drm/i915: don't touch the PF regs if the power well is down
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58 } intel_clock_t;
59
60 typedef struct {
61 int min, max;
62 } intel_range_t;
63
64 typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM 2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 /**
75 * find_pll() - Find the best values for the PLL
76 * @limit: limits for the PLL
77 * @crtc: current CRTC
78 * @target: target frequency in kHz
79 * @refclk: reference clock frequency in kHz
80 * @match_clock: if provided, @best_clock P divider must
81 * match the P divider from @match_clock
82 * used for LVDS downclocking
83 * @best_clock: best PLL values found
84 *
85 * Returns true on success, false on failure.
86 */
87 bool (*find_pll)(const intel_limit_t *limit,
88 struct drm_crtc *crtc,
89 int target, int refclk,
90 intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100 struct drm_i915_private *dev_priv = dev->dev_private;
101
102 WARN_ON(!HAS_PCH_SPLIT(dev));
103
104 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109 int target, int refclk, intel_clock_t *match_clock,
110 intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118 int target, int refclk, intel_clock_t *match_clock,
119 intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122 int target, int refclk, intel_clock_t *match_clock,
123 intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127 int target, int refclk, intel_clock_t *match_clock,
128 intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133 if (IS_GEN5(dev)) {
134 struct drm_i915_private *dev_priv = dev->dev_private;
135 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136 } else
137 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 2, .max = 33 },
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 4, .p2_fast = 2 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155 .dot = { .min = 25000, .max = 350000 },
156 .vco = { .min = 930000, .max = 1400000 },
157 .n = { .min = 3, .max = 16 },
158 .m = { .min = 96, .max = 140 },
159 .m1 = { .min = 18, .max = 26 },
160 .m2 = { .min = 6, .max = 16 },
161 .p = { .min = 4, .max = 128 },
162 .p1 = { .min = 1, .max = 6 },
163 .p2 = { .dot_limit = 165000,
164 .p2_slow = 14, .p2_fast = 7 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 8, .max = 18 },
174 .m2 = { .min = 3, .max = 7 },
175 .p = { .min = 5, .max = 80 },
176 .p1 = { .min = 1, .max = 8 },
177 .p2 = { .dot_limit = 200000,
178 .p2_slow = 10, .p2_fast = 5 },
179 .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183 .dot = { .min = 20000, .max = 400000 },
184 .vco = { .min = 1400000, .max = 2800000 },
185 .n = { .min = 1, .max = 6 },
186 .m = { .min = 70, .max = 120 },
187 .m1 = { .min = 8, .max = 18 },
188 .m2 = { .min = 3, .max = 7 },
189 .p = { .min = 7, .max = 98 },
190 .p1 = { .min = 1, .max = 8 },
191 .p2 = { .dot_limit = 112000,
192 .p2_slow = 14, .p2_fast = 7 },
193 .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198 .dot = { .min = 25000, .max = 270000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 17, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 10, .max = 30 },
205 .p1 = { .min = 1, .max = 3},
206 .p2 = { .dot_limit = 270000,
207 .p2_slow = 10,
208 .p2_fast = 10
209 },
210 .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214 .dot = { .min = 22000, .max = 400000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 16, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 5, .max = 80 },
221 .p1 = { .min = 1, .max = 8},
222 .p2 = { .dot_limit = 165000,
223 .p2_slow = 10, .p2_fast = 5 },
224 .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228 .dot = { .min = 20000, .max = 115000 },
229 .vco = { .min = 1750000, .max = 3500000 },
230 .n = { .min = 1, .max = 3 },
231 .m = { .min = 104, .max = 138 },
232 .m1 = { .min = 17, .max = 23 },
233 .m2 = { .min = 5, .max = 11 },
234 .p = { .min = 28, .max = 112 },
235 .p1 = { .min = 2, .max = 8 },
236 .p2 = { .dot_limit = 0,
237 .p2_slow = 14, .p2_fast = 14
238 },
239 .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243 .dot = { .min = 80000, .max = 224000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 14, .max = 42 },
250 .p1 = { .min = 2, .max = 6 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 7, .p2_fast = 7
253 },
254 .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258 .dot = { .min = 161670, .max = 227000 },
259 .vco = { .min = 1750000, .max = 3500000},
260 .n = { .min = 1, .max = 2 },
261 .m = { .min = 97, .max = 108 },
262 .m1 = { .min = 0x10, .max = 0x12 },
263 .m2 = { .min = 0x05, .max = 0x06 },
264 .p = { .min = 10, .max = 20 },
265 .p1 = { .min = 1, .max = 2},
266 .p2 = { .dot_limit = 0,
267 .p2_slow = 10, .p2_fast = 10 },
268 .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272 .dot = { .min = 20000, .max = 400000},
273 .vco = { .min = 1700000, .max = 3500000 },
274 /* Pineview's Ncounter is a ring counter */
275 .n = { .min = 3, .max = 6 },
276 .m = { .min = 2, .max = 256 },
277 /* Pineview only has one combined m divider, which we treat as m2. */
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 200000,
283 .p2_slow = 10, .p2_fast = 5 },
284 .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
298 .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302 *
303 * We calculate clock using (register_value + 2) for N/M1/M2, so here
304 * the range value for them is (actual_value - 2).
305 */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 5 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 5, .max = 80 },
314 .p1 = { .min = 1, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 10, .p2_fast = 5 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 118 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 28, .max = 112 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 14, .p2_fast = 14 },
331 .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 3 },
338 .m = { .min = 79, .max = 127 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 14, .max = 56 },
342 .p1 = { .min = 2, .max = 8 },
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 7, .p2_fast = 7 },
345 .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 28, .max = 112 },
357 .p1 = { .min = 2, .max = 8 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 14, .p2_fast = 14 },
360 .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000 },
366 .n = { .min = 1, .max = 3 },
367 .m = { .min = 79, .max = 126 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 14, .max = 42 },
371 .p1 = { .min = 2, .max = 6 },
372 .p2 = { .dot_limit = 225000,
373 .p2_slow = 7, .p2_fast = 7 },
374 .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378 .dot = { .min = 25000, .max = 350000 },
379 .vco = { .min = 1760000, .max = 3510000},
380 .n = { .min = 1, .max = 2 },
381 .m = { .min = 81, .max = 90 },
382 .m1 = { .min = 12, .max = 22 },
383 .m2 = { .min = 5, .max = 9 },
384 .p = { .min = 10, .max = 20 },
385 .p1 = { .min = 1, .max = 2},
386 .p2 = { .dot_limit = 0,
387 .p2_slow = 10, .p2_fast = 10 },
388 .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392 .dot = { .min = 25000, .max = 270000 },
393 .vco = { .min = 4000000, .max = 6000000 },
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 22, .max = 450 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406 .dot = { .min = 20000, .max = 165000 },
407 .vco = { .min = 4000000, .max = 5994000},
408 .n = { .min = 1, .max = 7 },
409 .m = { .min = 60, .max = 300 }, /* guess */
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420 .dot = { .min = 25000, .max = 270000 },
421 .vco = { .min = 4000000, .max = 6000000 },
422 .n = { .min = 1, .max = 7 },
423 .m = { .min = 22, .max = 450 },
424 .m1 = { .min = 2, .max = 3 },
425 .m2 = { .min = 11, .max = 156 },
426 .p = { .min = 10, .max = 30 },
427 .p1 = { .min = 2, .max = 3 },
428 .p2 = { .dot_limit = 270000,
429 .p2_slow = 2, .p2_fast = 20 },
430 .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438 DRM_ERROR("DPIO idle wait timed out\n");
439 return 0;
440 }
441
442 I915_WRITE(DPIO_REG, reg);
443 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444 DPIO_BYTE);
445 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446 DRM_ERROR("DPIO read wait timed out\n");
447 return 0;
448 }
449
450 return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454 u32 val)
455 {
456 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459 DRM_ERROR("DPIO idle wait timed out\n");
460 return;
461 }
462
463 I915_WRITE(DPIO_DATA, val);
464 I915_WRITE(DPIO_REG, reg);
465 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466 DPIO_BYTE);
467 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473 struct drm_i915_private *dev_priv = dev->dev_private;
474
475 /* Reset the DPIO config */
476 I915_WRITE(DPIO_CTL, 0);
477 POSTING_READ(DPIO_CTL);
478 I915_WRITE(DPIO_CTL, 1);
479 POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483 int refclk)
484 {
485 struct drm_device *dev = crtc->dev;
486 const intel_limit_t *limit;
487
488 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489 if (intel_is_dual_link_lvds(dev)) {
490 if (refclk == 100000)
491 limit = &intel_limits_ironlake_dual_lvds_100m;
492 else
493 limit = &intel_limits_ironlake_dual_lvds;
494 } else {
495 if (refclk == 100000)
496 limit = &intel_limits_ironlake_single_lvds_100m;
497 else
498 limit = &intel_limits_ironlake_single_lvds;
499 }
500 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502 limit = &intel_limits_ironlake_display_port;
503 else
504 limit = &intel_limits_ironlake_dac;
505
506 return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511 struct drm_device *dev = crtc->dev;
512 const intel_limit_t *limit;
513
514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515 if (intel_is_dual_link_lvds(dev))
516 limit = &intel_limits_g4x_dual_channel_lvds;
517 else
518 limit = &intel_limits_g4x_single_channel_lvds;
519 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521 limit = &intel_limits_g4x_hdmi;
522 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523 limit = &intel_limits_g4x_sdvo;
524 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525 limit = &intel_limits_g4x_display_port;
526 } else /* The option is for other outputs */
527 limit = &intel_limits_i9xx_sdvo;
528
529 return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534 struct drm_device *dev = crtc->dev;
535 const intel_limit_t *limit;
536
537 if (HAS_PCH_SPLIT(dev))
538 limit = intel_ironlake_limit(crtc, refclk);
539 else if (IS_G4X(dev)) {
540 limit = intel_g4x_limit(crtc);
541 } else if (IS_PINEVIEW(dev)) {
542 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543 limit = &intel_limits_pineview_lvds;
544 else
545 limit = &intel_limits_pineview_sdvo;
546 } else if (IS_VALLEYVIEW(dev)) {
547 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548 limit = &intel_limits_vlv_dac;
549 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550 limit = &intel_limits_vlv_hdmi;
551 else
552 limit = &intel_limits_vlv_dp;
553 } else if (!IS_GEN2(dev)) {
554 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555 limit = &intel_limits_i9xx_lvds;
556 else
557 limit = &intel_limits_i9xx_sdvo;
558 } else {
559 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560 limit = &intel_limits_i8xx_lvds;
561 else
562 limit = &intel_limits_i8xx_dvo;
563 }
564 return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570 clock->m = clock->m2 + 2;
571 clock->p = clock->p1 * clock->p2;
572 clock->vco = refclk * clock->m / clock->n;
573 clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578 if (IS_PINEVIEW(dev)) {
579 pineview_clock(refclk, clock);
580 return;
581 }
582 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583 clock->p = clock->p1 * clock->p2;
584 clock->vco = refclk * clock->m / (clock->n + 2);
585 clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589 * Returns whether any output on the specified pipe is of the specified type
590 */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593 struct drm_device *dev = crtc->dev;
594 struct intel_encoder *encoder;
595
596 for_each_encoder_on_crtc(dev, crtc, encoder)
597 if (encoder->type == type)
598 return true;
599
600 return false;
601 }
602
603 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605 * Returns whether the given set of divisors are valid for a given refclk with
606 * the given connectors.
607 */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610 const intel_limit_t *limit,
611 const intel_clock_t *clock)
612 {
613 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
614 INTELPllInvalid("p1 out of range\n");
615 if (clock->p < limit->p.min || limit->p.max < clock->p)
616 INTELPllInvalid("p out of range\n");
617 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
618 INTELPllInvalid("m2 out of range\n");
619 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
620 INTELPllInvalid("m1 out of range\n");
621 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622 INTELPllInvalid("m1 <= m2\n");
623 if (clock->m < limit->m.min || limit->m.max < clock->m)
624 INTELPllInvalid("m out of range\n");
625 if (clock->n < limit->n.min || limit->n.max < clock->n)
626 INTELPllInvalid("n out of range\n");
627 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628 INTELPllInvalid("vco out of range\n");
629 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630 * connector, etc., rather than just a single range.
631 */
632 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633 INTELPllInvalid("dot out of range\n");
634
635 return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640 int target, int refclk, intel_clock_t *match_clock,
641 intel_clock_t *best_clock)
642
643 {
644 struct drm_device *dev = crtc->dev;
645 intel_clock_t clock;
646 int err = target;
647
648 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649 /*
650 * For LVDS just rely on its current settings for dual-channel.
651 * We haven't figured out how to reliably set up different
652 * single/dual channel state, if we even can.
653 */
654 if (intel_is_dual_link_lvds(dev))
655 clock.p2 = limit->p2.p2_fast;
656 else
657 clock.p2 = limit->p2.p2_slow;
658 } else {
659 if (target < limit->p2.dot_limit)
660 clock.p2 = limit->p2.p2_slow;
661 else
662 clock.p2 = limit->p2.p2_fast;
663 }
664
665 memset(best_clock, 0, sizeof(*best_clock));
666
667 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668 clock.m1++) {
669 for (clock.m2 = limit->m2.min;
670 clock.m2 <= limit->m2.max; clock.m2++) {
671 /* m1 is always 0 in Pineview */
672 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673 break;
674 for (clock.n = limit->n.min;
675 clock.n <= limit->n.max; clock.n++) {
676 for (clock.p1 = limit->p1.min;
677 clock.p1 <= limit->p1.max; clock.p1++) {
678 int this_err;
679
680 intel_clock(dev, refclk, &clock);
681 if (!intel_PLL_is_valid(dev, limit,
682 &clock))
683 continue;
684 if (match_clock &&
685 clock.p != match_clock->p)
686 continue;
687
688 this_err = abs(clock.dot - target);
689 if (this_err < err) {
690 *best_clock = clock;
691 err = this_err;
692 }
693 }
694 }
695 }
696 }
697
698 return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703 int target, int refclk, intel_clock_t *match_clock,
704 intel_clock_t *best_clock)
705 {
706 struct drm_device *dev = crtc->dev;
707 intel_clock_t clock;
708 int max_n;
709 bool found;
710 /* approximately equals target * 0.00585 */
711 int err_most = (target >> 8) + (target >> 9);
712 found = false;
713
714 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715 int lvds_reg;
716
717 if (HAS_PCH_SPLIT(dev))
718 lvds_reg = PCH_LVDS;
719 else
720 lvds_reg = LVDS;
721 if (intel_is_dual_link_lvds(dev))
722 clock.p2 = limit->p2.p2_fast;
723 else
724 clock.p2 = limit->p2.p2_slow;
725 } else {
726 if (target < limit->p2.dot_limit)
727 clock.p2 = limit->p2.p2_slow;
728 else
729 clock.p2 = limit->p2.p2_fast;
730 }
731
732 memset(best_clock, 0, sizeof(*best_clock));
733 max_n = limit->n.max;
734 /* based on hardware requirement, prefer smaller n to precision */
735 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736 /* based on hardware requirement, prefere larger m1,m2 */
737 for (clock.m1 = limit->m1.max;
738 clock.m1 >= limit->m1.min; clock.m1--) {
739 for (clock.m2 = limit->m2.max;
740 clock.m2 >= limit->m2.min; clock.m2--) {
741 for (clock.p1 = limit->p1.max;
742 clock.p1 >= limit->p1.min; clock.p1--) {
743 int this_err;
744
745 intel_clock(dev, refclk, &clock);
746 if (!intel_PLL_is_valid(dev, limit,
747 &clock))
748 continue;
749 if (match_clock &&
750 clock.p != match_clock->p)
751 continue;
752
753 this_err = abs(clock.dot - target);
754 if (this_err < err_most) {
755 *best_clock = clock;
756 err_most = this_err;
757 max_n = clock.n;
758 found = true;
759 }
760 }
761 }
762 }
763 }
764 return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769 int target, int refclk, intel_clock_t *match_clock,
770 intel_clock_t *best_clock)
771 {
772 struct drm_device *dev = crtc->dev;
773 intel_clock_t clock;
774
775 if (target < 200000) {
776 clock.n = 1;
777 clock.p1 = 2;
778 clock.p2 = 10;
779 clock.m1 = 12;
780 clock.m2 = 9;
781 } else {
782 clock.n = 2;
783 clock.p1 = 1;
784 clock.p2 = 10;
785 clock.m1 = 14;
786 clock.m2 = 8;
787 }
788 intel_clock(dev, refclk, &clock);
789 memcpy(best_clock, &clock, sizeof(intel_clock_t));
790 return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796 int target, int refclk, intel_clock_t *match_clock,
797 intel_clock_t *best_clock)
798 {
799 intel_clock_t clock;
800 if (target < 200000) {
801 clock.p1 = 2;
802 clock.p2 = 10;
803 clock.n = 2;
804 clock.m1 = 23;
805 clock.m2 = 8;
806 } else {
807 clock.p1 = 1;
808 clock.p2 = 10;
809 clock.n = 1;
810 clock.m1 = 14;
811 clock.m2 = 2;
812 }
813 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814 clock.p = (clock.p1 * clock.p2);
815 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816 clock.vco = 0;
817 memcpy(best_clock, &clock, sizeof(intel_clock_t));
818 return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822 int target, int refclk, intel_clock_t *match_clock,
823 intel_clock_t *best_clock)
824 {
825 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826 u32 m, n, fastclk;
827 u32 updrate, minupdate, fracbits, p;
828 unsigned long bestppm, ppm, absppm;
829 int dotclk, flag;
830
831 flag = 0;
832 dotclk = target * 1000;
833 bestppm = 1000000;
834 ppm = absppm = 0;
835 fastclk = dotclk / (2*100);
836 updrate = 0;
837 minupdate = 19200;
838 fracbits = 1;
839 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840 bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842 /* based on hardware requirement, prefer smaller n to precision */
843 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844 updrate = refclk / n;
845 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847 if (p2 > 10)
848 p2 = p2 - 1;
849 p = p1 * p2;
850 /* based on hardware requirement, prefer bigger m1,m2 values */
851 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852 m2 = (((2*(fastclk * p * n / m1 )) +
853 refclk) / (2*refclk));
854 m = m1 * m2;
855 vco = updrate * m;
856 if (vco >= limit->vco.min && vco < limit->vco.max) {
857 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858 absppm = (ppm > 0) ? ppm : (-ppm);
859 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860 bestppm = 0;
861 flag = 1;
862 }
863 if (absppm < bestppm - 10) {
864 bestppm = absppm;
865 flag = 1;
866 }
867 if (flag) {
868 bestn = n;
869 bestm1 = m1;
870 bestm2 = m2;
871 bestp1 = p1;
872 bestp2 = p2;
873 flag = 0;
874 }
875 }
876 }
877 }
878 }
879 }
880 best_clock->n = bestn;
881 best_clock->m1 = bestm1;
882 best_clock->m2 = bestm2;
883 best_clock->p1 = bestp1;
884 best_clock->p2 = bestp2;
885
886 return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890 enum pipe pipe)
891 {
892 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895 return intel_crtc->cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900 struct drm_i915_private *dev_priv = dev->dev_private;
901 u32 frame, frame_reg = PIPEFRAME(pipe);
902
903 frame = I915_READ(frame_reg);
904
905 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910 * intel_wait_for_vblank - wait for vblank on a given pipe
911 * @dev: drm device
912 * @pipe: pipe to wait for
913 *
914 * Wait for vblank to occur on a given pipe. Needed for various bits of
915 * mode setting code.
916 */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919 struct drm_i915_private *dev_priv = dev->dev_private;
920 int pipestat_reg = PIPESTAT(pipe);
921
922 if (INTEL_INFO(dev)->gen >= 5) {
923 ironlake_wait_for_vblank(dev, pipe);
924 return;
925 }
926
927 /* Clear existing vblank status. Note this will clear any other
928 * sticky status fields as well.
929 *
930 * This races with i915_driver_irq_handler() with the result
931 * that either function could miss a vblank event. Here it is not
932 * fatal, as we will either wait upon the next vblank interrupt or
933 * timeout. Generally speaking intel_wait_for_vblank() is only
934 * called during modeset at which time the GPU should be idle and
935 * should *not* be performing page flips and thus not waiting on
936 * vblanks...
937 * Currently, the result of us stealing a vblank from the irq
938 * handler is that a single frame will be skipped during swapbuffers.
939 */
940 I915_WRITE(pipestat_reg,
941 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943 /* Wait for vblank interrupt bit to set */
944 if (wait_for(I915_READ(pipestat_reg) &
945 PIPE_VBLANK_INTERRUPT_STATUS,
946 50))
947 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951 * intel_wait_for_pipe_off - wait for pipe to turn off
952 * @dev: drm device
953 * @pipe: pipe to wait for
954 *
955 * After disabling a pipe, we can't wait for vblank in the usual way,
956 * spinning on the vblank interrupt status bit, since we won't actually
957 * see an interrupt when the pipe is disabled.
958 *
959 * On Gen4 and above:
960 * wait for the pipe register state bit to turn off
961 *
962 * Otherwise:
963 * wait for the display line value to settle (it usually
964 * ends up stopping at the start of the next frame).
965 *
966 */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969 struct drm_i915_private *dev_priv = dev->dev_private;
970 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971 pipe);
972
973 if (INTEL_INFO(dev)->gen >= 4) {
974 int reg = PIPECONF(cpu_transcoder);
975
976 /* Wait for the Pipe State to go off */
977 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978 100))
979 WARN(1, "pipe_off wait timed out\n");
980 } else {
981 u32 last_line, line_mask;
982 int reg = PIPEDSL(pipe);
983 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985 if (IS_GEN2(dev))
986 line_mask = DSL_LINEMASK_GEN2;
987 else
988 line_mask = DSL_LINEMASK_GEN3;
989
990 /* Wait for the display line to settle */
991 do {
992 last_line = I915_READ(reg) & line_mask;
993 mdelay(5);
994 } while (((I915_READ(reg) & line_mask) != last_line) &&
995 time_after(timeout, jiffies));
996 if (time_after(jiffies, timeout))
997 WARN(1, "pipe_off wait timed out\n");
998 }
999 }
1000
1001 /*
1002 * ibx_digital_port_connected - is the specified port connected?
1003 * @dev_priv: i915 private structure
1004 * @port: the port to test
1005 *
1006 * Returns true if @port is connected, false otherwise.
1007 */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009 struct intel_digital_port *port)
1010 {
1011 u32 bit;
1012
1013 if (HAS_PCH_IBX(dev_priv->dev)) {
1014 switch(port->port) {
1015 case PORT_B:
1016 bit = SDE_PORTB_HOTPLUG;
1017 break;
1018 case PORT_C:
1019 bit = SDE_PORTC_HOTPLUG;
1020 break;
1021 case PORT_D:
1022 bit = SDE_PORTD_HOTPLUG;
1023 break;
1024 default:
1025 return true;
1026 }
1027 } else {
1028 switch(port->port) {
1029 case PORT_B:
1030 bit = SDE_PORTB_HOTPLUG_CPT;
1031 break;
1032 case PORT_C:
1033 bit = SDE_PORTC_HOTPLUG_CPT;
1034 break;
1035 case PORT_D:
1036 bit = SDE_PORTD_HOTPLUG_CPT;
1037 break;
1038 default:
1039 return true;
1040 }
1041 }
1042
1043 return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048 return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053 enum pipe pipe, bool state)
1054 {
1055 int reg;
1056 u32 val;
1057 bool cur_state;
1058
1059 reg = DPLL(pipe);
1060 val = I915_READ(reg);
1061 cur_state = !!(val & DPLL_VCO_ENABLE);
1062 WARN(cur_state != state,
1063 "PLL state assertion failure (expected %s, current %s)\n",
1064 state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071 struct intel_pch_pll *pll,
1072 struct intel_crtc *crtc,
1073 bool state)
1074 {
1075 u32 val;
1076 bool cur_state;
1077
1078 if (HAS_PCH_LPT(dev_priv->dev)) {
1079 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080 return;
1081 }
1082
1083 if (WARN (!pll,
1084 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085 return;
1086
1087 val = I915_READ(pll->pll_reg);
1088 cur_state = !!(val & DPLL_VCO_ENABLE);
1089 WARN(cur_state != state,
1090 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091 pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093 /* Make sure the selected PLL is correctly attached to the transcoder */
1094 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095 u32 pch_dpll;
1096
1097 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100 "PLL[%d] not attached to this transcoder %d: %08x\n",
1101 cur_state, crtc->pipe, pch_dpll)) {
1102 cur_state = !!(val >> (4*crtc->pipe + 3));
1103 WARN(cur_state != state,
1104 "PLL[%d] not %s on this transcoder %d: %08x\n",
1105 pll->pll_reg == _PCH_DPLL_B,
1106 state_string(state),
1107 crtc->pipe,
1108 val);
1109 }
1110 }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117 {
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
1123
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1133 }
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160 {
1161 int reg;
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
1165 if (dev_priv->info->gen == 5)
1166 return;
1167
1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 if (HAS_DDI(dev_priv->dev))
1170 return;
1171
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178 enum pipe pipe)
1179 {
1180 int reg;
1181 u32 val;
1182
1183 reg = FDI_RX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190 {
1191 int pp_reg, lvds_reg;
1192 u32 val;
1193 enum pipe panel_pipe = PIPE_A;
1194 bool locked = true;
1195
1196 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197 pp_reg = PCH_PP_CONTROL;
1198 lvds_reg = PCH_LVDS;
1199 } else {
1200 pp_reg = PP_CONTROL;
1201 lvds_reg = LVDS;
1202 }
1203
1204 val = I915_READ(pp_reg);
1205 if (!(val & PANEL_POWER_ON) ||
1206 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207 locked = false;
1208
1209 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210 panel_pipe = PIPE_B;
1211
1212 WARN(panel_pipe == pipe && locked,
1213 "panel assertion failure, pipe %c regs locked\n",
1214 pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219 {
1220 int reg;
1221 u32 val;
1222 bool cur_state;
1223 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224 pipe);
1225
1226 /* if we need the pipe A quirk it must be always on */
1227 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228 state = true;
1229
1230 if (!intel_using_power_well(dev_priv->dev) &&
1231 cpu_transcoder != TRANSCODER_EDP) {
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
1241 pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
1246 {
1247 int reg;
1248 u32 val;
1249 bool cur_state;
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264 {
1265 int reg, i;
1266 u32 val;
1267 int cur_pipe;
1268
1269 /* Planes are fixed to pipes on ILK+ */
1270 if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271 reg = DSPCNTR(pipe);
1272 val = I915_READ(reg);
1273 WARN((val & DISPLAY_PLANE_ENABLE),
1274 "plane %c assertion failure, should be disabled but not\n",
1275 plane_name(pipe));
1276 return;
1277 }
1278
1279 /* Need to check both planes against the pipe */
1280 for (i = 0; i < 2; i++) {
1281 reg = DSPCNTR(i);
1282 val = I915_READ(reg);
1283 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284 DISPPLANE_SEL_PIPE_SHIFT;
1285 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287 plane_name(i), pipe_name(pipe));
1288 }
1289 }
1290
1291 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int reg, i;
1295 u32 val;
1296
1297 if (!IS_VALLEYVIEW(dev_priv->dev))
1298 return;
1299
1300 /* Need to check both planes against the pipe */
1301 for (i = 0; i < dev_priv->num_plane; i++) {
1302 reg = SPCNTR(pipe, i);
1303 val = I915_READ(reg);
1304 WARN((val & SP_ENABLE),
1305 "sprite %d assertion failure, should be off on pipe %c but is still active\n",
1306 pipe * 2 + i, pipe_name(pipe));
1307 }
1308 }
1309
1310 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1311 {
1312 u32 val;
1313 bool enabled;
1314
1315 if (HAS_PCH_LPT(dev_priv->dev)) {
1316 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1317 return;
1318 }
1319
1320 val = I915_READ(PCH_DREF_CONTROL);
1321 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322 DREF_SUPERSPREAD_SOURCE_MASK));
1323 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1324 }
1325
1326 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1327 enum pipe pipe)
1328 {
1329 int reg;
1330 u32 val;
1331 bool enabled;
1332
1333 reg = TRANSCONF(pipe);
1334 val = I915_READ(reg);
1335 enabled = !!(val & TRANS_ENABLE);
1336 WARN(enabled,
1337 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338 pipe_name(pipe));
1339 }
1340
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342 enum pipe pipe, u32 port_sel, u32 val)
1343 {
1344 if ((val & DP_PORT_EN) == 0)
1345 return false;
1346
1347 if (HAS_PCH_CPT(dev_priv->dev)) {
1348 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351 return false;
1352 } else {
1353 if ((val & DP_PIPE_MASK) != (pipe << 30))
1354 return false;
1355 }
1356 return true;
1357 }
1358
1359 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe, u32 val)
1361 {
1362 if ((val & SDVO_ENABLE) == 0)
1363 return false;
1364
1365 if (HAS_PCH_CPT(dev_priv->dev)) {
1366 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1367 return false;
1368 } else {
1369 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1370 return false;
1371 }
1372 return true;
1373 }
1374
1375 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1376 enum pipe pipe, u32 val)
1377 {
1378 if ((val & LVDS_PORT_EN) == 0)
1379 return false;
1380
1381 if (HAS_PCH_CPT(dev_priv->dev)) {
1382 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1383 return false;
1384 } else {
1385 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1386 return false;
1387 }
1388 return true;
1389 }
1390
1391 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, u32 val)
1393 {
1394 if ((val & ADPA_DAC_ENABLE) == 0)
1395 return false;
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
1397 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1398 return false;
1399 } else {
1400 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1401 return false;
1402 }
1403 return true;
1404 }
1405
1406 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, int reg, u32 port_sel)
1408 {
1409 u32 val = I915_READ(reg);
1410 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1411 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1412 reg, pipe_name(pipe));
1413
1414 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1415 && (val & DP_PIPEB_SELECT),
1416 "IBX PCH dp port still using transcoder B\n");
1417 }
1418
1419 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, int reg)
1421 {
1422 u32 val = I915_READ(reg);
1423 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1424 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1425 reg, pipe_name(pipe));
1426
1427 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1428 && (val & SDVO_PIPE_B_SELECT),
1429 "IBX PCH hdmi port still using transcoder B\n");
1430 }
1431
1432 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1433 enum pipe pipe)
1434 {
1435 int reg;
1436 u32 val;
1437
1438 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1439 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1440 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1441
1442 reg = PCH_ADPA;
1443 val = I915_READ(reg);
1444 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1445 "PCH VGA enabled on transcoder %c, should be disabled\n",
1446 pipe_name(pipe));
1447
1448 reg = PCH_LVDS;
1449 val = I915_READ(reg);
1450 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1451 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1452 pipe_name(pipe));
1453
1454 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1455 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1456 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1457 }
1458
1459 /**
1460 * intel_enable_pll - enable a PLL
1461 * @dev_priv: i915 private structure
1462 * @pipe: pipe PLL to enable
1463 *
1464 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1465 * make sure the PLL reg is writable first though, since the panel write
1466 * protect mechanism may be enabled.
1467 *
1468 * Note! This is for pre-ILK only.
1469 *
1470 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1471 */
1472 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474 int reg;
1475 u32 val;
1476
1477 /* No really, not for ILK+ */
1478 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1479
1480 /* PLL is protected by panel, make sure we can write it */
1481 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1482 assert_panel_unlocked(dev_priv, pipe);
1483
1484 reg = DPLL(pipe);
1485 val = I915_READ(reg);
1486 val |= DPLL_VCO_ENABLE;
1487
1488 /* We do this three times for luck */
1489 I915_WRITE(reg, val);
1490 POSTING_READ(reg);
1491 udelay(150); /* wait for warmup */
1492 I915_WRITE(reg, val);
1493 POSTING_READ(reg);
1494 udelay(150); /* wait for warmup */
1495 I915_WRITE(reg, val);
1496 POSTING_READ(reg);
1497 udelay(150); /* wait for warmup */
1498 }
1499
1500 /**
1501 * intel_disable_pll - disable a PLL
1502 * @dev_priv: i915 private structure
1503 * @pipe: pipe PLL to disable
1504 *
1505 * Disable the PLL for @pipe, making sure the pipe is off first.
1506 *
1507 * Note! This is for pre-ILK only.
1508 */
1509 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1510 {
1511 int reg;
1512 u32 val;
1513
1514 /* Don't disable pipe A or pipe A PLLs if needed */
1515 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1516 return;
1517
1518 /* Make sure the pipe isn't still relying on us */
1519 assert_pipe_disabled(dev_priv, pipe);
1520
1521 reg = DPLL(pipe);
1522 val = I915_READ(reg);
1523 val &= ~DPLL_VCO_ENABLE;
1524 I915_WRITE(reg, val);
1525 POSTING_READ(reg);
1526 }
1527
1528 /* SBI access */
1529 static void
1530 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1531 enum intel_sbi_destination destination)
1532 {
1533 u32 tmp;
1534
1535 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1536
1537 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1538 100)) {
1539 DRM_ERROR("timeout waiting for SBI to become ready\n");
1540 return;
1541 }
1542
1543 I915_WRITE(SBI_ADDR, (reg << 16));
1544 I915_WRITE(SBI_DATA, value);
1545
1546 if (destination == SBI_ICLK)
1547 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1548 else
1549 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1550 I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1551
1552 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1553 100)) {
1554 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1555 return;
1556 }
1557 }
1558
1559 static u32
1560 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1561 enum intel_sbi_destination destination)
1562 {
1563 u32 value = 0;
1564 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1565
1566 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1567 100)) {
1568 DRM_ERROR("timeout waiting for SBI to become ready\n");
1569 return 0;
1570 }
1571
1572 I915_WRITE(SBI_ADDR, (reg << 16));
1573
1574 if (destination == SBI_ICLK)
1575 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1576 else
1577 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1578 I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1579
1580 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1581 100)) {
1582 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1583 return 0;
1584 }
1585
1586 return I915_READ(SBI_DATA);
1587 }
1588
1589 /**
1590 * ironlake_enable_pch_pll - enable PCH PLL
1591 * @dev_priv: i915 private structure
1592 * @pipe: pipe PLL to enable
1593 *
1594 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1595 * drives the transcoder clock.
