow = 7, .p2_fast = 7
307 },
308 };
309
310 static const intel_limit_t intel_limits_pineview_sdvo = {
311 .dot = { .min = 20000, .max = 400000},
312 .vco = { .min = 1700000, .max = 3500000 },
313 /* Pineview's Ncounter is a ring counter */
314 .n = { .min = 3, .max = 6 },
315 .m = { .min = 2, .max = 256 },
316 /* Pineview only has one combined m divider, which we treat as m2. */
317 .m1 = { .min = 0, .max = 0 },
318 .m2 = { .min = 0, .max = 254 },
319 .p = { .min = 5, .max = 80 },
320 .p1 = { .min = 1, .max = 8 },
321 .p2 = { .dot_limit = 200000,
322 .p2_slow = 10, .p2_fast = 5 },
323 };
324
325 static const intel_limit_t intel_limits_pineview_lvds = {
326 .dot = { .min = 20000, .max = 400000 },
327 .vco = { .min = 1700000, .max = 3500000 },
328 .n = { .min = 3, .max = 6 },
329 .m = { .min = 2, .max = 256 },
330 .m1 = { .min = 0, .max = 0 },
331 .m2 = { .min = 0, .max = 254 },
332 .p = { .min = 7, .max = 112 },
333 .p1 = { .min = 1, .max = 8 },
334 .p2 = { .dot_limit = 112000,
335 .p2_slow = 14, .p2_fast = 14 },
336 };
337
338 /* Ironlake / Sandybridge
339 *
340 * We calculate clock using (register_value + 2) for N/M1/M2, so here
341 * the range value for them is (actual_value - 2).
342 */
343 static const intel_limit_t intel_limits_ironlake_dac = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 5 },
347 .m = { .min = 79, .max = 127 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 5, .max = 80 },
351 .p1 = { .min = 1, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_single_lvds = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 118 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 28, .max = 112 },
364 .p1 = { .min = 2, .max = 8 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 14, .p2_fast = 14 },
367 };
368
369 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
370 .dot = { .min = 25000, .max = 350000 },
371 .vco = { .min = 1760000, .max = 3510000 },
372 .n = { .min = 1, .max = 3 },
373 .m = { .min = 79, .max = 127 },
374 .m1 = { .min = 12, .max = 22 },
375 .m2 = { .min = 5, .max = 9 },
376 .p = { .min = 14, .max = 56 },
377 .p1 = { .min = 2, .max = 8 },
378 .p2 = { .dot_limit = 225000,
379 .p2_slow = 7, .p2_fast = 7 },
380 };
381
382 /* LVDS 100mhz refclk limits. */
383 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
384 .dot = { .min = 25000, .max = 350000 },
385 .vco = { .min = 1760000, .max = 3510000 },
386 .n = { .min = 1, .max = 2 },
387 .m = { .min = 79, .max = 126 },
388 .m1 = { .min = 12, .max = 22 },
389 .m2 = { .min = 5, .max = 9 },
390 .p = { .min = 28, .max = 112 },
391 .p1 = { .min = 2, .max = 8 },
392 .p2 = { .dot_limit = 225000,
393 .p2_slow = 14, .p2_fast = 14 },
394 };
395
396 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
397 .dot = { .min = 25000, .max = 350000 },
398 .vco = { .min = 1760000, .max = 3510000 },
399 .n = { .min = 1, .max = 3 },
400 .m = { .min = 79, .max = 126 },
401 .m1 = { .min = 12, .max = 22 },
402 .m2 = { .min = 5, .max = 9 },
403 .p = { .min = 14, .max = 42 },
404 .p1 = { .min = 2, .max = 6 },
405 .p2 = { .dot_limit = 225000,
406 .p2_slow = 7, .p2_fast = 7 },
407 };
408
409 static const intel_limit_t intel_limits_vlv = {
410 /*
411 * These are the data rate limits (measured in fast clocks)
412 * since those are the strictest limits we have. The fast
413 * clock and actual rate limits are more relaxed, so checking
414 * them would make no difference.
415 */
416 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
417 .vco = { .min = 4000000, .max = 6000000 },
418 .n = { .min = 1, .max = 7 },
419 .m1 = { .min = 2, .max = 3 },
420 .m2 = { .min = 11, .max = 156 },
421 .p1 = { .min = 2, .max = 3 },
422 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
423 };
424
425 static const intel_limit_t intel_limits_chv = {
426 /*
427 * These are the data rate limits (measured in fast clocks)
428 * since those are the strictest limits we have. The fast
429 * clock and actual rate limits are more relaxed, so checking
430 * them would make no difference.
431 */
432 .dot = { .min = 25000 * 5, .max = 540000 * 5},
433 .vco = { .min = 4800000, .max = 6480000 },
434 .n = { .min = 1, .max = 1 },
435 .m1 = { .min = 2, .max = 2 },
436 .m2 = { .min = 24 << 22, .max = 175 << 22 },
437 .p1 = { .min = 2, .max = 4 },
438 .p2 = { .p2_slow = 1, .p2_fast = 14 },
439 };
440
441 static const intel_limit_t intel_limits_bxt = {
442 /* FIXME: find real dot limits */
443 .dot = { .min = 0, .max = INT_MAX },
444 .vco = { .min = 4800000, .max = 6700000 },
445 .n = { .min = 1, .max = 1 },
446 .m1 = { .min = 2, .max = 2 },
447 /* FIXME: find real m2 limits */
448 .m2 = { .min = 2 << 22, .max = 255 << 22 },
449 .p1 = { .min = 2, .max = 4 },
450 .p2 = { .p2_slow = 1, .p2_fast = 20 },
451 };
452
453 static bool
454 needs_modeset(struct drm_crtc_state *state)
455 {
456 return drm_atomic_crtc_needs_modeset(state);
457 }
458
459 /**
460 * Returns whether any output on the specified pipe is of the specified type
461 */
462 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
463 {
464 struct drm_device *dev = crtc->base.dev;
465 struct intel_encoder *encoder;
466
467 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
468 if (encoder->type == type)
469 return true;
470
471 return false;
472 }
473
474 /**
475 * Returns whether any output on the specified pipe will have the specified
476 * type after a staged modeset is complete, i.e., the same as
477 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
478 * encoder->crtc.
479 */
480 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
481 int type)
482 {
483 struct drm_atomic_state *state = crtc_state->base.state;
484 struct drm_connector *connector;
485 struct drm_connector_state *connector_state;
486 struct intel_encoder *encoder;
487 int i, num_connectors = 0;
488
489 for_each_connector_in_state(state, connector, connector_state, i) {
490 if (connector_state->crtc != crtc_state->base.crtc)
491 continue;
492
493 num_connectors++;
494
495 encoder = to_intel_encoder(connector_state->best_encoder);
496 if (encoder->type == type)
497 return true;
498 }
499
500 WARN_ON(num_connectors == 0);
501
502 return false;
503 }
504
505 static const intel_limit_t *
506 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
507 {
508 struct drm_device *dev = crtc_state->base.crtc->dev;
509 const intel_limit_t *limit;
510
511 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
512 if (intel_is_dual_link_lvds(dev)) {
513 if (refclk == 100000)
514 limit = &intel_limits_ironlake_dual_lvds_100m;
515 else
516 limit = &intel_limits_ironlake_dual_lvds;
517 } else {
518 if (refclk == 100000)
519 limit = &intel_limits_ironlake_single_lvds_100m;
520 else
521 limit = &intel_limits_ironlake_single_lvds;
522 }
523 } else
524 limit = &intel_limits_ironlake_dac;
525
526 return limit;
527 }
528
529 static const intel_limit_t *
530 intel_g4x_limit(struct intel_crtc_state *crtc_state)
531 {
532 struct drm_device *dev = crtc_state->base.crtc->dev;
533 const intel_limit_t *limit;
534
535 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
536 if (intel_is_dual_link_lvds(dev))
537 limit = &intel_limits_g4x_dual_channel_lvds;
538 else
539 limit = &intel_limits_g4x_single_channel_lvds;
540 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
541 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
542 limit = &intel_limits_g4x_hdmi;
543 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
544 limit = &intel_limits_g4x_sdvo;
545 } else /* The option is for other outputs */
546 limit = &intel_limits_i9xx_sdvo;
547
548 return limit;
549 }
550
551 static const intel_limit_t *
552 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
553 {
554 struct drm_device *dev = crtc_state->base.crtc->dev;
555 const intel_limit_t *limit;
556
557 if (IS_BROXTON(dev))
558 limit = &intel_limits_bxt;
559 else if (HAS_PCH_SPLIT(dev))
560 limit = intel_ironlake_limit(crtc_state, refclk);
561 else if (IS_G4X(dev)) {
562 limit = intel_g4x_limit(crtc_state);
563 } else if (IS_PINEVIEW(dev)) {
564 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
565 limit = &intel_limits_pineview_lvds;
566 else
567 limit = &intel_limits_pineview_sdvo;
568 } else if (IS_CHERRYVIEW(dev)) {
569 limit = &intel_limits_chv;
570 } else if (IS_VALLEYVIEW(dev)) {
571 limit = &intel_limits_vlv;
572 } else if (!IS_GEN2(dev)) {
573 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
574 limit = &intel_limits_i9xx_lvds;
575 else
576 limit = &intel_limits_i9xx_sdvo;
577 } else {
578 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
579 limit = &intel_limits_i8xx_lvds;
580 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
581 limit = &intel_limits_i8xx_dvo;
582 else
583 limit = &intel_limits_i8xx_dac;
584 }
585 return limit;
586 }
587
588 /*
589 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
590 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
591 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
592 * The helpers' return value is the rate of the clock that is fed to the
593 * display engine's pipe which can be the above fast dot clock rate or a
594 * divided-down version of it.
595 */
596 /* m1 is reserved as 0 in Pineview, n is a ring counter */
597 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
598 {
599 clock->m = clock->m2 + 2;
600 clock->p = clock->p1 * clock->p2;
601 if (WARN_ON(clock->n == 0 || clock->p == 0))
602 return 0;
603 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
604 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
605
606 return clock->dot;
607 }
608
609 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
610 {
611 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
612 }
613
614 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
615 {
616 clock->m = i9xx_dpll_compute_m(clock);
617 clock->p = clock->p1 * clock->p2;
618 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
619 return 0;
620 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
621 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
622
623 return clock->dot;
624 }
625
626 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
627 {
628 clock->m = clock->m1 * clock->m2;
629 clock->p = clock->p1 * clock->p2;
630 if (WARN_ON(clock->n == 0 || clock->p == 0))
631 return 0;
632 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
633 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
634
635 return clock->dot / 5;
636 }
637
638 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
639 {
640 clock->m = clock->m1 * clock->m2;
641 clock->p = clock->p1 * clock->p2;
642 if (WARN_ON(clock->n == 0 || clock->p == 0))
643 return 0;
644 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
645 clock->n << 22);
646 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
647
648 return clock->dot / 5;
649 }
650
651 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
652 /**
653 * Returns whether the given set of divisors are valid for a given refclk with
654 * the given connectors.
655 */
656
657 static bool intel_PLL_is_valid(struct drm_device *dev,
658 const intel_limit_t *limit,
659 const intel_clock_t *clock)
660 {
661 if (clock->n < limit->n.min || limit->n.max < clock->n)
662 INTELPllInvalid("n out of range\n");
663 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
664 INTELPllInvalid("p1 out of range\n");
665 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
666 INTELPllInvalid("m2 out of range\n");
667 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
668 INTELPllInvalid("m1 out of range\n");
669
670 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
671 if (clock->m1 <= clock->m2)
672 INTELPllInvalid("m1 <= m2\n");
673
674 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
675 if (clock->p < limit->p.min || limit->p.max < clock->p)
676 INTELPllInvalid("p out of range\n");
677 if (clock->m < limit->m.min || limit->m.max < clock->m)
678 INTELPllInvalid("m out of range\n");
679 }
680
681 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
682 INTELPllInvalid("vco out of range\n");
683 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
684 * connector, etc., rather than just a single range.
685 */
686 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
687 INTELPllInvalid("dot out of range\n");
688
689 return true;
690 }
691
692 static int
693 i9xx_select_p2_div(const intel_limit_t *limit,
694 const struct intel_crtc_state *crtc_state,
695 int target)
696 {
697 struct drm_device *dev = crtc_state->base.crtc->dev;
698
699 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
700 /*
701 * For LVDS just rely on its current settings for dual-channel.
702 * We haven't figured out how to reliably set up different
703 * single/dual channel state, if we even can.
704 */
705 if (intel_is_dual_link_lvds(dev))
706 return limit->p2.p2_fast;
707 else
708 return limit->p2.p2_slow;
709 } else {
710 if (target < limit->p2.dot_limit)
711 return limit->p2.p2_slow;
712 else
713 return limit->p2.p2_fast;
714 }
715 }
716
717 static bool
718 i9xx_find_best_dpll(const intel_limit_t *limit,
719 struct intel_crtc_state *crtc_state,
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
722 {
723 struct drm_device *dev = crtc_state->base.crtc->dev;
724 intel_clock_t clock;
725 int err = target;
726
727 memset(best_clock, 0, sizeof(*best_clock));
728
729 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
730
731 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
732 clock.m1++) {
733 for (clock.m2 = limit->m2.min;
734 clock.m2 <= limit->m2.max; clock.m2++) {
735 if (clock.m2 >= clock.m1)
736 break;
737 for (clock.n = limit->n.min;
738 clock.n <= limit->n.max; clock.n++) {
739 for (clock.p1 = limit->p1.min;
740 clock.p1 <= limit->p1.max; clock.p1++) {
741 int this_err;
742
743 i9xx_calc_dpll_params(refclk, &clock);
744 if (!intel_PLL_is_valid(dev, limit,
745 &clock))
746 continue;
747 if (match_clock &&
748 clock.p != match_clock->p)
749 continue;
750
751 this_err = abs(clock.dot - target);
752 if (this_err < err) {
753 *best_clock = clock;
754 err = this_err;
755 }
756 }
757 }
758 }
759 }
760
761 return (err != target);
762 }
763
764 static bool
765 pnv_find_best_dpll(const intel_limit_t *limit,
766 struct intel_crtc_state *crtc_state,
767 int target, int refclk, intel_clock_t *match_clock,
768 intel_clock_t *best_clock)
769 {
770 struct drm_device *dev = crtc_state->base.crtc->dev;
771 intel_clock_t clock;
772 int err = target;
773
774 memset(best_clock, 0, sizeof(*best_clock));
775
776 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779 clock.m1++) {
780 for (clock.m2 = limit->m2.min;
781 clock.m2 <= limit->m2.max; clock.m2++) {
782 for (clock.n = limit->n.min;
783 clock.n <= limit->n.max; clock.n++) {
784 for (clock.p1 = limit->p1.min;
785 clock.p1 <= limit->p1.max; clock.p1++) {
786 int this_err;
787
788 pnv_calc_dpll_params(refclk, &clock);
789 if (!intel_PLL_is_valid(dev, limit,
790 &clock))
791 continue;
792 if (match_clock &&
793 clock.p != match_clock->p)
794 continue;
795
796 this_err = abs(clock.dot - target);
797 if (this_err < err) {
798 *best_clock = clock;
799 err = this_err;
800 }
801 }
802 }
803 }
804 }
805
806 return (err != target);
807 }
808
809 static bool
810 g4x_find_best_dpll(const intel_limit_t *limit,
811 struct intel_crtc_state *crtc_state,
812 int target, int refclk, intel_clock_t *match_clock,
813 intel_clock_t *best_clock)
814 {
815 struct drm_device *dev = crtc_state->base.crtc->dev;
816 intel_clock_t clock;
817 int max_n;
818 bool found = false;
819 /* approximately equals target * 0.00585 */
820 int err_most = (target >> 8) + (target >> 9);
821
822 memset(best_clock, 0, sizeof(*best_clock));
823
824 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825
826 max_n = limit->n.max;
827 /* based on hardware requirement, prefer smaller n to precision */
828 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
829 /* based on hardware requirement, prefere larger m1,m2 */
830 for (clock.m1 = limit->m1.max;
831 clock.m1 >= limit->m1.min; clock.m1--) {
832 for (clock.m2 = limit->m2.max;
833 clock.m2 >= limit->m2.min; clock.m2--) {
834 for (clock.p1 = limit->p1.max;
835 clock.p1 >= limit->p1.min; clock.p1--) {
836 int this_err;
837
838 i9xx_calc_dpll_params(refclk, &clock);
839 if (!intel_PLL_is_valid(dev, limit,
840 &clock))
841 continue;
842
843 this_err = abs(clock.dot - target);
844 if (this_err < err_most) {
845 *best_clock = clock;
846 err_most = this_err;
847 max_n = clock.n;
848 found = true;
849 }
850 }
851 }
852 }
853 }
854 return found;
855 }
856
857 /*
858 * Check if the calculated PLL configuration is more optimal compared to the
859 * best configuration and error found so far. Return the calculated error.
860 */
861 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
862 const intel_clock_t *calculated_clock,
863 const intel_clock_t *best_clock,
864 unsigned int best_error_ppm,
865 unsigned int *error_ppm)
866 {
867 /*
868 * For CHV ignore the error and consider only the P value.
869 * Prefer a bigger P value based on HW requirements.
870 */
871 if (IS_CHERRYVIEW(dev)) {
872 *error_ppm = 0;
873
874 return calculated_clock->p > best_clock->p;
875 }
876
877 if (WARN_ON_ONCE(!target_freq))
878 return false;
879
880 *error_ppm = div_u64(1000000ULL *
881 abs(target_freq - calculated_clock->dot),
882 target_freq);
883 /*
884 * Prefer a better P value over a better (smaller) error if the error
885 * is small. Ensure this preference for future configurations too by
886 * setting the error to 0.
887 */
888 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
889 *error_ppm = 0;
890
891 return true;
892 }
893
894 return *error_ppm + 10 < best_error_ppm;
895 }
896
897 static bool
898 vlv_find_best_dpll(const intel_limit_t *limit,
899 struct intel_crtc_state *crtc_state,
900 int target, int refclk, intel_clock_t *match_clock,
901 intel_clock_t *best_clock)
902 {
903 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
904 struct drm_device *dev = crtc->base.dev;
905 intel_clock_t clock;
906 unsigned int bestppm = 1000000;
907 /* min update 19.2 MHz */
908 int max_n = min(limit->n.max, refclk / 19200);
909 bool found = false;
910
911 target *= 5; /* fast clock */
912
913 memset(best_clock, 0, sizeof(*best_clock));
914
915 /* based on hardware requirement, prefer smaller n to precision */
916 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
917 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
918 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
919 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
920 clock.p = clock.p1 * clock.p2;
921 /* based on hardware requirement, prefer bigger m1,m2 values */
922 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
923 unsigned int ppm;
924
925 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
926 refclk * clock.m1);
927
928 vlv_calc_dpll_params(refclk, &clock);
929
930 if (!intel_PLL_is_valid(dev, limit,
931 &clock))
932 continue;
933
934 if (!vlv_PLL_is_optimal(dev, target,
935 &clock,
936 best_clock,
937 bestppm, &ppm))
938 continue;
939
940 *best_clock = clock;
941 bestppm = ppm;
942 found = true;
943 }
944 }
945 }
946 }
947
948 return found;
949 }
950
951 static bool
952 chv_find_best_dpll(const intel_limit_t *limit,
953 struct intel_crtc_state *crtc_state,
954 int target, int refclk, intel_clock_t *match_clock,
955 intel_clock_t *best_clock)
956 {
957 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
958 struct drm_device *dev = crtc->base.dev;
959 unsigned int best_error_ppm;
960 intel_clock_t clock;
961 uint64_t m2;
962 int found = false;
963
964 memset(best_clock, 0, sizeof(*best_clock));
965 best_error_ppm = 1000000;
966
967 /*
968 * Based on hardware doc, the n always set to 1, and m1 always
969 * set to 2. If requires to support 200Mhz refclk, we need to
970 * revisit this because n may not 1 anymore.
971 */
972 clock.n = 1, clock.m1 = 2;
973 target *= 5; /* fast clock */
974
975 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
976 for (clock.p2 = limit->p2.p2_fast;
977 clock.p2 >= limit->p2.p2_slow;
978 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
979 unsigned int error_ppm;
980
981 clock.p = clock.p1 * clock.p2;
982
983 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
984 clock.n) << 22, refclk * clock.m1);
985
986 if (m2 > INT_MAX/clock.m1)
987 continue;
988
989 clock.m2 = m2;
990
991 chv_calc_dpll_params(refclk, &clock);
992
993 if (!intel_PLL_is_valid(dev, limit, &clock))
994 continue;
995
996 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
997 best_error_ppm, &error_ppm))
998 continue;
999
1000 *best_clock = clock;
1001 best_error_ppm = error_ppm;
1002 found = true;
1003 }
1004 }
1005
1006 return found;
1007 }
1008
1009 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1010 intel_clock_t *best_clock)
1011 {
1012 int refclk = i9xx_get_refclk(crtc_state, 0);
1013
1014 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1015 target_clock, refclk, NULL, best_clock);
1016 }
1017
1018 bool intel_crtc_active(struct drm_crtc *crtc)
1019 {
1020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1021
1022 /* Be paranoid as we can arrive here with only partial
1023 * state retrieved from the hardware during setup.
1024 *
1025 * We can ditch the adjusted_mode.crtc_clock check as soon
1026 * as Haswell has gained clock readout/fastboot support.
1027 *
1028 * We can ditch the crtc->primary->fb check as soon as we can
1029 * properly reconstruct framebuffers.
1030 *
1031 * FIXME: The intel_crtc->active here should be switched to
1032 * crtc->state->active once we have proper CRTC states wired up
1033 * for atomic.
1034 */
1035 return intel_crtc->active && crtc->primary->state->fb &&
1036 intel_crtc->config->base.adjusted_mode.crtc_clock;
1037 }
1038
1039 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1040 enum pipe pipe)
1041 {
1042 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1044
1045 return intel_crtc->config->cpu_transcoder;
1046 }
1047
1048 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1049 {
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 u32 reg = PIPEDSL(pipe);
1052 u32 line1, line2;
1053 u32 line_mask;
1054
1055 if (IS_GEN2(dev))
1056 line_mask = DSL_LINEMASK_GEN2;
1057 else
1058 line_mask = DSL_LINEMASK_GEN3;
1059
1060 line1 = I915_READ(reg) & line_mask;
1061 msleep(5);
1062 line2 = I915_READ(reg) & line_mask;
1063
1064 return line1 == line2;
1065 }
1066
1067 /*
1068 * intel_wait_for_pipe_off - wait for pipe to turn off
1069 * @crtc: crtc whose pipe to wait for
1070 *
1071 * After disabling a pipe, we can't wait for vblank in the usual way,
1072 * spinning on the vblank interrupt status bit, since we won't actually
1073 * see an interrupt when the pipe is disabled.
1074 *
1075 * On Gen4 and above:
1076 * wait for the pipe register state bit to turn off
1077 *
1078 * Otherwise:
1079 * wait for the display line value to settle (it usually
1080 * ends up stopping at the start of the next frame).
1081 *
1082 */
1083 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1084 {
1085 struct drm_device *dev = crtc->base.dev;
1086 struct drm_i915_private *dev_priv = dev->dev_private;
1087 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1088 enum pipe pipe = crtc->pipe;
1089
1090 if (INTEL_INFO(dev)->gen >= 4) {
1091 int reg = PIPECONF(cpu_transcoder);
1092
1093 /* Wait for the Pipe State to go off */
1094 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1095 100))
1096 WARN(1, "pipe_off wait timed out\n");
1097 } else {
1098 /* Wait for the display line to settle */
1099 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1100 WARN(1, "pipe_off wait timed out\n");
1101 }
1102 }
1103
1104 static const char *state_string(bool enabled)
1105 {
1106 return enabled ? "on" : "off";
1107 }
1108
1109 /* Only for pre-ILK configs */
1110 void assert_pll(struct drm_i915_private *dev_priv,
1111 enum pipe pipe, bool state)
1112 {
1113 int reg;
1114 u32 val;
1115 bool cur_state;
1116
1117 reg = DPLL(pipe);
1118 val = I915_READ(reg);
1119 cur_state = !!(val & DPLL_VCO_ENABLE);
1120 I915_STATE_WARN(cur_state != state,
1121 "PLL state assertion failure (expected %s, current %s)\n",
1122 state_string(state), state_string(cur_state));
1123 }
1124
1125 /* XXX: the dsi pll is shared between MIPI DSI ports */
1126 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1127 {
1128 u32 val;
1129 bool cur_state;
1130
1131 mutex_lock(&dev_priv->sb_lock);
1132 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1133 mutex_unlock(&dev_priv->sb_lock);
1134
1135 cur_state = val & DSI_PLL_VCO_EN;
1136 I915_STATE_WARN(cur_state != state,
1137 "DSI PLL state assertion failure (expected %s, current %s)\n",
1138 state_string(state), state_string(cur_state));
1139 }
1140 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1141 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1142
1143 struct intel_shared_dpll *
1144 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1145 {
1146 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1147
1148 if (crtc->config->shared_dpll < 0)
1149 return NULL;
1150
1151 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1152 }
1153
1154 /* For ILK+ */
1155 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1156 struct intel_shared_dpll *pll,
1157 bool state)
1158 {
1159 bool cur_state;
1160 struct intel_dpll_hw_state hw_state;
1161
1162 if (WARN (!pll,
1163 "asserting DPLL %s with no DPLL\n", state_string(state)))
1164 return;
1165
1166 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1167 I915_STATE_WARN(cur_state != state,
1168 "%s assertion failure (expected %s, current %s)\n",
1169 pll->name, state_string(state), state_string(cur_state));
1170 }
1171
1172 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1173 enum pipe pipe, bool state)
1174 {
1175 int reg;
1176 u32 val;
1177 bool cur_state;
1178 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1179 pipe);
1180
1181 if (HAS_DDI(dev_priv->dev)) {
1182 /* DDI does not have a specific FDI_TX register */
1183 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1184 val = I915_READ(reg);
1185 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1186 } else {
1187 reg = FDI_TX_CTL(pipe);
1188 val = I915_READ(reg);
1189 cur_state = !!(val & FDI_TX_ENABLE);
1190 }
1191 I915_STATE_WARN(cur_state != state,
1192 "FDI TX state assertion failure (expected %s, current %s)\n",
1193 state_string(state), state_string(cur_state));
1194 }
1195 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1196 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1197
1198 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200 {
1201 int reg;
1202 u32 val;
1203 bool cur_state;
1204
1205 reg = FDI_RX_CTL(pipe);
1206 val = I915_READ(reg);
1207 cur_state = !!(val & FDI_RX_ENABLE);
1208 I915_STATE_WARN(cur_state != state,
1209 "FDI RX state assertion failure (expected %s, current %s)\n",
1210 state_string(state), state_string(cur_state));
1211 }
1212 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1213 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1214
1215 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1216 enum pipe pipe)
1217 {
1218 int reg;
1219 u32 val;
1220
1221 /* ILK FDI PLL is always enabled */
1222 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1223 return;
1224
1225 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1226 if (HAS_DDI(dev_priv->dev))
1227 return;
1228
1229 reg = FDI_TX_CTL(pipe);
1230 val = I915_READ(reg);
1231 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1232 }
1233
1234 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1235 enum pipe pipe, bool state)
1236 {
1237 int reg;
1238 u32 val;
1239 bool cur_state;
1240
1241 reg = FDI_RX_CTL(pipe);
1242 val = I915_READ(reg);
1243 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1244 I915_STATE_WARN(cur_state != state,
1245 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1246 state_string(state), state_string(cur_state));
1247 }
1248
1249 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1250 enum pipe pipe)
1251 {
1252 struct drm_device *dev = dev_priv->dev;
1253 int pp_reg;
1254 u32 val;
1255 enum pipe panel_pipe = PIPE_A;
1256 bool locked = true;
1257
1258 if (WARN_ON(HAS_DDI(dev)))
1259 return;
1260
1261 if (HAS_PCH_SPLIT(dev)) {
1262 u32 port_sel;
1263
1264 pp_reg = PCH_PP_CONTROL;
1265 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1266
1267 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1268 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1269 panel_pipe = PIPE_B;
1270 /* XXX: else fix for eDP */
1271 } else if (IS_VALLEYVIEW(dev)) {
1272 /* presumably write lock depends on pipe, not port select */
1273 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1274 panel_pipe = pipe;
1275 } else {
1276 pp_reg = PP_CONTROL;
1277 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1278 panel_pipe = PIPE_B;
1279 }
1280
1281 val = I915_READ(pp_reg);
1282 if (!(val & PANEL_POWER_ON) ||
1283 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1284 locked = false;
1285
1286 I915_STATE_WARN(panel_pipe == pipe && locked,
1287 "panel assertion failure, pipe %c regs locked\n",
1288 pipe_name(pipe));
1289 }
1290
1291 static void assert_cursor(struct drm_i915_private *dev_priv,
1292 enum pipe pipe, bool state)
1293 {
1294 struct drm_device *dev = dev_priv->dev;
1295 bool cur_state;
1296
1297 if (IS_845G(dev) || IS_I865G(dev))
1298 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1299 else
1300 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1301
1302 I915_STATE_WARN(cur_state != state,
1303 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1304 pipe_name(pipe), state_string(state), state_string(cur_state));
1305 }
1306 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1307 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1308
1309 void assert_pipe(struct drm_i915_private *dev_priv,
1310 enum pipe pipe, bool state)
1311 {
1312 int reg;
1313 u32 val;
1314 bool cur_state;
1315 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1316 pipe);
1317
1318 /* if we need the pipe quirk it must be always on */
1319 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1320 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1321 state = true;
1322
1323 if (!intel_display_power_is_enabled(dev_priv,
1324 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1325 cur_state = false;
1326 } else {
1327 reg = PIPECONF(cpu_transcoder);
1328 val = I915_READ(reg);
1329 cur_state = !!(val & PIPECONF_ENABLE);
1330 }
1331
1332 I915_STATE_WARN(cur_state != state,
1333 "pipe %c assertion failure (expected %s, current %s)\n",
1334 pipe_name(pipe), state_string(state), state_string(cur_state));
1335 }
1336
1337 static void assert_plane(struct drm_i915_private *dev_priv,
1338 enum plane plane, bool state)
1339 {
1340 int reg;
1341 u32 val;
1342 bool cur_state;
1343
1344 reg = DSPCNTR(plane);
1345 val = I915_READ(reg);
1346 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1347 I915_STATE_WARN(cur_state != state,
1348 "plane %c assertion failure (expected %s, current %s)\n",
1349 plane_name(plane), state_string(state), state_string(cur_state));
1350 }
1351
1352 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1353 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1354
1355 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1356 enum pipe pipe)
1357 {
1358 struct drm_device *dev = dev_priv->dev;
1359 int reg, i;
1360 u32 val;
1361 int cur_pipe;
1362
1363 /* Primary planes are fixed to pipes on gen4+ */
1364 if (INTEL_INFO(dev)->gen >= 4) {
1365 reg = DSPCNTR(pipe);
1366 val = I915_READ(reg);
1367 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1368 "plane %c assertion failure, should be disabled but not\n",
1369 plane_name(pipe));
1370 return;
1371 }
1372
1373 /* Need to check both planes against the pipe */
1374 for_each_pipe(dev_priv, i) {
1375 reg = DSPCNTR(i);
1376 val = I915_READ(reg);
1377 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1378 DISPPLANE_SEL_PIPE_SHIFT;
1379 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1380 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1381 plane_name(i), pipe_name(pipe));
1382 }
1383 }
1384
1385 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1386 enum pipe pipe)
1387 {
1388 struct drm_device *dev = dev_priv->dev;
1389 int reg, sprite;
1390 u32 val;
1391
1392 if (INTEL_INFO(dev)->gen >= 9) {
1393 for_each_sprite(dev_priv, pipe, sprite) {
1394 val = I915_READ(PLANE_CTL(pipe, sprite));
1395 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1396 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1397 sprite, pipe_name(pipe));
1398 }
1399 } else if (IS_VALLEYVIEW(dev)) {
1400 for_each_sprite(dev_priv, pipe, sprite) {
1401 reg = SPCNTR(pipe, sprite);
1402 val = I915_READ(reg);
1403 I915_STATE_WARN(val & SP_ENABLE,
1404 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1405 sprite_name(pipe, sprite), pipe_name(pipe));
1406 }
1407 } else if (INTEL_INFO(dev)->gen >= 7) {
1408 reg = SPRCTL(pipe);
1409 val = I915_READ(reg);
1410 I915_STATE_WARN(val & SPRITE_ENABLE,
1411 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1412 plane_name(pipe), pipe_name(pipe));
1413 } else if (INTEL_INFO(dev)->gen >= 5) {
1414 reg = DVSCNTR(pipe);
1415 val = I915_READ(reg);
1416 I915_STATE_WARN(val & DVS_ENABLE,
1417 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1418 plane_name(pipe), pipe_name(pipe));
1419 }
1420 }
1421
1422 static void assert_vblank_disabled(struct drm_crtc *crtc)
1423 {
1424 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1425 drm_crtc_vblank_put(crtc);
1426 }
1427
1428 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1429 {
1430 u32 val;
1431 bool enabled;
1432
1433 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1434
1435 val = I915_READ(PCH_DREF_CONTROL);
1436 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1437 DREF_SUPERSPREAD_SOURCE_MASK));
1438 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1439 }
1440
1441 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1442 enum pipe pipe)
1443 {
1444 int reg;
1445 u32 val;
1446 bool enabled;
1447
1448 reg = PCH_TRANSCONF(pipe);
1449 val = I915_READ(reg);
1450 enabled = !!(val & TRANS_ENABLE);
1451 I915_STATE_WARN(enabled,
1452 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1453 pipe_name(pipe));
1454 }
1455
1456 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, u32 port_sel, u32 val)
1458 {
1459 if ((val & DP_PORT_EN) == 0)
1460 return false;
1461
1462 if (HAS_PCH_CPT(dev_priv->dev)) {
1463 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1464 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1465 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1466 return false;
1467 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1468 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1469 return false;
1470 } else {
1471 if ((val & DP_PIPE_MASK) != (pipe << 30))
1472 return false;
1473 }
1474 return true;
1475 }
1476
1477 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1478 enum pipe pipe, u32 val)
1479 {
1480 if ((val & SDVO_ENABLE) == 0)
1481 return false;
1482
1483 if (HAS_PCH_CPT(dev_priv->dev)) {
1484 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1485 return false;
1486 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1487 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1488 return false;
1489 } else {
1490 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1491 return false;
1492 }
1493 return true;
1494 }
1495
1496 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1497 enum pipe pipe, u32 val)
1498 {
1499 if ((val & LVDS_PORT_EN) == 0)
1500 return false;
1501
1502 if (HAS_PCH_CPT(dev_priv->dev)) {
1503 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1504 return false;
1505 } else {
1506 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1507 return false;
1508 }
1509 return true;
1510 }
1511
1512 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1513 enum pipe pipe, u32 val)
1514 {
1515 if ((val & ADPA_DAC_ENABLE) == 0)
1516 return false;
1517 if (HAS_PCH_CPT(dev_priv->dev)) {
1518 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1519 return false;
1520 } else {
1521 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1522 return false;
1523 }
1524 return true;
1525 }
1526
1527 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1528 enum pipe pipe, int reg, u32 port_sel)
1529 {
1530 u32 val = I915_READ(reg);
1531 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1532 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1533 reg, pipe_name(pipe));
1534
1535 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1536 && (val & DP_PIPEB_SELECT),
1537 "IBX PCH dp port still using transcoder B\n");
1538 }
1539
1540 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1541 enum pipe pipe, int reg)
1542 {
1543 u32 val = I915_READ(reg);
1544 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1545 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1546 reg, pipe_name(pipe));
1547
1548 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1549 && (val & SDVO_PIPE_B_SELECT),
1550 "IBX PCH hdmi port still using transcoder B\n");
1551 }
1552
1553 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1554 enum pipe pipe)
1555 {
1556 int reg;
1557 u32 val;
1558
1559 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1560 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1561 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1562
1563 reg = PCH_ADPA;
1564 val = I915_READ(reg);
1565 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1566 "PCH VGA enabled on transcoder %c, should be disabled\n",
1567 pipe_name(pipe));
1568
1569 reg = PCH_LVDS;
1570 val = I915_READ(reg);
1571 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1572 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1573 pipe_name(pipe));
1574
1575 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1576 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1577 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1578 }
1579
1580 static void vlv_enable_pll(struct intel_crtc *crtc,
1581 const struct intel_crtc_state *pipe_config)
1582 {
1583 struct drm_device *dev = crtc->base.dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 int reg = DPLL(crtc->pipe);
1586 u32 dpll = pipe_config->dpll_hw_state.dpll;
1587
1588 assert_pipe_disabled(dev_priv, crtc->pipe);
1589
1590 /* No really, not for ILK+ */
1591 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1592
1593 /* PLL is protected by panel, make sure we can write it */
1594 if (IS_MOBILE(dev_priv->dev))
1595 assert_panel_unlocked(dev_priv, crtc->pipe);
1596
1597 I915_WRITE(reg, dpll);
1598 POSTING_READ(reg);
1599 udelay(150);
1600
1601 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1602 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1603
1604 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1605 POSTING_READ(DPLL_MD(crtc->pipe));
1606
1607 /* We do this three times for luck */
1608 I915_WRITE(reg, dpll);
1609 POSTING_READ(reg);
1610 udelay(150); /* wait for warmup */
1611 I915_WRITE(reg, dpll);
1612 POSTING_READ(reg);
1613 udelay(150); /* wait for warmup */
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150); /* wait for warmup */
1617 }
1618
1619 static void chv_enable_pll(struct intel_crtc *crtc,
1620 const struct intel_crtc_state *pipe_config)
1621 {
1622 struct drm_device *dev = crtc->base.dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 int pipe = crtc->pipe;
1625 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1626 u32 tmp;
1627
1628 assert_pipe_disabled(dev_priv, crtc->pipe);
1629
1630 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1631
1632 mutex_lock(&dev_priv->sb_lock);
1633
1634 /* Enable back the 10bit clock to display controller */
1635 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1636 tmp |= DPIO_DCLKP_EN;
1637 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1638
1639 mutex_unlock(&dev_priv->sb_lock);
1640
1641 /*
1642 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1643 */
1644 udelay(1);
1645
1646 /* Enable PLL */
1647 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1648
1649 /* Check PLL is locked */
1650 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1651 DRM_ERROR("PLL %d failed to lock\n", pipe);
1652
1653 /* not sure when this should be written */
1654 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1655 POSTING_READ(DPLL_MD(pipe));
1656 }
1657
1658 static int intel_num_dvo_pipes(struct drm_device *dev)
1659 {
1660 struct intel_crtc *crtc;
1661 int count = 0;
1662
1663 for_each_intel_crtc(dev, crtc)
1664 count += crtc->base.state->active &&
1665 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1666
1667 return count;
1668 }
1669
1670 static void i9xx_enable_pll(struct intel_crtc *crtc)
1671 {
1672 struct drm_device *dev = crtc->base.dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 int reg = DPLL(crtc->pipe);
1675 u32 dpll = crtc->config->dpll_hw_state.dpll;
1676
1677 assert_pipe_disabled(dev_priv, crtc->pipe);
1678
1679 /* No really, not for ILK+ */
1680 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1681
1682 /* PLL is protected by panel, make sure we can write it */
1683 if (IS_MOBILE(dev) && !IS_I830(dev))
1684 assert_panel_unlocked(dev_priv, crtc->pipe);
1685
1686 /* Enable DVO 2x clock on both PLLs if necessary */
1687 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1688 /*
1689 * It appears to be important that we don't enable this
1690 * for the current pipe before otherwise configuring the
1691 * PLL. No idea how this should be handled if multiple
1692 * DVO outputs are enabled simultaneosly.
1693 */
1694 dpll |= DPLL_DVO_2X_MODE;
1695 I915_WRITE(DPLL(!crtc->pipe),
1696 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1697 }
1698
1699 /* Wait for the clocks to stabilize. */
1700 POSTING_READ(reg);
1701 udelay(150);
1702
1703 if (INTEL_INFO(dev)->gen >= 4) {
1704 I915_WRITE(DPLL_MD(crtc->pipe),
1705 crtc->config->dpll_hw_state.dpll_md);
1706 } else {
1707 /* The pixel multiplier can only be updated once the
1708 * DPLL is enabled and the clocks are stable.
1709 *
1710 * So write it again.
1711 */
1712 I915_WRITE(reg, dpll);
1713 }
1714
1715 /* We do this three times for luck */
1716 I915_WRITE(reg, dpll);
1717 POSTING_READ(reg);
1718 udelay(150); /* wait for warmup */
1719 I915_WRITE(reg, dpll);
1720 POSTING_READ(reg);
1721 udelay(150); /* wait for warmup */
1722 I915_WRITE(reg, dpll);
1723 POSTING_READ(reg);
1724 udelay(150); /* wait for warmup */
1725 }
1726
1727 /**
1728 * i9xx_disable_pll - disable a PLL
1729 * @dev_priv: i915 private structure
1730 * @pipe: pipe PLL to disable
1731 *
1732 * Disable the PLL for @pipe, making sure the pipe is off first.
1733 *
1734 * Note! This is for pre-ILK only.
1735 */
1736 static void i9xx_disable_pll(struct intel_crtc *crtc)
1737 {
1738 struct drm_device *dev = crtc->base.dev;
1739 struct drm_i915_private *dev_priv = dev->dev_private;
1740 enum pipe pipe = crtc->pipe;
1741
1742 /* Disable DVO 2x clock on both PLLs if necessary */
1743 if (IS_I830(dev) &&
1744 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1745 !intel_num_dvo_pipes(dev)) {
1746 I915_WRITE(DPLL(PIPE_B),
1747 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1748 I915_WRITE(DPLL(PIPE_A),
1749 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1750 }
1751
1752 /* Don't disable pipe or pipe PLLs if needed */
1753 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1754 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1755 return;
1756
1757 /* Make sure the pipe isn't still relying on us */
1758 assert_pipe_disabled(dev_priv, pipe);
1759
1760 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1761 POSTING_READ(DPLL(pipe));
1762 }
1763
1764 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1765 {
1766 u32 val;
1767
1768 /* Make sure the pipe isn't still relying on us */
1769 assert_pipe_disabled(dev_priv, pipe);
1770
1771 /*
1772 * Leave integrated clock source and reference clock enabled for pipe B.
1773 * The latter is needed for VGA hotplug / manual detection.
1774 */
1775 val = DPLL_VGA_MODE_DIS;
1776 if (pipe == PIPE_B)
1777 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1778 I915_WRITE(DPLL(pipe), val);
1779 POSTING_READ(DPLL(pipe));
1780
1781 }
1782
1783 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1784 {
1785 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1786 u32 val;
1787
1788 /* Make sure the pipe isn't still relying on us */
1789 assert_pipe_disabled(dev_priv, pipe);
1790
1791 /* Set PLL en = 0 */
1792 val = DPLL_SSC_REF_CLK_CHV |
1793 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1794 if (pipe != PIPE_A)
1795 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1796 I915_WRITE(DPLL(pipe), val);
1797 POSTING_READ(DPLL(pipe));
1798
1799 mutex_lock(&dev_priv->sb_lock);
1800
1801 /* Disable 10bit clock to display controller */
1802 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1803 val &= ~DPIO_DCLKP_EN;
1804 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1805
1806 mutex_unlock(&dev_priv->sb_lock);
1807 }
1808
1809 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1810 struct intel_digital_port *dport,
1811 unsigned int expected_mask)
1812 {
1813 u32 port_mask;
1814 int dpll_reg;
1815
1816 switch (dport->port) {
1817 case PORT_B:
1818 port_mask = DPLL_PORTB_READY_MASK;
1819 dpll_reg = DPLL(0);
1820 break;
1821 case PORT_C:
1822 port_mask = DPLL_PORTC_READY_MASK;
1823 dpll_reg = DPLL(0);
1824 expected_mask <<= 4;
1825 break;
1826 case PORT_D:
1827 port_mask = DPLL_PORTD_READY_MASK;
1828 dpll_reg = DPIO_PHY_STATUS;
1829 break;
1830 default:
1831 BUG();
1832 }
1833
1834 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1835 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1836 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1837 }
1838
1839 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1840 {
1841 struct drm_device *dev = crtc->base.dev;
1842 struct drm_i915_private *dev_priv = dev->dev_private;
1843 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1844
1845 if (WARN_ON(pll == NULL))
1846 return;
1847
1848 WARN_ON(!pll->config.crtc_mask);
1849 if (pll->active == 0) {
1850 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1851 WARN_ON(pll->on);
1852 assert_shared_dpll_disabled(dev_priv, pll);
1853
1854 pll->mode_set(dev_priv, pll);
1855 }
1856 }
1857
1858 /**
1859 * intel_enable_shared_dpll - enable PCH PLL
1860 * @dev_priv: i915 private structure
1861 * @pipe: pipe PLL to enable
1862 *
1863 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1864 * drives the transcoder clock.
1865 */
1866 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1867 {
1868 struct drm_device *dev = crtc->base.dev;
1869 struct drm_i915_private *dev_priv = dev->dev_private;
1870 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871
1872 if (WARN_ON(pll == NULL))
1873 return;
1874
1875 if (WARN_ON(pll->config.crtc_mask == 0))
1876 return;
1877
1878 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1879 pll->name, pll->active, pll->on,
1880 crtc->base.base.id);
1881
1882 if (pll->active++) {
1883 WARN_ON(!pll->on);
1884 assert_shared_dpll_enabled(dev_priv, pll);
1885 return;
1886 }
1887 WARN_ON(pll->on);
1888
1889 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1890
1891 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1892 pll->enable(dev_priv, pll);
1893 pll->on = true;
1894 }
1895
1896 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1897 {
1898 struct drm_device *dev = crtc->base.dev;
1899 struct drm_i915_private *dev_priv = dev->dev_private;
1900 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1901
1902 /* PCH only available on ILK+ */
1903 if (INTEL_INFO(dev)->gen < 5)
1904 return;
1905
1906 if (pll == NULL)
1907 return;
1908
1909 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1910 return;
1911
1912 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1913 pll->name, pll->active, pll->on,
1914 crtc->base.base.id);
1915
1916 if (WARN_ON(pll->active == 0)) {
1917 assert_shared_dpll_disabled(dev_priv, pll);
1918 return;
1919 }
1920
1921 assert_shared_dpll_enabled(dev_priv, pll);
1922 WARN_ON(!pll->on);
1923 if (--pll->active)
1924 return;
1925
1926 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1927 pll->disable(dev_priv, pll);
1928 pll->on = false;
1929
1930 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1931 }
1932
1933 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1934 enum pipe pipe)
1935 {
1936 struct drm_device *dev = dev_priv->dev;
1937 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1939 uint32_t reg, val, pipeconf_val;
1940
1941 /* PCH only available on ILK+ */
1942 BUG_ON(!HAS_PCH_SPLIT(dev));
1943
1944 /* Make sure PCH DPLL is enabled */
1945 assert_shared_dpll_enabled(dev_priv,
1946 intel_crtc_to_shared_dpll(intel_crtc));
1947
1948 /* FDI must be feeding us bits for PCH ports */
1949 assert_fdi_tx_enabled(dev_priv, pipe);
1950 assert_fdi_rx_enabled(dev_priv, pipe);
1951
1952 if (HAS_PCH_CPT(dev)) {
1953 /* Workaround: Set the timing override bit before enabling the
1954 * pch transcoder. */
1955 reg = TRANS_CHICKEN2(pipe);
1956 val = I915_READ(reg);
1957 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1958 I915_WRITE(reg, val);
1959 }
1960
1961 reg = PCH_TRANSCONF(pipe);
1962 val = I915_READ(reg);
1963 pipeconf_val = I915_READ(PIPECONF(pipe));
1964
1965 if (HAS_PCH_IBX(dev_priv->dev)) {
1966 /*
1967 * Make the BPC in transcoder be consistent with
1968 * that in pipeconf reg. For HDMI we must use 8bpc
1969 * here for both 8bpc and 12bpc.
1970 */
1971 val &= ~PIPECONF_BPC_MASK;
1972 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1973 val |= PIPECONF_8BPC;
1974 else
1975 val |= pipeconf_val & PIPECONF_BPC_MASK;
1976 }
1977
1978 val &= ~TRANS_INTERLACE_MASK;
1979 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1980 if (HAS_PCH_IBX(dev_priv->dev) &&
1981 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1982 val |= TRANS_LEGACY_INTERLACED_ILK;
1983 else
1984 val |= TRANS_INTERLACED;
1985 else
1986 val |= TRANS_PROGRESSIVE;
1987
1988 I915_WRITE(reg, val | TRANS_ENABLE);
1989 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1990 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1991 }
1992
1993 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1994 enum transcoder cpu_transcoder)
1995 {
1996 u32 val, pipeconf_val;
1997
1998 /* PCH only available on ILK+ */
1999 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2000
2001 /* FDI must be feeding us bits for PCH ports */
2002 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2003 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2004
2005 /* Workaround: set timing override bit. */
2006 val = I915_READ(_TRANSA_CHICKEN2);
2007 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2008 I915_WRITE(_TRANSA_CHICKEN2, val);
2009
2010 val = TRANS_ENABLE;
2011 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2012
2013 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2014 PIPECONF_INTERLACED_ILK)
2015 val |= TRANS_INTERLACED;
2016 else
2017 val |= TRANS_PROGRESSIVE;
2018
2019 I915_WRITE(LPT_TRANSCONF, val);
2020 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2021 DRM_ERROR("Failed to enable PCH transcoder\n");
2022 }
2023
2024 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2025 enum pipe pipe)
2026 {
2027 struct drm_device *dev = dev_priv->dev;
2028 uint32_t reg, val;
2029
2030 /* FDI relies on the transcoder */
2031 assert_fdi_tx_disabled(dev_priv, pipe);
2032 assert_fdi_rx_disabled(dev_priv, pipe);
2033
2034 /* Ports must be off as well */
2035 assert_pch_ports_disabled(dev_priv, pipe);
2036
2037 reg = PCH_TRANSCONF(pipe);
2038 val = I915_READ(reg);
2039 val &= ~TRANS_ENABLE;
2040 I915_WRITE(reg, val);
2041 /* wait for PCH transcoder off, transcoder state */
2042 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2043 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2044
2045 if (!HAS_PCH_IBX(dev)) {
2046 /* Workaround: Clear the timing override chicken bit again. */
2047 reg = TRANS_CHICKEN2(pipe);
2048 val = I915_READ(reg);
2049 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2050 I915_WRITE(reg, val);
2051 }
2052 }
2053
2054 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2055 {
2056 u32 val;
2057
2058 val = I915_READ(LPT_TRANSCONF);
2059 val &= ~TRANS_ENABLE;
2060 I915_WRITE(LPT_TRANSCONF, val);
2061 /* wait for PCH transcoder off, transcoder state */
2062 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2063 DRM_ERROR("Failed to disable PCH transcoder\n");
2064
2065 /* Workaround: clear timing override bit. */
2066 val = I915_READ(_TRANSA_CHICKEN2);
2067 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2068 I915_WRITE(_TRANSA_CHICKEN2, val);
2069 }
2070
2071 /**
2072 * intel_enable_pipe - enable a pipe, asserting requirements
2073 * @crtc: crtc responsible for the pipe
2074 *
2075 * Enable @crtc's pipe, making sure that various hardware specific requirements
2076 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2077 */
2078 static void intel_enable_pipe(struct intel_crtc *crtc)
2079 {
2080 struct drm_device *dev = crtc->base.dev;
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 enum pipe pipe = crtc->pipe;
2083 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2084 pipe);
2085 enum pipe pch_transcoder;
2086 int reg;
2087 u32 val;
2088
2089 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2090
2091 assert_planes_disabled(dev_priv, pipe);
2092 assert_cursor_disabled(dev_priv, pipe);
2093 assert_sprites_disabled(dev_priv, pipe);
2094
2095 if (HAS_PCH_LPT(dev_priv->dev))
2096 pch_transcoder = TRANSCODER_A;
2097 else
2098 pch_transcoder = pipe;
2099
2100 /*
2101 * A pipe without a PLL won't actually be able to drive bits from
2102 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2103 * need the check.
2104 */
2105 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2106 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2107 assert_dsi_pll_enabled(dev_priv);
2108 else
2109 assert_pll_enabled(dev_priv, pipe);
2110 else {
2111 if (crtc->config->has_pch_encoder) {
2112 /* if driving the PCH, we need FDI enabled */
2113 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2114 assert_fdi_tx_pll_enabled(dev_priv,
2115 (enum pipe) cpu_transcoder);
2116 }
2117 /* FIXME: assert CPU port conditions for SNB+ */
2118 }
2119
2120 reg = PIPECONF(cpu_transcoder);
2121 val = I915_READ(reg);
2122 if (val & PIPECONF_ENABLE) {
2123 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2124 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2125 return;
2126 }
2127
2128 I915_WRITE(reg, val | PIPECONF_ENABLE);
2129 POSTING_READ(reg);
2130 }
2131
2132 /**
2133 * intel_disable_pipe - disable a pipe, asserting requirements
2134 * @crtc: crtc whose pipes is to be disabled
2135 *
2136 * Disable the pipe of @crtc, making sure that various hardware
2137 * specific requirements are met, if applicable, e.g. plane
2138 * disabled, panel fitter off, etc.
2139 *
2140 * Will wait until the pipe has shut down before returning.
2141 */
2142 static void intel_disable_pipe(struct intel_crtc *crtc)
2143 {
2144 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2145 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2146 enum pipe pipe = crtc->pipe;
2147 int reg;
2148 u32 val;
2149
2150 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2151
2152 /*
2153 * Make sure planes won't keep trying to pump pixels to us,
2154 * or we might hang the display.
2155 */
2156 assert_planes_disabled(dev_priv, pipe);
2157 assert_cursor_disabled(dev_priv, pipe);
2158 assert_sprites_disabled(dev_priv, pipe);
2159
2160 reg = PIPECONF(cpu_transcoder);
2161 val = I915_READ(reg);
2162 if ((val & PIPECONF_ENABLE) == 0)
2163 return;
2164
2165 /*
2166 * Double wide has implications for planes
2167 * so best keep it disabled when not needed.
2168 */
2169 if (crtc->config->double_wide)
2170 val &= ~PIPECONF_DOUBLE_WIDE;
2171
2172 /* Don't disable pipe or pipe PLLs if needed */
2173 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2174 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2175 val &= ~PIPECONF_ENABLE;
2176
2177 I915_WRITE(reg, val);
2178 if ((val & PIPECONF_ENABLE) == 0)
2179 intel_wait_for_pipe_off(crtc);
2180 }
2181
2182 static bool need_vtd_wa(struct drm_device *dev)
2183 {
2184 #ifdef CONFIG_INTEL_IOMMU
2185 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2186 return true;
2187 #endif
2188 return false;
2189 }
2190
2191 unsigned int
2192 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2193 uint64_t fb_format_modifier, unsigned int plane)
2194 {
2195 unsigned int tile_height;
2196 uint32_t pixel_bytes;
2197
2198 switch (fb_format_modifier) {
2199 case DRM_FORMAT_MOD_NONE:
2200 tile_height = 1;
2201 break;
2202 case I915_FORMAT_MOD_X_TILED:
2203 tile_height = IS_GEN2(dev) ? 16 : 8;
2204 break;
2205 case I915_FORMAT_MOD_Y_TILED:
2206 tile_height = 32;
2207 break;
2208 case I915_FORMAT_MOD_Yf_TILED:
2209 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2210 switch (pixel_bytes) {
2211 default:
2212 case 1:
2213 tile_height = 64;
2214 break;
2215 case 2:
2216 case 4:
2217 tile_height = 32;
2218 break;
2219 case 8:
2220 tile_height = 16;
2221 break;
2222 case 16:
2223 WARN_ONCE(1,
2224 "128-bit pixels are not supported for display!");
2225 tile_height = 16;
2226 break;
2227 }
2228 break;
2229 default:
2230 MISSING_CASE(fb_format_modifier);
2231 tile_height = 1;
2232 break;
2233 }
2234
2235 return tile_height;
2236 }
2237
2238 unsigned int
2239 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2240 uint32_t pixel_format, uint64_t fb_format_modifier)
2241 {
2242 return ALIGN(height, intel_tile_height(dev, pixel_format,
2243 fb_format_modifier, 0));
2244 }
2245
2246 static int
2247 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2248 const struct drm_plane_state *plane_state)
2249 {
2250 struct intel_rotation_info *info = &view->rotation_info;
2251 unsigned int tile_height, tile_pitch;
2252
2253 *view = i915_ggtt_view_normal;
2254
2255 if (!plane_state)
2256 return 0;
2257
2258 if (!intel_rotation_90_or_270(plane_state->rotation))
2259 return 0;
2260
2261 *view = i915_ggtt_view_rotated;
2262
2263 info->height = fb->height;
2264 info->pixel_format = fb->pixel_format;
2265 info->pitch = fb->pitches[0];
2266 info->uv_offset = fb->offsets[1];
2267 info->fb_modifier = fb->modifier[0];
2268
2269 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2270 fb->modifier[0], 0);
2271 tile_pitch = PAGE_SIZE / tile_height;
2272 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2273 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2274 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2275
2276 if (info->pixel_format == DRM_FORMAT_NV12) {
2277 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2278 fb->modifier[0], 1);
2279 tile_pitch = PAGE_SIZE / tile_height;
2280 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2281 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2282 tile_height);
2283 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2284 PAGE_SIZE;
2285 }
2286
2287 return 0;
2288 }
2289
2290 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2291 {
2292 if (INTEL_INFO(dev_priv)->gen >= 9)
2293 return 256 * 1024;
2294 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2295 IS_VALLEYVIEW(dev_priv))
2296 return 128 * 1024;
2297 else if (INTEL_INFO(dev_priv)->gen >= 4)
2298 return 4 * 1024;
2299 else
2300 return 0;
2301 }
2302
2303 int
2304 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2305 struct drm_framebuffer *fb,
2306 const struct drm_plane_state *plane_state,
2307 struct intel_engine_cs *pipelined,
2308 struct drm_i915_gem_request **pipelined_request)
2309 {
2310 struct drm_device *dev = fb->dev;
2311 struct drm_i915_private *dev_priv = dev->dev_private;
2312 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2313 struct i915_ggtt_view view;
2314 u32 alignment;
2315 int ret;
2316
2317 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2318
2319 switch (fb->modifier[0]) {
2320 case DRM_FORMAT_MOD_NONE:
2321 alignment = intel_linear_alignment(dev_priv);
2322 break;
2323 case I915_FORMAT_MOD_X_TILED:
2324 if (INTEL_INFO(dev)->gen >= 9)
2325 alignment = 256 * 1024;
2326 else {
2327 /* pin() will align the object as required by fence */
2328 alignment = 0;
2329 }
2330 break;
2331 case I915_FORMAT_MOD_Y_TILED:
2332 case I915_FORMAT_MOD_Yf_TILED:
2333 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2334 "Y tiling bo slipped through, driver bug!\n"))
2335 return -EINVAL;
2336 alignment = 1 * 1024 * 1024;
2337 break;
2338 default:
2339 MISSING_CASE(fb->modifier[0]);
2340 return -EINVAL;
2341 }
2342
2343 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2344 if (ret)
2345 return ret;
2346
2347 /* Note that the w/a also requires 64 PTE of padding following the
2348 * bo. We currently fill all unused PTE with the shadow page and so
2349 * we should always have valid PTE following the scanout preventing
2350 * the VT-d warning.