1596 */
1597 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1598 {
1599 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1600 struct intel_pch_pll *pll;
1601 int reg;
1602 u32 val;
1603
1604 /* PCH PLLs only available on ILK, SNB and IVB */
1605 BUG_ON(dev_priv->info->gen < 5);
1606 pll = intel_crtc->pch_pll;
1607 if (pll == NULL)
1608 return;
1609
1610 if (WARN_ON(pll->refcount == 0))
1611 return;
1612
1613 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1614 pll->pll_reg, pll->active, pll->on,
1615 intel_crtc->base.base.id);
1616
1617 /* PCH refclock must be enabled first */
1618 assert_pch_refclk_enabled(dev_priv);
1619
1620 if (pll->active++ && pll->on) {
1621 assert_pch_pll_enabled(dev_priv, pll, NULL);
1622 return;
1623 }
1624
1625 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1626
1627 reg = pll->pll_reg;
1628 val = I915_READ(reg);
1629 val |= DPLL_VCO_ENABLE;
1630 I915_WRITE(reg, val);
1631 POSTING_READ(reg);
1632 udelay(200);
1633
1634 pll->on = true;
1635 }
1636
1637 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1638 {
1639 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1640 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1641 int reg;
1642 u32 val;
1643
1644 /* PCH only available on ILK+ */
1645 BUG_ON(dev_priv->info->gen < 5);
1646 if (pll == NULL)
1647 return;
1648
1649 if (WARN_ON(pll->refcount == 0))
1650 return;
1651
1652 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1653 pll->pll_reg, pll->active, pll->on,
1654 intel_crtc->base.base.id);
1655
1656 if (WARN_ON(pll->active == 0)) {
1657 assert_pch_pll_disabled(dev_priv, pll, NULL);
1658 return;
1659 }
1660
1661 if (--pll->active) {
1662 assert_pch_pll_enabled(dev_priv, pll, NULL);
1663 return;
1664 }
1665
1666 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1667
1668 /* Make sure transcoder isn't still depending on us */
1669 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1670
1671 reg = pll->pll_reg;
1672 val = I915_READ(reg);
1673 val &= ~DPLL_VCO_ENABLE;
1674 I915_WRITE(reg, val);
1675 POSTING_READ(reg);
1676 udelay(200);
1677
1678 pll->on = false;
1679 }
1680
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682 enum pipe pipe)
1683 {
1684 struct drm_device *dev = dev_priv->dev;
1685 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1686 uint32_t reg, val, pipeconf_val;
1687
1688 /* PCH only available on ILK+ */
1689 BUG_ON(dev_priv->info->gen < 5);
1690
1691 /* Make sure PCH DPLL is enabled */
1692 assert_pch_pll_enabled(dev_priv,
1693 to_intel_crtc(crtc)->pch_pll,
1694 to_intel_crtc(crtc));
1695
1696 /* FDI must be feeding us bits for PCH ports */
1697 assert_fdi_tx_enabled(dev_priv, pipe);
1698 assert_fdi_rx_enabled(dev_priv, pipe);
1699
1700 if (HAS_PCH_CPT(dev)) {
1701 /* Workaround: Set the timing override bit before enabling the
1702 * pch transcoder. */
1703 reg = TRANS_CHICKEN2(pipe);
1704 val = I915_READ(reg);
1705 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1706 I915_WRITE(reg, val);
1707 }
1708
1709 reg = TRANSCONF(pipe);
1710 val = I915_READ(reg);
1711 pipeconf_val = I915_READ(PIPECONF(pipe));
1712
1713 if (HAS_PCH_IBX(dev_priv->dev)) {
1714 /*
1715 * make the BPC in transcoder be consistent with
1716 * that in pipeconf reg.
1717 */
1718 val &= ~PIPECONF_BPC_MASK;
1719 val |= pipeconf_val & PIPECONF_BPC_MASK;
1720 }
1721
1722 val &= ~TRANS_INTERLACE_MASK;
1723 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724 if (HAS_PCH_IBX(dev_priv->dev) &&
1725 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1726 val |= TRANS_LEGACY_INTERLACED_ILK;
1727 else
1728 val |= TRANS_INTERLACED;
1729 else
1730 val |= TRANS_PROGRESSIVE;
1731
1732 I915_WRITE(reg, val | TRANS_ENABLE);
1733 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1734 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1735 }
1736
1737 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1738 enum transcoder cpu_transcoder)
1739 {
1740 u32 val, pipeconf_val;
1741
1742 /* PCH only available on ILK+ */
1743 BUG_ON(dev_priv->info->gen < 5);
1744
1745 /* FDI must be feeding us bits for PCH ports */
1746 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1747 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1748
1749 /* Workaround: set timing override bit. */
1750 val = I915_READ(_TRANSA_CHICKEN2);
1751 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1752 I915_WRITE(_TRANSA_CHICKEN2, val);
1753
1754 val = TRANS_ENABLE;
1755 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1756
1757 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1758 PIPECONF_INTERLACED_ILK)
1759 val |= TRANS_INTERLACED;
1760 else
1761 val |= TRANS_PROGRESSIVE;
1762
1763 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1764 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1765 DRM_ERROR("Failed to enable PCH transcoder\n");
1766 }
1767
1768 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1769 enum pipe pipe)
1770 {
1771 struct drm_device *dev = dev_priv->dev;
1772 uint32_t reg, val;
1773
1774 /* FDI relies on the transcoder */
1775 assert_fdi_tx_disabled(dev_priv, pipe);
1776 assert_fdi_rx_disabled(dev_priv, pipe);
1777
1778 /* Ports must be off as well */
1779 assert_pch_ports_disabled(dev_priv, pipe);
1780
1781 reg = TRANSCONF(pipe);
1782 val = I915_READ(reg);
1783 val &= ~TRANS_ENABLE;
1784 I915_WRITE(reg, val);
1785 /* wait for PCH transcoder off, transcoder state */
1786 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1787 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1788
1789 if (!HAS_PCH_IBX(dev)) {
1790 /* Workaround: Clear the timing override chicken bit again. */
1791 reg = TRANS_CHICKEN2(pipe);
1792 val = I915_READ(reg);
1793 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1794 I915_WRITE(reg, val);
1795 }
1796 }
1797
1798 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1799 {
1800 u32 val;
1801
1802 val = I915_READ(_TRANSACONF);
1803 val &= ~TRANS_ENABLE;
1804 I915_WRITE(_TRANSACONF, val);
1805 /* wait for PCH transcoder off, transcoder state */
1806 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1807 DRM_ERROR("Failed to disable PCH transcoder\n");
1808
1809 /* Workaround: clear timing override bit. */
1810 val = I915_READ(_TRANSA_CHICKEN2);
1811 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1812 I915_WRITE(_TRANSA_CHICKEN2, val);
1813 }
1814
1815 /**
1816 * intel_enable_pipe - enable a pipe, asserting requirements
1817 * @dev_priv: i915 private structure
1818 * @pipe: pipe to enable
1819 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1820 *
1821 * Enable @pipe, making sure that various hardware specific requirements
1822 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1823 *
1824 * @pipe should be %PIPE_A or %PIPE_B.
1825 *
1826 * Will wait until the pipe is actually running (i.e. first vblank) before
1827 * returning.
1828 */
1829 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1830 bool pch_port)
1831 {
1832 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1833 pipe);
1834 enum pipe pch_transcoder;
1835 int reg;
1836 u32 val;
1837
1838 if (HAS_PCH_LPT(dev_priv->dev))
1839 pch_transcoder = TRANSCODER_A;
1840 else
1841 pch_transcoder = pipe;
1842
1843 /*
1844 * A pipe without a PLL won't actually be able to drive bits from
1845 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1846 * need the check.
1847 */
1848 if (!HAS_PCH_SPLIT(dev_priv->dev))
1849 assert_pll_enabled(dev_priv, pipe);
1850 else {
1851 if (pch_port) {
1852 /* if driving the PCH, we need FDI enabled */
1853 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1854 assert_fdi_tx_pll_enabled(dev_priv,
1855 (enum pipe) cpu_transcoder);
1856 }
1857 /* FIXME: assert CPU port conditions for SNB+ */
1858 }
1859
1860 reg = PIPECONF(cpu_transcoder);
1861 val = I915_READ(reg);
1862 if (val & PIPECONF_ENABLE)
1863 return;
1864
1865 I915_WRITE(reg, val | PIPECONF_ENABLE);
1866 intel_wait_for_vblank(dev_priv->dev, pipe);
1867 }
1868
1869 /**
1870 * intel_disable_pipe - disable a pipe, asserting requirements
1871 * @dev_priv: i915 private structure
1872 * @pipe: pipe to disable
1873 *
1874 * Disable @pipe, making sure that various hardware specific requirements
1875 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1876 *
1877 * @pipe should be %PIPE_A or %PIPE_B.
1878 *
1879 * Will wait until the pipe has shut down before returning.
1880 */
1881 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1882 enum pipe pipe)
1883 {
1884 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1885 pipe);
1886 int reg;
1887 u32 val;
1888
1889 /*
1890 * Make sure planes won't keep trying to pump pixels to us,
1891 * or we might hang the display.
1892 */
1893 assert_planes_disabled(dev_priv, pipe);
1894 assert_sprites_disabled(dev_priv, pipe);
1895
1896 /* Don't disable pipe A or pipe A PLLs if needed */
1897 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1898 return;
1899
1900 reg = PIPECONF(cpu_transcoder);
1901 val = I915_READ(reg);
1902 if ((val & PIPECONF_ENABLE) == 0)
1903 return;
1904
1905 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1906 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1907 }
1908
1909 /*
1910 * Plane regs are double buffered, going from enabled->disabled needs a
1911 * trigger in order to latch. The display address reg provides this.
1912 */
1913 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1914 enum plane plane)
1915 {
1916 if (dev_priv->info->gen >= 4)
1917 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1918 else
1919 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1920 }
1921
1922 /**
1923 * intel_enable_plane - enable a display plane on a given pipe
1924 * @dev_priv: i915 private structure
1925 * @plane: plane to enable
1926 * @pipe: pipe being fed
1927 *
1928 * Enable @plane on @pipe, making sure that @pipe is running first.
1929 */
1930 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1931 enum plane plane, enum pipe pipe)
1932 {
1933 int reg;
1934 u32 val;
1935
1936 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1937 assert_pipe_enabled(dev_priv, pipe);
1938
1939 reg = DSPCNTR(plane);
1940 val = I915_READ(reg);
1941 if (val & DISPLAY_PLANE_ENABLE)
1942 return;
1943
1944 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1945 intel_flush_display_plane(dev_priv, plane);
1946 intel_wait_for_vblank(dev_priv->dev, pipe);
1947 }
1948
1949 /**
1950 * intel_disable_plane - disable a display plane
1951 * @dev_priv: i915 private structure
1952 * @plane: plane to disable
1953 * @pipe: pipe consuming the data
1954 *
1955 * Disable @plane; should be an independent operation.
1956 */
1957 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1958 enum plane plane, enum pipe pipe)
1959 {
1960 int reg;
1961 u32 val;
1962
1963 reg = DSPCNTR(plane);
1964 val = I915_READ(reg);
1965 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1966 return;
1967
1968 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1969 intel_flush_display_plane(dev_priv, plane);
1970 intel_wait_for_vblank(dev_priv->dev, pipe);
1971 }
1972
1973 static bool need_vtd_wa(struct drm_device *dev)
1974 {
1975 #ifdef CONFIG_INTEL_IOMMU
1976 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1977 return true;
1978 #endif
1979 return false;
1980 }
1981
1982 int
1983 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1984 struct drm_i915_gem_object *obj,
1985 struct intel_ring_buffer *pipelined)
1986 {
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988 u32 alignment;
1989 int ret;
1990
1991 switch (obj->tiling_mode) {
1992 case I915_TILING_NONE:
1993 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1994 alignment = 128 * 1024;
1995 else if (INTEL_INFO(dev)->gen >= 4)
1996 alignment = 4 * 1024;
1997 else
1998 alignment = 64 * 1024;
1999 break;
2000 case I915_TILING_X:
2001 /* pin() will align the object as required by fence */
2002 alignment = 0;
2003 break;
2004 case I915_TILING_Y:
2005 /* Despite that we check this in framebuffer_init userspace can
2006 * screw us over and change the tiling after the fact. Only
2007 * pinned buffers can't change their tiling. */
2008 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
2009 return -EINVAL;
2010 default:
2011 BUG();
2012 }
2013
2014 /* Note that the w/a also requires 64 PTE of padding following the
2015 * bo. We currently fill all unused PTE with the shadow page and so
2016 * we should always have valid PTE following the scanout preventing
2017 * the VT-d warning.
2018 */
2019 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2020 alignment = 256 * 1024;
2021
2022 dev_priv->mm.interruptible = false;
2023 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2024 if (ret)
2025 goto err_interruptible;
2026
2027 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2028 * fence, whereas 965+ only requires a fence if using
2029 * framebuffer compression. For simplicity, we always install
2030 * a fence as the cost is not that onerous.
2031 */
2032 ret = i915_gem_object_get_fence(obj);
2033 if (ret)
2034 goto err_unpin;
2035
2036 i915_gem_object_pin_fence(obj);
2037
2038 dev_priv->mm.interruptible = true;
2039 return 0;
2040
2041 err_unpin:
2042 i915_gem_object_unpin(obj);
2043 err_interruptible:
2044 dev_priv->mm.interruptible = true;
2045 return ret;
2046 }
2047
2048 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2049 {
2050 i915_gem_object_unpin_fence(obj);
2051 i915_gem_object_unpin(obj);
2052 }
2053
2054 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2055 * is assumed to be a power-of-two. */
2056 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2057 unsigned int tiling_mode,
2058 unsigned int cpp,
2059 unsigned int pitch)
2060 {
2061 if (tiling_mode != I915_TILING_NONE) {
2062 unsigned int tile_rows, tiles;
2063
2064 tile_rows = *y / 8;
2065 *y %= 8;
2066
2067 tiles = *x / (512/cpp);
2068 *x %= 512/cpp;
2069
2070 return tile_rows * pitch * 8 + tiles * 4096;
2071 } else {
2072 unsigned int offset;
2073
2074 offset = *y * pitch + *x * cpp;
2075 *y = 0;
2076 *x = (offset & 4095) / cpp;
2077 return offset & -4096;
2078 }
2079 }
2080
2081 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2082 int x, int y)
2083 {
2084 struct drm_device *dev = crtc->dev;
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2087 struct intel_framebuffer *intel_fb;
2088 struct drm_i915_gem_object *obj;
2089 int plane = intel_crtc->plane;
2090 unsigned long linear_offset;
2091 u32 dspcntr;
2092 u32 reg;
2093
2094 switch (plane) {
2095 case 0:
2096 case 1:
2097 break;
2098 default:
2099 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2100 return -EINVAL;
2101 }
2102
2103 intel_fb = to_intel_framebuffer(fb);
2104 obj = intel_fb->obj;
2105
2106 reg = DSPCNTR(plane);
2107 dspcntr = I915_READ(reg);
2108 /* Mask out pixel format bits in case we change it */
2109 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2110 switch (fb->pixel_format) {
2111 case DRM_FORMAT_C8:
2112 dspcntr |= DISPPLANE_8BPP;
2113 break;
2114 case DRM_FORMAT_XRGB1555:
2115 case DRM_FORMAT_ARGB1555:
2116 dspcntr |= DISPPLANE_BGRX555;
2117 break;
2118 case DRM_FORMAT_RGB565:
2119 dspcntr |= DISPPLANE_BGRX565;
2120 break;
2121 case DRM_FORMAT_XRGB8888:
2122 case DRM_FORMAT_ARGB8888:
2123 dspcntr |= DISPPLANE_BGRX888;
2124 break;
2125 case DRM_FORMAT_XBGR8888:
2126 case DRM_FORMAT_ABGR8888:
2127 dspcntr |= DISPPLANE_RGBX888;
2128 break;
2129 case DRM_FORMAT_XRGB2101010:
2130 case DRM_FORMAT_ARGB2101010:
2131 dspcntr |= DISPPLANE_BGRX101010;
2132 break;
2133 case DRM_FORMAT_XBGR2101010:
2134 case DRM_FORMAT_ABGR2101010:
2135 dspcntr |= DISPPLANE_RGBX101010;
2136 break;
2137 default:
2138 BUG();
2139 }
2140
2141 if (INTEL_INFO(dev)->gen >= 4) {
2142 if (obj->tiling_mode != I915_TILING_NONE)
2143 dspcntr |= DISPPLANE_TILED;
2144 else
2145 dspcntr &= ~DISPPLANE_TILED;
2146 }
2147
2148 I915_WRITE(reg, dspcntr);
2149
2150 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2151
2152 if (INTEL_INFO(dev)->gen >= 4) {
2153 intel_crtc->dspaddr_offset =
2154 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2155 fb->bits_per_pixel / 8,
2156 fb->pitches[0]);
2157 linear_offset -= intel_crtc->dspaddr_offset;
2158 } else {
2159 intel_crtc->dspaddr_offset = linear_offset;
2160 }
2161
2162 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2163 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2164 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2165 if (INTEL_INFO(dev)->gen >= 4) {
2166 I915_MODIFY_DISPBASE(DSPSURF(plane),
2167 obj->gtt_offset + intel_crtc->dspaddr_offset);
2168 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2169 I915_WRITE(DSPLINOFF(plane), linear_offset);
2170 } else
2171 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2172 POSTING_READ(reg);
2173
2174 return 0;
2175 }
2176
2177 static int ironlake_update_plane(struct drm_crtc *crtc,
2178 struct drm_framebuffer *fb, int x, int y)
2179 {
2180 struct drm_device *dev = crtc->dev;
2181 struct drm_i915_private *dev_priv = dev->dev_private;
2182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2183 struct intel_framebuffer *intel_fb;
2184 struct drm_i915_gem_object *obj;
2185 int plane = intel_crtc->plane;
2186 unsigned long linear_offset;
2187 u32 dspcntr;
2188 u32 reg;
2189
2190 switch (plane) {
2191 case 0:
2192 case 1:
2193 case 2:
2194 break;
2195 default:
2196 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2197 return -EINVAL;
2198 }
2199
2200 intel_fb = to_intel_framebuffer(fb);
2201 obj = intel_fb->obj;
2202
2203 reg = DSPCNTR(plane);
2204 dspcntr = I915_READ(reg);
2205 /* Mask out pixel format bits in case we change it */
2206 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2207 switch (fb->pixel_format) {
2208 case DRM_FORMAT_C8:
2209 dspcntr |= DISPPLANE_8BPP;
2210 break;
2211 case DRM_FORMAT_RGB565:
2212 dspcntr |= DISPPLANE_BGRX565;
2213 break;
2214 case DRM_FORMAT_XRGB8888:
2215 case DRM_FORMAT_ARGB8888:
2216 dspcntr |= DISPPLANE_BGRX888;
2217 break;
2218 case DRM_FORMAT_XBGR8888:
2219 case DRM_FORMAT_ABGR8888:
2220 dspcntr |= DISPPLANE_RGBX888;
2221 break;
2222 case DRM_FORMAT_XRGB2101010:
2223 case DRM_FORMAT_ARGB2101010:
2224 dspcntr |= DISPPLANE_BGRX101010;
2225 break;
2226 case DRM_FORMAT_XBGR2101010:
2227 case DRM_FORMAT_ABGR2101010:
2228 dspcntr |= DISPPLANE_RGBX101010;
2229 break;
2230 default:
2231 BUG();
2232 }
2233
2234 if (obj->tiling_mode != I915_TILING_NONE)
2235 dspcntr |= DISPPLANE_TILED;
2236 else
2237 dspcntr &= ~DISPPLANE_TILED;
2238
2239 /* must disable */
2240 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2241
2242 I915_WRITE(reg, dspcntr);
2243
2244 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2245 intel_crtc->dspaddr_offset =
2246 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2247 fb->bits_per_pixel / 8,
2248 fb->pitches[0]);
2249 linear_offset -= intel_crtc->dspaddr_offset;
2250
2251 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2252 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2253 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2254 I915_MODIFY_DISPBASE(DSPSURF(plane),
2255 obj->gtt_offset + intel_crtc->dspaddr_offset);
2256 if (IS_HASWELL(dev)) {
2257 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2258 } else {
2259 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2260 I915_WRITE(DSPLINOFF(plane), linear_offset);
2261 }
2262 POSTING_READ(reg);
2263
2264 return 0;
2265 }
2266
2267 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2268 static int
2269 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2270 int x, int y, enum mode_set_atomic state)
2271 {
2272 struct drm_device *dev = crtc->dev;
2273 struct drm_i915_private *dev_priv = dev->dev_private;
2274
2275 if (dev_priv->display.disable_fbc)
2276 dev_priv->display.disable_fbc(dev);
2277 intel_increase_pllclock(crtc);
2278
2279 return dev_priv->display.update_plane(crtc, fb, x, y);
2280 }
2281
2282 void intel_display_handle_reset(struct drm_device *dev)
2283 {
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 struct drm_crtc *crtc;
2286
2287 /*
2288 * Flips in the rings have been nuked by the reset,
2289 * so complete all pending flips so that user space
2290 * will get its events and not get stuck.
2291 *
2292 * Also update the base address of all primary
2293 * planes to the the last fb to make sure we're
2294 * showing the correct fb after a reset.
2295 *
2296 * Need to make two loops over the crtcs so that we
2297 * don't try to grab a crtc mutex before the
2298 * pending_flip_queue really got woken up.
2299 */
2300
2301 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2303 enum plane plane = intel_crtc->plane;
2304
2305 intel_prepare_page_flip(dev, plane);
2306 intel_finish_page_flip_plane(dev, plane);
2307 }
2308
2309 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2311
2312 mutex_lock(&crtc->mutex);
2313 if (intel_crtc->active)
2314 dev_priv->display.update_plane(crtc, crtc->fb,
2315 crtc->x, crtc->y);
2316 mutex_unlock(&crtc->mutex);
2317 }
2318 }
2319
2320 static int
2321 intel_finish_fb(struct drm_framebuffer *old_fb)
2322 {
2323 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325 bool was_interruptible = dev_priv->mm.interruptible;
2326 int ret;
2327
2328 /* Big Hammer, we also need to ensure that any pending
2329 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2330 * current scanout is retired before unpinning the old
2331 * framebuffer.
2332 *
2333 * This should only fail upon a hung GPU, in which case we
2334 * can safely continue.
2335 */
2336 dev_priv->mm.interruptible = false;
2337 ret = i915_gem_object_finish_gpu(obj);
2338 dev_priv->mm.interruptible = was_interruptible;
2339
2340 return ret;
2341 }
2342
2343 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2344 {
2345 struct drm_device *dev = crtc->dev;
2346 struct drm_i915_master_private *master_priv;
2347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2348
2349 if (!dev->primary->master)
2350 return;
2351
2352 master_priv = dev->primary->master->driver_priv;
2353 if (!master_priv->sarea_priv)
2354 return;
2355
2356 switch (intel_crtc->pipe) {
2357 case 0:
2358 master_priv->sarea_priv->pipeA_x = x;
2359 master_priv->sarea_priv->pipeA_y = y;
2360 break;
2361 case 1:
2362 master_priv->sarea_priv->pipeB_x = x;
2363 master_priv->sarea_priv->pipeB_y = y;
2364 break;
2365 default:
2366 break;
2367 }
2368 }
2369
2370 static int
2371 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2372 struct drm_framebuffer *fb)
2373 {
2374 struct drm_device *dev = crtc->dev;
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377 struct drm_framebuffer *old_fb;
2378 int ret;
2379
2380 /* no fb bound */
2381 if (!fb) {
2382 DRM_ERROR("No FB bound\n");
2383 return 0;
2384 }
2385
2386 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2387 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2388 intel_crtc->plane,
2389 INTEL_INFO(dev)->num_pipes);
2390 return -EINVAL;
2391 }
2392
2393 mutex_lock(&dev->struct_mutex);
2394 ret = intel_pin_and_fence_fb_obj(dev,
2395 to_intel_framebuffer(fb)->obj,
2396 NULL);
2397 if (ret != 0) {
2398 mutex_unlock(&dev->struct_mutex);
2399 DRM_ERROR("pin & fence failed\n");
2400 return ret;
2401 }
2402
2403 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2404 if (ret) {
2405 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2406 mutex_unlock(&dev->struct_mutex);
2407 DRM_ERROR("failed to update base address\n");
2408 return ret;
2409 }
2410
2411 old_fb = crtc->fb;
2412 crtc->fb = fb;
2413 crtc->x = x;
2414 crtc->y = y;
2415
2416 if (old_fb) {
2417 intel_wait_for_vblank(dev, intel_crtc->pipe);
2418 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2419 }
2420
2421 intel_update_fbc(dev);
2422 mutex_unlock(&dev->struct_mutex);
2423
2424 intel_crtc_update_sarea_pos(crtc, x, y);
2425
2426 return 0;
2427 }
2428
2429 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2430 {
2431 struct drm_device *dev = crtc->dev;
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2434 int pipe = intel_crtc->pipe;
2435 u32 reg, temp;
2436
2437 /* enable normal train */
2438 reg = FDI_TX_CTL(pipe);
2439 temp = I915_READ(reg);
2440 if (IS_IVYBRIDGE(dev)) {
2441 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2442 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2443 } else {
2444 temp &= ~FDI_LINK_TRAIN_NONE;
2445 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2446 }
2447 I915_WRITE(reg, temp);
2448
2449 reg = FDI_RX_CTL(pipe);
2450 temp = I915_READ(reg);
2451 if (HAS_PCH_CPT(dev)) {
2452 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2453 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2454 } else {
2455 temp &= ~FDI_LINK_TRAIN_NONE;
2456 temp |= FDI_LINK_TRAIN_NONE;
2457 }
2458 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2459
2460 /* wait one idle pattern time */
2461 POSTING_READ(reg);
2462 udelay(1000);
2463
2464 /* IVB wants error correction enabled */
2465 if (IS_IVYBRIDGE(dev))
2466 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2467 FDI_FE_ERRC_ENABLE);
2468 }
2469
2470 static void ivb_modeset_global_resources(struct drm_device *dev)
2471 {
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473 struct intel_crtc *pipe_B_crtc =
2474 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2475 struct intel_crtc *pipe_C_crtc =
2476 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2477 uint32_t temp;
2478
2479 /* When everything is off disable fdi C so that we could enable fdi B
2480 * with all lanes. XXX: This misses the case where a pipe is not using
2481 * any pch resources and so doesn't need any fdi lanes. */
2482 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2483 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2484 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2485
2486 temp = I915_READ(SOUTH_CHICKEN1);
2487 temp &= ~FDI_BC_BIFURCATION_SELECT;
2488 DRM_DEBUG_KMS("disabling fdi C rx\n");
2489 I915_WRITE(SOUTH_CHICKEN1, temp);
2490 }
2491 }
2492
2493 /* The FDI link training functions for ILK/Ibexpeak. */
2494 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2495 {
2496 struct drm_device *dev = crtc->dev;
2497 struct drm_i915_private *dev_priv = dev->dev_private;
2498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2499 int pipe = intel_crtc->pipe;
2500 int plane = intel_crtc->plane;
2501 u32 reg, temp, tries;
2502
2503 /* FDI needs bits from pipe & plane first */
2504 assert_pipe_enabled(dev_priv, pipe);
2505 assert_plane_enabled(dev_priv, plane);
2506
2507 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2508 for train result */
2509 reg = FDI_RX_IMR(pipe);
2510 temp = I915_READ(reg);
2511 temp &= ~FDI_RX_SYMBOL_LOCK;
2512 temp &= ~FDI_RX_BIT_LOCK;
2513 I915_WRITE(reg, temp);
2514 I915_READ(reg);
2515 udelay(150);
2516
2517 /* enable CPU FDI TX and PCH FDI RX */
2518 reg = FDI_TX_CTL(pipe);
2519 temp = I915_READ(reg);
2520 temp &= ~(7 << 19);
2521 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2522 temp &= ~FDI_LINK_TRAIN_NONE;
2523 temp |= FDI_LINK_TRAIN_PATTERN_1;
2524 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2525
2526 reg = FDI_RX_CTL(pipe);
2527 temp = I915_READ(reg);
2528 temp &= ~FDI_LINK_TRAIN_NONE;
2529 temp |= FDI_LINK_TRAIN_PATTERN_1;
2530 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2531
2532 POSTING_READ(reg);
2533 udelay(150);
2534
2535 /* Ironlake workaround, enable clock pointer after FDI enable*/
2536 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2537 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2538 FDI_RX_PHASE_SYNC_POINTER_EN);
2539
2540 reg = FDI_RX_IIR(pipe);
2541 for (tries = 0; tries < 5; tries++) {
2542 temp = I915_READ(reg);
2543 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2544
2545 if ((temp & FDI_RX_BIT_LOCK)) {
2546 DRM_DEBUG_KMS("FDI train 1 done.\n");
2547 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2548 break;
2549 }
2550 }
2551 if (tries == 5)
2552 DRM_ERROR("FDI train 1 fail!\n");
2553
2554 /* Train 2 */
2555 reg = FDI_TX_CTL(pipe);
2556 temp = I915_READ(reg);
2557 temp &= ~FDI_LINK_TRAIN_NONE;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559 I915_WRITE(reg, temp);
2560
2561 reg = FDI_RX_CTL(pipe);
2562 temp = I915_READ(reg);
2563 temp &= ~FDI_LINK_TRAIN_NONE;
2564 temp |= FDI_LINK_TRAIN_PATTERN_2;
2565 I915_WRITE(reg, temp);
2566
2567 POSTING_READ(reg);
2568 udelay(150);
2569
2570 reg = FDI_RX_IIR(pipe);
2571 for (tries = 0; tries < 5; tries++) {
2572 temp = I915_READ(reg);
2573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2574
2575 if (temp & FDI_RX_SYMBOL_LOCK) {
2576 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577 DRM_DEBUG_KMS("FDI train 2 done.\n");
2578 break;
2579 }
2580 }
2581 if (tries == 5)
2582 DRM_ERROR("FDI train 2 fail!\n");
2583
2584 DRM_DEBUG_KMS("FDI train done\n");
2585
2586 }
2587
2588 static const int snb_b_fdi_train_param[] = {
2589 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2590 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2591 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2592 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2593 };
2594
2595 /* The FDI link training functions for SNB/Cougarpoint. */
2596 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598 struct drm_device *dev = crtc->dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 int pipe = intel_crtc->pipe;
2602 u32 reg, temp, i, retry;
2603
2604 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605 for train result */
2606 reg = FDI_RX_IMR(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~FDI_RX_SYMBOL_LOCK;
2609 temp &= ~FDI_RX_BIT_LOCK;
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 /* enable CPU FDI TX and PCH FDI RX */
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
2618 temp &= ~(7 << 19);
2619 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2620 temp &= ~FDI_LINK_TRAIN_NONE;
2621 temp |= FDI_LINK_TRAIN_PATTERN_1;
2622 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2623 /* SNB-B */
2624 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2625 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2626
2627 I915_WRITE(FDI_RX_MISC(pipe),
2628 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2629
2630 reg = FDI_RX_CTL(pipe);
2631 temp = I915_READ(reg);
2632 if (HAS_PCH_CPT(dev)) {
2633 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2634 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2635 } else {
2636 temp &= ~FDI_LINK_TRAIN_NONE;
2637 temp |= FDI_LINK_TRAIN_PATTERN_1;
2638 }
2639 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2640
2641 POSTING_READ(reg);
2642 udelay(150);
2643
2644 for (i = 0; i < 4; i++) {
2645 reg = FDI_TX_CTL(pipe);
2646 temp = I915_READ(reg);
2647 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648 temp |= snb_b_fdi_train_param[i];
2649 I915_WRITE(reg, temp);
2650
2651 POSTING_READ(reg);
2652 udelay(500);
2653
2654 for (retry = 0; retry < 5; retry++) {
2655 reg = FDI_RX_IIR(pipe);
2656 temp = I915_READ(reg);
2657 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658 if (temp & FDI_RX_BIT_LOCK) {
2659 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2660 DRM_DEBUG_KMS("FDI train 1 done.\n");
2661 break;
2662 }
2663 udelay(50);
2664 }
2665 if (retry < 5)
2666 break;
2667 }
2668 if (i == 4)
2669 DRM_ERROR("FDI train 1 fail!\n");
2670
2671 /* Train 2 */
2672 reg = FDI_TX_CTL(pipe);
2673 temp = I915_READ(reg);
2674 temp &= ~FDI_LINK_TRAIN_NONE;
2675 temp |= FDI_LINK_TRAIN_PATTERN_2;
2676 if (IS_GEN6(dev)) {
2677 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2678 /* SNB-B */
2679 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2680 }
2681 I915_WRITE(reg, temp);
2682
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 if (HAS_PCH_CPT(dev)) {
2686 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2688 } else {
2689 temp &= ~FDI_LINK_TRAIN_NONE;
2690 temp |= FDI_LINK_TRAIN_PATTERN_2;
2691 }
2692 I915_WRITE(reg, temp);
2693
2694 POSTING_READ(reg);
2695 udelay(150);
2696
2697 for (i = 0; i < 4; i++) {
2698 reg = FDI_TX_CTL(pipe);
2699 temp = I915_READ(reg);
2700 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701 temp |= snb_b_fdi_train_param[i];
2702 I915_WRITE(reg, temp);
2703
2704 POSTING_READ(reg);
2705 udelay(500);
2706
2707 for (retry = 0; retry < 5; retry++) {
2708 reg = FDI_RX_IIR(pipe);
2709 temp = I915_READ(reg);
2710 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2711 if (temp & FDI_RX_SYMBOL_LOCK) {
2712 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2713 DRM_DEBUG_KMS("FDI train 2 done.\n");
2714 break;
2715 }
2716 udelay(50);
2717 }
2718 if (retry < 5)
2719 break;
2720 }
2721 if (i == 4)
2722 DRM_ERROR("FDI train 2 fail!\n");
2723
2724 DRM_DEBUG_KMS("FDI train done.\n");
2725 }
2726
2727 /* Manual link training for Ivy Bridge A0 parts */
2728 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2729 {
2730 struct drm_device *dev = crtc->dev;
2731 struct drm_i915_private *dev_priv = dev->dev_private;
2732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2733 int pipe = intel_crtc->pipe;
2734 u32 reg, temp, i;
2735
2736 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2737 for train result */
2738 reg = FDI_RX_IMR(pipe);
2739 temp = I915_READ(reg);
2740 temp &= ~FDI_RX_SYMBOL_LOCK;
2741 temp &= ~FDI_RX_BIT_LOCK;
2742 I915_WRITE(reg, temp);
2743
2744 POSTING_READ(reg);
2745 udelay(150);
2746
2747 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2748 I915_READ(FDI_RX_IIR(pipe)));
2749
2750 /* enable CPU FDI TX and PCH FDI RX */
2751 reg = FDI_TX_CTL(pipe);
2752 temp = I915_READ(reg);
2753 temp &= ~(7 << 19);
2754 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2755 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2756 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2757 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2758 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2759 temp |= FDI_COMPOSITE_SYNC;
2760 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2761
2762 I915_WRITE(FDI_RX_MISC(pipe),
2763 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~FDI_LINK_TRAIN_AUTO;
2768 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2769 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2770 temp |= FDI_COMPOSITE_SYNC;
2771 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2772
2773 POSTING_READ(reg);
2774 udelay(150);
2775
2776 for (i = 0; i < 4; i++) {
2777 reg = FDI_TX_CTL(pipe);
2778 temp = I915_READ(reg);
2779 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2780 temp |= snb_b_fdi_train_param[i];
2781 I915_WRITE(reg, temp);
2782
2783 POSTING_READ(reg);
2784 udelay(500);
2785
2786 reg = FDI_RX_IIR(pipe);
2787 temp = I915_READ(reg);
2788 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789
2790 if (temp & FDI_RX_BIT_LOCK ||
2791 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2792 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2793 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2794 break;
2795 }
2796 }
2797 if (i == 4)
2798 DRM_ERROR("FDI train 1 fail!\n");
2799
2800 /* Train 2 */
2801 reg = FDI_TX_CTL(pipe);
2802 temp = I915_READ(reg);
2803 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2804 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2805 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2806 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2807 I915_WRITE(reg, temp);
2808
2809 reg = FDI_RX_CTL(pipe);
2810 temp = I915_READ(reg);
2811 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2812 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2813 I915_WRITE(reg, temp);
2814
2815 POSTING_READ(reg);
2816 udelay(150);
2817
2818 for (i = 0; i < 4; i++) {
2819 reg = FDI_TX_CTL(pipe);
2820 temp = I915_READ(reg);
2821 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2822 temp |= snb_b_fdi_train_param[i];
2823 I915_WRITE(reg, temp);
2824
2825 POSTING_READ(reg);
2826 udelay(500);
2827
2828 reg = FDI_RX_IIR(pipe);
2829 temp = I915_READ(reg);
2830 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2831
2832 if (temp & FDI_RX_SYMBOL_LOCK) {
2833 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2834 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2835 break;
2836 }
2837 }
2838 if (i == 4)
2839 DRM_ERROR("FDI train 2 fail!\n");
2840
2841 DRM_DEBUG_KMS("FDI train done.\n");
2842 }
2843
2844 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2845 {
2846 struct drm_device *dev = intel_crtc->base.dev;
2847 struct drm_i915_private *dev_priv = dev->dev_private;
2848 int pipe = intel_crtc->pipe;
2849 u32 reg, temp;
2850
2851
2852 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2853 reg = FDI_RX_CTL(pipe);
2854 temp = I915_READ(reg);
2855 temp &= ~((0x7 << 19) | (0x7 << 16));
2856 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2857 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2858 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2859
2860 POSTING_READ(reg);
2861 udelay(200);
2862
2863 /* Switch from Rawclk to PCDclk */
2864 temp = I915_READ(reg);
2865 I915_WRITE(reg, temp | FDI_PCDCLK);
2866
2867 POSTING_READ(reg);
2868 udelay(200);
2869
2870 /* Enable CPU FDI TX PLL, always on for Ironlake */
2871 reg = FDI_TX_CTL(pipe);
2872 temp = I915_READ(reg);
2873 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2874 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2875
2876 POSTING_READ(reg);
2877 udelay(100);
2878 }
2879 }
2880
2881 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2882 {
2883 struct drm_device *dev = intel_crtc->base.dev;
2884 struct drm_i915_private *dev_priv = dev->dev_private;
2885 int pipe = intel_crtc->pipe;
2886 u32 reg, temp;
2887
2888 /* Switch from PCDclk to Rawclk */
2889 reg = FDI_RX_CTL(pipe);
2890 temp = I915_READ(reg);
2891 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2892
2893 /* Disable CPU FDI TX PLL */
2894 reg = FDI_TX_CTL(pipe);
2895 temp = I915_READ(reg);
2896 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2897
2898 POSTING_READ(reg);
2899 udelay(100);
2900
2901 reg = FDI_RX_CTL(pipe);
2902 temp = I915_READ(reg);
2903 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2904
2905 /* Wait for the clocks to turn off. */
2906 POSTING_READ(reg);
2907 udelay(100);
2908 }
2909
2910 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2911 {
2912 struct drm_device *dev = crtc->dev;
2913 struct drm_i915_private *dev_priv = dev->dev_private;
2914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915 int pipe = intel_crtc->pipe;
2916 u32 reg, temp;
2917
2918 /* disable CPU FDI tx and PCH FDI rx */
2919 reg = FDI_TX_CTL(pipe);
2920 temp = I915_READ(reg);
2921 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2922 POSTING_READ(reg);
2923
2924 reg = FDI_RX_CTL(pipe);
2925 temp = I915_READ(reg);
2926 temp &= ~(0x7 << 16);
2927 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2928 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2929
2930 POSTING_READ(reg);
2931 udelay(100);
2932
2933 /* Ironlake workaround, disable clock pointer after downing FDI */
2934 if (HAS_PCH_IBX(dev)) {
2935 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2936 }
2937
2938 /* still set train pattern 1 */
2939 reg = FDI_TX_CTL(pipe);
2940 temp = I915_READ(reg);
2941 temp &= ~FDI_LINK_TRAIN_NONE;
2942 temp |= FDI_LINK_TRAIN_PATTERN_1;
2943 I915_WRITE(reg, temp);
2944
2945 reg = FDI_RX_CTL(pipe);
2946 temp = I915_READ(reg);
2947 if (HAS_PCH_CPT(dev)) {
2948 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2950 } else {
2951 temp &= ~FDI_LINK_TRAIN_NONE;
2952 temp |= FDI_LINK_TRAIN_PATTERN_1;
2953 }
2954 /* BPC in FDI rx is consistent with that in PIPECONF */
2955 temp &= ~(0x07 << 16);
2956 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2957 I915_WRITE(reg, temp);
2958
2959 POSTING_READ(reg);
2960 udelay(100);
2961 }
2962
2963 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2964 {
2965 struct drm_device *dev = crtc->dev;
2966 struct drm_i915_private *dev_priv = dev->dev_private;
2967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2968 unsigned long flags;
2969 bool pending;
2970
2971 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2972 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2973 return false;
2974
2975 spin_lock_irqsave(&dev->event_lock, flags);
2976 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2977 spin_unlock_irqrestore(&dev->event_lock, flags);
2978
2979 return pending;
2980 }
2981
2982 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2983 {
2984 struct drm_device *dev = crtc->dev;
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2986
2987 if (crtc->fb == NULL)
2988 return;
2989
2990 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2991
2992 wait_event(dev_priv->pending_flip_queue,
2993 !intel_crtc_has_pending_flip(crtc));
2994
2995 mutex_lock(&dev->struct_mutex);
2996 intel_finish_fb(crtc->fb);
2997 mutex_unlock(&dev->struct_mutex);
2998 }
2999
3000 /* Program iCLKIP clock to the desired frequency */
3001 static void lpt_program_iclkip(struct drm_crtc *crtc)
3002 {
3003 struct drm_device *dev = crtc->dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3006 u32 temp;
3007
3008 mutex_lock(&dev_priv->dpio_lock);
3009
3010 /* It is necessary to ungate the pixclk gate prior to programming
3011 * the divisors, and gate it back when it is done.
3012 */
3013 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3014
3015 /* Disable SSCCTL */
3016 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3017 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3018 SBI_SSCCTL_DISABLE,
3019 SBI_ICLK);
3020
3021 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3022 if (crtc->mode.clock == 20000) {
3023 auxdiv = 1;
3024 divsel = 0x41;
3025 phaseinc = 0x20;
3026 } else {
3027 /* The iCLK virtual clock root frequency is in MHz,
3028 * but the crtc->mode.clock in in KHz. To get the divisors,
3029 * it is necessary to divide one by another, so we
3030 * convert the virtual clock precision to KHz here for higher
3031 * precision.
3032 */
3033 u32 iclk_virtual_root_freq = 172800 * 1000;
3034 u32 iclk_pi_range = 64;
3035 u32 desired_divisor, msb_divisor_value, pi_value;
3036
3037 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3038 msb_divisor_value = desired_divisor / iclk_pi_range;
3039 pi_value = desired_divisor % iclk_pi_range;
3040
3041 auxdiv = 0;
3042 divsel = msb_divisor_value - 2;
3043 phaseinc = pi_value;
3044 }
3045
3046 /* This should not happen with any sane values */
3047 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3048 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3049 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3050 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3051
3052 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3053 crtc->mode.clock,
3054 auxdiv,
3055 divsel,
3056 phasedir,
3057 phaseinc);
3058
3059 /* Program SSCDIVINTPHASE6 */
3060 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3061 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3062 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3063 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3064 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3065 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3066 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3067 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3068
3069 /* Program SSCAUXDIV */
3070 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3071 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3072 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3073 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3074
3075 /* Enable modulator and associated divider */
3076 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3077 temp &= ~SBI_SSCCTL_DISABLE;
3078 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3079
3080 /* Wait for initialization time */
3081 udelay(24);
3082
3083 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3084
3085 mutex_unlock(&dev_priv->dpio_lock);
3086 }
3087
3088 /*
3089 * Enable PCH resources required for PCH ports:
3090 * - PCH PLLs
3091 * - FDI training & RX/TX
3092 * - update transcoder timings
3093 * - DP transcoding bits
3094 * - transcoder
3095 */
3096 static void ironlake_pch_enable(struct drm_crtc *crtc)
3097 {
3098 struct drm_device *dev = crtc->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101 int pipe = intel_crtc->pipe;
3102 u32 reg, temp;
3103
3104 assert_transcoder_disabled(dev_priv, pipe);
3105
3106 /* Write the TU size bits before fdi link training, so that error
3107 * detection works. */
3108 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3109 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3110
3111 /* For PCH output, training FDI link */
3112 dev_priv->display.fdi_link_train(crtc);
3113
3114 /* XXX: pch pll's can be enabled any time before we enable the PCH
3115 * transcoder, and we actually should do this to not upset any PCH
3116 * transcoder that already use the clock when we share it.
3117 *
3118 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3119 * unconditionally resets the pll - we need that to have the right LVDS
3120 * enable sequence. */
3121 ironlake_enable_pch_pll(intel_crtc);
3122
3123 if (HAS_PCH_CPT(dev)) {
3124 u32 sel;
3125
3126 temp = I915_READ(PCH_DPLL_SEL);
3127 switch (pipe) {
3128 default:
3129 case 0:
3130 temp |= TRANSA_DPLL_ENABLE;
3131 sel = TRANSA_DPLLB_SEL;
3132 break;
3133 case 1:
3134 temp |= TRANSB_DPLL_ENABLE;
3135 sel = TRANSB_DPLLB_SEL;
3136 break;
3137 case 2:
3138 temp |= TRANSC_DPLL_ENABLE;
3139 sel = TRANSC_DPLLB_SEL;
3140 break;
3141 }
3142 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3143 temp |= sel;
3144 else
3145 temp &= ~sel;
3146 I915_WRITE(PCH_DPLL_SEL, temp);
3147 }
3148
3149 /* set transcoder timing, panel must allow it */
3150 assert_panel_unlocked(dev_priv, pipe);
3151 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3152 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3153 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3154
3155 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3156 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3157 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3158 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3159
3160 intel_fdi_normal_train(crtc);
3161
3162 /* For PCH DP, enable TRANS_DP_CTL */
3163 if (HAS_PCH_CPT(dev) &&
3164 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3165 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3166 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3167 reg = TRANS_DP_CTL(pipe);
3168 temp = I915_READ(reg);
3169 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3170 TRANS_DP_SYNC_MASK |
3171 TRANS_DP_BPC_MASK);
3172 temp |= (TRANS_DP_OUTPUT_ENABLE |
3173 TRANS_DP_ENH_FRAMING);
3174 temp |= bpc << 9; /* same format but at 11:9 */
3175
3176 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3177 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3178 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3179 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3180
3181 switch (intel_trans_dp_port_sel(crtc)) {
3182 case PCH_DP_B:
3183 temp |= TRANS_DP_PORT_SEL_B;
3184 break;
3185 case PCH_DP_C:
3186 temp |= TRANS_DP_PORT_SEL_C;
3187 break;
3188 case PCH_DP_D:
3189 temp |= TRANS_DP_PORT_SEL_D;
3190 break;
3191 default:
3192 BUG();
3193 }
3194
3195 I915_WRITE(reg, temp);
3196 }
3197
3198 ironlake_enable_pch_transcoder(dev_priv, pipe);
3199 }
3200
3201 static void lpt_pch_enable(struct drm_crtc *crtc)
3202 {
3203 struct drm_device *dev = crtc->dev;
3204 struct drm_i915_private *dev_priv = dev->dev_private;
3205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3206 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3207
3208 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3209
3210 lpt_program_iclkip(crtc);
3211
3212 /* Set transcoder timing. */
3213 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3214 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3215 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3216
3217 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3218 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3219 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3220 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3221
3222 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3223 }
3224
3225 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3226 {
3227 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3228
3229 if (pll == NULL)
3230 return;
3231
3232 if (pll->refcount == 0) {
3233 WARN(1, "bad PCH PLL refcount\n");
3234 return;
3235 }
3236
3237 --pll->refcount;
3238 intel_crtc->pch_pll = NULL;
3239 }
3240
3241 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3242 {
3243 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3244 struct intel_pch_pll *pll;
3245 int i;
3246
3247 pll = intel_crtc->pch_pll;
3248 if (pll) {
3249 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3250 intel_crtc->base.base.id, pll->pll_reg);
3251 goto prepare;
3252 }
3253
3254 if (HAS_PCH_IBX(dev_priv->dev)) {
3255 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3256 i = intel_crtc->pipe;
3257 pll = &dev_priv->pch_plls[i];
3258
3259 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3260 intel_crtc->base.base.id, pll->pll_reg);
3261
3262 goto found;
3263 }
3264
3265 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3266 pll = &dev_priv->pch_plls[i];
3267
3268 /* Only want to check enabled timings first */
3269 if (pll->refcount == 0)
3270 continue;
3271
3272 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3273 fp == I915_READ(pll->fp0_reg)) {
3274 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3275 intel_crtc->base.base.id,
3276 pll->pll_reg, pll->refcount, pll->active);
3277
3278 goto found;
3279 }
3280 }
3281
3282 /* Ok no matching timings, maybe there's a free one? */
3283 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3284 pll = &dev_priv->pch_plls[i];
3285 if (pll->refcount == 0) {
3286 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3287 intel_crtc->base.base.id, pll->pll_reg);
3288 goto found;
3289 }
3290 }
3291
3292 return NULL;
3293
3294 found:
3295 intel_crtc->pch_pll = pll;
3296 pll->refcount++;
3297 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3298 prepare: /* separate function? */
3299 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3300
3301 /* Wait for the clocks to stabilize before rewriting the regs */
3302 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3303 POSTING_READ(pll->pll_reg);
3304 udelay(150);
3305
3306 I915_WRITE(pll->fp0_reg, fp);
3307 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3308 pll->on = false;
3309 return pll;
3310 }
3311
3312 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3313 {
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 int dslreg = PIPEDSL(pipe);
3316 u32 temp;
3317
3318 temp = I915_READ(dslreg);
3319 udelay(500);
3320 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3321 if (wait_for(I915_READ(dslreg) != temp, 5))
3322 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3323 }
3324 }
3325
3326 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3327 {
3328 struct drm_device *dev = crtc->dev;
3329 struct drm_i915_private *dev_priv = dev->dev_private;
3330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3331 struct intel_encoder *encoder;
3332 int pipe = intel_crtc->pipe;
3333 int plane = intel_crtc->plane;
3334 u32 temp;
3335
3336 WARN_ON(!crtc->enabled);
3337
3338 if (intel_crtc->active)
3339 return;
3340
3341 intel_crtc->active = true;
3342 intel_update_watermarks(dev);
3343
3344 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3345 temp = I915_READ(PCH_LVDS);
3346 if ((temp & LVDS_PORT_EN) == 0)
3347 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3348 }
3349
3350
3351 if (intel_crtc->config.has_pch_encoder) {
3352 /* Note: FDI PLL enabling _must_ be done before we enable the
3353 * cpu pipes, hence this is separate from all the other fdi/pch
3354 * enabling. */
3355 ironlake_fdi_pll_enable(intel_crtc);
3356 } else {
3357 assert_fdi_tx_disabled(dev_priv, pipe);
3358 assert_fdi_rx_disabled(dev_priv, pipe);
3359 }
3360
3361 for_each_encoder_on_crtc(dev, crtc, encoder)
3362 if (encoder->pre_enable)
3363 encoder->pre_enable(encoder);
3364
3365 /* Enable panel fitting for LVDS */
3366 if (dev_priv->pch_pf_size &&
3367 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3368 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3369 /* Force use of hard-coded filter coefficients
3370 * as some pre-programmed values are broken,
3371 * e.g. x201.
3372 */
3373 if (IS_IVYBRIDGE(dev))
3374 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3375 PF_PIPE_SEL_IVB(pipe));
3376 else
3377 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3378 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3379 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3380 }
3381
3382 /*
3383 * On ILK+ LUT must be loaded before the pipe is running but with
3384 * clocks enabled
3385 */
3386 intel_crtc_load_lut(crtc);
3387
3388 intel_enable_pipe(dev_priv, pipe,
3389 intel_crtc->config.has_pch_encoder);
3390 intel_enable_plane(dev_priv, plane, pipe);
3391
3392 if (intel_crtc->config.has_pch_encoder)
3393 ironlake_pch_enable(crtc);
3394
3395 mutex_lock(&dev->struct_mutex);
3396 intel_update_fbc(dev);
3397 mutex_unlock(&dev->struct_mutex);
3398
3399 intel_crtc_update_cursor(crtc, true);
3400
3401 for_each_encoder_on_crtc(dev, crtc, encoder)
3402 encoder->enable(encoder);
3403
3404 if (HAS_PCH_CPT(dev))
3405 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3406
3407 /*
3408 * There seems to be a race in PCH platform hw (at least on some
3409 * outputs) where an enabled pipe still completes any pageflip right
3410 * away (as if the pipe is off) instead of waiting for vblank. As soon
3411 * as the first vblank happend, everything works as expected. Hence just
3412 * wait for one vblank before returning to avoid strange things
3413 * happening.
3414 */
3415 intel_wait_for_vblank(dev, intel_crtc->pipe);
3416 }
3417
3418 static void haswell_crtc_enable(struct drm_crtc *crtc)
3419 {
3420 struct drm_device *dev = crtc->dev;
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3423 struct intel_encoder *encoder;
3424 int pipe = intel_crtc->pipe;
3425 int plane = intel_crtc->plane;
3426
3427 WARN_ON(!crtc->enabled);
3428
3429 if (intel_crtc->active)
3430 return;
3431
3432 intel_crtc->active = true;
3433 intel_update_watermarks(dev);
3434
3435 if (intel_crtc->config.has_pch_encoder)
3436 dev_priv->display.fdi_link_train(crtc);
3437
3438 for_each_encoder_on_crtc(dev, crtc, encoder)
3439 if (encoder->pre_enable)
3440 encoder->pre_enable(encoder);
3441
3442 intel_ddi_enable_pipe_clock(intel_crtc);
3443
3444 /* Enable panel fitting for eDP */
3445 if (dev_priv->pch_pf_size &&
3446 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3447 /* Force use of hard-coded filter coefficients
3448 * as some pre-programmed values are broken,
3449 * e.g. x201.
3450 */
3451 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3452 PF_PIPE_SEL_IVB(pipe));
3453 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3454 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3455 }
3456
3457 /*
3458 * On ILK+ LUT must be loaded before the pipe is running but with
3459 * clocks enabled
3460 */
3461 intel_crtc_load_lut(crtc);
3462
3463 intel_ddi_set_pipe_settings(crtc);
3464 intel_ddi_enable_transcoder_func(crtc);
3465
3466 intel_enable_pipe(dev_priv, pipe,
3467 intel_crtc->config.has_pch_encoder);
3468 intel_enable_plane(dev_priv, plane, pipe);
3469
3470 if (intel_crtc->config.has_pch_encoder)
3471 lpt_pch_enable(crtc);
3472
3473 mutex_lock(&dev->struct_mutex);
3474 intel_update_fbc(dev);
3475 mutex_unlock(&dev->struct_mutex);
3476
3477 intel_crtc_update_cursor(crtc, true);
3478
3479 for_each_encoder_on_crtc(dev, crtc, encoder)
3480 encoder->enable(encoder);
3481
3482 /*
3483 * There seems to be a race in PCH platform hw (at least on some
3484 * outputs) where an enabled pipe still completes any pageflip right
3485 * away (as if the pipe is off) instead of waiting for vblank. As soon
3486 * as the first vblank happend, everything works as expected. Hence just
3487 * wait for one vblank before returning to avoid strange things
3488 * happening.
3489 */
3490 intel_wait_for_vblank(dev, intel_crtc->pipe);
3491 }
3492
3493 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3494 {
3495 struct drm_device *dev = crtc->dev;
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498 struct intel_encoder *encoder;
3499 int pipe = intel_crtc->pipe;
3500 int plane = intel_crtc->plane;
3501 u32 reg, temp;
3502
3503
3504 if (!intel_crtc->active)
3505 return;
3506
3507 for_each_encoder_on_crtc(dev, crtc, encoder)
3508 encoder->disable(encoder);
3509
3510 intel_crtc_wait_for_pending_flips(crtc);
3511 drm_vblank_off(dev, pipe);
3512 intel_crtc_update_cursor(crtc, false);
3513
3514 intel_disable_plane(dev_priv, plane, pipe);
3515
3516 if (dev_priv->cfb_plane == plane)
3517 intel_disable_fbc(dev);
3518
3519 intel_disable_pipe(dev_priv, pipe);
3520
3521 /* Disable PF */
3522 I915_WRITE(PF_CTL(pipe), 0);
3523 I915_WRITE(PF_WIN_SZ(pipe), 0);
3524
3525 for_each_encoder_on_crtc(dev, crtc, encoder)
3526 if (encoder->post_disable)
3527 encoder->post_disable(encoder);
3528
3529 ironlake_fdi_disable(crtc);
3530
3531 ironlake_disable_pch_transcoder(dev_priv, pipe);
3532
3533 if (HAS_PCH_CPT(dev)) {
3534 /* disable TRANS_DP_CTL */
3535 reg = TRANS_DP_CTL(pipe);
3536 temp = I915_READ(reg);
3537 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3538 temp |= TRANS_DP_PORT_SEL_NONE;
3539 I915_WRITE(reg, temp);
3540
3541 /* disable DPLL_SEL */
3542 temp = I915_READ(PCH_DPLL_SEL);
3543 switch (pipe) {
3544 case 0:
3545 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3546 break;
3547 case 1:
3548 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3549 break;
3550 case 2:
3551 /* C shares PLL A or B */
3552 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3553 break;
3554 default:
3555 BUG(); /* wtf */
3556 }
3557 I915_WRITE(PCH_DPLL_SEL, temp);
3558 }
3559
3560 /* disable PCH DPLL */
3561 intel_disable_pch_pll(intel_crtc);
3562
3563 ironlake_fdi_pll_disable(intel_crtc);
3564
3565 intel_crtc->active = false;
3566 intel_update_watermarks(dev);
3567
3568 mutex_lock(&dev->struct_mutex);
3569 intel_update_fbc(dev);
3570 mutex_unlock(&dev->struct_mutex);
3571 }
3572
3573 static void haswell_crtc_disable(struct drm_crtc *crtc)
3574 {
3575 struct drm_device *dev = crtc->dev;
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3578 struct intel_encoder *encoder;
3579 int pipe = intel_crtc->pipe;
3580 int plane = intel_crtc->plane;
3581 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3582
3583 if (!intel_crtc->active)
3584 return;
3585
3586 for_each_encoder_on_crtc(dev, crtc, encoder)
3587 encoder->disable(encoder);
3588
3589 intel_crtc_wait_for_pending_flips(crtc);
3590 drm_vblank_off(dev, pipe);
3591 intel_crtc_update_cursor(crtc, false);
3592
3593 intel_disable_plane(dev_priv, plane, pipe);
3594
3595 if (dev_priv->cfb_plane == plane)
3596 intel_disable_fbc(dev);
3597
3598 intel_disable_pipe(dev_priv, pipe);
3599
3600 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3601
3602 /* XXX: Once we have proper panel fitter state tracking implemented with
3603 * hardware state read/check support we should switch to only disable
3604 * the panel fitter when we know it's used. */
3605 if (intel_using_power_well(dev)) {
3606 I915_WRITE(PF_CTL(pipe), 0);
3607 I915_WRITE(PF_WIN_SZ(pipe), 0);
3608 }
3609
3610 intel_ddi_disable_pipe_clock(intel_crtc);
3611
3612 for_each_encoder_on_crtc(dev, crtc, encoder)
3613 if (encoder->post_disable)
3614 encoder->post_disable(encoder);
3615
3616 if (intel_crtc->config.has_pch_encoder) {
3617 lpt_disable_pch_transcoder(dev_priv);
3618 intel_ddi_fdi_disable(crtc);
3619 }
3620
3621 intel_crtc->active = false;
3622 intel_update_watermarks(dev);
3623
3624 mutex_lock(&dev->struct_mutex);
3625 intel_update_fbc(dev);
3626 mutex_unlock(&dev->struct_mutex);
3627 }
3628
3629 static void ironlake_crtc_off(struct drm_crtc *crtc)
3630 {
3631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3632 intel_put_pch_pll(intel_crtc);
3633 }
3634
3635 static void haswell_crtc_off(struct drm_crtc *crtc)
3636 {
3637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3638
3639 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3640 * start using it. */
3641 intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3642
3643 intel_ddi_put_crtc_pll(crtc);
3644 }
3645
3646 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3647 {
3648 if (!enable && intel_crtc->overlay) {
3649 struct drm_device *dev = intel_crtc->base.dev;
3650 struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652 mutex_lock(&dev->struct_mutex);
3653 dev_priv->mm.interruptible = false;
3654 (void) intel_overlay_switch_off(intel_crtc->overlay);
3655 dev_priv->mm.interruptible = true;
3656 mutex_unlock(&dev->struct_mutex);
3657 }
3658
3659 /* Let userspace switch the overlay on again. In most cases userspace
3660 * has to recompute where to put it anyway.
3661 */
3662 }
3663
3664 /**
3665 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3666 * cursor plane briefly if not already running after enabling the display
3667 * plane.
3668 * This workaround avoids occasional blank screens when self refresh is
3669 * enabled.
3670 */
3671 static void
3672 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3673 {
3674 u32 cntl = I915_READ(CURCNTR(pipe));
3675
3676 if ((cntl & CURSOR_MODE) == 0) {
3677 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3678
3679 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3680 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3681 intel_wait_for_vblank(dev_priv->dev, pipe);
3682 I915_WRITE(CURCNTR(pipe), cntl);
3683 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3684 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3685 }
3686 }
3687
3688 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3689 {
3690 struct drm_device *dev = crtc->dev;
3691 struct drm_i915_private *dev_priv = dev->dev_private;
3692 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3693 struct intel_encoder *encoder;
3694 int pipe = intel_crtc->pipe;
3695 int plane = intel_crtc->plane;
3696
3697 WARN_ON(!crtc->enabled);
3698
3699 if (intel_crtc->active)
3700 return;
3701
3702 intel_crtc->active = true;
3703 intel_update_watermarks(dev);
3704
3705 intel_enable_pll(dev_priv, pipe);
3706
3707 for_each_encoder_on_crtc(dev, crtc, encoder)
3708 if (encoder->pre_enable)
3709 encoder->pre_enable(encoder);
3710
3711 intel_enable_pipe(dev_priv, pipe, false);
3712 intel_enable_plane(dev_priv, plane, pipe);
3713 if (IS_G4X(dev))
3714 g4x_fixup_plane(dev_priv, pipe);
3715
3716 intel_crtc_load_lut(crtc);
3717 intel_update_fbc(dev);
3718
3719 /* Give the overlay scaler a chance to enable if it's on this pipe */
3720 intel_crtc_dpms_overlay(intel_crtc, true);
3721 intel_crtc_update_cursor(crtc, true);
3722
3723 for_each_encoder_on_crtc(dev, crtc, encoder)
3724 encoder->enable(encoder);
3725 }
3726
3727 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3728 {
3729 struct drm_device *dev = crtc->dev;
3730 struct drm_i915_private *dev_priv = dev->dev_private;
3731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3732 struct intel_encoder *encoder;
3733 int pipe = intel_crtc->pipe;
3734 int plane = intel_crtc->plane;
3735 u32 pctl;
3736
3737
3738 if (!intel_crtc->active)
3739 return;
3740
3741 for_each_encoder_on_crtc(dev, crtc, encoder)
3742 encoder->disable(encoder);
3743
3744 /* Give the overlay scaler a chance to disable if it's on this pipe */
3745 intel_crtc_wait_for_pending_flips(crtc);
3746 drm_vblank_off(dev, pipe);
3747 intel_crtc_dpms_overlay(intel_crtc, false);
3748 intel_crtc_update_cursor(crtc, false);
3749
3750 if (dev_priv->cfb_plane == plane)
3751 intel_disable_fbc(dev);
3752
3753 intel_disable_plane(dev_priv, plane, pipe);
3754 intel_disable_pipe(dev_priv, pipe);
3755
3756 /* Disable pannel fitter if it is on this pipe. */
3757 pctl = I915_READ(PFIT_CONTROL);
3758 if ((pctl & PFIT_ENABLE) &&
3759 ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3760 I915_WRITE(PFIT_CONTROL, 0);
3761
3762 intel_disable_pll(dev_priv, pipe);
3763
3764 intel_crtc->active = false;
3765 intel_update_fbc(dev);
3766 intel_update_watermarks(dev);
3767 }
3768
3769 static void i9xx_crtc_off(struct drm_crtc *crtc)
3770 {
3771 }
3772
3773 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3774 bool enabled)
3775 {
3776 struct drm_device *dev = crtc->dev;
3777 struct drm_i915_master_private *master_priv;
3778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3779 int pipe = intel_crtc->pipe;
3780
3781 if (!dev->primary->master)
3782 return;
3783
3784 master_priv = dev->primary->master->driver_priv;
3785 if (!master_priv->sarea_priv)
3786 return;
3787
3788 switch (pipe) {
3789 case 0:
3790 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3791 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3792 break;
3793 case 1:
3794 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3795 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3796 break;
3797 default:
3798 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3799 break;
3800 }
3801 }
3802
3803 /**
3804 * Sets the power management mode of the pipe and plane.