2351 */
2352 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2353 alignment = 256 * 1024;
2354
2355 /*
2356 * Global gtt pte registers are special registers which actually forward
2357 * writes to a chunk of system memory. Which means that there is no risk
2358 * that the register values disappear as soon as we call
2359 * intel_runtime_pm_put(), so it is correct to wrap only the
2360 * pin/unpin/fence and not more.
2361 */
2362 intel_runtime_pm_get(dev_priv);
2363
2364 dev_priv->mm.interruptible = false;
2365 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2366 pipelined_request, &view);
2367 if (ret)
2368 goto err_interruptible;
2369
2370 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2371 * fence, whereas 965+ only requires a fence if using
2372 * framebuffer compression. For simplicity, we always install
2373 * a fence as the cost is not that onerous.
2374 */
2375 ret = i915_gem_object_get_fence(obj);
2376 if (ret == -EDEADLK) {
2377 /*
2378 * -EDEADLK means there are no free fences
2379 * no pending flips.
2380 *
2381 * This is propagated to atomic, but it uses
2382 * -EDEADLK to force a locking recovery, so
2383 * change the returned error to -EBUSY.
2384 */
2385 ret = -EBUSY;
2386 goto err_unpin;
2387 } else if (ret)
2388 goto err_unpin;
2389
2390 i915_gem_object_pin_fence(obj);
2391
2392 dev_priv->mm.interruptible = true;
2393 intel_runtime_pm_put(dev_priv);
2394 return 0;
2395
2396 err_unpin:
2397 i915_gem_object_unpin_from_display_plane(obj, &view);
2398 err_interruptible:
2399 dev_priv->mm.interruptible = true;
2400 intel_runtime_pm_put(dev_priv);
2401 return ret;
2402 }
2403
2404 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2405 const struct drm_plane_state *plane_state)
2406 {
2407 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2408 struct i915_ggtt_view view;
2409 int ret;
2410
2411 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2412
2413 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2414 WARN_ONCE(ret, "Couldn't get view from plane state!");
2415
2416 i915_gem_object_unpin_fence(obj);
2417 i915_gem_object_unpin_from_display_plane(obj, &view);
2418 }
2419
2420 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2421 * is assumed to be a power-of-two. */
2422 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2423 int *x, int *y,
2424 unsigned int tiling_mode,
2425 unsigned int cpp,
2426 unsigned int pitch)
2427 {
2428 if (tiling_mode != I915_TILING_NONE) {
2429 unsigned int tile_rows, tiles;
2430
2431 tile_rows = *y / 8;
2432 *y %= 8;
2433
2434 tiles = *x / (512/cpp);
2435 *x %= 512/cpp;
2436
2437 return tile_rows * pitch * 8 + tiles * 4096;
2438 } else {
2439 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2440 unsigned int offset;
2441
2442 offset = *y * pitch + *x * cpp;
2443 *y = (offset & alignment) / pitch;
2444 *x = ((offset & alignment) - *y * pitch) / cpp;
2445 return offset & ~alignment;
2446 }
2447 }
2448
2449 static int i9xx_format_to_fourcc(int format)
2450 {
2451 switch (format) {
2452 case DISPPLANE_8BPP:
2453 return DRM_FORMAT_C8;
2454 case DISPPLANE_BGRX555:
2455 return DRM_FORMAT_XRGB1555;
2456 case DISPPLANE_BGRX565:
2457 return DRM_FORMAT_RGB565;
2458 default:
2459 case DISPPLANE_BGRX888:
2460 return DRM_FORMAT_XRGB8888;
2461 case DISPPLANE_RGBX888:
2462 return DRM_FORMAT_XBGR8888;
2463 case DISPPLANE_BGRX101010:
2464 return DRM_FORMAT_XRGB2101010;
2465 case DISPPLANE_RGBX101010:
2466 return DRM_FORMAT_XBGR2101010;
2467 }
2468 }
2469
2470 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2471 {
2472 switch (format) {
2473 case PLANE_CTL_FORMAT_RGB_565:
2474 return DRM_FORMAT_RGB565;
2475 default:
2476 case PLANE_CTL_FORMAT_XRGB_8888:
2477 if (rgb_order) {
2478 if (alpha)
2479 return DRM_FORMAT_ABGR8888;
2480 else
2481 return DRM_FORMAT_XBGR8888;
2482 } else {
2483 if (alpha)
2484 return DRM_FORMAT_ARGB8888;
2485 else
2486 return DRM_FORMAT_XRGB8888;
2487 }
2488 case PLANE_CTL_FORMAT_XRGB_2101010:
2489 if (rgb_order)
2490 return DRM_FORMAT_XBGR2101010;
2491 else
2492 return DRM_FORMAT_XRGB2101010;
2493 }
2494 }
2495
2496 static bool
2497 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2498 struct intel_initial_plane_config *plane_config)
2499 {
2500 struct drm_device *dev = crtc->base.dev;
2501 struct drm_i915_gem_object *obj = NULL;
2502 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2503 struct drm_framebuffer *fb = &plane_config->fb->base;
2504 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2505 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2506 PAGE_SIZE);
2507
2508 size_aligned -= base_aligned;
2509
2510 if (plane_config->size == 0)
2511 return false;
2512
2513 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2514 base_aligned,
2515 base_aligned,
2516 size_aligned);
2517 if (!obj)
2518 return false;
2519
2520 obj->tiling_mode = plane_config->tiling;
2521 if (obj->tiling_mode == I915_TILING_X)
2522 obj->stride = fb->pitches[0];
2523
2524 mode_cmd.pixel_format = fb->pixel_format;
2525 mode_cmd.width = fb->width;
2526 mode_cmd.height = fb->height;
2527 mode_cmd.pitches[0] = fb->pitches[0];
2528 mode_cmd.modifier[0] = fb->modifier[0];
2529 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2530
2531 mutex_lock(&dev->struct_mutex);
2532 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2533 &mode_cmd, obj)) {
2534 DRM_DEBUG_KMS("intel fb init failed\n");
2535 goto out_unref_obj;
2536 }
2537 mutex_unlock(&dev->struct_mutex);
2538
2539 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2540 return true;
2541
2542 out_unref_obj:
2543 drm_gem_object_unreference(&obj->base);
2544 mutex_unlock(&dev->struct_mutex);
2545 return false;
2546 }
2547
2548 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2549 static void
2550 update_state_fb(struct drm_plane *plane)
2551 {
2552 if (plane->fb == plane->state->fb)
2553 return;
2554
2555 if (plane->state->fb)
2556 drm_framebuffer_unreference(plane->state->fb);
2557 plane->state->fb = plane->fb;
2558 if (plane->state->fb)
2559 drm_framebuffer_reference(plane->state->fb);
2560 }
2561
2562 static void
2563 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2564 struct intel_initial_plane_config *plane_config)
2565 {
2566 struct drm_device *dev = intel_crtc->base.dev;
2567 struct drm_i915_private *dev_priv = dev->dev_private;
2568 struct drm_crtc *c;
2569 struct intel_crtc *i;
2570 struct drm_i915_gem_object *obj;
2571 struct drm_plane *primary = intel_crtc->base.primary;
2572 struct drm_plane_state *plane_state = primary->state;
2573 struct drm_framebuffer *fb;
2574
2575 if (!plane_config->fb)
2576 return;
2577
2578 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2579 fb = &plane_config->fb->base;
2580 goto valid_fb;
2581 }
2582
2583 kfree(plane_config->fb);
2584
2585 /*
2586 * Failed to alloc the obj, check to see if we should share
2587 * an fb with another CRTC instead
2588 */
2589 for_each_crtc(dev, c) {
2590 i = to_intel_crtc(c);
2591
2592 if (c == &intel_crtc->base)
2593 continue;
2594
2595 if (!i->active)
2596 continue;
2597
2598 fb = c->primary->fb;
2599 if (!fb)
2600 continue;
2601
2602 obj = intel_fb_obj(fb);
2603 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2604 drm_framebuffer_reference(fb);
2605 goto valid_fb;
2606 }
2607 }
2608
2609 return;
2610
2611 valid_fb:
2612 plane_state->src_x = plane_state->src_y = 0;
2613 plane_state->src_w = fb->width << 16;
2614 plane_state->src_h = fb->height << 16;
2615
2616 plane_state->crtc_x = plane_state->src_y = 0;
2617 plane_state->crtc_w = fb->width;
2618 plane_state->crtc_h = fb->height;
2619
2620 obj = intel_fb_obj(fb);
2621 if (obj->tiling_mode != I915_TILING_NONE)
2622 dev_priv->preserve_bios_swizzle = true;
2623
2624 drm_framebuffer_reference(fb);
2625 primary->fb = primary->state->fb = fb;
2626 primary->crtc = primary->state->crtc = &intel_crtc->base;
2627 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2628 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2629 }
2630
2631 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2632 struct drm_framebuffer *fb,
2633 int x, int y)
2634 {
2635 struct drm_device *dev = crtc->dev;
2636 struct drm_i915_private *dev_priv = dev->dev_private;
2637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2638 struct drm_plane *primary = crtc->primary;
2639 bool visible = to_intel_plane_state(primary->state)->visible;
2640 struct drm_i915_gem_object *obj;
2641 int plane = intel_crtc->plane;
2642 unsigned long linear_offset;
2643 u32 dspcntr;
2644 u32 reg = DSPCNTR(plane);
2645 int pixel_size;
2646
2647 if (!visible || !fb) {
2648 I915_WRITE(reg, 0);
2649 if (INTEL_INFO(dev)->gen >= 4)
2650 I915_WRITE(DSPSURF(plane), 0);
2651 else
2652 I915_WRITE(DSPADDR(plane), 0);
2653 POSTING_READ(reg);
2654 return;
2655 }
2656
2657 obj = intel_fb_obj(fb);
2658 if (WARN_ON(obj == NULL))
2659 return;
2660
2661 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2662
2663 dspcntr = DISPPLANE_GAMMA_ENABLE;
2664
2665 dspcntr |= DISPLAY_PLANE_ENABLE;
2666
2667 if (INTEL_INFO(dev)->gen < 4) {
2668 if (intel_crtc->pipe == PIPE_B)
2669 dspcntr |= DISPPLANE_SEL_PIPE_B;
2670
2671 /* pipesrc and dspsize control the size that is scaled from,
2672 * which should always be the user's requested size.
2673 */
2674 I915_WRITE(DSPSIZE(plane),
2675 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2676 (intel_crtc->config->pipe_src_w - 1));
2677 I915_WRITE(DSPPOS(plane), 0);
2678 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2679 I915_WRITE(PRIMSIZE(plane),
2680 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2681 (intel_crtc->config->pipe_src_w - 1));
2682 I915_WRITE(PRIMPOS(plane), 0);
2683 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2684 }
2685
2686 switch (fb->pixel_format) {
2687 case DRM_FORMAT_C8:
2688 dspcntr |= DISPPLANE_8BPP;
2689 break;
2690 case DRM_FORMAT_XRGB1555:
2691 dspcntr |= DISPPLANE_BGRX555;
2692 break;
2693 case DRM_FORMAT_RGB565:
2694 dspcntr |= DISPPLANE_BGRX565;
2695 break;
2696 case DRM_FORMAT_XRGB8888:
2697 dspcntr |= DISPPLANE_BGRX888;
2698 break;
2699 case DRM_FORMAT_XBGR8888:
2700 dspcntr |= DISPPLANE_RGBX888;
2701 break;
2702 case DRM_FORMAT_XRGB2101010:
2703 dspcntr |= DISPPLANE_BGRX101010;
2704 break;
2705 case DRM_FORMAT_XBGR2101010:
2706 dspcntr |= DISPPLANE_RGBX101010;
2707 break;
2708 default:
2709 BUG();
2710 }
2711
2712 if (INTEL_INFO(dev)->gen >= 4 &&
2713 obj->tiling_mode != I915_TILING_NONE)
2714 dspcntr |= DISPPLANE_TILED;
2715
2716 if (IS_G4X(dev))
2717 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2718
2719 linear_offset = y * fb->pitches[0] + x * pixel_size;
2720
2721 if (INTEL_INFO(dev)->gen >= 4) {
2722 intel_crtc->dspaddr_offset =
2723 intel_gen4_compute_page_offset(dev_priv,
2724 &x, &y, obj->tiling_mode,
2725 pixel_size,
2726 fb->pitches[0]);
2727 linear_offset -= intel_crtc->dspaddr_offset;
2728 } else {
2729 intel_crtc->dspaddr_offset = linear_offset;
2730 }
2731
2732 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2733 dspcntr |= DISPPLANE_ROTATE_180;
2734
2735 x += (intel_crtc->config->pipe_src_w - 1);
2736 y += (intel_crtc->config->pipe_src_h - 1);
2737
2738 /* Finding the last pixel of the last line of the display
2739 data and adding to linear_offset*/
2740 linear_offset +=
2741 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2742 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2743 }
2744
2745 intel_crtc->adjusted_x = x;
2746 intel_crtc->adjusted_y = y;
2747
2748 I915_WRITE(reg, dspcntr);
2749
2750 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2751 if (INTEL_INFO(dev)->gen >= 4) {
2752 I915_WRITE(DSPSURF(plane),
2753 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2754 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2755 I915_WRITE(DSPLINOFF(plane), linear_offset);
2756 } else
2757 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2758 POSTING_READ(reg);
2759 }
2760
2761 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2762 struct drm_framebuffer *fb,
2763 int x, int y)
2764 {
2765 struct drm_device *dev = crtc->dev;
2766 struct drm_i915_private *dev_priv = dev->dev_private;
2767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768 struct drm_plane *primary = crtc->primary;
2769 bool visible = to_intel_plane_state(primary->state)->visible;
2770 struct drm_i915_gem_object *obj;
2771 int plane = intel_crtc->plane;
2772 unsigned long linear_offset;
2773 u32 dspcntr;
2774 u32 reg = DSPCNTR(plane);
2775 int pixel_size;
2776
2777 if (!visible || !fb) {
2778 I915_WRITE(reg, 0);
2779 I915_WRITE(DSPSURF(plane), 0);
2780 POSTING_READ(reg);
2781 return;
2782 }
2783
2784 obj = intel_fb_obj(fb);
2785 if (WARN_ON(obj == NULL))
2786 return;
2787
2788 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2789
2790 dspcntr = DISPPLANE_GAMMA_ENABLE;
2791
2792 dspcntr |= DISPLAY_PLANE_ENABLE;
2793
2794 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2795 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2796
2797 switch (fb->pixel_format) {
2798 case DRM_FORMAT_C8:
2799 dspcntr |= DISPPLANE_8BPP;
2800 break;
2801 case DRM_FORMAT_RGB565:
2802 dspcntr |= DISPPLANE_BGRX565;
2803 break;
2804 case DRM_FORMAT_XRGB8888:
2805 dspcntr |= DISPPLANE_BGRX888;
2806 break;
2807 case DRM_FORMAT_XBGR8888:
2808 dspcntr |= DISPPLANE_RGBX888;
2809 break;
2810 case DRM_FORMAT_XRGB2101010:
2811 dspcntr |= DISPPLANE_BGRX101010;
2812 break;
2813 case DRM_FORMAT_XBGR2101010:
2814 dspcntr |= DISPPLANE_RGBX101010;
2815 break;
2816 default:
2817 BUG();
2818 }
2819
2820 if (obj->tiling_mode != I915_TILING_NONE)
2821 dspcntr |= DISPPLANE_TILED;
2822
2823 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2824 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2825
2826 linear_offset = y * fb->pitches[0] + x * pixel_size;
2827 intel_crtc->dspaddr_offset =
2828 intel_gen4_compute_page_offset(dev_priv,
2829 &x, &y, obj->tiling_mode,
2830 pixel_size,
2831 fb->pitches[0]);
2832 linear_offset -= intel_crtc->dspaddr_offset;
2833 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2834 dspcntr |= DISPPLANE_ROTATE_180;
2835
2836 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2837 x += (intel_crtc->config->pipe_src_w - 1);
2838 y += (intel_crtc->config->pipe_src_h - 1);
2839
2840 /* Finding the last pixel of the last line of the display
2841 data and adding to linear_offset*/
2842 linear_offset +=
2843 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2844 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2845 }
2846 }
2847
2848 intel_crtc->adjusted_x = x;
2849 intel_crtc->adjusted_y = y;
2850
2851 I915_WRITE(reg, dspcntr);
2852
2853 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2854 I915_WRITE(DSPSURF(plane),
2855 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2856 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2857 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2858 } else {
2859 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2860 I915_WRITE(DSPLINOFF(plane), linear_offset);
2861 }
2862 POSTING_READ(reg);
2863 }
2864
2865 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2866 uint32_t pixel_format)
2867 {
2868 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2869
2870 /*
2871 * The stride is either expressed as a multiple of 64 bytes
2872 * chunks for linear buffers or in number of tiles for tiled
2873 * buffers.
2874 */
2875 switch (fb_modifier) {
2876 case DRM_FORMAT_MOD_NONE:
2877 return 64;
2878 case I915_FORMAT_MOD_X_TILED:
2879 if (INTEL_INFO(dev)->gen == 2)
2880 return 128;
2881 return 512;
2882 case I915_FORMAT_MOD_Y_TILED:
2883 /* No need to check for old gens and Y tiling since this is
2884 * about the display engine and those will be blocked before
2885 * we get here.
2886 */
2887 return 128;
2888 case I915_FORMAT_MOD_Yf_TILED:
2889 if (bits_per_pixel == 8)
2890 return 64;
2891 else
2892 return 128;
2893 default:
2894 MISSING_CASE(fb_modifier);
2895 return 64;
2896 }
2897 }
2898
2899 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2900 struct drm_i915_gem_object *obj,
2901 unsigned int plane)
2902 {
2903 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2904 struct i915_vma *vma;
2905 unsigned char *offset;
2906
2907 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2908 view = &i915_ggtt_view_rotated;
2909
2910 vma = i915_gem_obj_to_ggtt_view(obj, view);
2911 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2912 view->type))
2913 return -1;
2914
2915 offset = (unsigned char *)vma->node.start;
2916
2917 if (plane == 1) {
2918 offset += vma->ggtt_view.rotation_info.uv_start_page *
2919 PAGE_SIZE;
2920 }
2921
2922 return (unsigned long)offset;
2923 }
2924
2925 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2926 {
2927 struct drm_device *dev = intel_crtc->base.dev;
2928 struct drm_i915_private *dev_priv = dev->dev_private;
2929
2930 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2931 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2932 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2933 }
2934
2935 /*
2936 * This function detaches (aka. unbinds) unused scalers in hardware
2937 */
2938 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2939 {
2940 struct intel_crtc_scaler_state *scaler_state;
2941 int i;
2942
2943 scaler_state = &intel_crtc->config->scaler_state;
2944
2945 /* loop through and disable scalers that aren't in use */
2946 for (i = 0; i < intel_crtc->num_scalers; i++) {
2947 if (!scaler_state->scalers[i].in_use)
2948 skl_detach_scaler(intel_crtc, i);
2949 }
2950 }
2951
2952 u32 skl_plane_ctl_format(uint32_t pixel_format)
2953 {
2954 switch (pixel_format) {
2955 case DRM_FORMAT_C8:
2956 return PLANE_CTL_FORMAT_INDEXED;
2957 case DRM_FORMAT_RGB565:
2958 return PLANE_CTL_FORMAT_RGB_565;
2959 case DRM_FORMAT_XBGR8888:
2960 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2961 case DRM_FORMAT_XRGB8888:
2962 return PLANE_CTL_FORMAT_XRGB_8888;
2963 /*
2964 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2965 * to be already pre-multiplied. We need to add a knob (or a different
2966 * DRM_FORMAT) for user-space to configure that.
2967 */
2968 case DRM_FORMAT_ABGR8888:
2969 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2970 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2971 case DRM_FORMAT_ARGB8888:
2972 return PLANE_CTL_FORMAT_XRGB_8888 |
2973 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2974 case DRM_FORMAT_XRGB2101010:
2975 return PLANE_CTL_FORMAT_XRGB_2101010;
2976 case DRM_FORMAT_XBGR2101010:
2977 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2978 case DRM_FORMAT_YUYV:
2979 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2980 case DRM_FORMAT_YVYU:
2981 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2982 case DRM_FORMAT_UYVY:
2983 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2984 case DRM_FORMAT_VYUY:
2985 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2986 default:
2987 MISSING_CASE(pixel_format);
2988 }
2989
2990 return 0;
2991 }
2992
2993 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2994 {
2995 switch (fb_modifier) {
2996 case DRM_FORMAT_MOD_NONE:
2997 break;
2998 case I915_FORMAT_MOD_X_TILED:
2999 return PLANE_CTL_TILED_X;
3000 case I915_FORMAT_MOD_Y_TILED:
3001 return PLANE_CTL_TILED_Y;
3002 case I915_FORMAT_MOD_Yf_TILED:
3003 return PLANE_CTL_TILED_YF;
3004 default:
3005 MISSING_CASE(fb_modifier);
3006 }
3007
3008 return 0;
3009 }
3010
3011 u32 skl_plane_ctl_rotation(unsigned int rotation)
3012 {
3013 switch (rotation) {
3014 case BIT(DRM_ROTATE_0):
3015 break;
3016 /*
3017 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3018 * while i915 HW rotation is clockwise, thats why this swapping.
3019 */
3020 case BIT(DRM_ROTATE_90):
3021 return PLANE_CTL_ROTATE_270;
3022 case BIT(DRM_ROTATE_180):
3023 return PLANE_CTL_ROTATE_180;
3024 case BIT(DRM_ROTATE_270):
3025 return PLANE_CTL_ROTATE_90;
3026 default:
3027 MISSING_CASE(rotation);
3028 }
3029
3030 return 0;
3031 }
3032
3033 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3034 struct drm_framebuffer *fb,
3035 int x, int y)
3036 {
3037 struct drm_device *dev = crtc->dev;
3038 struct drm_i915_private *dev_priv = dev->dev_private;
3039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040 struct drm_plane *plane = crtc->primary;
3041 bool visible = to_intel_plane_state(plane->state)->visible;
3042 struct drm_i915_gem_object *obj;
3043 int pipe = intel_crtc->pipe;
3044 u32 plane_ctl, stride_div, stride;
3045 u32 tile_height, plane_offset, plane_size;
3046 unsigned int rotation;
3047 int x_offset, y_offset;
3048 unsigned long surf_addr;
3049 struct intel_crtc_state *crtc_state = intel_crtc->config;
3050 struct intel_plane_state *plane_state;
3051 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3052 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3053 int scaler_id = -1;
3054
3055 plane_state = to_intel_plane_state(plane->state);
3056
3057 if (!visible || !fb) {
3058 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3059 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3060 POSTING_READ(PLANE_CTL(pipe, 0));
3061 return;
3062 }
3063
3064 plane_ctl = PLANE_CTL_ENABLE |
3065 PLANE_CTL_PIPE_GAMMA_ENABLE |
3066 PLANE_CTL_PIPE_CSC_ENABLE;
3067
3068 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3069 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3070 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3071
3072 rotation = plane->state->rotation;
3073 plane_ctl |= skl_plane_ctl_rotation(rotation);
3074
3075 obj = intel_fb_obj(fb);
3076 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3077 fb->pixel_format);
3078 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3079
3080 /*
3081 * FIXME: intel_plane_state->src, dst aren't set when transitional
3082 * update_plane helpers are called from legacy paths.
3083 * Once full atomic crtc is available, below check can be avoided.
3084 */
3085 if (drm_rect_width(&plane_state->src)) {
3086 scaler_id = plane_state->scaler_id;
3087 src_x = plane_state->src.x1 >> 16;
3088 src_y = plane_state->src.y1 >> 16;
3089 src_w = drm_rect_width(&plane_state->src) >> 16;
3090 src_h = drm_rect_height(&plane_state->src) >> 16;
3091 dst_x = plane_state->dst.x1;
3092 dst_y = plane_state->dst.y1;
3093 dst_w = drm_rect_width(&plane_state->dst);
3094 dst_h = drm_rect_height(&plane_state->dst);
3095
3096 WARN_ON(x != src_x || y != src_y);
3097 } else {
3098 src_w = intel_crtc->config->pipe_src_w;
3099 src_h = intel_crtc->config->pipe_src_h;
3100 }
3101
3102 if (intel_rotation_90_or_270(rotation)) {
3103 /* stride = Surface height in tiles */
3104 tile_height = intel_tile_height(dev, fb->pixel_format,
3105 fb->modifier[0], 0);
3106 stride = DIV_ROUND_UP(fb->height, tile_height);
3107 x_offset = stride * tile_height - y - src_h;
3108 y_offset = x;
3109 plane_size = (src_w - 1) << 16 | (src_h - 1);
3110 } else {
3111 stride = fb->pitches[0] / stride_div;
3112 x_offset = x;
3113 y_offset = y;
3114 plane_size = (src_h - 1) << 16 | (src_w - 1);
3115 }
3116 plane_offset = y_offset << 16 | x_offset;
3117
3118 intel_crtc->adjusted_x = x_offset;
3119 intel_crtc->adjusted_y = y_offset;
3120
3121 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3122 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3123 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3124 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3125
3126 if (scaler_id >= 0) {
3127 uint32_t ps_ctrl = 0;
3128
3129 WARN_ON(!dst_w || !dst_h);
3130 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3131 crtc_state->scaler_state.scalers[scaler_id].mode;
3132 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3133 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3134 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3135 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3136 I915_WRITE(PLANE_POS(pipe, 0), 0);
3137 } else {
3138 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3139 }
3140
3141 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3142
3143 POSTING_READ(PLANE_SURF(pipe, 0));
3144 }
3145
3146 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3147 static int
3148 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3149 int x, int y, enum mode_set_atomic state)
3150 {
3151 struct drm_device *dev = crtc->dev;
3152 struct drm_i915_private *dev_priv = dev->dev_private;
3153
3154 if (dev_priv->fbc.disable_fbc)
3155 dev_priv->fbc.disable_fbc(dev_priv);
3156
3157 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3158
3159 return 0;
3160 }
3161
3162 static void intel_complete_page_flips(struct drm_device *dev)
3163 {
3164 struct drm_crtc *crtc;
3165
3166 for_each_crtc(dev, crtc) {
3167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3168 enum plane plane = intel_crtc->plane;
3169
3170 intel_prepare_page_flip(dev, plane);
3171 intel_finish_page_flip_plane(dev, plane);
3172 }
3173 }
3174
3175 static void intel_update_primary_planes(struct drm_device *dev)
3176 {
3177 struct drm_crtc *crtc;
3178
3179 for_each_crtc(dev, crtc) {
3180 struct intel_plane *plane = to_intel_plane(crtc->primary);
3181 struct intel_plane_state *plane_state;
3182
3183 drm_modeset_lock_crtc(crtc, &plane->base);
3184
3185 plane_state = to_intel_plane_state(plane->base.state);
3186
3187 if (plane_state->base.fb)
3188 plane->commit_plane(&plane->base, plane_state);
3189
3190 drm_modeset_unlock_crtc(crtc);
3191 }
3192 }
3193
3194 void intel_prepare_reset(struct drm_device *dev)
3195 {
3196 /* no reset support for gen2 */
3197 if (IS_GEN2(dev))
3198 return;
3199
3200 /* reset doesn't touch the display */
3201 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3202 return;
3203
3204 drm_modeset_lock_all(dev);
3205 /*
3206 * Disabling the crtcs gracefully seems nicer. Also the
3207 * g33 docs say we should at least disable all the planes.
3208 */
3209 intel_display_suspend(dev);
3210 }
3211
3212 void intel_finish_reset(struct drm_device *dev)
3213 {
3214 struct drm_i915_private *dev_priv = to_i915(dev);
3215
3216 /*
3217 * Flips in the rings will be nuked by the reset,
3218 * so complete all pending flips so that user space
3219 * will get its events and not get stuck.
3220 */
3221 intel_complete_page_flips(dev);
3222
3223 /* no reset support for gen2 */
3224 if (IS_GEN2(dev))
3225 return;
3226
3227 /* reset doesn't touch the display */
3228 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3229 /*
3230 * Flips in the rings have been nuked by the reset,
3231 * so update the base address of all primary
3232 * planes to the the last fb to make sure we're
3233 * showing the correct fb after a reset.
3234 *
3235 * FIXME: Atomic will make this obsolete since we won't schedule
3236 * CS-based flips (which might get lost in gpu resets) any more.
3237 */
3238 intel_update_primary_planes(dev);
3239 return;
3240 }
3241
3242 /*
3243 * The display has been reset as well,
3244 * so need a full re-initialization.
3245 */
3246 intel_runtime_pm_disable_interrupts(dev_priv);
3247 intel_runtime_pm_enable_interrupts(dev_priv);
3248
3249 intel_modeset_init_hw(dev);
3250
3251 spin_lock_irq(&dev_priv->irq_lock);
3252 if (dev_priv->display.hpd_irq_setup)
3253 dev_priv->display.hpd_irq_setup(dev);
3254 spin_unlock_irq(&dev_priv->irq_lock);
3255
3256 intel_display_resume(dev);
3257
3258 intel_hpd_init(dev_priv);
3259
3260 drm_modeset_unlock_all(dev);
3261 }
3262
3263 static void
3264 intel_finish_fb(struct drm_framebuffer *old_fb)
3265 {
3266 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3267 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3268 bool was_interruptible = dev_priv->mm.interruptible;
3269 int ret;
3270
3271 /* Big Hammer, we also need to ensure that any pending
3272 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3273 * current scanout is retired before unpinning the old
3274 * framebuffer. Note that we rely on userspace rendering
3275 * into the buffer attached to the pipe they are waiting
3276 * on. If not, userspace generates a GPU hang with IPEHR
3277 * point to the MI_WAIT_FOR_EVENT.
3278 *
3279 * This should only fail upon a hung GPU, in which case we
3280 * can safely continue.
3281 */
3282 dev_priv->mm.interruptible = false;
3283 ret = i915_gem_object_wait_rendering(obj, true);
3284 dev_priv->mm.interruptible = was_interruptible;
3285
3286 WARN_ON(ret);
3287 }
3288
3289 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3290 {
3291 struct drm_device *dev = crtc->dev;
3292 struct drm_i915_private *dev_priv = dev->dev_private;
3293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3294 bool pending;
3295
3296 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3297 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3298 return false;
3299
3300 spin_lock_irq(&dev->event_lock);
3301 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3302 spin_unlock_irq(&dev->event_lock);
3303
3304 return pending;
3305 }
3306
3307 static void intel_update_pipe_config(struct intel_crtc *crtc,
3308 struct intel_crtc_state *old_crtc_state)
3309 {
3310 struct drm_device *dev = crtc->base.dev;
3311 struct drm_i915_private *dev_priv = dev->dev_private;
3312 struct intel_crtc_state *pipe_config =
3313 to_intel_crtc_state(crtc->base.state);
3314
3315 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3316 crtc->base.mode = crtc->base.state->mode;
3317
3318 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3319 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3320 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3321
3322 if (HAS_DDI(dev))
3323 intel_set_pipe_csc(&crtc->base);
3324
3325 /*
3326 * Update pipe size and adjust fitter if needed: the reason for this is
3327 * that in compute_mode_changes we check the native mode (not the pfit
3328 * mode) to see if we can flip rather than do a full mode set. In the
3329 * fastboot case, we'll flip, but if we don't update the pipesrc and
3330 * pfit state, we'll end up with a big fb scanned out into the wrong
3331 * sized surface.
3332 */
3333
3334 I915_WRITE(PIPESRC(crtc->pipe),
3335 ((pipe_config->pipe_src_w - 1) << 16) |
3336 (pipe_config->pipe_src_h - 1));
3337
3338 /* on skylake this is done by detaching scalers */
3339 if (INTEL_INFO(dev)->gen >= 9) {
3340 skl_detach_scalers(crtc);
3341
3342 if (pipe_config->pch_pfit.enabled)
3343 skylake_pfit_enable(crtc);
3344 } else if (HAS_PCH_SPLIT(dev)) {
3345 if (pipe_config->pch_pfit.enabled)
3346 ironlake_pfit_enable(crtc);
3347 else if (old_crtc_state->pch_pfit.enabled)
3348 ironlake_pfit_disable(crtc, true);
3349 }
3350 }
3351
3352 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3353 {
3354 struct drm_device *dev = crtc->dev;
3355 struct drm_i915_private *dev_priv = dev->dev_private;
3356 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3357 int pipe = intel_crtc->pipe;
3358 u32 reg, temp;
3359
3360 /* enable normal train */
3361 reg = FDI_TX_CTL(pipe);
3362 temp = I915_READ(reg);
3363 if (IS_IVYBRIDGE(dev)) {
3364 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3365 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3366 } else {
3367 temp &= ~FDI_LINK_TRAIN_NONE;
3368 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3369 }
3370 I915_WRITE(reg, temp);
3371
3372 reg = FDI_RX_CTL(pipe);
3373 temp = I915_READ(reg);
3374 if (HAS_PCH_CPT(dev)) {
3375 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3376 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3377 } else {
3378 temp &= ~FDI_LINK_TRAIN_NONE;
3379 temp |= FDI_LINK_TRAIN_NONE;
3380 }
3381 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3382
3383 /* wait one idle pattern time */
3384 POSTING_READ(reg);
3385 udelay(1000);
3386
3387 /* IVB wants error correction enabled */
3388 if (IS_IVYBRIDGE(dev))
3389 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3390 FDI_FE_ERRC_ENABLE);
3391 }
3392
3393 /* The FDI link training functions for ILK/Ibexpeak. */
3394 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3395 {
3396 struct drm_device *dev = crtc->dev;
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399 int pipe = intel_crtc->pipe;
3400 u32 reg, temp, tries;
3401
3402 /* FDI needs bits from pipe first */
3403 assert_pipe_enabled(dev_priv, pipe);
3404
3405 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3406 for train result */
3407 reg = FDI_RX_IMR(pipe);
3408 temp = I915_READ(reg);
3409 temp &= ~FDI_RX_SYMBOL_LOCK;
3410 temp &= ~FDI_RX_BIT_LOCK;
3411 I915_WRITE(reg, temp);
3412 I915_READ(reg);
3413 udelay(150);
3414
3415 /* enable CPU FDI TX and PCH FDI RX */
3416 reg = FDI_TX_CTL(pipe);
3417 temp = I915_READ(reg);
3418 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3419 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3420 temp &= ~FDI_LINK_TRAIN_NONE;
3421 temp |= FDI_LINK_TRAIN_PATTERN_1;
3422 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3423
3424 reg = FDI_RX_CTL(pipe);
3425 temp = I915_READ(reg);
3426 temp &= ~FDI_LINK_TRAIN_NONE;
3427 temp |= FDI_LINK_TRAIN_PATTERN_1;
3428 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3429
3430 POSTING_READ(reg);
3431 udelay(150);
3432
3433 /* Ironlake workaround, enable clock pointer after FDI enable*/
3434 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3435 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3436 FDI_RX_PHASE_SYNC_POINTER_EN);
3437
3438 reg = FDI_RX_IIR(pipe);
3439 for (tries = 0; tries < 5; tries++) {
3440 temp = I915_READ(reg);
3441 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3442
3443 if ((temp & FDI_RX_BIT_LOCK)) {
3444 DRM_DEBUG_KMS("FDI train 1 done.\n");
3445 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3446 break;
3447 }
3448 }
3449 if (tries == 5)
3450 DRM_ERROR("FDI train 1 fail!\n");
3451
3452 /* Train 2 */
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_2;
3457 I915_WRITE(reg, temp);
3458
3459 reg = FDI_RX_CTL(pipe);
3460 temp = I915_READ(reg);
3461 temp &= ~FDI_LINK_TRAIN_NONE;
3462 temp |= FDI_LINK_TRAIN_PATTERN_2;
3463 I915_WRITE(reg, temp);
3464
3465 POSTING_READ(reg);
3466 udelay(150);
3467
3468 reg = FDI_RX_IIR(pipe);
3469 for (tries = 0; tries < 5; tries++) {
3470 temp = I915_READ(reg);
3471 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3472
3473 if (temp & FDI_RX_SYMBOL_LOCK) {
3474 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3475 DRM_DEBUG_KMS("FDI train 2 done.\n");
3476 break;
3477 }
3478 }
3479 if (tries == 5)
3480 DRM_ERROR("FDI train 2 fail!\n");
3481
3482 DRM_DEBUG_KMS("FDI train done\n");
3483
3484 }
3485
3486 static const int snb_b_fdi_train_param[] = {
3487 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3488 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3489 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3490 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3491 };
3492
3493 /* The FDI link training functions for SNB/Cougarpoint. */
3494 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3495 {
3496 struct drm_device *dev = crtc->dev;
3497 struct drm_i915_private *dev_priv = dev->dev_private;
3498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3499 int pipe = intel_crtc->pipe;
3500 u32 reg, temp, i, retry;
3501
3502 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3503 for train result */
3504 reg = FDI_RX_IMR(pipe);
3505 temp = I915_READ(reg);
3506 temp &= ~FDI_RX_SYMBOL_LOCK;
3507 temp &= ~FDI_RX_BIT_LOCK;
3508 I915_WRITE(reg, temp);
3509
3510 POSTING_READ(reg);
3511 udelay(150);
3512
3513 /* enable CPU FDI TX and PCH FDI RX */
3514 reg = FDI_TX_CTL(pipe);
3515 temp = I915_READ(reg);
3516 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3517 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3518 temp &= ~FDI_LINK_TRAIN_NONE;
3519 temp |= FDI_LINK_TRAIN_PATTERN_1;
3520 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3521 /* SNB-B */
3522 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3523 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3524
3525 I915_WRITE(FDI_RX_MISC(pipe),
3526 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3527
3528 reg = FDI_RX_CTL(pipe);
3529 temp = I915_READ(reg);
3530 if (HAS_PCH_CPT(dev)) {
3531 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3532 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3533 } else {
3534 temp &= ~FDI_LINK_TRAIN_NONE;
3535 temp |= FDI_LINK_TRAIN_PATTERN_1;
3536 }
3537 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3538
3539 POSTING_READ(reg);
3540 udelay(150);
3541
3542 for (i = 0; i < 4; i++) {
3543 reg = FDI_TX_CTL(pipe);
3544 temp = I915_READ(reg);
3545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3546 temp |= snb_b_fdi_train_param[i];
3547 I915_WRITE(reg, temp);
3548
3549 POSTING_READ(reg);
3550 udelay(500);
3551
3552 for (retry = 0; retry < 5; retry++) {
3553 reg = FDI_RX_IIR(pipe);
3554 temp = I915_READ(reg);
3555 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3556 if (temp & FDI_RX_BIT_LOCK) {
3557 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3558 DRM_DEBUG_KMS("FDI train 1 done.\n");
3559 break;
3560 }
3561 udelay(50);
3562 }
3563 if (retry < 5)
3564 break;
3565 }
3566 if (i == 4)
3567 DRM_ERROR("FDI train 1 fail!\n");
3568
3569 /* Train 2 */
3570 reg = FDI_TX_CTL(pipe);
3571 temp = I915_READ(reg);
3572 temp &= ~FDI_LINK_TRAIN_NONE;
3573 temp |= FDI_LINK_TRAIN_PATTERN_2;
3574 if (IS_GEN6(dev)) {
3575 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3576 /* SNB-B */
3577 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3578 }
3579 I915_WRITE(reg, temp);
3580
3581 reg = FDI_RX_CTL(pipe);
3582 temp = I915_READ(reg);
3583 if (HAS_PCH_CPT(dev)) {
3584 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3585 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3586 } else {
3587 temp &= ~FDI_LINK_TRAIN_NONE;
3588 temp |= FDI_LINK_TRAIN_PATTERN_2;
3589 }
3590 I915_WRITE(reg, temp);
3591
3592 POSTING_READ(reg);
3593 udelay(150);
3594
3595 for (i = 0; i < 4; i++) {
3596 reg = FDI_TX_CTL(pipe);
3597 temp = I915_READ(reg);
3598 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3599 temp |= snb_b_fdi_train_param[i];
3600 I915_WRITE(reg, temp);
3601
3602 POSTING_READ(reg);
3603 udelay(500);
3604
3605 for (retry = 0; retry < 5; retry++) {
3606 reg = FDI_RX_IIR(pipe);
3607 temp = I915_READ(reg);
3608 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3609 if (temp & FDI_RX_SYMBOL_LOCK) {
3610 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3611 DRM_DEBUG_KMS("FDI train 2 done.\n");
3612 break;
3613 }
3614 udelay(50);
3615 }
3616 if (retry < 5)
3617 break;
3618 }
3619 if (i == 4)
3620 DRM_ERROR("FDI train 2 fail!\n");
3621
3622 DRM_DEBUG_KMS("FDI train done.\n");
3623 }
3624
3625 /* Manual link training for Ivy Bridge A0 parts */
3626 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3627 {
3628 struct drm_device *dev = crtc->dev;
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3631 int pipe = intel_crtc->pipe;
3632 u32 reg, temp, i, j;
3633
3634 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3635 for train result */
3636 reg = FDI_RX_IMR(pipe);
3637 temp = I915_READ(reg);
3638 temp &= ~FDI_RX_SYMBOL_LOCK;
3639 temp &= ~FDI_RX_BIT_LOCK;
3640 I915_WRITE(reg, temp);
3641
3642 POSTING_READ(reg);
3643 udelay(150);
3644
3645 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3646 I915_READ(FDI_RX_IIR(pipe)));
3647
3648 /* Try each vswing and preemphasis setting twice before moving on */
3649 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3650 /* disable first in case we need to retry */
3651 reg = FDI_TX_CTL(pipe);
3652 temp = I915_READ(reg);
3653 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3654 temp &= ~FDI_TX_ENABLE;
3655 I915_WRITE(reg, temp);
3656
3657 reg = FDI_RX_CTL(pipe);
3658 temp = I915_READ(reg);
3659 temp &= ~FDI_LINK_TRAIN_AUTO;
3660 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3661 temp &= ~FDI_RX_ENABLE;
3662 I915_WRITE(reg, temp);
3663
3664 /* enable CPU FDI TX and PCH FDI RX */
3665 reg = FDI_TX_CTL(pipe);
3666 temp = I915_READ(reg);
3667 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3668 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3669 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3670 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3671 temp |= snb_b_fdi_train_param[j/2];
3672 temp |= FDI_COMPOSITE_SYNC;
3673 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3674
3675 I915_WRITE(FDI_RX_MISC(pipe),
3676 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3677
3678 reg = FDI_RX_CTL(pipe);
3679 temp = I915_READ(reg);
3680 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3681 temp |= FDI_COMPOSITE_SYNC;
3682 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3683
3684 POSTING_READ(reg);
3685 udelay(1); /* should be 0.5us */
3686
3687 for (i = 0; i < 4; i++) {
3688 reg = FDI_RX_IIR(pipe);
3689 temp = I915_READ(reg);
3690 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3691
3692 if (temp & FDI_RX_BIT_LOCK ||
3693 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3694 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3695 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3696 i);
3697 break;
3698 }
3699 udelay(1); /* should be 0.5us */
3700 }
3701 if (i == 4) {
3702 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3703 continue;
3704 }
3705
3706 /* Train 2 */
3707 reg = FDI_TX_CTL(pipe);
3708 temp = I915_READ(reg);
3709 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3710 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3711 I915_WRITE(reg, temp);
3712
3713 reg = FDI_RX_CTL(pipe);
3714 temp = I915_READ(reg);
3715 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3716 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3717 I915_WRITE(reg, temp);
3718
3719 POSTING_READ(reg);
3720 udelay(2); /* should be 1.5us */
3721
3722 for (i = 0; i < 4; i++) {
3723 reg = FDI_RX_IIR(pipe);
3724 temp = I915_READ(reg);
3725 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3726
3727 if (temp & FDI_RX_SYMBOL_LOCK ||
3728 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3729 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3730 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3731 i);
3732 goto train_done;
3733 }
3734 udelay(2); /* should be 1.5us */
3735 }
3736 if (i == 4)
3737 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3738 }
3739
3740 train_done:
3741 DRM_DEBUG_KMS("FDI train done.\n");
3742 }
3743
3744 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3745 {
3746 struct drm_device *dev = intel_crtc->base.dev;
3747 struct drm_i915_private *dev_priv = dev->dev_private;
3748 int pipe = intel_crtc->pipe;
3749 u32 reg, temp;
3750
3751
3752 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3753 reg = FDI_RX_CTL(pipe);
3754 temp = I915_READ(reg);
3755 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3756 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3757 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3758 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3759
3760 POSTING_READ(reg);
3761 udelay(200);
3762
3763 /* Switch from Rawclk to PCDclk */
3764 temp = I915_READ(reg);
3765 I915_WRITE(reg, temp | FDI_PCDCLK);
3766
3767 POSTING_READ(reg);
3768 udelay(200);
3769
3770 /* Enable CPU FDI TX PLL, always on for Ironlake */
3771 reg = FDI_TX_CTL(pipe);
3772 temp = I915_READ(reg);
3773 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3774 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3775
3776 POSTING_READ(reg);
3777 udelay(100);
3778 }
3779 }
3780
3781 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3782 {
3783 struct drm_device *dev = intel_crtc->base.dev;
3784 struct drm_i915_private *dev_priv = dev->dev_private;
3785 int pipe = intel_crtc->pipe;
3786 u32 reg, temp;
3787
3788 /* Switch from PCDclk to Rawclk */
3789 reg = FDI_RX_CTL(pipe);
3790 temp = I915_READ(reg);
3791 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3792
3793 /* Disable CPU FDI TX PLL */
3794 reg = FDI_TX_CTL(pipe);
3795 temp = I915_READ(reg);
3796 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3797
3798 POSTING_READ(reg);
3799 udelay(100);
3800
3801 reg = FDI_RX_CTL(pipe);
3802 temp = I915_READ(reg);
3803 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3804
3805 /* Wait for the clocks to turn off. */
3806 POSTING_READ(reg);
3807 udelay(100);
3808 }
3809
3810 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3811 {
3812 struct drm_device *dev = crtc->dev;
3813 struct drm_i915_private *dev_priv = dev->dev_private;
3814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3815 int pipe = intel_crtc->pipe;
3816 u32 reg, temp;
3817
3818 /* disable CPU FDI tx and PCH FDI rx */
3819 reg = FDI_TX_CTL(pipe);
3820 temp = I915_READ(reg);
3821 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3822 POSTING_READ(reg);
3823
3824 reg = FDI_RX_CTL(pipe);
3825 temp = I915_READ(reg);
3826 temp &= ~(0x7 << 16);
3827 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3828 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3829
3830 POSTING_READ(reg);
3831 udelay(100);
3832
3833 /* Ironlake workaround, disable clock pointer after downing FDI */
3834 if (HAS_PCH_IBX(dev))
3835 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3836
3837 /* still set train pattern 1 */
3838 reg = FDI_TX_CTL(pipe);
3839 temp = I915_READ(reg);
3840 temp &= ~FDI_LINK_TRAIN_NONE;
3841 temp |= FDI_LINK_TRAIN_PATTERN_1;
3842 I915_WRITE(reg, temp);
3843
3844 reg = FDI_RX_CTL(pipe);
3845 temp = I915_READ(reg);
3846 if (HAS_PCH_CPT(dev)) {
3847 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3848 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3849 } else {
3850 temp &= ~FDI_LINK_TRAIN_NONE;
3851 temp |= FDI_LINK_TRAIN_PATTERN_1;
3852 }
3853 /* BPC in FDI rx is consistent with that in PIPECONF */
3854 temp &= ~(0x07 << 16);
3855 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3856 I915_WRITE(reg, temp);
3857
3858 POSTING_READ(reg);
3859 udelay(100);
3860 }
3861
3862 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3863 {
3864 struct intel_crtc *crtc;
3865
3866 /* Note that we don't need to be called with mode_config.lock here
3867 * as our list of CRTC objects is static for the lifetime of the
3868 * device and so cannot disappear as we iterate. Similarly, we can
3869 * happily treat the predicates as racy, atomic checks as userspace
3870 * cannot claim and pin a new fb without at least acquring the
3871 * struct_mutex and so serialising with us.
3872 */
3873 for_each_intel_crtc(dev, crtc) {
3874 if (atomic_read(&crtc->unpin_work_count) == 0)
3875 continue;
3876
3877 if (crtc->unpin_work)
3878 intel_wait_for_vblank(dev, crtc->pipe);
3879
3880 return true;
3881 }
3882
3883 return false;
3884 }
3885
3886 static void page_flip_completed(struct intel_crtc *intel_crtc)
3887 {
3888 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3889 struct intel_unpin_work *work = intel_crtc->unpin_work;
3890
3891 /* ensure that the unpin work is consistent wrt ->pending. */
3892 smp_rmb();
3893 intel_crtc->unpin_work = NULL;
3894
3895 if (work->event)
3896 drm_send_vblank_event(intel_crtc->base.dev,
3897 intel_crtc->pipe,
3898 work->event);
3899
3900 drm_crtc_vblank_put(&intel_crtc->base);
3901
3902 wake_up_all(&dev_priv->pending_flip_queue);
3903 queue_work(dev_priv->wq, &work->work);
3904
3905 trace_i915_flip_complete(intel_crtc->plane,
3906 work->pending_flip_obj);
3907 }
3908
3909 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3910 {
3911 struct drm_device *dev = crtc->dev;
3912 struct drm_i915_private *dev_priv = dev->dev_private;
3913
3914 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3915 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3916 !intel_crtc_has_pending_flip(crtc),
3917 60*HZ) == 0)) {
3918 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3919
3920 spin_lock_irq(&dev->event_lock);
3921 if (intel_crtc->unpin_work) {
3922 WARN_ONCE(1, "Removing stuck page flip\n");
3923 page_flip_completed(intel_crtc);
3924 }
3925 spin_unlock_irq(&dev->event_lock);
3926 }
3927
3928 if (crtc->primary->fb) {
3929 mutex_lock(&dev->struct_mutex);
3930 intel_finish_fb(crtc->primary->fb);
3931 mutex_unlock(&dev->struct_mutex);
3932 }
3933 }
3934
3935 /* Program iCLKIP clock to the desired frequency */
3936 static void lpt_program_iclkip(struct drm_crtc *crtc)
3937 {
3938 struct drm_device *dev = crtc->dev;
3939 struct drm_i915_private *dev_priv = dev->dev_private;
3940 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3941 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3942 u32 temp;
3943
3944 mutex_lock(&dev_priv->sb_lock);
3945
3946 /* It is necessary to ungate the pixclk gate prior to programming
3947 * the divisors, and gate it back when it is done.
3948 */
3949 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3950
3951 /* Disable SSCCTL */
3952 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3953 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3954 SBI_SSCCTL_DISABLE,
3955 SBI_ICLK);
3956
3957 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3958 if (clock == 20000) {
3959 auxdiv = 1;
3960 divsel = 0x41;
3961 phaseinc = 0x20;
3962 } else {
3963 /* The iCLK virtual clock root frequency is in MHz,
3964 * but the adjusted_mode->crtc_clock in in KHz. To get the
3965 * divisors, it is necessary to divide one by another, so we
3966 * convert the virtual clock precision to KHz here for higher
3967 * precision.
3968 */
3969 u32 iclk_virtual_root_freq = 172800 * 1000;
3970 u32 iclk_pi_range = 64;
3971 u32 desired_divisor, msb_divisor_value, pi_value;
3972
3973 desired_divisor = (iclk_virtual_root_freq / clock);
3974 msb_divisor_value = desired_divisor / iclk_pi_range;
3975 pi_value = desired_divisor % iclk_pi_range;
3976
3977 auxdiv = 0;
3978 divsel = msb_divisor_value - 2;
3979 phaseinc = pi_value;
3980 }
3981
3982 /* This should not happen with any sane values */
3983 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3984 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3985 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3986 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3987
3988 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3989 clock,
3990 auxdiv,
3991 divsel,
3992 phasedir,
3993 phaseinc);
3994
3995 /* Program SSCDIVINTPHASE6 */
3996 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3997 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3998 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3999 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4000 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4001 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4002 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4003 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4004
4005 /* Program SSCAUXDIV */
4006 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4007 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4008 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4009 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4010
4011 /* Enable modulator and associated divider */
4012 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4013 temp &= ~SBI_SSCCTL_DISABLE;
4014 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4015
4016 /* Wait for initialization time */
4017 udelay(24);
4018
4019 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4020
4021 mutex_unlock(&dev_priv->sb_lock);
4022 }
4023
4024 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4025 enum pipe pch_transcoder)
4026 {
4027 struct drm_device *dev = crtc->base.dev;
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4030
4031 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4032 I915_READ(HTOTAL(cpu_transcoder)));
4033 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4034 I915_READ(HBLANK(cpu_transcoder)));
4035 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4036 I915_READ(HSYNC(cpu_transcoder)));
4037
4038 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4039 I915_READ(VTOTAL(cpu_transcoder)));
4040 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4041 I915_READ(VBLANK(cpu_transcoder)));
4042 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4043 I915_READ(VSYNC(cpu_transcoder)));
4044 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4045 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4046 }
4047
4048 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4049 {
4050 struct drm_i915_private *dev_priv = dev->dev_private;
4051 uint32_t temp;
4052
4053 temp = I915_READ(SOUTH_CHICKEN1);
4054 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4055 return;
4056
4057 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4058 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4059
4060 temp &= ~FDI_BC_BIFURCATION_SELECT;
4061 if (enable)
4062 temp |= FDI_BC_BIFURCATION_SELECT;
4063
4064 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4065 I915_WRITE(SOUTH_CHICKEN1, temp);
4066 POSTING_READ(SOUTH_CHICKEN1);
4067 }
4068
4069 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4070 {
4071 struct drm_device *dev = intel_crtc->base.dev;
4072
4073 switch (intel_crtc->pipe) {
4074 case PIPE_A:
4075 break;
4076 case PIPE_B:
4077 if (intel_crtc->config->fdi_lanes > 2)
4078 cpt_set_fdi_bc_bifurcation(dev, false);
4079 else
4080 cpt_set_fdi_bc_bifurcation(dev, true);
4081
4082 break;
4083 case PIPE_C:
4084 cpt_set_fdi_bc_bifurcation(dev, true);
4085
4086 break;
4087 default:
4088 BUG();
4089 }
4090 }
4091
4092 /*
4093 * Enable PCH resources required for PCH ports:
4094 * - PCH PLLs
4095 * - FDI training & RX/TX
4096 * - update transcoder timings
4097 * - DP transcoding bits
4098 * - transcoder
4099 */
4100 static void ironlake_pch_enable(struct drm_crtc *crtc)
4101 {
4102 struct drm_device *dev = crtc->dev;
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4105 int pipe = intel_crtc->pipe;
4106 u32 reg, temp;
4107
4108 assert_pch_transcoder_disabled(dev_priv, pipe);
4109
4110 if (IS_IVYBRIDGE(dev))
4111 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4112
4113 /* Write the TU size bits before fdi link training, so that error
4114 * detection works. */
4115 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4116 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4117
4118 /* For PCH output, training FDI link */
4119 dev_priv->display.fdi_link_train(crtc);
4120
4121 /* We need to program the right clock selection before writing the pixel
4122 * mutliplier into the DPLL. */
4123 if (HAS_PCH_CPT(dev)) {
4124 u32 sel;
4125
4126 temp = I915_READ(PCH_DPLL_SEL);
4127 temp |= TRANS_DPLL_ENABLE(pipe);
4128 sel = TRANS_DPLLB_SEL(pipe);
4129 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4130 temp |= sel;
4131 else
4132 temp &= ~sel;
4133 I915_WRITE(PCH_DPLL_SEL, temp);
4134 }
4135
4136 /* XXX: pch pll's can be enabled any time before we enable the PCH
4137 * transcoder, and we actually should do this to not upset any PCH
4138 * transcoder that already use the clock when we share it.
4139 *
4140 * Note that enable_shared_dpll tries to do the right thing, but
4141 * get_shared_dpll unconditionally resets the pll - we need that to have
4142 * the right LVDS enable sequence. */
4143 intel_enable_shared_dpll(intel_crtc);
4144
4145 /* set transcoder timing, panel must allow it */
4146 assert_panel_unlocked(dev_priv, pipe);
4147 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4148
4149 intel_fdi_normal_train(crtc);
4150
4151 /* For PCH DP, enable TRANS_DP_CTL */
4152 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4153 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4154 reg = TRANS_DP_CTL(pipe);
4155 temp = I915_READ(reg);
4156 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4157 TRANS_DP_SYNC_MASK |
4158 TRANS_DP_BPC_MASK);
4159 temp |= TRANS_DP_OUTPUT_ENABLE;
4160 temp |= bpc << 9; /* same format but at 11:9 */
4161
4162 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4163 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4164 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4165 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4166
4167 switch (intel_trans_dp_port_sel(crtc)) {
4168 case PCH_DP_B:
4169 temp |= TRANS_DP_PORT_SEL_B;
4170 break;
4171 case PCH_DP_C:
4172 temp |= TRANS_DP_PORT_SEL_C;
4173 break;
4174 case PCH_DP_D:
4175 temp |= TRANS_DP_PORT_SEL_D;
4176 break;
4177 default:
4178 BUG();
4179 }
4180
4181 I915_WRITE(reg, temp);
4182 }
4183
4184 ironlake_enable_pch_transcoder(dev_priv, pipe);
4185 }
4186
4187 static void lpt_pch_enable(struct drm_crtc *crtc)
4188 {
4189 struct drm_device *dev = crtc->dev;
4190 struct drm_i915_private *dev_priv = dev->dev_private;
4191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4192 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4193
4194 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4195
4196 lpt_program_iclkip(crtc);
4197
4198 /* Set transcoder timing. */
4199 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4200
4201 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4202 }
4203
4204 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4205 struct intel_crtc_state *crtc_state)
4206 {
4207 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4208 struct intel_shared_dpll *pll;
4209 struct intel_shared_dpll_config *shared_dpll;
4210 enum intel_dpll_id i;
4211
4212 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4213
4214 if (HAS_PCH_IBX(dev_priv->dev)) {
4215 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4216 i = (enum intel_dpll_id) crtc->pipe;
4217 pll = &dev_priv->shared_dplls[i];
4218
4219 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4220 crtc->base.base.id, pll->name);
4221
4222 WARN_ON(shared_dpll[i].crtc_mask);
4223
4224 goto found;
4225 }
4226
4227 if (IS_BROXTON(dev_priv->dev)) {
4228 /* PLL is attached to port in bxt */
4229 struct intel_encoder *encoder;
4230 struct intel_digital_port *intel_dig_port;
4231
4232 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4233 if (WARN_ON(!encoder))
4234 return NULL;
4235
4236 intel_dig_port = enc_to_dig_port(&encoder->base);
4237 /* 1:1 mapping between ports and PLLs */
4238 i = (enum intel_dpll_id)intel_dig_port->port;
4239 pll = &dev_priv->shared_dplls[i];
4240 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4241 crtc->base.base.id, pll->name);
4242 WARN_ON(shared_dpll[i].crtc_mask);
4243
4244 goto found;
4245 }
4246
4247 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4248 pll = &dev_priv->shared_dplls[i];
4249
4250 /* Only want to check enabled timings first */
4251 if (shared_dpll[i].crtc_mask == 0)
4252 continue;
4253
4254 if (memcmp(&crtc_state->dpll_hw_state,
4255 &shared_dpll[i].hw_state,
4256 sizeof(crtc_state->dpll_hw_state)) == 0) {
4257 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4258 crtc->base.base.id, pll->name,
4259 shared_dpll[i].crtc_mask,
4260 pll->active);
4261 goto found;
4262 }
4263 }
4264
4265 /* Ok no matching timings, maybe there's a free one? */
4266 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4267 pll = &dev_priv->shared_dplls[i];
4268 if (shared_dpll[i].crtc_mask == 0) {
4269 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4270 crtc->base.base.id, pll->name);
4271 goto found;
4272 }
4273 }
4274
4275 return NULL;
4276
4277 found:
4278 if (shared_dpll[i].crtc_mask == 0)
4279 shared_dpll[i].hw_state =
4280 crtc_state->dpll_hw_state;
4281
4282 crtc_state->shared_dpll = i;
4283 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4284 pipe_name(crtc->pipe));
4285
4286 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4287
4288 return pll;
4289 }
4290
4291 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4292 {
4293 struct drm_i915_private *dev_priv = to_i915(state->dev);
4294 struct intel_shared_dpll_config *shared_dpll;
4295 struct intel_shared_dpll *pll;
4296 enum intel_dpll_id i;
4297
4298 if (!to_intel_atomic_state(state)->dpll_set)
4299 return;
4300
4301 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4302 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4303 pll = &dev_priv->shared_dplls[i];
4304 pll->config = shared_dpll[i];
4305 }
4306 }
4307
4308 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4309 {
4310 struct drm_i915_private *dev_priv = dev->dev_private;
4311 int dslreg = PIPEDSL(pipe);
4312 u32 temp;
4313
4314 temp = I915_READ(dslreg);
4315 udelay(500);
4316 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4317 if (wait_for(I915_READ(dslreg) != temp, 5))
4318 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4319 }
4320 }
4321
4322 static int
4323 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4324 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4325 int src_w, int src_h, int dst_w, int dst_h)
4326 {
4327 struct intel_crtc_scaler_state *scaler_state =
4328 &crtc_state->scaler_state;
4329 struct intel_crtc *intel_crtc =
4330 to_intel_crtc(crtc_state->base.crtc);
4331 int need_scaling;
4332
4333 need_scaling = intel_rotation_90_or_270(rotation) ?
4334 (src_h != dst_w || src_w != dst_h):
4335 (src_w != dst_w || src_h != dst_h);
4336
4337 /*
4338 * if plane is being disabled or scaler is no more required or force detach
4339 * - free scaler binded to this plane/crtc
4340 * - in order to do this, update crtc->scaler_usage
4341 *
4342 * Here scaler state in crtc_state is set free so that
4343 * scaler can be assigned to other user. Actual register
4344 * update to free the scaler is done in plane/panel-fit programming.
4345 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4346 */
4347 if (force_detach || !need_scaling) {
4348 if (*scaler_id >= 0) {
4349 scaler_state->scaler_users &= ~(1 << scaler_user);
4350 scaler_state->scalers[*scaler_id].in_use = 0;
4351
4352 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4353 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4354 intel_crtc->pipe, scaler_user, *scaler_id,
4355 scaler_state->scaler_users);
4356 *scaler_id = -1;
4357 }
4358 return 0;
4359 }
4360
4361 /* range checks */
4362 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4363 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4364
4365 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4366 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4367 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4368 "size is out of scaler range\n",
4369 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4370 return -EINVAL;
4371 }
4372
4373 /* mark this plane as a scaler user in crtc_state */
4374 scaler_state->scaler_users |= (1 << scaler_user);
4375 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4376 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4377 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4378 scaler_state->scaler_users);
4379
4380 return 0;
4381 }
4382
4383 /**
4384 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4385 *
4386 * @state: crtc's scaler state
4387 *
4388 * Return
4389 * 0 - scaler_usage updated successfully
4390 * error - requested scaling cannot be supported or other error condition
4391 */
4392 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4393 {
4394 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4395 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4396
4397 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4398 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4399
4400 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4401 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4402 state->pipe_src_w, state->pipe_src_h,
4403 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4404 }
4405
4406 /**
4407 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4408 *
4409 * @state: crtc's scaler state
4410 * @plane_state: atomic plane state to update
4411 *
4412 * Return
4413 * 0 - scaler_usage updated successfully
4414 * error - requested scaling cannot be supported or other error condition
4415 */
4416 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4417 struct intel_plane_state *plane_state)
4418 {
4419
4420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4421 struct intel_plane *intel_plane =
4422 to_intel_plane(plane_state->base.plane);
4423 struct drm_framebuffer *fb = plane_state->base.fb;
4424 int ret;
4425
4426 bool force_detach = !fb || !plane_state->visible;
4427
4428 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4429 intel_plane->base.base.id, intel_crtc->pipe,
4430 drm_plane_index(&intel_plane->base));
4431
4432 ret = skl_update_scaler(crtc_state, force_detach,
4433 drm_plane_index(&intel_plane->base),
4434 &plane_state->scaler_id,
4435 plane_state->base.rotation,
4436 drm_rect_width(&plane_state->src) >> 16,
4437 drm_rect_height(&plane_state->src) >> 16,
4438 drm_rect_width(&plane_state->dst),
4439 drm_rect_height(&plane_state->dst));
4440
4441 if (ret || plane_state->scaler_id < 0)
4442 return ret;
4443
4444 /* check colorkey */
4445 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4446 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4447 intel_plane->base.base.id);
4448 return -EINVAL;
4449 }
4450
4451 /* Check src format */
4452 switch (fb->pixel_format) {
4453 case DRM_FORMAT_RGB565:
4454 case DRM_FORMAT_XBGR8888:
4455 case DRM_FORMAT_XRGB8888:
4456 case DRM_FORMAT_ABGR8888:
4457 case DRM_FORMAT_ARGB8888:
4458 case DRM_FORMAT_XRGB2101010:
4459 case DRM_FORMAT_XBGR2101010:
4460 case DRM_FORMAT_YUYV:
4461 case DRM_FORMAT_YVYU:
4462 case DRM_FORMAT_UYVY:
4463 case DRM_FORMAT_VYUY:
4464 break;
4465 default:
4466 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4467 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4468 return -EINVAL;
4469 }
4470
4471 return 0;
4472 }
4473
4474 static void skylake_scaler_disable(struct intel_crtc *crtc)
4475 {
4476 int i;
4477
4478 for (i = 0; i < crtc->num_scalers; i++)
4479 skl_detach_scaler(crtc, i);
4480 }
4481
4482 static void skylake_pfit_enable(struct intel_crtc *crtc)
4483 {
4484 struct drm_device *dev = crtc->base.dev;
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 int pipe = crtc->pipe;
4487 struct intel_crtc_scaler_state *scaler_state =
4488 &crtc->config->scaler_state;
4489
4490 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4491
4492 if (crtc->config->pch_pfit.enabled) {
4493 int id;
4494
4495 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4496 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4497 return;
4498 }
4499
4500 id = scaler_state->scaler_id;
4501 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4502 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4503 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4504 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4505
4506 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4507 }
4508 }
4509
4510 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4511 {
4512 struct drm_device *dev = crtc->base.dev;
4513 struct drm_i915_private *dev_priv = dev->dev_private;
4514 int pipe = crtc->pipe;
4515
4516 if (crtc->config->pch_pfit.enabled) {
4517 /* Force use of hard-coded filter coefficients
4518 * as some pre-programmed values are broken,
4519 * e.g. x201.
4520 */
4521 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4522 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4523 PF_PIPE_SEL_IVB(pipe));
4524 else
4525 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4526 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4527 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4528 }
4529 }
4530
4531 void hsw_enable_ips(struct intel_crtc *crtc)
4532 {
4533 struct drm_device *dev = crtc->base.dev;
4534 struct drm_i915_private *dev_priv = dev->dev_private;
4535
4536 if (!crtc->config->ips_enabled)
4537 return;
4538
4539 /* We can only enable IPS after we enable a plane and wait for a vblank */
4540 intel_wait_for_vblank(dev, crtc->pipe);
4541
4542 assert_plane_enabled(dev_priv, crtc->plane);
4543 if (IS_BROADWELL(dev)) {
4544 mutex_lock(&dev_priv->rps.hw_lock);
4545 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4546 mutex_unlock(&dev_priv->rps.hw_lock);
4547 /* Quoting Art Runyan: "its not safe to expect any particular
4548 * value in IPS_CTL bit 31 after enabling IPS through the
4549 * mailbox." Moreover, the mailbox may return a bogus state,
4550 * so we need to just enable it and continue on.
4551 */
4552 } else {
4553 I915_WRITE(IPS_CTL, IPS_ENABLE);
4554 /* The bit only becomes 1 in the next vblank, so this wait here
4555 * is essentially intel_wait_for_vblank. If we don't have this
4556 * and don't wait for vblanks until the end of crtc_enable, then
4557 * the HW state readout code will complain that the expected
4558 * IPS_CTL value is not the one we read. */
4559 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4560 DRM_ERROR("Timed out waiting for IPS enable\n");
4561 }
4562 }
4563
4564 void hsw_disable_ips(struct intel_crtc *crtc)
4565 {
4566 struct drm_device *dev = crtc->base.dev;
4567 struct drm_i915_private *dev_priv = dev->dev_private;
4568
4569 if (!crtc->config->ips_enabled)
4570 return;
4571
4572 assert_plane_enabled(dev_priv, crtc->plane);
4573 if (IS_BROADWELL(dev)) {
4574 mutex_lock(&dev_priv->rps.hw_lock);
4575 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4576 mutex_unlock(&dev_priv->rps.hw_lock);
4577 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4578 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4579 DRM_ERROR("Timed out waiting for IPS disable\n");
4580 } else {
4581 I915_WRITE(IPS_CTL, 0);
4582 POSTING_READ(IPS_CTL);
4583 }
4584
4585 /* We need to wait for a vblank before we can disable the plane. */
4586 intel_wait_for_vblank(dev, crtc->pipe);
4587 }
4588
4589 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4590 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4591 {
4592 struct drm_device *dev = crtc->dev;
4593 struct drm_i915_private *dev_priv = dev->dev_private;
4594 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4595 enum pipe pipe = intel_crtc->pipe;
4596 int palreg = PALETTE(pipe);
4597 int i;
4598 bool reenable_ips = false;
4599
4600 /* The clocks have to be on to load the palette. */
4601 if (!crtc->state->active)
4602 return;
4603
4604 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4605 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4606 assert_dsi_pll_enabled(dev_priv);
4607 else
4608 assert_pll_enabled(dev_priv, pipe);
4609 }
4610
4611 /* use legacy palette for Ironlake */
4612 if (!HAS_GMCH_DISPLAY(dev))
4613 palreg = LGC_PALETTE(pipe);
4614
4615 /* Workaround : Do not read or write the pipe palette/gamma data while
4616 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4617 */
4618 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4619 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4620 GAMMA_MODE_MODE_SPLIT)) {
4621 hsw_disable_ips(intel_crtc);
4622 reenable_ips = true;
4623 }
4624
4625 for (i = 0; i < 256; i++) {
4626 I915_WRITE(palreg + 4 * i,
4627 (intel_crtc->lut_r[i] << 16) |
4628 (intel_crtc->lut_g[i] << 8) |
4629 intel_crtc->lut_b[i]);
4630 }
4631
4632 if (reenable_ips)
4633 hsw_enable_ips(intel_crtc);
4634 }
4635
4636 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4637 {
4638 if (intel_crtc->overlay) {
4639 struct drm_device *dev = intel_crtc->base.dev;
4640 struct drm_i915_private *dev_priv = dev->dev_private;
4641
4642 mutex_lock(&dev->struct_mutex);
4643 dev_priv->mm.interruptible = false;
4644 (void) intel_overlay_switch_off(intel_crtc->overlay);
4645 dev_priv->mm.interruptible = true;
4646 mutex_unlock(&dev->struct_mutex);
4647 }
4648
4649 /* Let userspace switch the overlay on again. In most cases userspace
4650 * has to recompute where to put it anyway.
4651 */
4652 }
4653
4654 /**
4655 * intel_post_enable_primary - Perform operations after enabling primary plane
4656 * @crtc: the CRTC whose primary plane was just enabled
4657 *
4658 * Performs potentially sleeping operations that must be done after the primary
4659 * plane is enabled, such as updating FBC and IPS. Note that this may be
4660 * called due to an explicit primary plane update, or due to an implicit
4661 * re-enable that is caused when a sprite plane is updated to no longer
4662 * completely hide the primary plane.
4663 */
4664 static void
4665 intel_post_enable_primary(struct drm_crtc *crtc)
4666 {
4667 struct drm_device *dev = crtc->dev;
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4670 int pipe = intel_crtc->pipe;
4671
4672 /*
4673 * BDW signals flip done immediately if the plane
4674 * is disabled, even if the plane enable is already
4675 * armed to occur at the next vblank :(
4676 */
4677 if (IS_BROADWELL(dev))
4678 intel_wait_for_vblank(dev, pipe);
4679
4680 /*
4681 * FIXME IPS should be fine as long as one plane is
4682 * enabled, but in practice it seems to have problems
4683 * when going from primary only to sprite only and vice
4684 * versa.
4685 */
4686 hsw_enable_ips(intel_crtc);
4687
4688 /*
4689 * Gen2 reports pipe underruns whenever all planes are disabled.
4690 * So don't enable underrun reporting before at least some planes
4691 * are enabled.
4692 * FIXME: Need to fix the logic to work when we turn off all planes
4693 * but leave the pipe running.
4694 */
4695 if (IS_GEN2(dev))
4696 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4697
4698 /* Underruns don't raise interrupts, so check manually. */
4699 if (HAS_GMCH_DISPLAY(dev))
4700 i9xx_check_fifo_underruns(dev_priv);
4701 }
4702
4703 /**
4704 * intel_pre_disable_primary - Perform operations before disabling primary plane
4705 * @crtc: the CRTC whose primary plane is to be disabled
4706 *
4707 * Performs potentially sleeping operations that must be done before the
4708 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4709 * be called due to an explicit primary plane update, or due to an implicit
4710 * disable that is caused when a sprite plane completely hides the primary
4711 * plane.
4712 */
4713 static void
4714 intel_pre_disable_primary(struct drm_crtc *crtc)
4715 {
4716 struct drm_device *dev = crtc->dev;
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4719 int pipe = intel_crtc->pipe;
4720
4721 /*
4722 * Gen2 reports pipe underruns whenever all planes are disabled.
4723 * So diasble underrun reporting before all the planes get disabled.
4724 * FIXME: Need to fix the logic to work when we turn off all planes
4725 * but leave the pipe running.
4726 */
4727 if (IS_GEN2(dev))
4728 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4729
4730 /*
4731 * Vblank time updates from the shadow to live plane control register
4732 * are blocked if the memory self-refresh mode is active at that
4733 * moment. So to make sure the plane gets truly disabled, disable
4734 * first the self-refresh mode. The self-refresh enable bit in turn
4735 * will be checked/applied by the HW only at the next frame start
4736 * event which is after the vblank start event, so we need to have a
4737 * wait-for-vblank between disabling the plane and the pipe.
4738 */
4739 if (HAS_GMCH_DISPLAY(dev)) {
4740 intel_set_memory_cxsr(dev_priv, false);
4741 dev_priv->wm.vlv.cxsr = false;
4742 intel_wait_for_vblank(dev, pipe);
4743 }
4744
4745 /*
4746 * FIXME IPS should be fine as long as one plane is
4747 * enabled, but in practice it seems to have problems
4748 * when going from primary only to sprite only and vice
4749 * versa.
4750 */
4751 hsw_disable_ips(intel_crtc);
4752 }
4753
4754 static void intel_post_plane_update(struct intel_crtc *crtc)
4755 {
4756 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4757 struct drm_device *dev = crtc->base.dev;
4758 struct drm_i915_private *dev_priv = dev->dev_private;
4759 struct drm_plane *plane;
4760
4761 if (atomic->wait_vblank)
4762 intel_wait_for_vblank(dev, crtc->pipe);
4763
4764 intel_frontbuffer_flip(dev, atomic->fb_bits);
4765
4766 if (atomic->disable_cxsr)
4767 crtc->wm.cxsr_allowed = true;
4768
4769 if (crtc->atomic.update_wm_post)
4770 intel_update_watermarks(&crtc->base);
4771
4772 if (atomic->update_fbc)
4773 intel_fbc_update(dev_priv);
4774
4775 if (atomic->post_enable_primary)
4776 intel_post_enable_primary(&crtc->base);
4777
4778 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4779 intel_update_sprite_watermarks(plane, &crtc->base,
4780 0, 0, 0, false, false);
4781
4782 memset(atomic, 0, sizeof(*atomic));
4783 }
4784
4785 static void intel_pre_plane_update(struct intel_crtc *crtc)
4786 {
4787 struct drm_device *dev = crtc->base.dev;
4788 struct drm_i915_private *dev_priv = dev->dev_private;
4789 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4790 struct drm_plane *p;
4791
4792 /* Track fb's for any planes being disabled */
4793 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4794 struct intel_plane *plane = to_intel_plane(p);
4795
4796 mutex_lock(&dev->struct_mutex);
4797 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4798 plane->frontbuffer_bit);
4799 mutex_unlock(&dev->struct_mutex);
4800 }
4801
4802 if (atomic->wait_for_flips)
4803 intel_crtc_wait_for_pending_flips(&crtc->base);
4804
4805 if (atomic->disable_fbc)
4806 intel_fbc_disable_crtc(crtc);
4807
4808 if (crtc->atomic.disable_ips)
4809 hsw_disable_ips(crtc);
4810
4811 if (atomic->pre_disable_primary)
4812 intel_pre_disable_primary(&crtc->base);
4813
4814 if (atomic->disable_cxsr) {
4815 crtc->wm.cxsr_allowed = false;
4816 intel_set_memory_cxsr(dev_priv, false);
4817 }
4818 }
4819
4820 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4821 {
4822 struct drm_device *dev = crtc->dev;
4823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4824 struct drm_plane *p;
4825 int pipe = intel_crtc->pipe;
4826
4827 intel_crtc_dpms_overlay_disable(intel_crtc);
4828
4829 drm_for_each_plane_mask(p, dev, plane_mask)
4830 to_intel_plane(p)->disable_plane(p, crtc);
4831
4832 /*
4833 * FIXME: Once we grow proper nuclear flip support out of this we need
4834 * to compute the mask of flip planes precisely. For the time being
4835 * consider this a flip to a NULL plane.
4836 */
4837 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4838 }
4839
4840 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4841 {
4842 struct drm_device *dev = crtc->dev;
4843 struct drm_i915_private *dev_priv = dev->dev_private;
4844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4845 struct intel_encoder *encoder;
4846 int pipe = intel_crtc->pipe;
4847
4848 if (WARN_ON(intel_crtc->active))
4849 return;
4850
4851 if (intel_crtc->config->has_pch_encoder)
4852 intel_prepare_shared_dpll(intel_crtc);
4853
4854 if (intel_crtc->config->has_dp_encoder)
4855 intel_dp_set_m_n(intel_crtc, M1_N1);
4856
4857 intel_set_pipe_timings(intel_crtc);
4858
4859 if (intel_crtc->config->has_pch_encoder) {
4860 intel_cpu_transcoder_set_m_n(intel_crtc,
4861 &intel_crtc->config->fdi_m_n, NULL);
4862 }
4863
4864 ironlake_set_pipeconf(crtc);
4865
4866 intel_crtc->active = true;
4867
4868 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4869 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4870
4871 for_each_encoder_on_crtc(dev, crtc, encoder)
4872 if (encoder->pre_enable)
4873 encoder->pre_enable(encoder);
4874
4875 if (intel_crtc->config->has_pch_encoder) {
4876 /* Note: FDI PLL enabling _must_ be done before we enable the
4877 * cpu pipes, hence this is separate from all the other fdi/pch
4878 * enabling. */
4879 ironlake_fdi_pll_enable(intel_crtc);
4880 } else {
4881 assert_fdi_tx_disabled(dev_priv, pipe);
4882 assert_fdi_rx_disabled(dev_priv, pipe);
4883 }
4884
4885 ironlake_pfit_enable(intel_crtc);
4886
4887 /*
4888 * On ILK+ LUT must be loaded before the pipe is running but with
4889 * clocks enabled
4890 */
4891 intel_crtc_load_lut(crtc);
4892
4893 intel_update_watermarks(crtc);
4894 intel_enable_pipe(intel_crtc);
4895
4896 if (intel_crtc->config->has_pch_encoder)
4897 ironlake_pch_enable(crtc);
4898
4899 assert_vblank_disabled(crtc);
4900 drm_crtc_vblank_on(crtc);
4901
4902 for_each_encoder_on_crtc(dev, crtc, encoder)
4903 encoder->enable(encoder);
4904
4905 if (HAS_PCH_CPT(dev))
4906 cpt_verify_modeset(dev, intel_crtc->pipe);
4907 }
4908
4909 /* IPS only exists on ULT machines and is tied to pipe A. */
4910 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4911 {
4912 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4913 }
4914
4915 static void haswell_crtc_enable(struct drm_crtc *crtc)
4916 {
4917 struct drm_device *dev = crtc->dev;
4918 struct drm_i915_private *dev_priv = dev->dev_private;
4919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4920 struct intel_encoder *encoder;
4921 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4922 struct intel_crtc_state *pipe_config =
4923 to_intel_crtc_state(crtc->state);
4924
4925 if (WARN_ON(intel_crtc->active))
4926 return;
4927
4928 if (intel_crtc_to_shared_dpll(intel_crtc))
4929 intel_enable_shared_dpll(intel_crtc);
4930
4931 if (intel_crtc->config->has_dp_encoder)
4932 intel_dp_set_m_n(intel_crtc, M1_N1);
4933
4934 intel_set_pipe_timings(intel_crtc);
4935
4936 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4937 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4938 intel_crtc->config->pixel_multiplier - 1);
4939 }
4940
4941 if (intel_crtc->config->has_pch_encoder) {
4942 intel_cpu_transcoder_set_m_n(intel_crtc,
4943 &intel_crtc->config->fdi_m_n, NULL);
4944 }
4945
4946 haswell_set_pipeconf(crtc);
4947
4948 intel_set_pipe_csc(crtc);
4949
4950 intel_crtc->active = true;
4951
4952 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4953 for_each_encoder_on_crtc(dev, crtc, encoder)
4954 if (encoder->pre_enable)
4955 encoder->pre_enable(encoder);
4956
4957 if (intel_crtc->config->has_pch_encoder) {
4958 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4959 true);
4960 dev_priv->display.fdi_link_train(crtc);
4961 }
4962
4963 intel_ddi_enable_pipe_clock(intel_crtc);
4964
4965 if (INTEL_INFO(dev)->gen >= 9)
4966 skylake_pfit_enable(intel_crtc);
4967 else
4968 ironlake_pfit_enable(intel_crtc);
4969
4970 /*
4971 * On ILK+ LUT must be loaded before the pipe is running but with
4972 * clocks enabled
4973 */
4974 intel_crtc_load_lut(crtc);
4975
4976 intel_ddi_set_pipe_settings(crtc);
4977 intel_ddi_enable_transcoder_func(crtc);
4978
4979 intel_update_watermarks(crtc);
4980 intel_enable_pipe(intel_crtc);
4981
4982 if (intel_crtc->config->has_pch_encoder)
4983 lpt_pch_enable(crtc);
4984
4985 if (intel_crtc->config->dp_encoder_is_mst)
4986 intel_ddi_set_vc_payload_alloc(crtc, true);
4987
4988 assert_vblank_disabled(crtc);
4989 drm_crtc_vblank_on(crtc);
4990
4991 for_each_encoder_on_crtc(dev, crtc, encoder) {
4992 encoder->enable(encoder);
4993 intel_opregion_notify_encoder(encoder, true);
4994 }
4995
4996 /* If we change the relative order between pipe/planes enabling, we need
4997 * to change the workaround. */
4998 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4999 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5000 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5001 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5002 }
5003 }
5004
5005 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5006 {
5007 struct drm_device *dev = crtc->base.dev;
5008 struct drm_i915_private *dev_priv = dev->dev_private;
5009 int pipe = crtc->pipe;
5010
5011 /* To avoid upsetting the power well on haswell only disable the pfit if
5012 * it's in use. The hw state code will make sure we get this right. */
5013 if (force || crtc->config->pch_pfit.enabled) {
5014 I915_WRITE(PF_CTL(pipe), 0);
5015 I915_WRITE(PF_WIN_POS(pipe), 0);
5016 I915_WRITE(PF_WIN_SZ(pipe), 0);
5017 }
5018 }
5019
5020 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5021 {
5022 struct drm_device *dev = crtc->dev;
5023 struct drm_i915_private *dev_priv = dev->dev_private;
5024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5025 struct intel_encoder *encoder;
5026 int pipe = intel_crtc->pipe;
5027 u32 reg, temp;
5028
5029 for_each_encoder_on_crtc(dev, crtc, encoder)
5030 encoder->disable(encoder);
5031
5032 drm_crtc_vblank_off(crtc);
5033 assert_vblank_disabled(crtc);
5034
5035 if (intel_crtc->config->has_pch_encoder)
5036 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5037
5038 intel_disable_pipe(intel_crtc);
5039
5040 ironlake_pfit_disable(intel_crtc, false);
5041
5042 if (intel_crtc->config->has_pch_encoder)
5043 ironlake_fdi_disable(crtc);
5044
5045 for_each_encoder_on_crtc(dev, crtc, encoder)
5046 if (encoder->post_disable)
5047 encoder->post_disable(encoder);
5048
5049 if (intel_crtc->config->has_pch_encoder) {
5050 ironlake_disable_pch_transcoder(dev_priv, pipe);
5051
5052 if (HAS_PCH_CPT(dev)) {
5053 /* disable TRANS_DP_CTL */
5054 reg = TRANS_DP_CTL(pipe);
5055 temp = I915_READ(reg);
5056 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5057 TRANS_DP_PORT_SEL_MASK);
5058 temp |= TRANS_DP_PORT_SEL_NONE;
5059 I915_WRITE(reg, temp);
5060
5061 /* disable DPLL_SEL */
5062 temp = I915_READ(PCH_DPLL_SEL);
5063 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5064 I915_WRITE(PCH_DPLL_SEL, temp);
5065 }
5066
5067 ironlake_fdi_pll_disable(intel_crtc);
5068 }
5069
5070 intel_crtc->active = false;
5071 intel_update_watermarks(crtc);
5072 }
5073
5074 static void haswell_crtc_disable(struct drm_crtc *crtc)
5075 {
5076 struct drm_device *dev = crtc->dev;
5077 struct drm_i915_private *dev_priv = dev->dev_private;
5078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5079 struct intel_encoder *encoder;
5080 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5081
5082 for_each_encoder_on_crtc(dev, crtc, encoder) {
5083 intel_opregion_notify_encoder(encoder, false);
5084 encoder->disable(encoder);
5085 }
5086
5087 drm_crtc_vblank_off(crtc);
5088 assert_vblank_disabled(crtc);
5089
5090 if (intel_crtc->config->has_pch_encoder)
5091 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5092 false);
5093 intel_disable_pipe(intel_crtc);
5094
5095 if (intel_crtc->config->dp_encoder_is_mst)
5096 intel_ddi_set_vc_payload_alloc(crtc, false);
5097
5098 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5099
5100 if (INTEL_INFO(dev)->gen >= 9)
5101 skylake_scaler_disable(intel_crtc);
5102 else
5103 ironlake_pfit_disable(intel_crtc, false);
5104
5105 intel_ddi_disable_pipe_clock(intel_crtc);
5106
5107 if (intel_crtc->config->has_pch_encoder) {
5108 lpt_disable_pch_transcoder(dev_priv);
5109 intel_ddi_fdi_disable(crtc);
5110 }
5111
5112 for_each_encoder_on_crtc(dev, crtc, encoder)
5113 if (encoder->post_disable)
5114 encoder->post_disable(encoder);
5115
5116 intel_crtc->active = false;
5117 intel_update_watermarks(crtc);
5118 }
5119
5120 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5121 {
5122 struct drm_device *dev = crtc->base.dev;
5123 struct drm_i915_private *dev_priv = dev->dev_private;
5124 struct intel_crtc_state *pipe_config = crtc->config;
5125
5126 if (!pipe_config->gmch_pfit.control)
5127 return;
5128
5129 /*
5130 * The panel fitter should only be adjusted whilst the pipe is disabled,
5131 * according to register description and PRM.
5132 */
5133 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5134 assert_pipe_disabled(dev_priv, crtc->pipe);
5135
5136 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5137 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5138
5139 /* Border color in case we don't scale up to the full screen. Black by
5140 * default, change to something else for debugging. */
5141 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5142 }
5143
5144 static enum intel_display_power_domain port_to_power_domain(enum port port)
5145 {
5146 switch (port) {
5147 case PORT_A:
5148 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5149 case PORT_B:
5150 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5151 case PORT_C:
5152 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5153 case PORT_D:
5154 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5155 case PORT_E:
5156 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5157 default:
5158 WARN_ON_ONCE(1);
5159 return POWER_DOMAIN_PORT_OTHER;
5160 }
5161 }
5162
5163 #define for_each_power_domain(domain, mask) \
5164 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5165 if ((1 << (domain)) & (mask))
5166
5167 enum intel_display_power_domain
5168 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5169 {
5170 struct drm_device *dev = intel_encoder->base.dev;
5171 struct intel_digital_port *intel_dig_port;
5172
5173 switch (intel_encoder->type) {
5174 case INTEL_OUTPUT_UNKNOWN:
5175 /* Only DDI platforms should ever use this output type */
5176 WARN_ON_ONCE(!HAS_DDI(dev));
5177 case INTEL_OUTPUT_DISPLAYPORT:
5178 case INTEL_OUTPUT_HDMI:
5179 case INTEL_OUTPUT_EDP:
5180 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5181 return port_to_power_domain(intel_dig_port->port);
5182 case INTEL_OUTPUT_DP_MST:
5183 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5184 return port_to_power_domain(intel_dig_port->port);
5185 case INTEL_OUTPUT_ANALOG:
5186 return POWER_DOMAIN_PORT_CRT;
5187 case INTEL_OUTPUT_DSI:
5188 return POWER_DOMAIN_PORT_DSI;
5189 default:
5190 return POWER_DOMAIN_PORT_OTHER;
5191 }
5192 }
5193
5194 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5195 {
5196 struct drm_device *dev = crtc->dev;
5197 struct intel_encoder *intel_encoder;
5198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5199 enum pipe pipe = intel_crtc->pipe;
5200 unsigned long mask;
5201 enum transcoder transcoder;
5202
5203 if (!crtc->state->active)
5204 return 0;
5205
5206 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5207
5208 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5209 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5210 if (intel_crtc->config->pch_pfit.enabled ||
5211 intel_crtc->config->pch_pfit.force_thru)
5212 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5213
5214 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5215 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5216
5217 return mask;
5218 }
5219
5220 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5221 {
5222 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5224 enum intel_display_power_domain domain;
5225 unsigned long domains, new_domains, old_domains;
5226
5227 old_domains = intel_crtc->enabled_power_domains;
5228 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5229
5230 domains = new_domains & ~old_domains;
5231
5232 for_each_power_domain(domain, domains)
5233 intel_display_power_get(dev_priv, domain);
5234
5235 return old_domains & ~new_domains;
5236 }
5237
5238 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5239 unsigned long domains)
5240 {
5241 enum intel_display_power_domain domain;
5242
5243 for_each_power_domain(domain, domains)
5244 intel_display_power_put(dev_priv, domain);
5245 }
5246
5247 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5248 {
5249 struct drm_device *dev = state->dev;
5250 struct drm_i915_private *dev_priv = dev->dev_private;
5251 unsigned long put_domains[I915_MAX_PIPES] = {};
5252 struct drm_crtc_state *crtc_state;
5253 struct drm_crtc *crtc;
5254 int i;
5255
5256 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5257 if (needs_modeset(crtc->state))
5258 put_domains[to_intel_crtc(crtc)->pipe] =
5259 modeset_get_crtc_power_domains(crtc);
5260 }
5261
5262 if (dev_priv->display.modeset_commit_cdclk) {
5263 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5264
5265 if (cdclk != dev_priv->cdclk_freq &&
5266 !WARN_ON(!state->allow_modeset))
5267 dev_priv->display.modeset_commit_cdclk(state);
5268 }
5269
5270 for (i = 0; i < I915_MAX_PIPES; i++)
5271 if (put_domains[i])
5272 modeset_put_power_domains(dev_priv, put_domains[i]);
5273 }
5274
5275 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5276 {
5277 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5278
5279 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5280 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5281 return max_cdclk_freq;
5282 else if (IS_CHERRYVIEW(dev_priv))
5283 return max_cdclk_freq*95/100;
5284 else if (INTEL_INFO(dev_priv)->gen < 4)
5285 return 2*max_cdclk_freq*90/100;
5286 else
5287 return max_cdclk_freq*90/100;
5288 }
5289
5290 static void intel_update_max_cdclk(struct drm_device *dev)
5291 {
5292 struct drm_i915_private *dev_priv = dev->dev_private;
5293
5294 if (IS_SKYLAKE(dev)) {
5295 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5296
5297 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5298 dev_priv->max_cdclk_freq = 675000;
5299 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5300 dev_priv->max_cdclk_freq = 540000;
5301 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5302 dev_priv->max_cdclk_freq = 450000;
5303 else
5304 dev_priv->max_cdclk_freq = 337500;
5305 } else if (IS_BROADWELL(dev)) {
5306 /*
5307 * FIXME with extra cooling we can allow
5308 * 540 MHz for ULX and 675 Mhz for ULT.
5309 * How can we know if extra cooling is
5310 * available? PCI ID, VTB, something else?
5311 */
5312 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5313 dev_priv->max_cdclk_freq = 450000;
5314 else if (IS_BDW_ULX(dev))
5315 dev_priv->max_cdclk_freq = 450000;
5316 else if (IS_BDW_ULT(dev))
5317 dev_priv->max_cdclk_freq = 540000;
5318 else
5319 dev_priv->max_cdclk_freq = 675000;
5320 } else if (IS_CHERRYVIEW(dev)) {
5321 dev_priv->max_cdclk_freq = 320000;
5322 } else if (IS_VALLEYVIEW(dev)) {
5323 dev_priv->max_cdclk_freq = 400000;
5324 } else {
5325 /* otherwise assume cdclk is fixed */
5326 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5327 }
5328
5329 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5330
5331 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5332 dev_priv->max_cdclk_freq);
5333
5334 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5335 dev_priv->max_dotclk_freq);
5336 }
5337
5338 static void intel_update_cdclk(struct drm_device *dev)
5339 {
5340 struct drm_i915_private *dev_priv = dev->dev_private;
5341
5342 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5343 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5344 dev_priv->cdclk_freq);
5345
5346 /*
5347 * Program the gmbus_freq based on the cdclk frequency.
5348 * BSpec erroneously claims we should aim for 4MHz, but
5349 * in fact 1MHz is the correct frequency.
5350 */
5351 if (IS_VALLEYVIEW(dev)) {
5352 /*
5353 * Program the gmbus_freq based on the cdclk frequency.
5354 * BSpec erroneously claims we should aim for 4MHz, but
5355 * in fact 1MHz is the correct frequency.
5356 */
5357 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5358 }
5359
5360 if (dev_priv->max_cdclk_freq == 0)
5361 intel_update_max_cdclk(dev);
5362 }
5363
5364 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5365 {
5366 struct drm_i915_private *dev_priv = dev->dev_private;
5367 uint32_t divider;
5368 uint32_t ratio;
5369 uint32_t current_freq;
5370 int ret;
5371
5372 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5373 switch (frequency) {
5374 case 144000:
5375 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5376 ratio = BXT_DE_PLL_RATIO(60);
5377 break;
5378 case 288000:
5379 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5380 ratio = BXT_DE_PLL_RATIO(60);
5381 break;
5382 case 384000:
5383 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5384 ratio = BXT_DE_PLL_RATIO(60);
5385 break;
5386 case 576000:
5387 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5388 ratio = BXT_DE_PLL_RATIO(60);
5389 break;
5390 case 624000:
5391 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5392 ratio = BXT_DE_PLL_RATIO(65);
5393 break;
5394 case 19200:
5395 /*
5396 * Bypass frequency with DE PLL disabled. Init ratio, divider
5397 * to suppress GCC warning.
5398 */
5399 ratio = 0;
5400 divider = 0;
5401 break;
5402 default:
5403 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5404
5405 return;
5406 }
5407
5408 mutex_lock(&dev_priv->rps.hw_lock);
5409 /* Inform power controller of upcoming frequency change */
5410 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5411 0x80000000);
5412 mutex_unlock(&dev_priv->rps.hw_lock);
5413
5414 if (ret) {
5415 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5416 ret, frequency);
5417 return;
5418 }
5419
5420 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5421 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5422 current_freq = current_freq * 500 + 1000;
5423
5424 /*
5425 * DE PLL has to be disabled when
5426 * - setting to 19.2MHz (bypass, PLL isn't used)
5427 * - before setting to 624MHz (PLL needs toggling)
5428 * - before setting to any frequency from 624MHz (PLL needs toggling)
5429 */
5430 if (frequency == 19200 || frequency == 624000 ||
5431 current_freq == 624000) {
5432 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5433 /* Timeout 200us */
5434 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5435 1))
5436 DRM_ERROR("timout waiting for DE PLL unlock\n");
5437 }
5438
5439 if (frequency != 19200) {
5440 uint32_t val;
5441
5442 val = I915_READ(BXT_DE_PLL_CTL);
5443 val &= ~BXT_DE_PLL_RATIO_MASK;
5444 val |= ratio;
5445 I915_WRITE(BXT_DE_PLL_CTL, val);
5446
5447 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5448 /* Timeout 200us */
5449 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5450 DRM_ERROR("timeout waiting for DE PLL lock\n");
5451
5452 val = I915_READ(CDCLK_CTL);
5453 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5454 val |= divider;
5455 /*
5456 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5457 * enable otherwise.
5458 */
5459 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5460 if (frequency >= 500000)
5461 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5462
5463 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5464 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5465 val |= (frequency - 1000) / 500;
5466 I915_WRITE(CDCLK_CTL, val);
5467 }
5468
5469 mutex_lock(&dev_priv->rps.hw_lock);
5470 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5471 DIV_ROUND_UP(frequency, 25000));
5472 mutex_unlock(&dev_priv->rps.hw_lock);
5473
5474 if (ret) {
5475 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5476 ret, frequency);
5477 return;
5478 }
5479
5480 intel_update_cdclk(dev);
5481 }
5482
5483 void broxton_init_cdclk(struct drm_device *dev)
5484 {
5485 struct drm_i915_private *dev_priv = dev->dev_private;
5486 uint32_t val;
5487
5488 /*
5489 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5490 * or else the reset will hang because there is no PCH to respond.
5491 * Move the handshake programming to initialization sequence.
5492 * Previously was left up to BIOS.
5493 */
5494 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5495 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5496 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5497
5498 /* Enable PG1 for cdclk */
5499 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5500
5501 /* check if cd clock is enabled */
5502 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5503 DRM_DEBUG_KMS("Display already initialized\n");
5504 return;
5505 }
5506
5507 /*
5508 * FIXME:
5509 * - The initial CDCLK needs to be read from VBT.
5510 * Need to make this change after VBT has changes for BXT.
5511 * - check if setting the max (or any) cdclk freq is really necessary
5512 * here, it belongs to modeset time
5513 */
5514 broxton_set_cdclk(dev, 624000);
5515
5516 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5517 POSTING_READ(DBUF_CTL);
5518
5519 udelay(10);
5520
5521 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5522 DRM_ERROR("DBuf power enable timeout!\n");
5523 }
5524
5525 void broxton_uninit_cdclk(struct drm_device *dev)
5526 {
5527 struct drm_i915_private *dev_priv = dev->dev_private;
5528
5529 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5530 POSTING_READ(DBUF_CTL);
5531
5532 udelay(10);
5533
5534 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5535 DRM_ERROR("DBuf power disable timeout!\n");
5536
5537 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5538 broxton_set_cdclk(dev, 19200);
5539
5540 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5541 }
5542
5543 static const struct skl_cdclk_entry {
5544 unsigned int freq;
5545 unsigned int vco;
5546 } skl_cdclk_frequencies[] = {
5547 { .freq = 308570, .vco = 8640 },
5548 { .freq = 337500, .vco = 8100 },
5549 { .freq = 432000, .vco = 8640 },
5550 { .freq = 450000, .vco = 8100 },
5551 { .freq = 540000, .vco = 8100 },
5552 { .freq = 617140, .vco = 8640 },
5553 { .freq = 675000, .vco = 8100 },
5554 };
5555
5556 static unsigned int skl_cdclk_decimal(unsigned int freq)
5557 {
5558 return (freq - 1000) / 500;
5559 }
5560
5561 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5562 {
5563 unsigned int i;
5564
5565 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5566 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5567
5568 if (e->freq == freq)
5569 return e->vco;
5570 }
5571
5572 return 8100;
5573 }
5574
5575 static void
5576 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5577 {
5578 unsigned int min_freq;
5579 u32 val;
5580
5581 /* select the minimum CDCLK before enabling DPLL 0 */
5582 val = I915_READ(CDCLK_CTL);
5583 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5584 val |= CDCLK_FREQ_337_308;
5585
5586 if (required_vco == 8640)
5587 min_freq = 308570;
5588 else
5589 min_freq = 337500;
5590
5591 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5592
5593 I915_WRITE(CDCLK_CTL, val);
5594 POSTING_READ(CDCLK_CTL);
5595
5596 /*
5597 * We always enable DPLL0 with the lowest link rate possible, but still
5598 * taking into account the VCO required to operate the eDP panel at the
5599 * desired frequency. The usual DP link rates operate with a VCO of
5600 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5601 * The modeset code is responsible for the selection of the exact link
5602 * rate later on, with the constraint of choosing a frequency that
5603 * works with required_vco.
5604 */
5605 val = I915_READ(DPLL_CTRL1);
5606
5607 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5608 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5609 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5610 if (required_vco == 8640)
5611 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5612 SKL_DPLL0);
5613 else
5614 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5615 SKL_DPLL0);
5616
5617 I915_WRITE(DPLL_CTRL1, val);
5618 POSTING_READ(DPLL_CTRL1);
5619
5620 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5621
5622 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5623 DRM_ERROR("DPLL0 not locked\n");
5624 }
5625
5626 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5627 {
5628 int ret;
5629 u32 val;
5630
5631 /* inform PCU we want to change CDCLK */
5632 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5633 mutex_lock(&dev_priv->rps.hw_lock);
5634 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5635 mutex_unlock(&dev_priv->rps.hw_lock);
5636
5637 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5638 }
5639
5640 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5641 {
5642 unsigned int i;
5643
5644 for (i = 0; i < 15; i++) {
5645 if (skl_cdclk_pcu_ready(dev_priv))
5646 return true;
5647 udelay(10);
5648 }
5649
5650 return false;
5651 }
5652
5653 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5654 {
5655 struct drm_device *dev = dev_priv->dev;
5656 u32 freq_select, pcu_ack;
5657
5658 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5659
5660 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5661 DRM_ERROR("failed to inform PCU about cdclk change\n");
5662 return;
5663 }
5664
5665 /* set CDCLK_CTL */
5666 switch(freq) {
5667 case 450000:
5668 case 432000:
5669 freq_select = CDCLK_FREQ_450_432;
5670 pcu_ack = 1;
5671 break;
5672 case 540000:
5673 freq_select = CDCLK_FREQ_540;
5674 pcu_ack = 2;
5675 break;
5676 case 308570:
5677 case 337500:
5678 default:
5679 freq_select = CDCLK_FREQ_337_308;
5680 pcu_ack = 0;
5681 break;
5682 case 617140:
5683 case 675000:
5684 freq_select = CDCLK_FREQ_675_617;
5685 pcu_ack = 3;
5686 break;
5687 }
5688
5689 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5690 POSTING_READ(CDCLK_CTL);
5691
5692 /* inform PCU of the change */
5693 mutex_lock(&dev_priv->rps.hw_lock);
5694 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5695 mutex_unlock(&dev_priv->rps.hw_lock);
5696
5697 intel_update_cdclk(dev);
5698 }
5699
5700 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5701 {
5702 /* disable DBUF power */
5703 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5704 POSTING_READ(DBUF_CTL);
5705
5706 udelay(10);
5707
5708 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5709 DRM_ERROR("DBuf power disable timeout\n");
5710
5711 /*
5712 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5713 */
5714 if (dev_priv->csr.dmc_payload) {
5715 /* disable DPLL0 */
5716 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5717 ~LCPLL_PLL_ENABLE);
5718 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5719 DRM_ERROR("Couldn't disable DPLL0\n");
5720 }
5721
5722 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5723 }
5724
5725 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5726 {
5727 u32 val;
5728 unsigned int required_vco;
5729
5730 /* enable PCH reset handshake */
5731 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5732 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5733
5734 /* enable PG1 and Misc I/O */
5735 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5736
5737 /* DPLL0 not enabled (happens on early BIOS versions) */
5738 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5739 /* enable DPLL0 */
5740 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5741 skl_dpll0_enable(dev_priv, required_vco);
5742 }
5743
5744 /* set CDCLK to the frequency the BIOS chose */
5745 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5746
5747 /* enable DBUF power */
5748 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5749 POSTING_READ(DBUF_CTL);
5750
5751 udelay(10);
5752
5753 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5754 DRM_ERROR("DBuf power enable timeout\n");
5755 }
5756
5757 /* returns HPLL frequency in kHz */
5758 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5759 {
5760 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5761
5762 /* Obtain SKU information */
5763 mutex_lock(&dev_priv->sb_lock);
5764 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5765 CCK_FUSE_HPLL_FREQ_MASK;
5766 mutex_unlock(&dev_priv->sb_lock);
5767
5768 return vco_freq[hpll_freq] * 1000;
5769 }
5770
5771 /* Adjust CDclk dividers to allow high res or save power if possible */
5772 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5773 {
5774 struct drm_i915_private *dev_priv = dev->dev_private;
5775 u32 val, cmd;
5776
5777 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5778 != dev_priv->cdclk_freq);
5779
5780 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5781 cmd = 2;
5782 else if (cdclk == 266667)
5783 cmd = 1;
5784 else
5785 cmd = 0;
5786
5787 mutex_lock(&dev_priv->rps.hw_lock);
5788 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5789 val &= ~DSPFREQGUAR_MASK;
5790 val |= (cmd << DSPFREQGUAR_SHIFT);
5791 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5792 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5793 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5794 50)) {
5795 DRM_ERROR("timed out waiting for CDclk change\n");
5796 }
5797 mutex_unlock(&dev_priv->rps.hw_lock);
5798
5799 mutex_lock(&dev_priv->sb_lock);
5800
5801 if (cdclk == 400000) {
5802 u32 divider;
5803
5804 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5805
5806 /* adjust cdclk divider */
5807 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5808 val &= ~DISPLAY_FREQUENCY_VALUES;
5809 val |= divider;
5810 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5811
5812 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5813 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5814 50))
5815 DRM_ERROR("timed out waiting for CDclk change\n");
5816 }
5817
5818 /* adjust self-refresh exit latency value */
5819 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5820 val &= ~0x7f;
5821
5822 /*
5823 * For high bandwidth configs, we set a higher latency in the bunit
5824 * so that the core display fetch happens in time to avoid underruns.
5825 */
5826 if (cdclk == 400000)
5827 val |= 4500 / 250; /* 4.5 usec */
5828 else
5829 val |= 3000 / 250; /* 3.0 usec */
5830 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5831
5832 mutex_unlock(&dev_priv->sb_lock);
5833
5834 intel_update_cdclk(dev);
5835 }
5836
5837 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5838 {
5839 struct drm_i915_private *dev_priv = dev->dev_private;
5840 u32 val, cmd;
5841
5842 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5843 != dev_priv->cdclk_freq);
5844
5845 switch (cdclk) {
5846 case 333333:
5847 case 320000:
5848 case 266667:
5849 case 200000:
5850 break;
5851 default:
5852 MISSING_CASE(cdclk);
5853 return;
5854 }
5855
5856 /*
5857 * Specs are full of misinformation, but testing on actual
5858 * hardware has shown that we just need to write the desired
5859 * CCK divider into the Punit register.
5860 */
5861 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5862
5863 mutex_lock(&dev_priv->rps.hw_lock);
5864 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5865 val &= ~DSPFREQGUAR_MASK_CHV;
5866 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5867 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5868 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5869 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5870 50)) {
5871 DRM_ERROR("timed out waiting for CDclk change\n");
5872 }
5873 mutex_unlock(&dev_priv->rps.hw_lock);
5874
5875 intel_update_cdclk(dev);
5876 }
5877
5878 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5879 int max_pixclk)
5880 {
5881 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5882 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5883
5884 /*
5885 * Really only a few cases to deal with, as only 4 CDclks are supported:
5886 * 200MHz
5887 * 267MHz
5888 * 320/333MHz (depends on HPLL freq)
5889 * 400MHz (VLV only)
5890 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5891 * of the lower bin and adjust if needed.
5892 *
5893 * We seem to get an unstable or solid color picture at 200MHz.
5894 * Not sure what's wrong. For now use 200MHz only when all pipes
5895 * are off.
5896 */
5897 if (!IS_CHERRYVIEW(dev_priv) &&
5898 max_pixclk > freq_320*limit/100)
5899 return 400000;
5900 else if (max_pixclk > 266667*limit/100)
5901 return freq_320;
5902 else if (max_pixclk > 0)
5903 return 266667;
5904 else
5905 return 200000;
5906 }
5907
5908 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5909 int max_pixclk)
5910 {
5911 /*
5912 * FIXME:
5913 * - remove the guardband, it's not needed on BXT
5914 * - set 19.2MHz bypass frequency if there are no active pipes
5915 */
5916 if (max_pixclk > 576000*9/10)
5917 return 624000;
5918 else if (max_pixclk > 384000*9/10)
5919 return 576000;
5920 else if (max_pixclk > 288000*9/10)
5921 return 384000;
5922 else if (max_pixclk > 144000*9/10)
5923 return 288000;
5924 else
5925 return 144000;
5926 }
5927
5928 /* Compute the max pixel clock for new configuration. Uses atomic state if
5929 * that's non-NULL, look at current state otherwise. */
5930 static int intel_mode_max_pixclk(struct drm_device *dev,
5931 struct drm_atomic_state *state)
5932 {
5933 struct intel_crtc *intel_crtc;
5934 struct intel_crtc_state *crtc_state;
5935 int max_pixclk = 0;
5936
5937 for_each_intel_crtc(dev, intel_crtc) {
5938 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5939 if (IS_ERR(crtc_state))
5940 return PTR_ERR(crtc_state);
5941
5942 if (!crtc_state->base.enable)
5943 continue;
5944
5945 max_pixclk = max(max_pixclk,
5946 crtc_state->base.adjusted_mode.crtc_clock);
5947 }
5948
5949 return max_pixclk;
5950 }
5951
5952 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5953 {
5954 struct drm_device *dev = state->dev;
5955 struct drm_i915_private *dev_priv = dev->dev_private;
5956 int max_pixclk = intel_mode_max_pixclk(dev, state);
5957
5958 if (max_pixclk < 0)
5959 return max_pixclk;
5960
5961 to_intel_atomic_state(state)->cdclk =
5962 valleyview_calc_cdclk(dev_priv, max_pixclk);
5963
5964 return 0;
5965 }
5966
5967 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5968 {
5969 struct drm_device *dev = state->dev;
5970 struct drm_i915_private *dev_priv = dev->dev_private;
5971 int max_pixclk = intel_mode_max_pixclk(dev, state);
5972
5973 if (max_pixclk < 0)
5974 return max_pixclk;
5975
5976 to_intel_atomic_state(state)->cdclk =
5977 broxton_calc_cdclk(dev_priv, max_pixclk);
5978
5979 return 0;
5980 }
5981
5982 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5983 {
5984 unsigned int credits, default_credits;
5985
5986 if (IS_CHERRYVIEW(dev_priv))
5987 default_credits = PFI_CREDIT(12);
5988 else
5989 default_credits = PFI_CREDIT(8);
5990
5991 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5992 /* CHV suggested value is 31 or 63 */
5993 if (IS_CHERRYVIEW(dev_priv))
5994 credits = PFI_CREDIT_63;
5995 else
5996 credits = PFI_CREDIT(15);
5997 } else {
5998 credits = default_credits;
5999 }
6000
6001 /*
6002 * WA - write default credits before re-programming
6003 * FIXME: should we also set the resend bit here?