3805 */
3806 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3807 {
3808 struct drm_device *dev = crtc->dev;
3809 struct drm_i915_private *dev_priv = dev->dev_private;
3810 struct intel_encoder *intel_encoder;
3811 bool enable = false;
3812
3813 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3814 enable |= intel_encoder->connectors_active;
3815
3816 if (enable)
3817 dev_priv->display.crtc_enable(crtc);
3818 else
3819 dev_priv->display.crtc_disable(crtc);
3820
3821 intel_crtc_update_sarea(crtc, enable);
3822 }
3823
3824 static void intel_crtc_disable(struct drm_crtc *crtc)
3825 {
3826 struct drm_device *dev = crtc->dev;
3827 struct drm_connector *connector;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3830
3831 /* crtc should still be enabled when we disable it. */
3832 WARN_ON(!crtc->enabled);
3833
3834 intel_crtc->eld_vld = false;
3835 dev_priv->display.crtc_disable(crtc);
3836 intel_crtc_update_sarea(crtc, false);
3837 dev_priv->display.off(crtc);
3838
3839 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3840 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3841
3842 if (crtc->fb) {
3843 mutex_lock(&dev->struct_mutex);
3844 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3845 mutex_unlock(&dev->struct_mutex);
3846 crtc->fb = NULL;
3847 }
3848
3849 /* Update computed state. */
3850 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3851 if (!connector->encoder || !connector->encoder->crtc)
3852 continue;
3853
3854 if (connector->encoder->crtc != crtc)
3855 continue;
3856
3857 connector->dpms = DRM_MODE_DPMS_OFF;
3858 to_intel_encoder(connector->encoder)->connectors_active = false;
3859 }
3860 }
3861
3862 void intel_modeset_disable(struct drm_device *dev)
3863 {
3864 struct drm_crtc *crtc;
3865
3866 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3867 if (crtc->enabled)
3868 intel_crtc_disable(crtc);
3869 }
3870 }
3871
3872 void intel_encoder_destroy(struct drm_encoder *encoder)
3873 {
3874 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3875
3876 drm_encoder_cleanup(encoder);
3877 kfree(intel_encoder);
3878 }
3879
3880 /* Simple dpms helper for encodres with just one connector, no cloning and only
3881 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3882 * state of the entire output pipe. */
3883 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3884 {
3885 if (mode == DRM_MODE_DPMS_ON) {
3886 encoder->connectors_active = true;
3887
3888 intel_crtc_update_dpms(encoder->base.crtc);
3889 } else {
3890 encoder->connectors_active = false;
3891
3892 intel_crtc_update_dpms(encoder->base.crtc);
3893 }
3894 }
3895
3896 /* Cross check the actual hw state with our own modeset state tracking (and it's
3897 * internal consistency). */
3898 static void intel_connector_check_state(struct intel_connector *connector)
3899 {
3900 if (connector->get_hw_state(connector)) {
3901 struct intel_encoder *encoder = connector->encoder;
3902 struct drm_crtc *crtc;
3903 bool encoder_enabled;
3904 enum pipe pipe;
3905
3906 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3907 connector->base.base.id,
3908 drm_get_connector_name(&connector->base));
3909
3910 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3911 "wrong connector dpms state\n");
3912 WARN(connector->base.encoder != &encoder->base,
3913 "active connector not linked to encoder\n");
3914 WARN(!encoder->connectors_active,
3915 "encoder->connectors_active not set\n");
3916
3917 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3918 WARN(!encoder_enabled, "encoder not enabled\n");
3919 if (WARN_ON(!encoder->base.crtc))
3920 return;
3921
3922 crtc = encoder->base.crtc;
3923
3924 WARN(!crtc->enabled, "crtc not enabled\n");
3925 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3926 WARN(pipe != to_intel_crtc(crtc)->pipe,
3927 "encoder active on the wrong pipe\n");
3928 }
3929 }
3930
3931 /* Even simpler default implementation, if there's really no special case to
3932 * consider. */
3933 void intel_connector_dpms(struct drm_connector *connector, int mode)
3934 {
3935 struct intel_encoder *encoder = intel_attached_encoder(connector);
3936
3937 /* All the simple cases only support two dpms states. */
3938 if (mode != DRM_MODE_DPMS_ON)
3939 mode = DRM_MODE_DPMS_OFF;
3940
3941 if (mode == connector->dpms)
3942 return;
3943
3944 connector->dpms = mode;
3945
3946 /* Only need to change hw state when actually enabled */
3947 if (encoder->base.crtc)
3948 intel_encoder_dpms(encoder, mode);
3949 else
3950 WARN_ON(encoder->connectors_active != false);
3951
3952 intel_modeset_check_state(connector->dev);
3953 }
3954
3955 /* Simple connector->get_hw_state implementation for encoders that support only
3956 * one connector and no cloning and hence the encoder state determines the state
3957 * of the connector. */
3958 bool intel_connector_get_hw_state(struct intel_connector *connector)
3959 {
3960 enum pipe pipe = 0;
3961 struct intel_encoder *encoder = connector->encoder;
3962
3963 return encoder->get_hw_state(encoder, &pipe);
3964 }
3965
3966 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3967 struct intel_crtc_config *pipe_config)
3968 {
3969 struct drm_device *dev = crtc->dev;
3970 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3971
3972 if (HAS_PCH_SPLIT(dev)) {
3973 /* FDI link clock is fixed at 2.7G */
3974 if (pipe_config->requested_mode.clock * 3
3975 > IRONLAKE_FDI_FREQ * 4)
3976 return false;
3977 }
3978
3979 /* All interlaced capable intel hw wants timings in frames. Note though
3980 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3981 * timings, so we need to be careful not to clobber these.*/
3982 if (!pipe_config->timings_set)
3983 drm_mode_set_crtcinfo(adjusted_mode, 0);
3984
3985 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3986 * with a hsync front porch of 0.
3987 */
3988 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3989 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3990 return false;
3991
3992 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10) {
3993 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
3994 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8) {
3995 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
3996 * for lvds. */
3997 pipe_config->pipe_bpp = 8*3;
3998 }
3999
4000 return true;
4001 }
4002
4003 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4004 {
4005 return 400000; /* FIXME */
4006 }
4007
4008 static int i945_get_display_clock_speed(struct drm_device *dev)
4009 {
4010 return 400000;
4011 }
4012
4013 static int i915_get_display_clock_speed(struct drm_device *dev)
4014 {
4015 return 333000;
4016 }
4017
4018 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4019 {
4020 return 200000;
4021 }
4022
4023 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4024 {
4025 u16 gcfgc = 0;
4026
4027 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4028
4029 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4030 return 133000;
4031 else {
4032 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4033 case GC_DISPLAY_CLOCK_333_MHZ:
4034 return 333000;
4035 default:
4036 case GC_DISPLAY_CLOCK_190_200_MHZ:
4037 return 190000;
4038 }
4039 }
4040 }
4041
4042 static int i865_get_display_clock_speed(struct drm_device *dev)
4043 {
4044 return 266000;
4045 }
4046
4047 static int i855_get_display_clock_speed(struct drm_device *dev)
4048 {
4049 u16 hpllcc = 0;
4050 /* Assume that the hardware is in the high speed state. This
4051 * should be the default.
4052 */
4053 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4054 case GC_CLOCK_133_200:
4055 case GC_CLOCK_100_200:
4056 return 200000;
4057 case GC_CLOCK_166_250:
4058 return 250000;
4059 case GC_CLOCK_100_133:
4060 return 133000;
4061 }
4062
4063 /* Shouldn't happen */
4064 return 0;
4065 }
4066
4067 static int i830_get_display_clock_speed(struct drm_device *dev)
4068 {
4069 return 133000;
4070 }
4071
4072 static void
4073 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4074 {
4075 while (*num > 0xffffff || *den > 0xffffff) {
4076 *num >>= 1;
4077 *den >>= 1;
4078 }
4079 }
4080
4081 void
4082 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4083 int pixel_clock, int link_clock,
4084 struct intel_link_m_n *m_n)
4085 {
4086 m_n->tu = 64;
4087 m_n->gmch_m = bits_per_pixel * pixel_clock;
4088 m_n->gmch_n = link_clock * nlanes * 8;
4089 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4090 m_n->link_m = pixel_clock;
4091 m_n->link_n = link_clock;
4092 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4093 }
4094
4095 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4096 {
4097 if (i915_panel_use_ssc >= 0)
4098 return i915_panel_use_ssc != 0;
4099 return dev_priv->lvds_use_ssc
4100 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4101 }
4102
4103 static int vlv_get_refclk(struct drm_crtc *crtc)
4104 {
4105 struct drm_device *dev = crtc->dev;
4106 struct drm_i915_private *dev_priv = dev->dev_private;
4107 int refclk = 27000; /* for DP & HDMI */
4108
4109 return 100000; /* only one validated so far */
4110
4111 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4112 refclk = 96000;
4113 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4114 if (intel_panel_use_ssc(dev_priv))
4115 refclk = 100000;
4116 else
4117 refclk = 96000;
4118 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4119 refclk = 100000;
4120 }
4121
4122 return refclk;
4123 }
4124
4125 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4126 {
4127 struct drm_device *dev = crtc->dev;
4128 struct drm_i915_private *dev_priv = dev->dev_private;
4129 int refclk;
4130
4131 if (IS_VALLEYVIEW(dev)) {
4132 refclk = vlv_get_refclk(crtc);
4133 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4134 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4135 refclk = dev_priv->lvds_ssc_freq * 1000;
4136 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4137 refclk / 1000);
4138 } else if (!IS_GEN2(dev)) {
4139 refclk = 96000;
4140 } else {
4141 refclk = 48000;
4142 }
4143
4144 return refclk;
4145 }
4146
4147 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4148 {
4149 unsigned dotclock = crtc->config.adjusted_mode.clock;
4150 struct dpll *clock = &crtc->config.dpll;
4151
4152 /* SDVO TV has fixed PLL values depend on its clock range,
4153 this mirrors vbios setting. */
4154 if (dotclock >= 100000 && dotclock < 140500) {
4155 clock->p1 = 2;
4156 clock->p2 = 10;
4157 clock->n = 3;
4158 clock->m1 = 16;
4159 clock->m2 = 8;
4160 } else if (dotclock >= 140500 && dotclock <= 200000) {
4161 clock->p1 = 1;
4162 clock->p2 = 10;
4163 clock->n = 6;
4164 clock->m1 = 12;
4165 clock->m2 = 8;
4166 }
4167
4168 crtc->config.clock_set = true;
4169 }
4170
4171 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4172 intel_clock_t *reduced_clock)
4173 {
4174 struct drm_device *dev = crtc->base.dev;
4175 struct drm_i915_private *dev_priv = dev->dev_private;
4176 int pipe = crtc->pipe;
4177 u32 fp, fp2 = 0;
4178 struct dpll *clock = &crtc->config.dpll;
4179
4180 if (IS_PINEVIEW(dev)) {
4181 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4182 if (reduced_clock)
4183 fp2 = (1 << reduced_clock->n) << 16 |
4184 reduced_clock->m1 << 8 | reduced_clock->m2;
4185 } else {
4186 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4187 if (reduced_clock)
4188 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4189 reduced_clock->m2;
4190 }
4191
4192 I915_WRITE(FP0(pipe), fp);
4193
4194 crtc->lowfreq_avail = false;
4195 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4196 reduced_clock && i915_powersave) {
4197 I915_WRITE(FP1(pipe), fp2);
4198 crtc->lowfreq_avail = true;
4199 } else {
4200 I915_WRITE(FP1(pipe), fp);
4201 }
4202 }
4203
4204 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4205 {
4206 if (crtc->config.has_pch_encoder)
4207 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4208 else
4209 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4210 }
4211
4212 static void vlv_update_pll(struct intel_crtc *crtc)
4213 {
4214 struct drm_device *dev = crtc->base.dev;
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 int pipe = crtc->pipe;
4217 u32 dpll, mdiv, pdiv;
4218 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4219 bool is_sdvo;
4220 u32 temp;
4221
4222 mutex_lock(&dev_priv->dpio_lock);
4223
4224 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4225 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4226
4227 dpll = DPLL_VGA_MODE_DIS;
4228 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4229 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4230 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4231
4232 I915_WRITE(DPLL(pipe), dpll);
4233 POSTING_READ(DPLL(pipe));
4234
4235 bestn = crtc->config.dpll.n;
4236 bestm1 = crtc->config.dpll.m1;
4237 bestm2 = crtc->config.dpll.m2;
4238 bestp1 = crtc->config.dpll.p1;
4239 bestp2 = crtc->config.dpll.p2;
4240
4241 /*
4242 * In Valleyview PLL and program lane counter registers are exposed
4243 * through DPIO interface
4244 */
4245 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4246 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4247 mdiv |= ((bestn << DPIO_N_SHIFT));
4248 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4249 mdiv |= (1 << DPIO_K_SHIFT);
4250 mdiv |= DPIO_ENABLE_CALIBRATION;
4251 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4252
4253 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4254
4255 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4256 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4257 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4258 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4259 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4260
4261 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4262
4263 dpll |= DPLL_VCO_ENABLE;
4264 I915_WRITE(DPLL(pipe), dpll);
4265 POSTING_READ(DPLL(pipe));
4266 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4267 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4268
4269 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4270
4271 if (crtc->config.has_dp_encoder)
4272 intel_dp_set_m_n(crtc);
4273
4274 I915_WRITE(DPLL(pipe), dpll);
4275
4276 /* Wait for the clocks to stabilize. */
4277 POSTING_READ(DPLL(pipe));
4278 udelay(150);
4279
4280 temp = 0;
4281 if (is_sdvo) {
4282 temp = 0;
4283 if (crtc->config.pixel_multiplier > 1) {
4284 temp = (crtc->config.pixel_multiplier - 1)
4285 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4286 }
4287 }
4288 I915_WRITE(DPLL_MD(pipe), temp);
4289 POSTING_READ(DPLL_MD(pipe));
4290
4291 /* Now program lane control registers */
4292 if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)
4293 || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
4294 temp = 0x1000C4;
4295 if(pipe == 1)
4296 temp |= (1 << 21);
4297 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4298 }
4299
4300 if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
4301 temp = 0x1000C4;
4302 if(pipe == 1)
4303 temp |= (1 << 21);
4304 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4305 }
4306
4307 mutex_unlock(&dev_priv->dpio_lock);
4308 }
4309
4310 static void i9xx_update_pll(struct intel_crtc *crtc,
4311 intel_clock_t *reduced_clock,
4312 int num_connectors)
4313 {
4314 struct drm_device *dev = crtc->base.dev;
4315 struct drm_i915_private *dev_priv = dev->dev_private;
4316 struct intel_encoder *encoder;
4317 int pipe = crtc->pipe;
4318 u32 dpll;
4319 bool is_sdvo;
4320 struct dpll *clock = &crtc->config.dpll;
4321
4322 i9xx_update_pll_dividers(crtc, reduced_clock);
4323
4324 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4325 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4326
4327 dpll = DPLL_VGA_MODE_DIS;
4328
4329 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4330 dpll |= DPLLB_MODE_LVDS;
4331 else
4332 dpll |= DPLLB_MODE_DAC_SERIAL;
4333
4334 if (is_sdvo) {
4335 if ((crtc->config.pixel_multiplier > 1) &&
4336 (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4337 dpll |= (crtc->config.pixel_multiplier - 1)
4338 << SDVO_MULTIPLIER_SHIFT_HIRES;
4339 }
4340 dpll |= DPLL_DVO_HIGH_SPEED;
4341 }
4342 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4343 dpll |= DPLL_DVO_HIGH_SPEED;
4344
4345 /* compute bitmask from p1 value */
4346 if (IS_PINEVIEW(dev))
4347 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4348 else {
4349 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4350 if (IS_G4X(dev) && reduced_clock)
4351 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4352 }
4353 switch (clock->p2) {
4354 case 5:
4355 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4356 break;
4357 case 7:
4358 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4359 break;
4360 case 10:
4361 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4362 break;
4363 case 14:
4364 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4365 break;
4366 }
4367 if (INTEL_INFO(dev)->gen >= 4)
4368 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4369
4370 if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4371 dpll |= PLL_REF_INPUT_TVCLKINBC;
4372 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4373 /* XXX: just matching BIOS for now */
4374 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4375 dpll |= 3;
4376 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4377 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4378 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4379 else
4380 dpll |= PLL_REF_INPUT_DREFCLK;
4381
4382 dpll |= DPLL_VCO_ENABLE;
4383 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4384 POSTING_READ(DPLL(pipe));
4385 udelay(150);
4386
4387 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4388 if (encoder->pre_pll_enable)
4389 encoder->pre_pll_enable(encoder);
4390
4391 if (crtc->config.has_dp_encoder)
4392 intel_dp_set_m_n(crtc);
4393
4394 I915_WRITE(DPLL(pipe), dpll);
4395
4396 /* Wait for the clocks to stabilize. */
4397 POSTING_READ(DPLL(pipe));
4398 udelay(150);
4399
4400 if (INTEL_INFO(dev)->gen >= 4) {
4401 u32 temp = 0;
4402 if (is_sdvo) {
4403 temp = 0;
4404 if (crtc->config.pixel_multiplier > 1) {
4405 temp = (crtc->config.pixel_multiplier - 1)
4406 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4407 }
4408 }
4409 I915_WRITE(DPLL_MD(pipe), temp);
4410 } else {
4411 /* The pixel multiplier can only be updated once the
4412 * DPLL is enabled and the clocks are stable.
4413 *
4414 * So write it again.
4415 */
4416 I915_WRITE(DPLL(pipe), dpll);
4417 }
4418 }
4419
4420 static void i8xx_update_pll(struct intel_crtc *crtc,
4421 struct drm_display_mode *adjusted_mode,
4422 intel_clock_t *reduced_clock,
4423 int num_connectors)
4424 {
4425 struct drm_device *dev = crtc->base.dev;
4426 struct drm_i915_private *dev_priv = dev->dev_private;
4427 struct intel_encoder *encoder;
4428 int pipe = crtc->pipe;
4429 u32 dpll;
4430 struct dpll *clock = &crtc->config.dpll;
4431
4432 i9xx_update_pll_dividers(crtc, reduced_clock);
4433
4434 dpll = DPLL_VGA_MODE_DIS;
4435
4436 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4437 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4438 } else {
4439 if (clock->p1 == 2)
4440 dpll |= PLL_P1_DIVIDE_BY_TWO;
4441 else
4442 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4443 if (clock->p2 == 4)
4444 dpll |= PLL_P2_DIVIDE_BY_4;
4445 }
4446
4447 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4448 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4449 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4450 else
4451 dpll |= PLL_REF_INPUT_DREFCLK;
4452
4453 dpll |= DPLL_VCO_ENABLE;
4454 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4455 POSTING_READ(DPLL(pipe));
4456 udelay(150);
4457
4458 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4459 if (encoder->pre_pll_enable)
4460 encoder->pre_pll_enable(encoder);
4461
4462 I915_WRITE(DPLL(pipe), dpll);
4463
4464 /* Wait for the clocks to stabilize. */
4465 POSTING_READ(DPLL(pipe));
4466 udelay(150);
4467
4468 /* The pixel multiplier can only be updated once the
4469 * DPLL is enabled and the clocks are stable.
4470 *
4471 * So write it again.
4472 */
4473 I915_WRITE(DPLL(pipe), dpll);
4474 }
4475
4476 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4477 struct drm_display_mode *mode,
4478 struct drm_display_mode *adjusted_mode)
4479 {
4480 struct drm_device *dev = intel_crtc->base.dev;
4481 struct drm_i915_private *dev_priv = dev->dev_private;
4482 enum pipe pipe = intel_crtc->pipe;
4483 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4484 uint32_t vsyncshift;
4485
4486 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4487 /* the chip adds 2 halflines automatically */
4488 adjusted_mode->crtc_vtotal -= 1;
4489 adjusted_mode->crtc_vblank_end -= 1;
4490 vsyncshift = adjusted_mode->crtc_hsync_start
4491 - adjusted_mode->crtc_htotal / 2;
4492 } else {
4493 vsyncshift = 0;
4494 }
4495
4496 if (INTEL_INFO(dev)->gen > 3)
4497 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4498
4499 I915_WRITE(HTOTAL(cpu_transcoder),
4500 (adjusted_mode->crtc_hdisplay - 1) |
4501 ((adjusted_mode->crtc_htotal - 1) << 16));
4502 I915_WRITE(HBLANK(cpu_transcoder),
4503 (adjusted_mode->crtc_hblank_start - 1) |
4504 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4505 I915_WRITE(HSYNC(cpu_transcoder),
4506 (adjusted_mode->crtc_hsync_start - 1) |
4507 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4508
4509 I915_WRITE(VTOTAL(cpu_transcoder),
4510 (adjusted_mode->crtc_vdisplay - 1) |
4511 ((adjusted_mode->crtc_vtotal - 1) << 16));
4512 I915_WRITE(VBLANK(cpu_transcoder),
4513 (adjusted_mode->crtc_vblank_start - 1) |
4514 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4515 I915_WRITE(VSYNC(cpu_transcoder),
4516 (adjusted_mode->crtc_vsync_start - 1) |
4517 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4518
4519 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4520 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4521 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4522 * bits. */
4523 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4524 (pipe == PIPE_B || pipe == PIPE_C))
4525 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4526
4527 /* pipesrc controls the size that is scaled from, which should
4528 * always be the user's requested size.
4529 */
4530 I915_WRITE(PIPESRC(pipe),
4531 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4532 }
4533
4534 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4535 {
4536 struct drm_device *dev = intel_crtc->base.dev;
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 uint32_t pipeconf;
4539
4540 pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4541
4542 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4543 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4544 * core speed.
4545 *
4546 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4547 * pipe == 0 check?
4548 */
4549 if (intel_crtc->config.requested_mode.clock >
4550 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4551 pipeconf |= PIPECONF_DOUBLE_WIDE;
4552 else
4553 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4554 }
4555
4556 /* default to 8bpc */
4557 pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4558 if (intel_crtc->config.has_dp_encoder) {
4559 if (intel_crtc->config.dither) {
4560 pipeconf |= PIPECONF_6BPC |
4561 PIPECONF_DITHER_EN |
4562 PIPECONF_DITHER_TYPE_SP;
4563 }
4564 }
4565
4566 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
4567 INTEL_OUTPUT_EDP)) {
4568 if (intel_crtc->config.dither) {
4569 pipeconf |= PIPECONF_6BPC |
4570 PIPECONF_ENABLE |
4571 I965_PIPECONF_ACTIVE;
4572 }
4573 }
4574
4575 if (HAS_PIPE_CXSR(dev)) {
4576 if (intel_crtc->lowfreq_avail) {
4577 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4578 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4579 } else {
4580 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4581 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4582 }
4583 }
4584
4585 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4586 if (!IS_GEN2(dev) &&
4587 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4588 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4589 else
4590 pipeconf |= PIPECONF_PROGRESSIVE;
4591
4592 if (IS_VALLEYVIEW(dev)) {
4593 if (intel_crtc->config.limited_color_range)
4594 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4595 else
4596 pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4597 }
4598
4599 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4600 POSTING_READ(PIPECONF(intel_crtc->pipe));
4601 }
4602
4603 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4604 int x, int y,
4605 struct drm_framebuffer *fb)
4606 {
4607 struct drm_device *dev = crtc->dev;
4608 struct drm_i915_private *dev_priv = dev->dev_private;
4609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4610 struct drm_display_mode *adjusted_mode =
4611 &intel_crtc->config.adjusted_mode;
4612 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4613 int pipe = intel_crtc->pipe;
4614 int plane = intel_crtc->plane;
4615 int refclk, num_connectors = 0;
4616 intel_clock_t clock, reduced_clock;
4617 u32 dspcntr;
4618 bool ok, has_reduced_clock = false, is_sdvo = false;
4619 bool is_lvds = false, is_tv = false;
4620 struct intel_encoder *encoder;
4621 const intel_limit_t *limit;
4622 int ret;
4623
4624 for_each_encoder_on_crtc(dev, crtc, encoder) {
4625 switch (encoder->type) {
4626 case INTEL_OUTPUT_LVDS:
4627 is_lvds = true;
4628 break;
4629 case INTEL_OUTPUT_SDVO:
4630 case INTEL_OUTPUT_HDMI:
4631 is_sdvo = true;
4632 if (encoder->needs_tv_clock)
4633 is_tv = true;
4634 break;
4635 case INTEL_OUTPUT_TVOUT:
4636 is_tv = true;
4637 break;
4638 }
4639
4640 num_connectors++;
4641 }
4642
4643 refclk = i9xx_get_refclk(crtc, num_connectors);
4644
4645 /*
4646 * Returns a set of divisors for the desired target clock with the given
4647 * refclk, or FALSE. The returned values represent the clock equation:
4648 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4649 */
4650 limit = intel_limit(crtc, refclk);
4651 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4652 &clock);
4653 if (!ok) {
4654 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4655 return -EINVAL;
4656 }
4657
4658 /* Ensure that the cursor is valid for the new mode before changing... */
4659 intel_crtc_update_cursor(crtc, true);
4660
4661 if (is_lvds && dev_priv->lvds_downclock_avail) {
4662 /*
4663 * Ensure we match the reduced clock's P to the target clock.
4664 * If the clocks don't match, we can't switch the display clock
4665 * by using the FP0/FP1. In such case we will disable the LVDS
4666 * downclock feature.
4667 */
4668 has_reduced_clock = limit->find_pll(limit, crtc,
4669 dev_priv->lvds_downclock,
4670 refclk,
4671 &clock,
4672 &reduced_clock);
4673 }
4674 /* Compat-code for transition, will disappear. */
4675 if (!intel_crtc->config.clock_set) {
4676 intel_crtc->config.dpll.n = clock.n;
4677 intel_crtc->config.dpll.m1 = clock.m1;
4678 intel_crtc->config.dpll.m2 = clock.m2;
4679 intel_crtc->config.dpll.p1 = clock.p1;
4680 intel_crtc->config.dpll.p2 = clock.p2;
4681 }
4682
4683 if (is_sdvo && is_tv)
4684 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4685
4686 if (IS_GEN2(dev))
4687 i8xx_update_pll(intel_crtc, adjusted_mode,
4688 has_reduced_clock ? &reduced_clock : NULL,
4689 num_connectors);
4690 else if (IS_VALLEYVIEW(dev))
4691 vlv_update_pll(intel_crtc);
4692 else
4693 i9xx_update_pll(intel_crtc,
4694 has_reduced_clock ? &reduced_clock : NULL,
4695 num_connectors);
4696
4697 /* Set up the display plane register */
4698 dspcntr = DISPPLANE_GAMMA_ENABLE;
4699
4700 if (!IS_VALLEYVIEW(dev)) {
4701 if (pipe == 0)
4702 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4703 else
4704 dspcntr |= DISPPLANE_SEL_PIPE_B;
4705 }
4706
4707 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4708 drm_mode_debug_printmodeline(mode);
4709
4710 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4711
4712 /* pipesrc and dspsize control the size that is scaled from,
4713 * which should always be the user's requested size.
4714 */
4715 I915_WRITE(DSPSIZE(plane),
4716 ((mode->vdisplay - 1) << 16) |
4717 (mode->hdisplay - 1));
4718 I915_WRITE(DSPPOS(plane), 0);
4719
4720 i9xx_set_pipeconf(intel_crtc);
4721
4722 intel_enable_pipe(dev_priv, pipe, false);
4723
4724 intel_wait_for_vblank(dev, pipe);
4725
4726 I915_WRITE(DSPCNTR(plane), dspcntr);
4727 POSTING_READ(DSPCNTR(plane));
4728
4729 ret = intel_pipe_set_base(crtc, x, y, fb);
4730
4731 intel_update_watermarks(dev);
4732
4733 return ret;
4734 }
4735
4736 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4737 struct intel_crtc_config *pipe_config)
4738 {
4739 struct drm_device *dev = crtc->base.dev;
4740 struct drm_i915_private *dev_priv = dev->dev_private;
4741 uint32_t tmp;
4742
4743 tmp = I915_READ(PIPECONF(crtc->pipe));
4744 if (!(tmp & PIPECONF_ENABLE))
4745 return false;
4746
4747 return true;
4748 }
4749
4750 static void ironlake_init_pch_refclk(struct drm_device *dev)
4751 {
4752 struct drm_i915_private *dev_priv = dev->dev_private;
4753 struct drm_mode_config *mode_config = &dev->mode_config;
4754 struct intel_encoder *encoder;
4755 u32 val, final;
4756 bool has_lvds = false;
4757 bool has_cpu_edp = false;
4758 bool has_pch_edp = false;
4759 bool has_panel = false;
4760 bool has_ck505 = false;
4761 bool can_ssc = false;
4762
4763 /* We need to take the global config into account */
4764 list_for_each_entry(encoder, &mode_config->encoder_list,
4765 base.head) {
4766 switch (encoder->type) {
4767 case INTEL_OUTPUT_LVDS:
4768 has_panel = true;
4769 has_lvds = true;
4770 break;
4771 case INTEL_OUTPUT_EDP:
4772 has_panel = true;
4773 if (intel_encoder_is_pch_edp(&encoder->base))
4774 has_pch_edp = true;
4775 else
4776 has_cpu_edp = true;
4777 break;
4778 }
4779 }
4780
4781 if (HAS_PCH_IBX(dev)) {
4782 has_ck505 = dev_priv->display_clock_mode;
4783 can_ssc = has_ck505;
4784 } else {
4785 has_ck505 = false;
4786 can_ssc = true;
4787 }
4788
4789 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4790 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4791 has_ck505);
4792
4793 /* Ironlake: try to setup display ref clock before DPLL
4794 * enabling. This is only under driver's control after
4795 * PCH B stepping, previous chipset stepping should be
4796 * ignoring this setting.
4797 */
4798 val = I915_READ(PCH_DREF_CONTROL);
4799
4800 /* As we must carefully and slowly disable/enable each source in turn,
4801 * compute the final state we want first and check if we need to
4802 * make any changes at all.
4803 */
4804 final = val;
4805 final &= ~DREF_NONSPREAD_SOURCE_MASK;
4806 if (has_ck505)
4807 final |= DREF_NONSPREAD_CK505_ENABLE;
4808 else
4809 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4810
4811 final &= ~DREF_SSC_SOURCE_MASK;
4812 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4813 final &= ~DREF_SSC1_ENABLE;
4814
4815 if (has_panel) {
4816 final |= DREF_SSC_SOURCE_ENABLE;
4817
4818 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4819 final |= DREF_SSC1_ENABLE;
4820
4821 if (has_cpu_edp) {
4822 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4823 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4824 else
4825 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4826 } else
4827 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4828 } else {
4829 final |= DREF_SSC_SOURCE_DISABLE;
4830 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4831 }
4832
4833 if (final == val)
4834 return;
4835
4836 /* Always enable nonspread source */
4837 val &= ~DREF_NONSPREAD_SOURCE_MASK;
4838
4839 if (has_ck505)
4840 val |= DREF_NONSPREAD_CK505_ENABLE;
4841 else
4842 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4843
4844 if (has_panel) {
4845 val &= ~DREF_SSC_SOURCE_MASK;
4846 val |= DREF_SSC_SOURCE_ENABLE;
4847
4848 /* SSC must be turned on before enabling the CPU output */
4849 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4850 DRM_DEBUG_KMS("Using SSC on panel\n");
4851 val |= DREF_SSC1_ENABLE;
4852 } else
4853 val &= ~DREF_SSC1_ENABLE;
4854
4855 /* Get SSC going before enabling the outputs */
4856 I915_WRITE(PCH_DREF_CONTROL, val);
4857 POSTING_READ(PCH_DREF_CONTROL);
4858 udelay(200);
4859
4860 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4861
4862 /* Enable CPU source on CPU attached eDP */
4863 if (has_cpu_edp) {
4864 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4865 DRM_DEBUG_KMS("Using SSC on eDP\n");
4866 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4867 }
4868 else
4869 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4870 } else
4871 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4872
4873 I915_WRITE(PCH_DREF_CONTROL, val);
4874 POSTING_READ(PCH_DREF_CONTROL);
4875 udelay(200);
4876 } else {
4877 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4878
4879 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4880
4881 /* Turn off CPU output */
4882 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4883
4884 I915_WRITE(PCH_DREF_CONTROL, val);
4885 POSTING_READ(PCH_DREF_CONTROL);
4886 udelay(200);
4887
4888 /* Turn off the SSC source */
4889 val &= ~DREF_SSC_SOURCE_MASK;
4890 val |= DREF_SSC_SOURCE_DISABLE;
4891
4892 /* Turn off SSC1 */
4893 val &= ~DREF_SSC1_ENABLE;
4894
4895 I915_WRITE(PCH_DREF_CONTROL, val);
4896 POSTING_READ(PCH_DREF_CONTROL);
4897 udelay(200);
4898 }
4899
4900 BUG_ON(val != final);
4901 }
4902
4903 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4904 static void lpt_init_pch_refclk(struct drm_device *dev)
4905 {
4906 struct drm_i915_private *dev_priv = dev->dev_private;
4907 struct drm_mode_config *mode_config = &dev->mode_config;
4908 struct intel_encoder *encoder;
4909 bool has_vga = false;
4910 bool is_sdv = false;
4911 u32 tmp;
4912
4913 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4914 switch (encoder->type) {
4915 case INTEL_OUTPUT_ANALOG:
4916 has_vga = true;
4917 break;
4918 }
4919 }
4920
4921 if (!has_vga)
4922 return;
4923
4924 mutex_lock(&dev_priv->dpio_lock);
4925
4926 /* XXX: Rip out SDV support once Haswell ships for real. */
4927 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4928 is_sdv = true;
4929
4930 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4931 tmp &= ~SBI_SSCCTL_DISABLE;
4932 tmp |= SBI_SSCCTL_PATHALT;
4933 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4934
4935 udelay(24);
4936
4937 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4938 tmp &= ~SBI_SSCCTL_PATHALT;
4939 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4940
4941 if (!is_sdv) {
4942 tmp = I915_READ(SOUTH_CHICKEN2);
4943 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4944 I915_WRITE(SOUTH_CHICKEN2, tmp);
4945
4946 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4947 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4948 DRM_ERROR("FDI mPHY reset assert timeout\n");
4949
4950 tmp = I915_READ(SOUTH_CHICKEN2);
4951 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4952 I915_WRITE(SOUTH_CHICKEN2, tmp);
4953
4954 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4955 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4956 100))
4957 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4958 }
4959
4960 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4961 tmp &= ~(0xFF << 24);
4962 tmp |= (0x12 << 24);
4963 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4964
4965 if (is_sdv) {
4966 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4967 tmp |= 0x7FFF;
4968 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4969 }
4970
4971 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4972 tmp |= (1 << 11);
4973 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4974
4975 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4976 tmp |= (1 << 11);
4977 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4978
4979 if (is_sdv) {
4980 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4981 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4982 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4983
4984 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4985 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4986 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4987
4988 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4989 tmp |= (0x3F << 8);
4990 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4991
4992 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4993 tmp |= (0x3F << 8);
4994 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4995 }
4996
4997 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
4998 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4999 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5000
5001 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5002 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5003 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5004
5005 if (!is_sdv) {
5006 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5007 tmp &= ~(7 << 13);
5008 tmp |= (5 << 13);
5009 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5010
5011 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5012 tmp &= ~(7 << 13);
5013 tmp |= (5 << 13);
5014 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5015 }
5016
5017 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5018 tmp &= ~0xFF;
5019 tmp |= 0x1C;
5020 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5021
5022 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5023 tmp &= ~0xFF;
5024 tmp |= 0x1C;
5025 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5026
5027 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5028 tmp &= ~(0xFF << 16);
5029 tmp |= (0x1C << 16);
5030 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5031
5032 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5033 tmp &= ~(0xFF << 16);
5034 tmp |= (0x1C << 16);
5035 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5036
5037 if (!is_sdv) {
5038 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5039 tmp |= (1 << 27);
5040 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5041
5042 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5043 tmp |= (1 << 27);
5044 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5045
5046 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5047 tmp &= ~(0xF << 28);
5048 tmp |= (4 << 28);
5049 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5050
5051 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5052 tmp &= ~(0xF << 28);
5053 tmp |= (4 << 28);
5054 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5055 }
5056
5057 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5058 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5059 tmp |= SBI_DBUFF0_ENABLE;
5060 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5061
5062 mutex_unlock(&dev_priv->dpio_lock);
5063 }
5064
5065 /*
5066 * Initialize reference clocks when the driver loads
5067 */
5068 void intel_init_pch_refclk(struct drm_device *dev)
5069 {
5070 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5071 ironlake_init_pch_refclk(dev);
5072 else if (HAS_PCH_LPT(dev))
5073 lpt_init_pch_refclk(dev);
5074 }
5075
5076 static int ironlake_get_refclk(struct drm_crtc *crtc)
5077 {
5078 struct drm_device *dev = crtc->dev;
5079 struct drm_i915_private *dev_priv = dev->dev_private;
5080 struct intel_encoder *encoder;
5081 struct intel_encoder *edp_encoder = NULL;
5082 int num_connectors = 0;
5083 bool is_lvds = false;
5084
5085 for_each_encoder_on_crtc(dev, crtc, encoder) {
5086 switch (encoder->type) {
5087 case INTEL_OUTPUT_LVDS:
5088 is_lvds = true;
5089 break;
5090 case INTEL_OUTPUT_EDP:
5091 edp_encoder = encoder;
5092 break;
5093 }
5094 num_connectors++;
5095 }
5096
5097 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5098 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5099 dev_priv->lvds_ssc_freq);
5100 return dev_priv->lvds_ssc_freq * 1000;
5101 }
5102
5103 return 120000;
5104 }
5105
5106 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5107 struct drm_display_mode *adjusted_mode,
5108 bool dither)
5109 {
5110 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5112 int pipe = intel_crtc->pipe;
5113 uint32_t val;
5114
5115 val = I915_READ(PIPECONF(pipe));
5116
5117 val &= ~PIPECONF_BPC_MASK;
5118 switch (intel_crtc->config.pipe_bpp) {
5119 case 18:
5120 val |= PIPECONF_6BPC;
5121 break;
5122 case 24:
5123 val |= PIPECONF_8BPC;
5124 break;
5125 case 30:
5126 val |= PIPECONF_10BPC;
5127 break;
5128 case 36:
5129 val |= PIPECONF_12BPC;
5130 break;
5131 default:
5132 /* Case prevented by intel_choose_pipe_bpp_dither. */
5133 BUG();
5134 }
5135
5136 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5137 if (dither)
5138 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5139
5140 val &= ~PIPECONF_INTERLACE_MASK;
5141 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5142 val |= PIPECONF_INTERLACED_ILK;
5143 else
5144 val |= PIPECONF_PROGRESSIVE;
5145
5146 if (intel_crtc->config.limited_color_range)
5147 val |= PIPECONF_COLOR_RANGE_SELECT;
5148 else
5149 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5150
5151 I915_WRITE(PIPECONF(pipe), val);
5152 POSTING_READ(PIPECONF(pipe));
5153 }
5154
5155 /*
5156 * Set up the pipe CSC unit.
5157 *
5158 * Currently only full range RGB to limited range RGB conversion
5159 * is supported, but eventually this should handle various
5160 * RGB<->YCbCr scenarios as well.
5161 */
5162 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5163 {
5164 struct drm_device *dev = crtc->dev;
5165 struct drm_i915_private *dev_priv = dev->dev_private;
5166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5167 int pipe = intel_crtc->pipe;
5168 uint16_t coeff = 0x7800; /* 1.0 */
5169
5170 /*
5171 * TODO: Check what kind of values actually come out of the pipe
5172 * with these coeff/postoff values and adjust to get the best
5173 * accuracy. Perhaps we even need to take the bpc value into
5174 * consideration.
5175 */
5176
5177 if (intel_crtc->config.limited_color_range)
5178 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5179
5180 /*
5181 * GY/GU and RY/RU should be the other way around according
5182 * to BSpec, but reality doesn't agree. Just set them up in
5183 * a way that results in the correct picture.
5184 */
5185 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5186 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5187
5188 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5189 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5190
5191 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5192 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5193
5194 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5195 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5196 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5197
5198 if (INTEL_INFO(dev)->gen > 6) {
5199 uint16_t postoff = 0;
5200
5201 if (intel_crtc->config.limited_color_range)
5202 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5203
5204 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5205 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5206 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5207
5208 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5209 } else {
5210 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5211
5212 if (intel_crtc->config.limited_color_range)
5213 mode |= CSC_BLACK_SCREEN_OFFSET;
5214
5215 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5216 }
5217 }
5218
5219 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5220 struct drm_display_mode *adjusted_mode,
5221 bool dither)
5222 {
5223 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5225 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5226 uint32_t val;
5227
5228 val = I915_READ(PIPECONF(cpu_transcoder));
5229
5230 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5231 if (dither)
5232 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5233
5234 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5235 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5236 val |= PIPECONF_INTERLACED_ILK;
5237 else
5238 val |= PIPECONF_PROGRESSIVE;
5239
5240 I915_WRITE(PIPECONF(cpu_transcoder), val);
5241 POSTING_READ(PIPECONF(cpu_transcoder));
5242 }
5243
5244 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5245 struct drm_display_mode *adjusted_mode,
5246 intel_clock_t *clock,
5247 bool *has_reduced_clock,
5248 intel_clock_t *reduced_clock)
5249 {
5250 struct drm_device *dev = crtc->dev;
5251 struct drm_i915_private *dev_priv = dev->dev_private;
5252 struct intel_encoder *intel_encoder;
5253 int refclk;
5254 const intel_limit_t *limit;
5255 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5256
5257 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5258 switch (intel_encoder->type) {
5259 case INTEL_OUTPUT_LVDS:
5260 is_lvds = true;
5261 break;
5262 case INTEL_OUTPUT_SDVO:
5263 case INTEL_OUTPUT_HDMI:
5264 is_sdvo = true;
5265 if (intel_encoder->needs_tv_clock)
5266 is_tv = true;
5267 break;
5268 case INTEL_OUTPUT_TVOUT:
5269 is_tv = true;
5270 break;
5271 }
5272 }
5273
5274 refclk = ironlake_get_refclk(crtc);
5275
5276 /*
5277 * Returns a set of divisors for the desired target clock with the given
5278 * refclk, or FALSE. The returned values represent the clock equation:
5279 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5280 */
5281 limit = intel_limit(crtc, refclk);
5282 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5283 clock);
5284 if (!ret)
5285 return false;
5286
5287 if (is_lvds && dev_priv->lvds_downclock_avail) {
5288 /*
5289 * Ensure we match the reduced clock's P to the target clock.
5290 * If the clocks don't match, we can't switch the display clock
5291 * by using the FP0/FP1. In such case we will disable the LVDS
5292 * downclock feature.
5293 */
5294 *has_reduced_clock = limit->find_pll(limit, crtc,
5295 dev_priv->lvds_downclock,
5296 refclk,
5297 clock,
5298 reduced_clock);
5299 }
5300
5301 if (is_sdvo && is_tv)
5302 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5303
5304 return true;
5305 }
5306
5307 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5308 {
5309 struct drm_i915_private *dev_priv = dev->dev_private;
5310 uint32_t temp;
5311
5312 temp = I915_READ(SOUTH_CHICKEN1);
5313 if (temp & FDI_BC_BIFURCATION_SELECT)
5314 return;
5315
5316 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5317 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5318
5319 temp |= FDI_BC_BIFURCATION_SELECT;
5320 DRM_DEBUG_KMS("enabling fdi C rx\n");
5321 I915_WRITE(SOUTH_CHICKEN1, temp);
5322 POSTING_READ(SOUTH_CHICKEN1);
5323 }
5324
5325 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5326 {
5327 struct drm_device *dev = intel_crtc->base.dev;
5328 struct drm_i915_private *dev_priv = dev->dev_private;
5329 struct intel_crtc *pipe_B_crtc =
5330 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5331
5332 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5333 intel_crtc->pipe, intel_crtc->fdi_lanes);
5334 if (intel_crtc->fdi_lanes > 4) {
5335 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5336 intel_crtc->pipe, intel_crtc->fdi_lanes);
5337 /* Clamp lanes to avoid programming the hw with bogus values. */
5338 intel_crtc->fdi_lanes = 4;
5339
5340 return false;
5341 }
5342
5343 if (INTEL_INFO(dev)->num_pipes == 2)
5344 return true;
5345
5346 switch (intel_crtc->pipe) {
5347 case PIPE_A:
5348 return true;
5349 case PIPE_B:
5350 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5351 intel_crtc->fdi_lanes > 2) {
5352 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5353 intel_crtc->pipe, intel_crtc->fdi_lanes);
5354 /* Clamp lanes to avoid programming the hw with bogus values. */
5355 intel_crtc->fdi_lanes = 2;
5356
5357 return false;
5358 }
5359
5360 if (intel_crtc->fdi_lanes > 2)
5361 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5362 else
5363 cpt_enable_fdi_bc_bifurcation(dev);
5364
5365 return true;
5366 case PIPE_C:
5367 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5368 if (intel_crtc->fdi_lanes > 2) {
5369 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5370 intel_crtc->pipe, intel_crtc->fdi_lanes);
5371 /* Clamp lanes to avoid programming the hw with bogus values. */
5372 intel_crtc->fdi_lanes = 2;
5373
5374 return false;
5375 }
5376 } else {
5377 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5378 return false;
5379 }
5380
5381 cpt_enable_fdi_bc_bifurcation(dev);
5382
5383 return true;
5384 default:
5385 BUG();
5386 }
5387 }
5388
5389 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5390 {
5391 /*
5392 * Account for spread spectrum to avoid
5393 * oversubscribing the link. Max center spread
5394 * is 2.5%; use 5% for safety's sake.
5395 */
5396 u32 bps = target_clock * bpp * 21 / 20;
5397 return bps / (link_bw * 8) + 1;
5398 }
5399
5400 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5401 struct intel_link_m_n *m_n)
5402 {
5403 struct drm_device *dev = crtc->base.dev;
5404 struct drm_i915_private *dev_priv = dev->dev_private;
5405 int pipe = crtc->pipe;
5406
5407 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5408 I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5409 I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5410 I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5411 }
5412
5413 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5414 struct intel_link_m_n *m_n)
5415 {
5416 struct drm_device *dev = crtc->base.dev;
5417 struct drm_i915_private *dev_priv = dev->dev_private;
5418 int pipe = crtc->pipe;
5419 enum transcoder transcoder = crtc->cpu_transcoder;
5420
5421 if (INTEL_INFO(dev)->gen >= 5) {
5422 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5423 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5424 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5425 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5426 } else {
5427 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5428 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5429 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5430 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5431 }
5432 }
5433
5434 static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
5435 {
5436 struct drm_device *dev = crtc->dev;
5437 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5438 struct drm_display_mode *adjusted_mode =
5439 &intel_crtc->config.adjusted_mode;
5440 struct intel_link_m_n m_n = {0};
5441 int target_clock, lane, link_bw;
5442
5443 /* FDI is a binary signal running at ~2.7GHz, encoding
5444 * each output octet as 10 bits. The actual frequency
5445 * is stored as a divider into a 100MHz clock, and the
5446 * mode pixel clock is stored in units of 1KHz.
5447 * Hence the bw of each lane in terms of the mode signal
5448 * is:
5449 */
5450 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5451
5452 if (intel_crtc->config.pixel_target_clock)
5453 target_clock = intel_crtc->config.pixel_target_clock;
5454 else
5455 target_clock = adjusted_mode->clock;
5456
5457 lane = ironlake_get_lanes_required(target_clock, link_bw,
5458 intel_crtc->config.pipe_bpp);
5459
5460 intel_crtc->fdi_lanes = lane;
5461
5462 if (intel_crtc->config.pixel_multiplier > 1)
5463 link_bw *= intel_crtc->config.pixel_multiplier;
5464 intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5465 link_bw, &m_n);
5466
5467 intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
5468 }
5469
5470 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5471 intel_clock_t *clock, u32 *fp,
5472 intel_clock_t *reduced_clock, u32 *fp2)
5473 {
5474 struct drm_crtc *crtc = &intel_crtc->base;
5475 struct drm_device *dev = crtc->dev;
5476 struct drm_i915_private *dev_priv = dev->dev_private;
5477 struct intel_encoder *intel_encoder;
5478 uint32_t dpll;
5479 int factor, num_connectors = 0;
5480 bool is_lvds = false, is_sdvo = false, is_tv = false;
5481
5482 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5483 switch (intel_encoder->type) {
5484 case INTEL_OUTPUT_LVDS:
5485 is_lvds = true;
5486 break;
5487 case INTEL_OUTPUT_SDVO:
5488 case INTEL_OUTPUT_HDMI:
5489 is_sdvo = true;
5490 if (intel_encoder->needs_tv_clock)
5491 is_tv = true;
5492 break;
5493 case INTEL_OUTPUT_TVOUT:
5494 is_tv = true;
5495 break;
5496 }
5497
5498 num_connectors++;
5499 }
5500
5501 /* Enable autotuning of the PLL clock (if permissible) */
5502 factor = 21;
5503 if (is_lvds) {
5504 if ((intel_panel_use_ssc(dev_priv) &&
5505 dev_priv->lvds_ssc_freq == 100) ||
5506 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5507 factor = 25;
5508 } else if (is_sdvo && is_tv)
5509 factor = 20;
5510
5511 if (clock->m < factor * clock->n)
5512 *fp |= FP_CB_TUNE;
5513
5514 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5515 *fp2 |= FP_CB_TUNE;
5516
5517 dpll = 0;
5518
5519 if (is_lvds)
5520 dpll |= DPLLB_MODE_LVDS;
5521 else
5522 dpll |= DPLLB_MODE_DAC_SERIAL;
5523 if (is_sdvo) {
5524 if (intel_crtc->config.pixel_multiplier > 1) {
5525 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5526 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5527 }
5528 dpll |= DPLL_DVO_HIGH_SPEED;
5529 }
5530 if (intel_crtc->config.has_dp_encoder &&
5531 intel_crtc->config.has_pch_encoder)
5532 dpll |= DPLL_DVO_HIGH_SPEED;
5533
5534 /* compute bitmask from p1 value */
5535 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5536 /* also FPA1 */
5537 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5538
5539 switch (clock->p2) {
5540 case 5:
5541 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5542 break;
5543 case 7:
5544 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5545 break;
5546 case 10:
5547 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5548 break;
5549 case 14:
5550 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5551 break;
5552 }
5553
5554 if (is_sdvo && is_tv)
5555 dpll |= PLL_REF_INPUT_TVCLKINBC;
5556 else if (is_tv)
5557 /* XXX: just matching BIOS for now */
5558 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5559 dpll |= 3;
5560 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5561 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5562 else
5563 dpll |= PLL_REF_INPUT_DREFCLK;
5564
5565 return dpll;
5566 }
5567
5568 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5569 int x, int y,
5570 struct drm_framebuffer *fb)
5571 {
5572 struct drm_device *dev = crtc->dev;
5573 struct drm_i915_private *dev_priv = dev->dev_private;
5574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5575 struct drm_display_mode *adjusted_mode =
5576 &intel_crtc->config.adjusted_mode;
5577 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5578 int pipe = intel_crtc->pipe;
5579 int plane = intel_crtc->plane;
5580 int num_connectors = 0;
5581 intel_clock_t clock, reduced_clock;
5582 u32 dpll, fp = 0, fp2 = 0;
5583 bool ok, has_reduced_clock = false;
5584 bool is_lvds = false;
5585 struct intel_encoder *encoder;
5586 int ret;
5587 bool dither, fdi_config_ok;
5588
5589 for_each_encoder_on_crtc(dev, crtc, encoder) {
5590 switch (encoder->type) {
5591 case INTEL_OUTPUT_LVDS:
5592 is_lvds = true;
5593 break;
5594 }
5595
5596 num_connectors++;
5597 }
5598
5599 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5600 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5601
5602 intel_crtc->cpu_transcoder = pipe;
5603
5604 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5605 &has_reduced_clock, &reduced_clock);
5606 if (!ok) {
5607 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5608 return -EINVAL;
5609 }
5610 /* Compat-code for transition, will disappear. */
5611 if (!intel_crtc->config.clock_set) {
5612 intel_crtc->config.dpll.n = clock.n;
5613 intel_crtc->config.dpll.m1 = clock.m1;
5614 intel_crtc->config.dpll.m2 = clock.m2;
5615 intel_crtc->config.dpll.p1 = clock.p1;
5616 intel_crtc->config.dpll.p2 = clock.p2;
5617 }
5618
5619 /* Ensure that the cursor is valid for the new mode before changing... */
5620 intel_crtc_update_cursor(crtc, true);
5621
5622 /* determine panel color depth */
5623 dither = intel_crtc->config.dither;
5624 if (is_lvds && dev_priv->lvds_dither)
5625 dither = true;
5626
5627 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5628 if (has_reduced_clock)
5629 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5630 reduced_clock.m2;
5631
5632 dpll = ironlake_compute_dpll(intel_crtc, &clock, &fp, &reduced_clock,
5633 has_reduced_clock ? &fp2 : NULL);
5634
5635 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5636 drm_mode_debug_printmodeline(mode);
5637
5638 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5639 if (intel_crtc->config.has_pch_encoder) {
5640 struct intel_pch_pll *pll;
5641
5642 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5643 if (pll == NULL) {
5644 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5645 pipe);
5646 return -EINVAL;
5647 }
5648 } else
5649 intel_put_pch_pll(intel_crtc);
5650
5651 if (intel_crtc->config.has_dp_encoder)
5652 intel_dp_set_m_n(intel_crtc);
5653
5654 for_each_encoder_on_crtc(dev, crtc, encoder)
5655 if (encoder->pre_pll_enable)
5656 encoder->pre_pll_enable(encoder);
5657
5658 if (intel_crtc->pch_pll) {
5659 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5660
5661 /* Wait for the clocks to stabilize. */
5662 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5663 udelay(150);
5664
5665 /* The pixel multiplier can only be updated once the
5666 * DPLL is enabled and the clocks are stable.
5667 *
5668 * So write it again.
5669 */
5670 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5671 }
5672
5673 intel_crtc->lowfreq_avail = false;
5674 if (intel_crtc->pch_pll) {
5675 if (is_lvds && has_reduced_clock && i915_powersave) {
5676 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5677 intel_crtc->lowfreq_avail = true;
5678 } else {
5679 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5680 }
5681 }
5682
5683 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5684
5685 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5686 * ironlake_check_fdi_lanes. */
5687 intel_crtc->fdi_lanes = 0;
5688 if (intel_crtc->config.has_pch_encoder)
5689 ironlake_fdi_set_m_n(crtc);
5690
5691 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5692
5693 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5694
5695 intel_wait_for_vblank(dev, pipe);
5696
5697 /* Set up the display plane register */
5698 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5699 POSTING_READ(DSPCNTR(plane));
5700
5701 ret = intel_pipe_set_base(crtc, x, y, fb);
5702
5703 intel_update_watermarks(dev);
5704
5705 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5706
5707 return fdi_config_ok ? ret : -EINVAL;
5708 }
5709
5710 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5711 struct intel_crtc_config *pipe_config)
5712 {
5713 struct drm_device *dev = crtc->base.dev;
5714 struct drm_i915_private *dev_priv = dev->dev_private;
5715 uint32_t tmp;
5716
5717 tmp = I915_READ(PIPECONF(crtc->pipe));
5718 if (!(tmp & PIPECONF_ENABLE))
5719 return false;
5720
5721 if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
5722 pipe_config->has_pch_encoder = true;
5723
5724 return true;
5725 }
5726
5727 static void haswell_modeset_global_resources(struct drm_device *dev)
5728 {
5729 struct drm_i915_private *dev_priv = dev->dev_private;
5730 bool enable = false;
5731 struct intel_crtc *crtc;
5732 struct intel_encoder *encoder;
5733
5734 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5735 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5736 enable = true;
5737 /* XXX: Should check for edp transcoder here, but thanks to init
5738 * sequence that's not yet available. Just in case desktop eDP
5739 * on PORT D is possible on haswell, too. */
5740 }
5741
5742 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5743 base.head) {
5744 if (encoder->type != INTEL_OUTPUT_EDP &&
5745 encoder->connectors_active)
5746 enable = true;
5747 }
5748
5749 /* Even the eDP panel fitter is outside the always-on well. */
5750 if (dev_priv->pch_pf_size)
5751 enable = true;
5752
5753 intel_set_power_well(dev, enable);
5754 }
5755
5756 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5757 int x, int y,
5758 struct drm_framebuffer *fb)
5759 {
5760 struct drm_device *dev = crtc->dev;
5761 struct drm_i915_private *dev_priv = dev->dev_private;
5762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5763 struct drm_display_mode *adjusted_mode =
5764 &intel_crtc->config.adjusted_mode;
5765 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5766 int pipe = intel_crtc->pipe;
5767 int plane = intel_crtc->plane;
5768 int num_connectors = 0;
5769 bool is_cpu_edp = false;
5770 struct intel_encoder *encoder;
5771 int ret;
5772 bool dither;
5773
5774 for_each_encoder_on_crtc(dev, crtc, encoder) {
5775 switch (encoder->type) {
5776 case INTEL_OUTPUT_EDP:
5777 if (!intel_encoder_is_pch_edp(&encoder->base))
5778 is_cpu_edp = true;
5779 break;
5780 }
5781
5782 num_connectors++;
5783 }
5784
5785 if (is_cpu_edp)
5786 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5787 else
5788 intel_crtc->cpu_transcoder = pipe;
5789
5790 /* We are not sure yet this won't happen. */
5791 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5792 INTEL_PCH_TYPE(dev));
5793
5794 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5795 num_connectors, pipe_name(pipe));
5796
5797 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5798 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5799
5800 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5801
5802 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5803 return -EINVAL;
5804
5805 /* Ensure that the cursor is valid for the new mode before changing... */
5806 intel_crtc_update_cursor(crtc, true);
5807
5808 /* determine panel color depth */
5809 dither = intel_crtc->config.dither;
5810
5811 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5812 drm_mode_debug_printmodeline(mode);
5813
5814 if (intel_crtc->config.has_dp_encoder)
5815 intel_dp_set_m_n(intel_crtc);
5816
5817 intel_crtc->lowfreq_avail = false;
5818
5819 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5820
5821 if (intel_crtc->config.has_pch_encoder)
5822 ironlake_fdi_set_m_n(crtc);
5823
5824 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5825
5826 intel_set_pipe_csc(crtc);
5827
5828 /* Set up the display plane register */
5829 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5830 POSTING_READ(DSPCNTR(plane));
5831
5832 ret = intel_pipe_set_base(crtc, x, y, fb);
5833
5834 intel_update_watermarks(dev);
5835
5836 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5837
5838 return ret;
5839 }
5840
5841 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5842 struct intel_crtc_config *pipe_config)
5843 {
5844 struct drm_device *dev = crtc->base.dev;
5845 struct drm_i915_private *dev_priv = dev->dev_private;
5846 uint32_t tmp;
5847
5848 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
5849 if (!(tmp & PIPECONF_ENABLE))
5850 return false;
5851
5852 /*
5853 * aswell has only FDI/PCH transcoder A. It is which is connected to
5854 * DDI E. So just check whether this pipe is wired to DDI E and whether
5855 * the PCH transcoder is on.
5856 */
5857 tmp = I915_READ(TRANS_DDI_FUNC_CTL(crtc->pipe));
5858 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5859 I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
5860 pipe_config->has_pch_encoder = true;
5861
5862
5863 return true;
5864 }
5865
5866 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5867 int x, int y,
5868 struct drm_framebuffer *fb)
5869 {
5870 struct drm_device *dev = crtc->dev;
5871 struct drm_i915_private *dev_priv = dev->dev_private;
5872 struct drm_encoder_helper_funcs *encoder_funcs;
5873 struct intel_encoder *encoder;
5874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5875 struct drm_display_mode *adjusted_mode =
5876 &intel_crtc->config.adjusted_mode;
5877 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5878 int pipe = intel_crtc->pipe;
5879 int ret;
5880
5881 drm_vblank_pre_modeset(dev, pipe);
5882
5883 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5884
5885 drm_vblank_post_modeset(dev, pipe);
5886
5887 if (ret != 0)
5888 return ret;
5889
5890 for_each_encoder_on_crtc(dev, crtc, encoder) {
5891 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5892 encoder->base.base.id,
5893 drm_get_encoder_name(&encoder->base),
5894 mode->base.id, mode->name);
5895 if (encoder->mode_set) {
5896 encoder->mode_set(encoder);
5897 } else {
5898 encoder_funcs = encoder->base.helper_private;
5899 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5900 }
5901 }
5902
5903 return 0;
5904 }
5905
5906 static bool intel_eld_uptodate(struct drm_connector *connector,
5907 int reg_eldv, uint32_t bits_eldv,
5908 int reg_elda, uint32_t bits_elda,
5909 int reg_edid)
5910 {
5911 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5912 uint8_t *eld = connector->eld;
5913 uint32_t i;
5914
5915 i = I915_READ(reg_eldv);
5916 i &= bits_eldv;
5917
5918 if (!eld[0])
5919 return !i;
5920
5921 if (!i)
5922 return false;
5923
5924 i = I915_READ(reg_elda);
5925 i &= ~bits_elda;
5926 I915_WRITE(reg_elda, i);
5927
5928 for (i = 0; i < eld[2]; i++)
5929 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5930 return false;
5931
5932 return true;
5933 }
5934
5935 static void g4x_write_eld(struct drm_connector *connector,
5936 struct drm_crtc *crtc)
5937 {
5938 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5939 uint8_t *eld = connector->eld;
5940 uint32_t eldv;
5941 uint32_t len;
5942 uint32_t i;
5943
5944 i = I915_READ(G4X_AUD_VID_DID);
5945
5946 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5947 eldv = G4X_ELDV_DEVCL_DEVBLC;
5948 else
5949 eldv = G4X_ELDV_DEVCTG;
5950
5951 if (intel_eld_uptodate(connector,
5952 G4X_AUD_CNTL_ST, eldv,
5953 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5954 G4X_HDMIW_HDMIEDID))
5955 return;
5956
5957 i = I915_READ(G4X_AUD_CNTL_ST);
5958 i &= ~(eldv | G4X_ELD_ADDR);
5959 len = (i >> 9) & 0x1f; /* ELD buffer size */
5960 I915_WRITE(G4X_AUD_CNTL_ST, i);
5961
5962 if (!eld[0])
5963 return;
5964
5965 len = min_t(uint8_t, eld[2], len);
5966 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5967 for (i = 0; i < len; i++)
5968 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5969
5970 i = I915_READ(G4X_AUD_CNTL_ST);
5971 i |= eldv;
5972 I915_WRITE(G4X_AUD_CNTL_ST, i);
5973 }
5974
5975 static void haswell_write_eld(struct drm_connector *connector,
5976 struct drm_crtc *crtc)
5977 {
5978 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5979 uint8_t *eld = connector->eld;
5980 struct drm_device *dev = crtc->dev;
5981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5982 uint32_t eldv;
5983 uint32_t i;
5984 int len;
5985 int pipe = to_intel_crtc(crtc)->pipe;
5986 int tmp;
5987
5988 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5989 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5990 int aud_config = HSW_AUD_CFG(pipe);
5991 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5992
5993
5994 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5995
5996 /* Audio output enable */
5997 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5998 tmp = I915_READ(aud_cntrl_st2);
5999 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6000 I915_WRITE(aud_cntrl_st2, tmp);
6001
6002 /* Wait for 1 vertical blank */
6003 intel_wait_for_vblank(dev, pipe);
6004
6005 /* Set ELD valid state */
6006 tmp = I915_READ(aud_cntrl_st2);
6007 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6008 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6009 I915_WRITE(aud_cntrl_st2, tmp);
6010 tmp = I915_READ(aud_cntrl_st2);
6011 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6012
6013 /* Enable HDMI mode */
6014 tmp = I915_READ(aud_config);
6015 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6016 /* clear N_programing_enable and N_value_index */
6017 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6018 I915_WRITE(aud_config, tmp);
6019
6020 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6021
6022 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6023 intel_crtc->eld_vld = true;
6024
6025 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6026 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6027 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6028 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6029 } else
6030 I915_WRITE(aud_config, 0);
6031
6032 if (intel_eld_uptodate(connector,
6033 aud_cntrl_st2, eldv,
6034 aud_cntl_st, IBX_ELD_ADDRESS,
6035 hdmiw_hdmiedid))
6036 return;
6037
6038 i = I915_READ(aud_cntrl_st2);
6039 i &= ~eldv;
6040 I915_WRITE(aud_cntrl_st2, i);
6041
6042 if (!eld[0])
6043 return;
6044
6045 i = I915_READ(aud_cntl_st);
6046 i &= ~IBX_ELD_ADDRESS;
6047 I915_WRITE(aud_cntl_st, i);
6048 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6049 DRM_DEBUG_DRIVER("port num:%d\n", i);
6050
6051 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6052 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6053 for (i = 0; i < len; i++)
6054 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6055
6056 i = I915_READ(aud_cntrl_st2);
6057 i |= eldv;
6058 I915_WRITE(aud_cntrl_st2, i);
6059
6060 }
6061
6062 static void ironlake_write_eld(struct drm_connector *connector,
6063 struct drm_crtc *crtc)
6064 {
6065 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6066 uint8_t *eld = connector->eld;
6067 uint32_t eldv;
6068 uint32_t i;
6069 int len;
6070 int hdmiw_hdmiedid;
6071 int aud_config;
6072 int aud_cntl_st;
6073 int aud_cntrl_st2;
6074 int pipe = to_intel_crtc(crtc)->pipe;
6075
6076 if (HAS_PCH_IBX(connector->dev)) {
6077 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6078 aud_config = IBX_AUD_CFG(pipe);
6079 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6080 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6081 } else {
6082 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6083 aud_config = CPT_AUD_CFG(pipe);
6084 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6085 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6086 }
6087
6088 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6089
6090 i = I915_READ(aud_cntl_st);
6091 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6092 if (!i) {
6093 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6094 /* operate blindly on all ports */
6095 eldv = IBX_ELD_VALIDB;
6096 eldv |= IBX_ELD_VALIDB << 4;
6097 eldv |= IBX_ELD_VALIDB << 8;
6098 } else {
6099 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6100 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6101 }
6102
6103 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6104 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6105 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6106 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6107 } else
6108 I915_WRITE(aud_config, 0);
6109
6110 if (intel_eld_uptodate(connector,
6111 aud_cntrl_st2, eldv,
6112 aud_cntl_st, IBX_ELD_ADDRESS,
6113 hdmiw_hdmiedid))
6114 return;
6115
6116 i = I915_READ(aud_cntrl_st2);
6117 i &= ~eldv;
6118 I915_WRITE(aud_cntrl_st2, i);
6119
6120 if (!eld[0])
6121 return;
6122
6123 i = I915_READ(aud_cntl_st);
6124 i &= ~IBX_ELD_ADDRESS;
6125 I915_WRITE(aud_cntl_st, i);
6126
6127 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6128 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6129 for (i = 0; i < len; i++)
6130 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6131
6132 i = I915_READ(aud_cntrl_st2);
6133 i |= eldv;
6134 I915_WRITE(aud_cntrl_st2, i);
6135 }
6136
6137 void intel_write_eld(struct drm_encoder *encoder,
6138 struct drm_display_mode *mode)
6139 {
6140 struct drm_crtc *crtc = encoder->crtc;
6141 struct drm_connector *connector;
6142 struct drm_device *dev = encoder->dev;
6143 struct drm_i915_private *dev_priv = dev->dev_private;
6144
6145 connector = drm_select_eld(encoder, mode);
6146 if (!connector)
6147 return;
6148
6149 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6150 connector->base.id,
6151 drm_get_connector_name(connector),
6152 connector->encoder->base.id,
6153 drm_get_encoder_name(connector->encoder));
6154
6155 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6156
6157 if (dev_priv->display.write_eld)
6158 dev_priv->display.write_eld(connector, crtc);
6159 }
6160
6161 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6162 void intel_crtc_load_lut(struct drm_crtc *crtc)
6163 {
6164 struct drm_device *dev = crtc->dev;
6165 struct drm_i915_private *dev_priv = dev->dev_private;
6166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6167 int palreg = PALETTE(intel_crtc->pipe);
6168 int i;
6169
6170 /* The clocks have to be on to load the palette. */
6171 if (!crtc->enabled || !intel_crtc->active)
6172 return;
6173
6174 /* use legacy palette for Ironlake */
6175 if (HAS_PCH_SPLIT(dev))
6176 palreg = LGC_PALETTE(intel_crtc->pipe);
6177
6178 for (i = 0; i < 256; i++) {
6179 I915_WRITE(palreg + 4 * i,
6180 (intel_crtc->lut_r[i] << 16) |
6181 (intel_crtc->lut_g[i] << 8) |
6182 intel_crtc->lut_b[i]);
6183 }
6184 }
6185
6186 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6187 {
6188 struct drm_device *dev = crtc->dev;
6189 struct drm_i915_private *dev_priv = dev->dev_private;
6190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6191 bool visible = base != 0;
6192 u32 cntl;
6193
6194 if (intel_crtc->cursor_visible == visible)
6195 return;
6196
6197 cntl = I915_READ(_CURACNTR);
6198 if (visible) {
6199 /* On these chipsets we can only modify the base whilst
6200 * the cursor is disabled.