6004 */
6005 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6006 default_credits);
6007
6008 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6009 credits | PFI_CREDIT_RESEND);
6010
6011 /*
6012 * FIXME is this guaranteed to clear
6013 * immediately or should we poll for it?
6014 */
6015 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6016 }
6017
6018 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6019 {
6020 struct drm_device *dev = old_state->dev;
6021 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6022 struct drm_i915_private *dev_priv = dev->dev_private;
6023
6024 /*
6025 * FIXME: We can end up here with all power domains off, yet
6026 * with a CDCLK frequency other than the minimum. To account
6027 * for this take the PIPE-A power domain, which covers the HW
6028 * blocks needed for the following programming. This can be
6029 * removed once it's guaranteed that we get here either with
6030 * the minimum CDCLK set, or the required power domains
6031 * enabled.
6032 */
6033 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6034
6035 if (IS_CHERRYVIEW(dev))
6036 cherryview_set_cdclk(dev, req_cdclk);
6037 else
6038 valleyview_set_cdclk(dev, req_cdclk);
6039
6040 vlv_program_pfi_credits(dev_priv);
6041
6042 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6043 }
6044
6045 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6046 {
6047 struct drm_device *dev = crtc->dev;
6048 struct drm_i915_private *dev_priv = to_i915(dev);
6049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6050 struct intel_encoder *encoder;
6051 int pipe = intel_crtc->pipe;
6052 bool is_dsi;
6053
6054 if (WARN_ON(intel_crtc->active))
6055 return;
6056
6057 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6058
6059 if (intel_crtc->config->has_dp_encoder)
6060 intel_dp_set_m_n(intel_crtc, M1_N1);
6061
6062 intel_set_pipe_timings(intel_crtc);
6063
6064 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6065 struct drm_i915_private *dev_priv = dev->dev_private;
6066
6067 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6068 I915_WRITE(CHV_CANVAS(pipe), 0);
6069 }
6070
6071 i9xx_set_pipeconf(intel_crtc);
6072
6073 intel_crtc->active = true;
6074
6075 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6076
6077 for_each_encoder_on_crtc(dev, crtc, encoder)
6078 if (encoder->pre_pll_enable)
6079 encoder->pre_pll_enable(encoder);
6080
6081 if (!is_dsi) {
6082 if (IS_CHERRYVIEW(dev)) {
6083 chv_prepare_pll(intel_crtc, intel_crtc->config);
6084 chv_enable_pll(intel_crtc, intel_crtc->config);
6085 } else {
6086 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6087 vlv_enable_pll(intel_crtc, intel_crtc->config);
6088 }
6089 }
6090
6091 for_each_encoder_on_crtc(dev, crtc, encoder)
6092 if (encoder->pre_enable)
6093 encoder->pre_enable(encoder);
6094
6095 i9xx_pfit_enable(intel_crtc);
6096
6097 intel_crtc_load_lut(crtc);
6098
6099 intel_enable_pipe(intel_crtc);
6100
6101 assert_vblank_disabled(crtc);
6102 drm_crtc_vblank_on(crtc);
6103
6104 for_each_encoder_on_crtc(dev, crtc, encoder)
6105 encoder->enable(encoder);
6106 }
6107
6108 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6109 {
6110 struct drm_device *dev = crtc->base.dev;
6111 struct drm_i915_private *dev_priv = dev->dev_private;
6112
6113 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6114 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6115 }
6116
6117 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6118 {
6119 struct drm_device *dev = crtc->dev;
6120 struct drm_i915_private *dev_priv = to_i915(dev);
6121 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6122 struct intel_encoder *encoder;
6123 int pipe = intel_crtc->pipe;
6124
6125 if (WARN_ON(intel_crtc->active))
6126 return;
6127
6128 i9xx_set_pll_dividers(intel_crtc);
6129
6130 if (intel_crtc->config->has_dp_encoder)
6131 intel_dp_set_m_n(intel_crtc, M1_N1);
6132
6133 intel_set_pipe_timings(intel_crtc);
6134
6135 i9xx_set_pipeconf(intel_crtc);
6136
6137 intel_crtc->active = true;
6138
6139 if (!IS_GEN2(dev))
6140 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6141
6142 for_each_encoder_on_crtc(dev, crtc, encoder)
6143 if (encoder->pre_enable)
6144 encoder->pre_enable(encoder);
6145
6146 i9xx_enable_pll(intel_crtc);
6147
6148 i9xx_pfit_enable(intel_crtc);
6149
6150 intel_crtc_load_lut(crtc);
6151
6152 intel_update_watermarks(crtc);
6153 intel_enable_pipe(intel_crtc);
6154
6155 assert_vblank_disabled(crtc);
6156 drm_crtc_vblank_on(crtc);
6157
6158 for_each_encoder_on_crtc(dev, crtc, encoder)
6159 encoder->enable(encoder);
6160 }
6161
6162 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6163 {
6164 struct drm_device *dev = crtc->base.dev;
6165 struct drm_i915_private *dev_priv = dev->dev_private;
6166
6167 if (!crtc->config->gmch_pfit.control)
6168 return;
6169
6170 assert_pipe_disabled(dev_priv, crtc->pipe);
6171
6172 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6173 I915_READ(PFIT_CONTROL));
6174 I915_WRITE(PFIT_CONTROL, 0);
6175 }
6176
6177 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6178 {
6179 struct drm_device *dev = crtc->dev;
6180 struct drm_i915_private *dev_priv = dev->dev_private;
6181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6182 struct intel_encoder *encoder;
6183 int pipe = intel_crtc->pipe;
6184
6185 /*
6186 * On gen2 planes are double buffered but the pipe isn't, so we must
6187 * wait for planes to fully turn off before disabling the pipe.
6188 * We also need to wait on all gmch platforms because of the
6189 * self-refresh mode constraint explained above.
6190 */
6191 intel_wait_for_vblank(dev, pipe);
6192
6193 for_each_encoder_on_crtc(dev, crtc, encoder)
6194 encoder->disable(encoder);
6195
6196 drm_crtc_vblank_off(crtc);
6197 assert_vblank_disabled(crtc);
6198
6199 intel_disable_pipe(intel_crtc);
6200
6201 i9xx_pfit_disable(intel_crtc);
6202
6203 for_each_encoder_on_crtc(dev, crtc, encoder)
6204 if (encoder->post_disable)
6205 encoder->post_disable(encoder);
6206
6207 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6208 if (IS_CHERRYVIEW(dev))
6209 chv_disable_pll(dev_priv, pipe);
6210 else if (IS_VALLEYVIEW(dev))
6211 vlv_disable_pll(dev_priv, pipe);
6212 else
6213 i9xx_disable_pll(intel_crtc);
6214 }
6215
6216 for_each_encoder_on_crtc(dev, crtc, encoder)
6217 if (encoder->post_pll_disable)
6218 encoder->post_pll_disable(encoder);
6219
6220 if (!IS_GEN2(dev))
6221 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6222
6223 intel_crtc->active = false;
6224 intel_update_watermarks(crtc);
6225 }
6226
6227 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6228 {
6229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6230 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6231 enum intel_display_power_domain domain;
6232 unsigned long domains;
6233
6234 if (!intel_crtc->active)
6235 return;
6236
6237 if (to_intel_plane_state(crtc->primary->state)->visible) {
6238 intel_crtc_wait_for_pending_flips(crtc);
6239 intel_pre_disable_primary(crtc);
6240 }
6241
6242 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6243 dev_priv->display.crtc_disable(crtc);
6244 intel_disable_shared_dpll(intel_crtc);
6245
6246 domains = intel_crtc->enabled_power_domains;
6247 for_each_power_domain(domain, domains)
6248 intel_display_power_put(dev_priv, domain);
6249 intel_crtc->enabled_power_domains = 0;
6250 }
6251
6252 /*
6253 * turn all crtc's off, but do not adjust state
6254 * This has to be paired with a call to intel_modeset_setup_hw_state.
6255 */
6256 int intel_display_suspend(struct drm_device *dev)
6257 {
6258 struct drm_mode_config *config = &dev->mode_config;
6259 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6260 struct drm_atomic_state *state;
6261 struct drm_crtc *crtc;
6262 unsigned crtc_mask = 0;
6263 int ret = 0;
6264
6265 if (WARN_ON(!ctx))
6266 return 0;
6267
6268 lockdep_assert_held(&ctx->ww_ctx);
6269 state = drm_atomic_state_alloc(dev);
6270 if (WARN_ON(!state))
6271 return -ENOMEM;
6272
6273 state->acquire_ctx = ctx;
6274 state->allow_modeset = true;
6275
6276 for_each_crtc(dev, crtc) {
6277 struct drm_crtc_state *crtc_state =
6278 drm_atomic_get_crtc_state(state, crtc);
6279
6280 ret = PTR_ERR_OR_ZERO(crtc_state);
6281 if (ret)
6282 goto free;
6283
6284 if (!crtc_state->active)
6285 continue;
6286
6287 crtc_state->active = false;
6288 crtc_mask |= 1 << drm_crtc_index(crtc);
6289 }
6290
6291 if (crtc_mask) {
6292 ret = drm_atomic_commit(state);
6293
6294 if (!ret) {
6295 for_each_crtc(dev, crtc)
6296 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6297 crtc->state->active = true;
6298
6299 return ret;
6300 }
6301 }
6302
6303 free:
6304 if (ret)
6305 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6306 drm_atomic_state_free(state);
6307 return ret;
6308 }
6309
6310 void intel_encoder_destroy(struct drm_encoder *encoder)
6311 {
6312 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6313
6314 drm_encoder_cleanup(encoder);
6315 kfree(intel_encoder);
6316 }
6317
6318 /* Cross check the actual hw state with our own modeset state tracking (and it's
6319 * internal consistency). */
6320 static void intel_connector_check_state(struct intel_connector *connector)
6321 {
6322 struct drm_crtc *crtc = connector->base.state->crtc;
6323
6324 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6325 connector->base.base.id,
6326 connector->base.name);
6327
6328 if (connector->get_hw_state(connector)) {
6329 struct intel_encoder *encoder = connector->encoder;
6330 struct drm_connector_state *conn_state = connector->base.state;
6331
6332 I915_STATE_WARN(!crtc,
6333 "connector enabled without attached crtc\n");
6334
6335 if (!crtc)
6336 return;
6337
6338 I915_STATE_WARN(!crtc->state->active,
6339 "connector is active, but attached crtc isn't\n");
6340
6341 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6342 return;
6343
6344 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6345 "atomic encoder doesn't match attached encoder\n");
6346
6347 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6348 "attached encoder crtc differs from connector crtc\n");
6349 } else {
6350 I915_STATE_WARN(crtc && crtc->state->active,
6351 "attached crtc is active, but connector isn't\n");
6352 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6353 "best encoder set without crtc!\n");
6354 }
6355 }
6356
6357 int intel_connector_init(struct intel_connector *connector)
6358 {
6359 struct drm_connector_state *connector_state;
6360
6361 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6362 if (!connector_state)
6363 return -ENOMEM;
6364
6365 connector->base.state = connector_state;
6366 return 0;
6367 }
6368
6369 struct intel_connector *intel_connector_alloc(void)
6370 {
6371 struct intel_connector *connector;
6372
6373 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6374 if (!connector)
6375 return NULL;
6376
6377 if (intel_connector_init(connector) < 0) {
6378 kfree(connector);
6379 return NULL;
6380 }
6381
6382 return connector;
6383 }
6384
6385 /* Simple connector->get_hw_state implementation for encoders that support only
6386 * one connector and no cloning and hence the encoder state determines the state
6387 * of the connector. */
6388 bool intel_connector_get_hw_state(struct intel_connector *connector)
6389 {
6390 enum pipe pipe = 0;
6391 struct intel_encoder *encoder = connector->encoder;
6392
6393 return encoder->get_hw_state(encoder, &pipe);
6394 }
6395
6396 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6397 {
6398 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6399 return crtc_state->fdi_lanes;
6400
6401 return 0;
6402 }
6403
6404 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6405 struct intel_crtc_state *pipe_config)
6406 {
6407 struct drm_atomic_state *state = pipe_config->base.state;
6408 struct intel_crtc *other_crtc;
6409 struct intel_crtc_state *other_crtc_state;
6410
6411 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6412 pipe_name(pipe), pipe_config->fdi_lanes);
6413 if (pipe_config->fdi_lanes > 4) {
6414 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6415 pipe_name(pipe), pipe_config->fdi_lanes);
6416 return -EINVAL;
6417 }
6418
6419 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6420 if (pipe_config->fdi_lanes > 2) {
6421 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6422 pipe_config->fdi_lanes);
6423 return -EINVAL;
6424 } else {
6425 return 0;
6426 }
6427 }
6428
6429 if (INTEL_INFO(dev)->num_pipes == 2)
6430 return 0;
6431
6432 /* Ivybridge 3 pipe is really complicated */
6433 switch (pipe) {
6434 case PIPE_A:
6435 return 0;
6436 case PIPE_B:
6437 if (pipe_config->fdi_lanes <= 2)
6438 return 0;
6439
6440 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6441 other_crtc_state =
6442 intel_atomic_get_crtc_state(state, other_crtc);
6443 if (IS_ERR(other_crtc_state))
6444 return PTR_ERR(other_crtc_state);
6445
6446 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6447 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6448 pipe_name(pipe), pipe_config->fdi_lanes);
6449 return -EINVAL;
6450 }
6451 return 0;
6452 case PIPE_C:
6453 if (pipe_config->fdi_lanes > 2) {
6454 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6455 pipe_name(pipe), pipe_config->fdi_lanes);
6456 return -EINVAL;
6457 }
6458
6459 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6460 other_crtc_state =
6461 intel_atomic_get_crtc_state(state, other_crtc);
6462 if (IS_ERR(other_crtc_state))
6463 return PTR_ERR(other_crtc_state);
6464
6465 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6466 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6467 return -EINVAL;
6468 }
6469 return 0;
6470 default:
6471 BUG();
6472 }
6473 }
6474
6475 #define RETRY 1
6476 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6477 struct intel_crtc_state *pipe_config)
6478 {
6479 struct drm_device *dev = intel_crtc->base.dev;
6480 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6481 int lane, link_bw, fdi_dotclock, ret;
6482 bool needs_recompute = false;
6483
6484 retry:
6485 /* FDI is a binary signal running at ~2.7GHz, encoding
6486 * each output octet as 10 bits. The actual frequency
6487 * is stored as a divider into a 100MHz clock, and the
6488 * mode pixel clock is stored in units of 1KHz.
6489 * Hence the bw of each lane in terms of the mode signal
6490 * is:
6491 */
6492 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6493
6494 fdi_dotclock = adjusted_mode->crtc_clock;
6495
6496 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6497 pipe_config->pipe_bpp);
6498
6499 pipe_config->fdi_lanes = lane;
6500
6501 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6502 link_bw, &pipe_config->fdi_m_n);
6503
6504 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6505 intel_crtc->pipe, pipe_config);
6506 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6507 pipe_config->pipe_bpp -= 2*3;
6508 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6509 pipe_config->pipe_bpp);
6510 needs_recompute = true;
6511 pipe_config->bw_constrained = true;
6512
6513 goto retry;
6514 }
6515
6516 if (needs_recompute)
6517 return RETRY;
6518
6519 return ret;
6520 }
6521
6522 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6523 struct intel_crtc_state *pipe_config)
6524 {
6525 if (pipe_config->pipe_bpp > 24)
6526 return false;
6527
6528 /* HSW can handle pixel rate up to cdclk? */
6529 if (IS_HASWELL(dev_priv->dev))
6530 return true;
6531
6532 /*
6533 * We compare against max which means we must take
6534 * the increased cdclk requirement into account when
6535 * calculating the new cdclk.
6536 *
6537 * Should measure whether using a lower cdclk w/o IPS
6538 */
6539 return ilk_pipe_pixel_rate(pipe_config) <=
6540 dev_priv->max_cdclk_freq * 95 / 100;
6541 }
6542
6543 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6544 struct intel_crtc_state *pipe_config)
6545 {
6546 struct drm_device *dev = crtc->base.dev;
6547 struct drm_i915_private *dev_priv = dev->dev_private;
6548
6549 pipe_config->ips_enabled = i915.enable_ips &&
6550 hsw_crtc_supports_ips(crtc) &&
6551 pipe_config_supports_ips(dev_priv, pipe_config);
6552 }
6553
6554 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6555 struct intel_crtc_state *pipe_config)
6556 {
6557 struct drm_device *dev = crtc->base.dev;
6558 struct drm_i915_private *dev_priv = dev->dev_private;
6559 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6560
6561 /* FIXME should check pixel clock limits on all platforms */
6562 if (INTEL_INFO(dev)->gen < 4) {
6563 int clock_limit = dev_priv->max_cdclk_freq;
6564
6565 /*
6566 * Enable pixel doubling when the dot clock
6567 * is > 90% of the (display) core speed.
6568 *
6569 * GDG double wide on either pipe,
6570 * otherwise pipe A only.
6571 */
6572 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6573 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6574 clock_limit *= 2;
6575 pipe_config->double_wide = true;
6576 }
6577
6578 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6579 return -EINVAL;
6580 }
6581
6582 /*
6583 * Pipe horizontal size must be even in:
6584 * - DVO ganged mode
6585 * - LVDS dual channel mode
6586 * - Double wide pipe
6587 */
6588 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6589 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6590 pipe_config->pipe_src_w &= ~1;
6591
6592 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6593 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6594 */
6595 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6596 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6597 return -EINVAL;
6598
6599 if (HAS_IPS(dev))
6600 hsw_compute_ips_config(crtc, pipe_config);
6601
6602 if (pipe_config->has_pch_encoder)
6603 return ironlake_fdi_compute_config(crtc, pipe_config);
6604
6605 return 0;
6606 }
6607
6608 static int skylake_get_display_clock_speed(struct drm_device *dev)
6609 {
6610 struct drm_i915_private *dev_priv = to_i915(dev);
6611 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6612 uint32_t cdctl = I915_READ(CDCLK_CTL);
6613 uint32_t linkrate;
6614
6615 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6616 return 24000; /* 24MHz is the cd freq with NSSC ref */
6617
6618 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6619 return 540000;
6620
6621 linkrate = (I915_READ(DPLL_CTRL1) &
6622 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6623
6624 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6625 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6626 /* vco 8640 */
6627 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6628 case CDCLK_FREQ_450_432:
6629 return 432000;
6630 case CDCLK_FREQ_337_308:
6631 return 308570;
6632 case CDCLK_FREQ_675_617:
6633 return 617140;
6634 default:
6635 WARN(1, "Unknown cd freq selection\n");
6636 }
6637 } else {
6638 /* vco 8100 */
6639 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6640 case CDCLK_FREQ_450_432:
6641 return 450000;
6642 case CDCLK_FREQ_337_308:
6643 return 337500;
6644 case CDCLK_FREQ_675_617:
6645 return 675000;
6646 default:
6647 WARN(1, "Unknown cd freq selection\n");
6648 }
6649 }
6650
6651 /* error case, do as if DPLL0 isn't enabled */
6652 return 24000;
6653 }
6654
6655 static int broxton_get_display_clock_speed(struct drm_device *dev)
6656 {
6657 struct drm_i915_private *dev_priv = to_i915(dev);
6658 uint32_t cdctl = I915_READ(CDCLK_CTL);
6659 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6660 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6661 int cdclk;
6662
6663 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6664 return 19200;
6665
6666 cdclk = 19200 * pll_ratio / 2;
6667
6668 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6669 case BXT_CDCLK_CD2X_DIV_SEL_1:
6670 return cdclk; /* 576MHz or 624MHz */
6671 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6672 return cdclk * 2 / 3; /* 384MHz */
6673 case BXT_CDCLK_CD2X_DIV_SEL_2:
6674 return cdclk / 2; /* 288MHz */
6675 case BXT_CDCLK_CD2X_DIV_SEL_4:
6676 return cdclk / 4; /* 144MHz */
6677 }
6678
6679 /* error case, do as if DE PLL isn't enabled */
6680 return 19200;
6681 }
6682
6683 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6684 {
6685 struct drm_i915_private *dev_priv = dev->dev_private;
6686 uint32_t lcpll = I915_READ(LCPLL_CTL);
6687 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6688
6689 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6690 return 800000;
6691 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6692 return 450000;
6693 else if (freq == LCPLL_CLK_FREQ_450)
6694 return 450000;
6695 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6696 return 540000;
6697 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6698 return 337500;
6699 else
6700 return 675000;
6701 }
6702
6703 static int haswell_get_display_clock_speed(struct drm_device *dev)
6704 {
6705 struct drm_i915_private *dev_priv = dev->dev_private;
6706 uint32_t lcpll = I915_READ(LCPLL_CTL);
6707 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6708
6709 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6710 return 800000;
6711 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6712 return 450000;
6713 else if (freq == LCPLL_CLK_FREQ_450)
6714 return 450000;
6715 else if (IS_HSW_ULT(dev))
6716 return 337500;
6717 else
6718 return 540000;
6719 }
6720
6721 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6722 {
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724 u32 val;
6725 int divider;
6726
6727 if (dev_priv->hpll_freq == 0)
6728 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6729
6730 mutex_lock(&dev_priv->sb_lock);
6731 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6732 mutex_unlock(&dev_priv->sb_lock);
6733
6734 divider = val & DISPLAY_FREQUENCY_VALUES;
6735
6736 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6737 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6738 "cdclk change in progress\n");
6739
6740 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6741 }
6742
6743 static int ilk_get_display_clock_speed(struct drm_device *dev)
6744 {
6745 return 450000;
6746 }
6747
6748 static int i945_get_display_clock_speed(struct drm_device *dev)
6749 {
6750 return 400000;
6751 }
6752
6753 static int i915_get_display_clock_speed(struct drm_device *dev)
6754 {
6755 return 333333;
6756 }
6757
6758 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6759 {
6760 return 200000;
6761 }
6762
6763 static int pnv_get_display_clock_speed(struct drm_device *dev)
6764 {
6765 u16 gcfgc = 0;
6766
6767 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6768
6769 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6770 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6771 return 266667;
6772 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6773 return 333333;
6774 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6775 return 444444;
6776 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6777 return 200000;
6778 default:
6779 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6780 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6781 return 133333;
6782 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6783 return 166667;
6784 }
6785 }
6786
6787 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6788 {
6789 u16 gcfgc = 0;
6790
6791 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6792
6793 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6794 return 133333;
6795 else {
6796 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6797 case GC_DISPLAY_CLOCK_333_MHZ:
6798 return 333333;
6799 default:
6800 case GC_DISPLAY_CLOCK_190_200_MHZ:
6801 return 190000;
6802 }
6803 }
6804 }
6805
6806 static int i865_get_display_clock_speed(struct drm_device *dev)
6807 {
6808 return 266667;
6809 }
6810
6811 static int i85x_get_display_clock_speed(struct drm_device *dev)
6812 {
6813 u16 hpllcc = 0;
6814
6815 /*
6816 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6817 * encoding is different :(
6818 * FIXME is this the right way to detect 852GM/852GMV?
6819 */
6820 if (dev->pdev->revision == 0x1)
6821 return 133333;
6822
6823 pci_bus_read_config_word(dev->pdev->bus,
6824 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6825
6826 /* Assume that the hardware is in the high speed state. This
6827 * should be the default.
6828 */
6829 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6830 case GC_CLOCK_133_200:
6831 case GC_CLOCK_133_200_2:
6832 case GC_CLOCK_100_200:
6833 return 200000;
6834 case GC_CLOCK_166_250:
6835 return 250000;
6836 case GC_CLOCK_100_133:
6837 return 133333;
6838 case GC_CLOCK_133_266:
6839 case GC_CLOCK_133_266_2:
6840 case GC_CLOCK_166_266:
6841 return 266667;
6842 }
6843
6844 /* Shouldn't happen */
6845 return 0;
6846 }
6847
6848 static int i830_get_display_clock_speed(struct drm_device *dev)
6849 {
6850 return 133333;
6851 }
6852
6853 static unsigned int intel_hpll_vco(struct drm_device *dev)
6854 {
6855 struct drm_i915_private *dev_priv = dev->dev_private;
6856 static const unsigned int blb_vco[8] = {
6857 [0] = 3200000,
6858 [1] = 4000000,
6859 [2] = 5333333,
6860 [3] = 4800000,
6861 [4] = 6400000,
6862 };
6863 static const unsigned int pnv_vco[8] = {
6864 [0] = 3200000,
6865 [1] = 4000000,
6866 [2] = 5333333,
6867 [3] = 4800000,
6868 [4] = 2666667,
6869 };
6870 static const unsigned int cl_vco[8] = {
6871 [0] = 3200000,
6872 [1] = 4000000,
6873 [2] = 5333333,
6874 [3] = 6400000,
6875 [4] = 3333333,
6876 [5] = 3566667,
6877 [6] = 4266667,
6878 };
6879 static const unsigned int elk_vco[8] = {
6880 [0] = 3200000,
6881 [1] = 4000000,
6882 [2] = 5333333,
6883 [3] = 4800000,
6884 };
6885 static const unsigned int ctg_vco[8] = {
6886 [0] = 3200000,
6887 [1] = 4000000,
6888 [2] = 5333333,
6889 [3] = 6400000,
6890 [4] = 2666667,
6891 [5] = 4266667,
6892 };
6893 const unsigned int *vco_table;
6894 unsigned int vco;
6895 uint8_t tmp = 0;
6896
6897 /* FIXME other chipsets? */
6898 if (IS_GM45(dev))
6899 vco_table = ctg_vco;
6900 else if (IS_G4X(dev))
6901 vco_table = elk_vco;
6902 else if (IS_CRESTLINE(dev))
6903 vco_table = cl_vco;
6904 else if (IS_PINEVIEW(dev))
6905 vco_table = pnv_vco;
6906 else if (IS_G33(dev))
6907 vco_table = blb_vco;
6908 else
6909 return 0;
6910
6911 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6912
6913 vco = vco_table[tmp & 0x7];
6914 if (vco == 0)
6915 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6916 else
6917 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6918
6919 return vco;
6920 }
6921
6922 static int gm45_get_display_clock_speed(struct drm_device *dev)
6923 {
6924 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6925 uint16_t tmp = 0;
6926
6927 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6928
6929 cdclk_sel = (tmp >> 12) & 0x1;
6930
6931 switch (vco) {
6932 case 2666667:
6933 case 4000000:
6934 case 5333333:
6935 return cdclk_sel ? 333333 : 222222;
6936 case 3200000:
6937 return cdclk_sel ? 320000 : 228571;
6938 default:
6939 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6940 return 222222;
6941 }
6942 }
6943
6944 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6945 {
6946 static const uint8_t div_3200[] = { 16, 10, 8 };
6947 static const uint8_t div_4000[] = { 20, 12, 10 };
6948 static const uint8_t div_5333[] = { 24, 16, 14 };
6949 const uint8_t *div_table;
6950 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6951 uint16_t tmp = 0;
6952
6953 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6954
6955 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6956
6957 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6958 goto fail;
6959
6960 switch (vco) {
6961 case 3200000:
6962 div_table = div_3200;
6963 break;
6964 case 4000000:
6965 div_table = div_4000;
6966 break;
6967 case 5333333:
6968 div_table = div_5333;
6969 break;
6970 default:
6971 goto fail;
6972 }
6973
6974 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6975
6976 fail:
6977 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6978 return 200000;
6979 }
6980
6981 static int g33_get_display_clock_speed(struct drm_device *dev)
6982 {
6983 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6984 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6985 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6986 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6987 const uint8_t *div_table;
6988 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6989 uint16_t tmp = 0;
6990
6991 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6992
6993 cdclk_sel = (tmp >> 4) & 0x7;
6994
6995 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6996 goto fail;
6997
6998 switch (vco) {
6999 case 3200000:
7000 div_table = div_3200;
7001 break;
7002 case 4000000:
7003 div_table = div_4000;
7004 break;
7005 case 4800000:
7006 div_table = div_4800;
7007 break;
7008 case 5333333:
7009 div_table = div_5333;
7010 break;
7011 default:
7012 goto fail;
7013 }
7014
7015 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7016
7017 fail:
7018 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7019 return 190476;
7020 }
7021
7022 static void
7023 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7024 {
7025 while (*num > DATA_LINK_M_N_MASK ||
7026 *den > DATA_LINK_M_N_MASK) {
7027 *num >>= 1;
7028 *den >>= 1;
7029 }
7030 }
7031
7032 static void compute_m_n(unsigned int m, unsigned int n,
7033 uint32_t *ret_m, uint32_t *ret_n)
7034 {
7035 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7036 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7037 intel_reduce_m_n_ratio(ret_m, ret_n);
7038 }
7039
7040 void
7041 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7042 int pixel_clock, int link_clock,
7043 struct intel_link_m_n *m_n)
7044 {
7045 m_n->tu = 64;
7046
7047 compute_m_n(bits_per_pixel * pixel_clock,
7048 link_clock * nlanes * 8,
7049 &m_n->gmch_m, &m_n->gmch_n);
7050
7051 compute_m_n(pixel_clock, link_clock,
7052 &m_n->link_m, &m_n->link_n);
7053 }
7054
7055 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7056 {
7057 if (i915.panel_use_ssc >= 0)
7058 return i915.panel_use_ssc != 0;
7059 return dev_priv->vbt.lvds_use_ssc
7060 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7061 }
7062
7063 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7064 int num_connectors)
7065 {
7066 struct drm_device *dev = crtc_state->base.crtc->dev;
7067 struct drm_i915_private *dev_priv = dev->dev_private;
7068 int refclk;
7069
7070 WARN_ON(!crtc_state->base.state);
7071
7072 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7073 refclk = 100000;
7074 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7075 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7076 refclk = dev_priv->vbt.lvds_ssc_freq;
7077 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7078 } else if (!IS_GEN2(dev)) {
7079 refclk = 96000;
7080 } else {
7081 refclk = 48000;
7082 }
7083
7084 return refclk;
7085 }
7086
7087 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7088 {
7089 return (1 << dpll->n) << 16 | dpll->m2;
7090 }
7091
7092 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7093 {
7094 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7095 }
7096
7097 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7098 struct intel_crtc_state *crtc_state,
7099 intel_clock_t *reduced_clock)
7100 {
7101 struct drm_device *dev = crtc->base.dev;
7102 u32 fp, fp2 = 0;
7103
7104 if (IS_PINEVIEW(dev)) {
7105 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7106 if (reduced_clock)
7107 fp2 = pnv_dpll_compute_fp(reduced_clock);
7108 } else {
7109 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7110 if (reduced_clock)
7111 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7112 }
7113
7114 crtc_state->dpll_hw_state.fp0 = fp;
7115
7116 crtc->lowfreq_avail = false;
7117 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7118 reduced_clock) {
7119 crtc_state->dpll_hw_state.fp1 = fp2;
7120 crtc->lowfreq_avail = true;
7121 } else {
7122 crtc_state->dpll_hw_state.fp1 = fp;
7123 }
7124 }
7125
7126 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7127 pipe)
7128 {
7129 u32 reg_val;
7130
7131 /*
7132 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7133 * and set it to a reasonable value instead.
7134 */
7135 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7136 reg_val &= 0xffffff00;
7137 reg_val |= 0x00000030;
7138 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7139
7140 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7141 reg_val &= 0x8cffffff;
7142 reg_val = 0x8c000000;
7143 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7144
7145 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7146 reg_val &= 0xffffff00;
7147 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7148
7149 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7150 reg_val &= 0x00ffffff;
7151 reg_val |= 0xb0000000;
7152 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7153 }
7154
7155 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7156 struct intel_link_m_n *m_n)
7157 {
7158 struct drm_device *dev = crtc->base.dev;
7159 struct drm_i915_private *dev_priv = dev->dev_private;
7160 int pipe = crtc->pipe;
7161
7162 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7163 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7164 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7165 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7166 }
7167
7168 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7169 struct intel_link_m_n *m_n,
7170 struct intel_link_m_n *m2_n2)
7171 {
7172 struct drm_device *dev = crtc->base.dev;
7173 struct drm_i915_private *dev_priv = dev->dev_private;
7174 int pipe = crtc->pipe;
7175 enum transcoder transcoder = crtc->config->cpu_transcoder;
7176
7177 if (INTEL_INFO(dev)->gen >= 5) {
7178 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7179 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7180 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7181 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7182 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7183 * for gen < 8) and if DRRS is supported (to make sure the
7184 * registers are not unnecessarily accessed).
7185 */
7186 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7187 crtc->config->has_drrs) {
7188 I915_WRITE(PIPE_DATA_M2(transcoder),
7189 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7190 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7191 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7192 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7193 }
7194 } else {
7195 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7196 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7197 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7198 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7199 }
7200 }
7201
7202 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7203 {
7204 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7205
7206 if (m_n == M1_N1) {
7207 dp_m_n = &crtc->config->dp_m_n;
7208 dp_m2_n2 = &crtc->config->dp_m2_n2;
7209 } else if (m_n == M2_N2) {
7210
7211 /*
7212 * M2_N2 registers are not supported. Hence m2_n2 divider value
7213 * needs to be programmed into M1_N1.
7214 */
7215 dp_m_n = &crtc->config->dp_m2_n2;
7216 } else {
7217 DRM_ERROR("Unsupported divider value\n");
7218 return;
7219 }
7220
7221 if (crtc->config->has_pch_encoder)
7222 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7223 else
7224 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7225 }
7226
7227 static void vlv_compute_dpll(struct intel_crtc *crtc,
7228 struct intel_crtc_state *pipe_config)
7229 {
7230 u32 dpll, dpll_md;
7231
7232 /*
7233 * Enable DPIO clock input. We should never disable the reference
7234 * clock for pipe B, since VGA hotplug / manual detection depends
7235 * on it.
7236 */
7237 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7238 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7239 /* We should never disable this, set it here for state tracking */
7240 if (crtc->pipe == PIPE_B)
7241 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7242 dpll |= DPLL_VCO_ENABLE;
7243 pipe_config->dpll_hw_state.dpll = dpll;
7244
7245 dpll_md = (pipe_config->pixel_multiplier - 1)
7246 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7247 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7248 }
7249
7250 static void vlv_prepare_pll(struct intel_crtc *crtc,
7251 const struct intel_crtc_state *pipe_config)
7252 {
7253 struct drm_device *dev = crtc->base.dev;
7254 struct drm_i915_private *dev_priv = dev->dev_private;
7255 int pipe = crtc->pipe;
7256 u32 mdiv;
7257 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7258 u32 coreclk, reg_val;
7259
7260 mutex_lock(&dev_priv->sb_lock);
7261
7262 bestn = pipe_config->dpll.n;
7263 bestm1 = pipe_config->dpll.m1;
7264 bestm2 = pipe_config->dpll.m2;
7265 bestp1 = pipe_config->dpll.p1;
7266 bestp2 = pipe_config->dpll.p2;
7267
7268 /* See eDP HDMI DPIO driver vbios notes doc */
7269
7270 /* PLL B needs special handling */
7271 if (pipe == PIPE_B)
7272 vlv_pllb_recal_opamp(dev_priv, pipe);
7273
7274 /* Set up Tx target for periodic Rcomp update */
7275 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7276
7277 /* Disable target IRef on PLL */
7278 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7279 reg_val &= 0x00ffffff;
7280 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7281
7282 /* Disable fast lock */
7283 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7284
7285 /* Set idtafcrecal before PLL is enabled */
7286 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7287 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7288 mdiv |= ((bestn << DPIO_N_SHIFT));
7289 mdiv |= (1 << DPIO_K_SHIFT);
7290
7291 /*
7292 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7293 * but we don't support that).
7294 * Note: don't use the DAC post divider as it seems unstable.
7295 */
7296 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7297 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7298
7299 mdiv |= DPIO_ENABLE_CALIBRATION;
7300 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7301
7302 /* Set HBR and RBR LPF coefficients */
7303 if (pipe_config->port_clock == 162000 ||
7304 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7305 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7306 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7307 0x009f0003);
7308 else
7309 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7310 0x00d0000f);
7311
7312 if (pipe_config->has_dp_encoder) {
7313 /* Use SSC source */
7314 if (pipe == PIPE_A)
7315 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7316 0x0df40000);
7317 else
7318 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7319 0x0df70000);
7320 } else { /* HDMI or VGA */
7321 /* Use bend source */
7322 if (pipe == PIPE_A)
7323 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7324 0x0df70000);
7325 else
7326 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7327 0x0df40000);
7328 }
7329
7330 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7331 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7332 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7333 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7334 coreclk |= 0x01000000;
7335 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7336
7337 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7338 mutex_unlock(&dev_priv->sb_lock);
7339 }
7340
7341 static void chv_compute_dpll(struct intel_crtc *crtc,
7342 struct intel_crtc_state *pipe_config)
7343 {
7344 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7345 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7346 DPLL_VCO_ENABLE;
7347 if (crtc->pipe != PIPE_A)
7348 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7349
7350 pipe_config->dpll_hw_state.dpll_md =
7351 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7352 }
7353
7354 static void chv_prepare_pll(struct intel_crtc *crtc,
7355 const struct intel_crtc_state *pipe_config)
7356 {
7357 struct drm_device *dev = crtc->base.dev;
7358 struct drm_i915_private *dev_priv = dev->dev_private;
7359 int pipe = crtc->pipe;
7360 int dpll_reg = DPLL(crtc->pipe);
7361 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7362 u32 loopfilter, tribuf_calcntr;
7363 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7364 u32 dpio_val;
7365 int vco;
7366
7367 bestn = pipe_config->dpll.n;
7368 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7369 bestm1 = pipe_config->dpll.m1;
7370 bestm2 = pipe_config->dpll.m2 >> 22;
7371 bestp1 = pipe_config->dpll.p1;
7372 bestp2 = pipe_config->dpll.p2;
7373 vco = pipe_config->dpll.vco;
7374 dpio_val = 0;
7375 loopfilter = 0;
7376
7377 /*
7378 * Enable Refclk and SSC
7379 */
7380 I915_WRITE(dpll_reg,
7381 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7382
7383 mutex_lock(&dev_priv->sb_lock);
7384
7385 /* p1 and p2 divider */
7386 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7387 5 << DPIO_CHV_S1_DIV_SHIFT |
7388 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7389 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7390 1 << DPIO_CHV_K_DIV_SHIFT);
7391
7392 /* Feedback post-divider - m2 */
7393 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7394
7395 /* Feedback refclk divider - n and m1 */
7396 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7397 DPIO_CHV_M1_DIV_BY_2 |
7398 1 << DPIO_CHV_N_DIV_SHIFT);
7399
7400 /* M2 fraction division */
7401 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7402
7403 /* M2 fraction division enable */
7404 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7405 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7406 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7407 if (bestm2_frac)
7408 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7409 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7410
7411 /* Program digital lock detect threshold */
7412 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7413 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7414 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7415 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7416 if (!bestm2_frac)
7417 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7418 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7419
7420 /* Loop filter */
7421 if (vco == 5400000) {
7422 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7423 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7424 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7425 tribuf_calcntr = 0x9;
7426 } else if (vco <= 6200000) {
7427 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7428 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7429 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7430 tribuf_calcntr = 0x9;
7431 } else if (vco <= 6480000) {
7432 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7433 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7434 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7435 tribuf_calcntr = 0x8;
7436 } else {
7437 /* Not supported. Apply the same limits as in the max case */
7438 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7439 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7440 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7441 tribuf_calcntr = 0;
7442 }
7443 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7444
7445 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7446 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7447 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7448 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7449
7450 /* AFC Recal */
7451 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7452 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7453 DPIO_AFC_RECAL);
7454
7455 mutex_unlock(&dev_priv->sb_lock);
7456 }
7457
7458 /**
7459 * vlv_force_pll_on - forcibly enable just the PLL
7460 * @dev_priv: i915 private structure
7461 * @pipe: pipe PLL to enable
7462 * @dpll: PLL configuration
7463 *
7464 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7465 * in cases where we need the PLL enabled even when @pipe is not going to
7466 * be enabled.
7467 */
7468 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7469 const struct dpll *dpll)
7470 {
7471 struct intel_crtc *crtc =
7472 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7473 struct intel_crtc_state pipe_config = {
7474 .base.crtc = &crtc->base,
7475 .pixel_multiplier = 1,
7476 .dpll = *dpll,
7477 };
7478
7479 if (IS_CHERRYVIEW(dev)) {
7480 chv_compute_dpll(crtc, &pipe_config);
7481 chv_prepare_pll(crtc, &pipe_config);
7482 chv_enable_pll(crtc, &pipe_config);
7483 } else {
7484 vlv_compute_dpll(crtc, &pipe_config);
7485 vlv_prepare_pll(crtc, &pipe_config);
7486 vlv_enable_pll(crtc, &pipe_config);
7487 }
7488 }
7489
7490 /**
7491 * vlv_force_pll_off - forcibly disable just the PLL
7492 * @dev_priv: i915 private structure
7493 * @pipe: pipe PLL to disable
7494 *
7495 * Disable the PLL for @pipe. To be used in cases where we need
7496 * the PLL enabled even when @pipe is not going to be enabled.
7497 */
7498 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7499 {
7500 if (IS_CHERRYVIEW(dev))
7501 chv_disable_pll(to_i915(dev), pipe);
7502 else
7503 vlv_disable_pll(to_i915(dev), pipe);
7504 }
7505
7506 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7507 struct intel_crtc_state *crtc_state,
7508 intel_clock_t *reduced_clock,
7509 int num_connectors)
7510 {
7511 struct drm_device *dev = crtc->base.dev;
7512 struct drm_i915_private *dev_priv = dev->dev_private;
7513 u32 dpll;
7514 bool is_sdvo;
7515 struct dpll *clock = &crtc_state->dpll;
7516
7517 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7518
7519 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7520 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7521
7522 dpll = DPLL_VGA_MODE_DIS;
7523
7524 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7525 dpll |= DPLLB_MODE_LVDS;
7526 else
7527 dpll |= DPLLB_MODE_DAC_SERIAL;
7528
7529 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7530 dpll |= (crtc_state->pixel_multiplier - 1)
7531 << SDVO_MULTIPLIER_SHIFT_HIRES;
7532 }
7533
7534 if (is_sdvo)
7535 dpll |= DPLL_SDVO_HIGH_SPEED;
7536
7537 if (crtc_state->has_dp_encoder)
7538 dpll |= DPLL_SDVO_HIGH_SPEED;
7539
7540 /* compute bitmask from p1 value */
7541 if (IS_PINEVIEW(dev))
7542 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7543 else {
7544 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7545 if (IS_G4X(dev) && reduced_clock)
7546 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7547 }
7548 switch (clock->p2) {
7549 case 5:
7550 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7551 break;
7552 case 7:
7553 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7554 break;
7555 case 10:
7556 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7557 break;
7558 case 14:
7559 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7560 break;
7561 }
7562 if (INTEL_INFO(dev)->gen >= 4)
7563 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7564
7565 if (crtc_state->sdvo_tv_clock)
7566 dpll |= PLL_REF_INPUT_TVCLKINBC;
7567 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7568 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7569 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7570 else
7571 dpll |= PLL_REF_INPUT_DREFCLK;
7572
7573 dpll |= DPLL_VCO_ENABLE;
7574 crtc_state->dpll_hw_state.dpll = dpll;
7575
7576 if (INTEL_INFO(dev)->gen >= 4) {
7577 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7578 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7579 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7580 }
7581 }
7582
7583 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7584 struct intel_crtc_state *crtc_state,
7585 intel_clock_t *reduced_clock,
7586 int num_connectors)
7587 {
7588 struct drm_device *dev = crtc->base.dev;
7589 struct drm_i915_private *dev_priv = dev->dev_private;
7590 u32 dpll;
7591 struct dpll *clock = &crtc_state->dpll;
7592
7593 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7594
7595 dpll = DPLL_VGA_MODE_DIS;
7596
7597 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7598 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7599 } else {
7600 if (clock->p1 == 2)
7601 dpll |= PLL_P1_DIVIDE_BY_TWO;
7602 else
7603 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7604 if (clock->p2 == 4)
7605 dpll |= PLL_P2_DIVIDE_BY_4;
7606 }
7607
7608 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7609 dpll |= DPLL_DVO_2X_MODE;
7610
7611 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7612 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7613 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7614 else
7615 dpll |= PLL_REF_INPUT_DREFCLK;
7616
7617 dpll |= DPLL_VCO_ENABLE;
7618 crtc_state->dpll_hw_state.dpll = dpll;
7619 }
7620
7621 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7622 {
7623 struct drm_device *dev = intel_crtc->base.dev;
7624 struct drm_i915_private *dev_priv = dev->dev_private;
7625 enum pipe pipe = intel_crtc->pipe;
7626 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7627 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7628 uint32_t crtc_vtotal, crtc_vblank_end;
7629 int vsyncshift = 0;
7630
7631 /* We need to be careful not to changed the adjusted mode, for otherwise
7632 * the hw state checker will get angry at the mismatch. */
7633 crtc_vtotal = adjusted_mode->crtc_vtotal;
7634 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7635
7636 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7637 /* the chip adds 2 halflines automatically */
7638 crtc_vtotal -= 1;
7639 crtc_vblank_end -= 1;
7640
7641 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7642 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7643 else
7644 vsyncshift = adjusted_mode->crtc_hsync_start -
7645 adjusted_mode->crtc_htotal / 2;
7646 if (vsyncshift < 0)
7647 vsyncshift += adjusted_mode->crtc_htotal;
7648 }
7649
7650 if (INTEL_INFO(dev)->gen > 3)
7651 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7652
7653 I915_WRITE(HTOTAL(cpu_transcoder),
7654 (adjusted_mode->crtc_hdisplay - 1) |
7655 ((adjusted_mode->crtc_htotal - 1) << 16));
7656 I915_WRITE(HBLANK(cpu_transcoder),
7657 (adjusted_mode->crtc_hblank_start - 1) |
7658 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7659 I915_WRITE(HSYNC(cpu_transcoder),
7660 (adjusted_mode->crtc_hsync_start - 1) |
7661 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7662
7663 I915_WRITE(VTOTAL(cpu_transcoder),
7664 (adjusted_mode->crtc_vdisplay - 1) |
7665 ((crtc_vtotal - 1) << 16));
7666 I915_WRITE(VBLANK(cpu_transcoder),
7667 (adjusted_mode->crtc_vblank_start - 1) |
7668 ((crtc_vblank_end - 1) << 16));
7669 I915_WRITE(VSYNC(cpu_transcoder),
7670 (adjusted_mode->crtc_vsync_start - 1) |
7671 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7672
7673 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7674 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7675 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7676 * bits. */
7677 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7678 (pipe == PIPE_B || pipe == PIPE_C))
7679 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7680
7681 /* pipesrc controls the size that is scaled from, which should
7682 * always be the user's requested size.
7683 */
7684 I915_WRITE(PIPESRC(pipe),
7685 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7686 (intel_crtc->config->pipe_src_h - 1));
7687 }
7688
7689 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7690 struct intel_crtc_state *pipe_config)
7691 {
7692 struct drm_device *dev = crtc->base.dev;
7693 struct drm_i915_private *dev_priv = dev->dev_private;
7694 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7695 uint32_t tmp;
7696
7697 tmp = I915_READ(HTOTAL(cpu_transcoder));
7698 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7699 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7700 tmp = I915_READ(HBLANK(cpu_transcoder));
7701 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7702 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7703 tmp = I915_READ(HSYNC(cpu_transcoder));
7704 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7705 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7706
7707 tmp = I915_READ(VTOTAL(cpu_transcoder));
7708 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7709 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7710 tmp = I915_READ(VBLANK(cpu_transcoder));
7711 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7712 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7713 tmp = I915_READ(VSYNC(cpu_transcoder));
7714 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7715 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7716
7717 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7718 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7719 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7720 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7721 }
7722
7723 tmp = I915_READ(PIPESRC(crtc->pipe));
7724 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7725 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7726
7727 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7728 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7729 }
7730
7731 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7732 struct intel_crtc_state *pipe_config)
7733 {
7734 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7735 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7736 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7737 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7738
7739 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7740 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7741 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7742 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7743
7744 mode->flags = pipe_config->base.adjusted_mode.flags;
7745 mode->type = DRM_MODE_TYPE_DRIVER;
7746
7747 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7748 mode->flags |= pipe_config->base.adjusted_mode.flags;
7749
7750 mode->hsync = drm_mode_hsync(mode);
7751 mode->vrefresh = drm_mode_vrefresh(mode);
7752 drm_mode_set_name(mode);
7753 }
7754
7755 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7756 {
7757 struct drm_device *dev = intel_crtc->base.dev;
7758 struct drm_i915_private *dev_priv = dev->dev_private;
7759 uint32_t pipeconf;
7760
7761 pipeconf = 0;
7762
7763 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7764 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7765 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7766
7767 if (intel_crtc->config->double_wide)
7768 pipeconf |= PIPECONF_DOUBLE_WIDE;
7769
7770 /* only g4x and later have fancy bpc/dither controls */
7771 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7772 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7773 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7774 pipeconf |= PIPECONF_DITHER_EN |
7775 PIPECONF_DITHER_TYPE_SP;
7776
7777 switch (intel_crtc->config->pipe_bpp) {
7778 case 18:
7779 pipeconf |= PIPECONF_6BPC;
7780 break;
7781 case 24:
7782 pipeconf |= PIPECONF_8BPC;
7783 break;
7784 case 30:
7785 pipeconf |= PIPECONF_10BPC;
7786 break;
7787 default:
7788 /* Case prevented by intel_choose_pipe_bpp_dither. */
7789 BUG();
7790 }
7791 }
7792
7793 if (HAS_PIPE_CXSR(dev)) {
7794 if (intel_crtc->lowfreq_avail) {
7795 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7796 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7797 } else {
7798 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7799 }
7800 }
7801
7802 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7803 if (INTEL_INFO(dev)->gen < 4 ||
7804 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7805 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7806 else
7807 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7808 } else
7809 pipeconf |= PIPECONF_PROGRESSIVE;
7810
7811 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7812 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7813
7814 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7815 POSTING_READ(PIPECONF(intel_crtc->pipe));
7816 }
7817
7818 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7819 struct intel_crtc_state *crtc_state)
7820 {
7821 struct drm_device *dev = crtc->base.dev;
7822 struct drm_i915_private *dev_priv = dev->dev_private;
7823 int refclk, num_connectors = 0;
7824 intel_clock_t clock;
7825 bool ok;
7826 bool is_dsi = false;
7827 struct intel_encoder *encoder;
7828 const intel_limit_t *limit;
7829 struct drm_atomic_state *state = crtc_state->base.state;
7830 struct drm_connector *connector;
7831 struct drm_connector_state *connector_state;
7832 int i;
7833
7834 memset(&crtc_state->dpll_hw_state, 0,
7835 sizeof(crtc_state->dpll_hw_state));
7836
7837 for_each_connector_in_state(state, connector, connector_state, i) {
7838 if (connector_state->crtc != &crtc->base)
7839 continue;
7840
7841 encoder = to_intel_encoder(connector_state->best_encoder);
7842
7843 switch (encoder->type) {
7844 case INTEL_OUTPUT_DSI:
7845 is_dsi = true;
7846 break;
7847 default:
7848 break;
7849 }
7850
7851 num_connectors++;
7852 }
7853
7854 if (is_dsi)
7855 return 0;
7856
7857 if (!crtc_state->clock_set) {
7858 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7859
7860 /*
7861 * Returns a set of divisors for the desired target clock with
7862 * the given refclk, or FALSE. The returned values represent
7863 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7864 * 2) / p1 / p2.
7865 */
7866 limit = intel_limit(crtc_state, refclk);
7867 ok = dev_priv->display.find_dpll(limit, crtc_state,
7868 crtc_state->port_clock,
7869 refclk, NULL, &clock);
7870 if (!ok) {
7871 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7872 return -EINVAL;
7873 }
7874
7875 /* Compat-code for transition, will disappear. */
7876 crtc_state->dpll.n = clock.n;
7877 crtc_state->dpll.m1 = clock.m1;
7878 crtc_state->dpll.m2 = clock.m2;
7879 crtc_state->dpll.p1 = clock.p1;
7880 crtc_state->dpll.p2 = clock.p2;
7881 }
7882
7883 if (IS_GEN2(dev)) {
7884 i8xx_compute_dpll(crtc, crtc_state, NULL,
7885 num_connectors);
7886 } else if (IS_CHERRYVIEW(dev)) {
7887 chv_compute_dpll(crtc, crtc_state);
7888 } else if (IS_VALLEYVIEW(dev)) {
7889 vlv_compute_dpll(crtc, crtc_state);
7890 } else {
7891 i9xx_compute_dpll(crtc, crtc_state, NULL,
7892 num_connectors);
7893 }
7894
7895 return 0;
7896 }
7897
7898 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7899 struct intel_crtc_state *pipe_config)
7900 {
7901 struct drm_device *dev = crtc->base.dev;
7902 struct drm_i915_private *dev_priv = dev->dev_private;
7903 uint32_t tmp;
7904
7905 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7906 return;
7907
7908 tmp = I915_READ(PFIT_CONTROL);
7909 if (!(tmp & PFIT_ENABLE))
7910 return;
7911
7912 /* Check whether the pfit is attached to our pipe. */
7913 if (INTEL_INFO(dev)->gen < 4) {
7914 if (crtc->pipe != PIPE_B)
7915 return;
7916 } else {
7917 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7918 return;
7919 }
7920
7921 pipe_config->gmch_pfit.control = tmp;
7922 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7923 if (INTEL_INFO(dev)->gen < 5)
7924 pipe_config->gmch_pfit.lvds_border_bits =
7925 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7926 }
7927
7928 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7929 struct intel_crtc_state *pipe_config)
7930 {
7931 struct drm_device *dev = crtc->base.dev;
7932 struct drm_i915_private *dev_priv = dev->dev_private;
7933 int pipe = pipe_config->cpu_transcoder;
7934 intel_clock_t clock;
7935 u32 mdiv;
7936 int refclk = 100000;
7937
7938 /* In case of MIPI DPLL will not even be used */
7939 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7940 return;
7941
7942 mutex_lock(&dev_priv->sb_lock);
7943 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7944 mutex_unlock(&dev_priv->sb_lock);
7945
7946 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7947 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7948 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7949 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7950 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7951
7952 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7953 }
7954
7955 static void
7956 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7957 struct intel_initial_plane_config *plane_config)
7958 {
7959 struct drm_device *dev = crtc->base.dev;
7960 struct drm_i915_private *dev_priv = dev->dev_private;
7961 u32 val, base, offset;
7962 int pipe = crtc->pipe, plane = crtc->plane;
7963 int fourcc, pixel_format;
7964 unsigned int aligned_height;
7965 struct drm_framebuffer *fb;
7966 struct intel_framebuffer *intel_fb;
7967
7968 val = I915_READ(DSPCNTR(plane));
7969 if (!(val & DISPLAY_PLANE_ENABLE))
7970 return;
7971
7972 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7973 if (!intel_fb) {
7974 DRM_DEBUG_KMS("failed to alloc fb\n");
7975 return;
7976 }
7977
7978 fb = &intel_fb->base;
7979
7980 if (INTEL_INFO(dev)->gen >= 4) {
7981 if (val & DISPPLANE_TILED) {
7982 plane_config->tiling = I915_TILING_X;
7983 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7984 }
7985 }
7986
7987 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7988 fourcc = i9xx_format_to_fourcc(pixel_format);
7989 fb->pixel_format = fourcc;
7990 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7991
7992 if (INTEL_INFO(dev)->gen >= 4) {
7993 if (plane_config->tiling)
7994 offset = I915_READ(DSPTILEOFF(plane));
7995 else
7996 offset = I915_READ(DSPLINOFF(plane));
7997 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7998 } else {
7999 base = I915_READ(DSPADDR(plane));
8000 }
8001 plane_config->base = base;
8002
8003 val = I915_READ(PIPESRC(pipe));
8004 fb->width = ((val >> 16) & 0xfff) + 1;
8005 fb->height = ((val >> 0) & 0xfff) + 1;
8006
8007 val = I915_READ(DSPSTRIDE(pipe));
8008 fb->pitches[0] = val & 0xffffffc0;
8009
8010 aligned_height = intel_fb_align_height(dev, fb->height,
8011 fb->pixel_format,
8012 fb->modifier[0]);
8013
8014 plane_config->size = fb->pitches[0] * aligned_height;
8015
8016 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8017 pipe_name(pipe), plane, fb->width, fb->height,
8018 fb->bits_per_pixel, base, fb->pitches[0],
8019 plane_config->size);
8020
8021 plane_config->fb = intel_fb;
8022 }
8023
8024 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8025 struct intel_crtc_state *pipe_config)
8026 {
8027 struct drm_device *dev = crtc->base.dev;
8028 struct drm_i915_private *dev_priv = dev->dev_private;
8029 int pipe = pipe_config->cpu_transcoder;
8030 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8031 intel_clock_t clock;
8032 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8033 int refclk = 100000;
8034
8035 mutex_lock(&dev_priv->sb_lock);
8036 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8037 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8038 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8039 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8040 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8041 mutex_unlock(&dev_priv->sb_lock);
8042
8043 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8044 clock.m2 = (pll_dw0 & 0xff) << 22;
8045 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8046 clock.m2 |= pll_dw2 & 0x3fffff;
8047 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8048 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8049 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8050
8051 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8052 }
8053
8054 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8055 struct intel_crtc_state *pipe_config)
8056 {
8057 struct drm_device *dev = crtc->base.dev;
8058 struct drm_i915_private *dev_priv = dev->dev_private;
8059 uint32_t tmp;
8060
8061 if (!intel_display_power_is_enabled(dev_priv,
8062 POWER_DOMAIN_PIPE(crtc->pipe)))
8063 return false;
8064
8065 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8066 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8067
8068 tmp = I915_READ(PIPECONF(crtc->pipe));
8069 if (!(tmp & PIPECONF_ENABLE))
8070 return false;
8071
8072 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8073 switch (tmp & PIPECONF_BPC_MASK) {
8074 case PIPECONF_6BPC:
8075 pipe_config->pipe_bpp = 18;
8076 break;
8077 case PIPECONF_8BPC:
8078 pipe_config->pipe_bpp = 24;
8079 break;
8080 case PIPECONF_10BPC:
8081 pipe_config->pipe_bpp = 30;
8082 break;
8083 default:
8084 break;
8085 }
8086 }
8087
8088 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8089 pipe_config->limited_color_range = true;
8090
8091 if (INTEL_INFO(dev)->gen < 4)
8092 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8093
8094 intel_get_pipe_timings(crtc, pipe_config);
8095
8096 i9xx_get_pfit_config(crtc, pipe_config);
8097
8098 if (INTEL_INFO(dev)->gen >= 4) {
8099 tmp = I915_READ(DPLL_MD(crtc->pipe));
8100 pipe_config->pixel_multiplier =
8101 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8102 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8103 pipe_config->dpll_hw_state.dpll_md = tmp;
8104 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8105 tmp = I915_READ(DPLL(crtc->pipe));
8106 pipe_config->pixel_multiplier =
8107 ((tmp & SDVO_MULTIPLIER_MASK)
8108 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8109 } else {
8110 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8111 * port and will be fixed up in the encoder->get_config
8112 * function. */
8113 pipe_config->pixel_multiplier = 1;
8114 }
8115 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8116 if (!IS_VALLEYVIEW(dev)) {
8117 /*
8118 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8119 * on 830. Filter it out here so that we don't
8120 * report errors due to that.