6201 */
6202 I915_WRITE(_CURABASE, base);
6203
6204 cntl &= ~(CURSOR_FORMAT_MASK);
6205 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6206 cntl |= CURSOR_ENABLE |
6207 CURSOR_GAMMA_ENABLE |
6208 CURSOR_FORMAT_ARGB;
6209 } else
6210 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6211 I915_WRITE(_CURACNTR, cntl);
6212
6213 intel_crtc->cursor_visible = visible;
6214 }
6215
6216 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6217 {
6218 struct drm_device *dev = crtc->dev;
6219 struct drm_i915_private *dev_priv = dev->dev_private;
6220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6221 int pipe = intel_crtc->pipe;
6222 bool visible = base != 0;
6223
6224 if (intel_crtc->cursor_visible != visible) {
6225 uint32_t cntl = I915_READ(CURCNTR(pipe));
6226 if (base) {
6227 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6228 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6229 cntl |= pipe << 28; /* Connect to correct pipe */
6230 } else {
6231 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6232 cntl |= CURSOR_MODE_DISABLE;
6233 }
6234 I915_WRITE(CURCNTR(pipe), cntl);
6235
6236 intel_crtc->cursor_visible = visible;
6237 }
6238 /* and commit changes on next vblank */
6239 I915_WRITE(CURBASE(pipe), base);
6240 }
6241
6242 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6243 {
6244 struct drm_device *dev = crtc->dev;
6245 struct drm_i915_private *dev_priv = dev->dev_private;
6246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6247 int pipe = intel_crtc->pipe;
6248 bool visible = base != 0;
6249
6250 if (intel_crtc->cursor_visible != visible) {
6251 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6252 if (base) {
6253 cntl &= ~CURSOR_MODE;
6254 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6255 } else {
6256 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6257 cntl |= CURSOR_MODE_DISABLE;
6258 }
6259 if (IS_HASWELL(dev))
6260 cntl |= CURSOR_PIPE_CSC_ENABLE;
6261 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6262
6263 intel_crtc->cursor_visible = visible;
6264 }
6265 /* and commit changes on next vblank */
6266 I915_WRITE(CURBASE_IVB(pipe), base);
6267 }
6268
6269 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6270 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6271 bool on)
6272 {
6273 struct drm_device *dev = crtc->dev;
6274 struct drm_i915_private *dev_priv = dev->dev_private;
6275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6276 int pipe = intel_crtc->pipe;
6277 int x = intel_crtc->cursor_x;
6278 int y = intel_crtc->cursor_y;
6279 u32 base, pos;
6280 bool visible;
6281
6282 pos = 0;
6283
6284 if (on && crtc->enabled && crtc->fb) {
6285 base = intel_crtc->cursor_addr;
6286 if (x > (int) crtc->fb->width)
6287 base = 0;
6288
6289 if (y > (int) crtc->fb->height)
6290 base = 0;
6291 } else
6292 base = 0;
6293
6294 if (x < 0) {
6295 if (x + intel_crtc->cursor_width < 0)
6296 base = 0;
6297
6298 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6299 x = -x;
6300 }
6301 pos |= x << CURSOR_X_SHIFT;
6302
6303 if (y < 0) {
6304 if (y + intel_crtc->cursor_height < 0)
6305 base = 0;
6306
6307 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6308 y = -y;
6309 }
6310 pos |= y << CURSOR_Y_SHIFT;
6311
6312 visible = base != 0;
6313 if (!visible && !intel_crtc->cursor_visible)
6314 return;
6315
6316 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6317 I915_WRITE(CURPOS_IVB(pipe), pos);
6318 ivb_update_cursor(crtc, base);
6319 } else {
6320 I915_WRITE(CURPOS(pipe), pos);
6321 if (IS_845G(dev) || IS_I865G(dev))
6322 i845_update_cursor(crtc, base);
6323 else
6324 i9xx_update_cursor(crtc, base);
6325 }
6326 }
6327
6328 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6329 struct drm_file *file,
6330 uint32_t handle,
6331 uint32_t width, uint32_t height)
6332 {
6333 struct drm_device *dev = crtc->dev;
6334 struct drm_i915_private *dev_priv = dev->dev_private;
6335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6336 struct drm_i915_gem_object *obj;
6337 uint32_t addr;
6338 int ret;
6339
6340 /* if we want to turn off the cursor ignore width and height */
6341 if (!handle) {
6342 DRM_DEBUG_KMS("cursor off\n");
6343 addr = 0;
6344 obj = NULL;
6345 mutex_lock(&dev->struct_mutex);
6346 goto finish;
6347 }
6348
6349 /* Currently we only support 64x64 cursors */
6350 if (width != 64 || height != 64) {
6351 DRM_ERROR("we currently only support 64x64 cursors\n");
6352 return -EINVAL;
6353 }
6354
6355 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6356 if (&obj->base == NULL)
6357 return -ENOENT;
6358
6359 if (obj->base.size < width * height * 4) {
6360 DRM_ERROR("buffer is to small\n");
6361 ret = -ENOMEM;
6362 goto fail;
6363 }
6364
6365 /* we only need to pin inside GTT if cursor is non-phy */
6366 mutex_lock(&dev->struct_mutex);
6367 if (!dev_priv->info->cursor_needs_physical) {
6368 unsigned alignment;
6369
6370 if (obj->tiling_mode) {
6371 DRM_ERROR("cursor cannot be tiled\n");
6372 ret = -EINVAL;
6373 goto fail_locked;
6374 }
6375
6376 /* Note that the w/a also requires 2 PTE of padding following
6377 * the bo. We currently fill all unused PTE with the shadow
6378 * page and so we should always have valid PTE following the
6379 * cursor preventing the VT-d warning.
6380 */
6381 alignment = 0;
6382 if (need_vtd_wa(dev))
6383 alignment = 64*1024;
6384
6385 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6386 if (ret) {
6387 DRM_ERROR("failed to move cursor bo into the GTT\n");
6388 goto fail_locked;
6389 }
6390
6391 ret = i915_gem_object_put_fence(obj);
6392 if (ret) {
6393 DRM_ERROR("failed to release fence for cursor");
6394 goto fail_unpin;
6395 }
6396
6397 addr = obj->gtt_offset;
6398 } else {
6399 int align = IS_I830(dev) ? 16 * 1024 : 256;
6400 ret = i915_gem_attach_phys_object(dev, obj,
6401 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6402 align);
6403 if (ret) {
6404 DRM_ERROR("failed to attach phys object\n");
6405 goto fail_locked;
6406 }
6407 addr = obj->phys_obj->handle->busaddr;
6408 }
6409
6410 if (IS_GEN2(dev))
6411 I915_WRITE(CURSIZE, (height << 12) | width);
6412
6413 finish:
6414 if (intel_crtc->cursor_bo) {
6415 if (dev_priv->info->cursor_needs_physical) {
6416 if (intel_crtc->cursor_bo != obj)
6417 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6418 } else
6419 i915_gem_object_unpin(intel_crtc->cursor_bo);
6420 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6421 }
6422
6423 mutex_unlock(&dev->struct_mutex);
6424
6425 intel_crtc->cursor_addr = addr;
6426 intel_crtc->cursor_bo = obj;
6427 intel_crtc->cursor_width = width;
6428 intel_crtc->cursor_height = height;
6429
6430 intel_crtc_update_cursor(crtc, true);
6431
6432 return 0;
6433 fail_unpin:
6434 i915_gem_object_unpin(obj);
6435 fail_locked:
6436 mutex_unlock(&dev->struct_mutex);
6437 fail:
6438 drm_gem_object_unreference_unlocked(&obj->base);
6439 return ret;
6440 }
6441
6442 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6443 {
6444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6445
6446 intel_crtc->cursor_x = x;
6447 intel_crtc->cursor_y = y;
6448
6449 intel_crtc_update_cursor(crtc, true);
6450
6451 return 0;
6452 }
6453
6454 /** Sets the color ramps on behalf of RandR */
6455 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6456 u16 blue, int regno)
6457 {
6458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6459
6460 intel_crtc->lut_r[regno] = red >> 8;
6461 intel_crtc->lut_g[regno] = green >> 8;
6462 intel_crtc->lut_b[regno] = blue >> 8;
6463 }
6464
6465 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6466 u16 *blue, int regno)
6467 {
6468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6469
6470 *red = intel_crtc->lut_r[regno] << 8;
6471 *green = intel_crtc->lut_g[regno] << 8;
6472 *blue = intel_crtc->lut_b[regno] << 8;
6473 }
6474
6475 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6476 u16 *blue, uint32_t start, uint32_t size)
6477 {
6478 int end = (start + size > 256) ? 256 : start + size, i;
6479 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6480
6481 for (i = start; i < end; i++) {
6482 intel_crtc->lut_r[i] = red[i] >> 8;
6483 intel_crtc->lut_g[i] = green[i] >> 8;
6484 intel_crtc->lut_b[i] = blue[i] >> 8;
6485 }
6486
6487 intel_crtc_load_lut(crtc);
6488 }
6489
6490 /* VESA 640x480x72Hz mode to set on the pipe */
6491 static struct drm_display_mode load_detect_mode = {
6492 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6493 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6494 };
6495
6496 static struct drm_framebuffer *
6497 intel_framebuffer_create(struct drm_device *dev,
6498 struct drm_mode_fb_cmd2 *mode_cmd,
6499 struct drm_i915_gem_object *obj)
6500 {
6501 struct intel_framebuffer *intel_fb;
6502 int ret;
6503
6504 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6505 if (!intel_fb) {
6506 drm_gem_object_unreference_unlocked(&obj->base);
6507 return ERR_PTR(-ENOMEM);
6508 }
6509
6510 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6511 if (ret) {
6512 drm_gem_object_unreference_unlocked(&obj->base);
6513 kfree(intel_fb);
6514 return ERR_PTR(ret);
6515 }
6516
6517 return &intel_fb->base;
6518 }
6519
6520 static u32
6521 intel_framebuffer_pitch_for_width(int width, int bpp)
6522 {
6523 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6524 return ALIGN(pitch, 64);
6525 }
6526
6527 static u32
6528 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6529 {
6530 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6531 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6532 }
6533
6534 static struct drm_framebuffer *
6535 intel_framebuffer_create_for_mode(struct drm_device *dev,
6536 struct drm_display_mode *mode,
6537 int depth, int bpp)
6538 {
6539 struct drm_i915_gem_object *obj;
6540 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6541
6542 obj = i915_gem_alloc_object(dev,
6543 intel_framebuffer_size_for_mode(mode, bpp));
6544 if (obj == NULL)
6545 return ERR_PTR(-ENOMEM);
6546
6547 mode_cmd.width = mode->hdisplay;
6548 mode_cmd.height = mode->vdisplay;
6549 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6550 bpp);
6551 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6552
6553 return intel_framebuffer_create(dev, &mode_cmd, obj);
6554 }
6555
6556 static struct drm_framebuffer *
6557 mode_fits_in_fbdev(struct drm_device *dev,
6558 struct drm_display_mode *mode)
6559 {
6560 struct drm_i915_private *dev_priv = dev->dev_private;
6561 struct drm_i915_gem_object *obj;
6562 struct drm_framebuffer *fb;
6563
6564 if (dev_priv->fbdev == NULL)
6565 return NULL;
6566
6567 obj = dev_priv->fbdev->ifb.obj;
6568 if (obj == NULL)
6569 return NULL;
6570
6571 fb = &dev_priv->fbdev->ifb.base;
6572 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6573 fb->bits_per_pixel))
6574 return NULL;
6575
6576 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6577 return NULL;
6578
6579 return fb;
6580 }
6581
6582 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6583 struct drm_display_mode *mode,
6584 struct intel_load_detect_pipe *old)
6585 {
6586 struct intel_crtc *intel_crtc;
6587 struct intel_encoder *intel_encoder =
6588 intel_attached_encoder(connector);
6589 struct drm_crtc *possible_crtc;
6590 struct drm_encoder *encoder = &intel_encoder->base;
6591 struct drm_crtc *crtc = NULL;
6592 struct drm_device *dev = encoder->dev;
6593 struct drm_framebuffer *fb;
6594 int i = -1;
6595
6596 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6597 connector->base.id, drm_get_connector_name(connector),
6598 encoder->base.id, drm_get_encoder_name(encoder));
6599
6600 /*
6601 * Algorithm gets a little messy:
6602 *
6603 * - if the connector already has an assigned crtc, use it (but make
6604 * sure it's on first)
6605 *
6606 * - try to find the first unused crtc that can drive this connector,
6607 * and use that if we find one
6608 */
6609
6610 /* See if we already have a CRTC for this connector */
6611 if (encoder->crtc) {
6612 crtc = encoder->crtc;
6613
6614 mutex_lock(&crtc->mutex);
6615
6616 old->dpms_mode = connector->dpms;
6617 old->load_detect_temp = false;
6618
6619 /* Make sure the crtc and connector are running */
6620 if (connector->dpms != DRM_MODE_DPMS_ON)
6621 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6622
6623 return true;
6624 }
6625
6626 /* Find an unused one (if possible) */
6627 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6628 i++;
6629 if (!(encoder->possible_crtcs & (1 << i)))
6630 continue;
6631 if (!possible_crtc->enabled) {
6632 crtc = possible_crtc;
6633 break;
6634 }
6635 }
6636
6637 /*
6638 * If we didn't find an unused CRTC, don't use any.
6639 */
6640 if (!crtc) {
6641 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6642 return false;
6643 }
6644
6645 mutex_lock(&crtc->mutex);
6646 intel_encoder->new_crtc = to_intel_crtc(crtc);
6647 to_intel_connector(connector)->new_encoder = intel_encoder;
6648
6649 intel_crtc = to_intel_crtc(crtc);
6650 old->dpms_mode = connector->dpms;
6651 old->load_detect_temp = true;
6652 old->release_fb = NULL;
6653
6654 if (!mode)
6655 mode = &load_detect_mode;
6656
6657 /* We need a framebuffer large enough to accommodate all accesses
6658 * that the plane may generate whilst we perform load detection.
6659 * We can not rely on the fbcon either being present (we get called
6660 * during its initialisation to detect all boot displays, or it may
6661 * not even exist) or that it is large enough to satisfy the
6662 * requested mode.
6663 */
6664 fb = mode_fits_in_fbdev(dev, mode);
6665 if (fb == NULL) {
6666 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6667 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6668 old->release_fb = fb;
6669 } else
6670 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6671 if (IS_ERR(fb)) {
6672 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6673 mutex_unlock(&crtc->mutex);
6674 return false;
6675 }
6676
6677 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6678 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6679 if (old->release_fb)
6680 old->release_fb->funcs->destroy(old->release_fb);
6681 mutex_unlock(&crtc->mutex);
6682 return false;
6683 }
6684
6685 /* let the connector get through one full cycle before testing */
6686 intel_wait_for_vblank(dev, intel_crtc->pipe);
6687 return true;
6688 }
6689
6690 void intel_release_load_detect_pipe(struct drm_connector *connector,
6691 struct intel_load_detect_pipe *old)
6692 {
6693 struct intel_encoder *intel_encoder =
6694 intel_attached_encoder(connector);
6695 struct drm_encoder *encoder = &intel_encoder->base;
6696 struct drm_crtc *crtc = encoder->crtc;
6697
6698 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6699 connector->base.id, drm_get_connector_name(connector),
6700 encoder->base.id, drm_get_encoder_name(encoder));
6701
6702 if (old->load_detect_temp) {
6703 to_intel_connector(connector)->new_encoder = NULL;
6704 intel_encoder->new_crtc = NULL;
6705 intel_set_mode(crtc, NULL, 0, 0, NULL);
6706
6707 if (old->release_fb) {
6708 drm_framebuffer_unregister_private(old->release_fb);
6709 drm_framebuffer_unreference(old->release_fb);
6710 }
6711
6712 mutex_unlock(&crtc->mutex);
6713 return;
6714 }
6715
6716 /* Switch crtc and encoder back off if necessary */
6717 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6718 connector->funcs->dpms(connector, old->dpms_mode);
6719
6720 mutex_unlock(&crtc->mutex);
6721 }
6722
6723 /* Returns the clock of the currently programmed mode of the given pipe. */
6724 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6725 {
6726 struct drm_i915_private *dev_priv = dev->dev_private;
6727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6728 int pipe = intel_crtc->pipe;
6729 u32 dpll = I915_READ(DPLL(pipe));
6730 u32 fp;
6731 intel_clock_t clock;
6732
6733 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6734 fp = I915_READ(FP0(pipe));
6735 else
6736 fp = I915_READ(FP1(pipe));
6737
6738 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6739 if (IS_PINEVIEW(dev)) {
6740 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6741 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6742 } else {
6743 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6744 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6745 }
6746
6747 if (!IS_GEN2(dev)) {
6748 if (IS_PINEVIEW(dev))
6749 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6750 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6751 else
6752 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6753 DPLL_FPA01_P1_POST_DIV_SHIFT);
6754
6755 switch (dpll & DPLL_MODE_MASK) {
6756 case DPLLB_MODE_DAC_SERIAL:
6757 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6758 5 : 10;
6759 break;
6760 case DPLLB_MODE_LVDS:
6761 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6762 7 : 14;
6763 break;
6764 default:
6765 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6766 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6767 return 0;
6768 }
6769
6770 /* XXX: Handle the 100Mhz refclk */
6771 intel_clock(dev, 96000, &clock);
6772 } else {
6773 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6774
6775 if (is_lvds) {
6776 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6777 DPLL_FPA01_P1_POST_DIV_SHIFT);
6778 clock.p2 = 14;
6779
6780 if ((dpll & PLL_REF_INPUT_MASK) ==
6781 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6782 /* XXX: might not be 66MHz */
6783 intel_clock(dev, 66000, &clock);
6784 } else
6785 intel_clock(dev, 48000, &clock);
6786 } else {
6787 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6788 clock.p1 = 2;
6789 else {
6790 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6791 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6792 }
6793 if (dpll & PLL_P2_DIVIDE_BY_4)
6794 clock.p2 = 4;
6795 else
6796 clock.p2 = 2;
6797
6798 intel_clock(dev, 48000, &clock);
6799 }
6800 }
6801
6802 /* XXX: It would be nice to validate the clocks, but we can't reuse
6803 * i830PllIsValid() because it relies on the xf86_config connector
6804 * configuration being accurate, which it isn't necessarily.
6805 */
6806
6807 return clock.dot;
6808 }
6809
6810 /** Returns the currently programmed mode of the given pipe. */
6811 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6812 struct drm_crtc *crtc)
6813 {
6814 struct drm_i915_private *dev_priv = dev->dev_private;
6815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6816 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6817 struct drm_display_mode *mode;
6818 int htot = I915_READ(HTOTAL(cpu_transcoder));
6819 int hsync = I915_READ(HSYNC(cpu_transcoder));
6820 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6821 int vsync = I915_READ(VSYNC(cpu_transcoder));
6822
6823 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6824 if (!mode)
6825 return NULL;
6826
6827 mode->clock = intel_crtc_clock_get(dev, crtc);
6828 mode->hdisplay = (htot & 0xffff) + 1;
6829 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6830 mode->hsync_start = (hsync & 0xffff) + 1;
6831 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6832 mode->vdisplay = (vtot & 0xffff) + 1;
6833 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6834 mode->vsync_start = (vsync & 0xffff) + 1;
6835 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6836
6837 drm_mode_set_name(mode);
6838
6839 return mode;
6840 }
6841
6842 static void intel_increase_pllclock(struct drm_crtc *crtc)
6843 {
6844 struct drm_device *dev = crtc->dev;
6845 drm_i915_private_t *dev_priv = dev->dev_private;
6846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6847 int pipe = intel_crtc->pipe;
6848 int dpll_reg = DPLL(pipe);
6849 int dpll;
6850
6851 if (HAS_PCH_SPLIT(dev))
6852 return;
6853
6854 if (!dev_priv->lvds_downclock_avail)
6855 return;
6856
6857 dpll = I915_READ(dpll_reg);
6858 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6859 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6860
6861 assert_panel_unlocked(dev_priv, pipe);
6862
6863 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6864 I915_WRITE(dpll_reg, dpll);
6865 intel_wait_for_vblank(dev, pipe);
6866
6867 dpll = I915_READ(dpll_reg);
6868 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6869 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6870 }
6871 }
6872
6873 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6874 {
6875 struct drm_device *dev = crtc->dev;
6876 drm_i915_private_t *dev_priv = dev->dev_private;
6877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6878
6879 if (HAS_PCH_SPLIT(dev))
6880 return;
6881
6882 if (!dev_priv->lvds_downclock_avail)
6883 return;
6884
6885 /*
6886 * Since this is called by a timer, we should never get here in
6887 * the manual case.
6888 */
6889 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6890 int pipe = intel_crtc->pipe;
6891 int dpll_reg = DPLL(pipe);
6892 int dpll;
6893
6894 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6895
6896 assert_panel_unlocked(dev_priv, pipe);
6897
6898 dpll = I915_READ(dpll_reg);
6899 dpll |= DISPLAY_RATE_SELECT_FPA1;
6900 I915_WRITE(dpll_reg, dpll);
6901 intel_wait_for_vblank(dev, pipe);
6902 dpll = I915_READ(dpll_reg);
6903 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6904 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6905 }
6906
6907 }
6908
6909 void intel_mark_busy(struct drm_device *dev)
6910 {
6911 i915_update_gfx_val(dev->dev_private);
6912 }
6913
6914 void intel_mark_idle(struct drm_device *dev)
6915 {
6916 struct drm_crtc *crtc;
6917
6918 if (!i915_powersave)
6919 return;
6920
6921 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6922 if (!crtc->fb)
6923 continue;
6924
6925 intel_decrease_pllclock(crtc);
6926 }
6927 }
6928
6929 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6930 {
6931 struct drm_device *dev = obj->base.dev;
6932 struct drm_crtc *crtc;
6933
6934 if (!i915_powersave)
6935 return;
6936
6937 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6938 if (!crtc->fb)
6939 continue;
6940
6941 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6942 intel_increase_pllclock(crtc);
6943 }
6944 }
6945
6946 static void intel_crtc_destroy(struct drm_crtc *crtc)
6947 {
6948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6949 struct drm_device *dev = crtc->dev;
6950 struct intel_unpin_work *work;
6951 unsigned long flags;
6952
6953 spin_lock_irqsave(&dev->event_lock, flags);
6954 work = intel_crtc->unpin_work;
6955 intel_crtc->unpin_work = NULL;
6956 spin_unlock_irqrestore(&dev->event_lock, flags);
6957
6958 if (work) {
6959 cancel_work_sync(&work->work);
6960 kfree(work);
6961 }
6962
6963 drm_crtc_cleanup(crtc);
6964
6965 kfree(intel_crtc);
6966 }
6967
6968 static void intel_unpin_work_fn(struct work_struct *__work)
6969 {
6970 struct intel_unpin_work *work =
6971 container_of(__work, struct intel_unpin_work, work);
6972 struct drm_device *dev = work->crtc->dev;
6973
6974 mutex_lock(&dev->struct_mutex);
6975 intel_unpin_fb_obj(work->old_fb_obj);
6976 drm_gem_object_unreference(&work->pending_flip_obj->base);
6977 drm_gem_object_unreference(&work->old_fb_obj->base);
6978
6979 intel_update_fbc(dev);
6980 mutex_unlock(&dev->struct_mutex);
6981
6982 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6983 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6984
6985 kfree(work);
6986 }
6987
6988 static void do_intel_finish_page_flip(struct drm_device *dev,
6989 struct drm_crtc *crtc)
6990 {
6991 drm_i915_private_t *dev_priv = dev->dev_private;
6992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6993 struct intel_unpin_work *work;
6994 unsigned long flags;
6995
6996 /* Ignore early vblank irqs */
6997 if (intel_crtc == NULL)
6998 return;
6999
7000 spin_lock_irqsave(&dev->event_lock, flags);
7001 work = intel_crtc->unpin_work;
7002
7003 /* Ensure we don't miss a work->pending update ... */
7004 smp_rmb();
7005
7006 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7007 spin_unlock_irqrestore(&dev->event_lock, flags);
7008 return;
7009 }
7010
7011 /* and that the unpin work is consistent wrt ->pending. */
7012 smp_rmb();
7013
7014 intel_crtc->unpin_work = NULL;
7015
7016 if (work->event)
7017 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7018
7019 drm_vblank_put(dev, intel_crtc->pipe);
7020
7021 spin_unlock_irqrestore(&dev->event_lock, flags);
7022
7023 wake_up_all(&dev_priv->pending_flip_queue);
7024
7025 queue_work(dev_priv->wq, &work->work);
7026
7027 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7028 }
7029
7030 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7031 {
7032 drm_i915_private_t *dev_priv = dev->dev_private;
7033 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7034
7035 do_intel_finish_page_flip(dev, crtc);
7036 }
7037
7038 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7039 {
7040 drm_i915_private_t *dev_priv = dev->dev_private;
7041 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7042
7043 do_intel_finish_page_flip(dev, crtc);
7044 }
7045
7046 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7047 {
7048 drm_i915_private_t *dev_priv = dev->dev_private;
7049 struct intel_crtc *intel_crtc =
7050 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7051 unsigned long flags;
7052
7053 /* NB: An MMIO update of the plane base pointer will also
7054 * generate a page-flip completion irq, i.e. every modeset
7055 * is also accompanied by a spurious intel_prepare_page_flip().
7056 */
7057 spin_lock_irqsave(&dev->event_lock, flags);
7058 if (intel_crtc->unpin_work)
7059 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7060 spin_unlock_irqrestore(&dev->event_lock, flags);
7061 }
7062
7063 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7064 {
7065 /* Ensure that the work item is consistent when activating it ... */
7066 smp_wmb();
7067 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7068 /* and that it is marked active as soon as the irq could fire. */
7069 smp_wmb();
7070 }
7071
7072 static int intel_gen2_queue_flip(struct drm_device *dev,
7073 struct drm_crtc *crtc,
7074 struct drm_framebuffer *fb,
7075 struct drm_i915_gem_object *obj)
7076 {
7077 struct drm_i915_private *dev_priv = dev->dev_private;
7078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7079 u32 flip_mask;
7080 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7081 int ret;
7082
7083 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7084 if (ret)
7085 goto err;
7086
7087 ret = intel_ring_begin(ring, 6);
7088 if (ret)
7089 goto err_unpin;
7090
7091 /* Can't queue multiple flips, so wait for the previous
7092 * one to finish before executing the next.
7093 */
7094 if (intel_crtc->plane)
7095 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7096 else
7097 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7098 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7099 intel_ring_emit(ring, MI_NOOP);
7100 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7101 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7102 intel_ring_emit(ring, fb->pitches[0]);
7103 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7104 intel_ring_emit(ring, 0); /* aux display base address, unused */
7105
7106 intel_mark_page_flip_active(intel_crtc);
7107 intel_ring_advance(ring);
7108 return 0;
7109
7110 err_unpin:
7111 intel_unpin_fb_obj(obj);
7112 err:
7113 return ret;
7114 }
7115
7116 static int intel_gen3_queue_flip(struct drm_device *dev,
7117 struct drm_crtc *crtc,
7118 struct drm_framebuffer *fb,
7119 struct drm_i915_gem_object *obj)
7120 {
7121 struct drm_i915_private *dev_priv = dev->dev_private;
7122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7123 u32 flip_mask;
7124 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7125 int ret;
7126
7127 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7128 if (ret)
7129 goto err;
7130
7131 ret = intel_ring_begin(ring, 6);
7132 if (ret)
7133 goto err_unpin;
7134
7135 if (intel_crtc->plane)
7136 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7137 else
7138 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7139 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7140 intel_ring_emit(ring, MI_NOOP);
7141 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7142 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7143 intel_ring_emit(ring, fb->pitches[0]);
7144 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7145 intel_ring_emit(ring, MI_NOOP);
7146
7147 intel_mark_page_flip_active(intel_crtc);
7148 intel_ring_advance(ring);
7149 return 0;
7150
7151 err_unpin:
7152 intel_unpin_fb_obj(obj);
7153 err:
7154 return ret;
7155 }
7156
7157 static int intel_gen4_queue_flip(struct drm_device *dev,
7158 struct drm_crtc *crtc,
7159 struct drm_framebuffer *fb,
7160 struct drm_i915_gem_object *obj)
7161 {
7162 struct drm_i915_private *dev_priv = dev->dev_private;
7163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7164 uint32_t pf, pipesrc;
7165 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7166 int ret;
7167
7168 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7169 if (ret)
7170 goto err;
7171
7172 ret = intel_ring_begin(ring, 4);
7173 if (ret)
7174 goto err_unpin;
7175
7176 /* i965+ uses the linear or tiled offsets from the
7177 * Display Registers (which do not change across a page-flip)
7178 * so we need only reprogram the base address.
7179 */
7180 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7181 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7182 intel_ring_emit(ring, fb->pitches[0]);
7183 intel_ring_emit(ring,
7184 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7185 obj->tiling_mode);
7186
7187 /* XXX Enabling the panel-fitter across page-flip is so far
7188 * untested on non-native modes, so ignore it for now.
7189 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7190 */
7191 pf = 0;
7192 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7193 intel_ring_emit(ring, pf | pipesrc);
7194
7195 intel_mark_page_flip_active(intel_crtc);
7196 intel_ring_advance(ring);
7197 return 0;
7198
7199 err_unpin:
7200 intel_unpin_fb_obj(obj);
7201 err:
7202 return ret;
7203 }
7204
7205 static int intel_gen6_queue_flip(struct drm_device *dev,
7206 struct drm_crtc *crtc,
7207 struct drm_framebuffer *fb,
7208 struct drm_i915_gem_object *obj)
7209 {
7210 struct drm_i915_private *dev_priv = dev->dev_private;
7211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7212 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7213 uint32_t pf, pipesrc;
7214 int ret;
7215
7216 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7217 if (ret)
7218 goto err;
7219
7220 ret = intel_ring_begin(ring, 4);
7221 if (ret)
7222 goto err_unpin;
7223
7224 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7225 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7226 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7227 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7228
7229 /* Contrary to the suggestions in the documentation,
7230 * "Enable Panel Fitter" does not seem to be required when page
7231 * flipping with a non-native mode, and worse causes a normal
7232 * modeset to fail.
7233 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7234 */
7235 pf = 0;
7236 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7237 intel_ring_emit(ring, pf | pipesrc);
7238
7239 intel_mark_page_flip_active(intel_crtc);
7240 intel_ring_advance(ring);
7241 return 0;
7242
7243 err_unpin:
7244 intel_unpin_fb_obj(obj);
7245 err:
7246 return ret;
7247 }
7248
7249 /*
7250 * On gen7 we currently use the blit ring because (in early silicon at least)
7251 * the render ring doesn't give us interrpts for page flip completion, which
7252 * means clients will hang after the first flip is queued. Fortunately the
7253 * blit ring generates interrupts properly, so use it instead.
7254 */
7255 static int intel_gen7_queue_flip(struct drm_device *dev,
7256 struct drm_crtc *crtc,
7257 struct drm_framebuffer *fb,
7258 struct drm_i915_gem_object *obj)
7259 {
7260 struct drm_i915_private *dev_priv = dev->dev_private;
7261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7262 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7263 uint32_t plane_bit = 0;
7264 int ret;
7265
7266 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7267 if (ret)
7268 goto err;
7269
7270 switch(intel_crtc->plane) {
7271 case PLANE_A:
7272 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7273 break;
7274 case PLANE_B:
7275 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7276 break;
7277 case PLANE_C:
7278 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7279 break;
7280 default:
7281 WARN_ONCE(1, "unknown plane in flip command\n");
7282 ret = -ENODEV;
7283 goto err_unpin;
7284 }
7285
7286 ret = intel_ring_begin(ring, 4);
7287 if (ret)
7288 goto err_unpin;
7289
7290 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7291 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7292 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7293 intel_ring_emit(ring, (MI_NOOP));
7294
7295 intel_mark_page_flip_active(intel_crtc);
7296 intel_ring_advance(ring);
7297 return 0;
7298
7299 err_unpin:
7300 intel_unpin_fb_obj(obj);
7301 err:
7302 return ret;
7303 }
7304
7305 static int intel_default_queue_flip(struct drm_device *dev,
7306 struct drm_crtc *crtc,
7307 struct drm_framebuffer *fb,
7308 struct drm_i915_gem_object *obj)
7309 {
7310 return -ENODEV;
7311 }
7312
7313 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7314 struct drm_framebuffer *fb,
7315 struct drm_pending_vblank_event *event)
7316 {
7317 struct drm_device *dev = crtc->dev;
7318 struct drm_i915_private *dev_priv = dev->dev_private;
7319 struct drm_framebuffer *old_fb = crtc->fb;
7320 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7322 struct intel_unpin_work *work;
7323 unsigned long flags;
7324 int ret;
7325
7326 /* Can't change pixel format via MI display flips. */
7327 if (fb->pixel_format != crtc->fb->pixel_format)
7328 return -EINVAL;
7329
7330 /*
7331 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7332 * Note that pitch changes could also affect these register.
7333 */
7334 if (INTEL_INFO(dev)->gen > 3 &&
7335 (fb->offsets[0] != crtc->fb->offsets[0] ||
7336 fb->pitches[0] != crtc->fb->pitches[0]))
7337 return -EINVAL;
7338
7339 work = kzalloc(sizeof *work, GFP_KERNEL);
7340 if (work == NULL)
7341 return -ENOMEM;
7342
7343 work->event = event;
7344 work->crtc = crtc;
7345 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7346 INIT_WORK(&work->work, intel_unpin_work_fn);
7347
7348 ret = drm_vblank_get(dev, intel_crtc->pipe);
7349 if (ret)
7350 goto free_work;
7351
7352 /* We borrow the event spin lock for protecting unpin_work */
7353 spin_lock_irqsave(&dev->event_lock, flags);
7354 if (intel_crtc->unpin_work) {
7355 spin_unlock_irqrestore(&dev->event_lock, flags);
7356 kfree(work);
7357 drm_vblank_put(dev, intel_crtc->pipe);
7358
7359 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7360 return -EBUSY;
7361 }
7362 intel_crtc->unpin_work = work;
7363 spin_unlock_irqrestore(&dev->event_lock, flags);
7364
7365 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7366 flush_workqueue(dev_priv->wq);
7367
7368 ret = i915_mutex_lock_interruptible(dev);
7369 if (ret)
7370 goto cleanup;
7371
7372 /* Reference the objects for the scheduled work. */
7373 drm_gem_object_reference(&work->old_fb_obj->base);
7374 drm_gem_object_reference(&obj->base);
7375
7376 crtc->fb = fb;
7377
7378 work->pending_flip_obj = obj;
7379
7380 work->enable_stall_check = true;
7381
7382 atomic_inc(&intel_crtc->unpin_work_count);
7383 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7384
7385 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7386 if (ret)
7387 goto cleanup_pending;
7388
7389 intel_disable_fbc(dev);
7390 intel_mark_fb_busy(obj);
7391 mutex_unlock(&dev->struct_mutex);
7392
7393 trace_i915_flip_request(intel_crtc->plane, obj);
7394
7395 return 0;
7396
7397 cleanup_pending:
7398 atomic_dec(&intel_crtc->unpin_work_count);
7399 crtc->fb = old_fb;
7400 drm_gem_object_unreference(&work->old_fb_obj->base);
7401 drm_gem_object_unreference(&obj->base);
7402 mutex_unlock(&dev->struct_mutex);
7403
7404 cleanup:
7405 spin_lock_irqsave(&dev->event_lock, flags);
7406 intel_crtc->unpin_work = NULL;
7407 spin_unlock_irqrestore(&dev->event_lock, flags);
7408
7409 drm_vblank_put(dev, intel_crtc->pipe);
7410 free_work:
7411 kfree(work);
7412
7413 return ret;
7414 }
7415
7416 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7417 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7418 .load_lut = intel_crtc_load_lut,
7419 };
7420
7421 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7422 {
7423 struct intel_encoder *other_encoder;
7424 struct drm_crtc *crtc = &encoder->new_crtc->base;
7425
7426 if (WARN_ON(!crtc))
7427 return false;
7428
7429 list_for_each_entry(other_encoder,
7430 &crtc->dev->mode_config.encoder_list,
7431 base.head) {
7432
7433 if (&other_encoder->new_crtc->base != crtc ||
7434 encoder == other_encoder)
7435 continue;
7436 else
7437 return true;
7438 }
7439
7440 return false;
7441 }
7442
7443 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7444 struct drm_crtc *crtc)
7445 {
7446 struct drm_device *dev;
7447 struct drm_crtc *tmp;
7448 int crtc_mask = 1;
7449
7450 WARN(!crtc, "checking null crtc?\n");
7451
7452 dev = crtc->dev;
7453
7454 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7455 if (tmp == crtc)
7456 break;
7457 crtc_mask <<= 1;
7458 }
7459
7460 if (encoder->possible_crtcs & crtc_mask)
7461 return true;
7462 return false;
7463 }
7464
7465 /**
7466 * intel_modeset_update_staged_output_state
7467 *
7468 * Updates the staged output configuration state, e.g. after we've read out the
7469 * current hw state.
7470 */
7471 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7472 {
7473 struct intel_encoder *encoder;
7474 struct intel_connector *connector;
7475
7476 list_for_each_entry(connector, &dev->mode_config.connector_list,
7477 base.head) {
7478 connector->new_encoder =
7479 to_intel_encoder(connector->base.encoder);
7480 }
7481
7482 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7483 base.head) {
7484 encoder->new_crtc =
7485 to_intel_crtc(encoder->base.crtc);
7486 }
7487 }
7488
7489 /**
7490 * intel_modeset_commit_output_state
7491 *
7492 * This function copies the stage display pipe configuration to the real one.
7493 */
7494 static void intel_modeset_commit_output_state(struct drm_device *dev)
7495 {
7496 struct intel_encoder *encoder;
7497 struct intel_connector *connector;
7498
7499 list_for_each_entry(connector, &dev->mode_config.connector_list,
7500 base.head) {
7501 connector->base.encoder = &connector->new_encoder->base;
7502 }
7503
7504 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7505 base.head) {
7506 encoder->base.crtc = &encoder->new_crtc->base;
7507 }
7508 }
7509
7510 static int
7511 pipe_config_set_bpp(struct drm_crtc *crtc,
7512 struct drm_framebuffer *fb,
7513 struct intel_crtc_config *pipe_config)
7514 {
7515 struct drm_device *dev = crtc->dev;
7516 struct drm_connector *connector;
7517 int bpp;
7518
7519 switch (fb->pixel_format) {
7520 case DRM_FORMAT_C8:
7521 bpp = 8*3; /* since we go through a colormap */
7522 break;
7523 case DRM_FORMAT_XRGB1555:
7524 case DRM_FORMAT_ARGB1555:
7525 /* checked in intel_framebuffer_init already */
7526 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7527 return -EINVAL;
7528 case DRM_FORMAT_RGB565:
7529 bpp = 6*3; /* min is 18bpp */
7530 break;
7531 case DRM_FORMAT_XBGR8888:
7532 case DRM_FORMAT_ABGR8888:
7533 /* checked in intel_framebuffer_init already */
7534 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7535 return -EINVAL;
7536 case DRM_FORMAT_XRGB8888:
7537 case DRM_FORMAT_ARGB8888:
7538 bpp = 8*3;
7539 break;
7540 case DRM_FORMAT_XRGB2101010:
7541 case DRM_FORMAT_ARGB2101010:
7542 case DRM_FORMAT_XBGR2101010:
7543 case DRM_FORMAT_ABGR2101010:
7544 /* checked in intel_framebuffer_init already */
7545 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7546 return -EINVAL;
7547 bpp = 10*3;
7548 break;
7549 /* TODO: gen4+ supports 16 bpc floating point, too. */
7550 default:
7551 DRM_DEBUG_KMS("unsupported depth\n");
7552 return -EINVAL;
7553 }
7554
7555 pipe_config->pipe_bpp = bpp;
7556
7557 /* Clamp display bpp to EDID value */
7558 list_for_each_entry(connector, &dev->mode_config.connector_list,
7559 head) {
7560 if (connector->encoder && connector->encoder->crtc != crtc)
7561 continue;
7562
7563 /* Don't use an invalid EDID bpc value */
7564 if (connector->display_info.bpc &&
7565 connector->display_info.bpc * 3 < bpp) {
7566 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7567 bpp, connector->display_info.bpc*3);
7568 pipe_config->pipe_bpp = connector->display_info.bpc*3;
7569 }
7570 }
7571
7572 return bpp;
7573 }
7574
7575 static struct intel_crtc_config *
7576 intel_modeset_pipe_config(struct drm_crtc *crtc,
7577 struct drm_framebuffer *fb,
7578 struct drm_display_mode *mode)
7579 {
7580 struct drm_device *dev = crtc->dev;
7581 struct drm_encoder_helper_funcs *encoder_funcs;
7582 struct intel_encoder *encoder;
7583 struct intel_crtc_config *pipe_config;
7584 int plane_bpp;
7585
7586 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7587 if (!pipe_config)
7588 return ERR_PTR(-ENOMEM);
7589
7590 drm_mode_copy(&pipe_config->adjusted_mode, mode);
7591 drm_mode_copy(&pipe_config->requested_mode, mode);
7592
7593 plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7594 if (plane_bpp < 0)
7595 goto fail;
7596
7597 /* Pass our mode to the connectors and the CRTC to give them a chance to
7598 * adjust it according to limitations or connector properties, and also
7599 * a chance to reject the mode entirely.
7600 */
7601 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7602 base.head) {
7603
7604 if (&encoder->new_crtc->base != crtc)
7605 continue;
7606
7607 if (encoder->compute_config) {
7608 if (!(encoder->compute_config(encoder, pipe_config))) {
7609 DRM_DEBUG_KMS("Encoder config failure\n");
7610 goto fail;
7611 }
7612
7613 continue;
7614 }
7615
7616 encoder_funcs = encoder->base.helper_private;
7617 if (!(encoder_funcs->mode_fixup(&encoder->base,
7618 &pipe_config->requested_mode,
7619 &pipe_config->adjusted_mode))) {
7620 DRM_DEBUG_KMS("Encoder fixup failed\n");
7621 goto fail;
7622 }
7623 }
7624
7625 if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7626 DRM_DEBUG_KMS("CRTC fixup failed\n");
7627 goto fail;
7628 }
7629 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7630
7631 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7632 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7633 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7634
7635 return pipe_config;
7636 fail:
7637 kfree(pipe_config);
7638 return ERR_PTR(-EINVAL);
7639 }
7640
7641 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7642 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7643 static void
7644 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7645 unsigned *prepare_pipes, unsigned *disable_pipes)
7646 {
7647 struct intel_crtc *intel_crtc;
7648 struct drm_device *dev = crtc->dev;
7649 struct intel_encoder *encoder;
7650 struct intel_connector *connector;
7651 struct drm_crtc *tmp_crtc;
7652
7653 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7654
7655 /* Check which crtcs have changed outputs connected to them, these need
7656 * to be part of the prepare_pipes mask. We don't (yet) support global
7657 * modeset across multiple crtcs, so modeset_pipes will only have one
7658 * bit set at most. */
7659 list_for_each_entry(connector, &dev->mode_config.connector_list,
7660 base.head) {
7661 if (connector->base.encoder == &connector->new_encoder->base)
7662 continue;
7663
7664 if (connector->base.encoder) {
7665 tmp_crtc = connector->base.encoder->crtc;
7666
7667 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7668 }
7669
7670 if (connector->new_encoder)
7671 *prepare_pipes |=
7672 1 << connector->new_encoder->new_crtc->pipe;
7673 }
7674
7675 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7676 base.head) {
7677 if (encoder->base.crtc == &encoder->new_crtc->base)
7678 continue;
7679
7680 if (encoder->base.crtc) {
7681 tmp_crtc = encoder->base.crtc;
7682
7683 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7684 }
7685
7686 if (encoder->new_crtc)
7687 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7688 }
7689
7690 /* Check for any pipes that will be fully disabled ... */
7691 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7692 base.head) {
7693 bool used = false;
7694
7695 /* Don't try to disable disabled crtcs. */
7696 if (!intel_crtc->base.enabled)
7697 continue;
7698
7699 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7700 base.head) {
7701 if (encoder->new_crtc == intel_crtc)
7702 used = true;
7703 }
7704
7705 if (!used)
7706 *disable_pipes |= 1 << intel_crtc->pipe;
7707 }
7708
7709
7710 /* set_mode is also used to update properties on life display pipes. */
7711 intel_crtc = to_intel_crtc(crtc);
7712 if (crtc->enabled)
7713 *prepare_pipes |= 1 << intel_crtc->pipe;
7714
7715 /* We only support modeset on one single crtc, hence we need to do that
7716 * only for the passed in crtc iff we change anything else than just
7717 * disable crtcs.
7718 *
7719 * This is actually not true, to be fully compatible with the old crtc
7720 * helper we automatically disable _any_ output (i.e. doesn't need to be
7721 * connected to the crtc we're modesetting on) if it's disconnected.
7722 * Which is a rather nutty api (since changed the output configuration
7723 * without userspace's explicit request can lead to confusion), but
7724 * alas. Hence we currently need to modeset on all pipes we prepare. */
7725 if (*prepare_pipes)
7726 *modeset_pipes = *prepare_pipes;
7727
7728 /* ... and mask these out. */
7729 *modeset_pipes &= ~(*disable_pipes);
7730 *prepare_pipes &= ~(*disable_pipes);
7731 }
7732
7733 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7734 {
7735 struct drm_encoder *encoder;
7736 struct drm_device *dev = crtc->dev;
7737
7738 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7739 if (encoder->crtc == crtc)
7740 return true;
7741
7742 return false;
7743 }
7744
7745 static void
7746 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7747 {
7748 struct intel_encoder *intel_encoder;
7749 struct intel_crtc *intel_crtc;
7750 struct drm_connector *connector;
7751
7752 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7753 base.head) {
7754 if (!intel_encoder->base.crtc)
7755 continue;
7756
7757 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7758
7759 if (prepare_pipes & (1 << intel_crtc->pipe))
7760 intel_encoder->connectors_active = false;
7761 }
7762
7763 intel_modeset_commit_output_state(dev);
7764
7765 /* Update computed state. */
7766 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7767 base.head) {
7768 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7769 }
7770
7771 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7772 if (!connector->encoder || !connector->encoder->crtc)
7773 continue;
7774
7775 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7776
7777 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7778 struct drm_property *dpms_property =
7779 dev->mode_config.dpms_property;
7780
7781 connector->dpms = DRM_MODE_DPMS_ON;
7782 drm_object_property_set_value(&connector->base,
7783 dpms_property,
7784 DRM_MODE_DPMS_ON);
7785
7786 intel_encoder = to_intel_encoder(connector->encoder);
7787 intel_encoder->connectors_active = true;
7788 }
7789 }
7790
7791 }
7792
7793 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7794 list_for_each_entry((intel_crtc), \
7795 &(dev)->mode_config.crtc_list, \
7796 base.head) \
7797 if (mask & (1 <<(intel_crtc)->pipe)) \
7798
7799 static bool
7800 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7801 struct intel_crtc_config *pipe_config)
7802 {
7803 if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
7804 DRM_ERROR("mismatch in has_pch_encoder "
7805 "(expected %i, found %i)\n",
7806 current_config->has_pch_encoder,
7807 pipe_config->has_pch_encoder);
7808 return false;
7809 }
7810
7811 return true;
7812 }
7813
7814 void
7815 intel_modeset_check_state(struct drm_device *dev)
7816 {
7817 drm_i915_private_t *dev_priv = dev->dev_private;
7818 struct intel_crtc *crtc;
7819 struct intel_encoder *encoder;
7820 struct intel_connector *connector;
7821 struct intel_crtc_config pipe_config;
7822
7823 list_for_each_entry(connector, &dev->mode_config.connector_list,
7824 base.head) {
7825 /* This also checks the encoder/connector hw state with the
7826 * ->get_hw_state callbacks. */
7827 intel_connector_check_state(connector);
7828
7829 WARN(&connector->new_encoder->base != connector->base.encoder,
7830 "connector's staged encoder doesn't match current encoder\n");
7831 }
7832
7833 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7834 base.head) {
7835 bool enabled = false;
7836 bool active = false;
7837 enum pipe pipe, tracked_pipe;
7838
7839 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7840 encoder->base.base.id,
7841 drm_get_encoder_name(&encoder->base));
7842
7843 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7844 "encoder's stage crtc doesn't match current crtc\n");
7845 WARN(encoder->connectors_active && !encoder->base.crtc,
7846 "encoder's active_connectors set, but no crtc\n");
7847
7848 list_for_each_entry(connector, &dev->mode_config.connector_list,
7849 base.head) {
7850 if (connector->base.encoder != &encoder->base)
7851 continue;
7852 enabled = true;
7853 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7854 active = true;
7855 }
7856 WARN(!!encoder->base.crtc != enabled,
7857 "encoder's enabled state mismatch "
7858 "(expected %i, found %i)\n",
7859 !!encoder->base.crtc, enabled);
7860 WARN(active && !encoder->base.crtc,
7861 "active encoder with no crtc\n");
7862
7863 WARN(encoder->connectors_active != active,
7864 "encoder's computed active state doesn't match tracked active state "
7865 "(expected %i, found %i)\n", active, encoder->connectors_active);
7866
7867 active = encoder->get_hw_state(encoder, &pipe);
7868 WARN(active != encoder->connectors_active,
7869 "encoder's hw state doesn't match sw tracking "
7870 "(expected %i, found %i)\n",
7871 encoder->connectors_active, active);
7872
7873 if (!encoder->base.crtc)
7874 continue;
7875
7876 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7877 WARN(active && pipe != tracked_pipe,
7878 "active encoder's pipe doesn't match"
7879 "(expected %i, found %i)\n",
7880 tracked_pipe, pipe);
7881
7882 }
7883
7884 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7885 base.head) {
7886 bool enabled = false;
7887 bool active = false;
7888
7889 DRM_DEBUG_KMS("[CRTC:%d]\n",
7890 crtc->base.base.id);
7891
7892 WARN(crtc->active && !crtc->base.enabled,
7893 "active crtc, but not enabled in sw tracking\n");
7894
7895 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7896 base.head) {
7897 if (encoder->base.crtc != &crtc->base)
7898 continue;
7899 enabled = true;
7900 if (encoder->connectors_active)
7901 active = true;
7902 }
7903 WARN(active != crtc->active,
7904 "crtc's computed active state doesn't match tracked active state "
7905 "(expected %i, found %i)\n", active, crtc->active);
7906 WARN(enabled != crtc->base.enabled,
7907 "crtc's computed enabled state doesn't match tracked enabled state "
7908 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7909
7910 memset(&pipe_config, 0, sizeof(pipe_config));
7911 active = dev_priv->display.get_pipe_config(crtc,
7912 &pipe_config);
7913 WARN(crtc->active != active,
7914 "crtc active state doesn't match with hw state "
7915 "(expected %i, found %i)\n", crtc->active, active);
7916
7917 WARN(active &&
7918 !intel_pipe_config_compare(&crtc->config, &pipe_config),
7919 "pipe state doesn't match!\n");
7920 }
7921 }
7922
7923 static int __intel_set_mode(struct drm_crtc *crtc,
7924 struct drm_display_mode *mode,
7925 int x, int y, struct drm_framebuffer *fb)
7926 {
7927 struct drm_device *dev = crtc->dev;
7928 drm_i915_private_t *dev_priv = dev->dev_private;
7929 struct drm_display_mode *saved_mode, *saved_hwmode;
7930 struct intel_crtc_config *pipe_config = NULL;
7931 struct intel_crtc *intel_crtc;
7932 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7933 int ret = 0;
7934
7935 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7936 if (!saved_mode)
7937 return -ENOMEM;
7938 saved_hwmode = saved_mode + 1;
7939
7940 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7941 &prepare_pipes, &disable_pipes);
7942
7943 *saved_hwmode = crtc->hwmode;
7944 *saved_mode = crtc->mode;
7945
7946 /* Hack: Because we don't (yet) support global modeset on multiple
7947 * crtcs, we don't keep track of the new mode for more than one crtc.
7948 * Hence simply check whether any bit is set in modeset_pipes in all the
7949 * pieces of code that are not yet converted to deal with mutliple crtcs
7950 * changing their mode at the same time. */
7951 if (modeset_pipes) {
7952 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7953 if (IS_ERR(pipe_config)) {
7954 ret = PTR_ERR(pipe_config);
7955 pipe_config = NULL;
7956
7957 goto out;
7958 }
7959 }
7960
7961 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7962 modeset_pipes, prepare_pipes, disable_pipes);
7963
7964 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7965 intel_crtc_disable(&intel_crtc->base);
7966
7967 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7968 if (intel_crtc->base.enabled)
7969 dev_priv->display.crtc_disable(&intel_crtc->base);
7970 }
7971
7972 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7973 * to set it here already despite that we pass it down the callchain.
7974 */
7975 if (modeset_pipes) {
7976 crtc->mode = *mode;
7977 /* mode_set/enable/disable functions rely on a correct pipe
7978 * config. */
7979 to_intel_crtc(crtc)->config = *pipe_config;
7980 }
7981
7982 /* Only after disabling all output pipelines that will be changed can we
7983 * update the the output configuration. */
7984 intel_modeset_update_state(dev, prepare_pipes);
7985
7986 if (dev_priv->display.modeset_global_resources)
7987 dev_priv->display.modeset_global_resources(dev);
7988
7989 /* Set up the DPLL and any encoders state that needs to adjust or depend
7990 * on the DPLL.
7991 */
7992 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7993 ret = intel_crtc_mode_set(&intel_crtc->base,
7994 x, y, fb);
7995 if (ret)
7996 goto done;
7997 }
7998
7999 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8000 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8001 dev_priv->display.crtc_enable(&intel_crtc->base);
8002
8003 if (modeset_pipes) {
8004 /* Store real post-adjustment hardware mode. */
8005 crtc->hwmode = pipe_config->adjusted_mode;
8006
8007 /* Calculate and store various constants which
8008 * are later needed by vblank and swap-completion
8009 * timestamping. They are derived from true hwmode.
8010 */
8011 drm_calc_timestamping_constants(crtc);
8012 }
8013
8014 /* FIXME: add subpixel order */
8015 done:
8016 if (ret && crtc->enabled) {
8017 crtc->hwmode = *saved_hwmode;
8018 crtc->mode = *saved_mode;
8019 }
8020
8021 out:
8022 kfree(pipe_config);
8023 kfree(saved_mode);
8024 return ret;
8025 }
8026
8027 int intel_set_mode(struct drm_crtc *crtc,
8028 struct drm_display_mode *mode,
8029 int x, int y, struct drm_framebuffer *fb)
8030 {
8031 int ret;
8032
8033 ret = __intel_set_mode(crtc, mode, x, y, fb);
8034
8035 if (ret == 0)
8036 intel_modeset_check_state(crtc->dev);
8037
8038 return ret;
8039 }
8040
8041 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8042 {
8043 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8044 }
8045
8046 #undef for_each_intel_crtc_masked
8047
8048 static void intel_set_config_free(struct intel_set_config *config)
8049 {
8050 if (!config)
8051 return;
8052
8053 kfree(config->save_connector_encoders);
8054 kfree(config->save_encoder_crtcs);
8055 kfree(config);
8056 }
8057
8058 static int intel_set_config_save_state(struct drm_device *dev,
8059 struct intel_set_config *config)
8060 {
8061 struct drm_encoder *encoder;
8062 struct drm_connector *connector;
8063 int count;
8064
8065 config->save_encoder_crtcs =
8066 kcalloc(dev->mode_config.num_encoder,
8067 sizeof(struct drm_crtc *), GFP_KERNEL);
8068 if (!config->save_encoder_crtcs)
8069 return -ENOMEM;
8070
8071 config->save_connector_encoders =
8072 kcalloc(dev->mode_config.num_connector,
8073 sizeof(struct drm_encoder *), GFP_KERNEL);
8074 if (!config->save_connector_encoders)
8075 return -ENOMEM;
8076
8077 /* Copy data. Note that driver private data is not affected.
8078 * Should anything bad happen only the expected state is
8079 * restored, not the drivers personal bookkeeping.
8080 */
8081 count = 0;
8082 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8083 config->save_encoder_crtcs[count++] = encoder->crtc;
8084 }
8085
8086 count = 0;
8087 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8088 config->save_connector_encoders[count++] = connector->encoder;
8089 }
8090
8091 return 0;
8092 }
8093
8094 static void intel_set_config_restore_state(struct drm_device *dev,
8095 struct intel_set_config *config)
8096 {
8097 struct intel_encoder *encoder;
8098 struct intel_connector *connector;
8099 int count;
8100
8101 count = 0;
8102 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8103 encoder->new_crtc =
8104 to_intel_crtc(config->save_encoder_crtcs[count++]);
8105 }
8106
8107 count = 0;
8108 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8109 connector->new_encoder =
8110 to_intel_encoder(config->save_connector_encoders[count++]);
8111 }
8112 }
8113
8114 static void
8115 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8116 struct intel_set_config *config)
8117 {
8118
8119 /* We should be able to check here if the fb has the same properties
8120 * and then just flip_or_move it */
8121 if (set->crtc->fb != set->fb) {
8122 /* If we have no fb then treat it as a full mode set */
8123 if (set->crtc->fb == NULL) {
8124 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8125 config->mode_changed = true;
8126 } else if (set->fb == NULL) {
8127 config->mode_changed = true;
8128 } else if (set->fb->pixel_format !=
8129 set->crtc->fb->pixel_format) {
8130 config->mode_changed = true;
8131 } else
8132 config->fb_changed = true;
8133 }
8134
8135 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8136 config->fb_changed = true;
8137
8138 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8139 DRM_DEBUG_KMS("modes are different, full mode set\n");
8140 drm_mode_debug_printmodeline(&set->crtc->mode);
8141 drm_mode_debug_printmodeline(set->mode);
8142 config->mode_changed = true;
8143 }
8144 }
8145
8146 static int
8147 intel_modeset_stage_output_state(struct drm_device *dev,
8148 struct drm_mode_set *set,
8149 struct intel_set_config *config)
8150 {
8151 struct drm_crtc *new_crtc;
8152 struct intel_connector *connector;
8153 struct intel_encoder *encoder;
8154 int count, ro;
8155
8156 /* The upper layers ensure that we either disable a crtc or have a list
8157 * of connectors. For paranoia, double-check this. */
8158 WARN_ON(!set->fb && (set->num_connectors != 0));
8159 WARN_ON(set->fb && (set->num_connectors == 0));
8160
8161 count = 0;
8162 list_for_each_entry(connector, &dev->mode_config.connector_list,
8163 base.head) {
8164 /* Otherwise traverse passed in connector list and get encoders
8165 * for them. */
8166 for (ro = 0; ro < set->num_connectors; ro++) {
8167 if (set->connectors[ro] == &connector->base) {
8168 connector->new_encoder = connector->encoder;
8169 break;
8170 }
8171 }
8172
8173 /* If we disable the crtc, disable all its connectors. Also, if
8174 * the connector is on the changing crtc but not on the new
8175 * connector list, disable it. */
8176 if ((!set->fb || ro == set->num_connectors) &&
8177 connector->base.encoder &&
8178 connector->base.encoder->crtc == set->crtc) {
8179 connector->new_encoder = NULL;
8180
8181 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8182 connector->base.base.id,
8183 drm_get_connector_name(&connector->base));
8184 }
8185
8186
8187 if (&connector->new_encoder->base != connector->base.encoder) {
8188 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8189 config->mode_changed = true;
8190 }
8191 }
8192 /* connector->new_encoder is now updated for all connectors. */
8193
8194 /* Update crtc of enabled connectors. */
8195 count = 0;
8196 list_for_each_entry(connector, &dev->mode_config.connector_list,
8197 base.head) {
8198 if (!connector->new_encoder)
8199 continue;
8200
8201 new_crtc = connector->new_encoder->base.crtc;
8202
8203 for (ro = 0; ro < set->num_connectors; ro++) {
8204 if (set->connectors[ro] == &connector->base)
8205 new_crtc = set->crtc;
8206 }
8207
8208 /* Make sure the new CRTC will work with the encoder */
8209 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8210 new_crtc)) {
8211 return -EINVAL;
8212 }
8213 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8214
8215 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8216 connector->base.base.id,
8217 drm_get_connector_name(&connector->base),
8218 new_crtc->base.id);
8219 }
8220
8221 /* Check for any encoders that needs to be disabled. */
8222 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8223 base.head) {
8224 list_for_each_entry(connector,
8225 &dev->mode_config.connector_list,
8226 base.head) {
8227 if (connector->new_encoder == encoder) {
8228 WARN_ON(!connector->new_encoder->new_crtc);
8229
8230 goto next_encoder;
8231 }
8232 }
8233 encoder->new_crtc = NULL;
8234 next_encoder:
8235 /* Only now check for crtc changes so we don't miss encoders
8236 * that will be disabled. */
8237 if (&encoder->new_crtc->base != encoder->base.crtc) {
8238 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8239 config->mode_changed = true;
8240 }
8241 }
8242 /* Now we've also updated encoder->new_crtc for all encoders. */
8243
8244 return 0;
8245 }
8246
8247 static int intel_crtc_set_config(struct drm_mode_set *set)
8248 {
8249 struct drm_device *dev;
8250 struct drm_mode_set save_set;
8251 struct intel_set_config *config;
8252 int ret;
8253
8254 BUG_ON(!set);
8255 BUG_ON(!set->crtc);
8256 BUG_ON(!set->crtc->helper_private);
8257
8258 /* Enforce sane interface api - has been abused by the fb helper. */
8259 BUG_ON(!set->mode && set->fb);
8260 BUG_ON(set->fb && set->num_connectors == 0);
8261
8262 if (set->fb) {
8263 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8264 set->crtc->base.id, set->fb->base.id,
8265 (int)set->num_connectors, set->x, set->y);
8266 } else {
8267 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8268 }
8269
8270 dev = set->crtc->dev;
8271
8272 ret = -ENOMEM;
8273 config = kzalloc(sizeof(*config), GFP_KERNEL);
8274 if (!config)
8275 goto out_config;
8276
8277 ret = intel_set_config_save_state(dev, config);
8278 if (ret)
8279 goto out_config;
8280
8281 save_set.crtc = set->crtc;
8282 save_set.mode = &set->crtc->mode;
8283 save_set.x = set->crtc->x;
8284 save_set.y = set->crtc->y;
8285 save_set.fb = set->crtc->fb;
8286
8287 /* Compute whether we need a full modeset, only an fb base update or no
8288 * change at all. In the future we might also check whether only the
8289 * mode changed, e.g. for LVDS where we only change the panel fitter in
8290 * such cases. */
8291 intel_set_config_compute_mode_changes(set, config);
8292
8293 ret = intel_modeset_stage_output_state(dev, set, config);
8294 if (ret)
8295 goto fail;
8296
8297 if (config->mode_changed) {
8298 if (set->mode) {
8299 DRM_DEBUG_KMS("attempting to set mode from"
8300 " userspace\n");
8301 drm_mode_debug_printmodeline(set->mode);
8302 }
8303
8304 ret = intel_set_mode(set->crtc, set->mode,
8305 set->x, set->y, set->fb);
8306 if (ret) {
8307 DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8308 set->crtc->base.id, ret);
8309 goto fail;
8310 }
8311 } else if (config->fb_changed) {
8312 intel_crtc_wait_for_pending_flips(set->crtc);
8313
8314 ret = intel_pipe_set_base(set->crtc,
8315 set->x, set->y, set->fb);
8316 }
8317
8318 intel_set_config_free(config);
8319
8320 return 0;
8321
8322 fail:
8323 intel_set_config_restore_state(dev, config);
8324
8325 /* Try to restore the config */
8326 if (config->mode_changed &&
8327 intel_set_mode(save_set.crtc, save_set.mode,
8328 save_set.x, save_set.y, save_set.fb))
8329 DRM_ERROR("failed to restore config after modeset failure\n");
8330
8331 out_config:
8332 intel_set_config_free(config);
8333 return ret;
8334 }
8335
8336 static const struct drm_crtc_funcs intel_crtc_funcs = {
8337 .cursor_set = intel_crtc_cursor_set,
8338 .cursor_move = intel_crtc_cursor_move,
8339 .gamma_set = intel_crtc_gamma_set,
8340 .set_config = intel_crtc_set_config,
8341 .destroy = intel_crtc_destroy,
8342 .page_flip = intel_crtc_page_flip,
8343 };
8344
8345 static void intel_cpu_pll_init(struct drm_device *dev)
8346 {
8347 if (HAS_DDI(dev))
8348 intel_ddi_pll_init(dev);
8349 }
8350
8351 static void intel_pch_pll_init(struct drm_device *dev)
8352 {
8353 drm_i915_private_t *dev_priv = dev->dev_private;
8354 int i;
8355
8356 if (dev_priv->num_pch_pll == 0) {
8357 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8358 return;
8359 }
8360
8361 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8362 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8363 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8364 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8365 }
8366 }
8367
8368 static void intel_crtc_init(struct drm_device *dev, int pipe)
8369 {
8370 drm_i915_private_t *dev_priv = dev->dev_private;
8371 struct intel_crtc *intel_crtc;
8372 int i;
8373
8374 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8375 if (intel_crtc == NULL)
8376 return;
8377
8378 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8379
8380 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8381 for (i = 0; i < 256; i++) {
8382 intel_crtc->lut_r[i] = i;
8383 intel_crtc->lut_g[i] = i;
8384 intel_crtc->lut_b[i] = i;
8385 }
8386
8387 /* Swap pipes & planes for FBC on pre-965 */
8388 intel_crtc->pipe = pipe;
8389 intel_crtc->plane = pipe;
8390 intel_crtc->cpu_transcoder = pipe;
8391 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8392 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8393 intel_crtc->plane = !pipe;
8394 }
8395
8396 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8397 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8398 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8399 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8400
8401 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8402 }
8403
8404 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8405 struct drm_file *file)
8406 {
8407 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8408 struct drm_mode_object *drmmode_obj;
8409 struct intel_crtc *crtc;
8410
8411 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8412 return -ENODEV;
8413
8414 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8415 DRM_MODE_OBJECT_CRTC);
8416
8417 if (!drmmode_obj) {
8418 DRM_ERROR("no such CRTC id\n");
8419 return -EINVAL;
8420 }
8421
8422 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8423 pipe_from_crtc_id->pipe = crtc->pipe;
8424
8425 return 0;
8426 }
8427
8428 static int intel_encoder_clones(struct intel_encoder *encoder)
8429 {
8430 struct drm_device *dev = encoder->base.dev;
8431 struct intel_encoder *source_encoder;
8432 int index_mask = 0;
8433 int entry = 0;
8434
8435 list_for_each_entry(source_encoder,
8436 &dev->mode_config.encoder_list, base.head) {
8437
8438 if (encoder == source_encoder)
8439 index_mask |= (1 << entry);
8440
8441 /* Intel hw has only one MUX where enocoders could be cloned. */
8442 if (encoder->cloneable && source_encoder->cloneable)
8443 index_mask |= (1 << entry);
8444
8445 entry++;
8446 }
8447
8448 return index_mask;
8449 }
8450
8451 static bool has_edp_a(struct drm_device *dev)
8452 {
8453 struct drm_i915_private *dev_priv = dev->dev_private;
8454
8455 if (!IS_MOBILE(dev))
8456 return false;
8457
8458 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8459 return false;
8460
8461 if (IS_GEN5(dev) &&
8462 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8463 return false;
8464
8465 return true;
8466 }
8467
8468 static void intel_setup_outputs(struct drm_device *dev)
8469 {
8470 struct drm_i915_private *dev_priv = dev->dev_private;
8471 struct intel_encoder *encoder;
8472 bool dpd_is_edp = false;
8473 bool has_lvds;
8474
8475 has_lvds = intel_lvds_init(dev);
8476 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8477 /* disable the panel fitter on everything but LVDS */
8478 I915_WRITE(PFIT_CONTROL, 0);
8479 }
8480
8481 if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8482 intel_crt_init(dev);
8483
8484 if (HAS_DDI(dev)) {
8485 int found;
8486
8487 /* Haswell uses DDI functions to detect digital outputs */