8121 */
8122 if (IS_I830(dev))
8123 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8124
8125 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8126 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8127 } else {
8128 /* Mask out read-only status bits. */
8129 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8130 DPLL_PORTC_READY_MASK |
8131 DPLL_PORTB_READY_MASK);
8132 }
8133
8134 if (IS_CHERRYVIEW(dev))
8135 chv_crtc_clock_get(crtc, pipe_config);
8136 else if (IS_VALLEYVIEW(dev))
8137 vlv_crtc_clock_get(crtc, pipe_config);
8138 else
8139 i9xx_crtc_clock_get(crtc, pipe_config);
8140
8141 /*
8142 * Normally the dotclock is filled in by the encoder .get_config()
8143 * but in case the pipe is enabled w/o any ports we need a sane
8144 * default.
8145 */
8146 pipe_config->base.adjusted_mode.crtc_clock =
8147 pipe_config->port_clock / pipe_config->pixel_multiplier;
8148
8149 return true;
8150 }
8151
8152 static void ironlake_init_pch_refclk(struct drm_device *dev)
8153 {
8154 struct drm_i915_private *dev_priv = dev->dev_private;
8155 struct intel_encoder *encoder;
8156 u32 val, final;
8157 bool has_lvds = false;
8158 bool has_cpu_edp = false;
8159 bool has_panel = false;
8160 bool has_ck505 = false;
8161 bool can_ssc = false;
8162
8163 /* We need to take the global config into account */
8164 for_each_intel_encoder(dev, encoder) {
8165 switch (encoder->type) {
8166 case INTEL_OUTPUT_LVDS:
8167 has_panel = true;
8168 has_lvds = true;
8169 break;
8170 case INTEL_OUTPUT_EDP:
8171 has_panel = true;
8172 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8173 has_cpu_edp = true;
8174 break;
8175 default:
8176 break;
8177 }
8178 }
8179
8180 if (HAS_PCH_IBX(dev)) {
8181 has_ck505 = dev_priv->vbt.display_clock_mode;
8182 can_ssc = has_ck505;
8183 } else {
8184 has_ck505 = false;
8185 can_ssc = true;
8186 }
8187
8188 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8189 has_panel, has_lvds, has_ck505);
8190
8191 /* Ironlake: try to setup display ref clock before DPLL
8192 * enabling. This is only under driver's control after
8193 * PCH B stepping, previous chipset stepping should be
8194 * ignoring this setting.
8195 */
8196 val = I915_READ(PCH_DREF_CONTROL);
8197
8198 /* As we must carefully and slowly disable/enable each source in turn,
8199 * compute the final state we want first and check if we need to
8200 * make any changes at all.
8201 */
8202 final = val;
8203 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8204 if (has_ck505)
8205 final |= DREF_NONSPREAD_CK505_ENABLE;
8206 else
8207 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8208
8209 final &= ~DREF_SSC_SOURCE_MASK;
8210 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8211 final &= ~DREF_SSC1_ENABLE;
8212
8213 if (has_panel) {
8214 final |= DREF_SSC_SOURCE_ENABLE;
8215
8216 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8217 final |= DREF_SSC1_ENABLE;
8218
8219 if (has_cpu_edp) {
8220 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8221 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8222 else
8223 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8224 } else
8225 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8226 } else {
8227 final |= DREF_SSC_SOURCE_DISABLE;
8228 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8229 }
8230
8231 if (final == val)
8232 return;
8233
8234 /* Always enable nonspread source */
8235 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8236
8237 if (has_ck505)
8238 val |= DREF_NONSPREAD_CK505_ENABLE;
8239 else
8240 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8241
8242 if (has_panel) {
8243 val &= ~DREF_SSC_SOURCE_MASK;
8244 val |= DREF_SSC_SOURCE_ENABLE;
8245
8246 /* SSC must be turned on before enabling the CPU output */
8247 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8248 DRM_DEBUG_KMS("Using SSC on panel\n");
8249 val |= DREF_SSC1_ENABLE;
8250 } else
8251 val &= ~DREF_SSC1_ENABLE;
8252
8253 /* Get SSC going before enabling the outputs */
8254 I915_WRITE(PCH_DREF_CONTROL, val);
8255 POSTING_READ(PCH_DREF_CONTROL);
8256 udelay(200);
8257
8258 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8259
8260 /* Enable CPU source on CPU attached eDP */
8261 if (has_cpu_edp) {
8262 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8263 DRM_DEBUG_KMS("Using SSC on eDP\n");
8264 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8265 } else
8266 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8267 } else
8268 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8269
8270 I915_WRITE(PCH_DREF_CONTROL, val);
8271 POSTING_READ(PCH_DREF_CONTROL);
8272 udelay(200);
8273 } else {
8274 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8275
8276 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8277
8278 /* Turn off CPU output */
8279 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8280
8281 I915_WRITE(PCH_DREF_CONTROL, val);
8282 POSTING_READ(PCH_DREF_CONTROL);
8283 udelay(200);
8284
8285 /* Turn off the SSC source */
8286 val &= ~DREF_SSC_SOURCE_MASK;
8287 val |= DREF_SSC_SOURCE_DISABLE;
8288
8289 /* Turn off SSC1 */
8290 val &= ~DREF_SSC1_ENABLE;
8291
8292 I915_WRITE(PCH_DREF_CONTROL, val);
8293 POSTING_READ(PCH_DREF_CONTROL);
8294 udelay(200);
8295 }
8296
8297 BUG_ON(val != final);
8298 }
8299
8300 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8301 {
8302 uint32_t tmp;
8303
8304 tmp = I915_READ(SOUTH_CHICKEN2);
8305 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8306 I915_WRITE(SOUTH_CHICKEN2, tmp);
8307
8308 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8309 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8310 DRM_ERROR("FDI mPHY reset assert timeout\n");
8311
8312 tmp = I915_READ(SOUTH_CHICKEN2);
8313 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8314 I915_WRITE(SOUTH_CHICKEN2, tmp);
8315
8316 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8317 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8318 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8319 }
8320
8321 /* WaMPhyProgramming:hsw */
8322 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8323 {
8324 uint32_t tmp;
8325
8326 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8327 tmp &= ~(0xFF << 24);
8328 tmp |= (0x12 << 24);
8329 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8330
8331 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8332 tmp |= (1 << 11);
8333 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8334
8335 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8336 tmp |= (1 << 11);
8337 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8338
8339 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8340 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8341 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8342
8343 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8344 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8345 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8346
8347 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8348 tmp &= ~(7 << 13);
8349 tmp |= (5 << 13);
8350 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8351
8352 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8353 tmp &= ~(7 << 13);
8354 tmp |= (5 << 13);
8355 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8356
8357 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8358 tmp &= ~0xFF;
8359 tmp |= 0x1C;
8360 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8361
8362 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8363 tmp &= ~0xFF;
8364 tmp |= 0x1C;
8365 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8366
8367 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8368 tmp &= ~(0xFF << 16);
8369 tmp |= (0x1C << 16);
8370 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8371
8372 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8373 tmp &= ~(0xFF << 16);
8374 tmp |= (0x1C << 16);
8375 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8376
8377 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8378 tmp |= (1 << 27);
8379 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8380
8381 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8382 tmp |= (1 << 27);
8383 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8384
8385 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8386 tmp &= ~(0xF << 28);
8387 tmp |= (4 << 28);
8388 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8389
8390 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8391 tmp &= ~(0xF << 28);
8392 tmp |= (4 << 28);
8393 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8394 }
8395
8396 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8397 * Programming" based on the parameters passed:
8398 * - Sequence to enable CLKOUT_DP
8399 * - Sequence to enable CLKOUT_DP without spread
8400 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8401 */
8402 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8403 bool with_fdi)
8404 {
8405 struct drm_i915_private *dev_priv = dev->dev_private;
8406 uint32_t reg, tmp;
8407
8408 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8409 with_spread = true;
8410 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8411 with_fdi = false;
8412
8413 mutex_lock(&dev_priv->sb_lock);
8414
8415 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8416 tmp &= ~SBI_SSCCTL_DISABLE;
8417 tmp |= SBI_SSCCTL_PATHALT;
8418 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8419
8420 udelay(24);
8421
8422 if (with_spread) {
8423 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8424 tmp &= ~SBI_SSCCTL_PATHALT;
8425 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8426
8427 if (with_fdi) {
8428 lpt_reset_fdi_mphy(dev_priv);
8429 lpt_program_fdi_mphy(dev_priv);
8430 }
8431 }
8432
8433 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8434 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8435 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8436 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8437
8438 mutex_unlock(&dev_priv->sb_lock);
8439 }
8440
8441 /* Sequence to disable CLKOUT_DP */
8442 static void lpt_disable_clkout_dp(struct drm_device *dev)
8443 {
8444 struct drm_i915_private *dev_priv = dev->dev_private;
8445 uint32_t reg, tmp;
8446
8447 mutex_lock(&dev_priv->sb_lock);
8448
8449 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8450 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8451 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8452 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8453
8454 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8455 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8456 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8457 tmp |= SBI_SSCCTL_PATHALT;
8458 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8459 udelay(32);
8460 }
8461 tmp |= SBI_SSCCTL_DISABLE;
8462 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8463 }
8464
8465 mutex_unlock(&dev_priv->sb_lock);
8466 }
8467
8468 static void lpt_init_pch_refclk(struct drm_device *dev)
8469 {
8470 struct intel_encoder *encoder;
8471 bool has_vga = false;
8472
8473 for_each_intel_encoder(dev, encoder) {
8474 switch (encoder->type) {
8475 case INTEL_OUTPUT_ANALOG:
8476 has_vga = true;
8477 break;
8478 default:
8479 break;
8480 }
8481 }
8482
8483 if (has_vga)
8484 lpt_enable_clkout_dp(dev, true, true);
8485 else
8486 lpt_disable_clkout_dp(dev);
8487 }
8488
8489 /*
8490 * Initialize reference clocks when the driver loads
8491 */
8492 void intel_init_pch_refclk(struct drm_device *dev)
8493 {
8494 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8495 ironlake_init_pch_refclk(dev);
8496 else if (HAS_PCH_LPT(dev))
8497 lpt_init_pch_refclk(dev);
8498 }
8499
8500 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8501 {
8502 struct drm_device *dev = crtc_state->base.crtc->dev;
8503 struct drm_i915_private *dev_priv = dev->dev_private;
8504 struct drm_atomic_state *state = crtc_state->base.state;
8505 struct drm_connector *connector;
8506 struct drm_connector_state *connector_state;
8507 struct intel_encoder *encoder;
8508 int num_connectors = 0, i;
8509 bool is_lvds = false;
8510
8511 for_each_connector_in_state(state, connector, connector_state, i) {
8512 if (connector_state->crtc != crtc_state->base.crtc)
8513 continue;
8514
8515 encoder = to_intel_encoder(connector_state->best_encoder);
8516
8517 switch (encoder->type) {
8518 case INTEL_OUTPUT_LVDS:
8519 is_lvds = true;
8520 break;
8521 default:
8522 break;
8523 }
8524 num_connectors++;
8525 }
8526
8527 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8528 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8529 dev_priv->vbt.lvds_ssc_freq);
8530 return dev_priv->vbt.lvds_ssc_freq;
8531 }
8532
8533 return 120000;
8534 }
8535
8536 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8537 {
8538 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8539 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8540 int pipe = intel_crtc->pipe;
8541 uint32_t val;
8542
8543 val = 0;
8544
8545 switch (intel_crtc->config->pipe_bpp) {
8546 case 18:
8547 val |= PIPECONF_6BPC;
8548 break;
8549 case 24:
8550 val |= PIPECONF_8BPC;
8551 break;
8552 case 30:
8553 val |= PIPECONF_10BPC;
8554 break;
8555 case 36:
8556 val |= PIPECONF_12BPC;
8557 break;
8558 default:
8559 /* Case prevented by intel_choose_pipe_bpp_dither. */
8560 BUG();
8561 }
8562
8563 if (intel_crtc->config->dither)
8564 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8565
8566 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8567 val |= PIPECONF_INTERLACED_ILK;
8568 else
8569 val |= PIPECONF_PROGRESSIVE;
8570
8571 if (intel_crtc->config->limited_color_range)
8572 val |= PIPECONF_COLOR_RANGE_SELECT;
8573
8574 I915_WRITE(PIPECONF(pipe), val);
8575 POSTING_READ(PIPECONF(pipe));
8576 }
8577
8578 /*
8579 * Set up the pipe CSC unit.
8580 *
8581 * Currently only full range RGB to limited range RGB conversion
8582 * is supported, but eventually this should handle various
8583 * RGB<->YCbCr scenarios as well.
8584 */
8585 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8586 {
8587 struct drm_device *dev = crtc->dev;
8588 struct drm_i915_private *dev_priv = dev->dev_private;
8589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8590 int pipe = intel_crtc->pipe;
8591 uint16_t coeff = 0x7800; /* 1.0 */
8592
8593 /*
8594 * TODO: Check what kind of values actually come out of the pipe
8595 * with these coeff/postoff values and adjust to get the best
8596 * accuracy. Perhaps we even need to take the bpc value into
8597 * consideration.
8598 */
8599
8600 if (intel_crtc->config->limited_color_range)
8601 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8602
8603 /*
8604 * GY/GU and RY/RU should be the other way around according
8605 * to BSpec, but reality doesn't agree. Just set them up in
8606 * a way that results in the correct picture.
8607 */
8608 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8609 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8610
8611 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8612 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8613
8614 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8615 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8616
8617 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8618 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8619 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8620
8621 if (INTEL_INFO(dev)->gen > 6) {
8622 uint16_t postoff = 0;
8623
8624 if (intel_crtc->config->limited_color_range)
8625 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8626
8627 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8628 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8629 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8630
8631 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8632 } else {
8633 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8634
8635 if (intel_crtc->config->limited_color_range)
8636 mode |= CSC_BLACK_SCREEN_OFFSET;
8637
8638 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8639 }
8640 }
8641
8642 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8643 {
8644 struct drm_device *dev = crtc->dev;
8645 struct drm_i915_private *dev_priv = dev->dev_private;
8646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8647 enum pipe pipe = intel_crtc->pipe;
8648 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8649 uint32_t val;
8650
8651 val = 0;
8652
8653 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8654 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8655
8656 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8657 val |= PIPECONF_INTERLACED_ILK;
8658 else
8659 val |= PIPECONF_PROGRESSIVE;
8660
8661 I915_WRITE(PIPECONF(cpu_transcoder), val);
8662 POSTING_READ(PIPECONF(cpu_transcoder));
8663
8664 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8665 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8666
8667 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8668 val = 0;
8669
8670 switch (intel_crtc->config->pipe_bpp) {
8671 case 18:
8672 val |= PIPEMISC_DITHER_6_BPC;
8673 break;
8674 case 24:
8675 val |= PIPEMISC_DITHER_8_BPC;
8676 break;
8677 case 30:
8678 val |= PIPEMISC_DITHER_10_BPC;
8679 break;
8680 case 36:
8681 val |= PIPEMISC_DITHER_12_BPC;
8682 break;
8683 default:
8684 /* Case prevented by pipe_config_set_bpp. */
8685 BUG();
8686 }
8687
8688 if (intel_crtc->config->dither)
8689 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8690
8691 I915_WRITE(PIPEMISC(pipe), val);
8692 }
8693 }
8694
8695 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8696 struct intel_crtc_state *crtc_state,
8697 intel_clock_t *clock,
8698 bool *has_reduced_clock,
8699 intel_clock_t *reduced_clock)
8700 {
8701 struct drm_device *dev = crtc->dev;
8702 struct drm_i915_private *dev_priv = dev->dev_private;
8703 int refclk;
8704 const intel_limit_t *limit;
8705 bool ret;
8706
8707 refclk = ironlake_get_refclk(crtc_state);
8708
8709 /*
8710 * Returns a set of divisors for the desired target clock with the given
8711 * refclk, or FALSE. The returned values represent the clock equation:
8712 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8713 */
8714 limit = intel_limit(crtc_state, refclk);
8715 ret = dev_priv->display.find_dpll(limit, crtc_state,
8716 crtc_state->port_clock,
8717 refclk, NULL, clock);
8718 if (!ret)
8719 return false;
8720
8721 return true;
8722 }
8723
8724 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8725 {
8726 /*
8727 * Account for spread spectrum to avoid
8728 * oversubscribing the link. Max center spread
8729 * is 2.5%; use 5% for safety's sake.
8730 */
8731 u32 bps = target_clock * bpp * 21 / 20;
8732 return DIV_ROUND_UP(bps, link_bw * 8);
8733 }
8734
8735 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8736 {
8737 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8738 }
8739
8740 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8741 struct intel_crtc_state *crtc_state,
8742 u32 *fp,
8743 intel_clock_t *reduced_clock, u32 *fp2)
8744 {
8745 struct drm_crtc *crtc = &intel_crtc->base;
8746 struct drm_device *dev = crtc->dev;
8747 struct drm_i915_private *dev_priv = dev->dev_private;
8748 struct drm_atomic_state *state = crtc_state->base.state;
8749 struct drm_connector *connector;
8750 struct drm_connector_state *connector_state;
8751 struct intel_encoder *encoder;
8752 uint32_t dpll;
8753 int factor, num_connectors = 0, i;
8754 bool is_lvds = false, is_sdvo = false;
8755
8756 for_each_connector_in_state(state, connector, connector_state, i) {
8757 if (connector_state->crtc != crtc_state->base.crtc)
8758 continue;
8759
8760 encoder = to_intel_encoder(connector_state->best_encoder);
8761
8762 switch (encoder->type) {
8763 case INTEL_OUTPUT_LVDS:
8764 is_lvds = true;
8765 break;
8766 case INTEL_OUTPUT_SDVO:
8767 case INTEL_OUTPUT_HDMI:
8768 is_sdvo = true;
8769 break;
8770 default:
8771 break;
8772 }
8773
8774 num_connectors++;
8775 }
8776
8777 /* Enable autotuning of the PLL clock (if permissible) */
8778 factor = 21;
8779 if (is_lvds) {
8780 if ((intel_panel_use_ssc(dev_priv) &&
8781 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8782 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8783 factor = 25;
8784 } else if (crtc_state->sdvo_tv_clock)
8785 factor = 20;
8786
8787 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8788 *fp |= FP_CB_TUNE;
8789
8790 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8791 *fp2 |= FP_CB_TUNE;
8792
8793 dpll = 0;
8794
8795 if (is_lvds)
8796 dpll |= DPLLB_MODE_LVDS;
8797 else
8798 dpll |= DPLLB_MODE_DAC_SERIAL;
8799
8800 dpll |= (crtc_state->pixel_multiplier - 1)
8801 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8802
8803 if (is_sdvo)
8804 dpll |= DPLL_SDVO_HIGH_SPEED;
8805 if (crtc_state->has_dp_encoder)
8806 dpll |= DPLL_SDVO_HIGH_SPEED;
8807
8808 /* compute bitmask from p1 value */
8809 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8810 /* also FPA1 */
8811 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8812
8813 switch (crtc_state->dpll.p2) {
8814 case 5:
8815 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8816 break;
8817 case 7:
8818 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8819 break;
8820 case 10:
8821 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8822 break;
8823 case 14:
8824 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8825 break;
8826 }
8827
8828 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8829 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8830 else
8831 dpll |= PLL_REF_INPUT_DREFCLK;
8832
8833 return dpll | DPLL_VCO_ENABLE;
8834 }
8835
8836 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8837 struct intel_crtc_state *crtc_state)
8838 {
8839 struct drm_device *dev = crtc->base.dev;
8840 intel_clock_t clock, reduced_clock;
8841 u32 dpll = 0, fp = 0, fp2 = 0;
8842 bool ok, has_reduced_clock = false;
8843 bool is_lvds = false;
8844 struct intel_shared_dpll *pll;
8845
8846 memset(&crtc_state->dpll_hw_state, 0,
8847 sizeof(crtc_state->dpll_hw_state));
8848
8849 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8850
8851 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8852 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8853
8854 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8855 &has_reduced_clock, &reduced_clock);
8856 if (!ok && !crtc_state->clock_set) {
8857 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8858 return -EINVAL;
8859 }
8860 /* Compat-code for transition, will disappear. */
8861 if (!crtc_state->clock_set) {
8862 crtc_state->dpll.n = clock.n;
8863 crtc_state->dpll.m1 = clock.m1;
8864 crtc_state->dpll.m2 = clock.m2;
8865 crtc_state->dpll.p1 = clock.p1;
8866 crtc_state->dpll.p2 = clock.p2;
8867 }
8868
8869 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8870 if (crtc_state->has_pch_encoder) {
8871 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8872 if (has_reduced_clock)
8873 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8874
8875 dpll = ironlake_compute_dpll(crtc, crtc_state,
8876 &fp, &reduced_clock,
8877 has_reduced_clock ? &fp2 : NULL);
8878
8879 crtc_state->dpll_hw_state.dpll = dpll;
8880 crtc_state->dpll_hw_state.fp0 = fp;
8881 if (has_reduced_clock)
8882 crtc_state->dpll_hw_state.fp1 = fp2;
8883 else
8884 crtc_state->dpll_hw_state.fp1 = fp;
8885
8886 pll = intel_get_shared_dpll(crtc, crtc_state);
8887 if (pll == NULL) {
8888 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8889 pipe_name(crtc->pipe));
8890 return -EINVAL;
8891 }
8892 }
8893
8894 if (is_lvds && has_reduced_clock)
8895 crtc->lowfreq_avail = true;
8896 else
8897 crtc->lowfreq_avail = false;
8898
8899 return 0;
8900 }
8901
8902 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8903 struct intel_link_m_n *m_n)
8904 {
8905 struct drm_device *dev = crtc->base.dev;
8906 struct drm_i915_private *dev_priv = dev->dev_private;
8907 enum pipe pipe = crtc->pipe;
8908
8909 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8910 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8911 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8912 & ~TU_SIZE_MASK;
8913 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8914 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8915 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8916 }
8917
8918 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8919 enum transcoder transcoder,
8920 struct intel_link_m_n *m_n,
8921 struct intel_link_m_n *m2_n2)
8922 {
8923 struct drm_device *dev = crtc->base.dev;
8924 struct drm_i915_private *dev_priv = dev->dev_private;
8925 enum pipe pipe = crtc->pipe;
8926
8927 if (INTEL_INFO(dev)->gen >= 5) {
8928 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8929 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8930 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8931 & ~TU_SIZE_MASK;
8932 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8933 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8934 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8935 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8936 * gen < 8) and if DRRS is supported (to make sure the
8937 * registers are not unnecessarily read).
8938 */
8939 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8940 crtc->config->has_drrs) {
8941 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8942 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8943 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8944 & ~TU_SIZE_MASK;
8945 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8946 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8947 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8948 }
8949 } else {
8950 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8951 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8952 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8953 & ~TU_SIZE_MASK;
8954 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8955 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8956 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8957 }
8958 }
8959
8960 void intel_dp_get_m_n(struct intel_crtc *crtc,
8961 struct intel_crtc_state *pipe_config)
8962 {
8963 if (pipe_config->has_pch_encoder)
8964 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8965 else
8966 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8967 &pipe_config->dp_m_n,
8968 &pipe_config->dp_m2_n2);
8969 }
8970
8971 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8972 struct intel_crtc_state *pipe_config)
8973 {
8974 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8975 &pipe_config->fdi_m_n, NULL);
8976 }
8977
8978 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8979 struct intel_crtc_state *pipe_config)
8980 {
8981 struct drm_device *dev = crtc->base.dev;
8982 struct drm_i915_private *dev_priv = dev->dev_private;
8983 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8984 uint32_t ps_ctrl = 0;
8985 int id = -1;
8986 int i;
8987
8988 /* find scaler attached to this pipe */
8989 for (i = 0; i < crtc->num_scalers; i++) {
8990 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8991 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8992 id = i;
8993 pipe_config->pch_pfit.enabled = true;
8994 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8995 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8996 break;
8997 }
8998 }
8999
9000 scaler_state->scaler_id = id;
9001 if (id >= 0) {
9002 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9003 } else {
9004 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9005 }
9006 }
9007
9008 static void
9009 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9010 struct intel_initial_plane_config *plane_config)
9011 {
9012 struct drm_device *dev = crtc->base.dev;
9013 struct drm_i915_private *dev_priv = dev->dev_private;
9014 u32 val, base, offset, stride_mult, tiling;
9015 int pipe = crtc->pipe;
9016 int fourcc, pixel_format;
9017 unsigned int aligned_height;
9018 struct drm_framebuffer *fb;
9019 struct intel_framebuffer *intel_fb;
9020
9021 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9022 if (!intel_fb) {
9023 DRM_DEBUG_KMS("failed to alloc fb\n");
9024 return;
9025 }
9026
9027 fb = &intel_fb->base;
9028
9029 val = I915_READ(PLANE_CTL(pipe, 0));
9030 if (!(val & PLANE_CTL_ENABLE))
9031 goto error;
9032
9033 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9034 fourcc = skl_format_to_fourcc(pixel_format,
9035 val & PLANE_CTL_ORDER_RGBX,
9036 val & PLANE_CTL_ALPHA_MASK);
9037 fb->pixel_format = fourcc;
9038 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9039
9040 tiling = val & PLANE_CTL_TILED_MASK;
9041 switch (tiling) {
9042 case PLANE_CTL_TILED_LINEAR:
9043 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9044 break;
9045 case PLANE_CTL_TILED_X:
9046 plane_config->tiling = I915_TILING_X;
9047 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9048 break;
9049 case PLANE_CTL_TILED_Y:
9050 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9051 break;
9052 case PLANE_CTL_TILED_YF:
9053 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9054 break;
9055 default:
9056 MISSING_CASE(tiling);
9057 goto error;
9058 }
9059
9060 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9061 plane_config->base = base;
9062
9063 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9064
9065 val = I915_READ(PLANE_SIZE(pipe, 0));
9066 fb->height = ((val >> 16) & 0xfff) + 1;
9067 fb->width = ((val >> 0) & 0x1fff) + 1;
9068
9069 val = I915_READ(PLANE_STRIDE(pipe, 0));
9070 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9071 fb->pixel_format);
9072 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9073
9074 aligned_height = intel_fb_align_height(dev, fb->height,
9075 fb->pixel_format,
9076 fb->modifier[0]);
9077
9078 plane_config->size = fb->pitches[0] * aligned_height;
9079
9080 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9081 pipe_name(pipe), fb->width, fb->height,
9082 fb->bits_per_pixel, base, fb->pitches[0],
9083 plane_config->size);
9084
9085 plane_config->fb = intel_fb;
9086 return;
9087
9088 error:
9089 kfree(fb);
9090 }
9091
9092 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9093 struct intel_crtc_state *pipe_config)
9094 {
9095 struct drm_device *dev = crtc->base.dev;
9096 struct drm_i915_private *dev_priv = dev->dev_private;
9097 uint32_t tmp;
9098
9099 tmp = I915_READ(PF_CTL(crtc->pipe));
9100
9101 if (tmp & PF_ENABLE) {
9102 pipe_config->pch_pfit.enabled = true;
9103 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9104 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9105
9106 /* We currently do not free assignements of panel fitters on
9107 * ivb/hsw (since we don't use the higher upscaling modes which
9108 * differentiates them) so just WARN about this case for now. */
9109 if (IS_GEN7(dev)) {
9110 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9111 PF_PIPE_SEL_IVB(crtc->pipe));
9112 }
9113 }
9114 }
9115
9116 static void
9117 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9118 struct intel_initial_plane_config *plane_config)
9119 {
9120 struct drm_device *dev = crtc->base.dev;
9121 struct drm_i915_private *dev_priv = dev->dev_private;
9122 u32 val, base, offset;
9123 int pipe = crtc->pipe;
9124 int fourcc, pixel_format;
9125 unsigned int aligned_height;
9126 struct drm_framebuffer *fb;
9127 struct intel_framebuffer *intel_fb;
9128
9129 val = I915_READ(DSPCNTR(pipe));
9130 if (!(val & DISPLAY_PLANE_ENABLE))
9131 return;
9132
9133 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9134 if (!intel_fb) {
9135 DRM_DEBUG_KMS("failed to alloc fb\n");
9136 return;
9137 }
9138
9139 fb = &intel_fb->base;
9140
9141 if (INTEL_INFO(dev)->gen >= 4) {
9142 if (val & DISPPLANE_TILED) {
9143 plane_config->tiling = I915_TILING_X;
9144 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9145 }
9146 }
9147
9148 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9149 fourcc = i9xx_format_to_fourcc(pixel_format);
9150 fb->pixel_format = fourcc;
9151 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9152
9153 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9154 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9155 offset = I915_READ(DSPOFFSET(pipe));
9156 } else {
9157 if (plane_config->tiling)
9158 offset = I915_READ(DSPTILEOFF(pipe));
9159 else
9160 offset = I915_READ(DSPLINOFF(pipe));
9161 }
9162 plane_config->base = base;
9163
9164 val = I915_READ(PIPESRC(pipe));
9165 fb->width = ((val >> 16) & 0xfff) + 1;
9166 fb->height = ((val >> 0) & 0xfff) + 1;
9167
9168 val = I915_READ(DSPSTRIDE(pipe));
9169 fb->pitches[0] = val & 0xffffffc0;
9170
9171 aligned_height = intel_fb_align_height(dev, fb->height,
9172 fb->pixel_format,
9173 fb->modifier[0]);
9174
9175 plane_config->size = fb->pitches[0] * aligned_height;
9176
9177 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9178 pipe_name(pipe), fb->width, fb->height,
9179 fb->bits_per_pixel, base, fb->pitches[0],
9180 plane_config->size);
9181
9182 plane_config->fb = intel_fb;
9183 }
9184
9185 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9186 struct intel_crtc_state *pipe_config)
9187 {
9188 struct drm_device *dev = crtc->base.dev;
9189 struct drm_i915_private *dev_priv = dev->dev_private;
9190 uint32_t tmp;
9191
9192 if (!intel_display_power_is_enabled(dev_priv,
9193 POWER_DOMAIN_PIPE(crtc->pipe)))
9194 return false;
9195
9196 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9197 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9198
9199 tmp = I915_READ(PIPECONF(crtc->pipe));
9200 if (!(tmp & PIPECONF_ENABLE))
9201 return false;
9202
9203 switch (tmp & PIPECONF_BPC_MASK) {
9204 case PIPECONF_6BPC:
9205 pipe_config->pipe_bpp = 18;
9206 break;
9207 case PIPECONF_8BPC:
9208 pipe_config->pipe_bpp = 24;
9209 break;
9210 case PIPECONF_10BPC:
9211 pipe_config->pipe_bpp = 30;
9212 break;
9213 case PIPECONF_12BPC:
9214 pipe_config->pipe_bpp = 36;
9215 break;
9216 default:
9217 break;
9218 }
9219
9220 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9221 pipe_config->limited_color_range = true;
9222
9223 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9224 struct intel_shared_dpll *pll;
9225
9226 pipe_config->has_pch_encoder = true;
9227
9228 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9229 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9230 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9231
9232 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9233
9234 if (HAS_PCH_IBX(dev_priv->dev)) {
9235 pipe_config->shared_dpll =
9236 (enum intel_dpll_id) crtc->pipe;
9237 } else {
9238 tmp = I915_READ(PCH_DPLL_SEL);
9239 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9240 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9241 else
9242 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9243 }
9244
9245 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9246
9247 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9248 &pipe_config->dpll_hw_state));
9249
9250 tmp = pipe_config->dpll_hw_state.dpll;
9251 pipe_config->pixel_multiplier =
9252 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9253 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9254
9255 ironlake_pch_clock_get(crtc, pipe_config);
9256 } else {
9257 pipe_config->pixel_multiplier = 1;
9258 }
9259
9260 intel_get_pipe_timings(crtc, pipe_config);
9261
9262 ironlake_get_pfit_config(crtc, pipe_config);
9263
9264 return true;
9265 }
9266
9267 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9268 {
9269 struct drm_device *dev = dev_priv->dev;
9270 struct intel_crtc *crtc;
9271
9272 for_each_intel_crtc(dev, crtc)
9273 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9274 pipe_name(crtc->pipe));
9275
9276 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9277 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9278 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9279 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9280 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9281 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9282 "CPU PWM1 enabled\n");
9283 if (IS_HASWELL(dev))
9284 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9285 "CPU PWM2 enabled\n");
9286 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9287 "PCH PWM1 enabled\n");
9288 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9289 "Utility pin enabled\n");
9290 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9291
9292 /*
9293 * In theory we can still leave IRQs enabled, as long as only the HPD
9294 * interrupts remain enabled. We used to check for that, but since it's
9295 * gen-specific and since we only disable LCPLL after we fully disable
9296 * the interrupts, the check below should be enough.
9297 */
9298 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9299 }
9300
9301 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9302 {
9303 struct drm_device *dev = dev_priv->dev;
9304
9305 if (IS_HASWELL(dev))
9306 return I915_READ(D_COMP_HSW);
9307 else
9308 return I915_READ(D_COMP_BDW);
9309 }
9310
9311 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9312 {
9313 struct drm_device *dev = dev_priv->dev;
9314
9315 if (IS_HASWELL(dev)) {
9316 mutex_lock(&dev_priv->rps.hw_lock);
9317 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9318 val))
9319 DRM_ERROR("Failed to write to D_COMP\n");
9320 mutex_unlock(&dev_priv->rps.hw_lock);
9321 } else {
9322 I915_WRITE(D_COMP_BDW, val);
9323 POSTING_READ(D_COMP_BDW);
9324 }
9325 }
9326
9327 /*
9328 * This function implements pieces of two sequences from BSpec:
9329 * - Sequence for display software to disable LCPLL
9330 * - Sequence for display software to allow package C8+
9331 * The steps implemented here are just the steps that actually touch the LCPLL
9332 * register. Callers should take care of disabling all the display engine
9333 * functions, doing the mode unset, fixing interrupts, etc.
9334 */
9335 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9336 bool switch_to_fclk, bool allow_power_down)
9337 {
9338 uint32_t val;
9339
9340 assert_can_disable_lcpll(dev_priv);
9341
9342 val = I915_READ(LCPLL_CTL);
9343
9344 if (switch_to_fclk) {
9345 val |= LCPLL_CD_SOURCE_FCLK;
9346 I915_WRITE(LCPLL_CTL, val);
9347
9348 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9349 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9350 DRM_ERROR("Switching to FCLK failed\n");
9351
9352 val = I915_READ(LCPLL_CTL);
9353 }
9354
9355 val |= LCPLL_PLL_DISABLE;
9356 I915_WRITE(LCPLL_CTL, val);
9357 POSTING_READ(LCPLL_CTL);
9358
9359 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9360 DRM_ERROR("LCPLL still locked\n");
9361
9362 val = hsw_read_dcomp(dev_priv);
9363 val |= D_COMP_COMP_DISABLE;
9364 hsw_write_dcomp(dev_priv, val);
9365 ndelay(100);
9366
9367 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9368 1))
9369 DRM_ERROR("D_COMP RCOMP still in progress\n");
9370
9371 if (allow_power_down) {
9372 val = I915_READ(LCPLL_CTL);
9373 val |= LCPLL_POWER_DOWN_ALLOW;
9374 I915_WRITE(LCPLL_CTL, val);
9375 POSTING_READ(LCPLL_CTL);
9376 }
9377 }
9378
9379 /*
9380 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9381 * source.
9382 */
9383 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9384 {
9385 uint32_t val;
9386
9387 val = I915_READ(LCPLL_CTL);
9388
9389 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9390 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9391 return;
9392
9393 /*
9394 * Make sure we're not on PC8 state before disabling PC8, otherwise
9395 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9396 */
9397 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9398
9399 if (val & LCPLL_POWER_DOWN_ALLOW) {
9400 val &= ~LCPLL_POWER_DOWN_ALLOW;
9401 I915_WRITE(LCPLL_CTL, val);
9402 POSTING_READ(LCPLL_CTL);
9403 }
9404
9405 val = hsw_read_dcomp(dev_priv);
9406 val |= D_COMP_COMP_FORCE;
9407 val &= ~D_COMP_COMP_DISABLE;
9408 hsw_write_dcomp(dev_priv, val);
9409
9410 val = I915_READ(LCPLL_CTL);
9411 val &= ~LCPLL_PLL_DISABLE;
9412 I915_WRITE(LCPLL_CTL, val);
9413
9414 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9415 DRM_ERROR("LCPLL not locked yet\n");
9416
9417 if (val & LCPLL_CD_SOURCE_FCLK) {
9418 val = I915_READ(LCPLL_CTL);
9419 val &= ~LCPLL_CD_SOURCE_FCLK;
9420 I915_WRITE(LCPLL_CTL, val);
9421
9422 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9423 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9424 DRM_ERROR("Switching back to LCPLL failed\n");
9425 }
9426
9427 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9428 intel_update_cdclk(dev_priv->dev);
9429 }
9430
9431 /*
9432 * Package states C8 and deeper are really deep PC states that can only be
9433 * reached when all the devices on the system allow it, so even if the graphics
9434 * device allows PC8+, it doesn't mean the system will actually get to these
9435 * states. Our driver only allows PC8+ when going into runtime PM.
9436 *
9437 * The requirements for PC8+ are that all the outputs are disabled, the power
9438 * well is disabled and most interrupts are disabled, and these are also
9439 * requirements for runtime PM. When these conditions are met, we manually do
9440 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9441 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9442 * hang the machine.
9443 *
9444 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9445 * the state of some registers, so when we come back from PC8+ we need to
9446 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9447 * need to take care of the registers kept by RC6. Notice that this happens even
9448 * if we don't put the device in PCI D3 state (which is what currently happens
9449 * because of the runtime PM support).
9450 *
9451 * For more, read "Display Sequences for Package C8" on the hardware
9452 * documentation.
9453 */
9454 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9455 {
9456 struct drm_device *dev = dev_priv->dev;
9457 uint32_t val;
9458
9459 DRM_DEBUG_KMS("Enabling package C8+\n");
9460
9461 if (HAS_PCH_LPT_LP(dev)) {
9462 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9463 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9464 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9465 }
9466
9467 lpt_disable_clkout_dp(dev);
9468 hsw_disable_lcpll(dev_priv, true, true);
9469 }
9470
9471 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9472 {
9473 struct drm_device *dev = dev_priv->dev;
9474 uint32_t val;
9475
9476 DRM_DEBUG_KMS("Disabling package C8+\n");
9477
9478 hsw_restore_lcpll(dev_priv);
9479 lpt_init_pch_refclk(dev);
9480
9481 if (HAS_PCH_LPT_LP(dev)) {
9482 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9483 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9484 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9485 }
9486
9487 intel_prepare_ddi(dev);
9488 }
9489
9490 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9491 {
9492 struct drm_device *dev = old_state->dev;
9493 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9494
9495 broxton_set_cdclk(dev, req_cdclk);
9496 }
9497
9498 /* compute the max rate for new configuration */
9499 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9500 {
9501 struct intel_crtc *intel_crtc;
9502 struct intel_crtc_state *crtc_state;
9503 int max_pixel_rate = 0;
9504
9505 for_each_intel_crtc(state->dev, intel_crtc) {
9506 int pixel_rate;
9507
9508 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9509 if (IS_ERR(crtc_state))
9510 return PTR_ERR(crtc_state);
9511
9512 if (!crtc_state->base.enable)
9513 continue;
9514
9515 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9516
9517 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9518 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9519 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9520
9521 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9522 }
9523
9524 return max_pixel_rate;
9525 }
9526
9527 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9528 {
9529 struct drm_i915_private *dev_priv = dev->dev_private;
9530 uint32_t val, data;
9531 int ret;
9532
9533 if (WARN((I915_READ(LCPLL_CTL) &
9534 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9535 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9536 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9537 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9538 "trying to change cdclk frequency with cdclk not enabled\n"))
9539 return;
9540
9541 mutex_lock(&dev_priv->rps.hw_lock);
9542 ret = sandybridge_pcode_write(dev_priv,
9543 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9544 mutex_unlock(&dev_priv->rps.hw_lock);
9545 if (ret) {
9546 DRM_ERROR("failed to inform pcode about cdclk change\n");
9547 return;
9548 }
9549
9550 val = I915_READ(LCPLL_CTL);
9551 val |= LCPLL_CD_SOURCE_FCLK;
9552 I915_WRITE(LCPLL_CTL, val);
9553
9554 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9555 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9556 DRM_ERROR("Switching to FCLK failed\n");
9557
9558 val = I915_READ(LCPLL_CTL);
9559 val &= ~LCPLL_CLK_FREQ_MASK;
9560
9561 switch (cdclk) {
9562 case 450000:
9563 val |= LCPLL_CLK_FREQ_450;
9564 data = 0;
9565 break;
9566 case 540000:
9567 val |= LCPLL_CLK_FREQ_54O_BDW;
9568 data = 1;
9569 break;
9570 case 337500:
9571 val |= LCPLL_CLK_FREQ_337_5_BDW;
9572 data = 2;
9573 break;
9574 case 675000:
9575 val |= LCPLL_CLK_FREQ_675_BDW;
9576 data = 3;
9577 break;
9578 default:
9579 WARN(1, "invalid cdclk frequency\n");
9580 return;
9581 }
9582
9583 I915_WRITE(LCPLL_CTL, val);
9584
9585 val = I915_READ(LCPLL_CTL);
9586 val &= ~LCPLL_CD_SOURCE_FCLK;
9587 I915_WRITE(LCPLL_CTL, val);
9588
9589 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9590 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9591 DRM_ERROR("Switching back to LCPLL failed\n");
9592
9593 mutex_lock(&dev_priv->rps.hw_lock);
9594 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9595 mutex_unlock(&dev_priv->rps.hw_lock);
9596
9597 intel_update_cdclk(dev);
9598
9599 WARN(cdclk != dev_priv->cdclk_freq,
9600 "cdclk requested %d kHz but got %d kHz\n",
9601 cdclk, dev_priv->cdclk_freq);
9602 }
9603
9604 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9605 {
9606 struct drm_i915_private *dev_priv = to_i915(state->dev);
9607 int max_pixclk = ilk_max_pixel_rate(state);
9608 int cdclk;
9609
9610 /*
9611 * FIXME should also account for plane ratio
9612 * once 64bpp pixel formats are supported.
9613 */
9614 if (max_pixclk > 540000)
9615 cdclk = 675000;
9616 else if (max_pixclk > 450000)
9617 cdclk = 540000;
9618 else if (max_pixclk > 337500)
9619 cdclk = 450000;
9620 else
9621 cdclk = 337500;
9622
9623 /*
9624 * FIXME move the cdclk caclulation to
9625 * compute_config() so we can fail gracegully.
9626 */
9627 if (cdclk > dev_priv->max_cdclk_freq) {
9628 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9629 cdclk, dev_priv->max_cdclk_freq);
9630 cdclk = dev_priv->max_cdclk_freq;
9631 }
9632
9633 to_intel_atomic_state(state)->cdclk = cdclk;
9634
9635 return 0;
9636 }
9637
9638 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9639 {
9640 struct drm_device *dev = old_state->dev;
9641 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9642
9643 broadwell_set_cdclk(dev, req_cdclk);
9644 }
9645
9646 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9647 struct intel_crtc_state *crtc_state)
9648 {
9649 if (!intel_ddi_pll_select(crtc, crtc_state))
9650 return -EINVAL;
9651
9652 crtc->lowfreq_avail = false;
9653
9654 return 0;
9655 }
9656
9657 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9658 enum port port,
9659 struct intel_crtc_state *pipe_config)
9660 {
9661 switch (port) {
9662 case PORT_A:
9663 pipe_config->ddi_pll_sel = SKL_DPLL0;
9664 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9665 break;
9666 case PORT_B:
9667 pipe_config->ddi_pll_sel = SKL_DPLL1;
9668 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9669 break;
9670 case PORT_C:
9671 pipe_config->ddi_pll_sel = SKL_DPLL2;
9672 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9673 break;
9674 default:
9675 DRM_ERROR("Incorrect port type\n");
9676 }
9677 }
9678
9679 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9680 enum port port,
9681 struct intel_crtc_state *pipe_config)
9682 {
9683 u32 temp, dpll_ctl1;
9684
9685 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9686 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9687
9688 switch (pipe_config->ddi_pll_sel) {
9689 case SKL_DPLL0:
9690 /*
9691 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9692 * of the shared DPLL framework and thus needs to be read out
9693 * separately
9694 */
9695 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9696 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9697 break;
9698 case SKL_DPLL1:
9699 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9700 break;
9701 case SKL_DPLL2:
9702 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9703 break;
9704 case SKL_DPLL3:
9705 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9706 break;
9707 }
9708 }
9709
9710 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9711 enum port port,
9712 struct intel_crtc_state *pipe_config)
9713 {
9714 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9715
9716 switch (pipe_config->ddi_pll_sel) {
9717 case PORT_CLK_SEL_WRPLL1:
9718 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9719 break;
9720 case PORT_CLK_SEL_WRPLL2:
9721 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9722 break;
9723 }
9724 }
9725
9726 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9727 struct intel_crtc_state *pipe_config)
9728 {
9729 struct drm_device *dev = crtc->base.dev;
9730 struct drm_i915_private *dev_priv = dev->dev_private;
9731 struct intel_shared_dpll *pll;
9732 enum port port;
9733 uint32_t tmp;
9734
9735 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9736
9737 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9738
9739 if (IS_SKYLAKE(dev))
9740 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9741 else if (IS_BROXTON(dev))
9742 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9743 else
9744 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9745
9746 if (pipe_config->shared_dpll >= 0) {
9747 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9748
9749 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9750 &pipe_config->dpll_hw_state));
9751 }
9752
9753 /*
9754 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9755 * DDI E. So just check whether this pipe is wired to DDI E and whether
9756 * the PCH transcoder is on.
9757 */
9758 if (INTEL_INFO(dev)->gen < 9 &&
9759 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9760 pipe_config->has_pch_encoder = true;
9761
9762 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9763 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9764 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9765
9766 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9767 }
9768 }
9769
9770 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9771 struct intel_crtc_state *pipe_config)
9772 {
9773 struct drm_device *dev = crtc->base.dev;
9774 struct drm_i915_private *dev_priv = dev->dev_private;
9775 enum intel_display_power_domain pfit_domain;
9776 uint32_t tmp;
9777
9778 if (!intel_display_power_is_enabled(dev_priv,
9779 POWER_DOMAIN_PIPE(crtc->pipe)))
9780 return false;
9781
9782 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9783 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9784
9785 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9786 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9787 enum pipe trans_edp_pipe;
9788 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9789 default:
9790 WARN(1, "unknown pipe linked to edp transcoder\n");
9791 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9792 case TRANS_DDI_EDP_INPUT_A_ON:
9793 trans_edp_pipe = PIPE_A;
9794 break;
9795 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9796 trans_edp_pipe = PIPE_B;
9797 break;
9798 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9799 trans_edp_pipe = PIPE_C;
9800 break;
9801 }
9802
9803 if (trans_edp_pipe == crtc->pipe)
9804 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9805 }
9806
9807 if (!intel_display_power_is_enabled(dev_priv,
9808 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9809 return false;
9810
9811 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9812 if (!(tmp & PIPECONF_ENABLE))
9813 return false;
9814
9815 haswell_get_ddi_port_state(crtc, pipe_config);
9816
9817 intel_get_pipe_timings(crtc, pipe_config);
9818
9819 if (INTEL_INFO(dev)->gen >= 9) {
9820 skl_init_scalers(dev, crtc, pipe_config);
9821 }
9822
9823 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9824
9825 if (INTEL_INFO(dev)->gen >= 9) {
9826 pipe_config->scaler_state.scaler_id = -1;
9827 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9828 }
9829
9830 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9831 if (INTEL_INFO(dev)->gen >= 9)
9832 skylake_get_pfit_config(crtc, pipe_config);
9833 else
9834 ironlake_get_pfit_config(crtc, pipe_config);
9835 }
9836
9837 if (IS_HASWELL(dev))
9838 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9839 (I915_READ(IPS_CTL) & IPS_ENABLE);
9840
9841 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9842 pipe_config->pixel_multiplier =
9843 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9844 } else {
9845 pipe_config->pixel_multiplier = 1;
9846 }
9847
9848 return true;
9849 }
9850
9851 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9852 {
9853 struct drm_device *dev = crtc->dev;
9854 struct drm_i915_private *dev_priv = dev->dev_private;
9855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9856 uint32_t cntl = 0, size = 0;
9857
9858 if (base) {
9859 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9860 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9861 unsigned int stride = roundup_pow_of_two(width) * 4;
9862
9863 switch (stride) {
9864 default:
9865 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9866 width, stride);
9867 stride = 256;
9868 /* fallthrough */
9869 case 256:
9870 case 512:
9871 case 1024:
9872 case 2048:
9873 break;
9874 }
9875
9876 cntl |= CURSOR_ENABLE |
9877 CURSOR_GAMMA_ENABLE |
9878 CURSOR_FORMAT_ARGB |
9879 CURSOR_STRIDE(stride);
9880
9881 size = (height << 12) | width;
9882 }
9883
9884 if (intel_crtc->cursor_cntl != 0 &&
9885 (intel_crtc->cursor_base != base ||
9886 intel_crtc->cursor_size != size ||
9887 intel_crtc->cursor_cntl != cntl)) {
9888 /* On these chipsets we can only modify the base/size/stride
9889 * whilst the cursor is disabled.
9890 */
9891 I915_WRITE(_CURACNTR, 0);
9892 POSTING_READ(_CURACNTR);
9893 intel_crtc->cursor_cntl = 0;
9894 }
9895
9896 if (intel_crtc->cursor_base != base) {
9897 I915_WRITE(_CURABASE, base);
9898 intel_crtc->cursor_base = base;
9899 }
9900
9901 if (intel_crtc->cursor_size != size) {
9902 I915_WRITE(CURSIZE, size);
9903 intel_crtc->cursor_size = size;
9904 }
9905
9906 if (intel_crtc->cursor_cntl != cntl) {
9907 I915_WRITE(_CURACNTR, cntl);
9908 POSTING_READ(_CURACNTR);
9909 intel_crtc->cursor_cntl = cntl;
9910 }
9911 }
9912
9913 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9914 {
9915 struct drm_device *dev = crtc->dev;
9916 struct drm_i915_private *dev_priv = dev->dev_private;
9917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9918 int pipe = intel_crtc->pipe;
9919 uint32_t cntl;
9920
9921 cntl = 0;
9922 if (base) {
9923 cntl = MCURSOR_GAMMA_ENABLE;
9924 switch (intel_crtc->base.cursor->state->crtc_w) {
9925 case 64:
9926 cntl |= CURSOR_MODE_64_ARGB_AX;
9927 break;
9928 case 128:
9929 cntl |= CURSOR_MODE_128_ARGB_AX;
9930 break;
9931 case 256:
9932 cntl |= CURSOR_MODE_256_ARGB_AX;
9933 break;
9934 default:
9935 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9936 return;
9937 }
9938 cntl |= pipe << 28; /* Connect to correct pipe */
9939
9940 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9941 cntl |= CURSOR_PIPE_CSC_ENABLE;
9942 }
9943
9944 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9945 cntl |= CURSOR_ROTATE_180;
9946
9947 if (intel_crtc->cursor_cntl != cntl) {
9948 I915_WRITE(CURCNTR(pipe), cntl);
9949 POSTING_READ(CURCNTR(pipe));
9950 intel_crtc->cursor_cntl = cntl;
9951 }
9952
9953 /* and commit changes on next vblank */
9954 I915_WRITE(CURBASE(pipe), base);
9955 POSTING_READ(CURBASE(pipe));
9956
9957 intel_crtc->cursor_base = base;
9958 }
9959
9960 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9961 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9962 bool on)
9963 {
9964 struct drm_device *dev = crtc->dev;
9965 struct drm_i915_private *dev_priv = dev->dev_private;
9966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9967 int pipe = intel_crtc->pipe;
9968 struct drm_plane_state *cursor_state = crtc->cursor->state;
9969 int x = cursor_state->crtc_x;
9970 int y = cursor_state->crtc_y;
9971 u32 base = 0, pos = 0;
9972
9973 if (on)
9974 base = intel_crtc->cursor_addr;
9975
9976 if (x >= intel_crtc->config->pipe_src_w)
9977 base = 0;
9978
9979 if (y >= intel_crtc->config->pipe_src_h)
9980 base = 0;
9981
9982 if (x < 0) {
9983 if (x + cursor_state->crtc_w <= 0)
9984 base = 0;
9985
9986 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9987 x = -x;
9988 }
9989 pos |= x << CURSOR_X_SHIFT;
9990
9991 if (y < 0) {
9992 if (y + cursor_state->crtc_h <= 0)
9993 base = 0;
9994
9995 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9996 y = -y;
9997 }
9998 pos |= y << CURSOR_Y_SHIFT;
9999
10000 if (base == 0 && intel_crtc->cursor_base == 0)
10001 return;
10002
10003 I915_WRITE(CURPOS(pipe), pos);
10004
10005 /* ILK+ do this automagically */
10006 if (HAS_GMCH_DISPLAY(dev) &&
10007 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10008 base += (cursor_state->crtc_h *
10009 cursor_state->crtc_w - 1) * 4;
10010 }
10011
10012 if (IS_845G(dev) || IS_I865G(dev))
10013 i845_update_cursor(crtc, base);
10014 else
10015 i9xx_update_cursor(crtc, base);
10016 }
10017
10018 static bool cursor_size_ok(struct drm_device *dev,
10019 uint32_t width, uint32_t height)
10020 {
10021 if (width == 0 || height == 0)
10022 return false;
10023
10024 /*
10025 * 845g/865g are special in that they are only limited by
10026 * the width of their cursors, the height is arbitrary up to
10027 * the precision of the register. Everything else requires
10028 * square cursors, limited to a few power-of-two sizes.