8488 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8489 /* DDI A only supports eDP */
8490 if (found)
8491 intel_ddi_init(dev, PORT_A);
8492
8493 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8494 * register */
8495 found = I915_READ(SFUSE_STRAP);
8496
8497 if (found & SFUSE_STRAP_DDIB_DETECTED)
8498 intel_ddi_init(dev, PORT_B);
8499 if (found & SFUSE_STRAP_DDIC_DETECTED)
8500 intel_ddi_init(dev, PORT_C);
8501 if (found & SFUSE_STRAP_DDID_DETECTED)
8502 intel_ddi_init(dev, PORT_D);
8503 } else if (HAS_PCH_SPLIT(dev)) {
8504 int found;
8505 dpd_is_edp = intel_dpd_is_edp(dev);
8506
8507 if (has_edp_a(dev))
8508 intel_dp_init(dev, DP_A, PORT_A);
8509
8510 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8511 /* PCH SDVOB multiplex with HDMIB */
8512 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8513 if (!found)
8514 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8515 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8516 intel_dp_init(dev, PCH_DP_B, PORT_B);
8517 }
8518
8519 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8520 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8521
8522 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8523 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8524
8525 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8526 intel_dp_init(dev, PCH_DP_C, PORT_C);
8527
8528 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8529 intel_dp_init(dev, PCH_DP_D, PORT_D);
8530 } else if (IS_VALLEYVIEW(dev)) {
8531 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8532 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8533 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8534
8535 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8536 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8537 PORT_B);
8538 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8539 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8540 }
8541 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8542 bool found = false;
8543
8544 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8545 DRM_DEBUG_KMS("probing SDVOB\n");
8546 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8547 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8548 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8549 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8550 }
8551
8552 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8553 DRM_DEBUG_KMS("probing DP_B\n");
8554 intel_dp_init(dev, DP_B, PORT_B);
8555 }
8556 }
8557
8558 /* Before G4X SDVOC doesn't have its own detect register */
8559
8560 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8561 DRM_DEBUG_KMS("probing SDVOC\n");
8562 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8563 }
8564
8565 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8566
8567 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8568 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8569 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8570 }
8571 if (SUPPORTS_INTEGRATED_DP(dev)) {
8572 DRM_DEBUG_KMS("probing DP_C\n");
8573 intel_dp_init(dev, DP_C, PORT_C);
8574 }
8575 }
8576
8577 if (SUPPORTS_INTEGRATED_DP(dev) &&
8578 (I915_READ(DP_D) & DP_DETECTED)) {
8579 DRM_DEBUG_KMS("probing DP_D\n");
8580 intel_dp_init(dev, DP_D, PORT_D);
8581 }
8582 } else if (IS_GEN2(dev))
8583 intel_dvo_init(dev);
8584
8585 if (SUPPORTS_TV(dev))
8586 intel_tv_init(dev);
8587
8588 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8589 encoder->base.possible_crtcs = encoder->crtc_mask;
8590 encoder->base.possible_clones =
8591 intel_encoder_clones(encoder);
8592 }
8593
8594 intel_init_pch_refclk(dev);
8595
8596 drm_helper_move_panel_connectors_to_head(dev);
8597 }
8598
8599 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8600 {
8601 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8602
8603 drm_framebuffer_cleanup(fb);
8604 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8605
8606 kfree(intel_fb);
8607 }
8608
8609 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8610 struct drm_file *file,
8611 unsigned int *handle)
8612 {
8613 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8614 struct drm_i915_gem_object *obj = intel_fb->obj;
8615
8616 return drm_gem_handle_create(file, &obj->base, handle);
8617 }
8618
8619 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8620 .destroy = intel_user_framebuffer_destroy,
8621 .create_handle = intel_user_framebuffer_create_handle,
8622 };
8623
8624 int intel_framebuffer_init(struct drm_device *dev,
8625 struct intel_framebuffer *intel_fb,
8626 struct drm_mode_fb_cmd2 *mode_cmd,
8627 struct drm_i915_gem_object *obj)
8628 {
8629 int ret;
8630
8631 if (obj->tiling_mode == I915_TILING_Y) {
8632 DRM_DEBUG("hardware does not support tiling Y\n");
8633 return -EINVAL;
8634 }
8635
8636 if (mode_cmd->pitches[0] & 63) {
8637 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8638 mode_cmd->pitches[0]);
8639 return -EINVAL;
8640 }
8641
8642 /* FIXME <= Gen4 stride limits are bit unclear */
8643 if (mode_cmd->pitches[0] > 32768) {
8644 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8645 mode_cmd->pitches[0]);
8646 return -EINVAL;
8647 }
8648
8649 if (obj->tiling_mode != I915_TILING_NONE &&
8650 mode_cmd->pitches[0] != obj->stride) {
8651 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8652 mode_cmd->pitches[0], obj->stride);
8653 return -EINVAL;
8654 }
8655
8656 /* Reject formats not supported by any plane early. */
8657 switch (mode_cmd->pixel_format) {
8658 case DRM_FORMAT_C8:
8659 case DRM_FORMAT_RGB565:
8660 case DRM_FORMAT_XRGB8888:
8661 case DRM_FORMAT_ARGB8888:
8662 break;
8663 case DRM_FORMAT_XRGB1555:
8664 case DRM_FORMAT_ARGB1555:
8665 if (INTEL_INFO(dev)->gen > 3) {
8666 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8667 return -EINVAL;
8668 }
8669 break;
8670 case DRM_FORMAT_XBGR8888:
8671 case DRM_FORMAT_ABGR8888:
8672 case DRM_FORMAT_XRGB2101010:
8673 case DRM_FORMAT_ARGB2101010:
8674 case DRM_FORMAT_XBGR2101010:
8675 case DRM_FORMAT_ABGR2101010:
8676 if (INTEL_INFO(dev)->gen < 4) {
8677 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8678 return -EINVAL;
8679 }
8680 break;
8681 case DRM_FORMAT_YUYV:
8682 case DRM_FORMAT_UYVY:
8683 case DRM_FORMAT_YVYU:
8684 case DRM_FORMAT_VYUY:
8685 if (INTEL_INFO(dev)->gen < 5) {
8686 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8687 return -EINVAL;
8688 }
8689 break;
8690 default:
8691 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8692 return -EINVAL;
8693 }
8694
8695 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8696 if (mode_cmd->offsets[0] != 0)
8697 return -EINVAL;
8698
8699 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8700 intel_fb->obj = obj;
8701
8702 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8703 if (ret) {
8704 DRM_ERROR("framebuffer init failed %d\n", ret);
8705 return ret;
8706 }
8707
8708 return 0;
8709 }
8710
8711 static struct drm_framebuffer *
8712 intel_user_framebuffer_create(struct drm_device *dev,
8713 struct drm_file *filp,
8714 struct drm_mode_fb_cmd2 *mode_cmd)
8715 {
8716 struct drm_i915_gem_object *obj;
8717
8718 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8719 mode_cmd->handles[0]));
8720 if (&obj->base == NULL)
8721 return ERR_PTR(-ENOENT);
8722
8723 return intel_framebuffer_create(dev, mode_cmd, obj);
8724 }
8725
8726 static const struct drm_mode_config_funcs intel_mode_funcs = {
8727 .fb_create = intel_user_framebuffer_create,
8728 .output_poll_changed = intel_fb_output_poll_changed,
8729 };
8730
8731 /* Set up chip specific display functions */
8732 static void intel_init_display(struct drm_device *dev)
8733 {
8734 struct drm_i915_private *dev_priv = dev->dev_private;
8735
8736 if (HAS_DDI(dev)) {
8737 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8738 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8739 dev_priv->display.crtc_enable = haswell_crtc_enable;
8740 dev_priv->display.crtc_disable = haswell_crtc_disable;
8741 dev_priv->display.off = haswell_crtc_off;
8742 dev_priv->display.update_plane = ironlake_update_plane;
8743 } else if (HAS_PCH_SPLIT(dev)) {
8744 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8745 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8746 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8747 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8748 dev_priv->display.off = ironlake_crtc_off;
8749 dev_priv->display.update_plane = ironlake_update_plane;
8750 } else {
8751 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8752 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8753 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8754 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8755 dev_priv->display.off = i9xx_crtc_off;
8756 dev_priv->display.update_plane = i9xx_update_plane;
8757 }
8758
8759 /* Returns the core display clock speed */
8760 if (IS_VALLEYVIEW(dev))
8761 dev_priv->display.get_display_clock_speed =
8762 valleyview_get_display_clock_speed;
8763 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8764 dev_priv->display.get_display_clock_speed =
8765 i945_get_display_clock_speed;
8766 else if (IS_I915G(dev))
8767 dev_priv->display.get_display_clock_speed =
8768 i915_get_display_clock_speed;
8769 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8770 dev_priv->display.get_display_clock_speed =
8771 i9xx_misc_get_display_clock_speed;
8772 else if (IS_I915GM(dev))
8773 dev_priv->display.get_display_clock_speed =
8774 i915gm_get_display_clock_speed;
8775 else if (IS_I865G(dev))
8776 dev_priv->display.get_display_clock_speed =
8777 i865_get_display_clock_speed;
8778 else if (IS_I85X(dev))
8779 dev_priv->display.get_display_clock_speed =
8780 i855_get_display_clock_speed;
8781 else /* 852, 830 */
8782 dev_priv->display.get_display_clock_speed =
8783 i830_get_display_clock_speed;
8784
8785 if (HAS_PCH_SPLIT(dev)) {
8786 if (IS_GEN5(dev)) {
8787 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8788 dev_priv->display.write_eld = ironlake_write_eld;
8789 } else if (IS_GEN6(dev)) {
8790 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8791 dev_priv->display.write_eld = ironlake_write_eld;
8792 } else if (IS_IVYBRIDGE(dev)) {
8793 /* FIXME: detect B0+ stepping and use auto training */
8794 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8795 dev_priv->display.write_eld = ironlake_write_eld;
8796 dev_priv->display.modeset_global_resources =
8797 ivb_modeset_global_resources;
8798 } else if (IS_HASWELL(dev)) {
8799 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8800 dev_priv->display.write_eld = haswell_write_eld;
8801 dev_priv->display.modeset_global_resources =
8802 haswell_modeset_global_resources;
8803 }
8804 } else if (IS_G4X(dev)) {
8805 dev_priv->display.write_eld = g4x_write_eld;
8806 }
8807
8808 /* Default just returns -ENODEV to indicate unsupported */
8809 dev_priv->display.queue_flip = intel_default_queue_flip;
8810
8811 switch (INTEL_INFO(dev)->gen) {
8812 case 2:
8813 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8814 break;
8815
8816 case 3:
8817 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8818 break;
8819
8820 case 4:
8821 case 5:
8822 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8823 break;
8824
8825 case 6:
8826 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8827 break;
8828 case 7:
8829 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8830 break;
8831 }
8832 }
8833
8834 /*
8835 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8836 * resume, or other times. This quirk makes sure that's the case for
8837 * affected systems.
8838 */
8839 static void quirk_pipea_force(struct drm_device *dev)
8840 {
8841 struct drm_i915_private *dev_priv = dev->dev_private;
8842
8843 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8844 DRM_INFO("applying pipe a force quirk\n");
8845 }
8846
8847 /*
8848 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8849 */
8850 static void quirk_ssc_force_disable(struct drm_device *dev)
8851 {
8852 struct drm_i915_private *dev_priv = dev->dev_private;
8853 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8854 DRM_INFO("applying lvds SSC disable quirk\n");
8855 }
8856
8857 /*
8858 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8859 * brightness value
8860 */
8861 static void quirk_invert_brightness(struct drm_device *dev)
8862 {
8863 struct drm_i915_private *dev_priv = dev->dev_private;
8864 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8865 DRM_INFO("applying inverted panel brightness quirk\n");
8866 }
8867
8868 struct intel_quirk {
8869 int device;
8870 int subsystem_vendor;
8871 int subsystem_device;
8872 void (*hook)(struct drm_device *dev);
8873 };
8874
8875 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8876 struct intel_dmi_quirk {
8877 void (*hook)(struct drm_device *dev);
8878 const struct dmi_system_id (*dmi_id_list)[];
8879 };
8880
8881 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8882 {
8883 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8884 return 1;
8885 }
8886
8887 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8888 {
8889 .dmi_id_list = &(const struct dmi_system_id[]) {
8890 {
8891 .callback = intel_dmi_reverse_brightness,
8892 .ident = "NCR Corporation",
8893 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8894 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8895 },
8896 },
8897 { } /* terminating entry */
8898 },
8899 .hook = quirk_invert_brightness,
8900 },
8901 };
8902
8903 static struct intel_quirk intel_quirks[] = {
8904 /* HP Mini needs pipe A force quirk (LP: #322104) */
8905 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8906
8907 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8908 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8909
8910 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8911 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8912
8913 /* 830/845 need to leave pipe A & dpll A up */
8914 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8915 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8916
8917 /* Lenovo U160 cannot use SSC on LVDS */
8918 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8919
8920 /* Sony Vaio Y cannot use SSC on LVDS */
8921 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8922
8923 /* Acer Aspire 5734Z must invert backlight brightness */
8924 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8925
8926 /* Acer/eMachines G725 */
8927 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8928
8929 /* Acer/eMachines e725 */
8930 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8931
8932 /* Acer/Packard Bell NCL20 */
8933 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8934
8935 /* Acer Aspire 4736Z */
8936 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8937 };
8938
8939 static void intel_init_quirks(struct drm_device *dev)
8940 {
8941 struct pci_dev *d = dev->pdev;
8942 int i;
8943
8944 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8945 struct intel_quirk *q = &intel_quirks[i];
8946
8947 if (d->device == q->device &&
8948 (d->subsystem_vendor == q->subsystem_vendor ||
8949 q->subsystem_vendor == PCI_ANY_ID) &&
8950 (d->subsystem_device == q->subsystem_device ||
8951 q->subsystem_device == PCI_ANY_ID))
8952 q->hook(dev);
8953 }
8954 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8955 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8956 intel_dmi_quirks[i].hook(dev);
8957 }
8958 }
8959
8960 /* Disable the VGA plane that we never use */
8961 static void i915_disable_vga(struct drm_device *dev)
8962 {
8963 struct drm_i915_private *dev_priv = dev->dev_private;
8964 u8 sr1;
8965 u32 vga_reg = i915_vgacntrl_reg(dev);
8966
8967 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8968 outb(SR01, VGA_SR_INDEX);
8969 sr1 = inb(VGA_SR_DATA);
8970 outb(sr1 | 1<<5, VGA_SR_DATA);
8971 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8972 udelay(300);
8973
8974 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8975 POSTING_READ(vga_reg);
8976 }
8977
8978 void intel_modeset_init_hw(struct drm_device *dev)
8979 {
8980 intel_init_power_well(dev);
8981
8982 intel_prepare_ddi(dev);
8983
8984 intel_init_clock_gating(dev);
8985
8986 mutex_lock(&dev->struct_mutex);
8987 intel_enable_gt_powersave(dev);
8988 mutex_unlock(&dev->struct_mutex);
8989 }
8990
8991 void intel_modeset_init(struct drm_device *dev)
8992 {
8993 struct drm_i915_private *dev_priv = dev->dev_private;
8994 int i, j, ret;
8995
8996 drm_mode_config_init(dev);
8997
8998 dev->mode_config.min_width = 0;
8999 dev->mode_config.min_height = 0;
9000
9001 dev->mode_config.preferred_depth = 24;
9002 dev->mode_config.prefer_shadow = 1;
9003
9004 dev->mode_config.funcs = &intel_mode_funcs;
9005
9006 intel_init_quirks(dev);
9007
9008 intel_init_pm(dev);
9009
9010 if (INTEL_INFO(dev)->num_pipes == 0)
9011 return;
9012
9013 intel_init_display(dev);
9014
9015 if (IS_GEN2(dev)) {
9016 dev->mode_config.max_width = 2048;
9017 dev->mode_config.max_height = 2048;
9018 } else if (IS_GEN3(dev)) {
9019 dev->mode_config.max_width = 4096;
9020 dev->mode_config.max_height = 4096;
9021 } else {
9022 dev->mode_config.max_width = 8192;
9023 dev->mode_config.max_height = 8192;
9024 }
9025 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9026
9027 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9028 INTEL_INFO(dev)->num_pipes,
9029 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9030
9031 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9032 intel_crtc_init(dev, i);
9033 for (j = 0; j < dev_priv->num_plane; j++) {
9034 ret = intel_plane_init(dev, i, j);
9035 if (ret)
9036 DRM_DEBUG_KMS("pipe %d plane %d init failed: %d\n",
9037 i, j, ret);
9038 }
9039 }
9040
9041 intel_cpu_pll_init(dev);
9042 intel_pch_pll_init(dev);
9043
9044 /* Just disable it once at startup */
9045 i915_disable_vga(dev);
9046 intel_setup_outputs(dev);
9047
9048 /* Just in case the BIOS is doing something questionable. */
9049 intel_disable_fbc(dev);
9050 }
9051
9052 static void
9053 intel_connector_break_all_links(struct intel_connector *connector)
9054 {
9055 connector->base.dpms = DRM_MODE_DPMS_OFF;
9056 connector->base.encoder = NULL;
9057 connector->encoder->connectors_active = false;
9058 connector->encoder->base.crtc = NULL;
9059 }
9060
9061 static void intel_enable_pipe_a(struct drm_device *dev)
9062 {
9063 struct intel_connector *connector;
9064 struct drm_connector *crt = NULL;
9065 struct intel_load_detect_pipe load_detect_temp;
9066
9067 /* We can't just switch on the pipe A, we need to set things up with a
9068 * proper mode and output configuration. As a gross hack, enable pipe A
9069 * by enabling the load detect pipe once. */
9070 list_for_each_entry(connector,
9071 &dev->mode_config.connector_list,
9072 base.head) {
9073 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9074 crt = &connector->base;
9075 break;
9076 }
9077 }
9078
9079 if (!crt)
9080 return;
9081
9082 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9083 intel_release_load_detect_pipe(crt, &load_detect_temp);
9084
9085
9086 }
9087
9088 static bool
9089 intel_check_plane_mapping(struct intel_crtc *crtc)
9090 {
9091 struct drm_device *dev = crtc->base.dev;
9092 struct drm_i915_private *dev_priv = dev->dev_private;
9093 u32 reg, val;
9094
9095 if (INTEL_INFO(dev)->num_pipes == 1)
9096 return true;
9097
9098 reg = DSPCNTR(!crtc->plane);
9099 val = I915_READ(reg);
9100
9101 if ((val & DISPLAY_PLANE_ENABLE) &&
9102 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9103 return false;
9104
9105 return true;
9106 }
9107
9108 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9109 {
9110 struct drm_device *dev = crtc->base.dev;
9111 struct drm_i915_private *dev_priv = dev->dev_private;
9112 u32 reg;
9113
9114 /* Clear any frame start delays used for debugging left by the BIOS */
9115 reg = PIPECONF(crtc->cpu_transcoder);
9116 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9117
9118 /* We need to sanitize the plane -> pipe mapping first because this will
9119 * disable the crtc (and hence change the state) if it is wrong. Note
9120 * that gen4+ has a fixed plane -> pipe mapping. */
9121 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9122 struct intel_connector *connector;
9123 bool plane;
9124
9125 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9126 crtc->base.base.id);
9127
9128 /* Pipe has the wrong plane attached and the plane is active.
9129 * Temporarily change the plane mapping and disable everything
9130 * ... */
9131 plane = crtc->plane;
9132 crtc->plane = !plane;
9133 dev_priv->display.crtc_disable(&crtc->base);
9134 crtc->plane = plane;
9135
9136 /* ... and break all links. */
9137 list_for_each_entry(connector, &dev->mode_config.connector_list,
9138 base.head) {
9139 if (connector->encoder->base.crtc != &crtc->base)
9140 continue;
9141
9142 intel_connector_break_all_links(connector);
9143 }
9144
9145 WARN_ON(crtc->active);
9146 crtc->base.enabled = false;
9147 }
9148
9149 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9150 crtc->pipe == PIPE_A && !crtc->active) {
9151 /* BIOS forgot to enable pipe A, this mostly happens after
9152 * resume. Force-enable the pipe to fix this, the update_dpms
9153 * call below we restore the pipe to the right state, but leave
9154 * the required bits on. */
9155 intel_enable_pipe_a(dev);
9156 }
9157
9158 /* Adjust the state of the output pipe according to whether we
9159 * have active connectors/encoders. */
9160 intel_crtc_update_dpms(&crtc->base);
9161
9162 if (crtc->active != crtc->base.enabled) {
9163 struct intel_encoder *encoder;
9164
9165 /* This can happen either due to bugs in the get_hw_state
9166 * functions or because the pipe is force-enabled due to the
9167 * pipe A quirk. */
9168 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9169 crtc->base.base.id,
9170 crtc->base.enabled ? "enabled" : "disabled",
9171 crtc->active ? "enabled" : "disabled");
9172
9173 crtc->base.enabled = crtc->active;
9174
9175 /* Because we only establish the connector -> encoder ->
9176 * crtc links if something is active, this means the
9177 * crtc is now deactivated. Break the links. connector
9178 * -> encoder links are only establish when things are
9179 * actually up, hence no need to break them. */
9180 WARN_ON(crtc->active);
9181
9182 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9183 WARN_ON(encoder->connectors_active);
9184 encoder->base.crtc = NULL;
9185 }
9186 }
9187 }
9188
9189 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9190 {
9191 struct intel_connector *connector;
9192 struct drm_device *dev = encoder->base.dev;
9193
9194 /* We need to check both for a crtc link (meaning that the
9195 * encoder is active and trying to read from a pipe) and the
9196 * pipe itself being active. */
9197 bool has_active_crtc = encoder->base.crtc &&
9198 to_intel_crtc(encoder->base.crtc)->active;
9199
9200 if (encoder->connectors_active && !has_active_crtc) {
9201 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9202 encoder->base.base.id,
9203 drm_get_encoder_name(&encoder->base));
9204
9205 /* Connector is active, but has no active pipe. This is
9206 * fallout from our resume register restoring. Disable
9207 * the encoder manually again. */
9208 if (encoder->base.crtc) {
9209 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9210 encoder->base.base.id,
9211 drm_get_encoder_name(&encoder->base));
9212 encoder->disable(encoder);
9213 }
9214
9215 /* Inconsistent output/port/pipe state happens presumably due to
9216 * a bug in one of the get_hw_state functions. Or someplace else
9217 * in our code, like the register restore mess on resume. Clamp
9218 * things to off as a safer default. */
9219 list_for_each_entry(connector,
9220 &dev->mode_config.connector_list,
9221 base.head) {
9222 if (connector->encoder != encoder)
9223 continue;
9224
9225 intel_connector_break_all_links(connector);
9226 }
9227 }
9228 /* Enabled encoders without active connectors will be fixed in
9229 * the crtc fixup. */
9230 }
9231
9232 void i915_redisable_vga(struct drm_device *dev)
9233 {
9234 struct drm_i915_private *dev_priv = dev->dev_private;
9235 u32 vga_reg = i915_vgacntrl_reg(dev);
9236
9237 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9238 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9239 i915_disable_vga(dev);
9240 }
9241 }
9242
9243 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9244 * and i915 state tracking structures. */
9245 void intel_modeset_setup_hw_state(struct drm_device *dev,
9246 bool force_restore)
9247 {
9248 struct drm_i915_private *dev_priv = dev->dev_private;
9249 enum pipe pipe;
9250 u32 tmp;
9251 struct drm_plane *plane;
9252 struct intel_crtc *crtc;
9253 struct intel_encoder *encoder;
9254 struct intel_connector *connector;
9255
9256 if (HAS_DDI(dev)) {
9257 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9258
9259 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9260 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9261 case TRANS_DDI_EDP_INPUT_A_ON:
9262 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9263 pipe = PIPE_A;
9264 break;
9265 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9266 pipe = PIPE_B;
9267 break;
9268 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9269 pipe = PIPE_C;
9270 break;
9271 default:
9272 /* A bogus value has been programmed, disable
9273 * the transcoder */
9274 WARN(1, "Bogus eDP source %08x\n", tmp);
9275 intel_ddi_disable_transcoder_func(dev_priv,
9276 TRANSCODER_EDP);
9277 goto setup_pipes;
9278 }
9279
9280 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9281 crtc->cpu_transcoder = TRANSCODER_EDP;
9282
9283 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9284 pipe_name(pipe));
9285 }
9286 }
9287
9288 setup_pipes:
9289 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9290 base.head) {
9291 memset(&crtc->config, 0, sizeof(crtc->config));
9292 crtc->active = dev_priv->display.get_pipe_config(crtc,
9293 &crtc->config);
9294
9295 crtc->base.enabled = crtc->active;
9296
9297 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9298 crtc->base.base.id,
9299 crtc->active ? "enabled" : "disabled");
9300 }
9301
9302 if (HAS_DDI(dev))
9303 intel_ddi_setup_hw_pll_state(dev);
9304
9305 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9306 base.head) {
9307 pipe = 0;
9308
9309 if (encoder->get_hw_state(encoder, &pipe)) {
9310 encoder->base.crtc =
9311 dev_priv->pipe_to_crtc_mapping[pipe];
9312 } else {
9313 encoder->base.crtc = NULL;
9314 }
9315
9316 encoder->connectors_active = false;
9317 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9318 encoder->base.base.id,
9319 drm_get_encoder_name(&encoder->base),
9320 encoder->base.crtc ? "enabled" : "disabled",
9321 pipe);
9322 }
9323
9324 list_for_each_entry(connector, &dev->mode_config.connector_list,
9325 base.head) {
9326 if (connector->get_hw_state(connector)) {
9327 connector->base.dpms = DRM_MODE_DPMS_ON;
9328 connector->encoder->connectors_active = true;
9329 connector->base.encoder = &connector->encoder->base;
9330 } else {
9331 connector->base.dpms = DRM_MODE_DPMS_OFF;
9332 connector->base.encoder = NULL;
9333 }
9334 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9335 connector->base.base.id,
9336 drm_get_connector_name(&connector->base),
9337 connector->base.encoder ? "enabled" : "disabled");
9338 }
9339
9340 /* HW state is read out, now we need to sanitize this mess. */
9341 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9342 base.head) {
9343 intel_sanitize_encoder(encoder);
9344 }
9345
9346 for_each_pipe(pipe) {
9347 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9348 intel_sanitize_crtc(crtc);
9349 }
9350
9351 if (force_restore) {
9352 /*
9353 * We need to use raw interfaces for restoring state to avoid
9354 * checking (bogus) intermediate states.
9355 */
9356 for_each_pipe(pipe) {
9357 struct drm_crtc *crtc =
9358 dev_priv->pipe_to_crtc_mapping[pipe];
9359
9360 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9361 crtc->fb);
9362 }
9363 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9364 intel_plane_restore(plane);
9365
9366 i915_redisable_vga(dev);
9367 } else {
9368 intel_modeset_update_staged_output_state(dev);
9369 }
9370
9371 intel_modeset_check_state(dev);
9372
9373 drm_mode_config_reset(dev);
9374 }
9375
9376 void intel_modeset_gem_init(struct drm_device *dev)
9377 {
9378 intel_modeset_init_hw(dev);
9379
9380 intel_setup_overlay(dev);
9381
9382 intel_modeset_setup_hw_state(dev, false);
9383 }
9384
9385 void intel_modeset_cleanup(struct drm_device *dev)
9386 {
9387 struct drm_i915_private *dev_priv = dev->dev_private;
9388 struct drm_crtc *crtc;
9389 struct intel_crtc *intel_crtc;
9390
9391 drm_kms_helper_poll_fini(dev);
9392 mutex_lock(&dev->struct_mutex);
9393
9394 intel_unregister_dsm_handler();
9395
9396
9397 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9398 /* Skip inactive CRTCs */
9399 if (!crtc->fb)
9400 continue;
9401
9402 intel_crtc = to_intel_crtc(crtc);
9403 intel_increase_pllclock(crtc);
9404 }
9405
9406 intel_disable_fbc(dev);
9407
9408 intel_disable_gt_powersave(dev);
9409
9410 ironlake_teardown_rc6(dev);
9411
9412 if (IS_VALLEYVIEW(dev))
9413 vlv_init_dpio(dev);
9414
9415 mutex_unlock(&dev->struct_mutex);
9416
9417 /* Disable the irq before mode object teardown, for the irq might
9418 * enqueue unpin/hotplug work. */
9419 drm_irq_uninstall(dev);
9420 cancel_work_sync(&dev_priv->hotplug_work);
9421 cancel_work_sync(&dev_priv->rps.work);
9422
9423 /* flush any delayed tasks or pending work */
9424 flush_scheduled_work();
9425
9426 drm_mode_config_cleanup(dev);
9427
9428 intel_cleanup_overlay(dev);
9429 }
9430
9431 /*
9432 * Return which encoder is currently attached for connector.
9433 */
9434 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9435 {
9436 return &intel_attached_encoder(connector)->base;
9437 }
9438
9439 void intel_connector_attach_encoder(struct intel_connector *connector,
9440 struct intel_encoder *encoder)
9441 {
9442 connector->encoder = encoder;
9443 drm_mode_connector_attach_encoder(&connector->base,
9444 &encoder->base);
9445 }
9446
9447 /*
9448 * set vga decode state - true == enable VGA decode
9449 */
9450 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9451 {
9452 struct drm_i915_private *dev_priv = dev->dev_private;
9453 u16 gmch_ctrl;
9454
9455 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9456 if (state)
9457 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9458 else
9459 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9460 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9461 return 0;
9462 }
9463
9464 #ifdef CONFIG_DEBUG_FS
9465 #include <linux/seq_file.h>
9466
9467 struct intel_display_error_state {
9468 struct intel_cursor_error_state {
9469 u32 control;
9470 u32 position;
9471 u32 base;
9472 u32 size;
9473 } cursor[I915_MAX_PIPES];
9474
9475 struct intel_pipe_error_state {
9476 u32 conf;
9477 u32 source;
9478
9479 u32 htotal;
9480 u32 hblank;
9481 u32 hsync;
9482 u32 vtotal;
9483 u32 vblank;
9484 u32 vsync;
9485 } pipe[I915_MAX_PIPES];
9486
9487 struct intel_plane_error_state {
9488 u32 control;
9489 u32 stride;
9490 u32 size;
9491 u32 pos;
9492 u32 addr;
9493 u32 surface;
9494 u32 tile_offset;
9495 } plane[I915_MAX_PIPES];
9496 };
9497
9498 struct intel_display_error_state *
9499 intel_display_capture_error_state(struct drm_device *dev)
9500 {
9501 drm_i915_private_t *dev_priv = dev->dev_private;
9502 struct intel_display_error_state *error;
9503 enum transcoder cpu_transcoder;
9504 int i;
9505
9506 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9507 if (error == NULL)
9508 return NULL;
9509
9510 for_each_pipe(i) {
9511 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9512
9513 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9514 error->cursor[i].control = I915_READ(CURCNTR(i));
9515 error->cursor[i].position = I915_READ(CURPOS(i));
9516 error->cursor[i].base = I915_READ(CURBASE(i));
9517 } else {
9518 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9519 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9520 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9521 }
9522
9523 error->plane[i].control = I915_READ(DSPCNTR(i));
9524 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9525 if (INTEL_INFO(dev)->gen <= 3) {
9526 error->plane[i].size = I915_READ(DSPSIZE(i));
9527 error->plane[i].pos = I915_READ(DSPPOS(i));
9528 }
9529 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9530 error->plane[i].addr = I915_READ(DSPADDR(i));
9531 if (INTEL_INFO(dev)->gen >= 4) {
9532 error->plane[i].surface = I915_READ(DSPSURF(i));
9533 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9534 }
9535
9536 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9537 error->pipe[i].source = I915_READ(PIPESRC(i));
9538 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9539 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9540 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9541 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9542 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9543 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9544 }
9545
9546 return error;
9547 }
9548
9549 void
9550 intel_display_print_error_state(struct seq_file *m,
9551 struct drm_device *dev,
9552 struct intel_display_error_state *error)
9553 {
9554 int i;
9555
9556 seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9557 for_each_pipe(i) {
9558 seq_printf(m, "Pipe [%d]:\n", i);
9559 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9560 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9561 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9562 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9563 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9564 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9565 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9566 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9567
9568 seq_printf(m, "Plane [%d]:\n", i);
9569 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9570 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9571 if (INTEL_INFO(dev)->gen <= 3) {
9572 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9573 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9574 }
9575 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9576 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9577 if (INTEL_INFO(dev)->gen >= 4) {
9578 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9579 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9580 }
9581
9582 seq_printf(m, "Cursor [%d]:\n", i);
9583 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9584 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9585 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9586 }
9587 }
9588 #endif
This page took 0.244406 seconds and 5 git commands to generate.