10029 */
10030 if (IS_845G(dev) || IS_I865G(dev)) {
10031 if ((width & 63) != 0)
10032 return false;
10033
10034 if (width > (IS_845G(dev) ? 64 : 512))
10035 return false;
10036
10037 if (height > 1023)
10038 return false;
10039 } else {
10040 switch (width | height) {
10041 case 256:
10042 case 128:
10043 if (IS_GEN2(dev))
10044 return false;
10045 case 64:
10046 break;
10047 default:
10048 return false;
10049 }
10050 }
10051
10052 return true;
10053 }
10054
10055 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10056 u16 *blue, uint32_t start, uint32_t size)
10057 {
10058 int end = (start + size > 256) ? 256 : start + size, i;
10059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10060
10061 for (i = start; i < end; i++) {
10062 intel_crtc->lut_r[i] = red[i] >> 8;
10063 intel_crtc->lut_g[i] = green[i] >> 8;
10064 intel_crtc->lut_b[i] = blue[i] >> 8;
10065 }
10066
10067 intel_crtc_load_lut(crtc);
10068 }
10069
10070 /* VESA 640x480x72Hz mode to set on the pipe */
10071 static struct drm_display_mode load_detect_mode = {
10072 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10073 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10074 };
10075
10076 struct drm_framebuffer *
10077 __intel_framebuffer_create(struct drm_device *dev,
10078 struct drm_mode_fb_cmd2 *mode_cmd,
10079 struct drm_i915_gem_object *obj)
10080 {
10081 struct intel_framebuffer *intel_fb;
10082 int ret;
10083
10084 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10085 if (!intel_fb) {
10086 drm_gem_object_unreference(&obj->base);
10087 return ERR_PTR(-ENOMEM);
10088 }
10089
10090 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10091 if (ret)
10092 goto err;
10093
10094 return &intel_fb->base;
10095 err:
10096 drm_gem_object_unreference(&obj->base);
10097 kfree(intel_fb);
10098
10099 return ERR_PTR(ret);
10100 }
10101
10102 static struct drm_framebuffer *
10103 intel_framebuffer_create(struct drm_device *dev,
10104 struct drm_mode_fb_cmd2 *mode_cmd,
10105 struct drm_i915_gem_object *obj)
10106 {
10107 struct drm_framebuffer *fb;
10108 int ret;
10109
10110 ret = i915_mutex_lock_interruptible(dev);
10111 if (ret)
10112 return ERR_PTR(ret);
10113 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10114 mutex_unlock(&dev->struct_mutex);
10115
10116 return fb;
10117 }
10118
10119 static u32
10120 intel_framebuffer_pitch_for_width(int width, int bpp)
10121 {
10122 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10123 return ALIGN(pitch, 64);
10124 }
10125
10126 static u32
10127 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10128 {
10129 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10130 return PAGE_ALIGN(pitch * mode->vdisplay);
10131 }
10132
10133 static struct drm_framebuffer *
10134 intel_framebuffer_create_for_mode(struct drm_device *dev,
10135 struct drm_display_mode *mode,
10136 int depth, int bpp)
10137 {
10138 struct drm_i915_gem_object *obj;
10139 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10140
10141 obj = i915_gem_alloc_object(dev,
10142 intel_framebuffer_size_for_mode(mode, bpp));
10143 if (obj == NULL)
10144 return ERR_PTR(-ENOMEM);
10145
10146 mode_cmd.width = mode->hdisplay;
10147 mode_cmd.height = mode->vdisplay;
10148 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10149 bpp);
10150 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10151
10152 return intel_framebuffer_create(dev, &mode_cmd, obj);
10153 }
10154
10155 static struct drm_framebuffer *
10156 mode_fits_in_fbdev(struct drm_device *dev,
10157 struct drm_display_mode *mode)
10158 {
10159 #ifdef CONFIG_DRM_FBDEV_EMULATION
10160 struct drm_i915_private *dev_priv = dev->dev_private;
10161 struct drm_i915_gem_object *obj;
10162 struct drm_framebuffer *fb;
10163
10164 if (!dev_priv->fbdev)
10165 return NULL;
10166
10167 if (!dev_priv->fbdev->fb)
10168 return NULL;
10169
10170 obj = dev_priv->fbdev->fb->obj;
10171 BUG_ON(!obj);
10172
10173 fb = &dev_priv->fbdev->fb->base;
10174 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10175 fb->bits_per_pixel))
10176 return NULL;
10177
10178 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10179 return NULL;
10180
10181 return fb;
10182 #else
10183 return NULL;
10184 #endif
10185 }
10186
10187 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10188 struct drm_crtc *crtc,
10189 struct drm_display_mode *mode,
10190 struct drm_framebuffer *fb,
10191 int x, int y)
10192 {
10193 struct drm_plane_state *plane_state;
10194 int hdisplay, vdisplay;
10195 int ret;
10196
10197 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10198 if (IS_ERR(plane_state))
10199 return PTR_ERR(plane_state);
10200
10201 if (mode)
10202 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10203 else
10204 hdisplay = vdisplay = 0;
10205
10206 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10207 if (ret)
10208 return ret;
10209 drm_atomic_set_fb_for_plane(plane_state, fb);
10210 plane_state->crtc_x = 0;
10211 plane_state->crtc_y = 0;
10212 plane_state->crtc_w = hdisplay;
10213 plane_state->crtc_h = vdisplay;
10214 plane_state->src_x = x << 16;
10215 plane_state->src_y = y << 16;
10216 plane_state->src_w = hdisplay << 16;
10217 plane_state->src_h = vdisplay << 16;
10218
10219 return 0;
10220 }
10221
10222 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10223 struct drm_display_mode *mode,
10224 struct intel_load_detect_pipe *old,
10225 struct drm_modeset_acquire_ctx *ctx)
10226 {
10227 struct intel_crtc *intel_crtc;
10228 struct intel_encoder *intel_encoder =
10229 intel_attached_encoder(connector);
10230 struct drm_crtc *possible_crtc;
10231 struct drm_encoder *encoder = &intel_encoder->base;
10232 struct drm_crtc *crtc = NULL;
10233 struct drm_device *dev = encoder->dev;
10234 struct drm_framebuffer *fb;
10235 struct drm_mode_config *config = &dev->mode_config;
10236 struct drm_atomic_state *state = NULL;
10237 struct drm_connector_state *connector_state;
10238 struct intel_crtc_state *crtc_state;
10239 int ret, i = -1;
10240
10241 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10242 connector->base.id, connector->name,
10243 encoder->base.id, encoder->name);
10244
10245 retry:
10246 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10247 if (ret)
10248 goto fail;
10249
10250 /*
10251 * Algorithm gets a little messy:
10252 *
10253 * - if the connector already has an assigned crtc, use it (but make
10254 * sure it's on first)
10255 *
10256 * - try to find the first unused crtc that can drive this connector,
10257 * and use that if we find one
10258 */
10259
10260 /* See if we already have a CRTC for this connector */
10261 if (encoder->crtc) {
10262 crtc = encoder->crtc;
10263
10264 ret = drm_modeset_lock(&crtc->mutex, ctx);
10265 if (ret)
10266 goto fail;
10267 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10268 if (ret)
10269 goto fail;
10270
10271 old->dpms_mode = connector->dpms;
10272 old->load_detect_temp = false;
10273
10274 /* Make sure the crtc and connector are running */
10275 if (connector->dpms != DRM_MODE_DPMS_ON)
10276 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10277
10278 return true;
10279 }
10280
10281 /* Find an unused one (if possible) */
10282 for_each_crtc(dev, possible_crtc) {
10283 i++;
10284 if (!(encoder->possible_crtcs & (1 << i)))
10285 continue;
10286 if (possible_crtc->state->enable)
10287 continue;
10288
10289 crtc = possible_crtc;
10290 break;
10291 }
10292
10293 /*
10294 * If we didn't find an unused CRTC, don't use any.
10295 */
10296 if (!crtc) {
10297 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10298 goto fail;
10299 }
10300
10301 ret = drm_modeset_lock(&crtc->mutex, ctx);
10302 if (ret)
10303 goto fail;
10304 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10305 if (ret)
10306 goto fail;
10307
10308 intel_crtc = to_intel_crtc(crtc);
10309 old->dpms_mode = connector->dpms;
10310 old->load_detect_temp = true;
10311 old->release_fb = NULL;
10312
10313 state = drm_atomic_state_alloc(dev);
10314 if (!state)
10315 return false;
10316
10317 state->acquire_ctx = ctx;
10318
10319 connector_state = drm_atomic_get_connector_state(state, connector);
10320 if (IS_ERR(connector_state)) {
10321 ret = PTR_ERR(connector_state);
10322 goto fail;
10323 }
10324
10325 connector_state->crtc = crtc;
10326 connector_state->best_encoder = &intel_encoder->base;
10327
10328 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10329 if (IS_ERR(crtc_state)) {
10330 ret = PTR_ERR(crtc_state);
10331 goto fail;
10332 }
10333
10334 crtc_state->base.active = crtc_state->base.enable = true;
10335
10336 if (!mode)
10337 mode = &load_detect_mode;
10338
10339 /* We need a framebuffer large enough to accommodate all accesses
10340 * that the plane may generate whilst we perform load detection.
10341 * We can not rely on the fbcon either being present (we get called
10342 * during its initialisation to detect all boot displays, or it may
10343 * not even exist) or that it is large enough to satisfy the
10344 * requested mode.
10345 */
10346 fb = mode_fits_in_fbdev(dev, mode);
10347 if (fb == NULL) {
10348 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10349 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10350 old->release_fb = fb;
10351 } else
10352 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10353 if (IS_ERR(fb)) {
10354 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10355 goto fail;
10356 }
10357
10358 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10359 if (ret)
10360 goto fail;
10361
10362 drm_mode_copy(&crtc_state->base.mode, mode);
10363
10364 if (drm_atomic_commit(state)) {
10365 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10366 if (old->release_fb)
10367 old->release_fb->funcs->destroy(old->release_fb);
10368 goto fail;
10369 }
10370 crtc->primary->crtc = crtc;
10371
10372 /* let the connector get through one full cycle before testing */
10373 intel_wait_for_vblank(dev, intel_crtc->pipe);
10374 return true;
10375
10376 fail:
10377 drm_atomic_state_free(state);
10378 state = NULL;
10379
10380 if (ret == -EDEADLK) {
10381 drm_modeset_backoff(ctx);
10382 goto retry;
10383 }
10384
10385 return false;
10386 }
10387
10388 void intel_release_load_detect_pipe(struct drm_connector *connector,
10389 struct intel_load_detect_pipe *old,
10390 struct drm_modeset_acquire_ctx *ctx)
10391 {
10392 struct drm_device *dev = connector->dev;
10393 struct intel_encoder *intel_encoder =
10394 intel_attached_encoder(connector);
10395 struct drm_encoder *encoder = &intel_encoder->base;
10396 struct drm_crtc *crtc = encoder->crtc;
10397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10398 struct drm_atomic_state *state;
10399 struct drm_connector_state *connector_state;
10400 struct intel_crtc_state *crtc_state;
10401 int ret;
10402
10403 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10404 connector->base.id, connector->name,
10405 encoder->base.id, encoder->name);
10406
10407 if (old->load_detect_temp) {
10408 state = drm_atomic_state_alloc(dev);
10409 if (!state)
10410 goto fail;
10411
10412 state->acquire_ctx = ctx;
10413
10414 connector_state = drm_atomic_get_connector_state(state, connector);
10415 if (IS_ERR(connector_state))
10416 goto fail;
10417
10418 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10419 if (IS_ERR(crtc_state))
10420 goto fail;
10421
10422 connector_state->best_encoder = NULL;
10423 connector_state->crtc = NULL;
10424
10425 crtc_state->base.enable = crtc_state->base.active = false;
10426
10427 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10428 0, 0);
10429 if (ret)
10430 goto fail;
10431
10432 ret = drm_atomic_commit(state);
10433 if (ret)
10434 goto fail;
10435
10436 if (old->release_fb) {
10437 drm_framebuffer_unregister_private(old->release_fb);
10438 drm_framebuffer_unreference(old->release_fb);
10439 }
10440
10441 return;
10442 }
10443
10444 /* Switch crtc and encoder back off if necessary */
10445 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10446 connector->funcs->dpms(connector, old->dpms_mode);
10447
10448 return;
10449 fail:
10450 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10451 drm_atomic_state_free(state);
10452 }
10453
10454 static int i9xx_pll_refclk(struct drm_device *dev,
10455 const struct intel_crtc_state *pipe_config)
10456 {
10457 struct drm_i915_private *dev_priv = dev->dev_private;
10458 u32 dpll = pipe_config->dpll_hw_state.dpll;
10459
10460 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10461 return dev_priv->vbt.lvds_ssc_freq;
10462 else if (HAS_PCH_SPLIT(dev))
10463 return 120000;
10464 else if (!IS_GEN2(dev))
10465 return 96000;
10466 else
10467 return 48000;
10468 }
10469
10470 /* Returns the clock of the currently programmed mode of the given pipe. */
10471 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10472 struct intel_crtc_state *pipe_config)
10473 {
10474 struct drm_device *dev = crtc->base.dev;
10475 struct drm_i915_private *dev_priv = dev->dev_private;
10476 int pipe = pipe_config->cpu_transcoder;
10477 u32 dpll = pipe_config->dpll_hw_state.dpll;
10478 u32 fp;
10479 intel_clock_t clock;
10480 int port_clock;
10481 int refclk = i9xx_pll_refclk(dev, pipe_config);
10482
10483 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10484 fp = pipe_config->dpll_hw_state.fp0;
10485 else
10486 fp = pipe_config->dpll_hw_state.fp1;
10487
10488 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10489 if (IS_PINEVIEW(dev)) {
10490 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10491 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10492 } else {
10493 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10494 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10495 }
10496
10497 if (!IS_GEN2(dev)) {
10498 if (IS_PINEVIEW(dev))
10499 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10500 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10501 else
10502 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10503 DPLL_FPA01_P1_POST_DIV_SHIFT);
10504
10505 switch (dpll & DPLL_MODE_MASK) {
10506 case DPLLB_MODE_DAC_SERIAL:
10507 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10508 5 : 10;
10509 break;
10510 case DPLLB_MODE_LVDS:
10511 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10512 7 : 14;
10513 break;
10514 default:
10515 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10516 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10517 return;
10518 }
10519
10520 if (IS_PINEVIEW(dev))
10521 port_clock = pnv_calc_dpll_params(refclk, &clock);
10522 else
10523 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10524 } else {
10525 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10526 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10527
10528 if (is_lvds) {
10529 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10530 DPLL_FPA01_P1_POST_DIV_SHIFT);
10531
10532 if (lvds & LVDS_CLKB_POWER_UP)
10533 clock.p2 = 7;
10534 else
10535 clock.p2 = 14;
10536 } else {
10537 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10538 clock.p1 = 2;
10539 else {
10540 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10541 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10542 }
10543 if (dpll & PLL_P2_DIVIDE_BY_4)
10544 clock.p2 = 4;
10545 else
10546 clock.p2 = 2;
10547 }
10548
10549 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10550 }
10551
10552 /*
10553 * This value includes pixel_multiplier. We will use
10554 * port_clock to compute adjusted_mode.crtc_clock in the
10555 * encoder's get_config() function.
10556 */
10557 pipe_config->port_clock = port_clock;
10558 }
10559
10560 int intel_dotclock_calculate(int link_freq,
10561 const struct intel_link_m_n *m_n)
10562 {
10563 /*
10564 * The calculation for the data clock is:
10565 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10566 * But we want to avoid losing precison if possible, so:
10567 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10568 *
10569 * and the link clock is simpler:
10570 * link_clock = (m * link_clock) / n
10571 */
10572
10573 if (!m_n->link_n)
10574 return 0;
10575
10576 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10577 }
10578
10579 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10580 struct intel_crtc_state *pipe_config)
10581 {
10582 struct drm_device *dev = crtc->base.dev;
10583
10584 /* read out port_clock from the DPLL */
10585 i9xx_crtc_clock_get(crtc, pipe_config);
10586
10587 /*
10588 * This value does not include pixel_multiplier.
10589 * We will check that port_clock and adjusted_mode.crtc_clock
10590 * agree once we know their relationship in the encoder's
10591 * get_config() function.
10592 */
10593 pipe_config->base.adjusted_mode.crtc_clock =
10594 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10595 &pipe_config->fdi_m_n);
10596 }
10597
10598 /** Returns the currently programmed mode of the given pipe. */
10599 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10600 struct drm_crtc *crtc)
10601 {
10602 struct drm_i915_private *dev_priv = dev->dev_private;
10603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10604 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10605 struct drm_display_mode *mode;
10606 struct intel_crtc_state pipe_config;
10607 int htot = I915_READ(HTOTAL(cpu_transcoder));
10608 int hsync = I915_READ(HSYNC(cpu_transcoder));
10609 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10610 int vsync = I915_READ(VSYNC(cpu_transcoder));
10611 enum pipe pipe = intel_crtc->pipe;
10612
10613 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10614 if (!mode)
10615 return NULL;
10616
10617 /*
10618 * Construct a pipe_config sufficient for getting the clock info
10619 * back out of crtc_clock_get.
10620 *
10621 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10622 * to use a real value here instead.
10623 */
10624 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10625 pipe_config.pixel_multiplier = 1;
10626 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10627 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10628 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10629 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10630
10631 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10632 mode->hdisplay = (htot & 0xffff) + 1;
10633 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10634 mode->hsync_start = (hsync & 0xffff) + 1;
10635 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10636 mode->vdisplay = (vtot & 0xffff) + 1;
10637 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10638 mode->vsync_start = (vsync & 0xffff) + 1;
10639 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10640
10641 drm_mode_set_name(mode);
10642
10643 return mode;
10644 }
10645
10646 void intel_mark_busy(struct drm_device *dev)
10647 {
10648 struct drm_i915_private *dev_priv = dev->dev_private;
10649
10650 if (dev_priv->mm.busy)
10651 return;
10652
10653 intel_runtime_pm_get(dev_priv);
10654 i915_update_gfx_val(dev_priv);
10655 if (INTEL_INFO(dev)->gen >= 6)
10656 gen6_rps_busy(dev_priv);
10657 dev_priv->mm.busy = true;
10658 }
10659
10660 void intel_mark_idle(struct drm_device *dev)
10661 {
10662 struct drm_i915_private *dev_priv = dev->dev_private;
10663
10664 if (!dev_priv->mm.busy)
10665 return;
10666
10667 dev_priv->mm.busy = false;
10668
10669 if (INTEL_INFO(dev)->gen >= 6)
10670 gen6_rps_idle(dev->dev_private);
10671
10672 intel_runtime_pm_put(dev_priv);
10673 }
10674
10675 static void intel_crtc_destroy(struct drm_crtc *crtc)
10676 {
10677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10678 struct drm_device *dev = crtc->dev;
10679 struct intel_unpin_work *work;
10680
10681 spin_lock_irq(&dev->event_lock);
10682 work = intel_crtc->unpin_work;
10683 intel_crtc->unpin_work = NULL;
10684 spin_unlock_irq(&dev->event_lock);
10685
10686 if (work) {
10687 cancel_work_sync(&work->work);
10688 kfree(work);
10689 }
10690
10691 drm_crtc_cleanup(crtc);
10692
10693 kfree(intel_crtc);
10694 }
10695
10696 static void intel_unpin_work_fn(struct work_struct *__work)
10697 {
10698 struct intel_unpin_work *work =
10699 container_of(__work, struct intel_unpin_work, work);
10700 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10701 struct drm_device *dev = crtc->base.dev;
10702 struct drm_plane *primary = crtc->base.primary;
10703
10704 mutex_lock(&dev->struct_mutex);
10705 intel_unpin_fb_obj(work->old_fb, primary->state);
10706 drm_gem_object_unreference(&work->pending_flip_obj->base);
10707
10708 if (work->flip_queued_req)
10709 i915_gem_request_assign(&work->flip_queued_req, NULL);
10710 mutex_unlock(&dev->struct_mutex);
10711
10712 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10713 drm_framebuffer_unreference(work->old_fb);
10714
10715 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10716 atomic_dec(&crtc->unpin_work_count);
10717
10718 kfree(work);
10719 }
10720
10721 static void do_intel_finish_page_flip(struct drm_device *dev,
10722 struct drm_crtc *crtc)
10723 {
10724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10725 struct intel_unpin_work *work;
10726 unsigned long flags;
10727
10728 /* Ignore early vblank irqs */
10729 if (intel_crtc == NULL)
10730 return;
10731
10732 /*
10733 * This is called both by irq handlers and the reset code (to complete
10734 * lost pageflips) so needs the full irqsave spinlocks.
10735 */
10736 spin_lock_irqsave(&dev->event_lock, flags);
10737 work = intel_crtc->unpin_work;
10738
10739 /* Ensure we don't miss a work->pending update ... */
10740 smp_rmb();
10741
10742 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10743 spin_unlock_irqrestore(&dev->event_lock, flags);
10744 return;
10745 }
10746
10747 page_flip_completed(intel_crtc);
10748
10749 spin_unlock_irqrestore(&dev->event_lock, flags);
10750 }
10751
10752 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10753 {
10754 struct drm_i915_private *dev_priv = dev->dev_private;
10755 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10756
10757 do_intel_finish_page_flip(dev, crtc);
10758 }
10759
10760 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10761 {
10762 struct drm_i915_private *dev_priv = dev->dev_private;
10763 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10764
10765 do_intel_finish_page_flip(dev, crtc);
10766 }
10767
10768 /* Is 'a' after or equal to 'b'? */
10769 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10770 {
10771 return !((a - b) & 0x80000000);
10772 }
10773
10774 static bool page_flip_finished(struct intel_crtc *crtc)
10775 {
10776 struct drm_device *dev = crtc->base.dev;
10777 struct drm_i915_private *dev_priv = dev->dev_private;
10778
10779 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10780 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10781 return true;
10782
10783 /*
10784 * The relevant registers doen't exist on pre-ctg.
10785 * As the flip done interrupt doesn't trigger for mmio
10786 * flips on gmch platforms, a flip count check isn't
10787 * really needed there. But since ctg has the registers,
10788 * include it in the check anyway.
10789 */
10790 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10791 return true;
10792
10793 /*
10794 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10795 * used the same base address. In that case the mmio flip might
10796 * have completed, but the CS hasn't even executed the flip yet.
10797 *
10798 * A flip count check isn't enough as the CS might have updated
10799 * the base address just after start of vblank, but before we
10800 * managed to process the interrupt. This means we'd complete the
10801 * CS flip too soon.
10802 *
10803 * Combining both checks should get us a good enough result. It may
10804 * still happen that the CS flip has been executed, but has not
10805 * yet actually completed. But in case the base address is the same
10806 * anyway, we don't really care.
10807 */
10808 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10809 crtc->unpin_work->gtt_offset &&
10810 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10811 crtc->unpin_work->flip_count);
10812 }
10813
10814 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10815 {
10816 struct drm_i915_private *dev_priv = dev->dev_private;
10817 struct intel_crtc *intel_crtc =
10818 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10819 unsigned long flags;
10820
10821
10822 /*
10823 * This is called both by irq handlers and the reset code (to complete
10824 * lost pageflips) so needs the full irqsave spinlocks.
10825 *
10826 * NB: An MMIO update of the plane base pointer will also
10827 * generate a page-flip completion irq, i.e. every modeset
10828 * is also accompanied by a spurious intel_prepare_page_flip().
10829 */
10830 spin_lock_irqsave(&dev->event_lock, flags);
10831 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10832 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10833 spin_unlock_irqrestore(&dev->event_lock, flags);
10834 }
10835
10836 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10837 {
10838 /* Ensure that the work item is consistent when activating it ... */
10839 smp_wmb();
10840 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10841 /* and that it is marked active as soon as the irq could fire. */
10842 smp_wmb();
10843 }
10844
10845 static int intel_gen2_queue_flip(struct drm_device *dev,
10846 struct drm_crtc *crtc,
10847 struct drm_framebuffer *fb,
10848 struct drm_i915_gem_object *obj,
10849 struct drm_i915_gem_request *req,
10850 uint32_t flags)
10851 {
10852 struct intel_engine_cs *ring = req->ring;
10853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10854 u32 flip_mask;
10855 int ret;
10856
10857 ret = intel_ring_begin(req, 6);
10858 if (ret)
10859 return ret;
10860
10861 /* Can't queue multiple flips, so wait for the previous
10862 * one to finish before executing the next.
10863 */
10864 if (intel_crtc->plane)
10865 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10866 else
10867 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10868 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10869 intel_ring_emit(ring, MI_NOOP);
10870 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10871 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10872 intel_ring_emit(ring, fb->pitches[0]);
10873 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10874 intel_ring_emit(ring, 0); /* aux display base address, unused */
10875
10876 intel_mark_page_flip_active(intel_crtc);
10877 return 0;
10878 }
10879
10880 static int intel_gen3_queue_flip(struct drm_device *dev,
10881 struct drm_crtc *crtc,
10882 struct drm_framebuffer *fb,
10883 struct drm_i915_gem_object *obj,
10884 struct drm_i915_gem_request *req,
10885 uint32_t flags)
10886 {
10887 struct intel_engine_cs *ring = req->ring;
10888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10889 u32 flip_mask;
10890 int ret;
10891
10892 ret = intel_ring_begin(req, 6);
10893 if (ret)
10894 return ret;
10895
10896 if (intel_crtc->plane)
10897 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10898 else
10899 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10900 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10901 intel_ring_emit(ring, MI_NOOP);
10902 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10903 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10904 intel_ring_emit(ring, fb->pitches[0]);
10905 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10906 intel_ring_emit(ring, MI_NOOP);
10907
10908 intel_mark_page_flip_active(intel_crtc);
10909 return 0;
10910 }
10911
10912 static int intel_gen4_queue_flip(struct drm_device *dev,
10913 struct drm_crtc *crtc,
10914 struct drm_framebuffer *fb,
10915 struct drm_i915_gem_object *obj,
10916 struct drm_i915_gem_request *req,
10917 uint32_t flags)
10918 {
10919 struct intel_engine_cs *ring = req->ring;
10920 struct drm_i915_private *dev_priv = dev->dev_private;
10921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10922 uint32_t pf, pipesrc;
10923 int ret;
10924
10925 ret = intel_ring_begin(req, 4);
10926 if (ret)
10927 return ret;
10928
10929 /* i965+ uses the linear or tiled offsets from the
10930 * Display Registers (which do not change across a page-flip)
10931 * so we need only reprogram the base address.
10932 */
10933 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10934 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10935 intel_ring_emit(ring, fb->pitches[0]);
10936 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10937 obj->tiling_mode);
10938
10939 /* XXX Enabling the panel-fitter across page-flip is so far
10940 * untested on non-native modes, so ignore it for now.
10941 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10942 */
10943 pf = 0;
10944 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10945 intel_ring_emit(ring, pf | pipesrc);
10946
10947 intel_mark_page_flip_active(intel_crtc);
10948 return 0;
10949 }
10950
10951 static int intel_gen6_queue_flip(struct drm_device *dev,
10952 struct drm_crtc *crtc,
10953 struct drm_framebuffer *fb,
10954 struct drm_i915_gem_object *obj,
10955 struct drm_i915_gem_request *req,
10956 uint32_t flags)
10957 {
10958 struct intel_engine_cs *ring = req->ring;
10959 struct drm_i915_private *dev_priv = dev->dev_private;
10960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10961 uint32_t pf, pipesrc;
10962 int ret;
10963
10964 ret = intel_ring_begin(req, 4);
10965 if (ret)
10966 return ret;
10967
10968 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10969 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10970 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10971 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10972
10973 /* Contrary to the suggestions in the documentation,
10974 * "Enable Panel Fitter" does not seem to be required when page
10975 * flipping with a non-native mode, and worse causes a normal
10976 * modeset to fail.
10977 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10978 */
10979 pf = 0;
10980 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10981 intel_ring_emit(ring, pf | pipesrc);
10982
10983 intel_mark_page_flip_active(intel_crtc);
10984 return 0;
10985 }
10986
10987 static int intel_gen7_queue_flip(struct drm_device *dev,
10988 struct drm_crtc *crtc,
10989 struct drm_framebuffer *fb,
10990 struct drm_i915_gem_object *obj,
10991 struct drm_i915_gem_request *req,
10992 uint32_t flags)
10993 {
10994 struct intel_engine_cs *ring = req->ring;
10995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10996 uint32_t plane_bit = 0;
10997 int len, ret;
10998
10999 switch (intel_crtc->plane) {
11000 case PLANE_A:
11001 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11002 break;
11003 case PLANE_B:
11004 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11005 break;
11006 case PLANE_C:
11007 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11008 break;
11009 default:
11010 WARN_ONCE(1, "unknown plane in flip command\n");
11011 return -ENODEV;
11012 }
11013
11014 len = 4;
11015 if (ring->id == RCS) {
11016 len += 6;
11017 /*
11018 * On Gen 8, SRM is now taking an extra dword to accommodate
11019 * 48bits addresses, and we need a NOOP for the batch size to
11020 * stay even.
11021 */
11022 if (IS_GEN8(dev))
11023 len += 2;
11024 }
11025
11026 /*
11027 * BSpec MI_DISPLAY_FLIP for IVB:
11028 * "The full packet must be contained within the same cache line."
11029 *
11030 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11031 * cacheline, if we ever start emitting more commands before
11032 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11033 * then do the cacheline alignment, and finally emit the
11034 * MI_DISPLAY_FLIP.
11035 */
11036 ret = intel_ring_cacheline_align(req);
11037 if (ret)
11038 return ret;
11039
11040 ret = intel_ring_begin(req, len);
11041 if (ret)
11042 return ret;
11043
11044 /* Unmask the flip-done completion message. Note that the bspec says that
11045 * we should do this for both the BCS and RCS, and that we must not unmask
11046 * more than one flip event at any time (or ensure that one flip message
11047 * can be sent by waiting for flip-done prior to queueing new flips).
11048 * Experimentation says that BCS works despite DERRMR masking all
11049 * flip-done completion events and that unmasking all planes at once
11050 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11051 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11052 */
11053 if (ring->id == RCS) {
11054 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11055 intel_ring_emit(ring, DERRMR);
11056 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11057 DERRMR_PIPEB_PRI_FLIP_DONE |
11058 DERRMR_PIPEC_PRI_FLIP_DONE));
11059 if (IS_GEN8(dev))
11060 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11061 MI_SRM_LRM_GLOBAL_GTT);
11062 else
11063 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11064 MI_SRM_LRM_GLOBAL_GTT);
11065 intel_ring_emit(ring, DERRMR);
11066 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11067 if (IS_GEN8(dev)) {
11068 intel_ring_emit(ring, 0);
11069 intel_ring_emit(ring, MI_NOOP);
11070 }
11071 }
11072
11073 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11074 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11075 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11076 intel_ring_emit(ring, (MI_NOOP));
11077
11078 intel_mark_page_flip_active(intel_crtc);
11079 return 0;
11080 }
11081
11082 static bool use_mmio_flip(struct intel_engine_cs *ring,
11083 struct drm_i915_gem_object *obj)
11084 {
11085 /*
11086 * This is not being used for older platforms, because
11087 * non-availability of flip done interrupt forces us to use
11088 * CS flips. Older platforms derive flip done using some clever
11089 * tricks involving the flip_pending status bits and vblank irqs.
11090 * So using MMIO flips there would disrupt this mechanism.
11091 */
11092
11093 if (ring == NULL)
11094 return true;
11095
11096 if (INTEL_INFO(ring->dev)->gen < 5)
11097 return false;
11098
11099 if (i915.use_mmio_flip < 0)
11100 return false;
11101 else if (i915.use_mmio_flip > 0)
11102 return true;
11103 else if (i915.enable_execlists)
11104 return true;
11105 else
11106 return ring != i915_gem_request_get_ring(obj->last_write_req);
11107 }
11108
11109 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11110 {
11111 struct drm_device *dev = intel_crtc->base.dev;
11112 struct drm_i915_private *dev_priv = dev->dev_private;
11113 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11114 const enum pipe pipe = intel_crtc->pipe;
11115 u32 ctl, stride;
11116
11117 ctl = I915_READ(PLANE_CTL(pipe, 0));
11118 ctl &= ~PLANE_CTL_TILED_MASK;
11119 switch (fb->modifier[0]) {
11120 case DRM_FORMAT_MOD_NONE:
11121 break;
11122 case I915_FORMAT_MOD_X_TILED:
11123 ctl |= PLANE_CTL_TILED_X;
11124 break;
11125 case I915_FORMAT_MOD_Y_TILED:
11126 ctl |= PLANE_CTL_TILED_Y;
11127 break;
11128 case I915_FORMAT_MOD_Yf_TILED:
11129 ctl |= PLANE_CTL_TILED_YF;
11130 break;
11131 default:
11132 MISSING_CASE(fb->modifier[0]);
11133 }
11134
11135 /*
11136 * The stride is either expressed as a multiple of 64 bytes chunks for
11137 * linear buffers or in number of tiles for tiled buffers.
11138 */
11139 stride = fb->pitches[0] /
11140 intel_fb_stride_alignment(dev, fb->modifier[0],
11141 fb->pixel_format);
11142
11143 /*
11144 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11145 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11146 */
11147 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11148 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11149
11150 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11151 POSTING_READ(PLANE_SURF(pipe, 0));
11152 }
11153
11154 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11155 {
11156 struct drm_device *dev = intel_crtc->base.dev;
11157 struct drm_i915_private *dev_priv = dev->dev_private;
11158 struct intel_framebuffer *intel_fb =
11159 to_intel_framebuffer(intel_crtc->base.primary->fb);
11160 struct drm_i915_gem_object *obj = intel_fb->obj;
11161 u32 dspcntr;
11162 u32 reg;
11163
11164 reg = DSPCNTR(intel_crtc->plane);
11165 dspcntr = I915_READ(reg);
11166
11167 if (obj->tiling_mode != I915_TILING_NONE)
11168 dspcntr |= DISPPLANE_TILED;
11169 else
11170 dspcntr &= ~DISPPLANE_TILED;
11171
11172 I915_WRITE(reg, dspcntr);
11173
11174 I915_WRITE(DSPSURF(intel_crtc->plane),
11175 intel_crtc->unpin_work->gtt_offset);
11176 POSTING_READ(DSPSURF(intel_crtc->plane));
11177
11178 }
11179
11180 /*
11181 * XXX: This is the temporary way to update the plane registers until we get
11182 * around to using the usual plane update functions for MMIO flips
11183 */
11184 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11185 {
11186 struct drm_device *dev = intel_crtc->base.dev;
11187
11188 intel_mark_page_flip_active(intel_crtc);
11189
11190 intel_pipe_update_start(intel_crtc);
11191
11192 if (INTEL_INFO(dev)->gen >= 9)
11193 skl_do_mmio_flip(intel_crtc);
11194 else
11195 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11196 ilk_do_mmio_flip(intel_crtc);
11197
11198 intel_pipe_update_end(intel_crtc);
11199 }
11200
11201 static void intel_mmio_flip_work_func(struct work_struct *work)
11202 {
11203 struct intel_mmio_flip *mmio_flip =
11204 container_of(work, struct intel_mmio_flip, work);
11205
11206 if (mmio_flip->req)
11207 WARN_ON(__i915_wait_request(mmio_flip->req,
11208 mmio_flip->crtc->reset_counter,
11209 false, NULL,
11210 &mmio_flip->i915->rps.mmioflips));
11211
11212 intel_do_mmio_flip(mmio_flip->crtc);
11213
11214 i915_gem_request_unreference__unlocked(mmio_flip->req);
11215 kfree(mmio_flip);
11216 }
11217
11218 static int intel_queue_mmio_flip(struct drm_device *dev,
11219 struct drm_crtc *crtc,
11220 struct drm_framebuffer *fb,
11221 struct drm_i915_gem_object *obj,
11222 struct intel_engine_cs *ring,
11223 uint32_t flags)
11224 {
11225 struct intel_mmio_flip *mmio_flip;
11226
11227 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11228 if (mmio_flip == NULL)
11229 return -ENOMEM;
11230
11231 mmio_flip->i915 = to_i915(dev);
11232 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11233 mmio_flip->crtc = to_intel_crtc(crtc);
11234
11235 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11236 schedule_work(&mmio_flip->work);
11237
11238 return 0;
11239 }
11240
11241 static int intel_default_queue_flip(struct drm_device *dev,
11242 struct drm_crtc *crtc,
11243 struct drm_framebuffer *fb,
11244 struct drm_i915_gem_object *obj,
11245 struct drm_i915_gem_request *req,
11246 uint32_t flags)
11247 {
11248 return -ENODEV;
11249 }
11250
11251 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11252 struct drm_crtc *crtc)
11253 {
11254 struct drm_i915_private *dev_priv = dev->dev_private;
11255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11256 struct intel_unpin_work *work = intel_crtc->unpin_work;
11257 u32 addr;
11258
11259 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11260 return true;
11261
11262 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11263 return false;
11264
11265 if (!work->enable_stall_check)
11266 return false;
11267
11268 if (work->flip_ready_vblank == 0) {
11269 if (work->flip_queued_req &&
11270 !i915_gem_request_completed(work->flip_queued_req, true))
11271 return false;
11272
11273 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11274 }
11275
11276 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11277 return false;
11278
11279 /* Potential stall - if we see that the flip has happened,
11280 * assume a missed interrupt. */
11281 if (INTEL_INFO(dev)->gen >= 4)
11282 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11283 else
11284 addr = I915_READ(DSPADDR(intel_crtc->plane));
11285
11286 /* There is a potential issue here with a false positive after a flip
11287 * to the same address. We could address this by checking for a
11288 * non-incrementing frame counter.
11289 */
11290 return addr == work->gtt_offset;
11291 }
11292
11293 void intel_check_page_flip(struct drm_device *dev, int pipe)
11294 {
11295 struct drm_i915_private *dev_priv = dev->dev_private;
11296 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11298 struct intel_unpin_work *work;
11299
11300 WARN_ON(!in_interrupt());
11301
11302 if (crtc == NULL)
11303 return;
11304
11305 spin_lock(&dev->event_lock);
11306 work = intel_crtc->unpin_work;
11307 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11308 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11309 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11310 page_flip_completed(intel_crtc);
11311 work = NULL;
11312 }
11313 if (work != NULL &&
11314 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11315 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11316 spin_unlock(&dev->event_lock);
11317 }
11318
11319 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11320 struct drm_framebuffer *fb,
11321 struct drm_pending_vblank_event *event,
11322 uint32_t page_flip_flags)
11323 {
11324 struct drm_device *dev = crtc->dev;
11325 struct drm_i915_private *dev_priv = dev->dev_private;
11326 struct drm_framebuffer *old_fb = crtc->primary->fb;
11327 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11329 struct drm_plane *primary = crtc->primary;
11330 enum pipe pipe = intel_crtc->pipe;
11331 struct intel_unpin_work *work;
11332 struct intel_engine_cs *ring;
11333 bool mmio_flip;
11334 struct drm_i915_gem_request *request = NULL;
11335 int ret;
11336
11337 /*
11338 * drm_mode_page_flip_ioctl() should already catch this, but double
11339 * check to be safe. In the future we may enable pageflipping from
11340 * a disabled primary plane.
11341 */
11342 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11343 return -EBUSY;
11344
11345 /* Can't change pixel format via MI display flips. */
11346 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11347 return -EINVAL;
11348
11349 /*
11350 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11351 * Note that pitch changes could also affect these register.
11352 */
11353 if (INTEL_INFO(dev)->gen > 3 &&
11354 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11355 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11356 return -EINVAL;
11357
11358 if (i915_terminally_wedged(&dev_priv->gpu_error))
11359 goto out_hang;
11360
11361 work = kzalloc(sizeof(*work), GFP_KERNEL);
11362 if (work == NULL)
11363 return -ENOMEM;
11364
11365 work->event = event;
11366 work->crtc = crtc;
11367 work->old_fb = old_fb;
11368 INIT_WORK(&work->work, intel_unpin_work_fn);
11369
11370 ret = drm_crtc_vblank_get(crtc);
11371 if (ret)
11372 goto free_work;
11373
11374 /* We borrow the event spin lock for protecting unpin_work */
11375 spin_lock_irq(&dev->event_lock);
11376 if (intel_crtc->unpin_work) {
11377 /* Before declaring the flip queue wedged, check if
11378 * the hardware completed the operation behind our backs.
11379 */
11380 if (__intel_pageflip_stall_check(dev, crtc)) {
11381 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11382 page_flip_completed(intel_crtc);
11383 } else {
11384 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11385 spin_unlock_irq(&dev->event_lock);
11386
11387 drm_crtc_vblank_put(crtc);
11388 kfree(work);
11389 return -EBUSY;
11390 }
11391 }
11392 intel_crtc->unpin_work = work;
11393 spin_unlock_irq(&dev->event_lock);
11394
11395 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11396 flush_workqueue(dev_priv->wq);
11397
11398 /* Reference the objects for the scheduled work. */
11399 drm_framebuffer_reference(work->old_fb);
11400 drm_gem_object_reference(&obj->base);
11401
11402 crtc->primary->fb = fb;
11403 update_state_fb(crtc->primary);
11404
11405 work->pending_flip_obj = obj;
11406
11407 ret = i915_mutex_lock_interruptible(dev);
11408 if (ret)
11409 goto cleanup;
11410
11411 atomic_inc(&intel_crtc->unpin_work_count);
11412 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11413
11414 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11415 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11416
11417 if (IS_VALLEYVIEW(dev)) {
11418 ring = &dev_priv->ring[BCS];
11419 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11420 /* vlv: DISPLAY_FLIP fails to change tiling */
11421 ring = NULL;
11422 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11423 ring = &dev_priv->ring[BCS];
11424 } else if (INTEL_INFO(dev)->gen >= 7) {
11425 ring = i915_gem_request_get_ring(obj->last_write_req);
11426 if (ring == NULL || ring->id != RCS)
11427 ring = &dev_priv->ring[BCS];
11428 } else {
11429 ring = &dev_priv->ring[RCS];
11430 }
11431
11432 mmio_flip = use_mmio_flip(ring, obj);
11433
11434 /* When using CS flips, we want to emit semaphores between rings.
11435 * However, when using mmio flips we will create a task to do the
11436 * synchronisation, so all we want here is to pin the framebuffer
11437 * into the display plane and skip any waits.
11438 */
11439 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11440 crtc->primary->state,
11441 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11442 if (ret)
11443 goto cleanup_pending;
11444
11445 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11446 obj, 0);
11447 work->gtt_offset += intel_crtc->dspaddr_offset;
11448
11449 if (mmio_flip) {
11450 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11451 page_flip_flags);
11452 if (ret)
11453 goto cleanup_unpin;
11454
11455 i915_gem_request_assign(&work->flip_queued_req,
11456 obj->last_write_req);
11457 } else {
11458 if (!request) {
11459 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11460 if (ret)
11461 goto cleanup_unpin;
11462 }
11463
11464 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11465 page_flip_flags);
11466 if (ret)
11467 goto cleanup_unpin;
11468
11469 i915_gem_request_assign(&work->flip_queued_req, request);
11470 }
11471
11472 if (request)
11473 i915_add_request_no_flush(request);
11474
11475 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11476 work->enable_stall_check = true;
11477
11478 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11479 to_intel_plane(primary)->frontbuffer_bit);
11480 mutex_unlock(&dev->struct_mutex);
11481
11482 intel_fbc_disable_crtc(intel_crtc);
11483 intel_frontbuffer_flip_prepare(dev,
11484 to_intel_plane(primary)->frontbuffer_bit);
11485
11486 trace_i915_flip_request(intel_crtc->plane, obj);
11487
11488 return 0;
11489
11490 cleanup_unpin:
11491 intel_unpin_fb_obj(fb, crtc->primary->state);
11492 cleanup_pending:
11493 if (request)
11494 i915_gem_request_cancel(request);
11495 atomic_dec(&intel_crtc->unpin_work_count);
11496 mutex_unlock(&dev->struct_mutex);
11497 cleanup:
11498 crtc->primary->fb = old_fb;
11499 update_state_fb(crtc->primary);
11500
11501 drm_gem_object_unreference_unlocked(&obj->base);
11502 drm_framebuffer_unreference(work->old_fb);
11503
11504 spin_lock_irq(&dev->event_lock);
11505 intel_crtc->unpin_work = NULL;
11506 spin_unlock_irq(&dev->event_lock);
11507
11508 drm_crtc_vblank_put(crtc);
11509 free_work:
11510 kfree(work);
11511
11512 if (ret == -EIO) {
11513 struct drm_atomic_state *state;
11514 struct drm_plane_state *plane_state;
11515
11516 out_hang:
11517 state = drm_atomic_state_alloc(dev);
11518 if (!state)
11519 return -ENOMEM;
11520 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11521
11522 retry:
11523 plane_state = drm_atomic_get_plane_state(state, primary);
11524 ret = PTR_ERR_OR_ZERO(plane_state);
11525 if (!ret) {
11526 drm_atomic_set_fb_for_plane(plane_state, fb);
11527
11528 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11529 if (!ret)
11530 ret = drm_atomic_commit(state);
11531 }
11532
11533 if (ret == -EDEADLK) {
11534 drm_modeset_backoff(state->acquire_ctx);
11535 drm_atomic_state_clear(state);
11536 goto retry;
11537 }
11538
11539 if (ret)
11540 drm_atomic_state_free(state);
11541
11542 if (ret == 0 && event) {
11543 spin_lock_irq(&dev->event_lock);
11544 drm_send_vblank_event(dev, pipe, event);
11545 spin_unlock_irq(&dev->event_lock);
11546 }
11547 }
11548 return ret;
11549 }
11550
11551
11552 /**
11553 * intel_wm_need_update - Check whether watermarks need updating
11554 * @plane: drm plane
11555 * @state: new plane state
11556 *
11557 * Check current plane state versus the new one to determine whether
11558 * watermarks need to be recalculated.
11559 *
11560 * Returns true or false.
11561 */
11562 static bool intel_wm_need_update(struct drm_plane *plane,
11563 struct drm_plane_state *state)
11564 {
11565 /* Update watermarks on tiling changes. */
11566 if (!plane->state->fb || !state->fb ||
11567 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11568 plane->state->rotation != state->rotation)
11569 return true;
11570
11571 if (plane->state->crtc_w != state->crtc_w)
11572 return true;
11573
11574 return false;
11575 }
11576
11577 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11578 struct drm_plane_state *plane_state)
11579 {
11580 struct drm_crtc *crtc = crtc_state->crtc;
11581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11582 struct drm_plane *plane = plane_state->plane;
11583 struct drm_device *dev = crtc->dev;
11584 struct drm_i915_private *dev_priv = dev->dev_private;
11585 struct intel_plane_state *old_plane_state =
11586 to_intel_plane_state(plane->state);
11587 int idx = intel_crtc->base.base.id, ret;
11588 int i = drm_plane_index(plane);
11589 bool mode_changed = needs_modeset(crtc_state);
11590 bool was_crtc_enabled = crtc->state->active;
11591 bool is_crtc_enabled = crtc_state->active;
11592
11593 bool turn_off, turn_on, visible, was_visible;
11594 struct drm_framebuffer *fb = plane_state->fb;
11595
11596 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11597 plane->type != DRM_PLANE_TYPE_CURSOR) {
11598 ret = skl_update_scaler_plane(
11599 to_intel_crtc_state(crtc_state),
11600 to_intel_plane_state(plane_state));
11601 if (ret)
11602 return ret;
11603 }
11604
11605 /*
11606 * Disabling a plane is always okay; we just need to update
11607 * fb tracking in a special way since cleanup_fb() won't
11608 * get called by the plane helpers.
11609 */
11610 if (old_plane_state->base.fb && !fb)
11611 intel_crtc->atomic.disabled_planes |= 1 << i;
11612
11613 was_visible = old_plane_state->visible;
11614 visible = to_intel_plane_state(plane_state)->visible;
11615
11616 if (!was_crtc_enabled && WARN_ON(was_visible))
11617 was_visible = false;
11618
11619 if (!is_crtc_enabled && WARN_ON(visible))
11620 visible = false;
11621
11622 if (!was_visible && !visible)
11623 return 0;
11624
11625 turn_off = was_visible && (!visible || mode_changed);
11626 turn_on = visible && (!was_visible || mode_changed);
11627
11628 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11629 plane->base.id, fb ? fb->base.id : -1);
11630
11631 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11632 plane->base.id, was_visible, visible,
11633 turn_off, turn_on, mode_changed);
11634
11635 if (turn_on) {
11636 intel_crtc->atomic.update_wm_pre = true;
11637 /* must disable cxsr around plane enable/disable */
11638 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11639 intel_crtc->atomic.disable_cxsr = true;
11640 /* to potentially re-enable cxsr */
11641 intel_crtc->atomic.wait_vblank = true;
11642 intel_crtc->atomic.update_wm_post = true;
11643 }
11644 } else if (turn_off) {
11645 intel_crtc->atomic.update_wm_post = true;
11646 /* must disable cxsr around plane enable/disable */
11647 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11648 if (is_crtc_enabled)
11649 intel_crtc->atomic.wait_vblank = true;
11650 intel_crtc->atomic.disable_cxsr = true;
11651 }
11652 } else if (intel_wm_need_update(plane, plane_state)) {
11653 intel_crtc->atomic.update_wm_pre = true;
11654 }
11655
11656 if (visible || was_visible)
11657 intel_crtc->atomic.fb_bits |=
11658 to_intel_plane(plane)->frontbuffer_bit;
11659
11660 switch (plane->type) {
11661 case DRM_PLANE_TYPE_PRIMARY:
11662 intel_crtc->atomic.wait_for_flips = true;
11663 intel_crtc->atomic.pre_disable_primary = turn_off;
11664 intel_crtc->atomic.post_enable_primary = turn_on;
11665
11666 if (turn_off) {
11667 /*
11668 * FIXME: Actually if we will still have any other
11669 * plane enabled on the pipe we could let IPS enabled
11670 * still, but for now lets consider that when we make
11671 * primary invisible by setting DSPCNTR to 0 on
11672 * update_primary_plane function IPS needs to be
11673 * disable.
11674 */
11675 intel_crtc->atomic.disable_ips = true;
11676
11677 intel_crtc->atomic.disable_fbc = true;
11678 }
11679
11680 /*
11681 * FBC does not work on some platforms for rotated
11682 * planes, so disable it when rotation is not 0 and
11683 * update it when rotation is set back to 0.
11684 *
11685 * FIXME: This is redundant with the fbc update done in
11686 * the primary plane enable function except that that
11687 * one is done too late. We eventually need to unify
11688 * this.
11689 */
11690
11691 if (visible &&
11692 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11693 dev_priv->fbc.crtc == intel_crtc &&
11694 plane_state->rotation != BIT(DRM_ROTATE_0))
11695 intel_crtc->atomic.disable_fbc = true;
11696
11697 /*
11698 * BDW signals flip done immediately if the plane
11699 * is disabled, even if the plane enable is already
11700 * armed to occur at the next vblank :(
11701 */
11702 if (turn_on && IS_BROADWELL(dev))
11703 intel_crtc->atomic.wait_vblank = true;
11704
11705 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11706 break;
11707 case DRM_PLANE_TYPE_CURSOR:
11708 break;
11709 case DRM_PLANE_TYPE_OVERLAY:
11710 if (turn_off && !mode_changed) {
11711 intel_crtc->atomic.wait_vblank = true;
11712 intel_crtc->atomic.update_sprite_watermarks |=
11713 1 << i;
11714 }
11715 }
11716 return 0;
11717 }
11718
11719 static bool encoders_cloneable(const struct intel_encoder *a,
11720 const struct intel_encoder *b)
11721 {
11722 /* masks could be asymmetric, so check both ways */
11723 return a == b || (a->cloneable & (1 << b->type) &&
11724 b->cloneable & (1 << a->type));
11725 }
11726
11727 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11728 struct intel_crtc *crtc,
11729 struct intel_encoder *encoder)
11730 {
11731 struct intel_encoder *source_encoder;
11732 struct drm_connector *connector;
11733 struct drm_connector_state *connector_state;
11734 int i;
11735
11736 for_each_connector_in_state(state, connector, connector_state, i) {
11737 if (connector_state->crtc != &crtc->base)
11738 continue;
11739
11740 source_encoder =
11741 to_intel_encoder(connector_state->best_encoder);
11742 if (!encoders_cloneable(encoder, source_encoder))
11743 return false;
11744 }
11745
11746 return true;
11747 }
11748
11749 static bool check_encoder_cloning(struct drm_atomic_state *state,
11750 struct intel_crtc *crtc)
11751 {
11752 struct intel_encoder *encoder;
11753 struct drm_connector *connector;
11754 struct drm_connector_state *connector_state;
11755 int i;
11756
11757 for_each_connector_in_state(state, connector, connector_state, i) {
11758 if (connector_state->crtc != &crtc->base)
11759 continue;
11760
11761 encoder = to_intel_encoder(connector_state->best_encoder);
11762 if (!check_single_encoder_cloning(state, crtc, encoder))
11763 return false;
11764 }
11765
11766 return true;
11767 }
11768
11769 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11770 struct drm_crtc_state *crtc_state)
11771 {
11772 struct drm_device *dev = crtc->dev;
11773 struct drm_i915_private *dev_priv = dev->dev_private;
11774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11775 struct intel_crtc_state *pipe_config =
11776 to_intel_crtc_state(crtc_state);
11777 struct drm_atomic_state *state = crtc_state->state;
11778 int ret;
11779 bool mode_changed = needs_modeset(crtc_state);
11780
11781 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11782 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11783 return -EINVAL;
11784 }
11785
11786 if (mode_changed && !crtc_state->active)
11787 intel_crtc->atomic.update_wm_post = true;
11788
11789 if (mode_changed && crtc_state->enable &&
11790 dev_priv->display.crtc_compute_clock &&
11791 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11792 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11793 pipe_config);
11794 if (ret)
11795 return ret;
11796 }
11797
11798 ret = 0;
11799 if (INTEL_INFO(dev)->gen >= 9) {
11800 if (mode_changed)
11801 ret = skl_update_scaler_crtc(pipe_config);
11802
11803 if (!ret)
11804 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11805 pipe_config);
11806 }
11807
11808 return ret;
11809 }
11810
11811 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11812 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11813 .load_lut = intel_crtc_load_lut,
11814 .atomic_begin = intel_begin_crtc_commit,
11815 .atomic_flush = intel_finish_crtc_commit,
11816 .atomic_check = intel_crtc_atomic_check,
11817 };
11818
11819 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11820 {
11821 struct intel_connector *connector;
11822
11823 for_each_intel_connector(dev, connector) {
11824 if (connector->base.encoder) {
11825 connector->base.state->best_encoder =
11826 connector->base.encoder;
11827 connector->base.state->crtc =
11828 connector->base.encoder->crtc;
11829 } else {
11830 connector->base.state->best_encoder = NULL;
11831 connector->base.state->crtc = NULL;
11832 }
11833 }
11834 }
11835
11836 static void
11837 connected_sink_compute_bpp(struct intel_connector *connector,
11838 struct intel_crtc_state *pipe_config)
11839 {
11840 int bpp = pipe_config->pipe_bpp;
11841
11842 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11843 connector->base.base.id,
11844 connector->base.name);
11845
11846 /* Don't use an invalid EDID bpc value */
11847 if (connector->base.display_info.bpc &&
11848 connector->base.display_info.bpc * 3 < bpp) {
11849 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11850 bpp, connector->base.display_info.bpc*3);
11851 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11852 }
11853
11854 /* Clamp bpp to 8 on screens without EDID 1.4 */
11855 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11856 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11857 bpp);
11858 pipe_config->pipe_bpp = 24;
11859 }
11860 }
11861
11862 static int
11863 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11864 struct intel_crtc_state *pipe_config)
11865 {
11866 struct drm_device *dev = crtc->base.dev;
11867 struct drm_atomic_state *state;
11868 struct drm_connector *connector;
11869 struct drm_connector_state *connector_state;
11870 int bpp, i;
11871
11872 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11873 bpp = 10*3;
11874 else if (INTEL_INFO(dev)->gen >= 5)
11875 bpp = 12*3;
11876 else
11877 bpp = 8*3;
11878
11879
11880 pipe_config->pipe_bpp = bpp;
11881
11882 state = pipe_config->base.state;
11883
11884 /* Clamp display bpp to EDID value */
11885 for_each_connector_in_state(state, connector, connector_state, i) {
11886 if (connector_state->crtc != &crtc->base)
11887 continue;
11888
11889 connected_sink_compute_bpp(to_intel_connector(connector),
11890 pipe_config);
11891 }
11892
11893 return bpp;
11894 }
11895
11896 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11897 {
11898 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11899 "type: 0x%x flags: 0x%x\n",
11900 mode->crtc_clock,
11901 mode->crtc_hdisplay, mode->crtc_hsync_start,
11902 mode->crtc_hsync_end, mode->crtc_htotal,
11903 mode->crtc_vdisplay, mode->crtc_vsync_start,
11904 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11905 }
11906
11907 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11908 struct intel_crtc_state *pipe_config,
11909 const char *context)
11910 {
11911 struct drm_device *dev = crtc->base.dev;
11912 struct drm_plane *plane;
11913 struct intel_plane *intel_plane;
11914 struct intel_plane_state *state;
11915 struct drm_framebuffer *fb;
11916
11917 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11918 context, pipe_config, pipe_name(crtc->pipe));
11919
11920 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11921 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11922 pipe_config->pipe_bpp, pipe_config->dither);
11923 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11924 pipe_config->has_pch_encoder,
11925 pipe_config->fdi_lanes,
11926 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11927 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11928 pipe_config->fdi_m_n.tu);
11929 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11930 pipe_config->has_dp_encoder,
11931 pipe_config->lane_count,
11932 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11933 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11934 pipe_config->dp_m_n.tu);
11935
11936 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11937 pipe_config->has_dp_encoder,
11938 pipe_config->lane_count,
11939 pipe_config->dp_m2_n2.gmch_m,
11940 pipe_config->dp_m2_n2.gmch_n,
11941 pipe_config->dp_m2_n2.link_m,
11942 pipe_config->dp_m2_n2.link_n,
11943 pipe_config->dp_m2_n2.tu);
11944
11945 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11946 pipe_config->has_audio,
11947 pipe_config->has_infoframe);
11948
11949 DRM_DEBUG_KMS("requested mode:\n");
11950 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11951 DRM_DEBUG_KMS("adjusted mode:\n");
11952 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11953 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11954 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11955 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11956 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11957 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11958 crtc->num_scalers,
11959 pipe_config->scaler_state.scaler_users,
11960 pipe_config->scaler_state.scaler_id);
11961 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11962 pipe_config->gmch_pfit.control,
11963 pipe_config->gmch_pfit.pgm_ratios,
11964 pipe_config->gmch_pfit.lvds_border_bits);
11965 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11966 pipe_config->pch_pfit.pos,
11967 pipe_config->pch_pfit.size,
11968 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11969 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11970 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11971
11972 if (IS_BROXTON(dev)) {
11973 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11974 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11975 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11976 pipe_config->ddi_pll_sel,
11977 pipe_config->dpll_hw_state.ebb0,
11978 pipe_config->dpll_hw_state.ebb4,
11979 pipe_config->dpll_hw_state.pll0,
11980 pipe_config->dpll_hw_state.pll1,
11981 pipe_config->dpll_hw_state.pll2,
11982 pipe_config->dpll_hw_state.pll3,
11983 pipe_config->dpll_hw_state.pll6,
11984 pipe_config->dpll_hw_state.pll8,
11985 pipe_config->dpll_hw_state.pll9,
11986 pipe_config->dpll_hw_state.pll10,
11987 pipe_config->dpll_hw_state.pcsdw12);
11988 } else if (IS_SKYLAKE(dev)) {
11989 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11990 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11991 pipe_config->ddi_pll_sel,
11992 pipe_config->dpll_hw_state.ctrl1,
11993 pipe_config->dpll_hw_state.cfgcr1,
11994 pipe_config->dpll_hw_state.cfgcr2);
11995 } else if (HAS_DDI(dev)) {
11996 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11997 pipe_config->ddi_pll_sel,
11998 pipe_config->dpll_hw_state.wrpll);
11999 } else {
12000 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12001 "fp0: 0x%x, fp1: 0x%x\n",
12002 pipe_config->dpll_hw_state.dpll,
12003 pipe_config->dpll_hw_state.dpll_md,
12004 pipe_config->dpll_hw_state.fp0,
12005 pipe_config->dpll_hw_state.fp1);
12006 }
12007
12008 DRM_DEBUG_KMS("planes on this crtc\n");
12009 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12010 intel_plane = to_intel_plane(plane);
12011 if (intel_plane->pipe != crtc->pipe)
12012 continue;
12013
12014 state = to_intel_plane_state(plane->state);
12015 fb = state->base.fb;
12016 if (!fb) {
12017 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12018 "disabled, scaler_id = %d\n",
12019 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12020 plane->base.id, intel_plane->pipe,
12021 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12022 drm_plane_index(plane), state->scaler_id);
12023 continue;
12024 }
12025
12026 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12027 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12028 plane->base.id, intel_plane->pipe,
12029 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12030 drm_plane_index(plane));
12031 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12032 fb->base.id, fb->width, fb->height, fb->pixel_format);
12033 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12034 state->scaler_id,
12035 state->src.x1 >> 16, state->src.y1 >> 16,
12036 drm_rect_width(&state->src) >> 16,
12037 drm_rect_height(&state->src) >> 16,
12038 state->dst.x1, state->dst.y1,
12039 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12040 }
12041 }
12042
12043 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12044 {
12045 struct drm_device *dev = state->dev;
12046 struct intel_encoder *encoder;
12047 struct drm_connector *connector;
12048 struct drm_connector_state *connector_state;
12049 unsigned int used_ports = 0;
12050 int i;
12051
12052 /*
12053 * Walk the connector list instead of the encoder
12054 * list to detect the problem on ddi platforms
12055 * where there's just one encoder per digital port.
12056 */
12057 for_each_connector_in_state(state, connector, connector_state, i) {
12058 if (!connector_state->best_encoder)
12059 continue;
12060
12061 encoder = to_intel_encoder(connector_state->best_encoder);
12062
12063 WARN_ON(!connector_state->crtc);
12064
12065 switch (encoder->type) {
12066 unsigned int port_mask;
12067 case INTEL_OUTPUT_UNKNOWN:
12068 if (WARN_ON(!HAS_DDI(dev)))
12069 break;
12070 case INTEL_OUTPUT_DISPLAYPORT:
12071 case INTEL_OUTPUT_HDMI:
12072 case INTEL_OUTPUT_EDP:
12073 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12074
12075 /* the same port mustn't appear more than once */
12076 if (used_ports & port_mask)
12077 return false;
12078
12079 used_ports |= port_mask;
12080 default:
12081 break;
12082 }
12083 }
12084
12085 return true;
12086 }
12087
12088 static void
12089 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12090 {
12091 struct drm_crtc_state tmp_state;
12092 struct intel_crtc_scaler_state scaler_state;
12093 struct intel_dpll_hw_state dpll_hw_state;
12094 enum intel_dpll_id shared_dpll;
12095 uint32_t ddi_pll_sel;
12096 bool force_thru;
12097
12098 /* FIXME: before the switch to atomic started, a new pipe_config was
12099 * kzalloc'd. Code that depends on any field being zero should be
12100 * fixed, so that the crtc_state can be safely duplicated. For now,
12101 * only fields that are know to not cause problems are preserved. */
12102
12103 tmp_state = crtc_state->base;
12104 scaler_state = crtc_state->scaler_state;
12105 shared_dpll = crtc_state->shared_dpll;
12106 dpll_hw_state = crtc_state->dpll_hw_state;
12107 ddi_pll_sel = crtc_state->ddi_pll_sel;
12108 force_thru = crtc_state->pch_pfit.force_thru;
12109
12110 memset(crtc_state, 0, sizeof *crtc_state);
12111
12112 crtc_state->base = tmp_state;
12113 crtc_state->scaler_state = scaler_state;
12114 crtc_state->shared_dpll = shared_dpll;
12115 crtc_state->dpll_hw_state = dpll_hw_state;
12116 crtc_state->ddi_pll_sel = ddi_pll_sel;
12117 crtc_state->pch_pfit.force_thru = force_thru;
12118 }
12119
12120 static int
12121 intel_modeset_pipe_config(struct drm_crtc *crtc,
12122 struct intel_crtc_state *pipe_config)
12123 {
12124 struct drm_atomic_state *state = pipe_config->base.state;
12125 struct intel_encoder *encoder;
12126 struct drm_connector *connector;
12127 struct drm_connector_state *connector_state;
12128 int base_bpp, ret = -EINVAL;
12129 int i;
12130 bool retry = true;
12131
12132 clear_intel_crtc_state(pipe_config);
12133
12134 pipe_config->cpu_transcoder =
12135 (enum transcoder) to_intel_crtc(crtc)->pipe;
12136
12137 /*
12138 * Sanitize sync polarity flags based on requested ones. If neither
12139 * positive or negative polarity is requested, treat this as meaning
12140 * negative polarity.
12141 */
12142 if (!(pipe_config->base.adjusted_mode.flags &
12143 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12144 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12145
12146 if (!(pipe_config->base.adjusted_mode.flags &
12147 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12148 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12149
12150 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12151 pipe_config);
12152 if (base_bpp < 0)
12153 goto fail;
12154
12155 /*
12156 * Determine the real pipe dimensions. Note that stereo modes can
12157 * increase the actual pipe size due to the frame doubling and
12158 * insertion of additional space for blanks between the frame. This
12159 * is stored in the crtc timings. We use the requested mode to do this
12160 * computation to clearly distinguish it from the adjusted mode, which
12161 * can be changed by the connectors in the below retry loop.
12162 */
12163 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12164 &pipe_config->pipe_src_w,
12165 &pipe_config->pipe_src_h);
12166
12167 encoder_retry:
12168 /* Ensure the port clock defaults are reset when retrying. */
12169 pipe_config->port_clock = 0;
12170 pipe_config->pixel_multiplier = 1;
12171
12172 /* Fill in default crtc timings, allow encoders to overwrite them. */
12173 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12174 CRTC_STEREO_DOUBLE);
12175
12176 /* Pass our mode to the connectors and the CRTC to give them a chance to
12177 * adjust it according to limitations or connector properties, and also
12178 * a chance to reject the mode entirely.
12179 */
12180 for_each_connector_in_state(state, connector, connector_state, i) {
12181 if (connector_state->crtc != crtc)
12182 continue;
12183
12184 encoder = to_intel_encoder(connector_state->best_encoder);
12185
12186 if (!(encoder->compute_config(encoder, pipe_config))) {
12187 DRM_DEBUG_KMS("Encoder config failure\n");
12188 goto fail;
12189 }
12190 }
12191
12192 /* Set default port clock if not overwritten by the encoder. Needs to be
12193 * done afterwards in case the encoder adjusts the mode. */
12194 if (!pipe_config->port_clock)
12195 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12196 * pipe_config->pixel_multiplier;
12197
12198 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12199 if (ret < 0) {
12200 DRM_DEBUG_KMS("CRTC fixup failed\n");
12201 goto fail;
12202 }
12203
12204 if (ret == RETRY) {
12205 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12206 ret = -EINVAL;
12207 goto fail;
12208 }
12209
12210 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12211 retry = false;
12212 goto encoder_retry;
12213 }
12214
12215 /* Dithering seems to not pass-through bits correctly when it should, so
12216 * only enable it on 6bpc panels. */
12217 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12218 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12219 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12220
12221 fail:
12222 return ret;
12223 }
12224
12225 static void
12226 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12227 {
12228 struct drm_crtc *crtc;
12229 struct drm_crtc_state *crtc_state;
12230 int i;
12231
12232 /* Double check state. */
12233 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12234 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12235
12236 /* Update hwmode for vblank functions */
12237 if (crtc->state->active)
12238 crtc->hwmode = crtc->state->adjusted_mode;
12239 else
12240 crtc->hwmode.crtc_clock = 0;
12241 }
12242 }
12243
12244 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12245 {
12246 int diff;
12247
12248 if (clock1 == clock2)
12249 return true;
12250
12251 if (!clock1 || !clock2)
12252 return false;
12253
12254 diff = abs(clock1 - clock2);
12255
12256 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12257 return true;
12258
12259 return false;
12260 }
12261
12262 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12263 list_for_each_entry((intel_crtc), \
12264 &(dev)->mode_config.crtc_list, \
12265 base.head) \
12266 if (mask & (1 <<(intel_crtc)->pipe))
12267
12268 static bool
12269 intel_compare_m_n(unsigned int m, unsigned int n,
12270 unsigned int m2, unsigned int n2,
12271 bool exact)
12272 {
12273 if (m == m2 && n == n2)
12274 return true;
12275
12276 if (exact || !m || !n || !m2 || !n2)
12277 return false;
12278
12279 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12280
12281 if (m > m2) {
12282 while (m > m2) {
12283 m2 <<= 1;
12284 n2 <<= 1;
12285 }
12286 } else if (m < m2) {
12287 while (m < m2) {
12288 m <<= 1;
12289 n <<= 1;
12290 }
12291 }
12292
12293 return m == m2 && n == n2;
12294 }
12295
12296 static bool
12297 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12298 struct intel_link_m_n *m2_n2,
12299 bool adjust)
12300 {
12301 if (m_n->tu == m2_n2->tu &&
12302 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12303 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12304 intel_compare_m_n(m_n->link_m, m_n->link_n,
12305 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12306 if (adjust)
12307 *m2_n2 = *m_n;
12308
12309 return true;
12310 }
12311
12312 return false;
12313 }
12314
12315 static bool
12316 intel_pipe_config_compare(struct drm_device *dev,
12317 struct intel_crtc_state *current_config,
12318 struct intel_crtc_state *pipe_config,
12319 bool adjust)
12320 {
12321 bool ret = true;
12322
12323 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12324 do { \
12325 if (!adjust) \
12326 DRM_ERROR(fmt, ##__VA_ARGS__); \
12327 else \
12328 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12329 } while (0)
12330
12331 #define PIPE_CONF_CHECK_X(name) \
12332 if (current_config->name != pipe_config->name) { \
12333 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12334 "(expected 0x%08x, found 0x%08x)\n", \
12335 current_config->name, \
12336 pipe_config->name); \
12337 ret = false; \
12338 }
12339
12340 #define PIPE_CONF_CHECK_I(name) \
12341 if (current_config->name != pipe_config->name) { \
12342 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12343 "(expected %i, found %i)\n", \
12344 current_config->name, \
12345 pipe_config->name); \
12346 ret = false; \
12347 }
12348
12349 #define PIPE_CONF_CHECK_M_N(name) \
12350 if (!intel_compare_link_m_n(&current_config->name, \
12351 &pipe_config->name,\
12352 adjust)) { \
12353 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12354 "(expected tu %i gmch %i/%i link %i/%i, " \
12355 "found tu %i, gmch %i/%i link %i/%i)\n", \
12356 current_config->name.tu, \
12357 current_config->name.gmch_m, \
12358 current_config->name.gmch_n, \
12359 current_config->name.link_m, \
12360 current_config->name.link_n, \
12361 pipe_config->name.tu, \
12362 pipe_config->name.gmch_m, \
12363 pipe_config->name.gmch_n, \
12364 pipe_config->name.link_m, \
12365 pipe_config->name.link_n); \
12366 ret = false; \
12367 }
12368
12369 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12370 if (!intel_compare_link_m_n(&current_config->name, \
12371 &pipe_config->name, adjust) && \
12372 !intel_compare_link_m_n(&current_config->alt_name, \
12373 &pipe_config->name, adjust)) { \
12374 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12375 "(expected tu %i gmch %i/%i link %i/%i, " \
12376 "or tu %i gmch %i/%i link %i/%i, " \
12377 "found tu %i, gmch %i/%i link %i/%i)\n", \
12378 current_config->name.tu, \
12379 current_config->name.gmch_m, \
12380 current_config->name.gmch_n, \
12381 current_config->name.link_m, \
12382 current_config->name.link_n, \
12383 current_config->alt_name.tu, \
12384 current_config->alt_name.gmch_m, \
12385 current_config->alt_name.gmch_n, \
12386 current_config->alt_name.link_m, \
12387 current_config->alt_name.link_n, \
12388 pipe_config->name.tu, \
12389 pipe_config->name.gmch_m, \
12390 pipe_config->name.gmch_n, \
12391 pipe_config->name.link_m, \
12392 pipe_config->name.link_n); \
12393 ret = false; \
12394 }
12395
12396 /* This is required for BDW+ where there is only one set of registers for
12397 * switching between high and low RR.
12398 * This macro can be used whenever a comparison has to be made between one
12399 * hw state and multiple sw state variables.
12400 */
12401 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12402 if ((current_config->name != pipe_config->name) && \
12403 (current_config->alt_name != pipe_config->name)) { \
12404 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12405 "(expected %i or %i, found %i)\n", \
12406 current_config->name, \
12407 current_config->alt_name, \
12408 pipe_config->name); \
12409 ret = false; \
12410 }
12411
12412 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12413 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12414 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12415 "(expected %i, found %i)\n", \
12416 current_config->name & (mask), \
12417 pipe_config->name & (mask)); \
12418 ret = false; \
12419 }
12420
12421 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12422 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12423 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12424 "(expected %i, found %i)\n", \
12425 current_config->name, \
12426 pipe_config->name); \
12427 ret = false; \
12428 }
12429
12430 #define PIPE_CONF_QUIRK(quirk) \
12431 ((current_config->quirks | pipe_config->quirks) & (quirk))
12432
12433 PIPE_CONF_CHECK_I(cpu_transcoder);
12434
12435 PIPE_CONF_CHECK_I(has_pch_encoder);
12436 PIPE_CONF_CHECK_I(fdi_lanes);
12437 PIPE_CONF_CHECK_M_N(fdi_m_n);
12438
12439 PIPE_CONF_CHECK_I(has_dp_encoder);
12440 PIPE_CONF_CHECK_I(lane_count);
12441
12442 if (INTEL_INFO(dev)->gen < 8) {
12443 PIPE_CONF_CHECK_M_N(dp_m_n);
12444
12445 PIPE_CONF_CHECK_I(has_drrs);
12446 if (current_config->has_drrs)
12447 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12448 } else
12449 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12450
12451 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12452 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12453 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12454 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12455 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12456 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12457
12458 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12459 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12460 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12461 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12462 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12463 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12464
12465 PIPE_CONF_CHECK_I(pixel_multiplier);
12466 PIPE_CONF_CHECK_I(has_hdmi_sink);
12467 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12468 IS_VALLEYVIEW(dev))
12469 PIPE_CONF_CHECK_I(limited_color_range);
12470 PIPE_CONF_CHECK_I(has_infoframe);
12471
12472 PIPE_CONF_CHECK_I(has_audio);
12473
12474 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12475 DRM_MODE_FLAG_INTERLACE);
12476
12477 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12478 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12479 DRM_MODE_FLAG_PHSYNC);
12480 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12481 DRM_MODE_FLAG_NHSYNC);
12482 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12483 DRM_MODE_FLAG_PVSYNC);
12484 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12485 DRM_MODE_FLAG_NVSYNC);
12486 }
12487
12488 PIPE_CONF_CHECK_X(gmch_pfit.control);
12489 /* pfit ratios are autocomputed by the hw on gen4+ */
12490 if (INTEL_INFO(dev)->gen < 4)
12491 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12492 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12493
12494 if (!adjust) {
12495 PIPE_CONF_CHECK_I(pipe_src_w);
12496 PIPE_CONF_CHECK_I(pipe_src_h);
12497
12498 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12499 if (current_config->pch_pfit.enabled) {
12500 PIPE_CONF_CHECK_X(pch_pfit.pos);
12501 PIPE_CONF_CHECK_X(pch_pfit.size);
12502 }
12503
12504 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12505 }
12506
12507 /* BDW+ don't expose a synchronous way to read the state */
12508 if (IS_HASWELL(dev))
12509 PIPE_CONF_CHECK_I(ips_enabled);
12510
12511 PIPE_CONF_CHECK_I(double_wide);
12512
12513 PIPE_CONF_CHECK_X(ddi_pll_sel);
12514
12515 PIPE_CONF_CHECK_I(shared_dpll);
12516 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12517 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12518 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12519 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12520 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12521 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12522 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12523 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12524
12525 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12526 PIPE_CONF_CHECK_I(pipe_bpp);
12527
12528 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12529 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12530
12531 #undef PIPE_CONF_CHECK_X
12532 #undef PIPE_CONF_CHECK_I
12533 #undef PIPE_CONF_CHECK_I_ALT
12534 #undef PIPE_CONF_CHECK_FLAGS
12535 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12536 #undef PIPE_CONF_QUIRK
12537 #undef INTEL_ERR_OR_DBG_KMS
12538
12539 return ret;
12540 }
12541
12542 static void check_wm_state(struct drm_device *dev)
12543 {
12544 struct drm_i915_private *dev_priv = dev->dev_private;
12545 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12546 struct intel_crtc *intel_crtc;
12547 int plane;
12548
12549 if (INTEL_INFO(dev)->gen < 9)
12550 return;
12551
12552 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12553 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12554
12555 for_each_intel_crtc(dev, intel_crtc) {
12556 struct skl_ddb_entry *hw_entry, *sw_entry;
12557 const enum pipe pipe = intel_crtc->pipe;
12558
12559 if (!intel_crtc->active)
12560 continue;
12561
12562 /* planes */
12563 for_each_plane(dev_priv, pipe, plane) {
12564 hw_entry = &hw_ddb.plane[pipe][plane];
12565 sw_entry = &sw_ddb->plane[pipe][plane];
12566
12567 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12568 continue;
12569
12570 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12571 "(expected (%u,%u), found (%u,%u))\n",
12572 pipe_name(pipe), plane + 1,
12573 sw_entry->start, sw_entry->end,
12574 hw_entry->start, hw_entry->end);
12575 }
12576
12577 /* cursor */
12578 hw_entry = &hw_ddb.cursor[pipe];
12579 sw_entry = &sw_ddb->cursor[pipe];
12580
12581 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12582 continue;
12583
12584 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12585 "(expected (%u,%u), found (%u,%u))\n",
12586 pipe_name(pipe),
12587 sw_entry->start, sw_entry->end,
12588 hw_entry->start, hw_entry->end);
12589 }
12590 }
12591
12592 static void
12593 check_connector_state(struct drm_device *dev,
12594 struct drm_atomic_state *old_state)
12595 {
12596 struct drm_connector_state *old_conn_state;
12597 struct drm_connector *connector;
12598 int i;
12599
12600 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12601 struct drm_encoder *encoder = connector->encoder;
12602 struct drm_connector_state *state = connector->state;
12603
12604 /* This also checks the encoder/connector hw state with the
12605 * ->get_hw_state callbacks. */
12606 intel_connector_check_state(to_intel_connector(connector));
12607
12608 I915_STATE_WARN(state->best_encoder != encoder,
12609 "connector's atomic encoder doesn't match legacy encoder\n");
12610 }
12611 }
12612
12613 static void
12614 check_encoder_state(struct drm_device *dev)
12615 {
12616 struct intel_encoder *encoder;
12617 struct intel_connector *connector;
12618
12619 for_each_intel_encoder(dev, encoder) {
12620 bool enabled = false;
12621 enum pipe pipe;
12622
12623 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12624 encoder->base.base.id,
12625 encoder->base.name);
12626
12627 for_each_intel_connector(dev, connector) {
12628 if (connector->base.state->best_encoder != &encoder->base)
12629 continue;
12630 enabled = true;
12631
12632 I915_STATE_WARN(connector->base.state->crtc !=
12633 encoder->base.crtc,
12634 "connector's crtc doesn't match encoder crtc\n");
12635 }
12636
12637 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12638 "encoder's enabled state mismatch "
12639 "(expected %i, found %i)\n",
12640 !!encoder->base.crtc, enabled);
12641
12642 if (!encoder->base.crtc) {
12643 bool active;
12644
12645 active = encoder->get_hw_state(encoder, &pipe);
12646 I915_STATE_WARN(active,
12647 "encoder detached but still enabled on pipe %c.\n",
12648 pipe_name(pipe));
12649 }
12650 }
12651 }
12652
12653 static void
12654 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12655 {
12656 struct drm_i915_private *dev_priv = dev->dev_private;
12657 struct intel_encoder *encoder;
12658 struct drm_crtc_state *old_crtc_state;
12659 struct drm_crtc *crtc;
12660 int i;
12661
12662 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12664 struct intel_crtc_state *pipe_config, *sw_config;
12665 bool active;
12666
12667 if (!needs_modeset(crtc->state) &&
12668 !to_intel_crtc_state(crtc->state)->update_pipe)
12669 continue;
12670
12671 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12672 pipe_config = to_intel_crtc_state(old_crtc_state);
12673 memset(pipe_config, 0, sizeof(*pipe_config));
12674 pipe_config->base.crtc = crtc;
12675 pipe_config->base.state = old_state;
12676
12677 DRM_DEBUG_KMS("[CRTC:%d]\n",
12678 crtc->base.id);
12679
12680 active = dev_priv->display.get_pipe_config(intel_crtc,
12681 pipe_config);
12682
12683 /* hw state is inconsistent with the pipe quirk */
12684 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12685 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12686 active = crtc->state->active;
12687
12688 I915_STATE_WARN(crtc->state->active != active,
12689 "crtc active state doesn't match with hw state "
12690 "(expected %i, found %i)\n", crtc->state->active, active);
12691
12692 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12693 "transitional active state does not match atomic hw state "
12694 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12695
12696 for_each_encoder_on_crtc(dev, crtc, encoder) {
12697 enum pipe pipe;
12698
12699 active = encoder->get_hw_state(encoder, &pipe);
12700 I915_STATE_WARN(active != crtc->state->active,
12701 "[ENCODER:%i] active %i with crtc active %i\n",
12702 encoder->base.base.id, active, crtc->state->active);
12703
12704 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12705 "Encoder connected to wrong pipe %c\n",
12706 pipe_name(pipe));
12707
12708 if (active)
12709 encoder->get_config(encoder, pipe_config);
12710 }
12711
12712 if (!crtc->state->active)
12713 continue;
12714
12715 sw_config = to_intel_crtc_state(crtc->state);
12716 if (!intel_pipe_config_compare(dev, sw_config,
12717 pipe_config, false)) {
12718 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12719 intel_dump_pipe_config(intel_crtc, pipe_config,
12720 "[hw state]");
12721 intel_dump_pipe_config(intel_crtc, sw_config,
12722 "[sw state]");
12723 }
12724 }
12725 }
12726
12727 static void
12728 check_shared_dpll_state(struct drm_device *dev)
12729 {
12730 struct drm_i915_private *dev_priv = dev->dev_private;
12731 struct intel_crtc *crtc;
12732 struct intel_dpll_hw_state dpll_hw_state;
12733 int i;
12734
12735 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12736 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12737 int enabled_crtcs = 0, active_crtcs = 0;
12738 bool active;
12739
12740 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12741
12742 DRM_DEBUG_KMS("%s\n", pll->name);
12743
12744 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12745
12746 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12747 "more active pll users than references: %i vs %i\n",
12748 pll->active, hweight32(pll->config.crtc_mask));
12749 I915_STATE_WARN(pll->active && !pll->on,
12750 "pll in active use but not on in sw tracking\n");
12751 I915_STATE_WARN(pll->on && !pll->active,
12752 "pll in on but not on in use in sw tracking\n");
12753 I915_STATE_WARN(pll->on != active,
12754 "pll on state mismatch (expected %i, found %i)\n",
12755 pll->on, active);
12756
12757 for_each_intel_crtc(dev, crtc) {
12758 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12759 enabled_crtcs++;
12760 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12761 active_crtcs++;
12762 }
12763 I915_STATE_WARN(pll->active != active_crtcs,
12764 "pll active crtcs mismatch (expected %i, found %i)\n",
12765 pll->active, active_crtcs);
12766 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12767 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12768 hweight32(pll->config.crtc_mask), enabled_crtcs);
12769
12770 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12771 sizeof(dpll_hw_state)),
12772 "pll hw state mismatch\n");
12773 }
12774 }
12775
12776 static void
12777 intel_modeset_check_state(struct drm_device *dev,
12778 struct drm_atomic_state *old_state)
12779 {
12780 check_wm_state(dev);
12781 check_connector_state(dev, old_state);
12782 check_encoder_state(dev);
12783 check_crtc_state(dev, old_state);
12784 check_shared_dpll_state(dev);
12785 }
12786
12787 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12788 int dotclock)
12789 {
12790 /*
12791 * FDI already provided one idea for the dotclock.
12792 * Yell if the encoder disagrees.
12793 */
12794 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12795 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12796 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12797 }
12798
12799 static void update_scanline_offset(struct intel_crtc *crtc)
12800 {
12801 struct drm_device *dev = crtc->base.dev;
12802
12803 /*
12804 * The scanline counter increments at the leading edge of hsync.
12805 *
12806 * On most platforms it starts counting from vtotal-1 on the
12807 * first active line. That means the scanline counter value is
12808 * always one less than what we would expect. Ie. just after
12809 * start of vblank, which also occurs at start of hsync (on the
12810 * last active line), the scanline counter will read vblank_start-1.
12811 *
12812 * On gen2 the scanline counter starts counting from 1 instead
12813 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12814 * to keep the value positive), instead of adding one.
12815 *
12816 * On HSW+ the behaviour of the scanline counter depends on the output
12817 * type. For DP ports it behaves like most other platforms, but on HDMI
12818 * there's an extra 1 line difference. So we need to add two instead of
12819 * one to the value.
12820 */
12821 if (IS_GEN2(dev)) {
12822 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12823 int vtotal;
12824
12825 vtotal = adjusted_mode->crtc_vtotal;
12826 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12827 vtotal /= 2;
12828
12829 crtc->scanline_offset = vtotal - 1;
12830 } else if (HAS_DDI(dev) &&
12831 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12832 crtc->scanline_offset = 2;
12833 } else
12834 crtc->scanline_offset = 1;
12835 }
12836
12837 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12838 {
12839 struct drm_device *dev = state->dev;
12840 struct drm_i915_private *dev_priv = to_i915(dev);
12841 struct intel_shared_dpll_config *shared_dpll = NULL;
12842 struct intel_crtc *intel_crtc;
12843 struct intel_crtc_state *intel_crtc_state;
12844 struct drm_crtc *crtc;
12845 struct drm_crtc_state *crtc_state;
12846 int i;
12847
12848 if (!dev_priv->display.crtc_compute_clock)
12849 return;
12850
12851 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12852 int dpll;
12853
12854 intel_crtc = to_intel_crtc(crtc);
12855 intel_crtc_state = to_intel_crtc_state(crtc_state);
12856 dpll = intel_crtc_state->shared_dpll;
12857
12858 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12859 continue;
12860
12861 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12862
12863 if (!shared_dpll)
12864 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12865
12866 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12867 }
12868 }
12869
12870 /*
12871 * This implements the workaround described in the "notes" section of the mode
12872 * set sequence documentation. When going from no pipes or single pipe to
12873 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12874 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12875 */
12876 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12877 {
12878 struct drm_crtc_state *crtc_state;
12879 struct intel_crtc *intel_crtc;
12880 struct drm_crtc *crtc;
12881 struct intel_crtc_state *first_crtc_state = NULL;
12882 struct intel_crtc_state *other_crtc_state = NULL;
12883 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12884 int i;
12885
12886 /* look at all crtc's that are going to be enabled in during modeset */
12887 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12888 intel_crtc = to_intel_crtc(crtc);
12889
12890 if (!crtc_state->active || !needs_modeset(crtc_state))
12891 continue;
12892
12893 if (first_crtc_state) {
12894 other_crtc_state = to_intel_crtc_state(crtc_state);
12895 break;
12896 } else {
12897 first_crtc_state = to_intel_crtc_state(crtc_state);
12898 first_pipe = intel_crtc->pipe;
12899 }
12900 }
12901
12902 /* No workaround needed? */
12903 if (!first_crtc_state)
12904 return 0;
12905
12906 /* w/a possibly needed, check how many crtc's are already enabled. */
12907 for_each_intel_crtc(state->dev, intel_crtc) {
12908 struct intel_crtc_state *pipe_config;
12909
12910 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12911 if (IS_ERR(pipe_config))
12912 return PTR_ERR(pipe_config);
12913
12914 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12915
12916 if (!pipe_config->base.active ||
12917 needs_modeset(&pipe_config->base))
12918 continue;
12919
12920 /* 2 or more enabled crtcs means no need for w/a */
12921 if (enabled_pipe != INVALID_PIPE)
12922 return 0;
12923
12924 enabled_pipe = intel_crtc->pipe;
12925 }
12926
12927 if (enabled_pipe != INVALID_PIPE)
12928 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12929 else if (other_crtc_state)
12930 other_crtc_state->hsw_workaround_pipe = first_pipe;
12931
12932 return 0;
12933 }
12934
12935 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12936 {
12937 struct drm_crtc *crtc;
12938 struct drm_crtc_state *crtc_state;
12939 int ret = 0;
12940
12941 /* add all active pipes to the state */
12942 for_each_crtc(state->dev, crtc) {
12943 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12944 if (IS_ERR(crtc_state))
12945 return PTR_ERR(crtc_state);
12946
12947 if (!crtc_state->active || needs_modeset(crtc_state))
12948 continue;
12949
12950 crtc_state->mode_changed = true;
12951
12952 ret = drm_atomic_add_affected_connectors(state, crtc);
12953 if (ret)
12954 break;
12955
12956 ret = drm_atomic_add_affected_planes(state, crtc);
12957 if (ret)
12958 break;
12959 }
12960
12961 return ret;
12962 }
12963
12964 static int intel_modeset_checks(struct drm_atomic_state *state)
12965 {
12966 struct drm_device *dev = state->dev;
12967 struct drm_i915_private *dev_priv = dev->dev_private;
12968 int ret;
12969
12970 if (!check_digital_port_conflicts(state)) {
12971 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12972 return -EINVAL;
12973 }
12974
12975 /*
12976 * See if the config requires any additional preparation, e.g.
12977 * to adjust global state with pipes off. We need to do this
12978 * here so we can get the modeset_pipe updated config for the new
12979 * mode set on this crtc. For other crtcs we need to use the
12980 * adjusted_mode bits in the crtc directly.
12981 */
12982 if (dev_priv->display.modeset_calc_cdclk) {
12983 unsigned int cdclk;
12984
12985 ret = dev_priv->display.modeset_calc_cdclk(state);
12986
12987 cdclk = to_intel_atomic_state(state)->cdclk;
12988 if (!ret && cdclk != dev_priv->cdclk_freq)
12989 ret = intel_modeset_all_pipes(state);
12990
12991 if (ret < 0)
12992 return ret;
12993 } else
12994 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
12995
12996 intel_modeset_clear_plls(state);
12997
12998 if (IS_HASWELL(dev))
12999 return haswell_mode_set_planes_workaround(state);
13000
13001 return 0;
13002 }
13003
13004 /**
13005 * intel_atomic_check - validate state object
13006 * @dev: drm device
13007 * @state: state to validate
13008 */
13009 static int intel_atomic_check(struct drm_device *dev,
13010 struct drm_atomic_state *state)
13011 {
13012 struct drm_crtc *crtc;
13013 struct drm_crtc_state *crtc_state;
13014 int ret, i;
13015 bool any_ms = false;
13016
13017 ret = drm_atomic_helper_check_modeset(dev, state);
13018 if (ret)
13019 return ret;
13020
13021 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13022 struct intel_crtc_state *pipe_config =
13023 to_intel_crtc_state(crtc_state);
13024
13025 /* Catch I915_MODE_FLAG_INHERITED */
13026 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13027 crtc_state->mode_changed = true;
13028
13029 if (!crtc_state->enable) {
13030 if (needs_modeset(crtc_state))
13031 any_ms = true;
13032 continue;
13033 }
13034
13035 if (!needs_modeset(crtc_state))
13036 continue;
13037
13038 /* FIXME: For only active_changed we shouldn't need to do any
13039 * state recomputation at all. */
13040
13041 ret = drm_atomic_add_affected_connectors(state, crtc);
13042 if (ret)
13043 return ret;
13044
13045 ret = intel_modeset_pipe_config(crtc, pipe_config);
13046 if (ret)
13047 return ret;
13048
13049 if (intel_pipe_config_compare(state->dev,
13050 to_intel_crtc_state(crtc->state),
13051 pipe_config, true)) {
13052 crtc_state->mode_changed = false;
13053 to_intel_crtc_state(crtc_state)->update_pipe = true;
13054 }
13055
13056 if (needs_modeset(crtc_state)) {
13057 any_ms = true;
13058
13059 ret = drm_atomic_add_affected_planes(state, crtc);
13060 if (ret)
13061 return ret;
13062 }
13063
13064 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13065 needs_modeset(crtc_state) ?
13066 "[modeset]" : "[fastset]");
13067 }
13068
13069 if (any_ms) {
13070 ret = intel_modeset_checks(state);
13071
13072 if (ret)
13073 return ret;
13074 } else
13075 to_intel_atomic_state(state)->cdclk =
13076 to_i915(state->dev)->cdclk_freq;
13077
13078 return drm_atomic_helper_check_planes(state->dev, state);
13079 }
13080
13081 /**
13082 * intel_atomic_commit - commit validated state object
13083 * @dev: DRM device
13084 * @state: the top-level driver state object
13085 * @async: asynchronous commit
13086 *
13087 * This function commits a top-level state object that has been validated
13088 * with drm_atomic_helper_check().
13089 *
13090 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13091 * we can only handle plane-related operations and do not yet support
13092 * asynchronous commit.
13093 *
13094 * RETURNS
13095 * Zero for success or -errno.
13096 */
13097 static int intel_atomic_commit(struct drm_device *dev,
13098 struct drm_atomic_state *state,
13099 bool async)
13100 {
13101 struct drm_i915_private *dev_priv = dev->dev_private;
13102 struct drm_crtc *crtc;
13103 struct drm_crtc_state *crtc_state;
13104 int ret = 0;
13105 int i;
13106 bool any_ms = false;
13107
13108 if (async) {
13109 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13110 return -EINVAL;
13111 }
13112
13113 ret = drm_atomic_helper_prepare_planes(dev, state);
13114 if (ret)
13115 return ret;
13116
13117 drm_atomic_helper_swap_state(dev, state);
13118
13119 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13121
13122 if (!needs_modeset(crtc->state))
13123 continue;
13124
13125 any_ms = true;
13126 intel_pre_plane_update(intel_crtc);
13127
13128 if (crtc_state->active) {
13129 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13130 dev_priv->display.crtc_disable(crtc);
13131 intel_crtc->active = false;
13132 intel_disable_shared_dpll(intel_crtc);
13133 }
13134 }
13135
13136 /* Only after disabling all output pipelines that will be changed can we
13137 * update the the output configuration. */
13138 intel_modeset_update_crtc_state(state);
13139
13140 if (any_ms) {
13141 intel_shared_dpll_commit(state);
13142
13143 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13144 modeset_update_crtc_power_domains(state);
13145 }
13146
13147 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13148 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13150 bool modeset = needs_modeset(crtc->state);
13151 bool update_pipe = !modeset &&
13152 to_intel_crtc_state(crtc->state)->update_pipe;
13153 unsigned long put_domains = 0;
13154
13155 if (modeset && crtc->state->active) {
13156 update_scanline_offset(to_intel_crtc(crtc));
13157 dev_priv->display.crtc_enable(crtc);
13158 }
13159
13160 if (update_pipe) {
13161 put_domains = modeset_get_crtc_power_domains(crtc);
13162
13163 /* make sure intel_modeset_check_state runs */
13164 any_ms = true;
13165 }
13166
13167 if (!modeset)
13168 intel_pre_plane_update(intel_crtc);
13169
13170 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13171
13172 if (put_domains)
13173 modeset_put_power_domains(dev_priv, put_domains);
13174
13175 intel_post_plane_update(intel_crtc);
13176 }
13177
13178 /* FIXME: add subpixel order */
13179
13180 drm_atomic_helper_wait_for_vblanks(dev, state);
13181 drm_atomic_helper_cleanup_planes(dev, state);
13182
13183 if (any_ms)
13184 intel_modeset_check_state(dev, state);
13185
13186 drm_atomic_state_free(state);
13187
13188 return 0;
13189 }
13190
13191 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13192 {
13193 struct drm_device *dev = crtc->dev;
13194 struct drm_atomic_state *state;
13195 struct drm_crtc_state *crtc_state;
13196 int ret;
13197
13198 state = drm_atomic_state_alloc(dev);
13199 if (!state) {
13200 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13201 crtc->base.id);
13202 return;
13203 }
13204
13205 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13206
13207 retry:
13208 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13209 ret = PTR_ERR_OR_ZERO(crtc_state);
13210 if (!ret) {
13211 if (!crtc_state->active)
13212 goto out;
13213
13214 crtc_state->mode_changed = true;
13215 ret = drm_atomic_commit(state);
13216 }
13217
13218 if (ret == -EDEADLK) {
13219 drm_atomic_state_clear(state);
13220 drm_modeset_backoff(state->acquire_ctx);
13221 goto retry;
13222 }
13223
13224 if (ret)
13225 out:
13226 drm_atomic_state_free(state);
13227 }
13228
13229 #undef for_each_intel_crtc_masked
13230
13231 static const struct drm_crtc_funcs intel_crtc_funcs = {
13232 .gamma_set = intel_crtc_gamma_set,
13233 .set_config = drm_atomic_helper_set_config,
13234 .destroy = intel_crtc_destroy,
13235 .page_flip = intel_crtc_page_flip,
13236 .atomic_duplicate_state = intel_crtc_duplicate_state,
13237 .atomic_destroy_state = intel_crtc_destroy_state,
13238 };
13239
13240 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13241 struct intel_shared_dpll *pll,
13242 struct intel_dpll_hw_state *hw_state)
13243 {
13244 uint32_t val;
13245
13246 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13247 return false;
13248
13249 val = I915_READ(PCH_DPLL(pll->id));
13250 hw_state->dpll = val;
13251 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13252 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13253
13254 return val & DPLL_VCO_ENABLE;
13255 }
13256
13257 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13258 struct intel_shared_dpll *pll)
13259 {
13260 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13261 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13262 }
13263
13264 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13265 struct intel_shared_dpll *pll)
13266 {
13267 /* PCH refclock must be enabled first */
13268 ibx_assert_pch_refclk_enabled(dev_priv);
13269
13270 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13271
13272 /* Wait for the clocks to stabilize. */
13273 POSTING_READ(PCH_DPLL(pll->id));
13274 udelay(150);
13275
13276 /* The pixel multiplier can only be updated once the
13277 * DPLL is enabled and the clocks are stable.
13278 *
13279 * So write it again.
13280 */
13281 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13282 POSTING_READ(PCH_DPLL(pll->id));
13283 udelay(200);
13284 }
13285
13286 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13287 struct intel_shared_dpll *pll)
13288 {
13289 struct drm_device *dev = dev_priv->dev;
13290 struct intel_crtc *crtc;
13291
13292 /* Make sure no transcoder isn't still depending on us. */
13293 for_each_intel_crtc(dev, crtc) {
13294 if (intel_crtc_to_shared_dpll(crtc) == pll)
13295 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13296 }
13297
13298 I915_WRITE(PCH_DPLL(pll->id), 0);
13299 POSTING_READ(PCH_DPLL(pll->id));
13300 udelay(200);
13301 }
13302
13303 static char *ibx_pch_dpll_names[] = {
13304 "PCH DPLL A",
13305 "PCH DPLL B",
13306 };
13307
13308 static void ibx_pch_dpll_init(struct drm_device *dev)
13309 {
13310 struct drm_i915_private *dev_priv = dev->dev_private;
13311 int i;
13312
13313 dev_priv->num_shared_dpll = 2;
13314
13315 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13316 dev_priv->shared_dplls[i].id = i;
13317 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13318 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13319 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13320 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13321 dev_priv->shared_dplls[i].get_hw_state =
13322 ibx_pch_dpll_get_hw_state;
13323 }
13324 }
13325
13326 static void intel_shared_dpll_init(struct drm_device *dev)
13327 {
13328 struct drm_i915_private *dev_priv = dev->dev_private;
13329
13330 intel_update_cdclk(dev);
13331
13332 if (HAS_DDI(dev))
13333 intel_ddi_pll_init(dev);
13334 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13335 ibx_pch_dpll_init(dev);
13336 else
13337 dev_priv->num_shared_dpll = 0;
13338
13339 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13340 }
13341
13342 /**
13343 * intel_prepare_plane_fb - Prepare fb for usage on plane
13344 * @plane: drm plane to prepare for
13345 * @fb: framebuffer to prepare for presentation
13346 *
13347 * Prepares a framebuffer for usage on a display plane. Generally this
13348 * involves pinning the underlying object and updating the frontbuffer tracking
13349 * bits. Some older platforms need special physical address handling for
13350 * cursor planes.
13351 *
13352 * Returns 0 on success, negative error code on failure.
13353 */
13354 int
13355 intel_prepare_plane_fb(struct drm_plane *plane,
13356 const struct drm_plane_state *new_state)
13357 {
13358 struct drm_device *dev = plane->dev;
13359 struct drm_framebuffer *fb = new_state->fb;
13360 struct intel_plane *intel_plane = to_intel_plane(plane);
13361 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13362 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13363 int ret = 0;
13364
13365 if (!obj)
13366 return 0;
13367
13368 mutex_lock(&dev->struct_mutex);
13369
13370 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13371 INTEL_INFO(dev)->cursor_needs_physical) {
13372 int align = IS_I830(dev) ? 16 * 1024 : 256;
13373 ret = i915_gem_object_attach_phys(obj, align);
13374 if (ret)
13375 DRM_DEBUG_KMS("failed to attach phys object\n");
13376 } else {
13377 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13378 }
13379
13380 if (ret == 0)
13381 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13382
13383 mutex_unlock(&dev->struct_mutex);
13384
13385 return ret;
13386 }
13387
13388 /**
13389 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13390 * @plane: drm plane to clean up for
13391 * @fb: old framebuffer that was on plane
13392 *
13393 * Cleans up a framebuffer that has just been removed from a plane.
13394 */
13395 void
13396 intel_cleanup_plane_fb(struct drm_plane *plane,
13397 const struct drm_plane_state *old_state)
13398 {
13399 struct drm_device *dev = plane->dev;
13400 struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13401
13402 if (!obj)
13403 return;
13404
13405 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13406 !INTEL_INFO(dev)->cursor_needs_physical) {
13407 mutex_lock(&dev->struct_mutex);
13408 intel_unpin_fb_obj(old_state->fb, old_state);
13409 mutex_unlock(&dev->struct_mutex);
13410 }
13411 }
13412
13413 int
13414 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13415 {
13416 int max_scale;
13417 struct drm_device *dev;
13418 struct drm_i915_private *dev_priv;
13419 int crtc_clock, cdclk;
13420
13421 if (!intel_crtc || !crtc_state)
13422 return DRM_PLANE_HELPER_NO_SCALING;
13423
13424 dev = intel_crtc->base.dev;
13425 dev_priv = dev->dev_private;
13426 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13427 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13428
13429 if (!crtc_clock || !cdclk)
13430 return DRM_PLANE_HELPER_NO_SCALING;
13431
13432 /*
13433 * skl max scale is lower of:
13434 * close to 3 but not 3, -1 is for that purpose
13435 * or
13436 * cdclk/crtc_clock
13437 */
13438 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13439
13440 return max_scale;
13441 }
13442
13443 static int
13444 intel_check_primary_plane(struct drm_plane *plane,
13445 struct intel_crtc_state *crtc_state,
13446 struct intel_plane_state *state)
13447 {
13448 struct drm_crtc *crtc = state->base.crtc;
13449 struct drm_framebuffer *fb = state->base.fb;
13450 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13451 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13452 bool can_position = false;
13453
13454 /* use scaler when colorkey is not required */
13455 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13456 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13457 min_scale = 1;
13458 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13459 can_position = true;
13460 }
13461
13462 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13463 &state->dst, &state->clip,
13464 min_scale, max_scale,
13465 can_position, true,
13466 &state->visible);
13467 }
13468
13469 static void
13470 intel_commit_primary_plane(struct drm_plane *plane,
13471 struct intel_plane_state *state)
13472 {
13473 struct drm_crtc *crtc = state->base.crtc;
13474 struct drm_framebuffer *fb = state->base.fb;
13475 struct drm_device *dev = plane->dev;
13476 struct drm_i915_private *dev_priv = dev->dev_private;
13477 struct intel_crtc *intel_crtc;
13478 struct drm_rect *src = &state->src;
13479
13480 crtc = crtc ? crtc : plane->crtc;
13481 intel_crtc = to_intel_crtc(crtc);
13482
13483 plane->fb = fb;
13484 crtc->x = src->x1 >> 16;
13485 crtc->y = src->y1 >> 16;
13486
13487 if (!crtc->state->active)
13488 return;
13489
13490 dev_priv->display.update_primary_plane(crtc, fb,
13491 state->src.x1 >> 16,
13492 state->src.y1 >> 16);
13493 }
13494
13495 static void
13496 intel_disable_primary_plane(struct drm_plane *plane,
13497 struct drm_crtc *crtc)
13498 {
13499 struct drm_device *dev = plane->dev;
13500 struct drm_i915_private *dev_priv = dev->dev_private;
13501
13502 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13503 }
13504
13505 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13506 struct drm_crtc_state *old_crtc_state)
13507 {
13508 struct drm_device *dev = crtc->dev;
13509 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13510 struct intel_crtc_state *old_intel_state =
13511 to_intel_crtc_state(old_crtc_state);
13512 bool modeset = needs_modeset(crtc->state);
13513
13514 if (intel_crtc->atomic.update_wm_pre)
13515 intel_update_watermarks(crtc);
13516
13517 /* Perform vblank evasion around commit operation */
13518 if (crtc->state->active)
13519 intel_pipe_update_start(intel_crtc);
13520
13521 if (modeset)
13522 return;
13523
13524 if (to_intel_crtc_state(crtc->state)->update_pipe)
13525 intel_update_pipe_config(intel_crtc, old_intel_state);
13526 else if (INTEL_INFO(dev)->gen >= 9)
13527 skl_detach_scalers(intel_crtc);
13528 }
13529
13530 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13531 struct drm_crtc_state *old_crtc_state)
13532 {
13533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13534
13535 if (crtc->state->active)
13536 intel_pipe_update_end(intel_crtc);
13537 }
13538
13539 /**
13540 * intel_plane_destroy - destroy a plane
13541 * @plane: plane to destroy
13542 *
13543 * Common destruction function for all types of planes (primary, cursor,
13544 * sprite).
13545 */
13546 void intel_plane_destroy(struct drm_plane *plane)
13547 {
13548 struct intel_plane *intel_plane = to_intel_plane(plane);
13549 drm_plane_cleanup(plane);
13550 kfree(intel_plane);
13551 }
13552
13553 const struct drm_plane_funcs intel_plane_funcs = {
13554 .update_plane = drm_atomic_helper_update_plane,
13555 .disable_plane = drm_atomic_helper_disable_plane,
13556 .destroy = intel_plane_destroy,
13557 .set_property = drm_atomic_helper_plane_set_property,
13558 .atomic_get_property = intel_plane_atomic_get_property,
13559 .atomic_set_property = intel_plane_atomic_set_property,
13560 .atomic_duplicate_state = intel_plane_duplicate_state,
13561 .atomic_destroy_state = intel_plane_destroy_state,
13562
13563 };
13564
13565 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13566 int pipe)
13567 {
13568 struct intel_plane *primary;
13569 struct intel_plane_state *state;
13570 const uint32_t *intel_primary_formats;
13571 unsigned int num_formats;
13572
13573 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13574 if (primary == NULL)
13575 return NULL;
13576
13577 state = intel_create_plane_state(&primary->base);
13578 if (!state) {
13579 kfree(primary);
13580 return NULL;
13581 }
13582 primary->base.state = &state->base;
13583
13584 primary->can_scale = false;
13585 primary->max_downscale = 1;
13586 if (INTEL_INFO(dev)->gen >= 9) {
13587 primary->can_scale = true;
13588 state->scaler_id = -1;
13589 }
13590 primary->pipe = pipe;
13591 primary->plane = pipe;
13592 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13593 primary->check_plane = intel_check_primary_plane;
13594 primary->commit_plane = intel_commit_primary_plane;
13595 primary->disable_plane = intel_disable_primary_plane;
13596 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13597 primary->plane = !pipe;
13598
13599 if (INTEL_INFO(dev)->gen >= 9) {
13600 intel_primary_formats = skl_primary_formats;
13601 num_formats = ARRAY_SIZE(skl_primary_formats);
13602 } else if (INTEL_INFO(dev)->gen >= 4) {
13603 intel_primary_formats = i965_primary_formats;
13604 num_formats = ARRAY_SIZE(i965_primary_formats);
13605 } else {
13606 intel_primary_formats = i8xx_primary_formats;
13607 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13608 }
13609
13610 drm_universal_plane_init(dev, &primary->base, 0,
13611 &intel_plane_funcs,
13612 intel_primary_formats, num_formats,
13613 DRM_PLANE_TYPE_PRIMARY);
13614
13615 if (INTEL_INFO(dev)->gen >= 4)
13616 intel_create_rotation_property(dev, primary);
13617
13618 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13619
13620 return &primary->base;
13621 }
13622
13623 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13624 {
13625 if (!dev->mode_config.rotation_property) {
13626 unsigned long flags = BIT(DRM_ROTATE_0) |
13627 BIT(DRM_ROTATE_180);
13628
13629 if (INTEL_INFO(dev)->gen >= 9)
13630 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13631
13632 dev->mode_config.rotation_property =
13633 drm_mode_create_rotation_property(dev, flags);
13634 }
13635 if (dev->mode_config.rotation_property)
13636 drm_object_attach_property(&plane->base.base,
13637 dev->mode_config.rotation_property,
13638 plane->base.state->rotation);
13639 }
13640
13641 static int
13642 intel_check_cursor_plane(struct drm_plane *plane,
13643 struct intel_crtc_state *crtc_state,
13644 struct intel_plane_state *state)
13645 {
13646 struct drm_crtc *crtc = crtc_state->base.crtc;
13647 struct drm_framebuffer *fb = state->base.fb;
13648 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13649 unsigned stride;
13650 int ret;
13651
13652 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13653 &state->dst, &state->clip,
13654 DRM_PLANE_HELPER_NO_SCALING,
13655 DRM_PLANE_HELPER_NO_SCALING,
13656 true, true, &state->visible);
13657 if (ret)
13658 return ret;
13659
13660 /* if we want to turn off the cursor ignore width and height */
13661 if (!obj)
13662 return 0;
13663
13664 /* Check for which cursor types we support */
13665 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13666 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13667 state->base.crtc_w, state->base.crtc_h);
13668 return -EINVAL;
13669 }
13670
13671 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13672 if (obj->base.size < stride * state->base.crtc_h) {
13673 DRM_DEBUG_KMS("buffer is too small\n");
13674 return -ENOMEM;
13675 }
13676
13677 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13678 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13679 return -EINVAL;
13680 }
13681
13682 return 0;
13683 }
13684
13685 static void
13686 intel_disable_cursor_plane(struct drm_plane *plane,
13687 struct drm_crtc *crtc)
13688 {
13689 intel_crtc_update_cursor(crtc, false);
13690 }
13691
13692 static void
13693 intel_commit_cursor_plane(struct drm_plane *plane,
13694 struct intel_plane_state *state)
13695 {
13696 struct drm_crtc *crtc = state->base.crtc;
13697 struct drm_device *dev = plane->dev;
13698 struct intel_crtc *intel_crtc;
13699 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13700 uint32_t addr;
13701
13702 crtc = crtc ? crtc : plane->crtc;
13703 intel_crtc = to_intel_crtc(crtc);
13704
13705 if (intel_crtc->cursor_bo == obj)
13706 goto update;
13707
13708 if (!obj)
13709 addr = 0;
13710 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13711 addr = i915_gem_obj_ggtt_offset(obj);
13712 else
13713 addr = obj->phys_handle->busaddr;
13714
13715 intel_crtc->cursor_addr = addr;
13716 intel_crtc->cursor_bo = obj;
13717
13718 update:
13719 if (crtc->state->active)
13720 intel_crtc_update_cursor(crtc, state->visible);
13721 }
13722
13723 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13724 int pipe)
13725 {
13726 struct intel_plane *cursor;
13727 struct intel_plane_state *state;
13728
13729 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13730 if (cursor == NULL)
13731 return NULL;
13732
13733 state = intel_create_plane_state(&cursor->base);
13734 if (!state) {
13735 kfree(cursor);
13736 return NULL;
13737 }
13738 cursor->base.state = &state->base;
13739
13740 cursor->can_scale = false;
13741 cursor->max_downscale = 1;
13742 cursor->pipe = pipe;
13743 cursor->plane = pipe;
13744 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13745 cursor->check_plane = intel_check_cursor_plane;
13746 cursor->commit_plane = intel_commit_cursor_plane;
13747 cursor->disable_plane = intel_disable_cursor_plane;
13748
13749 drm_universal_plane_init(dev, &cursor->base, 0,
13750 &intel_plane_funcs,
13751 intel_cursor_formats,
13752 ARRAY_SIZE(intel_cursor_formats),
13753 DRM_PLANE_TYPE_CURSOR);
13754
13755 if (INTEL_INFO(dev)->gen >= 4) {
13756 if (!dev->mode_config.rotation_property)
13757 dev->mode_config.rotation_property =
13758 drm_mode_create_rotation_property(dev,
13759 BIT(DRM_ROTATE_0) |
13760 BIT(DRM_ROTATE_180));
13761 if (dev->mode_config.rotation_property)
13762 drm_object_attach_property(&cursor->base.base,
13763 dev->mode_config.rotation_property,
13764 state->base.rotation);
13765 }
13766
13767 if (INTEL_INFO(dev)->gen >=9)
13768 state->scaler_id = -1;
13769
13770 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13771
13772 return &cursor->base;
13773 }
13774
13775 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13776 struct intel_crtc_state *crtc_state)
13777 {
13778 int i;
13779 struct intel_scaler *intel_scaler;
13780 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13781
13782 for (i = 0; i < intel_crtc->num_scalers; i++) {
13783 intel_scaler = &scaler_state->scalers[i];
13784 intel_scaler->in_use = 0;
13785 intel_scaler->mode = PS_SCALER_MODE_DYN;
13786 }
13787
13788 scaler_state->scaler_id = -1;
13789 }
13790
13791 static void intel_crtc_init(struct drm_device *dev, int pipe)
13792 {
13793 struct drm_i915_private *dev_priv = dev->dev_private;
13794 struct intel_crtc *intel_crtc;
13795 struct intel_crtc_state *crtc_state = NULL;
13796 struct drm_plane *primary = NULL;
13797 struct drm_plane *cursor = NULL;
13798 int i, ret;
13799
13800 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13801 if (intel_crtc == NULL)
13802 return;
13803
13804 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13805 if (!crtc_state)
13806 goto fail;
13807 intel_crtc->config = crtc_state;
13808 intel_crtc->base.state = &crtc_state->base;
13809 crtc_state->base.crtc = &intel_crtc->base;
13810
13811 /* initialize shared scalers */
13812 if (INTEL_INFO(dev)->gen >= 9) {
13813 if (pipe == PIPE_C)
13814 intel_crtc->num_scalers = 1;
13815 else
13816 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13817
13818 skl_init_scalers(dev, intel_crtc, crtc_state);
13819 }
13820
13821 primary = intel_primary_plane_create(dev, pipe);
13822 if (!primary)
13823 goto fail;
13824
13825 cursor = intel_cursor_plane_create(dev, pipe);
13826 if (!cursor)
13827 goto fail;
13828
13829 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13830 cursor, &intel_crtc_funcs);
13831 if (ret)
13832 goto fail;
13833
13834 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13835 for (i = 0; i < 256; i++) {
13836 intel_crtc->lut_r[i] = i;
13837 intel_crtc->lut_g[i] = i;
13838 intel_crtc->lut_b[i] = i;
13839 }
13840
13841 /*
13842 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13843 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13844 */
13845 intel_crtc->pipe = pipe;
13846 intel_crtc->plane = pipe;
13847 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13848 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13849 intel_crtc->plane = !pipe;
13850 }
13851
13852 intel_crtc->cursor_base = ~0;
13853 intel_crtc->cursor_cntl = ~0;
13854 intel_crtc->cursor_size = ~0;
13855
13856 intel_crtc->wm.cxsr_allowed = true;
13857
13858 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13859 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13860 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13861 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13862
13863 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13864
13865 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13866 return;
13867
13868 fail:
13869 if (primary)
13870 drm_plane_cleanup(primary);
13871 if (cursor)
13872 drm_plane_cleanup(cursor);
13873 kfree(crtc_state);
13874 kfree(intel_crtc);
13875 }
13876
13877 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13878 {
13879 struct drm_encoder *encoder = connector->base.encoder;
13880 struct drm_device *dev = connector->base.dev;
13881
13882 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13883
13884 if (!encoder || WARN_ON(!encoder->crtc))
13885 return INVALID_PIPE;
13886
13887 return to_intel_crtc(encoder->crtc)->pipe;
13888 }
13889
13890 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13891 struct drm_file *file)
13892 {
13893 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13894 struct drm_crtc *drmmode_crtc;
13895 struct intel_crtc *crtc;
13896
13897 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13898
13899 if (!drmmode_crtc) {
13900 DRM_ERROR("no such CRTC id\n");
13901 return -ENOENT;
13902 }
13903
13904 crtc = to_intel_crtc(drmmode_crtc);
13905 pipe_from_crtc_id->pipe = crtc->pipe;
13906
13907 return 0;
13908 }
13909
13910 static int intel_encoder_clones(struct intel_encoder *encoder)
13911 {
13912 struct drm_device *dev = encoder->base.dev;
13913 struct intel_encoder *source_encoder;
13914 int index_mask = 0;
13915 int entry = 0;
13916
13917 for_each_intel_encoder(dev, source_encoder) {
13918 if (encoders_cloneable(encoder, source_encoder))
13919 index_mask |= (1 << entry);
13920
13921 entry++;
13922 }
13923
13924 return index_mask;
13925 }
13926
13927 static bool has_edp_a(struct drm_device *dev)
13928 {
13929 struct drm_i915_private *dev_priv = dev->dev_private;
13930
13931 if (!IS_MOBILE(dev))
13932 return false;
13933
13934 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13935 return false;
13936
13937 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13938 return false;
13939
13940 return true;
13941 }
13942
13943 static bool intel_crt_present(struct drm_device *dev)
13944 {
13945 struct drm_i915_private *dev_priv = dev->dev_private;
13946
13947 if (INTEL_INFO(dev)->gen >= 9)
13948 return false;
13949
13950 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13951 return false;
13952
13953 if (IS_CHERRYVIEW(dev))
13954 return false;
13955
13956 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13957 return false;
13958
13959 return true;
13960 }
13961
13962 static void intel_setup_outputs(struct drm_device *dev)
13963 {
13964 struct drm_i915_private *dev_priv = dev->dev_private;
13965 struct intel_encoder *encoder;
13966 bool dpd_is_edp = false;
13967
13968 intel_lvds_init(dev);
13969
13970 if (intel_crt_present(dev))
13971 intel_crt_init(dev);
13972
13973 if (IS_BROXTON(dev)) {
13974 /*
13975 * FIXME: Broxton doesn't support port detection via the
13976 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13977 * detect the ports.
13978 */
13979 intel_ddi_init(dev, PORT_A);
13980 intel_ddi_init(dev, PORT_B);
13981 intel_ddi_init(dev, PORT_C);
13982 } else if (HAS_DDI(dev)) {
13983 int found;
13984
13985 /*
13986 * Haswell uses DDI functions to detect digital outputs.
13987 * On SKL pre-D0 the strap isn't connected, so we assume
13988 * it's there.
13989 */
13990 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13991 /* WaIgnoreDDIAStrap: skl */
13992 if (found || IS_SKYLAKE(dev))
13993 intel_ddi_init(dev, PORT_A);
13994
13995 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13996 * register */
13997 found = I915_READ(SFUSE_STRAP);
13998
13999 if (found & SFUSE_STRAP_DDIB_DETECTED)
14000 intel_ddi_init(dev, PORT_B);
14001 if (found & SFUSE_STRAP_DDIC_DETECTED)
14002 intel_ddi_init(dev, PORT_C);
14003 if (found & SFUSE_STRAP_DDID_DETECTED)
14004 intel_ddi_init(dev, PORT_D);
14005 /*
14006 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14007 */
14008 if (IS_SKYLAKE(dev) &&
14009 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14010 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14011 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14012 intel_ddi_init(dev, PORT_E);
14013
14014 } else if (HAS_PCH_SPLIT(dev)) {
14015 int found;
14016 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14017
14018 if (has_edp_a(dev))
14019 intel_dp_init(dev, DP_A, PORT_A);
14020
14021 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14022 /* PCH SDVOB multiplex with HDMIB */
14023 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14024 if (!found)
14025 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14026 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14027 intel_dp_init(dev, PCH_DP_B, PORT_B);
14028 }
14029
14030 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14031 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14032
14033 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14034 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14035
14036 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14037 intel_dp_init(dev, PCH_DP_C, PORT_C);
14038
14039 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14040 intel_dp_init(dev, PCH_DP_D, PORT_D);
14041 } else if (IS_VALLEYVIEW(dev)) {
14042 /*
14043 * The DP_DETECTED bit is the latched state of the DDC
14044 * SDA pin at boot. However since eDP doesn't require DDC
14045 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14046 * eDP ports may have been muxed to an alternate function.
14047 * Thus we can't rely on the DP_DETECTED bit alone to detect
14048 * eDP ports. Consult the VBT as well as DP_DETECTED to
14049 * detect eDP ports.
14050 */
14051 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14052 !intel_dp_is_edp(dev, PORT_B))
14053 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14054 PORT_B);
14055 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14056 intel_dp_is_edp(dev, PORT_B))
14057 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14058
14059 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14060 !intel_dp_is_edp(dev, PORT_C))
14061 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14062 PORT_C);
14063 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14064 intel_dp_is_edp(dev, PORT_C))
14065 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14066
14067 if (IS_CHERRYVIEW(dev)) {
14068 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14069 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14070 PORT_D);
14071 /* eDP not supported on port D, so don't check VBT */
14072 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14073 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14074 }
14075
14076 intel_dsi_init(dev);
14077 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14078 bool found = false;
14079
14080 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14081 DRM_DEBUG_KMS("probing SDVOB\n");
14082 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14083 if (!found && IS_G4X(dev)) {
14084 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14085 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14086 }
14087
14088 if (!found && IS_G4X(dev))
14089 intel_dp_init(dev, DP_B, PORT_B);
14090 }
14091
14092 /* Before G4X SDVOC doesn't have its own detect register */
14093
14094 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14095 DRM_DEBUG_KMS("probing SDVOC\n");
14096 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14097 }
14098
14099 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14100
14101 if (IS_G4X(dev)) {
14102 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14103 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14104 }
14105 if (IS_G4X(dev))
14106 intel_dp_init(dev, DP_C, PORT_C);
14107 }
14108
14109 if (IS_G4X(dev) &&
14110 (I915_READ(DP_D) & DP_DETECTED))
14111 intel_dp_init(dev, DP_D, PORT_D);
14112 } else if (IS_GEN2(dev))
14113 intel_dvo_init(dev);
14114
14115 if (SUPPORTS_TV(dev))
14116 intel_tv_init(dev);
14117
14118 intel_psr_init(dev);
14119
14120 for_each_intel_encoder(dev, encoder) {
14121 encoder->base.possible_crtcs = encoder->crtc_mask;
14122 encoder->base.possible_clones =
14123 intel_encoder_clones(encoder);
14124 }
14125
14126 intel_init_pch_refclk(dev);
14127
14128 drm_helper_move_panel_connectors_to_head(dev);
14129 }
14130
14131 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14132 {
14133 struct drm_device *dev = fb->dev;
14134 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14135
14136 drm_framebuffer_cleanup(fb);
14137 mutex_lock(&dev->struct_mutex);
14138 WARN_ON(!intel_fb->obj->framebuffer_references--);
14139 drm_gem_object_unreference(&intel_fb->obj->base);
14140 mutex_unlock(&dev->struct_mutex);
14141 kfree(intel_fb);
14142 }
14143
14144 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14145 struct drm_file *file,
14146 unsigned int *handle)
14147 {
14148 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14149 struct drm_i915_gem_object *obj = intel_fb->obj;
14150
14151 return drm_gem_handle_create(file, &obj->base, handle);
14152 }
14153
14154 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14155 struct drm_file *file,
14156 unsigned flags, unsigned color,
14157 struct drm_clip_rect *clips,
14158 unsigned num_clips)
14159 {
14160 struct drm_device *dev = fb->dev;
14161 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14162 struct drm_i915_gem_object *obj = intel_fb->obj;
14163
14164 mutex_lock(&dev->struct_mutex);
14165 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14166 mutex_unlock(&dev->struct_mutex);
14167
14168 return 0;
14169 }
14170
14171 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14172 .destroy = intel_user_framebuffer_destroy,
14173 .create_handle = intel_user_framebuffer_create_handle,
14174 .dirty = intel_user_framebuffer_dirty,
14175 };
14176
14177 static
14178 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14179 uint32_t pixel_format)
14180 {
14181 u32 gen = INTEL_INFO(dev)->gen;
14182
14183 if (gen >= 9) {
14184 /* "The stride in bytes must not exceed the of the size of 8K
14185 * pixels and 32K bytes."
14186 */
14187 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14188 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14189 return 32*1024;
14190 } else if (gen >= 4) {
14191 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14192 return 16*1024;
14193 else
14194 return 32*1024;
14195 } else if (gen >= 3) {
14196 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14197 return 8*1024;
14198 else
14199 return 16*1024;
14200 } else {
14201 /* XXX DSPC is limited to 4k tiled */
14202 return 8*1024;
14203 }
14204 }
14205
14206 static int intel_framebuffer_init(struct drm_device *dev,
14207 struct intel_framebuffer *intel_fb,
14208 struct drm_mode_fb_cmd2 *mode_cmd,
14209 struct drm_i915_gem_object *obj)
14210 {
14211 unsigned int aligned_height;
14212 int ret;
14213 u32 pitch_limit, stride_alignment;
14214
14215 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14216
14217 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14218 /* Enforce that fb modifier and tiling mode match, but only for
14219 * X-tiled. This is needed for FBC. */
14220 if (!!(obj->tiling_mode == I915_TILING_X) !=
14221 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14222 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14223 return -EINVAL;
14224 }
14225 } else {
14226 if (obj->tiling_mode == I915_TILING_X)
14227 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14228 else if (obj->tiling_mode == I915_TILING_Y) {
14229 DRM_DEBUG("No Y tiling for legacy addfb\n");
14230 return -EINVAL;
14231 }
14232 }
14233
14234 /* Passed in modifier sanity checking. */
14235 switch (mode_cmd->modifier[0]) {
14236 case I915_FORMAT_MOD_Y_TILED:
14237 case I915_FORMAT_MOD_Yf_TILED:
14238 if (INTEL_INFO(dev)->gen < 9) {
14239 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14240 mode_cmd->modifier[0]);
14241 return -EINVAL;
14242 }
14243 case DRM_FORMAT_MOD_NONE:
14244 case I915_FORMAT_MOD_X_TILED:
14245 break;
14246 default:
14247 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14248 mode_cmd->modifier[0]);
14249 return -EINVAL;
14250 }
14251
14252 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14253 mode_cmd->pixel_format);
14254 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14255 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14256 mode_cmd->pitches[0], stride_alignment);
14257 return -EINVAL;
14258 }
14259
14260 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14261 mode_cmd->pixel_format);
14262 if (mode_cmd->pitches[0] > pitch_limit) {
14263 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14264 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14265 "tiled" : "linear",
14266 mode_cmd->pitches[0], pitch_limit);
14267 return -EINVAL;
14268 }
14269
14270 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14271 mode_cmd->pitches[0] != obj->stride) {
14272 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14273 mode_cmd->pitches[0], obj->stride);
14274 return -EINVAL;
14275 }
14276
14277 /* Reject formats not supported by any plane early. */
14278 switch (mode_cmd->pixel_format) {
14279 case DRM_FORMAT_C8:
14280 case DRM_FORMAT_RGB565:
14281 case DRM_FORMAT_XRGB8888:
14282 case DRM_FORMAT_ARGB8888:
14283 break;
14284 case DRM_FORMAT_XRGB1555:
14285 if (INTEL_INFO(dev)->gen > 3) {
14286 DRM_DEBUG("unsupported pixel format: %s\n",
14287 drm_get_format_name(mode_cmd->pixel_format));
14288 return -EINVAL;
14289 }
14290 break;
14291 case DRM_FORMAT_ABGR8888:
14292 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14293 DRM_DEBUG("unsupported pixel format: %s\n",
14294 drm_get_format_name(mode_cmd->pixel_format));
14295 return -EINVAL;
14296 }
14297 break;
14298 case DRM_FORMAT_XBGR8888:
14299 case DRM_FORMAT_XRGB2101010:
14300 case DRM_FORMAT_XBGR2101010:
14301 if (INTEL_INFO(dev)->gen < 4) {
14302 DRM_DEBUG("unsupported pixel format: %s\n",
14303 drm_get_format_name(mode_cmd->pixel_format));
14304 return -EINVAL;
14305 }
14306 break;
14307 case DRM_FORMAT_ABGR2101010:
14308 if (!IS_VALLEYVIEW(dev)) {
14309 DRM_DEBUG("unsupported pixel format: %s\n",
14310 drm_get_format_name(mode_cmd->pixel_format));
14311 return -EINVAL;
14312 }
14313 break;
14314 case DRM_FORMAT_YUYV:
14315 case DRM_FORMAT_UYVY:
14316 case DRM_FORMAT_YVYU:
14317 case DRM_FORMAT_VYUY:
14318 if (INTEL_INFO(dev)->gen < 5) {
14319 DRM_DEBUG("unsupported pixel format: %s\n",
14320 drm_get_format_name(mode_cmd->pixel_format));
14321 return -EINVAL;
14322 }
14323 break;
14324 default:
14325 DRM_DEBUG("unsupported pixel format: %s\n",
14326 drm_get_format_name(mode_cmd->pixel_format));
14327 return -EINVAL;
14328 }
14329
14330 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14331 if (mode_cmd->offsets[0] != 0)
14332 return -EINVAL;
14333
14334 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14335 mode_cmd->pixel_format,
14336 mode_cmd->modifier[0]);
14337 /* FIXME drm helper for size checks (especially planar formats)? */
14338 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14339 return -EINVAL;
14340
14341 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14342 intel_fb->obj = obj;
14343 intel_fb->obj->framebuffer_references++;
14344
14345 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14346 if (ret) {
14347 DRM_ERROR("framebuffer init failed %d\n", ret);
14348 return ret;
14349 }
14350
14351 return 0;
14352 }
14353
14354 static struct drm_framebuffer *
14355 intel_user_framebuffer_create(struct drm_device *dev,
14356 struct drm_file *filp,
14357 struct drm_mode_fb_cmd2 *mode_cmd)
14358 {
14359 struct drm_i915_gem_object *obj;
14360
14361 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14362 mode_cmd->handles[0]));
14363 if (&obj->base == NULL)
14364 return ERR_PTR(-ENOENT);
14365
14366 return intel_framebuffer_create(dev, mode_cmd, obj);
14367 }
14368
14369 #ifndef CONFIG_DRM_FBDEV_EMULATION
14370 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14371 {
14372 }
14373 #endif
14374
14375 static const struct drm_mode_config_funcs intel_mode_funcs = {
14376 .fb_create = intel_user_framebuffer_create,
14377 .output_poll_changed = intel_fbdev_output_poll_changed,
14378 .atomic_check = intel_atomic_check,
14379 .atomic_commit = intel_atomic_commit,
14380 .atomic_state_alloc = intel_atomic_state_alloc,
14381 .atomic_state_clear = intel_atomic_state_clear,
14382 };
14383
14384 /* Set up chip specific display functions */
14385 static void intel_init_display(struct drm_device *dev)
14386 {
14387 struct drm_i915_private *dev_priv = dev->dev_private;
14388
14389 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14390 dev_priv->display.find_dpll = g4x_find_best_dpll;
14391 else if (IS_CHERRYVIEW(dev))
14392 dev_priv->display.find_dpll = chv_find_best_dpll;
14393 else if (IS_VALLEYVIEW(dev))
14394 dev_priv->display.find_dpll = vlv_find_best_dpll;
14395 else if (IS_PINEVIEW(dev))
14396 dev_priv->display.find_dpll = pnv_find_best_dpll;
14397 else
14398 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14399
14400 if (INTEL_INFO(dev)->gen >= 9) {
14401 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14402 dev_priv->display.get_initial_plane_config =
14403 skylake_get_initial_plane_config;
14404 dev_priv->display.crtc_compute_clock =
14405 haswell_crtc_compute_clock;
14406 dev_priv->display.crtc_enable = haswell_crtc_enable;
14407 dev_priv->display.crtc_disable = haswell_crtc_disable;
14408 dev_priv->display.update_primary_plane =
14409 skylake_update_primary_plane;
14410 } else if (HAS_DDI(dev)) {
14411 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14412 dev_priv->display.get_initial_plane_config =
14413 ironlake_get_initial_plane_config;
14414 dev_priv->display.crtc_compute_clock =
14415 haswell_crtc_compute_clock;
14416 dev_priv->display.crtc_enable = haswell_crtc_enable;
14417 dev_priv->display.crtc_disable = haswell_crtc_disable;
14418 dev_priv->display.update_primary_plane =
14419 ironlake_update_primary_plane;
14420 } else if (HAS_PCH_SPLIT(dev)) {
14421 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14422 dev_priv->display.get_initial_plane_config =
14423 ironlake_get_initial_plane_config;
14424 dev_priv->display.crtc_compute_clock =
14425 ironlake_crtc_compute_clock;
14426 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14427 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14428 dev_priv->display.update_primary_plane =
14429 ironlake_update_primary_plane;
14430 } else if (IS_VALLEYVIEW(dev)) {
14431 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14432 dev_priv->display.get_initial_plane_config =
14433 i9xx_get_initial_plane_config;
14434 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14435 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14436 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14437 dev_priv->display.update_primary_plane =
14438 i9xx_update_primary_plane;
14439 } else {
14440 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14441 dev_priv->display.get_initial_plane_config =
14442 i9xx_get_initial_plane_config;
14443 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14444 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14445 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14446 dev_priv->display.update_primary_plane =
14447 i9xx_update_primary_plane;
14448 }
14449
14450 /* Returns the core display clock speed */
14451 if (IS_SKYLAKE(dev))
14452 dev_priv->display.get_display_clock_speed =
14453 skylake_get_display_clock_speed;
14454 else if (IS_BROXTON(dev))
14455 dev_priv->display.get_display_clock_speed =
14456 broxton_get_display_clock_speed;
14457 else if (IS_BROADWELL(dev))
14458 dev_priv->display.get_display_clock_speed =
14459 broadwell_get_display_clock_speed;
14460 else if (IS_HASWELL(dev))
14461 dev_priv->display.get_display_clock_speed =
14462 haswell_get_display_clock_speed;
14463 else if (IS_VALLEYVIEW(dev))
14464 dev_priv->display.get_display_clock_speed =
14465 valleyview_get_display_clock_speed;
14466 else if (IS_GEN5(dev))
14467 dev_priv->display.get_display_clock_speed =
14468 ilk_get_display_clock_speed;
14469 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14470 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14471 dev_priv->display.get_display_clock_speed =
14472 i945_get_display_clock_speed;
14473 else if (IS_GM45(dev))
14474 dev_priv->display.get_display_clock_speed =
14475 gm45_get_display_clock_speed;
14476 else if (IS_CRESTLINE(dev))
14477 dev_priv->display.get_display_clock_speed =
14478 i965gm_get_display_clock_speed;
14479 else if (IS_PINEVIEW(dev))
14480 dev_priv->display.get_display_clock_speed =
14481 pnv_get_display_clock_speed;
14482 else if (IS_G33(dev) || IS_G4X(dev))
14483 dev_priv->display.get_display_clock_speed =
14484 g33_get_display_clock_speed;
14485 else if (IS_I915G(dev))
14486 dev_priv->display.get_display_clock_speed =
14487 i915_get_display_clock_speed;
14488 else if (IS_I945GM(dev) || IS_845G(dev))
14489 dev_priv->display.get_display_clock_speed =
14490 i9xx_misc_get_display_clock_speed;
14491 else if (IS_PINEVIEW(dev))
14492 dev_priv->display.get_display_clock_speed =
14493 pnv_get_display_clock_speed;
14494 else if (IS_I915GM(dev))
14495 dev_priv->display.get_display_clock_speed =
14496 i915gm_get_display_clock_speed;
14497 else if (IS_I865G(dev))
14498 dev_priv->display.get_display_clock_speed =
14499 i865_get_display_clock_speed;
14500 else if (IS_I85X(dev))
14501 dev_priv->display.get_display_clock_speed =
14502 i85x_get_display_clock_speed;
14503 else { /* 830 */
14504 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14505 dev_priv->display.get_display_clock_speed =
14506 i830_get_display_clock_speed;
14507 }
14508
14509 if (IS_GEN5(dev)) {
14510 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14511 } else if (IS_GEN6(dev)) {
14512 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14513 } else if (IS_IVYBRIDGE(dev)) {
14514 /* FIXME: detect B0+ stepping and use auto training */
14515 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14516 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14517 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14518 if (IS_BROADWELL(dev)) {
14519 dev_priv->display.modeset_commit_cdclk =
14520 broadwell_modeset_commit_cdclk;
14521 dev_priv->display.modeset_calc_cdclk =
14522 broadwell_modeset_calc_cdclk;
14523 }
14524 } else if (IS_VALLEYVIEW(dev)) {
14525 dev_priv->display.modeset_commit_cdclk =
14526 valleyview_modeset_commit_cdclk;
14527 dev_priv->display.modeset_calc_cdclk =
14528 valleyview_modeset_calc_cdclk;
14529 } else if (IS_BROXTON(dev)) {
14530 dev_priv->display.modeset_commit_cdclk =
14531 broxton_modeset_commit_cdclk;
14532 dev_priv->display.modeset_calc_cdclk =
14533 broxton_modeset_calc_cdclk;
14534 }
14535
14536 switch (INTEL_INFO(dev)->gen) {
14537 case 2:
14538 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14539 break;
14540
14541 case 3:
14542 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14543 break;
14544
14545 case 4:
14546 case 5:
14547 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14548 break;
14549
14550 case 6:
14551 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14552 break;
14553 case 7:
14554 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14555 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14556 break;
14557 case 9:
14558 /* Drop through - unsupported since execlist only. */
14559 default:
14560 /* Default just returns -ENODEV to indicate unsupported */
14561 dev_priv->display.queue_flip = intel_default_queue_flip;
14562 }
14563
14564 intel_panel_init_backlight_funcs(dev);
14565
14566 mutex_init(&dev_priv->pps_mutex);
14567 }
14568
14569 /*
14570 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14571 * resume, or other times. This quirk makes sure that's the case for
14572 * affected systems.
14573 */
14574 static void quirk_pipea_force(struct drm_device *dev)
14575 {
14576 struct drm_i915_private *dev_priv = dev->dev_private;
14577
14578 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14579 DRM_INFO("applying pipe a force quirk\n");
14580 }
14581
14582 static void quirk_pipeb_force(struct drm_device *dev)
14583 {
14584 struct drm_i915_private *dev_priv = dev->dev_private;
14585
14586 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14587 DRM_INFO("applying pipe b force quirk\n");
14588 }
14589
14590 /*
14591 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14592 */
14593 static void quirk_ssc_force_disable(struct drm_device *dev)
14594 {
14595 struct drm_i915_private *dev_priv = dev->dev_private;
14596 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14597 DRM_INFO("applying lvds SSC disable quirk\n");
14598 }
14599
14600 /*
14601 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14602 * brightness value
14603 */
14604 static void quirk_invert_brightness(struct drm_device *dev)
14605 {
14606 struct drm_i915_private *dev_priv = dev->dev_private;
14607 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14608 DRM_INFO("applying inverted panel brightness quirk\n");
14609 }
14610
14611 /* Some VBT's incorrectly indicate no backlight is present */
14612 static void quirk_backlight_present(struct drm_device *dev)
14613 {
14614 struct drm_i915_private *dev_priv = dev->dev_private;
14615 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14616 DRM_INFO("applying backlight present quirk\n");
14617 }
14618
14619 struct intel_quirk {
14620 int device;
14621 int subsystem_vendor;
14622 int subsystem_device;
14623 void (*hook)(struct drm_device *dev);
14624 };
14625
14626 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14627 struct intel_dmi_quirk {
14628 void (*hook)(struct drm_device *dev);
14629 const struct dmi_system_id (*dmi_id_list)[];
14630 };
14631
14632 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14633 {
14634 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14635 return 1;
14636 }
14637
14638 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14639 {
14640 .dmi_id_list = &(const struct dmi_system_id[]) {
14641 {
14642 .callback = intel_dmi_reverse_brightness,
14643 .ident = "NCR Corporation",
14644 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14645 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14646 },
14647 },
14648 { } /* terminating entry */
14649 },
14650 .hook = quirk_invert_brightness,
14651 },
14652 };
14653
14654 static struct intel_quirk intel_quirks[] = {
14655 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14656 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14657
14658 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14659 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14660
14661 /* 830 needs to leave pipe A & dpll A up */
14662 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14663
14664 /* 830 needs to leave pipe B & dpll B up */
14665 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14666
14667 /* Lenovo U160 cannot use SSC on LVDS */
14668 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14669
14670 /* Sony Vaio Y cannot use SSC on LVDS */
14671 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14672
14673 /* Acer Aspire 5734Z must invert backlight brightness */
14674 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14675
14676 /* Acer/eMachines G725 */
14677 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14678
14679 /* Acer/eMachines e725 */
14680 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14681
14682 /* Acer/Packard Bell NCL20 */
14683 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14684
14685 /* Acer Aspire 4736Z */
14686 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14687
14688 /* Acer Aspire 5336 */
14689 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14690
14691 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14692 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14693
14694 /* Acer C720 Chromebook (Core i3 4005U) */
14695 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14696
14697 /* Apple Macbook 2,1 (Core 2 T7400) */
14698 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14699
14700 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14701 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14702
14703 /* HP Chromebook 14 (Celeron 2955U) */
14704 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14705
14706 /* Dell Chromebook 11 */
14707 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14708 };
14709
14710 static void intel_init_quirks(struct drm_device *dev)
14711 {
14712 struct pci_dev *d = dev->pdev;
14713 int i;
14714
14715 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14716 struct intel_quirk *q = &intel_quirks[i];
14717
14718 if (d->device == q->device &&
14719 (d->subsystem_vendor == q->subsystem_vendor ||
14720 q->subsystem_vendor == PCI_ANY_ID) &&
14721 (d->subsystem_device == q->subsystem_device ||
14722 q->subsystem_device == PCI_ANY_ID))
14723 q->hook(dev);
14724 }
14725 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14726 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14727 intel_dmi_quirks[i].hook(dev);
14728 }
14729 }
14730
14731 /* Disable the VGA plane that we never use */
14732 static void i915_disable_vga(struct drm_device *dev)
14733 {
14734 struct drm_i915_private *dev_priv = dev->dev_private;
14735 u8 sr1;
14736 u32 vga_reg = i915_vgacntrl_reg(dev);
14737
14738 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14739 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14740 outb(SR01, VGA_SR_INDEX);
14741 sr1 = inb(VGA_SR_DATA);
14742 outb(sr1 | 1<<5, VGA_SR_DATA);
14743 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14744 udelay(300);
14745
14746 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14747 POSTING_READ(vga_reg);
14748 }
14749
14750 void intel_modeset_init_hw(struct drm_device *dev)
14751 {
14752 intel_update_cdclk(dev);
14753 intel_prepare_ddi(dev);
14754 intel_init_clock_gating(dev);
14755 intel_enable_gt_powersave(dev);
14756 }
14757
14758 void intel_modeset_init(struct drm_device *dev)
14759 {
14760 struct drm_i915_private *dev_priv = dev->dev_private;
14761 int sprite, ret;
14762 enum pipe pipe;
14763 struct intel_crtc *crtc;
14764
14765 drm_mode_config_init(dev);
14766
14767 dev->mode_config.min_width = 0;
14768 dev->mode_config.min_height = 0;
14769
14770 dev->mode_config.preferred_depth = 24;
14771 dev->mode_config.prefer_shadow = 1;
14772
14773 dev->mode_config.allow_fb_modifiers = true;
14774
14775 dev->mode_config.funcs = &intel_mode_funcs;
14776
14777 intel_init_quirks(dev);
14778
14779 intel_init_pm(dev);
14780
14781 if (INTEL_INFO(dev)->num_pipes == 0)
14782 return;
14783
14784 /*
14785 * There may be no VBT; and if the BIOS enabled SSC we can
14786 * just keep using it to avoid unnecessary flicker. Whereas if the
14787 * BIOS isn't using it, don't assume it will work even if the VBT
14788 * indicates as much.
14789 */
14790 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14791 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14792 DREF_SSC1_ENABLE);
14793
14794 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14795 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14796 bios_lvds_use_ssc ? "en" : "dis",
14797 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14798 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14799 }
14800 }
14801
14802 intel_init_display(dev);
14803 intel_init_audio(dev);
14804
14805 if (IS_GEN2(dev)) {
14806 dev->mode_config.max_width = 2048;
14807 dev->mode_config.max_height = 2048;
14808 } else if (IS_GEN3(dev)) {
14809 dev->mode_config.max_width = 4096;
14810 dev->mode_config.max_height = 4096;
14811 } else {
14812 dev->mode_config.max_width = 8192;
14813 dev->mode_config.max_height = 8192;
14814 }
14815
14816 if (IS_845G(dev) || IS_I865G(dev)) {
14817 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14818 dev->mode_config.cursor_height = 1023;
14819 } else if (IS_GEN2(dev)) {
14820 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14821 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14822 } else {
14823 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14824 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14825 }
14826
14827 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14828
14829 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14830 INTEL_INFO(dev)->num_pipes,
14831 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14832
14833 for_each_pipe(dev_priv, pipe) {
14834 intel_crtc_init(dev, pipe);
14835 for_each_sprite(dev_priv, pipe, sprite) {
14836 ret = intel_plane_init(dev, pipe, sprite);
14837 if (ret)
14838 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14839 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14840 }
14841 }
14842
14843 intel_shared_dpll_init(dev);
14844
14845 /* Just disable it once at startup */
14846 i915_disable_vga(dev);
14847 intel_setup_outputs(dev);
14848
14849 /* Just in case the BIOS is doing something questionable. */
14850 intel_fbc_disable(dev_priv);
14851
14852 drm_modeset_lock_all(dev);
14853 intel_modeset_setup_hw_state(dev);
14854 drm_modeset_unlock_all(dev);
14855
14856 for_each_intel_crtc(dev, crtc) {
14857 struct intel_initial_plane_config plane_config = {};
14858
14859 if (!crtc->active)
14860 continue;
14861
14862 /*
14863 * Note that reserving the BIOS fb up front prevents us
14864 * from stuffing other stolen allocations like the ring
14865 * on top. This prevents some ugliness at boot time, and
14866 * can even allow for smooth boot transitions if the BIOS
14867 * fb is large enough for the active pipe configuration.
14868 */
14869 dev_priv->display.get_initial_plane_config(crtc,
14870 &plane_config);
14871
14872 /*
14873 * If the fb is shared between multiple heads, we'll
14874 * just get the first one.
14875 */
14876 intel_find_initial_plane_obj(crtc, &plane_config);
14877 }
14878 }
14879
14880 static void intel_enable_pipe_a(struct drm_device *dev)
14881 {
14882 struct intel_connector *connector;
14883 struct drm_connector *crt = NULL;
14884 struct intel_load_detect_pipe load_detect_temp;
14885 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14886
14887 /* We can't just switch on the pipe A, we need to set things up with a
14888 * proper mode and output configuration. As a gross hack, enable pipe A
14889 * by enabling the load detect pipe once. */
14890 for_each_intel_connector(dev, connector) {
14891 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14892 crt = &connector->base;
14893 break;
14894 }
14895 }
14896
14897 if (!crt)
14898 return;
14899
14900 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14901 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14902 }
14903
14904 static bool
14905 intel_check_plane_mapping(struct intel_crtc *crtc)
14906 {
14907 struct drm_device *dev = crtc->base.dev;
14908 struct drm_i915_private *dev_priv = dev->dev_private;
14909 u32 reg, val;
14910
14911 if (INTEL_INFO(dev)->num_pipes == 1)
14912 return true;
14913
14914 reg = DSPCNTR(!crtc->plane);
14915 val = I915_READ(reg);
14916
14917 if ((val & DISPLAY_PLANE_ENABLE) &&
14918 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14919 return false;
14920
14921 return true;
14922 }
14923
14924 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14925 {
14926 struct drm_device *dev = crtc->base.dev;
14927 struct intel_encoder *encoder;
14928
14929 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14930 return true;
14931
14932 return false;
14933 }
14934
14935 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14936 {
14937 struct drm_device *dev = crtc->base.dev;
14938 struct drm_i915_private *dev_priv = dev->dev_private;
14939 u32 reg;
14940
14941 /* Clear any frame start delays used for debugging left by the BIOS */
14942 reg = PIPECONF(crtc->config->cpu_transcoder);
14943 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14944
14945 /* restore vblank interrupts to correct state */
14946 drm_crtc_vblank_reset(&crtc->base);
14947 if (crtc->active) {
14948 struct intel_plane *plane;
14949
14950 drm_crtc_vblank_on(&crtc->base);
14951
14952 /* Disable everything but the primary plane */
14953 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14954 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14955 continue;
14956
14957 plane->disable_plane(&plane->base, &crtc->base);
14958 }
14959 }
14960
14961 /* We need to sanitize the plane -> pipe mapping first because this will
14962 * disable the crtc (and hence change the state) if it is wrong. Note
14963 * that gen4+ has a fixed plane -> pipe mapping. */
14964 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14965 bool plane;
14966
14967 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14968 crtc->base.base.id);
14969
14970 /* Pipe has the wrong plane attached and the plane is active.
14971 * Temporarily change the plane mapping and disable everything
14972 * ... */
14973 plane = crtc->plane;
14974 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14975 crtc->plane = !plane;
14976 intel_crtc_disable_noatomic(&crtc->base);
14977 crtc->plane = plane;
14978 }
14979
14980 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14981 crtc->pipe == PIPE_A && !crtc->active) {
14982 /* BIOS forgot to enable pipe A, this mostly happens after
14983 * resume. Force-enable the pipe to fix this, the update_dpms
14984 * call below we restore the pipe to the right state, but leave
14985 * the required bits on. */
14986 intel_enable_pipe_a(dev);
14987 }
14988
14989 /* Adjust the state of the output pipe according to whether we
14990 * have active connectors/encoders. */
14991 if (!intel_crtc_has_encoders(crtc))
14992 intel_crtc_disable_noatomic(&crtc->base);
14993
14994 if (crtc->active != crtc->base.state->active) {
14995 struct intel_encoder *encoder;
14996
14997 /* This can happen either due to bugs in the get_hw_state
14998 * functions or because of calls to intel_crtc_disable_noatomic,
14999 * or because the pipe is force-enabled due to the
15000 * pipe A quirk. */
15001 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15002 crtc->base.base.id,
15003 crtc->base.state->enable ? "enabled" : "disabled",
15004 crtc->active ? "enabled" : "disabled");
15005
15006 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15007 crtc->base.state->active = crtc->active;
15008 crtc->base.enabled = crtc->active;
15009
15010 /* Because we only establish the connector -> encoder ->
15011 * crtc links if something is active, this means the
15012 * crtc is now deactivated. Break the links. connector
15013 * -> encoder links are only establish when things are
15014 * actually up, hence no need to break them. */
15015 WARN_ON(crtc->active);
15016
15017 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15018 encoder->base.crtc = NULL;
15019 }
15020
15021 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15022 /*
15023 * We start out with underrun reporting disabled to avoid races.
15024 * For correct bookkeeping mark this on active crtcs.
15025 *
15026 * Also on gmch platforms we dont have any hardware bits to
15027 * disable the underrun reporting. Which means we need to start
15028 * out with underrun reporting disabled also on inactive pipes,
15029 * since otherwise we'll complain about the garbage we read when
15030 * e.g. coming up after runtime pm.
15031 *
15032 * No protection against concurrent access is required - at
15033 * worst a fifo underrun happens which also sets this to false.
15034 */
15035 crtc->cpu_fifo_underrun_disabled = true;
15036 crtc->pch_fifo_underrun_disabled = true;
15037 }
15038 }
15039
15040 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15041 {
15042 struct intel_connector *connector;
15043 struct drm_device *dev = encoder->base.dev;
15044 bool active = false;
15045
15046 /* We need to check both for a crtc link (meaning that the
15047 * encoder is active and trying to read from a pipe) and the
15048 * pipe itself being active. */
15049 bool has_active_crtc = encoder->base.crtc &&
15050 to_intel_crtc(encoder->base.crtc)->active;
15051
15052 for_each_intel_connector(dev, connector) {
15053 if (connector->base.encoder != &encoder->base)
15054 continue;
15055
15056 active = true;
15057 break;
15058 }
15059
15060 if (active && !has_active_crtc) {
15061 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15062 encoder->base.base.id,
15063 encoder->base.name);
15064
15065 /* Connector is active, but has no active pipe. This is
15066 * fallout from our resume register restoring. Disable
15067 * the encoder manually again. */
15068 if (encoder->base.crtc) {
15069 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15070 encoder->base.base.id,
15071 encoder->base.name);
15072 encoder->disable(encoder);
15073 if (encoder->post_disable)
15074 encoder->post_disable(encoder);
15075 }
15076 encoder->base.crtc = NULL;
15077
15078 /* Inconsistent output/port/pipe state happens presumably due to
15079 * a bug in one of the get_hw_state functions. Or someplace else
15080 * in our code, like the register restore mess on resume. Clamp
15081 * things to off as a safer default. */
15082 for_each_intel_connector(dev, connector) {
15083 if (connector->encoder != encoder)
15084 continue;
15085 connector->base.dpms = DRM_MODE_DPMS_OFF;
15086 connector->base.encoder = NULL;
15087 }
15088 }
15089 /* Enabled encoders without active connectors will be fixed in
15090 * the crtc fixup. */
15091 }
15092
15093 void i915_redisable_vga_power_on(struct drm_device *dev)
15094 {
15095 struct drm_i915_private *dev_priv = dev->dev_private;
15096 u32 vga_reg = i915_vgacntrl_reg(dev);
15097
15098 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15099 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15100 i915_disable_vga(dev);
15101 }
15102 }
15103
15104 void i915_redisable_vga(struct drm_device *dev)
15105 {
15106 struct drm_i915_private *dev_priv = dev->dev_private;
15107
15108 /* This function can be called both from intel_modeset_setup_hw_state or
15109 * at a very early point in our resume sequence, where the power well
15110 * structures are not yet restored. Since this function is at a very
15111 * paranoid "someone might have enabled VGA while we were not looking"
15112 * level, just check if the power well is enabled instead of trying to
15113 * follow the "don't touch the power well if we don't need it" policy
15114 * the rest of the driver uses. */
15115 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15116 return;
15117
15118 i915_redisable_vga_power_on(dev);
15119 }
15120
15121 static bool primary_get_hw_state(struct intel_plane *plane)
15122 {
15123 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15124
15125 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15126 }
15127
15128 /* FIXME read out full plane state for all planes */
15129 static void readout_plane_state(struct intel_crtc *crtc)
15130 {
15131 struct drm_plane *primary = crtc->base.primary;
15132 struct intel_plane_state *plane_state =
15133 to_intel_plane_state(primary->state);
15134
15135 plane_state->visible =
15136 primary_get_hw_state(to_intel_plane(primary));
15137
15138 if (plane_state->visible)
15139 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15140 }
15141
15142 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15143 {
15144 struct drm_i915_private *dev_priv = dev->dev_private;
15145 enum pipe pipe;
15146 struct intel_crtc *crtc;
15147 struct intel_encoder *encoder;
15148 struct intel_connector *connector;
15149 int i;
15150
15151 for_each_intel_crtc(dev, crtc) {
15152 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15153 memset(crtc->config, 0, sizeof(*crtc->config));
15154 crtc->config->base.crtc = &crtc->base;
15155
15156 crtc->active = dev_priv->display.get_pipe_config(crtc,
15157 crtc->config);
15158
15159 crtc->base.state->active = crtc->active;
15160 crtc->base.enabled = crtc->active;
15161
15162 readout_plane_state(crtc);
15163
15164 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15165 crtc->base.base.id,
15166 crtc->active ? "enabled" : "disabled");
15167 }
15168
15169 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15170 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15171
15172 pll->on = pll->get_hw_state(dev_priv, pll,
15173 &pll->config.hw_state);
15174 pll->active = 0;
15175 pll->config.crtc_mask = 0;
15176 for_each_intel_crtc(dev, crtc) {
15177 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15178 pll->active++;
15179 pll->config.crtc_mask |= 1 << crtc->pipe;
15180 }
15181 }
15182
15183 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15184 pll->name, pll->config.crtc_mask, pll->on);
15185
15186 if (pll->config.crtc_mask)
15187 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15188 }
15189
15190 for_each_intel_encoder(dev, encoder) {
15191 pipe = 0;
15192
15193 if (encoder->get_hw_state(encoder, &pipe)) {
15194 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15195 encoder->base.crtc = &crtc->base;
15196 encoder->get_config(encoder, crtc->config);
15197 } else {
15198 encoder->base.crtc = NULL;
15199 }
15200
15201 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15202 encoder->base.base.id,
15203 encoder->base.name,
15204 encoder->base.crtc ? "enabled" : "disabled",
15205 pipe_name(pipe));
15206 }
15207
15208 for_each_intel_connector(dev, connector) {
15209 if (connector->get_hw_state(connector)) {
15210 connector->base.dpms = DRM_MODE_DPMS_ON;
15211 connector->base.encoder = &connector->encoder->base;
15212 } else {
15213 connector->base.dpms = DRM_MODE_DPMS_OFF;
15214 connector->base.encoder = NULL;
15215 }
15216 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15217 connector->base.base.id,
15218 connector->base.name,
15219 connector->base.encoder ? "enabled" : "disabled");
15220 }
15221
15222 for_each_intel_crtc(dev, crtc) {
15223 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15224
15225 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15226 if (crtc->base.state->active) {
15227 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15228 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15229 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15230
15231 /*
15232 * The initial mode needs to be set in order to keep
15233 * the atomic core happy. It wants a valid mode if the
15234 * crtc's enabled, so we do the above call.
15235 *
15236 * At this point some state updated by the connectors
15237 * in their ->detect() callback has not run yet, so
15238 * no recalculation can be done yet.
15239 *
15240 * Even if we could do a recalculation and modeset
15241 * right now it would cause a double modeset if
15242 * fbdev or userspace chooses a different initial mode.
15243 *
15244 * If that happens, someone indicated they wanted a
15245 * mode change, which means it's safe to do a full
15246 * recalculation.
15247 */
15248 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15249
15250 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15251 update_scanline_offset(crtc);
15252 }
15253 }
15254 }
15255
15256 /* Scan out the current hw modeset state,
15257 * and sanitizes it to the current state
15258 */
15259 static void
15260 intel_modeset_setup_hw_state(struct drm_device *dev)
15261 {
15262 struct drm_i915_private *dev_priv = dev->dev_private;
15263 enum pipe pipe;
15264 struct intel_crtc *crtc;
15265 struct intel_encoder *encoder;
15266 int i;
15267
15268 intel_modeset_readout_hw_state(dev);
15269
15270 /* HW state is read out, now we need to sanitize this mess. */
15271 for_each_intel_encoder(dev, encoder) {
15272 intel_sanitize_encoder(encoder);
15273 }
15274
15275 for_each_pipe(dev_priv, pipe) {
15276 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15277 intel_sanitize_crtc(crtc);
15278 intel_dump_pipe_config(crtc, crtc->config,
15279 "[setup_hw_state]");
15280 }
15281
15282 intel_modeset_update_connector_atomic_state(dev);
15283
15284 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15285 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15286
15287 if (!pll->on || pll->active)
15288 continue;
15289
15290 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15291
15292 pll->disable(dev_priv, pll);
15293 pll->on = false;
15294 }
15295
15296 if (IS_VALLEYVIEW(dev))
15297 vlv_wm_get_hw_state(dev);
15298 else if (IS_GEN9(dev))
15299 skl_wm_get_hw_state(dev);
15300 else if (HAS_PCH_SPLIT(dev))
15301 ilk_wm_get_hw_state(dev);
15302
15303 for_each_intel_crtc(dev, crtc) {
15304 unsigned long put_domains;
15305
15306 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15307 if (WARN_ON(put_domains))
15308 modeset_put_power_domains(dev_priv, put_domains);
15309 }
15310 intel_display_set_init_power(dev_priv, false);
15311 }
15312
15313 void intel_display_resume(struct drm_device *dev)
15314 {
15315 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15316 struct intel_connector *conn;
15317 struct intel_plane *plane;
15318 struct drm_crtc *crtc;
15319 int ret;
15320
15321 if (!state)
15322 return;
15323
15324 state->acquire_ctx = dev->mode_config.acquire_ctx;
15325
15326 /* preserve complete old state, including dpll */
15327 intel_atomic_get_shared_dpll_state(state);
15328
15329 for_each_crtc(dev, crtc) {
15330 struct drm_crtc_state *crtc_state =
15331 drm_atomic_get_crtc_state(state, crtc);
15332
15333 ret = PTR_ERR_OR_ZERO(crtc_state);
15334 if (ret)
15335 goto err;
15336
15337 /* force a restore */
15338 crtc_state->mode_changed = true;
15339 }
15340
15341 for_each_intel_plane(dev, plane) {
15342 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15343 if (ret)
15344 goto err;
15345 }
15346
15347 for_each_intel_connector(dev, conn) {
15348 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15349 if (ret)
15350 goto err;
15351 }
15352
15353 intel_modeset_setup_hw_state(dev);
15354
15355 i915_redisable_vga(dev);
15356 ret = drm_atomic_commit(state);
15357 if (!ret)
15358 return;
15359
15360 err:
15361 DRM_ERROR("Restoring old state failed with %i\n", ret);
15362 drm_atomic_state_free(state);
15363 }
15364
15365 void intel_modeset_gem_init(struct drm_device *dev)
15366 {
15367 struct drm_crtc *c;
15368 struct drm_i915_gem_object *obj;
15369 int ret;
15370
15371 mutex_lock(&dev->struct_mutex);
15372 intel_init_gt_powersave(dev);
15373 mutex_unlock(&dev->struct_mutex);
15374
15375 intel_modeset_init_hw(dev);
15376
15377 intel_setup_overlay(dev);
15378
15379 /*
15380 * Make sure any fbs we allocated at startup are properly
15381 * pinned & fenced. When we do the allocation it's too early
15382 * for this.
15383 */
15384 for_each_crtc(dev, c) {
15385 obj = intel_fb_obj(c->primary->fb);
15386 if (obj == NULL)
15387 continue;
15388
15389 mutex_lock(&dev->struct_mutex);
15390 ret = intel_pin_and_fence_fb_obj(c->primary,
15391 c->primary->fb,
15392 c->primary->state,
15393 NULL, NULL);
15394 mutex_unlock(&dev->struct_mutex);
15395 if (ret) {
15396 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15397 to_intel_crtc(c)->pipe);
15398 drm_framebuffer_unreference(c->primary->fb);
15399 c->primary->fb = NULL;
15400 c->primary->crtc = c->primary->state->crtc = NULL;
15401 update_state_fb(c->primary);
15402 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15403 }
15404 }
15405
15406 intel_backlight_register(dev);
15407 }
15408
15409 void intel_connector_unregister(struct intel_connector *intel_connector)
15410 {
15411 struct drm_connector *connector = &intel_connector->base;
15412
15413 intel_panel_destroy_backlight(connector);
15414 drm_connector_unregister(connector);
15415 }
15416
15417 void intel_modeset_cleanup(struct drm_device *dev)
15418 {
15419 struct drm_i915_private *dev_priv = dev->dev_private;
15420 struct drm_connector *connector;
15421
15422 intel_disable_gt_powersave(dev);
15423
15424 intel_backlight_unregister(dev);
15425
15426 /*
15427 * Interrupts and polling as the first thing to avoid creating havoc.
15428 * Too much stuff here (turning of connectors, ...) would
15429 * experience fancy races otherwise.
15430 */
15431 intel_irq_uninstall(dev_priv);
15432
15433 /*
15434 * Due to the hpd irq storm handling the hotplug work can re-arm the
15435 * poll handlers. Hence disable polling after hpd handling is shut down.
15436 */
15437 drm_kms_helper_poll_fini(dev);
15438
15439 intel_unregister_dsm_handler();
15440
15441 intel_fbc_disable(dev_priv);
15442
15443 /* flush any delayed tasks or pending work */
15444 flush_scheduled_work();
15445
15446 /* destroy the backlight and sysfs files before encoders/connectors */
15447 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15448 struct intel_connector *intel_connector;
15449
15450 intel_connector = to_intel_connector(connector);
15451 intel_connector->unregister(intel_connector);
15452 }
15453
15454 drm_mode_config_cleanup(dev);
15455
15456 intel_cleanup_overlay(dev);
15457
15458 mutex_lock(&dev->struct_mutex);
15459 intel_cleanup_gt_powersave(dev);
15460 mutex_unlock(&dev->struct_mutex);
15461 }
15462
15463 /*
15464 * Return which encoder is currently attached for connector.
15465 */
15466 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15467 {
15468 return &intel_attached_encoder(connector)->base;
15469 }
15470
15471 void intel_connector_attach_encoder(struct intel_connector *connector,
15472 struct intel_encoder *encoder)
15473 {
15474 connector->encoder = encoder;
15475 drm_mode_connector_attach_encoder(&connector->base,
15476 &encoder->base);
15477 }
15478
15479 /*
15480 * set vga decode state - true == enable VGA decode
15481 */
15482 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15483 {
15484 struct drm_i915_private *dev_priv = dev->dev_private;
15485 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15486 u16 gmch_ctrl;
15487
15488 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15489 DRM_ERROR("failed to read control word\n");
15490 return -EIO;
15491 }
15492
15493 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15494 return 0;
15495
15496 if (state)
15497 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15498 else
15499 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15500
15501 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15502 DRM_ERROR("failed to write control word\n");
15503 return -EIO;
15504 }
15505
15506 return 0;
15507 }
15508
15509 struct intel_display_error_state {
15510
15511 u32 power_well_driver;
15512
15513 int num_transcoders;
15514
15515 struct intel_cursor_error_state {
15516 u32 control;
15517 u32 position;
15518 u32 base;
15519 u32 size;
15520 } cursor[I915_MAX_PIPES];
15521
15522 struct intel_pipe_error_state {
15523 bool power_domain_on;
15524 u32 source;
15525 u32 stat;
15526 } pipe[I915_MAX_PIPES];
15527
15528 struct intel_plane_error_state {
15529 u32 control;
15530 u32 stride;
15531 u32 size;
15532 u32 pos;
15533 u32 addr;
15534 u32 surface;
15535 u32 tile_offset;
15536 } plane[I915_MAX_PIPES];
15537
15538 struct intel_transcoder_error_state {
15539 bool power_domain_on;
15540 enum transcoder cpu_transcoder;
15541
15542 u32 conf;
15543
15544 u32 htotal;
15545 u32 hblank;
15546 u32 hsync;
15547 u32 vtotal;
15548 u32 vblank;
15549 u32 vsync;
15550 } transcoder[4];
15551 };
15552
15553 struct intel_display_error_state *
15554 intel_display_capture_error_state(struct drm_device *dev)
15555 {
15556 struct drm_i915_private *dev_priv = dev->dev_private;
15557 struct intel_display_error_state *error;
15558 int transcoders[] = {
15559 TRANSCODER_A,
15560 TRANSCODER_B,
15561 TRANSCODER_C,
15562 TRANSCODER_EDP,
15563 };
15564 int i;
15565
15566 if (INTEL_INFO(dev)->num_pipes == 0)
15567 return NULL;
15568
15569 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15570 if (error == NULL)
15571 return NULL;
15572
15573 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15574 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15575
15576 for_each_pipe(dev_priv, i) {
15577 error->pipe[i].power_domain_on =
15578 __intel_display_power_is_enabled(dev_priv,
15579 POWER_DOMAIN_PIPE(i));
15580 if (!error->pipe[i].power_domain_on)
15581 continue;
15582
15583 error->cursor[i].control = I915_READ(CURCNTR(i));
15584 error->cursor[i].position = I915_READ(CURPOS(i));
15585 error->cursor[i].base = I915_READ(CURBASE(i));
15586
15587 error->plane[i].control = I915_READ(DSPCNTR(i));
15588 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15589 if (INTEL_INFO(dev)->gen <= 3) {
15590 error->plane[i].size = I915_READ(DSPSIZE(i));
15591 error->plane[i].pos = I915_READ(DSPPOS(i));
15592 }
15593 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15594 error->plane[i].addr = I915_READ(DSPADDR(i));
15595 if (INTEL_INFO(dev)->gen >= 4) {
15596 error->plane[i].surface = I915_READ(DSPSURF(i));
15597 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15598 }
15599
15600 error->pipe[i].source = I915_READ(PIPESRC(i));
15601
15602 if (HAS_GMCH_DISPLAY(dev))
15603 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15604 }
15605
15606 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15607 if (HAS_DDI(dev_priv->dev))
15608 error->num_transcoders++; /* Account for eDP. */
15609
15610 for (i = 0; i < error->num_transcoders; i++) {
15611 enum transcoder cpu_transcoder = transcoders[i];
15612
15613 error->transcoder[i].power_domain_on =
15614 __intel_display_power_is_enabled(dev_priv,
15615 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15616 if (!error->transcoder[i].power_domain_on)
15617 continue;
15618
15619 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15620
15621 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15622 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15623 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15624 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15625 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15626 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15627 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15628 }
15629
15630 return error;
15631 }
15632
15633 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15634
15635 void
15636 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15637 struct drm_device *dev,
15638 struct intel_display_error_state *error)
15639 {
15640 struct drm_i915_private *dev_priv = dev->dev_private;
15641 int i;
15642
15643 if (!error)
15644 return;
15645
15646 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15647 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15648 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15649 error->power_well_driver);
15650 for_each_pipe(dev_priv, i) {
15651 err_printf(m, "Pipe [%d]:\n", i);
15652 err_printf(m, " Power: %s\n",
15653 error->pipe[i].power_domain_on ? "on" : "off");
15654 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15655 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15656
15657 err_printf(m, "Plane [%d]:\n", i);
15658 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15659 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15660 if (INTEL_INFO(dev)->gen <= 3) {
15661 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15662 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15663 }
15664 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15665 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15666 if (INTEL_INFO(dev)->gen >= 4) {
15667 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15668 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15669 }
15670
15671 err_printf(m, "Cursor [%d]:\n", i);
15672 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15673 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15674 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15675 }
15676
15677 for (i = 0; i < error->num_transcoders; i++) {
15678 err_printf(m, "CPU transcoder: %c\n",
15679 transcoder_name(error->transcoder[i].cpu_transcoder));
15680 err_printf(m, " Power: %s\n",
15681 error->transcoder[i].power_domain_on ? "on" : "off");
15682 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15683 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15684 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15685 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15686 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15687 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15688 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15689 }
15690 }
15691
15692 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15693 {
15694 struct intel_crtc *crtc;
15695
15696 for_each_intel_crtc(dev, crtc) {
15697 struct intel_unpin_work *work;
15698
15699 spin_lock_irq(&dev->event_lock);
15700
15701 work = crtc->unpin_work;
15702
15703 if (work && work->event &&
15704 work->event->base.file_priv == file) {
15705 kfree(work->event);
15706 work->event = NULL;
15707 }
15708
15709 spin_unlock_irq(&dev->event_lock);
15710 }
15711 }
This page took 0.602944 seconds and 5 git commands to generate.